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Abstract

The search for the global minimum energy conformation (GMEC) of protein side
chains is an important computational challenge in protein structure prediction and
design. Using rotamer models, the problem is formulated as a NP-hard optimization
problem. Dead-end elimination (DEE) methods combined with systematic A* search
(DEE/A*) have proven useful, but may not be strong enough as we attempt to solve
protein design problems where a large number of similar rotamers is eligible and the
network of interactions between residues is dense.

In this thesis, we present an exact solution method, named BroMAP (branch-and-
bound rotamer optimization using MAP estimation), for such protein design prob-
lems. The design goal of BroMAP is to be able to expand smaller search trees than
conventional branch-and-bound methods while performing only a moderate amount of
computation in each node, thereby reducing the total running time. To achieve that,
BroMAP attempts reduction of the problem size within each node through DEE and
elimination by energy lower bounds from approximate maximurn-a-posteriori (MAP)
estimation. The lower bounds are also exploited in branching and subproblem selec-
tion for fast discovery of strong upper bounds. Our computational results show that
BroMAP tends to be faster than DEE/A* for large protein design cases. BroMAP
also solved cases that were not solvable by DEE/A* within the maximum allowed
time, and did not incur significant disadvantage for cases where DEE/A* performed
well.

In the second part of the thesis, we explore several ways of improving the energy
lower bounds by using Lagrangian relaxation. Through computational experiments,
solving the dual problem derived from cyclic subgraphs, such as triplets, is shown
to produce stronger lower bounds than using the tree-reweighted max-product al-
gorithm. In the second approach, the Lagrangian relaxation is tightened through
addition of violated valid inequalities. Finally, we suggest a way of computing indi-
vidual lower bounds using the dual method. The preliminary results from evaluating
BroMAP employing the dual bounds suggest that the use of the strengthened bounds
does not in general improve the running time of BroMAP due to the longer running



time of the dual method.
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Title: TIBCO Professor of Computer Science and Engineering
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Chapter 1

Introduction

Determining low-energy placements for side chains on a fixed backbone is an im-

portant problem in both protein structure prediction and protein design. A typical

approach to the protein structure prediction is homology modeling [Chothia and

Lesk, 1986, Ring and Cohen, 1993, Baker and Sali, 2001] followed by refinement

of the model through determination of the side-chain conformations. Determining

the side-chain conformation for a given backbone structure and an amino acid se-

quence is called "side-chain placement" and is solved through finding the minimum

energy conformation. Protein design problems, also referred to as the "inverse folding

problem" [Drexler, 1981, Pabo, 1983, Godzik et al., 1993], impose similar but bigger

computational challenges than the side-chain placement problem. In the protein de-

sign problem, an amino acid sequence that will stably fold to the target backbone

structure is to be found among all candidate amino acid sequences. Assuming the

backbone structure is fixed and the scoring function for sequence candidates is known,

the protein design problem is solved as a generalized side-chain placement problem,

that is, by finding the minimum energy (or score) conformation of side chains, draw-

ing from a range of amino acid types at each residue position [Hellinga and Richards,

1994, Dahiyat and Mayo, 1996].

This work addresses the problem of finding the minimum energy conformation of

protein side-chains in the context of protein design applications. In particular, we

focus on the combinatorial search aspect of the problem while the backbone struc-



ture and a sequence scoring function are given as input. A scoring function is often

derived from either statistical relation between sequences and structures or molecular

interaction energies of amino acids [Dima et al., 2000]. We assume a scoring function

assigns a lower value for a more stable conformation, and such a value is often called

an energy in this work. Assuming backbones are always fixed in our problem, the

conformational space of a protein can be represented solely by its side chains' confor-

mations. Although a side chain can have an infinite number of different conformations

in theory, we approximate the conformational space of a side chain by a finite number

of fixed conformations called rotamers. Therefore, the search for the minimum score

conformation of a protein's side chains reduces to a discrete search problem.

The common theme throughout the thesis is development of exact solution meth-

ods for the minimum energy conformation search problem. To achieve the improve-

ment in search speed, we rely on two main technical directions: search space reduction

by branching and elimination, and effective but inexpensive bounding of conforma-

tional energies. The suggested solution methods are developed with the characteristics

of protein design problems, and possible constraints on the system resources in mind.

Section 1.1 gives a background in proteins and protein structures. Section 1.2

reviews computational protein design and restricts the scope of p)rotein design prob-

lems we will study. Section 1.3 formally defines the problem of minimum energy

conformation search, called the global minimum energy conformation (GMEC) prob-

lem, originally for the side-chain packing problem. This becomes the problem we will

investigate throughout the thesis. Section 1.4 describes how the protein design prob-

lem is cast into a side-chain packing problem. It addresses the large combinatorial

size for practical protein design cases, and argues for finding exact solutions of large

problems. Section 1.5 reviews previous work on the GMEC problem, including exact

enumerative approaches and heuristic search methods. Section 1.6 presents a brief

summary of our work and contributions. Section 1.7 outlines the rest of the thesis.



1.1 Background on proteins

A protein is an organic polymer chain made of amino acids. Each composing amino

acid can be drawn from 20 different types of amino acids. Proteins function as

important elements in biological organisms. They catalyze biochemical reactions,

sustain cells structurally and mechanically, and participate in cell signaling and im-

mune responses, to name a few. Such functions of proteins are highly related to the

three-dimensional structures of proteins. It is believed that a protein's geometric ar-

rangement is determined by its amino acid composition, and that such a structure

generally corresponds to the minimum energy conformation of the protein.

Two adjacent amino acids in a protein form a peptide bond. Therefore, the entire

sequence of amino acids form a long polypeptide backbone. Such a chain structure

determined by the sequence of amino acids is called the primary structure of the

protein. The part of an amino acid that forms the polypeptide backbone is called a

residue, and the rest of the amino acid that branches from the backbone is called the

side-chain. The types of amino acids are in fact determined by the atomic composition

of side-chains.

The polypeptide chain is flexible and in response to atomic interactions packs

into levels of complicated three-dimensional structures, called secondary, tertiary,

and quaternary structure. Secondary structure refers to the regularly repeating local

structures mediated by hydrogen bonds, such as a-helix and P-sheet. Tertiary struc-

ture is the overall geometric structure of a protein, determined by the positions of all

the atoms. Quaternary structure is the structure of a protein complex consisting of

more than one protein chains. The fold of the backbone together with the orientations

of side-chains is also called the protein conformation.

The structure of a protein can be experimentally identified through procedures

such as X-ray crystallography or NMR spectroscopy. X-ray crystallography provides

a high-resolution electron density map, but no time-dependent information can be

extracted. NMR spectroscopy provides constraints on interatomic distances, dihe-

dral angles, and other orientational data. The information generated is of lower



resolution than that from X-ray crystallography, but NMR spectroscopy can yield

time-dependent information, which allows NMR spectroscopy to be used for protein

folding studies. Despite the experimental validation they provide, both techniques

can be experimentally intricate and time-consuming. They also require complicated

computational interpretation of the generated data.

1.2 Computational protein design

Protein design refers to the process of identifying amino acid sequences that satisfy

desired structural or biochemical properties. There are two main motivations for

protein design. First, it serves the medical, engineering, or other scientific needs

for new biochemical molecules by modifying or enhancing the functions of natural

proteins, or by identifying novel proteins. Second, it provides a test bench for the

current physical models of protein stability and folding, and our understanding of

protein functions.

Protein design has been approached on several different levels. In the earliest

stage, proteins were designed via human insights from manual examination of natu-

ral proteins [DeGrado et al., 1989, Richardson and Richardson, 1989]. However, these

proteins were found to be less stable than natural proteins mainly due to poor side-

chain packing. Subsequent efforts were mainly made in designing the hydrophobic

core of proteins [Ponder and Richards, 1987, Hellinga and Richards, 1994, Desjar-

lais and Handel, 1995, Harbury et al., 1995, Dahiyat and Mayo, 1996, Lazar et al.,

1997]. Due to the dominance of side-chain packing interactions, the problems were

relatively simple both energetically and combinatorially. The past several years have

seen the extension of the problem to non-core regions of proteins. As automatic de-

sign paradigms emerge using rotamer libraries [Ponder and Richards, 1987, Dunbrack

and Karplus, 1993], active research has been pursued in the area of re-engineering

natural proteins. In particular, one of the areas where computational protein design

has proven most useful is to modify protein sequences so that the resulting struc-

ture adopt a desired conformational state. Some such attempts have resulted in new



enzymes, stabilized proteins, solubilized membrane proteins, and enhanced protein-

protein interfaces [Dwyer et al., 2004, Looger and Hellinga, 2001, Dahiyat et al., 1997,

Korkegian et al., 2005, Chevalier et al., 2002, Kuhlman et al., 2003, Malakauskas and

Mayo, 1998, Slovic et al., 2004, Lippow et al., 2007].

Full protein design is more challenging than partial redesign in that it requires

more precise models for the combined effects of various forces, hydrogen bonding,

and solvation effects. One of the early successful results for full protein design used

a fixed backbone structure from the zinc-finger fold [Dahiyat and Mayo, 1997], and

was followed by several other full sequence designs [Dantas et al., 2003, Kuhlman

and Baker, 2004]. Proteins designed using backbone structures from natural proteins

often resemble natural protein sequences, which has raised the questions of whether

backbone structures contain memory for sequence information and whether full se-

quence design using natural backbone structures is a suitable benchmark for protein

design methodologies.

The grand challenge of computational protein design is so-called de novo protein

design, that constructs proteins with novel structures or biochemical properties, which

do not have natural analogs. This is a hard problem in that there may not exist any

amino acid sequence that folds to a given three-dimensional structure, for example.

However, a novel globular protein was constructed from a protein-like structure built

from fragments of secondary structures and through iterations of various procedures

including energy minimization and backbone structure perturbation [Kuhlman et al.,

2003]. Another example of de novo design is a single sequence that adopts two distinct

folds by targeting stability in both states [Ambroggio and Kuhlman, 2006].

Other challenges in protein design include considerations of binding affinity and

specificity, or enzymatic activity [Lippow and Tidor, 2007]. Instead of finding a se-

quence or conformation attaining the minimum energy state, multi-objective searches

will be more adequate to many emerging applications.

It is often suggested that calculated energies of proteins contain significant errors,

which can be attributed to several factors, such as inaccurate energy functions, under-

sampling of conformational space, and the fixed backbone assumption. Particularly,



it was experimentally shown that mutations affect the backbone conformation [Bald-

win et al., 1993, Lim et al., 1994]. The error from fixed backbone structure has

been addressed by adopting flexible backbone design procedures. Flexible backbone

design can be in large divided into two categories: (1) those separating sequence

searches from backbone conformational searches [Larson et al., 2002, Kraemer-Pecore

et al., 2003, Plecs et al., 2004, Ross et al., 2001, Shifman and Mayo, 2003], and

(2) those explicitly integrates the backbone flexibility into a combined optimization

procedure [Desjarlais and Handel, 1999, Kuhlman et al., 2003, Saunders and Baker,

2005].

In this work, we only consider protein design under fixed backbone struc-

tures. As discussed above, flexible backbone protein design can be approached by

separate procedures for sequence optimization and backbone conformation search. In

this case, the sequence optimization part can be solved by the fixed backbone design

method while the backbone conformation search is handled by stochastic methods

such as Monte Carlo simulation.

When the backbone is assumed to be fixed, only side-chains of amino acids are

allowed degrees of freedom. Therefore, the search for the optimal sequence reduces to

the so-called side-chain packing problem. The side-chain packing problem is originally

defined for a single amino acid sequence and a backbone structure as follows:

Side-chain packing problem when the given amino acid sequence is folded onto

the given backbone structure, what is the conformation (or orientation) of each

side-chain?

Figure 1-1 illustrates the placement of side-chains through solving the side-chain

packing problem. The side-chain packing problem is solved as an energy minimization

problem. When the scoring function for protein sequence design accurately models

the side-chain packing energy, it is obvious that the optimal sequence we look for

will have the best side-chain packing energy. That is, the optimal sequence for the

fixed backbone protein design problem can be found by solving the side-chain packing

problem for each candidate sequence, and then picking the sequence with the min-



Figure 1-1: The side-chain packing problem is, given a backbone structure and an
amino acid sequence, to find a correct conformation of each amino acid side-chain
when the sequence is folded to the structure. The problem is often used in prediction
of protein structures. It is solved by finding the conformation that minimizes the sum
of interaction energies.

Backbone coordinates

Energy model

AE

Figure 1-2: Fixed backbone protein design can be regarded as a procedure of selecting
the sequence with the best side-chain packing energy. The figure illustrates a naive
way of doing this, that is, by solving the side-chain packing problem for each candidate
sequence.

imum packing energy. Figure 1-2 illustrates the idea of using a side-chain packing

procedure for sequence selection.

1.3 Global minimum energy conformation (GMEC)

search

In the previous section, we have seen the side-chain packing problem, that is, the

search for the minimum energy conformation for a given amino acid sequence is an

I >



important computational challenge in computational protein design. The minimum

energy conformation search is a hard problem considering each side-chain can have

almost an infinite number of different conformations, corresponding to variations in

its bond lengths, bond angles, and most importantly dihedral angles. In addition,

time for enumerative search will be multiplied by the time for calculating energy from

the physical model for each conformation.

Despite the complexity of the original minimum energy conformation search, the

search space can be simplified by allowing only a finite number of fixed side-chain

conformations, called rotamers [Ponder and Richards, 1987, Dunbrack and Karplus,

1993]. With the rotamer model, the energy function of a protein sequence folded onto

a specific backbone template can be described in terms of [Desmet et al., 1992]:

1. the self-energy of the backbone template from the interactions within the back-

bone (denoted as Etemplate);

2. the singleton interaction energy between the backbone and rotamer conforma-

tion r at position i of the sequence (denoted as E(ir));

3. the pairwise interaction energy between rotamer conformation r at position i

and rotamer conformation s at position j, i 4 j (denoted as E(ir, js)).

Then, the energy of a protein sequence of length n in a specific backbone template

structure and conformation C = {C1,... , C, Ci is the conformation of position i }

can be written in a functional form as

n n-1 n

E(C) = Etempte + - E(C) + Y 3E(Ci, C). (1.1)
i=1 i=1 j=i+1

Energy terms E(i~) and E(i,,j') can be computed for a given backbone template

and the set of allowed rotamers using coordinates of atoms and specified molecu-

lar force fields, such as AMBER [Weiner et al., 1984, 1986, Cornell et al., 1995],

CHARMM [Brooks et al., 1983, Mackerell et al., 1998], MMFF [Halgren, 1996], or

OPLS [Jorgensen and Tirado-Rives, 1996]. The conformation C that minimizes

the energy function S(C) is often called the global minimum energy conformation
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Figure 1-3: A graphical representation of a GMEC problem instance. It is easy to
see that the GMEC for the problem is (12, 22, 31) with the GMEC energy equal to -3.

(GMEC). In this work, we consider the problem of finding the GMEC when given a

backbone conformation, a set of rotamers, and energy terms, and call such a prob-

lem "the GMEC problem". Note that Etemplate is constant by definition and can be

ignored when we minimize E(C).

Figure 1-3 illustrates the graphic representation of the GMEC problem that we

are going to use. In the diagram, the ellipses represent the residue positions in the

problem. The filled dots represent available rotamer choices at each position. The

dashed line connecting rotamers at different positions represent possible interactions

between pairs of rotamers. The number on the dashed line connecting rotamer i,

and j, is the pairwise interaction energy E(i,js). We will often ignore the singleton

interaction energies E(i,) because they can be numerically incorporated into the

pairwise interaction energies. The solid lines mark the minimum energy conformation

for the problem.

1.4 Protein design problem as a generalized side-

chain packing problem

With the formulation of the side-chain packing problem from the previous section,

the protein design problem under fixed backbone structures can be cast into a single
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Figure 1-4: An example protein design problem cast as a large side-chain packing
problem. Each design position offers rotamer choices from multiple types of amino
acids.

large side-chain packing problem. Instead of solving the side-chain packing problem

for each candidate sequence as suggested by Figure 1-2, by allowing rotamer choices

for each sequence position to be drawn from all allowed amino acid types of that

position, the resulting side-chain packing problem, if solved exactly, will identify the

rotamers corresponding to the minimum energy conformation of the optimal sequence.

Figure 1-4 illustrates the construction of a side-chain packing problem for solving a

protein design problem.

The size of the resulting side-chain packing problem can be huge. The number

of rotamers that a basic rotamer library will offer for each amino acid is 3 to the

number of dihedral angles in the amino acid. Since each amino acid has 0 to 4

dihedral angles, on average1 (30 + 31 +32 +33 + 34) - 24 rotamers are offered for each

amino acid. Suppose we are looking for amino acids for 30 positions, the number of

possible conformations that need to be evaluated becomes 2430

Considering the combinatorial size of the problem, it may look more reasonable

taking heuristic approaches to the problem than trying to solve it exactly. However,

- -·-

1111111



we only address exact solution methods in this work. There are two reasons for

exactly solving the problem. First, the problem is also hard to obtain approximate

solutions (See Appendix A.2). This implies that it is not generally expected that

solutions close to the exact solution can be obtained in significantly less time than that

for solving the problem exactly. Therefore, a solution that some stochastic method

identifies may not be used to estimate the global minimum energy unless additional

information, such as a lower bound of the minimum energy, is also provided. Empirical

studies with both heuristic and exact methods to solve the GMEC problem report

that the performance of the heuristic methods tends to degrade as the problem size

grows [Voigt et al., 2000].

The second motivation for the exact solution of the GMEC problem is found in

protein design methodology. Although computational protein design techniques have

been successfully applied to finding novel biomolecules and satisfied the engineering

purposes to a certain degree, the energies computed during the design process inher-

ently contain errors from inaccurate physical models, poor sampling of the conforma-

tional space by rotamers, or the fixed backbone assumption. Despite the undesired

inaccuracy that may have been introduced during the process of sequence search, it

also implies that the adopted models such as scoring functions and rotamer libraries

will have chances to be improved through calibration between the theoretical models

and the physical results. This can be in fact a more significant benefit of studies of

computational protein design in the current stage, where active research is pursued in

the direction of developing protein design methodologies, than pure engineering use

of protein design. However, if the GMEC problem is solved only approximately, and

the solution found does not provide any information on its quality, such uncertainty

limits the use of results to correct the models or design protocols. This is suggested

in the protein design automation cycle [Dahiyat and Mayo, 1996] of Figure 1-5.
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Figure 1-5: The iterative loop of protein design procedures [Dahiyat and Mayo, 1996].
In this loop, one sets up a problem with desired backbone structure and amino acids
in the design step. Then, in the simulation step, the GMEC search is performed
to identify a sequence that satisfies the design goal. The sequence is synthesized
and characterized in the next step of synthesis. Finally, in the analysis step, one
can correct the potential energy function used in the simulation by comparing the
experimental data and the model, or even modify the problem setups in the design
step.

1.5 Related work

In this section, we review the most widely used exact method called dead-end elimi-

nation to solve the GMEC problem for protein design, and other exact methods and

approximate methods that have been employed to solve the GMEC problem.

1.5.1 Dead-end elimination

The GMEC problem is a strongly NP-hard optimization problem as one can readily

show by reduction from the satisfiability problem (see Appendix A). Despite the

theoretical hardness, one finds that many instances of the GMEC problem are easily

solved by the exact method of dead-end elimination (DEE) [Desmet et al., 1992].

Dead-end elimination (DEE) identifies rotamers and combinations of rotamers

that cannot be a part of the GMEC. The basic idea to find a candidate for elimination

is to identify a rotamer of a residue that always imparts less favorable energy to the

conformation than other rotamers in the same residue. That is, if there exist two

rotamers r and t of residue i that satisfy the following inequality for every possible

Z__ý
so



conformation for the other residues of the protein, then we can eliminate the rotamer

i, from the conformational search.

E(ir) + E(iji) > E(it) + E E(itjs) (1.2)
jjAi jj/i

However, checking the above condition for every possible conformation of other residues

and finding a rotamer to be eliminated is computationally impractical. The following

is a weaker elimination condition but it is computationally far easier:

E(i,) + C min E(irs) > E(i ) + max E(izj 8 ) (1.3)
j,jhi j,jAi

An extension of (1.3) for rotamer-pair elimination also exists [Desmet et al., 1992].

Such DEE conditions are applied iteratively until no more rotamers can be eliminated.

When DEE sufficiently reduces the problem size, the GMEC is readily found.

Since the early work by Desmet et al. [1992] on singles and pairs elimination condi-

tions, there have been various modifications and improvements of the DEE algorithm.

Goldstein [1994] presented an improved version of the elimination inequality (1.3) as

follows:

E(ir) - E(j3) + E min(E(irj) - E(itji)) > 0 (1.4)
j,j#i

(1.4) can also be extended to eliminate pairs of rotamers. However, the computation

for checking the inequality for pairs takes more time. Goldstein further identified

the possible use of super-residues to enhance higher-order elimination. Goldstein also

suggested unification [Goldstein, 1994], which merges all rotamers from two positions,

that is, constructs a single rotamer out of a pair of rotamers from two positions. This

has the effect of exposing pair flags as explicit reduction in the problem size because

any single rotamer from a flagged rotamer pair will be discarded in the unified prob-

lem. Lasters et al. [1995] developed a linear programming-based approach to exploit

the singles elimination condition with respect to a convex combination of rotamers.

They also described possible logical deduction between singles and pairs elimination,



such as elimination of a single rotamer when every rotamer pair between the single

rotamer and all rotamers in another position is flagged. Gordon and Mayo [1998]

suggested heuristics for reducing the computational burden of pairs elimination, such

as the use of "magic bullet" pair and heuristic scoring of pairs. Pierce et al. [2000]

described an algorithm for singles elimination based on the idea of "splitting" the

conformational space. They noticed that Goldstein's general elimination condition

using a convex combination of single rotamers can be further strengthened by splitting

the conformational space, which fixes the rotamer choices for a subset of positions.

More recent work by Looger and Hellinga [2001] is called "comparison cluster focus-

ing", seeks to find the smallest residue super-cluster over which all rotamer clusters

containing some rotamer c can be eliminated, thus also letting c be eliminated.

Elimination procedures such as Goldstein's conditions and unification [Goldstein,

1994], logical singles-pairs elimination [Lasters et al., 1995], the magic bullet pairs

heuristic [Gordon and Mayo, 1998], splitting [Pierce et al., 2000], generalized elimina-

tion conditions [Looger and Hellinga, 2001], hybrid optimization through scheduling

of various elimination conditions [Gordon et al., 2003], and more recently divide-and-

conquer enhancement to DEE [Georgiev et al., 2006] are often able to reduce the

problem size dramatically, while demanding only reasonable computational power.

Enhanced DEE [Gordon et al., 2003] that collectively uses various elimination

conditions performs well for some of the hard protein design cases of interest to us.

However, finding dead-ends using the known elimination conditions does not always

eliminate as many rotamers or rotamer pairs as necessary. In case the remaining

conformational space after DEE application is too large to literally enumerate, a

systematic search method such as the A* algorithm [Hart et al., 1968, Leach and

Lemon, 1998] is often applied to find the GMEC (call the combined method DEE/A*).

However, such a combined scheme will not be useful unless DEE reduces the size of

conformational space to the point where a systematic search is applicable.



1.5.2 Other exact methods

Other than DEE, there exist various approaches to solve the GMEC problem exactly.

Leach and Lemon [1998], Gordon and Mayo [1999], and Wernisch et al. [2000] describe

branch-and-bound (BnB) methods. BnB splits the search space into smaller search

spaces and tackles each subproblem at once. Each approach derives a lower bound

for the conformational energy, and prunes the ineligible search space by comparing

the lower bound with a reference energy (that is, an upper bound).

Eriksson et al. [2001] formulates the side chain positioning problem as an ILP

problem. In their computational experiments, they find the LP relaxation of every

test instance has an integral solution and, therefore, conclude that an integer pro-

gramming technique is not necessary. Althaus et al. [2002] presents an integer linear

programming (ILP) approach for side-chain demangling in rotamer representation of

the side chain conformation. Using an ILP formulation, they identify classes of facet-

defining inequalities and devised a separation algorithm for a subclass of inequalities.

The results show that the branch-and-cut algorithm is about five times slower than

their heuristic approach. Kingsford et al. [2005] also use ILP approaches for side-

chain positioning. Yanover et al. [2006] compares the tree-reweighted max-product

algorithm and a general purpose LP solver on side-chain prediction an(d protein de-

sign. Sontag and Jaakkola [2007] apply the cutting plane method based on LP to

side-chain prediction.

Leaver-Fay et al. [2005] describe a dynamic programming approach based on tree-

decomposition. Xu [2005] presents a tree-decomposition algorithm for protein back-

bone structures. Xie and Sahinidis [2006] describe a method that combines several

residue-reduction and rotamer-reduction techniques.

Each exact approach may have some advantages over others depending on the

characteristics of the problem being considered. For example, for a simplified version

of the problem where the number of rotamers per position is limited or interactions

between residue positions are sparse, even deterministic algorithms with guaranteed

time bounds exist. However, it is known that protein structures and stabilities can



be predicted better with more side-chain flexibility, that is, by using a larger rotamer

library [Desjarlais and Handel, 1999, Peterson et al., 2004]. In addition, the network

of interactions between residue positions can be dense as is often observed in protein

cores. Therefore, we are interested in protein design problems where all possible pairs

of positions are assumed to interact and a large number of similar rotamers is offered

at each position. To our knowledge, only DEE-like methods or DEE followed by BnB

methods have shown success in solving such hard protein design cases exactly.

1.5.3 Approximate methods

There also exist approximate approaches for the GMEC problem. Koehl and De-

larue [1994] present the self-consistent mean field theory. Jiang et al. [2000] uses

simulated annealing and Monte Carlo sampling to find stable sequences and rotamer

combinations. Jones [1994] and Desjarlais and Handel [1995] use genetic algorithms

to design proteins for target structures. Wernisch et al. [2000] describe a heuristic for

protein design. Ponder and Richards [1987] develop a systematic search method to

find side-chain combinations that fit in the cores of small proteins.

Self-consistent mean field theory mentioned above is a probabilistic inference

method. The method calculates the mean field energy as the sum of interaction

energies weighted by the conformational probabilities. On the other hand, the con-

formational probabilities are related to the mean field energy by the Boltzmann law.

In this method, iterative updates of the probabilities and the mean field energy are

performed until both converge numerically. Then, at convergence, the rotamer with

the highest probability from each residue is selected as the GMEC. The method is

not exact, but takes only linear time per iteration.

Yanover and Weiss [2002] apply belief propagation (BP), generalized belief propa-

gation (GBP), and the mean field method to inferring the GMEC and compared the

results with those from SCWRL, a protein-folding program. Using an approximate

discrete energy function where only local interactions between neighboring residues

are considered, BP and GBP are shown to be more effective in finding the GMEC

than other methods considered.



As discussed in Section 1.4, these approximate methods can come up with some

solutions faster than the exact methods, but such solutions are not guaranteed to

be close to the exact solution. Finding the exact solution is also often required by

practitioners for the purpose of improving protein design protocols or comparing

solutions from a number of varied design settings.

1.6 Our work and contributions

In this thesis, we present exact solution methods for the GMEC problem. We only

consider the search problem when the rotamer choices and associated energy terms

are defined. The purpose of our studies is development of exact methods that can

be used to solve a large scale GMEC problem on a typical workstation, where the

system resources such as CPU power and the size of memory can be limited.

This thesis can be divided into two parts. The first part describes a new BnB

method for the GMEC problem. The method consists of several components such

as lower bounding through tree-reweighted MAP estimation and branching schemes

that make it competitive over the conventional approach using DEE/A*. The BnB

method is evaluated using challenging protein design cases, and is compared with

DEE/A*.

The second part describes Lagrangian dual relaxation approaches to the GMEC

problem. In the dual framework, we explore several techniques that can lead to

stronger lower bounds than those from the first part based on tree-reweighted MAP

estimation. The new lower bounding techniques are again integrated into the BnB

method of the first part and evaluated with protein design cases.

1.6.1 Branch-and-bound rotamer optimization using MAP

estimation

We describe a new exact solution method for the GMEC problem that can substitute

for DEE/A*, especially in solving hard design cases. Our method, named BroMAP



(branch-and-bound rotamer optimization using MAP estimation), is based on the

BnB framework and a new subproblem-pruning method. We present lower bounding

methods and problem-size reduction techniques, organized into a BnB framework so

that BroMAP is guaranteed to find an optimal solution.

Figure 1-6 shows a hierarchical representation of BroMAP. At the highest level, it

consists of specifications of bounding and branching schemes. The bound computation

of BroMAP mainly relies on a MAP estimation method called the tree-reweighted

max-product algorithm (TRMP) [Wainwright et al., 2005]. TRMP can be used to

compute both upper and lower bounds, but it is not necessarily more useful for

computing upper bounds than other approximate methods mentioned in Section 1.5.3.

TRMP is more useful as a lower bounding method in that it is based on the same

attainable lower bound as the LP described in Appendix B.3, but is more scalable

in computing the lower bound than a general-purpose LP solver. However, such LP

bounds are not necessarily strong enough to prune a subproblem in the BnB tree.

Therefore, a BnB method simply using TRMP as a lower bounding method is not in

general an effective solution method for the GMEC problem.

As suggested by Figure 1-6, the weak lower bounds from TRMP is augmented

by what is called "problem-size reduction", or simply reduction. The expected effect

of reducing the problem size is that we can obtain a stronger lower bound when

applying the same lower bounding technique, such as TRMP, to a smaller problem.

A reduced problem induces a smaller search space than the original problem from a

reduced number of rotamer choices or positions. However, for the BnB method to

work correctly with problem-size reduction, a problem should be reduced only in a

way to satisfy a certain condition regarding the relation between the optimal values

of the problem before and after the reduction, and the global upper bound. The

figure shows that we employ three different reduction techniques that satisfy such

a condition. These are DEE modified to function correctly in the BnB framework,

rotamer contraction that merges several rotamers as a super-rotamer by identifying

rotamers with similar distributions of pairwise energies, and elimination of rotamers

and rotamer pairs using individual lower bounds from TRMP.
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Bounding Branching

MAP estimation Reduction

DEE Rotamer contraction Elimination by individual bounds

Figure 1-6: A hierarchical representation of BroMAP.

Finally, BroMAP employs a branching scheme for splitting a subproblem and

determining the order of nodes expansion in the BnB tree, that exploits rotamer lower

bounds from TRMP. The basic idea of BroMAP's branching scheme is separating the

optimal values of child subproblems as much as possible and always first expanding

those subproblems that are likely to have smaller optimal values. Such a scheme

results in fast discovery of an upper bound very close to the global optimal value and

effective pruning of subproblems in the BnB tree.

It should be noted that TRMP is a shared component used for lower bounding,

elimination by individual bounds, and branching in BroMAP. It enables BroMAP to

gain practical performance in solving large scale GMEC problems.

Our numerical experiments confirm the utility of BroMAP in GMEC search for

large protein design problems, including ones that are challenging for DEE/A*. In

our experiments, all cases solved by DEE/A* were also solved by BroMAP, and using

BroMAP did not incur significant disadvantage over DEE/A*. Moreover, BroMAP

excelled on the cases where DEE/A* did not perform well; for each case that took



longer than one hour but was eventually solved by DEE/A*, BroMAP took at most

33% of the DEE/A* running time. Among 68 test cases of various types and sizes,

we found BroMAP failed to solve three cases within the 7-day allowed time whereas

DEE/A* failed to solve 17 of them.

Compared to DEE, BroMAP has an advantage that it can attack smaller subprob-

lems separately using various problem-size reduction or lower bounding techniques

instead of having to keep the problem as a whole. Meanwhile, the use of DEE as one

of the problem-size reduction techniques in BroMAP allows the strengths of DEE for

protein design problems to be transferred to BroMAP.

BroMAP has the advantage of reducing the search trees over conventional BnB

approaches in two ways. First, it uses problem-size reduction techniques within each

node so that the effect of problem-size reduction from branching is often larger than

that of a conventional BnB method. Hence, the depth of the resulting search tree is

also smaller. Second, it quickly finds a strong upper bound (at the end of the first

depth-first dive) with the help of informed branching and subproblem selection. This

facilitates effective pruning of nodes that follow, and therefore often results in sparse

search trees growing mostly in one direction. BroMAP achieves these advantages

without excessive computation by using new inexpensive lower bounding methods

and limiting the effort spent by bounding or problem-size reduction.

The following are the contributions made in the first part of this thesis:

1. Development of lower bounding methods for minimum conformation energy of

individual rotamers and rotamer pairs using a maximum-a-posteriori estimation

method called the tree-reweighted max-product algorithm [Wainwright et al.,

2005];

2. Adoption of problem-size reduction techniques (DEE and elimination by lower

bounds) within the BnB framework;

3. Use of rotamer lower bounds in branching and subproblem selection for fast

discovery of strong upper bounds;



4. Extensive evaluation of BroMAP and DEE/A* on various types and sizes of

protein design problems.

1.6.2 Lagrangian dual relaxation of the GMEC problem

The results from computational experiments in the first part suggest a speed-up of the

BnB method can be obtained through stronger lower bounding techniques. Motivated

by this observation, we explore Lagrangian dual relaxation approaches to the GMEC

problem. Using the dual optimization framework provides several advantages, but its

scalability is the biggest gain over its primal counterpart, such as linear programming

approaches.

We suggest two different approaches to strengthening lower bounds in the dual

framework. The first approach uses inclusion of higher order cliques, such as triplets.

The effect of including relevant triplets is experimentally shown using protein design

cases.

The second approach to improve lower bounds in the dual framework is sought

from identification and addition of violated valid cuts. We suggest a new iterative

lower bound tightening approach for the GMEC problem through addition of cuts to

the Lagrangian dual problem, which is a dual analog of the cutting plane method in

the primal domain. Lower bounding the GMEC energy via the iterative method is

probed with respect to the quality of bounds and the bounding time.

We finally describe a method of computing individual rotamer and rotamer-pair

lower bounds in the dual framework. Coupled with the strong bounding ability from

addition of triplets, the resulting individual bounds are sometimes stronger than

individual bounds from TRMP, but are not always stronger due to the suboptimal

convergence of the subgradient method.

The dual method including individual bounds computation is employed in BroMAP

and evaluated on small test cases. The computational results suggest that the dual

method needs speed improvement, despite its stronger bounding ability, for BroMAP

employing the dual bounds to be competitive.

The following are the contributions made in the second part:



1. Formal description of the Lagrangian dual relaxation and its solution method

when cyclic subgraphs are used for decomposition of the original GMEC prob-

lem.

2. A heuristic method for finding relevant triplets to improve the lower bound in

the dual framework.

3. Development of a new iterative method for tightening the lower bound of the

GMEC problem through addition of violated valid cuts in the dual framework.

4. Development of lower bounding methods for individual rotamers and rotamer-

pairs in the dual framework.

5. Evaluation of the Lagrangian dual lower bounding methods in the BnB frame-

work to solve protein design cases.

1.7 Overview

In Chapter 2, we cast the GMEC problem as the MAP estimation problem, and re-

view solution methods of the MAP estimation problem. In Chapter 3, we describe a

BnB method (BroMAP) for the GMEC problem, and its components such as lower

bounding techniques, elimination methods, and branching schemes. Chapter 4 sug-

gests problem-size reduction and lower bounding techniques that can be used under

the BroMAP framework. In Chapter 5, we apply BroMAP to challenging protein

design cases, and compare its performance to that of DEE/A*. Chapter 6 describes

Lagrangian dual relaxation of the GMEC problem, and a subgradient method as a

solution method for the dual problem. The effect of including triplets in the dual

formulation on the strength of lower bounds is evaluated. Chapter 7 presents an

iterative lower bound tightening method based on identification of violated valid cuts

in the dual framework. The suggested method is evaluated on protein design cases.

Chapter 8 describes a method to compute lower bounds of individual rotamers and

rotamer-pairs. The individual lower bounding methods built on the strengthened



dual lower bounding methods of the previous chapters are adopted in the BroMAP

framework, replacing the lower bounding through tree-reweighted MAP estimation.

The resulting BnB method is evaluated with protein design cases.





Chapter 2

Background on MAP estimation

problem and methods

Probabilistic inference approaches have been popularly applied to a wide range of

applications such as computer vision, computational biology, and medical decision

making, to name a few. A multinomial inference problem involves a random vec-

tor x = ( 1, X2,... -, ,) characterized by a probability distribution that maps a

sample x in a sample space X to a probability p(x) [Cowell et al., 1999]. There

are various types of inference problems such as computing the marginal distribution

p(XA) = Zx\XA p(x) for some XA C x. In this chapter, we formulate the GMEC prob-

lem as another type of probabilistic inference problem called ma:ximuzn-a-posterio'ri

(MAP) estimation problem. The formulation will be presented with the framework

of graphical models. Then, we review known MAP estimation methods including the

conventional max-product algorithm, and the tree-reweighted max-product (TRMP)

algorithm. Particularly, we expand on TRMP, which will be the main tool for ob-

taining upper and lower bounds of the GMEC problem in Chapter 3. The main

idea of TRMP is to express a distribution defined over a cyclic graphical model as

a convex combination of distributions over spanning trees. This convex combination

of tree distributions is used to upper bound the MAP probability, that is, to lower

bound the GMEC energy. Finding an assignment that maximizes such an upper

bound is computationally much easier than computing the exact MAP assignment of



the original distribution. After reviewing TRMP, we briefly introduce other known

MAP estimation methods. Particularly, we review mean field theory and the sum-

product algorithm that are often heuristically used to compute an approximate MAP

assignment, and point out connections to other MAP estimation methods.

2.1 MAP estimation for the GMEC problem

The MAP estimation problem asks to find a MAP assignment x* such that

x* E arg max p(x),
xEX

(2.1)

where X is the sample space for x. In the GMEC problem, we number the sequence

positions by i - 1, . . ., n, and associate with each position i a discrete random variable

xi that ranges over RP, a set of allowed rotamers at position i. Then, we can define

a probability distribution p(x) over

X = R1 x ... x R,, (2.2)

p(x) = exp{-e(x)}, (2.3)

for a normalization constant Z and

n n-1

e(x) = Zei(xi)+
i=1 i=1

where

ei(r)

eij(r, s)

= E(ir) for r

= E(i,j,) for

j=i+1l

E Ri,

(r, s) E Ri x Rj.

Therefore, the GMEC problem for minimizing e(x) is equivalent to the MAP estima-

tion problem for p(x).

(2.4)

(2.5)

(2.6)



2.2 A graphical model of the GMEC problem

A probability distribution over a random vector can be related to a graphical model [Cow-

ell et al., 1999] (In turn, a graphical model represents a family of many probability

distributions.) An undirected graphical model g = (V, S) consists of a set of vertices

V that represent random variables and a set of edges S connecting some pairs of

vertices. The connectivity between vertices, i.e. E, is determined by the conditional

independencies between random variables of the corresponding distribution. That is,

a probability distribution p(x) can be represented by an undirected graphical model

g if p(x) can be factorized into non-negative functions, called compatibility functions,

each of which is defined over variables in a clique of g. More precisely, if we define

compatibility functions %c(xc) : 1I,,v(c) R, - R+ for each maximal clique C in g

(i.e. V(C) C V and S(C) C S), then the distribution can be factorized as

p(x) H c (X), (2.7)
C

for a normalization constant Z.

Graphical models serve not only as a means of visualizing the conditional inde-

pendence, but also enable inference problems to b)e approached from the perspective

of graph theory. In finding a general solution to inference problems, the structure of

the graphical models often becomes a useful measure of complexity and provides a

tool for systematic exploration of the distribution. Therefore, when we refer to an

inference problem, describing the structure of the associated graphical model con-

veys a good amount of information on the problem's complexity. Therefore, we will

often denote distributions by their associated graphical model; for example, a "tree

distribution" refers to a distribution represented by a tree graphical model.

In our MAP estimation equivalent of the GMEC problem, given the potential

energy in the form of (2.4), the probability distribution (2.3) can be rewritten as

In n-1 ni

p(x) = Je-E(x) f j -E(xx). (2.8)
i=1 i=1 j=i+i



The presence of factors joining each pair of variables indicates that the graphical

model that corresponds to (2.8) is complete undirected graph with IVI = n vertices.

The typical motivation for using the graphical model is finding as simple a model

as possible that captures conditional independencies among variables. However, we

generally consider a complete graph with n vertices as the graphical model for the

GMEC problem, that is, the protein design problems we are interested in have molec-

ular interactions between every pair of positions. For these cases the factorization or

graphical representation does not directly help in solving the inference problems.

2.3 Max-marginals and max-product algorithms

In this section, we first introduce the notion of max-marginal, which become useful

terms when describing the operation of MAP estimation methods. Then, we intro-

duce a conventional MAP estimation method called max-product algorithm [Cowell

et al., 1999], and briefly introduce a variant called tree reparamterization max-product

algorithm [Wainwright et al., 2004]. These algorithms are useful in upper bounding

the GMEC energy e(x*) (or lower bounding the MAP probability p(x*)).

2.3.1 Max-marginals

Wainwright et al. [2004] define (singleton) max-marginals pi as the maximum of p(x)

when one of the variables xi is constrained to a specific value, multiplied by some

constant Ki > 0, i.e.

ti(xli) = I= max p(x'). (2.9)
{x'jx'=x'}

Similarly, pairwise max-marginals tij are defined as

ij(xi, xj) = Kij max p(x'), (2.10)
i-- i, j--ji

the maximum of p(x) when a pair of the variables are constrained to a specific pair

of values. Note that i~ and ij are constants that can vary depending on i and j. In

what follows, we will simply denote all the constants as K. It is known that any tree
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3

Figure 2-1: The diagram shows the graphical model and pairwise compatibility func-
tions 712(X1, X 2) and V 23(x2, X3) of the distribution used in Example 3.

distribution p(x) can be factorized in terms of its max-marginals as [Cowell et al.,

1999]

p(x)a c /,t (xi) H p (zi, Xj)

iEV (i,j)EE Pi (Xi) (xj)
(2.11)

If we knew the max-marginals of a tree distribution p(x), we could easily compute

the maximum value of p(x).

Example 1. (Max-marginals) [Wainwright et al., 2004]. Let x E {0, 1}3 be a random

vector defined by a graphical model of Figure 2-1 and compatibility functions 4 such,

that

ýbi(xi) = 1, for all xi E {0, 1} and i E {1, 2, 3},

1 ifz i

otherwise

(2.12)

for all (i,j) E {(1,2), (2,3)}. (2.13)

That is, p(x) = )0 (xl) 2 (X2) '3(X3)\ 12(X1, X2)~ 23(X2, X3)

Then, it is easy to verify max{x1, I =xl= p(x') 4 2/50 for all xle {0, 1}. Therefore,

we can define max-marginals /I(xz) = 1 for all x1 e {0, 1i, i.e. max{x, 1 i=X,} p(x')

5o1(x) and i, = ý. Since Ap2(x 2) and [3 (X3 ) can be defined similarly, we obtain

pi(xi) = 1 for all xi E {0, 1} and i E {1, 2, 3}.

Likewise, we can verify max{xl(X,x')=(x1,X2)} p(x') is 4/50 if x -= 22, and 42/5()

otherwise. Since we obtain the same result when maximizing under fixed (x2, x 3)

and



values, we can define tij(Xi, xj) as

bijy(Xi,Xy) = if x = x for all (i,j) c (1,2), (2,3). (2.14)
4 otherwise

i.e. max{x,'l(',)=(xý,xj)} p(x') = 4i(x _,j) and ij 50

In this example, we realize pi (xi) = 4,(xi) and pij (x, x) = ,ij (xi,xj) for all i,j,

and also pjij(xi,xy) = •ij(xi,x j),(xzi)' (xj). This makes us easily verif• that p(x) is

factorized by max-marginals:

1 12(X, X2)1(2(1)2)2(3() 12(23X2,,X)41(X232,3)2(X2)3

1 (X112 1(, (2) 2023 (" 2, %3)

- -P(i(x1)u/2(X2) 3(3 ) 1(X2(X)X2) 23 (X2• X3) (2.16)
50 P1(xl)P2(x2) u2(X2)[t3(X3)

Now, assume that we are given p(x) and the max-marginals {p , jij}. We il-

lustrate how max-marginals can be used to compute maxx p(x). We know p(x) =

12(x1X2) 23(X2,X3) for some Y. The value of Y can be easily
[A1(X1) •2(X2)]Y3(X3) Pl(Xl))U2(X2) )U2(x2). 3(X3) for soi

computed by comparing both sides of the equation for some specific assignment, e.g.

(0, 0, 0). In this example, we obtain Y = 50 as shown in (2.16). Assuming x* is a

MAP assignment, we have

P1 *12 (Xl' X ) [123(X----- 2 _•2 17)

max p(x) = p(x*) = 1 ,)p2(x 3 1 2(x2 ) • 2 3 (x 3) (2.17)

Since we know x* and (x*,x) should be a maximizer of pi(xi) and 1pij(xi,xj), re-

spectively, the maximum value of p(x) can be obtained simply by finding the maximum

value of each p1-(xi) and pfij(xi, xj) without needing to find the actual assignment x*.

Therefore, maxxp(x) = 42/50.

D



2.3.2 Conventional max-product algorithm

The max-product algorithm (also known as max-plus or min-sum) is an iterative

algorithm that estimates MAP configuration by propagating a series of "messages"

between pairs of vertices in the graphical model [Cowell et al., 1999, Wainwright et al.,

2004]. Vertex i c V sends to each of its neighbor vertex j VE , (i.j) E 8, the message

mij(xy) which can be interpreted as how likely vertex i sees node j is in state xj.

For tree distributions, it can be shown that values of messages between every pair

of nodes converge after a finite number of iterations [Pearl, 1988]. The converged

messages m*= {m* } then define functions {q~} for each i E V:

q* (xi) = Kii(xi) fl m (xi), (2.18)
jEN(i)

where n is some constant that depends on i. It is known that, in tree distributions,

these functions are in fact equivalent to singleton max-marginals {,pi} [Cowell et al.,

1999, Wainwright et al., 2004]. Given this fact, it is obvious that we can find the

MAP assignment x* by assigning the maximizer of q* (xi) as xz when each q (xj) has

a unique maximizer:

xi = arg max qj (xi). (2.19)

On the other hand, functions qij analogous to (2.18) but with pairwise variables are

defined by

q (xi,xj) =KJ (x, (x)) Jj m(x3) (2.20)

lEN(i)\j lEN(j)\i

When the max-product is applied to tree distributions, it is also known that the q*

is equivalent to pairwise max-marginals pij.

When the singleton max-marginals have multiple maximizers, assignment by (2.19)

is not generally a correct MAP assignment. Max-marginals are still useful for finding

a MAP assignment when the distribution is tree. This can be done in the following

way, starting from a designated root node of the tree:



1. if the current node is i is the root, randomly pick a maximizer of the root node's

singleton max-marginals, and designate it as the assignment.

2. otherwise, pick a maximizer x* of the current node's singleton max-marginals

such that the pairwise assignment (xs,> *) also maximizes the pairwise max-

marginals of (i, j) e $, where j is the parent of i.

3. Repeat step 2 for all child nodes of i.

Note that the above procedure is not applicable even with correct max-marginals

when the graphical model contains cycles [Wainwright et al., 2004]

Summarizing the results on niax-marginals computation by the max-product al-

gorithm above, it is obvious that the max-product algorithm can find the exact MAP

assignment for tree distributions in a finite number of iterations. On the other hand,

since the max-product algorithm is simply described in terms of message passing

and update routines between pair of vertices, it can be also freely applied to cyclic

graphical models, such as the one for the GMEC problem. In this case, however, the

algorithm does not generally find the MAP assignment. In addition, convergence of

the algorithm is not predictable either. However, there are various empirical results

that report the effectiveness of the max-product, algorithm in finding the exact MAP

configuration or at least a good estimation of it for cyclic graphical models [Freeman

and Pasztor, 2000, Benedetto et al., 1996, Weiss, 1997].

When the max-product algorithm converges on a graphical model with cycles, we

can construct a max-product assignment XAMP by (2.19), which is not guaranteed to

be a MAP assignment, x*. It is known that x.Ap is a MAP assignment when the

graph contains at most one cycle, and also that XMp is at least a local optimum for

an arbitrary topology of graphical model [Freemuan and Weiss, 2000]. Wainwright,

et al. [2004] extended this result to show that xAp is optimal for every subgraph with

at most one cycle under a particular condition.



2.3.3 Tree reparameterization max-product

Tree reparameterization max-product algorithm [Wainwright et al., 2004] is another

form of the max-product algorithm constructed from the view of reparameterization.

The term "reparameterization" comes from the fact that a distribution p(x) over

a graphical model can be represented by different sets of factors. For example, a

distribution defined by a graphical model and compatibility functions V/ as in (2.7)

can be represented as a product of differently defined compatibility functions. Tree

reparameterization max-product attempts to solve the MAP estimation problem by

repeatedly reparameterizing the distribution with respect to each spanning tree at

each iteration. The results of reparameterization at each iteration is factors corre-

sponding to max-marginals with respect to the tree being considered at the iteration,

and residual factors corresponding to the rest of the graphical model.

Similarly to the conventional max-product algorithm, tree reparamterization max-

product does not generally find the exact MAP assignment of a cyclic graphical

model. However, our computational experiences suggest that the latter has a better

convergence behavior, and the assignments it finds are often better than those from

the conventional max-product algorithm in terms of conformational energy.

2.4 Pseudo-max-marginals and tree-reweighted max-

product algorithm

Despite the empirically proven performance of the max-product algorithms in prac-

tice, lack of knowledge on the exactness of MAP estimation makes the algorithms

less attractive. The recent work by Wainwright et al. [2005] presents a new algorithm

called tree-reweighted max-product algorithm (TRMP). The most appealing feature

of the algorithm is that it may occasionally confirm the optimality of assignment it

finds at convergence. We start the discussion of TRMP by introducing the notion

of pseudo-max-marginal, which will be frequently used in describing TRMP. The

pseudo-max-marginal can be regarded as an extended counterpart of max-marginal



of the max-product algorithms.

2.4.1 Pseudo-max-marginals

For general non-tree (cyclic) distributions, there is no known method that efficiently

computes max-marginals; computing them can be as expensive as the original MAP

estimation problem. In addition, for distributions over non-tree graphical models,

knowing exact max-marginals is not generally useful either to obtain a MAP as-

signment or to compute the maximum value of p(x)1. Instead, Wainwright et al.

[2005] use the notion of pseudo-max-marginals in their tree-reweighted max-product

(message-passing) algorithm.

The basic idea of the tree-reweighted max-product algorithm is to express the

non-tree distribution as a convex combination of distributions over a set of spanning

trees. This convex combination of tree distributions is used to upper bound the MAP

probability, that is, to lower bound the energy. Finding an assignment that maximizes

the upper bound is computationally much easier than computing the exact MAP

assignment of the original distribution. It can be shown that the upper bound is

tight if and only if every tree distribution shares a common MAP configuration, i.e.

tree agreement [Wainwright et al., 2005]. In that case, the shared configuration is also

the MAP configuration of the original distribution. The tree-reweighted max-product

algorithm tries to induce this tree agreement by factorizing each tree distribution with

factors called pseudo-max-marginals and having pseudo-max-marginals converge to

the max-marginals of each tree distribution.

Let us assume we use the tree-reweighted max-product algorithm with 7, a set

of spanning trees of g, and some non-negative constant p(T) for each T E I such

that TCT, p(T) = 1. The tree-reweighted max-product algorithm requires that every

vertex and edge of Q be covered by T, i.e. each vertex and edge in g is in some tree T

in T such that p(T) > 0. Then, by construction, pseudo-max-marginals v = {vi, ij }

from the tree-reweighted max-product algorithm satisfy "p-reparameterization", that

1Exact max-marginals are useful for finding a MAP assignment or computing the MAP proba-
bility in the absence of tied values for the same variable



is described as:

p(T)

p(x) ac 171 171 i(ij( i Xj) J Vixi)P i 11 ij(xixj ) pij

TT LiEV(T) (i,j)EE(T) i(x)V() ev (ij)ES vi(x)v(xj)

(2.21)
where piy is an edge coefficient such that pij CTET:(i,j)Ec(T) p(T) for all (i, j) E S,

and pi is a vertex coefficient such that pi = pTET:icV(T) P(T) for all i E V. Note that,

if T is a set of spanning trees, then pi is 1 for all i E V.

A tree distribution pT(x; v) for some T e T and given pseudo-max-marginals can

be defined as

p (x; V) = I (Xi) (Vx - ( IX )- (2.22)
iEV(T) (i,j)E(T)

Then, we have

p(x) c 17 {pT(x; v)}p(T) (2.23)
TET

from (2.21). The pseudo-max-marginals v* at convergence of the tree-reweighted

max-product algorithm satisfy the "tree-consistency condition" with respect to every

tree T E T. That is, the pseudo-max-marginals converge to the max-marginals of

each tree distribution.

Example 2. (Pseudo-max-marginals) [Wainwright et al., 2005]. Let x E {0, 1}3 be

a random vector on a graphical model illustrated in Figure 2-2(a). Let

1
p(x) =- -Il (xXl)P 2(X2 )' 3 (X3)I12(XI, 2) ~23( 2, X3))31(X 3 , X1), (2.24)

where oi(xi) and ij(xi,xj) are defined same as in Example 1. We define pseudo-

max-marginals i as follows:

Diý(xj) = 1, for all xi e {0, 1} andi i {1, 2, 3}, (2.25)

(xi j) = i=j for all (i,j) E {(1,2), (2,3), (3, 1)}. (2.2(6)
8 otherwise

Figure 2-2(b) - (d) illustrates the trees used for the convex combination and
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Figure 2-2: Illustration of pseudo-max-marginals and p-reparameterization. (a) Orig-
inal distribution. (b)
bination.

(d) Pseudo-max-marginals on each tree used by convex com-

pseudo-max-marginals on each tree. It can be easily verified that pseudo-max-marginals

on each tree are in fact max-marginals. Thus, the pseudo-max-marginals are tree-

consistent. The distribution for each tree is given by (2.22). For example, the distri-

bution for Figure 2-2(b) is

S)12 (X, X2) i/23 (X2, X3)p (x) = i2(Xx)2( 2)2) 3 3)3)
i (2 ) 92 2 2 l2 2)i3 3)

Then, by letting p(T) = 1/3 for all three trees, we obtain

1 p (X) 1/3p2 (X)1/3p3(X)1/3

98

98 V1(X1) 02(X2) 03(X3) 012(X1 X2) 23 2, X3)031(X X01) = p(x),
98

(2.27)

(2.28)

(2.29)

from y(Xi) = i(xi) 1/3 andj (x i,x) = (x, Xy)2/3. This verifies the pseudo-maZ-

marginals satisfy p-reparameterization as well.

(c) p2(x); P,



2.4.2 Tree-reweighted max-product

Wainwright et al. [2005] present two methods for maximizing the convex combination

of tree distributions: linear programming (LP) and message-passing. Though both

are based on common analytical results, the appearance of the algorithms and their

applicabilities are different. Simply solving LP will output the MAP probability when

the upper bound is tight, and also a MAP assignment if the optimality specification

criteria are met. However, the message-passing algorithm may or may not find the

MAP configuration even for the same problem due to numerical issues with finding

the fixed point. However, the message-passing algorithm scales better than LP and

often converges to sub-optimal configurations even when the upper bound is not tight

(so LP fails).

Algorithm 12 in Appendix A describes "edge-based reparameterization updates" [Wain-

wright et al., 2005] defining T as a set of (not necessarily spanning) trees in g, as

used by Kolmogorov [2006]. In what follows, we will call this algorithm TRMP in

short. Note that, although we define 7 as a set. of general trees covering all vertices

and edges of 9, it can be easily verified that all the analyses (lone by Wainwright

et al. [2005] can be applied to TRMP in exactly the same way, to show TRMP has

the same properties owned by the original edge-based reparameterization updates.

TRMP can sometimes guarantee the optimality of an assignment found at con-

vergence for non-tree distributions. Even if TRMP does not find the exact MAP

assignment, we can easily compute the exact maximum value for each tree distribu-

tion at TRMP convergence since pseudo-max-marginals converge to nmax-marginals

for each tree distribution. Then, we can combine these to get an upper bound for the

original, non-tree distribution (thereby obtaining a lower bound on the energy).

We are free to choose any set of trees T and p(-) as long as each vertex and

edge is covered by some T E T with p(T) > 0. In this work, we consistently use a

set of maximal stars S in place of T for the convenience of implementation and the

simplicity in computing rotamer/rotamer-pair lower bounds. A star is a tree where

at most one vertex is not a leaf. We denote the center of star S as y-(S). A maximal
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Figure 2-3: Example of covering a graph by maximal stars: g of (a) is completely
covered by S', S 2, and S3.

star is a star that is not a subset of another star. Figure 2-3 illustrates covering a

graph by a set of maximal stars; all vertices and edges of graph (a) are covered by S

consisting of three maximal stars shown in (b), (c), and (d).

Following the terminology of Kolmogorov [2006], we say v is in a normal form

if it satisfies maxreR• Vi(r) = 1 for all i E V, and maX(r,s)ERxRj vi 3(r, S) = 1 for all

(i, j) E 8. In what follows, we assume vn of Algorithm 12 is always in a normal form.

Then, using (2.21) and some constant vn that may vary with iteration n of TRMP,

we obtain

p(x) = Vf {ps(x; vn) p(S). (2.30)
SES

The value of vn can be easily computed by comparing both sides of (2.30) for any

assignment x E X and v".

2.5 Other methods for MAP estimation

Since the work of Wainwright et al. [2005] on MAP estimation on the undirected

graphical model, various contributions have been made in developing new MAP es-

2



timation methods that guarantee finding the optimal solution under certain condi-

tions. Kolmogorov [2006] describes the sequential tree-reweighted message passing

algorithm, which guarantees the convergence to the so-called "weak tree agreement",

and monotonic improvement of the bound. Globerson and Jaakkola [2007a] developed

a message passing algorithm that solves the dual of the LP relaxation of the MAP

estimation problem. The algorithm can find optimal solution in various settings, and

also provide an extension for the case of cluster potentials.

Johnson et al. [2007] propose Lagrangian relaxation-based iterative algorithm

that combines dynamic programming on thin graphs and convex optimization joining

them. They describe the optimality conditions and suggest a multiscale relaxation

scheme. Komodakis et al. [2007] also give a Lagrangian relaxation formulation when

the problem is decomposed into trees and a subgradient method for the dual problem.

There are methods that exploit problem-specific assumptions on the potential

functions or the graph structure. Kolmogorov and Zabih [2004] characterize the class

of problems where the min-cut algorithm can be used to exactly solve the prob-

lem. Bayati et al. [2005] show that both the max-product algorithm and the linear

programming approach find the exact MAP configuration for the maximum weight

matching in bi-partite graphs.

2.6 Mean-field theory and sum-product algorithm

When MAP estimation needs to be solved for a tree distribution, it suffices to use

the max-product algorithm as we have seen in previous sections. We have also seen

that there exist MAP estimation methods such as tree-reweighted max-product algo-

rithm [Wainwright et al., 2005], TRW-S [Kolmogorov, 2006], and MPLP [Globerson

and Jaakkola, 2007a] that guarantee finding an upper bound of the MAP probabil-

ity (or a lower bound of the minimum energy). In this section, we briefly introduce

the mean field theory and the sum-product algorithm. Although they are not orig-

inally meant to be used for solving the MAP estimation problem in general, they

are often used as heuristic MAP estimation methods, and have interesting theoretical



connections to the MAP estimation problem under certain circumstances.

2.6.1 Mean field theory

Mean field theory (MFT) refers to approaches that attempt to compute the parti-

tion function or the marginals by making certain assumptions on the distributions.

This becomes evident from the variational perspective [Wainwright and Jordan, 2003],

where mean field theory is regarded as solving the inference problem for tractable dis-

tributions instead of the original distribution. For example, the problem of computing

marginals can be formulated as an optimization problem in the variational perspec-

tive. Although such an optimization problem is hard to solve in general, the MFT

will solve the problem for a class of tractable distribution which simplifies the entropy

term in the objective function and also the constraint set representing the marginal

polytope [Wainwright and Jordan, 2003]. Tractable distributions may include tree

distributions, or completely disconnected distribution. For the latter case, which is

also called naive mean field, the approximate distribution q(x) can be rewritten in

the form:

p(x) a q(x) = f q2(xi), (2.31)
i=1

that is, every random variable is assumed to be independent from one another. The

iterative update rule called the naive mean field updates or self-consistent mean field

updates [Koehl and Delarue, 1996, Mendes et al., 1999] are designed to find a station-

ary point of the optimization problem based on this distributional assumption. When

the distribution considered in fact follows the assumption, and if the marginals are

exactly computed by the mean field updates, it is obvious that finding a maximizer of

each singleton marginals will result in a MAP configuration. The estimated partition

function is always guaranteed to be a lower bound of the exact partition function.

The MFT does not guarantee correct computation of marginals or the partition

function in general. It is also known that the solution from the MFT depends on

the initial condition because of the nonconvexity of the optimization problem [Weiss,

2001]. However, the mean field approximation tends to be exact under certain condi-



tions as the number of variables approaches infinity [Baxter, 1982]. In practice, the

MFT can be an appealing choice as an approximate inference method because it is

simple and fast, but max-product and sum-product algorithms outperform the MFT

empirically [Weiss, 2001, Yanover and Weiss, 2002].

2.6.2 Sum-product algorithm

The sum-product algorithm, also known as belief propagation, is another approximate

inference method. It is an equivalent of the max-product algorithm for marginals

computation. For tree distributions, the sum-product algorithm is guaranteed to

converge in a finite number of iterations and compute correct marginals. However, for

cyclic distributions, neither convergence nor correctness of marginals are guaranteed.

The sum-product algorithm can also be interpreted in the variational perspec-

tive. Whereas the mean field theory restricts the class of distributions in solving the

optimization problem, the sum-product algorithm can be derived from relaxing the

constraints of the problem (that is, the marginal polytope [Wainwright and Jordan,

2003]) and replacing the entropy term with the Bethe entropy approximation [Yedidia

et al., 2001]. Therefore, a fixed point of the sum-product algorithm corresponds to

a stationary point of the Bethe variational problem. On the other hand, when the

sum-product algorithm is applied to cyclic distributions, the fixed point is mapped

to pseudo-marginals into which the original distribution can be factorized. These

pseudo-marginals may be inconsistent, that is, they are not guaranteed to be true

marginals.

An interesting connection between the sum-product algorithm and the max-product

algorithm appears in what is called the zero-temperature limits [Wainwright and Jor-

dan, 2003]. It can be shown that the MAP estimation problem is equivalent to the

computation of the scaled log partition function where the exponential parameters

defining the distribution are scaled by a positive constant tending to positive infinity.

Intuitively, this is because the scaling will put more emphasis on the parameters that

correspond to the MAP configuration. Therefore, only the MAP configuration will

retain probability mass at infinity.



The connection between the two problems suggests that the mean parameters

which are the solution of the variational optimization problem for the partition func-

tion problem can produce a better approximate solution for the MAP estimation

problem as the positive scaling factor increases [Wainwright and Jordan, 2003]. It

is in fact found that similar ideas are the basis for simulated annealing [Kirkpatrick

et al., 1983].



Chapter 3

Rotamer Optimization for Protein

Design through MAP Estimation

and Problem-Size Reduction

3.1 Overview of the method

In this section, we present an overview of BroMAP in a top-down manner. We

start with a brief description of the branch-and-bound method as the framework of

BroMAP. Then, the pruning scheme used by BroMAP is discussed in more detail.

3.1.1 Branch-and-bound framework

Figure 3-1 shows an overview of BroMAP. It is organized at the top level as a branch-

and-bound method (BnB), a general problem-solving technique particularly effective

for combinatorial problems [Nemhauser and Wolsey, 1988]. The basic idea of BnB is

to partition the original problem recursively and solve these smaller subproblems. In

the resulting search tree, each subproblem is another instance of the GMEC problem,

with a different number of rotamers or residue positions from the original problem at

the root node.

BnB solves the GMEC problem as a kind of tree search problem. It maintains
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Figure 3-1: Top branch-and-bound framework of BroMAP. In the search tree, node
numbers (inside the ellipses) correspond to the order of subproblem creation. Num-
bers shown next to ellipses represent the order of node expansion. Labels "low" and
"high" marked on the branches indicate the types of child subproblems. As shown by
the diagram in the middle, each subproblem is another instance of the GMEC prob-
lem; the ellipses represent the residue positions in the subproblem, and the filled dots
represent available rotamer choices at each position. The lines connecting rotamers at
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box on the right side lists types of computations executed when a node is expanded.
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a global upper-bound U, which is the energy of the best conformation found so far.

The initial value of U is set to the energy of an arbitrary conformation. BroMAP can

be recursively described as follows:

1. Select a subproblem from the queue.

2. Can the subproblem be fully solved within limited time and memory? If so,

(a) compute the minimum energy;

(b) set U to the minimum energy if it is less than U;

(c) return to step 1.

3. Compute a lower bound and an upper bound on the minimum energy for this

subproblem. If the upper bound is less than U, set U to the upper bound.

4. If the lower bound exceeds the current global upper-bound U, then discard

(prune) this subproblem and return to step 1.

5. When possible, exclude ineligible conformations from the search space.

6. Pick one residue and split its rotamers into two groups; define two child sub-

problems based on this split (see Figure 3-2).

7. Add the child subproblems to the queue and return to step 1.

A node is said to be "expanded" (i.e. processed) by steps 2 to 7. This description

leaves many details unspecified: how to attempt solutions, how to obtain bounds,

how to identify ineligible conformations, how to choose the residue and rotamers for

the node split, and what order to solve the subproblems. We provide these details in

the subsequent sections.

The key advantage of BnB over naive enumeration-based methods comes from

being able to approximately solve subproblems, that is, to obtain bounds on the

answer that allow many subproblems to be pruned, thus avoiding exploration of the

entire solution space. If the bounds are weak, BnB may end up generating too many
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Figure 3-2: Splitting a subproblem. Rotamers at a position are divided into two
groups and each child of the subproblem takes only one group of rotamers.

subproblems to be effective. The purpose of branching in a BnB method is to reduce

the size of the subproblems so that they can be either solved or pruned effectively

with limited resources.

In our BnB formulation, the branching rule (splitting the rotamers of a residue)

only brings about a modest reduction in the search space of each child subproblem

compared to its parent subproblem. Furthermore, there is no net reduction in the total

search space when one considers both children. A critical component of our approach

is to reduce the size of the total search space, by eliminating ineligible conformations,

before splitting. This is in the spirit of the dead-end elimination algorithm or "branch-

and-terminate" [Gordon and Mayo, 1999] but employing additional elimination by our

new lower bounds.

3.1.2 Solving subproblems

There are two well-known approaches to solving the GMEC problem exactly. One

is DEE [Desmet et al., 1992, Goldstein, 1994, Pierce et al., 2000] and the other is

integer linear programming (ILP) [Nemhauser and Wolsey, 1988]. Both of these

methods are guaranteed to solve the GMEC problem given unbounded resources but

have unpredictable running times as a function of the problem size.



DEE is an iterative method that eliminates a non-GMEC rotamer by comparing

its energetics with those of other rotamers at the same position. The same rules are

also applied to eliminate rotamer pairs. When a rotamer can be eliminated from

consideration, this can be represented by reducing the set of rotamers at a residue

position. Eliminated rotamer pairs, on the other hand, are tracked via "pair flags",

which indicate ineligible assignments for pairs of positions. When the numerical

properties of the energy terms are favorable or when the problem size is relatively

small, DEE successfully eliminates many non-GMEC rotamers or rotamer pairs so

that the GMEC can be easily found from the remaining small conformational space.

In general, one needs to perform a systematic search of the remaining conformational

space; the A* heuristic search algorithm [Hart et al., 1968] is usually used for this

purpose. However, DEE may fail to reduce the size of the conformational space to the

point where it is practical to search for the GMEC using A*. This is what motivates

our BnB approach.

ILP is a popular approach to solving combinatorial optimization problems but we

have found that direct application of general ILP solvers to protein design problems

is generally impractical (see Appendix B). Furthermore, as we discuss below, DEE

has the additional advantage of reducing the size of the conformational space at each

subproblem, even when it fails to completely solve the subproblem. Therefore, we

have used a DEE-based solver as our method for solving subproblems.

3.1.3 Bounding subproblems

In addition to completely solving subproblems, we also need a way of obtaining lower

bounds to prune nodes more efficiently. The classical approach for obtaining bounds

for a combinatorial optimization problem is via the relaxation to linear programming

(LP) after formulating the problem as ILP. For example, we obtain LP by treating

the integer-valued variables in the ILP formulation of the GMEC problem, i.e. (B.1)

- (B.6) of Appendix B, as real. Although LP problems are solvable in polynomial

time, it is still the case that the LP problems resulting from the relaxation of typical

protein design problems are often too large and thus require impractical amounts of



computing time and memory.

The less expensive lower-bounding method that we use in this work is the tree-

reweighted max-product algorithm (TRMP) [Wainwright et al., 2005], which was

introduced in Section 2.4.2. TRMP lower bounds are known to be no better than

the LP lower bounds, and there are no guarantees of how close to the LP bound a

TRMP bound will be. However, the relatively low computational cost and its good

performance in practice makes TRMP an excellent lower-bounding tool.

Another key advantage of TRMP is that, like DEE, it can be used to compute

lower-bounds for parts of the conformational space efficiently and to eliminate them

as discussed below.

On the other hand, upper bounds are also obtained by TRMP for the subproblems

that are not exactly solved. This is based on a heuristic use of TRMP, but often

produces stronger upper bounds than random sampling of conformations. We present

the details on upper-bounding by TRMP later in the paper.

3.1.4 Reducing subproblem size

As we mentioned above, a critical component of our BnB methodology is that we

attempt to reduce the size of the search space for each subproblem by removing

ineligible conformations. Smaller subproblems are easier to solve and to bound. We

use two techniques to accomplish this: DEE, as discussed above, and elimination by

lower bounds. The latter is illustrated in Figure 3-3 and discussed below.

For each rotamer r at an arbitrary position i, we can think of an assignment of

rotamers in other positions such that no other assignment can give a lower conforma-

tional energy when position i is fixed to r. We call the energy corresponding to such

an assignment the minimum conformational energy of i,. Similarly, we can define the

minimum conformational energy for an arbitrary pair of rotamers (i,,j s) such that

i j.

Suppose we know a lower-bound L(i,) of the minimum conformational energy

of i, and a global upper-bound U such that L(i,) > U. Then, rotamer i, can be

eliminated from the subproblem without affecting whether the subproblem is prunable
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Figure 3-3: Elimination by rotamer lower bounds. The x-axis lists all rotamers of
the subproblem in an arbitrary order. The vertical dotted lines indicate division of
rotamers by positions they belong to. Two types of y-values are plotted for each
rotamer ir: (1) minimum energy that a conformation including ir can have, (2) a
lower bound of (1) obtained by a lower-bounding method. Three horizontal lines
are also depicted, each representing (a) an upper bound U, (b) the optimal value of
the subproblem, (c) a lower bound of (b) obtained from the same lower-bounding
method. Rotamers that can be eliminated by comparison against U are indicated by
filled triangles.

or not. Similarly, if we have a lower bound of the minimum conformational energy of

a rotamer pair greater than U, the rotamer pair can also be eliminated. Figure 3-4

illustrates the problem-size reduction by elimination of rotamers and rotamer pairs.

The problem is obtaining useful lower bounds for each rotamer or rotamer pair.

If we use LP relaxation, we would need to solve LP problems as many times as the

number of rotamers or rotamer pairs, and each LP problem can be still very large.

A more practical solution follows from the theoretical properties of TRMP, which

allow us to obtain the lower bounds for all rotamers and rotamer pairs in one TRMP

convergence plus post-processing time at most square of the problem size. We will

discuss how we can obtain these lower bounds using TRMP later in this chapter.

When a rotamer pair is eliminated by a TRMP lower bound, we mark the rotamer

pair with a pair flag, as done in DEE. However, such a pair flag is more general than

the pair flags used in conventional DEE since the elimination is done relative to the

current global upper-bound U. Thus, it is possible for TRMP to flag rotamer pairs

belonging to the minimum energy conformation of the subproblem in case the optimal

value of the subproblem is greater than U. When this happens, the optimal value
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Figure 3-4: Reduction by elimination of rotarners and rotamer pairs. While elimina-
tion of rotamers brings explicit reduction of the problem size, elimination of rotamer
pairs will be implicitly represented by pair flags. Rotamer eliminations in (c) were
made consistent with bounds of Figure 3-3.

of the subproblem after the elimination can be greater than before the elimination.

However, if the optimal value is less than equal to U, elimination by lower bounds is

guaranteed to produce reduced subproblems with unchanged optimal value.

If enough pairs are eliminated by TRMP lower bounding, it may be that some

positions may not have any remaining valid assignments. In this situation, the whole

subproblem is infeasible and can be pruned.

Conventional DEE never flags rotamer pairs that belong to the minimum energy

conformation. Therefore, the interaction of DEE with these general pair flags should

be carefully considered to avoid illegal elimination by DEE. In our work, this is done

by numerically enforcing the pair flags, that is, by replacing the pair flags with very

large (artificial) pairwise energies. This guarantees correct elimination by DEE con-

ditions based on energy comparison (e.g. Goldstein's conditions). Meanwhile, when

logical elimination is attempted (e.g. logical singles-pairs elimination or unification),

general pair flags are used as if they are conventional pair flags.

Note that we use elimination by lower bounds together with the modified DEE

in each node of the search tree. In a previous work [Gordon and Mayo, 1999], lower

bounds were used in the BnB framework to "terminate" singles, but DEE is only

used as a preprocessing procedure before applying the BnB method. In another

work [Gordon et al., 2003], elimination by lower bounds was applied in conjunction



with DEE to the whole problem, but no branching was used. The lower bounds used

there were also computed differently, by fixing conformations for a subset of positions

and finding minimum values over decomposed sets of positions.

3.1.5 Subproblem splitting and selection

Our strategy of subproblem selection is depth-first search (DFS), where one selects the

deepest subproblem to expand, breaking ties by choosing the node with the smallest

lower bound. The goal is to first find a good upper-bound by following DFS through

the children with the lowest bounds, then to prune the remaining subproblems using

that upper-bound. To implement this strategy, we need to split subproblems so that

they have substantially different lower bounds.

As discussed above, we can compute inexpensive lower bounds for individual ro-

tamers by TRMP. Therefore, we can split a subproblem by dividing rotamers of a

selected position into two groups according to their rotamer lower bounds, so that

the maximum rotamer lower bound of one group is less than or equal to the minimum

rotamer lower bound of the other group. We call the child from the former group

"the low child" and the other as "the high child". The low child is very likely to have

an optimal value less than that of the high child. A splitting position is selected so

that difference between maximum and minimum rotamer lower bounds is large. This

splitting scheme will also tend to make the high child easier to prune than the low

child.

The leftmost diagram in Figure 3-1 illustrates our subproblem selection strategy.

We can see that the tree first grows along the line of low-subproblems then the high-

subproblems are traversed. We call the DFS along all low-branches until the first

leaf node is reached as "the first depth-first dive". If the splitting is successful and

non-optimal nodes are pruned effectively, the search tree should be highly skewed

toward low-branches.



3.2 Bounding the GMEC energy with TRMP

We also make heuristic use of TRMP to obtain upper bounds for the GMEC energy.

At convergence of TRMP, we occasionally find an exact MAP configuration. TRMP

provides an easy evaluation condition called optimum specification (OS) criterion such

that an assignment is guaranteed to be a MAP configuration if it satisfies the OS

criterion. However, such an assignment may not exist for a given reparameterization

or it could be computationally expensive to find. Therefore, in our upper bounding,

instead of trying to find an assignment that satisfies the OS criterion, we simply find

an assignment that maximizes the tree distribution for some star S E S at TRMP

convergence. How to find such an assignment can be found in Wainwright et al. [2004]

Another possible upper-bounding method is to randomly pick a maximizer for each

singleton max-marginals at TRMP convergence regardless of the trees. Although

neither of these procedures guarantees the quality of the upper bounds, the resulting

upper bounds are empirically close to the optimal values. The procedures can be

repeated for different trees or different random selection of maximizers to improve

the upper bounds.

A lower bound for the GMEC energy minx e(x) can be easily obtained at the

convergence of TRMP with the following lemma:

Lemma 1. When v and v, of (2.30) in normal form satisfy tree-consistency condition,

the MAP probability is upper bounded by

maxp(x) < vc. (3.1)
x

Therefore, the GMEC energy min. e(x) is lower bounded by min, e(x) > - In Z -

In v, from (2.3). Note that Lemma 1 is true not only for star covers but for general

tree covers.

Example 3. To upper bound maxx p(x) using Lemma 1 and the pseudo-max-marginals

given in Example 2, we first need to normalize pairwise pseudo-max-marginals. Since

the maximum value of ij(xi, xj) for all (i, j) are 8, normalized pairwise pseudo-max-



marginals are as follows:

ij (xi, xi) = 1/8 ifx = Xy for all (i,j) { (1,2), (2, 3),(3,1)}. (3.2)
1 otherwise

Single pseudo-max-marginals are already in a normal form. These lead to constant

v, = 64/98. Therefore, the upper bound of the MAP probability is 64/98. It is easy

to see maxx p(x) is equal to 16/98 attained by any of (x, x 2, X3) = (0, 0, 1), (0, 1, 0),

etc. The upper bound of the MAP probability (thereby the resulting lower bound of the

GMEC energy) is not tight in this example, but the quality of bounds from Lemma 1

can be stronger depending on pseudo-max-marginals obtained from TRMP. In this

example, on the other hand, a tight lower-bound of p(x) (therefore a tight upper-

bound of the GMEC energy) is easily obtained by finding a MAP assignment for any

of the trees in T. For example, ( 1 , x2, X3) = (0, 1, 0) is a MAP assignment for trtee

distribution p'(x), and also for p(x). O

3.3 Elimination by TRMP lower bounds

We can exploit the tree-consistency of v at TRIMP convergence in computing various

lower bounds for a set of conformations. If a lower bound greater than a global

upper-bound U is obtained, we c(an eliminate corresponding conformations from the

subproblem while conserving the inequality relation between the minimum energy of

the subproblem and U. We make a more precise argument for what we call rotamer-

pair elimination and rotamer elimination as follows. Let P be the set of flagged

rotamer pairs in the subproblem of our interest. Then, given conformational space

X, we define £(X, P) as the set of all legal conformations containing no flagged

rotamer pairs.

1. rotamer-pair elimination: suppose we have a lower-bound LB((,, ri) of the

minimum conformational energy for {x (xe, x,) = (r, s)}, the set of all confor-

mations including ((s, Ts), such that minxI(xc,x,,)=(r,s)} e(x) > LB((,, 17s) > U.



Elimination of (0, is) can be represented by the set of pair-flags P' = PU(r, P s).

We know minxEc(x,Ip ) e(x) is prunable (that is, the subproblem can be deleted

from the branch-and-bound tree) if and only if minx-L(x,p) e(x) is prunable.

Therefore, we use P' as the updated set of pair flags.

2. rotamer elimination: suppose we have a lower-bound LB((Q) of the minimum

conformational energy for {xlxc = r}, the set of all conformations including (r,

such that min{xljc=r} e(x) > LB(ýr) > U. Elimination of (, can be represented

by the set of pair-flags P' = PUI{((, js)s E Rj,j E V, j (1}, which includes all

rotamer pairs stemming from (,.. Again, we know minxGE(x,p,) e(x) is prunable

if and only if minXCL(x,i) e(x) is prunable. Therefore, we use P' as the updated

set of pair flags.

In both cases, the optimal value of minxer(x,9) e(x) does not change if minxel(xp) e(x) <

U.

The lower-bounds LB((r) and LB((, rq,) can be, for example, obtained by directly

solving an LP relaxation of the ILP given in Appendix B. However, solving LP may

not be practical when the problem size is large. In addition, solving LP for every

rotamer or rotamer pair will multiply the lower-bounding time by the number of

rotamers or rotamer pairs. Here, we use upper-bounding inequalities for the singleton

and pairwise max-marginals to obtain lower bounds for minimum conformational

energies of rotamers and rotanmer pairs. Such lower bounds are at best as tight as the

bounds from solving the LP discussed in Appendix B [Wainwright et al., 2005], but

requires computation time for one TRMP run until convergence (no guaranteed time

bound) plus post-processing time at most cubic of the problem size. The rest of this

section explains how we can efficiently compute the rotamer and rotamer-pair lower

bounds.

We have the following lemma on upper-bounding the singleton max-marginals:

Lemma 2. When v and v, of (2.30) in a normal form satisfy tree-consistency con-



dition, it is true for all r E Rj, ( E V that

max p(x) _< vju(r)PC. (3.3)
{xxC =r}

Example 4. From Lemma 2 and the normalized pseudo-max-marginals given in Ex-

ample 3, we find an upper bound for the maximum probability of p(x) when xl = 0 as

vyi(0)1/3 = 64/98 x 11/3. The bound is not tight because max{xlxl=olp(x) = 16/98,

but the tightness may change depending on the pseudo-max-maryinals from TRMP.

Even when the resulting bound is not tight, it could be still strong enough to eliminate

the corresponding rotamer through comparison against a global upper-bound U. E

Lemma 2 combined with (2.3) provide a rotamer lower-bound LB((~) for each

r E RR and ( E V as min{xlx(=:r} e(x) > LB((, ) = - In Z - In v, - pc In uv(r).

To upper bound the pairwise max-marginals, we use the general inequality

P(s)
max p(x) < vc max [ S PS(x)1 (3.4)

{xIxc=r,x,=S ses} {xlx=r,x,=S)

The maximization problem max{xlxc=r,x,=) pS(x) can be

lowing lemma:

Lemma 3. When v and 1e of (2.30) in a normal form

condition,

max pS(x)
{x xZ=r,x,7=s}

1

u (r)
Vx,(r, s)

maxxERC ZEr)vý,(x ,s)

Example 5. Let us bound max{x((x1,X2 )=(0,0)}

marginals given in Example 3. As discussed

problem for each star:

easily solved using the fol-

satisfy the tree-consistency

if T/ V (S)

if ( E V(S) and r] ( V(S)

if ((, r) E S(S)

else (let ý = Y(S))

(3.5)

p(x) using the normalized pseudo-max-

above, we have to solve a maximization



1. pl(x) and p3(x) (Figure 2-2(b) and 2-2(d)): this corresponds to the third case of

(3.5). Therefore, max{xl(x1,X2)=(0,0)} p1 (x) = maX{xl(x,x 2)=(0,0)} p3 (X) = 1/12(0, 0) =

1/8.

2. p2 (x) (Figure 2-2(c)): this corresponds to the fourth case of (3.5). Therefore,

Imax p 2(x) = m3ax /v3,1 ( 3, 0) 3,2 (X3, 0) (36)
{xI(Xl,X2)=(0,0)} X3 V/3(X3)

By combining the above results in (3.4), we obtain

max p(x) < (64/98) x (1/8)1/3 x (1/8)1/3 x 11/3 = 16/98. (3.7)
{xj(x1,x2)=(0,0)}

This bound is tight from maxx(l(,,~2)=(0,0)} p(x) = 16/98 attained by x 3 = 1. Note

that the same pseudo-max-marginals that yielded weak upper bounds in Examples 3

and 4, led to a tight upper bound for the rotamer pair, a more constrained bounding

problem. o

LB(G(, rlj), a lower bound for the minimum conformation energy of rotamer-pair

(C~, rs), is given by LB((r, r2s) = - In Z - in v, - Eses Ps In max{xx=_ rX,,•=s} pS(x).

Note that there can be at most O(n) stars that correspond to the fourth case of (3.5)

for each position pair ((, rl). If we let nrot be the average number of rotamers per

position, the maximization problem corresponding to the fourth case of (3.5) requires

O(nrot) operations. Therefore, it will take O(n,.,tn) post-processing operations to

compute an upper bound for each rotamer pair using Lemma 3.

In computing the rotamer lower bound for a rotamer (r, we can also use pair-

flags information to obtain a lower bound, LB'((r), for the constrained problem

min{xEL(X,P)lxc=r} e(x). If we have LB'((r) > U, then conformations, {x e £(X, P)IxC =

r} can be excluded from the search space. This is equivalent to eliminating rotamer

C( because all conformations containing xý = r are in effect excluded. Computing

LB'((r) will take additional polynomial time compared to LB((~), but it is partic-

ularly advantageous to leverage the pair flags when there exist a large number of

flagged rotamer pairs. We used a, simple search-based method to compute LB'(,,)



as follows; we let p = vc Is [1srax{xC X (xPx,=( Px) p( ) for tree-consistent V in

a normal form. Then, it is easy to see P >_ mnax{xEc(x,P)Ixc=r} p(x). If we use a

naive search, it will take O(n,0 t•n) post-processing comparison operations to solve

max{xE•(x,P)ljc=r} pS(x). Therefore, it takes O(•tn2) post-processing time to ex-

actly compute r. Finally, the rotamer lower bound is computed as LB'((,) =

- In Z - In 3.





Chapter 4

Problem-size reduction and

lower-bounding through

problem-size reduction

In this chapter, we describe three different techniques that can be used in bounding or

pruning a subproblem in branch-and-bound. We first describe the notion of general

pair flags that are used for implicit exclusion of a subset of conformational space.

Then, we describe rotamer contraction and edge deletion, which simplify problems

by aggregating rotamers or edges but result in decreases in optimal values. We also

describe a dead-end elimination algorithm modified to be used with general pair

flags. Finally, we provide preliminary results on using these techniques together with

elimination by TRMP lower bounds in branch-and-bound.

4.1 General pair-flags

Pair-flags are used in DEE to mark a pair of rotamers from two different positions

that cannot be a part of the GMEC. For example, if the pair-flag for rotamer-pair

(i,,j,) is set, none of the conformations in Z = {x E X (xi,xj) = (r,s)} can be in

the GMEC. Then, the GMEC problem can be solved over the conformation space

X\Z instead of X to obtain the same GMEC. Therefore, the use of pair-flags keeps



track of the constrained search space.

In this work, we use general pair-flags, which will be defined more generally than

the conventional pair-flags to facilitate the comparison between the GMEC energy

and an arbitrary upper-bound. For each GMEC problem minx e(x), we simply assume

that we are given a set of rotamer-pairs P that should be excluded from the search for

the GMEC. Although DEE never flags a rotamer-pair corresponding to the GMEC,

there is generally no such restriction on P, which may vary from an empty set to the

set of all rotamer-pairs in the problem. For notational purpose, we define pair-flag

functions as

ij(r, s, P) = 1 if (ir,j) EP (4.1)
S0 otherwise

and j(x, P) = -i,jev,ifj g (xi, xP). Then, any legal conformation that does not

violate the pair-flag constraints will satisfy j(x, P) = 0. Therefore, given conforma-

tion space X and a set of pair-flags P, we define £(X, P) = {xl|(x, P) = 0}, i.e. the

set of all legal conformations.

We also define the set of rotamer-pairs P({e}, U) that can be eliminated against a

global upper bound U, i.e. P({e}, U) = {(i, j,) I min{x,(x,,xj)=(r,s)} e(x) > U, i 5 j}.

When U is equal to minx e(x), P({e}, U) becomes equivalent to the set of pair-flags

used by DEE although DEE often only knows a subset of P({e}, U) in the course of

solving the GMEC problem.

Without any restriction on the value of U, we have the following lemma regarding

minimization under pair-flag constraints:

Lemma 4. For any P and P' such that P C P' and P'\P C P({e}, U),

1. if minxee(x,?) e(x) > U, then £(X, P') is empty or minXEL(x,p,) e(x) > U.

2. if minxEL(x,p) e(x) < U, then minxe~(x,p') e(x) = minx e(x,p) e(x).

3. if £(X, P') is empty, then £(X, P) is empty or minXEL(x,,) e(x) > U.

We say a subproblem minxEL(x,p) e(x) is infeasible when £(X, P) is empty. We can

regard the optimal value of an infeasible subproblem as +oo since the subproblem can

be pruned by any U. The following corollary is immediately obtained from Lemma 4:



Corollary 1. For any P and P' such that P C P' and P'\P C P({e}, U), minxe(x,P,) e(x)

is either infeasible or greater than U if and only if minxe.(x,p) e(x) is either infeasible

or greater than U.

The implication of Corollary 1 is that given a subproblem minXEL(x,') e(x) in the

BnB-tree and a global upper-bound U, the subproblem can be pruned in comparison

with U if and only if the modified subproblem minXEL(x,p, ) e(x) can be pruned against

U. In what follows, when we need to mention pair-flag information, we will implicitly

assume we have some P, and use the notation g(x) instead of j(x, P) where specifying

P is not particularly necessary.

Let us define 1(i) as the set of vertices neighboring i in g for each i E V(g). The

following condition on pair-flags will be used in the following sections:

Condition 1. For all r E Ri and i E V, there exists s E Rj for each j E F(i) such

that (ir ,js) P.

Condition 1 can be maintained without loss of generality if, whenever P is up-

dated, we detect rotamers ir such that (ir, js) E P for all s E Rj for some j E F(i) and

delete such ir from the problem, which does not change the solution of the problem.

4.2 Rotamer contraction

Let ( be the position whose rotamers we partition into a number of clusters C1, . , Cl,

I < IRId. Then, we contract all rotamers r E Ck as one rotamer-aggregate Ck. The

contracted GMEC problem has a new conformation space Xrc, which is the same as

X except that R( of X is replaced by {cl,..., cl}. Then, we define a new energy

function er'(x) over XrC and the set of pair-flags P5C so that the optimal value of

the contracted problem minxe(xrc,prc) erc(x) is a lower-bound of minxr(x,p) e(x),

the optimal value before the contraction. One way of choosing er'(x) for a given

clustering is given by contract-rotamers in Algorithm 1, where it takes the minimum

of unflagged pairwise energies for each cluster; the pairwise energies are augmented by



a fraction of the associated singleton energies. We use notation erc(x, P) to indicate

the function is also defined by P.

Algorithm 1: contract-rotamers

Data: (, C1 ,..., C, X, {e}, P
Result: Xrc, {ere}, prc

1 begin
2 X r c is same with X except Re is replaced with {cl,..., c}
3 prc P\{((rjs),j Fr()}
4 foreach Ck, k = 1,...,1 do
5 foreach s E Rj, j E r(() do

6 e 0(Ck, S, P) -- min{rEA,(r,j,)•P} e}j(r, s) M0±
7 if (Cr,js) E P for allr E Ck then prc _ prcU((CkIjS )

8 e c(ck) - 0.

9 define erc(x) same as e(x) for other terms
to end

We have the following lemma on contract-rotamers:

Lemma 5. For any given clustering of rotamers of C E V, the following claims hold:

1. If £(Xrc, prc) = 4, then £(X, P) = .

2. If £(XrT ,P TC) # 4, then

minxer(x,p) e(x) > minxEr(xr,#rc) erc(x, P) Ž minxexrc erc(x, P) Ž minExrc erc(x, ).

Lemma 5.1 suggests the contracted problem is infeasible only if the original prob-

lem is infeasible. Lemma 5.2 shows the rotamer contraction is in fact a lower-bounding

operation.

A similar approach was previously used by Koster et al. [1999] for the frequency

assignment problem, where frequencies belonging to the same frequency block usually

take similar pair-penalty and can be aggregated easily. However, they use the lower-

bounding in reverse direction where the lower-bound does not decrease by starting

from the most coarsely aggregated bounding problem to finer clustering of frequen-

cies. In large problems, it will be hard to solve the bounding problem exactly af-

ter certain number of iterations of refinements. Therefore resorting back to another

lower-bounding to solve a refined problem will be necessary. In addition, by using our



strategy of iteratively reducing the problem-size, reductions can be also contributed

by elimination by rotamer/rotamer-pair lower-bounds, edge-deletion and DEE.

In rotamer contraction, how we cluster rotamers of position ( determines the qual-

ity of resulting lower-bounds. Generally, finding the smallest number of clusters for a

given maximum decrease in the optimal value is NP-hard as can be shown by reduc-

tion from the k-center problem [Fowler et al., 1981, Meggiddo and Supowit, 1984].

Our approach is a greedy scheme that keeps placing rotarners in a cluster as long as

the decrease in the optimal value is less than equal to a specified amount. However,

it is hard to exactly know the decrease minxeC(x,P) e(x) - minxec(x", p.) erc(x, P). In

addition, it is generally not feasible to bound the decrease since rotamer contraction

may even turn an infeasible subproblem into a feasible one. We instead upper-bound

AOPTc :de minGxx e(x) - minxGL(xc',Prc) erc(x, P). Let

UYOPT(P) = max mmin max {ej(r, s) + e (r) (ck )}. (4.2)
1<k<l reCk (sER e I (s I)

Then, we have the following lemma:

Lemma 6. For any given clustering of rotamers of ( E V, we have AOPTrc <

U COPT(P) < UL7PT(()

Note that UOPT(P) has a finite value due to Condition 1. From Lemma 6, the

optimal value of the contracted problem is lower-bounded by minx'x e(x)--UYOPT(P).

AOPTec can even be negative. In fact, we can construct cases where

min e(x) > mine(x) > min erc(x) (4.3)
xCL(X,P) xEX xEC(XrcPPC)

as well as cases where

min erc(x) > min e(x). (4.4)
xEC(Xr•,Prc) xEX

On the other hand, the inequality UYOPT(P) < UCopT() suggests using pair-flags

in contract-rotamer also gives an upper-bound less than equal to the one computed

from empty pair-flag set.



Our suggested scheme greedy-clustering starts with an empty cluster. Then,

greedy-clustering checks with every other rotamer whether adding the rotamer to the

current cluster will increase U•coPT over some given threshold Arc. The procedure is

summarized in Algorithm 2. As enforced by line 8 of Algorithm 9, the upper-bound

on the decrease of the optimal value for each cluster is less than Arc. As a result,

we also have AOPTrc < A rc . When minx e(x) is greater than U, Ar c can be safely

allowed to be at most minxEX e(x) - U or some fraction of it without affecting the

prunability. Since we do not know the exact value of minXx e(x), Ar c is heuristi-

cally set as a fraction of the difference between an upper-bound of minxEX e(x) and

U. Both upper-bounds can be obtained using TRMP. On the other hand, even if

we obtain an upper-bound of minxEx e(x) less than equal to U, the optimal value of

minxEC(x,P) e(x) can be still greater than U. Therefore, some arbitrary Arc > 0 can

be used until we exactly solve the reduced problem.

Algorithm 2: greedy-clustering
Data: (, Arc, {e}
Result: {Ci}

1 begin
2 i +- O,B -- RC
a while B is not empty do
4 i -- i + 1, C+-
5 foreach z in B do
6 rc, e'(x)} - contract-rotamers(C, Ci U {z}, X, e(x))

7 A -- minrEc, -jEr(c) maxsERj{eCj(r, s) + - e 3 (Q, s)}

8 if A < Ar c then Ci - Ci U {z}, B - B\{z}

9 end

There can be various ways of choosing the contraction position (. Since the

purpose of contraction is reduction of the problem-size, C can be selected as follows:

* choose position that brings the largest reduction in number of rotamers, i.e.

C= arg maxi{(#rotamers of i) - (#rotamers of i after contraction)}.

* choose position that reduces the number of conformations most, i.e.

(= arg maxi{(reduction in #rotamers of i) x ijoi(#rotamers at position j)).



* choose position that reduces the number of rotamer pairs most, i.e.

C = arg maxi (reduction in #rotamers of i) x E•Er(i)(#rotamers at position j)}.

In our experiments of Section 4.5, we used the third criterion.

4.3 Edge-deletion

In edge-deletion, we first identify a pair of positions ((, 7r) such that the deviation in

ecn(r, s) for all (r, s) E R( x R, is small, then set all the interaction energies of the

position pair to the minimum interaction energies. That is, the new energy function

eed(x) after edge-deletion will be defined to be same as e(x) as except:

ed(, 8, = d def min eeCl(r, s), (r, s) E RC x R, (4.5)
{(r,s)ERc x R, I(r,s)tP}

Then, we have

ee(x) E > (xi) + : e~ ) 07 + (xi) ± > ei(x, x,)(4.6)
iEV (i,j)EE iEV

Therefore, we can exclude position pair ((, r) from further consideration. More pre-

cisely, & is replaced by S\{((, 77)}. The same idea was employed by Xie and Sahinidis

[2006] as an approximation procedure to solving the GMEC problem. Some advan-

tages of performing edge-deletion are as follows:

* when a significant portion of edges are deleted, we may apply more direct so-

lution techniques such as dynamic programming Xu [2005], Leaver-Fay et al.

[2005].

* empirically, being able to cover the graph using a smaller number of trees is

favorable for obtaining tighter lower-bounds from TRMP.

* in rotamer contraction, a smaller number of clusters can be obtained for the

same A"r since the greedy-clustering will consider fewer interactions in comput-

ing the upper-bounds on decrease of the optimal value.



Let

AOPTed de  min e(x) - min eed(x,P), (4.7)
xEC(XP) xEL(X,P)

and

UOPT(P) = max e(,(r, s) - e .d (4.8)
{(r,s)ER¢ xR,1(C,,n,) jP}

Note that e and UdPT are always defined and finite by Assumption 1. Then,

analogously to Lemma 5 and Lemma 6, the following observations can be made:

if we have L(X, P) 74 q, and delete edge ((, r/) E 8,

1. minxEC(x,p) e(x) > minxEc(x,p) ed(x, P) > minxer(x,p) ed(x, ).

2. AOPTed < U -el (P) • Uel0 ()

The first statement above suggests using pair-flags is also advantageous for edge-

deletion as it was in rotamer contraction. When we attempt to control the decrease

of the optimal value from edge-deletion as done in rotamer contraction, we may allow

edge-deletion only if Ugd, Aed for some Aed > o.

4.4 Dead-End elimination

We regard DEE as consisting of three main components: flagging, singles-elimination,

and unification. Based on such dissection of DEE, we describe how DEE can help

pruning a subproblem as a problem-size reduction tool.

4.4.1 Flagging

As mentioned in Section 4.4, there exists rich literature describing various flagging

techniques. Here we assume some of the known flagging techniques are used. In

general, such flagging techniques can be described as follows:

1. Flag a rotamer Cr (singles-flagging) only if

min e(x) > min e(x) for some s E R(\r.
{xlIxc=r) {xkc=s)



2. Flag a rotamer pair ((,, rs) (pairs-flagging) only if

min e(x) > min e(x) for some (t, u) E R( x R(\(r, s).
{xj(x(,xq)= (r,s)} {(xI(C',X?)=(tu )}

Therefore, only a non-GMEC rotamer/rotamer-pair are flagged for the GMEC prob-

lem minx e(x).

4.4.2 Singles-elimination

We refer to rotamer elimination solely based on given single/pair-flags as singles-

elimination. We can eliminate a rotamer 5( and all its associated rotamer-pairs from

the conformation space if one of the following condition is satisfied:

1. S• is flagged.

2. ((, j,) E P, for all s E Rj and some j E IF().

The second condition is a logical statement that 0 cannot be in GMEC if all rotamer-

pairs (r, j), s E R are flagged. Singles-flagging is taken to be the same as singles-

elimination in most literature on DEE, but we explicitly separate singles-flagging and

singles-elimination here to augment singles-elimination with general pair-flags later.

4.4.3 Unification

The idea of unification is to merge two positions ( and r into one new position [( : rl].

Each rotamer t E Rl:,,] corresponds to a pair of rotamers ( E, rs) E Re X R,. The

benefit of doing unification comes when there are many dead-end pairs ((,, rs) such

that (cE, rs) E P, because a dead-end pair can be eliminated as a single rotamer at

unification. The resulting number of rotamers at position [( : r] will be

IR[C:jj = IR| RqI - |P((, ri)L, (4.9)

where P(, r) def {((, rs) 1 (cr, rS) E P}. Therefore, unification is a way of exposing

the pair-flag information combinatorially. More details on unification can be found



from Desmet et al. [1992] and Goldstein [1994]. Although unification often brings a

break-through when singles/pairs-flagging underperforms, using it too liberally may

also aggravate the situation. Possible conditions to allow unification are:

* when the fraction of dead-end pairs are large, i.e. I > T1 for some threshold

T7 > 0.

* when the number of rotamers in the new position will not be large, i.e. |R| IRI -

IP((, r~) < T 2 for some threshold T2 > 0.

4.4.4 DEE with general pair-flags

General pair-flags can be exploited to facilitate the function of each reduction method.

However, DEE is not guaranteed to find the optimal solution for the GMEC problem

constrained by general pair-flags. Figure 4-1 shows an example where Goldstein's

singles-elimination condition yields an incorrect optimal solution. In the example,

without the pair-flag, the optimal solution would be (12, 22, 31) with optimal value

-3. Therefore, rotamer 11 could be correctly eliminated without affecting the optimal

value. On the other hand, if (12, 22) were flagged, then the minimization problem

constrained by the pair-flag would have the optimal solution (11, 22, 31) with the

optimal value -1. Goldstein's singles-elimination condition will, however, flag rotamer

11 since, when the energy from the position pair (2, 3) is not considered, 11 always has

larger energy contribution to the total conformation energy than 12, even when the

pair-flag (12,22) is considered. Therefore, Goldstein's singles-elimination condition

becomes incorrect when used with general pair-flags.

Our scheme for using DEE with general pair-flags is replacing the pair-flags with

numerical constraints. That is, before applying DEE on the problem, we modify the

problem by setting the pairwise energies to a very large value and entirely dropping

the pair-flag constraints. There are three drawbacks in this scheme. One is redundant

efforts spent on flagging rotamer-pairs that were already flagged. Another is that we

might not be able to recover all the original pair-flags, which, however, happens only

if the original problem is infeasible. Figure 4-2 shows an example where none of the
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Figure 4-1: Example of incorrect rotamer-pair elimination by DEE when using general
pair-flags.

11 12 1

M

0

Figure 4-2: Example of pair-flags that cannot be recovered by DEE with modified en-
ergy terms. All rotamer-pairs with energy M were originally flagged, thereby making
the problem infeasible. None of these rotamer-pairs will be flagged again by DEE.

originally flagged rotamer-pairs will be flagged by DEE when we replace the energy

of the flagged-rotamer pair to a very large positive number M. The third problem is

that the energy terms for the pairs that were flagged before DEE would be very large

after DEE and this might produce a numerical instability in TRMP unless such large

numbers are properly treated. In what follows, we present an adaptation of DEE to

avoid the latter two problems.

Algorithm 3 shows the top framework of the modified DEE, DEE-gp. The routine

outputs a problem minxEL(x'p, ) e'(x) modified from the original problem minxCr(x,P) e(x).

The basic idea of DEE-gp is to apply the same reduction on {ei, eij } and P as per-

formed on {&i, eij} and P, where {e, e}ij} and P' are initialized by {e,e ij} and P

respectively. Then, the energy terms for the reduced problem are {e', e' } , and the

new pair-flags are the union of P' and the pair-flags P from DEE. In Algorithm 3, we

let D a set of flagged single rotamers. We assume there exist routines singles-pairs-

flagging that flag single rotamers and rotamer-pairs according to DEE conditions.
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Algorithms used in singles-pairs-flagging can be arbitrary as long as they flag only

non-GMEC singles and pairs. In line 4, we can terminate the elimination efforts and

exit through line 13, for example, when the number of newly flagged rotamer-pairs

is smaller than some threshold. Subprocedures eliminate-singles and unification can

be found in Appendix B.2.

Algorithm 3: DEE-gp

Data: G, {Ri},{e},/P
Result: G', {Rj}, {e'}, P'

1 begin
2 GI -- G, R ) +- (Ri)j, {e'} +- {e}, P' - P, D P - ¢, P -
3 define (x) the same as e(x) except ij (xi) +- M > 0 for (xi,xj) E P, (i,j) E 8
4 if termination condition is met then go to line 13
5 else {D,P} }- singles-pairs-flafgging({ }, D, P)
6 if any rotamer-pairs were flagged from line 5 then

7 {{R }, {}, P, {e'}, P'} +- eliminate-singles({R }, {} , bP, {e'}, P'})
8 b +-- , go to line 4
9 else if unification is feasible then

10 determine unification positions (, r

11 {g', {R'}, {l}, P,{e'},P'} +- unification (G', {R}, {}, P, {e'}P',~,)
12 go to line 4

13 ' - P' U P
14 end

For the rest of this section, we will show that DEE-gp is an exact problem-size

reduction tool that does not change the optimal value. First, we have the following

lemma regarding the replacement of pair-flags with numerical constraints in DEE-gp:

Lemma 7. Let £(X, P) # 0 and e(x) defined as in line 3 of Algorithm 14, where M

is a large positive number satisfying 6(z) > M > minxEC(x,P) e(x) for all z such that

(z¢, z,) E P for some ((, r) E E. Then, we have arg minxEL(x,P) e(x) = arg minx 6(x).

Since e(z) > M+ (ij)s( ¢,) ij(zi, zj)+E-i ij(zi) if (z(, z,) E P for some ((, 7r) E 8,

setting M -+ oo will always satisfy the condition on M in Lemma 7.

We have the following lemma on DEE-gp:

Lemma 8. The following invariant holds at each step of DEE-gp after line 3 and

before line 13:



1. arg minxEL(x,P) e'(x) = arg minxEL(x,P) (x) if L(X, P) $ €, and L(X, P') = 4

i L(X, P) =4.

2. for any z E arg minx~(x,P,) e'(x), we have e'(z) = &(z).

The following corollary can be obtained from Lemma 8:

Corollary 2. Suppose we obtain {g', {R1}, {e'}, P'} as output from DEE-gp for the

input {f, {R)}, {e},P}. Then, we have minxEL(x,P,) e'(x) = minxEL(x,P) e(x) ifr (X, P) 5

4, and £(X, P') = 4 if £(X, P) = 0.

4.5 Computational experiments

In our numerical experiments, a Linux workstation with a 2.2 GHz Intel Xeon pro-

cessor and 3.5 Gbytes of memory was used. Table 5.1 shows 12 protein design cases

used in the experiments. DEE on each case was performed with the following op-

tions: Goldstein's singles elimination, splitting with split flags (s = 1), Goldstein's

pair elimination with one magic bullet, and unification allowing maximum 6,000 ro-

tamers per position. E-9 finished in 4.8 hours but none of others were solved within

48 hours.

To evaluate our pruning scheme, we compared it (call it PbyR: prune-by-reduction)

against linear programming (LP). We used subproblems of various sizes generated

while solving the design cases of Table 5.1 with branch-and-bound. We used the LP

formulation of Appendix B.3, and solved it with a C++ procedure using the CPLEX

8.0 library. In PbyR, we alternated rotamer contraction and edge-deletion at every

iteration. At every 8th reduction, we applied DEE to see if we could solve the reduced

problem or only to flag more rotamer/rotamer-pairs. (Note that we used DEE-gp, the

DEE adapted to be compatible with general pair-flags.) We computed TRMP lower-

bounds at every 24th reduction and flagged rotamers/rotamer-pairs. We allowed at

most 300 reductions until we find a lower-bound greater than U or exactly solve

the reduced problem. Figure 4-3 and 4-4 shows the result for the 156 subproblems

remaining after excluding the subproblems that could be solved quickly by DEE alone.



Table 4.1: Test cases facts. All cases are from antigen-antibody model system. Each
case repacks either the antigen protein or the antibody, or both. Each column rep-
resents (1) case name, (2) number of positions, (3) maximum number of rotamers
offered at a position, (4) number of total rotamers, (5) E 1 loglo IRi|, (6) case com-
position ('m' - #positions allowed to mutate, 'n' - #positions only wild-types are
allowed, 'w'- #water molecules to be oriented at the interface). In the case names,
R uses the standard rotamer library, and E multiplies each of X1 and X2 by a factor
of 3 by adding +100. E-1 were offered only hydrophobic residues while others were
offered both hydrophobic and polar residues. All energies were calculated using the
CHARMM package and the parameter set 'param22'

Case n max lRi E RiZ logloconf Composition
R-1 34 125 1422 30.0 34 m
R-2 30 133 1350 40.2 30 m
E-1 19 617 3675 38.1 19 m
E-2 23 1370 9939 52.3 23 m
E-3 23 1320 8332 49.1 23 m
E-4 15 1361 7467 33.9 15 m
E-5 24 1344 9585 49.6 24 m
E-6 36 1984 8543 59.1 4 m, 32 n
E-7 10 2075 5201 21.9 5 m, 3 n, 2 w
E-8 10 1915 5437 20.7 4 m, 4 n, 2 w
E-9 15 2091 5700 25.1 3 m, 6 n, 6 w
E-10 23 1949 9837 42.5 7 m, 7 n, 9 w



4.5 A '
A A

4 -s A•
A A

3.5 A^ ^ •taa

1.5 -A"^

1.5

1 1.5 2 2.5 3 3.5 4 4.5 5
loglo LP time

Figure 4-3: Comparison of LP times and PbyR times in pruning subproblems from
branch-and-bound.

The bounding times of the two methods are comparable although LP is slightly faster

in small to medium-sized subproblems. However, Figure 4-4 shows that the bounds

from PbyR are greater than LP bounds except for the one data point below the y = x

line. Note that a PbyR bound for a subproblem is not generally a lower-bound of

the subproblem's optimal value since rotamer/rotamer-pair elimination by TRMP

lower-bounds can also increase the optimal value. However, a PbyR bound is greater

than U only if the original subproblem's optimal value is greater than U. Therefore,

if we had U equal to the GMEC energy for each design case, we could immediately

prune the subproblems corresponding to the data points over the horizontal solid

line in Figure 4-4. There was no such case with LP among the tested subproblems.

Figure 4-4 suggests that performing reductions more than 50 times often resulted in

lower-bounds that were useless for pruning.

4.6 Conclusions

In this section, we described techniques for computing lower bounds or pruning a

subproblem based on problem-size reduction in the branch-and-bound framework.

Rotamer contraction and edge deletion can be used to facilitate computation of lower

bounds by simplifying the problem in a controlled manner. The modified dead-end
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Figure 4-4: Comparison of LP bounds and PbyR bounds in pruning subproblems
from branch-and-bound. A circle represents the PbyR bound was computed using
less than 50 reductions. Points such that PbyR bound - GMEC energy > 20 were all
clamped at 20

elimination can be used with general pair flags to reduce the size of a subproblem

without sacrificing any accuracy. Our computational experiments confirm that a

pruning scheme combining the techniques of the current chapter and elimination

by TRMP bounds of Chapter 3 can provide better pruning performance than the

general-purpose linear programming solver.
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Chapter 5

Computational experiments with

BroMAP

We performed computational experiments to evaluate the performance of BroMAP.

We used a set of various protein design cases to measure and compare the running

times of BroMAP and a fast implementation of DEE/A* that includes most of the

state-of-art techniques [Gordon et al., 2003]. In the following, to distinguish the

modified version of DEE used in BroMAP from the DEE used in DEE/A*, we will

call the former as DEE-gp (DEE for general pair flags). The two main questions

we are interested in investigating with the experiments are (1) whether BroMAP

can solve design cases previously unsolved by DEE/A*, and (2) whether we can use

BroMAP generally as an alternative to DEE/A* without being restricted to specific

types of design cases. We are mainly interested in the overall performance of BroMAP

compared to DEE/A* here whereas Section 4.5 evaluated the effectiveness of our

pruning method by comparing it against linear programming.

5.1 DEE/A* implementation

We used an in-house implementation of DEE/A* written in the C programming lan-

guage [Altman, 2006]. DEE/A* was performed with the following options and order:



1. Eliminate singles using Goldstein's condition [Goldstein, 1994]. Repeat until

elimination is unproductive.

2. Eliminate singles using split flags (s = 1) [Pierce et al., 2000]. Repeat until

elimination is unproductive.

3. Do logical singles-pairs elimination [Lasters et al., 1995].

4. Eliminate pairs using Goldstein's condition with one magic bullet [Gordon and

Mayo, 1998].

5. Do logical singles-pairs elimination.

6. If unification is possible, do unification [Goldstein, 1994], and go to (1).

7. Do A* [Hart et al., 1968].

For unification, the pair of positions that has the largest fraction of flagged rotamer

pairs is picked. However, because the energy terms and pair flags must be stored in

machine memory, we capped the total number of rotamers that would result to be no

greater than a unification option C,,,. Therefore, any pair of positions that would

create a larger number of rotamers when unified than C,,i was not considered, and

the pair with the next-largest fraction of flagged rotamer pairs was considered. We

experimented with different values of C,,i, i.e. 6,000, 8,000, 10,000, 12,000, and

14,000, to obtain the best running time for each test case. Note that this gives

DEE/A*, the competing method an advantage over BroMAP in comparing their

running times, because it will give better DEE/A* times than consistently using one

of the C,,, values. Increasing C,,i and thus the allowance for large unification can

facilitate solving otherwise difficult or unsolvable cases. However, for small to medium

cases, larger values of Cni often result in slower solution times.

Our DEE implementation uses a full table of energies. That is, if there are

q = E',1 Ri| rotamers in the problem, DEE allocates memory for q2 floating point

numbers.
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When the DEE/A* procedure described above using various Cij values failed to

solve a test case, we also tried singles-elimination using split flags with s = 2 instead

of s = 1, or allowed the number of magic bullets to increase up to the number of

positions.

5.2 BroMAP implementation

BroMAP was implemented in C++. We used the PICO-library [Eckstein et al., 2001]

for the BnB framework. The PICO-library provides the data structures and methods

to create/delete nodes and to search the tree. It also provides procedure skeletons,

for instance, for upper/lower-bounding methods.

In BroMAP, we restricted the amount of effort spent by DEE-gp instead of al-

lowing it to keep iterating singles/pairs-flagging and unification until it finally solved

the subproblem. This was done by limiting the maximum number of iterations of

singles/pairs-flagging and also by using a smaller fixed C,,i value for unification than

those used by DEE/A*.

Other than performing DEE-gp and TRMP bounding for each subproblem, we

also allowed rotamer contractions (see Section 4.2). Rotamer contraction reduces

the size of a subproblem by grouping similar rotamers at a residue position as a

cluster and replacing the cluster by a new single rotamer. It also defines the pairwise

energies for the new rotamer so that the optimal value of the reduced subproblemi

is always a lower bound of the optimal value of the subproblem before the rotamer

contraction. Rotamer contraction was iteratively performed until we obtained a lower

bound greater than U or the number of executed rotamer contractions reached a pre-

determined limit. We used a heuristic boundability index (BI) multiplied by a positive

integer Prc as such limits. The BI for a specific node is equal to the number of 'high'

branches on the path from the root to the node. For example, in the search tree of

Figure 3-1, assuming the BI of the root node is equal to 0, BI's are 0 for nodes 1,

3, 5, 7, 9, and 1 for nodes 2, 4, 6, 8, 11, and 2 for node 10. Computation of BI is

illustrated in Figure 5-1. In these experiments, we let P,, = 16 after exploring the
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Figure 5-1: The path from root node to the current node determines the bound-
ability index of the current node by counting the number of high branches in the
path. Assuming the root node has boundability index equal to 0, the diagram shows
boundability indices for all nodes in the tree.

overall effect of different values of Prc on running times of BroMAP.

In case rotamer contractions were performed multiple times in bounding a sub-

problem as described above, we also performed additional DEE-gp and TRMP pe-

riodically on the subproblem reduced by rotamer contractions. After every PDEE

consecutive rotamer contractions, we applied DEE-gp to see if we could solve the

reduced problem or only to flag more rotamers or rotamer pairs. TRMP was also run

until convergence after every PTRMP consecutive rotamer contractions to compute a

lower bound for the subproblem or to flag rotamers or rotamer-pairs using the TRMP

lower bounds. In this experiment, we let PDEE = 8, and PTRMP = 16.

Along the first depth-first dive, that is, until we exactly solve a subproblem for

the first time, we performed only DEE-gp, TRMP bounding, and subproblem split-

ting, once respectively, but did not use any rotamer contraction. As with DEE/A*,

BroMAP also used the A* search algorithm when DEE-gp could not eliminate any

more rotamers or rotamer pairs and the subproblem was considered small, i.e. con-

tained less than 200,000 rotamer pairs.

The BroMAP implementation needs to hold TRMP data, whose size is of the order

of the number of rotamer pairs. This corresponds to K1 Z--=i+1 R Rj I floating

point numbers, and is roughly half the memory required by DEE/A*. Since BroMAP

also performs DEE-gp, it requires additional memory of (1- •- R• )2 floating point
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numbers for the full DEE energy table. Therefore, the maximum memory requirement

of BroMAP is (E- Ri )2 1+ i=1  j=i+l Ri R Rj floating point numbers, which is

roughly 1.5 times larger than that of DEE/A*.

5.3 Platform

We used a Linux workstation with two dual-core 2 GHz AMD Opteron 246 processors

and 2 Gbytes of memory for the experiment. The C/C++ codes for BroMAP and

DEE/A* were compiled using Intel C/C++ Compiler Version 9.1 for Linux. During

compile, OpenMP directives were enabled to parallelize the execution of DEE, DEE-

gp, and TRMP over two CPU cores. All other procedures, including A*, were executed

over a single core. Note that BroMAP or DEE/A* was allowed to use the whole system

memory but only one processor at a time.

5.4 Test cases

We used 68 test cases whose energy files are smaller than 300 Mbytes. All test

cases were provided by Shaun M. Lippow from Tidor Group together with helpful

discussions. An energy file contains floating point numbers representing singleton and

pairwise energies. We found energy files larger than 300 Mbytes are not handled well

with the current implementation of BroMAP on our workstation due to the memory

requirement of BroMAP.

We used three differentmodel systems in obtaining test cases:

1. FN3: derived from protein 'oFn3, the tenth human fibronectin type III do-

main [Main et al., 1992]. It is a 94-residue /-sheet protein with an irnmunoglobulin-

like fold. Besides its natural in vivo role, the protein has been engineered as an

antibody mimic to bind with high affinity and specificity to arbitrary protein

targets.

2. D44.1 [Braden et al., 1994] and D1.3 [Bhat et al., 1994]: antibodies that bind to

hen egg-white lysozyme (HEL), though they bind different HEL epitopes. Each
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has low nanomolar binding affinity, and was originally isolated after murine

immunization. For the D1.3 core designs, we redesigned the core of the lysozyme

protein, absent of the antibody.

3. EPO: human erythropoietin (Epo) protein complexed to its receptor (EpoR) [Syed

et al., 1998]. One Epo binds to two EpoR with one high-affinity and one low-

affinity binding sites. Our EPO interface designs addressed the high-affinity

binding site while our core designs addressed the core of the EpoR from the

high-affinity site.

Each case corresponds to one of three types of protein regions:

1. INT: protein-protein binding interface.

2. CORE: protein core, i.e. side chains that are not solvent-exposed.

3. CORE++: protein core plus boundary positions that are partially exposed to

solvent.

We varied the types of amino acids offered at design positions of each case as

follows:

1. H: hydrophobic amino acids (A, F, G, I, L, M, W, V).

2. HP: hydrophobic plus polar amino acids (A, F, G, I, L, M, W, V, H, N, Q, S,

T, Y).

3. A: all type of amino acids, excluding proline and cysteine.

For CORE, we used both H and HP, and for CORE++, we used HP (with both neutral

tautomers of histidine allowed in each case). For INT, we used A, and allowed both

neutral tautomers and the protonated form of histidine. For all designs, if the wild-

type amino acid was not part of the library, it was added at that position. For some

test cases, the total number of positions in the search was greater than the number of

design positions. At these other positions, the native amino-acid type was retained

and its conformation was varied.

Each case was made using one of two different rotamer libraries:
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1. REG: standard rotamer library. This is based on the backbone-independent

May 2002 library [Dunbrack, 2002]. This library was supplemented with three

histidine rotamers for an unsampled ring flip, and two asparagine rotamers to

increase sampling of the final dihedral angle rotation.

2. EXP: expanded rotamer library. This was created by expanding both X1 and X2

of rotamers in REG by ±100. The hydroxyls of serine, threonine, and tyrosine

were sampled every 30 degrees. For some INT cases of D1.3, D44.1, and EPO,

crystallographic water molecules were allowed conformational freedom. The

oxygen atom location was fixed to that of the crystal structure and the hydrogen

atoms were placed to create 60 symmetric water molecule rotations.

For all libraries and cases, each crystallographic wild-type rotamer was added in

a position-specific manner to the library, using the complete Cartesian representation

of the side chain, rather than just the dihedral angles.

The singleton/pairwise energies of rotamers were computed using the energy func-

tion of CHARMM PARAM22 all-atom parameter set with no cut-offs for non-bonded

interactions and a 4r distance-dependent dielectric constant. All energy terms were

used (bond, angle, Urey-Bradley, dihedral, improper, Lennard-Jones, and electro-

static). Rotamers that clashed with the fixed protein regions were eliminated during

case generation if their singleton energies were greater than the smallest singleton

energy at that position by at least 50 kcal/mol. Further details on design methods

and test case construction can be found from Lippow et al. [2007]
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Table 5.1: Test case facts. Each column represents (1)

No.: case number, (2) Model: model system, (3) Re-

gion: protein regions being considered, (4) AA: type of

amino acids offered for design positions, (5) Lib: types

of rotamer library used, (6) n: number of positions, (7)

nD: number of design positions, (8) w: number of mo-

bile water molecules considered, (9) E IR : total number

of rotamers, (10) Pairs: total number of rotamer pairs,

(11) logconf: EL, log |Ri, (12) Solved by: methods that

solved the case ("Limited DEE" implies the case was

solved by both BroMAP and DEE/A*, but only DEE-gp

was necessary for BroMAP. "Bro" and "DEE" abbreviate

BroMAP and DEE/A*, respectively).

INo. Iviodel Rtegion AA Li1)

1 fn3 core HP REG

2 fn3 core++ HP REG

3 fn3 core++ HP REG

4 fn3 core++ HP REG

5 fn3 core++ HP REG

6 fn3 core HP EXP

7 D44.1 int A REG

8 D44.1 int A REG

9 D44.1 int A REG

10 D44.1 int A REG

11 D44.1 int A REG

12 D44.1 int A REG

13 D44.1 int A REG

14

20

23

25

27

14

4

7

8

9

10

11

14

2 I__ 1 Ralrs logcoJ bOlve(1 Dy

743 2.5E5 50.2 Limited DEE

1,778 1.5E6 83.7 Bro & DEE

1,894 1.7E6 94.1 Bro & DEE

2,048 2.0E6 102.9 Bro & DEE

2,083 2.1E6 108.6 Bro & DEE

8,774 3.5E7 82.4 Limited DEE

476 8.5E4 21.6 Limited DEE

822 2.8E5 28.7 Limited DEE

965 4.0E5 33.4 Bro & DEE

1,019 4.5E5 37.1 Bro &c DEE

1,133 5.6E5 40.6 Bro & DEE

1,376 8.4E5 46.4 Bro

2.020 1.9E6 70.1 None

continued on next page
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continued from previous page

No. Model Region AA Lib nnD w E IRil Pairs logconf Solved by

5,026 9.5E6 36.4 Limited DEE

7,019 1.9E7 39.9 Bro & DEE

7,910 2.6E7 42.9 Bro

8,771 3.2E7 42.9 Bro

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

D1.3

A

A

A

A

A

A

A

A

A

A

A

H

H

H

H

HP

HP

HP

HP

H

H

H
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D44.1

D44.1

D44.1

D44.1

A EXP

A EXP

A EXP

A EXP

REG

REG

REG

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

REG

REG

REG

REG

REG

REG

REG

REG

EXP

EXP

EXP

450

767

1,618

3,599

3,616

4,070

4,612

4,987

5,461

5,891

6,365

342

430

503

567

980

1,228

1,431

1,582

1,844

2,734

3,370

8.3E4

2.6E5

1.2E6

4.8E6

4.8E6

6.3E6

8.0E6

9.7E6

1.2E7

1.4E7

1.7E7

5.4E4

8.6E4

1.2E5

1.5E5

4.4E5

7.1E5

9.7E5

1.2E6

1.5E6

3.5E6

5.3E6

21.7

38.5

78.8

28.7

28.7

34.4

42.6

45.1

47.4

50.5

52.8

44.1

54.6

66.7

81.4

59.5

74.1

92.3

112.7

56.3

75.7

91.8

Limited DEE

Limited DEE

Limited DEE

Limited DEE

Limited DEE

Bro & DEE

Bro & DEE

Bro & DEE

Bro & DEE

Bro

Bro

Limited DEE

Limited DEE

Limited DEE

Limited DEE

Bro & DEE

Bro & DEE

Bro & DEE

Bro & DEE

Bro & DEE

Bro

Bro

core

core

core

core

core

core

core

core

core

core

core
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No. Model Region AA Lib n nD w E| Ri Pairs logconf

D1.3 core H EXP

D1.3 core H EXP

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

epo

int

int
int
int
int
int
int
int
int
int
core

core

core

core

core

core

core

core

core

core

core

core

core

core

A

A

A

A

A

A

A

A

A

A

H

H

H

H

H

HP

HP

HP

HP

HP

HP

HP

H

H

REG

REG

REG

REG

REG

REG

EXP

EXP

EXP

EXP

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

EXP

EXP

3,894 7.1E6 111.6

4,444 9.4E6 142.0

466

419

1,005

1,503

1,999

2,138

5,001

4,170

7,544

8,724

291

395

433

573

727

827

1,103

1,208

1,615

1,827

1,956

1,999

2,307

3,006

7.1E4

6.8E4

4.4E5

1.0E6

1.9E6

2.1E6

8.4E6

6.8E6

2.3E7

3.2E7

3.9E4

7.4E4

8.9E4

1.6E5

2.6E5

3.2E5

5.8E5

7.0E5

1.3E6

1.6E6

1.9E6

1.9E6

2.4E6

4.2E6

16.6

17.0

39.4

67.5

79.6

87.5

26.5

26.3

46.4

53.4

43.5

58.1

65.4

82.7

103.3

60.1

79.9

92.6

115.9

128.4

136.6

143.1

73.5

99.0
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Bro

Bro
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Limited DEE

Bro & DEE

Bro & DEE

Bro

None

Limited DEE

Bro & DEE

Bro & DEE

Bro & DEE

Limited DEE

Limited DEE

Limited DEE

Limited DEE

Limited DEE

Bro & DEE

Bro & DEE

Bro & DEE

Bro & DEE

Bro

Bro

Bro

Limited DEE

Bro & DEE
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No. Model Region AA Lib n nD W E IRil Pairs log conf Solved by

66 epo core H EXP 28 28 0 3,213 4.8E6 111.1 Bro & DEE

67 epo core H EXP 33 33 0 4,322 8.9E6 140.0 Bro

68 epo core H EXP 41 41 0 5,712 1.6E7 175.0 None

Table I lists composition and problem-size information of each test case. Its last

column also summarizes the experimental results presented in the following.

5.5 Running time comparison

Among the 68 cases, BroMAP solved 65 cases within the 7-days allowed time whereas

DEE/A* solved 51 cases for the same allowed time. There were no cases DEE/A*

solved but BroMAP was not able to solve. The 14 cases solved by BroMAP but not

by DEE/A* suggest that BroMAP can be an alternative to DEE/A* for hard design

cases where DEE/A* performs poorly.

Among the 51 cases solved by both BroMAP and DEE/A*, solving 23 cases by

BroMAP required only the DEE-gp part of BroMAP. Since BroMAP only acted as a

light DEE for these cases, comparing the running times of BroMAP and DEE/A* on

them is not meaningful. After eliminating these 23 cases, we are left with 28 cases for

which we are interested in comparing the running times of BroMAP and DEE/A*.

The running times for these 28 cases are shown in Table II. Additionally, the table

lists results for 14 cases that only BroMAP solved.
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Table 5.2: Results of solving the non-"Limited DEE"

cases with BroMAP and DEE/A* (cases solved by lim-

ited DEE are not presented). Columns (1) No.: case

number, (2) Bro: BroMAP solution time in seconds,

(3) DEE: DEE/A* solution time in seconds, (4) T-

Br: total number of branchings (i.e. splits), (5) F-

Br: number of branchings (luring the first depth-first

dive, (6) Skew: skewness of the search tree defined

(number of low-subproblems split)
(total number of splits) - 1 (

OPT, i.e. difference between the upper bound from the

first depth-first dive and the GMEC energy, (8) Leaf:

Ei logo10 Ri of the node at the end of the first depth-

first dive, (9) Rdctn: average reduction of E loglo IR I

during the first depth-first dive, i.e. (logcornf - Leaf)/(F-

Br), where logconf is defined in Table I, (10) R.C: number

of rotamer contractions performed, (11) %DE: BroMAP

time percentage used for DEE-gp, (12) %A*: BroMAP

time percentage used for A*, (13) %TR: BroMAP time

percentage used for TRMP. Note that columns 11 to 13

may not sum to 100% because of time spent on rotamer

contraction and overhead of using the branch-and-bound

framework.

No. Bro DEE T-Br F-Br Skew F-Ub Leaf Rdctn RC %DE %A* %TR

2 2.6E3 3.1E4 31 25 0.90 0.49 30.7 2.12 36 42.8 0.3 56.3

3 2.4E3 2.3E4 31 26 0.93 0.49 27.7 2.55 32 46.2 0.6 52.6

4 2.8E3 1.3E4 23 23 1 0 33.7 3.01 0 43.9 0.3 55.5

5 2.7E3 2.1E4 26 26 1 0.55 27.4 3.12 0 37.2 0.4 62.2

9 1.2E2 4.8E2 3 3 1 0 27.6 1.93 0 8.9 74.1 17.0

continued on next page
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No. Bro DEE T-Br F-Br Skew F-Ub Leaf Rdctn RC %DE (A* %TR

4.6E2

5.7E3

2.9E2

1.5E2

3.2E2

2.9E2

1.4E3

4.1E2

1.1E3

2.8E3

4.6E3

2.5E2

2.2E2

8.8E2

3.3E2

1.2E3

5.7E4

4.6E1

1.5E3

4.4E2

1.5E4

4.6E3

7.7E3

1.3E3

3.5E4

3.5E2

2.6E2

3.1E2

1.2E3

1.7E3

2.1E3

3.7E3

4.1E4

2.3E4

2.5E2

3.8E1

2.0E2

5.0E2

1.1E3

2.8E5

2.7E2

1.0E3

4.0E3

4.6E4

1.7E3

2.4E3

13
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0

0

4

0

11

13

19

21

25

0

8

8

4

7

666

0

19

0

32

15

15

0.75

0.81

NA

NA

1

NA

1

1

1

1

1

NA

0.71

1

1

1

0.85

NA

1

NA

1

1

1

0.37

0.36

0

0

0

0

0.89

0

0

0

0

0

0.54

0

0

0

0.58

0

0

0

0

0

0

26.9

26.2

NA

NA

25.3

NA

29.2

27.9

30.0

28.7

27.9

NA

28.2

26.2

19.8

22.3

27.6

NA

28.8

NA

37.3

22.7

33.9

1.02

0.85

NA

NA

4.33

NA

1.65

2.43

2.32

3.03

3.39

NA

1.87

5.16

1.63

3.44

1.03

NA

2.69

NA

2.46

5.09

5.15

74

663

0

0

0

0

0

0

0

0

0

0

17

8

0

12

5,656

0

0

0

0

0

0

7.6

3.8

94.6

86.7

62.3

89.6

46.1

34.7

32.2

50.7

53.2

76.0

8.2

48.6

51.1

72.2

16.7

84.8

42.5

70.6

30.1

61.9

67.2

70.4

78.9

0.4

0

15.1

0

0.4

4.5

2.7

0.6

0.7

2.4

75.5

23.8

11.5

7.0

21.2

0

0.2

0

0.1

0

0

14.4

11.2

4.7

12.6

21.6

10.4

53.2

59.8

64.8

48.6

45.9

21.2

14.1

25.4

37.5

17.1

41.8

15.2

57.1

29.1

69.7

37.8

32.6

Cases below were solved by BroMAP only.

12 2.OE5 NA 2773 23 0.82 7.11 26.2 0.88 3.9E4 6.0 59.1 20.1

16 3.5E3 NA 12 11 0.91 0 23.6 1.75 30 41.7 6.0 49.3

continued on next page
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No. Bro DEE T-Br F-Br Skew F-Ub Leaf Rdctn RC %DE %A* %TR

17 1.1E5 NA 298 21 0.84 3.35 26.7 0.77 2,576 17.7 28.1 32.7

27 8.0E3 NA 23 23 1 0 27.8 0.99 13 32.2 1.1 66.4

28 2.1E4 NA 175 25 0.91 0 28.0 0.99 1,168 23.8 8.5 57.9

38 1.4E4 NA 155 31 0.87 0.50 30.2 1.47 571 30.9 0.4 62.8

39 1.2E5 NA 572 43 0.85 0 27.4 1.50 4,791 30.4 0.1 58.4

40 1.8E5 NA 293 43 0.81 0 29.6 1.91 2,440 35.9 0 56.1

41 2.1E5 NA 364 41 0.85 0 33 2.66 2,771 34.2 0 57.5

46 5.0E5 NA 2675 36 0.69 8.28 27.8 1.44 1.4E5 18.8 18.8 35.3

61 2.8E4 NA 55 49 0.96 0.36 28.2 2.04 15 49.0 0 50.8

62 3.6E5 NA 232 58 0.88 0.27 30.1 1.84 1,119 43.5 0 50.2

63 1.1E5 NA 143 53 0.85 0.29 32.8 2.08 506 41.4 0 55.4

67 1.3E5 NA 37 37 1 0 35.6 2.82 0 51.5 0 48.5

Figure 5-2 plots the ratio

DEE/A* running time. Note

of BroMAP running time to DEE/A* running time vs.

that the plotted ratios for cases solved only by BroMAP

are upper bounds on actual ratios because actual DEE/A* running times should be

more than 7 days. Overall, the plot suggests BroMAP gains advantage for cases as

DEE/A* takes longer. For all cases that DEE/A* took more than one hour to solve,

the maximum ratio was 0.33. Together with the 14 cases solved by BroMAP only,

the experiment supports that BroMAP can be an alternative to DEE/A* for hard

design cases. There are 5 cases for which the BroMAP solution time is at least 10%

longer than DEE/A* solution time. Considering four of them (cases 45, 58, 65, and

66) were almost ideally solved by BroMAP (the GMEC was found at the end of the

first depth-first dive and there was no branching after the first depth-first dive), we

find more aggressive DEE conditions such as larger C,,0 i were critical in obtaining

shorter running times on them. In terms of the total running time, however, none of

these five cases needed more than 130 minutes to be solved by BroMAP. Therefore,

using BroMAP did not impractically slow down the solution time for cases in Table
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For large hard cases, the system memory can be a limiting factor on the per-

formance of DEE/A* because the performance of DEE/A* often greatly depends on

the unification procedure that requires a large amount of memory. While this im-

plies larger system memory could have given advantage to DEE/A* over BroMAP in

terms of running time, our results suggests that the memory constraints experienced

by DEE/A* can be alleviated through the use of BroMAP.

Table II lists the percentage of time used for each component of BroMAP. In most

cases, DEE-gp, A*, and TRMP turned out to be major contributors to the running

time. If we sum running times of BroMAP for all cases, it is found that 42% of the

total time was spent on DEE-gp and A*, and 45% on TRMP. On the other hand,

considering the proportion between the total running time of BroMAP and A* time,

a great amount of time was spent on A* for cases 11 and 12. This could be avoided

by further restricting the size of the subproblem for which A* is allowed to run.

Among cases in Table I, BroMAP was able to solve six cases at the root node

without splitting. All other cases required BroMAP to branch but many of them

needed very little branching other than those performed during the first depth-first

dive. This trend is observed through the skewness of the search tree, defined as

(number of low-subproblems split)(number of low-subproblems split) The ratio varies between 0 and 1 and is larger
(total number of branchings) - 1

than 0.5 if there are more low-subproblems split than high-subproblems. We com-

puted skewness for 36 cases where BroMAP required more than one split. The mini-

mum skewness from these cases is 0.69 and 17 cases had skewness equal to 1, that is,

needed only low-subproblem splittings.

Figure 5-3 shows actual search trees generated by BroMAP during solution of three

cases. Box-shaped (shaded) nodes in each search tree represent the subproblems that

were exactly solved and resulted in an upper bound less than equal to the current

best upper bound. Therefore, the box-shaped node that is expanded latest is a node

where the GMEC is found in the search tree. Note that, for 27 cases out of 42 cases

in Table II, an upper bound equal to the GMEC energy was found at the end of the

first depth-first dive. However, early discovery of the GMEC did not necessarily lead

113



66
65

58 (
37 24 50

S•'.1. A26
64

49
23

S10

9A A

25 O
33

o.

34 36
.04 ",.A 11

O 5[::

2 0 35

10 102 103 104 105

DEE/'A* time (sec) No DEE/A' solution

Figure 5-2: Ratio of BroMAP time to DEE/A* time vs. DEE/A* time for 42 cases
in Table II. Labels next to data points are case numbers from Table I. The 14 cases
solved by BroMAP only are shown in the narrow pane on the right side. The running
time ratios for these cases were calculated by assuming the DEE/A* time for each
of them is 7 days although they were not solved by DEE/A* within 7 days. The
trend line represents a robust fit for the 28 cases that were solved by both BroMAP
and DEE/A*. The horizontal dashed line represents the ratio equal to 1. Different
symbols are used to represent each case depending on the type of protein region
(CORE, CORE++, or INT) and the type of library used (REG or EXP): (1) O = CORE,
O = CORE+-, A = INT, (2) empty = REG, filled = EXP.
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to fast completion of BroMAP. For example, in Figure 5-3(c), we can see the lower

bounding was not effective for large subproblems although they were expanded after

the optimal upper-bound was found, resulting in a large number of branchings.

Table II suggests that the search trees of BroMAP have smaller depths than

those from conventional BnB methods would have. A simple branching without

reduction within a node would only reduce the problem size by a factor of two.

That is, a child subproblem will have Ei loglo JRiI value smaller by logo10 2 . 0.30

than its parent subproblem. However, column "Rdctn" shows the average reduction

was far greater. Excluding the cases solved without branching, the average of the

average reduction of i loglo I|RiI along the first depth-first dive was 2.32, a factor

of 7 speed-up over reduction by conventional BnB methods. It should be noted that

the reduction within a node can be even greater after a strong upper bound is found.

This is evidenced by highly skewed shapes of search trees. Overall, the reduced depth

and high skewness of BroMAP search trees suggest the number of nodes expanded

by BroMAP is exponentially smaller than that of conventional BnB methods using

simple branching. Meanwhile, the effect of smaller search trees will be transferred to

shorter running times as well; the experimental results presented in Section 4.5 show

that the node processing time by DEE-gp and TRMP is similar to the bounding time

for solving a linear programming (LP) problem, a typical bounding method used in

BnB methods, but the LP produces weaker bounds.

The plots in Figure 5-4 provide interesting insights on the hardness of test cases. In

Figure 5-4(a), categorizing all test cases by their solvability reveals cases with higher

ratios of log conformation to the number of design positions tend to be harder to solve.

Figure 5-4(b) uses gray scale to represent the running times of BroMAP. Although

the performance of BroMAP is not particularly dependent on protein regions, it is

noted that INT cases are smaller than CORE cases. This is because we excluded small

CORE cases from the experiment because they are often too easy for either BroMAP

or DEE/A*, and also excluded large INT cases for the opposite reason. There are

two main reasons that INT cases are harder than CORE. First, INT cases are offered

more rotamers per position because we allowed 8 to 14 amino acids for CORE cases
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(a) Case 65 (skew = 1.0) (b) Case 3 (skew = 0.93)

(c) Case 17 (skew = 0.84)

Figure 5-3: Search trees of BroMAP for three cases. For each branching, the low-
subproblem is placed on the right-hand side, and the high-subproblem on the left-hand
side. Shaded box-shaped nodes represent the subproblems that were exactly solved
and resulted in an update of the global upper bound.
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whereas 18 amino acids including R, K, D and E were allowed for INT cases. These

four additional amino acids offer even more rotamers per amino acid than average

because of their long side chains. Second, whereas CORE cases are constrained by side-

chain/side-chain interactions as well as side-chain/backbone interactions, INT cases

are generally less constrained by side-chain/backbone interactions, and therefore there

exist a larger number of compatible conformations.

5.6 TRMP lower bounds

We present a numerical example to illustrate the utility of TRMP lower bounds in

rotamer/rotamer-pair elimination. For this purpose, we use subproblems of Case 17

at depth 2 to 11 (root node is at depth 1). These subproblems correspond to node

numbers 2,4, 6,... ,20, and are colored in light gray in Figure 5-3(c) (nodes in the

search tree are numbered by the order of creation using depth-first search). Table III

lists the lower-bounding result.

In each node, we obtain more elimination using rotlb2 (rotamer lower bound from

using pair flags) than using rotlbl (rotamer lower bound from not using pair flags).

This is due to massive flagging of rotamer pairs by rplb (rotamer-pair lower bound).

Figure 5-5 shows rotamers ordered by the value of rotlbl on x-axis and their rotlbl,

rotlb2 values on y-axis for the subproblem of node 2. The difference between rotlbl

and rotlb2 for the same rotamer shows pair-flags information can strengthen the lower

bounds, thereby doubling the number of eliminated rotamers in this example.

Large elimination obtained for subproblems at small depth are suspected to come

from our splitting scheme of dividing rotamers by their lower bounds. As we go deeper

down the search tree, we expect such distinction between rotamer lower bounds to

become less clear. The trend is observed by the median value of rotlbl and the

percentage of eliminated rotamers and rotamer pairs for nodes at different depths.

Computing rotlb2 takes more time than rotlbl, but Table III shows that the differ-

ence is relatively insignificant compared to the time for computing rplb. The time for

computing rplb for every rotamer pair was typically at least double the time for TRMP
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Figure 5-4: Each case is plotted by the number of design positions and log number of

conformations. In both (a) and (b), different symbols were used for different protein

regions: (1) A = INT, (2) 0 = CORE, (3) E = CORE++. In (a), cases were marked

with different colors depending on their solvability: (1) yellow = solved by limited

DEE, (2) green = solved by BroMAP and DEE/A*, (3) blue = solved by BroMAP

only, (4) red = solved by none. In (b), the BroMAP running time on each case

was used to color the corresponding symbol. The color bar on the right side shows

mapping between a color and a running time in seconds.
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Table 5.3: TRMP lower-bounding results for subproblems of Case 17. The meaning of
each column is, in order: (1) node number, (2) number of rotamers in the subproblem,
(3) number of rotamer pairs in the subproblem, (4) time (sec) for TRMP convergence,
(5) median rotamer lower bound when not using pair flags (rotlbl), (5) percentage of
rotamers such that rotlbl > U, (6) time (sec) for computing rotlbl for all rotamers,
(7) median rotamer-pair lower bound (rplb), (8) percentage of rotamer pairs such
that rplb > U, (9) time (sec) for computing rplb for all rotamer pairs, (10) median
rotamer lower bound when using pair flags (rotlb2) after rotamer pairs were flagged by
rplb, (11) percentage of rotamers such that rotlb2 > U, (12) time (sec) for computing
rotlb2 for all rotamers. In the Table, time
time for computing rotlbl, rotlb2 or rplb.
to the optimal value and was available as

for TRMP convergence was excluded from
The value of U is -55.13, which is equal

a global upper bound for each node in the
table by the time they were expanded.

Rot lb's w/o p-flags Rot-pair lb's Rot lb's w/ p-flags
Node #rots #pairs TTR med %el time med %el time med %el time

2
4
6
8

10
12
14
16
18
20

4504
3837
3570
3269
2969
2704
2504
2173
1878
1725

8.4E6
6.3E6
5.4E6
4.5E6
3.7E6
3.1E6
2.6E6
2.0E6
1.5E6
1.3E6

148
203
238
190
99

105
77
65
71
16

-71.69
-70.98
-80.98
-84.57
-73.98
-84.00
-84.10
-82.25
-88.56
-86.09

11
9
3
1

12
7

13
5
5
7

0
0
0
1
0
0
0
0
0
0

-40.21
-46.18
-53.45
-58.82
-47.80
-59.17
-51.16
-61.36
-66.31
-65.68

74
68
54
44
62
45
50
42
40
38

1162
774
607
463
353
261
202
138

92
74

-70.91
-70.61
-80.56
-84.35
-73.59
-83.81
-83.93
-82.13
-88.47
-85.94

26 7
21 3

7 4
3 1

17 2
8 1

14 1
8 0
9 0
8 0
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Figure 5-5: Plots of TRMP lower bound vs. rotamer, for all (4,504) rotamers in the
subproblem of node 2 in solving Case 17 by BroMAP; rotlbl is represented by a dot
and rotlb2 by a '+' symbol. Rotamers are sorted on x-axis by the increasing order of
rotlbl. All rotamers with lower bounds greater than equal to 0 were clipped a.t y = 0.
The horizontal line at y = -55.13 represents U. By comparing rotlbl against U,
497 rotamers (4, 008 th to 4, 5 04 th in the order) were eliminated. Using rotlb2 instead
increased the number of eliminated rotamers to 1,171.

convergence, suggesting that an efficiency improvement of rotamer-pair lower-bound

computation would significantly contribute to reducing the running time of BroMAP.

5.7 Conclusions

We performed computational experiments to evaluate BroMAP on various types and

sizes of protein design problems in comparison with DEE/A*. The experimental

results show that BroMAP solved hard protein design cases faster than DEE/A*, and

that BroMAP also solved many cases that DEE/A* failed to solve within allowed

time and memory. In addition, using BroMAP on cases where DEE/A* performed

well did not incur significant disadvantage in running time.

The performance advantage of BroMAP over DEE/A* or conventional BnB meth-

ods can be attributed to three factors. First, the search trees are radically smaller

than those from conventional BnB methods. Problem-size reduction performed within

each node results in reduced depths of search trees, and early discovery of suboptimal

upper bounds allows effective pruning of nodes that follow. Second, on top of fast
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reduction by DEE within each node, BroMAP can perform additional elimination

and informed branching using lower bounds from inexpensive computation. Third,

the general BnB framework of BroMAP allows additional lower-bounding techniques

such as rotamer contraction to be easily incorporated.

It could be argued that the performance comparison between BroMAP and DEE/A*

was not thorough or fair because DEE can be faster depending on what elimination

conditions are used, how they are combined [Gordon et al., 2003], or how much

memory is available for unification. However, it should be noted that BroMAP also

exploits DEE, and that BroMAP can be regarded as an added structure to DEE/A*

to allow a more effective use of it in a general framework. As a result, if a better

implementation of DEE/A* is given or a better system environment is allowed, the

performance of BroMAP is also expected to benefit from it.

In our experiment, using rotamer contraction did not always improve the total

running time of BroMAP, although it tends to reduce the number of nodes expanded

by BroMAP. However, among the 14 test cases that were solved by BroMAP with

rotamer contraction but not by DEE/A*, two could not be solved by BroMAP without

rotamer contraction within the 7-day time limit. In addition, for the 51 test cases

used for comparison of BroMAP and DEE/A*, the total running time of BroMAP

was reduced by 17% on average simply by using rotamer contraction. Therefore,

there is a question of how much effort should be spent on rotamer contraction to

maximize the performance of BroMAP. On the other hand, observing the behavior

of BroMAP on many random instances to parameterize its solution time by problemi

characteristics will be interesting and may help improve the performance of BroMAP,

because no direct correlation between the problem size and the BroMAP solution time

has been found. Finally, a substantial fraction of BroMAP's running time is spent

on post-processing of TRMP to compute rotamer-pair lower bounds. Therefore, a

speed-up of BroMAP could be made through efficiency improvement of this post-

processing procedure. Our future investigation will address these problems to extend

the applicability of BroMAP to larger protein design cases.
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Chapter 6

Lagrangian dual relaxation of the

GMEC problem

6.1 Introduction

In Chapter 3, we have seen that the minimum conformational energy can be lower-

bounded by TRMP, a message passing algorithm that finds the maximum value of

the convex combination of tree distributions. It is known that the maximum value of

the convex combination is equivalent to the optimal value of the linear programming

relaxation over the local marginal polytope [Wainwright et al., 2005]. Such a linear

program is derived as a dual problem of the original formulation of minimizing the

convex combination over all tree distributions. Despite the simple appearance of

the linear program over the local marginal polytope, solving the linear program for

protein design problems is often very challenging. TRMP provides better scalability

than the linear program solver, but the bound it finds is often weaker than the linear

program bound.

In this chapter, the minimum energy lower bounding problem (or MAP estimation

problem) is approached from the Lagrangian dual optimization perspective, which is

on the other hand regarded as the primal problem by Wainwright et al. [2005]. Using

a dual optimization framework has several advantages. Firstly, dual optimization can

be more scalable than the linear program because it uses a relatively small number
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of Lagrangian multipliers and the subproblem can be handled by problem-specific

solvers. Secondly, dual optimization is an anytime algorithm; we can stop the dual

optimization iteration at any time and still obtain a lower bound. Thirdly, while

TRMP sometimes has a problem with numerical convergence and has no theoreti-

cal guarantee for finding an optimal solution to the relaxation, dual methods come

with theoretical results regarding convergence to the dual optimal solution. Our ex-

periments also confirm that the dual methods find tighter bounds through the use

of proper stepsize rules than TRMP or generalized MPLP [Globerson and Jaakkola,

2007a], a message-passing equivalent to the dual methods, when the same decomposi-

tion of the graphical model is used. This suggests that the message passing algorithms

may experience more numerical difficulties in finding the optimal solution they intend

to find than their counterpart dual methods such as the subgradient method.

Lastly, various decomposition of the problem can be easily adopted in the dual

framework [Komodakis et al., 2007]. This will allow stronger bounds depending on

the type of decomposition. TRMP uses tree decomposition, and its linear program

equivalent is readily represented by the local marginal polytope. However, both

TRMP and the linear program become cumbersome when the original distribution is

decomposed into graphical models that contain cycles or clusters. In the Lagrangian

dual optimization framework, the complication from using cyclic graphs is passed on

to the solver of each decomposed problem.

In the following sections, we will first introduce the Lagrangian dual formulation of

the MAP estimation problem. Then, we will discuss the effect of using cyclic graphs

for decomposition in terms of strength of lower bounds from the Lagrangian dual

problem. After that, we will describe the solution procedure using the subgradient

method and the junction tree algorithm. In our computational experiments, We will

explore different ways of choosing a set of graphical models for decomposition to

obtain strong bounds from the subgradient method.

The formulation of Lagrangian dual relaxation is based on Komodakis et al. [2007],

but we do not constrain the subgraphs used for decomposition to trees. We math-

ematically show that the use of cyclic subgraphs or addition of variable cliques in
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decomposition may lead to improvement of lower bounds using similar proof tech-

niques used by Wainwright et al. [2005]. We also suggest a scheme for selecting

triplets relevant to improving lower bounds, and incremental addition of triplets on

the fly in the subgradient method.

6.2 Lagrangian relaxation

We will follow the formulation and notation presented by Komodakis et al. [2007]

in describing the Lagrangian relaxation of the GMEC problem. The key idea of the

Lagrangian relaxation we will see is introducing Lagrange multipliers to relax a set of

constraints so that the relaxed problem reveals a separable structure that facilitates

the solution of individual decomposed problems.

We start from the integer linear program (B.1)-(B.6) as our primal problem, where

the energy function is represented as

E(x) E(i,)xz, + E(irjs)Xij,. (6.1)
iEV rERi (i,j)EE (r,s)ERi x Rj

Note that Xz, and xil, are binary variables defined for each rotamer and rotamer

pair of the problem, and x is a binary vector consisting of those and has the length

of d(g) de iev(g) IRi + E(i,j)E(g) IRJ x Rjl. We denote the set of binary vectors

that correspond to feasible assignments as -F. This is equivalent to the set of binary

vectors satisfying (B.2)-(B.3).

To form a separable structure in the primal problem, the graphical model 0 =

(V, S) is decomposed into a set of subgraphs {gh = (Vh, h)} such that Uh gh = 0,

as done in TRMP. Then, we can define a function Eh : {0, 1}d(gh) ~- R for each h

such that

Eh(Xh)= > Eh(ij)z +> Eh(ihjS)x +j, (6.2)
iEVh rERi (i,j)Egh (r,s)ERi x R

where xi G {0, 1} and Eh(ir) E R for each r e Ri, i E Vh and •h {0, 1}, and
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Eh(ij,) E R for each (r, s) E Ri x Ry, (i,j) E Fh.

Then, the original energy function can be represented as the sum of Eh over all

h:

E(x) = Eh(xcah) for all x Rd(g) (6.3)
h

where XIGh denotes a subset of x corresponding to vertices and edges in gh. We

also define Fh as the set of all feasible binary vectors that correspond to feasible

assignments with respect to gh. Then, (B.1)-(B.6) can be rewritten by introducing

redundant variables xh for each h and using Eh(xh) as follows:

minimize Eh Eh(xh)

subject to x E Rd, xh EE -h, xh = XIGh Vh,

(6.4)

(6.5)

where (6.5) enforces agreement between the value of xh for each h and that of x so

that exactly one rotamer is chosen for each position.

To exploit the separable structure, we introduce Lagrange multipliers Ah E Rd(!h)

for constraints (6.5) as follows:

q({Ah}) = mmin L({xh},x, {Ah}){ xh E. } ,x
min S Eh(xh)+- Ah(xh -XcGh). (6.6)

{xheFCh},x h h

By the visualization lemma [Bertsekas, 1999], we know that q({Ah }) is a lower bound

of the optimal value of (6.4)-(6.5) for all Ah cE Rd(gh ) . The consequent weak duality

theorem states the optimal value of

maximize q({ A h})

subject to {Ah} E REhd(gh) (6.7)

is also a lower bound of our original problem. We call (6.7) the dual problem. In the

following, we let d= -h d(Gh), and A = -{Ah} E Rd for notational simplicity.

As intended by the formulation, our Lagrangian function L({xh}, x, A) has a sep-
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arable structure, that is,

min L({xh},x, A) = in {Eh(h) + Ah . xh}- min Ah lXa. (6.8)zhEThSz m xhE h -)
h h

Therefore, for given A, finding q(A) can be significantly easier than solving the primal

problem because the first minimization on the right-hand side can be solved separately

for each decomposed problem. On the other hand, the term minimized over all x can

be rearranged as follows

EA.x 55hXi, E Ah±+ 5 5 x 5 j. (6.9)
h iEV rERi h:iEVh (i,j)ES (r,s)ERi xRj h:(i,j)ESh

Since x is unconstrained, if Eh:iEV' Ah is non-zero for some ir, the term Zh Ah · xIG

can be made as large as we please by tending xi, to positive or negative infinity

depending on the sign of Zh Ah - IGh, thereby q(A) to negative infinity. A similar

argument can be made for a pair of rotamers as well. Since we are interested in

finding the maximum value of q(A), we only need to solve the dual problem over

D {A I q(A) > -oo}, that is, by the argument above,

D={A I A = 0, Vi E V, rERi,
h:iEVh

S = 0, V(i,j) E S, (r, s) e Ri x Rj}. (6.10)
h:(i,j)ESh

Restricting the Lagrange multipliers as above allows dropping the second minimiza-

tion on the right hand side of (6.8). Therefore, we obtain

q(A) = E in{Eh(xh) + Ah . xh}. (6.11)
h

Noting that (6.2) is a linear function, we let chl be a vector consisting of E(i~) and

E(i,j)) for all rotamers and rotamer pairs so that Eh(xh) = ch . xh for all xh E 'Th.
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Then, finally, our dual problem (6.7) is reduced to

maximize Eh minx/E.y( ch + A h). Xh

subject to A E D. (6.12)

6.3 Dual problem and its LP equivalent

In this section, we attempt to justify the use of decomposition by cyclic graphical

models instead of tree decomposition. We first review the results on the equivalence

between MAP estimation via tree decomposition and the linear program based on the

local marginal polytope. Then, we show similar results for cyclic graph decomposition

using similar arguments and proofs as used for tree decomposition.

The MAP probability can be upper-bounded by the convex combination of max-

imum tree probabilities when the convex combination of the tree distributions is

equivalent to the original distribution [Wainwright et al., 2005]. It is also known that

the best such upper bound found by minimizing over all feasible tree distributions

is equal to the maximum value of its dual problem, a linear program over the local

marginal polytope. This result can be rephrased in the context of our dual problem

as follows:

Theorem 1. [/Wainwright et al., 2005] When gh is a tree for all gh E { h}, The

Lagrangian dual to problem (6.12) is given by the following linear program:

minimize E(x) = EiEv Er ,R E(ij)xi, + E(i,j)EE E(r,s)CR•xRi E(i•js)xi,j,

subject to x E LOCAL(g), (6.13)

where the local marginal polytope is defined as:

LOCAL() = { R I i, = 1 Vi E V,
rERi

5 i• = Psi, V(i,j) E E}, (6.14)
sERj
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By strong duality, the optimal value of (6.12) is equal to the optimal value of (6.13).

Note that LOCAL(G) is equivalent to constraints (B.2)-(B.3). In fact, Theorem 1

can be also shown from the integer linear program (B.1) (B.6), and by using the

following known result on the duality of ILP:

Theorem 2. [Bertsekas, 1999] Suppose an integer linear program

minimize c x

subject to aj -x < bj, j=l,...,r,

xi E Xi, i= 1,...,n, (6.15)

where X, are given finite subsets of the real line. Let q* denote the optimal dual cost,

r

q* = max f (+ (a-x - bj). (6.16)
[t>0 xiEXi, i=l,...,n

j=1

Let ri denote the convex hull of the set Xi, and let f be the optimal cost of the

relaxation of (6.15), where each Xi is replaced by -Xi,

f min f(x). (6.17)
aj x < b, j = 1...,r,

x, E Xi, i = 1,...,n

Then, f = q*.

In the remaining of the section, we show that the dual problem based on cyclic

graph decomposition provides at least as tight relaxation of the integer linear program

(B.1)-(B.6) as the LP relaxation based on LOCAL(g).

Lemma 9. Suppose {T'} is a tree decomposition of 9 (a sub graph of 9), and gh

contains a clique C such that VI(C)I > 3 and i E Vh for all i E C, and (i, j) E gh for

all (i, j) C. Then, we have the following inclusion property:

M(; h) cC nLOCAL(9; T1) n C(gh; C), (6.18)
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where

M(G; gh) = { I{1) I Ep(x) s.t. p(xi = r) = V[, Vi E Vh

V(i,j) E h},

LOCAL(G; T) = {p. R )  i, = 1 Vi E (T),
rERi

sERj

(6.19)

(6.20)

c(G; gh, C) = {pE Rd(g), r d(C )
I() i(j.

{ ( ,j)' I( ,x')=(r,s)

V(i, j) e(C)n S(G')},

In problem (6.12), if we let

i = ciirs
h:(i,j)Eg

h

h:igh

h:iEgh
V(i,j) E 8, (r,s) E Ri x R },

then we can easily verify that there is a one-to-one correspondence between 8 and D

because for any {Ah} E D and {h} = {ch + Ah }, we have

Seh
h:ijgh

Z (c
h:iEgh

+ A h:C h
h:iEVh

ci,. (6.25)

for all i E V, r E Ri, and

h:(ij =
h:(i,j)Egh

h:(ij + A
h: (i,j') C S h

Z ch"

h:(i,j)ES
h

(6.26)

for all (i,j) E 8, (r, s) E Ri x Rj. Therefore, the following problem is equivalent to
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= ci, Vi E V, r E Ri, (6.23)

(6.24)

p(xi = r, xj = s) = Pijs

Ci ,,



(6.12):

maximize Eh minxhhe- h . x h

subject to {Oh} e (.

For notational simplicity, we define O({0}) e Rd(G) such that

({Oh}), = r,

h:iEg h'

(6.28)

and

(6.29)

The following lemma is used during the proof of Theorem 3:

Lemma 10.

sup min Oh . X h

Oh End(Gh) thE h -T -p ( { }) ={
0

+oo

if r E M(g; gh),
otherwise.

(6.30)

Theorem 3. The Lagrangian dual of problem (6.27) is given by the following linear

program:

minimize E(x) = C EZCRi E(ir)xj, + (i,j)EE >(r,s)ERixR, E(irjs)Xir,,

subject to x (nhA M(g; gh). (6.31)

By strong duality, the optimal value of (6.31) is equal to the optimal value of (6.27).

We obtain the following inequalities regarding the optimal value of problem (C.44):

Lemma 11.

min
TELOCAL(g)

min
TELOCAL(g) nh c(gh;ch)

T7 c < min T c,
7Enh M(g;Lh )

where Ch is some clique contained by gh for each h.
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The inequality between the first term and the third term of (6.32) suggests that the

optimal value of (6.12) is greater than or equal to the optimal value of (6.13). How-

ever, this does not tell us how much improvement in the tightness of the lower bound

is gained. On the other hand, the results for tree decomposition state that the optimal

value of tree-reweighted relaxation does not depend on the set of trees used for decom-

position only if the set of trees cover the original graphical model. For decomposition

by cyclic graphs, we do not have such a result, but the inequality (6.32) suggests that

we can modestly separate the effect of using cliques in the decomposition; addition

of cliques will always improve the lower bound min ELOCAL(g)nh C(gh;ch) T7 c of the

optimal value of problem (6.12) regardless of how the cliques are distributed among

the subgraphs.

6.4 Solving the dual problem by the subgradient

method

The dual problem (6.12) we obtained above is nondifferentiable with respect to the

Lagrange multipliers A, but can be solved by the standard dual methods such as

the subgradient method and the cutting plane method. The subgradient method

uses iteration of two stage optimization where the subproblems are solved for given

Lagrange multipliers, then the Lagrange multipliers are updated based on the solution

of the subproblems. The cutting plane method instead attempts to find the optimal

Lagrange multipliers by constructing a series of polyhedral approximations of the dual

function. In this method, the polyhedral approximation is repeatedly refined based on

the solution of the linear program, that is, the previous polyhedral approximation. We

are going to use the subgradient method in this work because it is simple and intuitive,

and works well in practice for our problem. Several drawbacks of the cutting plane

method are the need of a linear program solver, additional computation for finding

the subgradient separately from solving the linear program, and its known difficulty

with convergence.
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The key idea of the subgradient method is generating a sequence of Lagrange mul-

tipliers that eventually converges to the optimal dual solution. A general description

of the subgradient method is as follows:

1. Assign initial values to the Lagrange multipliers.

2. Find the subgradient for the Lagrange multipliers by solving the subproblems.

3. Compute a stepsize based on the subgradient and the current objective value.

4. Update the Lagrange multipliers based on the stepsize and the subgradient.

5. If the Lagrange multipliers (lid not converge, go back to step 2.

In the following, we will elaborate the technical details of steps 2 to 4 of the

subgradient method outlined above using our dual problem (6.12).

6.4.1 Finding a subgradient

The subgradient is an analog of the gradient, and is defined for nondifferentiable

concave (or convex) functions. In general, g(A) is a subgradient for a concave function

q(A) at A if

q(A) < q(A)+ (A -A) -g(A), VA E IR.d (6.33)

Such a subgradient can be immediately obtained by solving the subproblems. In our

dual problem, if we let

xh(Ah) E arg mmin (ch + Ah) . x h,

xhEFh
(6.34)

for each h1 , and

Vq(A) = {xh(A h)} Rd, (6.35)

1In case there are many values of xh E Fh that attain the minimum of (ch + Ah) _- h , one of them
is arbitrarily selected as xh(Ah).
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then we have

q(A) = mrin (ch + >h) . h
h {xzhFh}

• (Ch + ~ h). Xh(A•h)
h

Sc(ch + h) . h(Xh) + E(M- h) xh(,h)

h h

= q() + (A - ) -Vq(A). (6.36)

Therefore, Vq(A) is a subgradient. We will discuss the solution method of subprob-

lems using tree decomposition and dynamic programming in Section 6.5.

Although the conventional subgradient method requires exact solution of all sub-

problems to find a subgradient, there exist variants of the subgradient method such

as surrogate gradient algorithms [Zaho et al., 1999], conditional c-subgradient meth-

ods [Larsson et al., 2003], and incremental subgradient methods [Nedic and Bertsekas,

2001] that use approximate solution of a subset of subproblems and still guarantee

convergence under certain conditions. In this work, we consistently use the con-

ventional subgradient method in solving the subproblems, and leave application of

these variants to our problem as a future work. Instead, we focus on finding a tight

Lagrangian dual relaxation through addition of triplets or cuts.

6.4.2 Updating the Lagrange multipliers

The rule for generating the (k + 1)th Lagrange multipliers from the kth ones is

A(k+1) - [A(k) + S(k)Vq(k)(A)]± , (6.37)

where s(k) E R+ is a stepsize, and [-]+ denotes projection onto D, the domain of

A. Considering the form of D (6.10) and Vq(A) (6.34)-(6.35), the projection can be
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implemented as follows [Komodakis et al., 2007]:

h,(k+l) h,(k) 8(k) h,(k) ( (k)  Eh:ievh h, h(k)(- (k))i 'r (6.38)i, i, l{h I iE Vhjj

iris - Zs + S .- {h (i,j) E Eh}l

It is straightforward to see that A(k+1l) is in D.

It should be noted that the update rule of the subgradient method above does not

guarantee improvement of the dual function value at each iteration. Instead, with

the use of a proper stepsize rule, the distance from the current Lagrange multipliers

to the optimal dual solution

A* = arg max q(A) (6.40)
AED

decreases every iteration, that is,

S(k+) I < A(k) - X* I. (6.41)

6.4.3 Determining the stepsize

The distance to the optimal dual solution is reduced as described by (6.41) if stepsize

S(k) satisfies [Bertsekas, 1999]

0 < s (k ) < 2(q(A*) - q(A(k))) (6.42)0 < Vq(k) 2 (6.42)
SaVq(A(k) ) 2

Since we do not know q(A*), a more practical rule takes the form of

s(k) = a(k)(q(k) _ q((k))) (6.43)
| Vq(A(k)l 2

where a(k) and q(k) can be defined in a number of different ways to guarantee con-

vergence of the subgradient method. For example, q(k) can be the best known upper

bound to q(A*) at the kth iteration, and a(k) = for some fixed positive integer m.

Despite the theoretical convergence guarantee, these types of stepsize rules are very
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slow to converge in practice. As a result, there have been many theoretical or empir-

ical works that attempt to improve the convergence rate of the subgradient method

in different contexts [Bertsekas, 1999, Fumero, 2001].

According to our experiments, although not comprehensive, all the stepsize rules

from the literature applied to our dual problem lead to very slow convergence. Instead,

the best working stepsize rule found so far on our problem is a simple geometric

reduction rule. That is,

s(k+l) = 8 (k) if q(A(k)) < q(A(k-1)) (6.44)S/3s(k) otherwise,

for some 0 < < 1. For p 1, e.g. 0.995, the subgradient method often ended up

with fairly accurate estimation of the dual optimal value, while smaller 3 such as 0.95

may lead to fast but premature convergence. Still, / = 0.95 found better dual values

that all other stepsize rules we tried.

The term "convergence" used in most subgradient literature refers to the con-

vergence to the dual optimal solution. However, as discussed above, it is rare that

such convergence is attained by applying the subgradient method with known step-

size rules to large-scale dual problems. When the subgradient method is used with a

geometric stepsize rule like (6.44), possible stopping criteria are

IIJ (k+ l ) -_ (k) < , (6.45)

for some very small c > 0, or

IE() - q(A(k))| < e, (6.46)

where Je is a feasible primal solution, and E(A) is, therefore, an upper bound to the

dual optimal value. In our dual problem, we can construct i by using a solution to one

of the subproblems or by combining solutions for multiple subproblems as described

in Section 2.4.1.
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6.5 Solving the subproblems

In Section 6.3, it was shown that we can benefit from using decomposition with cyclic

graphical models instead of using trees when stronger lower bounds are required.

A problem with using cyclic graph decomposition is that it may involve solution

of non-trivial subproblems. It was shown that such a subproblem can be exactly

solved by finding a tree decomposition [Robertson and Seymour, 1986] (also known

as junction tree [Cowell et al., 1999], join tree, or clique tree) of the graphical model

into a junction tree, and then applying dynamic programming to the tree decompo-

sition [Dawid, 1992]. The running time of such an algorithm is exponential to the

size of the largest clique in the junction tree, which is called treewidth. Although the

exponential running time is unacceptable in general, by constraining the treewidth

of subgraphs used in decomposition, we may obtain reasonable solution time in prac-

tice. Therefore, the choice of decomposition by cyclic subgraphs should be made to

balance the running time determined by treewidth, and the strength of lower bounds

obtained by solving the dual problem as discussed in Section 6.3.

The remainder of this section briefly reviews the notion of tree decomposition and

treewidth, and the dynamic programming method applied to tree decomposition.

6.5.1 Tree decomposition

The notion of tree decompositions and treewidth was introduced by Robertson and

Seymour [1986]. A tree decomposition is a mapping of a graph into a tree that can

be used to solve certain combinatorial problems defined over the original graph.

Definition 1. A tree decomposition of g = (V, E) is a pair (T, X), where T = (I, F)

is a tree with a node set I and an edge set F, and X = {Xi I i E I, Xi C V},

satisfying the following properties:

1. each vertex v E V belongs to at least one X, (a bag of i), i E I;

2. for each edge (i,j) E S, there is i E I such that i E Xi and j E Xi;

3. for all v E V, the set of nodes {i I I v E Xi} induces a subtree of T.
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The width of a tree decomposition ({Xi I i I}, T = (I, F)) is defined as

maxiEi IXil - 1. The treewidth of a graph g is the minimum width over all tree

decompositions of G.

By the definitions above, every tree has treewidth one. Any graph containing a

cycle has tree width at least two because condition 3 of Definition 1 forces at least

three vertices to belong to some Xi, i E I.

In general, it is NP-complete to decide whether the treewidth of a given graph

is at most a given variable k [Arnborg et al., 1987]. However, there exists a linear

time algorithm to determine whether a given graph has treewidth at most a given

constant k and to find such a tree decomposition [Bodlaender, 1996]. However, the

constant factor in the running time of the algorithm is known to be too large for the

algorithm to be practical. There are also other exact algorithms [Brodlaender et al.,

2006, Fomin et al., 2004], and approximation algorithms [Brodlaender et al., 1995,

Feige et al., 2005], and heuristic algorithms [Tarjan and Yannakakis, 1984, Rose, 1972,

Kjaerulff, 1990]. In solving the dual problem, we need to perform tree decomposition

for each subproblem only once at the start. Therefore, the running time of a tree

decomposition algorithm may not be the highest concern in solving the dual problem.

On the other hand, because the number of rotamers for each variable varies, treewidth

may not exactly represent the complexity. Instead, tree decomposition that attains

as small maxiEl exC jRJ as possible can be more desirable.

6.5.2 Dynamic programming on tree decompositions

Our subproblem in (6.11) has the form of

minimize Eh (xh) + Ah . xh

subject to xh E .h. (6.47)
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For notational purpose in this section, this will be rewritten in the form of our original

GMEC problem as follows:

minimize f(x) = Eiv fi(xi) + Z(i,j)EE fij(i, Xj)

subject to x = ( 1, ... ,Xn), xi E Ri, (6.48)

where the discrete cost function is defined over a graphical model. Suppose we obtain

a tree decomposition ({X i i I}, T = (I, F)) for the graphical model 0 = (V, E) of

(6.48). Without loss of generality, we can assume there exists a root node T E I of

the tree decomposition. Then, we can define the following notations for i E I:

* pa(i): i's parent for i 4 T.

* D(i): the set of descendants of i.

* depth(i): depth of i, computed as 1 if i = T, and depth(pa(i)) + 1 otherwise.

* F(i): the set of neighbors of i in T, that is pa(i) U D(i).

* S(i): the set of v E V such that the depth of i E T is the smallest among all

j E I such that v E Xj.

* P(i): the set of (v, w) E E such that the depth of i in T is the smallest among

all j E I such that (v, w) E Xj.

* T(i): subtree of T consisting of i and its descendants.

Suppose a separating vertex set S C V separates V into two disjoint sets V1 and

V2 so that any path from vi E VI to v2 c V2 passes through a vertex in S. If we

use the notation 9[W] = (W, {(v, w) (v, w) E 8, v,w E W}) for W C V, Vi and

V2 satisfy G[V\S] = G[f 1] U G[V2]. Then, the key idea of dynamic programming is

that we can reduce the subproblem (6.48) to two smaller problems over g[[Vi] and

9 [V2] once the optimal assignment for v E S is fixed. Lemma, 12 shows that tree

decomposition provides such a separating vertex set.
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Lemma 12. Given a tree decomposition ({X, i E I}, T = (I, F)) for g = (V, 9).

Then, removing Xr disconnects g so that

1. any v E V\Xr can appear in at most one subtree of T\s;

2. each subtree of T defines at least one component.

Since the selection of T in Lemma 12 is arbitrary, any Xj, i E I is a separating

vertex set of g.

Lemma 13 is useful for the proof of Lemma 14.

Lemma 13. The following properties are satisfied for a tree decomposition ({Xi I i E

I}, T = (I,F)):

1. UiI S(i) = V and S(i) n S(j) = for all i, j E I, i # j.

2. Ui-e P(i) = 8 and P(i) n P(j) = for all i, j E I,i 5 j.

By Lemma 13, f(x) can be decomposed as follows:

(6.49)f(x) = EfU(xo),
uEI

where x" is the set of variables in X,, and

f "(x") = f (xi) +
iES(u)

(6.50)j)EP (x, ().)
(i,j)EP(u)

We also use the notation indexed by a set, such as, for A E I,

fA(XA) Z fU(x).
uEA

(6.51)

The following lemma suggests that once the assignment for node T is fixed, the

minimization problem can be solved separately on each subtree.

Lemma 14.

min f(x) = fT(xT) + E wi(xTni)
{j:Ir=xT} IiED(T)

(6.52)
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where

wi(xTni) min
{jT(i) xTni=xTni}

fT(i) (?T(i)). (6.53)

Based on Lemma 14, the dynamic programming algorithm for our subproblem can

be described as in Algorithm 4. The dynamic programming is a two-step procedure,

that is, Bottom-to-Top and Top-to-Bottom, where each procedure is described re-

cursively in Algorithm 5 and 6. In the Bottom-to-Top procedure, given the cost of

child nodes, the best cost for each assignment of variables in the intersection of the

current node u and its parent pa(u) are computed, that is, WL(xPa(u)nU). Then, in

Top-to-Bottom procedure, given the optimal assignment for the intersection of the

current node u and its parent pa(u), the optimal assignment for variables in u\pa(u)

is searched using the pre-computed optimal cost wi(xuni) for all i e I, ID(i)I > 0.

Algorithm 4: Dynamic programming algorithm for the subproblem based on
tree decomposition. The algorithm is a two-step procedure: Bottom-to-Top and
Top-to-Bottom, where each procedure is described recursively in Algorithm 5
and 6.

Data: f(x), ({Xi i E I}, T = (I, F))
Result: arg maxx f(x)

1 begin
2 Bottom-to-Top(T)
3 Top-to-Bottom(T)
4 end

Algorithm 5: Bottom-to-Top procedure. Given the cost of child nodes, the
best cost for each assignment of variables in the intersection of the current node
u and its parent pa(u) are computed, that is, 'u(Xpa(u)nu).

Data: u E I
Result: wu(xpa(u)nu)
begin

foreach i E D(u) do

L Bottom-to-Top(i)
if u 4 T then

L Compute WU(Xpa(u)
n

u) for all values of xpa(u)
n u

6 end
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Algorithm 6: Top-to-Bottom procedure. Given the optimal assignment for the
intersection of the current node u and its parent pa(u), the optimal assignment
for variables in u pa(u) is searched using the pre-computed optimal cost wi(xuni).

Data: u, Xunpa(u)

Result: Xu\pa(u)

1 begin
2 Compute arg minx,,\po() f"(xu) + -iCD(u) i(Xu"ni)

3 foreach i E D(u) do

4 L Top-to-Bottom(i, Xinu)

5 end

6.6 Computational results

6.6.1 Implementation

We implemented the subgradient method in C++ to evaluate its speed and bounding

strength on protein design cases. Some implementation details are discussed below.

Subproblem solver

Subgradient method for MAP estimation was implemented using dynamic program-

ming for the solution of subproblems. Each subproblem is a MAP estimation problem

over a graphical model with small treewidth. The dynamic programming uses li-

brary TreeDecomposer [Subbarayan and Andersen] for tree decomposition, then runs

Bottom-to-Top and Top-to-Bottom procedures. To save memory, the optimal assign-

ment of each non-intersecting region was not saved during Bottom-to-Top. Instead.

this is found during Top-to-Bottom using the optimal scores from Bottom-to-Top.

Dual parameters update

Each iteration of the subgradient method requires update of only a small set of

singleton and pairwise parameters of each subproblem. The updated parameters

correspond to the rotamers and rotamer pairs that were selected as a solution of

some subproblem. Therefore, the maximum number of updated singleton parameters
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at each iteration is

E {h Ive Vh} . (6.54)
vEV

Similarly, the maximum number of updated pairwise parameters is

S{h l e Eh}|. (6.55)
eEE

The actual number of updated parameters can be smaller because subproblems may

share solution for vertices or edges. For example, when (i,j) E 9h, and (i,j) E Eh2,

the rotamer pair (ir,,j,) selected as the solution of subproblem hi can be also the

solution for the same edge in h2. Exploiting this fact in the subgradient method

dramatically reduces the running time.

Stepsize rules

We experimented with different stepsize rules. Stepsize rules tested are

1. pure subgradient g(k) with the geometric stepsize rule of (6.44),

2. Fumero's rule [Fumero, 2001],

3. modified subgradient d(k) = g(k) + yd(k-1) with stepsize (ubbest - lbcurr)/lld(k)l 2

(ubbest is the best known upper bound, and lb,urr is the lower bound from the

current iteration),

4. modified subgradient d(k) = g(k) + yd(k-1) with stepsize (ubbest - lbr)/llg(k) 2

with variations of the following options:

1. different values for vy, v2, EC, r 1, and y [Fumero, 2001].

2. different increment/decrement of f [Fumero, 2001].

3. modifying the subgradient direction so that an acute angle is maintained be-

tween the current and the previous subgradients.
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4. backing up the best Lagrange multipliers A(k) and restoring it after a number

of unimproving updates.

Among different rules and variations we tried to improve the strength of bounds

and running times based on previous theoretical and empirical work, most stepsize

rules performed worse than the geometric stepsize rule. When considering only the

strength of lower bounds, the best performing step size rule was the geometric stepsize

rule, combined with d(k) - g(k) + 0.5d(k-1), and parameters back-up/restoration.

However, using such a complicated updating rule is not worth the increase of running

time compared to the gain in the tightness of lower bounds. Note that the step size

rule k (ubbest - lbcurr)/ Ild(k) 112 was not tried in our experiment, which later was found

commonly adopted by much previous work.

Parameters and Environment

In the following experiments, we consistently used the stepsize rule of (6.44) with

0 = 0.995. The stopping condition used is IAAoIIj < 10-7. Tests were run on a

Linux workstation with a Dual-Core AMD Opteron Processor 2214, and 2 GBytes

of memory. Only a single core was used in each experiment. The C++ code was

compiled with GNU compiler version 3.3.5.

6.6.2 Triplet selection by the strength of interactions

We used triplets as the basic components of subgraphs. That is, the maximum

treewidth of a subgraph is limited to two. The heuristic selection of triplets were

done as follows:

1. compute a measure of interactions for each e E S (denoted as we).

2. collect all triplets such that we of all e in the triplet is greater than a cutoff

value, CIQR.

3. compute scores of each triplet from above as the sum of we of all e in the triplet.
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Figure 6-1: Histogram of pairwise energies between position 3 and 4 of a subproblem of
SWEET7-NOW. The standard deviation is not an adequate measure of the dispersion
due to the high peak close to 0 and the wide range of the distribution.

4. Sort the triplets by the score.

5. Pick a specified number of triplets with largest scores.

The strength measure w used here is dispersion of pairwise energies, called the

interquartile range (IQR). IQR is the difference between the third and first quartiles.

IQR is a robust alternative to the standard deviation, and is less affected by extremes.

Figure 6-1 shows a typical distribution of pairwise energies between a specific pair of

positions. It shows that a dominant number of pairwise energies are close to 0 whereas

the total range (the difference between the minimum and the maximum values) of

pairwise energies is fairly wide. This suggests that the standard deviation will be

very small compared to the range, and fail to convey the actual dispersion of the

distribution. On the other hand, the total range is also not an adequate measure

because it gives equal emphasis to every value in the range including extremely large

values, which are not likely to be included in the solution of the optimization problem

and therefore do not affect the solution procedure.

The triplets were used to construct subgraphs as follows:
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1. Determine Ntri triplets to add.

2. Set the maximum treewidth twmax of subgraphs to be constructed.

3. Construct a set of spanning trees that cover the original graph.

4. For each tree from above, add triplets while the total number of triplets is less

than Ntri and the resulting treewidth is less than equal to twmax.

5. Repeat step 4 until the total number of added triplets is less than Ntri.

6. If the total number of added triplets is less than Ntri and no more triplets can

be added to the spanning trees because of the treewidth restriction, construct

a new subgraph consisting of only of a single triplet.

7. Add more triplets to the new subgraph from step 6 while the total number of

triplets is less than Ntri and the resulting treewidth is less than equal to twmax.

Only add triplets that will constitute a connected subgraph by adding necessary

edges from the original graph.

8. Go back to 6 if the total number of added triplets is less than Ntri.

In the following, we perform a computational experiment with the subgradient

method to observe the change of bounds and the bounding times, that is, the running

time of the subgradient method when different numbers of triplets are added.

We applied our implementation of the subgradient method to a small subproblem

SWEET7-NOW-51-HIGH of test case SWEET7-NOW. The test case SWEET7-NOW-51-

HIGH contains 21 residue positions, 390 rotamers, and 71,385 rotamer pairs. The

IQR's of pairwise energies for SWEET7-NOW-51-HIGH are shown in the histogram of

Figure 6-2. The median IQR is 0.12, and four position pairs had zero IQR out of total

210 position pairs in the test case. As shown in the histogram, five position pairs have

huge IQR values compared to others. Since the irrelevantly high pairwise energies

of these position pairs can distort the selection of triplets based on IQR values, we

capped IQR's to 100 when computing scores for triplets. The optimal value of the
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Figure 6-2: Histogram for pairwise energies IQR's of SWEET7-NOW-51-HIGH. The
tick values on the x-axis represent the maximum value in the corresponding bin. For
example, bin 102 contains IQR between 10 and 102.

test case is -324.429. TRMP took 5 seconds to compute a lower bound -338.324, and

an upper bound -287.585 for this test case.

Figure 6-3 shows the results of computing upper and lower bounds using the

subgradient method and the triplets selected by IQR scores. Different curves are

derived from different cutoff values for IQR, i.e. CIQR used to select triplets. The plot

shows the bounds for at most 50 triplets found for each CIQR value. It is noteworthy

that the bounds from the subgradient method are much stronger than that from

TRMP. For example, the lower bound from the dual problem derived only from trees

and no triplets is -333.812 compared to the TRMP bound of -338.324 although both

are supposed to have the same optimal value corresponding to the optimal value of the

LP over the local polytope. Such difference is considered due to different algorithmic
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behaviors, and endows the subgradient method an advantage over TRMP or other

similar message-passing algorithms when the quality of bounds matters more than

the running time. This is because many diverse numerical strategies can be applied

under the framework of the subgradient method in comparison to the fixed formats

of message-passing algorithms.

The results shown in Figure 6-3 suggest that using larger CIQR values tends to

identify triplets relevant to improving bounds more quickly. However, larger CIQR

values lead to fewer eligible position pairs, and therefore fewer triplets. As a result,

the curves for larger CIQR end up with smaller total number of triplets and less tight

bounds than those for smaller CIQR. Meanwhile, bounds from CIQR = 0.5 improve

most slowly, but in the end both upper and lower bounds converge to the optimal

value by considering triplets with weaker position pairs.

Since IQR can be seen as truncating a large portion of the distribution, we also

attempted using a different measure of strength. Figure 6-4 shows the histogram of

interoctile ranges (IOR's) of pairwise energies in the same test case. Interoctile range

is the difference between 87.5% and 12.5% percentiles. As IOR accounts for wider

variations in the data, the histogram of Figure 6-4 slightly spread rightward compared

to that of Figure 6-2.

Figure 6-5 shows bounds from the subgradient method as previously done, but

triplets were selected by IOR scores instead of IQR scores. As using IOR measure

implies more position pairs with extremely large scores, and also more weak edges

whose IOR exceeds the cutoff value CIOR, the strong edges tend to be overemphasized

by being included in the selected triplets more frequently. As a result, the added

triplets have weaker effects on the bounds than the ones selected by IQR scores. The

optimal value was not attained by any lower bounds, but tight upper bounds were

obtained for all CIOR values.

Figure 6-6 shows the linear relation between the running time of the subgradient

method and the number of triplets included in the dual problem. Each data point

was computed as an average running time from the experiments described above. It

is clear that the stronger bounds from the subgradient method does not come free
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Bounds vs. # triplets (selection by IQR)
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Figure 6-3: Upper and lower bounds from the subgradient method for different num-
bers of triplets selected by IQR scores for a subproblem of SWEET7-NOW test case.
The IQR score was computed as the sum of IQR's of pairwise energies in each trian-
gle. However, all IQR's over 100 was capped at 100. Only those edges whose IQR is
over some cutoff value was considered. The cutoff values used are 0.5, 1, 1.5, and 2.
The legend show the match between cutoff values and bounds.
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Figure 6-4: Histogram for pairwise energies IOR's of SWEET7-NOW-51-HIGH. The
tick values on the x-axis represent the maximum value in the corresponding bin. For
example, bin 102 contains IQR between 10 and 102.
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Bounds vs. # triplets (selection by IOR)
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Figure 6-5: Upper and lower bounds from the subgradient method for different num-
bers of triplets selected by IOR scores for a subproblem of SWEET7-NOW test case.
The IOR score was computed as the sum of IOR's of pairwise energies in each trian-
gle. However, all IOR's over 100 was capped at 100. Only those edges whose IOR is
over some cutoff value was considered. The cutoff values used are 0.5, 1, 1.5, and 2.
The legend show the match between cutoff values and bounds.
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Running time vs. # triplets
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Figure 6-6: Running time of the
in the dual problem.
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subgradient method vs. number of triplets included

considering the running time of TRMP on the same test case is only 5 seconds whereas

the subgradient method takes 64 seconds when the dual problem is derived only from

trees. However, it should be also noted that the code for the the subgradient method

still has room for improvement compared to the highly optimized TRMP code. In

addition, adopting more advanced variants of the subgradient method such as the

incremental subgradient method [Bertsekas, 1999] is expected to bring further speed-

up.

Based on the observations made above, we modify the selection of triplets as

follows:

1. set a reasonably large initial value for CIQR.

2. select at most Ntri triplets with high IQR scores that satisfy the CIQR cutoff
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value, following the procedure suggested previously.

3. done if the number of selected triplets is equal to Ntri.

4. otherwise, lower CIQR to a smaller non-negative number, and go back to step 2.

We applied the modified triplets selection scheme and the subgradient method to

Case 44 of Table 5.1 preprocessed by DEE. Figure 6-7 shows the resulting upper and

lower bounds. The plot also shows bounds from triplets selected by fixed CIQR. Since

many position pairs in the test case have IQR's close to 0, we had to set CIQR = 0 to

collect up to 50 triplets. The bounds from the modified scheme evidently outperform

the bounds from the fixed CIQR value, particularly for small numbers of triplets, and

also continue to improve as more triplets are added by lowering CIQR values. Note

that there are total 55 candidate triplets in the test case, but the gap between the

upper and lower bounds are not closed even when 50 triplets are included.

Figure 6-8 shows the selection of triplets from the adaptive lowering of CIQR for

Case 44, corresponding to the bounds shown in Figure 6-7. As intended, triplets

selected early consist of all strong edges, whereas those selected later also include

weak edges.

6.6.3 Triplet selection by disagreement

We tried a different heuristic selection of triplets, which is based on disagreement

between subproblem solutions. That is, scores of a triplet was computed as the sum

of number of different pairwise solutions of each edge in the triplet. For example, an

edge is assigned score 3 if there are total three different choices of rotamer pairs for

the edge in the solutions found by solving all subproblems. As a result, the triplet

with a high score corresponds to the set of edges with high disagreement between

subproblems.

We used the following procedure in our experiment:

1. start with subgraphs with no triplets.

2. solve the dual problem using the subgradient method.
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Figure 6-7: Upper and lower bounds from the subgradient method for different num-
bers of triplets selected by IQR scores for Case 44 of Table 5.1. The CIQR lowering
scheme is compared against the fixed CIQR = 0 scheme. Bounds from the CIQR
lowering scheme approach the optimal value more quickly.
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Figure 6-8: Selection of triplets from adaptive lowering of CIQR for Case 44 of Ta-
ble 5.1. The test case preprocessed by DEE contains 9 residue positions, which are
represented as vertices of a nonagon. The width of the dotted edge between a pair of
positions correspond to the IQR value of the pairwise energies. Triplets from previous
selections are shown in yellow, and those from the most recent selection are shown in
red. Resulting lower bounds for each number of triplets included in the dual problem
are shown in Figure 6-7.
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3. done if the current number of triplets is greater than equal to Ntri.

4. identify nt•j new triplets with the highest disagreements based on the final

solutions of subproblems obtained at the end of the subgradient method.

5. add the new triplets to the existing pool of triplets and newly construct a set

of subgraphs by the procedure described in Section 6.6.2.

6. go back to step 2.

The result of applying the subgradient method with the above triplets selection

scheme is disappointing as shown in Figure 6-9. The incremental addition of these

triplets results in no more than a marginal improvement in the lower bounds. The

upper bounds also show a very poor trend, which seems almost irrespective of the

number of included triplets.

6.6.4 Incremental addition of triplets on the fly

As we have seen in Figure 6-6, the running time of the subgradient method almost

linearly increases with the number of triplets included in the dual problem whereas

the main improvement of the bounds are obtained by a relatively small number of

triplets added early. This motivates a scheme that incrementally adds a small number

of triplets while the subgradient method keeps running. The suggested procedure is

as follows:

1. include an initial number of triplets in the dual problem.

2. apply the subgradient method for a constrained amount of time, such as for a

fixed number of iterations, or until IIAA|llo < E' for some c' > 0.

3. done if the improvement of bound is not significant.

4. otherwise, identify next triplets and add to the dual problem.

5. go back to step 2.
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Figure 6-9: Bounds from adding triplets selected by disagreement scores.
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Note that, when adding new triplets to the dual problem, the Lagrange multipliers

for the existing triplets are kept as they are while those for the new triplets are all

set to O's. Such Lagrange multipliers will satisfy constraints 6.10 for the new dual

problem. At the same time, they carry over the results from the previous subgradient

method iterations in continuing to find the optimal solution for the refined dual

problem, which saves unnecessary subgradient method iterations required if started

fresh.

In our experiments, we tried using both fixed numbers of iterations and conver-

gence constraints for step 2. Both attempts resulted in similar bounds in the end, but

using fixed numbers of iterations was more straightforward in controlling the running

times of the entire incremental scheme.

We applied the incremental addition of triplets to Case 44 of Table 5.1. Based on

the previous observation that the running time of the subgradient method roughly

grows linearly with the number of triplets, and that the improvement of bounds from

addition of triplets decreases, we elaborated the above scheme with a heuristic way

of determining the number of iterations for each number of triplets as follows:

1. set the number of iterations K1 for the initial number of triplets ANtri. Let

Nrr +- ANtri and K +- K 1.

2. run the subgradient method for K iterations.

3. done if Ncr = Ntri.

4. otherwise, add ANtr, triplets to the dual problem, and Ncu,,,r Ntri + ANtri,

K = KiANtri/Ncurr.

5. go back to step 2.

We collected 50 triplets for the test case, and experimented with different ANtri

values; we let ANtri to be 10, 25, or 50. To compare the running time, we made the

total number of the subgradient method iterations equal for each ANti value. For

example, we made the subgradient method run for 3,288 iterations for ANtri = 50,
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Table 6.1: Bounds and running times of each batch of triplets addition and a fixed
number of subgradient method iterations.

ANtri = 10 ANtri = 25 ANtri = 50
Batch lb ub time lb ub time lb ub time

1 -166.86 -126.26 799 -145.77 -131.85 1,272 -141.57 -135.25 7,459
2 -159.57 -132.52 709 -143.62 -133.99 1,140
3 -158.08 -132.52 672
4 -157.47 -132.52 640
5 -157.17 -132.52 651

Total 3,471 2,412 7,459

that is, K 1 = 3, 288. For the run with ANtri = 25, we let K1 = 2, 192, which allows

1,096 subgradient method iterations after the second batch of 25 triplets are added.

For the run with ANtri = 10, we let K1 = 1, 440.

Figure 6-10 shows the resulting lower bounds obtained from the incremental addi-

tion of triplets with different ANtri values. Unlike previous figures, Figure 6-10 plots

the bounds for each iteration of the subgradient method. ANtri = 50 corresponds to

the case where we add all 50 available triplets to the dual problem from the start;

therefore the incremental addition is not used. The plot shows that incremental addi-

tion of triplets result in weaker lower bounds than including all triplets from the start

although the difference in the final lower bounds from ANtri = 50 and ANtri = 25 is

relatively small. This suggests that using a fine grain of addition in the incremental

scheme can be harmful in terms of the quality of lower bounds.

Table 6.1 summarizes the bounds and running times of each batch of triplets

addition and a fixed number of subgradient method iterations. Apparently, using the

incremental addition scheme reduced running times for ANtri = 10 and 25 whereas

the strength of bounds were compromised. ANtr = 25 can be a reasonable trade-off

between the running time and the strength of bounds. The fact that both the running

time and bounds of ANtri = 10 are worse than those of ANtri = 25 suggests that the

simple approximation of linear growth in running time with the number of triplets

did not work well, and there is room for improvement of the incremental scheme for

trade-off between running time and quality of bounds.
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Figure 6-10: Lower bounds from different incrementally adding triplets. Each itera-
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6.7 Conclusions

We introduced the Lagrangian dual formulation of the GMEC problem. The formu-

lation is based on decomposition with cyclic subgraphs. We provided an argument

using the description of relaxed marginal polytopes that the optimal value of the

dual problem can provide stronger lower bound for the GMEC problem than the

tree-reweighted algorithms. The argument was verified by computational experi-

ments, where dual problems derived from different numbers of triplets were solved

by the subgradient method. We explored several heuristic approaches for selecting

triplets. Triplets selected by IQR scores were seen to improve the bounds from the

dual problem. When the dual problem derived only from trees and no triplets were

solved by the subgradient method, it was found that the resulting lower bound is

stronger than that from TRMP, but the running time is longer. We also explored

a way of reducing the solution time of a dual problem derived from a large number

of triplets by incrementally adding triplets on the fly while the subgradient method

continues.

It is observed that the lower bound computed by the subgradient method tends to

be stronger when using a small number of subgraphs than when spreading the triplets

to many subgraphs. That is, for the same selection of triplets, and the same maxi-

mum treewidth constraint on subgraphs, the lower bound from a smaller number of

subgraphs that packs them more effectively appears stronger than when constructing

a set of subgraphs, each consisting of a single triplet and those edges uncovered by

the set of triplets. This possibly suggests the additional cycles formed from neighbor-

ing triplets further constrains the dual relaxation. Another possible interpretation is

that the subgradient method performs worse for a dual problem consisting of many

small subproblems although the underlying theoretical lower bound should remain

unaffected for different numbers of subproblems. This is a problem we would like to

investigate further.
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Chapter 7

Tightening the Lagrangian dual

relaxation through addition of cuts

Finding good triplets and forming a Lagrangian dual relaxation based on them is

a simple and effective way of obtaining strong lower bounds. However, aside from

the technical issues on how to find a small number of such good triplets as discussed

in Section 6.6, typically the following difficulties are encountered. Firstly, for small

problems, there is only a limited number of triplets. Secondly, for dense problems,

there may not be many triplets with a reasonable combined domain size because the

number of rotamers of each position i, that is Ri I, can be large. Solving a subproblem

including such a triplet can be infeasible due to the system's memory constraint.

Thirdly, because a subproblem should have a limited treewidth, the added triplets

often need to be distributed over many subproblems. As a result, the number of

subproblems to solve increases almost linearly, and so does the running time of one

iteration of the subgradient method. Lastly, the effect of adding triplets on improving

the lower bound quickly saturates after a small number of triplets. The significant

increase in the running time with the number of added triplets can be too costly for

only a small improvement in the lower bound.

In this chapter, we suggest a new method for tightening the lower bound by incre-

mentally including valid constraints to the Lagrangian dual problem, and resolving

the resulting dual problem, which is also known as "relax-and-cut" [Lucena, 2005].
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7.1 Relax-and-cut

One systematic way of avoiding the problems with adding triplets while improving

lower bounds from the Lagrangian dual relaxation is taking a more general perspec-

tive towards adding new constraints to our Lagrangian dual relaxation. This can

be done by finding new inequalities, called cuts, that refine the relaxation we are

optimizing over. Such an idea was previously explored in dynamically dualizing the

constraints [Balas and Christofides, 1981, Hunting et al., 2001]. More recently, the

idea was developed into a general framework called "relax-and-cut" [Escudero et al.,

1994, Guignard, 1998, Lucena, 2005, Cavalcante et al., 2008].

Relax-and-cut in the context of the GMEC problem is easily understood by con-

sidering the linearized primal GMEC problem over the marginal polytope and the

dual of the dual GMEC problem shown in Theorem 3. Figure 7-1 illustrates the

inclusion relation between the marginal polytope M (9) and the polytope of problem

(6.31), p = 9nh M(g; gh), that is, the intersection of marginal polytopes defined over

subgraphs {gh} and projected to 9. As Theorem 3 states the strong duality between

the dual GMEC problem (6.12) and the linear program over P, the optimal solution

A* from the dual GMEC problem can be mapped to an extreme point x1 of P7. How-

ever, in case P E P7\A M(9), we attempt to exclude :1 from the primal problem in

the hope of obtaining an optimal primal value or a tighter lower bound of the primal

problem by re-solving the constrained problem. Such exclusion is done by finding a

valid inequality a -x < 3 that is satisfied by all p E M(G) but is not satisfied by x*,

and then adding the inequality to the description of P. The problem of finding such

(a, 0) is called the separation problem [Nemhauser and Wolsey, 1988]. By Theorem 2,

solving the primal linear program over the modified relaxation P n {T7 a -T < o}

is equivalent in terms of the optimal value to solving the modified Lagrangian dual

problem where the inequality is additionally dualized. Therefore, the modified La-

grangian dual problem is solved by the subgradient method, and the whole procedure

is repeated until we do not find any more violated cuts.

1More precisely, there may exist more than one points on the face of P that have the same
objective value as the dual objective value q(A*)
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a.x<

C -

Figure 7-1: Tightening the relaxation by adding cuts in relax-and-cut. P is an outer
relaxation of of M (9), c -x is the primal objective function, and x* is the primal opti-
mal solution. Initial solution of the Lagrangian dual rdlaxation finds the Lagrangian
dual optimal A*, which has the same objective value as some V1 E P. If we can
compute X1 from A* and identify a valid facet-defining cut a -x < 3, adding the cut
to the description of P can tighten the relaxation and may result in an improved
lower bound. Note the extreme points of the marginal polytope all coincide with the
boundary of the relaxation.

The description of the relax-and-cut method is very similar to that of the cutting

plane method [Nemhauser and Wolsey, 1988]. The main difference is that the cutting

plane method solves the primal problem and, therefore, has direct access to the primal

solution whereas the relax-and-cut has to find a way of computing the primal solution

from the dual solution so that it can generate valid cuts. Despite this advantage of the

cutting plane method, that the primal solution is available to use, solving the primal

linear program for the GMEC problem is often impractical because of the problem

size and system constraints. Without the solution of the primal linear program, cuts

cannot be found nor the basic LP bound obtained. On the other hand, relax-and-

cut will only have approximate primal solutions, but relies on scalable dual solution

methods and is more suitable for large GMEC problems. More general treatment and

description of the cutting plane method, relax-and-cut, and another related method

called "price-and-cut", can be found in Ralphs and Galati [2006].
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7.2 Valid inequalities

It has been shown that a valid cut for the marginal polytope can be found by recog-

nizing the equivalence of the binary marginal polytope and the cut polytope [Sontag

and Jaakkola, 2007, Barahona and Mahjoub, 1986]. Other related works also include

introducing triangle inequalities to represent a relaxation of the binary marginal

polytope [Wainwright and Jordan, 2006, Globerson and Jaakkola, 2007b]. Partial

constraint satisfaction problem for the minimum interference frequency assignment

problem has the same polyhedral description as the GMEC problem, and its facet

defining inequalities were investigated [Koster et al., 1998].

In this work, we use the approach suggested by Sontag and Jaakkola [2007], where

the non-binary marginal polytope is mapped to a binary marginal polytope through

a single projection, and the separation problem for the cut polytope is solved to find

a violated valid cut for the marginal polytope, based on the equivalence of the binary

marginal polytope and the cut polytope.

Given a graph 9 = (V, 8), a cut polytope Pc (9) is the convex hull of incidence

vectors of cuts of G, where

1. a cut 6(U) is the set of edges defined for given U C V, such that exactly one

end node is in U.

2. the incidence vector of x c is defined for given cut C as

xC(e =  1 if e EC,

1 0 otherwise.

If C is a simple cycle in g, it is known that any x E Pc(g) satisfies the cycle inequality:

> ze + E (1 - X') > 1, (7.2)
eEC\F eEF

for any odd F C C, IFI.
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A single projection 7 is specified by the set of partitions {7i }, where

Ti : Ri - {0, 1}, (7.3)

and I{r E Ri I ri(r) = 0}| > 0 and {r E R i wI (r) = 1} > 0 for all i. Then, the fol-

lowing linear map Rd(G) + R21'E based on the single projection can be defined [Sontag

and Jaakkola, 2007]:

Ti7ý(xi 7 j) - (7.4)
{(r,S)ECR ,xR I 7ri(r)fAirj(s))

T-i(x = S )= J (7.5)
{(r,s)ERixRj I ri(r)=irj(s)}

Then, from the cycle inequality for the cut polytope, it can be shown that any T E

M (9) satisfies the following inequality [Sontag and Jaakkola, 2007]:

STi(7i ( 7r )+ 7 E T(7i = 7rj) > 1, (7.6)
(i,j)EC\F (i,j)EF

for any cycle C in 9, and FC C, Fj odd.

7.3 Solving the separation problem

The separation problem for the cycle inequality is solved by identifying a cycle in G

that violates (7.6). Such a separation problem can also be generalized to consider

more than one projections at a time by defining k(i) projections {7 1, -T,... ()

for each position i E V, and defining a projection graph ,= ( S,, 4E) such that

-7 U{l I 1 < u < k(i)} (7.7)
iCV

, U {(, T) 1 < a < k(i), 1 < v < k(j)}. (7.8)
(i,j)CE

Since there are no edges between projections from the same position, any cycle fronm

9, can be considered a cycle from a single projection graph.
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Following is a description of the polynomial algorithm that solves the separation

problem on 9, when attempting to separate T:

1. Construct an undirected graph 9, = (V', £') such that

(a) V" consists of nodes iU1 and w•"2 for each 7u E VE V.

(b) S' consists of edges (•"', '), (Fii , j,2  ,2 ,1), and (7 2,r' 2 for

each (7ry,7) E S,.

(c) edge weight ij(x i s x) is assigned to (7u 1, ,j (/j, ,2 ).

(d) edge weight Ti7(xi = xj) is assigned to ( , 7rj), and (ru,2 ,2 ).

2. For each 7r' e V,, find the shortest path in 9' from i<F'I to -F '2 with path length

at least 3.

Any path from step 2 with cost less than 1 corresponds to a violated cut. The

corresponding cycle can be easily retrieved by taking edges with different parities as

belonging to F.

7.4 Estimating primal solutions

The premise for finding a violated cut is access to the optimal primal solution of

the relaxed problem. This often becomes a technical challenge in using relax-and-

cut because the dual solution does not directly translate to a primal solution. The

problem of generating a primal solution has been investigated through extension of

subgradient methods [Sherali and Choi, 1996, Barahona and Anbil, 2000].

In this work, we use simple algebra to estimate the primal solution from the decom-

posed parameters, the dual solution, and the optimal solutions for the subproblems.

Let A* e Rd the dual optimal solution for problem (6.12), xh(A*,h) E Rd(Gh) an op-

timal solution 2 for the hth subproblem given the Lagrangian multiplier A*, c E R d( )

the original parameter for the linearized primal problem, and ch E Rd(g; ' ) the decom-

posed parameter for the hth subproblem. Then, approximate primal solution i: can

2In case there are multiple optimal solutions, xh(A*I, ) is randomly selected.
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be computed as a linear combination of subproblem solutions:

S- h:aegh) ca+a h if C# 0 0(
0 otherwise.

for a E Z(g), where the index set I(G) is defined as

=(G) = U{i, r E Ri) uU {U rJs I (r, s) e R x R}}. (7.10)

The notations used in (7.9) are consistent with those used in Chapter 6; ca is the

linearized cost coefficient of the original problem for Oth component, Ah is the dual

optimal solution for hth subproblem and ath component, and xh is ath component of

the hth subproblem solution. Therefore, the approximate primal solution defined in

(7.9) is a linear combination of subproblem solutions weighted by the ratio between

the subproblem's cost coefficient penalized by the Lagrange multiplier and the original

cost coefficient.

For such Jr, it is straightforward to see

c. = c ~c = (ch + A* )x= - q(A*). (7.11)
aEZ(G) h aEZ(Gh)

Despite its simple formula, J obtained by (7.9) is not guaranteed to be primal feasible,

or i e nh M(g; gh). Even worse, it could be that & ' [0, 1]d(0) . In practice, we

add a positive offset to ca so that cca > 1 for all a E I(G) in the hope of making

& E [0, 1]d(G). We have also attempted to guide the update of A so that J always

stays within [0, 1]", but this severely degraded the quality of dual solution obtained.

However, computation with actual test cases shows the pairwise components of A are

in [0, 1]n in most cases (only the pairwise components are used to solve the separation

problem for cycle inequalities).

Another problematic issue with estimating the primal solution from the dual so-

lution is that the dual solution may not be dual optimal due to convergence problems
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of the subgradient method. In this case, the estimate can never be primal feasible

because the dual objective value will be less than the primal optimal value.

Although the estimation may be far from being a perfect replacement of the

optimal primal solution, it can still be useful in guiding the selection of cuts among

the huge number of candidate cuts. It is also correct to add cuts found from using

infeasible primal solution estimates because the class of cuts is valid for the marginal

polytope. One thing that needs to be taken care of in using the estimate is that

the weight assigned to edges of 90 in solving the separation problem should not be

negative in case a shortest path algorithm such as Dijkstra's algorithm is used.

7.5 Dualizing the cuts

The cuts found by solving the separation problem needs to be included in the existing

Lagrangian dual relaxation. These cuts can be either added to the constraints of

subproblems, or dualized by introducing new Lagrangian multipliers. In this work,

we use the latter approach because this will allow us to use a consistent solution

method for the subproblems.

Suppose we obtained W cycle inequalities from the previous dual solution:

-a • -x z  -1, w = 1, ... , W. (7.12)

These are valid inequalities for the marginal polytope. Therefore, they can be added

to the primal problem (6.4)-(6.5) without modifying its optimal solution. That is,

the new unrelaxed primal problem using the linearized cost function is

minimize Zh ch . x h

subject to x E Rd xh (E h,  (7.13)

xh = XIG, Vh. (7.14)

-a" -x < -1, w = 1,..., W. (7.15)
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We eventually want to get rid of x from the dual formulation. Therefore, constraints

(7.15) are replaced with

- aw' h .h < -1 w= ,...,W., (7.16)

where awh E Rd(gh) , and

E Z(g). Then,

(7.16) is

aw = a w,h (7.17)
h:aEZ(gh)

the Lagrangian function obtained by relaxing constraints

L({Xh},X, Ah},{Ewj) = }ch.xh EAh X XJ) - Y wCh. X h

h h w=l h
w w

- E(Ch h h- EZ waw,'h-•. - E A j. X, + Y 7.18)
h w=1 h w=1

By the same reasoning used in Section 6.2, the second term of (7.18) is dropped in

the resulting dual function:

W W

4({A h}, {w}) = M ( (ch + A h - (aw'h) .x h + 3E .
h w=1 w=l1

Finally, the dual problem with the dualized cuts is

maximize

subject to

Eq({ A , {,w})

A E D,

(7.19)

(7.20)

(7.21)w > 0, w = 1,..,W.

Note that D, the domain of A, is same as in the original dual problem before adding

the cuts. In addition, the form of the subproblems was not changed except that

the cost constants are adjusted by the new Lagrange multipliers {("}. Therefore,

the same dynamic programming method can be used to solve the subproblems and
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compute subgradients. The subgradient method, however, now needs to update {("}

at each iteration. If we let

W

ih =min (ch + - • w). h ,  (7.22)
w=1

then, we have

W W

({hl, f )-- Z(Ch + A - •wawh ýý~h + Z W
h w=1 w=l

- Ch.ýh±E Ah.±h± Ih (7.23)
h h w=1 h

This implies a subgradient for 4(-) at {{ A h}, {'}} can be described as

{{} {1 - x} (7.24)

as can be verified in a similar fashion to (6.36).

It should be already noted that, by adding cuts and avoiding the use of large

triplets (or cliques in general), the number of variables in the dual problem increases.

The increase in the number of dual variables adds computational cost because it

implies a larger number of subgradient components to compute and Lagrange multi-

pliers to be updated. In most subgradient method literature that uses the norm of

the subgradient in computing the stepsize, the increase in the comnputational cost can

be even larger, but we compute the stepsize by a simple geometric reduction rule.

In theory, the effect of including cliques in the dual problem can be simulated by

using all necessary linear constraints that define the facets of the related marginal

polytope [Wainwright and Jordan, 2006, Globerson and Jaakkola, 2007b]. Consider-

ing the large number of linear constraints required for such characterization of the

polytope, the possible advantage of relax-and-cut over using all necessary triplets will

come from finding as small a subset of the constraints as possible that are relevant to

improving the dual optimal solution.
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We use two schemes to maintain a reasonably small pool of cuts in relax-and-cut:

1. when adding a new cut to the pool (i.e. dual formulation), compare against all

existing cuts to prevent duplication;

2. inactive cuts whose Lagrange multipliers are zero or very close to zero are deleted

from the pool. This is done after adding new cuts so that we do not add back

inactive cuts after deleting them.

More details on cut pool maintenance can be found in Lucena [2005].

7.6 Practical considerations

When the dual solution is already close to primal feasibility, addition of cuts to the

dual problem would only modestly alter the dual solution. Therefore, when new

cuts are identified and added to the dual problem, the values of Lagrange multipliers

{f, {i"}} from the previous subgradient method can be retained and used as the

starting point of the next subgradient method in order to quickly converge to the

next dual solution. However, if we also set (" = 0 for all new cuts u, then the

subsequent subgradient method will result in the same dual solution as the previous

iteration since the {A, {("}} is where the previous subgradient method converged.

Therefore, assigning a small positive number to the new Lagrange multipliers can be

a good strategy to improve the dual solution and obtain quick convergence.

Additional speed up of relax-and-cut can be attained through a scheme called

"non-delayed relax-and-cut" (NDRC) [Lucena, 2005], where new cuts are identified

before the subgradient method converges. Such a scheme will compute an estimate

of the primal solution, solve the separation problem with it, and add the resulting

cuts every fixed number of iterations of the subgradient method. Considering the

convergence of the subgradient method often takes very long, NDRC can possibly

shorten the total running time although it may also generate many irrelevant cuts

due to poor estimation of the primal solution.
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Finally, the relax-and-cut algorithm used in this work is summarized by Algo-

rithm 7.

Algorithm 7: Relax-and-cut algorithm.
Data: Problem (7.21) with W1= 0
Result: Dual solution {A, ("}} for some W > 0

1 begin
2 Initialize A, e.g. with O's
3 repeat
4 Perform subgradient method until convergence by |A{JA, {Jw}} joo < E'

or for a fixed number of iterations
5 Estimate a primal solution
6 Solve the separation problem
7 Add new cuts to the pool while checking duplication
8 Delete inactive cuts
9 Initialize -- ~ •~" > 0 for new cuts w

10 Initialize a -- a fit > 0
11 until no new cuts added
12 end

7.7 Computational results

We added the NDRC feature to the C++ implementation of the subgradient method

from Chapter 6. The separation problem was solved by Yen's N-shortest paths al-

gorithm [Martins and Pascoal, 2003]. The N-shortest paths algorithm was applied

to find multiple paths from "' 1 to "r' 2 for each 7' E •,. The projection graph was

constructed as a directed graph by allowing two edges in both directions for each

pair of single projections derived from an edge in the original graphical model. We

made N large enough so that we can obtain a desired number of cuts from one run

of the N-shortest paths algorithm even if some of the paths founds already exist in

the current cut pool.

We defined k(i) single projections for each i E V, where k(i) is the number of

different rotamers choices in the subproblem solutions. Therefore, k(i) can be no

greater than I{h Ii E g' } . We also gave a high priority to the single projection cor-

responding to rotamer i, such that the approximate primal solution ir is fractional,
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that is, |2iJ - 0.51 is small. Single projections with high priorities will fill up the cut

pool first when each single projection is allowed to generate a fixed number of cuts.

In our experiments with the NDRC algorithm, we regarded all cuts with Lagrange

multipliers less than 10-3 as inactive and removed them from the cut pool at the end of

a relax-and-cut iteration, that is, when the subgradient method roughly converges for

the current set of cuts. We also need to determine in•it, the initial value of Lagrange

multipliers for new cuts, and ainxit , the initial stepsize to be used every time new

cuts are added. Too large values for both parameters will result in long unnecessary

fluctuations every time the subgradient method is started whereas too small values

will result in little improvement in bounds. We experimented several values for $nit

and ainit, together with values for e' for the stopping condition I|A{A, {("}}|oo < c'.

As a result, the combination of ýinit = 0.005, ci"" = 0.005, and ' = 10 -5 was found

to work well in terms of running time and bounds improvement.

Our experiments using parameter values chosen above confirm that the NDRC

algorithm certainly outperforms the delayed (ordinary) relax-and-cut (DRC) algo-

rithm. The obvious advantage of NDRC over DRIC is reduction of running time spent

for making the subgradient method converge. On the other hand, the only problem

with NDRC is that cuts are generated from approximate primal solutions, computed

from suboptimal dual solutions obtained before the subgradient method converges.

However, comparing the number of necessary cut generations and improvement of

bounds from each relax-and-cut iteration of NDRC and DRC suggests that cuts gen-

erated from both approaches do not show any significant difference in tightening the

relaxation. Such negligible difference in cuts generated by NDRC and DRC can be

partially attributed to negligible difference in dual solutions used in computing ap-

proximate primal solutions because a large amount of computation in DRC is typically

spent to obtain a very small improvement of the dual solution.

7.7.1 NDRC for different lengths of paths

We experimented with different cut lengths to observe the effect of cut lengths on the

performance of NDRC. To do this, we only added violated valid cuts that are derived
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from cycles containing a specific number of edges. To add the same number of cuts

with a specific length each time, the number of cycles to be found from the N-shortest

paths algorithm was increased because many of N shortest paths may have different

lengths. We experimented with cuts containing 3, 4, and 5 edges. In our experiments,

it was found that cuts of longer lengths were harder to find. Due to relative scarcity

of cuts with 4 or 5 edges, we added only 100 new cuts at each NDRC iteration.

Figure 7-2 shows the resulting NDRC bounds from different cut lengths for sub-

problem SWEET7-NOW-51-HIGH as the test case. The initial dual problem is derived

from trees and 30 triplets selected by IQR scores. The plot clearly suggests that cuts

of shorter lengths are more effective in tightening the relaxation. This is not very

surprising considering the formulation of cuts (7.5)-(7.6), which probably provides

more room for being satisfied when more number of edges, and therefore, variables

are included. In other words, a constraint governing the choices of rotamers for many

positions at a time can be relatively weak.

The number of active cuts in the cut pool also suggests different levels of cut

relevance depending on the lengths of cuts. Figure 7-3 shows the number of active

cuts at the beginning of each NDRC iteration. Although the same number of new

cuts are added at each NDRC iteration, the slow increase in the number of active cuts

for cut lengths 4 and 5 suggest that many of the added cuts turn out to be inactive,

that is, insignificant, at the end of each NDRC iteration and deleted from the cut

pool.

7.7.2 NDRC for different number of cuts added

In this section, we fix the length of cuts and explore the effect of adding different

numbers of cuts. Adding more cuts will constrain the dual problem better, and will

result in tighter bounds. However, we are interested in finding how such improved

formulations are carried over to actual NDRC bounds and running times.

We applied NDRC to subproblem SWEET7-NOW-51-HIGH only using cuts derived

from cycles with three edges. The initial dual problem was derived from trees and

30 triplets selected by IQR scores. For each independent run of NDRC, we varied

176



NDRC lower bounds for different lengths of cuts
-324.4

-324.5
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Figure 7-2: Change of NDRC lower bounds as cuts of different lengths are added
at each NDRC iteration. Subproblem SWEET7-NOW-51-HIGH was used as the test
case. One NDRC iteration corresponds to solution of the modified dual problem by
the subgradient method, therefore hundreds of subgradient iterations. The lengths of
cuts used to obtain each NDRC lower bounds curve are shown in the legend. NDRC
with cut length 3 reaches the optimal value much faster than the other two.
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NDRC active cuts for different lengths of cuts
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- Length = 4
V Length = 5

100 . ...
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Figure 7-3: Change in the number of active cuts in the NDRC cut pool as cuts of
different lengths are added at each NDRC iteration. Corresponding change in bounds
are shown in Figure 7-2. The length of cuts used for each curve is shown in the legend.
NDRC with cut length 3 retains more number of cuts added to the cut pool than the
other two.
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Figure 7-4: NDRC lower bounds from adding different numbers of cuts for subproblem
SWEET7-NOW-51-HIGH. The legend shows the number of cuts to be added at each
NDRC iteration. For the case '100', only the initial part up to iteration 18 is shown.
The full curve for '100' can be found in Figure 7-2.

ANut, the number of cuts added at each NDRC iteration. We experimented with

ANcut - 100, 200, 400, 600, 1000, 2000, and 3000. NDRC was run until the optimal

value was found in each run. Note that a specific number of new cuts may not be

found due to the lack of violated cuts with a specific length. This is more likely to

happen when ANcut is large. Therefore, the actual number of cuts added can be

smaller than ANt.

Figure 7-4 shows the change of bounds for each ANt value. The lower bounds

improve faster when ANt is larger. However, the difference in bounds among dif-

ferent ANct values decreases for large ANut. This is explained by Figure 7-5 to a

certain extent. It shows that the difference in the numbers of active cuts for large

ANaut values is not as large as intended by ANt values.

Figure 7-6 shows cumulative running times of the subgradient method for each
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Figure 7-5: Numbers of active cuts for each NDRC iteration for the data shown in
Figure 7-4.
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Figure 7-6: Cumulative running times of the subgradient method for the data shown
in Figure 7-4.

ANet. The linear growth suggests that the running time of the subgradient method

for each modified dual problem remains almost constant despite the increase in the

number of Lagrange multipliers from addition of cuts. The small discrepancies in the

rates of change among different AN,,t values reflect the differences in the number

of cuts included in the dual problem. The total running times of the subgradient

method for large AN,,t values tend to be small because fewer iterations are required

for larger AN,,t values.

Finally, Figure 7-7 shows cumulative total running times of NDRC for each ANt

value. Although not fully shown in the plot, ANcut = 100 has the longest running

time of 11,300 seconds. The shortest total running time comes from AN,,t = 600.

The change in the trend shown from Figure 7-6 is due to the addition of time spent

on solving the separation problem, that is, the cost of using the N-shortest paths al-

gorithm. The running time of Yen's N-shortest path algorithm is O(Nn(m + n log n),

where m, and n are the numbers of vertices and edges of the graph, respectively.
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Figure 7-7: Cumulative total running times of NDRC including the subgradient
method and the separation routine for the data shown in Figure 7-4.

Therefore, the separation routine takes longer for large ANcut although it does not

always find exactly ANut cuts, which was shown in Figure 7-5. Overall, despite

the quick convergence of the subgradient method, the long separation times for large

AN,t values make them poor choices.

7.7.3 NDRC with random cuts

In this section, we evaluate the quality of approximate primal solutions, which are

computed by (7.9) and used to generate cuts in our NDRC algorithm. Because the

dual problem is modified by excluding the optimal solution of the current relaxation

by adding valid inequalities, cuts generated for a non-optimal solution can be irrel-

evant to tightening the relaxation. The approximate primal solution computed in

our NDRC algorithm has two possible problems: first, computation by (7.9) is not

guaranteed to be correct, and second, the premature stopping of the subgradient
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method in NDRC may result in suboptimal dual solutions, and therefore even worse

primal approximations. However, our experiments confirm that cuts generated from

NDRC are equivalently effective as cuts generated by the ordinary relax-and-cut algo-

rithm. Therefore, the problem with using suboptimal dual solutions is not considered

significant.

One way of evaluating the approximate primal solutions is through comparison

with exact primal solutions found by a linear programming solver. However, we

do not have a complete LP formulation for the dual problem derived fromin multiple

triplets. In addition, solving the LP for protein design cases is expensive. Therefore,

we took an indirect approach of comparing cuts generated from the approximate

primal solutions with randomly generated cuts.

We compared the performance of NDRC when 600 cuts of length 3 generated from

approximate primal solutions are added and when 600 random cyclic inequalities

(7.6) of length 3 are added. Figure 7-9 shows the resulting lower bounds for the

two approaches applied to SWEET7-NOW-51-HIGH with the initial selection of 30

triplets. Note that the curve for random cuts is corresponds to average values from

10 independent runs. The plot clearly suggests that the cuts from approximate primal

solutions lead to faster convergence to the optimal value.

Figure 7-9 shows the number of active cuts at the beginning of each NDRC itera-

tion from the above simulation. The number of active cuts grows faster when approx-

imate primal solutions are used except the downward spike at iteration 3. However,

in the end, the final number of active cuts necessary to arrive at the optimal value

with random cuts is larger. This suggests that the cuts from approximate primal

solutions provide better guidance in finding the optimal value. The downward spike

at iteration 3 implies a large number of cuts added at iteration 2 became satisfied,

which could have led to a fast overall convergence of NDRC.

7.7.4 NDRC vs. addition of triplets

To compare the effect of adding triplets with adding cuts to the dual problem, we

applied NDRC to dual problems for Case 44 of Table 5.1, derived from different
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Figure 7-8: Bounds from adding cuts for test case 44 (EPO-INT-A-REG-11-11) of
Table 5.1. Upper and lower bounds were calculated for different numbers of triplets
selected by the magnitude of IQR and included in the relaxation. The numbers of
triplets are indicated between parentheses in the legend. The optimal value (-135.9)
of the problem is shown as the horizontal line.
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Figure 7-9: Bounds from adding cuts for test case 44 (EPO-INT-A-REG-11-11) of

Table 5.1. Upper and lower bounds were calculated for different numbers of triplets
selected by the magnitude of IQR and included in the relaxation. The numbers of
triplets are indicated between parentheses in the legend. The optimal value (-135.9)
of the problem is shown as the horizontal line.
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numbers of triplets. NDRC generated at most 1,000 new cuts constructed from cycles

with three edges at each NDRC iteration. For each independent run of NDRC, we

fixed the number of triplets to 6, 7, or 8 and repeated 50 NDRC iterations. The triplets

used for each run are maximally overlapped; for example, the 8 triplets include all 6

triplets used to construct the smallest dual problem.

Figure 7-10 shows the results. The figure at the top plots the resulting lower

bounds for each NDRC iteration and number of triplets. As expected, the lower

bound is tighter for larger number of triplets at NDRC iteration 0, that is, when

the number of cuts is 0. It is also observed that the bounds curve do not cross one

another at any iteration. However, the difference in bounds from different numbers

of triplets are overcome to a certain degree through addition of cuts. For example, at

iteration 5, the lower bound from 6 triplets becomes almost equal to the initial lower

bound from 7 triplets.

The figure at the bottom of Figure 7-10 shows cumulative running times of NDRC

at each NDRC iteration. The rate of increase in the cumulative running time is

larger when more triplets are included because the subgradient method for a larger

dual problem takes longer. The plot suggests the cost of achieving the improvement

of bounds through addition of cuts is quite large. For example, the initial lower

bound with 7 triplets is computed in 734 seconds whereas the equivalent lower bound

from 6 triplets at iteration 5 is computed in 3,590 seconds. Figure 7-11 plots the

data shown in Figure 7-10 again to visualize the difference in NDRC running times

between different numbers of triplets when similar bounds are to be obtained.

7.8 Conclusions

In this chapter, we described a non-delayed relax-and-cut (NDRC) algorithm that

identifies relevant cuts from a dual solution and computes stronger lower bounds by

solving the dual problem modified through addition of the cuts. We studied various

components of the method that may affect the resulting lower bounds and the running

time, such as the length of a cycle that a cut is constructed from, the number of cuts
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Figure 7-10: NDRC was applied to dual problems for Case 44 of Table 5.1, derived
from different numbers of triplets: (top) lower bounds computed by NDRC, (bot-
tom) cumulative running time of NDRC. Numbers in the legend indicate numbers of
triplets.
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added at each NDRC iteration, relevance of cuts generated from approximate primal

solutions compared to random cuts. We also compared the bounds and the running

time when dual problems are derived from different numbers of cuts and triplets.

We found that using additional triplets is more effective in terms of both lower

bound and running time than repeating NDRC iterations. However, when the number

of triplet configurations is too large for the system memory, NDRC can be an alter-

native method for obtaining incremental lower-bound improvement because adding

cuts only involve linear growth of memory usage. It is also observed that the effect of

adding cuts tends to decrease with NDRC iterations. Therefore, using a few iterations

of NDRC as a post-process of solving the initial dual problem can be a good strategy.

As a future work, the following extensions of NDRC is suggested:

1. development of a different scheme to compute more reasonable approximate

primal solutions from dual solutions;

2. optimization of the separation routine to solve the separation problem more
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efficiently and generate more number of unique short cycles;

3. use of different classes of cuts than cyclic inequalities that might constrain the

relaxation better.
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Chapter 8

Individual lower bounds from

Lagrangian dual relaxation and

their uses in BroMAP

In Chapter 6 and 7, we have seen how we can obtain strong lower bounds by includ-

ing cliques of variables and violated valid cuts. Although we can achieve incremental

improvements of bounds through these procedures, the computational cost can be at

times too expensive compared to the gain in tightness of bounds. In the case of includ-

ing variable cliques, the cardinality of some clique domain size can be prohibitively

large, leading to memory exhaustion or a long running time for each subgradient

method iteration. Adding cuts has much less effect on the time taken for subgradi-

ent method iterations, but the gain in the tightness of bounds are relatively small

compared to adding triplets. Therefore, relax-and-cut will require many iterations of

solving the separation problem and optimizing a further constrained relaxation prob-

lem. For large primal problems, such iterations of relax-and-cut can be expensive.

In this chapter, we look into a way of computing lower bounds for individual ro-

tamers and rotainer pairs from the dual formulation. The idea is that these bounds

can be tight enough to eliminate some rotarners or rotamer pairs from the problem

even though the global lower bound for a problem might be too weak to find an opti-

mal solution of prune the entire subproblem. When it is difficult to include another
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variable clique or relax-and-cut is expensive for the gain in tightness of bounds, it can

be useful to shed unnecessary rotamers and rotamer pairs first and proceed to the

next step of refining the bounds. This approach is similar to the techniques used in

BroMAP of Chapter 3, where we were able to find a simple rule to compute rotamer

and rotamer-pair lower bounds using pseudo-max-marginals from the tree-reweighted

max-product algorithm.

The main differences between TRMP and the dual formulation is that we do not

obtain pseudo-max-marginals for the dual formulation at the end of the subgradient

method, and that we need to deal with non-tree structures of subproblems. To obtain

the bounds without pseudo-max-marginals in the dual framework, we are going to

compute max-marginals for each subproblem through the junction tree algorithm and

combine them to compute rotamer and rotamer-pair lower bounds for the original

problem.

In Section 8.1, we will review the junction tree algorithm. Section 8.2 describes a

way of computing rotamer and rotamer pair lower bounds from the dual formulation.

Section 8.3 provides computational results on the tightness of these bounds and their

computation time. We also provide some results of including these bounds in BroMAP

and applying it to a few hard test cases of Table 5.1.

8.1 Junction tree algorithm

The junction tree algorithm is an extension of the max-product algorithm to junction

trees instead of simple trees [Cowell et al., 1999]. Junction tree is simply a different

name of tree decomposition of Section 6.5.1. Therefore, the junction tree algorithm

can be regarded as a different form of dynamic programming that can be used to

find the MAP assignment on cyclic graphical models. The main difference between

the dynamic programming algorithm presented in Section 6.5.2 and the junction tree

algorithm is that the junction tree algorithm provides the max-marginals table, that

is, the optimal objective value of the problem when each variable clique is fixed to

each possible assignment value. On the other hand, the outcome of the dynamic pro-
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gramming will be only useful for finding an optimal assignment when the assignment

for the root node is fixed. When we want to find the optimal value or assignment

when a node other than the root is fixed to a certain assignment, we will need to rerun

the dynamic programming algorithm with the new node designated as the root. This

relation between the junction tree algorithm and dynamic programming algorithm is

analogous to that between the max-product algorithm and the dynamic programming

on trees. In summary, the junction tree algorithm is a more convenient tool than the

dynamic programming when computing individual lower bounds by providing the

max-marginal table for each variable clique.

Algorithm 8, 9, and 10 describe the junction tree algorithm for the min-sumn

computation. Although Cowell et al. [1999] describes the sum-product version of

the junction tree algorithm, the results on the sum-product junction tree algorithm

are transferable to the mim-sum version due to the applicability of the "general

distributive law" to the general semiring case [Aji and McEliece, 2000]. Note that

Algorithm 8, 9, and 10 is called Hugin architecture. There also exist other forms of

the junction tree algorithm such as Lauritzen-Spiegelhalter (LS) architecture, which

is very similar to Hugin architecture, and a message-passing algorithm, called Shenoy-

Shafer (SS) architecture [Lepar and Sehnoy, 1998]. Hugin architecture requires more

memory than LS architecture because of additional storage for separator messages,

but Hugin requires less computation than LS. It is claimed SS is computationally

more efficient than Hugin on average and also provide single marginals at the end

of propagation [Lepar and Sehnoy, 1998]. We use Hugin architecture in this work

mainly for its simple form of presentation and ease of implementation.

The key properties of the Hugin propagation can be summarized as follows:

1. The equality f(x) = EuI Ou(xu)- C ,(u,v)F Aun"(xUnv) holds for all x after each

transfer of separator and node messages, that is, either after performing steps

4, 6, and 7 of JT-Bottom-To-Top or steps 3, 4, and 5 of JT-Top-To-Bottom.

2. Any time after both JT-Bottom-to-Top and JT-Top-To-Bottom messages have

passed between two nodes a, v e I, (u, v) E F, the node messages and the

193



Algorithm 8: Junction tree algorithm for the min-sum computation. The
minimum value of f(x) for each assignment of x" and X pa(u)n" is computed and
output as Ou(xu) and APa(u)n"(xpa(u)n"), respectively.

Data: f(x), ({Xi i E I}, T = (I, F)) as in Algorithm 4.
Result: ¢u(xu) for each u E I, and AXun(xuln) for each (u, v) E F.

1 begin
2 Initialize {fu, Aunv} so that f(x) = EuE OU(xu) - E (u,v) F Aunv(xunv), e.g.

by ~U(xU) = f(xu) for u c I, and AuXn"(xu"n) = 0 for (u, v) E F.
3 JT-Bottom-to-Top(T, ", {Trnfi,i E D(T)}, {•ni ,i D(T)})
4 JT-Top-to-Bottom(T, ,T {}, {})
5 end

Algorithm 9: JT-Bottom-to-Top procedure of the junction tree algorithm.
Node message O" is updated based on the separator messages Au ni passed from
descendents i E D(u). Then, the current separator message of pa(u) nfu, that is,
Apa(u)nf is copied to d a(u)nu, and is updated based on the updated node message
0u.

Data: u E I, ¢u, {Ani, i E D(u)}, {Au•i , D(u)}
Result: 4,, Apa(u)nu, Aa(u)nu

Sold
1 begin
2 foreach i E D(u) do
3 JT-Bottom-to-Top(i, ", {Au ni, iE D(u)o}, { A• , iE D(u)})

4 u(Xu) X u(Xu) + Auni(x u) - \ni(xulni).

s if u -# T then
6 Alad()nu(xpa(u)nu) ppa(u)nu(xPa(u)nu)

7 APa(u)nu(xpa(u)nu) - min{i i jIpa(U)n=xPa(u)nfl} U(OU)

s end

194



Algorithm 10: JT-Top-to-Bottom procedure of the junction tree algorithm.
The same operations as in JT-Bottom-To-Top procedure are performed in the
reverse direction.

Data: u E I, OU, Apa(u)nfu Apa(u)nu

Result: u, Xpa(u)nuu)n paou)nu

begin
if u a T then

old pa(u)nu(Xpa(u)uX ) pa(u)nu(XPa(u)nu)

APa(u)nu(XPa(u)nu) -- minnpa(u) I ipa(u)nez :xpa(u)nu} Opa(u)(kpa(u))

L U(xu) - u(Xu) + Apa(u)nu(xpa(u)nu) - A_ pl)nupa(u)nu).

foreach i E D(u) do

L JT-Top-to-Bottom(i, "U, Apa(u)
n u Apa(u)nu

s end

separator message are consistent in that

min 0"(a")
{jjLu m Runv4xu(

Aunv(xU lv) = {•~ I min OV(xV)
X~I~nVUAX~V}U

3. After completion of the Hugin propagation, both node and separator messages

associated each node are "min-sums", that is,

S"(x > ) =
Aunv(xun)

min f ()
{x JR-=xU }

min f (k)I:R IjiUnvL=XunvI)

Vu E I,

V(u, v) e F

Note that min-sums of (8.2) and (8.3) are analogous to max-marginals of the max-

product algorithm. However, unlike the definition of max-marginals, these equations

are satisfied without the need of any constant factors.

Min-sums of a variable or a pair of variables can be computed by enumerating all

assignment values in a variable clique. For example, if i, j e Xu, k E X ,nX,, u, v E I,

the min-sums min({ I (j ,,j)=(Hx,xj)} f(x) and min{R I k-=) f(x) can be computed as

rmin f(x)
{i I (Ji,'b)m=(xm,xj)}

min f(x)

=in mm (xU),

= min m Aunv(xunv).
{5Ollv I Xk=Xk}
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One strategy to reduce the amount of enumeration to compute min-sums for a pair of

variables is finding a node or a separator with the minimum cardinality that contains

both variables. Once all pairwise min-sums are computed, the singleton min-sums

can be readily derived from associated pairwise min-sums.

8.2 Computing individual bounds from the dual

formulation

Once we compute all singleton and pairwise min-sums for each subproblem of the

Lagrangian dual formulation, lower bounds for each rotamer and rotamer pair can be

easily computed. Suppose we want to compute the minimum value of (6.1) when the

assignment of rotamers for pairs of variables (r7, () E 8 is fixed to some (r, s) E R( x R,,

that is,

minimize -iv ErER. E(ir)Xi, + E(i,j)EE (r,s)ERixRi E(irjs)xi,j,

subject to x E -F, XaC, = 1. (8.6)

Finding the exact minimum value for the modified primal problem is still difficult,

but we can obtain a lower bound of the minimum value through the same Lagrangian

dual relaxation described in Section 6.2. Through an identical derivation, the resulting

dual problem corresponding to (6.12) is

maximize -h:(,,)Egh min{xhEThlxcrs=1}(ch + Ah) . h

+ -h:(1,)ýEh minxhEyh(ch + Ah) . xh

subject to A E D. (8.7)

Weak duality states that the objective function of (8.7) is a lower bound of (8.6) for

all A E D. Therefore, the rotamer lower bound for (?r, (C) can be computed by solving

the modified subproblems with values of A from the convergence of the subgradient

method, and then summing the resulting objective values from each subproblem.
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Note that the second summation of the objective function of (8.7) corresponds to the

sum of optimal values of unmodified subproblems, which are trivially obtained from

the solution of each subproblem.

In general, we prefer having rotamer-pair lower bounds at least for all rotamer

pairs connected by an edge in the original graphical model. The procedure for com-

puting a rotamer-pair lower bound described above is straightforward but repeating

the procedure as many times as the number of rotamer pairs in the problem can

be prohibitive for large problems. However, as in individual bounds computation

from TRMP, the computational burden can be relieved by using min-sums from the

junction tree algorithm where

mmin (ch + Ah) . h mmin (x"), (8.8)
{xhE.Fh IXls =l} " I (7,)=(,S)

for some (rI, ) E Xu, u E I, and the minimization of the right-hand side of (8.8) can

be carried out for each (r, s) E R,, x Re less inexpensively than that of the left-hand

side.

Algorithm 11 summarizes the procedure to compute rotamer-pair lower bounds

from the dual formulation. Computing rotamer lower bounds can be also similarly

done by properly replacing step 7-8 with singleton rotamer assignment and min-sum

values.

It should be noted that rotamer-pair lower bounds are computed only for pairs of

positions 7r, and ( such that (7r, () E E. We did not have such a restriction for rotamer-

pair lower bounds from TRMP in Section 3.3 because we could easily compute max-

marginals for (r, () S S via enumeration when the trees were stars. This is not

straightforward to be done on a general tree decomposition. However, when we can

compute a rotamer or rotamer-pair lower bound based on the dual formulation, we

know that it should be at least as tight as the rotamer or rotamer-pair lower bound

from TRMP by Lemma 11.
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Algorithm 11: Procedure for computing rotamer-pair lower bounds from the
dual formulation.

Data: f(x), ({Xi Ii E I}, T = (I, F)) as in Algorithm 4.
Result: ¢u(xu) for each u E I, and AuXn(xunv) for each (u, v) E F.

1 begin
2 Solve problem (6.12) through the subgradient method to obtain A at

convergence of the subgradient method.
a foreach h do
4 Construct fh(xh; A h) from the linearized cost function (ch + Xh) . Xh and

tree decomposition for gh.

5 Run the junction tree algorithm (Algorithm 8) on fh(xh; Ah).
6 Compute min-sums for each variable i E Vh and pair of variables

(i, j) E 8 h by enumerating node and separator messages from the
junction tree algorithm.

7 foreach (r, s) E R, x Re, (7, () Ec do
s Compute the rotamer pair lower bound by substituting the min-sum

value for the rotamer pair from subproblem h if (7, () E £h, and the
minimum value of the subproblem h if (rq, () 0 8 h for the corresponding
terms in the objective function of (8.7).

9 end

8.3 Computational experiments

In this section, we compare rotamer-pair lower bounds computed from TRMP and

the dual method through computational experiments. We also incorporate the sub-

gradient method and individual bounds computation under BroMAP, and evaluate

the performance of the resulting branch-and-bound implementation.

We implemented Algorithm 8, 9, 10, and 11 in C++, compiled the code using GNU

compiler version 3.3.5, and run the following experiments on a Linux workstation with

a Dual-Core AMD Opteron Processor 2214, and 2 GBytes of memory.

8.3.1 TRMP vs. dual method

We compared the two methods of computing rotamer-pair lower bounds using a sub-

problem CASE46-NODE42 of Case 44 in Table 5.1. CASE46-NODE42 consists of 11

positions, 696 rotamers, and 208,816 rotamer pairs, and log of the total number of

conformations is - log I Ri = 18.7. We varied the number of triplets used to derive
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Table 8.1: Running times for computing rotamer pair lower bounds for all rotamer
pairs in CASE46-NODE42. All times are shown in seconds. Either TRMP or the
dual method was used. For the dual method, the number of triplets included in
the formulation was varied. The total running time can be divided into time for
running the TRMP or the dual method until convergence, and time for executing the
post-process using Lemma 3 for TRMP or the junction tree algorithm for the dual
method.

Method # Triples Total Propagation Post-process
TRMP NA 10 8 2

Dual 0 126 125 1
Dual 2 255 254 1
Dual 4 678 677 1
Dual 6 1,038 1,036 2
Dual 8 1,180 1,177 3
Dual 10 1,468 1,465 3

a dual formulation. For TRMP, the stopping condition was made so that the maxi-

mum absolute change of pseudo-max-marginals becomes less than 10-7 . For the dual

method, we used the stopping condition IIAA|Woo < 10- 4. It should be noted that, un-

like TRMP, the dual method is guaranteed to generate lower bounds for even weaker

stopping conditions. In the dual method, instead of using the junction tree method

in the subgradient method for all iterations, we used the dynamic programming of

Chapter 6 until convergence, and run one iteration of the junction tree method as a

post-process. This is because the implementation of the dynamic programming was

found to be more efficient than that of the junction tree algorithm during experiments.

Table 8.1 shows the running time for computing rotamer-pair lower bounds of all

rotamer pairs in CASE46-NODE42, for each number of triplets and TRMP. The total

running time of the bounding time can be divided into propagation time of TRMP or

the dual method, and time for performing the post-process, that is, applying Lemma 3

for TRMP, or running the junction tree algorithm for the dual method. As noted

previously in Chapter 6, the dual method has much longer propagation time than

TRMP. However, the post-processing time of the dual method was found comparable

to that of TRMP.

Figure 8-1 compares rotamer-pair lower bounds from the two methods. If we

let LBtrmp (ir, s) the TRMP lower bound of rotamer pair (ir,s), and LBa (ir, js)
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Table 8.2: Size information of subproblems of Case 46 used in the experiment with
BroMAP using either TRMP or the dual method for bounding. The subproblems
were generated from the first depth-first dive of BroMAP using the dual method.
Column (1) # Positions: number of positions, (2) E IRji: total number of rotamers,
(3) Pairs: total number of rotamer pairs, (4) logconf: E', log IRi,

No. Case # Positions IRil Pairs log conf
I CASE46-NODE50 11 462 95094 17.4
II CASE46-NODE46 11 594 151024 18.1

III CASE46-NODE42 11 696 208816 18.7

the dual lower bound from N triplets for the same rotamer pair, then each plot

corresponds to the histogram of LB al(ir, s) - LBtrmp(ir, j) for all rotamer pairs

(ir, js) in CASE46-NODE42 and N = 0, 2, 4, 6, 8, or 10. The line vertically crossing

each plot shows min(ir,j) LBal (i, j) - min(i,,j,) LBtrmp(ir, js), that is, the difference

between the lower bounds from two methods for the entire subproblem CASE46-

NODE42.

We can observe several trends from Figure 8-1. First, the histogram shifts right-

ward as we add triplets although we observe only slight difference between 8 triplets

and 10 triplets. This obviously suggests rotamer-pair lower bounds are also strength-

ened as the dual formulation includes more triplets. Second, for all numbers of triplets

plotted, there are many rotamers such that LBal(ir, j,) - LBtrmp(ir, j,) is negative,

that is, rotamers whose dual lower bounds are weaker than the TRMP lower bounds.

Third, comparing the relative positioning of the large mass of the histogram and the

vertical line suggests that the gains in rotamer-pair lower bounds from using the dual

method instead of TRMP are not as large as the gain in the global lower bound.

8.3.2 BroMAP with dual bounds

We applied the implementation of BroMAP using either TRMP or the dual method

for bounding to subproblems of Case 46 in Table 5.1. Table 8.2 shows the size

information of the subproblems used in the experiment.

For each test case, we measured three running times, each with one of the follow-

ings:
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Figure 8-1: Histogram of LB,,~i(ir,js) - LBtrmp(ir,js) for N = 0, 2, 4, 6, 8, and 10,
where N is the number of triplets used for the dual formulation. The vertical line in

each plot represents min(ir,j.) LBual (ir, js) - min(ij,,j) LBtrmp (ir, Is).
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1. BroMAP using the dual method for bounding. Each node in the BroMAP tree

is subjected to one run of DEE-gp, and upper/lower-bounding using the dual

method. The number of triplets used in the dual formulation is equal to the

boundability index of the node as defined in Chapter 5

2. BroMAP using TRMP with no rotamer contraction. Therefore, each node is

subject to DEE-gp and upper/lower bounding by TRMP.

3. BroMAP using TRMP with rotamer contraction. The number of rotamer con-

tractions performed in each node of the BroMAP tree is determined by 16 times

the boundability index. Therefore, each node is possibly subject to multiple

times of rotamer contraction, TRMP bounding, and DEE-gp.

The reason we use different number of triplets in the dual method is similar to the

reason that the number of rotamer contractions is determined by the boundability

index in Chapter 5; the running time of the dual method is larger than TR.MP even for

zero triplets. Thus, using a fixed number of triplets for all nodes of the BroMAP tree

will significantly increase the running time over the BroMAP using TRMP. However,

the lower bounds from the dual method will not be significantly stronger than TRMP

lower bounds without the help of a good number of triplets, as was observed in

Section 8.3.1. Therefore, we adaptively increase the number of triplets for the nodes

that are likely to have high optimal values and be pruned easily.

The current implementation of BroMAP using the dual method does not include

the feature of rotamer contraction. Therefore, by running BroMAP using TRMP

without rotamer contraction, we can make a direct comparison of bounds from two

methods in BroMAP by comparing the running times from method 1 and 2 above.

We fed an initial upper bound Uo found from the initial branch-and-bound that

generated the test cases for Case 46. For DEE-gp, we used the same combination of

elimination conditions described in Chapter 5. A* was allowed to run on nodes with

log conformation smaller than 13 and, the number of pairs less than 100, 000.

Table 8.3 shows the results of solving the test cases in Table 8.2 using BroMAP

with three different configurations. For all three test cases, the results suggest that
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Table 8.3: Results of solving test cases of Table 8.2 with BroMAP using either TRMP
or dual bounds. Columns (1) Case: test case, (2) Bro: BroMAP with combina-
tion of a bounding method and use/no use of rotamer contraction as described in
the text, (3) T-Br: total number of branchings, (4) F-Br: number of branchings
during the first depth-first dive, (5) Skew: skewness of the search tree defined as
(number of low-subproblems split), (5) F-Ub: UF-BR - U0 , where UF-BR is the up-

(total number of splits)-1
per bound obtained at the end of the first depth-first dive and Uo is the upper bound
fed as input, (6) average reduction of E- logo0 IRi| during the first depth-first dive, i.e.
(logconf - Leaf)/(F-Br), where logconf is defined in Table 8.2, (7) %RC: BroMAP
time percentage used for rotamer contractions, (8) %DE: BroMAP time percent-
age used for DEE-gp, (9) %A*: BroMAP time percentage used for A*, (13) %PR:
BroMAP time percentage used for propagation of TRMP or the dual method.
Case Bro Ttotal T-Br F-Br Skew F-Ub Rdctn %RC %DE %A* %PR

1 1.2E4 350 11 0.61 -1.8 0.37 NA 2 21 77
I 2 3.6E3 304 11 0.59 -1.8 0.37 NA 13 68 19

3 920 57 11 0.75 -1.8 0.37 7 18 47 28
1 4.6E4 1,439 13 0.57 17.1 0.39 NA 3 27 69

II 2 1.5E4 1,240 10 0.58 3.7 0.45 NA 17 58 24
3 2.5E3 55 10 0.83 3.7 0.45 7 15 57 21
1 8.5E4 3,174 16 0.57 2.0 1.17 NA 4 20 76

III 2 2.6E4 2,114 16 0.61 2.0 1.17 NA 21 47 31
3 3.3E3 131 16 0.81 2.0 1.17 10 23 30 37

BroMAP with TRMP bounds perform better than BroMAP with dual bounds. The

main reason for increased running time when using dual bounds can be found from

the increased bounding time as shown in the column '%PR' of Table 8.3. In addition,

the fact that BroMAP using dual bounds needed more branchings than BroMAP

using TRMP bounds (refer column 'T-Br') suggests that the segregation of rotamers

using dual rotamer lower bounds was not as effective as that using TRMP rotamer

lower bounds. Comparing the results from BroMAP with configuration 2 and 3, that

is, cases using rotamer contraction and not, but always using TRMP bounds, it is

observed that employing rotamer contraction improves the running time of BroMAP

significantly.
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8.4 Conclusions

In this chapter, we described a method based on the Hugin architecture junction tree

algorithm that computes lower bounds for individual rotamers and rotamer pairs in

the dual framework. The experimental comparison of rotamer pair lower bounds from

the dual method and TRMP suggests that the improvement of the global lower bound

attained by using the dual method instead of TRMP does not directly translate to the

improvement of individual lower bounds. Instead, we found the rotamer pair lower

bounds from the dual method are sometimes weaker than the bounds from TRMP

even when the dual problem is derived from a number of triplets. We suspect the

main difference comes from the fact that TRMP maintains and refines one pairwise

pseudo-max-marginal value for each rotamer pair whereas the dual method computes

a lower bound as an explicit convex combination of optimization results from each

subproblem. This somewhat agrees with the previous observation of Chapter 6 that

the global lower bound from the dual method for a fixed number of triplets weakens

as we use more number of subproblems to cover the original graphical model and the

triplets.

We also employed dual bounds in BroMAP and compared its performance with

that of BroMAP employing TRMP bounds using small subproblems of a protein

design case. Due to the long running time of the dual method and weak separation of

rotamers by individual rotamer lower bounds from the dual method, BroMAP using

dual bounds performed worse than BroMAP using TRMP bounds. It is our interest to

further investigate ways of utilizing the dual method to improve the speed of BroMAP

over the case of using TRMP bounds. Using alternatives to the subgradient methods,

such as message-passing algorithms [Globerson and Jaakkola, 2007a] is expected to

speed up the solution time of the dual problem. Adaptation of a fast message-passing

dual method to additionally compute individual bounds can be an interesting future

work. In addition, rotamer contraction can be very useful when used together with

the dual method because we can incrementally use more expensive dual formulations

as the problem size is reduced by rotamer contraction repeatedly.
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Chapter 9

Conclusions

This thesis addresses the problem of exactly solving the global minimum energy con-

formation (GMEC) search problem exactly. We particularly focused on a specific

instance, for which there were a larger number of rotamer choices at each design po-

sition and the interaction network between design position was dense. Such GMEC

problems are often encountered in protein-protein interface design or protein core

design. These problems impose the computational challenge that the de facto stan-

dard method called dead-end elimination (DEE) cannot handle very well with limited

computational resources, even when augmented with the A* algorithm.

The GMEC problem is equivalent to the MAP estimation problem studied for

machine learning applications. In this work, we borrowed the techniques used for

MAP estimation called tree-reweighted max-product (TRMP) algorithms to obtain

systematic estimations of the GMEC energy. However, the large cardinality of con-

formational space often forbids direct application of these techniques to the GMEC

problem. It is also often the case that estimation of the GMEC energy from simple

uses of TRMP is not accurate enough to be useful. Therefore, we leveraged MAP

estimation using a systematic search method called branch-and-bound, which tackles

a small fraction of the entire problem at a time and seeks to exclude a subset of con-

formational subspace through bounds comparison. The final version of our method

additionally incorporates DEE into the branch-and-bound framework, rotamers and

rotamer-pairs elimination by TRMP bounds, and other techniques that produce lower
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bounds through simplification of the problem.

The resulting method, called BroMAP (branch-and-bound rotamer optimization

through MAP estimation), showed promising results in our computational experi-

ments using protein design cases. Our method extended the class boundary of protein

design cases by solving large scale cases that could not be addressed using DEE/A*

on a typical workstation. It also outperformed DEE/A* for challenging design cases.

In the second part of the thesis, we further explored several ways of improving the

MAP estimation, that is, the lower bound of the GMEC energy, by using Lagrangian

relaxation techniques. Typically, very good upper bounds are obtained relatively

easily in the early stage of BroMAP at the end of the first depth-first dive. Therefore, a

speed-up of BroMAP can be obtained if stronger lower bounds are available for similar

cost of computation, which will result in more aggressive pruning of the search space

without the loss of any accuracy.

We took an approach of using the subgradient method to directly solve the dual

problem. A dual problem derived from sets of trees that cover the original graphical

model will have the same optimal value as that of the linear program TRMP solves.

Adding triplets to the formulation, the lower bounds from the dual problem are

improved. We suggested a scheme for triplets selection based on strength of pairwise

energies. Incremental addition of triplets to the formulation while the subgradient

method continues was seen to reduce the running time of the subgradient method.

We further explored techniques for improving the lower bound computed by the

subgradient method. In this approach, instead of increasing the number of triplets, the

Lagrangian relaxation was tightened through addition of violated valid inequalities.

Evaluation using small problems showed that the method can find the optimal value

or improve the lower bound by repeatedly adding the inequalities to the dual problem

and re-solving it. However, the computational cost for identifying relevant inequalities

and re-solving the dual problem in the current scheme tends to be excessive for the

degree of bounds improvement.

Just as using rotamer and rotamer-pair lower bounds from TRMP turned out to be

a large improvement in BroMAP, the strengthened Lagrangian relaxation can be more
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usefully adopted in BroMAP by computing rotamer and rotamer-pair lower bounds.

Such lower bounds can be readily computed from the result of Hugin propagation.

Evaluation of these individual lower bounds and the dual method was made through

integration with BroMAP. The preliminary results suggest that the individual bounds

from the dual method are not necessarily stronger than those from TRMP. In addition,

use of the dual bounds in BroMAP does not in general improve the running time of

BroMAP. We still expect using different faster solution methods for the dual problem,

such as message-passing algorithms, and combining rotamer contraction with the dual

method can make BroMAP using dual bounds more competitive.

Future research in the direction of improving the running time of the dual method

is called for. Compared to the compact algorithmic form of TRMP, the current sub-

gradient method provides more flexibility in employing various optimization strate-

gies, but the computation appears less efficient. The dual method described in this

work also offers large room for improvement through, for example, more efficient co-

ordination of dynamic programming applied to each subproblem, approximate com-

putation of subgradients, more rigorous approximation of primal solutions, and opti-

mization of separation routines.

The thesis lacks a sound mechanism of governing the overall running time of

branch-and-bound in conjunction with the computation performed for each subprob-

lem. For example, the dual method using addition of triplets or cuts can provide

stronger bounds, but the time cost of doing them can be very expensive. A robust

practical method will be made possible through systematically balancing the effect of

obtaining accurate results from subproblems and the overall performance of branch-

and-bound.

BroMAP was developed and evaluated with the specific class of protein design

cases that need to be solved in mind. However, our method does not fully exploit

any problem-specific information other than the discrete energy terms computed from

the force fields model. Such energy terms are a complete description of the problem,

but may be ineffective or too implicit in conveying certain types of constraints. For

example, the computation can be simplified by incorporating geometric constraints
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derived from the physical context, such as the three-dimensional shape of the back-

bone structure and relative position of amino acids and rotamers.

The techniques described in this thesis are also applicable to other areas that

require discrete MAP estimation on the graphical model. It is our interest to have

a chance for evaluating the techniques on data from different applications. Finally,

some techniques presented in this work may be less useful depending on the computing

environment, or because of the expensive computations required to obtain incremental

improvements. However, it is the author's belief that rigorous systematic approaches

such as Lagrangian relaxation or convex approximation, in general, will become more

useful as the computing environment evolves further.
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Appendix A

Hardness results of the GMEC

problem

The vertex weight can be incorporated in the edges incident to the vertex so that the

GMEC problem only deals with edge weights. We modify the edge weights as follows:

E(i) +E(j(A.1)w(ir, ji) = E(irij) + (A. 1)

where k is the number of residues in the protein. Obviously, the objective value is

not affected by this modification. In this report, we assume w(i, js) is nonnegative.

A.1 NP-hardness

Now we show hardness of the GMEC problem with nonnegative edge weights and no

vertex weights.

Lemma 15. The GMEC problem is strongly NP-hard.

Proof. We show that the GMEC problem is NP-hard even when restricted to instances

where every E(i,js) is restricted to 0 or 1 and E(ir) is 0. We describe a polynomial

time reduction from 3SAT. Given a CNF ¢ with k clauses, we construct an undirected

graph G as follows: The vertices in G are organized into k groups of three vertices.
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Each group corresponds to a clause in ¢, and each vertex in the group to a literal in

the associated clause. Edges of G connect every pair of vertices but those in a group.

Each edge has weight 1 if one end point is inverse of the other, and 0 otherwise.

With this reduction, if 0 is satisfiable, then there are at least one true literal in

each clause. Taking one true literal from each clause constitutes a k-clique in G, and

the edge weights in the clique are all 0 since no conflicting literals can be true at the

same time. Therefore, the optimal sum of weights is 0.

As the reverse direction, if G has optimal sum of weights equal to 0, then all the

edges in k-clique has weight 0. This suggests that there are no conflicting literals in

the k-clique. By assigning true to literals in the clique, each clause has at least one

true literal. Therefore, 0 is satisfied. O

We note that the GMEC problem is also strongly NP-hard when each part contains

only two vertices. Using the same reduction from above on MAX-2SAT with k

clauses, we observe that MAX-2SAT has optimal value m iff the GMEC problem

has optimal value (') - (m). Furthermore, an optimal solution of the MAX-2SAT

is given by assigning true to vertices of the k-clique in the optimal solution of the

GMEC problem. Since MAX-2SAT is NP-hard, the GMEC problem whose part

containing two vertices is also NP-hard.

A.2 Hardness of approximation

Using the same reduction from above, it is easily seen that the GMEC problem does

not have a constant factor approximation algorithm unless P = NP. Suppose it has a

c-approximation algorithm. Then, 3SAT can be determined in polynomial time to be

satisfiable iff the c-approximation algorithm for the GMEC problem finds a solution

value 0 for the constructed graph because for any c > 0, the worst approximation

solution value for 0 is still 0.
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A.3 Approximation for metric weights

We present a simple kl -approximation algorithm for the metric instances of the

GMEC problem. That is, when w(xr, zt) > w(r, ys) + w(ys, zt) is true for all vertices

Xr, ys, and zt, x h y - z. We also assume that the number of parts, k, is a prime

number.

In a k-clique where k is a prime number, we note that the clique can be decomposed

into edge-disjoint tours of vertices in the clique. For example, when k = 7, suppose

we label vertices as 1, 2, 3, 4, 5, 6, and 7. Then, we can decompose the 7-clique into

3 tours as follows:

Tour 1 only using edges (1, 1 + 1 mod 7) 1-2-3-4-5-6-7-1

Tour 2 only using edges (1, (1 + 1) mod 7) 1-3-5-7-2-4-6-1

Tour 3 only using edges (1, (1 + 2) mod 7) 1-4-7-3-6-2-5-1

In this way, after making k1 separate tours, each only using edges (i, (i + 1

mod k), 1 = 1,..., -1, all edges in the clique are covered exactly once. This is

because exactly k hops are necessary to come back to the starting point since k is a

prime number, and each edge cannot belong to more than one tour by the construction

of the tour, resulting in k(k-1) distinct edges traversed, which is equal to the number

of total edges in a k-clique.

Let W be the sum of edge weights in the k-clique, and W1, WV2,,... Wk-1 be sum
2

of edge weights in tour 1,2,..., -1. Then, we note that

W
min Wi < - (A.2)i - k-1

2

Based on this fact, we can think of a simple approximation algorithm. However,

instead of tours of vertices, we consider tour of parts in the GMEC problem. That is,

we are required to visit exactly one vertex in each part. The algorithm is as follows:

1. For each tour of parts Ti:

(a) For each vertex v in the starting part of Ti
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Run Dijkstra's shortest path algorithm to find the minimum weight tour

ti(v) from v to v only using edges in Ti.

(b) Find min, ti(v) and let the associated tour Ti,min.

2. Find mini Ti,min and let the associated tour Tmin.

3. Add non-existing edges between every pair of vertices in Tmin to construct a

k-clique.

Figure A-1, Figure A-2 and Figure A-3 illustrate the algorithm. If we apply the

suggested algorithm on the graph shown in Figure A-1, we iterate step 1 twice since

there are two distinct tour of parts; 1 - 2 - 3 - 4 - 5 and 1 - 3 - 5 - 2 - 4 - 1.

Figure A-2 gives a detailed illustration how a minimum weight tour is computed for

each tour of parts. We run Dijkstra's algorithm on the first half of the graph (from

part 1 to part 1') for each vertex in part 1 as the starting point. We do the same for

the rest of the graph. In the end, as shown in Figure A-3, we identify the minimum

weight tour (12 - 22 - 33 - 43 - 53 - 12), and add edges to find a feasible solution.

rec

Figure A-1: Tour 12 - 22 - 33 - 43 - 53 - 12 and tour 12 - 32 - 52 - 21 - 42 - 12
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res 1 res 2 res 3 res 4 res 5 res 1'

Figure A-2: An elongated graph to calculate minimum weight tours

residue 1

res

Figure A-3: A feasible solution to the GMEC problem

Now we show that the algorithm gives -ý--approximation. By the fact presented

previously, we know, about W(T,,i,), the weight of Tin, that

20PT
WI1(Tmin) < --- (A.3)

We can arbitrarily relabel the vertices in the tour. Suppose we labeled vertices so

that Tmin is vI - 2 - . -Uk - Vl. By jumping over one adjacent vertex in Tmin,

we add edges of a tour vi - v3 - V5 - ... - vk-1 - vl. By the metric assumption, we

know that
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k

E W(Vi, V(i+2 mod k)) = w(v1, v3) + W(v3, v 5) + ... W(vk-1, V1) (A

< (w(v1, v2 ) + W(V2 , V3)) + (w(v3, V4) + w( 4, 5)) + ...

+(W((vk-l, Vk) + W(Vc, vl)) (A
k

S2 w (vi, V(i+i mod k))
i=1

= 2W(Tmi)

In the same fashion, we can show, in general,

k

Sw (vi, V(i+l mod k))
i=1

k

Slw(vi, V(i+l
i=1n

= lW(T•,n)

Therefore, we know, about W(C), the weight of the constructed clique C by the

algorithm, that

k-1
2

W(C) • Zow(vi, (i+l mod k))
1=1 i=1

k--1
2

< ZlW(Tmin)
l=1

< (k 1)(k + 1)W(Tm)- 8

(A.10)

(A.11)

(A.12)

Finally, from (A.3), we have W(C) < k+-OPT.

The algorithm runs in polynomial time kO(n)O(Dijkstra)) = O(kn3).
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Appendix B

Algorithm descriptions

B.1 TRMP

Algorithm 12 describes "edge-based reparameterization updates" [Wainwright et al.,

2005] for a set of general trees T. In line 2, 3, 5, and 6, 0l and r" are constants

that can be arbitrarily set as long as they are positive. r(i) is the set of vertices

neighboring i in g for i E v(g).

Algorithm 12: TRMP (edge-based reparameterization updates [Wainwright
et al., 2005, Kolmogorov, 2006])

Data: E > 0, g = (V,&), {p}, {e}
Result: tree-consistent pseudo-inax-marginals {v}

1 begin

2 ~o (Xi) _+- 9 exp (-e i v
V i4 (xi, x) -- K9 exp ( ei(i) ei() -(e()), (i,j) E

4 repeat update pseudo-max-marginals

Pi

6 jn< n .3 max., vin(xi~x;)max 'E Ri V5(x,,,x j) I - j
6 V+l(xi , ) i- Ki+ mx)(xsxj) ma(xi R Ej) , (ij) , .

7 until Ivn+l --n| < E, update n +- n + 1
s end
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B.2 Subprocedures of Algorithm 14

Algorithm 11 and Algorithm 13 describe the subprocedures of DEE-gp.

Algorithm 13: eliminate-singles

Data: {Ri}, {n}, A {e}, P,(,
Result: {R}, {'}, P', {e'},P'
begin

foreach ir E Ri, i E V do additional singles-flagging using pair-flagsL foreach j E V, j $ i do
L if Rj = {jsI(ir,j,) E PU P} then bD ~-) U {ir

foreach i E V do define R1

L R RV\{iriir E D}

if Rý = ¢ then
the problem is infeasible, so quit with optimal value +oo

else leave the terms of {('} and {e'} only for {RI}, and

L P -- P\{(ir,Jis)ir E D or js E D},, P' - P\{(ir,js) iir E b or js E D}

11 end

B.3 ILP formulation

The ILP formulation for the GMEC problem referred in this paper is as follows:

mmin [ E(ir)Xi,+ +
{Xt},{X ,} aEV rERi (ij)E

E Xir 1,
rER,

X zi,, = Xi,,
sERj

Xi, E {0, 1},

e (r,s)ERaxRj

Vi E V

V(i,j) E E, Vr E Ri,

Vi e V, rE Ri,

XiIr Ej {0, 1},

An LP relaxation can be obtained by simply dropping the constraint (B.4)-(B.6).

The resulting LP is equivalent to the tree-relaxed LP [Wainwright et al., 2005]. Note
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Algorithm 14: unification

Data: 9, {Ri, {&},P, {e}, P
Result: g', {R/}, { p}, ', {e'}, P'

1 begin
/* define g' - (V', E')

v +- (V\t{, t}) U T[1 :l
S' +- {(i,j) E Sli, j (, 7} U {([ : r], j) (ý,) E or (T,J
/* define {Ri}, i E V' the same as {Ri} except

RI• • { [r : Rs]l ((r,s) x R R,, (.r,s) PU P}
/* define P' and P'

P' {(ir, js)](ir, js) E P, (i, j) E S',i, € [(: ,]}
P' - P' U {([(: ?][r:s],Jt) ((r, jt) E P or (sr,,jt) E P}

P' {- {(ir,j is) I (ir, is) E P, (i,j) E S',i, j [ : : }
P' ÷- P' U {([( : 17]lr:,•,jt) (Crjt) E P or (ns jt) E P}
/* define f{'} the same as {6} except

fI E R

e ([r : s]) +- eg(r) + e,(s) + e(q(r, s) or [r : s

y (s, t) for [r : s] eR , te

/* define {e'} the same as {e} except

ef
ende ([r:ql s], t) +- egj (r, t) + e,,j (s, t) for [r : s] E R' ,: te

Rj, j E v'\[( :q ]

Rj, j G V'\[ :]

that the constraint (B.6) can be replaced with

xij, > 0, V(i, j) e , (r, s) ER x R3.

without affecting the optimal value.
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Appendix C

Proofs

C.1 Proof of Lemma 1

From (2.30), we have

maxp(x) = max v, nPS(x; V))p(S) <• max ps(x; v) I(S)• (C.1)
xx x

SES SES

Since v is tree-consistent with every S E S, we can easily find a MAP assignment xs

such that xs E arg maxx pS(x; v). For how to obtain such an assignment, please refer

Wainwright et al. [2004] Then, due to the assumption that v is tree-consistent with

S and is in a normal form, we have the following properties:

1i(xs) = 1, for all ie V(S), (C.2)

vi(x, xs ) = 1, for all (i,j) Ec (S). (C.3)

Therefore,

maxpS(x; v) = p(x; ) = -f vi(xS) l '(, x' = 1. (C.4)X iEV(S) (iIj)EIF(S) Vi (Xi) 1. (C

Since (C.4) is true for every S E S and EsEs p(S) = 1, we obtain maxx p(x) < v,

from (C.1).
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C.2 Proof of Lemma 2

From (2.30), we have

max p(x) = ma
{xlzc=r} {xIXc

SEs:(Ev(s)

SES SES

max ps(x;
{xiXC=r}

max ps(x; V)
{xlxC=r}

max
SES:(ýV(S)

(C.5)

By the definition of max-marginals and the assumption that v is tree-consistent, for

S E S such that C E V(S), we have

C (r) = C max ps(x; v),
{ixc=r})

(C.6)

for some constant na. We know there exists r* E RC such that

vc(r*) = max v(xC)
XCERC

(C.7)

Then, since v is in a normal form, v((r*) = 1. We know from (C.4) in the proof of

Lemma 1, that max{xlxc=r*} Ps(x; v) = maxx ps(x; v) = 1. Therefore, r¢ = 1, and

max pS(x; v) = VC(r){xIlz=r}
(C.8)

On the other hand, for all S E S such that C 0 V(S), we know maxl{xxc=r, pS(x; v) =

maxx pS(x; v) = 1. Plugging the obtained values of max{xlxc=r} pS(x; v) and ESEs:CEv(s) P(S) =

pC into (C.5), we obtain max{x•x•=ri p(x) • vcv(r)Pc.

C.3 Proof of Lemma 3

1. If (7 77 V(S), we know max{xx=r,, ,,7=s} pS(x; v) = maxxps(x; v). Then, since

v is tree-consistent and in a normal form, max{x,,x=r,x,=s} p(x; v) = 1 from

(C.4).
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2. If ( E V(S), and r ~ V(S), we know max{xlxc=r,x,=s} pS(x; v) = max{xlxc=r) p(x; v).

Then, from (C.8), maxf{xxc=r,x,=s pS(x; v) = vC(r)

3. If ((, 7) E S(S), by the definition of max-marginals and the assumption that v is

tree-consistent with every S, we have v(,(r, s) = Co max{xl(xc,x,)=(r,s)} p(x; v),

for some constant KeC. We also know there exists (r*, s*) E R( x R, such

that vc,(r*, s*) = max(xc,Zx,)ERCxRq va(x, ,(x ) = 1a, maX{xI(xc,x,=(r*,s*)} pS(x; v).

Then, since v is in a normal form, i.e. v¢,(r*, s*) = 1 and we have

max pS(x; v) = max ps(x; v) 1
{xI(XC,x,)=(r*,s*)} x

(C.9)

from (C.4), we obtain C,7 = 1. Therefore, max{xl(xc,x,=(r,)} pS(x; v) = Pv(r, s).

4. If (, 7 E V(S) and ((, 7) V .(S), let ( = -y(S). Then,

max pS(x; v) =
{xi(xC,x,)=(r,s)}

max v (xý)vC(r)v,(s) v S(x~,r) .10)
{xI(xc,x,7)=(r,s)} v (q)((r)

jEv(s)\{1,7,1}vI (x,) V(s)

max
{xI(xc,x,)=(r,s)}

= max (xý, r) n(xý, 8)XC V6 (Xý)

v• (xy) uv,(x ,xj)v (zX) v(Xj)
HI

jEv(s)\{¢,n,m}

vu (x ,xj)

maxxi V&(xý)

From tree-consistency of v, we have v (xý) = %, maxxj v6j(x, xj). Since v

is in a normal form, for some xs E argmaxxpS(x; v), we have v6(xs) = 1,

and maxx, ~3v(4, x) = vY(x , 4x) = 1. Therefore, ,4 = 1, and vý(xý) =

maxx, uýj(x, x,). So the maximization over xj in the parentheses of (C.13) is

equal to 1 for all j E V(S)\{C, r, (}. Therefore,

max pS(x; v) - max v (xý, r),(xý, s)
{xl(xC,z~)=(r,s)} ZX& v (xý)
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C.4 Proof of Lemma 4

1. Let y E £(X, P'). Then, by (4.1) and f' D P, we have g(y, P)

y E £(X, P).

0, therefore

Since this is true for all y E £(X, P'), we have C£(X, P') C

C(X, P). Therefore, either £(X, P') is empty, or we have minxEr(x,p) e(x) >

minxEG(X,P) e(x).

2. Let E arg minxc(x,fp) e(x). Then, from e(x) < U, we know min{xj(X,,xj)=(,j)} e(x) <

U for all i,j E V, i 4 j. So we have (i, ¾j) , P({e},U) for all i,j E V,

i 5 j. Therefore, we know g(ki, P) = g(x, P({e}, U)) = 0, which combined

with P'\P C P({e}, U) gives g(k, P') = 0. Finally, from minxc(x,f) e(x) <

minxL(x,PI) e(x), we obtain minxEL(X,f,) = e(ik).

3. From £(X, P') = C C £(X, P), L(X, P) can be also empty. Otherwise, let;

i E arg minxEL(x,p) e(x). By contradiction: if we assume e(i) < U, we know

P) = P U)) 0. Then, fromm P'\P C P({e}, U), we also have

(ki, P') = 0, which contradicts ii E £(X, P')= .

C.5 Proof of Corollary 1

(t=) If L(X, P)

applies.

0, then £(X, P') = 0. If minxec(X,) e(x) > U, then Lemma 4.1

(4) If £(X, P') = 0, then Lemma 4.3 applies. If minxEC(x,f,) e(x) > U, then

minxE,(x,p) e(x) also exists. From minxEL(X,P,) e(x) > minxcr(x,P) e(x), we divide

the cases as follows:

1. if minxGE( x ,9) e(x) = minxEC(x,f) e(x), then minxcE(x,P) e(x) > U.

2. if minxEC(X,p,) e(x) > minx e(x), then minxLc(x,P) e(x) > U from Lemma 4.2.
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C.6 Proof of Lemma 5

Let Y be the conformation space X or Xrc excluding position C, i.e.

Y =R xR 2 X... - -1 x R+1 x ... x R. (C. 14)

To simplify the notation, we define (x) as e (xc) = 0 and ej (zx, xj) = ecj(r, s) + r()

for j e F(C), whereas all the other terms of e(x) are same as e(x). Then, we have

e(x) = e(x) for all x E X. We also use short notations erc(x) = er(x, P).

1. We divide the proof into small parts as follows:

(a) We show {y E Y j.({y,x( = r}, P) = 0(} C {y cE y ({y, x(

0} is true for all r E Ck, for each k = 1,...,1.

Ck}, prc)

Let L, = {y E Y g({y,xC = r},/P)

Ck },prC) = 0}.
0} and Mlk = {y E Y j({y,x =

Let x: = {y, ^( = r}, where y E L,. Then, we know

jij (A:I, y, P) = 0 for all (i,j) E g. Therefore, we know gij.(%:, ,P'•) pe

j([ij, j, P) = 0, for i,j I ( by definition. For j E F((), we have

9jj(Ck j, ,Pre) = FCICk gC (r, ýj, P) 0 because r E Ck and ±j (rj,y, P) =

0. So we obtain g({y, z¢ = ck}, Pre) = 0 and ye Mk. Therefore, Lr C Mk.

(b) We show, if £(X, P) is not empty, then £(Xr, Pre) is not empty.

We know

(X c, pr•C)

- U U {{y,Xz = rly E Lr},
k= 1,...,l r Ck

= U f{{y,x = Ck/}y E Ik},
k=1,...,l

(C.15)

(C.16)

where L, and Mk are as defined in (la). Since £(X, P) is not empty, Lt

is not empty for some t E Aq, for some q, 1 < q < 1. From (la), we know

Lt C AJq. Therefore, {{y, x = aq} y E M=q} is not empty. So £(Xr, pre)
is not empty either.

2. We divide the proof into small parts as follows:

223



(a) Following inequality is true for arbitrary finite functions f(x) and g(x),

both defined over some non-empty finite set A:

min f(x) - min g(x) Ž min{f(x) - g (x)}.
xEA xEA xEA

We show (C.17) as follows: let i E arg minxEA f(x). Then,

min f(x)- min g(x) =
xEA xEA

f(i)-ming(x) > f(R)-g(R) > min{f(x) -g(x)}.
xEA xEA

(C.18)

(b) We show e({y E Y,x( = r}) > e'r({y E Y,x( = ck}) is true for all

{y E Yl({y, xC = r}, P ) = 0} and r E Ck, for each k = 1,...,1.

By definition of e0, i.e. er•(ck, S) = minrECk,(rs) p j(r, ), we know

e¢j(r, s) > e (ck, s) is true for all r E Ck, s E Rj such that (r, s) / P, for

each j E F(() and k = 1,..., 1. Since e(x) and erc(x) are different only for

((, j) pairwise terms such that j E F((), the claim is true.

(c) We show part of the inequality in Lemma 5.

We know e(ck, s,P) > rc(k, s,) for all s E Rj, j E F((), and k=

1,... , because er6(ck, 8) = minrEck,(rs) p )j(r, s) while er(ck, , )

minreck (j (r, s). Since the rest energy terms are all same between erc(x, P)

and e'r(x, ) by construction, we obtain erc(x, P) > erc(X, ) for all x E

Xrc. Therefore,

min er,(x, 4) min erc(x, P) <
xEXrc xEXrc

min
xEC(Xrcprc)}

(d) We complete the inequality of Lemma 5 by using part (la), (2a), and (2b):

If £(X, P) is empty, we regard minxer(x,p) e(x) as +oo since the subprob-

lem will be pruned by any U; therefore, minxE(x,P) e(x) > minxEý(x~r,pcr) erc(x).

224

(C.17)

erc(x, P). (C.19)



On the other hand, if £(X, P) _# 0,

min - (x) - min erc(x)
xEL(X,P) xEL(XrcPrc)

= min min min a(x) - min min ere(x)k=1,..., rECk {xEL(X,P) Ix=r} k=1,...,l {xeC(XrC,STrc)IxC=ck}

> min min
k=l,...,l rECk

min
{xEf(X,P) IzX=r}

e(x) - min erc(x)
{xEL(Xrc,J7c)jxC=Ck}

minm min mmi
k=l,...,l rECk {yEY|({y,xC=r},P)=0}

- min erc(
{yEYl|({y,xC=ck },Prc)=0}

> min min •m min
k=l,...,l rECk {yEY({y,xC=r},P)=0}

-min er" ( {
fyEYlj({y,xc=r},P)=o}

> min min min {i
k=1,...,1 rECk {yEYlj(f{y,xc=r},P)=O}

> 0.

e({y, x = r})

{y, x = Ck})}

e({y, x( = r})

, "X = T})}

(f({y, = r}) - erc({y, X = Ck

C.7 Proof of Lemma 6

We will use the following inequality for arbitrary finite functions f(x) and g(x) both

defined over some non-empty finite set A:

min f(x) - min (x) < max{f(x) - g(x)}.
xEA xEA xEA

(C.20)

A proof for (C.20) is as follows: let : E arg minxEA g(x). Then,

min f(x) - ming(x) = min f(x) - g(R) < f(R) - g(i) < max{f(x) - g(x)}.
x x x xEA

Now, if £(Xrc, pre) is empty, AOPTT C is -oo. If we let erc(x) and y defined same
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as in the proof of Lemma 5,

min e(x) - m1in e (x)xEX {xE•(XrcPr.)}
= inm min min e(x) - min min erc(x)

k=l,..., rECk {xEXIxC=r} k=l,...,l {xEL(Xr,,pr•c)Ix¢=ck}

< max min min
k=l,...,l rECk {xEXjX(=r}

k max min <min e({y,
k=l,...,l rECk yEY

min erc({y, x
{yEYl ({y,x =ck },P )=o }

e(x) - nmin
{XEL(XrIc,fPrc) X(=Ck)

r})

ck })}

< max min min =({y, hx
k=l,...,l rECk {YEY ({yX=CkCk,P )=

min erc({y, x
{yEYI ({y,x(=ck },prc)=0}

< max minl
k=l,...,l rECk

max
{yEYI ({y,x =ck },Prc)=0}

{e({y, "x = r}) - erc({y, x = ck})}

= max min max S {fj(r, yj) - e'(ck, yj)
k=1,...,1 rECk {yEYl({y,C=ck},PIrc))=O} jF(< max mil 5 max

< max min max (e{ (
k=l,. .. ,l rECk {sERj I(ck,s) rp.c}

jE Ur()

r, s) - e (ck,s)}

< max min -max{e (r s) -e(cks, UZrCT( ().k=1,...,l rECk sERj
jEF(c)

(C.22)

(C.21) holds by the fact YD {y t Y .({y, -= ck}, prc) = 0}. The last inequality

(C.22) is true because {s E Rjl(ck,s) ý Prc} C Rj and e"(ck, s, P) > e' (ck, S, ) for
all s E R., j E F(C), and k = 1,...,1.

C.8 Proof of Lemma 7

Let RE arg min(x,p) e(x). Then, we know •(5) = e(R) = minxerl (x,P) e(x). How-

ever, we have ý(x) > M > •e > () for all x E X such that g(x, P) > 0. Therefore,

we obtain arg minxex e(x) n {x E X l(x, P) > 0} 0. Thus, arg mninxx e(x)
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argminxr(x,9) e(x). Since &(x) = e(x) for all x such that §(x, P) = 0, we obtain

arg minxEx E(x) = arg minxer(x,P) ý(x) = arg minXEr(x,P) e(x).

C.9 Proof of Lemma 8

There are three kinds of operations that can change the pair-flags and the energy func-

tion: flagging, singles-elimination, and unification. For clarity, the claim is rewritten

as follows by denoting n the count of operations performed in DEE-gp:

1. arg minx E((x(),p(n)) e(")(x) = argminx•(r(xV(l,)(f)) e(n)(x) if £ (X, P) 54  , and

£(X(W), p(n)) = 4 if £(X, P) = 4.

2. for any z E arg minxEL(x(,)p(,n)) e(n)(x), we have e(")(z) = -(")(z).

For each n, let A( df arg minxEL(x(n),P, )) e(n)(x) and B ") ef arg minxCL(x(,) , (n)(x).

We know B (0) # q since P(o) is empty.

For n = 0, we have P(o) = and e(0)(x) = e(x) for all x E X. Therefore, if

£(X, P) = 4, then £(X(n), P(n)) - 4.I If (X, ) # 4, then A(0) = B(0) because P(o)

is empty and by Lemma 7. On the other hand, for any z E A(M), we know j(z, P) = 0.

Therefore, 6(o)(z) = e(O)(z).

Now we show the claim is true after (n + 1)th operation if it is true after nth

operation. It is straightforward to see that £(X("), p(n+l)) = 4 if £(X(n), P(n)) = -

because each operation eliminates a set of conformations (possibly an empty set).

Therefore, we assume £(X, P) 5 0 in what follows.

1. Flagging: Flagging does not modify P(n), e(n)(x), or (n) (x). Therefore, A (n+l) =

A (n). However, we have p(n) C /(n+1). Since £(X(n), P(n)) D £(X(n), P(n+1))

and e("+Z)(x) = e(")(x) for all x E X, we have B(n) D B (n+ ). Because DEE does

not flag GMEC rotamer-pairs, we know any z E B (n) satisfies g(z, ("n+1)) = 0

and is also z E B (n+1). Therefore, we obtain B (n+x) = B(") = A(-" = A("+1)

Let z E A(n+l). Then, we also have z E A-t ) = B("). Since the energy functions

are not altered, we have e(ntl)(z) = e(n)(z) = &(n)(z) = -(n+l)(Z).
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2. Singles-elimination: Singles-elimination only eliminates conformations contain-

ing flagged rotamer-pairs. From A N") = B (") , for any z E AW( ) , we have

§(z, P(n)) = g(z, P(n)) = 0. Therefore, z contains no flagged rotamer-pair, and

will not be eliminated by singles-elimination. So we have A (n) C £(X(n), P("~+)).

On the other hand, the energy terms are not changed by singles-elimination but

only the conformation space is reduced. Therefore, we have A(n+ 1) = A-( )

Similarly, we can also obtain B (" + 1) = B (" ) . Therefore, A("+ 1) = B(" + 1) .

We obtain e(n+l)(z) = ^(l+l)(Z) for z E A(n+l) by the same argument used in

flagging.

3. Unification: For any z' E £(X(), P(n+1)), there exists z E £(X((), P (n)) by a

mapping such that

z = zi for i #F [• r0], (C.23)

z = [z( : z,]. (C.24)

In addition, we also have e(n+l)(z') = e(n)(z) for such z and z'. On the other

hand, any z E A (") have a mapping z' e A(n+l) because such z satisfies

§(z, P(n)) = §(z, P(n)) = 0 from A (t ) = B (") and therefore none of the rotamer-

pair in z' will be in P(n+1). So there exists a one-to-one mapping between

elements of A (") and A(n+l ) .

A similar argument can be made to claim there exists a one-to-one mapping

between B (n) and B(n+1). Then, from A (t ) = B (") and because the same type

of mapping is used for A" ) ~- A ( '+1) and B (" ) a B (
-

+ 1) , we obtain A( +1 ) =

B(n+1)

Let z' E A(n +1) is a mapping of z E A(") by (C.23) and (C.24). Then, we obtain

e(n+1)(z') = e(n)(z) = -(n)(Z) = e(n+l)(z').
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C.10 Proof of Corollary 2

If £(X, P) = ¢, we know £(X(n), P(n)) = / for every n from Lemma 8 (see the

proof of Lemma 8 for the notation). Therefore, £(X, P') = £(X(•), P(") U jP(n)) C

£(X (), P(n)) = .

If £(X, P) # ¢, since DEE only eliminates non-GMEC rotamers and rotamer-

pairs, we have

(C.25)min e(x)= min
XEL(X,P) xEL(X(n),P(-))

for every n. By Lemma 8.1, we have AW") = B ( ) . So for every z E AW"), we have

§(z, P(n)) = j(z, P(n)) = 0. Let N be the the last count of operations in DEE-gp

and z(N) E A(N). The last step of DEE-gp (P' _ (N)U ((")) gives g(z, P')

§(z, P(N)) V §(Z, P(N)) = 0. Then, from

min e'(x) _ e(N)(z(N)),
xEL(x,P,)

min e'(x) = e(N)(z(N)).
xEL(X,P')

Finally, from e(N)(z(N)) = e(N)(z(N)) by Lemma 8.2, and the equations (C.25) and

(C.26), we obtain minxeL(x,p,) e'(x) = minXEL(x,P) e(x).

C.11 Proof of Lemma 9

Any /L E M(g; 6 h ) satisfies

(C.27)E i, r = pi(xi) = 1,
rERi rRE R

for all i E V(Gh), and

sERj

(C.28)E P(Xi = r, xj) = p(Xi = r) = p ,,
sERj
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for all (i, j) E S(Gh) because p(x) is a distribution. From V(T') C V(Gh) and S(TI) C

S(Gh), we have M(G; gh) C LOCAL(G; TI) for all 1, and therefore A4(G; h) C

f 1LOCAL(9; T1). On the other hand, if we let

7(xc) =
{x'Ix' =xC )

(C.29)

E{'cl(x•,x')-(r,s)}
7(x') =Cfvl- SE'c

{IXc(x',x')=(r,s)} -x"Ix =x'
p(x") = pij (xi = r, xj = s) = I1 ir,'

(C.30)
for all (i,j) E E(C) n f(Gh), and therefore, M(G; gh) C C(G; gh , C).

C.12 Proof of Lemma 10

We use the index set notation Z(G) defined as:

T(9) = U U{f rE Ri (ij U
I (i~j)e9

{i,js I (r, s) E Ri x Rj}

We can show the following equalities are true:

h (a) min 0(0h) . X b) minm (0h ) -
xE. rEM(g)

min 0(0 h) . - ,

rEM(g;g h )

where equality (a) is from the definition of 0(-), and equality (b) is Lemma 1 of

Wainwright et al. [2005]. Equality (c) follows from p('h) • . = ¢(0h) j ' for any

p E M(9) and /p' E M(g; gh) such that p ' = /' for all a E I(gh), because

0(0h)" = 0 for all a E Z(g)\I(gh) and

{p, Va Z(gh) I U E M(9)} = {' Va C Z(Gh) I / E M(g; Gh)}. (C.33)

From (C.32), if r E M(g; gh), then min•~h Oh.xh--rT.-(0h) < 0 for all Oh E R d(h)
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min Oh
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with equality for 0h = 0. Therefore,

sup {min Oh xh - T - 0({ }) = 0, (C.34)
OhEad(Gh) I h Eirh

if r M(G; Gh).

If 7r M(G; gh), then by the separating hyperplane theorem Bertsekas [1999],

there exist some vector ( E R d(O) and a scalar ?7 such that

T- > 7, (C.35)

and

( 5 r7 for all E EM(g; gh). (C.36)

We know that M, is not constrained for all a ý Z() \IT(Gh) and ~ e M(g, gh).

Therefore, (, = 0 for all a ý Z(g)\I(gh); otherwise, .- /t, can be tended to 00o as

we please, and therefore, (C.35) and (C.36) cannot be true. Therefore, there exists

some ((gh) such that ( = ¢(((gh)) . Then, from (C.36) and Lemma 1 of Wainwright

et al. [2005], we have

min (-, min ((gh) _  = min ((Gh) . h < <7. (C.37)
tE1M(9;gh) AiEM(gh) xhE.Th

From (C.36) and (C.37),

(((h)) - T - mi n(Gh) . x h > (((~(h)) T 7 - 77 > 0. (C.38)
x h E jrh

Finally, since we can multiply both sides of (C.35) or (C.36) with any positive number,

we can scale ((((gh)) and q with any large positive number as we please. By tending

this multiplier to +oo, ¢(((gh)) - T- r7 also tends to +oo. Therefore,

sup min Oh . x - T -({0 }) = +0, (C.39)
ohERd(Gh) xhE h

if 7 4 M(G; ga).
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C.13 Proof of Theorem 3

We are going to take problem (6.27) as the primal problem and take the dual of it to

obtain problem (6.31) as the dual problem.

We obtain the following Lagrangian function by relaxing the constraints on {Oh}

of (6.27):

L({Oh},r ) =  min 0h x h +
Xh G Th

T {C -_({oh})}l (C.40)

Then, we obtain the following dual function:

= sup L({Oh},7)

= sup mmin
h hERd(Gh) XhEFhhj hI"")11 h~~li

By Lemma 10, the dual function (C.42) is simplified to

Q(T) = {+c
+o0

if r E M(G; Gh),

otherwise.

Finally, since the dual function Q(7) is to be minimized, we obtain the following as

the dual problem of (6.27):

minimize 7r c = 7- {{E- }, {Eij.s}}

subject to T nh M(g; gh). (C.44)

C.14 Proof of Lemma 11

Let {Th ,l} be the tree decomposition for Gh for each h. Then, by Lemma 9, we have

fM(G; gh)
h

c nnLOCAL(G; Th) n C(gh;Ch)
h I

= LOCAL(g) fC(gh; Ch) C LOCAL(g).
h
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C.15 Proof of Lemma 12

Let i,j E D(T), i # j.

1. Suppose there exists v E V\X, such that v E XT(j) and v E XT(j). Then, by

Definition 1-3, v should be also in X,. This contradicts the assumption.

2. Suppose there exists (u, v) E S such that 'u E XT(i)\X, and v e XT(j)\X,. By

Definition 1-2, there exists k e I, k $ T such that u XE Ak, and v E Xk. Then,

i and j are both neighbors of k, therefore, i, j, k, and T induce a cycle. This

contradicts Definition 1-3.

C.16 Proof of Lemma 13

For each v E V, there exists a unique i E I such that depth(i) = min{EIlvcxj} depth(j);

if there exist i, k E I, i 7 k such that depth(i) = depth(k) = min{yclj•ex, } depth(j),

then i k # T because Upsilon is the only node with depth 1. In addition, v E XA

and v E Xk. Therefore, there exist 1 = pa(i) = pa(k) and v E XI by the definition of

tree decomposition. This contradicts the assumption.

Therefore, S(i) n S(j) = 0 for all i,j E I,i Z j. In addition, for all v E V, there

exists some i E I such that v E Xi by the definition of tree decomposition. Therefore,

UiE s(i) = v.
The second part for edges can be shown similarly.

C.17 Proof of Lemma 14

We can decompose f(x) as

f(x) = f'(xT) + fT(i)(xT(i)) (C.45)
iED(T)
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Then,

mmin f(x) = f (xT) + mm frT(i)T(i)
iED(T)

= fT(xT) + mmin fT() (kT(i))

iE ( ) f{'T(i)iRTni=xTni}
iED(T)

where the second equality of (C.46) follows because:

1. by Lemma 1, XT(i)\T nXT(j)\T = , for any i,j E D(T);

2. by Lemma 2, there exists no edge (u, v) E F such that u E XT(i)\r and

v E XT(j)\-r, for some i,j E D(T), i f j;

3. for all v E V such that v E XT() and v E XT(j) for some i,j E D(T), i w j, we

also have v E Xy.
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