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Chapter 1

Introduction

The signal processing behind modern passive acoustic sensing is continually improv-

ing automatic target recognition (ATR) capabilities. Current technology is aimed at

providing a variety of information that assists the human sonar operator in making

the decision as to whether or not a target has been located. ATR systems are being

developed to detect and classify acoustic target signatures in a variety of background

noise and clutter. Several systems have met with some success in target recogni-

tion; however, the ATR problem is far from solved. This thesis focuses primarily on

developing, through detection theory, a detection bound referred to as optimal perfor-

mance. With these bounds, it is hoped that the validity of practical ATR processors

can be assessed in the research laboratory.

1.1 Passive Acoustic Sensing

Acoustic energy has long been a useful source for underwater detection and classifica-

tion. This is due partly to the excellent acoustic transmission properties of seawater

and the relative lack of other means by which to detect underwater targets. Acous-

tic sensing is possible through both actively searching and passively listening to the

ocean environment. Passive sensing is appealing because it emits no detectable energy

and thereby one does not compromise one's position to learn the location of another

platform. All acoustic sensing makes use of microphones and transducers to detect



acoustic energy and convert it to an electrical signal. Hydrophones, or underwater

microphones, are used to receive acoustic data from the ocean and to transform it

to electric energy. Typically arrays of hydrophones are used in order to improve the

signal-to-noise ratio (SNR) and to help define the acoustic energy source's direction

through phase differences of received signals (beamforming) [9]. Passive acoustic de-

tection is the ability to detect these signals above the noise of naturally occurring

acoustic energy in the ocean.

The remainder of this thesis is organized as follows: Chapter 2 presents the statis-

tics of underwater signals, gives the assumptions presumed for this thesis and dis-

cusses any discrepancies. The theory behind binary hypothesis testing and optimal

detection is explained in Chapter 3. The modeling of signals, background and clutter

are discussed in detail in Chapter 4. Chapter 5 develops the optimal processor and

evaluates its performance due to parameter variations. Using modeling information

from Chapter 4, Chapter 6 develops signal-to-noise ratio (SNR) as a useful metric and

discusses the relationship between various measurable SNRs. Chapter 7 is a closed

form analysis of the likelihood-ratio test and other detectors. Chapter 8 explains

the purpose behind background estimation and discusses optimizing one particular

background estimation algorithm. The results computed from running the optimal

detection algorithm under a variety of circumstances are compared and discussed in

Chapter 9. Finally, Chapter 10 summarizes the major conclusions of this thesis.



Chapter 2

Bin Statistics

A collection of one or more acoustic radiators produces an acoustic field that can be

detected by a hydrophone or hydrophone array. A hydrophone, or transducer, con-

verts the acoustic energy into electrical energy that is processed by an anti-aliasing

filter and digitized for further processing. Figure 2-1 depicts the process which con-

verts raw ocean acoustic data into digital information, known as the acoustic time-

series, to be processed by the detector. First, we assume that the raw ocean acoustic

data is a zero-mean Gaussian random process (GRPZM)[1]. This data is low-pass

filtered (LPF) and sampled by an analog-to-digital (A/D) converter, creating a series

of discrete Gaussian random variables. These Gaussian random variables are fur-

ther processed by a Discrete Fourier Transform (DFT), typically implemented with

the Fast Fourier Transform (FFT) algorithm. The data now takes on the form of

a complex Gaussian random process due to the FFT's transformation. Finally the

magnitude-square is computed of each complex random variable, creating a discrete

process consisting of exponential random variables (Appendix A).

2.1 Lofargram

The digital sequence xi is known as the time-series data (see Figure 2-1). A sliding

window depicts the portion of the data to be processed by the DFT. These non-

overlapping windows are indexed by n and referred to as time epochs. After the



Bin
Statistics

Figure 2-1: Bin Statistics Processing Diagram

DFT, the transformed time epoch is termed an individual scan line. Multiple scan

lines compose a scan where Xj is a way of representing the magnitude of each

frequency bin j of the nth scan line of the processed data. Finally, zj is the output

of the magnitude squaring process, a function implemented to simplify the output

statistics (Appendix A) and subsequent processing. In the following process, L is

the number of samples of shift between adjacent scan lines and I is the number of

samples used in the DFT. This squared-magnitude of a sliding time-windowed DFT

is known as the low-frequency acoustic gram, the lofargram or simply the gram [3]

and is given byl

I-1 2

nj E Xi+nLe-j2ij/I 0 j < 1/2 - 1. (2.1)
i=0O

The gram is a series of individual scan lines stacked one on top of another such that

the x-axis is increasing frequency and the y-axis is decreasing time. This is commonly

termed the waterfall display (Figure 2-2).

Each pixel on the waterfall display represents a particular frequency bin, for a

particular scan line. The darkness of the pixel is proportional to the relative power

present in that frequency bin. This shading is termed gray-scaling.

'Note the two j's in the exponent of Equation 2.1. The first j corresponds to the imaginary value
of VT_-- and the second j indexes the frequency picket.
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Figure 2-2: The Axes of a Waterfall Display

2.2 Single Pixel Density Function

It is important that we understand the distributions behind passive acoustic data

because assumptions about the distributions shape the tools we use for detection and

classification. For instance, we assume that underwater acoustic signals are stochastic,

not deterministic processes. In addition, we assume that these stochastic processes

are all Gaussian in nature. The simplification of the detector used in this thesis

relies on these statistics. The degree to which our results are reliable directly relates

to the degree to which our assumed stochastic processes accurately model the real

world data. For example, if the statistical distributions are assumed to be Gaussian

in nature, then knowing the first two moments will completely describe the process

and allow us to construct a detector relying only on the values of the first and second

moment, even if they vary with time. If, however, the pixels are distributed otherwise,

we could be throwing away valuable information by ignoring the other moments, and

performance could suffer.

Previous designs have indeed relied on the assumption that our particular signals

of interest and typical ocean noise are zero-mean complex Gaussian random processes

[1]. This thesis uses an optimal test, developed in Chapter 5, that is based on a



Gaussian assumption. The Gaussian statistics in time yield exponential statistics

when working with magnitude-squared Fourier transforms in the gram domain.

2.2.1 Exponential Bin Statistics

The most practical place to measure real data statistics in the processing outlined

in Figure 2-1 is immediately after the magnitude-square transformation, or where

we construct the gram. It is important to verify the exponentiality of the statistics

at this point in the processing, as this is the starting point for all detection and

estimation. The magnitude squaring produces exponential statistics (Appendix A)

which simplifies (Chapter 5) subsequent processing.

Previously we have stated our assumption that the input to our processing sys-

tem is a Gaussian random process with zero mean. The low-pass filter and DFT

generate complex random variables having independent Gaussian real and imaginary

componenents with zero means and identical variances. The FFT implementation of

the DFT is a linear transform explained in detail in most discrete-time signal process-

ing books [5] which generates the same independent complex Gaussian components

as metioned for the DFT process. The independent Gaussian random variables of the

zero-mean complex random process are effectively transformed into exponential ran-

dom variables by the non-linear magnitude-squared process that produces the gram.

The math that yields these exponential random variables is included in Appendix A.

2.3 Experimental Verification

It has been shown that prior assumptions about the statistical distributions of acous-

tic ocean data would yield exponential distributions under stationary2 means. There

are, however, several examples of real data under stationary environments that yield

distributions differing from an exponential curve. This section will show that under

2Since it is cumbersome for the author to determine wide-sense stationarity analytically, this is
assumed stationarity where the gram appears to have a relatively constant mean, a necessary but
not sufficient condition.



most circumstances we can generate a histogram of background statistics which cor-

responds well with an exponential distribution, but that it is also possible to locate

background statistics which deviate from an exponential distribution.

It is possible to create a histogram of the statistics associated with a particular

frequency bin over several scan lines. We divide all bins by their respective averages

to create a histogram over both multiple time scans and multiple frequency bins.

Specifically, we want to generate a histogram of the normalized gram, zn,

Z Z 1 n (2.2)
Y - E l n Znj

We normalize each frequency bin to a unity mean and variance3 over all time epochs

because the different bins, although assumed exponential, do not necessarily have the

same mean and variance. In this manner we can process real ocean acoustic data

to evaluate the assumptions that lie behind our statistics. Figure 2-3 is a lofargram

of ocean noise which matches well with an exponential curve in Figure 2-4. These

results are typical of much real noise that the author processed.

The straight line generated in Figure 2-4 is simply the best fit exponential curve

plotted on the logarithmic plot. This same curve could be found analytically by

measuring the mean value of the statistics and then plotting the function x(t) = Ael

where 1/A is the measured mean and x(t) the normalized number in each bin t.

2.4 Deviation From Exponential

Figure 2-5 and Figure 2-6 are the lofargram of deviant statistics and its corresponding

histogram. The author has found these statistical variations to be prevalent in dark

portions of the gram, or time-frequency spaces with large amounts of energy. The dark

strip of the Figure 2-5 gram excerpt is the section analyzed in order to produce the

related histogram. The author was careful to include only the middle regions of the

3Note that dividing by the mean normalizes the assumed exponential statistics, but does not
necessarily normailze non-exponential statistics.
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dark spots in order to preserve what sense of stationarity exists. This deviation from

the exponential distribution, although much less common, is still prevalent in ocean

noise. The histograms include error plots for plus or minus one standard deviation

to lend validity to the plot. The deviant data was collected from a single-element

sonabouy in a deep-water environment.

In Figure 2-6 it is obvious that even the best-fit exponential curve does not well

model the background statistics. If an exponential were drawn with the same mean

as the deviant background statistics, it would match well with the more frequently

occuring normalized power bins, but would fall well below the occurances in bins

farthest from the mean. These distant bins are referred to as tails in the distribution.

There are a few theories that could explain the exponential tails exhibited in Fig-

ure 2-6. The tails could be due to a non-stationary (time-varying mean) background,

or to the presence of transients in strong signals. Transients are short duration strong

signals that begin to look like an impulse in time to the receiver. The Fourier trans-

form of the impulse is a flat white noise spectrum. This high-amplitude scan line in

the spectrogram is typically several standard deviations greater than the expected

value of the bins in that scan line. Consequently, a histogram will exhibit these

abnormally deviant bins as tails in the exponential distribution.

Close examination of the distribution will show that there are more occurances

of large values as compared to the exponential distribution. Since the histogram

necessarily integrates to the same area under both plots, it is easily seen that hav-

ing a greater number of occurances several standard deviations away will cause a

corresponding decrease in the number of occurances close to the mean.

Even if transients or non-stationarity are not responsible for the abnormalities in

the statistics, let it suffice that this thesis has shown there is some deviation for strong

sources. Although this deviation occurs with less frequency than the distributions

more closely associated with the exponential distribution, it is important that we

recognize that it exists and may affect our detector. However, for the remainder of

this thesis, we will assume that we are working only with ocean data that is adequately

modeled by exponential spectral statistics.



Chapter 3

Target Detection Theory

A classic component of basic target detection and a vital part of passive acoustic

sensing is binary hypothesis testing. This chapter presents the optimal detector and

the basic detection theory necessary to understand it. We also describe several tools

to help assess the performance of a given detector.

3.1 Binary Hypothesis Testing and the LRT

The two hypotheses used in binary target detection are HI or "target present" and

Ho or "target absent". Our challenge is to make the best decision with the given

information between mutually exclusive hypotheses. Consider a data vector z_ that

has the following distributions,

Ho : Pzn IH(ZnI Ho)

H 1 : pzIH( nlH1),

where

zn = [Zn, Zn2 Zn3 Zni1/2]T

The likelihood ratio test (LRT) is a comparison of the ratio of probability distri-
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Figure 3-1: Binary Hypothesis Distribution

butions of our data vector zx compared to a threshold 'y. Based on this comparison

we map each zn to a particular hypothesis. We write the LRT as

ftH(z)=Hi
n(z) P PHl(H2 IH1) > Po(Clo - Coo) A

Ho( ) < - - 7. (3.1)

H(zj)=Ho

!H!(z,) is a mathematical function which maps each z, to hypothesis H 1 or Ho0.

CXy is the cost of choosing Hx when in fact Hy is true. If we set Coo = C11 = 0

and Clo = Col = 1 we achieve the minimum probability-of-error (MPE) criterion. In

addition, setting Po = P1 achieves the maximum likelihood (ML) decision rule.

It is important to note that L(z) (herein referred to as the detection metric y) is

a sufficient statistic. By this we mean that everything we need to know about the

observation vector z in order to make the best or optimal, in a minimum average

cost sense, decision is contained in y.

Chapter 5 will show that based on our Gaussian input assumption, the detection

metric y is a sum of n non-Gaussian random variables. Let us assume that n is large

enough so that the detection metric y appears Gaussian because of the Central Limit



Theorem. This being the case, y takes on the distributions

Ho : PyiH(ylHo)

HI : PyIH(y IH),

as depicted in Figure 3-1. Note also the threshold y which allows us to define the

detection probabilities.

3.1.1 Detection, False Alarm and Miss Probabilities

The detection, false alarm and miss probabilities are useful metrics for measuring the

relative performance of different processors. The probability of detection (PD) is the

chance that y > 7 given H = HI where 'y is a detection threshold chosen to achieve

a particular performance

PD- j pIH(ylHl)dy. (3.2)

The probability of false alarm (PF) is the chance that y > 7 given H = Ho

PF = pyiH(ylHo)dy. (3.3)

Note that increasing the detection threshold will lower the chance that we "say"

there is a target present when there is not (PF). However, raising the threshold also

decreases the probability that we recognize a target when it is present. Varying -y is

simply a trade off between PF and PD, so often we will adjust 7 such that we have a

particular false alarm (i.e. PF = 10- 3) and then we can compare the PD for each zn

and the associated metric y. Note that the ML and MPE criterion set the threshold

and therefore dictate the (PF, PD) point at which to operate, however, the following

section will present a test that allows us to choose a threshold value.

Finally, the probability of a miss (PM) is the chance that y < y given H = H 1

PM = PyIH(YHl)dy = 1 - PD. (3.4)_ 0O



The miss probability is the chance that we will declare that no target is present when,

in fact, there is a target present. Note that the miss and detection probabilities sum

to one.

3.1.2 Neyman-Pearson Optimal Detector

Assigning the a priori probabilities of a target's presence or the costs associated with

choosing a particular H, is difficult for target detection. Therefore we will choose

a threshold value based on the Neyman-Pearson criterion. The Neyman-Pearson

optimality criterion maximizes PD under the constraint that PE = a' < a for any

a between 0 and 1 [11]. The likelihood-ratio test is the Neyman-Pearson optimal

detector with a threshold, 7, that meets the optimality criterion.

A commonly used threshold value is three times the standard deviation of the

null hypothesis, or 3a. This 3a is approximately equivalent to setting PF = 10-3

under the contraint that the distribution of the detection metric is Gaussian and that

maximizing PF maximizes PD.

3.2 Unknown Parameters (GLRT)

The application of the Neyman-Pearson optimal detector to real passive acoustic

data requires some adjustment. The PDF for any particular target varies with range,

depth, environment and a multitude of other factors too numerous to count. The

background noise in an underwater ocean environment varies with numerous factors

as well and is less predictable than even the target. In order to utilize the optimal

decision criterion outlined above, we must make estimates of both the Ho and the

H 1 PDFs. This leads to a generalized LRT in place of the LRT, which employs a

LRT with ML estimates. However, we will look at various estimation techniques for

unknown parameters and utilize a quasi-GLRT (henceforth referred to as GLRT) to

see how these different estimates affect detector performance.



3.3 Performance Assessment and Terminology

There exist many tools to analyze the performance of various components of the

detector. One such tool is the deflection characteristic (d),

d [E(y I Hi)- E(y I Ho)]2

var(y I Ho)

Deflection is a measure of the difference in expected values between Ho and H 1 over

the standard deviation of Ho. A second tool is signal-to-noise ratio (SNR), given by:

_ Average Signal Power A E(zlH = HI) - E(zlH = Ho)
Average Noise Power E(zlH = Ho)

Both d and SNR can be defined at various points in the processing chain. We

will look at meaningful measurements of these values in Chapter 5 and explore the

relationships between these quantities and detection performance.

There are several terms which are intimately related with detection theory. They

are false alarm rate, minimum detectable level, time-to-detect and hold-time-ratio.

False alarm rate (FAR), e.g. alerts per hour, is the rate at which the detector produces

a false alarm. We can raise the FAR by lowering our threshold, 7, and vice-versa.

There is a trade-off between lowering the threshold in order to increase PD and raising

it to keep the FAR at a level reasonable for a sonar operator to track every false alarm

and realize that it is in fact a false alarm. FAR is a measure of operator workload.

Minimum detectable level (MDL) depicts the lowest SNR for a given {PF, PD}

that is considered a detection by the sonar operator. MDL is a measure of system

sensitivity to weak signals. Common values of PD and PF at the MDL are 0.5 and

10- respectively.

Other performance considerations are the time-to-detect (TTD) and hold-time-

ratio (HTR). TTD is the time-delay between the appearance of a target and a valid

algorithm alarm and is related to the integration time needed when a target is present

to register a "hit" or target present. TTD quantifies system latency.

HTR depicts the fraction of the time a target is present that the detector produces



an alarm. For a constant SNR target, the definition for HTR is identical to our

definition of PD. HTR is frequently used when comparing processing algorithms

where the target SNR varies over the period of time the target is present.

While FAR, MDL, TTD and HTR are all important metrics for a practical detec-

tion system assessment, they are all related to the prime metrics PF,PD, deflection

and signal-to-noise ratio. Thus, in the remainder of this thesis, we will focus on the

prime metrics to assess system performance.

Now that we have developed the framework essential to target detection, we will

describe the models assumed for this thesis and develop the theoretically optimal

detector based on these assumptions.



Chapter 4

Background and Signal Modeling

Now that we have examined the statistics of ocean noise and outlined the detection

theory used in this thesis, we shall develop models for background and target power

spectral densities (PSDs). These models incorporate PSD feature regions of varying

strengths, shapes and bandwidths. Figure 4-1 demonstrates three feature regions of

various widths and strengths for a generic model. This chapter will adopt notation

for and establish the importance of feature regions.

For the purpose of this thesis we define three distinct categories of bandwidths:

broadband, narrowband and midband. Broadband features are single PSD features

whose frequency bandwidth extends more than approximately twenty-five percent of

the spectrum. Narrowband features are often only a few bins wide and extend no

more than one percent of the spectrum. Midband falls in-between broadband and

narrowband, it covers from approximately one percent to twenty-five percent of the

spectrum, and describes the bandwidth of our selected feature regions.

Narrowband signal detection has been treated extensively in [4]. This thesis will

concentrate on distinguishing midband signal features embedded in broadband noise

features, referred to as background.
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4.1 Signal Modeling

We are primarily concerned with detecting midband components of target signatures,

although targets may exhibit narrowband and broadband components as well. A

typical amplitude-scan (ASCAN) of a signal model is shown in Figure 4-2. The

ASCAN is simply a time-averaged scan line,

1 N-1
1j -= NE z• zj (4.1)

n=-o

Note the difference between the relatively flat broadband ASCAN component and

the midband-sized signal features on top of the broadband. We will refer to the

midband-sized signal features here as inbands, which are extracted and shown alone

in Figure 4-3. These inbands are analogous to the common barcode that labels most

present-day consumer products. These barcodes have approximately 20-30 lines of

varying widths printed with different spacing between every two lines. Laser scanners

L
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compare the reflection from these barcodes to a library of templates until it can match

a template to the product being scanned. Similarily, we will take the magnitude-

squared DFT processed data, zj and compare it to our library of target templates

in hopes of matching two sets of inbands.

The feaure regions alluded to in the introduction are simply midbands extracted

from the vector z, of Chapter 2. The scan lines are still indexed by n, however, the

frequency bin index is transformed so j = jm + k,

znk = Zn(jm+k), jm + Km < m+1.

Note that there are M feature regions, indexed by m, beginning with frequency bin

jm. Also, each feature region has Km total bins indexed by k.

Let us choose a mean background { pm : 0 < m < M- 1,0 < k <Km- 1, }

such that it describes each bin k of each feature region m (see Figure 4-1). Note that

these defined feature regions are signal feature regions. Later in this thesis it will be

shown that optimal processing mandates a background model only for bins containing

signal. This background model becomes the expected value of the processed DFT,

zm, under the null hypothesis

E(zLn Ho) -= m. (4.2)

We will incorporate our signal model information into three parameter types: a,

Am, and ,m; where ac is the factor which scales the feature shape Am and strength

Orm. The expected value of the DFT, z", under the target present hypothesis is the

sum of the uncorrelated background and signal means

E(zmnLH 1 ) _ ,m + aomAn (4.3)

where

Km-1

A = 1 0 < <M-1,
k=0
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These normalizations allow us to specify the average bin-level signal strength as a for

all the feature regions.

Figure 4-4 is a simple model which incorporates M feature regions with K bins

each, given by:

Km =K for0O< m < M- 1,

Am = 1
_k K forO <m < M-1,0< k< Km-1

OM 1 for0<m< M- 1,

a = aKM and,

M, =1 forO < m <M-1, <k<K-1.

1+a

I

i=0

m=l
I m=3 m=4

II I

10. """' 10 I" 10 o10 1

I I

10



The scaling factor a and constant A' and qm yield a signal stength of a in each bin.

We utilize a flat background of strength one, thus the peak feature strength lies at

a + 1. We will use this model and variations of this model in subsequent chapters for

analysis purposes.

4.2 Background

It is instructive to divide background noise into two major categories, ambient and

biologic noise, both of which can retard the ability to detect midband acoustic targets.

4.2.1 Ambient-Noise

Ambient-noise is generated by both man-made and naturally occurring sources. Nat-

ural noise can take many forms, like seaquakes, volcanoes, hydrostatic wave effects,

ocean turbulance, non-linear wave interaction, thermal noise, ice breakage, rain,

waves, tides and wind [9]. Some of these noise sources transmit acoustic signals

that are received by the detecting hydrophone and other noise sources simply cause

changes in sound speed (due to thermal and pressure variations) which, in turn,

perturb signal frequencies, causing phase differences and statistical deviations which

hinder detection. However, the most significant natural ambient noises are low fre-

quency wavenoise and tidal currents (mostly < 10 Hz,) and high frequency wind noise

(mostly > 300 Hz, see Figure 4-5) [9]. Man-made ambient noise includes explosions

used for seismic exploration (up to 20,000 have been recorded off the coast of Califor-

nia in one year) and shipping traffic [9]. Natural ambient-noise is a broadband signal

that exhibits a peak frequency close to 300 Hz, but can vary greatly due to weather

conditions. Although natural noise is present in the 10-300 Hz band, its strength is

not as significant as shipping noise in the same spectrum [9]. Ambient-noise has a

center frequency close to 100 Hz, due to the relative strength of shipping noise.

Figure 4-6 [9] demonstrates the relative accuracy of Figure 4-5 and shows that

the averages well represent noise strengths for ambient-noise spectra when viewed at

single locations.
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4.2.2 Biologics

Biologics are living creatures in the ocean that create noise. Their signals vary in dura-

tion and frequency and the strength of their signals vary from place to place. Biologic

noise-makers can be divided into three categories: certain shellfish (Crustacea), cer-

tain true fish, and marine mammals (Cetacea) [9]. Snapping shrimp are the primary

noisemakers of the Crustacea. Their signals extend from 500 to 20 kHz, exhibiting a

peak around 10 kHz. The largest contributor to noise in the true fish group are the

croakers of Chesapeake Bay and other East Coast (US) locations. Croakers signals

range from 100 to 10 kHz and have a peak frequency that varies from 500 Hz in

late May and early June to 250 Hz in early July. Porpoises and dolphins dominate

the mammal biologic noisemakers. The porpoise creates a 10 to 250 Hz frequency

modulated whistle, while the dolphin is known for a wide variety of noises that are

far too complex to analyze for the purpose of this thesis [9]. Overall, biologics tend

to be a shorter duration signal than ambient noise, but can be just as troublesome,

if not more, in the process of target detection.

4.2.3 Background Examples

Background environments range from rather benign, white-noise-like backgrounds to

non-stationary, signal-like clutter (see following section). Figure 4-7 shows the gram

and the amplitudes of the PSD for a white noise Gaussian time series. Figure 4-8

demonstrates the extreme opposite from white noise backgrounds, a gram abundant

in narrowband, midband and broadband noise with random amplitude distributions.

4.2.4 Clutter

Clutter is defined as a midband signal with randomly fluctuating amplitude and phase

[8]. The random fluctuations imply that clutter is similar to noise when, in fact, it

is signal-like because of the relatively narrow bandwidth of each feature. Signal-like

clutter is the most troublesome of the unwanted background signals because it can

often be mistaken for a piece of the signal because of its shape and size. However,
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clutter mitigation is possible by examining the background only bands or outbands of

the spectrum [7]. This thesis does not incorporate clutter modeling into simulations,

but we do consider its theoretical implications later in the non-ideal energy band

detector (Chapter 7). Clutter modeling has previously been analyzed and applied to

the LRT in [7].



Chapter 5

Optimal Processing

Previously we have validated the statistical model for ocean acoustic data and ex-

plained our data processing pipeline, developed the theory behind optimal detec-

tion and outlined our background and signal models. This chapter will develop the

Neyman-Pearson optimal LRT detector for the scenario previously outlined in this

thesis.

5.1 Signal and Background Density Functions

First, we define two conceivable time-series inputs to the detector,

Ho : x(t) = b(t)

H 1 :x(t) = s(t) + b(t),

where s(t) is signal and b(t) is background noise. The first piece of the detector is

the A/D converter (see Figure 2-1) which yields

Ho : x =b,

H 1 : xn = sn + bn.



Next the data is processed by a DFT and becomes

H0 :Xn = Bnj

H 1  Xnj = n + n

where X(k) signifies the complex output of the DFT. The DFTs are computed on

time epochs of length I. The individual scans are indexed by n, feature regions by

m and frequency pickets are by k. The PSD is generated by magnitude-squaring the

complex output, yielding two exponential PDF's (see Appendix A) with mean and

standard deviation reprinted here from Chapter 4

I Pk , /=0
E (znl I HI) = {var(zn JHi)} = (5.1)

1k k

Now we have all the parts necessary to write the inband PDFs for zm under each

hypothesis {H1 : 1 = 0, 1},

Pz HgB (ZnklH) = E{zk H}exp { E{HzkH} . (5.2)

The outband PDFs are identical under HI and Ho by definition.

The joint probability density function of the vector z is the product of the

independent 1 exponential distributions, e.g.

PzJH, 1  H( ) = II I I fPzJH, (k klH). (5.3)
nmk

5.2 LRT Derivation

Since the outband PDFs are indentical under hypothesis Ho and H 1, the LRT is

only a function of the inband vector z. Using Equation 3.1 with the joint PDF of

'It can be shown that the independent Gaussian input assumption of Chapter 2 leads to inde-
pendent exponential distributions.



Equation 5.3,

11n Hm Hk E(z IHI) exp

n H-m Hk E(zI Ho) exp {

zm}
E(z•H

E(z-JmH1)zm
SE(zHo
E(zm IHo)

T 0zoz z0K .1
I-- "· ZN-1Km-1" (5.5)

Note that the outband PDFs will simply cancel in Equation 5.4.

equation, let us take the natural log and in doing so define,

To simplify this

In{L(z)} = y, (5.6)

and

In{r7} = -Y.

Now consider the result

N-1 M-1 Km-1

n = m=O E O
n=0 m=0 k=0

-In{zk H 1i}
m
lnk

E(Znk H1) + ln{zf( Ho} +

where the overbar signifies the mean or expected value, i.e.

S= E(),

N-1 M-1 Km -1

n=0 m=O k=0O

nE(ZU k Hi)
E(zn IHo) + zm

Znk

{zm lHI} - {zm lHo}
E(zr| H 1)E(zn |Ho)

L(z) =

where

/H(y)=Hi

H(y)=Ho

(5.4)

Z m

H(y)=>Ho

Hf(y)=H 1

H(y)=Ho

Y. (5.7)



Notice that the first part of the sum in Equation 5.7 is simply a constant which

can be incorporated into the threshold 7y. Remove this constant and plug in the mean

values from Equations 4.3 and 4.2 and we get

N-1 M-1 Kmn-1

n = m=0 k=
n=0 m=0 k=0

H(y)=Hi

mm (i C~mA jZ n k k k--m- J
m 'r +k m .m)k k kc I

H(y)=Ho

This becomes

M-1 Km-1

m=0 k=0O

( mA ) 1 N-1
m, + & m m -E k

Let us define

sm ak m
S k •O--i

(5.8)

to be the background normalized signal model. We can similarily treat

-m k- N
zk (5.9)

as the background normalized ASCAN where the unnormalized ASCAN, km, is given

SN-1

n=O
(5.10)

Note that under Ho

{E } m E{km} __ E

var{f7m} var {I km }
(k)

{z nk Ho}
m

N(I/-1)2V T mk.

Thus the normalized ASCAN is a consistent 2 estimate of the data ASCAN. A similar

2By consistency we mean the variance approaches zero as N approaches infinity.

H(y)= Hi

fI(y)=Ho

1, and

1
N



analysis for the H 1 case yields a consistent estimate with mean and variance propor-

tional to the signal strength. The normalized notation we have developed provides

rather simple data means under the hypothesis {H1 I = 0, 1},

E (k I H1) = 1,M

1 + ±m

I=0

i=1
(5.11)

Now we can write Equation 5.8 as

M-1 Km-i

m=0 k=O

§m
k -m

1+ MZk
(5.12)'Y3.

H!(y)=Ho

Consider the first and second moments of the detection metric y

E(y Hj)

var(y I Hj)

-mM-1 -,Km-1 k o

1 M-1 "Km-1 k
N m=O k=0  1+(m)

1 YM-1 kKm-1 -r2
NM=o•k=o k

Let us now normalize Equation 5.12 to zero mean and unity variance under the Ho

case and define our normalized threshold as a. The normalized detection metric y is

now [2]

m=0 k=0 1+9- k
V'N 1kSk )21/2

[M-1 Km-1 sk-m=o •k=o 1+m ]

H(y)=HI

Hl(y)=Ho

(5.15)

(5.13)

j=0
j=1

(5.14)



Chapter 6

Performance Assessment

The signal-to-noise ratio (SNR) and deflection characteristic (d) are useful tools by

which performance can be predicted with relative degrees of accuracy. It is possible

to measure SNR or d at any number of points in the detection process. This chapter

examines several such computations and attempts to exploit their relationships in

order to gain insight into detector performance.

The ratio of energies SNR computation (referred to as SNR in section 3.4) and

deflection characteristic assume stationary processes in the time period for which we

are computing the metrics. If the process is non-stationary, the metrics are changing

over the period which we are integrating. For non-stationary processes it is more

meaningful to compute the metrics for smaller chunks of the process that are relatively

stationary.

One of the difficulties of SNR or d measurement is the separation of signal from

noise in order to construct a meaningful ratio. Regardless, this chapter develops

useful metrics for separable signals and noise, and consequently lends insight into

non-separable real-data detection scenarios.
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6.1 Performance Metrics Throughout the Detec-

tion Process

Figure 6-1 is a simplified diagram of the discrete portion of the detection process.

We will measure SNR at three distinct points in the process: the phone level, the

bandlimited phone level and the output. Each SNR measurement occurs further down

the processing chain than the last and so should be a better prediction of detector

performance.

6.1.1 Phone Level Signal-to-Noise Ratio

The phone level SNR (PLSNR) is measured at the output of the analog-to-digital

converter. Using the notation of Chapter 2, we will adopt s and b for the separable

1



signal and noise components of our data. Thus, we define

E(xI Ho) = b
E(xilHi) = bi + si,

E(xn3lHo) =Bn3,

E(xnjJHi) = Bj+ Sj,

and we can write

Average Signal Power EI-1 2 EI-1 ISnj 2
PLSNR i=O (6.1)Average Noise Power 1 b2 - - B12 (6.1)0 bi=O 0 j=0 j2

where the final equality arises from Parseval's Theorem.

6.1.2 Ratio of Bandlimited Energies

The ratio of bandlimited energies (RBLE) is similar to PLSNR, except now we are

bandlimiting to bands of interest only, specifically inbands. PLSNR can be viewed

as a broadband SNR measurement. However, extracting the midband features of our

data is essentially a filtering operation which establishes a receiver bandwidth for the

detector corresponding to the inbands. This filtering operation increases the SNR

(i.e. RBLE > PLSNR) because we still have the same1 energy in the signal bands of

interest, but we are reducing the noise bandwidth. The result is a ratio of inbands,

Average Inband Signal Power -M-1 K- K mA aRBLE = m=O k=O kmt =
Average Inband Noise Power EM-0 ;m m-lk -0 M-• K-lo m

(6.2)

6.1.3 Output Signal-to-Noise Ratio

When the deflection characteristic is measured at the output of the LRT processor,

we obtain the Output SNR metric or the SNRO. We can construct the SNRO using

'It is important to note that we are also losing some broadband signal energy, however, as the
results will show, the overall effect is an increase in the SNR.



the deflection characteristic SNR definition (Equation 3.5) and the LRT y-metric

moments (Equations 5.13 and 5.14)

[E(y I H) - E(y I Ho)]2  [M-1 k'Km-1 gm M-1 KKm-
1  k 2

-- -=0- k k =0 .k=0 l++g

-M-1 ZiKm-1 ]2
m=0 k=0 1+sk

and dividing by the variance under Ho,

2

M M-01 
kKm-1 k

a=0 /--k=O 1+--

SNRO = N (6.3)

nm=0 k=0 1+\ S

Comparing the SNRO to the LRT (Equation 5.12) we see that the SNRO is simply

the square of the expected value of the LRT (E{z(k} = s') for the HI case. Thus,

in essence the LRT is estimating, based on the assumed model and available data,

the SNRO, and indicating a target present if the estimate is large enough. The

output SNR utilizes all of the model information used by the LRT and so the mean

LRT reduces to the SNRO under the target present hypothesis. The major difference

between the RBLE and PLSNR measurements and the SNRO is that the output SNR

measures the difference in hypothesis means as compared to the standard deviation,

rather than a simple ratio of filtered (RBLE) or unfiltered (PLSNR) signal-to-noise

ratios.

6.2 A Simple Example

Figure 4-4 is a simple model we will use as an example to compute the PLSNR, RBLE

and SNRO. Note that one could also compute the SNRs for a complex model such

as Figure 4-3 using the same method, just changing the values of constants a, K, M

and the vectors A,O and p to match the more complex model.

Using the model of Figure 4-4 and assuming both s' = 1 + a and p, = 1 are



constant for all m and k, the equations simplify to:

PLSNR =(i/( ), (6.4)

RBLE = ( ), and (6.5)

SNRO = NMK ()2. (6.6)

Notice that the three SNRs are all functions of the fractional signal bandwidth i,

the single-bin SNR, E, and the time-frequency bandwidth NMK. The time-frequency

bandwidth is a simple function involving our sampling rate and scan parameters. If

we sample at a rate Ts, we define the dwell time as T = ITs, whose inverse, 7-I, is

frequency resolution. The time-frequency bandwidth can be defined in these terms

as the product of dwell time and receiver bandwidth,

MK
BT = (NITs) ( ) = NMK. (6.7)ITS

Using the above equations it is easy to rewrite any of them in terms of one another,

here is how they relate:

RBLE = 2 (PLSNR) (6.8)

SNRO = NMK (RBLE) 2 . (6.9)

There are several relationships of note among the three SNR computations shown

here. First, RBLE reduces to PLSNR when the signal bandwidth covers the entire

spectrum (i.e. MK = 1/2.) Secondly, increasing M,K,N and a and decreasing p

improves all of the SNRs. Third, RBLE has a gain over PLSNR proportional to

the fractional bandwidth occupied by the inbands. Finally, the gain associated with

SNRO is proportional to the time-frequency bandwidth.



6.3 Performance Bounds

Now that we have developed the LRT and several useful SNR measurements, it is rel-

atively straight-forward to construct bounds and approximations which demonstrate

the limits of performance of the optimal LRT detector. Consider the optimal per-

formance bound which can be found by analyzing the respective distributions of the

output statistic, y, for the Ho and H 1 cases. We can then compare them so that we

can construct a receiver operating characteristic (ROC) or PD versus PF curve, which

can be a cumbersome process. There are, however, methods which can compute ROC

bound approximations using deterministic information about the data.

6.3.1 Chernoff Bound Approximation

The performance of the LRT can be approximated by the following modified Chernoff

bound [10],

exp[P(sm) - sm(Sm) (610)PF ,(6.10)

exp[P(sm) + (1 - m)(m) (.11)PD I - (6.11)
2ir(1 - sm)2i1(Sm)

where PF amd PD are the false-alarm and detection probabilities respectively. For

0 < s < 1, P(s) is defined as [10]

p(s) In {J dZ[pzIHl(ZIHI)]S[pzlHo(ZHo)]-"} , (6.12)

where Z is a random vector of data under the familiar hypotheses H1 and Ho. For

the bounds we define
dp d2  (6.13)d(s) = and i(s) (6.13)() ds ds2



as the first and second derivatives of p(s). These modified Chernoff bound approxi-

mations assume that [6]

sm 27Ti(sm) > 3 and (1 - sm) 27r (sm) > 3. (6.14)

Using our previously defined signal, s', and background, pmI and [6], we can show

that

p(s) = {(1 - s)ln(s p) +sln(pm) - n[(1 - s)s+ -]},

m k

(s) =S k k + P and,
m k - S)S mk Pk

· (S) = Z } ( k _ s + M 2( S)Sk

Now if we vary the parameter s it is possible to trace out an approximation to

the ROC curve.

6.3.2 Error Function Approximation

Another useful approximation on PD and PF for the LRT is achieved by using the

Q or error function. The error function simply integrates over a given portion of a

Gaussian density function,

ERFC(x) = e-t2/2 (6.15)

If we assume, using the Central Limit Theorem, that the detection metric (y) takes

on a Gaussian distribution when we integrate over a large enough time-frequency

bandwidth, we can propose the following approximation on performance,

PF = ERFC(-y), (6.16)
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PD = ERFC(E(jIHI) - 7) = ERFC(SNRO - ). (6.17)

Note that 7 is the threshold we set and /SNRO is the difference in hypothesis
means or the distance between the mean values of the two Gaussian distributions.
Note that the SNRO also normalizes the variance to one and the mean to zero so that
we need to make no adjustments when applying the error function.

6.3.3 Simulation Analysis

It is relatively simple to construct a simulation, utilizing the assumed measurement
statistics, to verify the accuracy of these approximations. Figure 6-4 shows the three
bounds for a simulation using a time frequency bandwidth of 2000 bins and a single-
bin SNR of 0.05. Note how similar the error function bound is to the LRT simulation
bound. The Chernoff approximation is much more pessimistic than the true boundary
for this particular example.



Chapter 7

LRT and EBD Analysis

Now that we have layed out the LRT algorithm used to process data and optimize

performance, we will, in this section, demonstrate the optimality of the LRT in closed

form. Our demonstration consists of comparing to an Energy Band Detector (EBD).

We will consider both ideal and non-ideal EBDs and look at the performance of the

LRT and EBDs as we vary the number of signal bands in our signal model.

In our analysis, we will use the deflection characteristic (d) to compare our var-

ious detection algorithms. We can justify using this as a performance metric if we

consider the results of the simulation in Section 6.4.3. There we determined that the

error function performance boundries were very close to the simulation performance

bounds. Recall also that the error function approximations depend only on a fixed

threshold y and the deflection characteristic.

7.1 Number of Feature Regions Utilized

Let us assume we have M feature regions each of length K bins, N time epochs, signal

power a and a uniform background power of magnitude one (see Figure 4-4). The

ideal energy band detector (EBD) sums the energy in each bin k over all m feature

regions and n time epochs,
Y = ZZ• z 5 n, (7.1)

n m k



where znk is the power spectral density of the signal and background noise waveforms.

Recall also that the deflection metric is,

IE(ylHi) - E(ylHo) 12

var(y Ho)
(7.2)

Note that we will analyze flat band weighting in this section, which produces identical

deflection characteristics for both the EBD and the LRT.

We can solve for the expected values under both the signal present and the noise

only hypothesis,

Ef{yHo} = E {ZEEZzmHo}
nmk

= EEEE {zl~ Ho}
nm k

nm k

E{y HI} = E{_ _ z"n1HI}
nm k

- EEEE{z"Hi}
n m k

: EEE(1 + a)
nm k

NMK(1 + a).

A similar analysis yields,

var{y Ho} = NMK.

Then we can plug these equations into our deflection metric to compute,

dEBD(MIM) = a2NMK,

where the notation dEBD(qjr) indicates that this is the deflection when summing q

(7.3)



features given r features are true.

Note that if we sum over L of M possible feature regions and L < M, we suffer

a performance reduction of n from the optimum EBD which would include all M

features.
L

dEBD(L|L < M) = a2NK-. (7.4)
M

Consider, if you will, the effect of summing over L feature regions when in fact there

are only M regions with signal, where M < L. The Ho analysis will not change,

however the expected value of H1 will,

E{ylHi} = NLK(1) + NMK(a).

Now the deflection metric becomes,

dEBD(LIL > M) = a2NK , (7.5)

which also reduces to the allbands case when L = M. This satisfyingly tells us

that were we to choose x + 1 feature regions when x existed, we would suffer the

same performance degredation as choosing x feature regions when x + 1 are present.

However, consider a case where we do not know how many feature regions will be

present in a real signal, but we are aware of the locations of the possible feature

regions. We can guess an average number of feature regions to include out of the

total, but are we better off erring on the side of choosing too many feature regions,

or choosing too few? The answer is, not surprisingly, choosing too many. Increased

processing bandwidth more often helps performance than hinders it. We can prove

this solution by considering a case where we fix the number of feature regions to be

processed (L) and vary the number of regions present in the signal from M = L + J

to M = L - J, for J > 0. If M = L + J then M > L and the deflection metric

differs by a factor of M-J. However, if M = L - J then L > M and the deflection

metric is degraded to a factor of M. Let us examine now the ratio of performance

degradation between the M > L case and the L > M case,
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Notice that when J = 0 the two cases will reduce to the L = M case, but for

all J > 0, the ratio between scaling factors for performance is always less than one,

implying that we are better off with L > M.

We define a loss factor of c(J, M) so that,

___ M) = 10log (7.7)
dD(L = MJM) 1+ J/M J < O

and plot e(J, M) versus J/M in Figure 7.1.

Figure 7.1 tells us that if we can not choose the exact number of feature regions,

we can tolerate greater error in the number by choosing a number of feature regions

more likely to be greater than the actual number of feature regions.



7.2 LRT versus EBD

Recall the previously defined LRT,

H(y)=H1
M-1 K,-1 •m

M+ m i m k 7 (7.8)

m=O k=O ±k

H/(y)=Ho

where s~ is the signal model. In Chapter 6, the LRT SNRO was defined as:

SNRO = N (7.9)
.1M-1 1__Km-
m=0 -k0 1+ /

If we choose s = a note that the deflection metric reduces to the equally weighted

bands of the energy band detector, a2NMK.

Let us examine a simple case where we weight the bands differently and see what

the benefit is of the LRT. Let us choose M bands of signal and background that are

weighted such that ~m = am. Background is still flat and equal to one. The E{y|Ho}

and the var{ylHo} stay the same since background still equals one. However, looking

at H 1,

E{yIH1} E( E znmk)
nmekn m k

= E(E zk)
n k m

= NK (1 + am)
m

This means the EBD deflection metric in the weighted bands case looks like,

dNK
d =M (E a m )2  (7.10)

Note that when am, d reduces to aNK which is identical to them

Note that when am = aV m, d reduces to a2NMK which is identical to the



flatband deflection characteristic.

If we consider the same feature regions as above for the LRT, the deflection metric

is defined as,

[2Em Ek g1+mk
SNRO = N

Em Ek 1+mk
/ -- 2

Let us define variables x and y such that

x =am

Sl+am

We can compute the sample cross-covariance of x and y

cov(x, y) (x - T)(y - F)

Em-a(am - -L E am( a I am
m M l+am M Em 1+am)

1 E 2 )m•[ 1) a a •am Em( am )+ ( Jama
1 a l a ) 1±am -

M 
2 
m  m Z- vm

(  lam

M 1a, M E (m aM ) -- a,1 1 1

Im ( lCamE( am ) Em M
2 "ma -( amm am m( a-- ~a E mJj• a. E m( ama +( )l a

M _+am M2 1+m ,/(_ )2 +am
1 C(2 -E 1 m a Er( am

M a+am /

Note that the sample cross-covariance is greater than or equal to zero under these

circumstances, thus

1>_ --2

Mm 1+am
m

am E( 1 am
m +am

which implies

2
E am )2

1+amEm( ah a1+aml+am ]

[L Emammla

[F, (am)212= NK E 1+am T
Em( a~hu_ )2'

i +am

(7.11)



If the above relationship is true, it must follow that

S\i+amJ 1 (7.12)
1+am )2 - M m

because

S am ) < M ( am )2
[m +am I m 1 +am

due to the constraint that the sample variance of our variable y > 0.

Equation 7.12 tells us that the likelihood-ratio test deflection characteristic is

always at least as good as the energy band detector. The two metrics are equivalent

when all bands are weighted equally.

7.3 The Non-Ideal EBD and Signal-Like Clutter

The non-ideal EBD is a detector aimed at combatting the problem of signal-confusable

clutter. It takes an estimate of noise clutter from the signal bins outside the signal

feature regions and subtracts out the clutter-related noise estimate from the signal

feature regions. The non-ideal EBD is written as,

1 1m - zm(7.13)
N~l~iK L zE k  NnoK znk

n mi k NM 7K mo k

where Mi is the number of signal feature regions with K bins and Mo is the number

of feature regions with K bins lying outside the signal bins.

We can compute the squared deflection metric for the ideal and non-ideal EBDs

in a noise-cluttered background environment. Let us define a probability that clutter

noise will occur in a given bin as Pc and this clutter has a bin-level SNR of c. Recall

that the bin-level SNR of the signal is a. Thus we have,

Pr{E(zn) = (1 + c) Ho} = Pc



Pr{E(z') = lIHo} =

Pr{E(zr) = (1 + a + c) H 1} =

Pr{E(z') = (1 + a) HI} =

1 - Pc

Pc

1- Pc.

First let us consider the deflection characteristic of the non-ideal EBD,

E{yjHo} (NM ) [(1 + c)Pc + (1)(1 - P)]

(NMKI) [(1 + c)Pc + (1)(1 - Pc)] = 0,

E{yjHi} (N) [(1 + c)Pc + (1+ a)(1 - Pc)]

( NMO( +K c)Pc + (1)(1 - Pc)]

= (cPc + 1 + a) - (cPc + 1) = a,

In order to compute the variance, let us start by calculating var(z- jHo),

varf{z IHo } = E[(zr)2fHo] - [E(zr IHo)]2

PcE[(z7n)2IHo, c] + (1 - Pc)E[(z') 2 |Ho, 0] - [E(z~7, Ho)]2

=Pc[OzmklHo,c + E(zWHo, c) 2] (1 Pc) 2 Ho, + E(zrjjHo, 0)2] - [E(zJnHo)]2

= 2Pc (1 + c)2 + 2(1 - Pc)(1) 2 - (1 + cPc) 2

= 1 + 2 cPc + c2Pc(2 - Pc),

where Ho, c denotes the null hypothesis with clutter and Ho, 0 denotes the null hy-

pothesis with no clutter. Thus the variance for the non-ideal EBD is

varf{yHo} = (N- ) 2 NMiK[1 + 2cPc + c2 Pc(2 - Pc)]

-(N~i • K) 2 NMoK[1 + 2cPc + c2Pc(2- Pc)]

1+2cPc+c2Pc(2-Pc) MM
NK MoMi



We can similarly compute the squared deflection characteristic for the ideal EBD,

E {yHo} = NMiK[(1 + c)Pc + (1)(1 - Pc)] = NMIK(1 + cPc),

E{y|Hi} = NM2K[(1 + a + c)Pc + (1 + a)(1 - Pc)] = NMiK(cPc + 1 + a),

var{ylHo} = NM;K(1 + 2cPc + c2pC(2 - Pc)).

If we compare the squared deflection metric of the non-ideal EBD to that of the ideal

EBD we find,

EBDnon-ideal < EBDideal

NMs Ka2 N Mj Ka2
1 + 2cPc + c2Pc(2 - Pc) MMMo 1 + 2cPc + 2Pc(2 - Pc) (7.14)

Looking only at the deflection characteristic it appears as if our non-ideal EBD

is a wasted effort, since the fractional difference -M < 1. However, in this caseMi +Mo

the deflection characteristic is misleading. The variance in both cases worsens with

increasing c, and reduces to the non-clutter case when c = 0. The difference in hy-

pothesis means for both the ideal and the non-ideal EBD is a, however, the hypothesis

means for the non-ideal case remain fixed for all c while the means for the ideal EBD

vary with c. For example, consider yi and yi, the detection metrics for the ideal and

non-ideal energy band detectors respectively,

E{yniH1i} - E{yni Ho} = E{yjH1i} - E{yi Ho} = a

E{ynidHo} = 0 V c, however, E {yiHo} = NMIK(1 + cPc).

Consider the effect this varying mean will have on the false-alarm rate in Figure 7.3.
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As clutter strength increases, PF grows for both the ideal and the non-ideal EBD.

However, PF increases much more rapidly due to the fixed threshold value. It is

true that PD changes as well, however its change is negligible compared to the large

differences in PF.

Note that the above relations correspond to a fixed threshold value of 7. If we

could vary the threshold value with c we could achieve the performance of the EBD

in the non-clutter scenario, however, we have no way of knowing a priori the value of

c or Pc. Thus for noise-like clutter we can only estimate the clutter strength using

a detector like the non-ideal EBD, and suffer the related degredation in detector

performance in order to keep a relatively constant FAR.



Chapter 8

Background Estimators

So far we have only considered the known-background and known-signal cases. In real

life, we do not know either the signal or the background and must construct parameter

estimates to perform target detection. Recall the generalized likelihood ratio test

(GLRT) mentioned in Chapter 3. The GLRT utilizes a library of presumed signal

models. These estimates are stored for quick comparison to measured spectrograms.

The GLRT also requires a background estimate, which is computed on the scene by

a given algorithm designed to remove the signal-like components from a processed

spectrogram. The better this algorithm, the more accurate the background estimate

and, presumably, the better detection performance. Here we will consider one popular

and widely used background estimation algorithm, the noise-spectral equilizer (NSE),

and present a series of tests and guidelines intended to optimize its performance.

8.1 NSE

Noise spectrum equalizers, or NSE as it has become known, includes many slightly

varied algorithms all with the same fundamental components, clipping and smoothing.

The spectrum clipping consists of comparing zi to an average 7 of surrounding bins

(see Figure 8-1),
1 i-G/2 i+S/2

S= - E z + E z~ (8.1)
j=i-S/2 j=i+G/2
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Figure 8-1: Noise Spectral Equilizer

and replacing zi with the average .T if zi is greater than cz where c is a clipping

constant. Smoothing the spectrum is similar to the clipping algorithm with c =

0 so that all of the bins are replaced with averages, effectively low-pass filtering

the spectrum. The three-pass NSE is a time-tested, simple, but effective method

which provides a useful estimate of the background PSD. The first two passes utilize

the clipping algorithm, and the final pass smoothes the spectrum. The result is a

background noise estimate which is typically divided into the signal to normalize the

noise to mean 1, which can then easily be subtracted. Then a perfect background

estimate (p') would yield after subtraction

E z  1 +  1 - (8.2)

an estimate of the single-bin SNR. Many algorithms use the same three-pass template,
just different S, G and c parameters that are intended to optimize the algorithm for

a particular application. Two published examples of parameters developed for the

NSE template are Real-Time Signal Processing (RTSP) and TX.

In total then, there are seven parameters which can be altered for the three-pass

split-windowed NSE: two thresholds (c), two gap widths (G) and three smoothing



window lengths (S).

8.2 Optimizing the Three-Pass NSE

Our example will consist of a simplified data plus background signal to help gain

an intuitive notion for what parameters will optimize the NSE. After gaining that

intuition, this thesis will demonstrate its validity using a complex synthetic signal

and a synthetic background.

The NSE creates a background estimate and then normalizes the original scan

with the estimate. We will look to minimize the mean-square error (MSE) between

the background estimate (/2) and the original background (ip4),

MSE = (I - Y)2 (8.3)
I

which, in turn, will reconstruct the signal by removing much of the background noise.

One way to do this reliably is to first generate the scan by adding a background

spectrum to a signal spectrum, run the NSE on the resulting spectrum and compare

the background estimate with the original background.

First off, it is important to note that optimizing the NSE is a difficult procedure

due to the heavy correlation between some of the parameters. We will show that

the optimal smoothing and gate parameters are functions of the signal shape, but

also that they rely heavily on each other. For example, if we find the optimal gate

parameter and then proceed to optimize the smoothing window lengths, we could

very well find a new optimal gate width for the optimized smoothing window lengths.

This process could go on ad infinitum, but this thesis attempts rather to develop an

intuitive sense of what parameters minimize the MSE of the background estimate.

8.2.1 Optimal Gate Width

The synthetic signal and background used for this analysis is the model of Figure 4-4

with M = 10, K = 10, 1 = 265 and a = 2. Equation 8.3 is plotted in Figure 8-2 for
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Figure 8-2: MSE vs. Gate Width

this synthetic signal model with varying first gate width (G 1) and fixed other NSE

variables.

Essentially the same problem occurs if the gate width is either too wide or too

narrow; the problem is signal contamination. A narrow gate will allow the window

averages to include parts of the signal feature, thereby raising the average for which

the bin of interest is thresholded against. If this threshold increases due to signal

contamination, some signal-containing bins may not be clipped and will then be con-

sidered background, increasing the MSE of the background estimate. If the gate is

too wide, the smoothing windows may include signal bins from the adjacent feature

regions in the background average. This inflated average results in the same MSE

increase that stems from narrow gate widths. Considering these trade-offs, one wants

the gate width to be approximately the bandwidth of the widest signal feature (Fig-

ure 8-3). This way, the NSE will compare all the bins of the widest feature against

a smoothing window average that contains only background from either side of the

feature region rather than signal from the feature region itself. If there are large
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Figure 8-3: Optimal Gate Width Over Largest Feature

amounts of space between the signal features, one can exploit this by increasing the

width of the gate in an effort to flatten the signal feature even more when creating

the background estimate.

The optimal gate size for the second pass follows similar reasoning as to the

optimal gate size for the first pass. We want to avoid signal contamination from

feature regions in the smoothing window averages in order to optimize the background

estimate. Figure 8-4 demonstrates how the first pass is most effective at removing the

center of the signal feature, leaving signal to be clipped at the edges of the feature

on the second pass of the NSE.

Running the same simulation with a varying second gate width (G2) demonstrated

that the optimal second gate width follows roughly the same optimality criterion as

the first.

8.2.2 Optimal Smoothing Window Length

The smoothing windows provide an estimate of the background present in the signal

feature region. This enables us to replace the clipped signal bin with an estimate

of the background contained in that bin. For relatively flat backgrounds the longer

the smoothing window the less the variance of the sampled average and a better

resulting background estimate. In this case, the limiting factor is the distance to the
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nearest adjacent background feature region. For complex backgrounds however, a

more localized average will give a better estimate of the background for that region of

the frequency spectrum. Specifically, the window can be no wider than the bandwidth

over which the background mean is nominally constant.

Smoothing window lengths should increase in size for every pass to minimize the

mean-square estimation error. The initial smoothing length should be approximately

the smallest space between features in order to avoid contamination to the average

from other signal features. This again is intimately related to the width of the gate

(i.e. the wider the gate, the shorter the smoothing window and vice-versa.)

The second pass smoothing length is optimized when its value is somewhere be-

tween the length of the first pass and the length of the third. Figure 8-5 shows that the

MSE is relatively similar for these values, but increases when either smaller or larger

than approximately 10 bins. The wiggles in Figure 8-5 are a result of the expanding

smoothing window absorbing signal features that bias the average up (increasing the

MSE) and expanding over background-only bins that lower the average (decreasing

50
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Figure 8-5: Second Pass Window Length vs. MSE

the MSE).

The final pass should be the longest smoothing window. For a perfectly flat

background spectrum (i.e. white noise), the optimal third pass is a smoothing window

the length of the entire spectrum. However, assuming some deviations from strictly

white noise occur in the background spectrum, the estimation should use a smoothing

window length at most the length between the two closest background features.

8.2.3 Optimal Threshold

The ratio of the center gate picket to the smoothing window average is compared to

a threshold to determine whether or not to be clipped. For the more benign back-

grounds, a threshold close to 1.0 will best separate the signal from background. How-

ever, as the background features become more prevalent, we must raise the threshold

value in order to avoid clipping background features from the background estimate.

The optimum threshold increases proportionately as the background spectrum be-
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comes less quiescent. Chapter 9 will demonstrate how threshold values greater than

one yield more accurate background estimates in the non-quiescent scenarios.

In Figure 8-6 there is a very obvious choice for the optimal threshold value. How-

ever, Figures 8-7 and 8-8 depict a wider selection of optimal threshold values at higher

signal-to-noise ratios.

At higher signal-to-noise ratios, when the signal exceeds the background level by

twice the energy or more, raising the threshold value does not affect the background

estimator. This is because the signal still exceeds the local bin average multiplied by

threshold constants larger than one.

Also at high signal-to-noise ratios, lowering the threshold below one will not affect

the background estimation (note Figure 8-8.) The feature regions will far exceed the

local background averages and will be clipped from the background estimate. The

biggest concern with lowering the threshold is that background features will begin to

exceed the local averages and be clipped from the estimate. However, at high SNRs,
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the background features will be thresholded against signal contaminated averages

large enough so that even fractional thresholds will not be exceeded by background

features.

8.2.4 NSE Parameter Setting Summary

* Gate widths should be at least as large as largest signal feature, any bit larger will

reduce the optimum smoothing window size.

* First smoothing window should be no larger than smallest space between signal

features.

* Subsequent smoothing windows should increase in size depending on the flatness of

the background.

* The final smoothing window is optimized when its length is the shortest distance

between two background features.

* Threshold should be close to 1.0 for featureless backgrounds, and proportionately

larger for heavily featured backgrounds.



G1  G2  S1  S2  S3 TI T2
ONSE 150 150 37 105 205 1.0 1.0
TX 25 25 8 25 64 1.4 1.4
RTSP 3 3 32 16 16 1.7 1.6

Table 8.1: Three-Pass NSE Parameters

8.3 Comparison of NSE Parameters

As shown in the previous section, NSE parameters can be developed which optimize

background estimates from data collected for s specific template in a specific back-

ground environment. Typically a more robust estimator is required, one which gives

a little in optimization for a particular situation in order to become a better estimator

under other circumstances.

Using the guidelines developed in this chapter, we constructed an optimal NSE

(ONSE) for a particular synthetic signal and white noise. Table 8.1 lists the two gate

widths (G1, G2), three smoothing window lengths (SI, S2, S3 ), and the two thresholds

(T1, T2).

The relative performance of these parameters is compared in Chapter 9 for real

and synthetic signals and background noise.



Chapter 9

Evaluation of Background

Estimators

Background estimators differ widely, both in their construction and their ability to

construct an accurate estimate. The difficulty lies in the radically different back-

ground scenarios one can experience in the ocean (section 4.1). One estimator may

minimize the mean-square error and give the highest probability of detection using

the GLRT under one scenario, while failing miserably and being among the worst of

the background estimators under other conditions.

9.1 Data Generation

This chapter presents LRT constructed boundries for different combinations of real

and synthetic target data and real and synthetic background noise. The synthetic

target data includes broadband, midband and narrowband signals, although we are

only concerned with midband sized features in this particular example. The real data

not only includes the different sized features, but naturally has background noise

included as well. In order to try and separate the real signal from its inclusive noise

we use a background estimator (ONSE) to estimate the background and normalize

the signal. Although this result will not resolve exactly which parts of the real data

are signal and which are background noise, it gives a good approximation of the



real signal. The synthetic background noise is a synthesized benign or quiescent

background environment, best described as "white noise". The real background data

is a particularily harsh background that includes clutter. The simulation results

show the huge differences in choice of background estimators for a given background

environment.

In this Chapter's performance analysis ROC plots, the PLSNR was adjusted for

each plot to achieve a performance point of (PF, PD) _ (10- 3 , 0.9) for the best per-

forming background estimator given a certain input. The process was run using the

GLRT outlined in this thesis with N = 10 time epochs and a total number of trials of

104 . This gave us 10 threshold values upon which to create a statistically significant

threshold for our PF = 10-3. Figure 4-2 is an ASCAN of the synthetic signal being

used for this chapter 1. The gram and ASCAN of the synthetic and real background

used for this chapter's analysis are pictured in Figures 4-7 and 4-8 resectively. The

synthetic signal is injected into the background noise by means of adding the two time

series. Because of the neccessary processing of the real signal, we add the processed

real signal gram to the background grams.

9.2 Detector Performance Results

First, we look at the simulation results for a synthetic signal injected into a synthetic

background (Figure 9-1). This plot includes a known-background result which con-

sists of taking the white noise average and using it as a background estimate. The

known estimate results in superior performance, unfortunately prior knowledge of the

background is not applicable to real-life scenarios. Note that the next best results

are for the ONSE which was developed using the guidelines from Chapter 8 to opti-

mize performance for this particular synthetic model and background. The next most

successful simulation result was that of TX, and RTSP had the worst performance

on this particular test. Examining the table of NSE parameters it is evident that in

the white noise case the wider gap widths and wider smoothing windows benefit the

1 The unprocessed real signal provides no insight and so is not shown.
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background estimation and hence the detector performance.

When we look at the results of injecting the synthetic signal into the real back-

ground (Figure 9-2) we can see the drastic affect it had on the ONSE background

estimator. This is understandable since the ONSE contains large smoothing windows

which will contribute a higher average to the clipped bins (recall T1 = T2 = 1.0)

because of the strong signal-like clutter. RTSP performs almost as well as the TX

background estimate, but it does suffer at low PF values. This occurs because of the

largest half-dozen threshold values computed under the Ho case for RTSP far exceed

the other threshold values. This can be explained if one considers the shortness of the

RTSP smoothing windows. If RTSP clips narrowband background clutter in a signal

region and replaces it with the smoothing average, the smoothing average will have a

greater variance than the smoothing variances for the longer smoothing windows of

the ONSE and TX background estimates. This greater variance in smoothing values

causes a correspondingly larger variance in the LRT results under Ho in the instances

where this narrowband signal-like clutter appears. This process ultimately leads to

.
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the difficulty RTSP has with low PF values for this particular simulation.

The long smoothing windows of the ONSE background estimator allow its per-

formance to exceed that of RTSP and TX for the case with synthetic background

and real signal (Figure 9-3). There is no signal-like clutter to worry about in this

white noise environment, so the longer the averaging over the background, the less

the variance and the better the performance.

Finally, in Figure 9-4, we see how truly damaging optimizing a NSE for a partic-

ular background (ONSE) can be when used on different backgrounds. In this case,

the ONSE background estimator is clipping much of the background clutter and con-

sidering it signal, while RTSP is smoothing out all of the clutter (and some of the

signal.)
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Chapter 10

Conclusions

This thesis began with a theoretical and experimental analysis of the single-bin statis-

tical nature of ocean acoustic data. We concluded that Gaussian time-series assump-

tions captured the essential features of a wide range of ocean acoustic data. Chapter

3 introduced the theory behind target detection and the LRT optimal detector. Using

our knowledge of the single-bin statistics, Chapter 4 developed models for the signal

and background noise environment. We analyzed both simple "boxcar" models and

more complex models that better represented real signal and background spectrums.

Using this modeling information we were then able to develop a LRT that enabled

us to compute the "optimal" detection performance for known-input scenarios and

then a Generalized LRT that enabled us to explore the performance of background

estimators. Next we developed several signal-to-noise ratio definitions which enabled

us to measure not only the relative strength of background and signals, but gave us

insight into the performance of detectors given a certain input data set. Using syn-

thetic models we explored the validity of Chernoff performance approximations and

the remarkably similar error-function approximation computations as compared to

the simulated LRT process. Chapter 7 analyzed the LRT and a few other more prac-

tical detectors in a closed form analysis so that we gain insight into the benefits and

drawbacks of detector choices and their relation to performance. The next step was

to introduce a popular background estimation technique with variable parameters,

and to develop guidelines by which this estimation technique can best be optimized



for given background noise and signal inputs. Finally, Chapter 9 allowed us to pool

the results of much of this thesis into simulations, using real and synthetic data, that

contributed insight into how these detection tools worked and lent validity to our

previous assumptions.

Many tenets of this thesis only touch on ideas that have not been fully explored.

For instance, optimizing background estimators is a project of overwhelming propor-

tions. This thesis developed a background estimator that retained a fixed shape for

each pass. Performance may be improved if we could optimize the background filter

for each bin of every feature region, taking advantage of the narrowest possible gate

width and the longest smoothing window.

Another issue that could be further explored is that of detector performance.

The closed form analysis of Chapter 7 only analyzed three detectors for simplified

signals, much insight could be gained from exploring more complex models and other

detectors.



Appendix A

Exponential Bin Statistics

Derivation

This appendix provides a mathematical explanation for the statistically exponential

output of the magnitude-square transform outlined in chapter 2.

Let X, = a + bj be the complex output of the FFT (see Figure 2-1) where

a = R{X,} and b = Ž{X)}. By definition, the magnitude-square of a complex

variable is the sum of the squares of the magnitudes,

Xn 12 = Ja + b1 2 = la12 + lb 2 = a2 + b2 = 2 . (A.1)

Now the probability distribution function for the system output (again in reference

to Figure 2-1),znk, can be written as

PC(znk) = Pr( 5 znk)= Pr(a2 + b2 < znk) = da I dbpa,b (a, b). (A.2)

The joint probability density function (PDF) of a and b, where a and b are indepen-

dent, identical and normally distributed with zero mean and variance cr2 is defined

as
-a

2  -b
2  -(a2+b

2 )
e e2• e 2,T e 20,2

pa,b(a, b) = pa (a)pb(b) = 2 2  (A.3)V 7or2 27Fr2



Now Equation A.2 becomes,

P((znk)= f

0 - 2 2

daaj db e'20,
) ~27rur2 (A.4)

Using polar notation we can define R = va 2  b2 , = arctan( ) and dadb = RdRdo,

so we can write Equation A.4 as an integral over a circle with radius R

2 R2

Pr(C < k) = Pr(R < vfk) = RdR 27 2 dO (A.5)

/& J R -R2
= dR-e 2,T

0 072
-R2 -eZn

0

(A.6)

Now we simply differentiate Equation A.6 in order to verify the PDF of the magnitude-

squared Gaussian random variable,

d
PZnk (nk) = Pr(( <

dznk
1 _e 2U fOrZnk Ž> 0.

The result yields the PDF of an exponential random variable with mean 2a 2 and

variance 4a-4 [6].

(A.7)

I, lz/2k-
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