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ABSTRACT

STRE S&S AND DISPLACEMENTS IN VISCOIL:iSTIC BODIZS

by
JAMES EDWARD ASHTON -

Submitted to the Department of Civil Zngineering on
January 9, 1907, in partial fulfillment of the require--
ments for the degree of Doctor of Pailosopdhy.

In most published works on viscozslastic stress
analysis the constitutive equations of the materials
are expressed in linear differential operator forms,
However, due to the mathematical complexity wnich
arises when a realistic number of terms are usad to
properly characterize the material, thase analyses have
generally been limited to eithsr short tize intervals
or unrealistic materizl representations, To overcome
this difficulty, a more general metaod of representation
for the constitutive equations of linear viscoelastic
materials is achleved tarough the use of ths hersditary
integrals. Use of such constitutive egquations paraits
an easy formulation of the time depend:snt expressions in
the form of integral equations involvi ng zultiple con-
volution integrals which involve all tqv time dspendent
variables, The evaluation of these convolution intsgrals -
and the numericzl solution of thz intezrz2l equations
then provides the response of the materials over broad
time intervals,

Two techniques are presentad for svalusting the

. multiple convolution integrals, Tae first involves
numerical Integration, while the secohu is an exact
integration which is valid for materi=l functions th2at
can bz represented by Dirichlet szries. Tae tzchznique
for the numerical solution of thsz total integral eguztion
is presented and illustratad,

Two examples are presented to 1llustrate tals
method of analyslis., Thne first is the deflection of
a viscoclastic cantilever bean, The results of this

analysis are compared wﬁth a cartain =sxact solution.
Tne second exarple 1s ths analysis of the stresses and
displacements in a tqree—lamer viscozlastic nalf-spacse,



" The elastic solution is derived in an acceptable

form, and then the corresponding viscoelastic solution
is presented., Numerical results are presented, obtaincd
by both techniques, and are compared. ’

Certaln types of non-linear viscoelasticity are
reviewed and considered with respect to the possibility
of extending the above technicuss to these problems,
Ageing effects, thermoviscoelasticity, geometrical
non-linearities, and material non-linearities are con-
sldered: As an 1llustration of a technique for solving
a certain class of non-linear problem, the deflection
of a linear viscoelastic plate on a non-linear visco-
elastic foundation is analysed, and numerical results
are presented. '
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£,(t)

Q)
L)

LIST OF SYMBOLS

stress acting in x direction on é plane
normal to x direction

body forcé acting in the x direction

displacement component in the x direction

density

time
cartesion coordinate direction
extensional straln

shear strain

Acomponenfs.of finite strain

bulk or volumetric elastic modulus
elastic shear modulus
volumetric stress componént

volumetric strain component or base of natural
logarithms

deviatoric stress component
Kronécker delta function
Polsson's ratio

Young'!s Modulus

relaxation function analogous to Young?'s-
modulus

creep coﬁpliance function anslogous to 1/E
Laplace transform of f(t)

Laplace transform parameter



£(s) transform equivalent of Young's modulus

GG) transform equivalent of shear modulus
(5) - transform equivalent of Poisson"s ratio
K(s) transform equivalent of bulk modulus
@, b, constants
72 | dashpot Aviscosity
T | relaxation time
L(T) retardation spectrum
H(f) relaxation spectruzﬁ
£cw) complex modulus
w ‘ frequgzncy
£l real part of complex modulus
£ ) imaginary part of complex modulus
0(';) complex compliance
D) real part of complex compliance
D) imaginary part of complex compliance
Vi) stress, strain, or displacement
@/.}5/. constants with respect to time
ocl.),é/’. products of elastic constants
)[f(f) known functions of time
)'/(zf) symbol equivalent to ¥¥) or £.(¥)
, )5 elastic constants
X(f) relaxation or creep function eguivalent to
J XJ constant
Y(z) viscoelastic equivalent to ]?)f
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viscoelastic equivalent (multiple convolu-

tion integrals) of 4 and oc terms

'time varying load intensity

result of J th convolution integration

constant for J th term in Dirichlet series
for 1 th creep or relaxation function

inverse of J th relaxation or retardation
time :

" constant in multiple convolution integration

result for k th integration, 1 th term in
the polynomial multiplying the j th term
in the series of exponentials

result of summing m solutions @ <5 (¢)

“of exact multiple convolution integrations

constant in result A% for Z th term.in
polynomial multiplying j th term in series
of exponentials

moment of inertia

depth of cantilever beanm
length of cantilever beam ~°

thickness of the second half-space layer
constants in three-layer half-space solution

vertical deflection

" Bessel function of Nth order

dummy integration variable
Heaviside step function
cylindrical coordinates

intensity of distributed surface loading

-radius of circular loaded area
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constants in three-layer half-space.solution

thickness of first layer of half-space

part of solution for stress or displacement
for 1 th layer for a particular value of m,
at time t.

Laplacian operator in cylindrical coordinates

stress components in cylindrical coordinates

radial displacement
stress function
Jo(nr)J, (na)

J, (mr) J, (na)

reduced time t/a(T)

. experimentally determined shift factor for

thermoviscoelasticity
reference temperature
temperature

temperature depondent coefficient of thermal
exXpansion

kernel functions in multiple integral repre-
sentation of non-linear viscoelastic consti-
tutive equations

flexibility coefficient =+ E for node 1 with
respect to node

result of two-fold convolution integration

of K(t), D(t), and f(w;(t)) in the non-linear
problem of Chapter VII
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CHAPTER I

INTRODUCTION

An essential part of the rational analysis and
design of engineering structures is the analysis'of thev
critical stresses and displacements that the structure
is subjected to during its useful life. Except in a few
very specialized areas, the totality of such analyéis and
design is done, in the field of solid mechanics, utiliz-
"ing the assumption that the materials of concern are
linearly elastic. This has resulted in a great amount
of literature on such analysis, with "olosed" or analytic

solutions having been formed for many classical problems.

Although some engineering méterials, within a
certain range of stress and strain, are indeed governed
by constitutive equations which are essentially linear
_elastic, many new materials (such as polymers) are becom-
ing available having time dependent stress-strain be-
haviors. In addition, mahy materials such as Portlénd
cement concrete are now recognized to be decidedly time-
dependent.' Further examples of materials showing apprec-
jable time-dependéncy are metals at high temperature,
and bituminous concretes. Those materials, where the

stress and strain tensors are related through integral

- 13 -
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‘or differential relationships with respect to time, are
térmed viscoelastic, and if these relationships are linear

~then the materials are termed linear viscoelastic.

The analysis of stresses and deformations in
such linear viscoelastic bodies is receiving increased
attention. In the past fifteen yearé this attention has
resulted in the solution of some problems of practical
significance, but the number of available analyses is
very small compared to that of elasticifty analyses.
However, techniques are now emerging which are applicable

to a great variety of problems.

It is the purpose of this work to présent and
to demonstrate a straight-forward means of analysis for
viscoelastic materials which can be applied to a large
number of practical problems. The methéd to be explained
and illustrated in tﬁe following sections is applicable
to analysis using realistic material properties, and is’

an efficient way to carry out such analysis.

The method employs a formulation of the visco-
elastic solution in terms of integral equations involving
multiple convolution integrals of the relevant relaxation’
functions, using the correspondence between eléstic and
viscoelaséic problems. Two different techniques are pre-

sented for evaluating the multiple convolution integrals,

- 14 .



and then solving the integral equations numerically.
Both techniques are i1llustrated on an arbitrary integral

equation of the proper form, and on two example problems.

The first of these examples, the deflection of
a viscoelastic cantilever beam, is presented only to illus-
trate the techniques'and their use. The second example,
the analysis of a three-layer half-space, 1s of engineering
significance in the analysis of foundations and flexible

pavements, and is thus presented in detail.

A discussion on non-linear problems 1s pre-
sented in Chapter VII. Various sources of non-linearity
are considered, and potential methods for solving these
types of problems (coﬁpatible with the method of analysis
presented previously) are discussed. A particular form
of material non-linearity theorized by several authors in
the literature is discussed, and the problem of an in-~
finite linear viscoelastic plate on a non-linear visco-
elastic (Winkler) base is solved as an illustration of
the correspondence between elastic and viscoelastic

problems when this theory is applicable.

- 15 -



CHAPTER II

SURVEY OF LITERATURE ON THE ANALYSIS OF STRESSES

AND DISPLACEMENTS IN LINEAR VISCOZLASTIC BODIES

In this section, a brief survey of the litera-
ture relatéd to the analysis of stresses and displace:
ments in linear viscoelastic bodies is presented, with
emphasis on the analysis of viscoelasgtic half-spaces as

is used in Chapter VI as an example.

The difference between elastic and viscoelastic
bodies is essentially that an elastic body has a constant
ratio between stress and strain, whereas a viscoelastic
body has a stress-strain relétionship which allows for
“time effects. Alfrey (5) *, using the fact that some of
the equations of elasticity (the equilibriunm and strain-
displacement equations) arevunchanged for a viscoelastic
body, formulated the "correspondence principle" for in-
compressible viscoelastic bodies in 1944, Tsien (|3)
generalized Alfrey's principle in 1950 to include bodies
with the same {ime characteristics in shear and dilation,
’and then Lee (73] extended, in 1955, the "correspondence
principle"” so that it included any linear viscoelastic

body. The essence of this principle is that if the

*Numbers in brackets refer to the list of references in
the Appendix. .

- 16 -



equations of viscoelasticity (Nquilibrium, stress-strain,

L d -.'.S ‘e Fa - . \ a e
straln.al placement and the M\indary conditions) are

~ F v+ I vy B .
transformed from the time Ay o the Laplace domain

through the application of (. Laplace transform, the
= 2

partial differential equation., with respect to the vari-

3 i a forno. R .
able time will be transformod ito algebraic equations

in the variable s (Laplace Povipeter) which are in the

~ S+ A1 : .
same form as an assoclated o', (i, solution. If this

- 2 . " . .
elastic solution can be solvey, the inversion of this

result through the use of tho

'wryerse Laplace transform

will y}elo the time-varying YOl 6ion. This method is

applicable to all probdlems in

form of all the time-varying

Wich 1) the Laplace trans-

“uations exists, 2) the
i lasti - e :
associated elastic problem ciuy, he solved, and 3) the

S i v ti t" ! 'Y 2 ..
associated elastic solutlon cay e inverted to the time

‘domain.
t the oublish.. .. . J
Most of th publisin.; works on viscoelastic

tres 1 disgplacement znaly., .
stress and displacement 2nalyi, pave treated problems

which have been handled ty th.. laplace transform method,

A 3 -." i >d S- 1:: .‘i'« 2 s
and which utilized simplz discy oo nodels of springs and

3 /e pai .
n series and/cr pai.: el to characterize the

n
e

dashpot

viscoelastic material beravior, wpesouse of the mathe-

ica mplexity which aric. . .
matical complexity whicr ari when a large number of

y spring jashpot =zleni, N
such spring and dashpotT =zlem .. are used, only very



simple discrete models, composed of froﬁ two to five

~ elements, have been used. This type of an approach is
able tb predict the behavior of rea1 materials'accurately
only over very short time intervals, and consequently
little is known of the responses over<long time intervals.
Héwever, these analyses do provide some qualitative in-

formation on such bechavior.

Examples of this type of analyses are numerous:
Lee illustrated the basic idea in his paper of 1955 with
The solution for a fixed'and moving point load on a visco-
elastic halfspace which was assumed to behave as a Voigt
model in shear, and to behave elastically in hydrostatic
tension or compression. In 1961 Pister (gg) presentédv
the solution for a viscoelastic plate on a viscoelastic
foundation under a uniform circular load where both'the
plate and the foundation are assumed %o behave as incom-
pressible Maxwell materials. In 1962 Pister and Westman
Ciog) used a three-element model to characterize the be-
havior of a beam on a Winkler foundation, and analysed
this for a moving point load. Radok Gb|j presented a
solution in 1957 for a ring of time-varying thickness
‘under an internal pressure in which he assumed that the
rings were characterized as an elastic Voigt model. Kraft

(61 ) presented an analysis of the deflection of a two-

- 18 -



layer half-space system in 1965 in which the layers were
each composed of three-élement models, and the volumetric
behavior was asSumed to be elastic. The appiicability

of analyses using discrete models has been discussed

further by Arnold, Lee, and Panarelli (g) in 1955.

o One of the principle problems met wheﬁ apply-
‘ing the Laplace transform approach is finding the inverse
.Laplace transform. ‘Schapery (11Q) has devised and pre-
sentéd some important numerical means that ‘can sometines
" be used to facilitate this inversion. Cost and Eecker
(26) have presented another numerical technigue, and

compared its accuracy to the Schapery techniques.

An alternative approach to the problem was
suggested by Lee and Rogers (72) in 1963, using measurcd
creep or relaxation functions in the form of herediccry
integrals for fhe viscoelastic stress-strain relation-
ships. This method results in integral equations whic:
may be solved numerically. In the paper written by Ic¢
and Rogers, a numerical technique originally suggesticd

by Hopkins and Hamming (54) in 1957 was utilized succiio-
fully on their fairly specialized example.

A few results are available using the hercdl-

tary form of the stress-strain equations. These &V~

generally covered simple problems, and have been cCrplil

- 19 -



to the use of the discrete models. Examples of such
papers are: Rogers and Lee [JO7) in 1962 on the finite
deflection of a viscoelastic cantilever; Baltrukonis

and Vaishnar in 1965 (]3] on the creep-bending of a beam
column; Huang, Lee, and Rogers (56) in 1965 on the in-
fluénceL;f viscoelastic compressibility on a pressurized

cylinder; and Anderson (6 J in 1965 on the buckling of

viscoelastic arches.

In spite of the predominance the discrete models
have %njoyed in the literature, the’desirability of ob-
taining solutions over broad time ranges which realistically
represent real material properties seems to imply that
the more general hereditary forms will have increased use
in the future. The alternative to this approach seems
to be the use of the spectral representation (an infinite
sunm of discrete models) for the stress-strain relations.
This approach has been summarized nicely by Williams
(i139) in 1964, and numerical techniques for its applica-

tion have been discussed by Schapery ([j0) in 1962.

Sévéfal very good survey papers oﬁ linear vis-
coelésticity aré available, notably the monograph by
Bland (8], and fhe papers by Williams (|39]), Hilton

Cs1 ) , and Rogers (106]). In addition, Gurtin and
Sternberg (40 ) have presented a rigorous development of
the theory which supplies proof of a large number of

theorems normally assumed on a physical basis.

- 20 =~
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CHAPTER III

STRESS AND DEFORMATION ANALYSIS OF VISCOELASTIC MATERIALS

In the analysis of the stresses, strains, and
displacements of a body subject to external forces and
displacements, three distinct sets of equations may be

formulated in terms of the stresses, strains, and dis-

placements. The solution of these equations which also

satisfies the boundary conditions of the problem at hand

yields the desired stresses and deformations. The sets

of equations necessary are the equilibrium equations, the

strain-displacement equations, and the constitutive equa-
tions. These will be discussed individually, and then the
practical solution of problems formulated with these

equations will be discussed.

ITI-1. Equilibrium Equations

These are dynamical equations, which state the

‘equality of Newton's Second Law f = ma in terms of the

stresses and body forces acting on any infinitesimal
element of a body. Equations (1) give the equilibrium
equations of forces for a body with no couple stresses

acting (so that J.: = 0;; from the equations of mo-

" ment equilibrium of an element) in cartesian coordinates,

- 2] -



E

using the conventional indicial notation:

205 - _ LY .,
o d T &)

In these equations GE 1s the stress acting in the XJ
- direction on a plane, passing through the point, noiu:

- to the X, direction; F, is the body force acting in 14,

i i
X, direction; /) 1is the density of the material; an

Uy 3

There are six unknown components of stress and thrcc .

is the displacement component in the X, direction,

‘known displacements in these three equations.

III-2. Strain-Displacement Equations

These are kinematic relétionships between
strains and displacements. They express necessary rr.-
lgtionships in order that a set of strains may yield
set of displacements and still preserve the éontinuiﬂy
of the bodyf Letting eij be the component of finitec
strain such that the extensional strain in the XJ dlre., .

tion is given as:

and the change in angle between the Xj and Xk direct:- -
is given as:

c;

- |
EJ_K prm 5//7 ( \//,,. e ‘ﬁ""ex,'() (:1

- 22 -



Then the six strain-displacement equations‘aré given as:

U, M, U Mk ()
€T T T X X -

This expression represents six equations in
six uhknown components of strain and three unknown com-
poﬁents of displacement. These equations can be sim-
‘plified somewhat by making certain assumptions such as
neglecting the non-linear terms when the strains and

rotations are small.

III-3. Constitutive Equations for an Elastic Body

The constitutive equations are the mechanical
equations of state for the body. They can be stated in
quite general forﬁ: -

Eﬁj f (stresses, other strains, time,tem- (5)
perature, geometry)
.That is, strain is a function of the Stresses, the
other components of strain, time, temperature, and géo—
metry. In infinitesimal linear elasticity, the contri-
butions to the functional relationship of the other
strains, of‘time, and of temperature variables are dis-

" regarded. The assumption of a homogeneous body reduces

the relationship to one involving only the stresses,

- 23 -



that is:

5" = 7[‘(%-) 0;2; 03—.?; /3, JZ_..?J 0;—2) (6)

y

Two further simplifying assumptions'are also often made.
The first is that the strains are linear functions of

the stresses, and the second is that the material is iso-
| tropic (i.e., the properties at any point do not depend
upon‘direction): With these two assumptions, the consti-
tutive equations of linear elasticity for an isotropic,

‘homogeneous body can be stated as in equations (7) and (8).
g =3Ke | (7)

S, =2G€¢;, (8)
J

In these equations, K is the elastic bulk .

modulus, G is the elastic shear modulus, and J, &, S5,

and €&, are given by the folloﬁing relationships:
g = volumetric stress = 0, *(,, +J,, (9)
€ = volumetric strain =& + £, + £, -~ (10)
S;; = deviatoric stress = g, - %“a’,J. (11)
€, = deviatoric strain =¢& .~ £S5, (12)

- 24 .



where

é& is the Kronecker delta function:

/ I=s |
£ = { s (13)
J} o /S :

-

The constitutive equations of a linearly elastic body
are also often given in terms of Young's modulus E and
- Poisson's ratio #( . These constants are related to G

and K through the relationships given in equations (14)

and (15).
3Kk -26
= (14)
A~ 2G + 6K |
F= 246G - - (15)
IA+G

ITI-4. Constitutive Relations for a Viscoelastic Body

The constitutive equations for a viscoelastic
body, in addition to being a function of the variables
considered for an elastic body, are also a function of
time. There are sevéfal ways in which these relation-
ships can be written, which may be shown to be inferre—
lated (39,139) . In the followingfdiscussion, only linear
viscoelastic constitutive equatiohs will be considered.

It should also be pointed out that since temperatufe does

- 25 -
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not enter into the constitutive relations, the implicit
assumption has been made that there i1s no variation in
properties with temperature, or else isothermal conditions
exist. More general constitutive equations will be dis-

cussed in Chapter VII.

III-4.1. Hereditary Integral Form

The first form for a viscoelastic constitutive
equation to be considered here is the hereditary integral
form. Consider a uniaxial relaxation test on a specimen,
where QEY%Q is measured for a constant strain @L{Zﬁ.
-Then, for this test, a relaxation function can be defined

as

a;(t)
L= o

Similarly for a creep test, é&(ﬁ) could be measured for

(16)

a constant stress J(0) , and the creep compliance

funétion is then defined as

&i(@) Can
G;¢0)

D)=

Consider now an applied strain which is com-

posed of n pulses at times tl, t

z&é;j(2;) , K=1, 2,...n. If linearity is assumed,

os ++-t, of magnitude

then the stress history is the superposition of n discrete

- 26 -



histories each following equation (16):

" n 18
Gt)=Y) F(E4)DE, () .

Passing to the limit where é&(f) changes con-
tinuously, the hereditary integral- form is obtained in

terms of the relaxation function E ( )
z 4
_ 9&,;(%) | (19)
/-

In an analogous manner, the hereditary integral form in-

volvihg the creep compliance function may be written:
£ 0= D25 gz  (20)
oo ” 2T ‘
/-

To avoid the difficulty of dealing with discontinuities
at the origin, it is convenient to write (19) and (20)
in the following form, where the inftegration limit t”
together with the initial conditions on Er(t) or Dr(t)‘

account for such discontinuities:

Z‘- -
Go= | L0 ( )igééfidg] £@) (e)

t-z) ,
[ﬂ()/( D( Jr | gole) (22)

- 27 -



 In equations (21) and (22), the symmetrical properties of
the integrals have been utilized so that the initial condi-
tions on the relaxation function and creep compliance func- '

tion could be written outside of the integral.

The expressions (21) and (22) are written in a
form such that the overator within the brackets corresponds

~to the analogous elastic modulus or elastic compliance.

Consider now the Laplace transforms¥* of equa-

tions (19) and (20):

7; *(5) = Szf;*(s) E,;;?S) = £(s) cf/;(s) (23)
¥ o L gs) LY
E',J.x(s)‘—‘— 50,.(5)0;.?5) = 7% ) (2k)

Equations (23) and (24) are elastic-type rela-
tions, where £(5) (analogous to Young's Modulus)

;_gséf(s) = ZQ“(S) in the transform plane.

III-4.2. Characterization of Volumetric Behavior

In the above discussion of the hereditary inte-
gral form for a viscoelastic constitutive equation, an
operator was derived which is useful in equating stress

to strain for the case of uniaxial normal stress. For

o e e e e ke T S

*The Laplace transform of f(t) is defined as

E oz’{ fmj = £(s) = / ?5‘?/5) ot
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three-dimensional analyses,-oné other material relation-
ship must be given. That ié, in the above develbpment an
operator equivalént to the elastic modulus was formulated.
A constitutive relation giving an éqUivalent'Poisson's
ratio, or bulk modulus, or shear modulus, is also needed;
Thé most common assumption for this relationship (|39 )

is thét the material behaves in an elastic manner under
hydrostatic tension or compression. The second relatibn-

ship needed is then
ge) = IKeE) - | (25)
which has a Laplace transform of | |
0 )= 3K ) I ~ (26)

Hence, the equivalent bulk modulus in the transform
plane is the elastic bulk modulus.. Givenvfwo characteri-
zations such as equations (19) and (25), an equivalent
shear modulus and Poisson's ratio in the transform plane

can be found from the relations

IR EE) (27)

o Fls) (28)
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| ' Of course, if equation (25) were givpn in a
time- varying form, then K(s) would have to be used in
equations (27) and (28). For example, the volumetric
behavior might be specified in hereditary integral form

as

- 2 |
- o 2el(z) , '
a() =) g (t-2) == = ()
(72
where K_(t) is the bulk relaxation function defined in
a fashion analogous :to equation (16). Then the Laplace
transform of (29) gives the equivalent elastic bulk

modulus in the transform plane:

TG _ sy = IACS) - (30)
e”(s) -

However, at the present time very little
analysis has been done considering viscoelastic volumetric
behavior. This is reasonable because little 1s known of
the actual time variation of the volumetric components of
stress and strain. In fact, a further simplifiéation of
eqﬁation (25) is commonly maée by assuming that the bulk
modulus is infinite, i.e., the material is incompressible,
which also implies, as shown in equation (28), that

" Poisson's ratio is equal to 1/2.
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III-4.3, Differential Onzritor Form

It is sometimes convenient to express the con-

stitutive squations of linear viscozlast icity in linesar

differential opzrator form such as given in equation (31):

n V4 m_ Vi ,
O._a__o_;;'_(t_)_ — _.a_éié..({_). : 2]
7 ot Mb’ 2¢7 | ( )

This form can conveaniently be relatzd to combin-
ations of ﬂook*a springs and Newtonian dasipots which
is 2 hslpful aié in visualizing the resnonsss bzaing
represantad,

Tne Laplace transferm of equation (31) is 2 poly-

nonial fora in s:

n : m -
Z @ 57 g ls) = }:19, s7E(s) (32)
/=0 '

=0

where tae first n-1 derivatives of‘QﬂZU and tas first
m-1 dsrivatives of &:(0) are taxen as zero,
This may be rewritien as in equation (33) to

t

e

ulus:

[N

glve an expression equivalent to tas zla c mo

&)

4 s* o
0"?5) -————E‘Z ” JJ(S)”‘[(5)£ (5) ,(35)



As an example.of the formulation of akconsti-
tutive equation in the differential operator form, con-
sider the three-element model shown in Figure 1. The |
differential equation describing the force-deformation
behavior of this model for uniaxial normal stress is
given in equation (34) and is seen. to correspond to

m=n=1 in equation (31).

Q_ £, — £,)2_ -I'EL—E—-; (32)
[9«:‘ # 7..?;}%‘.(&‘) " [(/5/* 2)975- 772] (%_(zf)

For a constant stress q;x?z) (a creep test), the

-strain is obtained by solving equation (34) ((39]) to

give:
Ef} /
£ 7, (6 15)
6 ®= J-(O) L[ E(E,L[) c ] (35)

where e is the base of the natural logarithm.

To use this characterization one might thus

.

perform a creep test, and then select the constants

)

l’
Eé, and 772 in equation (35) so that it would give the

best possible fit to the real creep data.
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Many other combinations>of springs and dashpots
. can be selected that will yield similaf_differential
operator constitutive relations. These have been elab-
orated on by many writeré, and reference. Cig ] gives .
a comprehensive coverage of the differentiél equations

* involved.

The disadvantages related to the use of the

‘differential operator form (which appears so intuitively
convenienf) arise in trying to fit the actual data (creep,
. fecovery,_etc.) to the differential operafor equation
6ver long ﬁimes. Although.materiéls do exist which have
viscoelastic chafééteristics which may be-adequateiy
represented by 1ov:order différentialioperator relations
over several decades bf time, most materials cannot be
accurétely represented by such low order expressions

72 - Furthermofe,.as the order of the equations’
is increased, additional difficulties arise, among these

being a rapid increase in the complexity of analysis when

using such relations.

ITI-4.4, Spectral Representation

One approach to characterization, which follows
from phe differential operator form, consists in passing

- from a discrete number of springs and dashpots to an

S YA



Infinite number of such elements. The result can then
" be expressed as an integral relationship. Figure 2

shows, for example, é repeating combination of springs
and dashpots arranged in the so—éalled Wiechert model.

" The constitutive equation of this model is Cizg] :

n

_ £ 3
%@ [f “gi;?sz]éﬂ) )

The quantity ‘”72; is the relaxation time for the
~ith spring and dashpot combination [ﬁhe time requiredv
for the combination to reach 1/e (e being the base of
the natural logarithm) of its total stress relaxation
‘in a relaxation tes?] and is normally denoted %Z}.
One can synthésize a function of relaxatipg.times in
this model, and substitute this in (36) o express. E,
and ?Qi in terms of only Z,. Then passing to the
limit [n»oo in equation (36)] , an integral

relationship is obtained.
A convenient form for this function is

H)= 2 R (31)

which gives, after substituting in (35) and passing to
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a

the 1imit:

a7 (4)= Ef-/[//(z) Jz BJEJJ“) (38)

which is the spectral representation. . H(T) 1s xnown

as the relaxation Spectrum; and E° is the long time

elastic modulus.

The use of equation (38) 1s essentially the
same as the use of the discrete models. A known stress-~
strain history is'fitted by finding a suitable form for
H(T) , either by solving the integral equation (38)/or

by the trial and error procedure of predicting a mathema-

' tical form for /(Z), integrating equation (38), and

then comparing this result with the experimental data.

The result ekpressed in equatlon (38) for the.
Wiechert model is mo°t ueeful when a sbraln is imposed
and the stress hlstory is measured. If the opposite
ease.is used, then another infinite combination, the
Kelvin model shown in Figure 3, is more convenient. The
response for this model can be developee along the same
lines as for the Wiechert model, yield%ng equation (39)

as the constiuutlve relatlon in terms of the retardation

Cspectium (7).
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m)[lﬁfiﬁJmm

(39)

This relation would be fitted to experimental data in a

manner similar to that of equation (38).

The Laplace transforms of equations (38) and

(39) are given beloﬁ C139] :

RO [E / (z)]c/z } S|\ E=HREE) (1)
z v

. | ‘ (41)

éﬂ _.[}_¢;//‘ Z(chﬁf Jﬁ?@)EEZQG)Q;?G7
er 2 )= .
= 2%

III-L4.5. Complex Representations

It is often convenient to measure the response
of a material to an oscillatory input. Such a technique
makes 1t possible to measure the response gt very short

times (since no discontinuous changes in stress or strain

-39 -



are require/d as in a creep or relaxation test) and also

gives a‘fairly direct measurement of the loss character-;
istics'.' Use of such dynamic testing methods leads to the
definition of a complex modulus or complex compliance, as

described below.

re
Consider a specified strain input R[fae ]

with &

the amplitude of the sine wave. The resulting

_ : — wl —_—
stress can be denoted @ O e’ where now OJ¢(«) is
a complex function of frequency. The complex modulus is
then defined to be (39 J:

g (w)

= [ = flw) # [ E ) (42)

il

and analogously one defines the complex compliance

E = pi) =Dl — 7 Plwy (43)
— |

-]

w?
for an input stress of R@:elw _7 .

To show how the complex modulus and compliance
are related to the other characterizations, substitute

; — ret
and output () C

ree

the dynamic input RES,C?
into the differential operator form of the constitutive

.equation [equation (31)] :

Y g = Y gl o
J=o : J=o
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or

) n

_ ) G’ N
Tofon= Z———=L00) gy
& X by | ’
—
: J=0

It is apparent from equations (33) and (45)
that the complex modulus is equivalent to the equivalent

elastic modulus if s is replaced by iw.

Ali of the above methods for measuring and
characterizing viscoelastic behavior have been used, and
all, as has been briefly shown, can be interrelated.
Before proceeding to a consideration of how these consti;
tutive relations can be used in stress and deformation
ahalysis, it is appro@riate to point out that the above
characterizations often lead to quite comp;icated consti-
tutive relations, and series expansions anq other numeri-
cal methods are often necessary in handling these rela-
tions. In particular, Schapery (110) has presented
methods for developing series representations and approxi-
mate numerical methods for performing the inverse Laplace
transforms. In addition, Gross (39 ) has presented a
thorough coverage of the intérrelationships between these

various characterizations.
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very simple problems can usually be solved in this manner,
and many of these could be handled more easily by the

"eorrespondence principle" to be considered below.

A second approach to solving the equations is
to:attempt-to sélée them using numerical methods and
highfspeed computers. This approach will prdbably grow
iﬁ usefulness in the future, but at the present time

' suchVSOlutions seem to be most appropriately ﬁsed, again,

in conjunction with the "correspondence principle".

As has been previously noted, the oniy differ-
ences in the applicable equations of elaSticity from
those of viscoelasticity are in the constitutive equa-
tions, and indeed these constitutive equations are the
dividing line between each of the‘clasées of continuum
mechanics. It has been noted, furthermore, that the
constitutive relations of linear viscoelasticity are
similar in form to the constitutive equations of linear
elasticity; for example, in the transform plane an algebraic
equivalent of E, K, AL, or G exists. Similarly, an
-operator such as included within the brackets of equation

.(21) can be considéred to be an equivalent to the elas-
tié modulus E in the time domain. These similarities
ﬁake it possible, in a large number of worthwhile engi-

. neering applications, to use the solutions to elastic



-~

very simple problems can usually be solved in this manner,
and many of these could be handled more easily by the

"ecorrespondence principle" to be considered below.

A second approach to solving the equations is
to attempt to sol&e them using numerical methods and
highfspeed computers. This approach will probably grow
iﬁ usefulness in the future, but at the present time
such so1utions seem to be most appropriately used, again,

in conjunction with the "correspondence principle'.

As has been previously noted, the oniy differ-
ences in the applicable equations of elasticity from
those of viscoelasticity are in the constitutive equa-
tions, and indeed these constitutive equations are the
dividing line between each of the’classes of continuum
mechanics. It has been noted, furthermore, that the
constitutive relatioﬁs of linear viscoelasticity are
similar in form to the constitutive equations of linear
elasticity; for example, in the transform plane an algebraic
equivalent of B, K,4L, or G exists. Similarly, an
operator such as included within the brackets of equation

.(21) can be considéred to be an equivalent to the elas-
tib modulus E in the tTime domain. These similarities
make it possible, in a large number of worthwhile engi-

. neering applications, to use the solutions to elastic
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problems to obtain the solution to the corresponding

viscoelastic problems.

To further show the correspondence between
elastic and viscoelastic problems, consider‘transtrming
the equilibrium, strain-displacement, constitutive equa-
tions, and the boundary conditions of a viscoelastic |
problem, using the Laplace transform. The transformed
equilibrium equations are still three equations in the
six unknown stresses (now the transformed stresses), and
the strain displacement equations are essentially un-
changed. The constiﬁutive equations have been converted
to elastic-type relations. The boundary‘conditions may
or may not have changed form,‘depending on wnhether they
varied in time originally. In any event, the resulting
equations are in the same form as an elastic problem,
and, if this problem can be solved; then the time varying
solution to the viscoeléstic problem can be found by
means of the inverse Laplace‘tranéform. Of course, if
the boundary conditions are unchanged in the transfdrma—
tion and inertia terms can be neglected, then the equi-
valent elastic problem in the transformed plane will be
precisely the same as the original problém in the time
pléne with the conétitutive equations changed to those

of an elastic body (73] .
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In a very similar manner, one can use an oper-
ator equivalent of the elastic constants in the original
problem, carry out the necessary manipulations to solve
the equivalent elastic problem, and then solve the result-
ing integral or differential equation in the variaﬁle

time (101] .

. The "correspondence principle" is thus based
on the idea that it is often possible to utilize known
elastic solutions to obtain analogous viscoelastic solu-

tions. For the so-called quasi-static problems, where
‘it is assumed that the dependent variables vary suffi;
ciently slowly so that the inertia terms can be neglected
in the equilibrium equations,'the Laplace transformvhas
usually been used. For this type of problem, and
assuming that the Laplace transform of the boundary con-

ditions exists, the correspondence principle may be

stated as follows:

.Replace the dependent variables and boundary
conditions in the elastic solution by their Laplace.
transforms, and replace the elastic constants by their
equivalent forms in the transform plane. Inversion of
this result will yield the time-varying viscoelastic

solution.
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A large number of engineering problems can in
principle be solved using this approach. However, its
use imposes certain limitations on the type of the prob-

lems which can be handled:

1. The assumption that the Laplace transform

exists, an

0,
l,J
chk
|
O
o)
)]
[an
ch

of the boundary con he assumption of
quasi-static behavior, limit the application of the

principle C101]) .

2. It is often difficult to obtain an appro-

)

priate analytical expression for the constitutive equa-

P

tions of the materizl. Experimental data yields curves

()

s O

or a discrete number of points, and the analyst, if he

is to obtain realis<iic answers, needs to select a2 form

~

cly flexible to fit the actual experi-

3. A mejor difficulty is in obtaining the in-
verse Leplace transforn of the equivalent elastic solu-
tion. liany such inverse transforms are known and have
been tabulated (24 ). lMeny complicated forms nay te
inyerted by sepera
method of partisl frac
nunmerical technigues have been develovwed for relativel
direct inversion (26,110 J.

To avoild thess difficulties, a method which 2lin-

inates the nead for analytical exprassions for consti-
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tutive equations of the material and walch can use actual
experimental curves or data has been proposa=d by Lee and
R-ogers (72). Furthermore, Radok (10/], using = metho~d of
functional equations, has shown taat sdme of the restrictions
imposed by the use of tae Laplace transformation can be
removed and th=t the correspondence priﬁciplé can be extended-
to é ﬁider class of problems, .

It should be noted that the dirsct use of the
operator approach is completely justified if the Eoundary
conditions do not vary in type (taat is, remain of the stresé
type or remain of the displacemant type), but that the proce-
dure is open to some question when this is not tfue (for
instance, 2 rolling contact problem),f227ﬂ For the latter
type of problems; a check on the significance ofltha results
is necessary., Further research 1ls still necassary to dater-
nine the validity of th- technique in this cassz.

This thesis presents a method, based on the combinatioﬁ
of the above-mentioned approaches, for tas solution of a

wide class of viscozles

ck
ls)

¢ stress analysis problems,

(@]

The method, to be explairned and 1illustrated bzslow,

1,

he oparitor equivalents of the

(—'.

relies upon the use of
elastic constants, uzing realistic materizl propertiss,
The problems encountered using this method and the means
of handling then are dreséanted and discus:zad.

The basis of the operétorlapproach relies
upon the pos<ibility of using an operator esquivalent

for each 2lastic const=nt occurring in the solution for
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thé elastic body with the same boundary conditions. A4s
has been pointed 6ut previbuély, two such "equivaleht
élastic constants" must be known for three-dimensional
analysis. Witﬁ a knowledge of any two of these "equi-
valent elastic constants"; any of the others can be
found uhrough the use of equat tions such -as (lb) and (15).
Also, as has been noted, the as umptlon that viscoelas
materials are elastic (or sometimes incompressitle) in
volumetric behavior is usually made due to a lack_of
detailed knowledge of actual material behavior. This
latter assumption is not ﬂecessary when using thé opera-

J_

'tor'approach, although its usge does, of course, simplify

h

the resulting equations somewhat.

To use the operator approach in a straight-

forward manner, let us assume that the equivalent elastic
solut sion can be arranged, by appropriate algebreic opera-

tions, into the following form:

Y & =, £t -
V)= & ' )
N2

where

Yi¢)

&, ¢

Il
ot
=
o
Q,
5
[6)]
-
’-

ed stress or displacement.

8 with respect to time

I
o
)
o)
&)
<
o)
]
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o(; /4 = products of elastic constants.

"For example, e(; = K

sTQ
&
I

functions of time introduced through
time variations in the boundary condi-

tions.

The vast majority of problems to which the
correspondence principle is applicable may be arranged
in this form. Some solutions, which at first do not |
appear to be suitable to arrangement in this form, can

be modified through series expansions.¥*

If each of the elastic constants in the <,
and 4 terms can be replaced by its Viscoelastic opera-
tor equivalents, then equation (L48) can be converted to
the viscoelastic solution. However, the operators that
occur here must be applied with a function. of time, and,
in the form given in equation (46), the 8. terms are

not applied with any such function. To avoid this

L T T L

¥For example, a term such as /—<«® could be written
as /_ st ... It should be noted,
Z2 - 5 T /€

however, that some operations, such as squaring both sides
of an equation to remove a square root, and later taking
the square root of the answer, may introduce extraneous
results.

- 49 -



difficulty, equation (46) may be rearranged to the follow-

ing form:
z 4 Wt) = 263- o, #(¢) (47)
/=1 I= : .

Now to obtain the viscoelastic solution, the
operator equivalents of the elastic constants are sub-

stituted in equation (47).

In order to derive the form of the solution
when these operators are substituted into equation (L47),

consider first a typical term

( [ 2 N O

where

Y J=42--4A are elastic constants which

J
have ODefauOf equ1vg1 nts of the form

o 9)/&‘ z) |
>J'/efuiv. B [)/(0) /( ) ] (4o)

and V() is either an (f) or %),

Substituting the operator equivalents -(L9)
into the typical term (18) one obtains the following nul-

tiple convolution integrals:
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//z‘ Z);Z/)/KZ/\) / /Y(Vz)gym 47

Y (LR . .,Lx/z)gg(o)—---;go) oz

. (50)
# VY)Y (5) Y (o)

It is convenient to rewrite (50) in the form

.
/V/z‘—z) 9%2)0/2' + V(& YC) - (51)

ot .

where

Yiz)= /y(z-/\) / /wmm’”

*%ﬁ/f)%@df’ hor Y)Y o)

(52)

With the results of equation (50) and the no;
tation of equation (51), the general form for the corres-
ponding viscoelastic solution can be written as follows,
after substituting the operator equivalents for the elas-

tic constants into equation (47):
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Y] He 5202 W40

. | Ah g .
o }:@{ ﬂﬁ‘-z)%%ﬁ)ﬂ/f 7‘7,-[/5)“/09 (53)

Equation (53) is a Voltera integral equation;
'the solution of this equation yields 347f), the desired
stress or displacement for the viscoelaséic body. It
should be pointed out again that the o£.(Z) and G (T)

terms are multiple convolution integrals.

" Equation (53) is in a convenient form for nu-
merical solution, as will be illustrated when presenting
two relevant examples in the fbllowing chapters. 'There
are two principle phases to this numerical solution. First

‘of all, the terms ©G() and 4(¢) must be evaluated
at certain valuves of t¥. Two alternative approaches for
evaluating these terms will be presented in Chapter IV.
The first technique utilizes only numerical integration.
The second is exact, but depends on expressing the rele-
vant relaxation functions in terms of Dirichlet series.
After obtaining these terms, and knowing the f%ef) at
appropriate discrete values, the integral equation (53)

can be solved by a numerical step-out procedure.
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_ The abové approach has three main advanfages.
First of all, the Laplace transform is not used, and thus
it is not necessary that all of the gquaﬁions and boundary
conditions have Laplace transforms. Secondly, the appli-
cation 6f the above method, although possibly appearing
complek because of its abstract form in the above preéen;

‘tation, is straight:forward. This will be apparent when
the examples are presented. Thirdly, due to the general
approaches used to evaluate the multiple convoiution
integrals, and since the integral equation is solved nu-
merically, the relaxation or creep functions which appear
in the solution can be kept realistic and representative |

of real materials.

Before'presehting the techniques for sblving
equétion (53), and two examples of the use of the method,
it is worthwhile to note that it is not neéessarx to use
the specific operator equivalents'(the hereditary form)
used abové, although it would seem to be the most con-
venient form. Any of the forms previously discussed
could be used, although the numerical proéedures for
solving the result;ng equations would vary depending on

the form selected..
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CHAPTER IV

SOLUTION OF THE GENERAL INTEGRAL EQUATION

The solution of the general integral equétion,
equatibn-(53) of the previous chapter, must proceed
with two principle phases, First the multiple convo-
lution integrals o((¢) and 4(¢) must be obtained at
appropriate valﬁes of t, and then, using these valueé,
the integral equation is solved by a step out procedure,
Two different approaches for evaluating the multiple |
cénvolution integrals will be. presented.' The ﬁethod
of solution of the total integral equation will then
be discussed, and the implications of using each tech-
nique on the solution of the total integral equation
will then be discussed, ‘

IV-1l, Numerical Evaluation of the Multiple Integrals

The typical term <((Z) or () has been given
in equation'(52) of the previous chapter, To evaluate
~such a term numerically, assume first that each }f&f)'
is known at appropriate values of t (recall that )4(5)
is a creep or relaxation function), Consider the

Innermost integration:

| F
L (f)= )K{,(F—&)%)%@O’% + % (F) %) (54)

(74
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Let this integral be di.vided into n, intervals:

I(f) X k ay(%)d? +>£.,(f)>f(0)- (55)

/=l
e,

? ‘lf/

vhere t, = 07 and t =Y. For )il(f)/) a continuous func-

tion and the interval bysm Ly SmA1l enough, )'(f-?Z) may

f

be approximated by a constant, say 'ZL[:Y (¢, i, X_,(L; _/,)3 -

and (55) may be written
Z‘ zll7~/

G 22[ Y e | am)d;z ,Ly(z‘»/(o) (56)

r=
fﬂ =141

or, since the integral of a derivative is just the

function evaluated at the 11m1£s, this is:
T(5)=)% D{_,(z‘ﬂ,-,-,,)%( ,][y(z )Xee) Y ))’(o()57)_

which gives an.approximgte expression for the integral
(54). If the n, intervals are chosen egual, then the
a»proximation equation (57) is eguivalent to using

the trapezoldal rule in conjunction with first order
centrél difference derivative avproximations for }%%)
except at the end points 0 and tm ,» where first order
forward or backward differences, respectively, sre used.
Note that in the form of expression (57) the spacing

does not enter explicitly.




Next consider a two-fold 6onvolution from equation

i (52):

/ gz(/-f)%e %{(F-?z)%%z)wﬁz,(f))/(o)df o (58) .
b + ¥, (XX ©)

_ If the inner integral is approximated using expression

(57) at all necessary values of t, then the outside |

integral can be evaluated in the same manner, However.'

in the general case a sum‘of n, terms will be needed

to evaluate (54) for each time ?j used in evaluating

the outer integral, Clearly to evaluate the total

| result wﬁere/ﬂis divided into n, intervals will take

n,x n terms of the type in the sum of expression (57).

Repeafing this procedure for m integrations wlll require

j?n terms to be evaluated, Unless‘each n; is small,

2&1s would require a prodigious number of coémputations,

To avold this, leto and f be divided into the same

équal intervals, Then each successive evaluation of

the inner integral requires only a single additional

computation; In this wayAthe evaluation of m intégfa4

tions requires only the order of g;n terms,

Following the above discussion, the double convolu-

. tion integral, expression (58), can be written:
Z0= 53 Y6 ) | S L D)
e }}[ @) L NNEYET) - )y@,%gfﬂ)z{o)z@)
=) 1[lfo) u(f”ﬂ{f(f)* ) 60%0 o
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Similarlf, m fold multiple convolution integrals
may be approximately evaluated,

The obvious shortcoming of the above approach
is that with equal spacings the evaluation of many-
fold convolution integrals at long times will require
n; to beconme very large, and hence the number of comp-
utations will become prohibitively large. To avoild
.this, the following scheme has been found to work
reasonably well:

Equal spacing is used to evaluate Y&) up to some
t,. The spacing is then doubled, and all of the even
values of t and the corresponding values of Y¢) are
retained and used to calculate Y7 up to the new t,,
wnich is double the original t,. Further discussion
of this approach is included later in this chapter when
numerical examples are presented, |

It should be noted that no functional expression
i1s necessary for }ﬂ%) when using the above numerical

schenme,

IVv-2, BExact Evaluation of the Multiple Integrals

Although the above numerical evaluation of the
multiple convolution integrals has béen found to work
reasonably well (as will be shown subsequently), it
is apparent that an approach fhat would yield an
explicit solution for the £{¢) and 4%) terms, which
could be evaluated exactly for any time t, would be

desirable,
. - 57 -



To achieve this result, and at the same time
to maintain generality in the representation of the
appropriate relaxation functions, the following technique
has been developed, Assume that each )ﬁﬁ? can be repre-
sented by a Dirichlet series: N

Y/ (¢)= ZG 28 : | " (60)

J=r ,

where the qi's and ff1s are constants (some Gf may be
zero; and one Jj may be zero), This representation
1s sufficient to accurately characterize real materials
(2although n may be as large, or larger, than ten), as
has been demonstrated by Schapery (109) using irrever-
sible thermod&namic argunents, In addition, Schapery
has demonstrated a simple collocation scheme to calcu-
late the coefficienﬁs Gf (a-version of this will be
used in the example in Chapter V, and .also in curve-
fitting later in this chapter),

Consider now a single convolution integral, the

~innermost integfal of the general term given in equation

(52): |
Z(5) / (ffz)gwwd? + Y (F)X(0) e

With the revresentation of equation (60) for )ﬁ[f)
end };(f), this becomes:
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I S
5=/ (3 qéf””")(iéﬁ )d?z

2 (Z@) F‘( (62)

Rearranging the summations, equation (62) may be written

PR AR "*“%w]} =

The integrals in equation (63) may be evaluated,

but the result varies depending on whether 1= J:

ey =7 o | (6%)
1= a7 RIS (Y. o
; = 7ale =) =

Substituting the result expressed in (64) into

(63) yields: -
. s’ g
1(5)= ZG:,{ Goe” -~ GIfe
| (65)
-5 *ff‘/ el ~}"é’ ]}

+ }:G [J’ 5 < ;/—,rJ
/;éJ

(65) can be rearranged and written in

Equation

the following relatively simple form:

L(f)= Z{/g“@g;}"}éﬂj (66)

where
,B. G G +G XG O(/J;J[ )
(67)

I=t
J

-+ GKJ‘ ZG:—// j{“{,(/— {/J>
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, : S 0 A
/ég/:: “-J-C%” G&
| ~(68)

and

[ =
JJ_ = Kronecker delta function = {0 oy (69)

‘Next consider the innermost two-fold convolution

integral of equation (52):

LCO)=[/>‘;{_2(/LF) /k/(F— XD 7

+Y (FIX@IF + X ,(2) X @ XC)

Using the result expressed in equation (66), and

(70)

the form (60) for x (), equation (70) can be written

as follous: _ .
o [T 4
> X F B, €

(71)

’LZG ZB ,of /(ZGH -(/’f)cf)( _] )df

Comparing eguation (71) and equation (62), it is
clear that I,(P) is of the same form as I,(©) plus the
last integral term in equation (71)., Consequently,
I,{0) can be written:

1= {8 +5r)e o8
J/ <, -(PF (< C? i
(e ))(9”5 Dy

(72)

J=/
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where ,Bf and ,B: are defined as in equations (67)

and (68), letting now
i i . S - ]
G, = G, | S - (73)
Y J . (74)
Glf - /B/ |
The integral in equation (72) can be evaluated
by rearranging the summations and carrying out the

indicated differentiation and integrations, The result,
for only the integral tern, may te written: |

Ve & ZGWBZ £ ote

J=/ J=

Z [Z 2 (s~ J’)J +25 D: k;(ﬂ ,)} é—’/ooﬂ; (75)

J'I 7= ’=/

..,af"

r&f

. n . _ é",
+ Z,EZJ[ G k-2 ﬁ ] /0 2
=/ I"/ ,#J

Using the results of equation (75) substituted
into equation (72), the total result I, () can again

be written in the following relatively simple form:

L= Y {8 p}*“ (76)

where

J-"J-;f _ |
LB= B - G, 2'52 (5-859)° (=8, (77)



Jj J J : |
282: /BZ,+ k-2 /2J I Bz 2({./!) ‘r) (78)
B =-¢,8% (79)

A third convolution will clearly follow a similar
pattern, The necessary manipulations are quite cumber-
éome. The resﬁlts are listed below for three, four,
and five-fold convolutions, which havek been obtained

by the author:

L) = | X, 002555 + X () I,0) (80)

n J. _‘ -VofJ 8
:Z{JB/’L:@JV@@ +J4V}E et

J . :
G.= G, (82)
ij = 25/ : _ | (83)

J_ J
e 252 : (84)
J J J & ’ ZIJJ
35’25, —G""EZB" (J/_;J)zf/ cf,ﬂ -
) (85)
] ;
+253 ; x-3 (g\l 5)5 (/ )
J J & i 2187
352 =2£ +253 GK.? (&r X’)Z(/ ‘gz:,) : (86)
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hn : 2 J 3
Y {880 -8 T8
J=/ 7
: By Yed
+.8° N
—_— J.
- “-2
_ J
o 353
_ J
T 3tk
-_:35;/
. n | ; 3/£j
=.,8"— G,) B 5 (-5,
3 % 23 4 (g__{) /J)
AN / 3’./5-;- 5
*B ) Gy )

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(9%)

(95)



J ' & i g8
B =8 +.8") G grem -5,) (96)

£ x—4. (JJ_[/ 3 v

BJ /‘4 T /2( (97)
473 Z 2/(; {)

J | J = . | ./.
B = Z@ gJ —(-§,)+,8 g'c. o8

. . . J :
B =-87q¢ < NG

X
27, (4) '
T =) 40V 755 4 + (X L) (100)
.af

= (S8 3]e” oo

J=/ Iy
where
J L J :
Gk—/ - Gk—f _ : (102)
J __~‘ S
G; - ¢ZQ/ (103)
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’ J
B =8
2 .
' J
J __4@

3%+ '

QL
-6l
fzzj =:4é2 I=/ :

(104)

(105)

(106) |

(107)

(108)

(109)

10

(111)

(112)



Further multiple integrals follow by analozy
with the above, since there is an obvious sequence
of results, and it is thus not necessary to actually
carry out any further integrations rigorously.

- The gzeneral result, then, for n-fold convolu-
tions, éan be written in the followinzg relatively

simple form:

7,@) { D: g ¢ ] & | (113)

which can be evaluated for any time t, and is exact

for the representation given in equation (60).

IV-3. Comparison of the Techniques,

The two methods for evaluatinzg multiple convolution
integrals have been programmed as subroutines INTEGR,
both of which are included in the Appehdix. To compare
the two techniques, a five-fold multiple convolution
integral of the form zlven in equation (52) has been
- evaluated usinz both techniques. The qu)'s which were

used were all given by the following eQuation:

2 st ‘
Y.(t) = z G € (114)
=/
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" Wwhere

~

G, = 4.0

G,.j = =[O J=2.34,5
§'= @

=40

5= V2,

§t= ./

$ = Vig/jpo.

" The result of these integrations (I5(t)) is

given in Figure 4. A cbmparison of the numerical

values obtained at various times, and the per cent

difference, is given in Table 1. The numerical evaiu-

ation was performed using an initial spacing of .2

seconds, for 50 equal spacinzs, and then doublinz the

interval, as previously descflbed. The exact evalua-

tions used an equal lo

g, t spacing of .0625,

It is clear from Table 1 that both techniques

glve essentially the same result in this case, and

that thus either technique is suitable for evaluating

this particular multiple convolution integfal.

IV-4. Solution of the Integral Zquation.

The geheral integral equation (53) of the previous

chapter cén be solved numerically once the qg{f) and

gZ{Z) terms have been evaluated at appropriate values
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TABLE T

- COMPARISON OF FIVE-FOLD MULTIPLE
CONVOLUTION INTEGRAL RESULTS

Numerical Exact Per Cent

Time Evaluation Evaluvation Difference
.10 2.00 © - 2.03 1.5
1.0 olt,5 24,6 A
1.54 51.5 51.5 - 0.0
| 5.623 | 554, 555. | .2
11.55 1760. 1760. 0.0

23.71 6o w70 2

31.62 6050. 6050. 0.0
42,17 7860 7870. A
64.00 10,700. 10,700. 0.0
100.00 13, 300. S~ —_—

(Accuracy of Table is 3 figures due to necessity
of interpolating times.)
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of time. 1In the followingz it is assumed that this
has been done. |

To obtain the solution, the integrals oh the
left side of equation (53) are divided into finite
sums. The integrals on the right rmay ﬁreéﬁmably be eval~
uated at any time t by either numerical or direct inte-
gration (depending on the method used to evaluate_aé(%)
and on the form of f/(t)), and thus can be denote@

simply I(t). That is:

[ 4 " £ . . |
L& =Z§ {[7[;(5' Z)Eai%@dz 4 71%)%@} (115)

If, for example, the integrals are evaluated
numerically using the same procedure used in evaluvating

«(.(¢), then this becomes:

n,

S ) 64 <6m.)] e
| )0}

Dividing the intezrals on the left of eguation (53)

7656,

into the sane finite sum used above, the general intezra

equation may be written:

(117)

140 = 12,)
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Rearranging the summatlons, and separdting ?QZ )

‘the equbtlon bocowbq

L4

Ve, )Z 2 .-, )+,é’(o):[+ e, )‘L— EW )40 gl

i=!

(118)

+XDV/” ) V16,5) ][ zf[:_-g(" ’“)-’6&’(’ ”""5]] ~I(L< )

J=2

This eouation is now solvcd to rive.a recuvrrence
relation for 3%? } which allows each SDCCLSQ1V° value
of ?%?) to be obbeired once thn pre\ﬁo 1s values. have
been obtained' '

1)~ .,)}f fi[ﬁ@—w,-,) -40))

=

y( Zj7,)": z[’}ﬂ(t -_H/) y((” J][}_z [{ﬁ@, lf,-;-z:;’j”] : (119)

=1

| JZ

m_ 4 :
Z gi[ﬂ’(z{”; —t”,-/) * )6/(0)-]
/2

Note that the spacing is eg2in not includéd ’
explicitly, and thus, if avpropriate values ofg@&g)

can be

(:,

- and I(Qm ) are available, s variadble svacinz
used.,
To examine the error propagation in the solu-
tion (equation (119)), consider the terms on the rizht
side of eauztion (119) with the follow ring reasonabdle

simpvlification that the gﬁgﬁéﬂ terns are of the .
7/



same order of magnitude, and that hence the summations
oh i can be dropped in the following. Then the solution

can be written

21(t,) Y ﬂ(zﬂ, 4= B(0)
W L‘) - B,-t,.,) +800) V(L[” ) Bt _,) B(0)

(120)

—Z v, B N Dt
, ﬁ(z‘ ~ty.,) + G©)

in which 1t is clear that each of the previqus terms
add much iess than their fuil valve (and their error)
into the next y%%q) being solved for. Since the solu-
tion does not dewend strongly on the vrevious values,
it is expected that the error in each interval will

be decreased when this result is used to obtain new

results, and that the error will attenuate.

Iv-5. Implications of the Technicue Lsed to Evaluate
the Convolution Intesrsls

As noted above, the method used in solving the'
'.inte gral equation does not require equally spaced inter-
vals. Eovever, if the multiple convolution integrals
are evaluated numericslly at equally spaced intervals,
then of necessity fhe integral eguation will have to

be solved at these same equally spaced intervails.

When the interval is doubled in the nunmericzal intesra-
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tions, then the interval can also be doubled in the
_equation solution. With the eiact evaluation of the
convolution integrations, however, the result can
- be easily evaluated at any time t, and hence a variable
spacing can be used,

The exact evaluation of the multiple convolu-
tion integrals offers two othér-distinct advanfages.
First of all, since each .}4(0 is of the form given
in equation (113), the Summations‘on i1 can be carried
out before the (7(¢) terms are evaluated, That is, )

the terns

é4)

m
=1

can be written as

) i@,@(z,,) =§ :Z/ [i(,,@j)

1=

1) ¢ 50
¢Z]Zf,7, € - (21)

where q is the maximum number of convolution integrations

of anyggg. The result in equation (121) can be expressed

as:

and with this notation the solution equation (119)

- T3 =



becomes more simply (and more éasily evaluated):
21(t,)~ V(4] P, 8, )00
— n g
HD= | 5 Mo He Pttt O
* Ol -2n ) + 20) —

~ The second advantage of the exact evaluation

R

procedure 1s that it provides a felrly direct check

on the solution of the integral eguation. To perform_
the check, a Dirichlet series nust first be fitted

to the numericel solution. For the examples oonSidered
in this dissertation, a simple collocgtion procedure
has been vsed (the collocation is verformed by a single
matrix multiplication, in a subroutine CVEFIT which is
included in the apvendix). Such a Dirichlét series

can be integrated exactly such that

¢ : » _ .
Wt-1) Qfﬂszdf + Y1¢) PP) (124)

o

can then be evaluated at any time t. A coiparison of

the left-~hand side of the original ecuation (expression

(12%4)) with the originsl right-hand sides (I(t)) serves

as a check on the solution.



IV-6., Numerical Zxample.

The numerical solution of the general inﬁegral
equation has been progranned for.the case that I(t)
is expressible in the fofm'of equation (113). If thé
convolution integrals are evaluated numerically, then
the subroutine SOLVIT is used, If the convolution
integrals are in the form of (113), then the subroutine«
SOLV=Z is used,.

’ As a comparison of the results using these techninues

and of the results veréus known eiact solutions, the
following integral equation has been solved to obtain

W) by both technigues:

~—

(125

¢ | |
[ 0 5B ar 1 veram- <)
07‘

where
) = four-fold convolution of ){ﬁﬂ
o(#) = tive-fold convolution of X/ (7)

)l’(z‘) is given in equation (114).

The exact solution to this equation 1s just
Y (¢), that is,
-z Y2 @t

‘}y&f): X/Z()-’:j" e e/a _-e./zf B 6/00

which is plotted in Figure 5.
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Table IT coﬁpafes the exact solution with that
obtained uéing the numerical ;ntégration proceduré.
Tablé III compares the exact solution with that obtaingd
ﬁsing the eiact integration appréach. Table IV gives
thg check discussed above for the exact integration
solution, Clearly the errors are small enough to be
disregarded in any engineering application, since the
largest error (recorded in the bhedk of the left-side
‘of the equation versué the rizht side) is less than

one and one-half per cent.

- 76 =



A

3.0

40

30

SOLUTION V@)

20

Q0

" FIGURE 5
SOLUTION TO ARBITRARY
INTEGRAL EQUATION

! | ] 1 | ] l

3. S. JoX 30. 50. 100. 300. .



Time

.10

.20
.50
.00
.36
.68

O~ W s W NN e

.20

.76
.0k
.00
.88
.08
.00
.48
.60
.00
.80

(A~ U N\ T " e r
v = v U1 O O &~ O

64.0

.00

o4

“ERRORS IN SOLUTION OF INTEGRAL
EQUATION - NUMERICAL INTEGRATION

Exact

.1393967
. 2686605

1
1
1.6041727
2.0295115
2.2621241
2.4321402
2.5759306
2.7275772
2.9658089
3.1479130
3.4394388

-

3
3
I
4
b
4
4
4
N

5961704

.6941786
.9221535
.1030493
.1888266
.3461809
773235
5956745
.7461500
.8204975
L,

8661919

TABLE II

Numerical

-

.1393967
.2686596

1l

1

1.6041784
2.0295115
2.2621269
2.4321270
2.5759268
2.7275639
2.965757H
3.1477318
3.
3
3
3
I
L
4
L
4

4390802

5964375
.6949921
9226503
.1027336
.188705L
. 3460541
4787922
.6001835
L,
L,
L,

TUETT3T
8129482

8673563

% Error

0.00000

- +.00007

-.00036
0.00000
-.00010
+.00071
+.00015
+.00049

.00173

500570

.01043
-.00743
-.02220
-.01275
+.00732
+.002865
+.002991

.03127
-.10009
-.01306
.15560
.02466
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PABLE 111

* "ERRORS IN SOLUTION OF INTEGRAL -
EQUATION -- EXACT INTEGRATION

Time

Exact Calculated ~ ¢ Error
100  1.1393967  1.1516581 41.076
.205 1.2753115 1.2786722 + 264
316 . 1.L073467 1.4053669 - .1l
649 1.7464705 1.7463741 - .057
1.00 é.0295172 . 2.0308418 + .06L4
S 2.05 '2.5§78622 2.6006689° =+ .108 j
3.16  2.9560595  2.9558239 - .008
6.49 3.5334749 3.5357094 | +'.o6f‘
10.00 3.8608513 3.8567371 - .106
20.54 14.3478355° 4.3631077 + 385
"'31.62 4.5897446  4.5771999 - .272
 6L.9l 4.8702040 4.8823967 + .248
100.0 4.9576244 L.okosols | - .161
 205.4  4.9984865 5.0082741 + .200
316.2 | 4.9999542 t.9904718 . - .190
- 79 -
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TABLE IV

" GOMPARISON OF LEFT- AND RIGHT-HAND
SIDES OF INTEGRAL EQUATION

Time - = left " Right % Difference
.100 2.0586 2.0313 1.326
.205 - 3.4180 | 3.3711._' 1.372

316 55,1875 - 5.a72 | 1.355
.64y 12,7891 12.6406 1.173
1.00 . 2h.8047 " 2h.5625 976
2.05 . 87.6211 . B7.1002 .59k
306 195.777  194.988 b0z
6.49 . Ti2.642 710.867 4..A .250
“10.00 . 1426.69 © ike3.0 196
0.5 3780.07 T meos - .00l

31.62  60k2.92  6050.3% 123

64.04  10,767.k - 10,7787 .068

100.0  13,332.1 13,336.5 .033

205. 4 15,388.7 . 15,426.2 - .2hy

316.2 15,583.5 15,612.5 186

-8 -
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CHAPTER V

DEFLECTION OF A VISCOZLASTIC CANTILEVER BZAM

As a first illustration of the methods of analysis
described in the previous chapters,_the ana1ysis of
the deflection of a viscoelaépic'cantilever beam under
the action of a time-varying voint load applied at the
unsupported end will be présentéd. The analysis will
be presented for a beam with arbitrary linear viscoelastic
characterization for the equivalent e}astio shear modu-
lus and elastic Bulk modulus, A specific example will
then be presented in which the equivaient modulii are
characterized by the behavior.of sinple models, With
this characterization, an explicit solution can be ob-
tained usinz the Laplace transformn. This solution is
presented, and the error in the numerical solution is
thus obtained and presented for this specific éase.
A second exanple usinz more realistic relaxation func-
tions is then presented, and several implications

of the results are discussed.

V-1l. Pornulation of the Zeneral Solution,

The ceometry of the beam is presented in Figure 6,

Jith the boundary conditions

4 =0 | ?_,)[’(/' =) (127)
g |

X,=£
Xz =0

N
X
U
N\
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the sdlution for the deflectioﬁ in the X, direction

for an elastic bean 1is given (j277) as

U, (£) = EKPE) + & G PiE) (128) *
X, =0 - @ KG |
where | ‘ . |

G = elastic shear modulus

K = bulk modulus

Q=3 -30%+207) +27c5(0-x,)/2
X7 -30° + 247
54T

= noment of inertiar of the bean

I

V.
1

Eguation (128) is of the general forn of equation

(L6) where now

no-uc,

=K
(129)
<, =¢ -

48 =KG
£ =)= Pr)

ConSequently, the correspondinz viscoelastic

solution for the cantilever bean can be written immediately
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as follows: oo - o L

¢ N
| ¢[ f U (-2) Bf;( e 4 (fw,(a)]
At | |

2 ¢ ~ - (130)
=§:9, [/P(f-z) 2;-{———’[2)0/2 # P(Z‘)OC,-@)] '
1=l ot ¢
wheré
t
BGr('\)dA + h(2) G0)
’g'(f) / KN (131)
% |
@) = K)o | S e
W)= G - (133)

-and Gr(t) and K, (t) are defined in terms of the following

constitutive equations:

t > ) :
g =3//f,(f—z) 9_95—?):,": ©(134)
/-
‘ AR R
5,3.(5) = Z/G,Kf—Z) —5%4/2 | " (135)
(7 : A
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The 3 and 2 in equations (134) and (135), respectively,r
are ﬁsed in these equations so that the ;equivalenﬁ
elastic modulii" will be just operators, without
multiplicative constants, since for theAelastic-Case

¢=3k€ and Sy = 2G€; .

V-2, PFirst Numerical Example, Exact Solution Known.
~ .The solufion of the génerallequation (130) for
the deflection of a viscoelastic cantilever bean
has been prozrammed for.both techniques discussed in
the previous chapter, vThese programs are.presented
in the appendix.
As a firsf illustration of the solution, consider

& load function
- %z, -%

e - e |
Pt) = 9 : | (136)

-

as shown in Figure 7, and relaxation functions

-%4 ‘ '
G&= G, e ” (137)
: R “%bz; _ :
p) = n E—=-2FC | (138)

.9
which are shown in Fizure 8. The relations (137) and
(138) were selected in order that an exact solution
could bé easily obtained, As shown in Figuré 8, the

bulk modulus becomes negative (which is physically
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impossible) before tA;= 2.6. For this reason the results

will be presented only up to tA;= 2,40 seconds,

Transformninz both sides of equation (130) using

the Laplace transform, one thains the followinzg rela-

tionship: 4
* 2 - . '
Uy (5) S
ég : 2 & o = O, 57K, + & 5.6,
(s*%) (s (525 (st ) Grd)(sere) (139)
fo * .
Solving for 02(3).
a b2,
¥ 4
Y (s) = , + “ (140)
46, SG+5z 4 s*K,
Performing now the inverse Laplace transforn, the
solution (4(%) is obtained as:
' Z
& , -%
)= L T &
Uy (¥) ,,ﬁg(‘? a), X (141)
7% S No
This solution is plotted in Figure 9 for the par-
ticular case of
/=20 b=.35¢
= 0 _,__'
.)g . L = /8 (142)
c, =424
G = £
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The defléction of an elastic bean with'G==Gr(0); |

: K¥=K;(O), is also plotted in Figure 9 fdr comparison.
- "-Equétion (130) has been solved numerically for
thé above input, by both technliques, and these_results
are compared in Tables V and VI. The results were .
obtained only up to t/z= 2.40 at which time the bulk
modulus bedomes negative, The-errors'shoﬁn in these
tables are quite small. In Table VII the result of
fitting the solution obtained using the exact 1ntegré-
tion proceduré with a Dirichlet series is compared
with the exact solution. The érrors areistill small;
although af very short times some error is noted. This
error in fitting the numerical solution shows up
markedly in Table VIII, where the left-hand and right-
hand sides of the original integral equation}are com-
pared, Although the error throughout most of the solu-
tion is less than one pér cent, it increasés markedly,
in phis checkiné procedure, at the end~poinﬁs. A more
careful curve-fitting scheme, for instahce a least
squares fit, would probably decrease tﬁis error, since
the ofiginal nunerical solution has been shown to be ~

quite accurate,

V-3. Second Numerical Solution.

A second solution has been obtained for a bean

with the same geometry used‘in the above examéle. In
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Time

0.

ISIEE VI VI L e

.10
.20
.30
1o
.50
.60
.70
.80
.90
.00
.20
.40
.60
.80
.00
.20
o]

TABLE V

DEFLECTION OF A VISCOELASTIC CANTILEVER
BEAM, ERRORS, NUMERICAL INTEGRATION TECHNIQUE

Exact

0.00

7.0573
14,0607
21.0107
27.9081
347532
Ly 5465
18.2886

54.9800

61.6221
68.1493
81.2487
94.0916
106.7454
119.2139
131.5005
| 143.6094
155.5431

Numerical

20
27

s}

61

106
119

131,
143.
155.

.00
.0508
14.

OuTT

.9914
.8823
L7211
.5081
L8,
54,

2439
9290

5640
68.
81.
oL,
6451
.1016
3763

2128
1729
0035

4730
3953
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% Error

0.00
.09
.09
.09
.09
.09

.09
.09
.09

09
.09
.09
.09
.09

.09
09
.09
.10



TABLE VI

- DEFLECTION OF A VISCOELASTIC CANTILEVER
- BEAM, ERRORS, EXACT INTEGRATION TECHNIQUE

Time Exact Numerical % Error

0. \ 0. | -.00007 —----
.0316 '2.2375A - 2.23746 | .003
20 7.0573 ~ 7.0570 .00k
154 10.8453 10.8446 - .006
.205 14,4340 14,4307 .009
27h 19.1979 19.19L48 .016
.365  25.5120 25.505 .03
487 33.8640 133.8471 .05
649 Ly ,8823 L 8his5 .09
750 . 51.6336 51.5703 .12

1.00 68.2129 68.0588 .23

1.33 89.8439 - 89.4667 2

1.78 117.869 116.938 L9

2.37 ' 153.846 151.534 1.50
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DEFL:%CTION OF A VISCOELASTIC CANTILEVER
BEAM, ERRORS, FITTED SOLUTION

TABLE VII

- Exact

10

19
25

33.
Ly,

.6336
68.
89.
.869

51

117

153.

23754
.0573
8453
14,

1979
.5120

L340
8640
8823

2129
8L39

846

Numerical

.059
2.2813

7.1211
10.9219

14.5195

19.2734
25.5430

. 33.8086

68.1172 - .

u . 7ho2
51.4727

89.984L4

118.1289

152.9883
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z Error

-1.95
- .90
- .71
- .59
- .39
- .12
.16
.31
.31
AL

- .16
- .22
.56



TABLE VIII

DEFLECTION OF A VISCOELASTIC CANTILEVER BEAM,
COMPARISON OF LEFT- AND RIGHT-HAND SIDES OF EQUATION

Time Left Right % Difference
.01 731. 681. ' 6.8
.0316 2144, 2104. 1.9
.10 6222, 617L. 0.8
© .15k 9020. - 8961. “ 0.7
.205 11352. - 11294, 0;5
274 14003. 13964, | 0.3 -
.365 16817. 16826. . . 0.1
487 19502. 19581. 0.4
649 21603. 21730. 0.6
750 22248, 22368, 0.5
1.00 22283. 22290. 0.0
1.33 20040. 19867. 0.8
1.78 15009. 14906. 0.7
2.37 T43L, 8142, 9.5
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this case, the load used was a step function, that is:
PE) = HE) (143)
and the relaxation functions were described by the follow-

ing Dirichlet series:

% ~%o7, -Yooz,

G.(4) _ -, | |
K.(t) — -7 -%oz, -%fooz, 145)
}L‘-(-;) = s+ *+.2e +./e - (

These relaxation functions are plotted in Figure 10.

Also plotted in Figure 10 are G (&%) and K (¢)/%.(0)

. : . -2
without the short time relaxation tehavior of the &
tefm, that is: : -
G.(t) __ -Yoz, ~Yo07, |
/\,:(0) = 2 + .2¢e +./e (146)
A-CE) _ 5o 26'%7’ y 6—5/00’5, (147) .
A-lo) ) | :

The solution for the end‘deflection using both sets

- of relaxation functions has been obtained using both
numerical techniques, Z2oth solutions are plotted in
Figure 11, and numerical values are compared in Table IX.
Clearly the solutions convergze when t/z > 40. This
behavior has a practical implication: Short-time
behavior cannot appreciably affect lonz-time results.

Consequently, if one is interested in long-time results,
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DIMENSIONLESS RELAXATION FUNCTIONS

FIGURE 10

K& WITH SHORT
TIME BEHAVIOR

K(¢) WITHOUT
SHORT TIME
BEHAVIOR

G®) WITH SHORT
TIME BEHAVIOR

G(t) WITHOUT SHORT
TIME BEHAVIOR

! | ! ! ] I |
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the very rapidly varying short-tfmé behavior can be
‘neglected, and consequently greater time spacings can
be used, thus sévihg computationai effort. ,
In Table X the solution obtained, for the relax-
atlon functions given in equations (144) and (145), h
‘by both techniques, as well as the fitted solution of
the exact integration technique, are compared. The
solutions quite obviously agree. In Table XI thé
left-"and right-hand sides of the original integral
equation are compared by means of the fitted solution,

Fairly good agreement is shown.
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. mABIE IX ¢

CONVERGENCE OF SOLUTIONS WITH
AND WITHOUT SHORT TIME BEHAVIOR

~ Solution 1

- (with Fast Time | -

Time Behavior) ~ Solution 2 % Difference
0. . 7.08 . 12.92 ' 82.5
.2 7.69 13.07 | 70.0
.5 - 8.1 13.20 55.0
1.0 9.65 13.45 39.3
1.5 10.57 | 13.69 29.7
2.5 11.95 . 1ba2 18.2
L.o 13.33 14.80 11.0
5.0 . 13.99 - 15.20 ' 8.6
8.0 15.41 116.26 5.5
10.0 A 16.14 16.88 k.6
:16.0 17.84 18.42 - 3.2
©20.0 18.72 19.25- 2.8
40.0 21.50 - 21.80 1.4
~ 80.0 24.02 214,20 0.7
160.0 26.63 26.80 0.6
320.0 —— 29.1 —

640.0 ———- - 30.3 R
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Time

0.

.1

1.0
10.0

100.0

1000.0
10000.0
100000.0

TABLE X

COMPARTSON OF SOLUT=1ONS
FOR CANTILEVER Wil 0:

- 100 -~

(Sﬁggiggll (ggégi~ e Solution 3
Integration) Integ = 1 1lon) (Fitted)
| 7.084 S TPRNR 7.108
7.396 7. 393 7.426
9.650 9. i 9.673
16.139 16 i3 16.066
24.796 23. -8 23.981
30.433 29. . 8 29.806
—— 30. - - 30.468
———— - 30 S 30.486



TABLE XTI

COMPARISON OF LEFT- AND RIGHT- HAND
- SIDES OF INTEGRAL EQUATION

. Time Ieft  Right % Difference
0.0 69086 . 68860. 0.3

10 67215, 66949. 0.4
1.0 55821. 55741, 0.1
10.0 lLokszs. hog28. l 1.2
100.0 3046k 3216k. 5.6
1000.0 28742, 29630. 3.1
10000.0  29525.  29630. 0.4
1000000 . 29600. 29630. 0.1
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'CHAPTER VI

ANALYSIS OF A THREE-LAYER VISCOZLASTIC

" HALF-SPACE

AIn this chaptef, a second 111ﬁstration of the
methods_of analysis descriﬁed in Chapters III and IV,
the analysis of a three-layer linear viscoelastic
half-space under a uniformly distributed circular load
will be presented, This problem demohstrates ehe
capablility of both of ﬁhe-previouely described approaches
for solving the general integral equation'on an involved
problemn, This problem, furthermore, demonstrates the
relative simplicity of the present approach in formu-
lating the general solution compered fo other meﬁhods
of solution, | .

Ih-addition to the above motivation for this
example, the analysis contained in this chapter has
direct application in the study of layered highway
systems, and is thus of considerabvle practical engineer-
ing interest. For this reason, and beeause most of
the followinz is unavailable elsewhere, the analysis
will be presented in a reasonadbly detailed fashion.
| The elastic analysis for layered systems has been
formﬁlated by several authorsﬁy,Sngﬂ,-using basically

Burnister's approach®|]. An explicit statement of
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the constants involved, howeﬁer. has not been ﬁresénted
for the three-layer system for any ekcept the first
layer, and these are ndt in a suitabie form for the'
present anal&sis.

The geonetry of the systemiiS'Shown in Figure 12,
The load is distributed over a éircle of radius a and
is normal to the surface. Zach of the Iayeré is assuned
to be infinite in horizontal extent. The lower layer
is assuned to be infinite in vertical extent, Each
layer hes distin;t physical properties, which will
be considered to be functions of tirme,

In the following analysis, Poisson'svratio has
been taken equal to 1/2 in each layer (3ulk modulus
infinite), This assumption has been made because of
the simplifications that result. Just as in the avail-
able elastic analyses(21,335J, however, it is expected
that this assumption will not cause very larze erfors,
and it does decrecase the alzebra considerably,

The other constitutive relation néceséary for
each layer will be assumed in terms of a viscoelastic
equivalent to the elastic compliance., That is, for the

i-th layer:

90 (¢-7) .

(148)

Zl: (equivalen?) = [ (0)
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_'Invthe fbllowing, ,-(t) will be denoted simply D; (t), since
it is clear from the context what 1is 1mplied )
| ',The-relationships will be obtained in terms of com- -
- pliances, rather than elastic modulii, for twq reasons,
First of all, more data is generally availéble'qn creep
thah on félaxation behavior. .Secoﬁdly,_it-is preferable

to keep the number of convblution integrations needed

on the left-hand side of equation (53) as small as poss-

" ible, even at the expense of the number of integrations

on the right-hand side, since those on the left enter

more directiy into the numerical solution, and thus

errors in these integrations should preferably be minimized,
Also, the multiple integrations on the left side nust
be'evaluated-at more times when using the eiact integra-
tions approach and one thué desires to keep the fuhctiqp

representation (equation (113)) as short as possible,

VIi-l. Derlvatlon of the =Zlastic Solution for All
Stresses and Displacements, -

Assuning an axi-symmetric load distribution,.the
equatiéns of equi}ibrium, compatibility, stress, and
displacerent are given in cylindribal coordinates for
& genefal'incompressible symmetrical elastic body

in the following form:

Equilibriun:
X, 2T, B g O
2 2z r



_In the fdllowing. ,.(t) will be denoted simply D; (t), since
it is clear from the context what 1is 1mplied )

| ' The.relationships will be obtained in terms>of com- -

- pliances, rather than elastic modulii, for two reasons. e

Fifst of ali, nore data is generally availéble‘qn cCreep |

thah on félaxation behavior. >Secoﬁd1y,_it-is preferable

to keep the number of convolution integrations needed

on the left-hand side 6f eduation (53) as small as poss-

"~ ible, even at the expense of the number of.integrations

on the right-hand side, since those on the left enter

more directiy into the numerical solution, and thus

errors in these integrations should preferably be minimized,

Also, the multiple intezrations on the left side nust

be evaluated at more times when using the exact integra-

tions approach and one thus desires ﬁo keep the fuhctiqp

representation (equation (113)) as short as possible,

VI-1l. Derivation of the ZIlastic Solution for All
Stresses and Displacements, '

AsSuﬁing an axi-symnmetric load distribution,‘the
equatiéns of equi}ibrium, compatibility, stress, and
displacerent are given in cylindribal coordinates for
& general incompressible symmetrical elastic body

in the following form:

Equilibriun:

_B_E‘i: a?rz + O — 05 0 (149)

Pl 2z r

I
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?___ZZZ- 20z - ‘
Compatibility:
4
Vg =0 (151)
Where | . . |
z _ X P by
V - 9,,2 -+ 'F ‘;7. + 5’2‘5
Stress'Components:
L
=% vie -22] (152)
G = 2| 29 P07 1
- 92[5(7 v- 22, (153)
_ 2, L3P _ ’
% 59—2[ VY- # 771 (st
_ 2 2 92¢7:]
= - = 1
Z,, Qk['fv 557 (155)
Displacemsnt Components:
s e, 122 _ ke (156)
w = E 2,,-2 r 2r /,; L
_ 5@ (157)
u = £ 2r?
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U = —/-:-5:. ) (/77/-) [A mzemz + Bmze—mz # Cmemz(/fmz)

2
xS

| - _ (163)
7 +D me”’z(mz 4):] SR
. - ' a /_/’ \ - | (l s
. If now each layer of the layered system 1s considered

to have a solution of the form given in equations (159)
through (163), and the constants for each of these solu~
tions are evaluated from the boundary conditions given
below, then the problem of an elastic layersd system 1is
solved. An n-layer system will have 4n conétants Ay, Bi,

Cy, Dy, which must be evaluated from the boundary conditions

VI-1l,l Boundary Conditions

The boundary conditions for the lower layer include
that 21l stresses and displaczments go to zero when z
becomes infinité. From this it 1s lmmediately evident
that the constants A and C must be zero for thisilayer..
- At the surface the boundary conditions are that the

shearing stress must be zero:

7

rz

=0

(164)
Z=~4 :

and that the normal stress is given, for a uniform cir-

cular load of magnitude q and radius a as:

o

Zz

= —-99g T () J (mar) dem | (165)

Z=-4

;f 0-.



It wiil be convenient to use an incremental load

~J0nr) T tma)
Z:I_A/ . * . —

&

Al

(166)

ghd then_integrafe the final expressions from 0 to o<
'J‘W1th respect to m, and multiply this result by.qa,lwhiéh
will then yield the same result, ' |

| ~ The remaining,bouﬁdary condifions involve contin-
ulty at-thé interfaces between the layers., At each
interface four.conditlons must be imposed. .Assuming
continuity of the displacements, vertical sfress, and
shear stress across an interface,'the boundary conditions

between layers 1 and 1+1 are:

w, = VV/'+/ | , | (167)
= U, o o (168)
Z/:Z,- = z:’z,.ﬁ | ' . | (170)

For an n layer system, equations (167)-to (170)
&1eld-4n-4 equations. In addition, two equations (164)

and (166) ars avallable for the surface layer, and two
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cdnstants in the bottom layer are zero, Thus a total B
of 4n-2 equations in 4n-2 unknowns must be solved.

For a three-layer system this will be ten equations in
ten unknowns. These ten equations are listed below

for a three-layer system under the incremental normal

' load —;CéananqL -In these equations, the‘thickness
of the first layef has been taken asvunity to non-dlimen-

slonalize distances.

-m (Mr)[Amé’ +Bme -C m*e”

~ ‘, ;;; ’Z>ﬂ7 C?j] —;anr9éﬁ4ﬁwﬁ ;;'“
ﬂanOWrQ[}q,nqzerm - B + C m(l-m)e '
(172)

A+B = A+B (173)

(174)

m
406 - £g) e
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A -. A
Az /776”7 * 63, me”" # Cz mﬁem”’ + 0, mb e’”’é
' ‘ (177)

e

— ~mh .
.__.Bjme *03/7756/”6

A, me™ - B, ms”" # G, (1tmh)e™” # 1 (F-mh )™

5 | i |
Zlane-me™ s Gt e
- | (179)
/5] mh o
=7 BmE" - Bmhé ‘]
15 mb —mh mh A
—[; [,42/776 +BZ/77€ ,LC;(/fm/))e -—ﬂz(/-mé)e |
: (1.80)
5 - A

The ten constants A,, B, C,, D,, 4,, B,, C,, D,,
B;, D, can be obtained by solving equations (171) to
(180)., PFor the present perposes, it is important to
keep the elastic constants separate from the geometrical
constants., An efficlent aéproaoh to solving equations

(171) to (180) with respect to obtaining the constants

in a sultable form is to solve equations (171) and (172)
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for A, and B, in terms of C, and D,, then use these ex-
pressions to solve equations (173) to (176) for A,, B,,
C,, and D, in terms of C, and D,. Next, equations (177)

‘and (178) are solved for B; and D; in terms of C, and

D,, using-thé results from equations (173) to (176).

Finally all these expresslons are substituted into

equations (179) and (180) to yleld two simultaneous

equations for the constants C, and D, . After obtaining

- these two constants, the other eight constants may be

. /4,6 1%
. J

obtained immediately by back substitution.
If the elastic constants are kept always separate
from the geometrical terms, then C, and D, can be

written in the following form:
9

J,(ma) Z Do 4oL
« ’ ' c: (181)
29/ o<4/' :

=)

!

-C =

: 9 | '
Tnay 2 Toni o

7

\

D

(182)

2

n §:¢Q’O<4/

: =t
where the q, .4 Q.+ and & terms are constants
involving only the geometrical variables and the ﬁ%;
terms are products of four elastic compliances. The
geometrical constants are given in Table XII, and the
°<4;'s are listed below:

= (183)
oC’,/ - 52 £-32 .
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oL, = —L_ - | ~ (18%)

- L | -
RZ 7= | - )
- /
ol = /
15 = LiL? (187)
<y = 5/523 (188)
| _ / : '
<7 £;2£j ‘ ' (189)
“=H5 s
ol = 7 (191
£’2 - 91)

Now by back-substituting, the other eight constants
can immediately be found in a form similar to equations

(181) and (182): ,

’ % Ll
/ w ' g
Z 9/. 0C/),
=}
A .
_ J(ma) Z D2, %y ,A |
B — 3 /’/ LA R : (193)
/ m Z 5) N
[~ Ht



6 s o o

B _ Jitma) & P22/ %2
2 m2 & 2 o (195)
: 7 -2/
ll’; .
o = Una)f =PV :
2 = mz 9 é(; (196)
_ Jma) £ 74,2/
2= TmZz 2 o
| Z & 09,,' | (197)
B _ .T(”?G) Z ?2 3/ 2/ 7 o :
- m3 25 ocz ' ; (198)
/ : '
T, (ma) Z D3/ oGy
= MY 29 oCy ' (199)
4 7 51 ’

e

The geometrical constants are given in Table XII.

The 0(;),-'5 are products of five elastic compliances:

ol = <,  j=Je-.9 (200)

A0<2/’ = 0<4/’-9/£/" /=10 - - )5 (201)
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Since the constants areAnow known, the expressions
for the stresses and displacements, equations (159)
to (163), can be rewritten in terms of the geometry

and the elastic compliances in the following simplified

/é‘. '
Ejgzéj <,

&, = Jmr)Jlma) LF

form:

/ (202)
30, v
é?gé :
' ’ ool ' ~
G = T Tma) T (205
L | ) & =<, |
J=
) ¢
_ RN SR N =
. = T Jtre) 5 -
) 6
. 18 '
+ Jiomr) I 0na) E;QZCJ‘X%J
mr 2
2:6%6<ii
18 =
w. = Lmr)J(ma) JZ,%/;J"(&J/E ) e
I T 5 o o, (205)
}jé% < |
J
R ‘
. = I (mr) J(ma) & Q%éj OCQ&QQ o (206)
/- o 9 /‘ .
' m w2
Z & <<, h _

Jet / s
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" wWhere

24 " m=/-- ¢
%/J ,t/i /‘=/...3‘ (20?)

J =/ 15
o<3_,j = °<2:,j J. =/ - /8 (208)
°<4J- — & . ‘/. = /ﬂ . . ./g (209)

and the ,&”K's are defined in Teble XII.

A subroutine entitled CNSTNT has been written
which calculates the Q%%U and & terms for a given
geometry. Thls program has been used in conjunction
with the original ten boundary cqnditions and arbitrary
input geometry to check the above derivation.

To obtain the elastic solution under a uniform
circular load, the above stresses and displacements
must be integrated from zero to infinity with respect
to m, and muitiplied by gqa. For example, tﬂe normal

stress at any off-set r is given, for a uniform circular

load of radius a and intensity q, as follows:

o0

D oG .
&G, = 99 | Itr) Jtra JZ Wi dm (210)

/ Z@ )

0
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Define

Then for

TARLE XII

CONSTANTS FOR THE THREE-LAYER
HALF-SPACE SOLUTION

AlAS - 3135 |
A2A5 + A1A6 - B2B5 - BlB6
A3A5 + A1A7 - B3B5 - BlB7

A4A5 + A3A6 + A2A7 + A1A8

- ByB - ByBg - BBy - By
Bohs - BoBg
AyAc + AAg - BB - B,Bg
Aghy - BoB, _
Ah, + Ajhg - BB, - B.Bg
A Ag - ByBg
845 o B =
86 By =
&y7 B3 =
By By =
865 B, =
86 R
Bg7 B, =
g68 ' , 38 =

c 1=1--9
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for

for

TABLE XII
b =8y
By = &5
f3 = &5
by = &g
A5 = &57
6 = 853
A7 = 859
g = &g
93,1,1 = C4
A = 861
By = &5
A3 = 263
by = &gy
A5 = e
e = &up
A7 = &3
Ag = By
1,1 < %

(continued)
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9,1,1
9,1,
e,
-
93,2,1
U, 2,1
9,3,1
%, 3,1
93,3,1
9, 3,1

91,1
9,2,1

92,24
93,2,1

U,2,1
2,3,1

Ay,3,1

‘where

n

TABLE XII  (continued)
8 9 *+8393,1,5 *ey ;s
8> O t85937,; t8 3,1
&7 O * 8 931,94 t813 U y,y
9,2,1

82 8 T 8139311 t85 U, 1,1

& 6 *+8y7931,1 * 819 W1,
O ) .

829 O3 t 833 9375 t 833U gy
O .

o1 O3 * 82343,1,1 85 dy1,1

9,1,1 = 93,1,1 = ,1,; =0

83 O5.9 810 93,1,1-9 * 812 W, 1,19

~91,2,1

i

1
i

82 ®3.9 814 937,19 * 816 9,1,1-9

1
81 %39 T 81893,1,1.9 * 820 U,1,1-9
1
830 %9 T 83293 1.9 * 83 W1 19
5
80 939 T 824 931,19 * 86 U, 1,1.9
1
s = mh 23 = e—Em
A = em le‘ = eQS
© -m S
Z.- = e Z. = e
Zl = e2m Z5 = e~ 5
2 6
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TABLE XII (continued)

z,/?
zl/e

(em - 1)/2
-22/2

z3/2

(1 + 2m)/2
(g, + gg)/2'
(g, - 8,)/2
(g3 +&5)/2
(g5 - g5)/2
(g + 8g)/2
(%4 - 86)/2

827 ‘87 - 528 ge + g,l
Eo7 83 T Bog 8n - 8

= 827 8 T Epg 813 * 817
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TABLE XII (continued)

€7 810 * Epg 81y * By
825 = 8p7 811 t 823 815 * 819
826 = 8o7 812 t 828 815 T 820
Boy = 242y

gp8 = (1 + 2mh?24

- 89 T 835 &7 * &7 - B35 &2
830 = 835 88 - 88 * 835 &2

831 = 835 &y T B9 * 835 £33
€32 = &35 810 ~ 810 T 836 81y

833 = 835 811 T 811 T 836 815
B3y = B35 812 - 81p * &35 B1p
E35 = (1-28)z, ‘
g5 = -25%z,

837 = %5
838 = %
839 = (1. +AS)Z5

guo = —(1. - S)Z6

gy < 837 87 + 838 87 - g39 &o + 'g}-'rO_ &1

Bup = - 838 8pg "~ 8u0 %23
8y3 = 837 8g - 833 83 * 839 8y - 8yp &
guy = — 838 &30 ~ &0 B0

8ys = 837 8g + 838 €9 * 839 813 * 8yg 817
gus = ~ 838 831 - 80 823
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g68 ~

TABLE XII (continued)

€37 810 ~ 838 810 t B39 B14 * Buyo 18
= 838 83 " Byg 82y

B37 811 t 838 811 T 839 Bi5 T By E19

= 838 833 = &0 825

837 E12 - 838 812 t B39 816 t Bug 820
- 838 &3l ~ Buo 826

- Zg
825

-S7¢ |
853 87 T 85y 87 - 855 82 T 856 87
- 85y 829 T 856 821 '

853 88 ~ 85y gg * 855 &2 ~ 854 g4
- 85y 830 T 856 822

853 8y T Bgy Bg T &55 813 T B56 817

- 85y 831 T B5g 823
853 €10 ~ 854 810 T 855 814 T &56 E18

"' 851_1 g32 - g56 824

853 811 t 85y 811 T B55 B15 F B56 E1g
" 85y 833 7 Bgp Bog
853 812 ~ &5y 812 t 855 816 * E56 &2
- &gy &34 " E56 Bpp
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TABLE XII (continued)

mZ

emZ

e-mZ

= -Eyy >‘4,“1 = >‘1,1

= -Ezo Ay, = A,2

= -Bz Egy M,z = -Ag,3

= -Ey Bzp Ay, 4 = Mo,
=-A11 A5,1 = -1.5 Egy

= A,2 Ng5,2 =1 5 Eyp

= A1 - >\1,3 N5,3 = ~1.5 Bz By
=-A1,0 * Avn Xs,u = 15 Ay
= Az1 6,1 = 15 Ep
=-Aa.p 26,2 = 15 Egp

= 2A3,1 ~ Ay, 3 N6,3 =15 Ao,z
=2Ap 5 - Ay M6, = 15 Agy
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VI-2., The Viscoelastic Solution.'

For the viscoelastic case, the'time variation
of the loading must be specified., In this case, the

normal stress boundary condition will be taken as:

@ | = 9] Jow) Jma)dm HE) 211)
z=—/ 7] : -
Aggin the incremental load
o= T Toma) HE) = -
P : ‘

will be considered, and then the final result will be
- integrated from 0 to o with respect to m, and then
multiplied by qa, to yleld ﬁhe viscoelastic solution
under a uniform circular load.

Since in the elastic solutions, eguations (202)
to (206), the Bessel functions appear as multipliers
to the summation-over-summation terms.‘and since these
Bessel functions vary only with m for a glven geometry,
it will be useful to treat the elastic solutions in

the.followiﬁg forms:

- 18 ; '
Define: EE Qéb/j %5%j HZ)
W) =
K1 : Zéﬁo(fj

L7 (213)

C = 124 -



'~ where

*5%' = °<2L/2; : K>

Q) = Fj(mr) T (ma)

Bm)= Flnr) Jtma)

‘Then the time-varying elastic solutions are given as

follows:

7”7 /)

(i) = 70/ &) Y (¢ md
' o
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Wi (?) =gc{ G Y, (tm)dm
o

(214)

(215)

(216)

(217)

(218)

(219)

- (220)

(221)

(222)



Clearly, to ob?aln the viscoelastic solution,
all that is heeded is to obtain the'correspbnding
| %}(ém) for the viscoelastic case, since the Z,(7)
terms do not vary in time. But the 3%;@;57) terms
for the elastic case are in the general form of equation
(46) of Chapter III, and thus an integral eauaflon.for
30'0fhn), for a given value of m, can be written immedi-
: ately. From the solution of this equation for appro-
priéte m, the total solution can be obtained by numerical
- integration of the equations (218) to (222).
Following equation (53), ﬁhe integral equation

for ‘?Vlfﬂﬂ for the viscoelastic case can be written

9 |
}:@m[f}”( - z) Ddr 4 Y o, (ﬂ

. J=

(223)
-}: B, 3, (2)

in which OQJ&O is a three-fold convolution‘integral
of the following form (for ac,; J.=//£;£;5, £, in the elastic

case):

9 L 20,02
<, (t)‘ ) D(f 0% D(z—»? D‘/A—p)—%‘%—o/’o
(224)

DD, @) + Q(d@,{o)ﬂv 0 oz
+ Q&) D@D, 0)0,©)
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é.nd
) = o(_ . ) — D Z ‘
3 0= y(0)= | 4 f’) a’f , o2

+ pwm =, @

with D,(t) = D,(t) and £ =3 for j£9
and D, (t) = D,(t) and /= j-9 for §>9

4J.(f)__ <, (L‘) for 4 £4 ) . (226)

G0 =, szﬁ u 4z (e

4d df *’éN%7°<zjéZ) 7
for A4 | *

The above integral equations for %l. (ﬂ’),f) have
)
been programmed for solution by both of the numerical
approaches described in Chapter IV. The programs are

given in the appendix,

Vi-2.1 Integration on m

Once 2{/(’@1‘) has been obtalned for approvriate
values of m and t, the total result is obtained by
integrating with respect to m. In the present analysis
the integral equation (223) was solved for thirteen

values of m (m =0, .2, .4, .7, 1.0, 2.0, 3.0, 4.0,
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5.0, 6.0, 7.0, 8.0, 9.0). Intermediate values of

}V (7 ¢) were then obtained by approximating the curve
between three consecutive points by a parabola (108],
and then evaluating this parabola at values of m spaced
lm apart. These results were multiplied by the é%&mﬁ
| terms, (which are more rapidly varying with respect to
m), and then the total integral calculated using Simp-
son's rule, which is based on approximating the integral
between three consecutive:points by a second degree
polynomial. For the 91 polnts spaéed .1l m apart used
in the present analysis, the total integral can then

be calculated with the following formula:

Im '
7[(/77)0/”7 — %[{’(0)+4f(/m)+2f(2”ﬁ+ | ) (228)
7 | - .+4P/£9m)+%‘(9m)] |

This procedure is carried out by a subroutine
‘entitled TERPO, given in the appendix. The remainder
of the integral, form 9. m to &9, was considered

negligible.

" VI-2.2 Evaluation of the Bessel Functions

The Bessel functions that occur in the solution

can be evaluated by use of the infinite seriles

2K+N

_ N & |
J;(X) >j K/(/(f/a)/ (229)
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where N is elther zero or one., A previbusly prépared
program, using a finite number of the above series
"termsE42:L was modified for use in the present analysis.
For values of the argument X greater than 12, thé
appropriate asymptotic expansions were insertedvintd‘

the program used in reference (42):

]/_‘(X) = /7—72/\,— COS(X—-Z}T) x>z | (230)

4 e |
I{X); /}72)-(—- Cos (X 7) X>/2 | (231)

The total program is glven in the appendix as a funcﬁion'

subprogram entitled BESSEL.

Vi-2.3 Total Solution

The total solution obtained using both techniques
discussed in Chapter IV has been programmed. Thé bro-
grams are presented in the appendix. Numerical examples

and comparisons are given below.

VI-2,4‘ Numerical Examples

To illustrate the effectiveness of the computer
programs, and to give a particular example of the results,
a three-layer half-space with the following geometry

and material characterization has been analysed:
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‘ F =10
Ay
A 7
é ;
D) =) G
J=1
where G//__: — o5
G’=-/0
6;'7= =32
G'=-32
C;5== =/9
Gé= 10
= /0
G=Vo
5= /0
7= 1ovio

G;‘z =0
C%f=='1L5
c2f==-<a7
G;==-i45
6= /0
’Z}-:_—
Z;::

\
S

8

~

N,

o

"‘Q\‘“Q“Q“u

|

~(234)

-05
-05
=05
=05
a0
L0

The compliance of each layer is plotted in Fig-

ure 13.

The results for the normal stress J, for one

point inveach of the three layers are given in Figure 14.

All three points were selected along the axis of the

load.

Figure 15 presents the results for the shear

stress 2, at one point with off-set of /5 = 1.0 for
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eaoh‘of the three layers. Figure 16 présénts the results
for the %ertical deflection w at one point for each of
the three layers, all of whlch a:é;along the axis of the
load. Figufé‘l? presents the results for the radial
defleotion u at an off-set of % = 1.0 for one point in
"each layer. And Figure 18 presents the results for the
radial stress q; along the axis of ﬁhe load for one
point in each of the layers.

Since all of the compliances tend to unity at

iarge times, the solutions should all tend to the solu-
tion for a homogeneous incompressible elastic half-
- space, The results have all been oompared, at long times,
to the homogeneous half-space solutions (from reference
3. Vory good agreement (genéfally less thén a one
per cent difference) were found with these solutions.

The results plotted in Figures 1§ through 18

were obtalined uoing the exact integration technique.
The solutions at various times are tabulated in Tables
-~ XIII through XXVII, and compared, at these times, with
the solutions obtained using the numerical integration
~ procedure, HNone of the differences shown are large
enough to show up on the plots of Figures 15 throuéh 18.

Fof the solutions that are very small in absolute values

(noteably the radisl stress in the third layer at the
second interface) some fairly large per cent differences

are noted. This is due to round-off errors, particu-
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larly in thé subroutine INTEGR for the éxact convolution
integrations (at short times only). These could be
eliminated through the use of double pfecision coding, -
et the loss of execution time, but since the errors
are only significant as the stresses or displacements
tend to zero, which is of the least interest, this does
not seem necessary. |

Obviously either technique works adequately in the
usual case, It should be noted that the procedure
~utilizing the exact integration technique (and thus
using a log spacing in time) required only approximately

one-~-third the execution time in this analysis.
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TABLE XIII

COMPARISON OF NORMAL STRESS RESULTS
FOR FIRST LAYER AT FIRST INTERFACE

Numerical - Exact :
Integration  Integration ’ - Per Cent
Time t/%, Solution Solution Difference
0. | - 1720 -.1726 12
.05 -.2009 -.2011 .0
.10 -.2263 -.2264 Ny - .0k
.25 -.2876 -.2877 .03
.35 -.3191 -.3191 ‘ .00
50 -.3564 - =.3563 . .03
.65 -.3851 -.3852 .03
.75 -.koot -.1008 .03
875 -.1173 -.1173 .00
1.00 -.h312 ~.4313 v .02
1.25 - 11533 -.1535 .ol
1.55 -.4733 -.h732 .02
1.80 - 4861 -. 4862 .02
2.05 -. 1968 -.4970 .oh
3.20 -.5302 -.5302 .00
4.20 -.5485 -.5484 .02
5.00 - 5595 - 5595 .00

10.00 ' -.5958  ~.5960 51U .03
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TABLE XIV

COMPARISON OF NORMAL STRESS RESULTS
FOR SECOND LAYER AT SECOND INTERFACE

Numerical Exact -
Integration Integration Per Cent
Time 1:/’2;l Solution Solution Difference
0. -.0925 -.0924 11
.05 -.1043 -.1043 .0
.10 -.11476 ~-.11463 11
25 -.1393 -.1391 4
«35 -.1516 ~-.1514 A - W13
.50 -.1658 -.1657 .06
.65 -.1767 -.1766 .06
.75 -.1826 -.1826 “40
875 -.1889 -.1888 .05
1.00 -.10415 -.19420 .03
1.25 -.2027 . -.2026 ‘ .05
1.55 . =.2106 -.2104 .09
1.80 -.2157 -.2156 .05
2.05 ~-.2200 -.2200 .0
2.50 -.226L -.2264 .0
3.20 -.2341 -.2338 .13
L.20 . -2 -.2410 .0
5.00 -.2L61 -.2458 .12

10.00 -.2607 -.2606 Mol
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TABLE XV

COMPARISON OF NORMAL STRESS RESULTS

FOR THIRD LAYER AT Z = 2.0 H

Numerical
: Integration
Time t/f:l Solution
0. -.06401
.05 -.07063
.10 -.07632
.25 -.08934
«35 -.09561
.50 -.1027
.65 -.1079
.75 -.1107
- .875 -.1136
1.00 -.1159
1.25 -.1197
1.55 -.1231
"~ 1.80 -.1253
2.05 -.1271
3.20 -.1328
k.20 -.1357
5.00 -.1374
10.00 -.1425

Exact -
Integration Per Cent
Solution Difference
-.06361 .62
-.07021 .59
-.07596 AT
-.08899 .39
-.09533 .29
-.1024 .30
-.1078 .09
-.1106 .09
-.1135 .09
-.1159 .00
-.1197 .00
-.1231 .00
-.1253 .00
-.1272 .08
-.1327 .08
-.1357 .00
-.1373 07
-.1426 07
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TABLE XVI

‘.COMPARISON OF SHEAR STRESS RESULTS
FOR FIRST LAYER, AT INTERFACE
AND UNIT OFF-SET

Numerical Exact
Integration Integration Per Cent
Time 'c/’z;:L Solution Solution Difference
.0 -.04509 -.04512 07
.05 -.05421 -.05424 .06
.10 -.06236 -.06239 .05
.25 -.08209 -.08207 .02
.35 | -.09218 -.09216 .02
.50 . =.1040 ~.1040 .0
.65 -.1129 -.1129 .0
.15 -.1176 - 1177 .09
875 -.1225 -.1226 .08
1.00 ~.1266 -.1266 .0
1.25 -.1328 -.1328 .0
1.55 -.1381 -.1381 .0
1.80 - 141k -.1413 07 .
2.05 - 1441 - 140 o
2.50 -.1479 -.1479 .0
3.20 -.1524 ~.1524 .0
4,20 -.1571 -.1571 0
5.00 -.1599 -.1599 .0
10.00 -.1697 -.1698 .06
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"TABLE XVII

- COMPARISON OF SHEAR STRESS RESULTS
FOR SECOND LAYER AT SECOND INTERFACE
' AND UNIT OFF-SET

Numerical Exact

Integration Integration Per Cent

Time t/Z,  Solution Solution - Difference
0. -.0162} - -.01682 3.56
.05 -.01932 -.01985 - 2.7h
.10 -.02208 -.02253 2.16
.25 -.02878 -.02908 1.0k
.35 - =.03226 -.03250 .Th
.50 -.03642 -.03657 W
.65 -.03966 -.03979 - 33
.75 -.0414h -.04160 .38
~.875 -.04336 -.04348 .28
1.00 -.04500 -.04510 .22
1.25 . -.0L766 -.04779 .28
1.55 -.05011 -.05023 2h
1.80 -.05174 -.05185 .21
2.05 -.05314 -.05325 .21
3.20 -.05757 -.05771 20
L.20 -.06021 -.06027 .10
5.00 -.06169 ~-.06181 .20
10.00 - -.06723 -.06714 ‘ .13
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TABLE XVIII

COMPARISON OF SHEAR STRESS RESULTS

FOR THIRD LAYER AT Z = 2.0 AND UNIT OFF-SET

Exact

Numerical
Integration Integration

Time t/é:l Solution Solution
0. -.01004 -.01011
.05 -.01170 -.01176
.10 -.01317 -.01321
.25 -.01665 - .01666
.35 -.01841 -.01841
.50 -.02045 -.0204L
.65 -.02200 -.02200
.75 -.02283 -.02283
.875 -.02371 -.02369
~1.00 -.02445 -.024L5
1.25 -.02563 -.02563
1.55 ~.02670 -.02669
1.80 -.02740 -.02739
2.05 -.02798 -.02798
3.20 -.02985 -.02981
L.20 ~.03081 -.03080
5.00 -.03141 -.03139

10.00 -.03325 -
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Per Cent
Difference_

.70
51
.31
.06
.00
.05
.00
.00
.08
.00
.00
.0l
.ok
.00
1l
.03
.06

o09



: TABLE XIX

COMPARISON OF VERTICAL DEFLECTION
RESULTS FOR FIRST LAYER AT SURFACE

Numerical Exact
_ Integration Integration
Time t/?:l Solution Solution
0.0 .3646 .3664
.05 «3967 .3980
.10 4250 774 L4256 440
.25 4925 11923
.35 5274 -5274
- 50 .5698 5697
.65 6040 6037
.15 6236 .6235
875 6455 6457 :
1.00 .6649 6652 L6,
1.25 .6986 .6985
- 1.55 - 7326 .7325
1.80 7569 .T571 |
2.05 LTT787 7789
2.50 .8129 .8128
3.20 .8572 .8568
4,20 .9078 .9076
5.00 .9l13 9u1l
10.00 1.079 |
fis

—
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Differenc¢

.60
- 33
AL
Mol
.0
.02
.05
.02
.03
.05
.01
.01
.03
.03
.01
.05
.02
.01
.0



TABLE XX

COMPARISON OF VERTICAL DEFLECTION RESULTS
FOR SECOND LAYER AT FIRST INTERFACE

Numerical Exact
‘ Integration ‘Integration Per Cent
Time t/T 1 Solution Solution Difference

0. .3573 : .3588 A2
.05 .3871 .3885 .36
.10 132 Jabvs .31
.25 L7hly 748 .08
.35 5052 .5060 .16
.50 5418 5407 , .20
.65 5705 5704 .02
.75 .5866 .5865 .02
.875 6041 6042 .02
1.00 6194 .6199 . .08
1.25 6452 6452 .00
1.55 . 6704 .6703 .01
1.80 6877 6877 .00
2.05 .7029 .7028 .01
3.20 L7549 .7556 .09
4.20 L7861 .7863 ‘ .03
5.00 .8058 .8056 .02
10.00 .8788 .8829 .61

- 146 -



TABLE XXI

COMPARISON OF VERTICAL DEFLECTION RESULTS
FOR THIRD LAYER AT SECOND INTERFACE

Numerical Exact

: Integration Integration Per Cent
Time t/i:l Solution Solution Difference

0. .3059 -3095 1.17
.05 .3266 - ..3282 A9
.10 344y .3461 A9
.25 .3850 .3852 .05
.35 .hou8 .hou8 | .00
.50 277 - WJh261 .33
.65 52 JAnhlh .18
.75 LA548 A551 07
.875 14651 LA6U6 .11
1.00 L740 Akl ' .08
1.25 .4887 .11888 .02
1.55 5027 .5023 .08
1.80 . 5123 5124 .02
2.05 5205 5201 .08
3.20 5476 5490 .25
4.20 5632 5630 | .0l
5.00 5728 5729 .02
10.00 .6063 .6105 .69
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TABLE XXII

COMPARISON OF RADIAL DEFLECTION RESULTS
FOR FIRST LAYER AT SURFACE AND UNIT OFF-SET

Numerical Exact

: Integration Integration
- Time t/'z:l Solution Solution
0. -.01773 -.01773
.05 -.02078 <.02078
.10 -.02348 -.02348
25 -.02993 -.02991
.35 -.03316 -.03315
.50 -.03691 -.03690
.65 -.03970 -.03970
.75 -.04116 -.04117
.875 -.04267 -.04267
1.00 -.04388 -.04390
1.25 -.0l569 -.0lL570
1.55 -.04713 -.04713
1.80 . =.04791 -.04791
2.05 -.04847 -.04847
3.20 -.04917 -.04917
4,20 -.04863 -.04863
5.00 -.04787 -.04782
10.00 -.0l4129 -.04129
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- Difference

.00
.00
.00
.07
.03
.03
.00
.02
.00
.05
.02
.00
.00
.00
.00
.00
.0
.00



TABLE XXIII

COMPARISON OF RADIAL DEFLECTION
 RESULTS FOR SECOND LAYER AT
FIRST INTERFACE AND UNIT OFF-SET

Numerical Exact
: Integration Integration Per Cent
Time t/?:1 ~ Solution Solution Difference
0.0 0217k .02185 .51
.05 .02590 .02598 .31
.10 .02966 .02975 .30
.25 .03906 .03909 .08
.35 ohli2 ohl15 .07
.50 .05043 05042 .02
.65 .05561 .05563 .04
.75 .05860 .05863 .05
875 .06193 .06193 .00
1.00 .06490 .06488 .03
1.25 .07002 .07006 .06
1.55 .07516 .07518 .03
1.80 .07882 .07880 .03
2.05 .08210 .08212 .02
2.50 .08723 .08719 .05
3.20 .09384 .09385 .01
L.20 .1013 L1014 .10
5.00 .1062 .1062 .00
10.00 .1258 .00

.1258
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TABLE XXIV

COMPARISON OF RADIAL DEFLECTION RESULTS
FOR THIRD LAYER AT SECOND INTERFACE
AND UNIT OFF-SET

Numerical Exact .

' Integration Integration Per Cent

Time t/?;l Solution Solution Difference
o. .02571 .02640 2.68
.05 02964 .03025 2.03
.10 .03310 .03361 1.51
.25 04137 LOoh172 ‘ 84
«35 .0l558 - .04586 61
.50 .05055 05073 .36
.65 05440 05457 .31
.75 .05651 .05665 .25
875 .05880 .05889 : 17
1.00 06077 06087 .16
- 1.25 06401 .06408 o1l
1.55 . 06709 06712 .0k
1.80 .06916 .06921 .07
2.05 .07098 07105 .10
3.20 .07699 07708 .12
L.20 .08061 .08063 .02
5.00 08277 .08289 .08
10.00 .09088 .09086 .02
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-TABLE XXV

 COMPARISON OF RADIAL STRESS RESULTS
FOR FIRST LAYER AT FIRST INTERFACE

Numerical Exact

‘ Integration Integration Per Cent
Time t/%:l Solution Solution Difference
0. 2.497 2.495 .08
.05 2.224 2.223 .05
.10 1.995 1.994 . .05
.25 1.500 1.501 .07
.35 1.277 1.278 .08
.50 1.041 o 1.041 | .00
65 .8786 .8780 .07
.15 <7973 - .T960 .16
. .875 L7166 L7160 .08
1.00 6527 .6516 . .17
1.25 <5579 5579 .09
1.55 LA780 4786 .13
1.80 4301 .4298 .07
2.05 . 3909 .3904 .13
2.50 .3349 -3350 .03
3.20 2697 .26914 ‘ A1
L.20 2046 .2016 1.49
5.00 .1656 .1649 J2

10.00 03975 .03793 4.58
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TABLE XXVI

COMPARISON OF RADIAL STRESS RESULTS
FOR SECOND LAYER AT FIRST INTERFACE

Numerical Exact ,
‘ Integration Integration Per Cent
Time t/%:l Solution Solution Difference
0. -.03894 -+03927 .85
.05 -.04313 -.04340 .63
.10 -.04692 -.04709 .36
.25 - . 05647 -.05653 .11
.35 -.06172 -.06176 .06
.50 -.06841 -.06856 .22
.65 - 07404 -.07403 01
.75 -.07732 -.07732 .00
875 -.08099 -.08097 .02
1.00 -.08424 -.08426 .02
l.25 - -.08971 -.08973 .02
1.55 -.09488 -.09488 .00
1.80 . =.09828 -.09810 .18
2.05 -.1011 -.1010 ~ .10
2.50 -.1050 -.1049 .10
3.20 -.1091 -.1092 .09
4.20 -.1128 -.1128 .00
5.00 - 1147 -.1147 .00
10.00 -.1189 -.1189 .00
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TABLE XXVII

COMPARTSON OF RADIAL STRESS RESULTS

FOR THIRD LAYER AT SECOND INTERFACE

Numerical
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Exaét

Integration Integration
Time t/Z:l Solution Solution
0. -.02125 -.01568
.05 -.02203 -.01771
.10 -.02265 -.01813
.25 -.02388 -.02057
.35 -.0244L -.02170
.50 -.02496 -.02294
.65 _ =.02533 -.02382
.75 - -.0255L -.02423
875 -.02569 -.02467
1.00 -.02582 -.02505
1.25 -.02607 ~-.02556
1.55 -.026L46 -.02593
1.80 -.02645 -.02611
2.05 -.02641 -.02621
2.50 -.02661 -.02624
3.20 - .02690 -.02613
4.20  -.02633 -.02585
5.00 -.02631 -.02560
10.00 -.02398 -.02407

Per Cent
Difference

26.1
20.5
19.9
13.8
11.2
8.1
6.0
5.1
4.0
3.0
2.0
2.0
1.3
.8
1.k
2.9
1.8
2.7
A



CHAPTER VII

NON-LINEAR VISCOZLASTICITY

. This chapter presents a reviewrof the pertiﬁent

| vliterature oh,ﬁon-linear viscoelasticity with respect

. to a consideration of the practical implications for
stress and displacement analysis. In particular, ﬁhe

| vafious physically meaningful types of non-linearify

_ ére discussed with respéct to the possibility of exten-
ing the techniques already discussed in this thesis
td-these certain non-linear problems, or of the applic-
ability of other practical means of analysis. |

The discussion is divided into four principle

.greas: agelng effects, thermoviscoelésticity, finite
strain and geometrical noﬁ-linearities. and material
non-linearitles. .A correspondence bétween a certain
type of non-linear elasticity problem and a certaln
form of material non-linearity is illuétrated in the
last section where the analysis of an infinite linear
‘viscoelastic plate on a non-linear viscoelastic foun-

dation is presented.

VIiI-1l., Ageing Effects

The constitution of many materials (for example,
concrete) is a function of the age of the material

(i.e. the time since the material was formed) during
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the time:of interest. Thﬁs the creep compliance or
relaxation function of such a material is a function
of.two times, the time (t-t,) since loading, and the
time (t) with respeét to the‘timé when the materiél

was formed}
Y@ = fle-4¢) - | (235)

The effect 6f t, on ‘¥é9 may bg linear or non~11néar;
but in either case this "ageing" effect introduces
additional complexity into a structural analysis.
Reference (66) illustrates the effect of ageing on the
cfeep behavior of concrete specimené;

The structural analysis of materials‘which éxhibit
_mnggeing" effects has been largely ignored in the liter-
ature., This is in spite of the-fact that many materials
do exhibit "ageing." However, although the behavior
is exhibited, the response Y:£) for a material thét
ages, although being a function of the age sihce forming
as well as the duration of load, varies much nore slowly
for a variation in'tK than fgr a variation in t-t,.

That is, "Tageing" effecté generally occur over rela-
tively long times, while relaxation or creep effects
are ofteh rapidly changihg over short times. The
practical implication of this is thgt if the response
time of interest is relatively short, then the creep

or relaxation function can be approximated by é partic-

wlar linear viscoelastic function at the time of (say)
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loading ty. That is, for a load applied at time t, :

Y(¢) = {(t-¢,,t.) o (@36)

This approximation will be acceptable as long
as t-t, 1s small relative to some "characteristic ageing
time." More explicitly, the above approximation should

be adequate as long és the difference
'Z‘ f(f-tk)ék) - F(t—fk)t) (237)

remains sufficiently small.

. If one finds, however, that the approximation
eipressed by equation (236) is not sufficiently close
to the real materials behavior (that is, for long times
of loading, 1f the difference (237) is greater than
is considered allowable), then an analysis must be
perforﬁed which considers the ageing effects explicitly.
Little 1s avallable in the literatﬁre to guide such an

anaiysis (see, however, feference (IO] for concrete
'applications)i However, the numerical approach in
Chapter IV can be, in theory, used to carry out such
analyses with only the changes‘to be discussed below,
The evalgation of the convolution integrals,
which are now of the following fornm:

¢

1)= RN o) SELED)

2T

ot >/(t L) Y@e) (238)

A
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~ (where t; is the time of interest and t, 1s the time
of loading), can be carried out as before by dividing
the integrals into finite sums: |

: ”, ) c _
L I&)=) 2 NG L) Y 6k, 00)
. =) . : _

o - - , (239)
R/ RN AT D SCEAAPACL) |

Every term in the sum of eguation (239) is of the

' form f(t—tK, t), and'thﬁs is presﬁmably;known. sd that
the 1ﬁtegral can be approximated using only diécrete
knowledge of X_,(L"tk,z‘) and },{(t—z;,t). In an analogous

wéy, the solution td the integral equation can be readily

obtalned numerically.

VII-2. Thermoviscoelasticity

In all of the applications ﬁreviously discussed
it has been assuﬁed that elther the properties of the
material did not vary with température (a very poor
“assumption for most materials displaying viscoelastic
properties) or else that isothermal conditions exist.
This section discusses the analysis of.iinear visco-
elastic materials under variablg temperature conditions,
that is, thermoviscoelasﬁicity.

The ahalysis under varylng temperature fields
presents no unusval problems if the physical proper—’

ties of the materlal are assumed independent of temper-
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ature, as shown by Sternberg (124) (1958). However,
if the more realistic assumption of temperature-depen-
dent properties is imposed, there éppeafs to be no
general method of solution of the equations(139) .

The general problem of temperature dependént
properties has been considered by Morland and Lee (84)
and by HMuki ahd Sternberg (86J). In both of these
papers, the assumption of "thermorheologiéally simple®
materials, originally proposed by Leaderman (67), was
invoked. Since this assumption is representative of
a large number of viscoelastic materials, the following
discussion will also employ_that assumption.

ﬁThermorheologically simple" materiéls are mater-
1als whose characteristic functioné (creep aﬁd relaxation

functions) obey the following law:

YD) = Y T) ko)

where

f - ureduded time" = %(77)

A

T
_ experimentally determined shift factor,
(7)™ a function of the temperature 7 referred
to the reference temperature 7

I

reference temverature

any other temperature

i

As shown by Muki and Sternberg (gg ), the general

constitutive equations under transient temperatures,
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for a "thermorheologically-simple" material, can then

be writte: as follows:
. /’r |
s =" Gp) LT (21)
o-
O’_(Z‘) — ,_. ,\ (}’ f)——-— {6(Z)—30C (9('5)}0/? (242)
4 -
where -
f=/a ,)) f / amw) (243)
7¢) :
OC)= L | «(epe o, = (%) (24%)
‘ A

and «(7) is *“o temperature dependent coefficient of
thermel exrvansion.
If the coafficient of thermal expansion is taken

constant ovex> the range of temperature T(t)-T,, then:

Gc) = ") -T (245)

and eguations 241) and (242) can be written in the

following maii cr:

96 (f’ F) ~
5.¢)= { /( T ‘”}60.(5) ()
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£ . |
gw)=3 /e[ ( )wd“z‘ E)-3,(TH)-T5)
) Y

(247)

which glve operators analogous to the elastic operators
for the transient temperature case.

It is exceedingly importdant to note that the‘
constitutive équatbns (246) and (247) will vary spatially
under transient temperature conditions even for an
initially isotropic body. B

| For the case that T(t)= T,, a(T)= 1 and F=1¢
so that thé esvations reduce to the case considered
in the previous chapters. If T(t)= T, = constant,
then f’: t/a(T, ), and the creep or relaxation functions
are all "shifted" by an amount log, a(T). However,
they still'can be handled as sinple linear viscoélastic
functions and a simple correspondence between elastic
end viscoelastic problems still éxists.

For the case that T(t) is not constant, two
possibilities exist. PFirst, the temperature of the
body, while varying, may be uniformly varying through-
out the body. In this dase there is no spatial variation
of the constitutive esuations (246) and (247), and the
_following overators can-again be used as "eéuivalent

elastic constants":
_ /- -

- - 26,5 }
26 ~{G.@ 0/() g
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24 = {/((0) [( )a/r(f—f) }

Just as previously discussed, the bulk behavior

(2h9)

may reasonably be considered qonétant with respect to
time (but not with respect to temverature) in some
applications (see reference (32)), or infinite in
others, as a fairly reasonable further simplification.
Use of the above operators will permit the formulation
of the solution to this type of thermoviscoeiastic
problen in terms of integral equationé of the general
form (53). Evaluation of the multiple convolution
integrals can be handled numerically as previously
described. For examvle, a single general convolution

integral becémes:

: > %(F)
L) =/>;/(f~f9—ﬁ—dz+2{,(f)%(0) O (250)
o ’

which can be written a&s the following finite sun:

I,) Z—— (Y05 - 2+ Y5 F)]

() -0(E,)] +y(f)y(0) (251)

For any f , }i(f) or )ﬁl(fl) can be obtained by integrating
]
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equations (2#3), (exactly or numerically), and solving
for t. This value of t can then be used to evaluate
Y(F) or X'(f). and in this way the above numerical
integration can be carried out, Although the book- -
- keeping would be somewhat complex, the principle is
relatively straightforward. “

' The second case with T(t) varying 1s the caée
that the temperature‘varies non-uniformly through—
out the body. In this case, since tﬁe temperature
‘history varies from spatial point to spatial point,
the constitutive equations (246) and (247) vary spatially
also. Ih this case there seems to be no method in
general to use in approaching the.problem. 4It would
éeéﬁ, however, that the application of finite element
techniques such as aré now‘beginning.to see wider
usage offers a reasonable path to follow. Presumably
one could approach the problem step-wise in time; and
for any'éiven time t the temperature and temperature
history of each of the nodes of each of.the elenents
could be used to calculate element properties at that
_ time, and thus the necessary stiffnesses or flexibiliQ
ties could be calculated. For sufficlently small ele-
ments and steps in time, one would eXpeéﬁ this proce-
dure to yield realistic answers.

, With regard to more rigorous approaches, Muki

and Sternberg (86 ) have managed to solve the problems
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of the thermal stresses in an infinite thermovisco-.
elastic slab, and the stresses in a thermoviscoelastic
sphere, Morland and Lee (84) have also maﬁaged to

solve the problem of a hollow viscoelastic‘cylindef
reinforced with an elastic case under stes2dy state
cohditions. Their methods of .solution, howsver, seem

to offer 1ittle hopes for obtainlng a general method "
of analysls, especially under transient temperature

conditions.

VIiI-3, Pinite Strain and Geometricsl Non-Linearity

In all of the previous discussions and exampies,
the tacit assumption that the deformations could be
represented by the linear infinitesimal strain tensor
has been made, Howevsr, if the strains are large
(usually a strain greater than ten per cent is consid-
ered too large for ths use of the linezr infinitesimal
strain tensor), then a_finité strain formulation'must
be invoked. Thes thzory has been discussad by Erinzen(29)
and by Pipkin (967,

The theoretical groundworx for szall strains
superposad on finite strains for materials with memor;
has bzsen éonsidered by Lianis (78] and by Pigkin and

)

Rivlin (97). Strains of th

,..Jo

s magnituds are quite

ct
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vsoils, Usually sevaration (failure) of the body would
-occur before such strains are reached., Except in the
analysis of rubber-like materials,’there would thus
seem to be limited applicétion of the theories of finite
vstrain within the realm of common viscoelastic materials.r
However, if suchvlarge strailns are to be consldered,
then Biot's‘approach using incremental deformations ([7)
appearsmorejpractical than attempts'to solve such prob-
. lems directly. The use of finite element techniques
also offers hope for attacking these finite strain
pfoblems.

A somevwhat similar non-linearity occurs when
the deformations cause large displacements which>can—
not be ignored when considering the equilibrium equations,
Buckling problems are generally of this type, and also
bending problems. for beams and plates,.where a small
load causing small strains may cause large deflections.,
For this type of problem, a correspondence between the
'solution for an elastic body and the solution for a
viscoelastic body exists in the same sense as previously
discussed, Examples of this type of problem are lee
and Rogers'! solution for the finite deflection of a
viscoelastic cantilever beam (107)(also considered by
Schapery (112])), Baltrukonis and Vaishnav's solution (|3)
for the creep-~bending of = viscoelastic beam~-colunn,
and Anderson's solution(6) for the buckling of shallow

viscoelastic arches.
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VII-4. HMaterial Non-Linearities

Although it would seenm that large strain non-
linearities are not often a major'cause for concérn
in most anal&ses, the possibility that the material
exhibits non-linear responses at strain lévéls corfés-
| ponding to small strain étill eXists. As pointed out
by Arutyunyan [lo].-for example, linear behavior can
be-expected.for concrete up to about one-half thé
ultimaté strength. Above this, howevér, thé response
5ecomes non-linear., This is still generaily at very
low strain levels (less than one per cent),

Possible approaches for solving boundary-value
‘problems in the regions of small strain with physical
non-linearity will be discussed below; Although a
sizeable amount of work haé been expended on formulat-
ing acceptable characterizations for physical non-
linearity, little has been done to date wlith respect

to solving boundary value problems.

VII-4.1. Non-Linearities and the Theory of Plasticity

Before considering the genefal characterization
of non-linear materials with memory, it is apprOpriaté
to consider the realm of application of such théories.
As will bé shown below, such theories generally result
in constitutive relations that are cumbersome from
the point of view of both the analyst and the experimén-

talist. For engineering applications, it is thus
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desirable, when sufficiéﬁt accuracy can be maintainéd,'
to consider possible simpiifications;_

It is possible, for certaln materials, to usé
the theory of plasticity when large strains or markéd
non-linearities exist. Reference (35) jprésénts stress-
strain curves for polyethylene for four differeﬁt strain
fates, varying from .022 inches per inch per minufe'tp
260 inches per inch per minute (a variation of over
100 timés) for strains up to .40 inéhes per inch. The
data is cleérly non-linear, Howefer} thé maxiﬁum vari-
ation in the curves for the different straln rates is
less than ten per cent, Furthermoré; the curves can
all be approximated very nearly by bi-linéar stress-
strain curves, composed of a 11neér~e1astic segment
up to approximately .08 inches per inch strain,_and‘then
a perfectly plastic stress-straln curvé. Cléarly, for
most applications, the assumption that the matérial
has no time variation but does "go plastic" above eight
'per‘cent strain should yield results sufficiently
accurate, for engineering purposes, for those applica-~
‘ tions where large strains are expected, \(Metals generally
show approximately the same amount of strain rate effects:

as the polyethylene in‘reference EJSJ.)

ViI-&4.2, Hon-Linear Creev Analysis

Meny materials, notably concrete at stresses
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above one-half the ultimate strength and metals at
high temperatures, can be characterized accurately
by non-linear creep laws for constant stresses. The

most usual form of such relations is:

R
£, k (252)
Such non-linear creep laws have been used success-

fully to analyze the creep buckling of columns. Hoff

(52) has presented a survey of the approaches used on

this problem. T. H. Lin (79), in 1956, and Pian (94],

in 1958, have also presented such analyses.
Other similar approaches are also common, (see,

for example, references (I0,66) ), and have been shown

to give good results for constant stress applications.

It is important to note, however, that a direct use

of equations such as (252) under variable stress condi=-

tions may lead to erroneous results.,

ViI-4.3. General Non-=Linear Analysis

As mentioned above, a considerable amount of
work has been expended on developing constitutive
relations for non-linear viscoelastic materials. In
particular, Green and Rivlin (38) in 1957, Eringen
and Grot 30) in 1965, Lianis (77) in 1965, Rivlin (JO3)

in 1965, and T. Tokuoka (I29)in 1961 have presented
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theoretical developments for general non-linear mater-
ials with memory.

The general result deduced in the above papers,
for the case of small strain, is that the stress-strain
relationships can be represented by multiple-integrals
involving stress- or stralin-rates, and certain kernel
functions., For the one-dimensional case, such a repre-

sentation becomes:

5,(2) /G(z z*)%”(z)

7y 28% 2€,(T)
/f@(f ¢5) 250 5 47

z
N

- o »

(253)

where the kernel functions G/( Jo GL0 )y G0 ), wee

are symmetric functions of their arguments, It is
readily apparent that the experimental determination

of the kernels (relaxation functions) requires a large
number of independent tests. G,(t,) is a linear material
function described by a single curve with respect to

a single time coordinate, while G,(t,,t,) is a second
order function describable by a surface with respect to

two time coordinates, while G4(t,,t,,t;) is described
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by a hypersurface with respect to three time coordinates,
etc. 32). The experimental determination of G,( ),

G,( ), and G3( } has been discussed by Ward and Onat
(134) in 1963.

Some attempts have been made, for one-dimensional
cases, to determine the kernel functions experimentally.
Examples of such attempts are given by Ward and Onat (134)
in 1963, Hadley and Ward (41|) in 1965, Leaderman, McCrackin,
and Nakada (§9) in 1963, and Onaron and Findley (88] in
1965. ©Onat (9)has also recently discussed the problems
and approaches of such experimental studies.

The possibility of solving boundary value prob-
lems for bodies governed by comnstitutive egquations such
as equation (253) seems even more formidable than the
experimental problem of determining the appropriate
kernel functions. Some investigators have made progress
along these lines, however. Appleby and Lee (8J have
shown that for short times a third-order theory (through
the triple integral of equation (253)) can be simpli-
fied to include only single integrals, although a large
number of these integrals will occur. Huang and Lee (55]
have also considered the problems of incompressible
non-linear viscoelastic materials under small finite
deformation and for short time ranges. By means of

the equations they have derived, they were able to
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analyze a pressurized viscoelastic hollow cylinder with
an elastic case (for short times) by utilizing some
fairly involved numerical analysis,

Other approaches are also possible. Valshnav
and Dafermos (I33) have managed to analyze an infinitely
long, thick-walled, non=-linearly viscoelastic cylinder
with an elastic case by expressing the constitutive
equation in non-linear differential form. With the
assumption of an incompressible material, they were
able to carry out an analysis using fairly represen-
tative material properties for the quasi-static case,
The analysis, however, reauired extremely tedious and

careful numerical solutions.

VII-4.4, A Simplified Non-Linear Constitutive Equation

It would appear that the general constitutive
equation (253) suffers from excessive generality.
In order to arrive at somewhat simpler relationships,
Schapery (!l1,13,114) has invoked irreversible thermo-
dynamics. Halpin(@3)has derived equivalent simplified
relationships by considering the kinetic theories of
elastic and viscoelastic responses. In both cases,
constitutive equations of the following form have

been theorized:
¢
_ -7) 21— g7
5,() —/@r(f 957 (254)
/-
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where %YEh(CD is some non-linear function of the
strain EU(Z)'

Although the constitutive eguation (254) is
certainly not sufficiently general to apply to all
non-linear materials, there seems to be ample evidence
that it can accurately describe the non-linear response
of many viscoelastic materials, Halpin's paper E43;]
presents some experimental evidence of this, as do
two of Schapery's works [1Hﬂl3] e In addition, Leaderman
(68 ) presents some experimental verification.

The advantages of a constitutive law of the type
given in equation (254) are obvious. First of all,
only one kernel function G(t) must be determined for
the uniaxial case, and only two such functions for the
three-dimensional case. Furthermore, these kernel
functions are just the relaxation functions of linear
viscoelasticity, and thus experimental techniques
for their determination are known. In addition, the
analysis of bodies for which the constitutive relation
(254) holds seems relatively straight-forward, sinee
there is a correspondence between a certain type of
non-linear elasticity problem and this type of non-
linear viscoelasticity problem. To see this, we write

equation (254) in the following operational form:
£
- 96 (z‘ 7)
5, () = {‘/( ) dz}[( €4(%) (255)
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Clearly then there is a correspondence between
the operator within the brackets of equation (255)
and the modulus G in the following non-linear elasticity

relationship:

Hence if a boundary value problem can be solved
for a body obeying the non-linear elastic law of equation
(256), then the non-linear viscoelastic solutlon can
be obtained by means of the techniques of Chapter IV.
This correspondence is illustrated below on the problem
of determining the deflection of an infinite linear
viscoelastic plate on a non-linear viscoelastic (Winkler)

foundation.

VIiI-4.4.1., Deflection of an Infinite Linear Viscoelastic
Plate on a Non~Linear Viscoelastic Foundation

The geometry to be considered in this example
is illustrated in Figure 19. It consists of a plate,
infinite in horizontal extent, supported by a founda-
tion which supplies only a vertical reaction. To
illustrate the non-linear elastic--non-linear visco-
elastic correspondence described in the previous section,
the deflection of an incompressible linear viscoelastic
plate on a foundation supplying a non-linear viscoelastic
vertical reaction will be analysed under the action of a

single load of magnitude P at the origin of coordinates.,
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The solution for the deflection of a linear elastic
plate on a non-linear elastic foundation has been given
elsewhere by the author. This solution was obtained
by means of a finite element analysis of the plate,
since an exact solution of the non-linear problem has
not been found. If the plate is divided into appropri-
ate finite elements, and the flexibility coefficients
for each node are calculated, then the equations of
vertical eaquilibrium for each of the nodes provides
a sufficient number of equations to determine the deflec-
tions at these nodes. Since the problem is axially
symmetric, only the nodes numbered in Figure 19 need
to be considered., If the flexibility coefficients
are denoted Ea; (Ea,; gives the force at node i due to
a unit deflection at node j), then the equilibriunm
equations to be considered can be written in matrix
form as follows (the details for calculating the
flexibility coefficients have been given in reference

(2] and will not be reveated here):

— ] — ’— ~
Q, 9, - - - - W, é?_ ﬁégﬁ)
Dy g W, _ KE(nwg)
£
— ) (257)
W,
B Oy Oy * O;’ﬂ M _~ 2{ )




where
V¢-== deflection of the i1 th node
£ = Young's modulus of the plate
and the foundation reaction is given by the following

(non=-linear) expression:

f, = KEw) (258)

As has been illustrated in reference (2], the
above system of simultaneous non-linear equations can
be solved for the nodal deflections by using a pertur-
bation about the linear solution. First the forces
applied to the plate due to the deflection are added

to both sides of equation (257) to yield the following

form:
kW) N o]
O//+[V\// 0/2 ’ Qn W/ &E
KFWsz) W, 0,
az/ C7.22+ [Wz ' C)él’) ? (259)
A KH,)
_(s%, hz c%nffwél )%u {}2_

If w, is known, then flw.) can be calculated, and
the square matrix in equation (259) can be inverted

to yield the w;'s, Clearly an iterative technicque 1is
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suggested. In reference 023, the following procedure
was found to work quite adequately.

First, the linear part of f(w) is used so that
the terms f@%»/w, may be immediately calculated.
Using these results, the equations (259) may be solved
to yield a first (linear) approximation for the w,'s.
This approximation is then used to calculate the %Y“an,
terms, and a second approximation is then obtained by
resolving equations (259). This procedure is repeated
until the relative changes in each w; are less than
a prescribed amount,

Consider now a plate composed of an incompressible
linear viscoelastic material with an "equivalent

compliance" given by the following operator:

(E eQuivalent {D(O) /( )QD(LL 2 O/Z} (260)

and a foundation which yields a non-linear vertical
reaction of the form suggested in the previous section,

that is:
f(f) {K@ /( )BK@( dz}[(w(g)) (261)

The following "equivalent foundation modulus"

is suggested by equations (258) and (261):
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K equivalent {TK(O)‘//?T /)QAY¥ z%j?;; (262)

Replacing 1/E and K by their equivalent operator
expressions, the matrix equations (259), which express

the equilibrium of the nodes, can be written as follows:

a,+ Q/_[_t.) G, T 0//7— TM— }_QD(L‘_)
/ (Z‘

o @iy o a|v 7
(263)

o, iz G%ffgé) Wo ©

where

q) / flms(e-2) 3 / K 50 +AODOE  (a

+ £ () K ©) D©)

and it is assumed that the load P is applied as a step
function in time.
The matrix equation (263) gives a set of n simul-

taneous non-linear integral equations in the n unknown
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wi's. They can be solved using the same perturbation

technique discussed above for the non-linear equations

in combination with the technique for the numerical

solution of the integral eqguations as previously discussed

For clarity, the 1 th equation will be considered in
the following discussion.

Denote the inner convolution integral of 5&&9 as

o(t). That is:

o (£) / /«H)MW Jh 4 KE) D) (265)

In the numerical example to be presented below,
K(t) and D(t) are taken in the form of Dirichlet series,
and o(?) is then calculated exactly using the subroutine

INTEGR .
With «(?) now assumed known for any value of t,

gj%;) can be approximated by the following finite sum:
!

G6) =Y FF Ol )1 H ol V|t ) ol
" +E(Wi(2,) X ©)

Sevarating the terms involving w(t,), g,(t,) can

(266)

be divided into the following form:
g ()= 3. (), )+ bt )-OWts,.) (267)

+ S F [t ) O R Cortors) = Xt
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Substituting the above expression for gf(pm) into
the matrix equation (263) and rearranging, the following

set of non-linear (algebraic) eguations are obtalned:

Ot YWl I
* 2w, Q}z \A//
L@+l W)
Q:Z/ 0'22* 2 W, ]A/Z
(268)
L Q’,,, C7/7 2 ‘ o] _h/h ]

;0(4, V-2t ) - ,.) -iz"Ef W, )] [t ) -, )]

— ‘_é_ [é((z(m— Zlm _,) - (0)]7(\ ( n/z( fh’) o )):iz‘z-, [ﬁ%(fm jﬁ)) 7 7[\ (Mlz(tmy ))J [oc(llm—im :/) - O((Z(m -Zm :jfl)]

- [«(@—a;.)-om)]ma;,_,»-fé[M(z‘mg,,))+f(m(aj))][°<( Gt~ lnj)]

S

The set of simultaneous (non-linear) equations (268)
can be solved using the same perturbation technique
described above, where now one must iterate at each time
t;. Note that the right-hand side of equation (268)
contains only known constants, and terms of the form
f(w;(t,)). Since w;(t, ;) has been calculated at a
previous step, f(w;(tmj)) can be calculated directly.

The above procedure has been programmed and a
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program listing is given in the appendix. To illustrate
the results, X(t) and D(t) have been assumed in the

following form:

-t - ’d%f
kit)= 250 (/+€ +€ +€& ) (269)
“ g (270)

D)= wi(z2-.1e - 05¢

These functions are plotted in Figures 20 and Z21.
The results for a plate of two inch thickness, with a
load of 16000 pounds, are plotted in Figures 22 and 23.

The function f(w(t)) has been taken as follows:
(1inear dimensions

Fowe) = wey-16[w@] s = @7
In Figure 22 the maximum deflection is plotted as a
function of time. For comparison purposes, the linear
viscoelastic solution, and the non-linear elastic and
linear elastic solutions using the zero time compliance
and foundation reaction, are also plotted. Clearly the
non-linear behavior has a major influence on the maximum
deflection in this particular case. Figure 23 presents
a plot of the deflection profile for t/zz = 0.0, t/z = 1.0,
and t/g = 10,0, The magnitude of the deflections change

markedly, but the general shape appears to remain sim-

ilar.
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VII-4.5. Concluding Remarks

Material non-linearities have been briefly con-
sidered in this section. Although a considerable amount
of work has been expended in recent years on developing
constitutive egquations for non-linear viscoelastic
nmaterials, it would apvear that the more general approaches
are too cumbersome for reasonable application. Further-
more, until the rational basis for such non-linear visco-
elastic constitutive equations are developed and verified
more extensively through experiments, thelr use seems of
doubtful value.

Until such work has been carried out, the use of
the more firmly grounded theories of plasticity, linear
viscoelasticity, and creep is indicated for most appli-
cations. In those cases where the use of these theories
does not seem avpropriate, then an experimental consider-
ation of appropriate constitutive relations may be
necessary. In this case, simplifications such as the
one considered in section 4.4, of this chapter will

decrease the complexity of the structural analysis.
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CHAPTER VIII

CONCLUSIONS

The method of analysis presented in this thesis
for stresses and displacements in linéar viscoélastic
bodies has three principle advantages.

l. The Laplace transform is not needed, and thus
it is not necessary that all of thé equations and boun-
dary conditions have Laplace transforms.*

2. The application of thé above méthod is rather
straight-forward, and requires only a few steps for
the problems where the equivalent elastic solution
can be written in the form of equation (46).

3. The method of solution of the general egua=-
tion, using either technigue to evaluate the multiple
convolution integrals, allows realistic material repre-
sentations to be used.

The example in Chapter V concerning the deflection
of a viscoelastic cantilever beam illustrates that
where exact solutbns can be found, the method presented
herein gives equivalent results, and that the numerical
techniques used can yield extremely accurate solutions.

The example in Chapter VI, the analysis of the
stresses and displacements of a three~layered visco-
elastic half-space under a circular load, 1llustrates

the applicability of the technigue to problems involving

¥Subjecct to the limitations discussed in Chapter IIL,
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different types of linear viscoelastic materials, and
the straight-forwardness of its application. The feasi-
bility of evaluating many-fold multiple convolution
integrals by both techniques is also apparent. Further-
more, the analysis should be of englneering value in
foundation and pavement design.

Reasonable approaches to certain non-linear prob-
lems have been suggested in Chapter VII. In partic-
ular, a correspondence between a certain type of non-
linear elastic problem and non-linear viscoelastlc
problem has been formulated. The use of this correspon-
dence principle to determine the deflection of a linear
viscoelastic plate on a non-linear viscoelastic founda-
tion illustrates the ease of such analysls when used
together with the techniques discussed in this thesis

for linear viscoelastic analysis.
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CHAPTER IX

FUTURE RESEARCH

The method of analysis presented in this thesis
appears to be easily applied, and quite accurate.
Furthermore, it would seem that 1t could be applied
to a large number of problems. For this reason the
possibility of generating packaged computer programs
for the evaluation of the multiple convolution integrals
and for the numerical solution of the integral equation
warrants future consideration.

Also, the use of the technique on those problems
where the time variations of the loading are very
rapid (assuming that inertia terms are then likely
to have to be included) would warrant some investiga-
tion. Although there have been no signs of problems
to be encountered in such applicatbns in the present
work, such rapid variations in loadings could possibly
cause numerical difficulties.

Further investigation of the methods of analysis
for non-linear problems, considered briefly in Chapter

ViI, should also be considered.
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L00C1

.00C2

.0004

.0CCS
»CQCh

. 0007

-
LCC )
L0010 .

L0111 .

.0012

L0013

L0015

G017

LCO18

L0189
L0029
L0021
0022

G073

2XsXakakzXsRsXakaka)

O

cOono

(]

col oo

e

aEakakakale

THIS 1S THE MAIN PROGRAM TQ ANALYSE A LINFAR VISCOFLASTIC BFAM

- USING THE MUMERICAL INTEGRATION OF THE CONVGLUTICM INTEGRALS.

THE MECESSAPY SUBRUUTINCS ARE TIMELl, VALUE, INTEGR, SOLVIT, AND

CREJECT.  THE INPUT RCLAXATION FUNCTIOMS ARE TAKEN AS DIRICHLFT

SERIES FOGR CONVENIENCE AND FCR COMPARISON WITH THE EXACT SCLUTION

JAND WITH THE SOLUTIUN CUBTAINMED USIMNG THE DOTHER  INTEGRATICM

TECHNIGUE.

DIMENSION G(20)4AK{20) 4P (2C) 4EXTEL) ¢FRRIEL1),PH(1I8) ,THIG),E(T461),
lGA“(élyl 18)

COMMCN BETA(EL),B(3,20),N0ELTA(20), T(Ally N,QI(AI)

THE LCUGP THRCUGH 1000 ALLth SEVERAL SFTS OF DATA TC BE RUN.
LC 10CcC JJd=1,10C _ o

N = NUMBER CF TERKS IN DIRICHLET SERITES .
NANN = BUVGKQ £ STEPS IN EACH INTECRATION LDOP BEFDRF DOURLING
N8 = NUMBER CF TIMES THE LOOP (FCR INTEGRATION. IS TO BRE DOURLED
DEL = INITIAL SPACINCG OF TIME

CREAG(5,1) NyMMM,NELDEL -

NX IS A BUMMY FGE THE INPUT INTO THE SUZRCUTINE TIHMCI

NX=0

FORMAT(315,F1C.5) , : . : '

MN COMNTROLS THE REGINNING OF SEVERAL DO LOOPS WHICH VARY DEPEMNDING

JCNOWHETHER IT IS THE FIRST QR SUBSEQUENT TIHES THRCUGH THE LOCP

MN=1
N1 IS THE ECGUIVALENT TO MN MOT IN COMMOM
N1l=1

AL = LENGTE OF THE REA#H |
c = HALF THE DEFTH OF THE BEAM
= DISTANGE FRM4 THE FREE END THE DEFLECTION IS DESIFED

READ‘-,]I) Al yf'yx

11

FORMAT(EF10.5) _ L

Al = FOHENT CF TNERTIA CF THC BEAM
AI=20%(Cx%3) /2, :
THE Fr{ ) TERES ARE THE ”HI S OF THF TEXYT
PHI(2)= (K"l)—B.“ﬁL ”L K? (AL%%X3) -
PH(L)=2.%PH(2)827. ('L XV 2.

THOL1) IS THETA 1 CF HF TEXT

TH{1)=54 %01

CALAML AND AL‘“7 APE CONSTAMTS FOR THE EYACT SCLUTION (FCe CASE

THAT 1T 1S KMy,
L;‘l"””(i)/T}(l)

ALA =0HL2)/THL(Y)

THL VLCTUR 5 Cf“T MG OTHE COMSTAMTS CF THE DIRICHLET SERIES

REPRESENMNTATION FOF Tir SHEAR RELAXATICN MGMILUS

REAC(Sy L1 M(G{J) v d=1 M) .

ThE VECTOR AKL ) COMNTAINS THE CONSTANTS FOR THE FIJICHLFT SETTES

D REPRESEATATION O THE RULK 2ELAXATIOM !CDULUS

READ (55 11) (AF (J)4d=1,%) o ,
THE VECTGR ®( ) CUNTAINS THE  COMSTAMTS FOR THE LOAD SEZIFS
REAC(S, 110 (2(d),d71,%)

WOLTE(G,2) (20 4d71,5)

HETTEES 2V (ARd) 3 d=1,4%)

WEITCCENZ) 0P (ST 0 0=, )

2 FURFATOIH Zate 170PLT/(aF1205))
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T e T e s e e et s . S = M et M/ ALY e Y - e M 4 et i e e N s e W A e mS o GeA AS ded W mhe M e et e e e e e eme et o

C
.......... G e e e
o AKL 1S USED TO MON-DIMENSIONALIZE THE RESULTS MITH RESPECT TC THE
c ;BULK_MODULUS_AT. ZERQ_TIME - _ -
.0024 'AK1=0. - _ | .
0025 . _____" 00..12 J= 1,N--u,m“_________ﬂ_-w__ﬂ“ﬁ.-_"_______~-_u-"ﬂ__-_yu-g,_mi-_
0026 12 AK1=AK1&AK(J) . |
O DQ 13 J=1, N_g_“~_~_____,~~~_-_-_,,__u-“_________m“_w“m“_“_m“n_-m"w~
.0C28 G(J)=G(J)/AK]L
0029 - 13 _AK(J)=AK({J)/AKL _ L _— —
€ SOLUTION MUST BE MULTIPLIED BY 1/AK1 o
ST STATEMENT 10._IS THE BEGINMING OF THE REPEATED (LOOP) PART OF THE
R PROGRAM. THE SUBROUTINE TIMEL COMPUTES THE RELEVANT TIMES AND IF
eeeio-wLo . THIS IS THE FIRST ENTRANCE TO STATEMENT 10, THEN THE RELAXATIGN _
c TIMES ARE CCMPUTED AND STORED IN THE DELTA( ) VECTOR
4003010 _CALL _TIMEL(NMNDELSNX) . . . . e e i
B THE LOAD IS EVALUATED AT EacH OF THE TIMES, USING THE SUBROUTINE
reemommeC o NALUE [(AND .THE DUIMMY AFRAY 8L ). JAND PRINTED OUT B
.00321 | 00 14 J=1,N- | :
20032 Ve BULa V=PI ) o
.0033 CALL VALUE{N,14NNN)
0034 .. e MRITELG,4) . e e e e
.0035 WRITE(6,3)(T(L),BETA(L),L=1,NNN)
W0036 3 FORMATU2ELS a8 . e e e
.0037 4 FORVAT(1H /12H INPUT CURVE) .
e € _THE P. VALUES ARE STORED _IN THE. ARRAY. E( 5 )y IN THE FIRST.COLUMN .
.0038 DD 5 I=1,NNN
L0039 5 E(LyIV=BETACL) oo ) e B
c THE VALUFS OF THE BULK RELAXATION MODULS ARE COMPUTED USING THE
eeemmweLo. ... SUBRCUTINE. VALUE, THEN PRINTED QUT. AND THEN STORED IN E(2, ) ...
.0040 DO 15 J=1,N | : » -
WO0AL - 1S Bl JVSAKOI) L e
0L .2 CALL VALUE (Ny1,NNN) )
20043 .. _MRITE(6,4) e e e e e e e
L0044 WRITE(693) (T(L)sRETA(L) yL=1,NNN)
$0045 e DO 6 T=1gMNM o e e
.0046 16 E(2,1)=RETA(L)
__________ C—.._..THE CONVOLUTINN OF THE LOAD AND THE BULK RELAXATION MOLULUS IS
c COMPUTED NUMERICALLY, USING SUSROUTINE INTEGR, AND STNRED IN THE
S C CARRAY. GAMU Gy g 1) e e
.0047 CALL INTEGRININNN,E,GAM,1,2)
___________ L. THE SHEAR RELAXATION. HODULUS IS COMPUTED USING THE SUBrOUTI’? e
c VALUE, THEN PRINTED, AND THEN STORFD IN THE ARRAY £(2,I). TRE

o Lo L BULK RELAXATICN FUNCTION IS SAVFD CAND _STDRED _IN BETA() TEMPCRARILY
.0048 DO 17 J=1,N
W0C4S 17 . B(14J)=G(J).

.0C59 CALL VALUE(N,1,NNN) ) _
<005 o MRITE G a ) e e e
0052 hRITF(é I)(T(L)+BETA(L)yL=14NNN)
0053 DG 1B U= e MNN e
.0CE4 SAVE=E(2,1)
0055 B2 T =B BT AL ) e e e e = e
00556 18 BETA(I)=SAVE :
._______,_'__.__‘__C______,____I}‘JVE___YC_D_."J_VI-]L UTION OF P AND THE RELAXATION MODULUS IN SHEAR | IS _
-C COMPUTED AND STORE N IN  THE ARRAY CGAM( v 12) :
0057 . . CALL. “\TF}! (nlyfh.,_,CA’ 2,2) ol
P c THE BULK RELAXATION UDULUQ 1S TQAFSEERRVD BACK TO E{1l, )1 AND
S O OO OO . - - -
c
._.____.__...___._C.;.._..__>.._,._.--_-._..,_._;.-,.,...__.-_-...- e - 206 o U
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C Sl A -

C THE CUNVDLUTIFN CF THE THO RELAXAT]DN MODULII IS CONPUTED AND
—— c STORED _IN_GAM{ 4..s3) . e - R
.0058 . DO 19 I=1,ykNN
L0059 ... 1G E(1,1)=BETA(L) e

L0060 CALL INTEGR(NI, PK:,E: AM,3,2)
™ _.C___.THE CCNVCLUTICN RESULT OF THE RELAXATION MODULLI IS TRANSFERRED
c TO GAM( 42492) FROM GAM({ ,3,1)
#O0EY . D020 I=1NNN..
0062 : 20 GAM{I,43,1)=GANMN(T,42, 3) )
e Lo _THE _INTEGRAL _EQ UATIUN_ISWSOLVED,NUVERLCALLYhUSING_IHE¢SUBROUTLNE_
C SOLVIT. THE RESULT IS STCORED IN SI( ). . °
L0063 . _____.CALL SOLVIT(NNN,PH,TH,GAM:2,1,2,3)
.0064 WRITE(6,7)
L0065 . 1T _FCRMAT(1H _/9H SCLUTION) S S e e S
' C THE EXACT SOLUTICMN IS CALCULATFD AND STORED IN THE VECTOR FX( )v
e L __AND _THE PER .CENT .ERRDR IN THE NUMERICAL SOLUTION IS CALCULATED
C AND STCRED IN ERR{ )
L0066 .. DO 22 I=1,MNN__ . __. e e
LOCET EX(I)= LﬁVIJ(EXP(—.l T(I))—l )‘(*10 )FALA“2 T(I)
0088 . o IF(I-1)23,23,24.

e o i - e e A . i e e e e £ e e i S A L o e s —mr s % e o it - e v o e e e

.00€9 24 ERQ(I)-(FX(I)-SI(I))/CK(I)*IOO.

L0000 o o B0 T 22 o e e e e e
.0071 ' 23 ERR({I)=0. :

20072 ... __.22 CONTINUE . e i e e U VU
.0073 WRITE(6, ?l)lT(L),SI(L)yFK(L) FQ?(L),L 1, NNN)

0074 21 FECRMAT(4EL1S.E). S N GO

c N8 IS ZE\b ONLY WHEN THE LCOP HAS BEEN DOUSLED NS (ORIGIMAL) TTYES

L0075 ... IF(NB)S U
L0076 8 N&=N&- 1

e b oo TIHE SUBRMOUTINF REJECT SAVES THE APPRCOPRIATE VALUES TC REDCUELE .

-~ C THE SGLUTICN LOCP ’

LOC e CALL REJECTINNNSCAMY ___ . _
.0078 N1=%N

e o€ _THE SPACING IS DOUBLED . _ __ . ...

v T T o P

.0079 CeEL=DEL*2.
L0080 L L NX=5 e e et am e - - BT
.0021 GO 10 10
L0082 G L CNT INUE e i e e — o
.0083 100C CONTINUE
e BN e e i D e e -
c
T OSSO S U P U - ;
C
S O OIS N
C
e o C o e e e D f e f e e -
C
e ————— e e - e
C
et e e e - e - ..
C
e G e e e = -
C
e O e - - e e
C
- .MMvMWEW‘MWHAMM«Wwywuﬂ”msﬁwummew_mmwmm;m207v;"__MMWﬂm.4VM.NH., -
e e - -
v C
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o001

.0002

L, 0003

.0CC4

1. 00095
+00C6
0007

.0008

LO6GC9 . L.

« 00 LD
00 .
.0012

L0013

L0014
L0015 |

L0016

0018

.0C19

.0020 . .

.N021

0022 0 L

.0023
L0024

G025

OO0 0.

NOO0OOO0 O

"TFIS PROGRAM IS 1C ANALYSE THE VISCGELASTIC CANTILEVER BEAM USING

. THE EXACT INTEGRATION PROCEDURE. THE INPUT FUNCTIONS £RE IN THE

FORM OF DIRICHLET SERIES. THE NECESSARY SUPRCUTINES ARE TIME,

SOLVE, INTEGR, VALUE, AND CVEFIT. THE SOLUTICN IS COMPARED TO THE

EXACT SCLUTIGN “HERE APPLICABLE. THE SOLUTICN TS FITTED WITH A

_SERIES REPRESEMTATION AND THEM THE .CRIGIMAL LEFT-HAAMD SIDE CF THE

INTEGHRAL EQUATICN IS CUMPUTEN AND PRINTED FOR COMPARISUN WITH THE

L.RIGHT HAMD SIDE AS A CHECK.

DIMENSION G(8 ,?0),0(“,20),LX(707),}(8 20) 4 ARR AY(l? 50 ,ERR(200)
COMMON X{20),R8(6,20), TL201) 2DELTA(20),BETA(201),2(&,20), -

C1SI(201) .

NNN TS THE NUMBER 'OF STEPS TO BE CU‘PUTED IN THE NMUMERICAL _
SOLUTILGN.  THESF ARE LGG STEPS, THE SIZE OF THEM REING DETERNINED

-BY SUBRCUTINE TINE.

NNN=Ga :
ARRAY 1S THE INVERSF 0OF THE COLLGCATINN MATRIX FOR THE DCLTA S
CCMPUTED USING SUBRIUTINE TIWE. THIS ARRAY IS USFD INM SUSBRCUTINE
CVEFIT.
READ(S, L) ((AERAY(1,d)yI=1, 1°),J 1, 1?)
WRITF(&415) ((APLAY(I,J),1=21,412),J=1,412)
FUPFA?(&FIS.&)
FORMAT( 1214 INPUT ARRAY/(4E15.8))

CTHE LCOP THROCUGH 1000 ALLDOWS MULTIPLE SETS OF DATA TO EC EXECUTED.

..b0 1060 I1T1=1,100

l)’
-~

C1 = HALF THE DEPIH GF THE BCAM .
AL = LENGTH OF THE BEAM
X1 = DISTANCC FROM THE FREE END THAT THE DEFLECTION 1S DESIRED

READ(S,2)C1, AL X1

WRITLE(6416)CT,AL X1

FORSAT(L4H BEAM GEQHETRY/(3F10.5))
FORMAT(3F10.5) _

Al = MOHMEMT CF INERTIA OF THE 3EAM
Al=2.%(Cl%%3)/3.

T1 AND T2 C“RRESPGND TG THE PHI S 0OF THE TEXT

T2=(X1HE5) =3 AL HALRXL &2 ¢ R (ALK

T1=3e3T28270%C 1% 1% AL- Vl)AZ

PH CLRRESPUNDS TG THETA(L) OF THE TEXT

L PH=54,%A01

ALAH AMD ALAM] ARE GUNSTANTS IN THE FX\FT SOLUTINK

CALAM=T1/PH

ALAM1=T2/FH
THE LOC? UP Tr 27 ZERN S THE ARRAYS TO 8L USED SURSEQUFNTLY
DG 37 I=1,8 ’

CBG 37 J=1420

D(I,d)=C.

GlIyd)=".

RS(I)J)=O'

H{T,J)=0. . . _

THE [HPUT SERIFS PFPEESCHTATICGNS FUR THE RELAXATION FUMCTIGNS A0
THE LOAD, ALL 0OF LENGTH My ASE READ TNTO THE GO 4 ) AURAY, Gil, )
IS THE SHEAR RELAXATIUN YADULUS, G2, ) IS THE RULK RELAXATICY
MOSULYS, AND G(3, ) IS THE LAY FUMCTION

SEADLD 3 ) vy (UG (I, 1) I=1,0)3d=5143)




,___-_“~-~C,~“~-~~-~¢~‘M,-~-,A--NHﬁ-%Am“-w“*~_ﬂ"MNNM_A-H_,n«m-“---_Mmm-M_-“w‘_._.
0026 - 3 FORMAT{I10/(6F10.1)) .
.00271 lhRITE(6a17)N:((P(J11):I =1¢N),d= 113),”_*_ S
.0028 17 FUR”A|(7H CURVES/I1D/(6F10.3))
e e G THE SHEAR RELAXATION MODULUS AND THE BULK RELAXAT[”M MODULUS . AQF
Cc NON-DIMENSIOMALIZED RY DIVIDING BY THF BULK RELAXATICN FUNCTION
-;_;____J;“____AT_ZERQ_LIEE_MM~,_,___“_N_uﬂ__"_;_,_«__ug;,-~~f__,“__,-M“,M_”_wﬂ_”4
-0029 SuUM=0.
20030 DO_40_I=1,N__ ' e e e e e e
0031 40 SUM=SUMEG(2,1)
20032 L DO A I e M e e e e
-0033 DO 41 1=1,2
-0024. ______41 G{I.J}¥=G(1,4)/Su™» e . e . B
o C SOLUTION MUST BE ?ULTIPLIED BY l/SU” _ _'
. c SUBROUTINE _TIME CALCULATES. THE NNN APPROPRIATE TIME VALUES, . _
: C ANC THE RELAXATICN TIMES (DLLTA( 1)
-0035 __ _ __..___.CALL TIME(NNMN) . . e
C THE EXACT SOLUTIONS A”E CALCULATFD AND STORED IN THr V&CTCR EX( )
L0036 . . _ DO 42 I=1,4NNN__ el e e e e e e = e e
-0Q037 42 EX(I)—A[AWﬂ(—EXP(—-1¢T(I))&1-)/ ISALAW1 T(I) .
i € THE_ PER CENT ERRORS WILL 8E STORED IM THE. VECTOR ERR( )_ ( MWHEN __ __
Cc EXACT SCLUTICN IS APPLICABLE)
160038, . L ERRUL)=0. e o
' Cc SUBROUTINE VALUE IS USED TO CALCULATE VALUCS FOR BDTH RFLA)AT[JN

e €M MODULTI AND. FCR THE LOAD, . SO THAT THIS DATA CAN 8& PRINTED OUT
1.00329 DO 4 1I=1,3 -
100040 D0 5 JF LN e e

10041 5 B(l,4d)=CG{I,J)
10042 .. ... CALL VALUE(N,L}NNN). e e e e .
10043 WRITE(E424)
1«00 ¢ A MRITE(G66Y(TILY s BETALL )y L=l o NNN Y e
10045 6 FORMAT{(2E15.8) :
i€ _THE_COMVCLUTICON CF THE_TWQO RELAXATICN MODULIT IS CALCULATEDR AND |

C THEN PRINTED. THIS IS A THO STEP OPERATION--FIRST THE RESULT IS

oo € . _FOUND USING SUBROUTINE INTEGR, AND THEN THIS RESULT IS EVALUATED
C USING SUBRCOUTINE VALUE. ‘

ve0046 ... CALL INTEGR(G,yN,y1,0) e e e e e

10047 ’ CALL VALUE(N,2,NNN)

w0048 . WRITE(6,35) . .. . e e e

10049 WRITE(G6,6)Y(T(L),B ETA(L),L I,NNJ)

____________ C_____THE COMVOLUTICMN CF THE RELAXATION MODULIL IS MULTIOLIEDR BY PH AND

- C STCRED IN THE ARRAY D( , ) FOR FUTURE USE

10050 . .00 .7 I=Y2 -

1«0051 DO 7 J=1,N

100052 T .D(I,d)=8(1,d)xpPH ] ,
C THE BULK RELAXATICN WODULUS ANQ THE LOAD SE”IES AQF TPANSFEPPFD

i€ INTD.__THE ARRAY HQ .y ).  _THEN THE CONVOLUTION OF THESF IWO SERIES
C IS CALCULATED USING SbB?ﬂUTINE INTEGR.

120093 ______00.8_1I=1, 7_,w-,__*___ﬁ_“ﬁ_-ﬁgwh,aﬁ_“uw*_wﬂﬁﬁ_“"“-m‘V,,M»V;w- e

10054 DO 8 J=1,

10055 . ... 8B H(I, J)-C(Ifl,d) O U

+.0056 CALL INTEGR(H,N41,0)

“u«u_ﬂ“mﬁﬂﬁ‘,_THE PESULT CF TKE LAST CDJVJLUTICM INTEGRATION 1S MULTIPLIFD BY T1 |

C AND STOR F) IN THE ARRAY BR( , )

e0087 . . _.._DDO G I=1 o

e CC 3 0o 9 J= lru

00059 L o9 BBy IV =B a I ET L

e e 200 = e



e e m e e edi e ot et o e e o e o et e e e o e o e m om e ot et e o om m e et e i i e e e e

C

c INTO THE ARRAY H( , ) AND THEN THE CONVOLUTION OF THESE TW0O SERIFES
ceamemme=Coe oo IS CALCULATED. USING SUBROUT.INE.INTEGR. ' .
. 0040 D0 10 J=1,N o |
3oL H(.lrJ)=r.(.,.1|J).,.-.,..A..__.-.._.__..-.",._~....,... ..
5« 0062 10 H{2,J)=G(3,J) '
50083 o CALL INTEGR(H,Ns1s0) -
C THE RESULT OF THE LAST CONVOLUTION 1S MULTIPLIED BY T2 A'\'D ADDCD
e e oo L T0O.THE RESULT. STORED IN B8 5 )
5. 0064 : DO 11 1=1,2
>« 00065 .. __._.0O 11 J=1,N . .
3. 0066 ' 11 BB(I.J)=RBI(I, J)ETZ“‘Q(I J)
- v C THE _KERNAL. _CF_THE _INTEGRAL ON_THE. LEFT. SIDE OF THE_INTEGRAL .
- - C ~ EQUATICN 1S EVALUATED AND PQII\TEO
30067 - —.__...DO 36 1=1,N . ool

e e cms % v s he i e e et v A eas e ae s e e e W ek owee s mm e

3.0068 DO 36 J=1,2

30069, . ... 36 BUJsT)=DUda 1) e e

520070 CALL VALUE(Ns2,NNN) . : .

360071 o WRITE(6,38) . . e e e e e et oo et 2 e men e e .
5.0072 WRITEL6,6)(T(L), BETA (L), L=1,NNN) '

340073 .. __._.38 FORMAT(1H /25K .INTEGRAL BEFORE SCLUTIGN) . . oo 2

' C - THE INTEGRAL EQUATION IS SOLVED USING SUBROUT INE SOLVE

»e0074 0. CALLL SOLVE{N3s2,24NNN)Y .. e
o S THE ERROR. IN THE SOLUTION IS CALCULATFD AND STORED IN ERRL )
500075 D043 I=2NNN___ . R N e e e
70076 43 ERR(I)=(FX(I)—SI(I))/FX(I)*IOO.

Ta00T Tt o] WRITE 6025 ) e e e e

»«0078 ' NRITE((’J;‘SO)(T(LH%I(L), EX{L)yERR(L),L= 1 NNN )

.00-19“_.._--...50 FORMAT(4E15.8) . __ e e e e e
: C THE SOLUTION Is FITTE') WITH A DIRICHLFT SERIES USING SUBROUTINF
veiimnion G CYEFIT, _ THEN_THIS. SERIES IS EVALUATED _USING SUBROUTINE VALUE,

c THEN THIS SOLUTION IS COMPARED TO THE EXACT SOLUTION, AND THEN

e €. THESE RESULTS ARE PRINTED.

R I e e LRI R R

;0080 . CALL CVEFIT(ARR/‘.Y) }

Ce008L L L L N=12 e -

1«0C82 DO 12 J 1, :

e0083 12 Bl e ) =Xl e e e e e -
10084 CALL VALUE(N,14NNN) N

260085 DO 44 T=2,NNN _ _ e .

1« 0086 » 44 ERR(T)=(EX(I)- BETA(I))/EX(I)*IOO. .
-,O..Q.O,e_-[_,__,‘__._‘_ L\RITt(b ,2‘ )

— e e [RPRU—

..0ces WRITE(6,50) (T(L)sRETA(L) JEX(L),ERRIL),L=1,NNNY 7777

oo €. THE_ FITTED SCLUTICN IS SYOPED IN G(8, ), AND THE KERNAL FUNCTION
C OF THE LEFT-HAND INTEGRAL IS STORED IN G(l, ) AND G(2, ). TFEN

oo € _ . THE TOTAL _LEFT-HAND _SIDE IS CALCULATED USING SURRQUTINE INTEGR
c

AND EVALUATED USING SUBROUTINE VALUE, AND THEM THESF RESULTS ARE

e G PRINTED FCR _COMPARISON WITH THE RIGHT-HAND SIDE OF THE EQUATION |

»0C83 D0 22 J=1,N
e e DO 23 I=102

0091 23 G{I,J)=C(1,J) .
«N082 _.__ 223 G(3,3)=xX{J). ,,.,.-._.A_N_w_.v_-___._,,____._ e - -
0063 . CALL INTEGR(G4MN,2,1) .
«00S4 _ ... CCALL VALUEINg 24N ”) e -
« Q05 WRITE(E,429)

e e e e e e = e -

C

____________ C oo = 2YY, - - o
e e e e e e e e e e e e e e -

C._. THE..SHEA&LREL.AXAII_ON.._MQDULUS AND __THE LOAD SERIES ARE TRANSFERRED _



........... L ..__.......b........_._-._._.........._......_.....'....-.w._.._.'-.-.__-._._...,._........_.-_...__..-----w-_——-——--._-.-._........-._......_..,........k.A
¢ ‘ , , :
e ] G e e S e
,0066 WRITE(6,6)(T(L)BETA(L),yL= 1,NNN)

c THE_QR IPINAL”JJFHT HAND_SIDE_OF_THE_ INTEGQALMEQUATIHN 1S EVALUAT

o AND PRINTED )
.co~1~u .......... 00 .31 J=1, mﬁ“___"_,____--___-*_,-~*,_“,*-~_,__~-_-«ﬂ~u-;m_ﬂgw__m-,_
10053 ' 00 31 I=1,2 . ] _
100059 - 31 BULed)=BB UL 0d ) o e
.0100 CALL VALUE({N,2,NNN) ' ' -
100100 e WRITEL6430) . . ) : : o -
10102  WRITE(6+6)(T(L),BETA(L),L=1,NNN) , - .
'e01C3 __ ___ L0C0. CONTINUE o o o o o o o o e e e e e e e e e e .
1e0104 24 FORMAT(1H /26H VALUES OF INPUT FUNCTIONS)
1«01C5 ______.25 FGRMAT(1H /30H SCLUTION OF INTEGRAL. EQUATION). . .
1e0106 26. FORMAT(1H /37H FITTED SOLUTION OF INTEGRAL EQUATION)
00107 o 29_FORMAT(LH /36H LEFT. HAND SINE. OF ORIGIMAL EQUATICN)
'.0103 30 FORMAT{1H /37H RIGHT HAND SIDE OF CRIGINAL EQUATION)
'e01C9 __ _____ 35 FORIMATA(LH /20H _INTEGRAL OF. G AND. K o o o o e e e e

- END : o
S o3 U
C
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MAIN PROGRAM FOR ANALYSIS OF PLATE

ON NON-LINEAR FOUNDATTON
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1

'THIS IS THE MAIN PROGRAM FOR THE ANALYSIS OF A LINFAR VISCOFLASTIC

PLATE ON A NCMN—LIMEAR VISCOELASTIC (W ITMKLER) EQUNDATION, THE

—C
C
C
c
= - :
' C NECESSARY SUBROUTINES ARE TIME, VALUE,AND INTEGR. THF CONVCLUTION -
C INTEGRAL DE THE PLATE COMPL TANCE AND THE FOUMDATION RELAYATIOCN
o FUNCTION 1S CALCULATED EXACTLY FOR THE DIRICHLFET SFRIES
C - RFODrﬂijAILfLS,USIUf IHE SURRIDUITINMNE INTEGE IHE MUMED T AL
C . SOLUTICGN OF THE INTEGRAL IS OBTAINED AT M70 VALUES OF TIME, USING -
C A_LQOG TIME SPACIMG,. AT _FACH STEP IM TIME THE QQIHTIPN IS ITECATED
c TO OBTAIN THF NOM-LINEAR SCLUTION. :
L0001 DIMEMSION A(40,40), WX{15,100]), F(R 70).0(100).D|(!S).X(401
.0002 COMACN T(100),BELTAL20) ,RETA(100),8(20, 70),51(100)
C MANN = TRE Nyvpee 0 SETS OF DATA
.0003 REAC(5,200) NMNN
Q004 200 _FEQEMAT(I1Q)
o "THE LOCGP THROUGH 100 IS EXECUTED FCP EACH SET OF DATA
L0005 D0 100 JTIIT1=1, 0NMMN
C - N = THE NUMBER OF GRIDS FROM CENTER TO nUTSIDE
C W= THE WINDTH GF FACH G2 1D, WwHICH WII1 RE CQWPUTFD 1€ MOT CIVF'
o CK1 = NUN-LINFAR PART CF SOTIL MODULUS
C P = | LCAD
C- NO = MAXI UM NUMBER OF ITERATIONS ALLOWED
C U = PLISSONS RATINO, TAKEM AS OO INM THIS AMAL YSIS
.0006 READ(S,10)Ns%y  HylU, CK1,4P,4N9
0007 10 EOEMATI(IS . 46F11,.5/F10.2,1101)
.00C38 WRITE(6,10)Ns%¢H,UyCKL,P4NO .
C NN _IS THE NUMPFEE CF TE8MS 1IN THE DIRICHIFET QFRIEQ REPRFSENTATINN
- c OF THE COMPLIANCL ANMD FOUNDATION FUNCTIONS
QC READ(5. 10NN
c N70 IS THE NUMEER OF TIME STFPS TO BE EXECUTED
L0010 PEAD(H.,1CIMT0C
C ;THE CCONSTAMTS FUR THE PLATE COMPLIANCFE SERIES ARE READ INTQ G(1, )
0011 READIS,14Q)(G(1,T),T=14HNY
: o THE CONSTANTS FCR THE FUUNDATICN RELAXATIOM FUNCTION ARE'REﬁD INT2
C IHE VECTINR G(2, )
»0012 READ(54140)(G(2,1)4I=1,NN)
L0013 WPITE(AL IO YMN
.C0l4 WRITE(G,12)INTC
L0015 WEITE(6 1460 LLGL] 1) T=1,0NY,)=1,2)
L0016 140 FORMAT(AF10.5)
C THE SUSPANTILE TIME CALCULATES THE M70 VALUES OF TIME_AND THE
c RELAXATIGN TINES OF THE SERIES REPRESENTATIONS.
L0017 CALL TIME(MTO)
- C THE VALUES UF THE PLATE CO”PLIANCE AT EACH NF THE TIMES IS CALC-
C ULATEC AND STCRED IN  THE VECTOR D( ) AFTFR REING _PRINIFN CUT, THE
o EVALUATINN OF THE SERIES IS PERFORMED IN THF SUBRQUTINE VALUF.
0018 NO_141 1=1,MN
.0019 141 B(1,1)=G(1,1)
LOC2N CALL VALUE(AMN, T ,MT7D)
L0021 h“ITf(6,1‘0)(1(L)y:ﬁTA(L),L—I,N70)
L0022 DO 142 I=1,K70 .
.0023 142 DUIV=RETA(I)
0024 _ WRITE(A,1£1)
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.

THE FGNVDIUTTﬂN OF THE rﬂﬂPLIANrF AND THE EOUNDATINN RELAXATION

FUNCTIGN IS PERFORMED USING THE SUBROUTINE INTEGQ, AND WRITTEN OUT
|ANP SIOPED _IM THE 8( , ) ARRAY,

SN OPon

125 "CALL INTEGR{G,NNy1,0)

126 WRITE (A, 1A0)L(RIT,40),1=1,2),.1= 1.m~
C  COMPUTE TOTAL NUMBER OF GRID POINTS

121 SUI=0

128, DO 211 J=1,NN i

129 211 _SHI=SLiTfGq12,..1)

)30 DO 164 I=1,2

231 £O 166 =1 ,NN

132 164 G(1,)=8(1,J)

1273 NN2=N/D

034" - ~ IR=0 .

0349 ' [E(ND2%2-NY12C, 11,120

036 120 ND2=KB2&1

037 00 12 J=1,M02

N038 12 IR=IRE2%J~1

039 . GO 10 13

040 11 DC 14 I=1,ND?

Q41 14 _IR=ILs2%] _
c COMPUTE GRID WIDTH IF NOT SPECIFIED, RASED ON AN APPROXIMATE

: f .DAQ[UQ_DF PELATIVE STIEENESS.

042 T 13 IFt4)L121,121,15 :

o Rl = RADIUS DF REIATIVE STIEEMNESS

1043 121 RL—(((H*H <) /(12 % (1o=U%U) £SUTI/DI(L) ) %%, 25)

1044 ANz )

1045 w=7.0*RL/AN

10446 158 _8F=y /v

04" BI=wW*FxHxH/12.

IHE  FULEXTRILITY COTFRICTIENTS ﬂIVTPFD BY THE PIATE MODULUS _ARE

c NOw CALCULATED USING A MNMENT DISTRIBUTICGN PROCEDURF,
C __CO¥PUTE MAMENT O[STLIRUTINAN EACTCELS -~

048 TIF{BE-1.5)122,122,16

049 122 1E(3F-,625317,123,123 }

059 123 BET =(WkH)%%3

051 . BIl=7. 1A% { b ) %RTE(], S1)

052 BET =oET /311

Q53 cg 10 12

054 .16 Wl=i

1055 Hl=H -

056 G0 TO 19

057 17 ¥i1=Y4

)058 Hl=d

059 16 BET =iuilsodlsepls () =, 63%H]1 /41 /(6% (] EH)*RT)

1060 18 BL=2./(4.8RCST )

: C COAPUTE_MOMENTS DUF IO UNIT NFEFL ECTICN AT POINT O

061 160 FORMAT(2E15.8)

1NA2 I1=.5=-R}

063 T2=T1%T1

1CA4 RI2=31 %72

1065 B2=BL*BL

O EA B3=3] B2

067 B3T2=i33%T2

s RI4=R1 #1212

1Cé9 BS=83%R2
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B4=82%B2

70

21 B2T2=02%T2

12 BT=BL*T1

73 B3T=B3I%T]

74 BT3=BT*T72

15 B2T=A24T1

76 B2T3=8T3%BL :

27 B4T=04%T]

78 N3=3#%N

29 DO 1 I=1,N3

80 DO 1 J=1,N3

a1 L AL, )=0.0

82 AN, N)“é.*( 8.86.”?Lh12.*3T2&l 5%B3EL10.*B3AT268.%BT4ER5)

93 AN, WMLV =6 *"l-—l £kl £.0625%38583,%¥03T2£2 (%RT4) )

84 AN, Nul)-b.*(Z. e TS HB2 = T5%H4~]1 . 5%B2T2E3 . %xBTEI . FR3TE3 . *3T3)

85 A(MLMNEB)V =6 K (  TOEXRIE 5H252RA5T ., 5FR2T2EL3 ,*BT3) .

86 A(N&l HE3)=6.%(02T*L .56R2T364R4T)

W4 ALN?‘.?,MR?):b-‘{(—'&-?!:&'[’;ﬁi.:u’{T?-—&-*QTla.)

83 A(NELINE2)=6.%(-1.5%BT-.375%833T-1.5%B73-2.25%B2T2)

29 AN NEL)=h k(= ,RT75%R3= 283852 %AIT2)

SO AINJNES)=.375%(2.%B4-35)

Qi A(NEY ,MEY) =63 (=3 %3272  75%R4T-6.%R2T32)

92 A(N&l,h&é) 6% (—1.125%B3TEL3T75%B4T)

C)_‘-i A(\!e) Me3)=6 F(2.8%R2T 2~ l."?a‘%_‘ﬂ'? 1.5%T7362,.%R2T3}

G4 RITE(64,20) NyIR, UsHy Wy 2L 4CK

G5 ]() Ff]')"l\T()lc‘«l]TﬂT\l METMBRED rr (,QIDQ =[12/1GH MNUMRER (F DDII\TQ =T/
1 17H PGISSNNS RATIO =F6.3/21H PAVEMENT THICKNESS =F1C.3 /17
2 WIDTH QF GRILCS =F11.4/7iH 10AD =F11.4/31H RADIUS 0F RFIATIVE STITIf:
3NESS =FE1l.4/17H EQUATION FDOR ¥ =F5.0,12H%(1.N~1.6%W))

Sh pa 2 1=1,5

57 J=N-1

s Ti=I¥fN

99 AlNsJI=A(N,TJ)

(434! Al BY=A(M,T0)

Gl 2 A(IJv'\)=A(NqIJ)

Q2 NI1=NsS1

c3 NM=N-—-1

Q4 DO 3 1=1,4

5 J=N-1

06 Td=1sM

G7 A(TJ,M1)=A(N],IJ)

08 Al{nM, Y= A(NYT LT

09 A(LJ,MM)I=A{NT,TJ)

10 A(NY ) =A(NT, T .0)

11 AlJyiuM) =A(M1,1Jd)

12 i AU\'N.TJ)=A(NJ.IJ)_

13 3 A(J:N1) =A(N1,1J)

14 NZ2=N§&2

15 Ni=N-2

14 A(N2?, ’f }=A(N?,12)

17 A(NN N "'I-‘(l'\::_)vl\i'Z)

13 AN, f"')-—A("'?.N")

13 N3=0L2

20 CNMI=N=2

21 A(N3,M2) =A(124N3)
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r . .
,C122 AIN3JNM)  =A(NZ24N3)
Nn123 AN AMYTY =A(M2,N2)
0124 A(NML,NM) =A(N2,N3)
0125 A(AMAMT) =A(N2,N3)
01 . A(NMLI4N2) =A(N2,4N3)
Q127 ALNM,N3)  =A(M2,N3)
0128 NJ=1 ' o .
C CREATE ARNRAY BY SUDPE2IMPASINMG A.MATDTX DYER FACH POINT OM CGPRIND
0129 NNN=2 %N :
0120 NR=N
0131 NS=N-1
0132 DO 4 I=1,1IR
0133 C=1.0 ,
0124 _ TE(ANNSNS=1)125,5,125
0135 125 NS=NSE1
0136 IE(NP=N)124,124,6
0137 124 C=.5
N1328 _IF(NY=1)126,127,124
0139 127 C=.125 _ .
0140 126 MJ=n
0141 GO TQ 6
0142 E NR=NEST]
0143 NS=NR" . .
0l44 NNN=NNN=] .
0145 C= .5
01446 L _K=D
0147 L=0
0148 Na=N
0149 LL=1
Cl! DO 4 11=1,10
0151 - NRK=NREX
pl1€2 MS] =NSE]
0153 - NRL=NREL
0154 NSK=MNSEK .
0155 NRMK=NR-K : : -
0156 NSHK=NS-—K
0157 NSML=NS-L
01eg MRML =NP -] v
0159 B{ITs1)=(A(NRVSNSL)SAINRLyNSKIBAINRMK,NSL)YSATNRL s NSMK) EAINRMK ,NSML
1) EALMRME JNSHKIEA(NPK oNSHMIE Y EA(NOME ¢MSK) Y %C
0160 . IF(NN-K-1)128,8,128
Qlel - 128 K=K&1
0162 GO TG 4
Qlez B K=11
0164 L=LL
01e5 NN=NMN—1
01¢6 LL=LLE]
0167 4 CONTINUE .

' C PUT B MATRIX (EQUATIUNS) IN A MATRIX, AND CREATE CONSTANTS COLUM
0168 11L=p . .
0169 P=Pkliky /P
0170 ALAM=(V3%6) /0]

- o AT THIS POINT THE FLEXIBILITY COEFFICIENTS HAVE BEEN CALCULATEN
Y C CANDG THE SGLUTTON. OF THE MATRIX FOUATIGMNS_ AT THE N70 TIMES RFCIMS,
017 DU 143 KN=1,K70
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SO0 D

BL1I=1.0
LLi=0

COMPUTE APPROPRIATE INTEGRALS

DO 146 J=1 4 KN

Tl=T(KN)-T(J)
BETA(J)=0

14

DO 146 I=14N

BETA(II=RETA{JIEIG(1, 1 )8G{2, 1 )*xT1 )P XP(=DFE]LTA{J)T1)

THE EFFECTIVE LOANS ON FACH NUDE ARFE

CALCULATED AND STORED

1

PL () AND PRINTED NIT.

IF(KN=1)151,151,152
DO 153 [=1,1[F

Wil =WX (T 9 KN=1)% (1o +CKIRWX (T 4KN=1))
PL{f)=— Gl {BETA{KN=-1)—RETA(KN})

154

IF(K=-2)152,153,154
DO 155 J=3,KN

WW=aX (1 pJ=1)= (1 +CKI=WX(T,,J=-1))

155
153

Wl WXL g J=2)0 (] 4 +CKIEWX (T, =2))

PLID)=PLLI)—aos(WW+WWW )X (BFTALJ=-2)-RETA(J-1))

P {1)=DIl (T)xA] AN

151

CONTINUE
WRITE(64162)V(PL (1 ), =1,1R)

162
21

FORMAT(OELS.R)
LdK==1

LLL=LLLAL

THE (FLEXTATLITY) ARRAY 1S TRANSFEERED TA THE B ARXSAY FOR

N EIRE RN

DC 22 I=1,1IR
DO 22 J=1,1IR

A(T,J)=B(I,J)
IE(RI1)}129,129,56Y

THE TERMS OM THE DIAGONAL MUST BL CALCULATED
ENTER HERE I£ O SECONDLETC. ITERATICN

129

DO 24 TI=1,1IR
X(1)=A{T,IR+1)

149

IF(KN=-1)148,148,149

AL o I)=ALT o I)=AL AME 5% (BETA(KN) +RETA{KN=1))%(1.+CKI*A(],IP+]))

148

GU T 24

AT I3 =A(T,T)-ALAMEBFTA(T)*(1 +CKI*A(T,TR+]1})

24

AT, TR+1)=PLI(T)
A(1,IR+1)=A{1,1RP+]1)-PX¥D{KN)

GO TO 25
ENTER HFRE TF UN FIRST TIME THROUGH

566
144

IF(KN—1)23'2’5,144
Bl l=—1.0

DO 147 I=1,1IR

ALL  I)=ALT1, I)—ALAME, SX(3ETA(KN)+RETA(KN=1) )* (1o +CKIFWX(],KN=1))

147

X{1)=0.0
AT, TR+1)=PL (1)

AT IRFL)=-PHDIKN)+A(L,IR+1])
GO TC0 25

23

BL1=-1.9
DO 26 I1=1,1R

AT yT1)Y=ALT,[}-ALAMEBETA(L)
X(I1)=0.0

26

A{TI,IRA1)=0.0
AL, IR+1)==PxD(])
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0221 25 NMl=]n-1

1.0222 ERR=.001

0223 _ _Ml=zIRE1 : '

— Cc SOLVE EQUATIONS USING GAUSSIAN ELIMINATION

0224 NN 234 K=1,NM]

101225 BL=A(X,K) . -

L0226 TE(ABS(RLY = FEPR) 133,120,218

0227 13C K1=Ki1l ’

0228 N0 29 I=%1,IR -

1«0229 : IE(ABS(A(I,K)) - ERR)29,29,30

0230 26 CONTINUE

«0231 WRITEZ(6,51) ERR , - *
C IF ERD IS PRIMIEN, MATRIX IS SINAOULAR

+0232 51 FURAAT(LH F16.8)

<0233 cO_Y0O 100

0234 30 DO 32 J=K,Nl

0235 RL=A(K, 1)

0236 AlKyJd)=A(1,J)

0237 22 AlT,J)="01

.0238 " BL=A(K,X)

023G 28 D0 33 1=K ,N}

.0240 33 A(K,I)=A(Ky1)/BL

L0241 K1=K£&1

«0242 DO 34 I=K1,IR

0243 _BI=ALT,E) .

0244 DO 34 J=K,N1

0245 34 AT, 0)=A(T,0)=Pl %A {K,0)

.0246 A(IR.&1)=A(IK;NI)/A(IR,IR)

L0777 DO 35 KK=1,KEM]

.0248 K=1R-KK

20249 Kl=K£1

.0250 B0 37 J=K1l,IR :

20251 37 ALK NII=A(KMI)=A(K  JYEAL ) NT) :
c CHECK THE RELATIVE CHANGES IN EACH DF THE DEFLECTIONS COMPARED
C I0 THE PREVIOUS ITEIATION, STORING 1IN | UK IF THE CHANGE IS T1°(,
C LARGE.
C COMTINUE TTFRATTING ONIY IF HAVE NOT ITTFRATEDR M9 TTIMES YET

0252 IF(ABSIX(K)=A(KyNI))I/A(KyNT)) - .001)35,35,132

0253 132 1 JK=1

.0254 35 CONTINUE

.0255 WRITE(6,26 111 o (A(T M), 1=1,1IR)

0255 36 FORMAT(1H T11G/(01H 6F15.3))

20251 IE(1 AK)111,133,133
C LJK. WILL BE NEGATIVE ONLY wHEN ALL THE RELATIVE CHANGES ARE LESS
C THAN L0Q1 . .

.0258 133 IF(LLL=-N9)Z21,134,134%

20259 1234 YWRITF(A,&4) 111 -

. 0260 44 FORMAT(22H NO CCNVERGENCE AFTER I1248H CYCLES.)

L02¢61 111 YRITE(A,215)T (K

0262 215 FORMAT(8H TIME = E15.R8)

L0263 * WRITE(¢,114)

L0264 114 FORMAT(236+3 DEFLECTION DISTANCE FRQOM LOAD)

0265 DO 112 IX =1,/

—

POPPOPDO
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O MO

Q244 ‘ ALY 1Y ]

02631 P S=EATX

0D2¢ 113 FORMAT(ELA  8,5X,F7,.3})

0269 BXX=A{IX,N1)

02720 112 VRITF(A,113) PXX,S

0271 _ DO 156 1=1,IR

0212 156 VXL KPY=A(],104¢]1)

0273 143 CONTINUE _ : o

Q274 100 CONTIMNUE .
END. -

-220 -_

nhmnhnﬁnﬁnﬂn—wnﬂnhﬁnnﬂnﬂnﬁoﬂnﬁnﬁnL‘nﬁn—vn‘ﬁﬁ ~hoPhobo sXzXa Bl




MAIN PROGRAM FOR HALF-SPACE

ANALYSIS USING NUMERICAL INTEGRATION
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THIS IS THE MAIN PROGRAM FCOR THE ANALYSIS OF A THREE LAYER HALF-

TSPACETTUINEARTVISCOECASTTICI UNDERTAUNIFORM-CIRCULAR—tBADy—FOR—THE—
CASE THAT THE MULTIPLE CONVOLUTICN INTEGRALS ARE EVALUATED BY

NUMERTCAL T INTEGRATIONT—THE NECESSARY SUBRCUTINESTARETIMEL—VALYEF—
INTEGR [NUMERICAL), SOLVIT, TERPO, AND THE FUNCTION SUBPROGRAM

BESStL T AUSU REQUIRED T S—SUBRIUTINE TNPUT
TO BE READ IS IST, Hy A, Ry DEL, 2Z, ILAYER,

IDEFUET IDCUBLy "Ny NNNT AND G35 IST IS A DUMMY—WH FEH-TBGETHER——
WITH IDEFLE DETERMINES WHICH STRESS CR DISPLACEMENT IS TG BE

ﬁ(‘iﬁf‘lﬁ(‘ OO0

CALCULATED —IST IS I FCRETTHERNORMAELSTRESSOR—NORMAL-DEFLEC—
TION, IS 2 FOR SHEAR STRESS OR RADIAL DEFLECTION, OR IS 3 FOR

—CTTTTRACIAT STRESS e H I STTHETHICKNESSOF—THE—SECONDOEAYER—{THE-THIEK—

C NESS GOF THE FIRST LAYER IS TAKEN AS UNITY). A IS THE RADIUS OF
C THE T OADECAREAT RIS THE OFF~SET AT HWHICH-THESTRESS—GR—DEFLEE—
C TION IS -TO BE CALCULATED. DEL IS THE INITIAL SPACING IN TIME.
C 7 TS THE DEPTH AT WHICH THESTRESSORDISPLACEMENT—IS—DESTPEDT
C ILAYER IS THE LAYER OF INTEREST (1,240R 3). IDEFLE IS 1 IF A
C- DEFCECTION IS T BECALCULATED T ZERECTHERWISET—IDOUB LE-IS—THE——
C NUMBER OF TIMES THE INTERVAL OF TIME IS TO BE DOUBLED. N IS THE
C NUMBER—OFTERMSTIN THEDIRICHEET SERTESREPRESENTATION CFTHE —
C “INPUT CREEP FUNCTIONS (SERTES HAVE BFEN USFED HERE, BUT ARE NOT
C NECESSARY WHEN-USIMGTHISTECHNTQUE Y+ NNN—T1S—THE-NUMBER—DFTIME—
C POINTS TO BE USED IN EACH LOOP. GI( o ) CONTAINS THE CONSTANTS
C FOR—THESERIES REPRESENTATION—OF—THFCEREEP -FUNCTIBANS
C TAINS THE CREEP FUNCTION FOR THE FIRST LAYER, ROW TWO THE CREEP
C rUf\CT“f?V"FGR“TH&’SE‘CB'\H)_tAYFRT_‘»&NHCH‘3 THE-CREEP—FUNETTONFOR—
C THE LOWER LAYER.
C THE CUTPUT FROM—THIS PROGRAM—TS—THEVALUE— Of_“‘“FHc_QESIRF_}_STRESS—Ol““
C DISPLACEMENT FOR THE DESIRED TIMES (ASSUMING A LOAD OF UNIT INTEN-
|98 Jl"o
»00C1 DIMEI\_)IUN El(él) E2(61),E3(61) GAM{61+7418)Y9E(T451),G(3,20),
EMEI3 )7 BESSStSH) : 1Sff(f3 61 ST HE3v61 ) S35 RESSHOHH—
vZPH(IB),PHJ(IB)yTH(g)
00C2 COMMONBETA{G I +B {8y 20 )5 DELETA(20 )T {6 s MNySH61 5T
C THIS LOOP ALLOWS MULTIPLE SETS OF DATA TO BE HANDLED.
T0C03 DO—1CCC—THTI=1+5100
. 0004 REAC(5451)}IST4H,A,R,DEL,72
0005 READUSv20)—TEAYERyIDEFLESTDOUBL
. 00C6 WRITE(E,101)ISTyH ARy DEL,212Z
;0007 — TCI—FORMAT(IHIST ="15/264 SECOGMDLAYER—THICKNESS—=—FE1538/
118H RADIUS CF LGAD = E15.8/11H OFF-SET = E15.8/
2 oH—IWNTTIAL—SPACING—="E15+8/SHDBEPTH—="FEL5:87
. 0008 WRITE(6,102)1LAYER,ICEFLE,IDOUBL
0009 102 FORMAT{IIHLAYERNO I3/ 10OH—IDEFEE—="T13/
133H NC. OF TIMES DOUBLING INTERVAL =13)
70010 ST FORMAT(IS/SFLECTS) ) '
C THE DUMMY IGWA IS SET EQUAL TO 1,243,5y 0OR 6 DEPENDING ON WHICH
C STRESS S—FS—FOR—INPUT—TINTUO—THE——
C - SUBROUTINE CNSTNT. ,
70011 IFCICEFLEYS23yS2753
.0012 52 I0OWA=IST
0013 GO0 10754 —
» O G 53 I0WA=481ST .
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0015 54 CONTINUE . "
— C iﬁB‘fS'K—CUMW?“SET‘F‘?ﬁt—fﬁ—fER&‘%EFGRE“THE‘FTRST‘EGUBtiNG*tﬂﬁP—————
C BUT MADE POSITIVE THEREAFTER. ‘ .
SO0~ 1DB8=0
1«00t READ(54520)NyNNN
001820 FORMAT{S5TSY
.0019 . READ(S, 40)((C!I,J) J=1,N),1=1,3)
00204 CFORMATtTEFI0T5Y)
0021 WRITE(6+42)((GlI,J),J=1,N),1=1,3)
20022 —2FORMATt2TH-INPUT RECAXATION—FUNCTFIGNSA{6F 10551}
g - C. N10 IS USED TO BEGIN CERTAIN DO LOCPS. IT IS 1 FOR THE FIRST
C UGUBtTNG‘tﬁOP—”ﬁNﬂ—EQUAL TE—NNN/262—THEREAFTERS

«0023 N10=1 . :

NX— IS DUMMY—USED—AS—INPUTTO—THESUBROUTENE—TIMELs—FF 11§

2ERQ, THEN THE INVERSES OF THE RELAXATION TIMES WILL BE COMPUTED

ANE—STORED—IN-DELTAt— )+ HF—FF—TS—NON-ZERO—tEVERY—LBBP—EXCEPTTHE—
FIRST) THE DELTA( ) VECTOR IS NOT RECOMPUTED.

—NX=0 '

STATEMENT 69 BEGINS THE LOCP WHICH IS REPEATED EACH DOUBLING.

FIRSTTHE T IMESARDDELTAt— I VECTCP—ARE—COMPUTEDS

«0025 ‘66 CALL TIMEL{NNN,DEL,NX)

' THE—SERTES REPRESENTATIONS OF EACH-BFTHECREEP—FUNCTIONS—FS5—TFRANS—

oo OO0

|9

: . C FERRED TO THE B( , ) ARRAY AND EVALUATED AT EACH TIME USING THE

—C" SUBROUTINEVALUET—THEN—THESE—RESULTS—ARE—STORED—IN-EI-t—v—E2
c OR E3( ). '

<0026 D04 =153

.0027 D0 42 1=1,N

<0028 42 BT H=GtI5 1T

. 0029 CALL VALUE(N,1,NNN)

00,0 DO 43 T=T7NNN"

.0031 IF(J-2)44,45,46

S0032——— 44 ETCTr=BETAtT)

.0033 GO TO 43

7003445 E2t1I=BETA LD

<0035 GO TC 43

7003646 E3tTI=BETAtD)

.0037 . 43 CONTINUE

003841 CONTINUE

c THE VECTOR EM{ ) PROVIDES INTERMEDIATE STORAGE FOR THE VALUES OF -
€ FHE- DUMMY—ENTEGRATION—VARTABLEM—THAT W Lt BEUSEDv—THESE-VALYRS—-
C ARE Oay o2y ots o7y 10y 2.0s 3.0y 4.04 5.0, 6.0y, 7.0y 8.0y 9.0.
<0039 EM{I0=630
.C040 EM(11)=7.0
w0041 EMtT2)=230
.0042 EM(13)=G.0
C THELCOP—TOSTATEMENT 3—FSEXECUTEDFOR—EACHOF—THE-PESSIBLE
c COMBINATICNS CF THE FIRST FOUR CREEP FUNCTIONS FOR THE MULTIPLE
C CONVOLUTIONTTNTEGRALSS '

.0043 DO 3 I=1,9 .
' EACH—VA LU E—EF—THEAPPRIOPRTATE—CREEP—FUNETION—TS—STFORED—TN—FHE—

(9
c THE PROPER RCW OF THE E( 4 ) ARRAY.
<004% DO—19—J=TyNNN
: c THESE TESTS DIRECT THE FLOW TO THE PROPER ARRANGEMENT GF CRFEP
— (& FUNCTICNS® -
a00 15 . IF(I-2)445,15
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1046

aoac

15, 1F(1-4)647,16

JO37T 167 IFtTI=6¥3797 17
Y04 8an 17 IF(I-8)10,11,12
T T SOMETCF T THETEMET Y VECTOR VA L’UES‘—AF*E—'H ttE D‘—I N‘Th‘I S—PHA: Sf—ﬁ ES G——
3049 4 EM(I)=0. A _ '
JOEU ECIJI=E2(
JO51 E(2,J)=E2(J) ~
JOg2Z Et35J71=E2(3)
D053 El4,J)=E2{J)
J05%4 —GOTO 19
0055 5 EM(I)=.2
005€ AP REITATR]
0057 E(2,J)=E2(J) ’

UUSS“ETT‘J’T"T:[IJY

0059 El4sJ)=E3(J)
00&C GO—TO 19
00¢€1 6 EM(I)=.4
0062 —E =T
0063 CE(2,J)=E2(J)
00€4 Et37=E2t3)
0065 El4,J)=E2(J)
0066 GU—T6—19
0067 7 EM(T)=.7
008 ECIIT=ET
0069 E(2:4)=E2(J)
0070 Et3vHI=E2tS}
0071 El4,J)=E3(J)
00266 T619

00. g EM(1)=1.0
0074 Et Ty r=E21{1)
0075 E{2,J)=E2(J)
0076 —E37ITES )
0077 El4,J)=E3(J)
0078 — GO~ TG 19
0079 S EM(1)=2.0
0080 Bt Iy =Ert)
0081 E{2,J)=E2(J)
0082 3 H=E3 T
0083 El4,J)=E3(J)
0084 60-TC—19
0085 16 EM(1)=2.0
0086 EtI7II=ET )
0087 E(2,J)=E1(J)
0088 3y =62t}
0089 El4,J)=E2(J)
005G 60—T0— 19
0051 11 EM(1)=4.0
0052 —Et 3 =61
0093 E(2,J)=E1(J)
0094 Et3vUT=E2tUY
0095 El4,J)=E3(J)
0056 6O—TE—19
0057 ‘12 EM(1)=5.0
00 3 ECLTd T =ELtd)
0059 E(2,J)=E1(J)
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.0100

E(3,J)=E3(J)

<0101
.01C2

19

Etay =3
CONTINUE

AT THES POINT;FOR—THE—PARTICULAR—I—BEING— EXECHTEDT—HAVE*STCRED——‘~v
THE PROPER FIRST FOUR CREEP FUNCTIONS IN THE FIRST FOUR ROWS OF

THE Bt 7V ~ARRAY T —THE REMATNING RO

Wit BE-FILLED-BR—
NOT FILLED DEPENDING ON WHICH LAYER AND OR WHETHER A STRESS OR

DEFCECTION TS DESTREDT—THEN—THE MU TP EECONVELUTEON—INTEGRALS
WILL BE CALCULATED ACCORDIMGLY, USING THE SUBROUTINE 'INTEGR.

L

<0103

TFUICAYER=2)22723723
IF IN THE FIRST LAYER, NEED ADD ANUOTHER CREEP FUNCTION ONLY IF

.01C4

OO0 o000 o0 0

22

DOING A~ DEFLECTTIONS
IF(IDCFLE) 24,424,425

I'F nuT—DCING‘K‘DEFLECPYG\“"%UT‘TN‘Ffﬁ%%‘tﬁYFQ“*?HEN“HAVE“SNLY—0~————~
THREE-FOLD CONVOLUTICN INTEGRATIONS IN ALL. OBTAIN THE I TH ONE

-OIOS___“___2¢‘CAtt“TNTECthIG_N\w,E Cﬁ” TIv3)

aNeXaXe

AT THIS PCINT USING SUBROUTINETINTEGRTSTORINGTHERESULTIN
GAM( 4 1),

o * MAX IS THE NUMBER CREEP FUNCTIONS INCLUDED IN THE *DENCMIMATOR!
€ MULTTIPLE CERVELUT IO INTECRALS T M IN—THENUMRER—FN—THOSE—BF—THE—
c 'TNUMERATOR' AND IMX IS THE NUMBER CF DIFFERENT INTEGRALS IN THE
C —INUMERATORS? :

.01C6 MAX=4

0107 [HMx=9

.0108 MIN=4

- C METEQUALTTUIMXS
.01C9 M6=9
TO1T0 GO TO 50
o c IF IN FIRST LAYER AND DOING A DEFLFCTIOW, MUST ADD THE CREEP FUN-

— C THON " OF THE FIRSTLAYER—TO—TH THE—*NUMFRATOR—HAS—
o ONE MCRE INTEGRATION THAN THE 'DENDMINATOR' IN THIS CASE, SO MIN
C IS UNEGREATERTHANTMAXS

0111 25 MIN=5

J0112 MAX=%4

.0113 IMX=9

L0y DO 38 J=17NNK

0115 .38 E(54J)=E1(J)

TOTl6 CALETINTECRINIOYNNNT T GAMT T4}

L0117 M6&=9 '

LO0rts 60— TU—50
c IF ENTERING STATEMENT 23, AM DOING SECOND OR THIRD LAYER.

S0119— 23 TF(ICEFLR) 26526727 -
C IF DCING A CEFLFCTICN, THEN MUST PUT EITHER THE CRFEP FUNCTICN OF
€ THE-SECOND—LAYEROR—THIRD-LAYER—INTE—THE THI-S—F
o PUT INTO ROW SIX BECAUSE ROW FIVE MUST BE FILLED (BELOW) WHETHER
C DGINGA—STRESSBR—ADEFLECTFICNS

.0120 27 MIN=6

J0121 MAX=5

.0122 IMX=18

T0123 f16=18

.0124 . IF(ILAYER-2)28,28,29

J0125——— —28 D030 -J=13NNN

.0126 3C E(6,J)=E2(J)

0127 GC—TC-31

0. 3 29 DO 32 J=1,NNN

!
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C

10129 32 El64J)=E3(J)

. 0130 ‘ GO TU 31

«0131 26 MIN=S

 s0132 MAX=ES

o 0 ™23 IMX=18

YL M6=T8 ) — : ; : »
C THE *NUMERATOR' FOR THE SECUOND AND THIRD LAYER RESULTS CONTAINS
C I8 CTFFERENT  INTEGRALS e THE FIRST NINEARE-THE SAME—AS—THOSE—TN—
C THE *DENOMINATOR' IF DOING A STRESS. THE SECOND NINE HAVE THE
C FIFTH CREEPFUNCTION " EFQUALTOE {1 RATHER-THAN-E2(—)=
c THE LOGP TO 33 PLACES E2( ) IN ROW 5 OF E{ 5 ) AND THEN THE FIRST
C NINETINTEGRATIONS AREFCARRIED OUT+——IF A DEFLECTIONISBEINGDONEGT—

- C THE 'DENOMINATOR!' INTEGRALS WILL BE. STORED IN THE GAM{ , 4MI)

- C ARRAYAS WECT—AS—THE— VU‘&ERﬁ‘TGR"ﬂ"E‘Sb‘t‘T‘S

10135 31 00 33 J=1,NNN

<0136 33" E(SyII=EZ2T)

1«0137 MI=MIN-1

0138 CALLINTEGRENTOTN NNTETGAMT I MT)- ,
C NOW ‘RCW 5 OF E( 4 ) IS REPLACED WITH E1( ), AND THE SECOND 9
C INTEGRALS ARTCALECULATEDS -

.0139

DO 34 J=1,NNN
<0140 34 Et553r=ELtd)
10141 I1=1&9
=042 CALETINTEGRINTIOTNNNT By GﬁM,II,!“‘ai}
«0143 50 CONTINUE
SOG4 3 CONTTINUE
Cc AT THIS PCOINT ALL OF THE RELEVANT CONVOLUTION INTEGRALS HAVE BEEN
C LAtCUt‘A‘TEﬁ’AT‘.O“STaRED‘_IN‘”fHE—GA“H_} ARRAYS
«0145 MN=N1C ’ _
— C THELOGPTHROUGH STATEMENT T SOt VES—THE-TNTEGRAL—EQUATTON
: C FOR EACH OF THE 13 VALUES OF THE DUMMY INTEGRATION VARIAEBLE M.
<04t PO T K=1513
<0147 EMM=EM(K)
C THECUNSTANTS FOR—THENUMERATER——STORED—IN—THE-VECTOR—PH{—)}—AND—
C PHJ( ))AND FOR THE DENOMINATOR (STGRED IN THE VECTOR TH{ )) ARE
C COMPUTED FCRTHISVALUEOF M3
20148 -CALL CNSTNT(EMMyHy2ZZ+I0WA4PH,PHJ» THy ILAYER)
S0t49 D8 3027302363
C ON ALL EXCEPT THE FIRST TIME THROUGH (WHEN IDB 1S ZERO) EVERY
€ OTHEROFTHELATESTVALUES OFTHESOEUTTION—VECTOR—FOR—THIS—M—MUST—
c BE STORED IN THE FIRST MN1 LOCATIONS OF THE SCLUTION VECTOR SI( ).
on THESERESUL TS HAVEBEEN-"STERED—TN-THE-KTHROW—CFTHE-ARRAY—STHt—}+—
«0150 303 MN1=N10-1
015t DO361T—33=17¥RL
«0152 KK=2%*%JJ-1
0153301 STtJU)Y=STTK7KK) ' —
C "THE SCLUTION 1S CALCULATED FOR THIS VALUE OF M AND STORED IN THE
C VECTOR—STI{( )
0154 302 CALL SCLVIT(NNNyPHyTH,GAM,IMX,9, I"If‘« MAX)
€ lHL“F‘ESULTS"FLR‘"THfS“VAtUE’*Br—"d-'ARE—TRAP»SF'EQ'%‘:B’“F\‘TE}——'H‘F—*FT}-'—RG*——*“"
C OF THE ARRAY SII( , ).
70155 DC—57 " T=17HNNN
0156 57 SII(K,I1)=SI(I) .
70157 IF(IST=3)1111v58758
- :
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WHEN DOING THE RACIAT STRESS{TST EQUAL—TE 3 MUST—SOLVE-THWE—SEFS—
- OF INTEGRAL EQUATIONS. THE CONSTANTS FOR THIS CASE ARE IN THE
‘VECTUKb‘VHUTfT—tNﬂ—Tﬁf‘T——““THE‘?REVT&&S‘S@FUFfGNS‘ﬁRr IN—FHE

ARRAY SIITI( s ) AND THE NEW SOLUTICONS WILL BE STORED THERE.
_0158—-———~58_TFfT037}049369,5UD -

aNasNaNaNa N

.09 305 MN1=N10-1

. 0100 D306 JJ=TyMNT

.0161 KK=2%JJ-1

cOTEZ 306 STII=STTH{KTKKY '
0163 - 304 CALUL SOLVIT(NNMNN,PHJ,»THGAM,IMX,9,MIN,MAX)
Olt4——— DO 60 I=17NNN

.0165 - 60 SITI(K,I)=SI(I)

0166 TITI CONTTINUE :
IF ON THE FIRST TIME THAOUGH} MUST COMPUTE THE APPROPRIATE BESSFL
TERMMULTTPLTERS T ITFON—OTHER—THAN—FIRST DOUBEINGtLOBP—TRAMSFFR——
DIRECTLY TO THE INTEGRATICN WITH RESPECT TO M. THIS IS DONE BE-
GINNINGWITH STATESENT —TOUNLESSAREDOING RADIAL—STRESS—IN—WHICH—
CASE IT IS DCNE BEGINNING WITH STATEMENT 272.

.0TE7 IFtI0B)26972¢Sv270
.0168 27C IF(IST-2)70,70,272
ENTfQ“STKTEHENT‘?69”8VtY—BN“FTRST‘B@ﬁﬁtﬁNG‘tﬂﬁo—fTQB—‘-ﬂ1.

DEPENDING WHICH STRESS OR DISPLACEMENT IS BEING DONE, A DIFFERENT
BESSECMULTIPUTER TS USEDT—IFDOTNG A DEFLECTIONT THEBESSFE——
TERMS ARE ALSC DIVIDED BY M (WHICH IS THE PURPQOSE OF DIVIDE)

. 0T69— 269 CIVIDE=TS

.0170 IF(IST-2)78,79,78

(aNeNalsNal

OO0

C 1H%'FTRST‘BESQEt‘TE?V‘f?“#fTT‘FﬁR*%HEA“‘STRESS—O%*?ADiAt~QEFLEF—————-
c TION. IF IS J(O0) OTHERWISE. IDEX STUORES 1 OR O ACCORDINGLY.
C TF RIS ZERDYy THEFIRST BESSEL TERh—fﬁ“iERG—%F-#trr*ANB—T—fF—ﬂfﬂ)——~—
C AND THE TM1 TERM IS SET ACCORDINGLY.

oA G1DEX=1

01,2 TM1=0.

TO113 —GO—TO—8C

.0174 78 1DEX=0

0175 TMI=1~

0176 80 IF({IDEFLE)R]1,81,82

' C xF—BﬁiNG‘ﬁ—SThFSS*“THEN*THE—tiMIT—CF-drf“k*‘AS_*—%ENBS~*8—%ERﬂ—f&"—*>

C ZERQ.

TOTTT—— 81 RESStII=0.

»0178 GO T0 83
C IF 601NG“K”CEthCFIONT*THEN—THE-tT*ff—BF“dlFMA}/M—&S M TENDS—TG—*—*~—
C ZERC IS A/2. .

O 82 BESStIY=A/2%

0180 83 DDO=0.
C OOC“TS*EQUAt—Tﬁ“M*“THG-BESSFt—“Ut?!PtIERS"AR:*GﬁLC%LATEH_AF—4%~—-~—*
C POINTS SPACED .1 M APART FOR USE IN SUBROUTINE TERPO.

0181 D066 T1=2591

0182 DDD=CDDE.1

0183 _ ' RM=R=0DD

0184 _ - AM=A%[CDD

RIS ZER D7 THE-FIRSTTERM-NEEO—NGT—BE—CALCULATEDUSTNG—THE
FUNCTION SUSPROCGRAM. _
IFtRM=70001) 84784785
THE BESSEL TERMS ARE CALCULATED USING THE FUNCTION SUBPROGRAM
BESSELyTHENMULTIPLIED TUGETHER—AND ~1F-DOING—A-DEFLECTFON-ARE—————
DIVIDED BY M. THE RESULT IS STURED IN THE VECTOR RESS{ ).

‘0185
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C :
5.0186 85 TM1=BESSFL(IDEX,RM)
5.0187 84 TMZ=BESSECTI T AM)
5.0188 IF{IDEFLE)B6,86,87
§.0189 BT OIVIDE=COD :
5.07°9 8€& BESS(I)= TV1+TN2/DIVIDL
(o 1F“DUiNG‘RﬁﬁIAt—STRESS—tYST*3T—HUST‘COMPUTE‘#'SECGND—BESSEt-“——-—-—
C MULTIPLIER. THIS IS STORED IN THE VECTOR BESSS( ) AND IS CCMPUTED
C INTANTANATOGUUS MANNERS
5.0191 IF{IST-3)70,71,71 '
C lHE‘tT#TT”ﬁF—jrtT?TJT(NArfﬁk"ﬂS-W-TEN&%-TO-%ERB—iS—ﬁLWAYs—ifRG——————
5.01¢62 . .71 BESSS({1)=0. .
0193 DCO=0~
5.0194 RR=R
550195 DO TT1=2791
5.0196 DDD=DOCND& .1
§5CIS7T— RM=R=*D00
3.01¢8 AM=A%DDD
C THELIMITEF— Jt(MR#JI(%A)/VR—#S-R—TENOS—TG—ZERG—f%*Mﬂl(#Aer—M—————*
3.0199 IF{RR— .0001)271y271,76
S202C0 271 TMI=Co07/2>
5.0201 R=1l.
3.0202 GC—T0—577
5.0203 76 TM1=BESSFEL(1,RM)

550204 STT TM2=BESSEU(T7AM)

3.0205 77 BESSS(I)=TM1*TM2/R/DDD
C CONTRULENTERS—AT-STATEATNT 272 ENEY—HHEN—DAENG—RAD FAL—STRES S+
c IN THIS CASE, MUST CARRY OUT TwWO SEPARATE INTEGRATIONS WITH RES-
C PECT 1O My ANDADDTHE RESULTSTEGETHERS
c THE INTEGRATION MUST BE EXECUTED AT FACH OF THE NEWLY CALCULATED

- C VALUES OF TTHETNNN—SUCHVALUES EBRNKN-MNET—VALUESS)

3e02cub 272 DO 72 TI=MN,NNN A
C THE I3~ SOLUTIEN VAU ES 13— VATUESBF—MI—ARE—TRAMS FERRED—{ FOR—BNE—-
c TIME) INTO THE VECTOR S( ), FROM THE ARRAY SII( , ).

10207 D073 U=1713 - v

1«02C8 73 S(J)=S11(J,1)
c THE“SGLUTTCN*FOR“THTS—TNTEﬁRAt‘FPUﬁTIGN‘iANO‘THF—MULTIPtIER
C BESS( )) IS CALCULATED USING SUBROUTINE TERPO AND TRANSFERRED INTO
C WIl= ;

10209 CALL TERPG(S,BESS)

s0210 WRITEC6TTOIIWTE

10211 KWII=WI

' c |HE—i3‘VAtUES‘FFB*—STfo———ﬁ—ﬁRE—¥PANSFERREB—fhTB“Sf—ﬁ—ﬂND~¥HE“—————

c SOLUTICN WITH BESSS( ) IS CALCULATED AND ADDED INTO WII. THIS IS
C THENMULTIPETEDEY A AND—PRINTED—QUTWITH—THE—TIME—THE-TOTAL —
C SCLUTICN FCR THE RADIAL STRESS AT THIS TIME).

w0212 DO~ T4 J=1713

140213 74 S(J)=STII(J,I)

e 021% CAtL—TERPB(STBESSS)

100215 WRITE(6,7C1)WT

0216701 FORMATCELST8)

10217 . WII=WIEWII]

%0218 WIT=%WEI+A

10219 72 WRITE(6,63)T(T1).WII

0220 GO—T0—75

S
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CGNTRﬁt’ENTERS‘ﬁT”STﬁTEMENT“?O“FOR‘ﬁtth%GEPT*RADFﬁt —STRESS+—THE—
INTEGRATIGN QN M IS NUW CARRIED OUT AT EACH OF THE NEWLY CONSID-

aNeNeNeNeX

T EREDTTIMESS
35.0221 70 CO 61 I=MN,NNN
- C THE I3~ VALUES OF THE SELUTION AT EACH—TIME—FOR--THIRTEEN VAtUES
. c OF M) ARE TRANSFERRED INTO THE VECTGR S{ ).
5.0222 CO 62 3J=1713
5.0223 . €2 S(J)=SIIlJ4, 1)
T NONE—OF— THESF“SOEUTIC“S“CHﬁﬂbE—SfCh“ﬁFTER—THC—FiR%?‘%*P@fﬂ?ﬁ—fﬁk—-~—
c IF ANY ARE FOUND THAT DO CHANGE SIGN AT LARGE M (DUE TO ROUND-OFF
C tRRORS‘TN“THE‘SU?RCUTI%E”ChSTNT%‘THEY‘ﬁRE“ZERGED.
3.0224 DO 705 J=4,13 .
50225 RSO =S 0=117067 706,705 - -
5.0226 7C6 S(J)=0. - ’
50227 1C5 CONTINUE . -
. c THE TOCTAL SOLUTION IS COMPUTED USING SUBROUTINE TERPO. IT IS THEN
~ —C MULTIPLTEDBYA—ANDPRINTED—WITHTHETIMES
5.0228 CALL TERPC(S,BESS)
35.0229 WI=WIFA
5.0230 61 HRITE(6, 6?)T(I)9h
5.022r €3 FCRMATESHTIME ETS857 12 SCEUTIEN—="E15+81
c NCOwW MUST REJECT APPROPRTATE VALUES AND RETURN TO THE BEGINMING OF
C THE COUBLING EOCP—(STATEMEN T 69— TFHAVE NCT-DOUBLEDA—SUFFICIENT—
c NUMBER OF TIMES.
T O IO TS I MNCREASED  BY I EMAKI NG T I T PG ST T HVEAFTERTHEFIRST—HEBOPY—
C AND N1O IS COMPUTED FNR THE SECOND AND SU3SEQUENT LOOPS.. NM1 AND
C NXTAREGTVE APPRCPRIATEVALUES ALSES
5.0232 75 N1O=NNN/2&2
5.0233 MNT=NTO=1
50024 108=108B&1
56055 NX=T
5.0236 IF(IDCUBL-IDB)6T7,68,63 ‘ . N
C THETINTERVAL S CF—TIME—AREDEUBLEDS :
3.0237 €8 DEL=DEL*2.
C THERECEVANT VALUES CF—THEGAMt— ——+*AQ&AY—ﬁh8‘THE_VEG?8¥S‘F&(—%———
c E2( )y AND E3( ) ARE SAVED.
>.0238 DO 64 T=27MNT
5.0239 K=2%1-1
500240 DO~66—U=1718
$.0241 DC 66 L=1,7 '
0242~ 6 CAM I Y =AM T E )
50243 E1(I)=E1(K)
50244 E2{1)=82(K)
50245 €64 E3({1)=E3(K)
v 0245 ~—GC-TC—¢S
5.0247 €7 CONTINUE
Se 0248““—‘“1OOC‘CONTINUE
o END
-
C
t -
c
-
C
T “C— ——
C
[ —
c
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MAIN PROGRAM FOR HALF-SPACE

ANALYSIS USING EXACT INTEGRATION
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$.0001

o~~~

S$.0002

$.0003
S.0004
S$.0005
$.0006
S.0007
$.0008

S.0009
$.0010
S.0011
5.0012
S.0013
S.0014
S.0015

$.0016

S-C .7‘

222 Xa¥sX2XzNzkakaXxskakakakzRskakaXaXakakaXziakakaXaka

aNaNel

[aNaXel

s NeNaNaNel

52

210

55

53
54

THIS IS THE MAIN PROGRAM FOR THE ANALYSIS OF A LINEAR VISCOELASTIC
THREE-LAYER HALF-SPACE UNDER A UNIFORM CIRCULAR LOADy FUR THE CASF
THAT THE MULTIPLE CONVOLUTION INTEGRALS ARE EVALUATED EXACTLY. L
THE NECESSARY SUBROUTINES ANE CNSTNT, TIME, SOLVE, TERPU, ANMD
INTEGR {EXACT). ALSO NECESSARY IS THE FUNCTICN SUSPRCGRAM BESSEL.
THE INPUT IS ISTsHsAsRZZyILAYER,IDEFLE, NJJJ,DELTX,DELXX, AND THE
VECTORS E1( )y E2( )y AND E3( ). IST IS A DUMMY WHICH, TOGETHER
"WITH IDEFLE DETERMINES WHICH STRESS OR DISPLACEMENT IS DESIRED. .
IST IS 1 FOR NORMAL STRESS OR NORMAL DEFLECTION, IS 2 FOR SHEAR
STRESS OR RADIAL DEFLECTION, AND IS 3 FOR RADIAL STRESS. H IS THE
THICKNESS OF THE SECOND LAYER (THE THICKNESS OF THE FIRST LAYER IS
ONE). A IS THE RADIUS OF THE LOAD. R IS THE OFF-SET AT WHICH THE

- STRESS OR DISPLACEMENT IS DESIRED. 2Z IS THE DEPTH AT WHICH THE

SOLUTION IS DESIRED. TLAYER IS THE LAYER OF INTEREST (1,2, QR 3)
IDEFLE IS POSITIVE IF A DEFLECTION IS TO BE DONE, ZERO OTHERWISE
NJJJ IS AN INPUT TO THE SUBROUTINE SOLVE,. AND IS EXPLAINED 1IN
DETAIL THERE. DELTX AND DELXX ARE INPUTS TO THE SUBROQUTINE TIME
AND ARE EXPLAINED IN DETAIL THERE. N AND NNN ARE ALSO INPUT. N
IS THE NUMBER OF TERMS IN THE DIRICHLET SERIES REPRESENTATICNS OF
THE INPUT CREEP FUNCTONS. NNN IS THE NUMBER OF POINTS IN TIME AT
WHICH THE SOLUTICN IS DESIRED. THE VECTORS E1{ ), E2( ), AND E3()
CONTAIN THE CONSTANTS FOR THE SERIES REPRESENTATIONS OF THE CREE?
FUNCTIONS FOR THE FIRST, SECUOND, AND THIRD LAYERS RESPECTIVELY.
THE RESULT COF THE PRUOGRAM IS THE DESIRED STRESS OR DISPLACEMENT

AT EACH OF THE NNN TIMES.

DIMENSION E1(12),E2(12),E2(12),EM(12),G(7,12,18) ,66(7,12,9),
1E(8, 12),PH(18):PHJ(18))TH(9)1511(131201)15111(139231’)5(13),
1BESS(S1)4BESSS{91)

COMMON X(20),8B(8,420), T(201) yDELTA(ZO),BETA(ZOl) 8(8120)1
lSI(ZOl):HIyDtLTX DELXX ¢yNJyNJJ

THE LOOP THROUGH 1000 ALLOWS MULTIPLE SETS ‘OF DATA TG BE RUN.

DO 1000 I1I=1,100 .

READ(5452)ISTyHsA4Ry1Z1Z

FORMAT{IS5/5F10.5) .

READ(5,20) ILAYER,IDEFLE

WRITE(6,5210)IST,ILAYER,IDEFLE,HAsR,22 .

FORMAT(7H IST = 110/10H ILAYER 110/10H IDEFLE = 110/
I15H H = F10.5/5H A = F10.5/5H R F10.5/6H 171 = F10.5)

IOWA IS GIVEN THE VALUE 1,2, 3, 5y OCR 6y DEPENDING ON WHICH STRESS
OR DEFLECTION 1S DESIRED. THIS DUMMY IS USED AS. INPUT TO THF
SUBROUTINE CNSTNT. '
IF{IDEFLE)}55,455,453
IOWA=1IST

GO TO 54

T0WA=481ST

CONTINUE
READ(5,20)NJJJ
READ(541)DELTX,DELXX
NJ AND NJJ ARE INPUTS TO THE SU3RQUTINE SOLVE. THEY HAVE NO SIG-
NIFICANCE IN THE PRESENT USE OF THAT SUBROQUTINE AND ARE GIVEN
ARBITRARY VALUES. '

NJ=10

NJJ=8
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5.0018

5.0019
5.0020
5.0021
5.0 2
5.0023
5.0024
5.0025
5.0026
300027

3.0028

»0029
30030
30031
10032

»»0033
A~

«0034

10035
1«0036
0037
0038

»«0039
1« 0040
10041
1e0042
1«0043
1« 0044
1« 0045
10046
1« 0047
10048
1« 0049
1+0050
1.0051
140052
«0C53
1+ 0054

1« 0055
Ve QT

CAOACO a6 O

(aNaNe

o OG OO0

OO OO

. READ(5,20)N,NNN

20

™)

FORMAT{5I5)

READ(5,1)(EL(I),I=1,4N)

READ{(5,1)(E2(I)yI=1,N)

READ(541)(E3(I)4I=1,N)

WRITE(6,2)(EL(T),I=1,N)

WRITE{6,2)(E2(I)},I=1,N)

WRITE(6,432){E3(T1)4I=14N)

FORMAT(6F10.5)

FORMAT(22H INPUT CREEP FUNCTIONS/(&F10. 51) _
THE APPROPRIATE NNN VALUES OF TIME ARE CALCULATED AND STORED IN
THE VECTOR T{ ) USING SUBROUTINE TIME. ALSO CALCULATED WITH THIS
SUBROUTINE ARE THE INVERSES OF THE RELAXATION TIMES, WHICH ARE
STORED IN THE VECTOR DELTAL ).

CALL TIME(NNN)

THE VECTOR EM( ) SERVES AS INTERMEDIATE STORAGE OF THE VALUES GF

- THE DUMMY INTEGRATION VARTABLE M FOR WHICH THE INTEGRAL EQUATIDON

1S SOLVED. THESE VALUES OF M ARE 0.03 <23 o4y <7y lay 245 30y 4u,
5.3 6.3 Tey Bey AND 9. '
EM{10)=6.0

EM{11)=7.0

. EM(12)=8.0

EM(13)=9.0 '

THE LOOP FROM HERE 7O THREE ARRANGES EACH OF THE POSSIBLE COMBIN-
ATIONS OF THE FIRST FOUR CREEP FUNCTIONS FOR THE MULTIPLE .
CONVOLUTION INTEGRATIONS AND COMPUTES THE THREE—FOLD INTEGRAL OF
THESE FOUR FUNCTIONS.

DO 3 I=1,9

EACH OF THE CONSTANTS (N OF THEM) MUST BE TRANSFCRRED INTO THE
APPROPRIATE ROW OF THE ARRAY E( , ).

DO 19 J=1,N

THERE ARE NINE COMBINATIONS OF THESE RELAXATION FJNCTIGNS.

CIF(I-2)12,11,15

15
16
17

IF(1-4)10,9,16
IF(I-618,7,17
IF(1-8)645,4
SOME OF THE M VALUES ARE STORED DURING THIS ARRANGEMENT.
EM(1)=5.0
E(1,J}=E1(J)
E(2,J)=E11J) ¢
E(3,J)=E3(J)
E(45J)=E3(J)
G0 10 19
EMII)=4.0
E(1,J)=E1(J)
E(2,0)=EL1LJ) ,¢
E(3,J)=E2(J)
E(4,J)=E3(J)
GO 70 19
EM(1)=3.0
E(L,J)=E1(J)
E(2,4)=E1(J)]
E(34J)=E2(J)
E(4,J)=E2(J)
GO T0 19
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5.0058
5.0059
5.0920
5.07 1
5.0062
5.0063
5.0064
50065
5.0066
5.0067
5.0068
5.0069
35,0070
5.0071

5.0072

5.0073
5.0074
5.0075
3.0076
5.0077
5.0078
50079
5.0080
3.0081
5.0082
5.0083
5.0084
3.0085
5.0 6
3.0087
5.0088
5.0089

5.0090

5.0061
5.0062

50093
50094
5.0095
5.0096
5.0067
5.0058

5.0099

5.0100

oOc

aNaNa

TOOOOOO0OO laNe) (aNaNal

10

11

12

19

21

102

22

EMI1)=2.0

E(L,J)=E1J)

E(2,0)=E2(3) b

E(3,J)=E3(J)

E(42J)=E3(J)

G0 1019 =

EM{I)=1.0 T

Ell,0)=E2(J) (&

E(2,J)=E2(J)" =

E(35J)=E3(J)

E{4+J)=E3(J)

GO TO 19

EM(I)=.70

E(1,J)=E1(J4)

E(2,J)=E2(J) (&)

E{3,J)=E2(J)

El4sJ)=E3(J)

GO TO 19

EM(I)=.40

E(1,J)=E1(J)

E(2,J)=E2(J)

E(3,d)=E2(J) (°

E(4,J)=E2(J)

60 TO 19

EM(1)=.20

E(1,J)=E2(J)

E(2,)=E2(J) U/

E(3,J)=E2{J M

E{4,J)=E3(J)

GO TO 19

EM(1)=0.0

E(1,J)=E2(J)

E(2,0)=E2(J) )

E(3,J)=£2(J) 4

El4,J)=E2(J)

CONTINUE

THE ITH INTEGRAL 1S CALCULATED AS A SERIES OF N EXPONENTIAL TERMS
EACH MULTIPLIED BY A THIRD DEGREE POLYNOMIAL. THE CONSTANTS ARE
TRANSFERRED INTO G( 5 1),

CALL INTEGR(E;N;3,0)

DG 21 L=1,N |

DO 21 J=1,4

G(JsLs11=B(JsL)

CONT INUE

FORMAT(24H INTEGRAL RESULY FOLLOWS/(E15.8))

IF ARE IN FIRST LAYER, HAVE ONLY 9 DIFFERENT MULTIPLE INTEGRALS
IN THE *NUMERATCR'. IF IN THE SECGND OR THIRD LAYER, HAVE 18 SUCH
DIFFERENT INTEGRATIONS. '
1F(ILAYER—2)22,23,23 |

IF IN THE FIRST LAYER, THEN THE 'NUMERATOR' AND 'DENOMINATQORT EACH
HAVE ONLY 9 .SEPARATE INTEGRAL RESULTS.

IF{ICEFLE)244,24,25 » ’
1F DOING A STRESS, THE NUMFRATOR AND DENOMINATOR INTEGRAL RESULTS
ARE THE SAME. CONSEGQUENTLY, THE RESULTS STQRED IN G( 4 s )} ARE
ALSO TRANSFERRED INTO GG( 4 4 ). :
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100101
10102
10103
e 0204

17,0105 °

10106
3.0107

;0108

5.0109
5.0110
3.0111
300112
3.0113
3.0114
5.0115
5.0116
>.0117
500l 8
5.0, .9
5.0120
3.0121
>.0122
5.0123
>.0124
>.0125

35,0126

3.0127

5.0128
5.0129
50130
5.0121
S.O}QZ
3.C 3

OO0 N

(s NaNel

c
c
C

OO

(aEaNeNuNal

38

25
26

111

28

29

27

23
32
35

34

24,00 38 I=1,9
oo 38 L=1,N

DO 38 J=1,4
GGlJ4L,1)=G(J,L,I) ' , o
N9 = NUMBER OF INTEGRAL RESULT§ IN THE 'NUMERATOR'. N7 TELLS HOY
MANY TERMS IN THE POLYNOMIALS MULTIPLYING THE EXPONENTIALS IN THE
INUMERATOR' WHILE N8 CONTAINS HOW MANY FOR THE YDENOMINATOR?!'.

N7=4 |

N8=4 : . - )
N9=9 ‘ . . . . T -o
GO TO 50 . _
WHEN DOING A DEFLECTION IN THE FIRST LAYER, THE *NUMFRATOR?'® INTE-
GRATIONS CONTAIN ONE ADDITIONAL INTEGRATIGN INVOLVING El{ ). THUS
THE PRESENT CONTENTS OF G({ 4 5 ) ARE FIRST TRANSFERRED TU GG( 4 )
WHICH IS THE DENOMINATOR ARRAY, THEN THE ADDITIONAL INTEGRATION

IS CARRIED OUT BY PUTTING E1( ) IN E(8, ) (FIGHTH ROW OF E( , )} )
AND USING THE SPECIAL OPTION OF SUBROUTINE INTEGR FOR EXECUTING
ONE ADDITIONAL INTEGRATION GIVEN THE RESULTS OF PREVIOUS INTEGRA-
TICNS OF SERTES. THE FINAL RESULT IS STORED BACK IN G{ , 4 ).

DO 26 J=1,N ) :

E{8,J)=E1(J)

.b0 111 I=1,9

DO 111 L=1,N

DO 111 J=1,4
GG(J)L’I)’-’G(J)L’I)
DO 27 I=1,9

DO 28 L=1,N

DO 28 K=1,4
E(KyL’-‘-G(K,LyI)

CALL INTEGR{EsN,4+1)
DO 29 L=1,N

D0 29 J=1,5

Gl JOL’I)=B(J'L)

CONTINUE

N7=5

N8=4

N9=9

GO 70 50

WHEN IN THE SECOUND OR THIRD LAYER, THE *NUMERATOR' AND "DENOMIM-
ATORY CONTAIN ONE ADDITIUONAL INTEGRATION. 1IN ADDITION, THE TRUM-
ERATOR' CONTAINS 9 ADDITIUNAL INTEGRAL RESULTS. T0O CALCULATE
THESE, USE IS AGAIN MADE OF THE SPECIAL OPTION FOR EXECUTING A
SINGLE ADDITIONAL INTEGRATION USING SUBROUTINE INTEGR. FIRST THFE
EIGHTH ROW OF E( 4 ) IS FILLED WITH E1( ) AND USING THE RESULTS
STORED IN G( 4 y )} THE TENTH THRQOUGH EIGHTEENTH INTEGRAL RESULTS
ARE FOUND USING SUBROUTINE INTEGR. THEN THESE RESULTS ARE STORED
IN Gt 4 4 ). NEXT THE EIGHTH ROW OF E{ 4 ) IS REPLACED WITH E2( )
AND INTEGRAL RESULTS ONE T3 NINE ARE CALCULATED. THESE ARE ALSD
STCRED IN G( 4 4 ).

DO 30 I=1,9

DO 35 J=1sN

E(8,J)=E1{J)

1J=18&9

D3 36 J=1,N

DO 36 K=1,4
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S.0134
5.0135
5.0136
5.0137
Se.a138
S.. .39
$.0140
S.0141
S.0142
S.0143
5.0144
S.0145
S.0146

S$.0148
S.0149S
5.0150
S.0151
S.0152

5.0153

A—

S.0154
5.0155
$.0156
S.0157
5.0158
5.0159
5.01¢60
5.0161
5.01¢62
5.0163
5.0164
5.0165
5.01¢6
5.0167
5.01¢8
3.0169
>.0170
5.0171
5.0172
2.0173
5.0174

3.0;35

sl a e e NeNaNaNy

OO0 (e Nel

c
C

" 1001}

OG

36,

37
31
33

30

39

41

E(KsJ)=G(KyJyI)

CALL INTEGR(EyNs4,1)

DO 37 L=1,N

00 37 J=1,5

G{JsL,IJ)=B(J,L)

IF{1J-9)30,30,31

D0 33 J=1,4N : . L
E(8,J)=E2(J) ' .
1J=1 , : '

G0 10 1001 .
CONTINUE ‘ -

N8=5

N9=18

IF{IDEFLE)}39,39,40. . ' : ,

IF DOING A STRESS, THE DENCMINATCR INTEGRAL RESULTS ARE THE SAME
AS THE FIRST NINE 'NUMERATOR?!' RESULTS, AND THUS THESE ARE TRANS-
FERRED INTO GG{ 4 4+ Je ' :

DO 41 I=1,9

DO 41 J4=1,5

DO 41 L=1,.N

GGlJyL,I1)=G(JsL,1I)

N7=5

- GO T0 50

40
42
44
43

46
45

112

48

49
417

50

IF A DEFLECTICN IS DESIRED, THE 'NUMERATOR®' INTEGRAL RESULTS MUST
BE INTEGRATED WITH EITHER E2( ) OR E3( ) YET. FIRST THE PRESENT
FIRST NINE INTEGRAL RESULTS ARE TRANSFERRED INTO THE DENCOMINATOR -
ARRAY GG{ » 9 )o THEN THE INTEGRATION OF THE NUMERATCR RESULTS
AND E2( ) OR E3( ) IS CARRIED OUT BY STOREING E2( ) OR E3( ) IN
THE EIGHTH ROW OF E{ 4 ) AND USING SUBROUTINE INTEGR WITH THE
SINGLE ADDITICNAL INTEGRATION OPTION. THE RESULTS ARE STORED BACK
IN THE Gl , 5 ) ARRAY.

IF{ILAYER-2)424,42,43

DO 44 J=14N

E(8,J)=E2(J)

GO 10 45

DO 46 J=1,N

E{8,J)=E3(J)

DO 112 I=1,9

DO 112 L=1,N

DO 112 J=1,5

GG(JsL,1)=G(J,L,1)

DO 47 1=1,18

DO 48 J=1,4N

DO 48 L=1,5

E(L,J)=G(L,Jy1)

CALL INTEGR(EsN,5,1)

DO 49 L=1,N

DO 49 J=1,6

Gl .JyLyI)=B(J,L)

CONTINUE

N7=6

CONTINUE ' |

ALL NECESSARY INTEGRALS ARE NOW STCRED. THE NUMERATOR RESULTS
ARE STORED IN THE G ARRAY, DENOMINATOR RESULTS IN GG ARRAY
NNX=NKN
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176
179

178

179
180
1181
1182
1183

1184
)185
1186
3187
ji1eg
)189

0190

0151
0192
0193

0164
0195
0196
0167
0168
0199
0200
0201
0202

0203
G2C4
) -—

0205

aXeXaXgl OO0 oo VOO OC

OGO

OO0

(o EaNeNel (a}

[ 4

THE LODP TO STATEMENT 56 SOLVES THE INTEGRAL EQUATION FCR EACH
OF THE THIRTEEN VALUES OF M,

DO.56 K=1,13

EMM=EM({K)

~ THE CONSTANTS IN THE INTEGRAL EQUATION ARE CALCULATED FLR THIS

VALUE OF M USING THE SUBROUTINE CNSTNT. THE RESULTS ARE STCRED
IN THE VECTORS PH{ ), PHJ( ), AND TH( ). o '

" CALL CNSTNT(EMMyHsZZ,IOWA,PHsPHJI,TH,ILAYER) -

58

59
51

60

61

63

64
56

79

THE TOTAL RIGHT HAND SIDE OF THE INTEGRAL EQUATION 1S 'REDUCED T™0
A SERIES OF EXPONENTIALS EACH MULTIPLIED BY A POLYNOMIAL CONTAIN-
ING N7 TERMS. THE CONSTANTS IN THIS -SERIES REPRESENTATICN ARE ALL
STORED IN THE BB{ , ) ARRAY. ‘

DO 58 J=1,N -

DO 58 L=1,N7

BBIiL,J)=0.

DO 58 I=1,N9

BBIL,J)=BBIL,J)EPHII)*G(L,J,1)

THE KERNAL OF THE INTEGRAL OF THE LEFT-HAND SIDE OF THE INTEGRAL
EQUATION IS REDUCFD T3 A SERIES OF EXPONENTIALS EACH MULTIPLIED RY
A POLYNOMIAL CONTAINING N8 TERMS. THE CONSTANTS IN THIS SERIES
REPRESENTATION ARE ALL STORED IN THE B( 4 ) ARRAY.

DO 5% J=1,N

D0 59 L=1,N8

B(LsJ)=0.

DO 59 1=1,9

B(LsJ)=BILyJ)ETHII)*GG(L,yJ,1)

CONTINUE

THE INTEGRAL EQUATICN IS SOLVED FDR THIS VALUE OF M USING SUBROU-
TINE SOLVE. THE RESULTS ARE STORED IN THE VECTOR SI( ).

CALL SOLVE{NyN84NT7,NNX,NJJJ)

THE RESULT IN SI{ ) IS TRANSFERRED INTO THE KTH ROW OF SII( , ).
DO 60 I=1,NNN )

SII(K,I)=SI(I)

IF{IST-3)56,61,61 : ' .

IFf DOING RADIAL STRESS {IST=3), THEN MUST SOLVE A SECOND INTEGRAL
EQUATICN FOR EACH M. THIS IS DONE IN THE SAME WAY AS THE FIRST
ONE. THE CONSTANTS ARE ALREADY AVAILABLE, IN PHJ( ) AND TH!( ).
THE FINAL RESULT IS STORED IN SIII{ , ).

DO 63 J=1,N

DO 63 L=1,N8

BB(L,J)=0.

DO 63 1=1,N9

BBILJ)=BB3(LsJ)EPHILT)IXGIL,J, 1)

CALL SOLVEIN,N8,N8,3NNX,NJJJ)

DO 64 I=1,NNN :

SITT(K,1)=SI(I) .
CONTINUE : | 44-%&
i MUST BE CALCULATED. THESE WARY

NEXT THE BESSEL MULTIPLIERS M

DEPENDING ON WHICH STRESS OR DEFLECTION 1S BEING DOME.

THE BESSEL MULTIPLIERS ARE DIVIDED 8Y M FOR DEFLECTION ONLY. THE
VARIABLE DIVIDE IS UNITY UNLESS CCING A DEFLECTION,

DIVIDE =1.

IF{IST-2)76,79,78

IDEX IS A DUMMY USED FGR SELECTING EITHER JO(MR) 0OR J1(MR).
IDEX=1
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.0206
o 0T
.0.08
.0209
.0210

L0211

.0212

0213

t

.0214
.0215
.0216

0217

.0218

0219

.0220

0221

.0222

0223

10224

0225

.0226

0227

.0228
.0229
.0230
.0231
.0232

.0233
.0234
.0235
.0236
0237

.0238
.0239

OO

78

80

(aNe

81

82

(aNel OO

83

85
84

87
86

oo

71

250

799

~~
~ o

OO0

- TM1 IS A DUMMY USED TO STORE THE FIRST BESSEL TERM. SINCE J1(™R)

IS ZERO FOR R=0, AND JO(MR) IS 1 FOR R=0, TM1 IS SET ACCORDINGLY.
TM1=0. , .
GO TO 80

IDEX=0

TM1=1. .

IF(ICEFLE)81,81,82 -

THE LIMIT OF J1(MA) AS M TENDS TO ZERO IS 0. SO THE FIRST TERM FOA
ALL STRESSES IS ZERO.

BESS(1)=0.

GO TO 83 |

THE LIMIT OF J1(MA)/M AS M TENDS TO ZERO IS A/2. SO BESS{1) IS
A/2 FOR DEFLECTIONS.

BESS(1)=A/2. . ,

DDD TAKES ON THE VALUES UF M. 91 VALUES OF THE BESSEL MULTIPLIERS
ARE COMPUTED, AT VALUES OF M .1 # APART.

DDD=0. | |

DO 86 1=2,91

DDD=DDDE.1

RM=R#DDE

AM=A%DDD

IF{RM=.0001)84,84,85

TM1=BESSEL{IDEX,RM)

TM2=BESSEL(1,AM)

IF(IDEFLE)86,86,87

DIVIDE=DDD

BESS(I)=TMI*TM2/DIVIDE

IF(IST-3)70,71,71

IF DOING RADIAL STRESS, MUST COMPUTE A SECOND SET OF BESSEL MUL-
TIPLIERS, WHICH ARE STORED IN BESSS( ). »
THE LIMIT OF J1(MRIJI(MA)/MR IS ZERG AS M TENDS TO ZEROC.
BESSS(1)=0.

- DDD=0. . »

RR=R

B0 77 1=2,91

DDC=D0D&.1

RM=R*DCD

AM=A%*DDD

THE LIMIT OF JI1(MR)JL{MA)/MR AS R TENDS TO ZFRO IS MJ1(MA)/2.M
IF(RR—. 0001)2501250’799 '

R=1.

TM1=DDD/2. i

GO TC 76

TM1I=BESSEL(1l,KkM)

TM2=BESSEL(1,AM)

BESSS{I}=TM1%TM2/R/DCD

TWO DIFFERENT INTEGRATICOMNS ON M ARE CARRIED OUT WHEN DOINMG THE
RADIAL STRESS. FIRST, AT EACH VALUE OF TIME, 13 VALUES ARE TRANS—
FERRED FROM SII( , ) INTO THE VECTOR S({ ). THESE RESULTS AR
USED WITH BESS({ ) IN SUBROUTINE TEEPO TO CO4APUTE THIS IxTFGo“I
RESULT. THIS IS STORED IN WII. THEN 13 VALUES (FOR THE SAME
TIME) ARE TRANSFERRED FROM SIII( , ) INTO S{ ) AND USED WITH
BESSS({ ) TO COMPUTE THE SFECOMD INTEGRAL RESULT. THIS IS ADDED
INTO WII, THE TOTAL RESULT MULTIPLIED BY A, AND THEN THIS AMSWER

IS PRINTED ALCNG WITH THE CORRESPONDING TIME.

- 237 -



'40
'41
42

43

144
245
246
247
248
249
250
251

252
253

254

255
256

1257
1258
)259

1260
o~

261
1262
1263
1264
0265

Xz XaXskakskaiskaksksiakskainlaXaizsXakala e Ra X

OO

13

4

72

OO (aNa

S2

e NalNal

784
783

(aNaN el

91
93
1000

oo 73 J=1,13

10

.p0 72 I=1 ,NNN

i J

S(J)=SII(J,1) _
CALL TERPO(S,BESS) V}'
WII=WI L
WRITE(6,102)K] y

DO 74 J=1,13 - uf’
S(J)=SIII(Jy1)

CALL TERPO{S,BESSS)
WRITE(6,102)W]

WII=WIEWI]

WII=WII*A _
WRITE(6,93)T(I),WII

GO0 TO 1000 ‘ ' :
CONTROL ENTERS HERE FOR ALL BUT RADIAL STRESS FOR THE FINAL INTE-
GRATION ON M. THIS IS DONE AT EACH OF THE NNN VALUES OF TIME

DO 91 I=1,NNN :

THE 13 VALUES OF THE SOLUTIGN AT THE 13 VALUES OF M ARE TRANS—
FERRED INTO THE S( ) VECTOR FROM SI( , ).

DO 92 J=1,13

S{J)1=SII{J,1) ' ‘
AFTER THE FIRST THREE VALUES, NONE OF THE SOLUTIONS CHANGE SIGN.

- IF THEY DO, DUE TG ROUND-OFF ERRCRS IN SUBROUTINE CNSTNT, THEY ARE

SET TO ZERO.
DO 783 J=4,13

IF(ST{J=11%5(J)) 784,784,783

S{J4)=0.

CONTINUE

THE SCLUTION IS CALCULATED FOR THIS TIME USING SUBRCUTINE TERPO
AND THE CONTENTS OF S{ ) BESS( ). THIS RESULT IS MULTIPLIED BY A
AND PRINTED ALONG WITH THE CORRESPONDING TIME.

CALL TERPG(S,BESS) |

WI=WI*A

WRITE(6,93)T11),4I _

FORMAT(8H TIME = E15.8,12H SOLUTION = E15.8)

CONTINUE : .

ENC
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Ch OO

1. 0001 FUNCTION BESSFL{NN,S)

TS~ HSs— ot TS P REGAA T A A T3 S SRR e o —F——
THE ZERQETH AND FIRST ORDER, CF THF FIRST KIND. THE INPUT IS *IN,.

J

AND— ST RN TS THE G PES DESIREMFITHER 2 FRIFC—ANEI—ANB—S—F5—FHE—
ARGUHENT NF THE PESSEL FUNCTION. IF THE ARGIMENT [S LESS THAN 2
EOUAT T2 THE N ET NS EUATE S —HS PSS —FHEMFFHEFESEoHE—
REPRESENTATION. [F THE ARGUNENT IS GREATER THAM 124, THEN THE

PR F= LW, ) SIS T TR W) SUCE BRI RY D b A1
!

YR tF "lT'IL, L/\I SRS ol ] "_C\ ULIVY SNE T I W oY U\ALA _|
NUMBER STORED IM RFSSFL.
—1ﬁhﬁ?‘————‘*“"”€ﬁ.fﬁﬁ—*+?6+73.#&T%%rr—4FF*“f+——PPt$Tf%“+—“5Fﬁ+99&-,?{ 29+
1ST(201) s HTI4DELTXDFLXX yNIyM I '

OO O O

O3 Hr=tt - —
1+ N0C4 KK=N
£ FHE— P O T H A S G B T O e A GG ETHE R T e A Sy unToT e Cvpas
C SINNS CAM RE USFP.
0065 HA S Horte+
C THE FORM OF THE ASY4DTOTTC EXPANSICN NEPFHNDS ON WHICH FUNCTION IS
: € Fo—BF—VALYATERS .
10004 17 IF(N)18,19,18
~TetT ———} G PSR b SRS
10008 ‘ GO TU 20
=OetS H—PH=5—3-115F5
L0010 20 BES=((2./2414159/S5)%%. 5)%C S (PHI)
=0Tt 56—F6—15
c THE PROGRAM FROM HERE TO THE END IS THF SAME AS GIVEN IN THE
€ e A S s e S v
0012 16 IF(M)2,1,2
~Oe13 H8E5S5F=1=
100 4 GO T 6
= 5 2—FAEF=N -
D016 3 N=N-1}
~5at? — N5 554
. 0013 4 XN=H
~ ot FAETF=FA ST
L NC20) GN 1O 3
et 5 - FEACTF = AT
L0022 BESSEL=((S/2.)*%K¥)/XFACT
R pie =t
D024 7 EXP=2%KAXKK
25 e
0025 K1=K
N7 KD =HAt
e N2 FACT L=K1
SR =t
.0030 , IF(K1I-1)10,10,9
003 L ——g—¥H=t——
0032 " FACT1=FACTIL%XN - :
o233 —— a8 : : —_—
0024 10 XFAST1=FACT1
Rradad oy FAETFr=H2
S00725 11 K2=X2-1 .
RANET A%t b
RERER 12 KM=K?
FACTR=FAS TRV

PSS
-
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~
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T
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SO L=\ Vo7 e T
SUMZ2={(S/2.)%*

=t
RESSFL=3ES

GO T

(RN BTN
Q44
| "R

CRETURN

GI—T6
13 XFACT2
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’

LB}
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T L A

OO

ool SURRCUTINE TEPPL{S,2FSS)

C THIS SUPRRCUTINE IS USED TO INTERPOLATF VALUES OF THE SOLUTICM AS
C A FUNCTICGN OF THE Dii¥MY INMTEGOATIOM VARTABIFE M, THEN MULTIPLY '
- " C THESE VALUES RY THE PROPER SESSEL TERMS (THE CAPITOL THETA TERMS

s IN_IHE TEXT) ANMD THEN IMIVGRATE THE PESUITS USING SIMPSONS RULE
c NUMERICAL INTEGRATION PRNCEDURE, FOR THE THREE-LAYER HALF-SPACE
c AMALYSES. THE IMOUT IS THE VCCTNR S{ ) CONTAINING THIRTEEN YAL'ES
c OF THE FUNCTION PSI(T,M) OF THF TEXT, AT THF VALES OF ¥ CF Q.y.2,
C by T4 1.0,42.0,2.0,4.0,5.0,6,0,7.N,R,0,AND 9,7, AISO [NPUT TS THE
C VALUE CF THE APPROPRIATE RESSCL TERM MULTIPLIER AT 91 PGINTS
C SPACED .1 1 APAPT, WHICH IS SIORED IN THF VELTCR RFSS{ ). THF
o OUTPUT IS THE SINGLF NUMBER WI,(THE RFSULT NF THE IhTFCRATIP\)
C THE SOLUTICON EPa THE TIME ne Jue IMPUT SC ).

.0002 DIMENSICN S(13),BFSS(31),FUN(91)

.06c3 COMMADN X (20),RR(8,20]), I(?ﬂl)4;DELTALZO)LBFTA(ZDI)1P¢R 20) 4

: 1ST(201) 9% I 4DELTX4DELXX yNJ,NIY

c IHE VECTINR FUNC ) IS HSED TO STORE THFE ORIGINAL POINTS _AMND THE
(o8 INTERPULATED VALULS CF THE FUNCTICN DESCRIZED BY THE CUONTENTS OOF S
C EIRSI THE INPUT VAIUES ARF STFOAREN N THE APPROPRIATE I NCATICMS
C - OF FUN( ).

£0C4 EUN(1)=S(1)

.00C5 - FUN(3)=5(2)

acce FUN(®)=S(3)

.00C7 FUN(8)=S(4)

00Cs8 _EUNTYIIY=S(5])

L0006 K=11 :

.C010 DO 1 I1=6,13% : -

.0011 K=KE&10

Qa2 1 FUN(K)=S(T) _
c THE INTERPOGLATIGN IS PERFOPMED 3Y FITTING A dARABCOLA TO THREE CON-
c SQECUTIVE POIMNTS, AND THFEN EVALUATILG THIS DPAYABQI A AT THF INTF2—
C MECIATF PCINTS. THE FOUATION OF THE PARARCLA IS A%xX%*XEV*XEC.

_ C THE CEMTER VALUF IS USED AS OM IM ALl CASFS,

" C NY IS A CUMMY USED TG DIRECT THE FLOw TO TAKE CARE OF THE THREE

C DIFFFRFNT SPACINGS OF THE THREE POIMTS.

0013 11 NY=-1 :
C IN Ali, ©1 VALLES CF EUN( ) ARF FCUND, SPACFY L1 APAPT

0C14 YI=S$(2) |

cels Y1=S(1)

CC16 YR=S(3)

¢o11 H=,2

0018 2 C=YI-

CcC1s A=(Y1 =2, XYISYR) /2 JH/H

0020 V=A%HE(C~YL) /H ;

CCZl IF(NY)?clfo‘;

ce22 3 FUN(2)=A*,01-V%.1&C

0023 ' FUN{4)=A= CIEV®, 1EC

0024 “ NY=0Q

{r2s YI=S(4)

CL25 YL=S(3)

ccz1. YR=S(5)

nueR =.,3

A GC_IC 2

P 4 FUNI(&)=A¥.04=-VE.25C

- C
C ) : _
e € : - 243 -
C - _ ;
. C_




alel

)

|
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.0021 FUN(T7)=A%,01-V*,1&C
0022 FUN{SI=Ax, DI85V E 18C —
.C023 FUN(1C)=A%,04EV%,28C
0024 13 NY=1 :
.00 KK=10"
006 K=5 -
.0027 8 YL=S(K)
0028 YR=S{K£2)
.0039 YI'=S(KEL)
6040 ~ KK=XK£81 . X
.C041 H=1l. . - : o 7
0042 GO _1C 2, ,
.0043 5 DX=~1.0 | y,*/‘Q//
0044 ne & I=1,16. s
.0045 DX=0X+.1 ﬁ;/
0046 KK=KKEY
0041 6 FUN({KK)=A#DX*¥DX+V%DX+(
.0048 K=KE2 -
0049 IFIK=13)8,7,7
C AT _TEIS OOINT _THE INMTEROO ATEN YALUES HAVE ALl RFEN STNFFN IN FIHIN
o ANC THE INTEGRATICN CF THE PRODUCTS FUN(TI)#*BESS(I) IS NOGW CARRICDH
c QuTl. )
.CO%0 7 WI=0.
.C051 DC_170_J=2,88,2
0052 70 WI=AIL4 #BESS(J)*FUN(IJ)E2.%3ESS(JET Y =FUN(JIED)
0053 WI=WIERESSIIVHEIIN(Y) 64 HRESS(GOYHFUN(I0)
.005%4 WI=WIERESS(91)%*FUMN(91) '
.00&5 WIzWIk.1/3.
,0C%6 RETURN
- » EMD
C
C
C .
C .
C
_ C
c
C
o
C
C
. C
o
- c
C
C
o
- C_
o
- C i
C
e C
C
e .
- C
- L
C
c
C
c
C
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C
C
c
nacel SURRGCUTIME WAL IIE (N, AMMY
- C THIS SUBROUTIMNF EVALUATES THE GENFRAL RESHULT CF THE EXACT NMULTIOLC
C CONVOLUTICN INTEGRATIONS, MHICH ARFE EXPRESSE) AS _SERTFES,  THF
S o INPUT IS Ny THE LFNGTA 2F THF SERIES, M WHICH IS THF NUMBER OF
C CONSTANTS FCR FACH RFLAXATION TIMF (FOR_INSTANCF, IF TFRMS ©P IO
o AND INCLUCTING T#%5 ARE INCLUDED, THEM M IS &) fAND NAN, THE NUMBE2
c OF TIMES AT WHICH THE FEVALUATION IS DESIREN, THF SERIFS TS
C INPUT THRCUGH COMMAN STORAGE IN THE 8( , ) A2RAY. ALSC INPUT B8Y
C MEANS OF COMYON ARE THE TIMES T( ), AMD THE RFELAXATINN TIMES .
o DELTA( }. ThHE CUT-PUT IS STORFD IN THE VECTIR BFTA( ).
0cce? DIMENSIAN_T1(20) _
0occ3 - COMMON X{20),RBR{(8,20), .T(201) DELTA{20),8ETA(201),8(8,29),
1SI(201) 5L OF1 TX  OEE XX G NS M
c THE VECTOR T1( ) STORES PRODUCTS OF TIMES. T1(1) IS T%x0, T1(2)
C IS Tax1l, T1(3) IS Txx2, FIC,
CcOC4 TL(1)=1. :
_C TEE 1000 TEROUCH 4 1S EXECUTEN ECP FACH TIMFE DFSI2ED
0005 DO 4 L=1,4NNN :
C THE SOLUTION VECTOR IS 7£30FD
00C5 BETA(L)=0. )
C THE PRCOUCTS CE _TULY ARE CALCULATED AMD STARED IN TI1{ ). i
00C7 DO 5 [=2,M
0008 S TI(I)=T1(I=1)%T (L) : ' A
o THE TERYS MULTIPLYING EACH EXPONENTIAL TERM ARE CALCULATED AMND
C STIAREN M _SUM, TEEN MUITI2NTEN Y THE EXPANENTIAL TEOM AND STN2FD
C IN THE SOLUTINN LOCATICON BETA{L). ' :
cceco DO_18 Jd=1,N
0010 SuUv¥=0.
Q= 0O_9 I=1.
001c SUM=SUMER(T4J)%T1(1)
n013 18_RETA(I)=RFETA(L IS I PXP (=DF L TA(JIST (1)) B
0014 4 CONTINUF :
0015 RETURN .
END
C
C
c .
C
c __
C
o
C
C
o
C
C
_ C .
C
C
c .
— C. .
C
e C -
- C
e C
C
ol C. - 246 -~ )
C
SR S
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OO0 OO0 OO0

laNaNe]

YO OO

SUBRUOUTINE CNSTNT(XMeHH s ZZ7Z s INWAJPHPHIZTHyIL AYER)

THIS SUBROUTINE CALCULATES THE CCNSTANTS FNOR THE THREE LAYER HA] F-

SPACE, USING THF EQUATICNS PRESENTED IN THE TEXT. THF NOTATION

USED IS ESSENTIALLY THE SAME THROUGH-DUT AS THE TFXT. THE INPYT

IS XM=EM=M, THE DUMMY INTFGRATION VARIABLF, H4H = H, THF THICKNESS

OF THE SECCND LAYER EXPRFSSED AS MULTIPLFES 0OF THE FIRST LAYFR

THICKNESS, 27Z2=171=1 0QF TEXT, THE DEPTH 0OF INTERFST, IfNWA= INTENQFZ

1 OR 2 DR 3 OR +ee 2R 6 DEPENDING ON WHICH P41 S ARE DESIRED (THAT

ISy, WHICH STRESS 0OR DISPLACFMENT IS RFING CONSINERED=-IOWA WILL

BE 1 FOR NORMAL STRESS, 2 FOR SHEAR STRFSS, 3 FDR RADTAL STEESS,

5 FOR VERTICAL DEFLECTION, 0OR 6 FOR RADIAL DEFLECTIONY, TLAYFR=

THE LAYER UOF INTEREST. ALSO READ IN ARF THE VECTORS PHIL ), PHJ( )

AND TH( ). THESE ARE READ IN ONLY SO THE RFESULTS, WHICH ARF

STORFD IN THESE VECTORS WILL BE RETURNED TO THE MAIN PROGRAM (T

SAVE COMMON STORAGE).

DIMENSION PH({18),PHJ{18),TH(9)

COMMON X(20),BB{8,20), T(201) ,DELTAL20),BFTA{201),R(R,20},
1ST{201) s WIsDELTXGDELXXyNJIyNIJ

ALL THE OPERATIONS ARE EXECUTED IN DCUBLE PREZCISION SINCE IT wWAS

FOUND THAT THIS IS NECESSARY TO MAINTAIN REASONABRLE ACCURACY AT

LARGE VALUES GF M,

DOUBLE PRECISION SyFMyHyZZyC{TG),VI9),PHI16,3, 18) ,ALAMI{6,4),
1Q(4934318) 9297214972923 47447259769A14A2,A3,A44,A%, AG,AT,A,R],R2,0873,
2B44B5sB6yBT4yBBQ39Q49EZyFZ14E7243G14G240634054,554G639G7,G8,G9,G10,
3G119G124G134G144,G154G164G1T7+018,6G199G209G214522:G23,G244G25,626,
3G27+6G284G294G304G31,G329G33,G3440354G36,5374538,639,640,0641,0G42,
4G439G44+G4596G4643G4736484649,G504965146524G53435544G55,6564,657,652,
5G5G9GH09G61 96629663654 4G6545664G674668

THE NOTATION IN ALL THE FOLLOWING IS THE SAME AS THE TEXT, WITH

Z = 77 AND M = £M, AND AN OCCASIONAL INTERMIDD TATE VARIABLE DEFINED

TO0 SAVE EXECUTION TIME,

EM=XM

H=HH

12=2117

S=EM%kH

I=DEXP{EM)

Z1=DEXP(-FM)

22=CEXP(2.%EM)

I13=DEXP(-2.%EM)

Gl=2/2.

G2=11/2.

G3={—-1.82.%EM)}) /2.

G4=~72/2.

G5=13/2.

G6={1.82.%EM) /2,

G7=(G1&8G2) /2.

G8={G1-G2)/2.

G9=(G36G5)/2.

Gl0=(G3-G5)/2.

Gl1={G48Gh)}) /2.

Gl2=(G4-G6)/2.

Gl3=.5-G5
Gl4a=.5+ G5
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.0028
.0029

<0030

«00. .

0032

.0033
.0034

«0036

.0037

0038
+0039
0040
+0041

.0042
.0043

.0044
.0045
0046

.0047

«0048

.0049

1+ 0050
0051

.0052

0053 -
«0054

..0055

L0t 5

1+ 0057

.0058
.0059

«0060
0061
«0062

.0063
0064
»00€5

0066
. 0067
0068

0069
.0070
.0071
.0072
.0073
.0074
.0075
.0076
.0077
.0078
.e079
.0080

.0082

e i st e - —

(e NaNaNa)

OO0 NMN

616=-G15

Gl7=.5+ G3 -
6G18=-G17
G19=.5+ G4
620=.5- G4

- 14=DEXP(2.%S)

G27=2.*%74
G28=(1.82.%EM*H)*24
6G21=G27*G7-G28%G2&G1
622=G27*G86G28%G2-G1
623=G27%G96G28*G13&G17
624=G27*G10&G28*C14£G18
G25=6G27*G11&G28*G154G19
626=6G27%G126G28%G166G20
G35=(1.-2.%S)*74
636=-2.%S*S5%x74
629=G35%G7&G7-G36*G2
G30=G35%G8-G8EG36%*G2
G31=G35%G98G98EG36*G13
632=635%G10-G1l0&G26%Gl4

633=G35%G118G1186G36%GL5

634=G35%G12-G126636%G16
L=0

75=DEXP(S)

26=DEXP {-$5)

653=15

654=-26

655=5%25

656=-S%16

637=653

"G38=G54

639=655
640=G56
641=G37%G7£638%57-G39%
642=-[638%G2966G40%621)
G43=637%G8-G38%*GELG 39
644=—(G38%G30£640%G22) ,
645=637%G96G38%G9IEG39%G136G40%G1 7
646=—(G38%G3186G40%G23)
647=637%G10~G38%G105G39%G1486540%G18
648=—(G38%G326640%G24)
649=G37%G116G38%G116G639%G158G40%G19
650=-638%G33-640%525
651=637%G12-G38%G128G39%G16E540%620
652=—638%G34-G40%G26

IF{L)1,1,2 >

L=5 .

657=G41

658=642

659=643

660=G44

G61=645

662=G46

G63=G47

G64=G48

G2&G40 *G1

*G2-640 %G1
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;.0083
;.0084
3,00
;.0086
5.0087
;.0088
;.0089
;.0090
5.0091
5.0092
;.0093
10094
;0055
10096
10097
;.0098
»« 0099
;.0100
;0101
;.0102
;.0103
7.0104
5.0105
;0106
;0107
10108
:.0109
1.0 0
;. 0111
10112
0113
;. 0114
;0115
;.0116
10117

.0118
10119
».0120

70121

100122
1.0123
100124
y«0125
10126
1.0127
0128
«0129
«01320
e 0131
‘«0132
1«0133
Y G
'« 0135
01326

AaAOOOC

2 Xaka¥s)

665=G49

G66=G50
G67=G51

. 668=652

G38=-G38
639=(1.£S)%Z5
640=-(1.-5)*76
GO TO 3

A1=G45

A2=G46

A3=G47

A4=G48

A5=G65

A6=G66

AT=G67

AB=G68

B1=G49

B2=C50

B3=G51

B4=G52

B5=G61

B6=G62

B7=G63

B8=G64

C(1)=A1%A5-B1#*B5
C(2)=A2%A58A1%A6-B2%B5-B1*B6
C(3)=A3%A56A1%A7-B3%B5~B1%*B7
Cl4)=A4%ASEA3HALEA2ZHATEAL¥AS-B4=B5-B3%B6~B2%3 7T-R1%38
C(5)=A2%A6-B2%8B6
Cl6)=A4*A6EA2%A8-B4*BS6-B2*B8

C(7)=A3%A7-83*%B7

C(8)=A4*ATEA3*AB-B4*B7-B3%B8
C(9)=A4%=A8B-B4*B8
IF(L)4,5,6

po 7 1=1,9

THE V(1) TERMS ARE THE THETA(I) TERMS OF THE TEXT
V(II)=C(I)

Al=G49

A2=G50

A3=G51

A4=G52

A5=G57

A6=G58

A7=G5¢

A8=G6&0

B1=G41l

B2=G42

B3=G43

B4=G44

B5=G65

B6=G66

B7=Ge7

B8=G68

L=0

GO TO 8
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)

EONN

5 L==5

OO0

L0132

.01 - DO 9 I=1,9

.0139 9 Q(3,1,1)=C(1)

.0140 . Al1=Gé61

.0141 : A2=G62

.0142 " A3=(G63

.0143 A4=Gb4

L0144 A5=G41

.0145 A6=G42

.0146 AT=G43

.0147 A8=G44

.0148 ' B1=G45

.0149 B2=G46

.0150 - B3=G47

.0151 B4=G48

.0152 B5=G57

.0153 B6=G58

.0154 B7=GS9

.0155 B8=G60"

.0156 GO TO 8

.0157 4 DO 10 I=1,9

.0158 10 Q(4,1,1)=C(1)

.0159 DO 11 1=1,9

.01¢£0 ’ Q3=Q(391yf)

L0161 . Q4=Ql44+1, 1)

L0L&2 Qlly1,1)=V(I)*G1EG3*Q3EG4%Q4

W0 3 Q(2,151)=V(1)*G26G5%Q3666%Q4

.0164 Ql1,2,1)=VII)*G7669%Q36G11%Q4

0165 Q(2,2,1)=C(1,2,1)

0166 Qf3,2,1)==VI(I) *G26613%Q386615%04

0167 Q{4y2,1)= V{I) *GlEG17%Q38G19%Q4

,.0168 Q{4,3,1)= V(I)*G218G23%Q38625%Q4

0169 Q(243,1)=V(I1)%6296631*Q38G33*Q4

7«0170 J=189 »

0171 Q{142,J)=VII)*G8EGI0*Q3EG12%Q4

o172 Ql242,J)=-Q(1,2,J) .

,.0173 Q{3,2,J)= V(1) *G26614%Q386G16%Q4

10174 Ql4,2,J)==VI(I) *G16G18%Q386G20%Q4

7.0175 Ql4,3,d)= VII)%G226G24%Q38G26%04

1. 0176 11 Q(2+3,J)=V(I1)*G306G32%Q366G34%Q4

0177 EZ=EM*217

1.0178 EZ1=DEXPLEZ)

1«0179 EZ2=DEXP(-EZ) :
c THE ALAM(I,J) TERMS ARE THE LAMDAI(I,J) S OF THE TEXT

7.0180 ALAM(1,1)=-EZ]

,.0181 © ALAM(1,2)=-EZ2

,.0182 ¢ ALAM{1,3)=—EZ%EZ1

,.0183 ALAM{1,4)=—EZ¥%EZ2

1.0184 ALAM(2,1)==ALAM(1,1)

;.0185 ALAM(2,2)=ALAM{1,2)

e 3L86 ALAM{2,3)=ALAMI2,1)-ALAM(1,3)

cel 27 ALAM{2,4)=—ALAM{1,2)6ALAM(],4)

0188 ALAM(3,1)=ALAM(2,1)

L0189 ALAM(342)=—ALAM(2,2)

v.019Q0 - ALAM(3,3)=2.%ALAM(3,1)-ALAM(1,3)
c | | - 251 -
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J1s2
3193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205

0206
0207

0208
02Cs
0210
0211

0212 -

0213
#—

0214
0215
0216
0217

cano0nl

OO0

¥eXaXaksiakaiziziaisiaiaiakais iz iatakaks Ral

107

106

50

ALAM{3,44)=2.%ALAM(2,2)-ALAM(1,4)

ALAM{4,1)=ALAM(1,1)
ALAM(442)=ALAM(1,2)
ALAM(4,3)=-ALAM(2,3)
ALAM(4,4)=ALAM{2,4)
ALAM(5,1)=—1.5%FZ1

ALAMI5,2)=1.5%E72 . B - '.': : .

ALAM(5,3)=—1.5%E2*EZ1

ALAM(5,4)==1.5%ALAM(1,4)

ALAMI6,1)=1.5%E21 ‘

ALAM(6,2)=1.5%EZ2

ALAMI643)=1,5%ALAM(2,3)

ALAM(6,4)==1.5%ALAM{2,4)

DO 107 1=10,18

TH(I-9)=V(I-9) .

THE UNDEFINED Q( 41y ) S ARE ZERDED.

DO 107 J=1+4 ' ‘
Q{Js1,1)=0. , o ' ' - '
THE PHI S ARE CALCULATED FQOR ALL POSSIBILITIES.
DO 106 J=1,6 - -
DO 106 1=1,18

DO 106 K=1,3

PHI(JyK,I)=0.

D0 106 M=1,44

PHI(JsKyI)=PHI(J4K,I)EQ(M,4K, I)*ALAN(J,M)

THE PROPER PHI S ARE STORED IN PH{ ) FOR RETJRN TO THE MAIN PRO -
GRAM., SINCE THE RADIAL STRESS INVCLVES TWO SETS OF PHI S, ONE SET
IS ALWAYS STORED IN THE PHJ{ ) VECTOR FOR RETURN TO THE MAIN
PROGRAM, THE THETA( ) S ARE ALSO RETURNED T3 THE MAIN PROGRAM,
IN THE TH( ) VECTOR. ‘ ‘ : .
DO 50 I=1,18

PH{I)=PHI(IOWA,ILAYER,I)

PHJ(I)=PHI(4,1LAYER,I)

RETURN

END
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1~ - 'SUBRCUTINE REJECT(NNN,GA™) ,

_______ THLS. .SUBROUTINE SAVES THE VALUES OF THE ARRAY. GAM( . ., )}, AND OF

- THE VECTOR SI( ), WHICH WILL BE NEEDED IN THE NEXT TIME THROUGH _

RN v THE .LOQP. SOLVING THE INTEGRAL EQUATION, FOR THE CASE THAT THE .. ...

c CONVOLUTION INTEGRALS ARE EVALUATED NUMERICALLY.

2 DIMENSION .GAM(6157,18)

i COMMON BETA(61),B(8,20) yDELTA(20),T(61),MN,ST(61)

...... C._——_ MN_LS THE NUMBER OF VALUES _, OF NNN _POSSIBLE VALUES, WHICH APE T0_.
C  BE SAVED AND RESTORED.

L MNSNNNJ282 e

{

i

I
o

4 e
5 MN1=MN-1

éwm~”~"m_~*00 A I=2.MN1 _—
7 K=2%I-1 ’

8 e SEULYESTUKY o oo o e e e e
9 DO 2 J=1,18 | -

Q- .4_.___-.__._.DD.,.2.._L=.1,,._[._.M e et e ot ot ot o et e o am oot e b ¥ e ot s e e s e ot e n e e n b <o e o o ot s s e 2t ot e e e e
1 2 GAM(IsL,J)=GAM(K,L,J) : T .

2 e 1 CONTINUE .. e e e et -

3 RETURN

[ORUTPRIR Vo

'>
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1.00Al : SUBROUTINE CVFFIT(AnRAY) _
e o __THIS SUBROUTINE .COMPUTES A DIRICHLET SERTES APPRCXIMATION TO AN
S INPUT CURVE DESCRIBED BY TWELVE PGINTS STORED IN THE VECTOR X( ). .
___________ C..__THE FITTLING IS PERFORMED BY. MEANS OF A SINGLE MATRIX . . e
o MULTIPLICATICN . THE PRE-MULTIPLIER IS THE ARRAY NAMED ARRAY, :
c WHICH IS _SEAD IM, AND -THE POST—MULTIPLIFR IS THE_ VECTCR X( Ve _ . ..
C . ARRAY IS THE INVERSE OF THE COLLOCATION MATRIX OBTAINED BY WRITING.
€ ___ 12 EQUATIONS EGUATING THF SERIES REPRFSENTATION AT EACH OF 12 _
c POINTS TO THE INPUT CURVES VALUE AT THESE 12 PCQINTS. X{ ) CON-
i e __ . TAIMNS THESE TWELVE POINTS FOR THE INPUT CURVE.  THE MATRIX ARRAY
C WAS OBTAINED USTNG THE GAUSSIAN ELIMINATION PROCEDURE ON 12 RIGHT
L L. __HAND_SIDES WHICH COLLECTIVELY YADE UP _AN_IDENTITY MATRIX. .. ..
1,0002 DIMENSION Y(12),ARRAY{12,12)
1.0003 . .o ___ CO%MCN X(20),°B(8,20), T(201) .DELTA(20),BETA(201),B(8,20),
. 1S1(201) - o
$3.,0004 . _____._.DO 1 .1=1,12 _ ___uw-”,w,uugdﬂuﬂufdwu-dg_;_."d_wyw_w_.Jdﬂﬂu;““~,u;.“w
.0005 Y(I)=0.
,,,,, C. _THE CONSTANTS FOR THE SERIES REPRESENTATIOM. ARE CALCULATED. AND
o STOREC IN THE VECTOR Y( ). | , _
3.0006 .. ... D0 1 .J=1,12 S P
$.0C07 1 YUI)=YLIY&ARRAY(I,J)%X{J)
€ ... _ THE CONSTANTS ARE TRANSFERRED INTO. THE X VECTOR.
5.0008 DO 2 [=1,12 ,
--oooqmbm““_mz_xxli_Y(I)”_m"__whwm«m_ww e e
3.0010 RETURN :

e oot END e e e e e e e

______________ G e e . -
c
e e e e e oo e e e
c
S oSO USSR .- i ﬂ
c
S oSO . e R
c
; —C S
c
_________ oo
c
S o3 U
c
e G — - e e e e e e

.._.__._...._AC._..._._...___.._._._....._-._.-..._-_a...,._._....-.._....___._...._.--...-._._._‘.4-..‘.-.__>..-.-~-_... e e e e b we e e om omw e - A e ae e e e e

C
c
c _
e G e e
c
C
C

S O s - et o o e e et S ot = At o 4 e e 2 et o 15 e % o e 2 i
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.00C1

.0002
.0003

.C004
.00C5
.0006
.0007
.00G8

.00C9%
.0010
.0011
.0012
.0013
.00$f

h(¥sXekalaNeknlsEsXeEkaEsNeNelaNeEelalaNasNeNeNaNaEsNaNaNaNaNaNe]

N eNeNeNaNaNale aNaNal

[aNeNe]

SUBROUTINE TINEL(NNN,DEL,NX)

THIS SUBROUTINE COMPUTES THE TIMES AND RELAXATION TIME INVERSES
FOR THE CASE THAT THE CONVGLUTION INTEGRALS ARE EVALUATED NUMERI-
CALLY. THE INPUT IS NNN, DEL, AND NX. NNN IS THE NUMBER OF
POINTS FOR WHICH THE TIME IS TO BE COMPUTED. DEL IS THE SPACING

"OF THESE NNN POINTS OF TIME. NX IS ZERO IF THE DELTA( } VECTOR,

WHICH CONTAINS THE INVERSES OF THE RELAXATION TIMES, IS TO BE
COMPUTED, WHILE IF THEY HAVE PREVIOUSLY BEEN COMPUTED NX IS NON-
ZERO. :
COMMCN BETA(61),B(8,20),DELTA(20), TU61) yMNyST(61) 0T
N=12 : .
FIRST THE NNN TIMES ARE COMPUTED, WITH T(1) ALWAYS ZERO.
T(1)=0.
NNNN=NNN-1
DO 7 K=1,NNNN
TIKEL)=T(K)EDEL
IF(NX)1y2,1
IF NX IS ZERO, THEN THE DELTA( ) VECTOR IS TO BE COMPUTED. EACH
SUCCESSIVE DELTA(J) IS 1 DIVIDED BY THE SQUARE ROOT OF TEN TIMES
THE PREVIOUS DELTA(J), EXCEPT DELTA(2) IS 10. AND DELTA(1) IS ZERD
DELTA(1)=0.
DELTA(2)=10.
DO 6 J=3,N
DELTA(J)=DELTA(J-1)/(1Q.%%.5)
CONTINUE
RETURN
END
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L0 1

02
3

fcs
05

06
£

s
09
o

3
l4

16
17

s

0

'l

OO0 eNeNe!

[eNea

aNel

OO0

OO0

52

51

&0

62
5C

SUBROUTINE INTEGR{N,N1,E,GAM,IT1,MMM)

THIS SUBROUTINE COMPUTES THE MULTIPLE CONVOLUTION INTEGRALS NUMFR-
TCALLY. THE INPUT IS Ny N1y E( 4 )y GAMC 4 5 )s II, AND MMM,

N IS EITHER 1 OR N1/262 DEPENDING ON WHETHER THIS IS THE FIRST
TIME THROUGH THIS ROUTINE CGR NOT. N1 IS THEN NUMBER OF POINTS IN
TIME FOR WHICH THE MULTIPLE CONVOLUTION INTEGRATIONS ARE TO BF
CALCULATED. E( , )} CONTAINS THE VALUES OF THE EACH 0OF THE RELAX-
ATION FUNCTIONS OR CREEP FUNCTIONS AT EACH OF THE N1 TIMES. EACH
ROW OF E CONTAINS ONE OF THESE FUNCTIONS. GAM{ , , ) IS THE SOLU-
TION ARRAY—-THE NUMERICAL VALUES OF THE MULTIPLE CONVOLUTION INTE-
GRALS. THE FIRST TIME THROUGH THIS ROUTINE THEY ARE INITIALLY
UNKNGWN AT ALL TIMES. EACH SUCCESSIVE TIME THROUGH, THE FIRST

N—-1 VALUES (FROM PREVIOUS CALCULATIONS) ARE STORED IN GAM( , , ).

“I1 IS THE THIRD SUBSCRIPT OF THE GAM( , , ) ARRAY TO BE COMPUTFED.

MMM IS THE NUMBER OF INTEGRATIONS INVOLVED.

DIMENSION E{74+61),6AM(61,7,18)

COMMON BETA{61)4B(84520)+DELTA{20)4T(61)4MN,ST(61),WI

THE LCOP 7O STATEMENT 1 STORES THE FIRST RELAXATION FUNCTION 1IN
GAM{ ,1,1I1)

DO 1 I=N,4N1

GAMI{I,1,11)=E{1,1)

THE LOOP FROM HERE TO 2 IS EXECUTED FQR FACH INTEGRATION.

DG 2 I=1,MMM

THIS LOGP IS EXECUTED FOR EACH PDRINT IN TIME FCR WHICH THE RESULTS
ARE NEEDED.

DO 50 J=N,N1

THE INTEGRAL TO BE EVALUATED ON THIS CYCLE (GAM(J,I&1,11)) IS
ZERQOED.

GAM(J,1I61,1I1)=0.

I11=0-1

IF{J-1)51,52,51

IF J IS EQUAL TO 1, AM AT ZERO TIME AND THE INTEGRAL RESULT CAN
BE EVALUATED DIRECTLY (JUST THE INITIAL CONDITIONS).
GAM(1,186151I1)=GAM(1,T,11)%E(TEL,1)

GO 70 50

THE GENERAL TERM IS CALCULATED BY COMPUTING THE SUM DESCRIRED IN
THE TEXT AND ADDING THE INITIAL CONDITIUONS. X STORES THE AVERAGED
RELAXATION OR CREEP FUNCTION, AND XX STORFES THE DIFFERENCE GF THF
GAM( 4 4, ) TERMS, WHICH ARE EITHER PREVIOQUSLY OBTAINED INTEGRAL
RESULTS OR Ef(1, ).

DD 60 K=2,4J

JA=J-KE&1

X={E(I&1,JA)EE(IEL,JAE1)) /2,

XX=GAM{Ky T4 II)-GAM(K-1,1,11)

GAM{J 21861, 1T1)=GAM{JT&1,TT)EXZEXX

THE INITIAL CONDITIONS ARE ADDED DN.

GAM(J2I81, 11 1=CGAM(J, 181, IT)EE(TIELyJ)XGAM(L,1,1T1)

CONTINUE

CONTINUE

KRETURN

ENC
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5.0002
3.0003

_——

5.0004

3.0005
3.00C6

3.0C07
5.0C0C8
5.0009

5.0010

5.0011
3.0012

3.0013
5.0014
3.0015
3.0C1¢
3.C0L7
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'SUBROUT INE SULVIT(NNN,PH,TH GAM ,N MsN1,yM1)

THIS SUBROUTINE SOLVES THE GENERAL INTEGRAL EQUATION FGR THE CASE ,
THAT THE MULTIPLE CONVOLUTION INTEGRALS HAVE BEEN EVALUATED NUMER-"
ICALLY AND STORED IN THE ARRAY GAM( 4 5 ). THE INPUT IS NNN,
PH( )}, TH( )y GAM({ 4 4 )y N, M, N1,M1. NNN IS THE NUMBER OF
POINTS IN TIME TO BE CONSIDERED. PH{ ) AND TH{ ) ARE THE
CONSTANTS MULTIPLYING THE MULTIPLE CONVOLUTION INTEGRALS IN THE
NUMERATOR AND DENOUOMINATOR RESPECTIVELY. GAM{ 4 o) CONTAINS THE
RESULTS  OF THE NUMERICAL EVALUATION OF THE MULTIPLE CDNVOLUTIOh
INTEGRATIONS. N IS THE NUMBER OF TERMS S
IN THE NUMERATOR, AND M IS THE NUMBER OF TERMS - IN THE DENOMINATOQ.
N1 IS THE SECCND (MIDDLE) SUBSCRIPT OF THE GAM( , 5 )} ARRAY FOR
THE NUMERATOR MULTIPLE CONVOLUTICN INTEGRATION RESULTS. M1 IS THE
SECOND SUBSCRIPT OF THE GAM( , 5 ) ARRAY FOR THE DENOMINATOR
MULTIPLE CONVGLUTION INTEGRAL RESULTS. THE RESULT OF THIS SuUB-
ROUTINE IS THE SOLUTION TO THE INTEGRAL EQUATION AT THE APPRO-
PRIATE TIMES, STORED IN THE VECTOR SI( ). ALSO INPUT TO THE 7
SUBROUTINE THROUGH COMMON STORAGE IS MN, WHICH IS 1 IF THIS IS THE
FIRST TIME THROUGH THE ROUTINE, AND IS NNN/2&2 OTHERWISE. IT IS
USED TO MAKE POSSIBLE THE CALCULATION CF THE NEXT SET OF SOLU-
TICNS WHEN DOUBLING THE SIZE OF INTERVALS. [IN THESE CASES THE
MN-1 VALUES OF SI( ) THAT ARE NEEDED ARE ALSO BROUGHT INTQ THF
ROUTINE THROUGH COMMON STORAGE.

DIMENSION PH{18),TH{(9) 4GAM{61,7,18)

COMMON BETA(61)+8(8,20),DELTA(20),T(61)4MN,SI(61),%]

THE LOOP FROM HERE TO STATEMENT 1 IS REPEATED NNN TIMES OR NNN-HN

TIMES.
00 1 I=MNysNNN
ANUM AND DNUM ARE INTERMEDIATE VARIABLES FOR STORING THE NUMERATOR

_ANC DEAGMIVATOR CF THE SOLUTION AT THE POINT BEING CONSIDERED.
" ANUM=

DNUM= O.

THE RIGHT HAND SIDE OF THE INTEGRAL FQUATION IS CALCULATED AND
STORED IN ANUM.

DO 2 J=1,4N

ANUM=ANUMEPH(J)*GAMII4N1,J)

IF(I-1)3+3,4

IF THIS IS THE FIRST SOLUTION POINT (I=1) THEN THE DENDOMINATOR
ONLY NEEDS TO BE CALCULATED BEFORE COMPUTING THE ANSYER.

DO 5 J=1,M

DNUM=CNUMETH{J)*GAM(1,M1,J)

GO 10 6 _
AFTER THE FIRST PUOINT, THE SOLUTION MUST BE OBTAINED BY THE FINITE
DIFFERENCE APPROXIMATION. THE DENGMINATOR IS CALCULATED AND
STORED IN DNUM. THEN THE FIRST PREVIOUS SOLUTICN TIMES THE APPRO-
PRIATE TERMS 1S SUBTRACTED FROM ANUM.

DO 7 J=1,M

DNUL-DKU“&TH(J)*(GAV(Iy”lyJ)FGﬂ”(ZyVI J))*.5

ANUM= ANUV—.5 TH{J)*{GAM(2,M14J)=GAM{1,M1,J))*ST(I-1)

SUM=

IF(I- 2)7 7,8

FOR ALL BUT THE SECCND PGIMT IN TIME THE OTHER SOLUTION POINTS
THAT HAVE BEEN OBTAINED MUST BE MULTIPLIED BY THE APPROPRIATE
TERMS OF THE GAM( , s+ )} ARRAY AND THE TH( ) VECTOR AND SUBTRACTED
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FROM THE NUMERATOR {ANUM). FIRST THESE TERMS ARE COMPUTED AND
STURED IN THE TERM SUM, AND THEN SUM IS MULTIPLIED BY THE APPRI-
PRIATE TH( ) TERM.

DC ¢ K=3,I1

L=1I-K&1

LL=L¢t1

SUM=SUM=-.5%{ST(LL)EST{L) )X (GAMIK,yM1,J)-GAMIK-14M1,0))
ANUM=ANUMESUM*THL{ J)

CUNTINUE

THE SCLUTICN IS COMPUTED AND STORED IN SI(I).

ST(I)=ANUM/DNUM

CONTINUE

RETURN

ENC
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—PBECK
c .
L
C _
cl SUSROLTINE TIVE (NANY
-~ C THIS SURROUTINE CALCULATES THE TIMES THAT THE SOLUTION, FCR THE
C CASE THAT THE IMIEGPATIONS ARPF PFRENCMMEN EXM‘TIY. ARF DESIRFND,
" C IT ALSO CALCULATES THE INVERSE CF THE RELAXATION TIMFS ( THE DELTA
C TERMS NF THE TEXT) AN STORES THIS RESWIT IN THFE VECTCOR DEITTA( ),
c -THE INPUT CONSISTS OF NMM=MUMBER CQF TIMES DESIRED. ALSC, DELTX
C AMD _DFEL XX ARF RECUIREN, YWHICH ARF TN COMMAN STORAGFE, NELXX
C SPECIFIES THE LOGARITHMIC INCRFMENT COF TIME (IT HAS BEEN TAKEN. AS
C 0625 IN _THE APPIICATIONS IN THIS THFESIS) AM) DFITX SOtCIFIFS THF
c - THE LGG OF THE FIRST FINITE TIME MINUS DELTX (TAKEN AS -2.0525
C OR =2.5A25 DEPENDING NN THE SIZF OF SHCORT TIME VARTATION IN  THE
o RESPONSE THAT WAS EXPECTEDN) :
102 COAMCN X{20),RAIR,21), T(271) ,NFEITA(20) . AFTA{2N]1)},R(L,2N),
15!(201)1 dT gy CELTXsDELXX g NJgd JJ :
103 N=12 :
c THE FIRST TIME IS SET EQUAL TCQ ZFRQ, AND THEMN THE CTHER NNM-1
c TIMES ARE CALCUILATED RY RATSING 10, T0 THE DEI1T POYWER, WHFRF NDFLT
C IS [NCREMENTFD BY DEL AT EACK STEP. :
RIN DELT=CFL TX
0G5S DEL=DELXX
CCa 1{1)=0. . <
co7 NNNN=NNN—1
0cs DO 7 K=1 NNNN
0C9 DELT=CELTENEL
Q10 TAKE1) =10, %%0FI T :
E o THE FIRST DELTA IS SET FQUAL TO ZERO, THE SEZOND ENUAL TO 10., AND
Y C 10 ANRITICHNAL CNES ARE CALCULATED RY SHCCESSIVELY DIVIRING Y THE
’ C SQUARE RNCT CF TEN.
1011 DELTA(1)=0,
;012 DELTA(2)=10.
1013 DO A J=3,N -
1014 DELTALJ)=CELTA(J-1)/(10.%%.5)
015 RETURN
, ENGC
c .
C
C
c
o
C
C
C \
c
C
c
e
C
o
C
o
: c :
e €
o

|
|
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_SURRAUTINE SCILVE(N,M MM NNN NY)T)

THIS SUBRGUTINE IS USED T3 SCLVE THE GENERAL INTEGRAL EQUATICN FQOR
THE CASE THAT THE ML [IPILFE CONVOLUTICN TNTEGRALS ARF EVALUATED

EXACTLY. N IS INPUT AS THE NUMBER CF RELAXATIOM TIMES IN THE
ORIGINAL SFRIFS RFPRAFSEMTATIONS, THFE | ENGTH OF THF VFCTCRS

CF CCNSTANTS FOR EACH CF THE MULTIPLE CONVOLUTICN RESULTS FOR FACM
REVAXATION TIME ( THAT IS, TF THE NUMFPATNR RESULT TMNCLUNES TFAMS

UP TO AND INCLUDING T**4, THEN ITS LENGTH IS 5) IS INPUT AS THE
NUMBEFRS M _AND MM, THE [ ENGTH OF

THE VECTUR FCR THE KERNAL FUNCTICON IS My WHILE THE LENGTH FPR THF
RIGHT HAND SIDF TS MM, NNM TS THE NUMBFR OF TIME STEPS. NJJJ TS

THE ANUMBER OF TERMS (MAXIMUM) TO BE INCLUDED IN THE CALCULATION |
OF THE NEXT SCLUTTAY (THIS WItE RE FYP] AINED RELOW). ALSH AS TN-

PUT ARE THE ARRAYS B[ , ) AND BS8{ , ) WHICH ARF THE 2FSULTS FCR
THE KERMAL FUKCTICM AND RIGHT-HAND SIPFS RESPECTIVELY, AMD APF N

COMMUN STURAGE. THE TIMES AND RELAXATION TIMES ARE IM THE VECTNRS
T ) AMDC PREITAL ) RESPECTIVELY, IN CCMMAN, TH4F PROGRAY SFLFCTS 12

POINTS FRCM THE SNLUTION VECTNR {SI( )) AND STCRES THEM IN THE
X ) VECTNE, THESE TWFIVF pRINMTS ARF SELECTEN FOR POSSTRIE USE TN

FITTING A DIRICHLET SERIES TO THE RESHLTS, USING THE SUBROUTINE
CVEFIT. SINCE THF YOCATICON CF THFE PRCPFR POTNTS TM THE SO{UTICHN -

VECTOR SI( ) DEPENDS OM THE TIMES CALCULATED IN THE SUBACUTIME

CpPpOopPopopopopapOapPoapopopO] OpOxR

TIME, TiO NUMACRS, NJ AND MJJ ENTER THE PROGIAM (THROUGH COM*OM
STCRAGF) . :
DIMENSICN T1(20)

COMMON X(20),88(8,20), T(201) +DELTA(20),3ETA(201),0(8,20),
1S1(201) 4T OFITX,DNE] XX, 3 3,NJ

THE FIRST PCINT, T = 0.0, IS CALCULATED FIPST. IT REOUIRES ONLY
THE FIRST COLUMM OF THE AREAYS R( o ) AND RB( o, ).

BETA(1)=0.
SUvM=0,

DO 2 I=1,N
SUMM=SUHMEPR(] 1)

BETA(1)=RBETA{1)ECR(1,1)
ST(1}=SUMM/RFTA(])

D O

THE VECTCR T1( ) IS USED TC STORE PRCGNUCTS COF TIMES. T1(1) IS
%0, T1{(2) IS ¥*%x1, T1{3) IS T**x2, FIC,

T1(1)=1. '
SINCE JHE TIMF SPACING IS LCGARITHMIC, SUCCESSIVE ANSWERS NEPFEAN

LESS AND LESS ©N THE FIRST ANSWERS. "FOR THIS RFASON, IT IS PCSSI-
BLE TC MEGLECT SCGHE TEPMS WHEN CCMPUTING THE RFESULTS.  IN GFENERAL

NJJJ TERMS OF THE SOLUTIUN VECTOR WILL BE USTD TO CALCULATE THE .
IEXT TERY, ARTER THE EI8ST NJJJ TERMS HAVE REEN CALCULATED, TUIS

ALLCWS SUCCESSIVE STEPS TC TAKF A CONSTANT AYCUNT DF EXECUTIOCN
TIME, PATHFR THAMN A CONTINUALLY TMCRFASIANG A4QUNT. FUPTHERMOCE,

THE APPROXIMATIUN INVOLVED IS WELL WITHIN THE APPROXIMATION THAT
IS MACE USING THF TMTFRVAL OCF SCGME CP MCST 0OF THF OTHEFR SOLUTIIN

POINTS, DUE TQ THE LOG SPACING. IMN THE ANALYSES REPNFTED [N THF
TEXT, MJJJ) HAS ALWAVS REFEN TAVEN AS 31, WHICH SFEEMS TP 8% ADFTUAT-

LY LAKGF. NS, Né&, AND N4 ARE INTEGESS USED TO PRNOPERLY SFLECT THE
PQIATS NF THE SCLUTICN VECTOR T PFE U'SER,  THAEY AE TAKEN A4S 1.7,

oo OO OO ON

AN 4 UNTIL MJJJ SCLUTION PCIMTS HAVE SEFMN CGITAINED,
N5=1

Ne=1
- Nba=4

TODOO0O
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{HE 100D (P TO 2 CALCULATES THE NNN SOLUTICNS  [EXZFPT ENR T=n,)

114

DO 3 K=2,NNN | _
- _C IE K IS GPREATER THAM NJY, THFA TN(PFMFNT NS CAND N4 RY 1, AND
' c PUT A NEGATIVE NUMBER IN Né&. :
Cl5 tsiw;k1||!1J7L11
Cl6 13 N&==5 ~
1.7 - NSE=N&Ff1
0138 N4=N4E1 .
C IHE TIMF OF THIS SNLUTION IS STORED IN T2
019 7 T2=T(K) - . '
020 Kl=k-1
R THE LOCP UP TO 4 CALCULATES THE VALUES OF THE KERNAL FUNCTION
C {WEICH (S A PFSIHNT NF MUTTIOLE COMVOLUTINM INTEGRATINDNS AMND IQ
c STORED IN THE ARPAY Bl , )) NECESSARY FOR THE NEXT SOLUTION. THRY
C ARF AT THE TIMES T2-T(1) WHERE | GOES FROM 75PN TO K. 1F K IS
C -~ GREATEE THAN NJJJ, THEN K-MJJJ PCINTS ARE SKIPPED. THESE ARF THF
C TIMES T2-T(1) CORRFESOPOMNING TO T ) S™AlLlL, EXCEPLT INCLUDING-AL”AYS
C ZERC TIME. THE VALUE OF L IS SELECTED THUS FQUAL TO LL EXCEPT
C AT _IHE FIRST PCIAT, WLHEM IT IS SFI FQUAL TO 1 (T=0) AND NE& TS MADF
C POSITIVE. ‘ S :
1021 DO 4 11 =MNS.K : =
1022 L=LL : : :
2023 IF{NS*NE-1)A,P, 8
3024 6 L=1
1025 Ne=1
J02¢ 8 RETA(L)=0. ;
C THE LQGP T 5 STORFS.  THFE PRENPER PRODUCTS 0OF THE TIME IN THF VECTOR
- C Ti( ). - ' : ‘
0021 DO S5 1=2,M
0028 5 TI(I)=TL(I-1)%(T2-T(L))
C THE TERM MULTIPLYInNAG FACH FXOOMENTIAL TFEeM IS CAICUILATEDR AND
C STORED IN SUM, THEN MULTIPLIED BY THE EXPONENTIAL TERM AMD ADRREDR
C INTC BETA(L ).
0029 DO 18 J=1,N
002Q SuUM=0,
0031 DO 9 I=1,¥
CCR2 S SUM=SEMEL (T, 1Y%=T1¢T)
0033 18 BETA{L)=BETA(L)ESUMSEXP(-DELTA(J)*{T2-T(L)))
0024 4 CONTINLE
Cc FRGM HFRFE TO STATEMEMT 21 CALCULATES THE RIGIT-HAND SIDE PESULT
C FROM THE INPUT ARRAY RL( « ) ANALDRGOUS TO THE "ARAVE CALCULATIMMS
C FOR THE KERNAL FUNCITOM, EXCEPT AT S?LY THE 2ME TIME T2, AMD '
C SICLFS _THE RESHILT IN SUM,
0025 DU 23 I=2,MM
002¢ 23 T1(1)=T1(]=1)%*T2
0037 SUMM=0
0028 DO 21 _J=1,N
CC39 SUM=0.
C040 N 22 I=1,MM
0041 22 SUM=SUM+BB(I,J)%T1(1)
0042 21 SUMM=SUMM+SUMREYP(-DELTA(J)*T2}
C THE NUMFRATOR COF THE SGOLUTIOCN IS MOW CALCULATEDR AND STCRED IR e,
- C IHE TENMS TN THIS MIMERATNC yARY CEFFAMDIMNG MM THE SIZ7F CF K.
GC43 BUM=SUMM=S=ST(F=1)=(BETA(K-1}-8ETA(K))
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aXalg)

0044

IF(K-21106,10,11°
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0045 11 YE(NG=-K)15,15,14
.0046 15 00 12 LL=N4,XK )
00 =11 .
00«4d 12 BUM=BUM=.5%(SI(L-2)EST(L-1))*(BETA(L-2)-BETA(L-1))_-
0049 14 BUM=RUM- S (ST(1)ESI(N4=2)V ) (RETA(I)-RFTA(NSG=2))"
' o THE SCLUTION AT THIS TIME IS CALCULATED AND STORED IN  SI(K)
005G 10 SI(K)=RUM/ (. S*(RFTA(KIERFTA(XK=111))
.0051 3 CONTINUE = '
; : C IHE SCLUTIGN AT ZFRO TIME IS STCREL TN X(1)
.0052 S X(1)=STIUL)
C THE SOIUTICN CORRFSOONDING TO NELTA(J)*T(J)=1. FNR FACH DELTALS)
c IS CALCULATED AND STORED IN X(J) FCR USE IN THE SURROUTINF CVELIT.
o THIS IS TRUF RECAUSE THL TIN2UT NJ AND MJJ ARE SFELTCTED APPRA-
. C PRIATELY. : o
0053 K=NJ
0054 D0 20 1=2,12
0055 K=KENLI
0056 20 X(I)=SI(K)
00s1 RETUSM
. END
¢ .
C
C
C
C
- C
c
-~ C
C
c
C
C
C
C
C
c
C
C
C
C
C
C
C
C
C
C - _
C
9
¢
C
C
C
a—~ C
C
C
C
c
" C
c
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SUBROUTINE INTEGR (EXACT)
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S.0001

SUPQOUTIRF INTEGR(G:K ITFST 1S13)

nnnnn L A A PN Y T AL~ TiisT

TS 5(*1;.JT_vl1n. rL!\ l\l;.) r"L LA‘-‘LI Lzerru\nlx_/..a r-r\ T CcrhrsT— 51—

THE CRFEP OR RELAXATICN FUNCTIONS CAN BE REPRESENTED BY DIRICHLET

SERTESTTHE HP T TS FHEARRAY—Gt—— AN O HEENFEGERS M FEST—
AND ISIB. THE ARRAY G( , ) COMTAINS THE RFLAXATION FUNCTIONS FNR

THEMOET TP CONVRTOTHON — I FEGRATI EN S THEFEoM—OF—SERHFS——FaASH—
COLUMN OF G( 5 ) CONTAIMS THE CONSTAMNTS FOR JINE 0OF THE SERIES.

. 3. ik Sid o dosi b fom = C TSNS 1 W L SN Pl = U X .. fo B W al ol o] 1--rrr~;r~ b S ol calll il o hd
Iv 1O 11 d ety G v oy 5 s 1 ST IE S R EPRFSFHTFAT T e } G B S

-THE NUMBER 0OF MULTIPLE CONVOLUTIONM INTEG‘ATI]NS INVULVED. THE

A s h Y ] TAYE D AT T OON “!‘

C
~

AL AL P 34 1YL Mt pAdEy £ O Dy FisT C o o W Pt 1Y £ T LA T IO h BN ¥ ol
AN U ST O o TUN"THIS FTOAUOGRRSTT TS O VIR T I3y Vo DT er Ay =N

7 RELAXATICN Ln CREEP FUMCTIUNS.. ISIB IS A DUMMY WITH THE VALUE

OF E T THER—ZERT RO 1S I3=07—FHEMN—THE T F P COMY RO
INTEGRATIONS APF TO0 RE PERFOOMED FRCM THE RBEF3 IMMING. IF ISIR=1,
L UV AW NS L. o AN (AW od LI Fill ol o 3 I AT AL AT 3O C h fol diafelalal YU Pl \ \\l'\
P TTTTTE CJ)UL LR A N s 2 | 1 IR RS YR LR T ot Lo ] 77

THE ONE MEW RELAXATIOM PR CAFEP FUNCTION SERTES 1S STGRED 1IN G(?,)

A3 i L4 . W ] A fabsrBLSulaY Fi:c or-rCciie T
AN THTS €A SO —GRA H‘PF—"I‘MFQ L@ AXan s LAE Y e T e Ry g |

X1 XaRe Nals Nals Fa¥s Fa¥e Nols Nols Wols Wo¥s No¥e)

FROM THIS PROGRAM, STOREﬂ IH THE ARRAY B({ 4, ), TS A FINITE SFRIFS
H— X PN ENTF IS A T AR AF P H T2 B NS A T H 65
STANTS NF THESE POLYNOMIALS ARE STRREECD IN THE CCLUMNS OF B( 4, ).
TS A BRI R S P B T R S A AT PN R E S 15— F o T
TO THIS PROGRAM THROUGH STGRAGE TN THF VFCTR DELTA( ), WHICH IS
EALEHEA TR HE—SHRRBUT I E—T M F—FHE NG TAT oM —OF—THIS-DRes oA
: IS DIFFERENT. THAN THAT OF THE TEXT.
50002 DM ERS TSR 28 P EH P A A 2 A 2 AR AP R O AR P 0 )
10(20),0(20),81(20),01(20),0D2(20),DL(20),EL(2)),C2(20),R2(20),
HS 2 2263283423426 ASH 2O AT by R 20y
A 2H4(20) ra(?D),P4(?n),n4(20),=4t20),H5(70),P5(20)
550603 EEHMM T2 AR 52— 0 v R EETF A 2 A S EF A RS Py D8y 20y
—- IST(2N1) s UT W DELTX,DELXX yNIyNJIJ '
S+oueS N=ETFESTaT

THE DELTA( ) TRPMS ARE TRANSFERRED TO THE VEZTOR DEL( ).

[ o s W, W d

— o W% W o W ol
Yo JUUT

s 2 t 3 L.
F 1 R B R B G

5.0006 250 DEL(I)=DELTA(I)
€ FSH67— 155 1S 215163+ AN ST E4—ARE DU Y VAR TARLES SEDy To
c DETERMINE WHEN THE PFOPER NUMBER OF TNTEGRATI OMS HAVF REEN PEP-
C lﬂ!““‘ l}.
S.0007 ISIG=1
STEOCHR FSH51=1
$.0C09 1S1G62=1
SToet FSH65=t
$.0011 I1S1G4=1
5602 HHESH 28652005261
5.0C13 200 1SIG=0
€ H— S ST HE e S T T E A A T O NS AR S PERFARMED SN Ay
o THE ISIG S ARE ZEROED UP T THE LAST ONE
STICL4 H-HFES 2022027203
5.0015 203 1SI61=0
EEMES AT RS T21252v29257 04
0017 204 1S162=0
*7?5%3 ST~ 252720205
3-““19 205 1S163=0
4] s ¥ o % e 3 iy p s e
RN 206 ISIG4=0
e
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THE SERIES REPRESENTATIONS OF THE FIRST TWD JELAXATION OR CREEP

s N aKe Nl

FUNETTONS AR E—STHIREDTIN—THEVECTFERS AR A4t
S.0022 202 DC 1 J=1,M .
556023 : AT =6t13+—
S.0024 1 AL(J)Y=C(2,4)
<6 .5 66—F6—7 : — -
' . IF CMLY ONE CERTAIN ADDITICMAL MULTIPLE CONVILUTION INTEGRATION

o

LIEAL_ aiE ny A CTA AN TOTR TG 200N C
T > JMINE S o - et

wn

T C T ) i vl [n Vil o W« e 0. 5N ool ¥ ol
IS 1Ty O PFONTUNTTTOY Ty T = 1 ocT =71

S.0026 201 IF(ITEST-2)207,208,209 ' ) — e

O

$THt2? 207 ST5=5 — , :
$.0023 GO TO 215 | B L o

570029 286—1STht=r - :

$.0030 - G0 TO 215 - S . ~
Ssou3t 205 HHHFES T2 te2 212 , ' A ~
$.0022 210 ISIG2=C :

STO03 66—FE—15

$.0024 211 15163=0

$+RO35 66—FO—215

$.0036 212 IF(ITEST-5)213,213,215

STO03F 213 E5H64=0 ;
IF UNLY ONE CERTAIN ADDITIOGNAL CONVOLUTION INTEGRATIOM IS TC BE

C
€ PR P D P T B ST P A ST P ER-A T M S T S FSFonon
C IN THE VECTORS AK( )y AM{ )y APC )y AR( ),y ASU ),y AND AT( ). SOME
€ GF—THES TRy e S US o FHE N EH—SFR eSS S—STER 00— —FHE— e e
C AL( ) ALSO.

SO03% ‘FH5hE—2e—d=15

S.0039 AK(J)Y=C(1,J)

50uay At =253

S.0041 AP(J)=G(3,J)

S.GQ&Z ARt =6t

S.0 3 CAS(U4)1=G{(5,J)

5v00C4% AT =6t6v3+

5.0045 216 AL(J)I=G(3,4)
€ —STAF oS TT SV e R RS S R ST AT e AT RSy A LA Qo o L O P e O T U
C EVALUATION OF THE CONSTANTS RELATED TO A FIRST INTEGRATIN! Fﬂ” THZ

—C AT ER— M TFRERAT NS HSEE—TF %=

S.0045 7 DO 2 J=1,N ’
€ FHE—FESHEF—AF— R R S TN ES R T O R S TR RN HE -V FETCSS
C C{ )y AND D( )e THE VARIABLES ADUM1 AND \DU%? ARE USED FOR INTER-

- — A AT STERECS

5.0047 C(J)==CEL(JVI*RAL({J)*AK(J)

S+M743 €A==t}

$.0049 ADUM1=0.

ST96058— AL HA2=5

5.0051 DO 3 I=14N

RN et +HT— 235t -

5.0053 21 ADUAL=ADUMLI-DEL(J)=AK(I)Z(DEL(IY-CFL(J))

5+605% AR AU S A A A ) - DR )

5.0055 3 CONTINUF :

3005 PP = A A DR S AR AR Y2
c IF ISIG IS EQUAL T8 1, THEMN EITHER THIS IS THE SECHANMD R YMNRE TIvE
€ FHEGHEH—TF IS AT R R S A S NG P R A T P ST e A e DN e,
C WHERE THERE "WERE PREVIUGUSLY DONE IMTEGRATIONS.

S.05 7 P51 7o '
C THE FIRST TIME THUOUGH, THE RESULTS NF THE FIRST INRTEGRATION AfE

""““—~-—~——~S¢3156~{ A —ARD A Y AD - FRE-NE YT Sen s S 1S STOonen T AL} —

C

'” €

(o

S C - 272 -
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FHERESUETFS AR E-ALSH—STRES—IN—FHE Bt
5.0058 6 DO 5 J=1,N
SOUEY StHIr=Ct
S.0060 Bl2,J)=D(J)
S0Pt A=t

SQOUOZ

AL(J)=",(3yJ) : '

550063 St =t
C ISIG IS SET EQUAL T73 1 SO THAT THE BRANCH TO SIX WILL NOT 8F TAYEYN
C ASA T TS T P R T T SR AT TN S AR Tt R SN TR e RS
c SEVEM, IF NO MNRE ARE TO RE DINE, THE SUSROJTINE IS FNDED,
530064 Isto=1
S.N065 IF(TITEST=1)7,151,7
€ CEMTFRAOTENTERS o5t F—THE B F TR ERST I FEERA T IR,
o THE SECOND INTEGRATINN IS CARRIFED CUT, AND TH4E RESULTS STOKED TN
€ FHE RS H— o H A AR AD R AN AR D AR s
- C USED F0O2 INTERMEDIATE STORAGEC,
STI0EE B Ff=t5
S.OU6T BL{J)=AL{J)%AMIJ) N
570068 SHP ==t e B S :
5.0069 ADUM1=0.
$TOET0 FrOH =B
5.0071 ADUM3=C.
STOET2 85—1o—T1=15
5.0073 [F{1-J)122,10,22
P22 ADUT ARG AT RS E AR S R
3.0075 ADUM2=ADUM2=AM L TYENELLI) Z{(DEL( 1) =DEL (J) ) %%2)
FOSTS e R v e B e o e B B B et
$S.0077 10 CONTINUF
STHOTS B =F AT A
3,089 8 CLEJY=AL(JYHADUF2EAM(J) HADLMS
' € ERNTRG— S AMANES—TFE—1} £SR3 poprunTnc an LNl e TMTEODATION LIAC
c BEEN COMPLFTFD.
£ TP S A MO G o s Deaso L Cop b anS TLE GAMS TVOC A acte T
C INTEGRATIONS ARFE SUCCESSTVELY CARRIFD 0OHT, RETURIMING ALWAYS O
£ SFAFFHEMT—GEv AN O A SUE ST nrd pa e ooy gy eourco,
C WHEN THE APPRUOPPIATE NUMRER HAVE BFEN CALCULATED THEM THE CONTRML
€ IS-SERT rr STATENEMNT 51 AND FHE FOOORAU TG CMunEn,
5.0080 TF(ISIGL=1)11,22,23
S H—pfr—12 J—},w
1.0082 B{1l,J)=CLJIECTL()
,0083 P2 =D HH
1.0084 B{3,J)=01(J)
Vo0 ORS AbAF = HEEH
1 0084 ALUJ)Y=G(4,d)
TGS At b P B
1.0023 12 AP(J)=D1(J)
SOoRg FSist=1
.N099 IF(ITEST—2)7,151,7
SO0 23— BB—t3 =N
L 0092 D2(J)=AL(J)=apP (D)
PR3 B =
L0004 ADUM1=0.
R AP+ 20
“150 ADUM2=0,
e A =g

C

B

C

S,

C

s
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3 L
=Ty

IF(!"’J)ZI"QII"?li'

I

Aoy — Y2
pir— L

et

8

0059
CX ISR 31V,

5

de

P S ] Fa dull S S0 28 ¥

£

=

1S il T S U |

ADUMLI=AP(T) %2 %DEL(J)/ (ADUNME%3)

(SR KXl V2 Nl SOl S F VSR S RV A

ADUML

Fdiad

5.0101

i

S

-~

(W1

A

A g Ler

b W2 o Wl T A . WA Y. Wl B AN X e 30

ows
AT DT

A AL (T
AT A ]

U= R

CcooUvIT7 U/urmTm™mJ7

ADUMZEAL(TIX20HDEL( 1)/ TADUMER2)

ADUM3

5.0103

WAV

EaTHEERY

A
A}

o

S e i

o
«

A=y

RUU:
14 CONTINUE

A-y-brt

Fath WPL W

S UTU

bt

Ll W 2N N W)

nN105
59156
S.0107

Se

-

[

T R

N
=Y PAS

A LT ET W

AL L -3 3
| PPN NIV 2 SEri S UV Y IR S YA

ol U SR T N

T vg

AP(J)*=ALUM3

82(J)
N W SR T
J 0 2NN B4R N RV REN

e ANt 18/

Y=Y

LA o W N N N

o 1 ¥ Wiy WY Y 2 1

Y

.

BASIME {

PGAN SN I AT S SR ey

IF(ISIN2-1)55,26,24

2109

SSUToD

Sef

1 a

+

~

3

(e} o o W |

jo e}

A3

L3 Jd=19"

AK(J)

[}

St It

ceayacriaracaed) .

Py U U U RS0 B D S W o5« Wi WE SUNS U, N

0111

Se

38 S B B S S A WIS S Y I B PR WV
AP (J)=D1(JYanz{J)

AL L L\

2]

- 1.3
e L'LL

N

0113

Se

TIUor

Ar:{\]l)_r‘ll Ly
ALLJ)=G(5,J)

2]

b S
RO O O]

5.0115

A1 At f 1y

DU Ly JT=-TUNUJdT
AMLd)

LN S S W 1

B(2,J)

i3

o

1

Pa

57ITTHS
5.0117

L%
SyJg =

=~

= N33
Sl Lo

VJ

15 B(4,J)=AR(J)

\

J=1t7
ALY =aF ()

31

= L
IFCITEST-3)7,151,7

h A ol S¥ a2 3
516

D527
E3(J)=

20

N119
50126
57022
5.0123

5.0121

Se

TV T e

O o ol S IO UL A 2 )

PRV AN |

oo NN AN WA ¢

ol B 3 U —
SNVI T =TT

e

:‘ox‘)i?’f
5.0125

=0.

ADUML

¥

o

O

Ve

ADUMS

A "\l ity
PR VAREN YA

9¥=7
Gt

S 120

S.
3

3
2]

L W W W3

FUEST

= e

Ny Ty

[ X N U W A )

JE O 2]
¥ cull W 0 WA, ¥

L7 AU =0 T Vd

rARg

ADUNTI=ADUMLI=AR{ T I %5 2DEL(J) /(AN EL)

IF(1-3129,28,2¢°

ADUAS=0
55

20y ALy

Uk Bl Wa ¥
Sew 170N
J L 07
5.0133

0129
0131

Se
Yo

Jonpm g TN 2| ﬁn!l"\‘-\?/ \

Vi T e T

I A A W4

L § B LY. SoNall.}

AR R R AU R Y
ADUNMR=ADUMBEAL (T) =56, XDEL(T)/ (ADUMERZ)

AL LD
[ P v

i34

5ot

5.0135

+

T H IR

AR AR

FOT

ClTe Sl B 3 ‘F AW 't"\‘lL'«'«{"‘l\
L{J)Y /740U

~
1

L I B
\

DuMsSEAL (1)

CONT T T

L0 LU

s AL are g

A
S YEe

1
i

Wk

o,
a3y

1Y

A

ADUIMS

0137

S.

AL(JY=ADUBLEAR (I Y RADUM2

AR W AR TR TR, U A S
7 SRR

[ A YN B Bl W

HE I §

C3(J)

ko Wal

56139

(X Re

il 20 SN N1

-1 45

o)

!
AR(JYFADIMG

Lol IV SN0 U W SO 0

3%

D3(J)

0141

3.
3

e 2V OO B U

27

2

)
RS m e

RIS AS T

| SUDE AR UV I ]

T

.

AK(J)=C{JIECL(IIac2(J)eC2(J)

AL { 1)

IFLISIG3-1)33,21,31

o
]

272

LER Y

G143
3ot s

de

F,ll. £

[0 S SRS Ry SV I

[ AR ]

I4h

> DLAT

3145

Je
S

(I

LJ1as204ranz

a8

AM(JY=D(J)

AT

s

[
(O

L
R

SR v KSuD Fom wo a i tu
AR(J)=EL(J)}EE

AC £ 13

E 't B S T N oo W 25 U WA, Wl WS

LY AR

-4

(J)

-
A

e 0149
21150}

ve 161

4 13

NYUTIOT=T"770UJ7

B(1,d)=AK{J)

b LA
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- Gle -

oo

G=L GV R

*0=9wN0aV ey

- * = CNEY- €l
*C=%rNAV ° EONYON

"G e Loz

*G=2wNay 2020"

* =1 AU 1e2o

G /(M) 140 (P)SH-=(T)Gd coece:

{F s B = GH L6162

N¢l=r 222 0Q 122 Gele:*

SV Vo W W SN N SIS BT ¢ SN AL

1=%91S1 “61G"

Y= P40} 6 E 4% FL)

(riIsv={(rss)g v61G*

Py o\ ={Fis)g celes

(FlaVv=(rég)g 261¢"

=423 6 Teoe

(F)%v=(r+1)9 0610*
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