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ABSTRACT

STRESSES AND DISPL.ACEM.,.ENTS IN VISCOSLSTIC BODIES

by

JAMES EDWARD ASHTON

Submitted to the Department of Civil Engineering on
January 9, 1967, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

In most published works on viscoelastic stress
analysis the constitutive equations of the materials
are expressed in linear differential. operator forms.
However, due to the mathematical complexity which
arises when a realistic number of terms are used to
properly characterize the material, these analyses have
generally been limited to either short time intervals
or unrealistic material representations. To overcome
this difficulty, a more general method of representation
for the constitutive equations of linear viscoelastic
materials is achieved through the use of the hereditary
integrals. Use of such constitutive equations permits
an easy formulation of the time dependent expressions in
the form of integral equations involving multiple con-
volution integrals which involve all the time dependent
variables. The evaluation of these convolution integrals.
and the numerical solution of the integral equations
then provides the response of the materials over broad
time intervals.

Two techniques are presented for evalu.ting the
multiple convolution integrals. Tae first involves
numerical integration, while the second is an exact
integration which is valid for material functions that
can be represented by Dirichlet series. The technique
for the numerical solution of the total integral equation
is presented and illustrated.

Two examples are presented to illuctrate this
method of analysis. The first is the deflection of
a viscoelastic cantilever beam. The results of this
analysis are cozmpared with a certain exact solution.
The second example is the analysis of the stresses and
displacements in a three-layer viscoelastic half-space.
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The elastic solution is derived in an acceptable
form, and then the corresponding viscoelastic solution
is presented. NLumerical results are presented, obtained
by both techniques, and are compared.

Certain types of non-linear viscoelasticity are
reviewed and considered with respect to the possibility
of extending the above techniques to these problems.
Ageing effects, thermoviscoelasticity, geometrical
non-linearities, and material non-linearities are con-
sidered. As an illustration of a technique for solving
a certain class of non-linear problem, the deflection
of a linear viscoelastic plate on a non-linear visco-
elastic foundation is analysed, and numerical results
are presented.

Thesis Supervisor: -A /
Title: Associate Professor of Civil Engineering
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LIST OF SYMBOLS

stress acting in x direction on a plane
JJ normal to x direction

2body force acting in the x direction

L. displacement component in the x direction

'P density

time

X; cartesion coordinate direction

-- extensional strain
JJ

shear strain

e.• components of finite strain

K bulk or volumetric elastic modulus

G elastic shear modulus

volumetric stress component

e volumetric strain component or base of natural
logarithms

S.- deviatoric stress component

J Kronecker delta function
4 Poisson's ratio

E Young's Modulus

relaxation function analogous to Young's.
modulus

{t•) creep compliance function analogous to l/E

4f(t)• Laplace transform of f(t)

5 Laplace transform parameter

- 9 -



E(s) transform equivalent of Young's modulus

C(s) transform equivalent of shear modulus

A4(s) transform equivalent of Poisson's ratio

(s5) transform equivalent of bulk modulus

constants

dashpot viscosity

Z relaxation time

ICz) retardation spectrum

HC() relaxation spectrum

SETW) complex modulus

CV frequency

real part of complex modulus

-• imaginary: part of complex modulus

-i ) complex compliance

Q'w) real part of complex compliance

~i~ imaginary part of complex compliance

~) stress, strain, or displacement

$. j. constants with respect to time

Co., . products of elastic constants

known functions of time

vy() symbol equivalent to 3(') or ~7)

elastic constants

relaxation or creep function equivalent to
Sconstant

•() viscoelastic equivalent to 7T.
J=/
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P(W)

dJ

C

C,

h

IA
JZ()

q
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viscoelastic equivalent (multiple convolu-
tion integrals) of 4 and o<; terms

time varying load intensity

result of j th convolution integration

constant for j th term in Dirichlet series
for i th creep or relaxation function

inverse of j th relaxation or retardation
time

constant in multiple convolution integration
result for k th integration, i th term in
the polynomial multiplying the j th term
in the series of exponentials
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of exact multiple convolution integrations

constant in result A/) for 2 th term-in
polynomial multiplying j th term in series
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moment of inertia
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vertical deflection
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Lradial displacement
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Treference temperature
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CHAPTER I

INTRODUCTION

An essential part of the rational analysis and

design of engineering structures is the analysis of the

critical stresses and displacements that the structure

is subjected to during its useful life. Except in a few

very specialized areas, the totality of such analysis and

design is done, in the field of solid mechanics, utiliz-

ing the assumption that the materials of concern are

linearly elastic. This has resulted in a great amount

of literature on such analysis, with "closed" or analytic

solutions having been formed for many classical problems.

Although some engineering materials, within a

certain range of stress and strain, are indeed governed

by constitutive equations which are essentially linear

elastic, many new materials (such as polymers) are becom-

ing available having time dependent stress-strain be-

haviors. In addition, many materials such as Portland

cement concrete are now recognized to be decidedly time-

cependent. Further examples of materials showing apprec-

iable time-dependency are metals at high temperature,

and bituminous concretes. Those materials, where the

stress and strain tensors are related through integral

-13 -



or differential relationships with respect to time, are

termed viscoelastic, and if these relationships are linear

then the materials are termed linear viscoelastic.

The analysis of stresses and deformations in

such linear viscoelastic bodies is receiving increased

attention. In the past fifteen years this attention has

resulted in the solution of some problems of practical

significance, but the number of available analyses is

very small compared to that of elasticity analyses.

However; techniques are now emerging which are applicable

to a great variety of problems.

It is the purpose of this work to present and

to demonstrate a straight-forward means of analysis for

viscoelastic materials which can be applied to a large

number of practical problems. The method to be explained

and illustrated in the following sections is applicable

to analysis using realistic material properties, and is

an efficient way to carry out such analysis.

The method employs a formulation of the visco-

elastic solution in terms of integral equations involving

multiple convolution integrals of the relevant relaxation

functions, using the correspondence between elastic and

viscoelastic problems. Two different techniques are pre-

sented for evaluating the multiple convolution integrals,

- 14 -



and then solving the integral equations numerically.

Both techniques are illustrated on an arbitrary integral

equation of the proper form, and on two example problems.

The first of these examples, the deflection of

a viscoelastic cantilever beam, is presented only to illus-

trate the techniques and their use. The second example,

the analysis of a three-layer half-space, is of engineering

significance in the analysis of foundations and flexible

pavements, and is thus presented in detail.

A discussion on non-linear problems is pre-

sented in Chapter VII. Various sources of non-linearity

are considered, and potential methods for solving these

types of problems (compatible with the method of analysis

presented previously) are discussed. A particular form

of material non-linearity theorized by several authors in

the literature is discussed, and the problem of an in-

finite linear viscoelastic plate on a non-linear visco-

elastic (Winkler) base is solved as an illustration of

the correspondence between elastic and viscoelastic

problems when this theory is applicable.

- 15 -



CHAPTER II

SURVEY OF LITEATURE ON THE ANALYSIS OF STRESSES

AND DISPLACEME1rNTS IN LINEAR VISCOELASTIC BODIES

In this section, a brief survey of the litera-

ture related to the analysis of stresses and displace-

ments in linear viscoelastic bodies is presented, with

emphasis on the analysis of viscoelastic half-spaces as

is used in Chapter VI as an example.

The difference between elastic and viscoelastic

bodies is essentially that an elastic body has a constant

ratio between stress and strain, whereas a viscoelastic

body has a stress-strain relationship which allows for

time effects. Alfrey 5 *, using the fact that some of

the equations of elasticity (the equilibrium and strain-

displacement equations) are unchanged for a viscoelastic

body, formulated the "correspondence principle" for in-

compressible viscoelastic bodies in 1944. Tsien C13 13

generalized Alfrey's principle in 1950 to include bodies

with the same time characteristics in shear and dilation,

and then Lee [73 ] extended, in 1955, the "correspondence

principle" so that it included any linear viscoelastic

body. The essence of this principle is that if the

*Numbers in brackets refer to the list of references in
the Appendix.
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equations of viscoelasticity- k:;quilibriLn, stress-strain,

strain-displacement and the b"'dary conditions) are

transformed from the time : to the Laplace domain

through the application of tý,, Laplace transform, the
partial differential equatio:', with respect to the vari-

able time will be transforo algebraic equationso Itto algebraic equations

in the variable s (Laplace p, ~i•er) which are in the

same form as an associated e ,tic solution. If this

elastic solution can be solve,1 the inversion of this

result through the use of tho ~iverse Laplace transform

will yield the time-varying ''~,ution. This method is

applicable to all problems i~ VIiich 1) the Laplace trans-

form of all the time-varying ''·nations exists, 2) the

associated elastic problem carm hIe solved, and 3) the

associated elastic solution ,' be inverted to the time

domain.

Most of the publis1,,i works on viscoelastic

stress and displacement anal.b.; have treated problems

which have been handled by tl apace transform method,

and which utilized simple di:,.,e models of springs and

dashpots in series and/c- pa.,liel to characterize the

viscoelastic material behav!io, Because of the mathe-

matical complexity which ari when a large number o

such spring and dashpot elemCI aoare used, only very



simple discrete models, composed of from two to five

elements, have been used. This type of an approach is

able to predict the behavior of real materials accurately

only over very short time intervals, and consequently

little is knoim of the responses over long time intervals.

However, these analyses do provide some qualitative in-

formation on such behavior.

Examples of this type of analyses are numerous:

Lee illustrated the basic idea in his paper of 1955 with

the solution for a fixed and moving point load on a visco-

elastic halfspace which was assumed to behave as a Voigt

model in shear, and to behave elastically in hydrostatic

tension or compression. In 1961 Pister C8 ] presented

the solution for a viscoelastic plate on a viscoelastic

foundation under a uniform circular load where both the

plate and the foundation are assumed to behave as incom-

pressible Maixwell materials. In 1962 Pister and VTestman

[Io00 used a three-element model to characterize the be-

havior of a beam on a Winkler foundation, and analysed

this for a moving point load. Radok @01] presented a

solution in 1957 for a ring of time-varying thickness

under an internal pressure in which he assumed that the

. rings were characterized as an elastic Voigt model. Kraft

[61] presented an analysis of the deflection of a two-
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layer half-space system in 1965 in which the layers were

each composed of three-element models, and the volumetric

behavior was assumed to be elastic. The applicability

of analyses using discrete models has been discussed

further by Arnold, Lee, and Panarelli C9] in 1965.

One of the principle problems met when apply-

ing the Laplace transform approach is finding the inverse

Laplace transform. Schapery CQIa has devised and pre-

sented some important numerical means thatcan sometimes

be used to facilitate this inversion. Cost and Becker

C26) have presented another numerical technique, and

compared its accuracy to the Schapery techniques.

An alternative approach to the problem was

suggested by Lee and Rogers C72] in 1963, using measurlc

creep or relaxation functions in the form of herecit-ar

integrals for the viscoelastic stress-strain relation-

ships. This method results in integral equations whic.:

may be solved numerically. In the paper written b:y Le

and Rogers, a numerical technique originally suggest~e

by Hopkins and Hamming [54] in 1957 was utilized succe:.-

fully on their fairly specialized example.

A few results are available using the herad,-

tary form of the stress-strain equations. These hav.

generally covered simple problems, and have been cc.-

- 19 -



to the use of the discrete models. Examples of such

papers are: Rogers and Lee 007] in 1962 on the finite

deflection of a viscoelastic cantilever; Baltrukonis

and Vaishnar in 1965 [13] on the creep-bending of a beam

column; Huang, Lee, and Rogers [56] in 1965 on the in-

fluence of viscoelastic compressibility on a pressurized

cylinder; and Anderson [6 ] in 1965 on the buckling of

viscoelastic arches.

In spite of the predominance the discrete models

have lenjoyed in the literature, the desirability of ob-

taining solutions over broad time ranges which realistically

represent real material properties seems to imply that

the more general hereditary forms will have increased use

in the future. The alternative to this approach seems

to be the use of the spectral representation (an infinite

sum of discrete models) for the stress-strain relations.

This approach has been summarized nicely by Williams

[139] in 1964, and numerical techniques for its applica-

tion have been discussed by Schapery [110i in 1962.

Several very good survey papers on linear vis-

coelasticity are available, notably the monograph by

Bland [I8•] and the papers by Williams [139], Hilton

C51 ] , and Rogers [106]. In addition, Gurtin and

Sternberg L40ohave presented a rigorous development of

the theory which supplies proof of a large number of

theorems normally assumed on a physical basis.

- 20 -



CHAPTER III

STRESS AND DEFORMATION ANALYSIS OF VISCOELASTIC MATERIALS

In the analysis of the stresses, strains, and

displacements of a body subject to external forces and

displacements, three distinct sets of equations may be

formulated in terms of the stresses, strains, and dis-

placements. The solution of these equations which also

satisfies the boundary conditions of the problem at hand

-yields the desired stresses and deformations. The sets

of equations necessary are the equilibrium equations, the

strain-displacement equations, and the constitutive equa-

tions. These will be discussed individually, and then the

practical solution of problems formulated with these

equations will be discussed.

III-1. Equilibrium Equations

These are dynamical equations, which state the

equality of Newton's Second Law f = ma in terms of the

stresses and body forces acting on any infinitesimal

element of a body. Equations (1) give the equilibrium

equations of forces for a body with no couple stresses

acting (so that T3.= 0•1 from the equations of mo-

ment equilibrium of an element) in cartesian coordinates,

- 21 -



using the conventional indicial notation:

In these equations C is the stress acting in the X

direction on a plane, passing through the point, nor.ii:,j

to the Xi direction; Fi is the body force acting in Itb,1

Xi direction; /9 is the density of the material; arid

Ui is the displacement component in the Xi direction.

There are six unknown components of stress and throe r,

knownm displacements in these three equations.

III-2. Strain-Displacement Equations

These are kinematic relationships between

strains and displacements. They express necessary r>-

lationships in order that a set of strains may yield :

set of displacements and still preserve the continuity

of the body. Letting e.. be the component of finite

strain such that the extensional strain in the X d@ir:j.;

tion is given as:

and the change in angle between the Xj and Xk direct:-.

is given as:

-/( Si,'• !I r. ,,•)(

- 22 -



Then the six strain-displacement equations. are given as:

__ (4)

This expression represents six equations in

six unknown components of strain and three unknown com-

ponents of displacement. These equations can be sim-

plified somewhat by making certain assumptions such as

neglecting the non-linear terms when the strains and

rotations are small.

111-3. Constitutive Equations for an Elastic Body

The constitutive equations are the mechanical

equations of state for the body. They can be stated in

quite general form:

Fij = f (stresses, other strains, time,tem- (5)
perature, geometry)

That is, strain is a function of the stresses, the

other components of strain, time, temperature, and geo-

metry. In infinitesimal linear elasticity, the contri-

butions to the functional relationship of the other

strains, of time, and of temperature variables are dis-

regarded. The assumption of a homogeneous body reduces

the relationship to one involving only the stresses,

- 23 -
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that is:

Two further simplifying assumptions are also often made.

The first is that the strains are linear functions of

the stresses, and the second is that the material is iso-

tropic (i.e., the properties at any point do not depend

upon direction). With these two assumptions, the consti-

tutive equations of linear elasticity for an isotropic,

homogeneous body can be stated as in equations (7) and (8).

0 = 3K (7)

In these equations, K is the elastic bulk

modulus, G is the elastic shear modulus, and O e5,%.

and 6,- are given by the following relationships:

- = volumetric stress = 6 11 , ÷CG (9)

e = volumetric strain = E6, E, E33 (10)

5. = deviatoric stress = 6T.- -~ .. (11)
J J 3 'J

.. = deviatoric strain = E - L (12)/J /J3 /J

- 24 -



where

. is the Kronecker delta function:

//=
is; (13)

The constitutive equations of a linearly elastic body

are also often given in terms of Young's modulus E and

Poisson's ratio ( . These constants are related to G

and K through the relationships given in equations (14)

and (15).

= (14)
2G ÷6AK

9KG (15)

III-4. Constitutive Relations for a Viscoelastic Body

The constitutive equations for a viscoelastic

body, in addition to being a function of the variables

considered for an elastic body, are also a function of

time. There are several ways in which these relation-

ships can be written, which may be shown to be interre-

lated C39)139D . In the following discussion, only linear

viscoelastic constitutive equations will be considered.

It should also be pointed out that since temperature does

- 25 -



not enter into the constitutive relations, the implicit

assumption has been made that there is no variation in

properties with temperature, or else isothermal conditions

exist. More general constitutive equations will be dis-

cussed in Chapter VII.

III-4.1. Hereditary Integral Form

The first form for a viscoelastic constitutive

equation to be considered here is the hereditary integral

form. Consider a uniaxial relaxation test on a specimen,

where dc(t) is measured for a constant strain 69jo).
-Then, for this test, a relaxation function can be defined

as

0(16)

Similarly for a creep test, j..f) could be measured for

a constant stress 6 (0) , and the creep compliance

function is then defined as

(17)
07(0)

Consider now an applied strain which is com-

posed of n pulses at times tl, t2' ... tn of magnitude

K = 1, 2,...n. If linearity is assumed,

then the stress history is the superposition of n discrete

- 26 -



histories each following equation .(16):

(18)I 4n ~ (~

Passing to the limit where ••t) changes con-

tinuously, the herec.itary integral-form is obtained in

terms of the relaxation function Er(t):

(19)t07(6hz ) Z
In an analogous manner, the hereditary integral form in-

volving the creep compliance function may be written:

2-9- c/2?
cr a

(20)

To avoid the difficulty of dealing with discontinuities

at the origin, it is convenient to write (19) and (20)

in the following form, where the integration limit t

together with the initial conditions on E (t) or D (t)r r

account for such discontinuities:

() Y/ (

r··~2'

-l~ ~-) Q/ ~e)

_____-z / sJ
c7 ((f

- 27 -
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In equations (21) and (22), the symmetrical properties of

the integrals have been utilized so that the initial condi-

tions on the relaxation function and creep compliance func-

tion could be written outside of the integral.

The expressions (21) and (22) are written in a

form such that the operator within the brackets corresponds

to the analogous elastic modulus or elastic compliance.

Consider now the Laplace transforms* of equa-

tions (19) and (20):

7(5) = 5E,() E = (s) E6(s) (23)

4(s) S = F(s) JJ

Equations (23) and (24) are elastic-type rela-

tions, where •5) (analogous to Young's Modulus)

.. (s)-fY4 •in the transform plane.

111-4.2. Characterization of Volumetric Behavior

In the above discussion of the hereditary inte-

gral form for a viscoelastic constitutive equation, an

operator was derived which is useful in equating stress

to strain for the case of uniaxial normal stress. For

*The Laplace transform of f(t) is defined as

0-
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three-dimensional analyses, one other material relation-

ship must be given. That is, in the above development an

operator equivalent to the elastic modulus was formulated.

A constitutive relation giving an equivalent Poisson's

ratio, or bulk modulus, or shear modulus, is also needed.

The most common assumption for this relationship C[139 D
is that the material behaves in an elastic manner under

hydrostatic tension or compression. The second relation-

ship needed is then

f(: ) 31(e(t) (25)

which has a Laplace transform of

6"rs) = 3Ae ") (26)

Hence, the equivalent bulk modulus in the transform

plane is the elastic bulk modulus. Given two characteri-

zations such as equations (19) and (25), an equivalent

shear modulus and Poisson's ratio in the transform plane

can be found from the relations

3 Gf 5s) (27)

/ E(s) ( 28)
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Of course, if equation (25) were given in a

time-varying form, then K(s) would have to be used in

equations (27) and (28). For example, the volumetric

behavior might be specified in hereditary integral form

as

-(tt)9,i)~e(z)d. (29)

where K (t) is the bulk relaxation function defined in

a fashion analogous .to equation (16). Then the Laplace

transform of (29) gives the equivalent elastic bulk

modulus in the transform plane:

0-f-) __ 3)- /s) (30)

However, at the present time very little

analysis has been done considering viscoelastic volumetric

behavior. This is reasonable because little is known of

the actual time variation of the volumetric components of

stress and strain. In fact, a further simplification of

equation (25) is commonly made by assuming that the bulk

modulus is infinite, i.e., the material is incompressible,

which also implies, as shown in equation (28), that

Poisson's ratio is equal to 1/2.
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111-4.3, Differential.  Or~tor Form

It is sometimes convenient to express the con-

stitutive equations of linear viscoelasticity in line .r

differential operator form such as given in equation (31):

n Z m !

This form can conveniently be related to combin-

ations of Hookean springs and Newtonian dashpots which

is a helpful aid in visualizing the responses being

represented.

The Laplace transform of equation (31) is a poly-

nomial form in s:

I 'r CT*s) h, 5 Es) (32)
/=o /=o .

where the first n-I derivatives of ,(O0) and the first

m-1 deriv.tivs of (0) are taken as zero.

This may be rewritten as in equation (33) to

give an expression equivalent to the elastic modulus:

O§7~S -

L-X

- 31 -
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As an example-of the formulation of a consti-

tutive equation in the differential operator form, con-

sider the three-element model sho.wn in Figure 1. The

differential equation describing the force-deformation

behavior of this model for uniaxial normal stress is

given in equation (34) and is seen to correspond to

m = n = 1 in equation (31).

f414i1;]c (34)

For a constant stress Cr (0) (a creep test), the

strain is obtained by solving equation (34) C[39J to

give:

where e is the base of the natural logarithm.

To use this characterization one might thus

perform a creep test, and then select the constants BE1
E2 , and 72 in equation (35) so that it would give the

best possible fit to the real creep data.

- 32 -

·--C·II~O~C~ ~ 1~1



E2

uiL

FIGURE

THREE - ELEMENT MODEL

- 33-



Many other combinations of springs and dashpots

can be selected that will yield similar differential

operator constitutive relations. These have been elab-

orated on by many writers, and reference C18 D gives

a comprehensive coverage of the differential equations

involved.

The disadvantages related to the use of the

differential operator form (which appears so intuitively

convenient) arise in trying to fit the actual data (creep,

recovery, etc.) to the differential operator equation

over long times. Although materials do exist which have

viscoelastic characteristics which may be adequately

represented by low-order differential operator relations

over several decades of time, most materials cannot be

accurately represented by such low order expressions

C72 D . Furthermore, as the order of the equations

is increased, additional difficulties arise, among these

being a rapid increase in the complexity of analysis when

using such relations.

III-4.4. Spectral Representation

One approach to characterization, which follows

from the differential operator form, consists in passing

from a discrete number of springs and dashpots to an

34-



infinite number of such elements. The result can then

be expressed as an integral relationship. Figure 2

shows, for example, a repeating combination of springs

and dashpots arranged in the so-called Wiechert model.

The constitutive equation of this model is C139]

= (36)

The quantity /•. is the relaxation time for the

ith spring and dashpot combination [the time required

for the combination to reach 1/e (e being the base of

the natural logarithm) of its total stress relaxation

in a relaxation test] and is normally denoted ".

One can synthesize a function of relaxation times in

this model, and substitute this in (36) to express.E.

and '1 in terms of only Zi . Then passing to the

limit k7--- in equation (36)] , an integral

relationship is obtained.

A convenient form for this function is

H(i) a (37)

which gives, after substituting in (36) and passing to

- 35 -



r- f- •\

A

c- (t)

,FIGURE 2

WIECHERT MODEL

- 36 -

L-



the limit:

_ 7 )(38)

which is the spectral representation. //(Z) is known

as the relaxation spectrum, and E is the long time
0

elastic modulus.

The use of equation (38) is essentially the

same as the use of the discrete models. A known stress-

strain history is fitted by finding a suitable form for

H(z) , either by solving the integral equation (38) or

by the trial and error procedure of predicting a mathema-

tical form for /(z), integrating equation (38), and

then comparing this result with the experimental data.

The result expressed in equation (38) for the

Wiechert model is most useful when a strain is imposed

and the stress history is measured. If the opposite

case is used, then another infinite combination, the

Kelvin model showrn in Figure 3, is more convenient. The

response for this model can be developed along the same

lines as for the Wiechert model, yielding equation (39)

as the constitutive relation in terms of the retardation

spectrum Z (Z .
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(39)

This relation would be fitted to experimental data in a

manner similar to that of equation (38).

The Laplace transforms of equations (38) and

(39) are given below [139] :

CIOI
Jj7

Jo 5 +J

(.(s)
F/L

(40)

(41)

-Z (Z-) O/Z -:k
Z(Z(c/e- 9(s)cf(s)

lSi~st #]

111-4.5. Complex Representations

It is often convenient to measure the response

of a material to an oscillatory input. Such a technique

makes it possible to measure the response tt very short

times (since no discontinuous changes in stress or strain

- 39 -
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are required as in a creep or relaxation test) and also

gives a fairly direct measurement of the loss character-

istics. Use of such dynamic testing methods leads to the

definition of a complex modulus or complex compliance, as

described below.

Consider a specified strain input RCE•6 e

with 2 the amplitude of the sine wave. The resulting

stress can be denoted 6-)e where now dCw is

a complex function of frequency. The complex modulus is

then defined to be C39 9 :

-- =Ž2 L--L) + i ) [(42)

and analogously one defines the complex compliance

LO ~ (43)

for an input stress of f•Z 7.
To show how the complex modulus and compliance

are related to the other characterizations, substitute

the dynamic input RFELo C and output 6(Ce)

into the differential operator form of the constitutive

.equation [equation (31)] :

J=o J=o
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Or

J'oJ

J

It is apparent from equations (33) and (45)

that the complex modulus is equivalent to the equivalent

elastic modulus if s is replaced by ica.

All of the above methods for measuring and

characterizing viscoelastic behavior have been used, and

all, as has been briefly shown, can be interrelated.

Before proceeding to a consideration of how these consti-

tutive relations can be used in stress and deformation

analysis, it is appropriate to point out that the above

characterizations often lead to quite complicated consti-

tutive relations, and series expansions and other numeri-

cal methods are often necessary in handling these rela-

tions. In particular, Schapery [110] has presented

methods for developing series representations and approxi-

mate numerical methods for performing the inverse Laplace

transforms. In addition, Gross [39] has presented a

thorough coverage of the interrelationships between these

various characterizations.
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very simple problems can usually be solved in this manner,

and many of these could be handled more easily by the

"correspondence principle" to be considered below.

A second approach to solving the equations is

to attempt to solve them using numerical methods and

high-speed computers. This approach will probably grow

in usefulness in the future, but at the present time

such solutions seem to be most appropriately used, again,

in conjunction with the "correspondence principle".

As has been previously noted, the only differ-

ences in the applicable equations of elasticity from

those of viscoelasticity are in the constitutive equa-

tions, and indeed these constitutive equations are the

dividing line between each of the classes of continuum

mechanics. It has been noted, furthermore, that the

constitutive relations of linear viscoelasticity are

similar in form to the constitutive equations of linear

elasticity; for example, in the transform plane an algebraic

equivalent of E, K,.L., or G exists. Similarly, an

operator such as included within the brackets of equation

(21) can be considered to be an equivalent to the elas-

tic modulus E in the time domain. These similarities

make it possible, in a large number of worthwhile engi-

.neering applications, to use the solutions to elastic

- 43 -
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tic modulus E in the time domain. These similarities
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problems to obtain the solution to the corresponding

viscoelastic problems.

To further show the correspondence between

elastic and viscoelastic problems, consider transforming

the equilibrium, strain-displacement, constitutive equa-

tions, and the boundary conditions of a viscoelastic

problem, using the Laplace transform. The transformed

equilibrium equations are still three equations in the

six unknown stresses (now the transformed stresses), and

the strain displacement equations are essentially un-

changed. The constitutive equations have been converted

to elastic-type relations. The boundary conditions may

or may not have changed form, depending on whether they

varied in time originally. In any event, the resulting

equations are in the same form as an elastic problem,

and, if this problem can be solved, then the time varying

solution to the viscoelastic problem can be found by

means of the inverse Laplace transform. Of course, if

the boundary conditions are unchanged in the transforma-

tion and inertia terms can be neglected, then the equi-

valent elastic problem in the transformed plane will be

precisely the same as the original problem in the time

plane with the constitutive equations changed to those

of an elastic body C 73 ] •
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In a very similar manner, one can use an oper-

ator equivalent of the elastic constants in the original

problem, carry out the necessary manipulations to solve

the equivalent elastic problem, and then solve the result-

ing integral or differential equation in the variable

time C101 •

The "correspondence principle" is thus based

on the idea that it is often possible to utilize known

elastic solutions to obtain analogous viscoelastic solu-

tions. For the so-called quasi-static problems, where

it is assumed that the dependent variables vary suffi-

ciently slowly so that the inertia terms can be neglected

in.the equilibrium equations, the Laplace transform has

usually been used. For this type of problem, and

assuming that the Laplace transform of the boundary con-

ditions exists, the correspondence principle may be

stated as follows:

Replace the dependent variables and boundary

conditions in the elastic solution by their Laplace

transforms, and replace the elastic constants by their

equivalent forms in the transform plane. Inversion of

this result will yield the time-varying viscoelastic

solution.
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A large number of engineering problems can in

principle be solved using this approach. However, its

use imposes certain limitations on the type of the prob-

lems which can be handled:

1. The assumption that the Laplace transform

of the boundary conditions exists, and the assumption of

quasi-static behavior, limit the application of the

principle C 101

2. It is often difficult to obtain an appro-

priate analytical expression for the constitutive equa-

tions of the material. Experimental data yields curves

or a discrete number of points, and the analyst, if he

is to obtain realistic answers, needs to select a form

which is sufficiently flexible to fit the actual exoeri-

mental data [72].

3. A major difficulty is in obtaining the in-

verse Laplace transform of the equivalent elastic solu-

tion. Many such inverse transforms are known and have

been tabulated [24 ] . Lany complicated forms may be

inverted by separating them into sir.ler forms using the

method of partial fractions [24 ] . In addition, some

numerical technioues have been developed _ for relati-vely_

direct inver-lsion 26) [110

To avoid these difficulties, a method which elim-

inates the need for analvtical er::: ssons for consti-
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tutive equations of the material and which can use actual

experimental curves or data has been proposed by Lee and

Rogers [72]. Furthermore, Radok0I0/], using a method of

functional equations, has shown that some of the restrictions

imposed -by the use of the Laplace transformation can be

removed and that the correspondence principle can be extended

to a wider class of problems.

It should be noted that the direct use of the

operator approach is completely justified if the boundary

conditions do not vary in type (that is, remain of the stress

type or remain of the displacement type), but that the proce-

dure'is open to some question when this is not true (for

instance, a rolling contact problem).[.7070 For the latter

type of problems, a check on the significance of the results

is necessary. Further research is still necessary to deter-

mine the validity of thi, technique in this case.

This thesis presents a method, based on the combination

of the above-mentioned approaches, for the solution of a

wide class of viscoelastic stress analysis problems.

The method, to be explained and illustrated below,

relies uoon the use of the operator equivalents of the

elastic constants, using realistic material properties.

The problems encountered using this miethod and the means

of handling them are Dresented and discus~ed.

The basis of the operator aoproach relies

upon the posLibility of using an operator equivalent

for- each elastic const=.nt occurring in the solution for



the elastic body with the same boundary conditions. As

has been pointed out previously, two such "equivalent

elastic constants" must be known for three-dimensional

analysis. With a knowledge of any two of these "equi-

valent elastic constants", any of the others can be

found through the use of equations such -as (14) and (15).

Also, as has been noted, the assLuqption that viscoelastic

materials are elastic (or sometimes incompressible) in

volumetric behavior is usually made due to a lack of

detailed knowledge of actual material behavior. This

latter assumption is not necessary when using the opera-

tor approach, although its use does, of course, simplify

the resulting equations somewhat.

To use the operator approach in a straight-

forward manner, let us assume that the equivalent elastic

solution can be arranged, by appropriate algebraic opera-

tions, into the following form:

(46)

where

') = the desired stress or displacement

$ . = constants with respect to time
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ofC i i = products of elastic constants.

For example, oj= - _

(t) = functions of time introduced through

time variations in the boundary condi-

tions.

The vast majority of problems to which the

correspondence principle is applicable may be arranged

in this form. Some solutions, which at first do not

appear to be suitable to arrangement in this form, can

be modified through series expansions.*

If each of the elastic constants in the Oa

and f. terms can be replaced by its viscoelastic opera-

tor equivalents, then equation (46) can be converted to

the viscoelastic solution. However, the operators that

occur here must be applied with a function, of time, and,

in the form given in equation (46), the x6,. terms are

not applied with any such function. To avoid this

*For example, a term such as //-• Y could be written
as /- -4 _ _: _ , . . . It should be noted,

however, that some operations, such as squaring both sides
of an equation to remove a square root, and later taking
the square root of the answer, may introduce extraneous
results.
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difficulty, equation (41.6) may be rearranged to the follow-

ing form:

rj• 4 j=1
/=/ 1is

(47)

Now to obtain the viscoelastic solution, the

operator equivalents of the elastic constants are sub-

stituted in equation (47).

In order to derive the form of the solution

when these operators are substituted into equation (47),

consider first a typical term

( 8s)J= j )
where

j= ~ 2,-'-- are elastic constants which

have operator equivalents of the form

J e iv.

and V(Y) is either an or r .

Substituting the operator equivalents (49)

into the typical term (48) one obtains the followring mrul-

tiple convolution integrals:
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aF

Yk-2i,, - )r

(50)
+ ...(.() (oO y

It is convenient to rewrite (50) in the form

J(Z dz (5(t)(o)
Y•-)a (51

where

~(9 0 = )t,
~~o1&

)

- - J

(52)

With the results of equation (50) and the no-

tation of equation (51), the general form for the corres-

ponding viscoelastic solution can be written as follows,

after substituting the operator equivalents for the elas-

tic constants into equation (47):
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-*

S0* -7 (Z

(53)
(t-zI

Equation (53) is a Voltera integral equation;

the solution of this equation yields Y'), the desired

stress or displacement for the viscoelastic body. It

should be pointed out again that the oLYf) and •.~,)

terms are multiple convolution integrals.

Equation (53) is in a convenient form for nu-

merical solution, as will be illustrated when presenting

two relevant examples in the following chapters. There

are two principle phases to this numerical solution. First

of all, the terms C(() and 4,.) must be evaluated

at certain values of t. Two alternative approaches for

evaluating these terms will be presented in Chapter IV.

The first technique utilizes only numerical integration.

The second is exact, but depends on expressing the rele-

vant relaxation functions in terms of Dirichlet series.

After obtaining these terms, and knowing the 7(() at

appropriate discrete values, the integral equation (53)

can be solved by a numerical step-out procedure.
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The above approach has three main advantages.

First of all, the Laplace transform is not used, and thus

it is not necessary that all of the equations and boundary

conditions have Laplace transforms. Secondly, the appli-

cation of the above method, although possibly appearing

complex because of its abstract form in the above presen-

tation, is straight-forward. This will be apparent when

the examples are presented. Thirdly, due to the general

approaches used to evaluate the multiple convolution

integrals, and since the integral equation is solved nu-

merically, the relaxation or creep functions which appear

in the solution can be kept realistic and representative

of real materials.

Before presenting the techniques for solving

equation (53), and two examples of the use of the method,

it is worthwhile to note that it is not necessary to use

the specific operator equivalents (the hereditary form)

used above, although it would seem to be the most con-

venient form. Any of the forms previously discussed

could be used, although the numerical procedures for

solving the resulting equations would vary depending on

the form selected..
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CHAPTER IV

SOLUTION OF THE GENERAL INTEGRAL EQUATION

The solution of the general integral equation,

equation (53) of the previous chapter, must proceed

with two principle phases. First the multiple convo-

lution integrals o(i(t) and />(e) must be obtained at

appropriate values of t, and then, using these values,

the integral equation is solved by a step out procedure.

Two different approaches for evaluating the multiple

convolution integrals will be presented. The method

of solution of the total integral equation will then

be discussed, and the implications of using each tech-

nique on the solution of the total integral equation

will then be discussed.

IV-1. Numerical Evaluation of the IMultiple Integrals

The typical term o<i(O) or 0,(t) has been given

in equation (52) of the previous chapter. To evaluate

such a term numerically, assume first that each •i•)

is known at appropriate values of t (recall that ,(t)

is a creep or relaxation function). Consider the

innermost integration:

Y Xb1f)X0(54)frfl~
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Let this integral be divided into n, intervals:

;cana

A:,

where t.== 0* and t-- . For X.f-ý) a continuous func-

tion and the interval , ,- small enough, •,-') may
be approximated by a constant, say ,(•__r / ,__i

and (55) may be written

nI

or, since the integral of a derivative is just the

function evaluated at the limits, this is:

11O

which gives an approximate expression for the integral

(54). If the n, intervals are chosen equal, then the

anproximation equation (57) is equivalent to using

the trapezoidal rule in conjun-ction with first order

central difference derivative approximations for (t),

except at the end points 0 and tn, , where first order

forward or backward differences, respectively, are tsed.

Note that in the form of expression (57) the spacinn_

does not enter explicitly.

_IC~__~_;· _____I __ _ I_ _ _ __ _ _______
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Next consider a two-fold convolution from equation

(52):

* A -Y ( )(o),(o)

If the inner integral is approximated using expression

(57) at all necessary values of t, then the outside

integral can be evaluated in the same manner. However,

in the general case a sum of n, terms will be needed

to evaluate (54) for each time tj used in evaluating

the outer integral. Clearly to evaluate the total

result where pis divided into n2 intervals will take

n2x n, terms of the type in the sum of expression (57).

Repeating this procedure for m integrations will require

7nj terms to be evaluated. Unless each nj is small,
J=/

this would require a prodigious number of c6mputations.

To avoid this, leto andJ be divided into the same

equal intervals. Then each successive evaluation of

the inner integral requires only a single additional

computation. In this way the evaluation of m integra-

tions requires only the order of Inj terms.
JII

Following the above discussion, the double convolu-

tion integral, expression (58), can be written:

/r4

J=/ A-/I- -
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Similarly, m fold multiple convolution integrals

may be approximately evaluated.

The obvious shortcoming of the above approach

is that with equal spacings the evaluation of many-

fold convolution integrals at long times will require

nj to become very large, and hence the number of comp-

utations will become prohibitively large. To avoid

-this, the following scheme has been found to work

reasonably well:

Equal spacing is used to evaluate YOi up to some

tn  The spacing is then doubled, and all of the even

values of t and the corresponding values of Y)( are

retained and used to calculate Y)' up to the new tn,

which is double the original t n. Further discussion

of this approach is included later in this chapter when

numerical examples are presented.

It should be noted that no functional expression

is necessary for fli when using the above numerical

scheme.

IV-2. Exact Evaluation of the Multiple Integrals

Although the above numerical evaluation of the

multiple convolution integrals has been found to work

reasonably well (as will be shown subsequently), it

is apparent that an approach that would yield an

explicit solution for the C6t) and 4x(') terms, which

could be evaluated exactly for any time t, would be

desirable.
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To achieve this result, and at the same time

to maintain generality in the representation of the

appropriate relaxation functions, the following technique

has been developed. Assume that each (zf) can be repre-

sented by a Dirichlet series:

= /(60
j1=

where the G' 's and j's are constants (some Gc may be

zero, and one 6J may be zero). This representation

is sufficient to accurately characterize real materials

(although n may be as large, or larger, than ten), as

has been demonstrated by Schapery [I09g using irrever-

sible thermodynamic arguments. In addition, Schapery

has demonstrated a simple collocation scheme to calcu-

late the coefficients G, (a-version of this will be

used in the example in Chapter V, and.also in curve-

fitting later in this chapter).

Consider now a single convolution integral, the

innermost integral of the general term given in equation

(52):

With the representation of equation (60) for ~ f)

and C) Q, this becomes:
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P ic: -)Y (6;

Rearranging the summations, equation (62) may be written

(f) = o & I 8 d ?? (6

The integrals in equation (63) may be evaluated,

but the result varies depending on whether i =3:

3)

f(J.,fJ)
C 2

01'

-/ P~(j'6J)
- ji:f e

Substituting the result expressed in (64) into

(63) yields:

IMI1) - (G

+°i

,SW

FfY-

(65)F!1 -e

+-
fl-f

Equation (65) can be rearranged and written in

the following relatively simple form:

where

i-=

.7L G,' f6fi cQ)
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(68)

and

= Kronecker delta function (= 69)

Next consider the innermost two-fold convolution

integral of equation (52):

101 (70)

Using the result expressed in equation (66), and

the form (60) for Y_(k), equation (70) can be written

as follows:

0 " -

(71)

-J

Comparing equation (71) and equation (62), it is

clear that 2(o) is of the same form as I, (p) plus the

last integral term in equation (71). Consequently,

I2(P0) can be written:

2 = 2 (72)
_7fL~ ~ B'zJ~

+ (~ 2~J=/

- 60 -
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&

where ,B, and ,B, are defined as in equations (67)

and (68), letting now

G, = G (73)
0' (74)

The integral in equation (72) can be evaluated

by rearranging the summations and carrying out the

indicated differentiation and integrations. The result,

for only the integral term, may be written:

-J• G.,,•- I ,
J,,/ d-/

-2
j1,/

.,o£J n/ .2 n _j -J)

-1 -i-1i
,'od

J 8 i[ ._ ni- ik] ;•

Using the results of equation (75) substituted

into equation (72), the total result 12(1) can again

be written in the following relatively simple form:

1 4 J e (76)
J=I

where

J 2
2~3~' A--- 2, B(iS (i) (77)
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GtB-2
n

2-,

A third clearly follow a similar

pattern. The necessary manipulations are quite

some. The results are listed below for three, four,

and five-fold convolutions, which have been obtained

by the author:

~Z~(v)

I
where

Jok-1
2=

+ '1-(3)T2o)

i73 2
P 3]

6'd

(82)

(83)

(84)2B2j

213/
2/f''

+ Bj n '

I

2j #2 .nIGx:
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convolution will

(78)

(79)

cumber-

(80)

(81)

2! 6/

- i

(85)

2! 5"C •"- •J• # ' ', (86)

Sd

,1j 2
/Cz2

L-,26),ap -Pk-3(-p

GG"-

I R"-= 247, G"
K-3



7 /- )

21 3 G - JC
2 - G- -7

(A-u)

§4L / '/
+4A -A

S4 -
4 4 S, A_

where

= ,4

= 32B
8g:;

3 L 9

'n'

S k-4 3

1=/

3 / d

(6'-d(I
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(87)

A

-Ti

(88)
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dJ

where

G: = , 8
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Further multiple integrals follow by analogy

with the above, since there is an obvious sequence

of results, and it is thus not necessary to actually

carry out any further integrations rigorously.

The general result, then, for m-fold convolu-

tions, can be written in the following relatively

simple form:

---M W A (113)
j=j

which can be evaluated for any time t, and is exact

for the representation given in equation (60).

IV-3. Comparison of the Techniques.

The two methods for evaluating multiple convolution

integrals have been programmed as subroutines INTEGR,

both of which are included in the Appendix. To compare

the two techniques, a five-fold multiple convolution

integral of the form given in equation (52) has been

evaluated using both techniques. The Y(>)'s which were

used were all given by the following equation:

5- (114)
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where

G0 = ,,= 234,
I

N'=  0..

64= .1

The result of these integrations (15(t)) is

given in Figure 4. A comparison of the numerical

values obtained at various times, and the per cent

difference, is given in Table 1. The numerical evalu-

ation was performed using an initial spacing of .2

seconds, for 50 equal spacings, and then doubling the

interval, as previously described. The exact evalua-

tions used an equal log t spacing of .0625.

It is clear from Table 1 that both techniques

give essentially the same result in this case, and

that thus either technique is suitable for evaluating

this particular multiple convolution integral.

IV-4..Solution of the Integral Equation.

The general integral equation (53) of the previous

chapter can be solved numerically once the ,.() and

.(9) terms have been evaluated at appropriate values
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TABLE I

COMPARISON OF

CONVOLUTION
FIVE-FOLD MULTIPLE

INTEGRAL RESULTS

Numerical
Evaluation

2.00

24.5

51.5

554.

1760.

4460

6050.

7860

10,700.

Exact
Evaluation

2.03

24.6

51.5

555.

1760.

4470

6050.

7870.

10,700.

Per Cent
Difference

1.5

.4

0.0

.2

0.0

.2

0.0

.1

0.0

Time

.10

1.0

1.54
5.623

11.55

23.71

31.62

42.17

64.00

100.00

(Accuracy of Table is 3 figures due to necessity
of interpolating times.)
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of time. In the following it is assumed that this

has been done.

To obtain the solution, the integrals on the

left side of equation (53) are divided into finite

sums. The integrals on the right may presumably be eval-

uated at any time t by either numerical or direct inte--

gration (depending on the method used to evaluate or(e)

and on the form of fi(t)), and thus can be denoted

simply I(t). That is:

* t
T (0) (115)

Iso

If, for example, the integrals are evaluated

nutmerically using the same procedure used in evaluating

;.t) then this becomes:

P7 )n

Dividing the integrals on the left of equation (53)

into the same finite sum used above, the general integral

eouation rmay be w-.ritten:

Y- e;7,4) 
7-
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Rearranging the summations, and separating• Y1),

the equation becomes:

(118)

J=2

This equation is now solved to give a recurrence

relation for ) which allows each successive value

of 3-) to be obtained once the previous values have

been obtained:

(119)

Note that the suacing is again not included

explicitly, and thus, if appropriate values of/?(ý.)

and I.(t ) are available, a variable spE.cin can be

used.

To examine the error propagation in the solu-

tion (equation (119)), consider the terms on the ri.-ht

side of equa.tion (119) w.ith the follo;cin, reasonable

simplification that the .') terms are of the

-- 71 -
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same order of magnitude, and that hence the summations

oh i can be dropped in the following. Then the solution

can be written

(120)
n, .

in which it .is clear that each of the previous terms

add much less than their full value (and their error)

into the next being solved for. Since the solu-

tion does not depend .strongly on the previous values,

it is expected that the error in each interval will

be decreased when this result is used to obtain new

results, and that the error will attenuate.

IV-5. Implications of the Technioue Used to Evaluate
the Convolution Integrals

As noted above, the method used in solving the

integral equation does not require cqually spaced inter-

vals. How.ever, if the multiple convolution integrals

are evaluated numerically at equally spaced intervals,

then of necessity the integral equation will have to

be solved at these same equally spaced intervals.

When the interval is doubled in the numerical inte .ra-.
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tions, then the interval can also be doubled in the

equation solution. With the exact evaluation of the

convolution integrations, however, the result can

be easily evaluated at any time t, and hence a variable

spacing can be used.

The exact evaluation of the multiple convolu-

tion integrals offers two other distinct advantages.

First of all, since each .?aV) is of the form given

in equation (113), the summations on i can be carried

out before the 4(1) terms are evaluated. That is,

the terms

can be written as

i= j= =/ i

where q is the maximum number of convolution integrations

of any /. The result in equation (121) can be expressed

as:

Z Ci (122)

and with this notation the solution equation (119)
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becomes more simply (and more easily evaluated):

n, 123)

The second advantage of the exact evaluation

procedure is that it provides a fairly direct check

on the solution of the integral equation. To perform

the check, a Dirichlet series must first be fitted

to the numerical solution. For the examples considered

in this dissertation, a simple collocation procedure

has been used (the collocation is performed by a single

matrix multiplication, in a subroutine CVEFIT which is

included in the appendix). Such a Dirichlet series

can be integrated exactly such that

't ) dr + - ) (124)

O'
can then be evaluatec at any time t. A comparison of

the left-hand side of the original equation (exuression

(124)) with the original right-.hand side (I(t)) serves

as a check on the solution.
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IV-6. Numerical Example.

The numerical solution of the general integral

equation has been programmed for the case that I(t)

is expressible in the form of equation (113). If the

convolution integrals are evaluated numerically, then

the subroutine SOLVIT is used. If the convolution

integrals are in the form of (113), then the subroutirn

SOLVE is used.

As a comparison of the results using these techniq•1c

and of the results versus known exact solutions, the

following integral equation has been solved to obtain

W4C by both techniques:

(z) (1)

where

£9()-= four-fold convolution of Z)

c•&) = five-fold convolution of /(t)

(1) is given in equation (114).

The exact solution to this equation is just

(t), that is,

wich- --islot -n -e -e

which is plotted in Figure 5.
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Table II compares the exact solution with that

obtained using the numerical integration procedure.

Table III compares the exact solution with that obtained

using the exact integration approach. Table IV gives

the check discussed above for the exact integration

solution. Clearly the errors are small enough to be

disregarded in any engineering application, since the

largest error (recorded in the check of the left-side

of the equation versus the right side) is less than

one and one-half per cent.
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TABLE II

'ERRORS IN SOLUTION OF INTEGRAL

EQUATION - NUMERICAL INTEGRATION

Exact

1.1393967

1.2686605

1.6041727

2.0295115

2.2621241

2.4321442

2.5759306

2.7275772

2.9658089

3.1479130

3.4394388

Time

.10

.20

.50

1.00

1.36

-1.68

2.00

2.40

3.20

4.0

5.76

7.o04

8.00

10.88

64.0 4.8661919

Numerical

1.1393967

1.2686596

1.6041784

2.0295115

2.2621269

2.4321270

2.5759268

2.7275639

2.9657574

3.1477318

3.4390802

3.5964375

3.6949921

3.9226503

4.1027336

4.1887054

4.3460541

4.4787922

4.6001835

4.7467737

4.8129482

4.8673563

% Error

0.00000

+.00007

-. 00036

0.00000

- .00010

+.00071

+.00015

+.ooo49

.00173

.00570

.01043

-.00743

-. 02220

-.01275

+.00732

+.002865

+.002991

.03127

-. 10009

-. 01306

+.15560

- .02466

3.5961704

3.6941786

3.9221535

4.1030493

4.1888266

4.3461809

4.4773235

4.5956745

4.7461500

4.8204975

16.00

20.48

25.60o

32.00

44.8o

55.04

.



TABLE III

*ERRORS IN SOLUTION OF INTEGRAL
EQUATION.-- EXACT INTEGRATION

Time

.100

.205

.316

.649

1.00

2.05

S3.16

S 6.49

10.00

20.54

31.62

64.94

100.0

205.4

316.2

Exact

1.1393967

1.2753115

1.4073467

1.7464705

2.0295172

2.5978622

2.9560595

3.5334749

3.8608513

4.3478355

4.5897446

4.8702040

4.9576244

4.9984865

4.9999542

Calculated

1.1516581

1.2786722

1.4053669

1.7463741

2.0308418

2.6006689-

2.9558239

3.5357094

3.8567371

4.3631077

4.5771999

4.8823967

4.9496946

5.0082741

4.9904718

-.79 -

r~*\ ~---

Error

+1.076

+ .264
- .142

- .057

+ .064

+ .108

- .008
+ .067'

- .106

+ .345

- .272

+ .248

- .161

+ .200

- .190

-i~iif I.---L--- .--. ·-- ·-- · ·-- · '-----·

-·

-~ -



TABLE I:V.

COMPARISON OF LEFT- AND RIGHT-HAND
SIDES OF INTEGRAL EQUATION

Left Right SDifference

2.0586

3.4180

5.1875

..2.7891-

24..8047

87.6211

195.777

712.642

1426.69

3780.07

6042.92

10,767.4

13,332.1

15,388.7

15,583.5

2.0313

3.3711.

5.1172

,12.6406

24.5625

87.1002

194.988

.710.867

i423.90

3780.05

6050.34

10,774.7

13,336.5

15,426.2

15,612.5

- 80 -
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Time ,

.100

.205

.316

.649

1.00

2.05

3.16
6.49

10.00'

20.54

31.62

64.94

100.0

205.4

316.2

1.326

1.372

1.355
1.173

.976

.594

.403

.250

.196

.001

.123

.068

.033

.244

.186
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CHAPTER V

D~FL•CTIO.. OF A VISCOE3LASTIC CANTILEVER B"AN

As a first illustration of the methods of analysis

described in the previous chapters,. the analysis of

the deflection of a viscoelastic cantilever beam under

the action of a time-varying point load applied at the -

unsupported end will be presented. The analysis will

be presented for a beam with arbitrary linear viscoelastic

characterization for the equivalent elastic shear modu-

lus and elastic bulk modulus. A specific example will

then be presented in which the equivalent modulii are

characterized by the behavior of simple models. With

this characterization, an explicit solution can be ob-

tained using the Laplace transform. This solution is

presented, and the error in the numerical solution is

thus obtained and presented f6r this specific case.

A second example using more realistic relaxation func-

tions is then presented, and several implications

of the results are discussed.

V-l. Formulation of the General Solution.

The geometry of the beam is presented in Figure 6.

With the boundary conditions

SO - O ((127)
2 oX, =o
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the solution for the deflection in the X direction

for an elastic bean is given 127.] as

2(•
XI =0

SKP(z) + 92G P(t)

where

G = elastic shear modulus

K = bulk modulus

. -3(X, 2 7 C; ( z / 2

Z= moment of inertia-of the bear

Equation (128) is of the general form of equation

(46) where now

(129)

Consequently, the correspondin; viscoelastic

solution for the cantilever bean can be written immediately

- 83 -
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as follows:

6<I f -- )

2
L.

i P(t -z)

+trct~(

(130)
iP() OC]

where

/t

4a~) = Kr(tA)

~_Gr(A)~ + /,&) 6,;(o)

07(ý (

-and Gr(t) and K,(t) are defined in terms of the following

constitutive equations:

;0'

5.a) -

.(t z ) d

6
26

0-

(131)

(132)

(133)

(134)

(135)
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The 3 and 2 in equations (134) and (135), respectively,

are used in these equations so that the "equivalent

elastic modulii" will be just operators, without

multiplicative constants, since for the elastic case

S==3Ke and ~.J =2G 6..

V-2. First Numerical Example, Exact Solution Known.

The solution of the general equation (130) for

the deflection of a viscoelastic cantilever beam

has been programmed for both techniques discussed in

the previous chapter. These programs are presented

in the appendix.

As a first illustration of the solution, consider

a load function

C-.

9 (136)

as shown in Figure 7, and relaxation functions

-e -
SG (137)

.9 (138)

which are shown in Figure 8. The relations (137) and

(138) were selected in order that an exact solution

could be easily obtained. As shown in Figure 8, the

bulk modulus becomes negative (which is physically

- 85 -
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FIGURE 8
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impossible) before t/z,= 2.6. For this reason the results

will be presented only up to t/-= 2.4.0 seconds.

Transforming both

the Laplace transform,

sides of equation (130) usin3

one obtains the following rela-

tionship:

6, u,<s) s 0Go Ki
)2

,s Ko  •~29 54, + -

(5~)2(s1,2) )2 (s+ (139)-C' Cz~

Solving for ./*2(s):

U2(5)t/(s)S÷'-
~c;0 ~fsoj,)

(140)

Performing now the inverse Laplace transform, the

solution 1(0t) is obtained as:

(141)

This solution is plotted in Figure 9 for the par-

ticular case of

X c9

4 4t~24
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The deflection of an elastic beam with G=Gr(0),

K=K,(0), is also plotted in Figure 9 for comparison.

- Equation (130) has been solved numerically for

the above input, by both techniques, and these results

are compared in Tables V and VI. The results were

obtained only up to t/z;= 2.40 at which time the bulk

modulus becomes negative. The errors shown in these

tables are quite small. In Table VII the result of

fitting the solution obtained using the exact integra-

tion procedure with a Dirichlet series is compared

with the exact solution. The errors are still small,

although at very short times some error is noted. This

error in fitting the numerical solution shows up

markedly in Table VIII, where the left-hand and right-

hand sides of the original integral equation are com-

pared. Although the error throughout most of the solu-

tion is less than one per cent, it increases markedly,

in this checking procedure, at the end-points. A more

careful curve-fitting scheme, for instance a least

squares fit, would probably decrease this error, since

the original numerical solution has been shown to be

quite accurate.

V-3. Second Numerical Solution.

A second solution has been obtained for a beam

with the same geometry used in the above example. In
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TABLE V

DEFLECTION OF A VISCOELASTIC CANTILEVER

BEAM, ERRORS, NUMERICAL INTEGRATION TECHNIQUE

Exact

0.00

7.0573

14.0607

21.0107

27.9081

34.7532

41.5465

48.2886

54.9800

61.6221

68.1493

81.2487

94.0916

o106.7454

119.2139

131.5005

143.60o94

155.5431

Time

- 91 -

Numerical

0.00

7.0508

14.0477

20.9914

27.8823

34.7211

41.5081

48.2439

54.9290

61.5640

68.2128

81.1729

94.0035

106.6451

119.1016

131.3763

143.4730

1.55.3953

.10

.20

.30

.40

.50

.60

.70

.80

.90

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

% Error

0.00

.09

.09

.09

.09

.09

.09

.09

.09

.09

.09

.09

.09

.09

.09

.09

.09

.10



TABLE VI

DEFLECTION OF A VISCOELASTIC CANTILEVER

BEAM, ERRORS, EXACT INTEGRATION TECHNIQUE

Exact

2.23754

7.0573

10.8453

14.4340

19.1979

25.5120

33.8640

44.8823

51.6336

68.2129

89.8439

117.869

153.846

Time

- 92 -

Numerical

-.00007

2.23746

7.0570

10.8446

14.4327

19.1948

25.505

33.8471

44.8415

51.57o03

68.0588

89.4667

116.938

151.534

0.

.0316

.10

.154

.205

.274

*365

.487

.649

.750

1.00

1.33

1.78

2.37

% Error

.003

.004

.006

.009

.016

.03

.05

.09

.12

.23

.42

.79

1.50



TABLE VII

DEF-iLCTION OF A VISCOELASTIC CANTILEVER

BEAM, ERRORS, FITTED SOLUTION

Exact

0.0.

.0316

.1]0

-154

.205

153.846

Numerical

.059

2.2813

7.1211

10.9219

14.5195

19.2734

25.5430

33.8086

44.7422

51.4727

68.1172

89.9844

118.1289

152.9883
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2.23754

7.0573

10.8453

14.4340

19.1979

25.5120

33.8640

44.8823

51.6336

68.2129

89.8439

117.869

% Error

-1.95

- .90

- .71

- .59

- .39

- .12

.6149

.750

1.00

1.33

1. 78

2. 3Y

.16

.31

.31

.14

- .16

- .22

.56



TABLE VIII

DEFLECTION OF A VISCOELASTIC CANTILEVER BEAM,
COMPARISON OF LEFT- AND RIGHT-HAND SIDES OF EQUATION

% Difference

681.
2104.

Time

.01

.0316

.10

.154

.205

.274

.365

.649

.750

1.00

1.33

1.78

2.37

Le ft

731.

2144.

6222.

9020.

11352.

1400oo3.

16817.

19502.

21603.

22248.

22283.

20040.

15009.

7434.

6.8

1.9

0.8

0.7

0.5

0.3

0.1

0.4

0.6

0.5

0.0

0.8

0.7

9.5

8961.

11294.

13964.

16826.

19581.

21730.

22368.

22290.

19867.

14906.

8142.
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this case, the load used was a step function, that is:

P() = H() (143)

and the relaxation functions were described by the follow-

ing Dirichlet series:

_ (-g, -•, -• •,

S.2 +.5e .2 e ./e (144)

K,.t) +2 -.2e z -7./e (145)

These relaxation functions are plotted in Figure 10.

Also plotted in Figure 10 are (÷/l4,(o)and K/rJ/-/f(o

without the short time relaxation behavior of the e

term, that is:

1 .2 (0 .ie ./e (146)

AWr~) -o z(147)

The solution for the end deflection using both sets

of relaxation functions has been obtained using both

numerical techniques. Both solutions are plotted in

Figure 11, and numerical values are compared in Table IX.

Clearly the solutions converge when t/Z > 40. This

behavior has a practical implication: Short-time

behavior cannot appreciably affect long-time results.

Consequently, if one is interested in long-time results,
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the very rapidly varying short-ti'me behavior can be

neglected, and consequently greater time spacings can

be used, thus saving computational effort.

In Table X the solution obtained, for the relax-

ation functions given in equations (144) and (145),

by both techniques, as well as the fitted solution of

the exact integration technique, are compared. The

solutions quite obviously agree. In Table XI the

left- and right-hand sides of the original integral

equation are compared by means of the fitted solution.

Fairly good agreement is shown.
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TABLE IX

CONVERGENCE OF SOLUTIONS WITH
AND WITHOUT SHORT TIME BEHAVIOR

Solution 1
(with Fast
Behavior)

Time

7.08
7.69
8.51

9.65

10.57
11.95
13.33
13.99
15.41
16.14

17.84

18.72
21.50

24.02
26.63

Solution 2

12.92

13.07

13.20
13.45
13.69
14.12

Time

0.

.2.

.5
1.0

1.5
2.5
4.0

5.0
8.0

10.0

16.0

'20.0
4o.0o
80.0

160.0
320.0
640.0

% Difference

82.5

70.0
55.0
.39.3
29.7
18.2
11.0

8.6
5.5
4.6
3.2
2.8
1.4
0.7
0.6
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TABLE X

COMPARISON OF SOLU 7....,NS
FOR CANTILEVSR 1'

Time

0.

.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

Solution 1
(Numerical
Integration)

7.084

7.396

9.650

16.139

24.796

30.433

Soluf,- 2
(Exa ct
InteL ion

7. ix

9.

23,

29

30 - "

30. "

Solution 3
__(Fitted)

7.108

7.426

9.673

16.066

23.981

29.806

30.468

30.486
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TABLE XI

COMPARISON OF LEFT- AND RIGHT- HAND

SIDES OF INTEGRAL EQUATION

Time

0.0

.10

1.0

10.0

100.0

1000.0

10000.0

100000.0

Left

69086.

67215.

55821.

40435.

30o464.

28742.

29525.

% Difference

68860.

66949.

55741.

40928.

32164.

29630.

29630.

0.3

0.4

0.1

1.2

5.6

3.1

0.4

0.129600. 29630.



CHAPTER VI

ANALYSIS OF A THREE-LAYER VISCOELASTIC

HALF-SPACE

In this chapter, a second illustration of the

methods of analysis described in Chapters III and IV,

the analysis of a three-layer linear viscoelastic

half-space under a uniformly distributed circular load

will be presented. This problem demonstrates the

capability of both of the previously described approaches

for solving the general integral equation on an- involved

problem. This problem, furthermore, demonstrates the

relative simplicity of the present approach in formu-

lating the general solution compared to other methods

of solution.

In addition to the above motivation for this

example, the analysis contained in this chapter has

direct application in the study of layered highway

systems, and is thus of considerable practical engineer-

ing interest. For this reason, and because most of

the following is unavailable elsewhere, the analysis

will be presented in a reasonably detailed fashion.

The elastic analysis for layered systems has been

formulated by several authorsI§,5,I117., using basically

Burnister's approachý? J. An explicit statenent of
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the constants involved, however, has not been presented

for the three-layer system for any except the first

layer, and these are not in a suitable form for the

present analysis.

The geometry of the system is shown in Figure 12.

The load is distributed over a circle of radius a and

is normal to the surface. Each of the layers is assumed

to be infinite in horizontal extent. The lower layer

is assumed to be infinite in vertical extent. Each

layer has distinct physical properties, which will

be considered to be functions of time.

In the follo-w.ing analysis, Poisson's ratio has

been taken ecual to 1/2 in each layer (3ulk modulus

infinite). This assumption has been made because of

the simplifications that result. Just as in the avail-

able elastic analyses(21,33,59], however, it is expected

that this assumption will not cause very large errors,

and it does decrease the algebra considerably.

The other constitutive relation necessary for

each layer will be assumed in terms of a viscoelastic

equivalent to the elastic compliance. That is, for the

i-th layer:

D (I -Z (148)
0
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FIGURE 12
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In the following, Dr (t) will be denoted simply D. (t), since

it is clear from the context what is implied.

The relationships will be obtained in terms of com--

pliances, rather than elastic modulii, for two reasons.

First of all, more data is generally available on creep

than on relaxation behavior. Secondly, it is preferable

to keep the number of convolution integrations needed

on the left-hand side of equation (53) as small as poss-

ible, even at the expense of the number of integrations

on the right-hand side, since those on the left enter

more directly into the numerical solution, and thus

errors in these integrations should preferably be minimized.

Also, the multiple integrations on the left side must

be evaluated at more times when using the exact integra-

tions approach and one thus desires to keep the function

representation (equation (113)) as sh9rt as possible.

VI-1. Derivation of the Elastic Solution for All
Stresses and Displacements.

Assuming an axi-symmetric load distribution, the

equations of equilibrium, compatibility, stress, and

displacement are given in cylindrical coordinates for

a general incompressible symmetrical elastic body

in the following form:

Equilibrium:

___ - (14 9 )

z/-".
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In the following, D,.(t) will be denoted simply Di(t), since.

it is clear from the context what is implied.

The relationships will be obtained in terms of com-

pliances, rather than elastic modulii, for two reasons.

First of all, more data is generally available on creep

than on relaxation behavior. Secondly, it is preferable

to keep the number of convolution integrations needed

on the left-hand side of equation (53) as small as poss-

ible, even at the expense of the number of integrations

on the right-hand side, since those on the left enter

more directly into the numerical solution, and thus

errors in these integrations should preferably be minimized.

Also, the multiple integrations on the left side must

be evaluated at more times when using the exact integra-

tions approach and one thus desires to keep the function

representation (equation (113)) as short as possible.

VI-1. Derivation of the Elastic Solution for All
Stresses and Displacements.

Assuming an axi-symmetric load distribution, the

equations of equilibrium, compatibility, stress, and

displacement are given in cylindrical coordinates for

a general incompressible syametrical elastic body

in the following form:

Equilibriun:

a + 0; - 60- (14P9)
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(150)

Compatibility:

(151)= 0O

where

V

Stress Components:

Oz

Or-

;z2 -TZf

(152)

(153)D 2ý91Ji2

(154)

Displacement Components:

W.5-
I

+-4
r-

(155)

(156)
i;

115-
- E (157)
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[A .2 0 3 ";'n 2 7 e + AnZ(1jn,* + ,

SDi> ....(, +(163)

If now each layer of the layered system is considered

to have a solution of the form given in equations (159)

through (163), and the constants for each of these solu-

tions are evaluated from the boundary conditions given

below, then the problem of an elastic layered system is

solved. An n-layer system will have 4n constants Ai, Bi,

0i, Di, which must be evaluated from the boundary conditions.

VI-1.1 Boundary Conditions

The boundary conditions for the lower layer include

that all stresses and displacements go to zero when z

becomes infinite. From this it is immediately evident

that the constants A and C must be zero for this layer.

At the surface the boundary conditions are that the

shearing stress must be zero:

(164)
Z=-H

and that the normal stress is given, for a uniform cir-

cular load of magnitude q and radius a as:

j ((165)
Z=-H/

o3
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It will be convenient to use an incremental load

Iz= - -' (166)
and then integrate the final expressions from 0 to o

with respect to m, and multiply this result by qa, which

will then yield the same result.

The remaining boundary conditions involve contin-

uity at the interfaces between the layers. At each

interface four conditLons must be imposed. Assuming

continuity of the displacements, vertical stress, and

shear stress across an interface, the boundary conditions

between layers i and 1i+1 are:

. - W~(167)

. = ,' (168)

/ (169)

= Z, (170)

For an n layer system, equations (167) to (170)

yield 4n-4 equations. In addition, two equations (164)

and (166) are available for the surface layer, and two
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constants in the bottom layer are zero. Thus a total

of 4n-2 equations in 4n-2 unknowns must be solved.

For a three-layer system this will be ten equations in

ten unknowns. These ten equations are listed below

for a three-layer system under the incremental normal

load -J-(mr)i(m,). In these equations, the thickness

of the first layer has been taken as unity to non-dimen-

sionalize distances.

-,n •r, (e) Am' em " + m,'e" - , ' e"
(171)

2-,• - .-(,•,~c-/1) ,LT-

2 - L B 2 e C, , -"7) -

(172)

A, ( = A (173)

A, m - C, A(14)

[A, - AS[, [A2- B] (175)

[-A 4 [At27 C67--L9 2] (176)
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(177)

A2,/e"x

_- -9 " - e -

C (, ('m )" 74 (17 4 %)6/7A

(178)

5- A?7 meh 3 7 ~7[A2 FAe r
Z2L2~~ C CnA e -2mhIe-2

1_F [A/7
2

mqe
+L' 2 ?e +Cf7/tmf)e

1.5 [B9 -M--- 3 5 •

The ten constants A, B , C,, D, , A B, 02 D2 ,

B3, DJ can be obtained by solving equations (171) to

(180). For the present perposes, it is important to

keep the elastic constants separate from the geometrical

constants. An efficient approach to solving equations

(171) to (180) with respect to obtaining the constants

in a suitable form is to solve equations (171) and (172)

- 111 -

(179)

(180)

A,me" -mh , mhe A

B.jl +7 e-1 X 7 h C

-82 12e -

- 8 1S B ->

-m X
-~ ~-n7h)e'



for A, and B, in terms of C, and D,, then use these ex-

pressions to solve equations (173) to (176) for A2 , B2,

C2 , and D. in terms of C/ and D,. Next, equations (177)

and (178) are solved for B3 and D3 in terms of C, and

D,, using the results from equations (173) to (176).

Finally all these expressions are substituted into

equations (179) and (180) to yield two simultaneous

equations for the constants C, and D,. After obtaining

these two constants, the other eight constants may be

obtained immediately by back substitution.

If the elastic constants are kept always separate

from the geometrical terms, then C1 and D, can be

written in the following form:

._. q) ,- _ _j'.

i (181)

A--l
Ia

9

- ';' (182)

i=I

where the q3.• , q#4 , and 6- terms are constants

involving only the geometrical variables and the C4,i

terms are products of four elastic compliances. The

geometrical constants are given in Table XII, and the

O<i's are listed below:

I
C- 2 f 2  (183)

I r3
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- / (184)

03 32 (185)

,,- (186)

/z (187)

OC (188)
/

/7 E 2 E2 (189)

Z /3 (190)

cZ 41 (191)

Now by back-substituting, the other eight constants

can immediately be found in a form similar to equations

(181) and (182):

A (192)
A,

7 7 _ _ - .. (193)

i-/
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A 3

18A Jmq) ' 2,2,/ c<2,

6, 2 ;,,9 jr j 2, 4,i (195)

2 M (196)

,,-(a) OC, ,

S nC 2.t,, (197)

B m3 Z (198)

'T

tn 1:2 :,Q, (199)

The geometrical constants are given in Table XII.

The ••i';s are products of five elastic compliances:

2," - ",E, /=/..--. 9 (200)

;2 i9 //0 .-9 / (201)
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Since the constants are now known, the expressions

for the stresses and displacements, equations

to (163), can be rewritten in terms of the geometry

and the elastic compliances in the following simplified

form:

-TO ,-() J(InC7I)

JTr') J'Tc)

j=/

1J=/

1I'

9

j . (

-/8

9

j=/
76 K)

±0cc..7, J .:

#12m)~ma

_-mr JY/,A7ma)
471

(159)

0~zi (202)

I~t

(203)

/

mnr

/

(204)

(205)

10--;·

L 1C

18 /J
0<.

.1=1

(206)
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where

4

-d'ý' k=/ -3 (207)

J =/ " "/8

c< <•=/ - -C/8 (208)

j = j= /- •/ -1(209)

and the A s are defined in Table XII.

A subroutine entitled CNSTNT has been written

which calculates the $mj and 6 terms for a given

geometry. This program has been used in conjunction

with the original ten boundary conditions and arbitrary

input geometry to check the above derivation.

To obtain the elastic solution under a uniform

circular load, the above stresses and displacements

must be integrated from zero to infinity with respect

to m, and multiplied by qa. For example, the normal

stress at any off-set r is given, for a uniform circular

load of radius a and intensity q, as follows:

( (J (210)

A I OB f 9
63
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TABLE XII

CONSTANTS FOR THE THREE-LAYER

HALF-SPACE SOLUTION

1 = A1A5 1- B5

2 = A2A5 + A1A6 -B 2B 5 - B1B 6

C3 = A3A5 + A1A7 3 5 -1 BB 7

C4 = A4A5 + A3A6 + A2A7 + A1A8

- B4B5 - B3B6 - B2B7 - B1B8

Then for

C5 = A2 A6

C6 = A4A
C7 = A3A7

C8 = A4A7

C9 = A4A8

A1 = g 4 5

A2 =-g 46

A3 = g47

A4 = 948

A5

A
6

A
7

A8

- B2B6

+ A2A8 - B4 B6

- B3B7

+ A3A8 - B4B7

- B4B8

= g65

=g 66

- B2B8

- B 3 B 8

B1 = g 4 9

B2 = g 5 0

B3 = g51

B4 = g52

B5 = g61

B6

B7

=g6 2

g 6 3

B8 = g64= g6 8

i = 1 aa9
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TABLE XII

A1

A2

A3

A4

A5

A
6

A
7

A8

= 49

= g5 0

= g 5 1

= g52

g5 7

g58

g5 9

= 60

q3 . =

A1

A2

A
3

A4

A
5

A
6

A
7

A8

= g6 1

= g 6 2

= 6 3

= g 6 4

= 41

= 42

= g4 3

= 44

(continued)

B
1

B2

B3

B4

B5

B
6

B
7

B8

i = 1 - 9

B1

B2

B3

B4

B
5

B6
B

7

B8

1 = 1 9

for
= g4 1

= g 4 2

= g 4 3

= g 4 4

= g6 5

= g6 6

= g67

= g68

for =45

= g 4 6

= 947

= g 4 8

=g5 7

= g5 8

= 5 9

=60

q4,1,i =
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TABLE XII

Sgl 1

S 2 ei

g7 81
q1,2,i

-g 2 81

+ g 3 3, 1 ,i + g4 q4,1,

+ g5 q3, 1 ,i + g 6 q4, 1 ,i

+ g9 q3, li

q2,1,i

q12,i

-q2,2,i

q3,2,1
q94,2,
q,3, 2

q2,3,i

q3, 3,

14,3, i

= 1 ei + g 1 7 q3,1,i

=0

g 2 9 8i

=0

g 2 1 8i

=2,1,i

+ g 3 1 q3, 1 ,i

+ g 2 3 q3,1,i

= q3, 1
= q4,1,i

= 1* ,•9

i = 1- 9

+ gll q4, 1 ,i

+ g 15 q4,1,i

+ g 1 9 q4, 1,

+ g 3 3 q4, 1 ,i

+ g 2 5 q4,1,i

= 0

i= 1---9

i= 1 -"9

i=1I''9

i = lo--18

= g8 ie-9

=-ql 2 i

= g2 e1_9

= -gj ei_9

= g 3 0 8i_9

= g2 2 ei_9

+ g10 q3,1,i- 9 + g 1 2 q4,1,i-9

i = o10---18
1 = 10-.. 18

+ g 1 4 q3,1,i-9

+ 918 q3,1,i-9

+ g 3 2 q3,1,1-9

+ g 2 4 q 3 , 1 ,i-9

+ g 1 6 q4,1, 1 -9

i = 10 -.- 18

+ g 2 0 q4,1,i-9

i = 10o 18
+ g 3 4 q4,1,i-9

i = 10--18

+ g2 6 q4,1,i-9

i = io0--18

-2m
Z = e
3 2s

Z4 = e

Z = e
-s

Zg=

+ g1 3 q3, 1 ,i

q1,2, i

3,2,i

q2, 3, i

q4,3, i

where s = mh

0
Z =

Z2 =

em
-me
2m

e
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(continued)

1g = Z0/2

92 = Z1/2

g 3 = (2m - 1)/2

g4 = -Z2/2

g 5 = Z3/2

g 6 = (1 + 2m)/2

g7 = (g l + g 2 )/2

g8 = (g. - g2)/2

g9 = (g 3 + g5 )/2

g10 = (g 3 - g5 )/2

11g = (g4 
+ g6 ) / 2

-g12 = (g - g6)/2

813 = .5 - g 5

g 1 4 = .5 + g 5

g 1 5 = .5 - g6

g 1 6 
= -g 1 5

g17 = .5 + g3

818 = -g17

819 = .5 + 84

g20 = .5 - 84

g2 1 = g 2 7 g7 - 2 8 2 + gl

g 2 2 = g 2 7 g 8 + g2 8 g 2 - g1

g 2 3 = g 2 7 g 9 + g2 8 g 1 3
+ 917
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TABLE XII (continued)

g 2 4 = g27 g1 0 + g28 g1 4 + g 1 8

g25 = g27 gll + g28 g15 + g 19

g26 =27 g1 2 + g 2 8 gl6 + g 2 0

g27 = 2'Z 4

g28 = (1 + 2mh)Z4

g29 = g35 g 7 + g7 - g 3 6 g2

g30 =35 g 8 - g 8 + g 3 6 g 2

g31 = g 3 5 g 9 + g9 + g 3 6 g 1 3

g32  g35 g1 0 - g10 + g36 g14

g3 3 = g35 gll + g1 1 + g 3 6 g 1 5

g 3 4 
= g35 g12 - g 1 2 + g36 g 1 6

-g35 = (1-2S)Z 4

g 3 6 = -2S4

g37 = Z5

g38 
= Z6

g3 9 = (1. + S)Z 5

g40 = -(1. - S)Z6

g41 = g37 g 7 + g 3 8 g7 - g3 9 g2  g40 gl1

g42 = - g38 g29 - g40 g2 1

g43 = g37 g 8 - g38 g8 + g39 g 2 - g 4 0 1g

g44 = -. g 3 8 g30 - g40 g2 2

g 45 = g37 g9 + g38 g9 + g 3 9 g1 3 + g 4 0 g 1 7

g46 = - g38 g 3 1 - g40 g2 3
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TABLE XII (continued)

47 = g 3 7 glO - g 3 8 gl10 + g 3 9 g1 4 + g 40 g1 8

- g 4 0 g 2 4

g 4 9 = g 3 7 gll + g 3 8 g11 + g 3 9 g1 5

50 =- g 3 8 g 3 3 - g 4 0 g 2 5

g5 1 g37 g1 2 - g3 8 g 1 2 + g39 g16

g55 = sZ5

g56 = -SZ6

57 = g5 3 g7 + g5 4 g7 - g5 5 g 2

g5 8 = - g5 4 g29 - g5 6 g 2 1

g5 9 = g 5 3 g 8 - g 5 4 g 8 + g5 5 g 2

g60

+ g5 6 g1

-g 5 6 81

S--g 5 4 g 3 0 - g5 6 g 2 2

g61 = g5 3 g9 + g5 4 g9 +,g 5 5 g1 3 + g5 6 g 1 7

= - g5 4 g 3 1 - g 5 6 g2 3

g6 3 = g5 3 gl 0 - g5 4 g10 + g 5 5 g14 + g5 6 g 1 8

64 =  g5 4 g 3 2 - g5 6 g 2 4

g65 = g5 3 g1 1 + g5 4 g11 + g55 g15 + g5 6 g19

g66  - g5 4 g 3 3 - g56 g25

g 6 7 = g5 3 g1 2 - g5 4 g12 + g55 g16 + g56 g20

g6 8 = - g5 4 g34 - g56 g26

- 122 -

= - g 3 8 g 3 2

g 5 2

+ g40 g19

+ g4 0 g20

- g 3 8 g 3 4 - g 4 0 g 2 6

g 5 3 -= Z5

= - Z6g 5 4

g6 2



TABLE XII (continued)

E = mZ

E emZ

E 2 = e-mZ
E2 =

A,,, -Ez~

1,2 = -EZ2

l1,3 = -EZ EZI

'1,4 = -Ez EZ2

2,1 -1,1,

>2,2 = 1, 2

2,3 = A2,1 -

4,1- 1,1
A4,2 =  1,2
4,3 = - 2, 3

4,4 =  2,4

A5,1 = -1.5 Ezi

X5,2 = 1.5 EZ2

>'5,3 = -1.5 Ez Ezi

/ 5,4 = -1.5 X ,4

ý6,1 = 1.5 EZl

X6,2 = 1.5 EZ2

16,3 = 1.5 /2,3

6, = -1.5 A2,4

1x,3

X2,4 = -1,.2 + A ,4
>3,1 = X2,1

'3,2 = - 2 , 2

X3,3 = 2A3,1

4 3,4= 2 2,2

-A ,43
Al.$
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VI-2. The Viscoelastic Solution.

For the viscoelastic case, the time variation

of the loading must be specified. In this case, the

normal stress boundary condition will be taken as:

z<=-i

Again the incremental load

=)(212)z ---

will be considered, and then the final result will be

integrated from 0 to oo with respect to m, and then

multiplied by qa, to yield the viscoelastic solution

under a uniform circular load.

Since in the elastic solutions, equations (202)

to (206), the Bessel functions appear as multipliers

to the summation-over-summation terms, and since these

Bessel functions vary only with m for a given geometry,

it will be useful to treat the elastic solutions in

the following forms:

Define: 1.1 J

j. (213)
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IJJ

/

-C~ J~7&r,) J/7,2g)

Then the time-varying elastic solutions are given as

follows:

q17(6 -

C0

(0 

)

%aom .tmd

S?/
0o

Wci M 9 / (
/270N'. (6
m3

6/ (e) 0
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~1J

I)'~

AiZ4 (214)

(215)

(216)

(217)

(218)

(219)

(220)
.

t~-7 /PJ

(221)

(222)

,TO(mr) T, (Ma)



Clearly, to obtain the viscoelastic solution,

all that is needed is to obtain the corresponding

.( g) for the viscoelastic case, since the 6~ )

terms do not vary in time. But the 3 (f M) terms

for the elastic case are in the general form of equation

(46) of Chapter III, and thus an integral equation for

.( (N)r, for a given value of m, can be written immedi-

ately. From the solution of this equation for appro-

priate m, the total solution can be obtained by numerical

integration of the equations (218) to (222).

Following equation (53), the integral equation

for /, (e for the viscoelastic case can be written

9t

1/ (223)

j=I

in which oj(.) is a three-fold convolution integral

of the following form (for oC.j=.// / E
v in the elastic

case):

tZ

jA 9 (/,0)

(224)

L(A') D(ovd L(o) A(D,,o9) o)
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and

"C '(e) OW (•c) -d c4 ) -- 4 -r) • (225)

SD( Q Nc(o)

with D,(t)= D2 (t) and = j for j.L 9

and Dw(t) = D (t) and = J-9 for j79

' (e)= ( (t) for A 4 (226)

; f ap , +(tP, ; (o (227)

for /f >4

The above integral equations for i(, ) have

been programmed for solution by both of the numerical

approaches described in Chapter IV. The programs are

given in the appendix.

VI-2.1 Integration on m

Once 0i7() has been obtained for appropriate

values of m and t, the total result is obtained by

integrating with respect to m. In the present analysis

the integral equation (223) iwas solved for thirteen

values of m (m = 0, .2, .4, .7, 1.0, 2.0, 3.0, 4.0,
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5.0, 6.0, 7.0, 8.0, 9.0). Intermediate values of

i(Mt) were then obtained by approximating the curve

between three consecutive points by a parabola CI08D,

and then evaluating this parabola at values of m spaced

.1 m apart. These results were multiplied by the &;(M)

terms, (which are more rapidly varying with respect to

m), and then the total integral calculated using Simp-

son' s rule, which is based on approximating the integral

between three consecutive points by a second degree

polynomial. For the 91 points spaced .1 m apart used

in the present analysis, the total integral can then

be calculated with the following formula:

-~[PO)~ 4 70K(/m) 42 (228)

6' .... ] (9.

This procedure is carried out by a subroutine

entitled TERPO, given in the appendix. The remainder

of the integral, form 9. m to 00, was considered

negligible.

VI-2.2 Evaluation of the Bessel Functions

The Bessel functions that occur in the solution

can be evaluated by use of the infinite series

r KA (!AN)! (229)
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where N is either zero or one. A previously prepared

program, using a finite number of the above series

termsC42 j, was modified for use in the present analysis.

For values of the argument X greater than 12, the

appropriate asymptotic expansions were inserted into

the program used in reference .,423:

() COS(X- ) x>/2 (230)

( ) X (231)

The total program is given in the appendix as a function

subprogram entitled BESSEL.

VI-2.3 Total Solution

The total solution obtained using both techniques

discussed in Chapter IV has been programmed. The pro-

grams are presented in the appendix. Numerical examples

and comparisons are given below.

VI-2.4 Numerical Examples

To illustrate the effectiveness of the computer

programs, and to give a particular example of the results,

a three-layer half-space with the following geometry

and material characterization has been analysed:
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/' (232)

S(233)

(233)

(234)

G2 = -.1O

G,= -.32
4

G(= _32
,5= -•9

C,= Ic?

2 ___15

G = /0
2

G22'= U?

The compliance of each layer is plotted in Fig-

ure 13. The results for the normal stress 6dz for one

point in each of the three layers are given in Figure 14.

All three points were selected along the axis of the

load. Figure 15 presents the results for the shear

stress ;z at one point with off-set of -= 1.0 for

- 130 -

H/916 _ 1.

Djo~ 6G:)

where
I

G3

G 2

G3

33

-.05-

-.05

62.0
/0



each of the three layers. Figure 16 presents the results

for the vertical deflection w at one point for each of

the three layers, all of which are along the axis of the

load. Figure 17 presents the results for the radial

deflection u at an off-set of = 1.0 for one point in

each layer. And Figure 18 presents the results for the

radial stress q. along the axis of the load for one

point in each of the layers.

Since all of the compliances tend to unity at

large times, the solutions should all tend to the solu-

tion for a homogeneous incompressible elastic half-

space. The results have all been compared, at long times,

to the homogeneous half-space solutions (from reference

[3]). Very good agreement (generally less than a one

per cent difference) were found with these solutions.

The results plotted in Figures 1l through 18

were obtained using the exact integration technique.

The solutions at various times are tabulated in Tables

XIII through XXVII, and compared, at these times, with

the solutions obtained using the numerical integration

procedure. None of the differences shown are large

enough to show up on the plots of Figures 15 through 18.

For the solutions that are very small in absolute values

(noteably the radial stress in the third layer at the

second interface) some fairly large per cent differences

are noted. This is due to round-off errors, particu-
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larly in the subroutine INTEGR for the exact convolution

integrations (at short times only). These could be

eliminated through the use of double precision coding,

at the loss of execution time, but since the errors

are only significant as the stresses or displacements

tend to zero, which is of the least interest, this does

not seem necessary.

Obviously either technique works adequately in the

usual case. It should be noted that the procedure

utilizing the exact integration technique (and thus

using a log spacing in time) required only approximately

one-third the execution time in this analysis.
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FIGURE
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FIGURE 18
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TABLE XIII

COMPARISON OF NORMAL STRESS RESULTS

FOR FIRST LAYER AT FIRST INTERFACE

Numerical
Integration
Solution

-. 1724
-. o2009
-.2263
-. 2876
-. 3191

-. 3564
-. 3851
-. 4007

-. 4173

-.4312
-. 4533
-.. 733
-. 4861
-. 4968
-. 5302
-. 5485
-. 5595
-. 5958

Exact
Integration
Solution

-.1726
-. 2011

-.2264 )tL(

-. 2877
-. 3191
-. 3563

-.3852
-. 4o08
-.4173

-. 4313 V72
-. 4535
-. 4732

-. 4862
-. 4970

-.5302

0.

.05

.10

.25

.35

.50

.65

.75

.875
1.00

1.25
1.55
1.80
2.05
3.20
4.20

5.00
10.00

Per Cent
Difference

.12

.10

.04

.03

.00

.03

.03

.03

.00

.02

.04

.02

.02

.04

.00

.02

.00

.03
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-. 5595
-. 5960



TABLE XIV

COMPARISON OF NORMAL STRESS RESULTS

FOR SECOND LAYER AT SECOND INTERFACE

Numerical
Integration
Solution

-. 0925
-. 1043
-.11476
-. 1393
-. 1516
-. 1658
-. 1767
-. 1826
-. 1889
-. 19415
-. 2027
-. 2106
-. 2157
-. 2200

-. 226)4

-. 2341

-. 24141
-. 2461

-. 2607

Exact
Integration
Solution

-. 0924
-.10)43
-. 11463
-. 1391
-. 1514
-. 1657
-. 1766
-. 1826
-. 1888
- .19420
-. 2026

-. 210o4
-. 2156
- .2200

-. 2264

-. 2338
- .2414
-. 2458
-. 2606

Per Cent
Difference

.11

.0

.11I

.14

.13

.06

.06

.0

.05

.03

.05

.09

.05

.0
.0
.13
.0
.12
.04
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Time t/-1

0.

.05

.10

.25

.35

.50

.65

.75

.875
1.00

1.25

1.55
1.80
2.05
2.50
3.20
4.20
5.00

10.00



TABLE XV

COMPARISON OF NORMAL STRESS RESULTS
FOR THIRD LAYER AT Z = 2.0 H

Time t/Z1

0.

.05

.10

.25

.35

.50

.65

.75

.875
1.00

1.25

1.55
1.80
2.05

3.20
4.20

5.00
10.00

Numerical
Integration
Solution

-. 06401
-. 07063
- .07632
- .08934
-.09561

-.1027
-.1079
-.1107
-. 1136
-. 1159
-. 1197
-. 1231
-. 1253
-.1271
-. 1328
-. 1357
-. 1374
-.1425

Exact
Integration
Solution

Per Cent
Difference

-. 06361
-.07021
-. 07596
-. 08899
-.09533
-. 1024L
-.1078

-. 1106
-. 1135
-.1159
-.1197
-. 1231
-. 1253
-.1272

-. 1327
-. 1357
-. 1373
-. 1426

.62

.59

.47

.39

.29

.30

.09

.09

.09

.00

.00

.00

.00

.08

.08

.00

.07

.07

- 141 -



TABLE XVI

COMPARISON OF SHEAR STRESS RESULTS

FOR FIRST LAYER, AT INTERFACE

AND UNIT OFF-SET

Numerical
Integration
Solution

-. 04509
-. 05421
-.06236
-.08209
-.09218
-. 1040

-.1129
-. 1176
-.1225
-.1266
-. 1328
-. 1381
-. 1414
-. 1441
.1479

-. 1524
-. 1571
-. 1599
-. 1697

Exact
Integration
Solution

-. o4512
- .05424
-. 06239
-. 08207
-.09216
-.1040o
-.1129
-. 1177
-.1226
-.1266
-. 1328
-.1381
-. 1413
-. 1441
-. 1479
-. 1524
-. 1571
-.1599

-. 1698

Per Cent
Difference

.07

.06

.05

.02

.02

.0

.0

.09

.08

.0

.0

.0

.07

.0

.0

.0

.0-

.0

.06
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Time t/-:l1

.0

.05

.10

.25

.35

.50
.65
.75
.875

1.00

1.25
1.55
1.80

2.05
2.50
3.20
4.20

5.00
10.00



TABLE XVII

COMPARISON OF SHEAR STRESS RESULTS

FOR SECOND LAYER AT SECOND INTERFACE

AND UNIT OFF-SET

Numerical
Integration
Solution

-. 01624
-. 01932
- .02208
-. 02878
-. 03226
-. 03642
- .03966
-. 04144
- .04336
- .04500
-. o4766
- .05011
-. 05174

-. 053 14
-.05757

-. 06021

- .06169

-. 06723

Exact
Integration
Solution

-. 01682
-. 01985
-. 02253
-. 02908
-. 03250
-. 03657
-. 03979
-. 04160o
-. 04348
-. 04510
-. 04779
-. 05023
-. 05185
-. 05325

-. 05771
-.06027

-.o06181
-.06714

Per Cent
Difference

3.56
2.74

2.16
1.04

.74

.41

.33

.38

.28

.22

.28

.24

.21

.21

.24

.10

.20

.13
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Time t/Z?1

0.

.05

.10

.25

.35

.50

.65

.75
.875

1.00

1.25
1.55
1.80
2.05
3.20
4.20

5.00
10.00



TABLE XVIII

COM1PARISON OF SHEAR STRESS RESULTS
FOR THIRD LAYER AT Z = 2.0 AND UNIT OFF-SET

Numerical
Integration
Solution

-.oo01004
-.01170

-.01317

-. 01665
-.01841
-.02045
- .02200

-.02283

-. 02371
-. 02445

-. 02563

S.02670

-.0274o0

-.02798

-. 02985

-.03081
- .03141
-. 03325

Exact
Integration
Solution

Per Cent
Difference

- .01011

- .01176

-.01321

-.01666

- .01841
-.02044

- .02200

-.02283

-.02369
-.02445
-. 02563
-.02669

-. 02739
-. 02798

-. 02981

- .03080
- .03139

-. 03328

.70

.51

.31

.06

.00

.05

.00

.00

.08

.00

.00

.04
.04
.00

.14

.03

.06

.09
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Time t/: 1

0.

.05

.10

.25

.35

.50

.65

.75

.875
1.00

1.25
1.55
1.80
2.05
3.20
4.20
5.00
10.00



TABLE XIX

COMPARISON OF VERTICAL DEFLECTION

RESULTS FOR FIRST LAYER AT SURFACE

Numerical
Integration
Solution

.3646

.3967

.4250 i

.4925

.5274

.5698

.6040

.6236

.6455

.6649

.6986

.7326

.7569

.7787

.8129

.8572

.9078

.9413

1.079

Exact
Integration
Solution

.3664

.3980

.4256

.4923

.5274

.5697
.6037
.6235
.6457
.6652
.6985

.7325

.7571

.7789

.8128

.8568

.9076

.9414

1,_5 ~

S7

Per Cent
Difference

.60

.33

.14

.04

.0

.02

.05

.02

.03

.05

.01

.01

.03

.03

.01

.05

.02

.01

.0
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Time t/- 1

0.0
.05
.10

.25

.35

.50

.65

.75

.875
1.00

1.25
1.55
1.80
2.05

2.50
3.20
4.20
5.00

10.00



TABLE XX

COMPARISON OF VERTICAL DEFLECTION RESULTS

FOR SECOND LAYER AT FIRST INTERFACE

Time t/•1-C

0.

.05

.10

.25

.35

.50

.65

.75

.875
1.00

1.25

1.55
1.80
2.05
3.20
4.20
5.00

10.00

Numerical
Integration
Solution

.3573

.3871

.4132

.4744

.5052

.5418

.5705
.5866
.6041
.6194

.6452

.6704

.6877

.7029

.7549

.7861

.8058

.8788

Exact
Integration
Solution

.3588

.3885

.4145

.4748

.5060

.5407

.5704

.5865

.6042

.6199

.6452

.6703

.6877

.7028

.7556

.7863

.8056

.8829

Per Cent
Difference

.42

.36

.31

.08

.16

.20

.02

.02

.02

.08

.00

.01

.00

.01

.09

.03

.02

.61
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TABLE XXI

COMPARISON OF VERTICAL DEFLECTION RESULTS

FOR THIRD LAYER AT SECOND INTERFACE

Numerical
Integration
Solution

.3059

.3266

.3444

.3850

.4048

.4277

.4452

.4548
.4651
.4740
.4887
.5027

.5123

.5205

.5476

.5632

.5728

.6063

Exact
Integration
Solution

.3095

.?03282
•3461
.3852
.4048
.4261
.4444
.4551

.4646

.4744

.4888

.5023

.5124

.5201

.5490

.5634

.5729

.6105

Per Cent
Difference

1.17

.49

.49

.05

.00

.33

.18

.07

.11

.08

.02

.08

.02

.08

.25

.04

.02

.69

- 147 -

Time t/•1

0.

.05

.10

.25

.35

.50

.65
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.875
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1.25
1.55
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4.20
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10.00



TABLE XXII

COMPARISON OF RADIAL DEFLECTION RESULTS

FOR FIRST LAYER AT SURFACE AND UNIT OFF-SET

Numerical
Integration
Solution

-. 01773
-. 02078
-. 02348
-. 02993

-. 03316
-. 03691
-. 03970
-. o4116
-. 04267
-. 04388
-.o04569
-.04713

-. 04791
-. 04847

-.04917
-.04863
-. 04787
-.04129

Exact
Integration
Solution

-. 01773
-. 02078

-. 02348
-. 02991

-. 03315

- .03690o
- .03970
-. 04117
- .04267

- .04390

-. 04570

-. 04713

-. 04791

-. 04847

- .04917

-. 04863
-. 04782

- .04129

Per Cent
Difference

.00

.00

.00

.07

.03

.03

.00

.02

.00

.05

.02

.00

.00

.00

.00

.00

.10

.00
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Time t/im

0.

.05

.10

.25

.35

.50

.65

.75

.875
1.00
1.25
1.55
1.80
2.05
3.20
4.20
5.00
10.00



TABLE XXIII

COMPARISON OF RADIAL DEFLECTION

RESULTS FOR SECOND LAYER AT

FIRST INTERFACE AND UNIT OFF-SET

Numerical
Integration
Solution

.02174

.02590

.02966

.03906
.04412
.05043
.o05561
.05860
.06193

.06490g

.07002

.07516

.07882

.08210

.08723

.093841

.1013

.1062

.1258

Exact
Integration
Solution

.02185

.02598

.02975

.03909

.0o4415

.05042

.05563

.05863

.06193

.06488

.07006

.07518

.07880

.08212

.08719

.09385

.1o141
.1062
.1258

Per Cent
Difference

.51

.31

.30

.08

.07

.02

.04

.05

.00

.03

.06

.03

.03

.02

.05

.01

.10

.00

.00
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Time t/7iz I

0.0

.05

.10
.25

.35

.50

.65

.75

.875
1.00

1.25
1.55
1.80
2.05
2.50

3,20
4.20
5.00

10.00



TABLE XXIV

COMPARISON OF RADIAL DEFLECTION RESULTS

FOR THIRD LAYER AT SECOND INTERFACE

AND UNIT OFF-SET

Numerical
Integration
Solution

.02571

.02964

.03310

.04137

.04558
.05055
.05440
.05651
.05880
.06077

.06401

.06709

.06916

.07098

.07699

.08061

.08277

.09088

Exact
Integration
Solution

.o2640o

.03025

.03361

.04172

.04586

.05073

.05457

.05665

.05889

.06087

.06408

.06712

.06921

.07105

.07708

.08063

.08289

.09086

Per Cent
.Difference

2.68
2.03

1.51
.84
.61

.36

.31

.25

.17

.16

.11

.04

.07

.10

.12

.02

.08

.02
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Time t/•1

0.

.05

.10

.25

.35

.50

.65

.75

.875
1.00

1.25
1.55
1.80
2.05
3.20
4.20
5.00

10.00



TABLE XXV

COMPARISON OF RADIAL STRESS RESULTS

FOR FIRST LAYER AT FIRST INTERFACE

Time t/z: 1

0.

.05

.10

.25

.35

.50

.65

.75
S.875
1.00

1.25
1.55
1.80
2.05
2.50

3.20
4.20

5.00
10.00

Numerical
Integration
Solution

2.497

2.224

1.995

1.500
1.277
1.041

.8786

.7973

.7166

.6527

.5579

.478o

.4301

.3909

.3349

.2697

.2046

.1656

.03975

Exact
Integration
Solution

2.495
2.223
1.994

1.501
1.278
1.041
.878o

.7960

.7160

.6516

.5579

.4786

.4298

.3904

.3350

.2694

.2016

.1649

.03793

Per Cent
Difference

.08

.05

.05

.07

.08

.00

.07

.16

.08

.17

.09

.13

.07

.13

.03

.11

1.49
.42

4.58
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TABLE XXVI

COMPARISON OF RADIAL STRESS RESULTS
FOR SECOND LAYER AT FIRST INTERFACE

Numerical
Integration
Solution

-. 03894
-. 04313

-.o4692
-. 05647
-.06172

-.06841

-. 0740o4
-. 07732
-.08099

-. 08424

-. 08971

-. 09488
-.09828

-.1011

-.1050
-.1091

-. 1128
-. 1147
-. 1189

Exact
Integration
Solution

- .03927

-. 04340
-.04709

-. 05653

-.06176

-. 06856

-. 07403

-. 07732
-. 08097

-. 08426

-.08973

-. 09488
-. 0981o
-. 1010

-. 1049
-. 1092

-. 1128
-. 1147

-.1189

Per Cent
Difference

.85

.63

.36

.11

.06

.22

.01

.00

.02

.02

.02
.00
.18
.10
.10
.09
.00
.00
.00
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Time t/c 1

0.

.05

.10

.25

.35

.50

.65

.75

.875
1.00

1.25
1.55
1.80
2.05

2.50
3.20
4.20
5.00

10.00



TABLE XXVII

COMPARISON OF RADIAL STRESS RESULTS

FOR THIRD LAYER AT SECOND INTERFACE

Numerical
Integration
Solution

-.02125

-.02203
-.02265

-.02388

-.02444
-.02496
-.02533

-. 02554

-.02569
-.02582

-.02607
-.02646

-.02645

-.02641

-.02661

-.02690

-.02633

-.02631
-.02398

Exact
Integration
Solution

-. 01568
-.01771

-. 01813

-. 02057
-.02170

-. 02294

-. 02382

-. 02423

-. 02467

-.02505
-.02556

-.02593
-.02611

-.02621

-.02624

-.02613

-.02585
-.02560

-.02407

Per Cent
Difference

26.1
20.5
19.9
13.8
11.2

8.1
6.0
5.1
4.0
3.0
2.0
2.0
1.3

.8
1.4
2.9
1.8
2.7
.4
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Time t/•1

0.

.05

.10

.25

.35

.50

.65

.75

.875

1.00
1.25
1.55
1.80
2.05
2.50
3.20
4.20
5.00

10.00



CHAPTER VII

NON-LINEAR VISCOELASTICITY

This chapter presents a review of the pertinent

literature on non-linear viscoelasticity with respect

to a consideration of the practical implications for

stress and displacement analysis. In particular, the

various physically meaningful types of non-linearity

are discussed with respect to the possibility of exten-

ing the techniques already discussed in this thesis

to these certain non-linear problems, or of the applic-

ability of other practical means of analysis.

The discussion is divided into four principle

areas: ageing effects, thermoviscoelasticity, finite

strain and geometrical non-linearities, and material

non-linearities. A correspondence between a certain

type of non-linear elasticity problem and a certain

form of material non-linearity is illustrated in the

last section where the analysis of an infinite linear

viscoelastic plate on a non-linear viscoelastic foun-

dation is presented.

VII-1. Ageing Effects

The constitution of many materials (for example,

concrete) is a function of the age of the material

(i.e. the time since the material was formed) during
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the time .of interest. Thus the creep compliance or

relaxation function of such a material is a function

of two times, the time (t-t,) since loading, and the

time (t) with respect to the time when the material

was formed:

yet) - P~zt-4)t) (235)

The effect of t, on •N) may be linear or non-linear,

but in either case this "ageing" effect introduces

additional complexity into a structural analysis.

Reference [66] illustrates the effect of ageing on the

creep behavior of concrete specimens.

The structural analysis of materials which exhibit

"ageing" effects has been largely ignored in the liter-

ature. This is in spite of the fact that many materials

do exhibit "ageing." However,, although the behavior

is exhibited, the response f(z) for a material that

ages, although beihg a function of the age since forming

as well as the duration of load, varies much more slowly

for a variation in t, than for a variation in t-t,.

That is, "ageing" effects generally occur over rela-

tively long times, while relaxation or creep effects

are often rapidly changing over short times. The

practical implication of this is that if the response

time of interest is relatively short, then the creep

or relaxation function can be approximated by a partic-

ular linear viscoelastic function at the time of (say)
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loading tk. That is, for a load applied at time t,:

( ~c, f(t-6k),4 (236)

This approximation will be acceptable as long

as t-t, is small relative to some "characteristic ageing

time." More explicitly, the above approximation should

be adequate as long as the difference

C(t-tKJ&,r- £C)t) (237)

remains sufficiently small.

If one finds, however, that the approximation

expressed by equation (236) is not sufficiently close

to the real materials behavior (that is, for long times

of loading, if the difference (237) is greater than

is considered allowable), then an analysis must be

performed which considers the ageing effects explicitly.

Little is available in the literature to guide such an

analysis (see, however, reference [103 for concrete

applications). However, the numerical approach in

Chapter IV can be, in theory, used to carry out such

analyses with only the changes to be discussed below.

The evaluation of the convolution integrals,

which are now of the following form:
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(where tj is the time of interest and t. is the time

of loading), can be carried out as before by dividing

the integrals into finite sums:

(239)

Every term in the sum of equation (239) is of the

form f(t-tx , t), and thus is presumably .known, so that

the integral can be approximated using only discrete

knowledge of •••~ and Yt-&4). In an analogous

way, the solution to the integral equation can be readily

obtained numerically.

VII-2. Thermoviscoelasticity

In all of the applications previously discussed

it has been assumed that either the properties of the

material did not vary with temperature (a very poor

assumption for most materials displaying viscoelastic

properties) or else that isothermal conditions exist.

This section discusses the analysis of .linear visco-

elastic materials under variable temperature conditions,

that is, thermoviscoelasticity.

The analysis under varying temperature fields

presents no unusual problems if the physical proper-

ties of the material are assumed independent of temper-
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ature, as shown by Sternberg C124D (1958). However,

if the more realistic assumption of temperature-depen-

dent properties is imposed, there appears to be no

general method of solution of the equations [1393

The general problem of temperature dependent

properties has been considered by Morland and Lee [84

and by Muki and Sternberg C86]. In both of these

papers, the assumption of "thermorheologically simple"

materials, originally proposed by Leaderman [673, was

invoked. Since this assumption is representative of

a large number of viscoelastic materials, the following

discussion will also employ that assumption.

"Thermorheologically simple" materials are mater-

ials whose characteristic functions (creep and relaxation

functions) obey the following law:

-. ti ) Y(F To (240)

where

f = "reduced time" = $(•

T reference temperature

T =any other temperature

experimentally determined shift factor,
•) a function of the temperature T referred

to the reference temperatureT

As shown by ,uki and Sternberg- 8 6 , the general

constitutive eauations under transient temperatures,
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for a " therz:oheologically-simple" material, can then

be written as follows:

51(t) t F~Ia
cP(7) rfz f

#;J

where

0

/ V
c/cl

c,(T(ei)) (243)

(244)
T(t)

and <(T) is t:,e temperature dependent coefficient of

thermal ex,;_. s on.

If the ccŽefficient of thermal expansion is taken

constant overa the range of temperature T(t)-T o, then:

(245)

and equations 9241) and (242) can be written in the

following m2, . r:

) aZ7 f/
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(247)

which give operators analogous to the elastic operators

for the transient temperature case.

It is exceedingly important to note that the

constitutive equatbns (246) and (247) will vary spatially

under transient temperature conditions even for an

initially isotropic body.

For the case that T(t)= To, a(T)= 1 and = t

so that the equations reduce to the case considered

in the previous chapters. If T(t)= T/ = constant,

then = t/a(Ti ), and the creep or relaxation functions

are all "shifted" by an amount logo a(TI). However,

they still can be handled as simple linear viscoelastic

functions and a simple correspondence between elastic

and viscoelastic problems still exists.

For the case that T(t) is not constant, two

possibilities exist. First, the temperature of the

body, while varying, may be uniformly varying through-

out the body. In this case there is no spatial variation

of the constitutive equations (246) and (247), and the

following operators can again be used as "equivalent

elastic constants":

2CaGFP z .i
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(249)

Just as.previously discussed, the bulk behavior

may reasonably be considered constant with respect to

time (but not with respect to temperature) in some

applications (see reference C32 ), or infinite in

others, as a fairly reasonable further simplification.

Use of the above operators will permit the formulation

of the solution to this type of thermoviscoelastic

problem in terms of integral equations of the general

form (53). Evaluation of the multiple convolution

integrals can be handled numerically as previously

described. For example, a single general convolution

integral becomes:

}/(fYf (P (250)

which can be written as the following finite su-m:

oLonb ob( in bite(251)Forany-o •ca,..b + tai d ) byo ert

For any •, •(•) or c_,(I.) can be obtained by integrating,



equations (243), (exactly or numerically), and solving

for t. This value of t can then be used to evaluate

/(f) or V, ( T ) , and in this way the above numerical

integration can be carried out. Although the book-

keeping would be somewhat complex, the principle is

relatively straightforward.

The second case with T(t) varying is the case

that the temperature varies non-uniformly through-

out the body. In this case, since the temperature

history varies from spatial point to spatial point,

the constitutive equations (246) and (247) vary spatially

also. In this case there seems to be no method in

general to use in approaching the problem. It would

seem, however, that the application of finite element

techniques such as are now beginning to see wider

usage offers a reasonable path to follow. Presumably

one could approach the problem step-wise in time, and

for any given time t the temperature and temperature

history of each of the nodes of each of the elements

could be used to calculate element properties at that

time, and thus the necessary stiffnesses or flexibili-

ties could be calculated. For sufficiently small ele-

ments and steps in time, one would expect this proce-

dure to yield realistic answers.

With regard to more rigorous approaches, Muki

and SternbergCB6 ] have managed to solve the problems
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of the thermal stresses in an infinite thermovisco-

elastic slab, and the stresses in a thermoviscoelastic

sphere. Morland and Lee C84] have also managed to

solve the problem of a hollow viscoelastic cylinder

reinforced with an elastic case under steady state

conditions. Their methods of.solution, however, seem

to offer little hope for obtaining a general method

of analysis, especially under transient te-.operature

conditions.

VII-3. Finite Strain and Geometrical Non-Linearity

In all of the previous discussions and examples,

the tacit assumption that the deformations could be

represented by the linear infinitesimal strain tensor

has been made. However, if the strains are large

(usually a strain greater than ten per cent is consid-

ered too large for the use of the line1°r infinitesimal

strain tensor), then a finite strain fo'rmulation must

be invoked. The theory has been discussed by Eringen[29]

and by Pipkin [96].

The theoretical groundw:ork for shall strains

superposed on finite strains for miiterials with memory

has been considered by Lianis C78] and by •ipkin and

Rivlin [97]. Strains of this magnitude are quite

uncomm,.on in -work involving concrete, aspohalt, or even

- 163 -



soils. Usually separation (failure) of the body would

occur before such strains are reached. Except in the

analysis of rubber-like materials, there would thus

seem to be limited application of the theories of finite

strain within the realm of common viscoelastic materials.

However, if such large strains are to be considered,

then Biot's approach using incremental deformations[17]

appearsmore practical than attempts to solve such prob-

lems directly. The use of finite element techniques

also offers hope for attacking these finite strain

problems.

A somewhat similar non-linearity occurs when

the deformations cause large displacements which can-

not be ignored when considering the equilibrium equations.

Buckling problems are generally of this type, and also

bending problems. for beams and plates, where a small

load causing small strains may cause large deflections.

For this type of problem, a correspondence between the

solution for an elastic body and the solution for a

viscoelastic body exists in the same sense as previously

discussed. Examples of this type of problem are Lee

and Rogers' solution for the finite deflection of a

viscoelastic cantilever beam 007](also considered by

Schapery [I12]), Baltrukonis and Vaishnav's solution [13]

for the creep-bending of a viscoelastic beam-column,

and Anderson's solutionC6] for the buckling of shallow

viscoelastic arches.
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VII-4. Material Non-Linearities

Although it would seem that large strain non-

linearities are not often a major cause for concern

in most analyses, the possibility that the material

exhibits non-linear responses at strain levels corres-

ponding to small strain still exists. As pointed out

by Arutyunyan CIO], for example, linear behavior can

be expected for concrete up to about one-half the

ultimate strength. Above this, however, the response

becomes non-linear. This is still generally at very

low strain levels (less than one per cent).

Possible approaches for solving boundary-value

problems in the regions of small strain with physical

non-linearity will be discussed below. Although a

sizeable amount of work has been expended on formulat-

ing acceptable characterizations for physical non-

linearity, little has been done to date with respect

to solving boundary value problems.

VII-4.1. Non-Linearities and the Theory of Plasticity

Before considering the general characterization

of non-linear materials with memory, it is appropriate

to consider the realm of application of such theories.

As will be shown below, such theories generally result

in constitutive relations that are cumbersome from

the point of view of both the analyst and the experimen-

talist. For engineering applications, it is thus
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desirable, when sufficient accuracy can be maintained,

to consider possible simplifications.

It is possible, for certain materials, to use

the theory of plasticity when large strains or marked

non-linearities exist. Reference [35D presents stress-

strain curves for polyethylene for four different strain

rates, varying from .022 inches per inch per minute to

.260 inches per inch per minute (a variation of over

100 times) for strains up to .40 inches per inch. The

data is clearly non-linear. However, the maximum vari-

ation in the curves for the different strain rates is

less than ten per cent. Furthermore, the curves can

all be approximated very nearly by bi-linear stress-

strain curves, composed of a linear-elastic segment

up to approximately .08 inches per inch strain, and then

a perfectly plastic stress-strain curv6. Clearly, for

most applications, the assumption that the material

has no time variation but does "go plastic" above eight

per cent strain should yield results sufficiently

accurate, for engineering purposes, for those applica-

tions where large strains are expected. (Metals generally

show approximately the same amount of strain rate effects

as the polyethylene in reference [35].)

VII-4.2. Non-Linear Creeo Analysis

Many materials, notably concrete at stresses
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above one-half the ultimate strength and metals at

high temperatures, can be characterized accurately

by non-linear creep laws for constant stresses. The

most usual form of such relations is:

i +-Eo (252)

Such non-linear creep laws have been used success-

fully to analyze the creep buckling of columns. Hoff

[52] has presented a survey of the approaches used on

this problem. T. H. Lin [79], in 1956, and Pian [94],

in 1958, have also presented such analyses.

Other similar approaches are also common, (see,

for example, references C10,66] ), and have been shown

to give good results for constant stress applications.

It is important to note, however, that a direct use

of equations such as (252) under variable stress condi-

tions may lead to erroneous results.

VII-4.3. General Non-Linear Analysis

As mentioned above, a considerable amount of

work has been expended on developing constitutive

relations for non-linear viscoelastic materials. In

particular, Green and Rivlin [38] in 1957, Eringen

and Grot D30] in 1965, Lianis [77] in 1965, Rivlin 0o3]

in 1965, and T. Tokuoka 029]in 1961 have presented
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theoretical developments for general non-linear mater-

ials with memory.

The general result deduced in the above papers,

for the case of small strain, is that the stress-strain

relationships can be represented by multiple-integrals

involving stress- or strain-rates, and certain kernel

functions. For the one-dimensional case, such a repre-

sentation becomes:

o(
(253)

2 2

-9-. -- a

where the kernel functions G( ), G2( ), G 3( ), **

are symmetric functions of their arguments. It is

readily apparent that the experimental determination

of the kernels (relaxation functions) requires a large

number of independent tests. G,(t,) is a linear material

function described by a single curve with respect to

a single time coordinate, while G2 (t,,t 2 ) is a second

order function describable by a surface with respect to

two time coordinates, while G3 (t, ,t 2 ,t 3 ) is described
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by a hypersurface with respect to three time coordinates,

etc. [32]. The experimental determination of G,( ),

G2 ( ), and G3 ( ) has been discussed by Ward and Onat

0 34] in 1963.

Some attempts have been made, for one-dimensional

cases, to determine the kernel functions experimentally.

Examples of such attempts are given by Ward and Onat •134]

in 1963, Hadley and Ward [41] in 1965, Leaderman, McCrackin,

and Nakada 6 9] in 1963, and Onaron and Findley C88] in

1965. onat SEg]has also recently discussed the problems

and approaches of such experimental studies.

The possibility of solving boundary value prob-

lems for bodies governed by constitutive equations such

as equation (253) seems even more formidable than the

experimental problem of determining the appropriate

kernel functions. Some investigators have made progress

along these lines, however. Appleby and Lee [8]have

shown that for short times a third-order theory (through

the triple integral of equation (253)) can be simpli-

fied to include only single integrals, although a large

number of these integrals will occur. Huang and Lee [55]

have also considered the problems of incompressible

non-linear viscoelastic materials under small finite

deformation and for short time ranges. By means of

the equations they have derived, they were able to
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analyze a pressurized viscoelastic hollow cylinder with

an elastic case (for short times) by utilizing some

fairly involved numerical analysis.

Other approaches are also possible. Vaishnav

and Dafermos 033] have managed to analyze an infinitely

long, thick-walled, non-linearly viscoelastic cylinder

with an elastic case by expressing the constitutive

equation in non-linear differential form. With the

assumption of an incompressible material, they were

able to carry out an analysis using fairly represen-

tative material properties for the quasi-static case.

The analysis, however, required extremely tedious and

careful numerical solutions.

VII-4.4. A Simplified Non-Linear Constitutive Equation

It would appear that the general constitutive

equation (253) suffers from excessive generality.

In order to arrive at somewhat simpler relationships,

Schapery CII11L3,1114] has invoked irreversible thermo-

dynamics. Halpint43]has derived equivalent simplified

relationships by considering the kinetic theories of

elastic and viscoelastic responses. In both cases,

constitutive equations of the following form have

been theorized:

(i) 6? (254)
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where C~j.(Z)) is some non-linear function of the

strain (T) .

Although the constitutive equation (254) is

certainly not sufficiently general to apply to all

non-linear materials, there seems to be ample evidence

that it can accurately describe the non-linear response

of many viscoelastic materials. Halpin's paper L43

presents some experimental evidence of this, as do

two of Schapery's works [111,113] . In addition, Leaderman

[68 ]presents some experimental verification.

The advantages of a constitutive law of the type

given in equation (254) are obvious. First of all,

only one kernel function G(t) must be determined for

the uniaxial case, and only two such functions for the

three-dimensional case. Furthermore, these kernel

functions are just the relaxation functions of linear

viscoelasticity, and thus experimental techniques

for their determination are known. In addition, the

analysis of bodies for which the constitutive relation

(254) holds seems relatively straight-forward, since

there is a correspondence between a certain type of

non-linear elasticity problem and this type of non-

linear viscoelasticity problem. To see this, we write

equation (254) in the following operational form:

S(is -l ( ) eg)z-) Zjf(j (255)
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Clearly then there is a correspondence between

the operator within the brackets of equation (255)

and the modulus G in the following non-linear elasticity

relationship:

== G 6 P(,) (256)

Hence if a boundary value problem can be solved

for a body obeying the non-linear elastic law of equation

(256), then the non-linear viscoelastic solution can

be obtained by means of the techniques of Chapter IV.

This correspondence is illustrated below on the problem

of determining the deflection of an infinite linear

viscoelastic plate on a non-linear viscoelastic (Winkler)

foundation.

VII-4.4.1. Deflection of an Infinite Linear Viscoelastic
Plate on a Non-Linear Viscoelastic Foundation

The geometry to be considered in this example

is illustrated in Figure 19. It consists of a plate,

infinite in horizontal extent, supported by a founda-

tion which supplies only a vertical reaction. To

illustrate the non-linear elastic--non-linear visco-

elastic correspondence described in the previous section,

the deflection of an incompressible linear viscoelastic

plate on a foundation supplying a non-linear viscoelastic

vertical reaction will be analysed under the action of a

single load of magnitude P at the origin of coordinates.
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The solution for the deflection of a linear elastic

plate on a non-linear elastic foundation has been given

elsewhere by the author. This solution was obtained

by means of a finite element analysis of the plate,

since an exact solution of the non-linear problem has

not been found. If the plate is divided into appropri-

ate finite elements, and the flexibility coefficients

for each node are calculated, then the equations of

vertical equilibrium for each of the nodes provides

a sufficient number of equations to determine the deflec-

tions at these nodes. Since the problem is axially

symmetric, only the nodes numbered in Figure 19 need

to be considered. If the flexibility coefficients

are denoted Ea1j (Ea, gives the force at node i due to

a unit deflection at node j), then the equilibrium

equations to be considered can be written in matrix

form as follows (the details for calculating the

flexibility coefficients have been given in reference

02] and will not be repeated here):

c/,, , .2

0'• /~e' 0'0 O' L3

7P 7p k7/7)
WI

W2

Wn

ZE -
_ K#(w,)

(257)
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where

VV. = deflection of the i th node

5 = Young's modulus of the plate

and the foundation reaction is given by the following

(non-linear) expression:

S=K /(y,) (258)

As has been illustrated in reference [12], the

above system of simultaneous non-linear equations can

be solved for the nodal deflections by using a pertur-

bation about the linear solution. First the forces

applied to the plate due to the deflection are added

to both sides of equation (257) to yield the following

form:

W(aO /KP*tV2)
cy2 -r cKON,1

()

(259)

If w. is known, then '(v) can be calculated, and

the square matrix in equation (259) can be inverted

to yield the wt 's. Clearly an iterative technique is

- 175 -

III

W/7



suggested. In reference I/2], the following procedure

was found to work quite adequately.

First, the linear part of f(w,) is used so that

the terms F(0)/w i may be immediately calculated.

Using these results, the equations (259) may be solved

to yield a first (linear) approximation for the w,'s.

This approximation is then used to calculate the TN~)/wi

terms, and a second approximation is then obtained by

resolving equations (259). This procedure is repeated

until the relative changes in each w; are less than

a prescribed amount.

Consider now a plate composed of an incompressible

linear viscoelastic material with an "equivalent

compliance" given by the following operator:

TI equivalent = )(O)- (260)

and a foundation which yields a non-linear vertical

reaction of the form suggested in the previous section,

that is:

The following "equivalent foundation modulus"

is suggested by equations (258) and (261):
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A equivalent /((o)- d(262)

Replacing 1/E and K by their equivalent operator

expressions, the matrix equations (259), which express

the equilibrium of the nodes, can be written as follows:

/,ct q 2

92(t)a,+- j

,72

vv

V(2

PW~)i

62

Q

(263)

where

q (264)
69Jo

and it is assumed that the load P is applied as a step

function in time.

The matrix equation (263) gives a set of n simul-

taneous non-linear integral equations in the n unknown

- 177 -

Mai

"TA) a A



wi's. They can be solved using the same perturbation

technique discussed above for the non-linear equations

in combination with the technique for the numerical

solution of the integral equations as previously discussed.

For clarity, the i th equation will be considered in

the following discussion.

Denote the inner convolution integral of c7(,) as

ci6d). That is:

( aD() CIA .o K( 6))( dD N (O) (265)

In the numerical example to be presented below,

K(t) and D(t) are taken in the form of Dirichlet series,

and od() is then calculated exactly using the subroutine

INTEGR.

With oC() now assumed known for any value of t,

.( ) can be approximated by the following finite sum:

J=] (266)

Separating the terms involving w/(t,), gi(tm ) can

be divided into the following form:

o(6;,t)., ) * 6< (20]j{4) +4 4o, )-((](W4 (267

.,I! -F(,))f- [ -"
J=2
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t Substituting the above expression for gi(t,) into

the matrix equation (263) and rearranging, the following

set of non-linear (algebraic) equations are obtained:

[-60)) f(WI (14 I~~l I,S 2W, 62

2/ 0224 2 W2
KL/

(268)

j=2

The set of simultaneous (non-linear) equations (268)

can be solved using the same perturbation technique

described above, where now one must iterate at each time

t i . Note that the right-hand side of equation (268)

contains only known constants, and terms of the form

f(wi(t, )). Since wi(t,-j) has been calculated at a

previous step, f(wi;(tmj)) can be calculated directly.

The above procedure has been programmed and a
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program listing is given in the appendix. To illustrate

the results, K(t) and D(t) have been assumed in the

following form:

f()= 20.(/- e + ) (269)

• C (270)

These functions are plotted in Figures 20 and 21.

The results for a plate of two inch thickness, with a

load of 16000 pounds, are plotted in Figures 22 and 23.

The function f(w(t)) has been taken as follows:

(linear dimensions
: ed i-n (273)

r(wit)) == v(t)- /6 [WC inches)

In Figure 22 the maximum deflection is plotted as a

function of time. For comparison purposes, the linear

viscoelastic solution, and the non-linear elastic and

linear elastic solutions using the zero time compliance

and foundation reaction, are also plotted. Clearly the

non-linear behavior has a major influence on the maximum

deflection in this particular case. Figure 23 presents

a plot of the deflection profile for t/? = 0.0, t/-- = 1.0,

and t/h == 10.0. The magnitude of the deflections change

markedly, but the general shape appears to remain sim-

ilar.
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VII-4.5. Concluding Remarks

Material non-linearities have been briefly con-

sidered in this section. Although a considerable amount

of work has been expended in recent years on developing

constitutive equations for non-linear viscoelastic

materials, it would appear that the more general approaches

are too cumbersome for reasonable application. Further-

more, until the rational basis for such non-linear visco-

elastic constitutive equations are developed and verified

more extensively through experiments, their use seems of

doubtful value.

Until such work has been carried out, the use of

the more firmly grounded theories of plasticity, linear

viscoelasticity, and creep is indicated for most appli-

cations. In those cases where the use of these theories

does not seem appropriate, then an experimental consider-

ation of appropriate constitutive relations may be

necessary. In this case, simplifications such as the

one considered in section 4.4. of this chapter will

decrease the complexity of the structural analysis.

-I1
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CHAPTER VIII

CONCLUSIONS

The method of analysis presented in this thesis

for stresses and displacements in linear viscoelastic

bodies has three principle advantages.

1. The Laplace transform is not needed, and thus

it is not necessary that all of the equations and boun-

dary conditions have Laplace transforms.

2. The application of the above method is rather

straight-forward, and requires only a few steps for

the problems where the equivalent elastic solution

can be written in the form of equation (46).

3. The method of solution of the general equa-

tion, using either technique to evaluate the multiple

convolution integrals, allows realistic material repre-

sentations to be used.

The example in Chapter V concerning the deflection

of a viscoelastic cantilever beam illustrates that

where exact solutbns can be found, the method presented

herein gives equivalent results, and that the numerical

techniques used can yield extremely accurate solutions.

The example in Chapter VI, the analysis of the

stresses and displacements of a three-layered visco-

elastic half-space under a circular load, illustrates

the applicability of the technique to problems involving

*Subject to the limitations discussed in Chapter III.
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different types of linear viscoelastic materials, and

the straight-forwardness of its application. The feasi-

bility of evaluating many-fold multiple convolution

integrals by both techniques is also apparent. Further-

more, the analysis should be of engineering value in

foundation and pavement design.

Reasonable approaches to certain non-linear prob-

lems have been suggested in Chapter VII. In partic-

ular, a correspondence between a certain type of non-

linear elastic problem and non-linear viscoelastic

problem has been formulated. The use of this correspon-

dence principle to determine the deflection of a linear

viscoelastic plate on a non-linear viscoelastic founda-

tion illustrates the ease of such analysis when used

together with the techniques discussed in this thesis

for linear viscoelastic analysis.
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CHAPTER IX

FUTURE RESEARCH

The method of analysis presented in this thesis

appears to be easily applied, and quite accurate.

Furthermore, it would seem that it could be applied

to a large number of problems. For this reason the

possibility of generating packaged computer programs

for the evaluation of the multiple convolution integrals

and for the numerical solution of the integral equation

warrants future consideration.

Also, the use of the technique on those problems

where the time variations of the loading are very

rapid (assuming that inertia terms are then likely

to have to be included) would warrant some investiga-

tion. Although there have been no signs of problems

to be encountered in such applicatbns in the present

work, such rapid variations in loadings could possibly

cause numerical difficulties.

Further investigation of the methods of analysis

for non-linear problems, considered briefly in Chapter

VII, should also be considered.
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OC ..

C NI IS THE ECUIVAL.ENT TO M.N NOT IN C'ý-O"N'
SN 1=1

C. AL.= LENv GTh F THE ;EAiT
C C = HAL..F THE D)EFIH OF THE BEA•
....C X. ISTACE Fr-f"M THE FREE END THE DEFLECTIPON IS DESIIFUED

RFAD(5,II) ALCX
11 FORMAT(6F10.5)

C AI = ,''ENT F I NE'T IA C. THE BEANV
AI= 2 :: ( C"-- =:3 )/3

C THE PFf( ) TEF.S ARE THE -HI S OF IT•F TEXT
PH (2) = ( X 3) - 3. A L . L X 2. (AL 3)

PH )= . ... (" ( ) 27,: C "C "( L-X)/2.

C TH( ) IS THETA 1 CF'- THE TEXT
THlI) =54.-4 A I

C ALAMI.. AND ALA2 AEF CiNST.A:TS FOR THE EYACT S0LUTION (FC:R C.aSE
C THA T IT IS Krl ' .:

SAL l' I =PH (1) /TH( 1)
ALA•22- H !(2 )/THi( )

C.. THL VLCTii-, Cr'"TAINS T!. C0nSTA TS OF THE il PIC.LET SERI S
C .R FPRE S- 11TAT I ." F! O-' Ti: SHiEA". REL AXAT I ,ON :C', M ILUS

RLAC(5 •1tl) (G(J) ,J=I,N)
C ThE VECT. AK( ) C ':.ITA IS THE CONSTANTS F R' THE .DI !-ICIiLF 1 SEI IFS
C- R"FP ES NTAT It, CrF' TIHE B!ULK ELAXATI-O. '-,O1 UjLUS.

REA-- 5, 11) (
C THE \ EC( 2 (

FREAC (5, 1 ) ( (
..:'. I L C( " ,2) (C (

; , I T[ (-., 2) ( AE
.2 IT ( , )(2 F{UR;-'': ( lli /•,H.

),J=1 ,9 )
C . ,T,.IS THE CFN!STAN1 S FOR THE LOAl SE. IF S
, Jl I t, ')
,J=- , 1 )
) ,J= 1,!)
,J 1,M)
"P TI /(o.1 .5 }.5 )

- 205 -

C. .
C
C ........ .. . . ........ .......

C THIS IS THE YAIN PROGRAM; TO ANALYSE A LINFAR VISCOELASTIC BREAtl
.C ......USING THE NU•";ER ICAL INTEGRATIOIN OF THE CCNV,3LUTION INTEGRALS.
C THE NECESSAPY SU!RUiT I!NES ARE TI'ME1, VALUE-, INTFGR, SOLVIT, ANif)
C -.-. REJECT. THE INPUT ,ELAXATION FtJNCTIC'S ARE TAKEN AS DIRICHLFT
C SERIFS F"iP. CO)NVENIEICE AND FDOR CPt. VPARISON WITH THE EXACT SCLI'TI" , 'v

C .. AND WITH TF.E SOLUTION T•OBTAINED USING THE OTHER INTEGRATICON
C. TECHN IQUI!E.

... DIMENS IN G(20) ,AK (20) ,P (20) ,X(61) ,F,(61 ) ,PH( 18) 9,TH 9) ,E( 7 e61 ) t
1GAM( 61,7,18)
COMm'CjN BETA(61) , (S, t ? ) ,DELTA(20) ,T( 1. 9 v'MN,SI (61)

C THE LCLP THROUGH 1.000 ALLOlS SEVERAl. SFTS OF: DATA TO PE RUN.
CO o10C JJJ=1,100 C

C N = NUMBER CF TERiFS I!\ DIRICHLET SERIES
.C .NNN = NU•Br OF STEPS IN EACH INTEGRATION LOOP REFCRF DOUCLI:G
C N8 = NU:MiBEPR OF 1I,"IES THE LOOP (FCR INTEGRATION. IS TO BE DOURF'LED)
C DEL = INITIAL SPAC fiC OrF TI!E

READ ( 5,1) N,I : N P,, - , 0N: • i..DEL
C NX IS A DU'.iY FL;F TiHE INPUT INTO THE SU..BRGUTINE TI.EI.1

NX=O
1 FORMI.AT(35,F.1.•5)

C MCN C3(1NTRi.LS TH E BEGIr•NING OF SEVERAL DUO LOOPS WHICH VAFrY DEPFNDIN
C CN WIHE THE!R IT IS THIE FIRFST OR SUBSEQCUE NT T.I..ES THROUGH THE .LOP

FN=1

.0002

.0004

.0007

001C

0.; 011

.0012

.0013

0OO17-

.00 -' 19

,) 020

.0022

~ --- I~"~II~~I-'---~I~-CI-_·C··IC~-ICI·I~ -·---~~l---T~·r~mrrr~·n

0
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C-L -----------_---.--..---.-....---- '" "--.. . .. " ..- . .

C AK1 IS USED TO NON-DIMENSIONALIZE THE RESULTS .WITH RESPECT TO THE
. BULLKi 0DU0iLU.SAT__ZLER.0I Ti.,I F

;.0024 AKI=0.
;.0025 -00 . 2_J=1,N ...... ... .. . . .. . ... -. .. ..

;°00-2.6 12 AK1=AK1&AK(J).
i.0~ 7_- .. .. O. - _ 13. _ d.=..J ., N.
;.0C28 G(J)=G(J)/AK1
;.0029 13.AK .J ) =AK J ) IAK 1.

..C SOLUTION MUST BF MULTIPLIED BY 1/AKI
S-_C.. S.TAT .1.0 _.I _TH1E BFGINNING OF THE REPEATED (..LOOP) PA .T OF THE

C PROGP.AM. THE SUiB fOUTINE TIMEL COMPUTES THE RELEVANT TIMES A14D IF
SC. _.THS I.S.THE FIRST ENTRANCE .TO STATEiMFNT 10, THEN THE R.ELAXATION
C TIMES ARE CCOIPUTED AND STORED IN THE DELTA( ) VECTOR

.0030. O.CALL.... E(E._E1(NNEL,NX ...-. . .

C THE LOAD IS EVALUATED AT EACH OF THE TIMES, USING THE SUBROUTINE
- -...C .... .VALUE (AND _.TH.E DUMMY .APRAY. ( )..) AND P.RINTED OUT

;.0031 00 14 J=1,N,
.0032 . ... .. 14.. ..1 I ) ( J ... ..... . . . • . ..._ . -. ._ ....... ...... 034 .... 2J ...
;,0033 CALL VALUE(Nl,NNN)
.00.34 ... WR.ITE (6v,4)
;.0035 WRITE(6,3)(T(L), BETA(L),L=1 , NIN)

o.0036 ... F.3.FORMiAT(2E.l 5.8 .
.0037 4 FOR'AT(II /12H INPUT CURVE)
........ HE. _P.. _VALUES _ARE. .STORED ...IN .THE. ARRAY_ _E.(..,.) ,. _I_N THE FI.RST .COL U%'N

,.0038 DO 5 I=1,NNN
,,0039 5 .E.( I,.T.- =.B.E. TA .I.. - ---........

C THE VALUFS OF THE BULK RELAXATION MODULS ARE COMPUTED USING THE
.-...... ._-. :SUBROUT.INE, VALUE,. THEN. PR.INTED. OUT. AND. _THEN. .STOEOD IN E(2, .) .......
.0040 DO 15 J=I,N
., . ... 15. B ( L.., J.) -_AK.( J). .

.OL .2 CALL VALUE(N,1,?NN)

.0044. WRITE(6,3)(T(L) ,,QETA(L) ,L=1,NNN)
.00.45 . .0..-16. 1=i ,NN .. -

.0046 16 E(2,I)=RETA(1)
-- ,TE CONVOLUTION OF...THE LOAD AND THE BULK RELAXATION IODULUS IS
C COMPUTED NUMERICALLY, USING SUBROUTINE INTEGR, AND STORED IN THE

.0047 CALL INTEGR(iN,NN,ý&E,GAM,1,2)
.---C.--£E. H i.E..SHEAR. ELXAI.ION_••0QLUS I.S_ CO'PUTED .USI.NG ..T SUBOUT INF

C VALUE, THEN PRINTED, AND THEN STORFD IN THE ARRAY E(2,I). THE

_--.-.----- -_ -B_U.L.K._.R.E.LAXA.T_IN _ T _S SA.VED. AND __ST. RED_ IN _.B.ETA(). TEMIPC R A RILY
.0048 DO 17 J=l,N
0 C.49. ..... , J.) =G (3 J)
.0050 CALL VALUE(N,1,NNN)
O.51. R E (.6,A..L_ ..... ..... .. ..

.0052 WRITE(6,3)(T(L) ,BETA(L), L=, NNN)
•.0.0.5.3_ _.O O. _I_8. _ -_=_ 1.,e.!_..
.0054 SAVE=E(2,I)
.0055 E(.2,1I=53E-.TA(I) .

.0056 18 BFTA(I)=SAVE
C T.UE _C.NVOLUT IP eF. P.AND TH REL.AXAT.IIJ MODULUS IN SHEAR IS .....
C COMfPUiED A',ND STURFD IN THE ARRAY GAM( , ,2)

005. CALL. IN T _TEGPCI( I t." 4 r3A (N , NN,,G A )
C THE b;ULJK R~ELAxATION 'FODULUS IS TRAN.SFERRED BACK TO E(1, ), MF.D

C
C...... ••C. - -- -- -" .. -206 -
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C THE CONVOLUTICN CF THE TWO RELAXATION MODULII IS COM!PUTED AND
C SI_, TORED.._ I NGA L 3

.0058 00 19 I=1,NNN.

.0059 ...... ... 19. E ( , [.L-BETA (t)

.0060 CALL INTEGk(NL ,N'NN,E,GAM,,3,2)
..... C .. .HE CNVCLUTION RESULT OF THE RELAXATION MODULII IS TRANSFERRE[)

C TO GAM( ,2,3) FROM GAM( ,3,1)
.0061 .. 20 1..= 1,N N .
.0062 20 GAM(I,3,1)=GAMl( ,2,3)

.. C...H E I TEGAL _ FQUATION IS SOLVED NUERICALLY USING THE.SUPROUTI .
C SOLVIT. THE RESULT IS STOREO IN S( ).

.0063 ........ CALL SOLVIT(Nit';.,Pri,TH,GAM,2,I1 2,3)

.0064 WRITE(6,7)

.0065 CRMAT _(1H_/9H ._SOLUTION)-
C THE EXACT SOLUTIONr' IS CALCULATED AND STORED IN THE VECTOR EX( ),
..- AND THE PER.CEIT .ERROR .IN THE NUMERICAL SOLUTION IS CALCULATED

C AND STCRED IN• ERR( )
.0066 -D-.. -....... . _DO-. 22 -I =I, I -INNN . ...N. . .. ..... ..
.OC67 EX(I)= ALA I (EXP (- 1 T(I))- 1.) -10.) ALAM2 T (I)
.0068 ... F (1-1) ... - 23, 23, --------.. . .
.0069 24 ERR(I)=(EX( )-SI(I))/EX(I )'100.
.00700 _ GO 0T. _22 ...
.0071 23 ERR(I)=0.
.0072 .. . 22 CONTINUE .I NU E .

.0073 WRITE(6,21)(T(L),SI(L),EX(L),FRR(L),L=1,NNN)
S00.7 4 _____.21 .EGCRMAT ( 4E1 5. - ) ............ ", ...-.

C N8 IS ZERO CONLY WHEN THE LOOP HAS BEEN DOUBLED N8 (ORIGINAL) TTI:ES
.0075 ...... . IF(NS) 8, , 8 ..
.0076 8 N8=N-1l

... . THE....SUBOUTINE REJECT .SAVES .THE _APPROPRIATE VALUES TO. REDCU&LE.
C THE SOLUTION LOOP

.00 N 1 CALL REJECT IN CA
.0078 N1=MN

................ ... ..THE SPAC INi G I S nOUtBLED
.0079 DEL=DEL'2.
. 0 0 80) . .-- .... N X= 5 .. .. ..... . .... . . . . . . .

.0081 GO TO 10

.0082 . CNT INULE ..

.0083 1000 CONTINUE

C

C

C

C

C

C
- ... .. .... C - . .--- ~-- .... .

C

CC
C
C
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··- ·L........-.- - . . .

C

C THIS PROGRAM IS 10 AN
C .. THE EXACT INTEURP.ATI,• "

C FUr! OF DIRICrHLET SER
.. C SOLVE, INTEGR, VALUE,

C EXACT SCLUTION .:H[ERE
C ..... SEP, IES Rf:EPRE SEN!TAT I.O'I
C INTEG(I;AL E OU((AIO A N IS

... R...... IGHT HA!D SIOE AS A
.0001 DIMENSIN G(8 ,20) ,D(
.0002 CO ,"ClON X(201, (P ( ,20)

11I (201)
C NNN .IS THE NUDER E IOF
C SOLUT .1CN. THUSF AkRE

.... C .BY SUL6COUTINE TI:F.
,.00031

.00CC4
1.0005
.0006
.0007

ALYSE THE VISCCELASTIC CANTILEVER nEAt-! USI 'G'
PROCEDURE. THE INPUT FUNCTIONftS tR.E IN TUHE

IES. THE NECESSARY SUrPROUTINES APE TIME,
ANrD CVEFIT. THE SOLUTION IS CrOPPAfRE[) TO TH'E

APP.LICAEBLE. THE SOLUTION IS FITTED WITH A
AND THEN THE .ORIPGINAL LEFT-HAND. SIDE CF THE

CUP'.PUTED AND PRINTFD FOR COMPARISDN WITH ThE
C HEC K.

,20) ,FX( 20 ) ,H( 8,20) , ARRAY( 12 ,50) , ERR 1( 200)
, T(201) ,DELTA(20),BETA(2nl),D(&,20), "

STEPS TO GE COJiPUTED) IN TH4
LOG STEPS, THIFE SIZE OF THE

NNN =8
AR;RAY IS THE INVE-RSF OF THE COLLUCATI CN '-ATRI
CCOMPULITU) USING SUW•R!LUTIlNE TIME. THIS ARPAY I
CVEFIT.
READ(5,

. W RITF(6
.1 FURNlAI
15 FC1RN.iAT (

C THE IFCO
DIO 1000

1)((AF.PS.AYI(1,J), I=1,12),J=1,12)
,15) (p( AP.AY( Ji t, I=1,12) ,J=1,12)

P.. I T A r,.T A Y/(4E15. 8))
P TIIPCIG',H 1!000 ALLOWIS MULTIPL.E SETS OF

II =1,Il0

E NIJMEP I CAL
M PEINr, DLTERPIN.IED

FOR THE DELTA S
USFO IN SU3ROCITlINE

DATA TO tE EXECUIJTEr

CI = HALF THE DEP1iH OF THE BEAM .
C. . AL = LENGTH OF THE BEAt
C Xl = DISTArNCE F`RO . THE FREE FND THAT THE DEFLECTION

i09 ....... .. . .......READ (.5, 2)C 1 i,.L, X1
. WRIITT ( 6, 16 )CI,AL , X1.

.16 FO:,IrAT(].4H BEA!":1 GE.O:ET Y/I(3F1. 0.5))
12 2 FO 'AT ( 3F 10 . 5

. .C . AI = i.i"ENT CF- ItE.rl IA F THE BEAM

13 AI=2. ( C i - 3)/3.
C .. TI AN T2 CFlRfESPON.D TO THE PHI S OF THE TFXT

1 T2=(X 1: ) -3. A. 4 AL X 2. ( A L* 3)
15 T I=3 .T:2f27. "C 1 C I( AL-X1 )/2v

.0 016...

.0019

.0020
.0021
.0.022

.0023

.0024

.0025

IS DES IR F.

PH CIR'PE.ESP{UNDS TO THETA(1) OF THE TEXT
PH=54. A.I1 .

C ALA:., A• AL A I A• E CUiLIST A-TS
ALAM= 11/PH1
A LA." 1=1 2/FH

C Hf- L'  UP T r'J 37 7 ZE'' S T HE
D(i 37 I= 1,8

. .00 3 7 J=1,20
0(1,J)=C.

SG(l.J)=0.. .....

SB(I,J)=0.
37 H(I,J)=0.

C THE 'I;hPUT SE. IFS P FPf ES,. _iTAT
C THE Li. ,. ALL HIF L% G)f i., A
C IS THE SH•i--R EL XATI . ' .i;

C M"• U.US, A,: G(7, ) IS THE .
K 'EA'. ( ,3 )."i, ( (n ( , I ), I .) 1 ,.., ) ,J

IN THE EXACT

ARRAYS TO BE

S2LUTIO1.TI

SUSED SUS[lSEQIFN',LY

IONS TF rC THE RAELAXA\TI'1 FUCTI f S T'.
:E READ I.NTO. THE G( , I A~ AY. C( 1,
LUJS, G(2, ) IS ThE PULIK FFLT' X.AII C

1A3) FtC T !
=1,3)

. 209 -
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C

;.0026 3 FORMAT(IIO/(6FO1.1))
.002 i WRl.IT.E (6LN.7_)i N ,(.(G(J ) , I JN , ) J= N _,3 )

l.0028 17 'FORMAT(7H CURVES/I11/(6F10.3))
S ___c HE .SHEARP RELAXATION MiODULUS AND THE. BULK RELAXATION MODULUS -AE

C NON-DIMENSIONALIZED BY DIVIDING BY THF BULK RELAXATION FUNCTION
-- _ --- C _A.T. _Z ER. 1I ME-
.0029 SUM=O.
.00 30  _DO O._.I~, N
.0031 40 SUM=SUM&G(2,I)
100.032- .DO.LJ1-.,
.0033 DO 41 I=1,2
.-00.43.4. l _4_....G.I.I ,J)=G(I, J )/ SU...

C SOLUTION MUST BE MULTIPLIED BY 1/SUM
C SU?,OUTINT .. E CALCULATE.S THE.. NNN APPROPRIA E._T I ME VALU FS,
C AND THE RELAXATION TIMES (DELTA( ))

.0035 .. -. .. CALL TIME(NNN) ........ .

C THE EXACT SOLUTIONS ARE CALCULATED AND STORED IN THE VECTOR EX( )
0036 .. = 1, N .... .... 3- .6- - - - --N

i.0037 42 EX(I ) =ALAM•"(-EXP(-.1 T(I)) 1. )/.1 •ALA I I'T(I)
C THE PER .CENT ER, RORS- WILL BE STORED IN' THE. VECTOR ERR( )_ ( .W!N
C EXACT SCLUTION IS APPLICABLE)

.0038. ERR 1)=0, .
C SUBROUTINE VALUE IS USED TO CALCULATE VALUES FOR ROTH RELAXATION

~. C- MODULI I AND. FOR _THE _LOAD, _•SO _THAT THIS _DATA CAN BE PRINTED OUT
.0039 DO 4 1=1,3
.004. 0 0.... -.. 0...... O 5 J=1,N ... .... ". - - -

;.0041 5 B(1,J)=C(I,J)
;.0042 ...... .... CALL VALIJE(N,1,NNN) .... _.. . .... .. ...... . ... . ..

.00,o 3 WRITE(6,24)
.;4OL tA• .. T , 6"RITE(6,6),(TL(L 1 ,BETA(L), L=-, NN H -.

;.0045 6 FORMAT(2E15.8)
..C .. THECONVCLUTIO OF THE TWO RELAXATIN MODULII IS CALCULATED AND
C THEN PRKINTED. THIS IS A TWO STEP OPERATIOQN--FIRST THE RESULT IS

.C .... FOUND USING SU9ROUTIE INTEGR, AND THEN THIS RESULT IS EVALUATED
C USING SU1BROUTINE VALUE.

k.0046 ......... . CALL INTEGR(G,N, 1,0)
.0047 CALL VALUE(N,2,NNN)
.0048 .. W....R.. . RJI TE( 6,35 )
;.0049 WRITE(6,6)(T(L) ,BET (L),L=1 ,NNN)

.C" TH-- E _COrVOLUT I C. OF ETE R.ELAXATION MrDULI_ IS MULT I L I ED BY PDH A)'!1
C STORED IN THE ARRAY D( , ) FOR FUTURE USE

. 005 0 .... D .7. .0 I I= 1 ,2
;.0051 DO 7 J=1,N
.00 52 ... D(I,J)=B(I,J)'PH .

C THE BULK RELAXATION MIODULUS AND THE LOAD SERIES ARF TRANSFEPEED
.---- ........ lIN._...1.- THE _ARRAY H _ ___. THEN THE CONVOLUTION OF THESF T1i;O SERIFS
C IS CALCULATED USING SUBROUTINE INTEGR.

;.o.0 .5 3 .. ...- O .. _ 8 I 1._ I , 2 -- . . . ...... . . . .. •. .... .. .. . ... ....... .. . . . ..

;.0054 DO 8 J=1,N
;.0 55 8 H (.. .. 8,J)=G(I 1,J) . ........ . .......... ..
;.0050 CALL INTEGR(H,N, I 0)

... _.. _ .... .HE. RESULT OCF. THE..LAST CON1VD'LUTICN INTEGRATION IS 'ULT IPLIFO LY Tl
C AND STOIRED IN THE ARRAY BR( , )

; D..0,O,7 DO 9_ _ I1 = ., 2 .....

.OL 3 DO 9 J=1,N
;.0059 . ... 9.. BB(I,J)=B(IJ) T1 - ... T 1

C

---.. --..... .... ..--- - 210 -
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C
C THSHE.A RELAXATI.O.._ODULU S ..AND .... THE LOAD SERIES ARE TRANSFER RF
C INTO THE ARRAY H( , ) AND THEN THE CONVOLUTION OF THESE TWO SERIFS
C....- C -I.S _CALCULATED._ USING SUBROUTINE.. INTEGR.

.0"O D000 10 J=1,N
5..0,t 1 1. H ,J )= G.(.1 , J ) ... .... _......... .. . ..... .............. ... .. G. 1
,.0062 10 H(2,J)=G(3,J)
.00 3 CALL .. INTEGR (H ,N,1,O) .. ......... .. ..

C THE RESULT OF THE LAST CONVOLUTION IS MULTIPLIED BY T2 AND ADDED
.TC .. .T_1...TH.E_ _R E SULTT S TOR.ED. I_.IN .B - ., .)

;.0064 DO 11 1=1,2
5,.0065 _ ...... ... . 11 I J= ,N 1
;.0066 11 BB( I,J)= B( I,J)T2 B(I ,J)

C . THE ...KERNAL.. FTHE_ I.NTEGR, AL ON THE_ L.EF.T SIDE .. F .THE.._ INTEGRAL... ....
C EQUATION IS EVALUATED AND PRINTED

i..0067- ...-DO 36 I = 1, N
3. 0068 DO 36 J=1,2
., 0069 . 36 .B(JI)=(J,) ...................

.o0070 CALL VALUE(N,2,INN)
ý.007.1 I............. .. _ . E (6 t 3 8)

;.0072 WRITE( 6,6) (T(L) ,BETA L), L=1 ,NNN)
.0073 38. FORMAT(IH /25H INTEG.RAL BEFORE...S.CLUTION)

C THE INTEGRAL EQUATION IS SOLVED USING SUBROUTINE SOLVE
.0074 _. - -.---. -CALL ..SOLVE (N.,2,2,NNN) . _ . .

C THE ERROR. IN THE SOLUTION IS CALCULATED AND STORED IN ERR( )
; .0075 .... .... .. DO._ 3 ... .-2 . N.N .. . . . . . . ... ..
;.0076 43 ERR( I)=(EX(I)-SI (I))/EX( I )100.
",007.7.- .. . ..... .WR.I.TFE ( 6.,.25 ) "
).0078 WRITE(6,50) (T(L) ,SI (L) , EX(L) ,EP.R(L) ,L=1,NNN)
10, 0 o9 _5.C. _E..CF ORMAT.( 4 E.15.. -8_)_

C THE SOLUTION IS FITTED WITH A DIRICHLFT SERIES USING SUBROUTINE
........ ..... C EF.I.T_,...THE N_._TH.I.S.S ERIES I SEV A L UAE U SING SURO UTINE V ALU E,

C THEN THIS SOLUTION IS COMPARED TO THE EXACT SOLUTION, AND THEN
..... ... HE SE .R E SULTS ARE. PRINTTED ....... .

.. 00Q80 CALL CVEFIT(ARRAY)
, 0 0 1 . .... ...... .N=_ 1 2
,.0082 00 12 J=1,N
0 0083. _ _ _ 1.2__.B (J , J) =X(J).. ............

;.0084 CALL VALUE(NINNN)
8..0 .85_ . ...... . ... N...1 __1 .2, .NNN
!.0086 44 ERR ( I)=(EX(I)-BETA( I ))/EX(I)100.
.00_8 WRITE (6,26) 5 .. ... .. . . . .

,Oe.0088 WRITE (6 ,50) ( (L ) ,RETA(L) ,FX(L),ERR( L ) ,L= 1,NNN)
..... .. ... FITT.E SOLUTI.ON .IS. STOPED IN G(8,. ) , AND THE KERNAL FUNICTI•'.

C OF .THE LEFT-HAND INTEGRAL IS STORED IN G(1, ) AND G(2, ). THEN
C TE.TAL LEE-HAND ....SIDE .IS CALCUILA.T.ED US.I NG SURPOUTINE INTEGP.
C AND EVALUATED U.SING SUBROUTINE VALUE, AND THEN THFSF RESULTS APE
C... . PRINF.TDE FOR COMPARISON 'WITH THE RIGHT-HAND SIDE OF THE EQUATION

.0089 00 22 J=1,N
O. 00.......0 DO 23 L2, 2. .. .. .. ........ . . . .... ..... . . .... . .... ...

•.0091 23 G(I,J)=D(I,J)
S.0.9.2 ... 2 _ G_ (3,J).=.X. (. ...J.. ............. .

.0093 CALL TNTEGR(G,N,2,1)
.00'4 CALL VALUE (N,3,N) N ..................

.OO,-5 WRITE(6,29)

C

C ... ....... ...... ................
C



C

.0096 WRITE(6,6)(T(L),,ETA( L),L=1,NNN)
TC. HE TE ORI.G.INALA I Th-_.IHI AN D.S S.HEO FE_.I .._E.GAL EQUA.T NON.• _IS _E.V_ LUTEr._

C ANO PRINTED
,0-7 00 .31 . J -...J. I--

.00, D.00 31 I=1,2
.0099 -3.1.- (.1, J)=RB LI, .J
-.0100 CALL VALUE(N, 2,NfNN)
.010 ........ WRI.T EL6 30 ... ......
.;,0102 WRITE(6,6)(T(L),BETA(L),L=1 NNN)
.. 01O3 .0 .. 000C_ CON.tI F.NU .E ... -. ...

;.0104 24 FORMAT(1H /26H VALUES OF INPUT FUNCTIONS)
.0105 25.. FORMiAT.(lH. /30H. SCLUTI.ON OF INTEGRAL. EQUATION)
;.0106 26. FOR•IAT(1H /37H FITTED SOLUTION OF INTEGRAL EQUATION)
.O1 017 . 9 FOA... F. _....H...iH /36 _L.EF..HAND SID E. OP!G IAA L .EQU.AT ION)
".0108 30 FOý;4AT(1H /37H RIGHT HAND SIDE OF ORIGINAL EQUATION)

1, O -0 9 - _35 F.ORv•AT..( H ./20H...I.NTEGRAL OF..G AND K) ...

END

C

C

C

C

C

C

C

C

C

C
C
C

.C2 2 -_.. .. .. ...

C
C.
c

C

... ... .. .... C " • . ..... .. ...... . . .

__. _ _.. , __ _ __.,,_ _,_, __.__ . ~_.C. 1. t
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C
c .

C THIS IS THE MAIN PROGRAM FOR THE ANALYSIS OF A LINFAR VISCOFLASTIC
C P.LATE (IfN a .'-l EA VT COnFAST. A L .I TKLLLALRLEQU-K ) F .NDATION- THE

C NECESSARY SUBPOUTINES ARE TIME, VALUE,AND INrTEGR. THF CONVCLIITIOJN'
C INTIEGUAL F TEHE PITE COMPI T!,E AND THF FTlNOALTn Lr..•2.A.EYATTP , '

C FUNCTION IS CALCULATED EXAcCTLY FOR THE DIRICHLFT SFRIES
C R RFPRFPf-i. AT I• USINGTl~ THP SUIpROU!IT TNF TNTFrG P. THF -. IMKtF TrCA

C .SOLUTION OF THE INTEGRAL IS OBTAINFD AT N170 VALUES OF TIM!F, USING
C A 1j.' TML•E S&PACING_. AT EACH STEP T!. TIMFE THF S0 11TTPN I IS TTF PT Fn

C TO OBTAIN THF NON-LINEAR SOLUTION.
.-fl0 .1 DPI E..n SfPiln A (40,40) , iX( 1 , ), Lr-,s C f , .f•0 nL _ L . fl 5oX I X (40 -

.0002 COMMO.li4•N T(10U),DELET(20)8ETA(100),P{20,20),SI (100)
C " = TF NIl,r.'2: nF gFTS OF OATA

.0003 REAC(5,200) NrtNift
-0004 20.00 FORMMAT( I 10)

C THE LOOP THROUGH 100 IS EXECUTED FCP EACH SET OF DATA
.00 5 nO 100 .. Ii-,•' •NN

C N = THE NUMBER OF GRIDS FROM CENTER TO OUTSIDE
c W -= TI F ATIITI- O.;F FA('FH G2 PTDr, HT1C.!CH WT I PF CnOMPIITFP IF NFalT V.fTVF!

C CK1 = NUN-LINFAR PART CF SOIL MODULUS
C P = !{-.'
C N9 = MAXIMUM NUMBERP OF ITERATIONS ALLOWED
C I= TpPTSS.NS ,AT_, ,_TLL•L_ AS_ 5 A N THTS AN A I YSTS

.0006 READ (,10) N,, H,U, CK1,P,N9
_0007 10 .! %A I FG T 4F 115/F1O_.2,T 110l)
.0008 WRITE(6,10) N,,H,U,CKl,P,N9

C NJN,' IS THF NI.IEIPF P OF TFPM.S IN TNHF DTP, TCHFII FT SFRTFS PFPPFSFNT AT TlMY

C OF THIE COMrPLIANCE AND FOUNDATION FUNCTIONS
QRC EF RFr( 5. 10 NN

C N70 IS THE NUMEERP OF TIME STFPS TO BE EXECUTED
.0010 PEE n 10.) . 70

C ;THE COhiTANTS F'R THE PLATE COMPLIANCF SERIES ARE READ INTO G(1,
.0011 RFAfl( i ) : ) ( LL t),T =1_IN)

C THE CONSTANTS FCR THE FOUNDjllATION RELAXATION FUNCTION• ARE READ INTO
C THF VFCTOP 0(2, )

.0012 READ(5,140)(G(2, I),I=l ,NN)
no.013 WP ITF IA, E 0)NN

.0014 WRITE(6,10) N7

.0015 W _T F ( 6 140) ( (f CG( T ) . =1 ,NN!) , 1=1 I 2)

.001b 140 FORMAT(6F10.5)
C THF SL, UIRR0!TIF TIMF CA C!II, I 'jTFS THIF N7D0 VAI IFS OF TTMF._F AnD THF
C RELAXATION TIMES OF THE SERIES REPRESENTATIONS.

.on017 C .. TlI IlF( I.,70)
C THE VALUES OF THE PLATE COMPLIANCE AT EACH OF THE TIMES IS CALC-
C II ATF 0 AND ST(r,-FF T)N THF VFCTroR n( ) AFTFR REING PRPTNIFn UI!T. TrUF

C EVALUATION OF THE SERIES IS PERFORMED IN THF SURPOUiINE VALUF.
l00I18 o00 141 T= 1 , N N
.0019 141 B(l,I)=G(1,I)
__n" 2 Cn r I L ,._L-L-• ,
.0021 WP. ITE(6,1-O)( (L) , E TA(L),L=1 ,N70)
_.0022 0r! 142I 1= 1 , N 7
,0023 142 D(I)=RETA (I)

0 - 2i_4 -
C



C

c- THIF rnNVnillTTrPN OF THF nCOMPI LTNCF AND, THF F(1UNDATinl N RF•I AZXATTOTr
C FUNCTION IS PERFORMED USING THE SUBROUTINE INTEGR, AND WRITTEN OUT
C A i ,•P -,STri0F TN Ti F - , 1 APRAY.

)25 'CALL INTEGR(GI,NN, 1,0)

C CIOMPUTE TOTAL NUMiBER OF GRID POINTS
)27 SIIT=n.
)28. DO 211 J=1,NN
2)9 211 gl1T= IiTFf (?, l)

330 00D 164 1=1,2
3.1 Pn 1 4J =. , NN
332 164 G(1,J)=B(I,J)
1-3 NO?=N12
034' IR=0

I03 (flND2*2 -N2 11 2 , I 120
036 120 ND2=ND2&1
0.37 DO 127 J=1 ,MNln

038 12 IR=IR2CJ-1
039 c(7 Tn 13
040 11 DC 14 I=1,NO2
041 14 TP = r T

C COMPUTE GRID WIDTH IF MNOT SPECIFIED, BASED ON AN APPROXIMATF
C DAIl F I VF IT~GsLATVF ST.FP

042 13 IF(:1)121,121,15
C RI = R,•).ITS PF RFIATTTV STIFENFSR

104.3 121 RL=( ((iH*H)/(L2.*(1.-U*U)"SUT)/D(l))":•.25)
LO-4-4 ANI=',
1045 W=7.0"*RL/AN
104- 15 C; = /u

I 04 B'= I v i !i H/12.
C THF FI FXTRl ITY r.FFFICTFNTS OfVTiFO RY THF Pt ATF MO.• I! RF

C NOA CALCULATFD .USING 4 MOMIENT DISTRIBJTITON PROCEDURF.
r. r" n1 TPI v'IVcNT TI T Q T T (IN. FP C .fPS

3048 IF(RE-1..)122,122,16
S049 1q2 T2 F(-. F-.E 25 17 ?,I 3 1 23

)050 123 BET =iW*H)-*3
R151 RTI=7. A6* • ".." RT*( U %1:I)

3052 BET =dET /ýI1
115-43 C TOn p

D054 16 W1=.
005_5 H =H
0056 GO TO 19
0_057 17 itl 1=H

0058 H1=A
,! 59 1 FT =q. E'! * ]H .I*14 .- - -*HII.I 1!(6.. 11 F.1 , nIT)

0060 18 BL=2./(4.&B-T )
C .CO&PITF MOMFNTS i)IIF TOn !NIT OFFI ECTUIN AT POINT 0

0061 160 FCRM.4AT(2E15.8)
0A2 TI=.5-Ql
0063 T2=TI:TT
041'4 ~JPT2=C7 T
0065 B2=BL*BL
-Oal.E __ H3 _ fi L".^ R
0067 83T2=;33'T2
.0 -" RT4 =P e I". _T7_ TP
OC69 65=B3: 2

C

SC -215--
C
C-



70
71
72

74
75
76

78
79

80

82

84
85
86

88
P9

90
0.1
92
93
94

BT3=BT'T2
B 2T =B 2 * T 2
B2T3=BT3*RL
I•/,T- (•1.•. T 1

N3:=3-N

DO 1 J=1,N3
•-- .-- 1 t- 2 3J 0 3

A (NM) =6.- *(-8.&6. 3L12.* T2.5*B3&IO.*B3T2&8.4-T4)85)

A(N& I ,N3)=6. *( 2T2T*.5R2T3 84T)

MA(NN&5 =.375* ( 3. -35)
A_(_ R 1 ,T F, 1_ 0= IN (1 -R . p.?vT- ; 7 5 R4T-6_:.* .T )
A(N& ,N&4)=6.*(-1.125*83rT.375*84T)

WRITE(6,20) N,IR, U,H,W,P,RL,CK
c5 2O F•MflAIT (I24H:1ilTT[I 1I SiAr.IP, FP PF GRTfS =Tn/!= H NIqHAF P OF P.OTIFVTS =T7/ T _

1 17H POISSONIS RATIO =F6.3/21H PAVE4',ENT THICKNESS =FI10../17
2? ,.1TH (2 F GRPICS =FIL..4/7H I n-Af =F1 .4/ 1H RARIUS PF RFI ATIVF.E SrTiF
3NESS =E11.4/17Hf EQUATION FOR K =F5.0,12H*(1.0-1.6t-W))

_6 n ? T=1 , = 5
9'7 J=N-I

C99 A(N,J) =A (N, IJ)
V0f A (3,1_•) =A I(N I T. )
CL 2 A(IJ,,)=A(N,tJ)
02 NI=;=N 1 1
C3 NM=N- 1
04 Dfn - T= 1,4

05 J=N-I
06 T =AI; =
G7 A(IJ, 1) =A(N1,IJ)
f3 A(N',..I = A(N1 ,TJ)
09 A(IJl,N.M)=A(N1,1J)
10 A(U NI, !) =4 ( 11 TJ )
11 1A(J,NiI) =A(N ,IJ)
12 A(NV, T j I)=-(NI , ITJ)
13 3 A(J,N1) =A(NI,IJ)
L4, NlJ= , 2
15 N,=N-2
1h A (N ,',P ! ) =A I N . 2)
17 A(NM, NP') =A(N2 ,N2)
SA ( -Y "I2)= ( , N i M )

19 N3=kL

21 A( 3, F. ) =, ( t%2 A 2, F:3)

C
C -- 216-
C
C

r

1 · __
B4=82*B2
R2 T 2= P? T T?
BT=BL*TI

R T " ,. Ti

A I T

1

I

I,

_-,___,



.0C123

,_013.6.0124.013 1,0128,0129

,0131

,n 146.0133

,0147.0135
,0136
.0137

,nl 6 2.01-43

.0154 5K-n 1 -4 t
,014510 1,4ah

.01571SW

'015 BC21,0153

01570159

0160

0162 .0!D 1 f:3
n_-L6--5o I C,640 167
01690172DIZO_o1~C

tr 1 6

aL10C

----7~---

__

.0122 A(N3,NF) =A(UN2,3)

.0124 A(01,Ni1) =A(N2,N3)
-QI2' AfNM,NN'F1) =AN!?,N3)
.01 . A(NMIN2) =A(N2,13)
.17ALNfrf) =A(N2,M )
.0128 NJ=1

· PRFATF APo Y FY StIDF>TnGflSTF A MATPTY fVFQ FAf-I PflINT PM C.Irn
.0129 NNN=2*N

1~?0 hNR=N!

.0131 NS=\-1
.0 122 0f 4 T=1,TR

.0133 C=1.0
.01 4 T F (ANN\ ~ - NS-.t1)1 3 Z 5,s1 3

.0135 125 NS=NS&1

.0136 rF LML=il 4 1242k,

.0137 124 C=.5

.0139 127 C=.125

.0141 GO TtO 6

,0143 NS=NR
.J144

p0145 C= .5

p0147 L=0
.J14L8FL N =N

,014,2~ LL=1
,1' 0n 4 TI=1,TP

.0151 NRK=NRGK
,01 r3 rNSI =iFI

,0153 NRL=NkEL
*(f1 4 NSK=NSFJJ(

.0155 NRNK=\R-K

0157 ~ Ni S fr' L = N~ S - L
0157 NSPL=NS-L

0159 B(LII)=(A(Nr YNSL ) A( NRLdNSK)&AINRMKNSL)SA(NRLNSMK)&A(NRMK,NSNL
1 )iLII\R mINS' K)F A(NrK,NSMI )RA(N 0 MI ,LSI•)]) .. C

0160 IF(NN-K-1)128,8,123
01 1 2 1 K=R2 l ·I

0162 GO T(i 4
016. A~ K=tI

0164 L=LL
l165 NN=N '-1
0166 LL=LL&1
C'167 4 CT I'LULdF

C PUT [8 MiATRIX (EQUATION S) IN A MATRIX, AND CREATE CONSTANTS C&LU;N
£L61 It t =P

0169 P=P*'W* 4*W/P I
U17L. AL A = ('k5J)J BT

C AT THIS POINT THIE FLEXIdlLITY CtOEFFICIENTS HAVE T3EEN CALCULATfl
r ANJ TF S TH MLL L ATRIX QU AlIS AT fl{F N70 T I.KS O F r _ _I_,

017 DL0 143 KN=iNi70

C
- 217 -

A N3, N.*.) =(N 2, A N ,, 3}

A( I, 1N;M) =A(N!2,N3)

N3=1A NM 1IN-2) =AN2, N3)
NJ= I

C' _RF-AT ': ApoRa Y PY Sl!f=soT_ pngI;: T M G A MA TP T X nVtQ rF CHI pnTNT (F! '. I
NNN=2*Nr

NR=N

an 4 T:TR
C=l.0
T F( b, IN V- N' - I I 1 5 5. 5 1 5•

125 NS=NSSI
TF N F! : - N I f24 1.- 4 ..-

124 C 55
127 C=.12

GO TO 6

NS.=N-R

C= .5

L=O
NI=N

LL:l
00f 4 TT=],Tt-

NRK=No&K
N.R1 = N," L

N S K = N'S F, K
N :-KNR-K

NSVL=NS-L
hiF~1= •_" f",-I

I I I = SA S . ) A ( N!, L i:.SK ) 2A ( \ PIK NSL ) A( &A NR L NSMK ) &A (NRK, R K NS ,ML
I )M1 RF Mi • SNtK:N F' , A ( N 2K, I N .N , IK) )as rC

IF(NN-K-1) 128t89128

GO TKi 4
P K=f I

L=LL
NN=,NI·-1 I

LI.==LIL&I
4 C.G TX I I.. N

PUT B.• FiATRIX (EQUATIONS) IN A MATPR IX, AND CREATE CONSTANTS CC.lLtJM.!N

p I 1. i P IALA! 5 )=In
P~r = P ".• •,/•: r, •; I E I

AT THIS POINT THIE FLEXIBILITY COEFFICIENTS HAVE BEE.."- CALCULt. IEO.
4r~lC.• F· ~_SC LU.`L.D1_,',__ir~ F T _.NTX r U.ZIC•__ T TJ.F NTO IFTTI._El•TI 1•-S.•__E_.S.

DU L4 3 K0=I.,•70

-217.-



C
r

BL1=1 .(~

C COCPUTE APPiOPRI ATE INTFGRALS
D i. t46--J- -,K
TI=T (IKN)-T ( J

__ -PA T-M-J4-=-(J-.-- ---- - ------------- -------- ·

DO 146 I=I,N
141 BFTA ( I =R) T 1 ,l, ) f , )f T )*FYI (-OFI TACl)4T11

C THE EFFICTIVF_ I.VfLAnS ON FACH- NACDE- ARF CACIJLATED ANtD STrKFD 10
- P L ( ) A1ND U--LI _ _ TT.

IF(KN-l)151,151,152
Q12 DO 1 T=!L __ __1________-_____

WW=WNX(I,KN-1)N- (1 ..+CK( I WX(I ,KN- ) )
PI I ) =--) 1,. W-I 5 R PFTA ( lV -1 -R-FTA ( KN T I

IF(K-2)153,153,154
_ 5__ _ Ln !55--=3 ,-=2L±h_ C -

155 PL( I )=PL( I )-.5 ( 3w- (j  ) ( FTA(J-2)-B ETA( J- ) )
153 P1 I T =Pl I A 1 A Ni

151. CONTINUE
WR I TF (.,~ 1 (PI ( 1 ) , i_=1 ,_ILP

162 FOJRMAT (6E15.8)
21 1 IK=-1 - -

LLL=LLL_ 1
r. TI-HiT (FI FXTITI fTY) ARRAY ITS TRANSFFRRFn TnO TII F A APRAY FORR S I Y FTIoIR7

DO 2 2 .=1,IR
1 _n- 22 J=1 ,TR

22 A(I,J)=B(IJ)
IF Ft l ) 129, 1 29 , 569

C THE rERrAS ON THE DIAGONAL MUST RL CALCUI l ATED
C FNTFR I1IFR ITF Fi,, .,SFCOND,f:TC., ITF•RATI 1-N\

129 DO 24 I=l,IR
X(TI =A(I, Rl-1)
IF(KN-1)148,.148,149

S L49 A 1( I , I ) = A I I -A IA•-.5 (IrFTIA( Kt)+RFTA(KN-K 1) )- (1 .+C K :A(I ,IF + )

GT) T O 24
149H A( i 1 )=A( I, I-AI AMN !:F-TA 1 ) I 1 .+CK1 A[ I +1) )

24 A( 1,IRt+1)=PI_(I)
A (1, IR+1)=A(1 , 1P.+I1) -P *DIKN)
GO TO 25

C- EENITFI", H1FRE IF UjN F IRST I IME THROL G H-_ __

569 IF(KN-1)23,23,144t
144 El 1=-1] )

DO 147 1=1,IR
A(I, I )-7-AA L• I )-Al A-.*'• •5"\A -=A , -A A .-. ( R f T A (LK + FTA_( N-1 _) )*-_( ,+C K L * W X ( I ,rK N- 1 ) )
X( I )=O.0

. A..L=P1_L, +"-  P ) =-P I T )

A( 1 , IR t ) -P ( KN ) +A( , IR+ )
r,00 T 25

23 BL1=-I1.
D 2 -6- , I = 1 T, R
A(I ,,I)=A( I, I)-AI AM' ETA(1)
X ( I ) =0 .,_

26 A(I,IR 11)=O.O
A,(1 1 R =- (1)

-C ___
C
C
r. ..... ....-...... --,-,, - -.... ......-- -- . . ._.-- --- '- ....-....... .... - -- -- - - -- -- .- -- - _----- -- _
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C
C

'- A _? 25 NVi I= R-1I
1.0222 ERR=.00 1
;.0223 NI= r, I

C SOLVE EQUATIONS USING GAUSSIAN ELIMINATION
024 f, 24 K=1_N•ml

;.0225 BL=A(K, K)
027, T TFIt A3 (5 1 - F:P R) 1, .13 ,,R7

.0227 13C K1=KlI
. 228 00 2Q I=.KlfR
i.0229 IF(ABS(A(I,K)) - ERR)29,29,30
,02A _?q C N!'T NFllF_
'.0231 WRITE(6,51) ERR

c TrF F TIS P I,Ti'nTF , 'MATPTX TS SINrtil A
.i0232 51 FOR.: AT( L H F16.8)
,.0n3 AO-n TO t00
'.0234 30 DO 32 J=K,NI

0 2'5 1I=A(K,J)
.0236 A(K,J)=A(I,J)
.0237 32 Af ( I.U =I .I

.0238 BL=A(K,K)
,0239 28 D_0 -3 L= ,-4 N. I
.0240 33 A(K,I)=A(K,I)/RL
.02A•1 _K.I=Ki , 1
.0242 00 34 I=KI,IR
S2043 RI L =A( I T, )
.0244 DO 34 J=K,Nl
-.-_0245 -34 A " ,1 ) =A(LJI JJ-Pl A (K ,,I)
.0246 A(IR,N1 )=A(I,N1)/A(IR,IR)
n_ n' "n.' A K."v = 1 rFm.)l

.0248 K=IR-KK
.. n74 K =K 1
.0250 00 37 J=Kl,IR
.0251 . 7 A KI K 1)=.A.K ,'1 )K - (KJ . I 4AKN )

C CHECK THE RELATIVE CHANGES IN EACH OF THE DEFLECTIONS COMPARF0
r TO TlHF PRFVITtlI S ITF.AT \TnN, STrT-IN(G 1 TN I IK IF THF CHANF- TS TnC.

C LARGE.
C ,CiTIN',IIF TTFPATIG n, ly IF HAVF NOT ITFR.A.TFQ Nq9 TTM FS YFT

.0252 IF(ABS( (X(K)-A(K,N1) )/A K,N1)) - .001 )35,35,132
_.2053 1 2 iJK=1
.0254 35 CONT tliE

0.0 55 I TF WRh ) I I ( A (I 4,N1 ) ,T=1, IP)
.0255 36 FORMAT( Li I10/( lH 6E15.3))

o. 257 IF(I xJK) ,1 1.13 -,i
C LJK- WILL BE NEGATIV'f ONLY 1WHEN ALL THE RFLATIVE CHANGES ARE LESS
C THAN .001

.0258 133 IF(LLL-N9)21,134,134
,0259 1 14 WRITFF6, 4) I 1
.0260 44 FORMAT(22H NO CCNVE3GENCE AFTER 12,FH CYCLES.)
.Q2f.61 11 1 i R TF (6,il 2 5)T(.K.!)
.0262 215 FOR .IAT(8H1 TI'E = E15.R)
..0_26_3 WRIT F- ( , 1141)
.0264 114 FOriA.T(36 - DEFLECTION DISTANCE FROM LOAD)
0 __6._5 _ DOl 12I X =I1•_ l_,

C

rC -- 219---
C



C
C

Q A4A V- 1XY- 1
026J. S= 1*A IX

1 1.3 Fr•M•T ( -F F F-7 3 )
,0269 BXX=A(IX,N1)
,02I7 112 VR-4.F4 A, 1 3) PXX ,S
,0271 DO 156 I=1,IKR

,0279 156 kYX_ (I Kt. )=T. •A( I, 12+
,0273 143 CONTI NUE
0274 1 0r rfP T I N I

END

C

C
C

C

C
C
C
C
C

C

CC

CC.
CC

C

C
C_

C

C

C

C
C
C

C

C(-
C

C
CC
r
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C THIS IS THE MAIN PROGRAM FOR THE ANALYSIS OF A THREE LAYER HALF-
C S P-ACE-- LTt-rINE-AR-VI-SCf ELA S-T-I c---u NDE R--A-UN-I F-fIR M-C- RUL-AR-t-CA D-[,-FOR-THE---
C CASE THAT THE MULTIPLE CONVOLUTION INTEGRALS ARE EVALUATED BY
C-- NU CW iER-,TIC-E-t- NTIE-G R-AT I O N- I HE--NECE SSAR Y-S-SUBR OU TI NES--AR E--TIME--VALUF---
C INTEGR (NUMERICAL), SOLVIT, TERPO, AND THE FUNCTION SUBPROGRAM
C E-StSEtL. A-SO- EQUR- I-SSU R UTt'E-NSTNT--TTHE- NIf-
C TO BE READ IS IST, H, A, R, DEL, ZZ, ILAYER,
SC DEF-E -T-IDUUBL T-NNt T-AND-- ,-. IS-T--tA-DUIMMY-WHICt--TOGE-THER-
C WITH IDEFLE DETERMINES WiHICH STRESS OR DISPLACEMENT IS TO BE
C C -A L-CUL-AT-E D.IS-IS -F FOR-EIT HER-NOR MAt-STRE-S S-OR-N• ORMA t--DE FL-E C .- -

C TION, IS 2 FOR SHEAR STRESS OR RADIAL DEFLECTION, OR IS 3 FOR
C-- R-AU- I At---S-TST- V--5-TH-TCK, E-5--f F -ESE-f-N O--AY E R---fT -E--TtH I-f-K
C NESS OF THE FIRST LAYER IS TAKEN AS UNITY). A IS THE RADIUS OF
C T HE--t_-OADE --ARE -- R--I----THE-OFF-- S-AT- WH IfH-THE-STR ?ESS-fR--D E FL-E-----
C TION IS-TO BE CALCULATED. DEL IS THE INITIAL SPACING IN TIME.
C Z IS-THE- DEPTH AT W H -THE-STRESS-OR-D f-SP L E ME NT-S--DES-IPED
C ILAYER IS THE LAYER OF INTEREST (1,2,0R 3). IDEFLE IS I IF A
C E- tEC-T--'ftST---CA t-A-TEf-tDT-TZ-EOTH E RW S I-DOU L-E-S-H E--
C NUMBER OF TINES THE INTERVAL OF TIME IS TO BE DOUBLED. N IS THE
C NUtBER OF -- ERSIN-T--E-D IRCHLET--S-I E--REPRES ENT-AT IN---F--THE
C INPUT CREEP FUNCTIONS (SERIES HAVE BEEN USED HERE, BUT ARE NOT
S NE-CESS-A RY-HEN- SI G-T-H S-TECHNI UE-)---NNN--I-S-T H E-NUMB ER-OF-T-IN E--
C POINTS TO BE USED IN EACH LOOP. G( , ) CONTAINS THE CONSTANTS

SC F OR-Eti--ScR-If-E--RFPRSftT O--RE-N-- TU NPT t----R-E_ P--ffj NCT ONS-;---. Gi----C--------
C TAINS THE CREEP FUNCTION FOR THE FIRST LAYER, RO4 TWO THE CREEP
C FU NC-TN--FOR--TE--SEON )---tAY ER•-ND-ROt--3-T E-C-R EER-F URC-TON--FOR--
C THE LOWER LAYER.

-•-C - T HE--OT UTh-P U-T--R OM-T-HR -PROGRA---S-f S-~t -O--THE--DS-I-K ED-S-TRE S-S-0-----
C DISPLACEMENT FOR THE DESIRED TIMFS (ASSUMING A LOAD OF UNIT INTEN-
C . S-I-TY I.

.001 DIMENSION El(6l),E2(61),E3(61),GAM(61,7,18),E(7,61) G(3,20),
I EM -tt3l ESSS-3-)y S SS -) , SI(-3- 6--)-S-I-----3-6- ) --S-(--3-)t S-S-( 9 )----
2PH(18),PHJ(18),TH(9)

000 2 COMM N-3 ET-A-(-6-lt-r 20, DEtA- ( 2T-)---(6-- MN -f-61 -)- WI
C THIS LOOP ALLOWS MULTIPLE SETS OF DATA TO BE HANDLED.

.0003 D 1--0-00 G--- I---- 100

.0004 READ(5,51)1ST,H,A,R,DEL, ZZ
;0005 RE-AD (t 5 v-20 -1-It-A Y ER, -- D FL F- D-F-OU B L
.0006 WRITE(6,101) IST,H,AR,0EL,ZZ

S0007 - I G1 -- FORMAT7H (- -- ST-=--SI-5-/2 6H-S E-CO 9-L-AY-ER---T-ICKNESS--= --E1 -5-/118H RADIUS OF LOAD = E15.8/11H OFF-SET = E15.8/
2 -9-T I•t-T--AL-PAtNG--=--E-1-5/t-DPTH --- Et5-. )

.0008 WRITE(6,02)1ILAYER,ICDEFLE, IDOUBL
0009 -1 O-O_2--F0RMATt41tA (- -- Y E V.-- -I-3/1-01f I- DE-FLE--=-- 13-

133H NC. OF TIMES DOUBLING INTERVAL =13)
00 51-r- FOR MA T(-1- /5F FI- ;--5 )

C THE DUYMY IOWA IS SET EQUAL TO 1,2,3,5, OR 6 DEPENDING ON WHICH
C S-TESS-O5RDF-fOE- t-E-T-I -S-D-P E-S-f-P E-D-THI-STI-S--FUR-f NPU0 I---IIT--NT--_H E- -
C SUBROUTINE CNSTNT.

;0011- --I FtIDE FLE)-E 52,-5 2153
.0012 52 IOWA=IST

O G13 - GO 10-54 0 54 -54---
00-c 53 IO4A=4&IST

-- ---------- CC
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C

;.0015 54 CONTINUE
C7- 1 B1S-A •tM --E-T--AL- T- -ERi-BEfTHET-T-IH •-R--OtU LIfGLf,-P

C BUT MADE POSITIVE THEREAFTER.
. 0Cb~ IDB-0
.00ol READ(5,20)N,NNN
.-00-18 20- FORM A-T-t-5-51-)
.0019 READ(5,40)((G(I,J),J=1,N),I=1,3)
IU U tUl I ruMTI rF . 1i
,.0021 WRITE(6,2)((G(I,J),J=I,N.) ,I=1,3)
-00-2-2 2FORMATT -2-7 -I NP T-REt-A X-A-TION--F.U NC-T-I NSf-(/60.-5)-)

S C N10 IS USED TO BEGIN CERTAIN DO LOOPS. IT IS 1 FOR THE FIRST
C 1DUBt-ltG-G O P-, -A-NP-E-Q'-J A L-TO -NN N-i-272--T H E RE-AF-T-ER.

1.0023 N10=1
"C NX IS -- MY--US--A -- iPt -T- St ESRT-E E---T-I-M E ---- I- -- I-S-- ---
C ZERO, THEN THE INVERSES OF THE RELAXATION TIMES WILL BE COMPUTED
C ' ND--S-T OR E-D--IN--DE L-T--AFt-)-- IF-T-F-I-S-NON-Z-ERO-f-EVFR-Y--L-BOP--EXC-EP--T-fTE--i
C FIRST) THE DELTA( ) VECTOR IS NOT RECOMPUTED.

.7002-4 NX=O
C STATEMENT 69 BEGINS THE LOOP WHICH IS REPEATED EACH DOUBLING.
C FIRS-T- h--T-H M E-A N DETA(--) E-T- ,ARE--O MPUT-CO.

ý.0025 '6S CALL TIME1(NNN,DEL,NX)
C T HE-S- E-R-I-ES--RE-PRE-S ENT-A T--O N-S-- OF--E-A C-I-F--THE- CRE-EP-F-UN CT-IfES-I-ES--T-A N S-
C. FERRED TO THE B( , ) ARRAY AND EVALUATED AT EACH TIME USING THE
C . SUBROU'T-IN -- VA L-UttE--THE-TH ES-E--RE SULT-S--A R E-f--R EI)-I N-FI---E-2( -)--
C OR E3( ).

--0026 3 41---J13
.002. 0DO 42 I=1,N
.002&8 4-2. TI)-=G-(-JI-)

.00^9 CALL VALUE(N,1,NNN)
c-,00 D 0-43 -I----,N NN
.0031 IF(J-2)44,45,46
.OO., 2 4-4-E-I )-=I- E-T-A ( I
.0033 GO TO 43
-0034 45-E-2-I-ft=ETA(I)
.0035 GO TO 43
00 36 46- E-3 )= B -EA(-)
.0037 43 CONTINUE

-00-38 4-1-C--4 C T-TINUE
C THE VECTOR EM( ) PROVIDES INTERMEDIATE STORAGE FOR THE VALUES OF
C -- TH E-- DUM M Y-N-T EG-R A-T-ION-VARIA B L-E-M---T H A T--I L-L-B E-US ED,---Tt ES E-VAL-UFS-----
C ARE 0., .2, .4, .7, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0.

.0039 -E-M-O--=-6.-0

.0040 EM(11)=7.0
70041- E-.M(12--l = .0
.0042 EM(13)=9.0

C I THE-t-CG- P--T-O--S-T-A-T-E £M ENT--3-I-S--E-X E-C U T- ED- F- R-E A CH-O F--T-HI E-P P-OSS-IB L- E
C: COMBINATIONS CF THE FIRST FOUR CREEP FUNCTIONS FOR THE MULTIPLE
C CON VO L-U T-I ON--I-NT E-G RA L-S.

.0043 00 3 I=1,9
C E-A Ct - -tt -e -TH tE--PR:C-OP R--AT--- CR E-E-PF U NC-T-I N--I-S--S fT- R E-fN-I-THi E
C THE PROPER ROW OF THE E( , ) ARRAY.

T0 044- -D0 19 J -I-j IN N N
C THESE TESTS DIRECT THE FLOW TO THE PROPER ARRANGEMENT OF CRFEP

..-. C- -FUNC-T IONS-._----
,.0015 IF(I-2)4,5,15

C
C
C -223--
C
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)046 15.i1F(U-4)6y71l6
4-1 16 TV c 1-6 )of i 1--ri-------

)04ea. 17 IF(I-8)10,1,l2
--- Str,4-EtFT -TE-Ei tAV-Et tOR-va L-ttESAPCE--F-I- LteD-1-ýt-TIýSPH AS-E-A-A SH- -

3049 4 EM(I)h.

)051 E(2,J)=E2(J)
)'0'5 2 E ( 3,p ZI
)653 E(4,J)=E2(J)
3CF54 GLT-T I -1
3055 5 EM(I)=.2
LT05 6 E 1 9i4FtJ
D057 E(2,J)=E2(J)

0059 E(4tJ)=E3(J)

0061 6 EM(I)=.4
00C-2 E- I )-tf-J I
0063 E(2#J)=E2(J)

0065 E(4,J)=E2(J)
Oi-aTht G CUT tlV 9
0067 7 EM(I)=.7

0069 E(2tJ)=E2(J)
-00-70 E1Tt1-E-t~
0071 E(4,J)=E3(J)
-o0riz ao i-o--ili
00. 8 EM(I)=1.0
-00-7q E (1-t-3J4=$ -EZ(-t-
,0075 E(2,J)=E2(J)
,00 Eh ( 3- t)-=rET3tC4
,0077 E(4,vJ)=E3(J)
,TOE7O 8-
,0079 9 EM(I)=2.0
P-0 0O9- f0 -t-S0 Vj - - I t
,0081 Ei2,J)=E2(J)
;0 082 Et(3-,- -E3tJ)
.0083 E(4,J)=E3(J)
-0084 G--T -19
.0085 10 EM(I)=3.0

.0087 E(2,J)=E1(J

.0089 E(4,J)=E2(J).10089 E (4 , A=E:
;-00190- G O-T e--1-3
.0091 11 EM(I)=4.0
G0092- -E-1-1---JI = E-
.0093 E(2,J)=E
X094-E t '3t-, - JYE'

.0095 E(4,J)=E
-;-0 C 13 6- ~ - -T~f ~
.0 Ooa,7 '12 EM(I)5.1
-0( S-J--- ---- E- (d I = F
.0099 E(2,J)=E

c

a P2L_

.009111El)4.
G092- E-1-1--i-J-1= F-Tt-Jl
:0093 E(2?J)=El(J)

.00ý6 E(4,J)=E3(J)
-;-0 C 13 6- ~ -O-~f~9
.0 Oofa,7 'l 2 EM. ( 15. 0
-0( S-'--T- ~f~+ =T I (--J~ )-
:0099 E(29J)=EI(J)

-
.ILZ

•-"t.. •.• I -.-JL ". _ L ~L- - - ,-_"&dK-,-L..-L& - -L·--

----------

- -

__---

_ ---------- · __

~CI

-~ L-L

------

-r n 0 L- r---I --
· UU~O t~l~Jl"tL1JI

I



C
C

.0100 E(3,J)=E3(J)
M--01-0 i Et-t•Ji "-E-( J )

.0102 19 CONTINUE
-- C A-T--T-S--P INT-FOR--THE-PAR-I tUL-A R-1- -B E-ING-EX E C-UT E -,-rAVE--S-rTOE R---

C THE PROPER FIRST FOUR CREEP FUNCTIONS IN THE FIRST FOUR ROWS OF
C THE-It-, R-A tA- TtE-RE--I-ING--RCRWS-OF-E- )- , -WItL--E-F--I-L-L ED-aM---
C NOT FILLED DEPEIDING ON WHICH LAYER AND OR WHETHER A STRESS OR
C D-E -ECt -it -- -S---ESTRTDE--MH TH U-tS Utt t-F-· -t--fFN-IEG Ab------
C WILL BE CALCULATED ACCORDINGLY, USING THE SUBROUTINE INTEGR.

S-0103 IF-I tt-AY -YER -2 )2 2i-2 --3-, E3
C IF IN THE FIRST LAYER, NEED ADD ANOTHER CREEP FUNCTION ONLY IF
C i CTI"N G-NA-- E-FL tEC T-IO fN.

.0104 22 IF(IDEFLE)24,24,25
SI-F- - T-- ~h I G--h-A- -D ~ E-F-LE-CT II- " -- F -T--- I---it -T -P- I tE---HA-vE-&ON L-Y-9
C THREE-FOLD CONVOLUTION INTEGRATIONS IN ALL. OBTAIN THE I TH ONE
C A-T- T-S--PGI N T---US-IN•G-S-U Rft OUT-I NE--rNNTEG R-i- S-TOR-I NG-TH -RES-NL-T-1--
C GAM( , ,I).

.- 105 . -- 24-C-A tt-- T E-GR (- ItN NTE-TG-AMI4,3-
C " MAX IS THE NUMBER CREEP FUNCTIONS INCLUDED IN THE 'DENOMINATOR'
C M[ULT'I -PLE--C--NVCL-UTI-C I-T-G-L- I---T-i -NU M •Ef--I-N--THC0S-E--CF---H E-
C 'NLMERATOR' AND IMX IS THE NUMBER CF DIFFERENT INTEGRALS IN THE
C ' NUM ERAT R.'-

.01C6 MAX=4
.01:07 :IR)•=-9
.0108 MIN=4

KCE----M--E• + At--T-E--I M X .
.01C9 M6=9
01-10 GO TO -50

C IF IN FIRST LAYER AND DOING A DEFLECTION, MUST ADD THE CREEP FUN-
C TIN - -OF T-HE- FIR-S-T-LA T-YE -i-T-fHE--E-( , ) A R RAY. T HE&- NUMW FRATOR-'--HAS--
C ONE MORE INTEGRATION THAN THE 'DENOMINATOR' IN THIS CASF, SO MIN

- C .- I-S--- NE - E--ATER----X -THAN MA-X.
.0111 25 MIN=5
.01-12 7M-AX=-4-
.0113 IMX=9
.;01I- D --38- -J=-I- 1 NNN
.0115 .38 E(5,J)=EI(J)

.0I16 C Att -- ITE-T- 'GR f- N NN'EGAM-f -4-)--
.0117 M6=9

0.01-1 - GO--TJ-50
C IF ENTERING STATEENT 23, AM DOING SECOND OR THIRD LAYER.

.0119- 23 -- F-( I- EF L- E-E-) 26, -26i -2-7
C IF DCING A DEFLFCTION, THEN MUST PUT EITHER THE CREEP FUNCTION OF

- c -- THE- -S-E·CO-t--AY E-f-O R-T tI-t-kY E- --fNI T_-T- H E-E-( ,- -- AR RAY ----- T it-S---S----

C PUT INTO ROW SIX BECAUSE ROW FIVE MUST BE FILLED (BELOW) WHETHER
C D OING--A -S- E-S-S--O -r F L E-TI N.

.0120 27 MIN=6
-- 1 2-1 - A X -= 5
.0122 IMX=18

.0124 . IF(IL
-a-.0 12 5- -------287D0-3C
.0126 3C E(6TJ

0,1 3 29 DO 32-

0124 IF(ILAYER-2)28,28,29

J --I'NNN

.0126 3C E(6,J)=E2(J)

0N
c0 

- 2250 
2 

.- ~~

C
C225

· VLL~

,0124 IF(ILAYE~-2)Z

,O f 2 ~i--- --- L 8·--tZff--~3 O---~f~~·r·St~~

.0126 3C E(6rJ)=E2(J)

-G 0 2 ... .. --2 8 --30---J-=1 --N N.0126 3C E(6,J)=E2(J)
•,0 2 I•7 GO--TO-3-•0J 3 29 D 32 J=I,;N

rVLL~ LC till 3U 3--l~'~iY

.0126 3C E(6rJ)=E2(J)

- ec-r tlt- ·3- r ---

.0; 3 29 00 32 J=l,~h



S.0129

i;-O.L j

;'0135

;.0137

;.0139

.,0145

.~0147

.0148

.0-14-1

.0150 303 MN1=N10-1

.- 015 1 0-31 J-J-i ---

.0152 KK=2*JJ-1
0 0153 -301-- S-I--JJ = SI --I-t K-, KK-)

C THE SCLUTION IS CALCULATED FOR THIS VALUE OF M AND STORED IN THE
- C- VT-ECTOR SI-(--)

.0154 302 CALL SOLVIT(NNN,PH,TH,GAM,IMX,9iMIN,MAX)
C T t HE-RE-SULT-SFIt R-fT rf-S--V-tUE-O F--: -Ar E---TfR-AN SF-E..R E D--I~f~NT----F--t-K-T-H--R f---
C OF TH'E ARRAY SI( ,

-0155 D- --57--I -1- N N
.0156 57 SII(K,I)=SI(I)
0157 F (--IS-T-3 ) - 58 -58-

,- C
•--- .. -- C . . .

226 -C-

C
C

C THE 'NUMERATOR' FOR THE SECOND AND THIRD LAYER RESULTS CONTAINS

.C THE 'DENOMINATOR' IF DOING A STRESS. THE SECOND NINE HAVE THE

C NI NE-I NTEGRA T-TONS--AR E---ARR- I D--UTt --- kt-F-- E tECTI-OQ N-i -S--E-ING-iDON ET---

C THE 'DENOMINATOR' INTEGRALS WILL BE STORED IN THE GAM( , ,MI)
"C A AWY At AS E-L-L A-S TE- NUM-ER-ATOR-tIE-SUt-T-S.

;.0135 31 00 33 J=1,NNN
.01-36 3 t•-(5 5••)--EtE J)

;.0137 MI=MIN-1
- 0.-138 L~-C-Att T--GRtT-EIG-N-ONN -ETG-AM-I-TMI-)

C NOW -ROW 5 OF E( , ) IS REPLACED WITH El( ), AND THE SECOND 9
G.L--E---i NT - t•A-S- RIiC-•-AttL-A TE-D.

.0139 00 34 J=1,NNN
,.0140 3 4--E(5TJ )--E-:•(-E J)
.0141 II=I&9

Ot4-4-2 C- -A- tt--INTEG Rt- N, N NjN, FG-kM-,-I- M I)
.0143 50 CONTINUE
.- i44 3 ONTINE--- -tt

C AT THIS POINT ALL OF THE RELEVANT CONVOLUTION INTEGRALS HAVE BEEN
C L--At -Tutf-E---AN D--S- iORE-D IN--TH E---A H -,- -- A R R-A-Y.

.0145 MN=N1O
*- C Th E--LG•JP- TH R O  -ST-ATEMEN •T-11------t:-- H E--TI-NT EG RA -EQ L•ATiON

C FOR EACH OF THE 13 VALUES OF THE DUMMY INTEGRATION VARIABLE M.
0146 0 11--1 - -I-t-I-I--K-=-1-,1-3
.0147 EMM=EM(K)

C . .T HE-C-fNS-TA S-F-OR-THFfE-N UM;ERA-TOR-t--S-TfR E-D-f-If•--T H E-V EC-ITOR-P Hf -- )--AND----
C PHJ( ))AND FOR THE OENOMINATOR (STORED IN THE VECTOR TH( )) ARE
---Ci OM PU TED--C R--T HI S--VAttU E--O F -.

.0148 CALL CNSTNT(EMM,,H,ZZ,IOWA,PH,PHJTH,ILAYER)

.-01•49 IF-DfB )•t30-2f30-2,.3G
C ON ALL EXCEPT ThE FIRST TIME THROUGH (WHEN 10B IS ZERO) EVERY
-C --THER-flO F-THE-t-E-Sf-VktUES--f -TE• -SO LUT-I- ON-VE C-ITOR- FO R-THI-SS-M-MUS-T--
C BE STORED IN THE FIRST MNI LOCATIONS OF THE SOLUTION VECTOR SI( ).

- C THE-SE-i-ESUL-t---HA V E-B E-N-S-T-OR ED-t-N--TH E-KT H-R OW-O F-TH E-A- R-AY-S-I--I&-(------

32 Ef6,J)=E3(J)
GO TO 3i

26 MIN=5
MAX 5
IMX=18

THE 'NUMERATOR' FOR THE SECOND AND THIRD LAYER RESU3LTS CONTAINS
it --s ' F-E•R-E• I T--1%•T-• .- F E-F-I• S-T--t, rr tE-7-E--T E-S- AC E--S-- Hi S -,-I-•,•--- -

THE 'DENOMINATOR' IF DOING A STRESS. THE SECOND NINE HAVE THE
F-I-FTtF--C-,R FE-RPFtl-4ONC-T-O--Q--T---E-I- --•-T E ft--flH A-N- E-2-( .
THE LOOP TO 33 PLACES E2( IN ROW 5 .OF E( ) AND THEN THE FIRST

THE 'DENOMINATORO ' INTEG'RALS WILL BE. STORED IN THE GAM( I IMI)
31 00 33 J=lrNNN
-- -Ef)~-~ff~

MI=MI~;N-1
NOW-ROWc'/ 5 OF E( IS REPLACED WITH El( )I AND THE, SECON1D 9
00 34 J=ItNNN

3-4--Em-(-5 ,-Jml-:-E--H-(--)
Lt-l-K T E GEt~t-1-0-7 1"01thi- F:TG-A-My-1-1-t M, - -J

50 CONTIN~UE
AT THIS POIN\;T ALL OF THE RELEVANT CONVOLUTION~ INJTEGRALS HAVE BEENJ
C At-CtUt-A-f- E-)-At rý-f)--S-T f)~·E-D ImN--T-ýtfE-G-A ýý-,'/-TI lm--A R i.*Y-*
MN=NIO
FOR EACH OF THE 13 VALUES OF THE DUMMY INTEGRATION VARIABLE Me,
EMM=EM(K))
T ff E-C-C N-S-T-A;',,fS- FF6K--T-HE--NUME-R-A-T-8-fR- " -T-FfP,-Ef)-f·"If- HE-VE EC-T-fmfR-P ~lf-l)-Ar-t Oa
PHJ( H)AND FOR THE DENOMINATOR (STORED IN THE VECTOR TH( ))ARE
-CALL CNSTNT(EM~ivZLiIOOWAPPiPHJTH11LAYER)
ON ALL EXCEPT THEf FIRST TIM~E THROUGH (WHJ)-EN IDB IS ZERO) EVERY
BE STORED IN THfE FIRST MNI LOCATIONS OF THE SOLUTION VECTOR SI( )



C
c W E-N--DON UtNGTHE-TR-AIAL-S-TR-- SS T-EQUt--T O-i-MUS-T-o-MSO-V E-TWO-S-Et-S--
C OF INTEGRAL EQUATIONS. THE CONSTANTS FOR THIS CASE ARE IN THE
S- v E1T-RS-H-J-t-) ANO--TtH( ). TtER-E-VtfS--e T-O NS---AR F-- -- tE--------
C ARRAY SIII( , 3 AND THE NEW SOLUTIONS WILL BE STORED THERE.

TI-8 5--st--tf(-fI D- 304304 4--305 --G
0 .09 . 305 MN1=N10-1
;01u 0 DG O3F6-zJ =,Sti NIT
;.0161 KK=2*JJ-1
,.0 2. f36 -- S- t-JJ)-3'1 i (K 9K ,K---
;.0163 304 CALL SOLVIT(NNN,PHJTH,GAM,IMX,9,MIN,MAX)

l;6 DW-4 00 6-1----n NNN
;.0165 60 SIII(K,I)=SI(I)

C IF ON THE FIRST TIME THROUGH, MUST COMPUTE THE APPROPRIATE BESSEL
C T E UtTIPLIERS-f TI E-4UtrTr tt-1-E I NG-~ EFS-F-fR-
C DIRECTLY TO THE INTEGRATICN WITH RESPFCT TO M. THIS IS DONE BE-
C G I NN I1 NG--Ir iTH-T-A-T EENT-70-UNL E-SS--kTE--O N-A. 0--S-R E S-S-- I--W-LIC t-H---
C CASE IT IS DONE BEGINNING WITH STATEMENT 272.

-0-,7I F-t 0 --I D-26 ,269,2 0
.0168 270 IF(IST-2)70,70,272

c '0E-1ETE.-ST-ATE-ET-f-2.t--GN•---F-IRST-t-D'UtNG---L *t-f3 - 0 3.
C DEPENDING WHICH STRESS OR DISPLACEMENT IS BEING DONE, A DIFFERENT
C BE-S-SEL- UTIPLIE- .f- -ES-US-E- i F--DI0 -- •EFCTION-vT-HEE- -ES-ýE-S-F-L
C TERMS ARE ALSO DIVIDED BY M (WHICH IS THE PURPOSE OF DIVIDE)

.0-16-9 - 691-10D-D-=-.

.0170 IF(IST-2)78,79,78
- T- t =--F-tRtS-- ES-TGS:EL TERW ,•--I-SJ-1-- FO R- [E-A,•--S-TRE•S ,R --R-ADI-A EFLC- E.•
C TION. IF IS J(O) OTHERWISE. IDEX STORES 1 OR 0 ACCORDINGLY.
C IF--R-- S-ZER0T--fE-fIRS-T--BE-SSEt- TE-RM-tS--Z-ER--I-F--J-t-)--A ND- I f--Jf-)--
C AND THE TM1 TERM IS SET ACCORDINGLY.

01- 7- IDE-X-
.01,z TM1=0.
;-0173 GO-T-80
.0174 78 IDEX=O
;-01-75 - TMI-=I
.0176 80 IF(IDEFLE)81,81,82

' I-F--- O-I -G--A-- STRE-S-S-TfHEN--TH E--L-- I---I F--Ji(-M A --AS---M ---TfEN DS-- TOZ:EROt -I-S
C ZERO.

.0177 7 .8 0iE-SES-(I --.

.0178 GO TO 83
C I-F--D 0 -IN G--A- E- Ft-EfC-iO Nj-f EN-T HE-- T--O F -J I- (- A-- -/M -A S- M -T-EN DS--TO--
'C ZERO IS A/2.

;-01-79 82-16 E 1-S--1-)- =-A-/27.
,0180 83 DDD=O.

C-- ---D-S--E-QtUA L--T-T -•HE--B -S-Et-M Ut-I- fPL-It- ER•S--ARE--C-A L-UL-A-T- E f)--A-T- ---
C POINTS SPACED .1 M APART FOR USE IN SUBROUTINE TERPO.

0_ 81 0-- 86 --I-2
,0182 DOD=DDD&.1
01 83- RM=R~ODD
0184 AM=A' CDD

-C- IF- R E--RE -- TE- F-RS-T-T RM EEt-T- BE--EA-J A-T-E D--US-I-NG--TH- E
C FUNCTION SUBPROGRAM.

0185 --I Ft R M--.0 01) -8-4t,- 4,8 5
C THE BESSEL TERMS ARE CALCULATED USING THE FUNCTION SUBPROGRAN
C- -- B ESS-Et L---TE N-tULTI P LI E-TOG E-T H ER--AN D.-1 F ---DO I NG---A--DE F-LEC-T-I-ON--A RE---
C DIVIDED BY M. THE RESULT IS STURFD IN THE VECTOR RESS( ).
C
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·.0186 85 TM1=BESSFL(IDEXRM)
3.T'0168 f' I04 1- --~S=t-rI A tt)
5.0188 IF(IDEFLE)86,86,87
S.--O 89 8 7-D IV TUE-D D D
3.0 o 86 BESS(I)=TM1*TM2/DIVIDE

C r IF -DOIG-R AfDIAt -A-STRESS-t-fS-T --=3-)-tUS-T-C OM PUT-E--A-SEC-OND-- ESSE L
C MULTIPLIER. THIS IS STORED IN THE VECTOR BESSS( ) AND IS COMPUTED
S IiN AN"-A -rAt OG T US "AdtEi--R.T R

3.0191 IF(IST-3)70,71,71
C-TIE--L-It,-T---F---I t R- J-l( ,At--t-t--A SM-T EN S---TO--Z-E-Rf--I--S--A L-WAY-S--Z-ERO-------

5.0192. 71 BESSS(1)=O.
t5--S3 0DQDrO. ..

3.0194 RR=R
S 5.-;095 'D ----7 -1-• ,-9-.
,.0196 DD00=DD&.1
.-• 197.~" " RM=R.FDOD
5.0198 AM=A'ODD

C -T- E--tIMt IT-M- F--J t-(- R1--Jt-IMA-/-Y M R--A S--R--T EN-DS-T -Z ER O--S--M-I--MA-)-/-2M----
5.0199 IF(RR-.0001)271,271,76

7~.C 71 -r -Tr-T-t_-,- 2 .-
i..0201 R=1.

V -202-- - GO-TO --5-77
5.0203 76 TM1=BESSFL(1,RM)
i --•2-45-- -7-7 -TM2 =-P ES-Sf- L-t ( -1-TA- t)
i.0205 77 BESSS(I)=TM*TM2/R/DD00

C CbeT-ThOE--TE R S-A-T-- EtTT-227--TNLYH EN---tNG--RAD I-AL--S-TR-ES-S.
C IN THIS CASE, MUST CARRY OUT TWO SEPARATE INTEGRATIONS WITH RES-
C P E-C-T--TI -M-T-AD-kDD"-T -E-R-SU-T-S-fT- E-T H E- R.
C THE INTEGRATION MUST BE EXECUTED AT EACH OF THE NEWLY CALCULATED
Sv-A LUS--OF-T--i E -tN NN--SU C-H-VA L-E-S ER-- NN -N-N -- V----A LtFE-S-)

;.0206 272 00 72 I=MN,NNN
C THRE--I-3-- L-tI-'J-V, it3 ES--U-S--VAL-U F-~--- -A R-E-T-RAN S FE · (ED--FOR--O1 E-----
C TIME) INTO THE VECTOR S( ), FROM THE ARRAY• SII( ,

0.-•20-7- DO -3 =--1J 1-3 *
i.02C8 73 S(J)=SII(JI)

C T-E--Se-tj' L-U-I f-N-- F-O-R"--fI-FI-S-I tNTEG-R-A- L- E ,-UAftGR -0L--AkN D-T-H E--M U L-T-I-P L-I E-R
C BESS( )) IS CALCULATED USING SUBROUTINE TERPO AND TRANSFERRED INTO

;.0209 CALL TERPC(S,BESS)
-O. 02-0 WR -- I R IE-(-6--70-1- -I
;.0211 WII=WI

C THE --3-- VAtUE-S--FR-O M-Sti--I-tti, )-A-RE-T-R-5A NS-fFERRED-- NTO--S--f--)-A ND---TH E
C SOLUTION WITH BESSS( ) IS CALCULATED AND ADDED INTO WII. THIS IS
C THE---MB~ittPtI-EE--Y--A--•--P-IfI' ED-fU-tf--Wi-T-H-TH E-F-F-ME---THE-TO T A-------L
C SOLUTICN FOR THE RADIAL STRESS AT THIS TIME).

.-02-12 D 0--7-4J--J3-1-
;.0213 74 S(J)=SIII(J,I)
-0oz -4 -- -C-Att--T-E R-P (--S -C- E-S-S-S-S

;.0215 WRITE(6,701)WI
S---216- - 7 0-FQ~ OR XC-E-t5-_ -, )
;.0217 . WII=WI&C II
-0 -1-8 ,-l--ti I-I-*A
;.0219 72 RPITE(6,63)T(l),WII
-.02 20-- -- 0G O-T -7 5

C
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C CNTRUOct-E NrT-E-RS-T-SA TA-EA TEN T-74 -P-FOR-Att--E-XC-EPF-R D I-At-STRES S--T- E-----
C INTEGRATION ON M IS NUW CARRIED OUT AT EACH OF THE NEWLY CONSID-S ' -CE-R-E-.--S, ' '

S.0221 70 DO 61 I=MN,NNN
-"--- T HE1--3-VAtU ES--O F-TH E--Sf-TUT-I-T rO-•T-h-E-A -H--T-I M -FFOFR-T HI- RTE-E E--V A L-UFS-----

C OF M) ARE TRANSFERRED INTO THE VECTOR S( ).
-.-07222 DO--6-2--J= 13iI
3.0223 62 S(J)=SII(JI)

C NONE -OF--T t E--S- LT-t-CHA -- -A- ER--Tt I-S-T---P IT--SF-----
C IF ANY ARE FOUND THAT DO CHANGE SIGN AT LARGE M (DUE TO ROUND-OFF
C ERRORS- Ilt THE -UBRR-- t E-CNST-N T- t---H-Y-ARE--Z-EROE D.

3.0224 DO 705 J=4,13
;.0225 I F-S- {J-)- S-(-J1-)- -7 G-f706-T-705

;.0226 7C6 S(J)=O.
-.-C02"27 C. 5-COT I-t-NUE E

C THE TOTAL SOLUTION IS COMPUTED USING SUBROUTINE TERPO. IT IS THEN
-C M ULT --f>LIED F{-BY ---- fY,--P-RI --NTE -,IT T H--ft E--ft -ME.

.0c228 CALL TERPC(S,BESS)

-;-0 229-- WI-- A).0230 61 WRITE(6,63)T(I),WI
•.O 23?-1 63--F C• -ATt--8 t-M-- t5 -••--.--T-2t_-t T- N -= E--5 81

C NOW MUST REJECT APPROPRIATE VALUES AND RETURN TO THE BEGINNING OF
C TFE-DOQUtf N G-LOCf P-- (-S-T A T E- ENT-9-6-)-tF-HA-V E--N Of--DOUB LED-A--SU FFI--C- EN-E----
C NUMBER OF TIMES.

--11:•--- tD S-I tCR -E-5--BY- -tM1 A K--NG--fI--PCS- T--V E--Af-T-E R--T-E---F--I R S-fT---tO P)-
C AND N10 IS COMPUTED FOR THE SECOND AND SUBSEQUENT LOOPS.. N,, AND
C NX-A ~E-GT-IVEIAPP RPRA I-A -E--V-A-tES-ALSt-C.

.•0232 75 NIO=NNN/2&2
;-0233-- MN I--T
;. 0?-a4 10B=IDB&

0.0L5 NX=1
).0236 IF(IDOUBL-IDB)67,68,63

C THE-N I TERVAt f-C -TI4E ARE-DttE--LG.E
;.0237 68 DEL=DEL42.

CL -- TE-tR- E-tE VA NT--VAkt-U ES--F-T- E-G-AM , (-i t--ARRAY-A ND-T-HE---VE-CT OR S- F--1---f- -

C E2( ), AND E3( ) ARE SAVED.
;0238 00D-64-I-=-2~--MN-1
;.0239 K=2*I-I
3,-0240 O -6----- D1 -1-
S.0241 DC 66 L=1,7

5, 02 4 2 (6 1t - 3-i-~K J ): .-AM-(-K-T - --)).0243 El(I)=E1(K)
.0244 E-2f-)= E-2(-K-)

;.0245 64 E3(1)=E3(K)
;.02 4 - GC T 6~----- .
J.0247 67 CONTINUE
0.0248 I OC --CONT-INkUE

END

C
C

C
. . . . C .. .. . .C--...... --- --~

C
C
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MAIN PROGRAM FOR HALF-SPACE

ANALYSIS USING EXACT INTEGRATION
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C
C
C 1

-C THIS IS THE MAIN PROGRAM FOR THE ANALYSIS OF A LINEAR VISCOELASTIC
C THREE-LAYER HALF-SPACE UNDER A UNIFORM CIRCULAR LOAD, FOR THE CASF
C THAT THE MULTIPLE CONVOLUTION INTEGRALS ARE EVALUATED EXACTLY.
C THE NECESSARY SUBROUTINES AP.E CNSTNT, TIME, SOLVE, TFRPO, AND
C INTEGR (EXACT). ALSO NECESSARY IS THE FUNCTION SUBPROGRAM BESSEL.
C THE INPUT IS IST,H,A,R,ZZ,ILAYER,IDEFLE, NJJJ,DELTX,DELXX, AND THE
C VECTORS E1( ), E2( ), AND E3( ). IST IS A DUMMY WHICH, TOGETHER
C WITH IDEFLE DETERMINES WHICH STRESS OR DISPLACEMENT IS DESIRED.
C IST IS 1 FOR NORMAL STRESS OR NORMAL DEFLECTION, IS 2 FOR SHEAR
C STRESS OR RADIAL DEFLECTION, AND IS 3 FOR RADIAL STRESS. H IS THE
C THICKNESS OF THE SECOND LAYER (THE THICKNESS OF THE FIRST LAYER IS
C ONE). A IS THE RADIUS OF THE LOAD. R IS THE OFF-SET AT WHICH THE
C STRESS OR DISPLACEMENT IS DESIRED. ZZ IS THE DEPTH AT WHICH THE
C SOLUTION IS DESIRED. ILAYER IS THE LAYER OF INTEREST (1,2, OR 3)
C IDEFLE IS POSITIVE IF A DEFLECTION IS TO BE DONE, ZERO OTHERWISE.
C NJJJ IS AN INPUT TO THE SUBROUTINE SOLVE, AND IS EXPLAINED IN
C DETAIL THERE. DELTX AND DELXX ARE INPUTS TO THE SUBROUTINE TIME
C AND ARE EXPLAINFD IN DETAIL THERE. N AND NNN ARE ALSO INPUT. N
C IS THE NUMBER OF TERMS IN THE DIRICHLET SERIES REPRESENTATIONS OF
C THE INPUT CREEP FUNCTONS. NNN IS THE NUMBER OF POINTS IN TIMFE AT
C WHICH THE SOLUTION IS DESIRED. THE VECTORS E1( ), E2( ), AND E3()
C CONTAIN THE CONSTANTS FOR THE SERIES REPRESENTATIONS OF THE CREEP
C FUNCTIONS FOR THE FIRST, SECOND, AND THIRD LAYERS RESPECTIVELY.
C THE RESULT OF THE PROGRAM IS THE DESIRED STRESS OR DISPLACEMENT
C AT EACH OF THE NNN TIMES.

S.0001 DIMENSION E1(12),E2(12),E3(12),EM(13),G(7,12,18),GG(7,12,9),
,. 1E(8,12),PH(18) PHJ(18) ,TH(9) ,SII (13,201) ,SIII (13,201),S(13),

IBESS(91),BESSS(91)
S.0002 COMMON X(20),BB(8,20), T(201) ,DELTA(20),BETA(201),B(8,20),

1SI(201),WI,DELTX,DELXX,NJNJJ
C THE LOOP THROUGH 1000 ALLOWS MULTIPLE SETS OF DATA TO BE RUN.

S.0003 DO 1000 III=1,100
S.0004 READ(5,52) IST,H,A,R,ZZ
S.0005 52 FORMAT(I5/5F10.5)
S.0006 .READ(5,20) ILAYER,IDEFLE
S.0007 WRITE(6,210)IST, ILAYERIDEFLE,H,A,R,ZZ
S.0008 210 FORMAT(7H IST = I10/10H ILAYER = I1O/10H IDEFLE = 110/

15H H = FIO.5/5H A = F10.5/5H R = F1O.5/6H ZZ = F10.5)
C IOWA IS GIVEN THE VALUE 1,2, 3, 5, OR 6, DEPENDING ON WHICH STRESS
C OR DEFLECTION IS DESIRED. THIS DUMMY IS USED AS. INPUT TO THE
C SUBROUTINE CNSTNT.

S.0009 IF(IDLFLE)55,55,53
S.0010 55 IOWA=IST
S.0011 GO TO 54
.S.0012 53 IOWA=4&IST
S.0013 54 CONTINUE
S.0014 READ(5,20)NJJJ
S.0015 READ(5,1)DELTXDELXX

C NJ AND NJJ ARE INPUTS TO THE SU3ROUTINE SOLVE. THEY HAVE NO SIG-
C NIFICANCE IN THE PRESENT USE OF THAT SUBROUTINE AND ARE GIVFN
C ARBITRARY VALUES.

S.0QJ6 NJ=10
S.C .7 • NJJ=8

C
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C
C

;.0018 .READ(5,20)N,NNN
;.0019 2d FORMAT(515)
;.0020 READ(5,1)(El(I),I= 1,N)
;.00q1 READ5,1)(E2( I),I=1,N)
.0O 2 READ(5,1)(E3(I),I=1,N)
3.0023 WRITE(6,2) (El( I), I=L,N)
;.0024 WRITE(6,2) (E2( I ) , I=1,N)
;.0025 WRITE(6,2)(E3(1) ,I=1,N)
i.0026 1 FORMAT(6F10.5)
;.0027 2 FORMAT(22H INPUT CREEP FUNCTIONS/(6FIO.5))

C THE APPROPRIATE NNN VALUES OF TIME ARE CALCULATED AND STORED IN
C THE VECTOR T( ) USING SUBROUTINE TIME. ALSO CALCULATED WITH THIS
C SUBROUTINE ARE THE INVERSES OF THE RELAXATION TIMES, WHICH ARE
C STORED IN THE VECTOR DELTA( ).

;.0028 CALL TIME(NNN)
C THE VECTOR EM( ) SERVES AS INTERMEDIATE STORAGE OF THE VALUES OF
C THE DUMMY INTEGRATION VARIABLE M FOR WHICH THE INTEGRAL EQUATION
C IS SOLVED. THESE VALUES OF M ARE 0.0, .2, .4, .7, 1., 2., 3., 4.,
C 5., 6., 7., 8., AND 9.

;.0029 EM(10)=6.0
;.0030 EM(11)=7.0
;.0031 EM(12)=8.0
;.0032 EM(13)=9.0

C THE LOOP FROM HERE TO THREE ARRANGES EACH OF THE POSSIBLE COMBIN-
C ATIONS OF THE FIRST FOUR CREEP FUNCTIONS FOR THE MULTIPLE
C CONVOLUTION INTEGRATIONS AND COMPUTES THE THREE-FOLD INTEGRAL OF
C THESE FOUR FUNCTIONS.

;.0033 DO 3 I=1,9
C EACH OF THE CONSTANTS (N OF THEM) MUST BE TRANSFERRED INTO THE
C APPROPRIATE ROW OF THE ARRAY E( , ).

;.0034 00 19 J=1,N
C THERE ARE NINE COMBINATIONS OF THESE RELAXATION FUNCTIONS.

.0035 IF(I-2)12,11,15
;.0036 15 IF(I-4)I0,9,16
;.0037 16 IF(I-6)8,7,17
,.0038 17 IF(I-8)6,5,4

C SOME OF THE M VALUES ARE STORED DURING THIS ARRANGEMENT.
..0039 4 EM(I)=5.0
;.0040 E(1,J)=E1(J)
;.0041 E(2,J)=E1(J) -
1.0042 E(3,J)=E3(J)
;.0043 E(4,J)=E3(J)
.0044 GO TO10 19
;.0045 5 EM(I)=4.0
;.0046 E(1,J)=E1(J)
0.0047 E(2,J)=E1(J) ,•
1.0048 E(3,J)=E2(J)
-.0049 E(4,J)=E3(J)
,.0050 GO TO 19
.0051 6 EM(1)=3.0
;.0052 E(1,J)=E1(J)
ý.0053 E(2,J)=EI((J)
,.0054 E(3,J)=E2(J)
,.0055 E(4,J)=E2(J)
,.0o.'' GO TO 19

C
C
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;.0057
i.0058
.0059
i.0060

l.0 1
3.0062
;.0063
;.0064
;.0065
5.0066
5.0067
;.0068
;.0069
i.0070
5.0071
5.0072
5.0073
;.0074
5.0075
;.0076
i.0077
i.0078
;.0079
;.0080
i.0081
5.0082
i.0083
5.0084
;.0085
;.0' 6
5.0087
5.0088
5.0089
;.0090
5.0091
5.0092

- 233 -

7 EM(I)=2.0
E(1,J)=E1(J)
E(2,J)=E2(J)
E(3,J)=E3(J)
E(4,J)=E3(J)
GO TO 19

8 EM(I)=1.0
E(1,J)=E2(J)
E(2,J)=E2(J)
E(3,J)=E3(J)
Et4,J)=E3(J)
GO TO 19

9 EM(I)=.70
E(I,J)=EI(J)
E(2,J)=E2(J) (i.)
E(3,J)=E2(J)
E(4,J)=E3(J)
GO TO 19

10 EM(I)=.40
E(1,J)=E1(J)
E(2,J)=E2(J)
E(3,J)=E2(J) (5)
E(4,J)=E2(J)
GO TO 19

11 EM(I)=.20
E(1,J)=E2(J)
E(2,J)=E2(J) LiI
E(3,J)=E2(J)
E(4,J)=E3(J)
GO TO 19

12 EM(I)=0.O
E(1,J)=E2(J)
E(2,J)=E2(J)
E(3,J)=E2(J) JJ
E(4,J)=E2(J)

19 CONTINUE
THE ITH INTEGRAL IS CALCULATED AS A SERIES OF N EXPONENTIAL TERMS
EACH MULTIPLIED BY A THIRD DEGREE POLYNOMIAL. THE CONSTANTS ARE
TRANSFERRED INTO G( , ,I).
CALL INTEGR(E,N,3,0)
DO 21 L=1,N
00 21 J=1,4

21 G(J,L,I)=B(J,L)
3 CONTINUE

102 FORMAT(24H INTEGRAL RESULT FOLLOWS/(E15.8))
IF ARE IN FIRST LAYER, HAVE ONLY 9 DIFFERENT MULTIPLE INTEGRALS
IN THE 'NUMERATOR'. IF IN THE SECOND OR THIRD LAYIER, HAVE 18 SUCH
DIFFERENT INTEGRATIONS.
IF(ILAYER-2)22,23,23
IF IN THE FIRST LAYER, THEN THE 'NUMERATOR' AND 'DENOMINATOR' EACH
HAVE ONLY 9 .SEPARATE INTEGRAL RESULTS.

22 IF(ICEFLE)24,24,25
IF DOING A STRESS, THE NUMFRATOR AND DENOCINATOR INTEGRAL RESULTS
ARE THE SAME. CONSEQUENTLY, THE RESULTS STORED IN G( , , ) ARE
ALSO TRANSFERRED INTO GG( , , ).

5.0093
5.0094
5.0095
3.0096
5.0097
S.0098

5.0099

5.0100
C
C
C



C
C
C

;.0101 2400DO 38 I=1,9
;.0102 'DO 38 L=1,N
;.0103 DO 38 J=1,4
;...W0 4 38 GG(J,L,I)=G(J,L,I)

C N9 = NUMBER OF INTEGRAL RESULTS IN THE 'NUMERATOR'. N7 TELLS HOW"'
C MANY TERMS IN THE POLYNOMIALS MULTIPLYING THE EXPONENTIALS IN THE
C 'NUMERATOR' WHILE N8 CONTAINS HOW MANY FOR THE 'DENOMINATOR'.

;.0105 N7=4
;. 0106 N8=4
;.0107 N9=9
;.0108 GO TO 50

C WHEN DOING A DEFLECTION IN THE FIR'ST LAYER, THE 'NUMFRATOR' INTE-
C GRATIONS CONTAIN ONE ADDITIONAL INTEGRATION INVOLVING El( ). THUS
C THE PRESENT CONTENTS OF G( , , ) ARE FIRST TRANSFERRED TO GG( , ,)
C WHICH IS THE DENOMINATOR ARRAY, THEN THE ADDITIONAL INTEGRATION
C IS CARRIED OUT BY PUTTING E1( ) IN E(8, ) (EIGHTH ROW OF E( , ) )
C AND USING THE SPECIAL OPTION OF SUBROUTINE INTEGR FOR EXECUTING
C ONE ADDITIONAL INTEGRATION GIVEN THE RESULTS OF PREVIOUS INTEGRA-
C TIONS OF SERIES. THE FINAL RESULT IS STORED BACK IN G( , , ).

;.0109 25 DO 26 J=1,N
;.0110 26 E(8,J)=E1(J)
,.0111 DO 111 I=1,9
;.0112 DO 111 L=1,N
i.0113 00 111 J=1,4
;.0114 111 GG(J,L,I)=G(J,L,1)
.0115 00DO 27 I=1,9
;.0116 DO 28 L=1,N
;.0117 DO 28 K=1,4
;.O. 8 28 E(K,L)=G(K,L,1)
.0. .9 CALL INTEGRIE,N,4,1)
;.0120 DO 29 L=I,N
;.0121 DO 29 J=1,5
;.0122 29 G( J,L,I)=B(J,L)
;.0123 27 CONTINUE
;.0124 N7=5
;.0125 N8=4
;.0126 N9=9
3.0127 GO TO 50

C WHEN IN THE SECOND OR THIRD LAYER, THE 'NUMERATOR' AND 'DENOMIN-
C ATOR' CONTAIN ONE ADDITIONAL INTFGRATION. IN ADDITION, THE 'NU7M-
C ERATOR' CONTAINS 9 ADDITIONAL INTEGRAL RESULTS. TO CALCULATF
C THESE, USE IS AGAIN MADE OF THE SPECIAL OPTION FOR EXECUTING A
C SINGLE ADDITIONAL INTEGRATION USING SUBROUTINE INTEGR. FIRST THE
C EIGHTH ROW OF E( , ) IS FILLED WITH El( ) AND USING THE RESULTS
C STORED IN G( , , ) THE TENTH THROUGH EIGHTEENTH INTEGRAL RESULTS
C ARE FOUND USING SUBROUTINE INTEGR. THEN THESE RESULTS ARE STORED
C IN G( , , ). NEXT THE EIGHTH ROW OF E( , ) IS REPLACED WITH E2( )
C AND INTEGRAL RESULTS ONE TO NINE ARE CALCULATED. THESE ARE ALSO
C STORED IN G( , , ).

5.0128 23 DO 30 I=1,9
;.0129 32 DO 35. J=1,N
;.0130 35 E(8,J)=E1(J)
5.0131 IJ=I&9

.0 -32 34 DO 36 J=1,N
*.C 3 00D 36 K=1,4

C
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C
5.0134 36. E(KJ)=G(K,J,I )
S.0135 "1001' CALL INTEGR(EvN,4,I)
5.0136 DO 37 L=1,N
5.0137 00 37 J=1,5
S •.138 37 G(J,L,IJ)=B(J,L)
5,.-39 IF(IJ-9)30,30,31
5.0140 31 DO 33 J=1,N
5.0141 33 E(8,J)=E2(J)
S.0142 IJ=I
S.0143 GO TO 1001
5.0144 30 CONTINUE
S.0145 N8=5
5.0146 N9=18
S.0147 IF(IDEFLE)339,39,40

C IF DOING A STRESS, THE DENOMINATOR INTEGRAL RESULTS ARE THE SAME
C AS THE FIRST NINE 'NUMERATOR' RESULTS, AND THUS THESE ARE TRANS-
C FERRED INTO GG( , , ),

5.0148 39 DO 41 I=1,9
S.0149 DO 41 J=1,5
5.0150 DO 41 L=1,N
S.0151 41 GG(J,L,I)=G(J,L,I)
S.0152 N7=5
S.0153 GO TO 50

C IF A DEFLECTICN IS DESIRED, THE 'NUMERATOR' INTEGRAL RESULTS MUST
C BE INTEGRATED WITH EITHER E2( ) OR ES( ) YET. FIRST THE PRESENT
SC FIRST NINE INTEGRAL RESULTS ARE TRANSFERRED INTO THE DENOMINATOR
C ARRAY GG( , , ). THEN THE INTEGRATION OF THE NUMERATOR RESULTS
C AND E2( ) OR E3( ) IS CARRIED OUT BY STOREING E2( ) OR E3( ) IN
C THE EIGHTH ROW OF E( , ) AND USING SUBROUTINE INTEGR WITH THE

,, . C SINGLE ADDITIONAL INTEGRATION OPTION. THE RESULTS ARE STORED BACK
C IN THE G( , , ) ARRAY.

S.0154 40 IF(ILAYER-2)42,42,43
S.0155 42 DO 44 J=1,N
5.0156 44 E(8,J)=E2(J)
5.0157 GO TO 45
5.0158 43 DO 46 J=I,N
S.0159 46 El8,J)=E3(J)
5.0160 45 DO 112 I=1,9
3.0161 DO 112 L=1,N
5.0162 DO 112 J=1,5
3.0163 112 GG(J,L,I)=G(J,LI)
5.0164 DO 47 I=1,18
5.0165 DO 48 J=1,N
3.0166 DO 48 L=1,5
3.0167 48 E(L,J)=G(L,J,I)
;.0168 CALL INTEGR(E,N,5,1)
3.0169 DO 49 L=1,N
:.0170 DO 49 J=l,6
:.0171 49 G(-J,L,I)=B(J,L)
3.0172 47 CONTINUE
).0173 N7=6

0.0174 50 CONTINUE
C ALL NECESSARY INTEGRALS ARE NOW STORED. THE NUMERATOR RESULTS
C ARE STORED IN THE G ARRAY, DENO,1INATOR RESULTS IN GG ARRAY

.G~ 75 NNX=NNN
C
C
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C
C
C
C
C THE LOOP TO STATEMENT 56 SOLVES THE INTEGRAL EQUATION FOR EACH
C OF THE THIRTEEN VALUES OF M.

176.-. DO56 K=1,13
17i EMM=IEM(K)

C THE CONSTANTS IN-THE INTEGRAL EQUATION ARE CALCULATED FOR THIS
C VALUE OF M USING THE SUBROUTINE CNSTNT. THE RESULTS ARE STCRED
C IN THE VECTORS PH( ), PHJ( ), AND TH( ).

178 CALL CNSTNT(ENM,H,ZZ, IOWA,PH,PHJ,THILAYER)
C THE TOTAL RIGHT HAND SIDE OF THE INTEGRAL EQUATION IS 'REDUCED TO
C A SERIES OF EXPONENTIALS EACH MULTIPLIED BY A POLYNOMIAL CONTAIN-
C ING N7 TERMS. THE CONSTANTS IN THIS SERIES REPRESENTATION ARE ALL
C STORED IN THE BB( , ) ARRAY.

179 DO 58 J=1,N
180 00 58 L=1,N7
181 88BBL,J)=0.
182 DO 58 I=1,N9
183 58 88(LJ)=BB(L,J)&PH(.I)*G(L,J,I)

C THE KERNAL OF THE INTEGRAL OF THE LEFT-HAND SIDE OF THE INTEGRAL
C EQUATION IS REDUCED TO A SERIES OF EXPONENTIALS EACH MULTIPLIED BY
C A POLYNOMIAL CONTAINING N8 TERMS. THE CONSTANTS IN THIS SERIES
C REPRESENTATION ARE ALL STORED IN THE B( , ) ARRAY.

)184 DO 59 J=1,N
)185 00 59 L=1,N8
)186 B(LJ)=0.
)187 DO 59 I=1,9
)188 59 B(L,J)=B(L,J)&TH(I)*GG(L,J,I)
3189 57 CONTINUE

,. C THE INTEGRAL EQUATION IS SOLVED FOR THIS VALUE OF M USING SUBROUJ-
C TINE SOLVE. THE RESULTS ARE STORED IN THE VECTOR SI( ).

0190 CALL SOLVE(N,N8,N7,NNX,NJJJ)
C THE RESULT IN SIt ) IS TRANSFERRED INTO THE KTH ROW OF SII( , J.

0191 DO 60 I=1,NNN
0192 60 SII(K,I)=SI(I)
0193 IF(IST-3)56,61,61

C IF DOING RADIAL STRESS (IST=3), THEN MUST SOLVE A SECOND INTEGRAL
C EQUATION FOR EACH M. THIS IS DONE IN THE SAME WAY AS THE FIPST
C ONE. THE CONSTANTS ARE ALREADY AVAILABLE, IN PHJ( ) AND TH( ).
C THE FINAL RESULT IS STORED IN SIIII ,

0194 61 DO 63 J=1,N
0195 DO 63 L=1,N8
0196 BB(L,J)=0.
0197 DO 63 I=1,N9
0198 63 BB 'L,J)=B3(LJ)&PHJ(I )G(L,J, I)
,0199 CALL SOLVE(N,N8,N8,NNX,NJJJ)
,0200 00 64 I=1,NNN
,0201 64 SIII(K,I)=SI(I)
,0202 56 CONTINUE

C NEXT THE BESSEL MULTIPLIERS MUST BE CALCULATED. THESE 'VAR{
C DEPENDING ON WHICH STRESS OR DEFLECTION IS BEING DONE.
C THE BESSEL MULTIPLIERS ARE DIVIDED BY ", FOR DEFLECTION ONLY. THE
C VARIABLE DIVIDE IS UNITY UNLESS DOING A DEFLECTION.

.0203 DIVIDE =1.

.02C4 IF(IST-2178,79,78
C IDEX IS A DUMMY USED FOR SELECTING EITHER JO(MR) OR J1(1MR).

.0205 79 IDEX=1
C
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.0206

.0o08

.0209

.0210

.0211

.0212

,.0213

.10214

.0215

.0216

.0217
,.0218
.0219
.0220
.0221
.0222
ý.0223
;.0224
.0225

.0226

.0227

.0228

.0229

.0230

.0231

.0232

.0233

.0234

.0235

.0236

.0237

.0238

.0239

DO 86 I=2,91
DDD=DDD&. 1
RM=R•*DDD
AM=A0DD0
IFRM-.0001)8484,84,85

85 TM1=BESSEL{(IDEX,RM)
84 TM2=BESSEL(1,AM)

IF(IDEFLF)86,86,87
87 DIVIDE=DDD
86 BESS(I)=TM1'TM2/DIVIDE

IF(IST-3)70,71,71
IF DOING RADIAL STRESS
TIPLIERS, WHICH ARE ST
THE LIMIT OF J1(MR4J1(

71 BESSS(1)=0.
DDD=0.
RR=R

, MUST
ORED IN
MA) /MR

COMPUTE
BESSS(

IS ZERO

A SECOND

SINCE J1('ýR)
ACCORDINGLY.

TM1 IS A DUMMY USED TO STORE THE FIRST BESSEL TERM.
IS ZERO FOR R=0, AND JO(MR) IS 1 FOR R=0, TM1 IS SET
TM1=O.
GO TO 80

78 IDEX=O
TM1=1.

80 IF(IDEFLE)81,81,82
THE LIMIT OF J1(MA) AS M TENDS TO ZERO IS 0. SO THE
ALL STRESSES IS ZERO.

81 BESS(1)=0.
GO TO 83
THE LIMIT OF JI(MA)/M AS M TENDS TO ZERO IS A/2. SO
A/2 FOR DEFLECTIONS.

82 BESS(1)=A/2.
DDD TAKES ON THE VALUES OF M. 91 VALUES OF THE BESS
ARE COMPUTED, AT VALUES OF M .1 M APART.

83 DD0=0.

BESS{I) IS

EL MULTIPLIERS

SET OF BESSEL MUL-

M TENDS TO ZERO.

DO 77 I=2,91
DDD=DDD& .1
RM=R40CD
AM=A :ADD

C. THE LIMIT OF J1(MR)J1(MA)/MR AS R TENDS TO ZERO IS MJI(MA)/2.M
IF(RR-.0001)250,250,799

250 R=1.
TMN=DDD/2.
GO TO 76

799 TMl=BESSEL(1,RM)
76 TV2=BESSEL(1,AM)
77 BESSS(I)=TMI~TM2/R/DDD

TWO DIFFERENT INTEGRATIONS ON M
RADIAL STRESS. FIRST, AT EACH
FERRED FROM SII( , ) INTO THE
USED WITH BESS( ) IN SUBROUTINE
RESULT. THIS IS STORED IN WII.
TIME) ARE TRANSFERRED FIROM• SlII
BESSS( ) TO COM,"PUTE THE SFCO:ND
INTO 'II, THE TOTAL RESULT MULT
IS PRINTED ALONG WITH THE CORRE

ARE CARRIED OUT WHEN DOING THE
VALUE OF TIME, 13 VALUES ARE TRANS-
VECTOR S( ). THESE RESULTS ARE

TERPO TO COI1PUTE THIS INTEGRIAL
THEN 13 VALUES (FOR THE SAME

( , ) INTO S( ) AND USED WITH
INTEGRAL RESULT. THIS IS ADDED
IPLIED BY A, AND THEN THIS ANS ER
SPONDING TIMF.
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C
C
C

!40 .00 72 1=1 ,NNN
!41 DO 73 J=1, 13
!42 73 S(J)=SII(J,I)
!43 CALL TERPO(SBESS)
!44 WII=WI
!45 WRITE(6,102)WI
?46 DO 74 J=1,13 "
247 74 S(J)=SIII(Jr I)
?48 CALL TERPO(SvBESSS)
?49 WRITE(6,102)WI
250 WII=WI&WII
251 WII=WII*A
252 72 WRITE(6,93)T(I),WII
253 GO TO 1000

C CONTROL ENTERS HERE FOR ALL BUT RADIAL STRESS FOR THE FINAL INTE-
C GRATION ON M. THIS IS DONE AT EACH OF THE NNN VALUES OF TIME.

254 70 DO 91 I=1,NNN
C THE 13 VALUES OF THE SOLUTION AT THE 13 VALUES 'OF M ARE TRANS-.
C FERRED INTO THE S( . VECTOR FROM SI( , ).

255 DO 92 J=1,13
256 92 S(J)=SII(J,I)

C AFTER THE FIRST THREE VALUES, NONE OF THE SOLUTIONS CHANGE SIGN.
C IF THEY DO, DUE TO ROUND-OFF ERRORS IN SUBROUTINE CNSTNT, THEY ARE
C SET TO ZERO.

1257 DO 783 J=4,13
1258 IF(S(J-1)*S(J) )784,784,783
)259 784 S(J)=O.
)260 783 CONTINUE

"" C THE SOLUTION IS CALCULATED FOR THIS TIME USING SUBROUTINE TERPO
C AND THE CONTENTS OF S. ) BESS( ). THIS RESULT IS MULTIPLIED BY A
C AND PRINTED ALONG WITH THE CORRESPONDING TIME.

3261 CALL TERPO(S,BESS)
)262 WI=WI*A
3263 91 WRITE(6,9"3)TII),WI
0264 93 FORMAT(8H TIME = E15.8,12H SOLUTION = E15.8)
0265 1000 CONTINUE

END
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

" C
C
C
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C -.C

;.0001 FUNCTI(IN BESSFL'(NN,S)
C THIS IS A FUCTI S.U- P.G'"~-i T L CLCULATE 3 FSSEL- FUCTI-C~ "' -
C THE ZEROFTH AND FIRST ORDER, CF THF FIRST KI'ID. THE INPUT IS 4,.

-. C AND S NN ISt! T 2- DES-t- ( 1,2 I-PtT-,!E- ,E--R.-5- F ...n ER ? f;`E) 9" -RS ICN t-). ..

C ARGUiMENT OF WE BESSEL FUNCTION. IF THE ARG..JMENT IS LESS THAN CP
C E.U",A -AL TC F t 2. T it-- i ,-ff - ft: *-T--- VALU TE S'f iLf3--TH E- IlF-I- ---- fE -~.-F----
C REPPESENTAT I1l'. IF THE ARGUM!!ENT IS GR.EATER THAN 12., THEN TIFr

' A.3Y' ..T IC E X'AS f.: FC UL .S E U F . T"HE PUT 3-UT IS T E 5T,"'SL --

C NUMBE:R STORED I N RESSFL.
;.000'r)-2 C O Nft ý X(2-0, D'( 9,2 ),i T(2:1} P PLT-,(20),,q T A(2 I}) {- 9-,,__

lS( 201 1,'I,DEL IXDFLXXNJ ,NJJ
-0-)3 N.-.:,
;,0004. KK=N

eT C f 1 iE S EeF i1T 9ET fP E5 E EP P -HE S
C SIONS CAN BE USFF.

0;-t•f 5- Ir -1 F f- I -, ., 7
C THE FORM OF THE ASYA'TOTI C EXPANSICN DEPENDS ON WHICH FUNICT ION IS
C T [--f i-FtV-LUAT-EF..

.0006 17 IF(N)l8,19,1R
,.---0p7 1 P S . 5 . "9 .25

.0008 GO TLJ 20

.--0- 1 PHI -5f=-3 -15-).7 5

.0010 20 BES=((2./3.141]59/S):: 5),,,CPS(PHI)
9.0 t GO TC 1.5

C THE PRif!GRAM FF,!I rfI HERE TO THE END IS THF SAME AS GIVFN IN THE
S-, .eit E • -. , CIT.e If Tf:V 1E-f XT.

,.0012 16 IF(IN)2,1,2
.-0 1-3 1---f•-SEL- .

..0,.QG4 GO TI 6
; .5-- .- 2 FA C-T -N

.0016 3 N=N-1
;..--:•:.1---7 - , - I F( 1 ."-;= ) 5,5,
,.0018 4 XN=N
.00-) 9 F 1 ---- i ' T-X\
.0020 GO TO 3
.-~. 5 XlX F-•AC-T-F N, C T
.0022 BESSEL=((S/2.)*-KK)/XFACT

J..0024 7 EXP=2'iK&KK
..,'25 EXP-FX••'/2•

.0.02T KI=K
... 9.: K-2-L~-----=K-, -• v,-

FACT 1=K 1
.~ -0030 K- 1- 1-0 1
.0030 IF(K1-1)10,10,
S.-O (Cri 1---- 9--X-i-~ i
.032 FACI 1 =FACT 1*XN
0-,,33 .ift-- -- 0--
,. 34 10 XFArT I=FACT1
.-•. 1-5- F Cf-.2 -~ 2

C 3 I 11 K2=K2-1
,.,.7 IC .F -~) 1_----3t-- )--L-,-, 1 .:,, 12

.', , 12 X ..I=K?

, k-.--l--ow- , -f-T-2 --. --- -
C
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ý-ffoA-O ----
.0041

., 0 433

.0047

.0-049~

.0051

- 241 -

-C-

r

rf10G--- GO TUO 1
b0041 13 XFACT2= FACT2

,0043 StJM2=((S/2.)*iEXP)/XFACT2

00B, 6ES = Be S SFL&S'V
. O 4f 0 fH# (- S+ - ES6 v9+ 7E
.0047 14 BESSFL=rES

.0049 G'J TO 7
5Th1PT15 DE F S

.0051 RETURN

C

CCCC
C

C

--C

C

C

C

C
C
C

-C C

C

C----CC

C

C
C
C

CC"-
C
C

CC
C
C
c
C
C

C - -I--

C
C

.. c

GJ- . r T] 1

13 XFACT2=FACT2

SUM2= (( /2 ) '-EXP)/XFACT2

B F S= P F S S F L& SIV., "

14 BES SF_=r ES

GoO T0 7

RETU U K' N
E ;•; -

€--

c

c ------------

c -----

c_------~

-- ..----- g--r ---- ~- -~
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C .

C

_•OlOC SIFPPRilTI T'F TF'PI~ S.RFS

C THIS SURRCUTINE IS USED TO INTERPOLATE VALUES OF THE SOLUTIOP,. AS
-C .A FI•ItjlT n OG F THF rEI DMMY INlTFr,PATTIf• VARTARI F M. THFN UIt TTI PL Y

-- C THESE VALUES RY THE PROPER 3ESSEL TERMNS (THE CAPITOL THETA TFRtiS
"C -N TlHF TFXT.) F, THi.cNt TNT'.ATF THF PESUI TS irSING ST"•PS nFMS RI! F

C NUMERICAL INTEGRATION PROCEDUIJE, FOR THE THE E-LAYER HALF-SPACE
c ANAML YSFS• TIF TNP.IIT IS THF VrryCTR c,( I rniTA .TNTGM TIHTPTFF!M VAMI 'IF

C OF THE FUNCTION PSI(T,MN) OF THIE TFXT, AT THF VALES OF N CF 0.,.?,
-C . ,4.7 ,.. ,2._Q; . :,,n,_5 0, .n,7.r ,, A n 9.1 . ALSO. INPUIT TS THF
C VALUE CF THE APPROPRIATE DESSEL TERM MULTIPLIER AT.91 POINTS
c SPACFr .1 L, APAPT, 4HTH HIS STO(RFD IN THF VFr.TOR FSSl( ). THF

C OUTPUT IS THE SINGLF NUIREPR W'I,(THE RFSULT OF THE INTEGRATICN)
C THr SIOI ITIONJ, Frt.- TIHI TT:-c nF TnLW TNI.U T S( 1.

.0002 DIMENSICN S(13),PFSS(91),FUN(91)
,.0.0_C_3 C_ i MA r)I Xp(•(•7), T(201) PFLTAfk(20),RIAFTA(2O1,),P(8,?On),t

1SI(201) ,WI ,DELTX,D)ELXX ,NJ,NJJ
r, THTF VFCTOR FUN( ) TS USFD TO STORF THE RIGI\NAL PrIfNTS AND THE
C INTERPOLATEC VALUES OF THE FUNCTION DFSCR.ISE) BY THE CON-TENTS cF S
r- FIRST THF T2PI'T .VAtlFS A•R STAnIPn I.! THF APPROPRI. ATE IOrCAT;ITQiS
C OF FUN( ).

._00C F__NF l ).=S {(1)

.00C5 - FUN(3)=S('2)
0CC6 FtiNIR)=S(3)

..0007 FUN(8)=S(4)
.OCC _ . FIINI 1 I) =S(5)
.0009 K=11
.010 I 1 T=6:
.0011 K=K.& 10
,00(-2, 1 F •El _IK) =S ( )

C TH.E INTERPOLAT IOIN IS PERFOPMED 3Y F ITTING 6A 3ARABOLA TO THREE CON-
C SFCtLLI TVF POItTS, AN• TH FV,', iA.I.LG THIS DA tARnI A. AT TH! TTF.-

C MECIATF PC-INTS. THE FOUATION OF T•-E PARACLA IS A.X'X&V'X&C.
c. THF CFNTFR VALUtF IS USFD AS Ct, Irt ALI CASFg.
C NY IS A CUM.Y USED TO DIRECT THE FLOW TO TAKE CARE OF THE THPEE

_ _C DIFFF•FNTA SPCTI'r.S IlF THF THRFE POT"!TS.
.0013 11 NY=-l

r N! All Qi VLt.FS 10 FUN, I ARF FCUD, SPCQ.PtFFr) I.- APAPT
0014 YI=S(2)
C 0 15. YI=Si(I)
CC16 YR=S(3)
C01.__. .2
0018 2 C=YI1
C.C 19_ ( Y / -I-2, YR)2,/HIU
0020 V=A:H& E(C-YL ) /H
C021 TF (NY)3 4,5
CC22 3 FUN(2)=AA:,O1-V*.l .C
00 c23 •. FUN•= AC1fVa. 1 : C
0 02g - NY=0

C(25 YL=S(3)
CC 2 YR=_(5_5)

2 P H= -

Ol.n Tf' 2

4 FUUN (6 )=A *.04-V- .2 ,C

- 243 -
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C
C

.0031 FUN(7)=A*.01-V-4.1C
,.00 2 FtlNit)=t 1 = V*,. n ( 1,C

.C033 FUN(1G)=A,.04&V*.2&C
,C 02-4 1' NY=1

.OC, p KK=10
G 0-;- K=5 "

.0037 8 YL=S(i)
_ a3.8 YR=: ( KE

.0039 YI=S(K&1)

.C0041 H=.

.0042 Gn l ' 7,
,0043 .5 DX=.-1.C
0-44 nf 6 T=1-1Q

.0045 OX=DX+.1
c00 ita; KKEKK', I
.CG47 6 FUN(KK)=ACDX4DX+V'DX+C
.0049. K=K. "
.0049 IF(K-13)8,7,7

C AT A 'TFS oD lT 'I TUF INTFRPOFI AT'fD VAj UIIEF H.AVE AP l F'P N' STOPF. INi F-.N•

C ANC THE INTEGRATION CF THE PRODUCTS FUN(I)*BESS(I) IS NO, CARRIED
C_ L.UTL.

0C050 7 WI=0.
.0.1 -5 70 J=2,Pr,2
.0052 70 WI=,! I&4.*,ESS(J)*FLUN(J)&2.*3 ESS( J )*FUN(J1I)
L.00 .. 3 W T= -ri.l. rEI... t PE (q• ( 1 F: [ l 1 ) . *P .F c , ) FUN ( I 9n, )
.0054 W I=i I & PESS( 91 ) FUN!(91)
. 0055 W1 T T - _. 1L3.,L
,0056 RE1UP.N

C FrM r;

CC
C
C

C

CCC
Cc.

C
· · · ·..-C-I

C

. C

- 244 -
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C
C
C

.... 1] SIIARn, ITT N VA I F I !P , •!I ' I ' )

C THIS SU3RGUTINF FVALUATES THE GENFFAL RFSFJLT CF THE EXACT V"Il1.TIPLF
c COLrNV(IJTLON TNTFG:ATTINS, .HICH ARF EXPRESSE.) AS SFtIFS. TH .
C INPUT IS N, THE LFNGTH OF THF SERIES, M WHICH IS THF NU'.ER OF-
SC COa.NSTrAANITS R q F ACH RFI [XA XT IN TIYF (FfR INSTANPCF, IF TFP!t.S .P TO
C AND INCLUDING T::5 ARE INCL.0FD, THEN M IS 6) rA.lD NINN, THE N'J.E

n PF TIT'FS AT ,hTrfH! THF PVAlt! ATrIN TS OLSMIE. TH F ýFEJFS TFS
C INPUT THROUGH CO>Ml4N STORAGE IN THE r( , ) ARRAY. ALSO INPUT 9Y
SCE MF{ANS rF Ctnizc TnN QEI THF TI' TT=S T(, AN'D T-HF RFLAA I ATl TX1FS5
C DELTA( ). THE CUT-PUT. IS STORE)D IN' THE VECTIR BETA( ).

_0CCC2 _lJFIFNS :,l T l3(20)
00C3 COM CON X(20),B>(8,20), T(20') ,P 2ELTA(20),.,BETA(201),B ( F,2 ),

IS (I n I 1, DOEI TY Xr I X , ,;JiI,
C THE VECTOR TI( ) STORIES PRODUCTS OF TI"PS. TI.(1) IS TO4-`*, TI (2)
r I TS T L13) Ti S T:*4:-I2 FT r..

0004 TI(1 )=l.
" THF 1 !;7P TIHRPUfn EXFECUrTFn FOP FACH TILIF OFS IRE

0005 DO 4 L=I,NNN
r- THF - .r Ir TTN[ ' VFCTnL! l 7 Rqnr, F-)

00C6 BETA(L)=0.
____ THL P:RfiC TCIS CF T(I) ARF CA__lrUILATFD Ar\lC STrETFO IN T.( ).

00C7 DO 5 1=2,9
0008 5 TTI (Ti )=f f1--l)T ( )

C THE TERI'`S .MULTIPLYING EACH EXPONIENT!I L TfERM A RE CALCULAT F:) A'i)
C SvTr Fn Il SU•, TE-cN! MUVII lfFL '- Y THF y-PflnP VTIATL T oF•',! a lR TT!'2 R
C I N THE SULUTION LOCATICON BETA(L).

CCC9 OR 1 .I=i,N
00L0 SU =O.
001"  O 9 0=l0,

001L S SU t=SUl StF (I ,J ),T 1 ( )
013 18 RET A.L ) _FTA( ) -F': P(-fLFITA(,I) :T(I ))

0014 4 CON F Ii•'UE
0 015 ___ __ RE TU-; N

END
C
C
C
C

CC

C

C

C

CCCC

C
. .... C

C

C
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DECK
C
C
C

pOl SUBROUTINE CNSTNT(XM,HH,ZZZ, IOWA,PH,PHJTH,ILAYER)
C THIS SUBROUTINE CALCULATES THE CONSTANTS FOR THE THREE LAYER HALF-:
C SPACE, USING THF EQUATIONS PRESENTFD IN THE TEXT. THE NOTATION
C USED IS ESSENTIALLY THE SAME THROUGH-OUT AS rHE TFXT. THE INPUT
C IS XM=EM=M, THE DUMMY INTFGRATION VARIABLE., 4H = H, THEF THICKNESS
C OF THE SECOND LAYER EXPRFSSED AS MULTIPLES n. THE FIRST LAYER
C THICKNESS, ZZZ=ZZ=Z OF TEXT, THE DEPTH OF INTEREST, IOWA= INTE"FR•
C I OR 2 OR 3 OR ... OR 6 DEPENDING ON WHICH D0 41 S ARE DESIRF.E (THAT
C IS, WHICH STRESS OR DISPLACEMENT IS BFING C1NSIDERED--IOWA WILL
C BE 1 FOR NORMAL STRESS, 2 FOR SHEAR STRFSS, 3 FOR RADIAL STRPSS,
C 5 FOR VERTICAL DEFLECTION, OR 6 FOP RADIAL D=FLFCTION), TLAVFR=

L ItI LAYLK Ut INIttKtJS. ALSU RKtLA IN ARE- TH VECTORS PH{ ), PHJ(
C AND TH(). THESE ARE READ IN ONLY SO THE RESULTS, WHICH ARE
C STORED IN THESE VECTORS WILL BE RETURNED TO THE MAIN PROGRAM (Tf.
C SAVE COMMON STORAGE).

0O2 DIMENSION PH(18),PHJ(18),TH(9)
003 COMMON X(20),BBf8,20), T(201) ,DELTA(20),BFTA(201),B(8,20),

ISI (201),WI,DELTX,DELXX,NJ,NJJ
C ALL THE OPERATIONS ARE EXECUTFD IN DOUBLE PRECISION SINCE IT WAS
C FOUND THAT THIS IS NECESSARY TO MAINTAIN REASONAB3LE ACCURACY AT
C LARGE VALUES OF M.

004 DOUBLE PRECISION S,FM,H,ZZ,C(9),V(9),PHI(6,3,18),ALAM(6,4),
IQ(4,3,18),Z,Z1,Z2,Z3,Z4,Z5,Z6,AIA2,A3,A4,A5,A6,A7,A8,B1,82, v3,
2B4,B5,B6,B7,B8,Q3,Q4,EZ,EZ1,EZ2,G1,G2,G3,G4,3 5,G6,G7,GG9,GO 10,
3G11,G12,G13,G14,G15,G16,1G7,G18,G19,G20,G21,322,G23,G24,G25,G26,
3G27,G28,G29,G30,G31 ,G32,G33,G34,35,G36,6G37,3 38,G39,G40, G41,G42,
4G43,G44,G45,G46,G47,G48,G49,G50,G51,G52,G53,354,G55,G56,G57,G5O,
5G59G60G61,G62,G63,G64,G65 ,G66,G67, G68

C THE NOTATION IN ALL THE FOLLOWING IS THE SAME AS THE TEXT, VWIT'
C Z = ZZ AND M = fM, AND AN OCCASIFONAL INTFRMF)ITATF VARIABLE DEFI:•TPII
C TO SAVE EXECUTION TIMF.

005 EM=XM
006 H=HH
007 ZZ=ZZZ
008 S=EM*H

:009 Z=DEXP(EM)
010 ZI=DEXP(-FM)

t1 IZ2=CEXP(2.*EM)
012 Z3=DEXP(-2.*EM)
113 GI=Z/2.
014 G2=ZI/2.
015 G3=(-1.&2.*EM )/2.
R16 G4=-72/2.
017 G5=Z3/2.

118 G6=11.&2.*EM)/2.
119 G7=(GlGG2)/2.

O20 G8=(Gl-G2)/2.
1 G9=(G3&G5)/2.

12 G1O=(G3-G5)/2.
13 GL1=(G4&G6)/2.
~14 G12=(G4-G6)/2.

15 G13=.5-G5
6 G14=.5+ G5
7 G15=.5- G6
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.0028 G16=-G15

.0029 G17=.5+ G3

.00*o3 G18=-G17

.00 . G19=.5+ G4

.0032 G20=.5- G4

.0033 Z4=DEXP(2.*S)

.0034 G27=2.*Z4

.0035 G28=(1.&2.*EM*H)*Z4

.0036 G21=G27"G7-G28*G2&G1

.0037 G22=G274G8&G28-G2-G1

.0038 G23=G274G9&G28Gl13&G17
.0039 G24=G27*G10&G28-G14&GI8
.0040 G25=G27*GlL1G284G15&Gl9
.0041 G26=G27*G12&G28G 16&G20
.0042 G35=(1.-2.*S)*Z4
.0043 G36=-2.*SS*SZ4
.0044 G29=G35*G7&G7-G36*G2
,.0045 G30=G35'G8-G8&G36-G2
.0046 G31=G35*G9&G9&G36G 13
.00.47 G32=G35*GIO-G10&G364GI4
.0048 G33=G35G11&G11 &G36"G15
.0049 G34=G35*Gl2-GI2&G36*GI6
.0050 L=O
.0051 Z5=DEXP(S)
.0052 Z6=DEXP(-S)
.0053 G53=Z5
.0054 G54=-Z6
.00i55 G55=S*Z5
,.t0 5 G56=-S*Z6
;.0057 G37=G53
•.0058 G38=G54
.0059 G39=G55
,.0060 G40=G56
.0061 3 G41=G37'G7&G38*G7-G39* G2&G40 *Gl
.0062 G42=-(G384G29&G40*G21)
.0063 G43=G37-G8-G38*G8&G39 *G2-G40 *GL
.0064 G44=-(G38'G30&G40G22)
.0065 G45=G37*G9&G38*G9&G39*G13&G40GI 7
.0066 G46=-(G38'G31&G40'G23)
•.0067 G47=G37'GIO-G38'G10&G3 9*G14&G40G1 8
.0068 G48=-(G38*G32&G40'G24)
.0069 G49=G37'GIiGG38*Gll&G39•G 15&G40G19
.0070 G50=-G38*'G33-G40G25
.0071 G51=G37*GI2-G38Gl2&G39'G 16&G40*G20
.0072 G52=-G38*G34-G40oG26
.0073 IF(L)1,1,2
.0074 1 L=5
.0075 G57=G41
.0076 G58=G42
.0077 G59=G43
.0078 G60=G44
.0079 G61=G45
.0, 0 G62=G46
.C I G63=G47
.0082 G64=G48

C
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;.0083 G65=G49
;.0 04 G66=G50
;.0L j G67=G51
;.0086 G68=G52
;.0087 G38=-G38
;.0088 G39= (I.S)'Z5
;.0089 G40=-(1.-S)*Z6
;.0090 GO TO 3
;.0091 2 AI=G45
;.0092 A2=G46
;.0093 A3=G47
;.0094 A4=G48
;.0095 A5=G65
;.0096 A6=G66
;.0097 A7=G67
;.0098 A8=G68
;.0099 BI=G49
;.0100 82=G50
;.0101 B3=G51
;.0102 B4=G52
;.0103 85=G61
;.0104 86=G62
;.0105 87=G63
;.0106 B8=G64
;.0107 8 C(I)=AlIA5-81*B5
;.0108 C(2)=A2 A5&Al'A6-B2*B5-BIB6
;.0109 C(3)=A3*A5&Al-A7-B3"85-B1 B7
;.o 0 C 4 )=A 4A 5&A3A 6A2 A7 A A8-B4B 5-B3~86- B2*7-Bl*88
;.0111 C(5)=A24A6-B2*B6

;.0112 C(6)=A4*A6&A2*A8-B4*B6-B2B 8
,.0113 C(7)=A3A7-B3*rB7
;.0114 C(8)=A4GA7&A3*A8-B44B7-B3 88
.0115 C(9)=A4*A8-B4*88
;.0116 IF(L)4,5,6
;.0117 6 00 7 I=1,9

C THE V(I) TERMS ARE THE THETA(I) TERMS OF THE TEXT
;.0118 7 V(I)=C(I)
;.0119 Al=G49
;.0120 A2=G50
;.0121 A3=G51
;.0122 A4=G52
ý.0123 A5=G57
;.0124 A6=G58
.0125 A7=G59
;.0126 A8=G60
;.0127 BI=G41
;.0128 B2=G42
,.0129 83=G43
,.0130 84=G44
,.0131 85=G65
.0132 B6=G66
;.0133 B7=G67
-.C '4 B8=G68
.0135 L=O

-. 0136 GO TO 8
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5 L=-5
DO .9 I=1,9

9 Q(3,1,1)=C(I)
Al=G61
A2=G62
A3=G63
A4=G64
A5=G41

.01 3oz
.01,

.0139
.0140
.0141
.0142
.0143
.0144
.0145
.0146
.0147
.0148
.0149
.0150
.0151
.0152
.0153
.0154
.0155
.0156
.0157
.0158
.0159
.0160
.0161
.0 oA2
.0J 3
.0164
ý.0165
.0166

-. 0167
.0168

.. 0169'
;.0170
..0171
*.0172
,.0173
;.0174
;.0175
,.0176
-. 0177
,.0178
;.0179

;.0180
,.0181
,.0182
,.0183
;.0184
;.0185
•U 86

37

.0189

.0190

A6=G42
A7=G43
A8=G44
Bl=G45
B2=G46
B3=G47
B4=G48
B5=G57
86=G58
87=G59
B8=G60
GO TO 8

4 00 10 I=1,9
10 Q(4,1,1)=C(I)

DO 11 I=1,9
Q3=Q(3,1,I)
Q4=Q(4,t1, I)
Q 1, , I)=V( I) *GIG3
Q(2,1,I)=V( I) G2&G5
Q(1,2,I )=V(I)*G7&G9
Q(2,2,I)=Q(1,2,1)
Q(3,2,1)=-V(I) *G
Q(4,2,I)= V(I) *G
Q(4,3,1I)= V(I)'G21&
Q(2,3,I)=V( I )*G29G
J=I&9
Q(1,2,J)=V( I )G8&GI
Q(2,2,J)=-Q(1,2,J)
Q(3,2,J)= V(I) AG

Q(4,2,J)=-V(I) *G
Q(4,3,J)= V(I)*G22&

11 Q(2,3,J)=V(I)-G30&G
EZ=EM'ZZ
EZI=DEXP(EZ)
EZ2=DEXP(-EZ)

C THE ALAM(I,J) TERMS
ALAM(1,1)=-EZ1
ALAM(1,2)=-EZ2
ALAM I,3)=-EZ*EZ1
ALAM(1,4)=-EZ*EZ2
ALAM(2, 1)=-ALA ( 1,1
ALAM( 2,2)=ALAM(1,2)
ALAM (2,3) =ALAM (2,1)
ALAM(2,4)=-ALAM( 1,2
ALAM(3,1)=ALAM(2,1)
ALAM(3,2)=-ALAM(2,2
ALAM(3,3)=2.'ALAM(3

C
C

ARE THE LAMDA(I,J) S OF THE TEXT

-AL A'1 ( 1 ,3)
)&ALAM!(1, 4)

,1)-ALAM(1,3)
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'-Q3&G4,Q4

Q3 &G11GQ4

20G 13Q3&G15*04
i &G17*Q3&Gl9*0C4
323 "Q3 G25*Q4
31 *Q3&G33 *Q4

0035G 12*Q4

2&GG14*Q3&G160Q4
i5G 18*Q3GG20* 0Q4
G24Q0 3G26*'04
32*Q3&G34*Q4



- -~ ~-~----.. .. __________________

319
3192
3193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205

0206
0207

0208
0209
02-10
0211
0212
02134401*

IS ALWAYS
PROGRAM.
IN THE TH(
DO 50 I=1,
PH(I)=PHI(

50 PHJ(I)=PHI
RETURN
END

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

STORED IN THE
THE THETA( )
) VECTOR.

P
S

HJ( ) VECTOR FOR RET
ARE ALSO RETURNED T]

ALAM(3,4)=2.*ALAM(2,2)-ALAM(1,4)
ALAM(4 1)=ALAM(1,1)
ALAM(4,2)=ALAM(1,2)
ALAM(4,3)=-ALAM(2,3)
ALAM(4,4)=ALAM(2,4)
ALAM(5,1)=-1.5*EZI
ALAM(5,2)=1.5EZ2
ALAM(5,.3)=-1.5*EZ*EZl
ALAM(5,4)=-1. 5ALAM(1,4)
ALAM(6 1)=1.5*EZI
ALAM(6,2)=1.5*EZ2
ALAM(6,3)=1.5*ALAM(2,3)
ALAM(6,4)=-1.5*ALAM(2,4)
00 107 I=10,18
TH(I-9)=V(I-9)

C THE UNDEFINED Q( ,1, ) S ARE ZEROED.
00 107 J=1,4

107 Q(J,1,I)=0.
C THE PHI S ARE CALCULATED FOR ALL POSSIBILITI

DO 106 J=1,6
DO 106 I=1,18
DO 106 K=1,3
PHI(J,K, I)=O.
DO 106 M=1,4

106 PHI(JK,I)=PHI(J,K,I)&Q(M,K,I)*ALAM(J,M)
C THE PROPER PHI S ARE STORED IN PH( ) FOR RETJ
C GRAM. SINCE THE RADIAL STRESS INVOLVES TWO S

18
IOWAILAYER, I)
(4,ILAYERI)
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.£ .. ---- --- -- -- -- -.. . ------ ...- -" . . .

C.C .. . . .... ..... ..

01 SUBROUTINE REJ ECT(NNN,GAM)
. .C._ _TH.LS._.SUF3ROUTI.NE SAVES THE VALUES OF THE ARRAY. GAM(. ,., ), AND OF
C THE VECTOR SI( ), WHICH WILL BE NEEDED IN THE NEXT TIME THROUGH

---.-- .------ THE...LOOP...SOLVING THE INTEGRAL EQUATION, FOR THE CASE THAT THE .
C CONVOLUTION INTEGRALS ARE EVALUATED NUMERICALLY.

S22 DI,-ENS IG 1..GAR {6_,7,18)................
)3 COMMONI BETA(61),B(8,20),DELTA(20),T(61) ,MN,SI (61)

_C - - MN _LS. _TH-F _NUF! ER.._F_ _V.ALUE.S. _. _OF. NNN _POS.S L.3_E _VALUES.,. HICH. APF _TO
C BE SAVED AND RESTORED.

4 .... .--.. --..... MN=NNN/2&2 _ _ ... .-- ..-.- -.- .- -.-- .. .- .--- .. - .--- ...-. ..-.. -

35 MN1= MN-1
16 D .._ 1 -. 2. l M
)7 K=2 I-1
IR . ( I 1)=S I (K)
9 00DO 2 J=1,18
0 -DO 2- -L= --7

1 2 GAM(I,L,J)=GAM(K,LJ)

3 RETURN
_.,,, .. ,. E _ a..-------------------------------------.----------- - - -. ----- " - - ... ,,,,,,_. ~~N ~ _~._ .. _

C

C... . C.C-C
C

C

CC

C-C "

c

--------C "

C

C

C

C

CC

C

C

C

C

C

..........

C
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C

; .00l · SUBROUTINE CVEFIT(ARRAY)
.. C _.THIS .. SUBROUTINE ..COMPUTES ..A .DIRICHLE.T SERIES APPPCOXIMATION TO AN

C INPUT CURVE DESCRIBED BY TWELVE POINTS STORED IN THE VECTOR X( ).
_ T.H.E .FLT T.ING..IS PERFORMi;.ED BY __.1EANS OF. A. SINGLE -.MATR.IX
C MULTIPLICATION . THE PRE-MULTIPLIER IS THE ARRAY NAMED ARRAY,
.. WHI.CLIS. .READ .IN_..AND . .THE ....POST-.MULTI.PLIER ....IS T..HE .VECTOR X( ..........
C ARRAY IS THE INVERSE OF THE COLLOCATION MATRIX OBTAINED BY WRITfN,.
---C2. _ QUAI_ _. J.T.I.OnS. .EQU A.T.I.N G.. T.H .F SERIES REPRES.ENTATI ON AT EACH OF 12
C POINTS TO THE INPUT CURVES VALUE AT THESE 12 POINTS. X( ) CON-

.C _TAINS THESE TE.L.VE POINTS -FOR._TH.E. .INPU.T. CURVE.. -. THE --MATRIX ARRAY
C WAS OBTAINED USING THE GAUSSIAN ELIMINATION PROCEDURE ON 12 RIGHT
C ... HAND___SIDES. H HI.C -.COLLECTIVELY "AE ._P_AN IDENTI MAT IX. .........

..0002 DIMENSION Y(12),ARRAY(12,12)
. 00.03 m . -- C.CU"M C~. X.120) ,B(8 ,20), T.(20.I) ..,DELTA(20),ETA (20 1.),B(8,20), .

1SI (201)
.000.4 .... D00O .. 1.._ I= l, 12. ~_. .-
;.0005 Y(I)=O.

S.. C ....... THE CONSTANTS FOR. THE SERIES REPRESENTATI.ONARE...CALCULATED AND
C STORED IIN THE VECTOR Y( ).

;.0006 ..... ....... DO .1. ..J=1, 12.
.OC07 1 Y(I )=Y(.I)&ARRAY( I J) X(J )

........... TE .CONSTANTS ARE TRANS.FERRED .INTO-. THE X VECTR......
G.0008 DO 2 [=1,12

-.0009 _,. ...M...... . 2 _.X (I )= Y.(I.) .....-.-..... .............,,.. . .,, _ ;, ___,. .I......... ......... ..... ..... ...
,0010 RETURN

C

C.
C

C
C
C

-----.......-. - --- ------ - . "-------------- -- .- . ....C

- - - - -- ----------- ---- - - - -- ----------- -.--...-----.--.---- .---- -.-----..--..---

C
C.... .. ... C .. _ . i._.. ... . i. .. ..- , -. ... _ -........ . .. . .. ....- .-.. .......-... .......... -

C

C
Si C .......-.. -...-- - ...- . .... ... -- ............

C

.... ..- 256 -....... ..... ................ .....
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C
C
C

.0001 SUBROUTINE TIMEl(NNN,DELNX)
C THIS SUBROUTINE COMPUTES THE TIMES AND RELAXATION TIME INVERSES
C FOR THE CASE THAT THE CONVOLUTION INTEGRALS ARE EVALUATED NUMERI-
C CALLY. THE INPUT IS NNN, DEL, AND NX. NNN IS THE NUMBER OF
C POINTS FOR WHICH THE TIME IS TO BE COMPUTED. DEL IS THE SPACING
C OF THESE NNN POINTS OF TIME. NX IS ZERO IF THE DELTA( ) VECTOR,
C WHICH CONTAINS THE INVERSES OF THE RELAXATION TIMES, IS TO BE
C COMPUTED, WHILE IF THEY HAVE PREVIOUSLY BEEN COMPUTED NX IS NON-
C ZERO.

.0002 CO'MCN BETA 61) , B (8,20).,DELTA(.20) ,T(61),MNSI(61 ) WI

.0003 N=12
C FIRST THE NNN TIMES ARE COMPUTED, WITH T(H) ALWAYS ZERO.

.0004 T(1)=0.

.0005 NNNN=NNN-1

.0006 DO 7 K=1,NNNN

.0007 7 T(K&1)=T(K)&DEL

.0008 IF(NX).1,2,1
C IF NX IS ZERO, THEN THE DELTA( ) VECTOR IS TO BE COMPUTED. EACH
C SUCCESSIVE DELTA(J) IS 1 DIVIDED BY THE SQUARE ROOT OF TEN TIMES
C THE PREVIOUS DELTA(J), EXCEPT DELTA(2) IS 10. AND DELTA(I) IS ZERIO

.0009 2 DELTA(1)=0.

.0010 DELTA(2)=10.

.0011 DO 6 J=3,N

.0012 6 DELTA(J)=DELTA(J-1)/(1Q.**.5)

.0013 1 CONTINUE

.0014 RETURN
END

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C - 258-
C
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I

I

I:

i

i

C
C
C

c1 SUBROUTINE INTEGRN, Nl,E,GAM,II,MMM)
C THIS SUBROUTINE COMPUTES THE MULTIPLE CONVOLUTION INTEGRALS NUJMFR-
C ICALLY. THE INPUT IS N, N1, E( , ), GAM( , , ), II, AND MMM.
C N IS EITHER 1 OR N1/2&2 DEPENDING ON WHETHER THIS IS THE FIRST
C TIME THROUGH THIS ROUTINE OR NUT. Nl IS THEN NUMBER OF POINTS IN
C TIME FOR WHICH THE MULTIPLE CONVOLUTION INTFGRATIONS ARE TO BF
C CALCULATED. E( , ) CONTAINS THE VALUES OF THE EACH OF THE RELAX-
C ATION FUNCTIONS OR CREEP FUNCTIONS AT EACH OF THE NI TIMES. EACH
C ROW OF E CONTAINS ONE OF THESE FUNCTIONS. GAM( , , ) IS THE SOLU-
C TION ARRAY--THE NUMERICAL VALUES OF THE MULTIPLE CONVOLUTION INTE-
C GRALS. THE FIRST TIME THROUGH THIS ROUTINE THEY ARE INITIALLY
C UNKNOWN AT ALL TIMES. EACH SUCCESSIVE TIME THROUGH, THE FIRST
C N-1 VALUES (FROM PREVIOUS CALCULATIONS) ARE STORED IN GAM( , , ).
C III IS THE THIRD SUBSCRIPT OF THE GAM( , , ) ARRAY TO BE COMPUTFD.
C MMM IS THE NUMBER OF INTEGRATIONS INVOLVED.

02 DIMENSION E(7,61),GAM(61,7,18)
G3 COMMON BETA(61),B(8,20),DELTA(20),T(61),MN,SI(61),WI

C THE LOOP TO STATEMENT I STORES THE FIRST RELAXATION FUNCTION IN
C GAM( ,1,II)

4 DO 1 I=N,Ni
15 1 GAM(I,1,II )=E ( 1,I)

C THE LOOP FROM HERE TO 2 IS EXECUTED FOR EACH INTFGRATION.
16 DO 2 I=1,MMM

C THIS LOOP IS EXECUTED FOR EACH POINT IN TIME FOR WHICH THE RESULTS
C ARE NEEDED.

07 DO 50 J=N,Ni
C THE INTEGRAL TO BE EVALUATED ON THIS CYCLE (GAM(J,I&1,II)) IS
C ZEROED.

08 GAM (J, I&1,II) =0.
09 1=J-1
10 IF(J-1)51,52,51

C IF J IS EQUAL TO I, AM AT ZERO TIME AND THE INTEGRAL RESULT CAN
C BE EVALUATED DIRECTLY (JUST THE INITIAL CONDITIONS).

11 52 GAM(I,II ,II )=GAM(i,I,II )*F(I& 1,I)
12 GO TO 50

C THE GENERAL TERM IS CALCULATED BY COMPUTING THE SUM DESCRIBED IN
C THE TEXT AND ADDING THE INITIAL CONDITIONS. X STORES THE AVERAGE!)
C RELAXATION OR CREEP FUNCTION, AND XX STORES THE DIFFERENCE OF THF
C GAM( , , ) TERMS, WHICH ARE EITHER PREVIOUSLY OBTAINED INTEGRAl
C RESULTS OR E(I, ).

13 51 DO 60 K=2,J
14 JA=J-K& 1
15 X=(E(I&1 ,JA)&E(I&1,JA&I))/2.
16 XX=GAM (K, I , II)-GAM (K-i, ,II)
17 60 GAM(J,I&1,II)=GAM(JI&I,II)&X*XX

C THE INITIAL CONDITIONS ARE ADDED ON.
18 62 GAM(JIGII)=GAM(J, I&l, II )&E (II,J)*GAM(I,I,II)
19 50 CONTINUE
O! 2 CONTINUE
1 RETURN

END
C
C
C
C
C - 260 -
C
C
C
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C
C
C

3.(C" LSUBROUTINE SOLVIT(NNN, PH,TH.,GAMN,M,NlM1)
C THIS SUBROUTINE SOLVES THE GENERAL INTEGRAL EQUATION FOR THE CASE
C THAT THE MULTIPLE CONVOLUTION INTEGRALS HAVE BEEN EVALUATED NUMER-
C ICALLY AND STORED IN THE ARRAY GAM( , , ). THE INPUT IS NNN,
C PH( ), TH( ), GAM( , , ), N, M, N1,M1. NNN IS THE NUMBER OF
C POINTS IN TIME TO BE CONSIDERED. PH( ) AND TH( ) ARE THE
C CONSTANTS MULTIPLYING THE MULTIPLE CONVOLUTION INTEGRALS IN THE
C NUMERATOR AND DENOMINATOR RESPECTIVELY. GAMI , ,)-CONTAINS THE
C RESULTS OF THE NUMERICAL EVALUATION OF THE MULTIPLE CONVOLUTION
C INTEGRATIONS. N IS THE NUMBER OF TERMS
C IN THE NUMERATOR, AND M IS THE NUMBER OF TERMS-IN THE DENOMINATOR.
C NI IS THE SECOND (MIDDLE) SUBSCRIPT OF THE GAM( , , ) ARRAY FOR
C THE NUMERATOR MULTIPLE CONVOLUTION INTEGRATION RESULTS. Ml IS THE
C SECOND SUBSCRIPT OF THE GAM( , , ) ARRAY FOR THE DENOMINATOR
C MULTIPLE CONVOLUTION INTEGRAL RESULTS. THE RESULT OF THIS SUB-
C ROUTINE IS THE SOLUTION TO THE INTEGRAL EQUATION AT THE APPRO-
C PRIATE TIMES, STORED IN THE VECTOR SI( ). ALSO INPUT TO THE
C SUBROUTINE THROUGH COMMON STORAGE IS MN, WHICH IS I IF THIS IS THE
C FIRST TIME THROUGH THE ROUTINE, AND IS NNN/2&2 OTHERWISE. IT IS
C USED TO MAKE POSSIBLE THE CALCULATION OF THE NEXT SET OF SOLU-
C TIONS WHEN DOUBLING THE SIZE OF INTERVALS. IN THESE CASES THE
C MN-1 VALUES OF SI( ) THAT ARE NEEDED ARE ALSO BROUGHT INTO THE
C ROUTINE THROUGH COMMON STORAGE.

;.0002 DIMENSION PH(18),TH(9),GAM(61,7,18)
5.0003 COMMON BETA(61),8(8,20),DELTA(20),T(61),MN,SI(61),WI

•_ * C THE LOOP FROM HERE TO STATEMENT 1 IS REPEATED NNN TIMES OR NNN-MN
C TIMES.

5.0004 DO 1 I=MN,NNN
C ANUM AND DNUM ARE INTERMEDIATE VARIABLES FOR STORING THE NUMERATOR
C AND DENOMINATOR OF THE SOLUTION AT THE POINT BEING CONSIDERED.

3.0005 ANUM=O.
5.00C6 D DNUM=O.

C THE RIGHT HAND SIDE OF THE INTEGRAL .EQUATION IS CALCULATED AND
C STORED IN ANUM.

5.0007 00 2 J=I,N
;.0C08 2 ANUM=ANUMZPH(J) GAM( I,N1,J)
;.0009 IF(I-1)3,3,4

C IF THIS IS THE FIRST SOLUTION POINT (I=1) THEN THE DENOMINATOR
C ONLY NEEDS TO BE CALCULATED BEFORE COMPUTING THE ANSWER.

3.0010 3 DO 5 J=1,M
5.0011 5 DNUN=CNUM&TH(J)*GAM( 1,ML,J)
5.0012 GO TO 6

C AFTER THE FIRST POINT, THE SOLUTION MUST BE OBTAINED BY THE FINITE
C DIFFERENCE APPROXIMATION. THE DENCMINATOR IS CALCULATED AND
C STORED IN DNUM. THEN THE FIRST PREVIOUS SOLUTION TIMES THE APPRO-
C PRIATE TERMS IS SUBTRACTED FROM ANUM.

3.0013 4 DO 7 J=1,M
5.0014 DNUM=DNUM&TH(J)*(GAM(1,ML ,J) GA.(2 ,MI\ ,J))f*.5
5.0015 ANUM=ANUM-.5*TH(J)-(GAM(2,M1,J)-GA {(1,M1,J))*SI (I-I)
.00G16 SUM=O.
$.Co-7 IF(I-2)7,7,8

C FOR ALL BUT THE SECOND POINT IN TINE THE OTHER SOLUTION POINTS
C THAT HAVE BEEN OBTAINED MUST BE MULTIPLIED BY THE APPROPRIATE
C TERMS OF THE GAM( , , ) ARRAY AND THE TH( ) VECTOR AND SUBTRACTED
C
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C
C
C.
£
C
£ FRON THEE NUMVERATOR (ANUM) , FIRST THESE TERMS. ARE CU3MPUlfD /2<0
C STORED IN~ TnE TERM SUfM, AND THEN SUfM IS M~tlUTIPLIFO BY THE APII~>-
C PRIATE TH( I TERM.

&~ DC 93K2r

9 SUM=SUM-.5*SI(L)SI (L))*~t) ( CAM4KIJ)GAMK-,MIJI
ANUM=ANUMtSUM*IH( JI

7 CONTPINUCE
C THE SOLUTION IS COMPUfTED AN\D STORED) IN 51(1).

6 SI(I)=ANUY/DNUiI
1 CONTINUE

RETU~RN
ENOC

C
£
C
C
C
C
C
C
C,
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C.
C
C
C
C
C
C
C
C
C
C
C
C
C
C,
C
C
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C•E-KC K
C
C
C
C1 S"1 T I T• NEF TI ('h''NI

-. C THIS SUBROUTINE CALCULATES THE TIMES .THAT THE SOLUTION, FOPR TH
C CASF THAT THF TNITFGPATnIIN.S ArF PFiFnoQmFn rFXACTIY, APF DESIRF-.
C IT ALSO CALCULATES THE INVERSE OF THE RELAXATION TIMFS ( THE DELT\
C TE1MS OF THF TFXT) AND- STORFS THIS RFSlI TN THF VFCTOP FITAL_)s

C THE INPUT CONSISTS OF Ni,-NN=NUMRER OF TI1MES DESIRED. ALSOr, DELTX
C ANfl OF RwXY ARF PFR.I•.E , i.-.4TrH. ArF TN CM.rN STOPAGF, nF YX
C SPECIFIES THE LOGARITH'AI1C INCREMEN-T OF TIME (IT HAS BEEN TAKEN. ^S
C- ,0525 TN THF APPi rrATInTmn TNF TITS THrSTS) ANO PEITX So0CIFIFS THF

C THE LOG OF THE FIR.ST FINITE TI'E MINUS DELTX (TAKEN AS -2.0625
C l-OR -2,5A2 FPFNmONG cN TrH SIF OF SHPRT TIME VARIATION IN THIF

C RESPONSE THAT WAS EXPECTED)
%02 Cn0 ,,N X(;O)nRIIP,2 ), .T)sl l) , FITA(7.0),21TAf?.), ()P,20),

IS1(201) ,WI ,CELTX,DELXX,I.J,NiJJ
303 N=12

C THE FIRST TIr-ME IS SET EQUAL TO ZERO, AND THEN THE OTHER NNN-1
C. TIM-- ARF CAlCUIATFn RY APTSING 1. TO THE OFIT PC!'FR, WHFRF DFIT

C IS INCREMENTF. BY DEL AT EACH STEP.
_1rf4 nFl T=PFI TX
005 DEL=OELXX
LC6 "fI1)=n.
007 NNNN=NNN-1
.00C n6o 7 K=I,NNN.N
009 OELT=CELT&DEL
0110 7 TiKKF11=1 .9**)DFIT

C THE FIRST DELTA IS SET EQUAL TO ZERO, THE SEOND EQUAL TO 10., ANO
C 1in0 AFnTTIflNAI FNFS AREF CAICULATFD BY SICCFSSIVFLY DIVTDING 9Y THE

C SQUARE ROCT OF TEN.
0.1.1 OElTA{l)=0.

;012 DELTA(2)=10.
)0-13 O n o =3,h

)014 6 DELTA(J)=CELTA(J-1 )/(10.*.5)
)0l5,i RFTIR N

ENO
C
C
C
C

C
C
C

CC
c

C'

... .. _ -

C

C
- .C . .
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C

,A C THIS SUBRCUTINE IS USED TO SCLVE THE GENERAL INTEGRAL EQUATION FAO
-" THF CASF THAT THF "i 1LTiPLF CONVOLUITICN TNTEGAI S ARF EVALUJTEDI
C EXACTLY. N I-S INPUT AS THE NUMBER OF RELAXATIONF TIMES IN THE
c ORITTNAl SFRTFS RFP.FSEFNTATIONS, THF LFNGTH oF THF VFCTORS

C CF CONSTANTS FOR EACH OF THE MULTIPLE CONVOLUTION RESULTS F9rF FrACH
. RFI AyATTrP v! TIMF ( THAT TIS TF THF NUMFPATr! R RESU)LT INCh.U F.S TF,'S

C UP TO AND INCLUDING T*-4, THEN ITS LFNGTH IS 5) IS INPUT AS THE
r N!MRFRS M AND MM, THF I ENGT,rH OF

C THE VECTUR FOR THE KERNAL FUNCTION IS M, WHILE THE LFNGTH FP
r THF

C RIGHT HIAN•I STnF IS MM. NNF. IS THE NUMBAFR OF TIME STEPS. NJJJ IS

C THE NUMBER OF TERMS (MAXIM!UM) TO BE INCLUDED IN THE CALCULATIO.N.j

r " OF THF NEXT 5i1 nTTnr" (THITS kTl i RF FYPLAINF) RFI n0). ALSO AS TI'-

C PUT ARE THE ARRAYS P( , ) AND RB( , ) WHICH ARF THE PFSULTS FC"7

C THF KFRNAIl FUNCTTPN AND RTCHT-HAND STPFS RES-FCTIVELY, AN:) APF IN

C COMMON STURAGE. THE T I'ES AND RELAXATION TIlMES ARE Ih THE ViFCTOfS
r T( ) ANC PFI TA( ) RFSPEC IVIE Y, IN CCMn•'.lN. THF PROGRAM SFLFCTS 12

C POINTS FRON THE SOLUTION' VFCTOR (SI( )) AND STORES THEM IN THE
r X_( ) VFCTn7P. THFSF TW•FI V P-1NINTS APF SFLFCTFD FqlR PflSSTI F T!Se IT

.C FITTING A DIRICHLET SERIES TO THE RESIJLTS, USING THE SUBROUTINE
C. CVFFIT. STNF TEF I IOCAT TON CIF THE PPrPFRP PnTNTS TN THE S!UTI'r.N
C VECTOR SIf ) DEPENDS ON THE TIMES CALCULATED IN THE SUB?,jUTITEF
C TTIMF, TWO FHIMPFRS, N.J AM NJIJ ENTER THF PRPOGRAM (TH.ROU!GH COi..rOh ..

C STCRAGF).
Sf13.L;vrF NSIN TI1(20)

C3 CCOMMON X(20),BB(8,20), T(201) ,DE. TA(20),3ETA(0 1 ), 1 f8,2 0 ),
11ST ( 201)i I I ,T 9 D.F LTXX. )DF I XX ,X J, NJJ

C THE FIRST POINT, T = 0.0, IS CALCULATF3 FIPST. IT REOUIRES ONLY
C THE FIRST COl Hjc N OF THF ARPAYS R( , ) ANn RR( , )

C4 BETA( I )0.

C6 DO.. 2 I=1,N
C7 StI M•= ••, P.R (1 )

C8 2 BETA(1)=BETA(L)&E(1,I)
C9 S ( )=SUMM/BFTTA (1)

C THE VECTCR TI( ) IS USED Ti STORE PRODUCTS OF TIMES. Tl(I) IS
C. T*O. t T1( ) IS T*-1, T1(3) IS T*:2, ETC.

10 TI(1)=1.
(C SINCE ThF T IFE SPACING IS LGGAP, ITHf IC, SUCCES.SIVE ANS.:FRS DFPFN•'\..

C LESS AND LESS U'N THE FIRST ANSWERS. FOR THIS RPASO~, IT IS PCSSI-
C RI F U0 NCEGL FCI SUF TFP.ViS V-HFiN CCMPIUTINGI THE RFSULTS. IN GFNC. AL

C NJJJ TER"S OF THE SOLUTION VECTOR W:ILL BE IJUS'-D TO CALCULATE THF
C NFET TERM/ , AF-TF- r T F RST NiJJ TF;5"S HAVF RF EN CALCII. LATFO. ThIS

C ALLCVS SUCCESSIVE STFPS TO TAKF A CCNSTAN'T A'CUNT OF EXECLTITON:
C TIMF, RATHFR Ti:HAN Ag, CONITINUALLY INCRFPASING A"1OUN'T. F IPTHERNF Ct~LFE,
C THE APPROXINATIUN INVOLVED IS WELL WITHIN THE APPROXIT'ATIO T IAT

C IS MACE USSING THE INTFRV AL CF SOCE OP VCST .O = THF OTHEF SOL.TTIO',
C POINTS, DUE TO THE LOG SPAC IN,. IN THE ANALYSES IEPF'TED IN TH"

CP TFx.T, Ji'.lJ J S I' V P.Fr- ; TA~ v •, S 31., HIC'- SFE'!S To A•F ADF'.T"IT-

C LY LA!RGF. N51, N6, ANr) N4 ARE INTEGEPS USED TO PROPERLY SFLECT TH~
cO..( .I F THF S.L.I!T ION \,FrTI' TI PF I'SED. T-4FY A.E TAKFN AS 1.1,
C ANC 4 UNTIL N!JJJ SOLUTION PCIt;TS HAVE REFN 3 3TAI\NE.

12 N6=l

C
C - 267 -
C

I. I,

PFTK '

TE -I PJ-LL S AL-A c



C

C
C VIF flP IP TO .AtICfti TFS T1.F N:.' 'hITTO !R (FYCFPT Fnf T=nl)

314, 00 3 K=2,NNN
I.C F K IS .GP.EATER TTH 1.1 ,NJ TFN TNCPFiFNT N5 .AND N4 RY 1,

C PUT A NEGATIVE NUM4BER IN N6.
C-15 iF --N I )7 ,7,1
016 13 N6=-.5

018 N4=N4JI
C THFI T[MNF F THIS gill UTTfi)N• TS STO•RFO IN T m

019 7 T2=T(K)
Q02l0 K= -1

C . THE LOOP UP TO 4 CALCULATES THE VALUES OF THE KERNAL FUINCTION
r 1,Tr , AFC A .FI'T nF MllTT 1F 2 CFUVTAIlTT r N! T NTr'G.ATTONS AFOn TI

C STOREC: IN THE ARPAY B( , )) NECESSARY FOR THE NEXT SOLUTION. THEY
ARF AT THF TIFPS T?-T(I) Hr-RF I GCOFS FRiOM 7 P.1 TO K. IF K TIS

C GREATER THAN NJJJ, THEN K-NJJJ POINTS ARE SKIPPED. THESE ArF THF
r TITFS T2-T(I) COPFPN.EsIPo nNG; TO T( )I S"AIL., EXCFDT IN'CLUDI NG- AL'"AYS

.C- ZERO TTIE. THE VALUE OF L IS SELECTED THUS EQUAL TO LL EXCEPT
S..AT TI--FF FRST K PCrfN;T, -,HFN TT IS SFT F:OUAl TO I (T=O) AND N1 IS MAF

C POSITIVE.
1021 . o .4 I =N5,K
)022 L=LL
102..3 TF ( NS*:N6- 1 ) 6,P8, .
3024 6 L=1
1025 NF=1I
3026 8 BETA(L)=O.

C. THF IflOP TO 5 STORES THF PpROE•P PRI)DUCTS OF THF TIMF IN THF VFCTOP
"" C T1( ).

0_027 nn 5 T=2,F
0028 5 T1(I)=TI(I-1) (T2-T(L))

. TFH TE Mil'TTPIYTNg FACrH FXP CENTTAI TFoP TS CAIlC!TI -ATFO ANF
C STORED IN SUt, THEN M ULTIPLIED BY THE EXPfNE'4TIAL TER'i AND A(OEDr

C INTO RFTAI I).
0029 DO 18 J=I,N

0031 00 9 I=l,q
.0 f 2 _ SiNM=SIUP&.QI IrI. r I )T 1 T
0033 18 BETA(L)=BETA(L)&SUJIM4EXP(-DELTIA(J)*(T2-T(L)))
.001 4 CONTIINUF

C FROM4 HFRF TO STA1EIENT 21 CALCULATES THE RIGiT-HAN STIDE PFSULT
C FROME THF IFNPUT APAY RF.( . 61ANALIPGOtS TO THE AqOVE CALCUlI. A.TTF.!'iS
C FOIK THE KERNAL FUNCITON, EXCEPT AT ONLY THE ,N)E TIME T2, AND
C ST0EFS THE RFYJI! T IN SULlt'-"M,

0035 00 23 1=2,IMM
,0026 " 23 TI(I )=TI(T-I)*T2
0037 SUtM.M=0.
0 C 32. DO 2 J=.IN
.CC39 SUM=0.

.0A.0 nn--no ? T

.00O41 22 SU = SUM+B ( I,J ): I )

.00. 2 _ . 21 ... SilYP= t +SU;-*FYP(- El TA (J)T?)
C THE UJIMEl'ATOP OF THE SLUiT. IcN IS NOW CAe CILAT ED A.ND STOR.ED ID rI.",
£C T F JT_[IS IN rTHIS NH'FRATPco ,,P`y r .F:pF .F)ITNG r,, THE SI7E OF K

0043 BU.='S-SU l- .5'ST(Y- )1 (9BETA(K-1)--ETA(K))
r
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C

c

0044 IF(K-2) 10, 0, 11,
P004•5 11 TF (N4-K)1 5,15sI,Cs1

.0046 15 00 12 LL=N4,K
-0 a
00.rd 12 BU=BU.- 5*(SI(L-'2)&SI(L-l))*(BETA(L-2)-PETA(L-1).-
_0049 14 .•S4=BI-. (S I(1 SI ()N4-2 ) E( TA•T I (1)-RFTA(N4-2))'

C THE SOLUTION AT THIS TIMiE IS CALCULATED AND STORED IN SI(K)
_00o 10i S(E K=RIM /(, (,FTA(K)P.8FTA(!<-1)f)

.0051 3 CONTINUE'
S THF SFlIlUrTPN AT 7 PR- TIMT IS STFPFP TN X(l)

.0052 X(1)=SI(1)
C TIPF SrllrTTN rPRFS~S',NDT.!'N. TlO FFLTA(J)*T(J)=I. FPR FAC.HI DEl T'(J)
C IS CALCULATED AND ST'.RFf) IN X(J) FOR USE IN THE SUJnRO.ITIINF CVFF[T.
C THIS IS TRIJF RFC.Al••F THF T,'9PIT •l J AND N.JJ ARC SFT ETF Apppfn-

C PRIATELY.
._Qo53 K=NJ.I
0054 00 20 I=2,12
-0-055 K=K -N, .JI
0056 20 X(I)=SI(K)
-I7 o F T IV'i

END

C
C

- C-C
rC

C

c CCC

CCC
C

C

C-

C

CC

CCCC

C

C
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CC , . -"--

S.0001 i SUBROUTINE ,INTEGR(G,.N, TEST,ISI 3)
C "THIS SUU,,LbUTIlN, E[fRF'.;, TH• [XACT I•TG•RATI, 1 9 O5 THE CE T",AT
C THE CRFEP CR RELAXATION FUNCTIONS CAN BE REPIESENTED RY DIRICFHLLT

-- S -R-IES- T!E-- i 4UT fS T • kRRAY R -- G- )- , t)--f-HE --. TF-GS E , F IT E ST-.
C AND ISIB. THF ARRAY G( , ) CONTAINS THE RFL~XATION FUNCTIONS FnRq
C Tr tfE-- TiPL-ECO UTIf FE-ATi C.,. I"-, THE- FO.+- .-. f.f- IFFS * "
C COLUMN OF G( , ) CONTAINS THE CONSTANTS FOR ]NE OF. THE SERIES.
C 1 IS Ti_ E 5 U L. CF TER)S IN THE S•,•IS ;EPF,~ArrNIS. ITF . T it s
C THE Ni••IER OF IULTIPLE CONVOLUTION INTEGRATI]NS I VOLVED. THF
C A XIm U N.,U,-,E F rr_ TllS -P . A.- I ---6- (- A-T I S, T- •F f-C-T-FG6 ;,ATIf - -%- - --

C 7 RELAXATION OR, CREEP FU'NCT[tfNS .. ISIB IS A DU.P'!.Y WITH THE VALUE
C OF EITfiER ZEf.0 f NE.. IF I 1 i3-L ff•T--HET Tf- i aLTIL[ C NVLUTf I''
C INTEGRATIONS ARF TO BE PEIFOMED FRCH THE 8F31NNING. IF ISIP=l•

C T EN TC H -[5 ULT VF I TEST -I I TE- AT I9:S zT STA C _ IE'  ( , ), '5
C THE ONE NEW RELAXATION OR CRFEP FUN'CTION SERIES IS STORED I,' G(3,)

-•C AN. I TiS, C-A-S. --P-,LY CNE .IT-TEGR-TA- N, IS -1%I ,F' . THE RES-LT
C FROM THIS PROGRt•", STORFf. IN THE ARPAY B( , ), TS A FINITF SFrIES

-C OF E-' -NTI ALS -ACI L,,I-N t,•Pi-fD FY A rI T L ,FI L_ TP:I CO "
C STANTS OF TH"ESE POLYNOmIALS ARE STORED IN THE COLI:,UMNS OF P( , ).

ST-iE DCLT, TE F:, ( THt I NVE. .CV - SF e F THE " -L-, , .l, "'--, IS I t '.

C TO THIS PP.CGPRAMN THROUH STORAGE TN THF VFCTOR DELTA( ), WHICH IS
C' CAICUL,,- ITi -SU..~ TI t. TIf) NfOT' Fi5-r f -TH I-Jf, PF.CC"-,A.
C IS DIFFERENT. THAN THAT OF THE TEXT.

.0•02 D-t- r- f t-,f6~NI S tf - &,2 "),HD L (2 2') 'q, , tC-- 1 1)A P (
10(20) ,C(20) ,-1(20) ,CL(20) D02(20) D1 (20) ,E1 (2) ) ,C2(20)) p2(20) ,

2H4(20) ,C4(20) ,P4(20) •,04(20) ,F4(20) , H5(20) P5( 20)
.- 00-3 CO... X2....---(&i-"), T(201) ",_-C-LTA(2),+, -A(201),Z D 2,),,

IS I ( 2 ) , II,ELTX, DELXX, NJ, NJJ
5.0064.. N N -1TEST i

C THE DELTA( ) TFPHS ARE TORANSFERRED TO THE VE TOR DEL( ).

5.0006 250 DEL(I)=DELTA(I)
1 If-'I) ISIf .I C2, I.35 AN" ISIC'4 AR.E DU4Y , L ES U'S•F T

C DETERPMINPE WHEN THE PFOPER rI!IJMBER COF INTEGRATT ONS HAVF REEN'. PEP-
-- -C F GR ' f O.

S.0007 ISIG=1

S.0CO' ISIG2=1
S;-o09O I SIG 3- i
3.0011 IS IG4=

. --I F ( I S1 R2 ) 0"fr-'# 9 "
S.0C13 200 ISIG=~.

SC IF I7;- IS " 'ZT ' T-1--T-• '-••± C '  "';L
C THE ISIG S ARE 7ERfOED LIP TO THE LAST ONE

-5,-3 0- -1-4------ IF(fIf EST,1)02,20 •,.-3-.
S.0015 203 ISIGI=0
: 1 ------------ F-(-I-T-F S - ) 2 912, : " , -- -8
;.*C 17 204 ISI.2=0

* 1 205 ISIG3=0
•. ·=1 ?0·-- -2 - F(- IES--t-'- + 2) •--,22e ,9 6

206 ISIG4=0

C
: -------- , c
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S.OC22

:s .e. e 2
-S--.-6 -5--

S.0020T

S,0028
S.00•30GOT2tS.---rf.•%t--12 -• I {I-- -'" •

S 0(3S..00•S.Ofý0-3 5OT 2I

S. 0036

S.,0045

S.0 3jS.0046 22I(TS-}1,23?I

S. 004 7
S --;- ') Ct -9 1"),-

5.0051Sf.-• 721 S.- -C FONYON ERAN DITOA
i,-f t

• L t "
· ri_, ••'-• •"• -•. "'!•- •"- •- r • 

I

3 CONTIN'UF

C IF ISIG IS ECP!.IL T-! 1, THEN! EITHER THIS IS T-IE
E i t•-I-•C--~; 'm - - -T t~- - . i - L- --!  I~• L_ -" T "_TN .
C WHEr;E THEI.E T -WE.EE PREVIOUSLY .nONE IFITEGrATIONlS.
--C THE FIRST TIM H TH JG:, T!IE ,ES!JI. TS rC THE FI P

C THE FIRSjT TTIME TH''OUGH,- TH1E RESUtTS C' THE FIR

SFer;o.]r CR qO F
I•+ . --.. %,_

ST INTFG('ATiC ' Aoc
L I ,_. I - -,

C
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S.0055
5.-0-55

r ;L7

TI

- - - - - - -

C THE SERIES REPRESENTAMTI'NS OF THE FIRST TWO FLAXATION OR CREEPcc
CFUNCTfION-S--ARF STOR[D IN THE-V VET-&S A~( ), AID A.L( J.

S.0C22 202 00 1 J=1,N
5.0023 AK(J)-G(1,J)

5.024 1 AL(J)=G(2,J)
5--t65 . G 0 TC 7 .

C IF CNLY ONE CfRTAIN ADDITIONAL MULTIPLE CONV3LUTION INTEGRATIOM
L-C IS TF 1 E PERFCKR.', -Ti-t-ENOLY A SINGL[ tSIC I S ZE[CD.

5.0026 201 IF(ITESr-2)207,2OP.,?09 - -
s.0027 207 SIG-0.
S.0028 GO TO 215

5.0029200 ISIG1 -*
5.003Q GO TO 215
S-.ft31 239 11(IT1 4)1C.1,1
5.0032 210 1SI2=O
5.3331 GC TO 715
S.003'4 211 ISIG3=0

5.0035GO TO 2LD
5.0036 212 IF(ITEST-5)213,?13,?15

C IF UNLY ONhE CERTAIN ADDITIONAL CfNVOLUTIflN INTEGP.4TION' IS TO BFE
C- f PE.;FC. LD, T; T:: ?FSULT LF TIIC LST I' ATI0N 'IUST Z[ 5T7 CR
C IN THE VECTORS AK( ), AM( ), AP( ) , AP( ) , 4S ( ), AND AT ). SnOM
C Of THES >MAY W1 V-&E---U-SED. THE NF' f--CS S SORE INTH VJCTmo
C AL( ) ALSO.

5.0038 £15 DC 21r J-1,N
5.0(39 AK(J)=C(1,J)

S.0041 AP(J)=G(3,J)
5.004 2 AR(J)~-(4J)
5.0 3 AS(J)=G(5,J)

3.0044A~T(J)-(, J)
S.0045 216 AL(J)=O(RJ)

C ST-e T [5 T SJ\E I- T:!5-i-X5 F JET L:TFC;ATION AJD 1.LSEI 2?CIUS T
C EVALUATION OF THE CONSTANTS RELATED TO A FIRST INTEORITIOrlr FOE THE
C LATEP. I-NTFGRATINS (S&E- TE-XTt.

5.0046 7 D0 2 .J1,N
S*T [ -F&&EdfLT-fnF--T-H- F I E. S T Ir1T WL I\;' VECT" 1

C C( ), AND D( ). THE VARIABPLCS ADUMl AND DU!JM2 ARE USED FC!F2 INTEE-

5.0047 D(J)=-CEL(J) AL(J) 1K(J)
5; (Y'T4 8- C(-f J)-AL(J--J-)
S.')049 ADUN1=0.

5.0051 00 3 I=1, N

0.0053 21 ADUJI=ADUMl-DFL(J)(:\K(I)/(DEL(I)-FL(J))
5.O-f ~ct>59C A1 AF ( -fJ-)-f- I)Ef-JL4( )--HA44)

THE SERIES REPRESENTAzTIIONS OF THE FIRST TWO ELAXATION. OR CREEP
'F f-L 6MT ', S AR.  •TI,• I" TA6 E9I " TH' •'V ,  AK ( )y , ,. ,

202 DO I J=im

i1 AL(J)=N(2,J)
GTC.e e 7-
IF CNILY ONIE CERTAIN ADDITIONAL MULTIPLE CONV]LUTION 4NTEGR ATiO..O

,,,,..E,-,FEEv HF ,e-,LY A, SINGLE [rlg. -E -.•F,

2.01 1 F ( [TEST-2)207,208,2'O9.. .

GO TO ?15

GO TO) 215
209 f F ( f ;TE Sf-T-4) 2 1. C 2 11 ?.1 2

.210 1 S I G
207 [SIe ?,5

212 IF(lTEST-5)2113j.?13t?1

I F 0,N' Y ON;E CERTAIN AOnITION\ L CONVOLUJTIO.N INTEGRATI. IS TO B8

IN THE VECTORS AM A )M AP( ) AR( i 4Sl ) ANr) AT( ). S qlvF
TI,0' F'_ S-- -fS ---S- t-F r A %,I..,.,T ....

elF.!..- IM1 . "Si E a [ TI -E NP -4 Or SF TRIE ,, S-•.T:•PREF P-1 THE", V C.FAL( ALSO*
AK . I =C( I. J.

AM -f 2 , dI•AP(J)=G(3,J)-- f~fl~t~jAS(J)=N5S1J)216 AL( ,))= (,(,IYJ

TH- T. iS L HE T: FI '4 S 4F6 19-' L ;; Ft.TS T.,ST. - i • G ',I 3 ',, .:...  '~-:IL Tz.•.. : S'rQR • '• .... T~ ! E Vt:+-CJ-•. +:.

C( ), ANO D( THE VAPI.A B.L :S .ADtU-I AND A0111,12 ARE USED FOR I..,,TF- -

ME R. f.T . ..'.. zt E.

D(J)=-DEL (J) • L (J)- (J)
ADU-:f ;-ttirI=O;t~3~)
A D U!''., I C.

DO 3 I= 1N

21 ADiJ"'IU A i )U'I-D FL (J ):K:, K( I ) / (CL( I F L (J) )
-A • :.t ". j --L _ uf: f., )-/-r--- -- F L. 1. I )

~___.__

----

1 _ -



C
-C THE RESULTS A A S ED I;N THE )( , ) A"AY.-

S.0058 6 DO 5 J=l,N
k.0059 ( ,J) C(J)

S.0060 B(2,J)=D(J)
-,Q : .AK J) C (J)

S.•,0o2 AL(J)=G(3,J)
S.q063 5 A'(Jt' : (J)i

C ISIG IS SET EQUAL Tri 1 SO THAT THE BRANCH TO SIX WILL NOT BE T VE•
C AGAiL, Af IF . ECRF I T ,kATI 7' F1 T1 -E .. . .T•I, eCL L ETU'ý TU-
C SEVEN. IF NO M~nRE ARE TO ;E Dt NE, THF SU3ROJTINE IS F-NiDED.

S. 064 o ISI G: -1
S.0065 IF(ITT ST- ) 7,151 ,7

C CO.T p L ENT- IF T i 9, T FI F T . . .OF-FI-- ST I NT rR.. . T-:,' FN
C THE SEC IND INTEGRATI ON IS CARPIED C!T, AND Ti-E RESULTS STOIED INF

T H( ), J1( )W '., ,'1- "-; C1t ) .. AD~, A..2, , c ...
C USED FOR INTE••EDIATE STr.•AG E.

s.---06-/ 9 DO-- .r---J-- !, N'•
,'.067 BI (J) =AL. (J ) :A ( J)

-;--3 -8 DI-(-J-)-.--1. J-t :P-H -J )/2.
5.0069 ADUt 10=.

S.0071 ADt~3=0.

;.0073 IF(I-J ) 22,10,2
0- 7 4- 22 A.DU 1- 3~U AL I { ,• ---• 3CL(-J) -/ .L (-,)--.EL( )

5.0075 ADU);I 2= A DU1i 2- ) ' L (J ) I ( EL - E_ ( J ) )

S.0077 10 CONT If,.:UF

. 0 9 .8 C J ) -8 L ( J ) &J ( A J ) !. 3

C C L ,RA FC. •S T, 11 64, 2 DEP , . , I B ITR- T G _! • •
C BEFN Cni.LFTFO.
C Ti EF i : F- T' i ^ ' FLLO T T%1E F- L: IC .C I5

C INTEGRATITiNS AP.E SU!.CCESSIVELY CARRIED OUT, PtRTURNING AL'.WAYS TO
C TA ST.ATF r-ENT S,[V ,H_ IF N-J T A S U FI F [ T 1.,S 1 i A 9 .E xCE. IC T..
C WHEN THE A PPR.'PPI ATE NUY.VER HAVE BEEN CALCUL1 TFD THEN THE COfNTRl-

I , S SE T- . ST JT CT 151 T.n THE Pr--'r• IS AENdr
S.00840 I F (S I I- ) 1 ,2 ,23

.. 0-i 1, 11 D. 12 J-C I.

.00 84

0 o il -'-i7

B (1,J)=C(J) EC 1( J

B(3,J)=D1(J)
-A C (J I i .t

12

A ( J 4- p J) 1 J
ALt(J)=G(4,J)
A P (J )- =J)C1 ()
AP(J)=n1(J)

IF--ITES- -- ) 7,151
IF(ITF.SI-2) 7,1 51

. 2 1 + r
.!00c; 2 0 2( J ) = AL ( J) AP ( J)

ADU. 1 =0.
, '4"0• 5 "- - F)tif- -=l-
•q y"(;,5 A DtI -4 3C)
• t· • 7 -^ {•U÷'--q-=---• •~-- -f,----------

C

O (0 -9l
- ------ -- --- -

'--------

- - -- -

-TT---------------- --~L---L

---

i•'•l\ i• ,j I-- L,., k • i I•k., L i • .,I

ALIJ):G(4,J)
A-,• ,-f-,.H-=_ t 

,•,-•--j-)-• .-•p•-)

AP 
(J) 

=r)l 
( J )

S.002) 3-- --.000 O



5.- 0 8 O0 14 1-1,i
3.0019 IF(I-J)24,14,24

3.01 24 ADUr-CLL( I) b FL ( Jf
5.0101 AUDUM1=ADU:1-AP( I) 2. :EL(J)/ (ADUM~-3)

,',, - -. -L ( I " (- 2. -) D L (L /(AUAf+ 2 )
5.0103 ADUM3=A U• t ( ) T2. EL( )/(Ar)U 2)
E-11-t- AU L,-4-t -. U'4,, LL J)/( -•U-- -'±)
S.0105 14 CONT1 INIUE

.I0107 B2 ( J ) =P( J ) :A JU3

5.0109 IF( T I S I2- 1 5r,2 ,?6

--. f- I -iit 55 D - 15' J-t, --

3.0111 AK(J)=C(J)&CI(J)&C2(J)

5.0113 AP(J)=I1) (J &D2 (J
T--T-it- A i(J)-' 1 i(J)

3.0115 ALIJ)=G(5,J)
5st ir-t--16 D ( 1, J ) -- A ( J )
3.0117 B(2,J)=AM(J)

r.OI ,{ , J.) - (t)
3.0119 15 B(4,J)=A-(J)
•-.---O- -I S G 2- 1
3.0121 IF(ITEST-3)7,151,7

-122 26 Df 27 J- l , N
N.0123 E3(J)=AL (J):*APF(J)
.3::- 4 F J -• J - - !J) L F J

0. 0125 ADUMW13=0.

S. -0 1" 7 ADUn 3I = .
ý-. C- . f_ -:',t I ' ,,01.

..0129 AD iJ, 5=

0.0131 IF(I-J) ?9,28,9
-329 AU i J) -t, i-L

3.0133 AD)U 1 =A U I- A ( I )6. 0EL( J ) / ( 4
. 03-t.-4 A U9 2---DU ,- ,,, 1 ) , . E-L A P('( ij - 4-v• )

.0135 ADLI'?U 3=A" DU 3 gAL( I ) 5. EL( I)/ (A *J ' 3)

3.0137 ADiM5=A:,-,DU S1 5 FAL ( ) L( J) / DU:

. 139 C3 (J) AL J ) J ,t- 1J' 1 AR (J) A:' r " 2.

-- I3.0141

.C 143

.0 145
",.")15")

- M 1.

5.014 --

D3 (J ):=A ( J ) *A )I_,4

IF(iISIG3-1) 33,21,
JJ -'L JL J-

31

AK(J )=C (J)C 1(J)

.0 AM J )=0( J ) B ( J )

• A----= f-i--- J)f J J--j-AR (J)EIJ)E[3(J)

.* 18bB(1, J) AK( J)
* -- - (-Q J)-=-) '(J-

2(J) C3 (J)

r2(J)ER3(J)
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