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Abstract

The coexistence of trees and grasses in savannas are not well understood even though
savannas occupy a wide area of West Africa. In this study, a hypothesis is proposed to
investigate the question of how trees and grasses coexist in a region. The hypothesis
suggests that the variation in elevation leads to the variation in soil moisture, which
in turn can explain the coexistence of trees and grasses in savannas. To test this
hypothesis, experimental simulations are performed using biospheric model, IBIS, and
distributed hydrologic model, SHE. We, first, estimate the amount of rainfall required
for trees and grasses under a certain atmospheric condition. Here, the variation of
rainfall is prescribed to force a similar variation of soil moisture. A 30% decrease in
rainfall is sufficient to simulate grasses at gON. A 100% increase in rainfall is sufficient
to simulate trees at II°N. However, even with a five fold increase in rainfall, the
model fails to simulate trees at 13°N. To study the influences of topography explicitly,
a distributed hydrologic modeling is performed using SHE. The results suggest that
the variation of the depth to water table induced by the varying elevation is highly
correlated with the variation of soil moisture. Consequently, an asynchronous coupling
of SHE and IBIS is designed to investigate the stated hypothesis. The coupling is
performed by modifying IBIS to include the groundwater table as a boundary variable.
The modified IBIS simulates both trees and grasses according to a different water table
boundary condition in natural savannas of 11ON. The shallow water table of valleys
allows the growth of trees, and the deep water table of hills allows the growth of
grasses.

The simulations in this study suggest that the variability of soil moisture re­
sulting from the topographic variation can be a determinant of savanna ecosystems.
Moreover, grasslands in 13°N cannot be changed into forests only by adjusting soil
moisture. It suggests that the role of soil moisture can be significant to dictate the



vegetation type only in a certain window characteristic of savanna climate.
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Chapter 1

Introduction

1.1 Background

Savanna ecosystems are described as a mixture of trees and grasses, constituting

one of the world's major biomes and occupying about 20% of the land surface of the

world. They are also defined as tropical or near-tropical ecosystems with a continuous

herbaceous grass layer and a discontinuous layer of tress or shrubs (Skarpe, 1992).

Savannas often occupy the areas between the equatorial forests and the mid-latitude

deserts as a buffer zone, their ecology is neither that of grassland, nor that of a forest

(Scholes & Walker, 1993). The complex interaction of trees and grasses shapes their

ecological characteristics, and the coexistence of them still remains unresolved due to

its complexity.

West African Savannas are the region of interest in this study. West Africa is

defined here as the region between the Sahara desert to the north and the Atlantic

coast to the south, and between 15°W and 15°E longitude. Savannas occupy the
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Figure 1-1: USGS Land Cover Classification. Savannas are bounded by 7°N and 12.5°N roughly.



wide areas of West Africa as seen in Figure 1-1, and are roughly bounded by 7°N

and 12.5°N latitude (Anderson et ai. , 1976; Foley et ai. , 1996). Before focusing on

West African savanna, some background on climate and land cover of West Africa is

presented.

West Africa falls in the tropical climate zone, and is under the influence of the

West African monsoon circulation. Rainfall is the main variable in the atmospheric

dynamics of this area. The annual rainfall exhibit a sharp meridional gradient ranging

from over 2000 mm near the coast to less than 200 mm on the Sahara desert border.

A weak zonal gradient is observed in the western coast. The rainfall contour parallels

to the east-west coast line of the Atlantic Ocean as seen in Figure 1-2. Climate of

West Africa has strong seasonality, with a wet summer and a dry winter. Most of

rainfall events are limited to the wet season. The duration of rainy season also has

a meridional gradient, which ranges from five months in the coastal region to one

month in the desert margins. The zonal symmetry and the seasonal variability in

West Africa are primarily shaped by the West African monsoon circulation.

The monsoon circulation is driven by the differential heating between the land and

the ocean, and is marked with the seasonal shift in the wind direction. It is responsible

for the wet summer and dry winter over land. During the summer season, wind moves

from the ocean to the land near the surface while transporting the moist air. Then

the wet air parcels are heated further leading to moist convection. This leads to the

cloud formation, and the consequent rainfall events. The reverse circulation during

winter sharpens the cool and dry season. The monsoon circulation is meridional in

West Africa since the southern coast line is almost parallel to the equator. In turn,

14
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this is responsible for the zonal symmetry of the climate, together with the Hadley

circulation.

Climate is the primary factor that dictates the distribution of vegetation. The

meridional gradients of the climate variables (see Figure 1-2), make the distribution

of the dominant vegetation type roughly parallel to the latitudinal line. The coastal

region has access to abundant water and energy, which is enough to support trees.

The amount of rainfall decreases northward, then the area around the desert border is

stressed by the lack of water. Grasses can survive with relatively less water than trees

since grasses transpire efficiently with shallow roots. Consequently, grasses are the

dominant vegetation type in the north. In other words, the ecosystem changes from

forests at the coastal region to grasslands at the northern edges. Between forests and

grasslands, savannas exist as a transitional zone. As shown in Figure 1-1, savannas

occupy extensive area of West Africa. But their dynamics are not as well understood

as grasslands and trees. This study concentrates on how savanna exists. Then the

details of savanna dynamics will be reviewed in the following section.

1.2 Literature Review on Savanna Dynamics

Savannas are characterized as grasslands with scattered trees. Herbaceous grasses and

deciduous trees (or shrubs) coexist in the same region. In the classical view of the

plant competition, one outcompetes the other when two different types of competitor

use the same resources (e.g., energy, water, and nutrients). In savannas, however, two

competitors, trees and grasses, often coexist so we are interested in what conditions

16
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allow them survive together.

There are two theories, which are described here as the equilibrium and disequi-

librium views. The first theory suggests savannas are a stable ecosystem equilibrium

that is a result of competition between trees and grasses for the resources such as

soil water, light and nutrients. More recently proposed, the disequilibrium view sug-

gests that savannas are achieved through a disturbance mechanism such as fires and

graZIng.

1.2.1 Equilibrium View

The equilibrium school suggests that the coexistence of different vegetation types is

dynamically stable. Different species compete for water, light, and nutrients, then

the equilibrium is achieved in savannas, as it is elsewhere. The focus is on the water-

limited arid and semi-arid savannas. Walter (1971) hypothesizes that water is a

determinant of semi-arid savannas, and the grasses only exploit the shallow soil mois-

ture. But the trees and shrubs can access the soil water of the deep soil as well as that

of the shallow soil. Based on Walter's hypothesis, several models have been developed

to explain the existence of savannas. Walker et at. (1981) developed an analytical

model, and shows a stable equilibrium in the mixture of trees and grasses. Roots of

grasses are restricted to shallow soil layers, so they have priority to exploit soil water

from shallow soils. Trees extend their roots to shallow and deep soil layers, but they

are outcompeted by grasses in the surface soil. Consequently, grasses utilize the soil

water from the surface soil, and trees from the deep soil. In turn, trees and grasses

17



survive together in savannas.

Furthermore, Eagleson & Segarra (1985) include the competition of trees and

grasses for energy as well as water, based on a two-layer model. They add an as­

sumption that trees have priority to solar radiation since they exist in the higher

layer than grasses, above ground. Thus, trees only use water from the deep soil that

grasses cannot use. But trees limit the water use of grasses by shading them from the

solar radiation. Each one impacts the other through this feedback mechanism. The

model results in three equilibrium states, according to specified parameters, which are

forests, grasslands, and savannas. They showed that savannas are only one ecosystem,

stable to perturbations such as fires.

Recently, Rodriquez-Iturbe et at. (1999) develop a model to address the role of

spatial dynamics and climate fluctuations in the coexistence of trees and grasses. The

model is validated for the savanna climate of Southern Texas. They argue that the

spatial water competition must be included to investigate the coexistence of trees and

grasses. The model allows the horizontal competition between trees and grasses, and

between trees or grasses themselves. In the model, a square grid pixel is occupied by

a tree or grass. Then, species in neighboring cells of a grid can exploit the soil water

from the next cells. The water stress corresponding to the canopy densities of trees

and grasses, is investigated while allowing their spatial competition for soil moisture.

The results show that a mixture of trees and grasses exists under a minimum water

stress, i.e., the optimal condition. Moreover, it is noted that the change of canopy in

savannas is sensitive to the climate fluctuation.

18



1.2.2 Disequilibrium View

The disequilibrium view suggests that disturbance mechanisms playa significant role

in achieving the coexistence of trees and grasses. Disturbance mechanisms prevent
"

savannas from developing into a simple ecosystem such as grassland or a forest.

Fires, droughts and grazing are suggested as disturbances from outside the ecosystem

(Skarpe, 1992; Scholes & Walker, 1993; Bourliere & Hadley, 1983).

For instance, Skarpe (1992) argue the following. "Most savannas, particularly

African ones, are believed to owe their existence more to the impact of fire and large

herbivores than to climate, and these factors seem largely to determine the boundary

between savanna and forest."

Scholes & Walker (1993) performed a field experiment at the savannas of Nylsve,

in South Africa. From measurements in the broad-leafed savanna, they found that

the grass roots use subsoil water as efficiently as tree roots, and tree roots dried out

the topsoil as much as grass roots alone. Therefore the competition for the available

water is not important to shape savannas. Instead, they argue that savannas are

achieved by fires, droughts, herbivory, frost, lightning, and wind.

1.3 New Hypothesis

To investigate how trees and grasses coexist in savannas, here we propose a new theory.

Our hypothesis is that the variation in elevation leads to variation in soil moisture

content, which in turn can lead to the coexistence of the different types of vegetation

in savannas. Microtopography shapes a range of microclimates that can accommodate

19



trees and grasses. Therefore trees and savannas can coexist in savannas in respond

to the variability of topography, as shown in Figure 1-3 illustrates our hypothesis.

The spatial variation of soil water contents is influenced by many factors: the
I.

variations of topography, soil property, water table depth, vegetation type, and at-

mospheric forcings. In this study, however, the topographic effects on the soil mois-

ture distribution are emphasized. Topography primarily influences the soil moisture

distribution through the variation of relative elevation, slope, and upslope drain-

ing area. Many researchers have tried to relate the topographic characteristics with

soil water quantitatively. For example, the semi-distributed hydrologic runoff model

(TOPMODEL) (Baven & Kirby, 1979) uses the term, In(a/tan(3) (here a is the area

draining through the unit length across the grid cell, and (3 is the slope of the grid

cell) as the wetness index (also called topographic index). It suggests that an area

would be wet when it has a large drainage area and a concave slope. The local to-

pographic characteristics are used to represent the soil wetness (moisture content),

since the topography distributes water over the area through the runoff mechanism.

Rain falling on the watershed is distributed through the runoff processes during and

after the rainfall events. The storm runoff takes place in the form of overland flow,

interflow, and subsurface flow. Then, water converges into the concave area, usually

including the channels, from the convex areas of the hillslope. The relatively low

elevation, hollow slope, and shallow water table make valleys wetter than hills.

Now, the ecology of grasses and trees are considered. Plants compete for light

above the ground, and water and at least 20 mineral nutrients under the ground

(Casper & Jackson, 1997). Underground competition for water is essential in semi-

20
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arid and arid region, where the hydrologic environment is generally unfavorable for

plant existence. The water availability is particularly important there. In nature,

trees and grasses compete for water, and they utilize it in different ways. Grasses
~.

transpire very actively even under water stress, i.e., they can grow under relatively

low annual rainfall. Grasses just need water during the growing season. Woody

plants, however, require much more water to grow, and absorb water even during the

dormant period. Different climates favor different types of vegetation. For instance,

the humid climate supports forests, and the dry climate supports grasslands. In

savannas, however, ecologically different types of vegetation coexist under the same

environments.

Finally the concave area (valleys) will have more water than convex area (hills).

More moist soils in valleys can support trees, even when less moist soils in hills can

be enough to support only grasses. Hence, trees and grasses can coexist in savannas

in response to the variation of elevation, even under the same climate condition.

To summarize, the variation of topography induces the water redistribution over

the region, and then the spatial variability of soil water, in turn, can lead to the

coexistence of trees and grasses.

Our new hypothesis is studied with focus on West African Savannas. In general the

effects of elevation field on the soil water content are studied with physically-based,

distributed hydrologic modeling system, European Hydrological System (SHE) (Ab-

bott et al. , 1986a; Abbott et al. , 1986b). Vegetation dynamics are investigated with

the biospheric model, Integrated Biosphere Simulator (IBIS) (Foley et al. , 1996). The

two models are combined asynchronously to address our hypothesis about savanna
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dynamics.

1.4 Thesis Structure

This thesis is composed of six chapters. Chapter 1 is an introduction. Savanna

ecosystems and West African savannas are introduced to give the background about

the research presented in this thesis. Also the previous studies on the savanna dy­

namics are reviewed. Finally, the new hypothesis on the emergence of savannas is

proposed, which is studied throughout the thesis. Chapter 2 introduces the models

used in this study. The biospheric model (IBIS) and distributed hydrologic model

(SHE) are described extensively.

Chapter 3 presents the results of the simulations using the biospheric model.

A section is assigned to describe the design of simulations. Then, the results of

simulations are presented and discussed in the three regions, located at gON, II°N

and 13°N.

Chapter 4 is devoted to the distributed hydrologic modeling works. To understand

the details of the hydrologic process over savannas, the physically-based distributed

model (SHE) is used. To concentrate on the redistribution of soil water in the response

to the variation of topography, the simulations are performed assuming hypotheti­

cal conditions, such as homogeneous soil and uniform rainfall distribution over the

domain. From the simulation results, several hydrologic variables (e.g., the top soil

water and depth to water table) and their correlations are presented. In conclusion,

we shed a light on how topography plays a role in distributing the water under the

23
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semi-arid savannas.

Chapter 5 describes the simulations performed with the modified IBIS. From

Chapter 4, it is noted that the depth to the groundwater table is quite correlated
I.

with the soil moisture. Then, IBIS including the groundwater table as a boundary

variable, is used to study the influence of groundwater table on the equilibrium veg-

etation. The results show that the coexistence of trees and grasses can be explained

by the heterogeneity of the depth to water table. The conclusions of this study are

summarized in Chapter 6.

24



-----~---- - _ ....__._---

Chapter 2

Model Description

2.1 Introduction

The new hypothesis on the existence of savannas of Chapter 1 will be studied using

the biospheric model and the distributed hydrologic model. Integrated BIosphere

Simulator (IBIS) (Foley et ai. , 1996) is used as a biospheric model. IBIS integrates

a wide range of biophysical, physiological, and ecological processes. The model, in

particular, includes the vegetation dynamics to simulate the transient responses of

vegetation cover according to environmental conditions. Here, the dynamic responses

of vegetation are studied under the prescribed yearly climatology. However, the spa­

tial hydrologic processes are not included in the current land surface transfer model

(LSX) (Pollard & Thompson, 1995), used in IBIS. The model operates in a grid cell

without the consideration for spatial (horizontal) variability, and the generated sur­

face and subsurface runoff are dissipated out of the model domain. Therefore the

distributed-hydrologic model will be used to compensate for the limitation due to the

25



lack of the spatial variability. The distributed hydrologic modeling work is performed

with Systeme Hydrologique Europeen (SHE) (Abbott et al. , 1986a; Abbott et al. ,

1986b). The SHE simulates all of the processes in the land phase of the hydrologic cy­

cle: precipitation, evapotranspiration, including canopy interception, overland sheet

flow, channel flow, unsaturated sub-surface flow, and saturated groundwater flow.

These water movements are modeled based on the physical equations or empirical

equations over the basin, to describe the details of all hydrologic processes. The SHE

modeling framework gives us understanding of how topography plays a role to dis­

tribute the water under the environment of savannas. The following two sections are

devoted to describe the details of the IBIS and the SHE.

2.2 Biospheric Model

The IBIS models an extended range of terrestrial processes under the given atmo­

spheric conditions. The latter include air temperature, precipitation, specific humid­

ity, relative humidity and fraction of cloud cover. The solar and longwave radiation

is calculated for the specific latitude and longitude. The atmospheric focings can be

prescribed or updated through the feedback between IBIS and an atmospheric model.

An atmospheric model such as any General Circulation Model (GCM) can be coupled

with IBIS, which means that the results of the atmospheric model serve as the inputs

to IBIS, and vice versa, continuously during the simulation.

The vegetation cover of IBIS is described by a combination of plant functional

types (PFTs). The plant functional types are defined, based on ecological char-

26



ATMOSPHERIC BOUNDARY CONDITIONS

•

UPPER CANOPY

•

LOWER CANOPY
•

SOIL LAYERS •

LOWER BOUNDARY CONDITIONS

Atmospheric forcings
(e.g., air temperature, wind speed)

Trees: 8 Plant Functional Types (PFTs)

Shrubs: 2 PFTs
Grasses: 2 PFTs

Soil: 6 Layers
Sand, Silt, and Clay texture components

No heat diffuse and free gravity drainage

Figure 2-1: State Description of IBIS. The model includes two canopy layers and
soil layers divided into six sub layers. The upper canopies extend their roots more
deeply than the lower canopies in soil layers. The atmospheric boundary condition
is prescribed, and the lower boundary is specified by the drainage condition. (Foley
et al. , 1996)
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acteristics: physiognomy (trees and grasses), leaf habit (evergreen and deciduous),

photosynthetic pathway (C3 and C4 ), and leaf form (broad-leaf and needle-leaf). The

vegetation canopy is divided into two layers, with the woody plant functional types

in the upper canopy and herbaceous plant functional types in the lower canopy. The

vegetation canopies extend their roots into the soil layers with canopy-specific root

density distribution. The soil layers are divided into six layers with top-to-bottom

thickness of 0.1, 0.15, 0.25, 0.5, 1.00, and 2.00 m. Their texture is represented by the

percentage of sand, silt and clay. Figure 2-1 describes the state of IBIS.

IBIS has hierarchical and modular structure with four modules: the land sur­

face module, vegetation penology module, carbon balance, and vegetation dynamics

module. These are independent, operate on different timesteps, and then linked, as

presented in Figure 2-2.

2.2.1 Land Surface Module

This model simulates the biophysical and physiological process on a time step between

10 and 60 min (60 minutes in this study), based on the LSX land surface model (Pol­

lard & Thompson, 1995). It exchanges energy, water vapor, carbon dioxide, and

momentum between surface, the vegetation canopies, and the atmosphere. The wind

regime is modeled with mixing length logarithmic profiles above and between layers,

and a simple diffusion model of air motion within each layer. Total evapotranspira­

tions include evaporation from the soil surface, evaporation of water intercepted by

vegetation canopies, and canopy transpiration. Soil model simulates heat and mois-
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Figure 2-2: Hierarchical Framework of IBIS. In a common grid cell, each module op­
erates on different time step. Its results are incorporated with others to the direction
of arrows. (Foley et al. , 1996)
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ture movement in upper few meters of soil. Six soil layers are represented by three

variables: temperature, soil moisture and soil ice. Soil water movement is calculated

by Richard's equation. For the soil bottom boundary, the gravity drainage condi­

tion is controlled by an empirical coefficient, multiplying the unsaturated hydraulic

conductivity.

2.2.2 Vegetation Penology Module

The vegetation penology module describes the behavior of specific plant types in

relation to seasonal climate conditions on a daily time step. The winter-deciduous and

drought-deciduous behaviors of particular vegetations are modeled, and deciduous

vegetations drop their leaf based on the temperature threshold or carbon balance.

2.2.3 Carbon Balance Module

This module sums photosynthesis, and growth and maintenance respiration to cal­

culate the annual carbon balance for each PFTs. It also calculates net primary

productivity (NPP) of each PFTs, which is allocated into leaves, transport tissues,

and fine roots.

2.2.4 Vegetation Dynamics Module

The vegetation dynamics module simulates changes in vegetation cover on an annual

time step. Each PFTs are characterized by their ability to capture resources, light

and water. The upper canopy has priority for light, and shades the lower canopy.
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However, the lower canopy can uptake soil moisture first. These are the competition

mechanisms between upper canopy (trees) and lower canopy (grasses). The competi­

tion between PFTs within the same vegetation layer are simulated by the differences

in ecological strategies: penology (evergreen and deciduous), leaf form (broad-leaf

and needle-leaf) and photosynthetic pathway (C3 and C4).

More details about IBIS are presented by Foley et al (1996).

2.3 Distributed Hydrologic Model

The SHE mathematically models the hydrologic processes of water movements. The

spatial distribution of basin parameters, meteorological inputs and hydrologic re­

sponses are represented in a grid cell of horizontal and vertical layers (see Figure

2-3). The water movements are solved in a finite difference representation of the

physical equations (the partial differential equations of mass, momentum and energy

conservation) or empirical equations. The SHE calculates them using a modular

structure. Each module runs independently, then links in order to exchange water

among modules.(Abbott et al. , 1986b) Here the main modules are presented with

their physical or empirical equations.

2.3.1 Overland Flow

When the net rainfall exceeds the infiltration capacity of the soil, water is ponded

on the ground surface. This water is available as surface runoff, as determined by

the topography and flow resistances. The water is loosed due to evaporation and
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Figure 2-3: Schematic Representation of the SHE @DHI
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infiltration along the flow path, then routed into the channel.

The SHE calculates the overland sheet flow component, using the 2-D diffusive

wave approximation of the Saint Venant equations. In rectangular Cartesian coordi-

nates, the conservation of mass gives

ah a a .- + - (uh) + - (vh) = z
at ax ay

(2.1 )

where h(x, y) is the flow depth over the ground surface, i(x, y) is the net input into

the overland flow (net rainfall less infiltration), and u(x, y) and v(x, y) is the flow

velocity in x-and y-directions, respectively. And the momentum equation gives

ah u au 1 au q au
Sfx = Sax - - - -- - -- - --

ax 9 ax 9 at 9 ah

ah vav 1 av q av
Sf = So - - - -- - -- - --

Y Y ay 9 ay 9 at 9 ah

(2.2a)

(2.2b)

where Sf is the friction slopes in the x- and y-directions, and So is the slope of the

ground surface.

The solution of the two dimensional St. Venant equations is numerically challeng-

ing. Therefore, the momentum losses and lateral inflows perpendicular to the flow

direction are ignored. Furthermore, it is assumed that the friction slope is equal to

the slope of the ground surface. This is known as the kinematic wave approximation.

For each friction slope, a StricklerjManning law is adapted with Strickler coeffi-
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cients K x and K y in the two directions,

Therefore, the relation between the velocities and the depths are written as

uh = K x ( _ ~=) 1/2h5/3

vh = K (_ aZ) 1/2h5/3
y ax

(2.3a)

(2.3b)

(2.4a)

(2.4b)

where x is the ground surface. It is noted that uh and vh represent discharge per

unit area.

2.3.2 Channel Flow

For the channel flow, the various components of the SHE are coupled to DHI's river

hydraulic program MIKE 11. MIKE 11 do the one-dimensional simulation of river

flows water levels using the fully dynamic Saint Venant equations (for details, refer

to MIKEll User Guide). The surface water and aquifer of MIKE SHE are exchanged

with MIKE 11. If the area-inundation option is used, SHE calculates the distribution

of surface water by comparing MIKE 11 water level with topographic elevations.

The river-aquifer exchange is calculated in the grid cells adjacent to river links. The

amount of exchange flux is calculated based on a conductance and a head difference
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using Darcy's Law. The river-aquifer exchange is calculated when the river width is

smaller than the grid size in the SHE. The flux, Q, between saturated zone grid cell

and the river link is a conductance, C, multiplied by the head difference between the

river and the grid cell.

Q = flh . Criver-aquijer (2.5)

The conductance depends on the conductivity of the aquifer material only, that of

the river bed material only, or that of the river bed and the aquifer materials.

2.3.3 Evapotranspiration

This component uses meteorological (potential evapotranspiration) and vegetative

data (leaf area index and root distribution function). The processes are separately

modeled with interception of rainfall by the canopy, drainage from the canopy to the

soil surface, evaporation from the canopy surface, evaporation from the soil surface,

and uptake of water by plant roots and its transpiration. In this study, we assume

the surface as the bare soil, then only the soil evaporation is presented here. In

the absence of vegetation, the soil evaporation model of Kirstensen and Jensen is

simplified into the following:

(2.6a)
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for () ~ (}w

o for () ~ (}r

(2.6b)

() _ (}w + (}pc

2

()
(}w + (}FC

FC-
2

o

£ () > (}w + ()F
or - 2

£ () < (}w + ()F
or - 2

(2.6c)

where Es is the soil evaporation and Ep is the potential evapotranspiration. Also, ()

is the volumetric soil moisture content, (}FC is that at field capacity, (}w is that at

the wilting point, and (}r is the residual soil moisture content. The SHE restricts soil

evaporation to the upper node in the unsaturated zone, generally about 10 em deep

or less.

2.3.4 Unsaturated Zone Flow

The unsaturated zone model interacts with both the overland flow and the ground

water model, and acts as the link between them. Unsaturated flow is usually het-

erogeneous and characterized by cyclic fluctuations in the soil moisture as water is

replenished and removed. Unsaturated flow is primarily vertical since gravity plays

the major role during infiltration. The solutions of vertical flow are provided by the

full Richards equation, a simplified gravity flow equation, or a simple two-layer water

balance method. Here the most accurate equation, the full Richards equation, is used
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in the tension-based form as the following:

C81/J = ~ (K
81/J) + 8K _ S

8t 8z 8z 8z
(2.7)

where z is a elevation head (positive upwards), 1/J is the pressure head (which is

negative with the capillary force), K is the hydraulic conductivity ,C is the slope

on soil moisture tension curve, and the sink term S are calculated from the root

extraction for the transpiration in the upper part of the unsaturated zone.

2.3.5 Saturated Zone Flow

The saturated zone component calculates the saturated subsurface flow. The SHE

allows for a fully three dimensional flow in a heterogeneous aquifer with shifting

conditions between unconfined and confined conditions. The spatial and temporal

variation of the hydraulic head is described by the non-linear Boussinesq equation.

The boundary flow from the other components is regarded as sources/sinks in the

equation:

(2.8)

where Kxx,KyyKzz are the hydraulic conductivity along the x, y and z axes, h is the

piezometric head, Q is the volumetric flux per unit volume representing source/sink,

and S is the specific storage coefficient.

Furthermore, MIKE SHE User Guide and MIKE 11 User Guide provide the de-
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tailed description of the governing equation and numerical solution.
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Chapter 3

Simulations Using the Biospheric

Model

This chapter presents the preliminary work to test the hypothesis of Chapter 1. The

theory that the variation of elevation redistributes the water over a region and the

resulting heterogeneity of soil water can explain the coexistence of trees and grasses,

will be examined using a dynamic biospheric model, IBIS, including the spatial vari­

ation of elevation implicitly, without using the distributed hydrologic model at this

stage.
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3.1 Experimental Design

3.1.1 Rainfall Variation Method

Our theory predicts that any model should simulate a mixed vegetation type in re­

sponse to the variation of water availability that is triggered by the elevation vari­

ability, over naturally-found savannas. To use the IBIS for this study, however, the

model has two limitations.

First, IBIS does not simulate a savanna as an equilibrium land cover over West

Africa. The model evolves into the equilibrium with tropical deciduous forests in 9°N,

and grasslands in lIoN, but savannas are observed in 9°N and lION in nature (see

Figure 1-1).

The disagreement of model results has been attributed to the lack of disturbance

mechanism, such as fire, and interannual climate variability (Foley et at. , 1996). To

validate the argument, Wang (2000) performed the simulations with a certain degree

of fire and grazing effect on the savanna and grassland region using IBIS. It is assumed

that fires take place every year during the dry season and consume a 0% to 10% of the

above-ground biomass, which is randomly generated with the uniform distribution.

Grazing consumes 50% of grasses every year. Under these assumptions, the model

simulates a savanna-type vegetation. This result supports the disequilibrium view

about the savanna dynamics. Therefore without the disturbance and interannual

fluctuation of the atmospheric forcing (we use climatology as atmospheric conditions),

IBIS gives a simple equilibrium state, grasslands or forests, over the West African

savannas.
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Second, the model assumes a flat plain over the domain. Thus we need to imple­

ment the concept of distributed hydrologic modeling into IBIS. To describe the spatial

variability, one grid cell must be split into smaller pieces. Then the water exchange

among neighboring cells has to be considered. In reality, this model is not developed

due to its complexity and time constraints. Instead of presenting the variation of ele­

vation directly, we vary the amount of rainfall as the input. The variation of rainfall

inputs is a surrogate for the difference of soil water contents at different areas, over

the region having the elevation variation. A hill area will have less soil water than

a valley area since water converges to hollow valleys through runoff. Therefore more

available water at a valley is represented by more rainfall input to the valley than for

a hill area.

Since IBIS does not include the spatial water movement and does not resolve the

savanna ecosystem as an equilibrium state, the experiments are designed to simulate

the different vegetation types, grasslands or forests, while varying the amount of

rainfall input. In other words, if the opposite equilibrium states (grasslands or forests)

are simulated only by adjusting rainfall input amount, trees and grasses may coexist

in the same region. For instance, forests are predicted in gON under the normal

condition, then we reduce the amount of rainfall input until grasslands are simulated

as an equilibrium. Furthermore, we determine the range of rainfall input amounts

between valleys (where trees are resolved) and hills (where grasses are resolved). Its

extent should fall into the certain range, where the variation of local topography

may naturally redistribute water over the region. In addition, hereafter, the term,

rainfall factor (RF) is used as the factor (e.g., 0.8,1.2, and 1.5), multiplying the normal
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amount of rainfall, which represents the effective rainfall amount reaching the area.

3.1.2 Model Setup

Our experiments are performed in three areas, 9°N, II°N and 13°N. In natural savan­

nas, 9 and II°N, we expect the transition from grasslands to forests (or, from forests

to grasslands) while we adjust the rainfall. Also the natural grassland area, 13°N is

selected for the experiment, expecting that in this case any reasonable modification of

rainfall input should not result in the transition to forests. But we do not include the

forest area, the southern limit of savannas, since the rainforest area in West Africa is

quite stable.

The daily climatology of air temperature, relative humidity, wind speed, precipita­

tion and fractional cloud cover in three latitude are used for the simulations. The data

are taken from the National Centers for Environmental Prediction/National Center

for Atmospheric Research (NCEPINCAR) Reanalysis Project. The data during 1958­

1997 is averaged between 15°W and 15°E, then the longitude is specified with ODE

in the model. Supplemental rainfall data is taken from RAPEX-Sahel project (1991­

1994) for the area of 13°N. The simulations in 13°N are done twice with NCEPINCAR

reanalysis data and with RAPE-Sahel field data. The daily temperature and specific

humidity is interpolated to an hourly resolution assuming a sinusoidal diurnal cy­

cle. The daily precipitation is assumed to occur within a certain period, which is

determined by random sampling from the statistical distribution.

As pointed out before, IBIS can be coupled with the atmospheric model. By
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the coupling, the model receives the feedback from the atmospheric process in re­

sponse to the terrestrial biospheric model, and vice versa. In this study, however,

the IBIS is used without the interaction between atmospheric and biospheric model.

Although the lack of feedback between them is unrealistic, it is deemed reasonable

here since our objectives are to study what hydrologic conditions help determine the

savanna ecosystem, not how the atmospheric and biospheric processes are interacting

In savannas.

In the beginning of simulations, all types of PFTs have the same minimal LAls

of 0.1, called "cold start" in IBIS. Each type of vegetation has equal opportunity to

survive at the start time, and then they compete with others for the water and lights

under the given atmospheric condition. When IBIS is coupled with the atmospheric

model, the selection of initial vegetation type influences the equilibrium state (Kiang

& Eltahir, 1999; Wang & Eltahir, 2000a; Wang & Eltahir, 2000b). But the initial

distribution of vegetation does not influence the reached equilibrium ecosystem in our

experiment, since we prescribe the daily climatology without the interaction from the

atmospheric model.

Simulations run for 250 to 500 years to give enough time to reach the equilibrium

state. We determine if the model is close to the equilibrium by monitoring the annual

change of LAI of upper and lower canopies. A stable evolution of LAls means that

the model reached the equilibrium state.
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3.2 Results

3.2.1 Experimental Simulation 1: gON

The model predicts the dry deciduous forests under the normal rainfall events at 9

ON. Therefore we are now investigating the soil water level in valleys. To determine

the rainfall rate where the transition to grasses takes place, the total annual rainfall

is decreased gradually. With 0.7 times the typical rainfall amounts, the transition

from forests to grasslands takes place and Table 3.1 summarizes the results of five

simulations with decreasing amount of rainfall input from the normal value.

Figure 3-1 shows the change of lower LAI and upper LAI, respectively, during the

simulation. Since the model is initialized with the equal, minimal amount of seeds of

all PFTs, the lower canopy vegetations flourish in the beginning of simulation. Then

the canopies are adapted to the given environment, and outcompete the others. In

case of RF 0.7, LAI of lower canopy stays at the constant level around 8, and LAI

of upper canopy does not increase and keeps its low level. This shows grasslands are

resolved as an equilibrium ecosystem with RF of 0.7.

Vegetation Type
Forest
Forest

Grassland
Grassland
Grassland

Annual Rainfall
1.54m
1.23m
1.08m
0.93m
0.77m

Rainfall Factor
----+-------1-------=:-------1

1.0
0.8
0.7
0.6
0.5

Table 3.1: Summary of the simulations at 9°N.
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Figure 3-1: Change of the leaf area index (LAI) of the lower and upper canopy during
the simulations at geN. The two different types of vegetation, lower canopy (grass)
and upper canopy (tree), are resolved regard to the amount of total annual rainfall
rates.
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3.2.2 Experimental Simulation 2: II°N

With a typical rainfall, the model resolves grassland equilibrium at II°N. Contrary to

the case of 9 oN, the annual rainfall is increased to get the transition from grasslands

to forests. At RF 1.9, grasslands are resolved, and at RF 2.0 a forest equilibrium is

simulated. With the annual rainfall of about 2240 mm, a tropical deciduous forest is

simulated as an equilibrium (see Table 3.2).

As seen in Figure 3-2, LAI of lower canopy stays around 6 under the typical

condition. At RF of 2.0, however, the lower canopy LAI decreases and the upper

canopy LAI starts to increase after around 200 years. To confirm that the model

converges to a forest equilibrium, the simulation is run for 500 years, which different

from the other regions (250 years). In summary, both forests and grasslands are

predicted at II°N where savannas are naturally found, in response to the adjustment

of rainfall inputs.

Rainfall Factor Annual Rainfall Vegetation Type
1.0 1.12m Grassland
1.3 1.46m Grassland
1.5 1.68m Grassland
1.7 1.91m Grassland
2.0 2.24m Forest

Table 3.2: Summary of the simulations at 11°N.

46



(a) Lower Canopy LAI
10

8

C\J.......

E
6-C\J.s 4 ...... ","": ..

\

\
2 ......... . .....

\

\
0

0 50 100 150 200 250 300 350 400 450 500

(b) Upper Canopy LAI
4 .--------..----,-1---.---1---,--1----,1----,-1---...1---,--1----,1-------,

3 _ .

C\J.......

E
- 2-· .... ·

C\J.s
1 - .

ol\..
o

-
50 100 150

-.'

I

I

:/

I

/:
/

./

'. _.--
200 250 300
Years of Simulation

350 400

....... -

- RF 1.0
- RF 1.3
- RF 1.5
. _. RF 1.7
. _. RF 2.0

450 500

Figure 3-2: Change of the leaf area index (LAI) of the lower and upper canopy during
the simulations at II°N
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3.2.3 Experimental Simulation 3: 13°N

For the case of 13°N, two sets of simulations are done. First, all the meteorological

data are taken from NCEPINCAR reanalysis project like the above cases of 9 and

II°N. Second, only the rainfall input is replaced by the measurements of HAPEX-

Sahel. As seen in Figure 3-3, the measurements of rainfall show the seasonality

of rainfall distribution more clearly than the reanalysis data. The annual accumu-

lated precipitation is not much different between them, with 0.77 m and 0.69 m in

NCEPINCAR and HAPEX-Sahel, respectively. However, the data from HAPEX-

Sahel shows the intense rainfall during a wet summer. The reanalysis data presents

a less intense and more frequent storms through the year.

In the observations, the region in 13°N is at the north boundary of savannas

and consists of grasslands. With the NCEPINCAR climatology, the equilibrium

vegetation is grassland under the normal condition. Thus the amount of rainfall

input is increased to see the equilibrium under valley conditions, like II°N. As seen

in Table 3.3, the transition from grasslands to forests does not take place. We get the

NCEP/NCAR HAPEX-Sahel
Rainfall Factor Annual Rainfall Vegetation Type Annual Rainfall Vegetation Type

1.0 0.77m Grassland 0.69m Grassland
2.0 1.54m Grassland 1.38m Grassland
3.0 2.31m Grassland 2.07m Grassland
4.0 3.08m Grassland 2.76m Grassland
5.0 3.86m Grassland 3.45m Grassland

Table 3.3: Summary of the simulations at 13°N.
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Figure 3-3: Seasonal cycle of precipitation at 13° from NCEP INCAR and HAPEX­
Sahel
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Figure 3-4: Change of the leaf area index (LAI) of the lower canopy during the
simulations at 13°N with the data from (a) CEP INCAR, and (b) HAPEX-Sahel
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same results with the HAPEX-Sahel data, as well. Even with 5 times of the typical

rainfall, the model still resolves grasslands as an equilibrium in both (see Figure 3-4).

3.3 Discussion and Conclusion

Our hypothesis is that the variability of topography distributes soil water, which can

lead to coexistence of trees and grasses in the same region. To study it, the rainfall

variation method is designed. As results suggest, the different types of vegetation are

simulated in the regions in gON and 11oN, natural savannas. With the simulations in

gON, tropical deciduous forests are resolved with the normal rainfall, and grasslands

with a 30% of rainfall decrease. At 11oN, grasslands with the normal condition, and

deciduous forests with a 100% increase of the rainfall input. In the area of 13°N, the

model just simulates grasslands regardless of the change of the rainfall inputs. (see

Table 3.4)

The hillslope drives the lateral transport of water. Water converges into the

concave area through the surface or subsurface runoff. In the dry region, the surface

gON II°N 13°N

RF Vegetation Type RF Vegetation Type RF Vegetation Type
1.0 Forest 1.0 Grassland 1.0 Grassland
0.8 Forest 1.3 Grassland 2.0 Grassland
0.7 Forest 1.5 Grassland 3.0 Grassland
0.6 Grassland 1.7 Grassland 4.0 Grassland
0.5 Grassland 2.0 Forest 5.0 Grassland

Savannas Savannas Grassland

Table 3.4: Summarized Results from the Experimental Simulations
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runoff occurs often due to the infiltration excess (Hortonian Type), not the saturation

excess mechanism (Dunne Type). Furthermore, the West African savannas fall into

the tropical climate, where the intense rainfall events are limited in the summer

season, and the surface soils may hardly be saturated. In dry hills, the rainfall

intensity excesses the infiltration capacity of the dry soils, then the excess of water

in hills converges into wet valleys. Therefore the dry hills and wet valleys coexist in

the Sahel region. Under the dominance of Hortonian runoff mechanism, the 40% (in

gON) and 100% (in II°N) differences of water between hills and valleys are possible.

The simple increase or decrease of available water amounts are enough to create the

condition favorable to the different types of plants.

Moreover, simulations of this chapter are performed assuming the soil bottom

with a free gravitational drainage condition. This assumption is based on that the

region of savannas and grasslands is under the semi-arid climate condition and the

details of aquifer condition are not available. As explained in Chapter 2, the model

includes only upper soil layers within 4 m and defines the soil bottom with a simple

coefficient multiplying the unsaturated hydraulic conductivity of the bottom layer,

ranging from 0 (no flux) to 1 (free drainage). The more discussion about the lack of

groundwater dynamics of the model will be presented in Chapter 5.

Moreover, the models only resolve grasslands as equilibrium ecosystems at 13°N.

We observe grasslands in nature. Even with 5 times of the typical rainfall amount,

more than 3500 mm of the annual accumulated rainfall (based on NCEPINCAR

data), only grasses are simulated in the model. This amount of rainfall is enough to

support forests in the areas of gON and 11ON. It suggests that the other meteorological
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conditions may limit this region only as grasslands. Figure 3-5 shows that the area

at 13 oN is under more severe environments for plants with higher temperature, less

relative humidity, and less cloud cover than others. These perhaps prevent the growth

of woody plants.

The models resolve the different types of vegetation in response to the available

water only in natural savannas, not in natural grasslands. Under the savanna climate,

water is one of the important factors to dictate the vegetation type. Under the climate

of grasslands, however, the other environmental factors may limit the growth of trees.

Therefore the variability of water availability is important to shape savannas, but it

can only play a significant role in the specific climates. In addition, around 1000

mm and 2000 mm of annual rainfall are required for the transition from grasslands

to forests at gON and lIoN, respectively. This amounts are quite different although

both falls into savannas both in nature and in our experiment. Other meteorological

differences perhaps account for this difference. This shows that water is not the only

determinant factor of savannas.

To conclude, the results of our experiment show the validity of our hypothesis. But

we still need to see how and how much the topographic variation can make soil water

different between valleys and hills. Therefore the distributed hydrologic modeling is

performed as the next step, which is presented in the following chapter.
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Chapter 4

Simulations Using Distributed

Hydrologic Model

This chapter presents the simulations using a distributed hydrologic model, SHE,

that is described in Chapter 2. The objective is to understand how the variation

of topography plays a role in the redistribution of soil water in the environment of

savannas in West Africa.

4.1 Details of Simulation

A simulation is performed in a watershed around 13°N in West Africa (see Figure

4-1). To concentrate on the redistribution of soil water in response to the varia­

tion of topography in semi-arid climate condition, the model assumes hypothetical

conditions such as homogeneous atmospheric condition (daily rainfall and potential

evapotranspiration rate) and homogeneous soil properties over its domain.
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4.1.1 Study Area

The catchment is situated around 13°N of the Sahel, in the Republic of Niger. The

818.2 km2 watershed is a part of the area of HAPEX-Sahel as seen in Figure 4-l.

Although this area is generally classified as grasslands, we have field data on daily

rainfall only for HAPEX-Sahel. For other areas of interest, savannas, we have the

climatology of rainfall from the reanalysis project of NCEP INCAR. The reanalysis

data on rainfall shows a less intense and more frequent pattern than field data. The

reanalysis data may not be appropriate for distributed hydrologic modeling since it

tends to underestimate surface runoff and overestimate infiltration, which are essential

processes controlling water movements over a watershed. Hence, we choose to use the

available data on rainfall at the area around 13°N to understand the topographic

effects redistributing water over land.

4.1.2 Topography

The SHE requires the elevation field over the catchment. GTOP030 is used here as

the source for the elevation data. It is a global digital elevation model (DEM) with

a horizontal grid spacing of 30 arc seconds (approximately 1 kilometer), developed

by the USGS's EROS Data Center (EDC). To extract a catchment from DEM, the

Spatial Analyst and Hydrologic Extension of Arcivew are used.
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4.1.3 Soil Profile

Soil is discretized with uniform thickness laterally by the ground surface as the refer­

ence (see Figure 4-2). Soil is discretized with 10 em above 1 m depth, 20 em between

1 and 11 m depth, 50 em below 11 m depth. The upper part of soil is discretized

with a fine resolution enough to allow Hortonian ponding at the land surface. Soil

bottom is flat with 100 m elevation with reference to sea level. The lowest elevation

in a watershed (a channel outlet) is 188 m.

4.1.4 Initial and Boundary Condition

Initially, the water table is assumed to be at the surface. The daily time series of

a year is used for the atmospheric conditions, and is repeated until the hydrologic

variables, such as depth to water table, reaches equilibrium regardless of the initial

arbitrary conditions. By monitoring the fluctuations of water table, we know the

model approaches the steady state when it does not show significant yearly changes.

The simulations were run for 60 years, which was enough for the model to reach

steady state.

In addition, the catchment has no flow through the lateral boundary and bot­

tom boundary. The outflow from the domain takes place only through the channel

discharge point at the outlet.
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Figure 4-2: Soil Discretization
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4.1.5 Atmospheric Forcings

As atmospheric boundary conditions, rainfall rate and potential evapotranspiration

are needed to run the model. Rainfall data is taken from the field data of HAPEX­

Sahel (Goutorbe, 1997). Rainfall is measured with the EPSAT-Niger (Estimation

des Pluies par Satellite) network of 107 recording rain guages in HAPEX-Sahel. 34

rain guages are included in the delineated catchment, and their rainfall data are

averaged in space for the simulation. To get the daily potential evaporation rate,

IBIS (Integrated BIosphere Simulator) is run using rainfall of HAPEX-Sahel and

other atmospheric conditions (air temperature, relative humidity, fraction of cloud

cover, and wind speed) of NCEPINCAR reanalysis project. In IBIS, a fully saturated

bare soil is assumed during this simulation, and the resulting evaporation is assumed

to be the potential evaporation rate.

4.1.6 Soil Property

The soil is assumed to be homogeneous and isotropic bare soil over the whole water­

shed. The soil properties used are the typical values for loamy sand (Rawls et at. ,

1992; Freeze & Cherry, 1979). For the saturated zone, the hydraulic conductivity of

7.2 e-06 mls and specific yield of 0.1 are assumed.

The SHE describes the unsaturated flow using the one-dimensional Richards equa­

tion, requiring two hydraulic functions, the moisture retention curve and the hydraulic

conductivity curve. The van Genuchten model is applied to describe the retention
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curve:

(4.1)

and the Averjanov formula is used to describe the hydraulic conductivity curve:

(
B - Br ) N

K(B) = K sat B
s

- B
r

(4.2)

where a is the inverse of the air entry value, nand m are shape parameters of the

van Genucheten relation, and N is the shape parameter of Averjanov model. The

following tables show the assumed values for the loamy sand soil.

Variable
Os [-]
Or [-]

a [l/cm]
n [-]
m[-]
N[-]

Value
0.391
0.049
0.032
1.76

0.4318
5.6316

Table 4.1: Soil Parameters for Unsaturated Zone

4.2 Results and Analyses

The distribution of soil moisture is influenced by the topographic characteristics such

as the relative elevation and shapes of hillslope. Water converges into relatively low,

concave area of hillslope by the lateral transport of water. To relate the simulated
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hydrologic variables with the topography, in addition to elevation, the curvature (C)

of hillslope are calculated with the laplacian of the elevation (z) as the following:

C=\l2Z=~(aZ)+a (aZ)ax ax ay ay (4.3)

where x and y is rectangular Cartesian coordinates. The valleys have the positive

curvature (concave) and hills have the negative curvature (convex). The first figures

of Figure 4-3 and 4-4 show the elevation and its curvature, respectively.

To understand the influence of topography on the spatial distribution of soil mois-

ture, the water content of top 1 m soil is calculated for each month. Figure 4-3 and 4-4

show that more soil moisture is detected in the area, having relatively low elevation

and concave shapes of hillslope. To quantify it, the correlations between elevation and

soil moisture, and curvature and soil moisture are analyzed. As seen in Figure 4-5,

the correlation coefficient between the elevation and soil water is around 0.38, and

that between curvature and soil moisture is around 0.67. Both have the maximum in

September. The curvature is more correlated with soil moisture than the elevation.

In other words, the shapes of hillslope are relatively dominant control factor although

the relative elevation and shape of slopes have combined effects on the heterogeneity

of soil water.

Now, the question moves into which hydrologic processes make the influences of

topography (mainly by shape of hillslope) exert the variability of soil moisture. In

general, relatively low, concave area can have more water due to shallow water table

or the surface runoff from concave area of hillslope. Thus two hydrologic variables of
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the depth to water table and surface lateral flow are of interest now.

4.2.1 Influences of Depth to Water Table

The simulated water table depth and soil moisture in top 1 m soil are presented in

Figure 4-6. The area having shallow water table and more soil moisture is indicated

by the red color. Their distribution is similar, and it suggests that wet soil water

conditions are associated with the area with the shallow water table. The correlation

between soil moisture and water table depth is analyzed in case water table depth is

shallower than 8 m. Figure 4-7 (a) shows significant correlation coefficient throughout

a year. The variability of soil moisture depends on the depth to water table, and their

relation is well defined as shown in Figure 4-7 (b).

In the above, it is noted that the shape of hillslope plays a significant role in the

redistribution of soil water. Therefore, the curvature can represent the topographic

effects. A scatter plot with the convexity and water table depth (see Figure 4-7 (c))

shows a clear relationship between them, suggesting that the topography apparently

influences the soil water variability through the variation of water table depth.

4.2.2 Influences of Surface Lateral Flow

The surface lateral outflow (0) from a grid is calculated from the output variables by

(4.4)
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where P is the rainfall rate, I is the infiltration rate, and Epw is the evaporation rate

from ponded water. The overbar means the mean value, and the monthly mean is

calculated here.

During the rainy season, both the surface lateral inflow and outflow usually take

place on the valley area, and outflow is generated in the more wet area of valleys (see

Figure 4-8 and 4-9). However, if the redistribution of water is significantly prompted

by the surface flow from hills to valleys, we might see the negative correlation coef­

ficients during or after the intense storm. It implies that hill areas do not produce

the significant amount of surface runoff. Therefore the surface lateral flow does not

significantly affect the variation of soil moisture between hills and valleys.

4.3 Conclusion

The distributed hydrologic modeling is performed over the semi-arid region around

13°N, in order to see the effects of topography on the heterogeneity of soil water.

Apparently, the spatial distribution of soil water is dictated by the topographic char­

acteristics such as the shape of slope and relative elevation. The shape of hillslope are

relatively important, which can lead to the soil water variability through the water

table depth.

The depth to water table is suggested as a significant hydrologic variable in spatial

distribution of soil moisture in Sahel of West Africa. As noted in Chapter 3, the water

availability is important for the coexistence of trees and grasses in savannas. Therefore

the variation of water table can playa significant role in shaping savannas, which will
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be studied in the next chapter.
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Chapter 5

Simulations U sing IBIS and

Including Groundwater Table

The hypothesis of Chapter 1 is tested in this chapter, using the modified IBIS. The

soil model of IBIS is modified to include the groundwater table depth as a boundary

variable, which facilitates a coupling of IBIS and SHE asynchronously. The different

mean water table depths over the watershed, which resulted from the SHE simula­

tions, reflect the spatial variability of elevation that has been suggested to explain

the coexistence of trees and grasses in the hypothesis of Chapter 1.

5.1 Asynchronous Coupling of IBIS and SHE

The distributed hydrologic modeling of Chapter 4 suggests that the water table depth

is highly correlated with soil moisture. The variation of soil moisture can dictate the

different types of vegetation, trees and grasses, given the climate of savannas as
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presented in Chapter 3. Consequently, it is expected that the spatial variability of

water table depth can lead to the coexistence of trees and grasses in a region. The

shallow water table supplies more water to soil and vegetation than the deep one.

Different water table depths provide the soil with different amounts of water, the

source of evapotranspiration, and hence the soil can support the different types of

vegetation. Using IBIS, however, this cannot be tested in a direct way, since the

model does not represent the groundwater table.

The current LSX (Pollard & Thompson, 1995; Thompson & Pollard, 1995a;

Thompson & Pollard, 1995b), used in the IBIS for the land surface processes, does

not represent the dynamics of water table physically. In the LSX, the bottom bound­

ary condition of soil is specified as the unsaturated conductivity of the lowest layer

multiplied by an empirical drainage coefficient ranging from 0 to 1. 0 is no flux con­

dition such as impermeable bedrock, and 1 is gravity drainage condition. Since the

coefficient control the drainage rate out of the soil column, it has an important impact

on partitioning between the runoff and evapotranspiration. However it is impossible

to estimate the coefficient in the field since it is not physically based, and is rather

ambiguous. Including the LSX, the most current models do not include the water

table since the large grid scale and thin soil layers of soil column make the groundwa­

ter dynamics a seemingly insignificant hydrologic process in the models (Yeh, 2003).

Therefore the land surface models apply a gravitational drainage condition or linear

function of gravity drainage condition with an empirical coefficient which accounts

other factors affecting soil drainage such as the topographic slope and amplitude, or

the location of bed rocks (Boone & Wetzel, 1996).
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Since it is difficult to include the groundwater dynamics in the land surface model,

we specify the groundwater table as a boundary variable, instead of including a

physically-based groundwater model. From the results of SHE, we can take the annual

cycle of groundwater table, which is at the different grid cells of the distributed model.

Valley areas have shallow water table depth, and are sensitive to the storm events.

Hill areas have deep water table depth, and are less sensitive to the storm events than

valley areas. Therefore, the bottom boundary of IBIS can be specified according to

the cycle of groundwater table at the different topographic characteristics. Then, we

expect that the biospheric model should show the different equilibrium vegetations

of tree or grass, according to the soil bottom condition specified with the water table

level (see Figure 5-1). To include the groundwater table as a boundary, the soil model

of IBIS is modified, and the modification is described in the next section.

5.2 Modification of IBIS

IBIS is modified to include the groundwater table depth as a boundary variable. In

the soil model of IBIS, the multilayer model is used to simulate soil water in the upper

soils. Water diffuses and drains with nonlinear dependence on soil water according

to the following:

8w 8 ( 8w)
nat = 8z K(w) + D(w) 8z

= ~ (K w2B+3 _ K ,,/, BWB +2 8w)
8z s s If/s 8z
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where n is the soil porosity, w is fractional liquid water content (saturation degree),

K s is the saturated hydraulic conductivity, 'ljJs is the saturated matric potential, B

is an empirical soil exponent, K (w) is the hydraulic conductivity depending on soil

water, and D(w) is the diffusion coefficient depending on soil water. The empirical

relations to estimate the unsaturated hydraulic conductivity and tension (Brooks &

Corey, 1966) are applied to the Richards equation. The first term on the right-hand

side is the drainage rate (unsaturated hydraulic conductivity) due to gravity, and the

second term is diffusion.

In practice, the soil columns are discretized with N sub-layers. In the finite

difference method, the boundary of unsaturated model, the (N + 1)th layer only have

a gravitational drainage controlled by the drainage coefficient (C), which is

Drainage Rate = K(w) . C = (KsW
2B+3

) . C

D=O

(5.2a)

(5.2b)

where w is the saturation degree of Nth layer, C is ranging from 0 to 1.

Yeh (2003) modified the soil model of IBIS to represent the dynamics of groundwa­

ter table. The modified model simulates the change of groundwater table, depth with

the nonlinear groundwater runoff function under two estimated parameters. However,

in this study, the part of modified soil model is adapted to simulate the movement

of soil moisture under the given groundwater table. The modified model runs the

unsaturated soil model of Eq. 5.1 up to the water table. The given water table depth
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provides the number of unsaturated layers (M). Hence, (M + 1)th layer has the

gravitational drainage and diffusion term both with w of 1. Thus the (M + l)th layer

has the drainage rate (saturated hydraulic conductivity) and diffusion coefficient (D)

as the followings:

K(w = 1) = K s (5.3a)

(5.3b)

The discretization of soil must be fine enough to capture the given change in the

depth of unsaturated zone. In this study, the soil profile is the same with the soil

profile of hydrologic modeling of Chapter 4.

5.3 Details of Simulation

The area of interest is the same as that in the former experiments with IBIS of

Chapter 3. The region of 9°N and II°N are savannas, which is to test the hypothesis

of savanna existence, and the region of 13°N is grasslands where the model should

not result in savannas.

First, to get a boundary condition of IBIS, we simulate using the SHE in the three

regions of 9, 11, and 13°N. The SHE simulation at 13°N with HAPEX-Sahel field data

is already performed, as presented in Chapter 4. We do the same simulations in other

regions, just changing the atmospheric conditions (rainfall and potential evaporation

rate). Although in reality the topography is different according to the region, we use
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the same watershed for all cases. Although this may not be realistic, the objective is

to test if the variability of water table depth can result in the coexistence of trees and

grasses, not to reproduce the real situation. Moreover, we can compare the response

of watershed according to the different amounts of available water at the different

latitude.

Then we run IBIS with the annual cycle of daily water table depth, expecting the

area of the shallow (deep) water table might have trees (grasses) as an equilibrium in

natural savannas such as the region of 9 and 11ON.

It is noted that the region of 9°N is not included in this experiment. The soil

bottom is assumed with the free gravitational drainage condition in Chapter 3 since

we do not know the exact aquifer condition and West Africa is known as a semi-arid

region. Therefore putting water table in the model acts as adding water for soils in

this study. Moreover, at 9°N, the model simulates forests under the free gravitational

drainage condition, and we get a transition from forests to grasslands as we decrease

the amount of rainfall input in Chapter 3. We expect to get trees regardless of water

table depth, since by adding a groundwater table we can only make the soil condition

more wet, compared to the former simulations of IBIS.
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5.4 Results

5.4.1 Experimental Simulation 1: II°N

Figure 5-2 presents the annual mean water table depth, while showing the different

topographical areas have different mean depth. Moreover, as the water table depth

gets shallow, it gets sensitive to the atmospheric forcings (see Figure 5-3).

At 11oN, the biospheric model simulates grasslands under the normal condition.

We expect the shallow water table might allow trees over a region, and we try to find

the transition from trees to grasses (see Figure 5-4 and 5-5).

With the daily annual water table depth of location A, grasslands are simulated.

The lower canopy LAI of location A stays around 6.5, and upper canopy LAI is quite

small, approximate less than 0.2. On the other hand, in the location B, the upper

canopy LAI become around 3 after 350 years. The location B is dominated by trees,

it is a deciduous tropical forest. If the mean water table depth is shallower than 2.6 m

(mean water table depth of location A), the grid cells of hydrologic modeling would

have trees. Then we calculate the fraction of trees according to the annual mean

water table depth of Figure 5-2, about 8% of watershed area are dominated by trees.

5.4.2 Experimental Simulation 2: 13°N

At 13°N, the model simulates grasslands under the normal atmospheric condition

with the assumption of free drainage condition of soil bottom. In nature, this area

consists of grasslands. Therefore the shallow water table depth would not allow the

model to simulate the trees if the area is grasslands, based on the experimental design.
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Figure 5-2: Simulated Mean Water Table Depth of II°N
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With both NCEPINCAR and HAPEX-Sahel, the grasslands are simulated even

with the shallowest water table of the results from SHE simulations, as presented

in Figure 5-6 and 5-7. It suggests that the all grid cells of SHE in 13°N allow only

grasses. Notrees are allowed in the model even with the shallow water table.

In addition, the annual cycle of water table of NCEPINCAR is more stable than

that of HAPEX-Sahel. It is attributed to the characteristics of storm events, which

are less intense and more frequent in NCEP INCAR, as seen in Figure 3-3.

5.5 Discussion and Conclusion

The hypothesis is tested with the modified IBIS, including water table as a boundary

variable that is taken from the simulated results of SHE. The asynchronous coupling

of biospheric model and distributed hydrologic model is performed to validate the

hypothesis, which is the variability of topography results in the spatial variation of

soil moisture that can lead to the coexistence of trees and grasses in a region.

At II°N, area of about 8% is covered by deciduous trees, and others by grasses.

Savannas are defined as grasslands with the scattered trees covering less than 20%

of the land surface (Wang, 2000). Hence, the experimental simulation results in the

savanna ecosystems at 11oN, where savannas are observed in nature. For the region

at gON, the model cannot simulate savannas. As addressed earlier, it is due to the

limitation of the experimental design. Putting the water table in the land surface

model acts as adding water on the model since the base simulation is done under the

free gravitational condition. In the simulations with adjusting the rainfall input, it
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is noted that the area in gON has grasslands as the amount of rainfall is decreased.

Consequently, the design of simulation in this chapter cannot capture savannas at

geN. At 13°N, grasslands are predicted regardless of water table depth, and it is

consistent with the observation.

IBIS simulates grasslands both at II°N and 13°N, assuming the soil bottom as

a free drainage condition. Then by incorporating SHE and IBIS asynchronously,

the model can simulate deciduous trees only in natural savannas of II°N under the

shallow water table depth (less than 2.6 m). At 13°N, trees are not supported even

with the mean water table depth of around 1.6 m (in NCEP INCAR). While adjusting

the groundwater table depth, the model results in the different types of vegetation

only in savannas. Thus the topographically induced variability of soil moisture can

lead to the coexistence of trees and grasses under the savanna climate. The water

availability plays a significant role on shaping savannas, and that can result from the

variation of topography (exactly depth to water table). Even though soil moisture is

important to dictate the vegetation type, this only can playa role under its climate

of savannas. The shallowest mean water table depth (1.6 m) of 13 oN is enough to

support trees at II°N but not at 13°N. Hence the severe climate of natural grasslands

may constrain the growth of trees in that region as noted in Chapter 3, as well.

The groundwater table depth of SHE is simulated under the assumption of bare

soil. The existence of vegetation on land surface can adjust the annual cycle of water

table depth. But our objective is to understand the role of water table on dictating

the vegetation type, not the interaction between vegetation and water table.
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Chapter 6

Conclusions

This thesis has addressed the question of how savannas emerge in general. Savannas

can be shaped by many factors: fires and interannual variability of rainfall (which

is falling in the disequilibrium view), and vertical/horizontal competition for water

between trees and grasses (which is argued by the equilibrium view). In this study,

it is hypothesized that a mixture of trees and grasses can exist due to the variability

of soil moisture resulting from the variability of topography. This is validated with

the biospheric model only, and by the asynchronous coupling of the biospheric model

and distributed hydrologic model.

The experiment using the biospheric model is designed to estimate the amount

of rainfall required for trees and grasses in a certain atmospheric condition. The

difference of 30% in 9°N and 100% in II°N is needed to simulate trees and grasses.

Adjusting the rainfall amount can simulate the different types of vegetation only

under savanna climate. It suggests that the availability of water is a important factor

for trees and grasses to coexist at a certain climate window characteristic of savanna
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9°N lIoN 13°N
Observations Savannas Savannas Grasslands
IBIS Forests Grasslands Grasslands
Rainfall Variation with IBIS Savannas Savannas Grasslands
Asynchronous Coupling of IBIS and SHE N/A Savannas Grasslands

Table 6.1: Summarized Results

climate.

To understand the role of topography, distributed hydrologic modeling has been

performed and we conclude that the variation of depth to water table, resulting

from the variability of elevation, influences the variability of soil moisture to a high

degree. Therefore IBIS is modified to include the groundwater table as a boundary

variable, and the simulations are performed with the various water table taken from

the results of SHE. The results of asynchronous coupling of SHE and IBIS through the

groundwater table suggests that the different mean depth to water table can support

the coexistence of trees and grasses only under the climate of savannas at lIoN.

Table 6.1 presents the results of experiments addressed in this thesis, showing the

designed experiments simulate savannas consistent with observations, and validating

the proposed hypothesis. The findings in this study are summarized in the following:

• Different conditions of soil moisture can support different types of vegetation,

trees and grasses, only for a certain savanna atmospheric climate.

• Grasses around 13°N cannot develop into trees even with increased soil moisture.

In other words, its severe atmospheric conditions limit the growth of trees.
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• The variability of topography results in the variation of soil moisture through

the variation in depth of groundwater table .

• The variability of water table resulting in the spatial variation of soil moisture

can be a shaping factor of savannas.

The hypothesis predicts that a model can simulate a mixture of trees and grasses

in response to the variation of topography in natural savannas. However, there are

no currently available models that can fully describe the complex hydrologic pro­

cesses including the dynamics of vegetation. Most distributed hydrologic models do

not parameterize vegetation as a dynamic component. For instance, the SHE has a

vegetation component, but leaf area index (LAI) and root density function (RDF)

should be prescribed. Although the interaction between soil moisture and vegetation

is evident, it is usually ignored, and some of models only concentrate on the one-way

processes from vegetation to soil moisture. On the other hand, the dynamic vegeta­

tion models do not include the detailed hydrologic processes as well. The IBIS, used

in this study, is one-column model and is developed for global scale studies within cli­

mate models. However, SHE includes the vegetation component using LAI and RDF

(which are preliminary requirements for coupling with the ecosystem model (Arora,

2002) ), and does not use the empirical function to estimate the evapotranspiration

like most distributed models. Hence it can be coupled with the soil-plant-atmosphere

model DAISY to calculate changes in crop yield, or leaching nitrate and pesticide.

Even the linked model of SHE and DAISY cannot simulate the vegetation as a dy­

namic component, the coupling of SHE and vegetation dynamics will be possible with
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the proper parameterization of vegetation and allocation scheme, used in IBIS. The

necessity of the coupled model increases to better understand the natural processes,

and Arora (2002) illustrates the manner how the coupling of vegetation models and

hydrologic models can be performed. The development of the fully coupled model

will give a chance to understand the interplay between soil moisture and vegetation

dynamics as well as to study the hypothesis on emergence of savannas.
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