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Abstract

In this thesis, I explore via two formulations the impact of communication constraints
on distributed computation. In both formulations, nodes make partial observations of an
underlying source. They communicate in order to compute a given function of all the
measurements in the network, to within a desired level of error. Such computation in
networks arises in various contexts, like wireless and sensor networks, consensus and belief
propagation with bit constraints, and estimation of a slowly evolving process. By utilizing
Information Theoretic formulations and tools, I obtain code- or algorithm-independent lower
bounds that capture fundamental limits imposed by the communication network.

In the first formulation, each node samples a component of a source whose values belong
to a field of order q. The nodes utilize their knowledge of the joint probability mass function
of the components together with the function to be computed to efficiently compress their
messages, which are then broadcast. The question is: how many bits per sample are
necessary and sufficient for each node to broadcast in order for the probability of decoding
error to approach zero as the number of samples grows.

I find that when there are two nodes in the network seeking to compute the sample-wise
modulo-q sum of their measurements, a node compressing so that the other can compute
the modulo-q sum is no more efficient than its compressing so that the actual data sequence
is decoded. However, when there are more than two nodes, we demonstrate that there exists
a joint probability mass function for which nodes can more efficiently compress so that the
modulo-q sum is decoded with probability of error asymptotically approaching zero. It is
both necessary and sufficient for nodes to send a smaller number of bits per sample than
they would have to in order for all nodes to acquire all the data sequences in the network.

In the second formulation, each node has an initial real-valued measurement. Nodes
communicate their values via a network with fixed topology and noisy channels between
nodes that are linked. The goal is for each node to estimate a given function of all the
initial values in the network, so that the mean square error in the estimate is within a
prescribed interval. Here, the nodes do not know the distribution of the source, but have
unlimited computation power to run whatever algorithm needed to ensure the mean square
error criterion. The question is: how does the communication network impact the time
until the performance criterion is guaranteed.

Using Information Theoretic inequalities, I derive an algorithm-independent lower bound
on the computation time. The bound is a function of the uncertainty in the function to
be estimated, via its differential entropy, and the desired accuracy level, as specified by
the mean square error criterion. Next, I demonstrate the use of this bound in a scenario
where nodes communicate through erasure channels to learn a linear function of all the
node's initial values. For this scenario, I describe an algorithm whose running time, until
with high probability all nodes' estimates lie within a prescribed interval of the true value,



is reciprocally related to the "conductance." Conductance quantifies the information flow
"bottle-neck" in the network and hence captures the effect of the topology and capacities.
Using the lower bound, I show that the running time of any algorithm that guarantees the
aforementioned probability criterion, must scale reciprocally with conductance. Thus, the
lower bound is tight in capturing the effect of network topology via conductance; conversely,
the running time of our algorithm is optimal with respect to its dependence on conductance.

Thesis Supervisor: Munther A. Dahleh
Title: Professor

Thesis Supervisor: Devavrat Shah
Title: Assistant Professor
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Chapter 1

Introduction

We investigate the impact of communication constraints on distributed computation. Each
node or agent in a network has partial information, a measurement of a component of an
underlying source. All nodes need to estimate a desired function of all the measurements
in the network. To do so, they must communicate; but, the communication is imperfect.
In this thesis, we consider two types of communication constraints. The first consists of
nodes communicating compressed messages, broadcast over noiseless channels. The second
consists of nodes communicating via a fixed topology and noisy channels. The nodes are
connected according to some fixed pattern, so nodes do not communicate directly with all
other nodes, but whenever two nodes are linked, they communicate through noisy channels.

In the first formulation we consider, each node makes repeated measurements, or sam-
ples, of the component it can access. Each node compresses the data stream it has gathered
so that all other nodes can reliably decode a given function of the data in the network.
Each node knows the joint probability distribution of all the components, which take val-
ues in a discrete set. Nodes must take advantage of this in order to efficiently compress
their messages. The performance requirement is that the probability of error at any of the
nodes approaches zero as the number of samples increases. Our goal is to characterize the
necessary and sufficient compression rates, or bits communicated per sample, for reliable
computation.

In the second formulation, each node has an initial real-valued message. They com-
municate via a network with a fixed topology, where nodes that are linked communicate
with each other over noisy channels. The goal is to compute a given function of all the
data in the network. In this case, nodes have no information about the distribution of the
initial messages. The performance requirement is that the mean square error in the nodes'
estimates of the desired function is within a desired range. Our goal is to characterize, as
a function of the communication constraints, the time at which the performance criterion
can be guaranteed.

Our approach is to use Information Theoretic analysis, to which the formulations natu-
rally lend themselves. This type of analysis leads to "algorithm-independent" lower bounds;
bounds that must hold regardless of the the communication (encoding/decoding) scheme
used by the nodes. For the majority of this work, we make no assumptions on the computa-
tion that the nodes perform. Hence, our lower bounds also hold regardless of the computa-
tion scheme used by the nodes. We assume that nodes have no computational limitations,
like limited memory or power. This assumption enables us to capture the limitations that
arise exclusively due to the communication constraints. However, our Information Theo-



retic techniques do apply to cases where there are computational restrictions, as we show
via simple examples. Moreover, the techniques provide tighter bounds in the presence of
computational limitations.

1.1 Motivation

Distributed computation in the presence of communication constraints arises is many practi-
cal applications. Distributed computation algorithms are likely be core of future distributed
estimation algorithms for slowly evolving processes. In wireless or sensor networks, the com-
putation that is demanded of nodes is simple, so the performance of the nodes is primarily
limited by the communication constraints. On the other hand, recently popular algorith-
mic approaches based on belief propagation, in hardware for decoding, or consensus, in a
multi-agent system, are examples of distributed computation with stringent computation
constraints as well as bit constraints.

We investigate algorithm-independent lower bounds for such scenarios. These are bounds
that hold regardless of the scheme that nodes use to communicate. As such, the bounds
capture the effect of the physical communication constraints on the performance of the
computation algorithm.

In the case of our first formulation, nodes compress their data for reliable computation.
One way to achieve the goal of decoding the function they desire is for nodes to commu-
nicate to each other their entire data streams, as in the traditional Information Theoretic
formulation. Then, each node can compute the function it desires. However, nodes may be
able to send less bits per sample, if they compress with the goal of computation, as opposed
to communication of the entire data. The ability to compress more efficiently depends on
the function that is desired. Compression for computation may be critical in situations
where nodes have limited transmission power.

In the case of our second formulation, nodes communicate via noisy channels. The time
it takes for the mean square error performance criterion to be guaranteed will depend on
the connectivity of the nodes and the magnitudes of the channels between them. It also
depends on the desired function and the accuracy, as quantified by the mean square error.
The algorithm-independent lower bound captures these dependencies precisely. In addition,
it allows for the determination of the optimality of algorithms. Any algorithm that has a
convergence time that matches the lower bound is optimal; it is the fastest possible.

1.2 Background

The topic of our interest is related to several areas of previous work. We broadly group
the related literature into three groups: Distributed Computation, Information Theory, and
Communication. Our investigation lies in the intersection of these areas. Our formulation
is amenable to the techniques of Network Information Theory and Rate Distortion Theory.
Furthermore, our goal of obtaining lower bounds is compatible with these techniques. But,
our context, distributed computation, is more in line with the Distributed Computation
and Communication literature. We briefly discuss how our work compares and contrasts
with some of the work in these and other areas.

Our context of distributed computation is one that is encountered in the Distributed
Computation literature, the Communication literature, and the Complexity Theory liter-
ature. By the "Distributed Computation" literature, we mean work where a model of



computation is assumed for the nodes at the outset. An example is the early work of
Tsitsiklis [33, 32, 18], which analyzes algorithms that perform specific computations in dis-
tributed settings. For example, in [32], the goal is for the nodes to estimate the minimum of
some function. Each node updates its estimate by computing an affine function of its current
estimate, a certain local measurement, and the estimates received from its neighbors.

Recently, there has been a renewed interest in distributed algorithms for computation,
for example [3, 24]. Many have revisited one of the problems considered by Tsitsiklis, the so-
called "consensus" problem, for example [15, 23, 26]. However, in all these cases, whenever
nodes communicate with each other, they exchange real-valued messages. As such, there
are no bit constraints.

Very recent related work, however, does indeed explicitly model communication con-
straints. For example, in [17], Kreidl presents a message-passing algorithm for inference
when nodes communicate via discrete memoryless channels. In [31], the authors consider
hypothesis testing in a network of nodes connected in a tree configuration. The root, the
fusion center, is to make the decision. Again, the nodes are assumed to have limited com-
munication capabilities. For example, they use quantized messages to communicate their
observations to the fusion center. The authors analyse the rate of decay of the probability
of error as the number of nodes in the network approaches infinity.

By the "Communication" literature, we mean work that explicitly models the commu-
nication constraints, but does not assume before hand a computation scheme at the nodes.
Suppose that the goal is for nodes to compute a particular function. The typical result
would be to provide an algorithm that can be used in the assumed communication network.
The algorithm must perform the desired computation while satisfying some desired per-
formance criterion, such as a probability of error condition. The analysis of the algorithm
will result in algorithm-specific bounds, for example, on the number of bits that must be
communicated, or the transmission power that is needed.

Examples of such work along these lines are [11, 36]. In [11], each node has one bit,
that it can broadcast to all other nodes via binary symmetric channels. A dedicated node,
a fusion center, needs to compute the modulo-2 sum of all the bits, so that the probability
of error is minimized. Gallager describes a communication scheme that can be used in this
scenario. He provides an upper bound on the number of bits that need to be exchanged in
the network in terms of the number of nodes in the network. Recently, in [14], this bound
has been shown to be tight. The authors produce an algorithm-independent lower bound
that matches, up to a constant, the upper bound.

In the Complexity Theory literature, function computation is again the objective of
nodes. However, the focus is characterizing the difficulty, for example in terms of number
of operations or bits needed, in exactly computing the desired function. The thrust is to
capture the impact on algorithm performance due to computational requirements, and not
communication limitations. The models that are used for communication are not probabilis-
tic, and hence do not allow for formulations where there are noisy channels. For example,
see [38, 10, 27].

Probabilistic communication models, "channels," are the main feature in the Information
Theory domain. So, this theory naturally provides tools for analyzing formulations that
include such communication constraints. However, the objective in classical Information
Theory is reliable communication, as opposed to computation. That is, decoders need to
estimate the sent messages, rather than a function of them. Much work is done for the
setting of a network of nodes. This body of work constitutes an area known as Network
Information Theory; for an overview, see [9, 5].



However, the Information Theory literature does contain instances where function com-
putation has been investigated. For example, in [1, 28], an encoder compresses a message
and sends the information noiselessly to a decoder that has side information. The decoder
must produce an estimate of a given function of the message and the side information.
The objective is for the probability of error to approach zero asymptotically as the size of
the message grows. This set-up corresponds to a two node case. In Chapters 2 and 3, we
consider coding for reliable computation for multiple nodes.

There is another area in Information Theory that deals with nodes computing a function
of the data in the network. This is the area of secure communications, for example [7]. Nodes
need to generate some function of their data. This would then be used as a secret key that
is used to encrypt messages. The difference between this work and ours is that here, the
function is not known to the nodes a priori. Nodes exploit the common randomness in their
messages to each generate the same function of the messages in the network.

Finally, our work on the problem of "distributed computation with communication
constraints" has been influenced by work done in the area of "control with communication
constraints." Such work includes [30, 19, 20, 22, 21]. In particular, Martins' application of
Information Theoretic notions, such as mutual information, in a feedback control setting,
has led to novel results capturing Bode-like fundamental limits on performance. In that
area, Information Theoretic tools have been effective in the analysis of systems.

1.3 Overview of Results

We briefly describe the two main contributions of this thesis, two instances in which we
have used Information Theoretic formulations or tools to derive lower bounds for function
computation, together with scenarios for which we have shown that our bounds are tight. In
the first case, discussed in Chapters 2 and 3, the nodes communicate compressed messages
via noiseless channels, so bounds are derived on nodes' compression rates. These bounds
are tight when the source has a specific joint probability distribution and nodes compute
the sample-wise modulo-q sum of their data. In the second case, discussed in Chapters 4
and 5, nodes communicate via noisy channels. We derive bounds on computation time, the
time at which nodes' estimates of the desired function satisfy the performance criterion.
This bound is tight when nodes communicate via erasure channels with the objective of
computing the sum of their initial values.

1.3.1 Computation via Compressed Data

We consider a network of n nodes. Each node makes repeated measurements of a component
of a source. It compresses its message and broadcasts it, over a noiseless channel, to all
other nodes. Ultimately each node is to compute, with high reliability, a function K of all
the measured data of the network. By high reliability, we mean that the probability, that
any of the nodes makes a decoding error, approaches zero asymptotically with the number
of samples of data.

We present a Network Information Theoretic formulation for this context of distributed
computation. We characterize the compression rates that are necessary for reliable compu-
tation. Next we consider the achievability of these necessary rates, that is, the existence of
codes with rates that are arbitrarily close to the necessary rates.

When the nodes seek to compute the modulo-q sum of all the measured data in the net-
work, we provide an example (specifically, a joint probability mass function for the source)



for which we provide an explicit characterization of the "K-rate region", the rates neces-
sary and sufficient for distributed computation of the function K. For this example, when
there are two nodes in the network, the K-rate region coincides with the Slepian-Wolf rate
region. However, for more than 2 nodes, compressing for computation can result in lower
rates than compressing, as in the Slepian-Wolf formulation, for the entire data sequences in
the network. We quantify the savings in rate that are obtained, when compressing for K
in comparison to the Slepian-Wolf rates, as the number of nodes in the network grows.

1.3.2 Computation via Noisy Channels

We study a network of n nodes communicating over noisy channels. Each node has an
initial value. The objective of each of the nodes is to compute a given function of the initial
values in the network. We derive a lower bound to the time at which the mean square
error in the nodes' estimates is within a prescribed accuracy interval. The lower bound
is a function of the channel capacities, the accuracy specified by the mean square error
criterion, and the uncertainty in the function that is to be estimated. The bound reveals
that, first, the more randomness in the function to be estimated, the larger the lower bound
on the computation time. Second, the smaller the mean square error that is tolerated,
the larger the lower bound on the computation time. Hence there is a trade-off captured
between computation accuracy and computation time. In addition, the lower bound can be
used to capture the dependence of the convergence time on the structure of the underlying
communication network.

We consider a network of nodes communicating via erasure channels to compute a
sum of the initial values in the network. Each of the nodes is required to acquire an
estimate that is, with a specified probability, within a desired interval of the true value
of the sum. We apply our Information Theoretic technique to derive a lower bound on
the computation time for this scenario. We show that the computation time is inversely
related to a property of the network called "conductance." It captures the effect of both the
topology and channel capacities by quantifying the bottle-neck of information flow. Next, we
describe an algorithm that can be used in this setting of nodes computing a sum via erasure
channels, and guarantees that with the specified probability, each of the nodes' estimate is
within the desired interval. We determine an upper bound on the algorithm's computation
time and show that it too is inversely related to conductance. Hence, we conclude that our
lower bound is tight in capturing the effect of the communication network, via conductance.
Equivalently, our algorithm's run-time is optimal in its dependence on conductance.





Chapter 2

Computation via Compressed Data

We seek to study "distributed computation with communication constraints", and, in par-
ticular, compression rates required for communicating "nodes" to compute a given function
of all the data in the network with low probability of error. Every encoder is paired with
a decoder, and together, they form a "node". A two node network is shown in Figure 2-1.
There is a source, (X1, X2), with a given probability mass function; node 1 encodes the X1N
sequences while node 2 encodes the X N sequences. The nodes communicate over a noiseless
channel, after which their decoders are required to produce estimates of a given function

of the data. In the Slepian-Wolf (SW) set-up, that function is the identity (X2N is to be

estimated at the node 1 decoder and X4 at the node 2 decoder). Both nodes will ultimately
become "omniscient"', having an estimate of all the data sequences in the network.

Let XN = {Xil, Xi 2, . . , XiN } be IID random variables sampled from a source, Xi, with
distribution p(xi). Then, a consequence of Shannon's Asymptotic Equipartition Principle is
that for large enough N, NH(Xi) bits are needed on average to encode the sequence X N .

Equivalently, the encoder's compression rate, Ri, or average outgoing codeword bits per
incoming message digit, must be larger than H(Xi) in order to guarantee low probability

of error, {X N  -XN}, at the decoder [5].
The Slepian and Wolf (SW) theorem for distributed source coding establishes the rates

at which a joint source (X1, X 2) can be separately encoded by two encoders, one encoding
the sequence XfN and the other encoding X2N , such that a decoder receiving messages of

both the encoders can reliably decode the sequence {XIN, X2N } [5, 9]. The encoder of node
1 has access to the X 1 sequence only, while the encoder of node 2 has access to the X2

sequence only; the decoder, on the other hand, has access to the compressed messages sent
noiselessly by both the encoders (hence we call this "centralized decoding"), as shown in
Figure 2-2. The decoder also knows the joint distribution of the source.

1We borrow this terminology from [7].

X -compressed IKX(, X2j)
Encoder message Decoder

K^(X1, X) i compressed- X2Decoder message Encoder

Node 1 Node 2

Figure 2-1: Two nodes compressing and communicating for computation of K.



X

Decoder

Figure 2-2: Slepian-Wolf distributed source coding with "centralized decoding".

If the encoding was centralized, that is, the encoder knows the (X 1, X 2) sequence, then,
on average, H(X 1, X 2) bits per source letter are needed to describe the source. If each
encoder was communicating with a separate decoder, H(X 1) (respectively H(X 2)) bits
would be needed to decode the X1 (respectively X2) sources separately. An interesting
statement of Slepian-Wolf is that for their set-up, if H(X 1 ) bits are used to encode X 1,
then only H(X21X1) are needed to encode X2, even though the encoders encode their
messages completely separately.

Indeed, their theorem specifies the compression rates at the X1 and X2 encoders, Ri
and R 2, that are both needed for and will guarantee low probability of error at the decoder,
by the inequalities

R1 , H(XIX 2)
R2 > H(X2 X1)

R1 + R2 > H(X1,X 2). (2.1)

These inequalities specify the "achievable" rate pairs (R 1, R 2). Figure 2-4 shows all such
rate pairs in the shaded rate region.

Extensions and alternative proofs of the Slepian-Wolf theorem have been suggested. For
example, the source samples need not be IID; Cover[4] showed that the theorem holds under
certain conditions on the source, such as ergodicity. An interesting proof for the existence of
codes with rates that are close to the boundary of the rate region specified by the theorem
is proposed by Wyner [34] when the source is binary symmetric. This is shown using results
from channel coding for the binary symmetric channel. This idea is going to be used in
section 3.1.

The result has also been generalized to networks with multiple sources and networks
with various structures [5, 6, 7, 35]. For example, the structure that is of interest in this
chapter is one where every encoder is paired with a decoder, and together, they form a
"node". A two node network is shown in Figure 2-3. There is a source, (X1,X 2), with

X Icompressed XN'
Encoder message Decoder

X-- I compressed - XN

Decoder message Encoder
Ietu I de i

SNode 1 Node2

Figure 2-3: Two node SW set up with "decentralized decoding".

X En r compressed1 Encoder
message

XN compr es s ed

2 Encoder message
message



H(X2 1X1)-

H(KlXl)-
H(KIX 2) H(XiIX2) H(X1) R1

Figure 2-4: The boundaries of the rate regions for two nodes are shown for (a) the

SW/omniscience with centralized decoding set-up (thick solid line); (b) the SW/omniscience

with decentralized decoding (thin solid line); and (c) compressing for K and decentralized

decoding (dashed line). The rate regions are to the upper right of the boundaries; the

shaded region, for example, is the SW with centralized decoding rate region.

some joint distribution; node 1 encodes the XfN sequences while node 2 encodes the Xi"

sequences independently of node 1. The nodes communicate over a noiseless channel, after

which their decoders are required to produce estimates of the other node's sequence (X2N

at the node 1 decoder and XN at the node 2 decoder). Both nodes will ultimately become

"omniscient", having an estimate of all the data sequences in the network. Because decoding

occurs separately at every node and no decoder receives compressed messages from all the

encoders in the network, we refer to this set-up as a "decentralized decoding" scheme.

The fact that the decoding is "decentralized" affects the shape of the achievable rate

region. The ideas used in the Slepian-Wolf theorem proof can be readily applied to this

set-up to derive the inequalities that determine the rate region. These are,

R1 Ž H(X1IX2)
R2 _ H(X2IXi) (2.2)

The first inequality ensures that the probability of an error made at the node 2 decoder in

determining XN' is small. Similarly, the second guarantees small error probability at node

1 when determining X2N. Because neither node needs to estimate all of (X,", X2N), the last

inequality of (2.1) is no longer needed. The boundary of the rate region determined by (2.2)

is shown in Figure 2-4.
In this chapter, however, the objective of each of the nodes is to acquire, not necessarily

the entire data sequences of all the nodes (omniscience), e.g. (X N ), X2N), that Slepian-

Wolf require, but a given function of that, K(X1 ~ , X2N). If all the nodes eventually obtain,
with low probability of error, estimates of that function then they would have reached a

consensus. Clearly, one (uninteresting) way to achieve this consensus is for all nodes to
acquire omniscience first, then compute K.

Our formulation is motivated by the problem of estimation, when the sensing is dis-
tributed, of a stochastic process that may be generated by a dynamic system. Each source
variable represents the measurements collected by one of the nodes. The nodes may com-
municate their measurements, and, it is desirable to do so after having compressed the

H(X21Xl).H(KJXl)-



outgoing messages (as it leads to savings in power used for transmission, for example). The
nodes are assumed to broadcast their messages to all the nodes in the network, which is
a situation that may arise in communication via satellites. Even though our formulation
(and results) imply that consensus is reached asymptotically, for N sufficiently large, the
formulation is still reasonable when the time scale of the evolution of the dynamic system
is much slower than the time scale of communication.

In the control literature, conditions and algorithms for communicating nodes to achieve
consensus were studied by Tsitsiklis in the 80's [33, 32] and these topics have recently become
an active area of research (for example [2, 3, 15, 23, 26]). The idea of achieving consensus
on the average of quantities measured and computed by individual nodes is used to suggest
a scheme for distributed Kalman filtering and parameter estimation [25, 37]. However, none
of this work assumes any communication constraints. By using the Information Theoretic
set-up discussed above, we can naturally study the rate requirements that are imposed on
the nodes by the need to compress data.

In the next section, we present the formulation of Slepian-Wolf for convenience and to
establish notation. In section 2.2, we present the general formulation we use for studying
distributed computation when nodes communicate via compressed messages. It is useful
for three reasons. First, the inequalities that define the rate region are simple; they involve
the conditional entropy rates of the function K, which are easy to compute. Second, the
formulation can be easily extended to an arbitrary number of nodes, and hence the rate
region can easily be defined for an arbitrary number of nodes. Finally, our set-up inherently
involves feedback.

In section 2.2, we also state the main theorem of this chapter, which provides lower
bounds on the compression rates necessary for decoding K with probability of error ap-
proaching zero asymptotically. We prove this theorem in section 2.3. Next, in section 2.4,
we discuss achievability of rates arbitrarily close to the boundary of the rate-region specified
by our theorem.

2.1 Slepian-Wolf Source Coding Theorem

In this section, the Slepian-Wolf (SW) theorem is repeated for the three node case, both
for convenience and to establish notation, which is then used for the theorem of section 2.2.
Two cases are considered. In the first, the no interactive communication case, nodes are not
allowed to use their incoming data to generate the outgoing message; that is, the encoded
message at a node is a function of that node's information only. In the second case, a node's
broadcast message is a function of both its own data and the messages that it has received
previously from the other nodes. This is the case of "interactive communication," as it is
called in [7]. The SW theorem holds under both cases. The formulation and notation below
is taken from [35].

2.1.1 No Interactive Communication

We consider first three sources, (X 1, X 2, X 3), taking values on the finite set X 1 x X2 x X3,
and having some joint probability mass function p(x1 , x2, 3). The joint source is sampled
and the outcome is represented by the sequence {X1 t, X 2t,,X3,} for t = 1,2,.... Each of
the samples is drawn independently and is distributed according to p(xl, x, x 3).

There are 3 nodes. Node X 1 has access to the sequence {Xlt}; similarly, X2 and X3
have access to {X2t} and {X3t} respectively. Each node encodes its data, of block-length



N, and broadcasts it to the other two nodes via a noiseless channel. Upon receiving the
encoded data from the other nodes, each node attempts to reconstruct, using its decoder,
the data sequences that were sent, such that the probability of error is small.

A code having the parameters (N, MX1 , MX2, MX3, Pe,N) consists of the following map-
pings.

1. Encoder Maps

ex 1, V i
N 

-- IM 1

e y2  2 N ,Mx 2

eX3 : X3N - ZMX, (2.3)

where, 'M denotes the set {1, 2,... M}.

The random variables at the outputs of the encoders are denoted by

Wa, = e~ (Xl • )

W~2 = e 2(X2N)
W~3 = eS(X3"), (2.4)

where, XN is a random variable that represents the finite sequence {X 1 2, Xi2,..., XlN }.

2. Decoder Maps

d :X fN XZIM XIM 2  2N X X3N

d2 : X 1, X Z, - x1N X 3N

d3 : X3X X• Z,' -+XN X X2 N. (2.5)

The random variables at the outputs of the decoders are denoted by

(X,x~3N) = di(Xl, W 2, WX3 )

(X x'3N) = d2(XN, W,, W 3)

(X ,•N) = d3(X~", W~1, W ). (2.6)

The error probability is defined to be Pe,N = P(E 1 U E 2 U E3), where,

El= {(X N,x ) (X2N, XN')}

E2 = {(XIN,X3N ) (X ', X3N)}

E3 = {(XN,X N )  (X ,X, , N)}. (2.7)

Definition 2.1.1. A rate triple (R 1, R 2, R 3) is achievable if for every 6 > 0 and all N
sufficiently large, there exists a sequence of codes with parameters (N, Mx1, M 2,, MX3, Pe,N)



such that,

R 1 + J > 1 log Mý11

R 2 + 6 > • log M-2N
R 3 + 6 > log Mx3, (2.8)

and,
Pe,N <_ 6. (2.9)

The Slepian-Wolf theorem establishes the achievable rate region when every node is
required to decode every other node's data sequence. Following [7], we call this requirement
"omniscience" and the rate region is the "omniscience rate region."

Theorem 2.1.2. (R 1, R 2, R3 ) is achievable if

R1 Ž H(Xi1X 2,X3 )
R 2 H(X2 X1, X3 )
R3 Ž H(X3sXI,X 2)

R1 + R2 _ H(X1,X 2 X3)
R2 + R3 > H(X2,X3 IXi)
R1 + R3 > H(X1,X3IX 2). (2.10)

2.1.2 With Interactive Communication

When the nodes are each allowed to communicate for several rounds, using the informa-
tion received in previous rounds to update the outgoing message accordingly, sufficiency of
the conditions (2.10), or what is known as the achievability part of the theorem, follows
immediately. Since a rate triple specified by (2.10) is achievable without feedback, it must
be achievable when feedback is allowed; just set all feedback to be empty and use the code
that worked in the no-interactive communication case. To show that the rates in (2.10) are
necessary, however, does not follow so immediately. It is not obvious that when feedback
is allowed, lower rates are not possible. Although not obvious, by applying standard tech-
niques, including the use of Fano's inequality, it can be shown that the converse part of
Theorem 2.1.2 still holds [35, 7].

Below, we restate the definitions that will be changed when feedback is allowed, such
as the encoder and decoder mappings. Also, the definition of the achievable rate triple is
modified.

1. Encoder maps for the bth round of communication, b = 1,2,..., B.

Wxl,b= e1,b (X1', b X 1 WMZ 1 ,b
Wx, b  ,b(X N Wb-I Wb-1) M
Wx23,b = ex2,b(X N  

b-J1 b-1 ) 2,b
Wb = ,b(X, Wb- ,1 Wb) E TZM3 ,b, (2.11)

where, Wbi1 = {Wxi,1, Wxi, 2 ,..., Wxi,b-1} is the sequence of previous messages sent
by the node Xi encoder. ZM denotes the set {1, 2,... M}.



2. Decoder maps applied after B rounds of communication.

(xN, x3"
) 

= dl (Xl
N , 

W ,1B, WB ,1)

(XN y
N ) - d2(X N , wB,1, wB,1)

(X 2N ) d3( vN WB WB,1). (2.12)

Definition 2.1.3. When interactive communication is allowed, a rate triple (R 1, R 2, R 3) is
achievable if for every 6 > 0 and all N sufficiently large, there exists a sequence of codes with
parameters (N, { Mx 1,1, . .. , Mxl,B}, {(M 2 ,1, . .. ,M ,B, MM2 3 ,1, . . . , MX3 ,B , Pe,N) such that,

b=1,...,BRl + 6 > N E log iM b
R2 + 6Ž log MX2,b

b=1,...,B

R3+6> j log MX,b, (2.13)
b=1...,B

and, Pe,N < 6.

2.2 Compression for Computation

We let K(Xf, X2N, X3N ) be a function that is known to each of the nodes (X N is a random
variable that represents the finite sequence {Xil,Xi2 , ... ,Xi}). More specifically, the
function is denoted as KN = {K, K 2 , K3 ,. .. , KN} where Kt = ft(X', X, Xt), and the ft
are known to all the nodes. Further, let )Ct be the range of ft, then, KN takes values from
the set IC1 x IC2 x ... x ICN. The cardinality of this set is n(N) = I1C1 x K 2 X ... X CNI =

IIIC 2l I21 ... ICNI. We assume that limN-oo . log i(N) = c, where c is a constant.
Suppose that interactive communication is allowed, so the encoder maps (2.11) and

achievability definition 2.1.3 from above still apply. The decoder maps will now be defined
as,

KN = di(XN , W1," WX ,

K N  = d2(X N , W,1B wB1)
X2 =1,1 2 X ,J 3,

KN = d3(XN  , W ,1B  w ,1 ). (2.14)

The error probability is defined as, Pe,N = P(E1 U E 2 U E3), where,

E 1 = {K~N K(XN, X2N, X3N)}

E2 = {Kg K( 1 , X)

E3 = {K / K(XN  XN, X3N)}. (2.15)

Now, an obvious lower bound of the K-rate region boundary is given in the following
theorem. A proof is written out below; see also [28].



Theorem 2.2.1. (Converse) (Ri, R 2, R3 ) is achievable only if

R 1 > H(K IX2,X 3)
R2 > H(K Xi,X 3)
R3 > H(KI XI,X 2 )

R1 + R 2 Ž H(K IX 3 )
R2 + R3 > H(K|X1)
R1 + R 3 2 H(KIX 2), (2.16)

where,

def 1 N x, N )

H(K|Xi,Xj) d lim 1H(KNIX,X)N->00 N

H(KIXi) lim I H(K NI X). (2.17)
N-oo N

Note that Kt is allowed to be a function of all previous (X 1, X 2, X 3) samples. However, if
it is a function of only the current samples and if ft = f, that is Kt = f(Xit, X 2t, X 3t), then,
H(K Xi,Xj3 ) = H(f(X1,X 2 , X3 )|Xi, Xj) and H(K Xi) = H(f(X1 ,X 2, X3 )|Xi). Also, note
that because H(f(X)) < H(X), it can be seen easily that rate region specified in (2.16),
which we call the "K-achievability" rate region or "K-rate region" must contain the SW
rate region for omniscience. In section 2.4, more is said about the achievability of rates
outside the SW region. First, a proof of the converse is presented.

2.3 Proof of Converse

The converse states that if there exists a sequence of codes with rates (R 1, R 2, R3) and
for which Pe,N -- 0, then these rates must be in the rate region specified by (2.16). The
converse can be shown using the same techniques used in the proof of the converse part
of the Slepian-Wolf Theorem, namely, application of Fano's inequality. The proof below
closely follows the proof in [35].

Proof. We begin with Fano's inequality. Recall that El = {K N Z K(X 1N, X 2N, X 3 N)}.
Now,

H(KN X 1 , W' 2 ,1,X ,1) < H( K  KN 1)

< h(P(E1 )) + P(E1 ) log K(N),

where, h(p) = -p logp - (1 - p) log(1 - p).
But h(P(E 1 )) < log 2 and P(E 1) < P(E 1 U E2 U E3) = Pe,N. So,

H(K XN,W , ,W ,1) < NA(Pe,N, N), (2.18)

where A(Pe,N, N) = g2 + P,N lg (N ) Now,

Z log Mx,b > H(Wx,,b) > H(WPB, 1).
b=1,...,B b=1,...,B



And,

H(WB,1) H(WxB,I1X2N, X3N )

(a)
> I(W ,1; KX2NX3)
= H(KNIX 2N,X3N) - H(KN IW,I,X 2N,X 3 N),

where (a) holds because

I(WB,1; KNIX 2N,X 3N) = H(WB, IX2N, X3N ) - H(WB, 1IKN, X 2N, X 3 N)

and H(W, 1IKN,X 2N, X3N ) > 0.

Now,

H(K |WZ,lX2N X3N )a) H(K g WX 2N X3N , W ,W 1)
< H(KNIX 2N, W ,Tx,1, W ,
(b)
< NA(Pe,N, N),

where (a) holds because of (2.11), specifically, Wx ,1 and W ,1 are functions of (W ,1 , X 2N, X 3N),
and, (b) follows from Fano's inequality as did equation 2.18. Putting the above inequalities
together, we have that

Z log Mxl,b H(KNIX 2 N, X3 N) - NA(PPe,N).
b=1,...,B

By assumption, we have that for every 6 > 0 and N large enough,

R +6 _• log Mxl,b,
b=1,...,B

SO,

Ri+( lim -H(KNIX 2N,X 3N) - A(Pe,N, N) .

Now since, by assumption, limN-,,oo log K(N) = c, we have A(Pe,N, N) - 0 as N -- oo
and 6 -- 0; hence,

R1 l lim 1 H(KN IX2N, X3N).
N--oo N

Similarly,

SlogM MX2,bMX 3,bb> 2 H(Wx2,b, Wx3,b)
b=1,...,B b=1,...,B

> H(WB ,1, WS,)



And,

H(WB,1, WB,1) > H(W ,1, W , Xl N )

> I(WB,1, WB ,1; K N |XIN)

= H(KN IX1N ) - H(KNIXN, WB,, WB, 1)

> H(KN X1 N ) - NA(Pe,N, N).

Now,

R 2 + R 3 + 26 > log Mx2 ,b log Mxa,b
b=1,...,B

> -1H(KNIX1N ) - A(Pe,N, N).N
So, as N - o00 and 6 -- 0,

R 2 + R3 > lim H(KNIX1N).
N-oo N

Necessity of the remaining conditions (2.16) in Theorem 2.2.1 follows in the same way. O

2.4 Achievability of Rates Outside the SW Rate Region

To show that the inequalities (2.10) of Theorem 2.1.2 and (2.16) of Theorem 2.2.1 are also
sufficient conditions for the achievability of a rate triple, it must be shown that there exist
codes with rates that are arbitrarily close to the boundary of the rate regions described by
equations (2.10) and (2.16) respectively, for which Pe,N - 0. In the proof of the Slepian-Wolf
Theorem [5], a "random binning" encoding scheme is used whereby each encoder randomly
assigns a codeword/index (for example from 1 to M,, at node 1) to each of its messages

(X 1N at node 1). Decoding occurs by joint typicality. However, in the case where decoding
of K(X 1N, X 2N, X 3 N) is required, and in the absence of feedback, it is not clear how this
encoding scheme can be used as the nodes do not know what value K takes until after the
nodes exchange some information.

In this section, we seek to understand the scenarios for which it is advantageous to use
compression for reliable computation, that is receiving nodes decode a function of the nodes
data streams, K(X 1N, X 2 N, X 3 N), versus compression for reliable communication, that is
receiving nodes decode the entire data streams, (X 1N, X 2 N, X3 N), as in the Slepian-Wolf
formulation. Recall that the K-rate region contains the SW-rate region. So, when there
is an achievable rate vector that belongs to the K-rate region, but does not belong to the
SW-rate region, then, compressing for K is advantageous because less bits per sample need
to be communicated. We discuss this via two specific cases.

In section 2.4.1, we show that when one node is selected amongst all the nodes to act
as a fusion center, the random binning argument can be used to show that there are codes
with rates that do not belong to the omniscience rate region. Indeed, these rates may even
be on the boundary of the K-rate region. However, in section 2.4.2 we observe that in the
two node case, the omniscience rate region and the K-rate region coincide for a class of
functions, K. So, nodes may as well compress their messages as if receiving nodes were to
decode the entire data streams, and not a function of the data streams. In the next chapter,



however, we will see that as nodes are added, this may no longer remain the case.

2.4.1 A Fusion Center Scheme

Suppose there are two nodes, corresponding to X1 and X2, and the X2 node is designated
the fusion center. Then, the X 1 node uses random binning encoding to send its X 1N
sequence to the X 2 node. The X 2 node will be able to decode X1's message with arbitrarily

small probability of error, P(X_1N XIN), for sufficiently large N if R 1 _ H(XIX 2). Now,
the X2 node can use the X 1N it has decoded to compute K(X1N, X 2N), which it then
sends back to the X1 node. The X 2 node can use random binning to encode its message
by randomly partitioning the range of K, KIC x KI2 x ... X ICN. Now, the X1 decoder uses
joint typicality to decode X2's message, where it chooses the KN such that

1. KN is associated with the index that was received from the X2 node, and,

2. (x 1N, kN) E AN(K, X 1), where AN (K, X 1) is the restriction of AN (K, X 1,X 2) to
(K, X1) and AN(K, X 1, X 2) is defined as (see [5] page 384),

AN (K, X, X 2 ) - (xiN, x 2 N, kN):

Slog p(x N, x 2N) - H(X1 ,X 2 ) I <

1 logp(xzN, xkN) - H(X2 , K) <

1- logp(XNk) - H(X 1) < e

1 log p(x2 N) - H(X 2) <

-I logp(kN) - H(K) < e}.

Node 1 will be able to decode node 2's message with arbitrarily small probability of error,
P(KN Z K(XIN, X 2N)) , for sufficiently large N if R 2 _ H(KIX 1). Note that the point
(R1, R 2) = (H(X1 X 2), H(KIXi)) is on the boundary of the rate region specified by the
equivalent of (2.16) for the two node case, namely, R 1 > H(KIX 2) and R 2 > H(KIX1).
Further, by choosing node 1 to be the fusion center, the point (H(KjX 2), H(X2 X 1)) can
be achieved. However, it is not obvious how an arbitrary point on the boundary may be
achieved with this scheme.

This idea can be extended to many nodes/sources. For instance, suppose there are
three nodes, X 1, X 2, X 3. If node 1 is chosen to be the fusion center, then nodes 2 and

3 send X 2N and X 3 N respectively to node 1 which subsequently decodes (X 2N, X 3N).



P((X2 N, X 3N) # (X 2 N, X 3 N )) < 2e is guaranteed at node 1 when

R2 Ž H(X2IX3, Xi) + 3e
R 3 Ž H(X3SX1,X 2) 3E

R2 + R3 _ H(X2 ,X3 X1) + 3e

Now, X1 computes K and broadcasts its value to the X2 and X3 nodes. Decoding at X 2 (X3)

occurs by choosing the KN for which (x 2 N, kN) E AN(K, X 2) ((x 3N, kI) E A(K, X))
where AN (K, X 2) (AN (K, X3A) is the restriction of AN(K, X, X 2, X 3) to (K, X 2) (respec-

tively, (K, X 3 )). Now, P(K N  , KN) -- 0 at node 2 if R 1 > H(KIX 2 ) and P(K N

KN) --+ 0 at node 3 if R 1 2 H(KIX3 ).
So, under the fusion center scheme, we have that (R 1, R 2, R 3) is achievable if

R 1 _ max{H(KIX 2),H(KIX3)}
R2 > H(X2IX3, X1)
R3 Ž H(X3 jX1,X 2)

R 2 + R3 _ H(X2,X3IX1).

Finally, we note that these conditions are similar to those derived in [35]. There, three
nodes broadcast their data sequences to each other via a satellite. In our case, node 1 can
be thought of as the satellite. Our set-up is a somewhat more straight-forward application
of SW-like ideas, however, because in [35], the satellite is not required to be able to decode
the data sequences of the communicating nodes.

Optimal Choice of Fusion Center

Once a node is designated as a fusion center, the rate region, R, for the achievable rate
vectors, R E R n for n nodes, can be determined. Given that rate region, one can choose the
rate vector that minimizes a certain function, u(R), depending on the application, subject
to R E R7. Following [7], in section 3.1, we find it convenient to take that function as the
sum of the entries of the rate vector, u(R) = 1'R, where 1 is the vector of ones.

Now, if any of the nodes can be freely picked to be the fusion center, then an optimal
choice of fusion center can be made. Number the nodes 1, 2,... , n and for each i let
node i act as the fusion center, and determine the corresponding rate region, Ri. Compute
R! = argminREa.u(R). The optimal choice of fusion center is i* = argminiE{1,2,...,n} R.

2.4.2 No Gain for Two Nodes

For the two node case of our set-up, Figure 2-1, the K-achievability rate region coincides
with the omniscience rate region in many interesting cases, because in these cases it turns
out that H(KIX 2) = H(XIX 2) and H(K X1) = H(KIX 2). Thus, to get information about
K, the nodes exchange as much information as they would have to exchange to communicate
their entire data sequences. Functions, K, for which this is true can be derived using the
following proposition.

Proposition 2.4.1. Suppose that the function f(X 1, X 2) is either

(1) injective, or,



(2) both the mappings

{f(X1, X2) X 1} -X2
{f(Xl,X 2) x X2} X1

are injective.

Then,

H(f(X1,X 2)IX1) = H(X2 XI)
H(f(X1,X 2) X 2) = H(XI X 2)

Note that (1) implies (2) but the converse is not true. As an example, consider
f(Xi, X 2) = X 1 e X2, the modulo 2 sum, and X 1, X 2 E {0, 1}. This function is not
injective, but (2) holds.

Proof. This proof follows exercise 5 in [5], page 43. Using the chain rule, we can write

H(f(Xi,X 2), X2[X1) = H(f(Xx,X 2) Xi) + H(X 2 f(Xi,X 2), X)
= H(X2IX1) + H(f(X1,X2) X1,X2) .

But H(f(X1, X 2)|Xi, X 2) = 0. Further, if either (1) or (2) holds, then H(X2 If(X1, X 2 ), X 1) =
0. 0

Example 2.4.2. An example of an interesting function K for which the omniscience region
and the K-achievability region coincide in the two node case has each ft equal to a linear
function of X1t and X 2t, ft = 1E=1 ajXlj + fjX2j. Then, H(KNIX1N) = H(X2 NIXiN)
VN. To see this, it suffices to consider H(Ki,K 2 1X11,X 12), where K 1 = X 11 + X21 and
K 2 = (X11 + X 12) + (X21 + X22).

H(Ki, K21X11, X 12) = H(X11 + X21, (X11 + X 12) + (X21 + X 22)IX1 , X 12)

- H(X21,X 21 + X 221X 11 , X12)

SH(X21, X22|X11, X12),

where (a) follows by proposition 2.4.1 and (b) can be seen by an application of the chain
rule:

H(Yi, Yi + Y2) = H(Yi) + H(Yi + Y2Yi1)
= H(Yi) + H(Y 2IY1)
= H(Yi, Y2).

Finally, we note that the K-achievability and omniscience rate regions no longer coincide
when there are three sources (nodes), even in the simple case when K is linear. For example,
let ft = Xii + X2i + X3i. While on one hand we have that H(KIX 2, X 3) = H(XI|X2,X3),
on the other hand, for the set of constraints of the other form,

H(KIX3 ) = H(X 1 + X 2 X3 ) < H(X1 ,X 21X3 ). (2.19)

Further, the inequality in equation (2.19) may be strict for certain joint distributions of
(X 1, X 2, X3 ). For example, consider (XI, X2), which are independent and P(X 1 = 0) =



P(XI = 1) = 1/2 and P(X2 = -1) = P(X 2 = 0) = 1/2, and K = X 1 + X 2 . Then,
H(X1) = H(X 2) = 1 and H(X1,X 2) = H(X 1) + H(X2) = 2, while H(K) = 3/2. So,
H(X 1 + X2) < H(X1,X 2 ).

2.5 Summary

In this chapter, we looked at compression rates required for communicating nodes to com-
pute a function of all the data in the network with low probability of error. The joint
probability mass function of the source was known at all nodes; the task of the nodes was
to take advantage of the joint probability mass function in compressing their messages ef-
ficiently for decoding K. We have seen that the lower bound to the boundary of the rate
region for K achievability also is a lower bound to the SW omniscience rate region, which
means that if the objective of the nodes is to reliably acquire a function of all the data
in the network, they may only need to exchange information at rates lower than would be
required for each of them to acquire all other nodes' data.

We have seen that, for a class of interesting functions, this is not true for two nodes.
But, in the next chapter, we will see that when there are more than 2 nodes, things may
change. Indeed, for the modulo-2 sum computation example, the K-rate region and the
omniscience rate regions coincide for two nodes. However, for more than two nodes, we
present a source, described by a joint probability mass function, for which we will show
achievability of a point that does not belong to the omniscience rate region. This point is
the vertex of the cone defining the lower bound to the K-rate region boundary, defined by
the inequalities in Theorem 2.2.1. Furthermore, the example will generalize to modulo-q
summation when the source random variables take values on a finite field of order q.



Chapter 3

A Tight Bound: Computation of
the Modulo-q Sum

To show that the lower bounds of Theorem 2.2.1 are also sufficient conditions for the
achievability of a rate triple, it must be shown that there exist codes with rates that are
arbitrarily close to the boundary of the rate region described by the lower bounds, for which
the probability of error approaches zero asymptotically. In the proof of the Slepian-Wolf
Theorem [5], a "random binning" encoding scheme is used whereby each encoder randomly
assigns a codeword/index to each of its messages. Decoding occurs by joint typicality.
However, in the case where decoding of a function of the data streams is required, and in
the absence of feedback, it is not clear how the random-binning encoding scheme can be
used as the nodes do not know what value K takes until after the nodes exchange some
information.

In this chapter, it will be shown that when K is the sample-wise modulo-q sum of the
nodes' data streams, there exists a specific joint distribution of the source for which the
rates specified by Theorem 2.2.1 are also sufficient, even when no interactive communication
is used. For our scenario, when there are only two nodes in the network, the omniscience
rate region and the K-rate region coincide. However, this is no longer the case when there
are more than two nodes.

Ahlswede and Csiszar [1], and later, Orlitsky and Roche [28], studied compression rate
requirements to decode K(X N , X2N) correctly with high probability; but, they limited their
study to two sources (nodes) only, (Xi, X 2). In [1], the authors determine a class of functions

("highly sensitive" and "sensitive") for which, when there is no interactive communication
between the nodes, the region of rates necessary and sufficient for decoding K with high
reliability coincides with the Slepian-Wolf rate region. Thus, they conclude that "To Get a
Bit of Information May Be As Hard As to Get Full Information," as their paper is entitled.

We provide an example for which Ahlswede and Csiszar's conclusion no longer holds
when an additional node is added to the network. In particular, in keeping with the results
in [1], when K = X 1 + X2 mod 2, and x 1, X2 E {0, 1}, the "Omniscience/SW rate region"
(rates required for omniscience) coincides with the "K-rate region" (the rates required for
K-computation). However, when there are three nodes, xi E {0, 1}, i = 1, 2, 3, and K =
E Xi mod 2, for a certain probability mass function on the joint source (XI, X2, X3 ), the
Omniscience and K-rate regions, no longer coincide. We generalize this example to (1) an
arbitrary number of nodes, i = 1, 2,..., n and (2) when the source random variables Xi
take values in a finite field of order q, xi E GF(q), and K = i oaXi mod q, ai E GF(q).



We provide an explicit characterization for the K-rate region as a function of n and q.

3.1 Main Results

Suppose that Kt = Xlt D X2t and x1 , x2 E {0, 1}, where e denotes modulo-2 addition.
The omniscience rate region and the K-rate regions coincide for the two node case because
H(KIXi) = H(XjlXi) for i, j = 1,2 and i f j. However, in this chapter we show that this is
not necessarily the case for three nodes. We show that the rate triple R* = [h(p), h(p), h(p)]
is achievable for a specific joint probability mass function of the source. It turns out that
R* is also on the boundary of the K-rate region, and does not belong to the omniscience
rate region. Furthermore, we show that the rate triple R. minimizes the £ 1 norm of the
rate vector, R = [R1, R 2, R 3], subject to the rate vector belonging to the K-rate region. We
compare R*, to Rb, the rate vector belonging to the omniscience rate region, with the
smallest L1 norm. The rate advantage in compressing for K rather than for omniscience is
captured by the ratio of the £1 norms of the minimizing rate vectors, R(n) = ItRb 1/ IRI I1,
which depends on the number of nodes, n. Interestingly, for our particular set up, as n grows,
R(n) - 1/h(p).

3.2 The Korner-Marton/Wyner Lemma

In this section, we describe the key lemma that we use to show achievability of rates arbi-
trarily close to the boundary of the K-rate region, when nodes compute the sample-wise
modulo-q sum of their data streams. The existence of these codes can be shown because
in that particular case, an analogy can be made between the joint source and the binary
symmetric channel (BSC), so the channel code can be used as a source code in our problem.
The Channel Coding Theorem assures the existence of codes that achieve capacity and
parity check codes are linear codes that do so for the BSC [12, 34, 16].

In the papers of Wyner [34] and Korner and Marton [16], (X 1, X 2) is a discrete memo-
ryless source with binary symmetric joint distribution,

P(X 1 = X2 = 0) = P(X 1 = X2 = 1) = (1 - p)2
1

P(X1 = 0, X 2 = 1)= P(X 1 = 1,X 2 = 0) = -p. (3.1)

The X1 source sequence and the X2 source sequence are encoded separately at two encoders.
The codewords are transmitted noiselessly to a decoder that is to produce the X1 and X2
sequences with low probability of error. Wyner draws an analogy between coding for this
source and coding for a binary symmetric channel. He uses established results for the BSC
to conclude existence of a source code with achievable (R1, R 2) if the rate pair (R 1, R 2) is
in the rate region specified by the SW inequalities. Thus, he provides a new proof for the
SW Theorem for a very special case.

Korner and Marton, on the other hand, use the same idea to establish the existence of
distributed codes with the rate pair (h(p), h(p)) which guarantee decoding K = XIeX2 with
high reliability. Note that for this K, H(KIX 2) = H(XI|X2) and H(KIX1) = H(X2 X1);
further, for the chosen source distribution, H(K) = H(KIX 2) = H(KIXI) = h(p). We
also note that the Korner-Marton statement is interesting because this achievable rate
pair does not belong to the SW rate region for the same set up (Figure 2-2). Because



decoding is "centralized", there is the additional condition that R 1 + R 2 > H(Xi, X 2),
where H(X1, X 2) = 1 + h(p). Clearly, this condition does not hold for (h(p), h(p)), p .1.

For convenience, we repeat below a lemma from [16] that is attributed to results of Elias
in [12]. This lemma contains the needed result of the analogy with the BSC, which can be
found in [34], and is explained below.

Lemma 3.2.1. Let a sequence {Kij}'l of i.i.d. binary random variables be given. For
fixed f > 0 and for sufficiently large N there exists a 0-1 matrix A of M x N entries and a
function V : {0, 1}M -- {0, 1 }N such that

(C1) M < N(H(K) + ,e),

(C2) letting A(kN) denote the modulo-two product of the matrix A with the binary column
vector kN of length N, we have P(O(A(KN)) # KN) < E.

Now, the idea used by Korner and Marton is to use A at both the X1 encoder, to
encode X1N , and the X2 encoder, to encode X N . Now at the decoder, 0 is applied to
A(X1N ) E A(X2N). By linearity of A and (C2) of lemma 3.2.1,

P(V(A(XN ) e A(YN)) V KN) = P(i(A(XN e yN)) # KN)

= P(O(A(KN)) # KN) < E.

Since A maps the length N binary messages of Xi to binary codewords of length M,
there are 2M possible codewords. The rate of this source code is therefore I log 2M = M/N,
and we have by (Cl) of Lemma 3.2.1 that h(p) + > I log 2M . Similarly for the X2 encoder.
Hence, (h(p), h(p)) is an achievable pair (recall definition 2.1.1).

The proof of the Lemma that is given in [16, 34] and below uses an analogy to channel
coding for the BSC, however, there is an intuitive interpretation of the Lemma that relates
to the typical set, A N , with respect to the distribution of K[20]. The idea is also found in
the proof of Theorem 3.2.1 ([5] p.54) where it is shown that, on average, NH(K) bits are
needed to represent a sequence of IID random variables, KN. Because for N sufficiently
large, Pr(AN ) > 1 - E, what is effectively needed in order to encode KN and decode it with
high reliability is to enumerate a subset of the possible realizations of KN, the elements of
the typical set,

Af = {(kl,k 2 ,..., kN) : 2
- N(H(K)+c) < p(kl,k 2 ,..., k) < 2-N(H(K)-e)},

of which there are no more than 2N(H(K)+E), so no more than N(H(K) + e) bits are needed.
The outputs of the linear operator A are vectors of length M < N, which means that

there are 2M possible sequences that can be mapped to the elements of the typical set. For
M large enough, that map will be injective. But M need not be any larger than N(H(K)+E)
to ensure low probability of decoding error.

Proof. (Lemma 3.2.1) The existence of A and 0 such that (C1) and (C2) of Lemma 3.2.1
holds for N sufficiently large is guaranteed by the Channel Coding Theorem and standard
results for the BSC (see [12] page 206). Let U be the input of a BSC and V its output. Note
that if the channel crossover probability is p, V = U D K, where K and U are independent
and P(K = 0) = 1 - p. Now, when U is uniformly distributed, the joint distribution of
(U, V) is given by (3.1).



By the Channel Coding Theorem, there exist a sequence of codes, with rate R, such
that if R < C, for sufficiently large block length N, the average probability of error is
arbitrarily small. For the above BSC, C = 1 - h(p) = 1 - H(K); and when the channel
input is uniformly distributed that capacity is achieved, that is, there exist codes with rate
R arbitrarily close to capacity, R + E > C, for which the probability of error goes to zero
as block length increases. Furthermore, for the BSC, such codes include parity check codes
and decoding is accomplished by maximum likelihood decoding.

Decoding the channel output occurs by multiplying (modulo 2) the parity check matrix,
A, consisting of zeros and ones, by VN. Since the choice of A must be such that UN
belongs to the null space of A, A(VN) = A(KN). Now, decoding can be performed by P
as described in [12] page 201, such that V)(A(KN)) = KN, and UN = KN + VN. An error

occurs when {UN = UN}, or equivalently, {KN = KN}. So, for codes with R < C, we have

P({KN K KN}) -+ 0 , which is (C2) of Lemma 3.2.1.
Finally, note that the codewords at the input of the channel have length N. Since they

belong to the null space of A, there are at most N - M messages (and N - M information
digits). So, the rate of the code is R = (N - M)/N. For the capacity achieving code
with this rate, substituting in R + e > C, and using C = 1 - H(K), we obtain (Cl) of
Lemma 3.2.1. O

3.3 Modulo-2 Sum Computation in an n-Node Network

For the three node case, when K = X1 e X2 D X3 and for the appropriate probability
distribution on (X1, X 2, X3 ), the achievability of the rate triple (h(p), h(p), h(p)) follows
due to a simple extension of of the above lemma to three sources. Furthermore, the rate
triple is on the boundary of the K-achievability rate region. The idea can also be extended
to more than three nodes, as we show below.

n = 3. We determine the K-rate region under the following assumptions. Let

1. n = 3,

2. K = X 1 E X 2 e X3 , and

3. the source variables (X 1, X 2, X 3 ) have the following joint probability mass function.

P(X1 = X2 = 0IX 3 = 0)

= P(X 1 = X 2 = 1IX3 = 0) = -(1 - p),2
P(X1 = 0,X2 = 11X 3 = 0)

1
= P(X1 = 1,X 2 = OIX3 = 0) = -p. (3.2)

and
1

P(X 3 = 0) = P(X3 = 1) = . (3.3)

We assume that X1, X2, and X3 are pair-wise independent.

Then, H(KIXX, Xj) = H(KIXi) = h(p), and indeed, by symmetry, all entropies in equa-
tion (2.16) are equal to h(p). In fact, H(KJXi,Xj) = H({XiXj}clXi, Xj), where {Xi,Xj} c



is {X 1,X 2,X 3}\{Xi, Xj}. Finally, H(X1,X 2 X3 ) = H(XIIX3) + H(X21X1, X3 ) = 1+ h(p),
and, by symmetry, so are the remaining entropies of the same form that define the SW rate
region.

Now, we have that,the omniscience rate region, RO, is determined by the equations

R 1 Ž h(p)
R2 _ h(p)
R3 _ h(p)

R1 + R2  1 + h(p)
R2 + R3 > 1 + h(p)
R1 + R3 2 1 + h(p), (3.4)

Furthermore, we have the following theorem, which is the core of the main result of this
chapter.

Theorem 3.3.1. For K = X •eX2eX 3 and for the probability mass function on (X 1, X 2, X 3 )
defined in equations (3.2) and (3.3), (R 1, R2, R3) is achievable if (2.16) holds. Specifically,

R1 > h(p)
R 2 > h(p)

R3 Ž h(p)

R1 + R2 > h(p)
R 2 + R3 > h(p)

R 1 + R 3 Ž h(p), (3.5)

where h(p) = -plogp - (1 - p) log(1 - p).

Proof. The converse part of Theorem 3.3.1 was shown in section 2.3. To show the achiev-
ability part of the Theorem, it suffices to show that by an extension of Lemma 3.2.1,
(h(p), h(p), h(p)) is also an achievable rate triple, so it belongs to the K-rate region, RKK.
This is true because here the K-rate region is fully specified by the first three inequalities
of (2.16); any rate triple satisfying the first three inequalities will also satisfy the last three.
So, the rate region is a cone whose vertex is (h(p), h(p), h(p)).

By Lemma 3.2.1, there exists A and t/ such that (Cl) and (C2) hold. For our source
coding problem, we apply A to X3N at the X 3 encoder and use ¢ at the decoders of the
receiving nodes. By symmetry, we can use the same A and O at all the nodes. The decoding
works by applying 0 to A(XfN ) e A(X2N) e A(X3N ) because, by linearity of the operator A,
?P(A(X N ) e A(X2N) e A(X4N)) = b(A(X N D X2N e X3N)) = O(A(KN)) = KN. Now, since
H(K) = h(p), (h(p), h(p), h(p)) is an achievable rate triple. 0

Two important details should be mentioned here. These will be used later in extending
our argument to more than 3 nodes.

1. For the achievable triple to be (h(p), h(p), h(p)), we must have H(K) = h(p).

2. The point (h(p), h(p), h(p)) will be the vertex of the cone that is the K-achievable
rate region when H(KIX1, X 2) = H(KIXI) = h(p), and, moreover, all the conditional
entropies defining RK are equal to h(p). This constraint imposes structure on the joint
distribution of the source.



Finally, it is clear that (h(p), h(p), h(p)) V Ro for p f 1, since in this case h(p) < 1. So,
the last three conditions in 3.4 do not hold.

n > 4. Lemma 3.2.1 indeed holds for any n, source (X 1, X 2,..., Xn) and Kt = E- 1 Xit
mod 2. Thus, achievability of h(p)l for 1 E Rn for the n node case follows in the same
way that was argued above for the three node case, as long as (X 1, X 2 ,..., X,) has the
appropriate joint probability mass function.

Corollary 3.3.2. For any n, there exists a joint source (X 1 ,...,X,n) with appropriate
joint probability mass function such that, when Kt = - Xit mod 2, the rate vector
(h(p),... ,h(p)) G R n is

* the vertex of the cone defining the lower bound to the K-rate region boundary, Ri >
h(p) for i= 1,...,n,

* and, is achievable.

Example 3.3.3. Let n=4. Let the joint probability mass function on (X1, X 2, X 3 ) defined
by (3.2) and (3.3) be equal to the conditional probability measure, P(X 1,X 2,X 3 X 4 =

0). Let P(X 4 = 0) = ½, and let any 3 random variables taken from X1, X 2, X3 , X 4 be
independent, e.g. P(X 1 = xl,X 2 = x2,X 3 - x3) - P(X1 = x)P(X2 = x2)P(X3 = X3),
and let the marginals all be uniform. Then, h(p)l E IR4 is achievable. Note that,

1. For K = X 1 eX2eX 3@X4, H(K) = H(K X1,X 2, X 3) = H(KIX 1,X 2) = H(KI X) =
h(p), so, the right hand side of all the inequalities defining RK (4-node equivalent
to 2.16) is h(p).

2. H(X4IX1,X 2,X 3 ) = h(p). Also, H(Xi,X 21X3 , X 4 ) = l+h(p) and H(X 1,X 2 , X 3 X 4)
2 + h(p), as can be computed by applying the chain rule.

So, the SW constraints defining the rate region for omniscience, Ro, are,

1000
0100
00100001

1100
1010
10010 1 0 0

0101

001 010 0 0 1

1 0 1 0
1 0 0 1
0 1 1 0

-1 1 1 0

RIu
R2 >
R3

[R 4J

h(p)
h(p)
h(p)
h(p)

1 + h(p)
1 + h(p)
1 + h(p)
1 + h(p)
1 + h(p)
1 + h(p)
2 + h(p)
2 + h(p)
2 + h(p)
2 + h(p)

(3.6)

3.4 Minimum Achievable Rates: Omniscience versus K-achievability

We compare the omniscience and K-rate regions to quantify how much is gained, in terms of
being able to compress more and communicate at lower rates, by compressing for K rather



than compressing for omniscience. For this, we choose to characterize the rate region by a
single number as in [7], namely,

u(R*) = min u(R), (3.7)
RER

where u(R) = 1'R, R = [R1, R 2,... ,R,]', and R is either the K-rate region, RK, or the
omniscience rate region, Ro. We quantify the change as n grows of the rate savings gained
due to compressing for K, by computing R(n) = u(Rb)/u(R*).

R*K. For the chosen joint probability mass function of the source, (X1, X2,..., Xn),
the right-hand side of all the inequalities defining the K-rate region is h(p), for any n. It is
obvious that any solution satisfying the first n constraints, R, Ž h(p) for i = 1,... n, will
simultaneously satisfy all the rest, namely, that the sum of any pair, triple, ..., n-tuple of
rates must be greater or equal to h(p). Now, since any permutation of the indicies of the
rates, Ri, yields the exact same minimization problem (3.7), we must have that, for every
i, R! = c, where c is a constant. Clearly, c = h(p), and u(R;) = nh(p).

Rb. In general, there are E•--= (n) inequalities that define the SW rate region. The
first n are constraints on Ri; in our example, the right-hand side of all the inequalities is
h(p). The next (n) inequalities are on all the possible ways to sum two pairs of rates out
of n; in our example, the right-hand side of all the inequalities is 1 + h(p). The mth set
of constraints are on the (,) possible ways to sum m out of n rates; in our example, the
right-hand side of all the inequalities is m - 1 + h(p).

For our example, only the last n equations determine the solution to the minimization
problem; if a rate vector satisfies the last n constraints, it simultaneously satisfies all the
remaining inequalities. To see this, first consider the last n constraints that have the form

R1 + R2 + ". + Rn-1 _ n - 2 + h(p).

Assume, Vi E {1, 2,... ,n},
n - 2 + h(p)Ri n (3.8)n-1

Now, consider the mth set of constraints for m < n - 2, for example,

R1 + R 2 + - + Rm m - 1 + h(p).

Then, for the choice of Ri in (3.8) we have that these constraints are satisfied.

m(n - 2) mRI+R 2 + "+Rm_ n 'h(p)
n-1 n-i

m(n- 2) n- 1-m
Sm( 2)+ h(p) - M h(p)
n-1 n-1

(a) m(n - 2) n- 1 - m
n n - n + h(p)n-1 n-1

= m - 1 + h(p),

where (a) holds because h(p) < 1; in fact, equality holds for p = 1/2 and inequality is strict
otherwise.

Finally, any permutation of the indices of the rates, RP, in the minimization problem (3.7)
will result in the same problem. Therefore, the minimizing solution must consist of a vector



with the same entries, for every i, Ri = c, where c is some constant. So, we must have that
Sn-2+h(p), and u(R) = n (n-2 + h(p)).

u(R*)/u(R*). Substituting the results of the above computations we have that

u(R*)

n - 2 + h(p)

(n - 1)h(p)
1

n--oo h(p)

We note here that this result is not surprising in view of the fact that the number of
constraints for both minimization problems, (3.7) with R = RK and with R = Ro, is linear
in n. So, neither rate region, RK or RO, shrinks more rapidly than the other as n increases.

3.5 Generalizing to Finite Fields: Modulo-q Sum Computa-
tion

Lemma 3.2.1 can be generalized to the case when the sources X 1, X 2,.. ., Xn, take values
from a finite field of order q, GF(q), and K = E• 1 aoXj mod q, where ai's are constants
in GF(q).

Lemma 3.5.1. Let a sequence {Kil}' of i.i.d. random variables taking values in GF(q)
be given. For fixed E > 0 and for sufficiently large N there exists a matrix A of M x N
entries which are elements of GF(q) and a function : GF(q)M -+ GF(q)N such that

(C1) M log q < N(H(K) + E),

(C2) letting A(kN) denote the product in GF(q) of the matrix A with the column vector
kN of length N, we have P(4(A(KN)) € KN) < E.

This lemma then establishes the existence of a decentralized coding scheme with the
achievable rate vector H(K)1, where 1 E R n is the vector of ones. In particular, the
encoder of source i = 1,..., n applies the matrix A to its sequence XN . The decoder at j,
upon receiving A(X N ) for k 5 j, and having its own A(XN), forms the sum E 1l ajA(X N )
mod q. Now, by linearity of A,

n n

SaiA(XN) mod q =A( aiXX N  mod q)
i=1 i=1

= A(KN)

So, application of the decoding function ýb to the sum will result in 4(A(KN)) = KN, for
which, by lemma 3.5.1, P(O(A(KN)) : KN) < E.

Again, the lemma can be interpreted in terms of the typical set of KN, AN . As before, for
N sufficiently large, P(AN ) > 1 - , so, it is possible to get low probability of decoding error
by enumerating the elements of the typical set. Again, there are no more than 2N(H(K)+E)

of those elements. Now, A generates qM sequences, so our code can enumerate as many



sequences. Since we need not enumerate more than 2 N(H(K)+6) sequences, we have that
qM < 2N(H(K)+E).

The lemma can also be shown by analogy with a symmetric discrete memoryless channel
(DMC), as was done above for q = 2. To see this, consider q = 3. Let U be the input of a
DMC, and V its output. Let the channel transition probability be given by the following
matrix, P, where the entries are pij = P(V = j - 1IU = i - 1), for i,j c {1,2,3},

[ P2 1-p1-p2
P = 1 - pl - 2 P1 P2

P2 1 - pl - p2 p1

Note that for this channel, the output can also be written as V = U + K mod q, where U
and K are independent and K has the distribution: P(K = 0) = pi and P(K = 1) = p2.
Consequently, H(K) = -pl log pl - P2 log P2 - (1 - P1 - P2) log(1 - pl - P2).

By the Channel Coding Theorem, there exist codes for which, when the block length is
sufficiently large, the probability of decoding error can be made arbitrarily small as long as
the code rate, R, is smaller than the channel capacity, C. Further, for a DMC with inputs
belonging to GF(q), there exist linear codes which are capacity achieving. If the messages
are sequences of length N - M, and the channel inputs and outputs are of length N, then
the rate of the channel code (the number of information bits divided by the block length) is

R = log3N-M and the parity check matrix that is used to decode the outputs of the channel
has dimension M x N.

Now, it can be shown (Theorem 4.5.2, [12] p.94) that for a symmetric DMC, capacity
is achieved when the inputs have equal probabilities. Using this fact in Theorem 4.5.1 [12]
p.91, the capacity of the channel with the above transition probability matrix is C = log 3 -
H(K). Since a uniformly distributed input can achieve capacity, we have that R + e > C.
Substituting the expressions for C and R, we obtain (C1) of Lemma 3.5.1.

Having established that there exists a decentralized source code with the achievable rate
vector H(K)1, we proceed, as before, to construct a source joint probability mass function
for which the rate region defined by the K-achievability inequalities is a cone whose vertex
is the point H(K)1. Since it has already been established that the vertex is achievable, it
follows that every point in the cone is also achievable. Constructing such source probability
mass functions can be done for any q, but, again we illustrate for q = 3. First, we have the
general statement of our result in the following corollary.

Corollary 3.5.2. For any n, there exists a joint source (X 1 ,...,Xn) with appropriate
joint probability mass function such that, when Kt = EilaiXit mod q, the rate vector
(H(K),...,H(K))E IRn is

* the vertex of the cone defining the lower bound to the K-rate region boundary, Ri >
H(K) for i = 1,...,n,

* and, is achievable.

Example 3.5.3. For this example, let n = 3 and K = i= 1 Xi mod 3. Let the sources
(X1, X 2, X 3) have the following joint probability mass function. Let Po be the matrix whose
elements are pi = P(X 1 = i - 1,X 2 = j - 1IX 3 = 0) for i,j E {1, 2, 3}, P1 be the matrix
whose elements are pij = P(X 1 = i - 1,X 2 = j - 1IX 3 = 1) for i,j c {1,2, 3}, and P2 be

the matrix whose elements are p? = P(X 1 = i - 1, X 2 = j - 1fX 3 = 2) for i,j {1, 2, 3}.



The matrices are

1 1p P2 1- p - p2
Po = 3 P2 1 - p1 - P2 pi

1 - p1 - P2 Pi P2

P2 1 - PI -P 2 P 1

P1 = I1 - pl - p2 Pi P2

Pl P2 1 -p1 -p2

1 - pl 2 P1 P2
Pt = 3 P P2 1 - P1 - P2

P2 1 -P1 - P2 pi

Furthermore, we assume that X3 is uniformly distributed.
Then, we have that H(K) = H(K Xi) = H(KlXi,Xj), H(XiI{Xi}c) = H(K), where

{Xi} c is {XI,X 2,X 3}\{Xi}, and H({Xi}cIXi) = log3 + H(K). So, the K-achievability
rate region is defined by

R 1 > H(K)

R2 > H(K)

R3 > H(K)

and the Slepian-Wolf rate region is defined by

R1 + R2 > log 3 + H(K)

R 2 + R 3 > log 3 + H(K)

R 1 + R 3 > log 3 + H(K).

The construction of a source joint distribution can be done for 4 nodes starting form the
3 node joint distribution as was done in Example 3.3.3 for the binary case. Indeed, if we
generalize the above to n nodes when the sources take values in GF(q), we have that the
rates in the K-rate region satisfy Ri > H(K) and the rates in the SW-rate region satisfy
Ri > n1- 1 ((n - 2) log q + H(K)). Thus, we have that

u(%)R(n) =u(R)
u(R*K)
(n - 2) log q + H(K)

(n - 1)H(K)
log q

n--ooH(K)



3.6 Summary

In this chapter, we have demonstrated that when nodes need to compress their data in order
to reliably compute the sample-wise modulo-q sum of their data, they need to exchange
information at rates lower than would be required for each of them to acquire all other
nodes' data. This is not true for the two node case, but, when there are more than 2 nodes,
things change. Indeed, for the modulo-2 sum computation example, we presented a source
for which we showed achievability of a point that does not belong to the omniscience rate
region. This point turned out to be the vertex of the cone defining the lower bound to the
K-rate region boundary, defined by the inequalities in Theorem 2.2.1. Furthermore, the
example was generalized to modulo-q summation when the source random variables take
values on a finite field of order q.





Chapter 4

Computation via Noisy Channels

We consider a network of n nodes communicating via noisy channels. Each node has some
real-valued initial measurement or message. The goal of each of the nodes is to acquire an
estimate of a given function of all the initial measurements in the network.

We seek to understand the limitations imposed by the communication constraints on
the nodes' performance in computing the desired function. The performance is measured by
the mean square error in the nodes' estimates of the desired function. The communication
constraints consist of (1) the topology of the network, that is, the connectivity of the
nodes, and (2) the noisy channels between nodes that communicate. In order to capture
the limitation due to the communication constraints, we assume that that the nodes have
unlimited computation capability. Each node can perform any amount of computation as
well as encoding and decoding for communication.

In this formulation, each node has an initial value from a source having some distribution;
each node knows nothing of the source distributions of other nodes. This is unlike the
"source coding" formulation of Chapter 2 where we assumed that the joint probability
mass function of the source was known at all nodes. In that chapter, the task of the nodes
was to take advantage of the joint probability mass function in compressing their messages
efficiently for decoding a function of the data in the network. Another difference between
the two formulations is that here, each node has some real-valued initial measurement or
message. In Chapter 2, nodes generated their messages, a data stream, by sampling from
their respective sources which were discrete.

As was the case in Chapter 2, the formulation of this chapter lends itself to Information
Theoretic techniques. We use Information Theoretic inequalities to derive lower bounds
on information exchange necessary between nodes for the mean square error in the nodes'
estimates to converge to zero. One way we use this bound is to determine an upper bound
on the rate of the channel code in terms of the capacity of the channel and the required
rate of convergence of the mean square error to zero. Another way we use the Information
Theoretic technique is to determine a lower bound on computation time that must be
satisfied by any algorithm used by the nodes to communicate and compute, so that the
mean square error in the nodes' estimates is within a given interval around zero. In the
latter case, the bound is in terms of the channel capacities, the size of the desired interval,
and the uncertainty in the function to be computed.

Existing results include algorithms with upper and/or lower bounds on the time for
the nodes to reach agreement or compute a certain quantity with given accuracy, when
communication is subject to topological constraints, but perfect when present [2, 3, 33,



32]. Another set of work investigates algorithms for computation when communication is
unreliable. The channels in the network are explicitly modelled. The researchers propose
an algorithm that will perform the desired computation while satisfying some performance
criterion. For example, in [11], each node in the network has one bit. Nodes broadcast
messages to each other via binary symmetric channels. The goal is for a fusion center to
compute the parity of all the bits in the network. Gallager proposes an algorithm that can
be used while guaranteeing a desired probability of error. He exhibits an upper bound that
is a constant multiple of the bits that must be transmitted per node. Recently, it has been
shown in [14] that this algorithm is optimal. The authors produce an algorithm-independent
lower bound that is of the same order as the upper bound.

Many different formulations and corresponding bounds can be found in the literature.
Two examples are [10, 18]. In [10], the authors derive Information Theoretic bounds on
the number of bits that must be exchanged for nodes communicating via noiseless channels
to acquire each other's data. In [18], the authors present lower bounds to the number of
messages that must be communicated by two sensors to a fusion center that must determine
a given function of the nodes' data. However, the transmitted messages are real-valued
vectors and the lower bound is on the sum of the dimensions of the message functions.
Several formulations and results relevant to computation in wireless sensor networks can be
found in a detailed survey by Giridhar and Kumar [13].

Our approach and, hence results, are quite different. We capitalize on Martins' suc-
cessful use of Information Theoretic tools in [19, 20, 21, 22] to characterize fundamental
performance limits of feedback control systems with communication constraints. We use
Information Theoretic inequalities, reminiscent of those of Rate-Distortion theory, in a dif-
ferent setting with different objectives. In particular, we have a network of nodes whose
objective is to compute a given function of the nodes' data, rather than to communicate
reliably to each other their data.

The Information Theoretic approach captures fundamental performance limitations that
arise in the network due to the communication constraints. This happens because the
analysis is independent of the communication algorithm used by the nodes. The lower bound
we derive in this chapter enables us to characterize the effect of the network structure on
algorithm running time. As we will further discuss in the next chapter, for nodes exchanging
information over erasure channels to compute the sum of their initial conditions, the lower
bound is indeed tight in capturing the network constraints.

In the next section, we describe the problem formulation and state the main theorem of
this chapter. In section 4.2 we recall the Information Theoretic definitions and properties
that we will need. In section 4.3 we prove our main theorem. Finally, we end by discussing
a technical difficulty that arises in applying our lower bound and we suggest a technique to
circumvent this difficulty.

4.1 Problem Formulation

A network consists of n nodes, each having a random initial condition or value. We represent
the initial condition at node i by the random variable Xi(0). Let X(0) represent the vector
of all the initial condition random variables, [XI(0) ... Xn(0)]'. Each node is required to
compute a given function of all the initial conditions. That is, node i is required to estimate
Ci = fi(X(0)). We let C = [C1 ... Cn]'. Suppose that nodes 1 to m belong to set S.
Whenever we use a set as a subscript to a variable, we mean the vector whose entries are



that variable subscripted by the elements of the set. For example, Cs = [C1 ... Cm]'.
We assume that time is discretized into intervals, and enumerated by positive integers,

{1,2,... }. During each time step, a node can communicate with its neighbors. At the end
of time-slot k, node i uses the information it has received thus far to form an estimate of
Ci. We denote this estimate by Xi(k). Let, X k denote the finite sequence of estimates at
node i, {Xi(1),Xi(2),... Xi(k)}. The estimates of all nodes in the network at the end of
time slot k are denoted by the vector X(k) = [Xl(k) ... Xn(k)]'. And, the estimates of
nodes in set S are denoted by Xs(k) = [Xi(k) ... Xm(k)]'.

The nodes communicate via noisy channels. The network structure is described by a
graph, G = (V, E), where V is the set of nodes and E is the set of edges, (i,j). If node i
communicates with node j via channel with capacity Cij > 0, then (i, j) E E. If (i, j) V E,
we set Cij = 0. We assume that all channels in the network are independent memoryless
discrete-time. Further, for each of the channels, one channel symbol is sent per -c = 1
second. Each node generates an input for its encoder every T seconds, and by the kth input
generated, Xi(k), N channel digits have been sent; so, NTr = kr. When -r = 1, the time T
until the kth node estimate, Xi(k), has been generated is T = kT. With no loss of generality,
we assume in what follows that T = 1. So, Xi(k) = Xi(T).

We consider two mean square error criteria. The operator II II is to be interpreted, when
the argument is a vector, C, as IC 112 = E C2.

C1. E(IIX(T) - C112) _ /2 - a , and,

C2. E(Xi(T) - Ci)2 < /2-a, for all i CE 1,... ,n},

where , a E E +\{0}.
The first criterion requires that as the number of nodes increases, the per node error is

also smaller. It suggests that as the number of nodes, n, increases, we require the mean
square errors at each of the nodes, E(Xi(k) - Ci)2 to decrease like 1/n. This criterion is
appropriate if, for example, the initial values at the nodes are independent and each node
is to estimate the average of the initial values in the network. As the number of nodes
increases, the variance of the average decreases. In circumstances where this does not
happen, the second criterion may be more appropriate.

The "computation time" is the first time at which the desired performance criterion
holds. We seek a lower bound on the computation time, T, that holds if the desired mean
square error criterion, C1 or C2, is satisfied. That is, if C1 or C2 holds, then how large
must T be?

4.1.1 Main Result

The main theorem of this chapter provides a lower bound to computation time as a function
of the accuracy desired, as specified by the mean square error, and the uncertainty in the
function that nodes must learn, as captured by the differential entropy.

Theorem 4.1.1. For the communication network described above, if at time, T, the mean
square error is in an interval prescribed by a, E(Xi(T) - C) 2 < 32- 0, for every node, then
T is lower bounded by

L (s)T > max
S- s C Eis EjES Cij



where Sc = V\S and,

IS aL(S) = h(Cs|Xs(O)) - 2 log 27rep + SI|.
2 2

This theorem captures the fact that the larger the uncertainty in the function to be
estimated, or the larger the desired accuracy, the longer it must take for any algorithm to
converge.

4.2 Information Theoretic Preliminaries

The differential entropy of C is denoted by h(C). The mutual information between X and
C is denoted by I(X; C).

When indicated, we will need to use the most general definition of mutual information.
It can be used when the random variables are arbitrary ensembles, not necessarily both
continuous or both discrete. We repeat this definition from [29, p.9]. The conditional
mutual information is similarly defined; see [29, Ch. 3].

Suppose X and C are random variables that take values in the measurable spaces
(ax, Sx) and (ac, Sc), respectively. Sx denotes the sigma algebra of subsets of Qx. Let
the probability distributions of X and C be Px and Pc. Let Pxc be the joint distribution
of X and C.

The mutual information between X and C is

I(X; C) = sup Pxc(E x Fj) log Pxc(E) x Fj)
ij Px(Ei)Pc(Fj)'

where the supremum is taken over all partitions {Ei} of f 2x and partitions {Fi} of Qc.
In the remainder of this section, let C and X be continuous random variables. The

definitions for mutual information and differential entropy for this case are repeated from [5,
Ch.9].

Let X and C have the probability densities p(x) and p(c). Let their joint density be
p(x, c). Then their mutual information is defined as

I(X; C) = p(x, c) log p(p(x,c) d dc.gp(x)p(c)d d.

The differential entropy of C is defined as

h(C) = - p(c)logp(c) dc.

The conditional differential entropy h(CIX) is

h(CIX) = - p(x, c) logp(cx) dx dc.

The following properties of differential entropy will be used.

(1) Conditioning reduces entropy, h(CIX) < h(C). Equality holds if C and X are inde-
pendent.



(2) Differential entropy, h(X), is maximized, over all distributions with the variance
Var(X) = a 2, by the normal distribution. If X had a Normal distribution, it would
have entropy . log 2reU2 . Hence, for any distribution of X with Var(X) = a2,

1
h(X) < - log 27re 2.

Further, if X is a vector of random variables, X = [X1 ... Xn]', then

h(Xi,..., Xn) 5 -log(2ire)n1Zj,

where Z is the covariance matrix of X and IZI is the determinant of Z.

Next, the following properties of mutual information will be needed.

(1) Mutual information can be written in terms of differential entropies as

I(X; C) = h(C) - h(CIX).

(2) By the chain rule for mutual information,

n

I(i, X 2,.. .Xn; C) = I(Xi; CXi, ... Xi-1)
i=1

(3) By the data processing inequality, if Y = f(C) for any (measurable) function f, then
I(C; X) > I(Y; X).

Finally, when the argument in h(.) is a vector of length n, for example, C = [C1, ... Cn]',
it is interpreted as the joint differential entropy h(C1,..., Cn). Similarly, when the argu-
ments in I(.; -) are vectors of length n, for example C and X, it is to be interpreted as
I(Ci,... , Cn; Xi,..., Xn).

4.3 Proof of Main Theorem

In this section, we present the proof of Theorem 4.1.1. The core idea is to characterize the
information flow between arbitrary "cut-sets" of the network. A cut divides the network
into two sets, S and S c = {1,... n}\S. Suppose that nodes 1 to m belong to set S and
nodes m + 1 to n belong to set Sc. So, the estimates of the nodes in set S at time T are
Xs(T) = [XI(T) ... Xm(T)]'. The initial conditions of the nodes in sets S and S c are
denoted by Xs(O) = [X1(0) ... Xm(O)]' and Xsc(O) = [Xm+1(0) ... Xn(0)]'.

The quantity that will play a central role in the proof of Theorem 4.1.1 is the mutual in-
formation term, I(Xs(T); Xsc (0) Xs(0)). This is mutual information between the estimates
of the nodes in set S and the initial conditions of the nodes in set S c , assuming that all
nodes in S have each other's initial conditions. Leading up to the proof of Theorem 4.1.1,
we prove 3 lemmas related to I(Xs(T); Xse (0) Xs(0)).

In the first of our series of lemmas, we bound from above I(Xs(T); Xsc(O)JXs(O)), by
the mutual information between the the inputs and the outputs of the channels that traverse
the cut.



Lemma 4.3.1. For a given cut in the network, and corresponding cut-sets S c and S,

N

I(Xs(T); Xsc(O)I 1Xs(O)) <• I(Vs(l); Usc (1)lUs(l)),
l=1

where N is the channel code block length, Use is a vector of the variables transmitted by
the encoders of the nodes in Sc and Vs is a vector of the variables received via channels by
the decoders of the nodes in S. The (1) refers to the 1th channel use.

In the second lemma, we bound from above I(Vs(1); Usc(1) Us(1)) by the sum of the
capacities of the channels traversing the cut.

Lemma 4.3.2. Suppose a network is represented by the graph G = (V, E). The edges of
the graph represent channels with positive capacity. If the channels connecting the nodes
are memoryless and independent, then,

I(Vs(1); Us ()IUs(l)) < 55 Cij.
iESc jES

The proof of this lemma makes apparent the value of the conditioning in the mutual
information terms. This conditioning is equivalent to assuming that all nodes in S have
access to all information that is available at the nodes of the set S, including information
about Xs(O). In this way, we capture the information that is traversing the cut, without
including the effect of information exchanged between nodes in the same set.

Finally, in the third lemma, we bound from below the term I(Xs(T); Xsc(0)IXs(0)). We
show that this term is bounded from below by the information that must be communicated
from the nodes of S c to the nodes of S in order for the nodes of S to compute their estimates,
I(Xs(T);CsIXs(O)). We then bound this from below by an expression that involves the
desired performance criterion and the desired function.

For the mean square error criterion C1, we have the following lemma.

Lemma 4.3.3. If E(IIX(T) - C112) < 02- 0 then

I(Xs(T); Xs,(0)IXs(O)) > L(S)

where,

L(S) = h(CslXs(O)) - log2,re/ + log IS + IS- 2

and, ISI is the size of the set S, specifically, ISI = m.

The lower bound involves two terms. These are (1) the desired accuracy in the nodes'
estimates, specified by the mean square error criterion, and (2) the uncertainty in the
function to be estimated, Cs, quantified by its differential entropy. The larger the desired
accuracy, the larger the a in the mean square error criterion. This implies a larger lower
bound on the information that must be conveyed. Also, the larger the uncertainty in the
function to be learned by the nodes in set S, the larger the differential entropy term. Hence,
the lower bound is larger.

For the mean square error criterion C2, we have the following corollary.

Corollary 4.3.4. If, for all i c {1,...,n}, E(Xi(T) - Ci)2 < 32- e, then,

I(Xs(T);Xsc (0) Xs(O)) > L (S),



where L(S) = h(Cs Xs(0)) - log 2rep± + SI .

When, for all i, E(Xi(T) - Ci)2 < f2 - c, we again have a lower bound that depends on
the desired accuracy and the uncertainty in the function to be estimated. However, L(S)
is smaller than L(S) due to the weaker error requirement of C2.

In the next sections, we prove the above lemmas. Then, we prove Theorem 4.1.1.

4.3.1 Proof of Lemma 4.3.1

We prove the following inequality:

N

I(Xs(T); Xsc(0) Xs(0)) <_ I(Vs(1); Usc(1) Us(1)), (4.1)
1=1

where N is the channel code block length, Use is a vector of the variables transmitted by
the encoders of the nodes in Sc and Vs is a vector of the variables received via channels by
the decoders of the nodes in S.

Recall that by the assumptions we made in our problem formulation, the end of the kth
time slot corresponds to time T. So, Xs(T) = Xs(k). In this proof, it is convenient to use
Xs(k). We need to refer to the sequence of estimates at node i up until time T. The most
natural way is to enumerate using integers: Xýk = {Xi(1),Xi(2),... Xi(k)}.

For this proof, we use the general formulation for multi-terminal networks of [5, section
14.10]. let Ui be transmitted by the node i encoder and Vi be received by the node i decoder.
We denote a sequence of length N transmitted by i as UN = (Ui(1), Ui(2),... Ui(N)). The
indices in brackets represent channel use. As before, if nodes 1 to m belong to S, we have
that Vs = (Vi,..., Vm). Similarly, we have that Vs(1) = (Vi(l),..., Vm(l)), representing the
variables received after the 1-th use of the channel.

We assume that the the estimates at node i, Xik, are a function of the received messages
at that node, V•N and its own data, Xi(0), Xi = ¢i(vaN, xi(0)). The message transmitted
by i in the 1th channel use, Ui(1), is also a function of of the received messages at that node,
Vi1- 1 and its own data, Xi(O), Ui(l) = Oi(V' - 1, X(0)).

As in [5], the channel is a memoryless discrete-time channel. In our case, for convenience,
we assume the channel to be continuous, represented by the conditional probability distri-
bution function p(vl,..., vnljul,..., un). However, we note that the inequalities below hold
even in the case that the channel is discrete. In this case, the random variable arguments of
I(.; - .) would be arbitrary ensembles, and so we use the general definition for I(.; +I.) as the
"average conditional information" in [29, Ch.3], and for the conditional entropy, h(XIY),
we use h(XIY) = I(X; XIY). All the equalities and inequalities below will continue to hold.
We refer the reader to [29, Ch.3] for technical details.

The following inequalities proceed in the same manner as Theorem 14.10.1 in [5]. For
convenience, we repeat the steps here using our notation.

I(Xs(k); Xse(O)|Xs(O))
(a)
< I(Xs(1),... ,Xs (k); Xsc (0) Xs(0))
=I(Xs(1),..., Xs(k), Xs (0); Xs (0) Xs(0))



(b)

< (VN, . . ., V~, Xs (0); Xs (o) IXs (o))
=I(Vs(1),..., Vs(N); Xse (0) JXs (0))

N
M= I(Vs(1); Xs (O) Xs(0), Vs(l - 1),..., Vs (1))

1=1

N
d= -- h(Vs(1)jXs(O), Vs(l - 1),..., Vs(1))

1=1

- h(Vs(1)|Xsc(O),Xs(O), Vs(l- 1),..., Vs(1))

(e) N

< h(Vs(l) Xs(0), Vs(l - 1),... Vs(1), Us ())
1=1

- h(Vs(l)|Xsc(O),Xs(0), Vs(l - 1),...,Vs(1), Us(l), Usc(l))

< > h(Vs(l) Us(1)) - h( Vs(1) Us(l), Us(l))

1=1

N

I~ 2 I(Vs(l); Us (l) us(l)).
/=1

Above,

(a) holds by the data processing inequality,

(b) holds again by the data processing inequality, because Xj = 9j(ViN, Xi(0)),

(c) follows by the chain rule for mutual information,

(d) follows by the definition of mutual information, (or, in the discrete channel case, it
follows by Kolmogorov's formula [29, Ch.3] and by noting that the entropy term is
well-defined since Vi would take values in a discrete set),

(e) follows, for the first term, because Ui(1) = i(Vi-', Xi(0)), so it does not change the
conditioning; and the second part follows because conditioning reduces entropy,

(f) holds, for the first term, because conditioning reduces entropy, and for the second
term, because the channel output depends only on the current input symbols,

(g) from the definition of mutual information.

4.3.2 Proof of Lemma 4.3.2

In this lemma, we consider a network that is represented by the graph G = (V, E). The
edges of the graph represent channels with positive capacity. If the channels connecting the
nodes are memoryless and independent, we show that,

I(Vs (1); Usc (1) Us(1)) < Ci>.
iESc jES



For simplicity of notation in the rest of the proof, we omit the braces after the random
variables, (1). For example, instead of Vs(1) we write Vs.

As we had in the previous lemma, Uj is transmitted by the node i encoder. Previously,
we had not specified which nodes will receive this code letter. In our set up, however, there
is a dedicated channel between every two nodes that have an edge between them. So, the
transmitter at node i will send out codewords to each of the neighbors of i, that is all j,
such that (i, j) E E. We denote the encoder's code letter from i to j as Uij. Ui represents
all messages transmitted by the encoder of node i. So, Ui = {Uij}, for all j, such that
(i,j) E.

Similarly, Vi is received by the node i decoder. It consists of all the digits received by
i from its neighbors, all j such that (j, i) E E. If there is a link from node j to i, the
code letter from node j arrives at the decoder of i through a channel. We denote the digit
received at i from j as Vji. Vi represents all the received messages; so, Vi = {Vii}, for all j,
such that (j, i) C E.

In order to make our notation in the proof simpler, we introduce dummy random vari-
ables. In particular, we will use Uij and Vij even if (i, j) V E. Effectively, we are intro-
ducing a link between nodes i and j. But, in this case, we set Cij = 0. So now, we let
Ui = {Uil,..., UVn} and Vi = {Vi,..., Vni}.

The key to the proof is the memorylessness and independence of the channels. That is,
the output of a channel at any instant, Vij(1), depends only on the channel input at that
instant, Ui(1l). Because of this, we have that

I(Vs; Us IUs)< Z I(Vij; Uij).
iESc jES

To obtain this expression, we express the mutual information in terms of the entropy,

I(Vs; Us IUs) = h(Vs Us) - h(Vs Usc, Us).

Next, we express the entropy terms using the chain rule. We assume that nodes 1 to m
belong to set S and nodes m + 1 to n belong to Sc. Then,

m

h(Vs Us)= Eh(VY Vj-_l,..., V, Us),
j=1

and,
m

h(VsVUs c , Us) = h( VYjV_l,... , Vil, Use, Us)*
j=1

Because conditioning reduces entropy, we have that

m

h(Vs Us) Z h(V IUs).
j=1

For every channel, given its input, the channel output is independent of all other channel
outputs. So,

m

h(Vs Usc, s) = h(VjIUsC, Us).
j=1



Combining the two inequalities, we have,

m

I(Vs; Us. IUs) < h(VYIUs) - h(Vj Use, Us).
j=1

Now, let j = 1 and consider the expression h(VI Us) - h(Vi Usc, Us). Recall that we
have assumed that V1 = {V11,..., V1}. Also, we have that Ui = {Uil,...,Uin}. So, US
includes {Uli,..., Um1}.

For the first differential entropy term we have the following sequence of inequalities.

h(Vi Us) (a h(VilIV(i-1), . . , V1 , Us)
i=-1

m n

(b)
- E h ( V i l jUv i ) + h(Vil I V(i-x) 1 ', V I I U S )

i=1 i=m+l

(c) m 
n

<- E h(Vi Uil) + h(Vi1),

i=1 i=m+l

where,

(a) follows by the chain rule,

(b) follows because the channels are independent; so, given Uil, V1i is independent of all
of the other random variables,

(c) holds because conditioning reduces entropy.

Next, observe that

n

h(lv Usc, Us) h(Vi1 V(-_1)1,. .., Vl1, Use, s)
i=1

n
(e) h(Vi1 VUi),

i=1

where,

(d) follows by the chain rule,

(e) follows because the channels are independent; so, given Uil, Vil is independent of all
of the other random variables.

Finally, combining these inequalities,

h(VI Us) - h(Vi Usc, Us) < h(Vil1) - h(Vile•Ui)
i=m+1l

n

E I(Vil; Uil).
i=m+1



Hence we have the desired expression,

I(Vs; Us IUs) <_ I(Vuj; Uij) -
iESc jES

Finally, to complete the proof, we note that

I(Vyj; uij) < cij.

This is because, by definition,
Cij = max I(Vj; Uij),

where the maximum is taken over all distributions of the channel input, Uij. O

4.3.3 Proof of Lemma 4.3.3 and Corollary 4.3.4

Recall that the lemma stated that if E(IIX(T) - C112) < 32-a then

I(Xs(T); Xse(O) Xs(O)) > L(S)

where,

L(S) = h(CsIXs(O)) - 2 log 27re3 + 2 logIS + ISI 2

and, SI is the size of the set S, specifically, IS = m.
We start the proof by observing the following.

I(Xs (T); Xse (0) Xs (0))
I(Xs(T); Xsc() IXs(O))

(b)
> I(Xs(T); Cs Xs(O))

where

(a) that is, I(W; Y, UIU) = I(W; YIU), can be verified by the chain rule for mutual
information:

I(W; Y, U U) = I(W; YIU) + I(W; U U, Y)
= I(W; YIU),

because I(W; UlU, Y) = 0.

(b) follows by the data processing inequality, because Ci = fi(X(O)).

Second, we obtain a lower bound on I(Xs(T); CslXs(O)) in terms of the desired mean
square criterion. We have the following series of inequalities.

I(Xs(T); CsIXs(0)) = h(Cs Xs(0)) - h(CsIXs(T), Xs(0))

= h(CslXs(0)) - h(Cs - Xs(T)lXs(T),Xs(O))

(c)
> h(Cs Xs(0)) - h(Cs - Xs(T)) (4.2)



where, (c) follows because conditioning reduces entropy.

Now, because the multivariate normal maximizes entropy over all distributions with the
same covariance,

h(Xs(T) - Cs) -log(2re) m IZI, (4.3)

where, Z is a covariance matrix whose diagonal elements are Zii = Var(Xi(T) - Ci), and

IZI denotes the determinant. Recall that S is the set containing nodes 1 to m, so it has size
m. Also, Xs(T) - Cs is a vector of length m. So, Z is an m by m matrix. Now,

(d) m

IZI < • lVar(Xi(T) - Ci)

m
i=1<I E(Xi(T) - C,) 2

<_ . (4.4)

Here, (d) follows due to Hadamard's inequality. To see (e), we have the following proposi-
tion, which is shown in the Appendix.

Proposition A.1.1 For y > 0, subject to E•= y1i 5 y and yi _ 0, JJm 1 y1 is maximized
when yi = -

Now, (e) follows by setting yi = E(Xi(T) - Ci) 2 and observing that

m

E i = E(IIXs(T) - CsI 2)
i=l

< E(IIX(T) - C112)

where the last inequality follows by the assumption of our lemma.

Finally, using (4.4) and (4.3), we bound (4.2) from below and obtain L(S). O

Proof of Corollary 4.3.4. Recall that in this corollary, we had the weaker condition that for
all i E {1,...,n}, E(Xi(T) - Ci)2 < 32- ". In this case, we show that we have the smaller
lower bound,

L(S) = h(CsIXs(O)) - I log 27re/3 + IS .

To see this, observe that E(Xi(T) - Ci)2  /32- a implies E(IIXs(T) - Cs112) < ISI32- a.
So, replacing 3 in L(S) of the previous lemma by ISIP yields the desired result. Ol



4.3.4 Proof of Theorem 4.1.1

The proof proceeds in several steps. First, as shown in Lemma 4.3.1, for a given cut in the
network and corresponding cut-sets Sc and S,

N

I(Xs(T); Xs (O) Xs(O)) < I(Vs(); Us(I)|Us()), (4.5)
/=1

where N is the channel code block length, Use is a vector of the variables transmitted by
the encoders of the nodes in S c and Vs is a vector of the variables received via channel by
the decoders of the nodes in S.

Second, by Lemma 4.3.2, because we have assumed that the channels connecting the
nodes are memoryless and independent,

I(Vs(1); Us (1) Us(1)) 5 cij. (4.6)
iESc jES

Third, we combine equations (4.5) and (4.6) with Corollary 4.3.4 to obtain

L (S)N > , (4.7)
- Ziesc jEs Cij

Finally, we have that
L (s)T > max

- SV EiEsc EjE Cij

because (i) (4.7) holds for any cut, and, (ii) by assumption, each of the channels transmits
one symbol per second, so T = N.

4.4 A Technical Difficulty and its Resolution

Making use of the lower bounds derived above involves computing the differential entropy
of the random variables to be learned in the network, specifically, h(CsfXs(O)), where
Cs = [Ci ... Cm].' If the Ci's are different random variables, then the differential entropy
term is well-defined. However, if two entries of Cs are the same random variable, for
example if both are f(X(O)), then h(CsIXs(O)) will be -oo.

One way to avoid this looseness is by viewing all the nodes in the set S as one node.
Then we can use the Information Theoretic technique to derive a new lower bound for this
scenario. This will result in the new lower bound not recognizing that the information
traversing the cut is destined to ISI nodes.

However, the lower bound derived in this chapter can be used capture the effect of SI.
To do this, we introduce auxiliary random variables associated with the nodes of set S c , to
be learned by nodes in S. This technique will be used in the next chapter. In the examples
below, we demonstrate the computation of h(CsjXs(O)) when we introduce the auxiliary
random variables.

Example 4.4.1 (The Solution). Let nodes {1,... ,m}, m < n/2, belong to set S, so that
Cs = [Ci ... Cm].' Let C1 = f(X(O)) and Ci = f(X(O)) + aijje for i E {2,..., m}. One
can think of eji being associated with a node in set Sc , that is, ji E {m + 1,... n}. So, node
ji's initial condition would be (Xj, (0), Ej).



Furthermore, we assume that f is separable, meaning f(X(O)) = fs(Xs(O))+fsc(Xs (O)).
Finally, we assume that the Xi(O)'s and ei's are mutually independent. Then,

h(CslXs(0))

=h (fsc(Xsc(O)), fsc(Xse(O)) + a2Ej2, .... , fs(Xsc(O)) + amjmlXs(O))

h(fsc(Xse(O)), fsc(Xs,(O)) + a2 j2, . . , fsc(Xsc(O)) + amEjm)
m

hh(fs (Xs,(O))) + h(ai Ej)
i=2

m m

h)h(fsc(Xse(O))) + E h(jey) + log ail,
i=2 i=2

where,

(a) follows because we have assumed that the Xi(O)'s and Ei's are mutually independent,

(b) follows by the chain rule for differential entropy, and again using the fact that the
Xi(0)'s and Ei's are mutually independent,

(c) follows using the fact that h(aEjis) = h(Ej) + log lail, as shown in shown in [5, Ch.9].

In the next example, we assume that the function f is a linear function and that the
auxiliary random variables are independent Gaussian random variables. For this scenario,
we then obtain the expression for the lower bound of Corollary 4.3.4.

Example 4.4.2 (Using the Solution for a Linear Function). In addition to the
assumptions in Example 4.4.1, let f(X(O)) = E' 1 / 3Xj (O). We assume that r...- ,
are independent and identically distributed Gaussian random variables, with mean zero and
variance r. Then, the differential entropy of Ejj is h(Ej~ ) = I log 27rer.

So, substituting in the expression from Example 4.4.1, we have that

h(Cs Xs(0)) = h j X (0) + 2 log 2rel + log 1  ai. (4.8)
.jESc i=2

To evaluate h (Ejs /3Xc (0)) , we use the Entropy Power Inequality, namely, for inde-
pendent Xi(0)'s,

22h(EESC)3jXj(O)) > 2 2h(/jXj(0))

jESc

which implies that

h 13j Xj (0) '> 2log 22h()jXj(0))

Now, if we assume that each Xi(0) is uniformly distributed in the interval between 1 and
B + 1, Xi(O) . U[1, B + 1], then,

h (3Xj(0)) = log I|jlB.



So,

h ( 3Xj(0) ) log 2og B + log 1 O.2" (4.9)
jeSc jESc jESc

Finally, we evaluate the lower bound of Corollary 4.3.4 for this scenario. Recall that we had

L(S) = h(Cs Xs(0)) - 1 S1log 27rep3 + SI

and IS| = m. Assuming that 3 = 1 and using equation (4.8) together with the inequality
of equation (4.9), we have that

LE(S) c log + H(a + log r) . (4.10)L(S)Žlog 2

4.5 Summary

In summary, our use of basic Information Theoretic definitions and inequalities has led to
a lower bound that we have applied to a formulation for distributed function computation.
The lower bound on information consists of a term that arises due to the mean square
error criterion and a term due to the function that is to be estimated. Using techniques of
Network Information Theory, we have shown how the bound on information can be used to
obtain a lower bound on computation time time.

In the next chapter, we use the techniques of this chapter to find a lower bound on
computation time when nodes compute a sum via erasure channels. We present a distributed
algorithm for computation in this scenario and provide an upper bound the run-time of the
algorithm. Both bounds depend inversely on conductance, which captures the limitations
due to the network topology. Therefore, we conclude that our lower bound is tight in
capturing the effect of the network topology via the conductance.





Chapter 5

A Tight Bound: Computation of
the Sum via Erasure Channels

In this chapter we apply the lower bound developed in Chapter 4 to a specific scenario
where we find our bounds to be asymptotically tight. Specifically, we consider a scenario
nodes are required to learn a linear combination of the initial values in the network while
communicating over erasure channels. Our lower bound suggests that in this scenario, the
computation time depends reciprocally on "conductance." Conductance essentially captures
the information-flow bottle-neck that arises due to topology and channel capacities. The
more severe the communication limitations, the smaller the conductance.

To establish the tightness of our lower bound, we describe an algorithm whose computa-
tion time matches the lower bound. The algorithm that we describe here can in fact be more
generally used for distributed computation of separable functions, a special case of which
is the sum. The desired function, a sum, is simple, and the algorithm that we describe has
computational demands that are not severe. So, the time until the performance criterion is
met using this algorithm is primarily constrained by the limitations on communication.

Indeed, we show that the upper bound, on the time until this algorithm guarantees
the performance criterion, depends reciprocally on conductance. Hence, we conclude that
that a lower bound we derive using Information Theoretic analysis is tight in capturing the
limitations due to the network topology. Alternatively, one can interpret this tightness as
the fact that the algorithm we describe here is the fastest with respect to its dependence
on the network topology, as quantified by the conductance.

In the next section, we describe the problem formulation and the main results of this
chapter. In section 5.3 we derive the lower bound that scales reciprocally with conductance.
In section 5.4 we describe an algorithm that can be used to compute the sum via erasure
channels. We derive an upper bound on its computation time; we show that this upper
bound also scales inversely with conductance.

5.1 Problem Formulation

A network consists of n nodes, each having a random initial condition, denoted by the ran-
dom variable Xi(0). Suppose the initial values at the nodes are independent and uniformly
distributed, Xj(0) - U[1, B + 1]. Each node is required to compute a linear function of all
the initial conditions, C = 1 jXj(O). Node i's estimate of C at time k is denoted as
Xi(k).



The nodes communicate via noisy channels is described by a graph, G = (V, E), where
V is the set of nodes and E is the set of edges, (i, j). If node i communicates with node j
via channel with capacity Cij > 0, then (i,j) E E. If (i,j) ( E, we set Cij = 0. We assume
that the graph is connected.

We assume that all channels in the network are independent memoryless discrete-time.
Further, for each of the channels, one channel symbol is sent per second. We assume that
the channels are symmetric, Cij = Cji. Furthermore, they are erasure channels, so that
Cij = Pij, where pij is the probability node j receives node i's bit without error. The
matrix P = [pij] is a doubly stochastic matrix that captures the communication limitations
due to the channels.

The conductance of a graph, 4(G), is a property that captures the bottle-neck of in-
formation flow. It depends on the the connectivity, or topology, of the graph, and the
magnitudes of the channel capacities. It is defined as

4) (G)= min EiESmjSsCijscv IS
o<Sl<Sn/2

In the case of erasure channels, we substitute in Cij = pij, and we denote the conductance
as P(P).

5.1.1 Main Results

Consider any algorithm that guarantees that for any realization of the initial values, with
high probability each node has an estimate within 1 ±i of the true value of C, at time T. The
Information Theoretic lower bound maintains that such algorithm must have a computation
time, T, that is inversely proportional to conductance.

Theorem 5.1.1. Nodes communicate in order for each node to compute a linear com-
bination of all initial values in the network. Let A represent a realization of the initial
conditions, A = {X1(0) = xl, ... , Xn(0) = Xn}. Any algorithm that guarantees that for all
i {1,...,n},

P ,X(T) C eCIA) > 1 - 6

must have
1 1

T > log 1
-D (G) Be2 + B

where, Be2 E [0,1--I] .

Next, we provide an algorithm that guarantees, with high probability, the nodes' esti-
mates are within the desired E-error interval around the true value of the sum. We provide
an upper bound on this algorithm's computation time. The computation time is inversely
proportional to conductance.

Theorem 5.1.2. Let P be a stochastic and symmetric matrix for which if (i, j) V E, pij = 0.
Suppose that node i has an initial condition, xi. There exists a distributed algorithm AP Q by
which nodes compute a linear sum, f(x, V) -= Z> jxj, via communication of quantized

messages. The quantization error will be no more than a giveny E= (1), and for any



E (yf(x, V), 7f(x, V) + 1) and 6 E (0,1), the computation time of the algorithm will be

T c roP (E , )= 0 (-2 (1n + log 6-1) log n

where, 4)(P) is the conductance evaluated for Cij = pij.

So, setting 6 = 1 in the above bound, we have

T = O E -2 log3 n

The computation time of this algorithm depends on the network topology, via the con-
ductance of the graph, in the same reciprocal manner manifested by the lower bound. Thus,
we conclude that the lower bound is tight in capturing the effect of the network topology
on computation time. Conversely, the algorithm's running time is optimal with respect to
its dependence on the network topology, as captured by the conductance.

5.2 Motivation: Capturing the Effect of Topology

The conductance of a graph, D(G), is a property that captures the bottle-neck of information
flow. It depends on the the connectivity, or topology, of the graph, and the magnitudes of the
channel capacities. The more severe the network constraints, the smaller the conductance.
As we will see later in this chapter, it is also related to time it takes for information to
spread in a network; the smaller the conductance, the longer it takes.

Example 5.2.1 (Conductance for Two Topologies). Consider two networks, each has
n nodes. We calculate conductance for two extreme cases of connectivity shown in Figure 5-
1. On the one hand, we have severe topological constraints: a ring graph. Each node may
contact only the node on its left or the node on its right. On the other hand, we have a case
of virtually no topological constraints: a fully connected graph. Each node may contact
every other node in the network.

For the purpose of illustrating the computation of conductance for the two topologies,
suppose that in both cases, the links from a given node to different nodes are equally
weighted. So, for the ring graph, let Cij = C = ¼, for all i / j; for the fully connected
graph, let Cj = C = C , for all i $ j. Assume that for the ring graph, Cii = . If the
channels were erasure channels, this would be the probability that node i makes contact
with no other nodes. For the fully connected graph, let Cij = -. So, in both cases, we have
that the sum of the capacities of channels leaving a node is 1, E• Cij = 1.

C=14

C

C=
n

C

Figure 5-1: Two ways to connect six nodes: a ring graph and a fully connected graph.



Now, we compute the conductance of the ring graph. Recall that conductance is

ieS,jgS CijS(G)= min
scv |SI

0<JSl<n/2

Consider any cut that divides the ring graph into two sets, S and Sc. For any such cut,
there will be exactly two links crossing the cut, going from S to S c . So, EiEs,jgS Cij = ,
and

4(G) = min 2
scv IS"

0<ISILn/2

Since we minimize over all cuts such that ISI < n/2, the ratio is minimized when the cut
divides the ring into two sets of equal size, and ISI = n/2. So, 1(G) = n

Next, we compute the conductance of the fully connected graph. Consider any cut that
divides the graph into two sets, S and Sc. For any such cut, there will be |SI SCl links
crossing the cut, going from S to S c . So,

EiEs,jvs Cii - ISIIScIi
IS ASI

IS!|
n

n- SI

The last equality is minimized where IS = n/2, so, 4)(G) = "
So, for two networks with the same number of nodes, the network with the more severe

topological constraints has smaller conductance. In general, for a ring graph, we have
D(G) = O(1), while for a fully connected graph we have 4(G) = 0(1).

The popular algorithms for computing a linear function of initial conditions, such as
averaging and consensus, are based on linear iterations. The convergence of such iterative
algorithms depends on a reversible (or symmetric) and graph conformant matrix P. Usually,
the running time of these algorithms scales like 1 Specifically, for a ring graph it is

1 2

(g-) ý n2, which means roughly n2 iterations are needed for the algorithm to converge.
In section 5.4, we describe an algorithm that does not use linear computations, and its run-
time scales like . So, for a ring, roughly n iterations are needed. In the next section, we

show that the run-time necessarily scales like -L. So, for computation over a ring graph, n
iterations are both sufficient and necessary. More generally, our algorithm scales optimally
with respect to the graph topology.

5.3 The Information Theoretic Lower Bound

In this section, we provide the proof of Theorem 5.1.1. We will use the techniques that
we have developed in Chapter 4. In particular, we will use the results of Examples 4.4.1
and 4.4.2, namely equation (4.10).

Proof of Theorem 5.1.1. Recall that C = Ejl /jXj (0). Suppose that we have any realiza-
tion of the initial conditions, A = {X 1(0) = xl,..., X,(O) = x,}. We are given an algorithm



that guarantees, for every such realization, that at time T each node, i, has an estimate,
Xi(T), of C: E'n= jxj. Furthermore, for this algorithm, the estimate Xi(T) is within an
e-interval of the true value of C, with desired probability. That is,

P (IX(T) - C 5 eCIA) > 1 - 6. (5.1)

The proof proceeds in several steps. The proofs for steps 1 and 2 follow this proof.

1. Any algorithm that satisfies the probability condition of equation (5.1) must satisfy,
for small enough 6, a mean square error criterion:

E(Xi(T) - C)2 < 62E(C2).

2. Let Ci = C and Ci = C + aeji for i E {2, ... , m}, where j,• ... , Ej, are independent
and identically distributed Gaussian random variables, with mean zero and variance
rl. Let the Ej~'s be independent of the initial conditions, Xi(O). Then,

E(Xi(T) - Ci)2 < e 2E(C2) + a2 7.

3. Next, let S* and (S*)c be the sets for which

i~Es,J~s Cii
IS'

is minimized, and assume S* is the set with smaller size, IS*l 5 . For purposes of this
proof, we enumerate the nodes in set S* from 1 to m. Then, let Cs. = [Ci ... Cm]',
where the Ci's are those of Step 2.

4. Now, we can apply our Information Theoretic inequalities to this set-up. We think of

Ej3 being associated with a node in set (S*)c, that is, ji E {m + 1,... n}. So, node ji's
initial condition would be (Xj, (0), Ej). Denote [ej, ... Ej,] by E. Using the derivations
of Chapter 4, we have that

T Cij _ I(Xs*(T);X(s*)c(0)IXs-.(O))
iE(S*)c jES*

I(Xs. (T);X(s*)(O),E IXs* (O))

> I(Xs*(T); Cs* IXs*(O))

L L(S*),

where, (a) follows because Xs. (T) is the vector of estimates produced by the algo-
rithm, and depends on the initial conditions, Xi(O)'s, while the Eji's are independent
of Xi(0)'s.

Recall that
IS*l aL(S*) = h(Cs IXs*(0)) -  2 log 27rep + IS*

Note that from Step 2, we have that 3 = 1 and a = - log(E2E(C 2) + a2r7).

5. Next, we compute h(Cs. IXs*(0)) given the assumptions of our formulation. Recall



that we have performed these computations in Example 4.4.2. We obtained the fol-
lowing:

lalm-l
1

L(s*) 2 log +IS* (log 2E(C2)+ a2r

where we have substituted in a = - log(e2E(C 2) + a2rl).

6. Finally, we make the appropriate choice of our parameters, a and rq. Assume, without
loss of generality, that

0 1

_I >1

otherwise, we can just scale our choices for a and rl. Let a =

L(S*)> IS-*-2 log
1

E2E(C2) + a 2

77

Next, let 77 = B. Then, because m - 1 < ',
2)

2 <(1

Observe that E(C 2) _ MB 2, where M is some integer. So,

e2 E(C 2)
+ a2  2B + -(

Combining with Step 4, we have that

T ECij2
iE(S*)C jES*

Is'( 1log 2 B2 E2MB + ( B)

Rearranging, we have that

1 1 1
T 2 iEE(s*) C s. ci log 22 MEjES* Ci E2MB + (-n)

IS* I

Here, we must have e2M E [0, (1- (0)
positive.

)), in order for the lower bound to be

Finally, because we had chose our S* such that EiE(s) s is minimized, we have
that

) = (S*)c •JES* CijS(G) =
Is*I

1
m-1

1B , then,



Remark We show in the next section that out lower bound is tight in its reciprocal de-
pendence on the conductance term. So, for fixed n, we have a scaling law that is tight in
the case of severe communication constraints, such as very small channel capacities due to
low transmission power.

In the case of increasing number of nodes, however, B must increase exponentially
with n for our lower bound to remain valid. The requirement is a by-product of using a
formulation based on random variables together with Information Theoretic variables. This
requirement ensures that as n increases, our bound properly captures the number of bits
that are transferred.

When we consider sums of independent identically distributed random variables, Central
Limit Theorem type arguments imply that as the number of the random variables increases,
there is some randomness lost, because we know that the distribution of the sum must
converge to the Normal distribution. However, in a setting where the initial conditions
are fixed values, as in the case of the algorithm we describe below, the addition of a node
clearly will not reduce the information that needs to be communicated in the network. To
counterbalance the probabilistic effects, we need to have B increase as the number of nodes
increases.

Next, we complete the proof of Theorem 5.1.1 by proving the statements of Step 1 and
Step 2.

Proof of Step 1. We show that for small enough 6, P (IX1 (T) - Cl eC IA) > 1-6 implies

E(Xi(T) - C)2 < E2E(C2).
First, observe that,

P (IX(T)- C eCA) <6,
is equivalent to

P ((X(T) - C)2 > 2C2 A) ,
Next, when we condition on A, C is a fixed number. So, we have we have that

E(X(T) C)2 IA) = P (Xi (T) - C) 2 > xjA) dx

P ((X(T) - C)2 > xA) + P ((Xi(T) C)2 xA) dx

<E2c2 + Jr,

where the last inequality follows

* for the first term, because P ((X(T) - C)2 > x A) • 1, and,

* for the second term, because P ((Xi(T) - C)2 > x A) <6 for all x E [e2C 2, 0c). We

have also assumed that for every A, (Xi(T) - C)2 is bounded from above.

Finally, we have that

E(Xi(T) - C) 2 = E (E ((X(T) - C)2 A)),



where the outermost expectation is with respect to the joint distribution of the initial
conditions. Choosing 6 to be very small, we have the desired result. O

Proof of Step 2. We show that if E(Xi(T) - C)2 < E2E(C 2 ), then E(Xi(T) - Ci)2 <
e2E(C2) + a2r9, where Ci = C + aEji, and Eji has mean zero and variance qr and is in-
dependent of all the Xi(O)'s.

E(Xi(T) - ci) 2 - E(Xi(T) - C - aji) 2

= E(Xi(T) - C)2 + E(acji) 2 - 2E(Xi(T) - C)(aij,)

- E(X,(T) - C)2 + E(aEj,) 2 + 2E(Xi(T) - C)E(aEj,)

- E(Xi(T) - C)2 + E(aEji)2

where,

(a) follows because X (T) is the estimate produced by the algorithm, and depends on the
initial conditions, Xi(O)'s, while eji is independent of Xi(O)'s, and,

(b) follows because Eji has mean zero.

5.4 A Tight Upper Bound: An Algorithm

Next, we describe the algorithm that achieves the lower bound. That is, we exhibit the re-
ciprocal dependence of the algorithm's computation time on the conductance of the graph.
Because the function that is to be computed, the sum, is relatively simple, and the algo-
rithm requires little computation overhead, the limitations that arise are due primarily to
the communication constraints. In fact, the dependence on the algorithm's run-time on con-
ductance arises due to the fact that the algorithm uses an information spreading algorithm
as a subroutine. Information spreading depends reciprocally on conductance: the more
severe the connectivity constraints, the smaller the conductance and the longer it takes for
information to spread in the network.

We describe in detail the problem formulation in the next section. The algorithm that
we describe is based on an algorithm by Mosk-Aoyama and Shah [24]. In section 5.4.2 we
discuss this algorithm and its applicability to our formulation. In section 5.4.3 we summarize
our main results. In section 5.4.4, we describe the contributions of [24] in the design of an
algorithm for distributed computation of a separable function, in a network of nodes using
repeated communication of real-valued messages. In section 5.4.5, we describe the algorithm
when the communicated messages are quantized, and analyze how the performance of the
algorithm changes relative to the performance of the unquantized algorithm of [24].

5.4.1 Problem Formulation

Let an arbitrary connected network of n nodes be represented by the undirected graph
G = (V, E). The nodes are arbitrarily enumerated and are the vertices of the graph,
V = {1,..., n}; the enumeration is for the purpose of analysis only as the computation
algorithm does not depend on the identities of the nodes. If nodes i and j communicate
with each other, then the edge (i, j) belongs to the set E.



Each node i has a measurement or initial value xi(0) E R. We let the vector x represent
all the initial values in the network, x = (xi(0) ... x,(0)). The goal of the nodes is to
each acquire an estimate of a given function,f, of all the initial values. In this section, the
function f is separable, defined as follows. Here, 2V denotes the power set of V.

Definition 5.4.1. f : R n x 2V - R is separable if there exist functions fl,..., fn such that
for all S C V,

f(x,S) = f(i(0))
iES

Furthermore, we assume f E F where F is the class of all separable functions with
fi(xi(0)) > 1 for all xi(0) E R and i = 1,...,n.

The performance of an algorithm, C, used by the nodes to compute an estimate of

f(x, V) at each node, is measured by the algorithm's (E, 6)-computation time, TCmp (E, ).
It is the time until the estimates at all nodes are within a factor of 1 ± e of f(x, V), with
probability larger than 1 - 6. The definition follows, where ýi(k) denotes the estimate of

f(x, V) at node i at time k.

Definition 5.4.2. For e > 0 and 6 E (0, 1), the (e, 6)-computing time of an algorithm, C,
denoted as 1mp(e(, ) is defined as

Tc mp (e, 6) = sup sup inf {k : P(Uý 1{ I(k) ý [(1 - e)f (x, V), (1 + E)f(x, V)]}) 5 6}
fE.F xER

n

The algorithm described here depends on the nodes' use of an information spreading al-
gorithm, V, as a subroutine to communicate to each other their messages. The performance
of this algorithm is captured by the 6-information-spreading time, T;pr(6), at which with
probability larger than 1 -6 all nodes have all messages. More formally, let Si(k) is the set
of nodes that have node i's message at time k, and V is the set of nodes, the definition of
T pr (6) is the following.

Definition 5.4.3. For a given 6 E (0, 1), the 6-information-spreading time, of the algorithm
7, 6Pr(5), is

T;Pr(6) = inf{k : P(U' 1 {Si(k) : V}) 61}.

Consider a model where each node may contact one of its neighbors once in each time
slot. If the edge (i, j) belongs to E, node i sends its messages to node j with probability pij
and with probability piu sends its messages to no other nodes; if (i, j) 4 E, pij = 0. So, the
matrix P = [pij] is a stochastic matrix that describes the information spreading algorithm.
The information spreading time if this algorithm is derived in terms of the "conductance"
of P.

Definition 5.4.4. For a stochastic matrix P, the conductance of P, denoted 4(P), is

(P(P) = min Eis,jVsPij
scv ISlO<ISl<n/2

5.4.2 Background

The algorithm that we describe is based on an algorithm by Mosk-Aoyama and Shah [24]. In
that formulation, each node has a fixed real-valued initial condition, that is bounded away



from zero. Nodes compute a separable function I of the initial values in the network. The
algorithm guarantees that with some specified probability, all nodes have an estimate of the
function value within a desired e-interval of accuracy around the true value. In [24], each
node may contact one of its neighbors once in each time slot. If the edge (i, j) belongs to
E, node i sends its real-valued message to node j with probability pij and with probability
pii sends its message to no other nodes; if (i,j) 0 E, pij = 0.

The algorithm of [24] is a simple randomized algorithm that is based on each node
generating an exponentially distributed random variable with mean equal to the reciprocal
of the node's initial value. The nodes sample from their respective distributions and make
use of an information spreading algorithm to make computations and ultimately obtain an
estimate of the desired function.

The advantage of this algorithm is that it is completely distributed. Nodes need not keep
track of the identity of the nodes from which received information originates. Furthermore,
the algorithm is not sensitive to the order in which information is received. In terms of its
performance, the algorithm's computation time is almost optimal in its dependence on the
network topology, as the computation time scales inversely with conductance of the graph
representing the communication topology. For a large class of graphs, conductance grows
like O(1/diameter).

The drawback of the algorithm in [24], however, is that it requires nodes to exchange
real numbers. As such, the algorithm is not practically implementable. Below, we quantize
this algorithm, so that instead of sending real-valued messages, nodes communicate bits.
Now, node i can send to j one bit with probability pij, and no bits otherwise. This is
equivalent to node i communicating to j via an erasure channel with capacity Cij = Pij,
so, 4(G) = 4(P). 2 We will show that the effect of communicating bits instead of real-
valued messages is to slow down the original algorithm by log n; however, the dependence
of computation time on conductance is unchanged.

Another difference between our formulation and the one in [24], is that we assume that
the initial conditions lie in a bounded interval, [1, B], whereas in [24] there is no upper
bound. We need this assumption to show that our algorithm will also guarantee that
with some specified probability, all nodes have an estimate of the function value within a
desired e-interval of accuracy around the true value. However, due to communicating a
finite number of bits, e cannot be arbitrarily close to zero.

Finally, we recall that in deriving the lower bound of the previous section, we had
assumed a joint probability distribution on the initial conditions. However, we will describe
the algorithm for fixed initial-values at the nodes. If the initial conditions were in fact
distributed according to some joint probability density function, the algorithm that we
describe below can be used for any realization of the initial values to guarantee, with the
desired probability, the e-accuracy criterion. So, the algorithm satisfies the "if" condition
in the statement of Theorem 5.1.1.

As such, the computation time of the algorithm we describe below must scale reciprocally
with conductance. We provide an upper bound on the run-time and show that, indeed, it
does scale inversely with conductance. Thus, the contribution of this work includes the non-
trivial quantized implementation of the algorithm of [24] and its analysis. As a consequence,

1A linear function of the initial conditions is a separable function.
2For the purpose of analysis, it is more convenient to consider erasure channels for which log M bits are

sent noiselessly with probability pij, and there is an erasure otherwise. This avoids the need to account for
receivers keeping track of individual bits that make up each message. Furthermore, the reciprocal dependence
in our bounds between the computation time and conductance will be unchanged.



we obtain the fastest, in terms of dependence on network topology, quantized distributed
algorithm for separable function computation.

5.4.3 Main Result

The main result of this section is stated in the following theorem.

Theorem 5.4.5. Let P be a stochastic and symmetric matrix for which if (i,j) < E, pij = 0.
There exists an algorithm AP Q for computing separable functions f E F via communication
of quantized messages, with quantization error no more than a given -y = E0(), such that
for any e E (f (x, V), yf(x, V) + 1) and 6 E (0, 1),

T c p (E,6)= -2(1 + og6-1(lo log -1) logn) (5.2)

For example, the bound implied by the above theorem when 6 = -z is

Trcmp r) = O .- 2 log 3 n
APQ ('JW2 ' q(P) J

Recall that by the Information Theoretic lower bound derived in this chapter, we have
that the computation time is lower bounded as

1 1

T > log 1

where B is a constant such that for all i, fi(xi) < B.
Because the computation time and graph conductance are reciprocally related in both

this lower bound and the upper bound in (5.2), we conclude that our results are tight in
capturing the scaling of the computation time with respect to the graph conductance. So,
our algorithm is optimal in its dependence on the network topology.

5.4.4 Unquantized Function Computation

In [24], a randomized algorithm is proposed for distributed computation of a separable
function of the data in the network, so that with some specified probability, all nodes have
an estimate of the function value within the desired interval of accuracy. The computation
algorithm assumes that the nodes exchange real-valued messages whenever a communication
takes place. The algorithm depends on

* the properties of exponentially distributed random variables, and,

* an information spreading algorithm used as a subroutine for the nodes to communicate
their messages and determine the minimum of the messages.

The Algorithm

The following property of exponential random variables plays a central role in the design
of this algorithm. Let W1,..., Wn be independent exponentially distributed random vari-
ables, where W i has mean 1/0j. Then, the minimum, W* = mini=,...,n W', will also be
exponentially distributed, and its mean is 1/ E'l Oi.



Suppose that node i has an initial value Oi. Each node needs to compute Z=1 Oi. Node
i generates an exponential distribution with mean 1/0i. It then draws a sample, W' = w',
from that distribution. All nodes do this. They exchange their samples so that each
node knows every sample. Then, each node may compute the minimum of the samples,
w* = mini=1 ,...,n w . w* is a realization of W*, which is exponentially distributed, with
mean 1/ EZ=l i.

For the algorithm proposed in [24], the nodes perform the above procedure on r samples
from each node rather than one. That is, node i draws independently r samples from its ex-
ponential distribution, Wf,..., W,. The nodes exchange information using the information
spreading algorithm described below. Ultimately, each node acquires Wj*,..., W,*, where
WT* is the sample-wise minimum, W{ = mini=l,...,n W I . Then, for its estimate of EZn= Oi,
each of the nodes computes

r

SW* n

Recall that as r increases, 1E=l Wj approaches the mean of Wj*, namely 1/ I• 10i. It
is shown that, for large enough r, the nodes' estimates of E• 1 Oi will satisfy the desired
accuracy criterion with the desired probability.

Computation of Minima Using Information Spreading

The computation of the minimum using the information spreading algorithm occurs as
follows. Suppose that each node i has an initial vector W' = (Wi,..., W;) and needs to
obtain W = (Wi1,..., Wr), where Wl = mini=1,...,n W1i. To compute W, each node maintains
an r-dimensional vector, zi = ("i ... ) , which is initially Wi(0) = W i , and evolves such
that Wi(k) contains node i's estimate of W at time k. Node i communicates this vector to
its neighbors; and when it receives a message from a neighbor j at time k containing tJ (k-),
node i will update its vector by setting 6f(k + ) = min(wj(k-), V (k-)), for 1 = 1,..., r.

As argued in [24], when an information spreading algorithm D is used where one real-
number is transferred between two nodes every time there is a communication, then with
probability larger than 1 - 6, for all i, wi(k) = W when k = rT;pr(6), because the nodes
propagate in the network an evolving estimate of the minimum, an r-vector, as opposed to
the n r-vectors W1,... , Wn .

The Performance

The first of the two main theorems of [24] provides an upper bound on the computing time
of the proposed computation algorithm and the second provides an upper bound on the
information spreading time of a randomized gossip algorithm. These theorems are repeated
below for convenience as our results build on those of [24].

Theorem 5.4.6. Given an information spreading algorithm D with 6-spreading time T;Pr(5)
for 6 E (0, 1), there exists an algorithm A for computing separable functions f E F such
that for any e E (0, 1) and 6 c (0, 1),

TmP(e,6) = O E-2(1+log 61 )T;r ())

In the next section, we state a theorem analogous to this one, but for the case where
the nodes are required to communicate a finite number of bits.



Next, the upper bound on the information spreading time is derived for the communi-
cation scheme, or equivalently, the randomized gossip algorithm, described in section 5.4.3.
We refer the reader to [24] for further details on the information spreading algorithm, in-
cluding an analysis of the case of asynchronous communication. The theorem relevant to
this chapter follows.

Theorem 5.4.7. Consider any stochastic and symmetric matrix P such that if (i, j) V E,
pij = 0. There exists an information spreading algorithm, P, such that for any 6 E (0, 1),

TP(6)= (log n + log 6-1T•Pr(5) = I(P)

5.4.5 Quantized Function Computation

The nodes need to each acquire an estimate of f(x, V) = ,Zl f(xi(O)). For convenience,
we denote fi(xi(0)) by Oi, and y = f(x, V) = E•l Oi is the quantity to be estimated by the
nodes. We denote the estimate of y at node i by ^9. The Q is added to emphasize that this
estimate was obtained using an algorithm for nodes that can only communicate quantized
values using messages consisting a finite number of bits.

We assume that node i can compute 0i without any communication. Further, we assume
that there exists a B for which: for all i, 0i E [1, B].

Recall that the goal is to design an algorithm such that, for large enough k,

P{Ini {1 9(k) - y <_ ey}} > 1 - 6,

while communicating only a finite number of bits between the nodes. Again, we take ad-
vantage of the properties of exponentially distributed random variables, and an information
spreading algorithm used as a subroutine for the nodes to determine the minimum of their
values.

Computation of Minima Using Information Spreading

We use the same scheme that was described in 5.4.4 for computation of minima using
information spreading. Now, node i quantizes a value tI that it needs to communicate to
its neighbor, j, where node i maps the value bi to a finite set {1,... M} according to some
quantization scheme. Then, log M bits have to be communicated between the nodes before
j can decode the message and update its V,. So, when each communication between nodes
is a single bit, the time until all nodes' estimates are equal to W with probability larger
than 1 - 6 will increase by a factor of log M, to k = rTPr (6) log M.

Summary of Algorithm & Main Theorem

The proposed algorithm, A Q is summarized below.

1. Independently from all other nodes, node i generates r independent samples from an
exponential distribution, with parameter Oi. If a sample is larger than an m (which
we will specify later), the node discards the sample and regenerates it.

2. The node quantizes each of the samples according to a scheme we describe below. The
quantizer maps points in the interval [0, m] to the set {1, 2,..., M}.



3. Each of the nodes performs steps 1 and 2 and communicates its messages via the
information spreading algorithm, D, to the nodes with which it is connected. The
nodes use the information spreading algorithm to determine the minimum of each of
the r sets of messages. After rTpr(6) log M time has elapsed, each node has obtained
the r minima with probability larger than 1 - 6.

4. Node i sets its estimate of y, ^9, to be the reciprocal of the average of the r minima
that it has computed.

Here, r is a parameter that will be designed so that P n { LY{|I? - y1 5 ey} 1 - 6

is achieved. Determining how large r and M must be leads to the main theorem of this
section.

Theorem 5.4.8. Given an information spreading algorithm D with 6-spreading time T ,Pr(6)
for 6 E (0, 1), there exists an algorithm A Q for computing separable functions f E F via
communication of quantized messages, with quantization error no more than a given -y =
E0(), such that for any e E (~yf(x, V), yf(x, V) + ½) and 6 (0, 1),

T C m P(e, ) = O (2(i + log 6-1)(logn)T;r
AQ 2

Remark Here, we point out that the condition in the theorem that E E (yy, yy + 1/2)
reflects the fact that due to quantization, yQ can never get arbitrarily close to y, no matter
how large r is chosen.

Before proving this theorem, it is convenient to consider the algorithm described above,
excluding step 2; that is, with no sample quantization. The derivation of the computation
time of this modified algorithm will lead to determining the appropriate truncation param-
eter, m. Next, we introduce a quantization scheme and determine the number of bits to
use in order to guarantee that the node estimates of y converge with desired probability;
we find that this number of bits is of the order of log n.

Determining m

Before we state the lemma of this section, we describe the modified computation algorithm,
AQ, which consists of steps 1 to 4 above excluding 2, and we introduce the necessary
variables.

First, node i, independently from all other nodes, generates r samples drawn indepen-
dently from an exponential distribution, with parameter 0i. If a sample is larger than m,
the node discards the sample and regenerates it. This is equivalent to drawing the samples
from an exponential distribution truncated at m.

Let (Wi)T be the random variable representing the lth sample at node i, where the
subscript "T" emphasizes that the distribution is truncated. Then, the probability den-
sity function of (Wi)T is that of an exponentially distributed random variable, Wi, with
probability density function fw, (w) = Oie -e iw for w > 0, conditioned on the the event

A' = {WJi < m}. For w E [0, m],

Oie-eiw

f(Wf )T( () - 1 - e im'



and f(w,),(w) = 0 elsewhere.
Second, the nodes use a spreading algorithm, 'D, so that each determines the minimum

over all n for each set of samples, 1 = 1, ... , r. Recall that we consider the random variables
at this stage as if there was no quantization. In this case, the nodes compute an estimate

of WI - mini=1...n(W)T; we denote denote the estimate of W at node i by W1 . Furthermore, we
denote the estimates at node i of the minimum of each of each of the r set of samples by
<--i _--i -i

W = (W1 ,..., Wr ), and the actual minima of the r set of samples by W = (W1,..., W,).
It it is shown in [24] that by the aforementioned spreading algorithm, with probability

-.-i

at least 1 - 6/2, the estimates of the r minima, W , will be be equal to the actual minima,
W, for all nodes, i = 1,..., n, in rTppr (6/2) time slots.

Last, each of the nodes computes its estimate, ýi, of y by summing the r minimum
values it has computed, inverting the sum, and multiplying by r:

= 1 wi
The following lemma will be needed in the proof of Theorem 5.4.8.

Lemma 5.4.9. Let 01,... ,n, be real numbers such that for all i, 0i _ 1, y i= 1
-_: i -f i -:-- i

and W = (Wi,..., Wr). Furthermore, let W = (W1 ,..., W, ) and let Di denote node i's
estimate of y using the modified algorithm of this section, A .

For any p E (0, 1/2), and for I = ((1 - p), (1 + ) if m Inn - In (1 - e- ,

P Ul{y1 ( I} Vi e V,W =W e-r 6

where, 1 = E 1 W•

Proof. First, note that when {Vi E V, W = W}, we have that for all i, y- 1 =1W 1 .
So, it is sufficient to show that

l=1 i < e- A

Let WV* = mini= 1,...,n WjE, the minimum of independent exponentially distributed ran-
dom variables, W7/, with parameters 01,..., 0n respectively, then Wi* will itself be exponen-
tially distributed with parameter y = Ei Oi. Observe that the cumulative distribution func-
tion of 41, P(WTVZ < w), is identical to that of W4*, conditioned on the event At = {n =Af},
where Ai = {W1 <_ m}, P(W1 * < wIAi), (see Appendix for proof). Hence, we have that

w b au P I B) l
( 1=1 1=1

Now, because P(A n B) < P(A), it follows that

P W. VI I nj= 1 Al P (n,-1Aj) < P W{*¢I .
r 1=1 r1=1



From Cramer's Theorem, see [8], and the properties of exponential distributions, we have
that

P ( jw* ý I eIr(-In(1+I))

2

and for p E (0, 1/2), e- r(" -l n(l+P)) < e-r.

Next, we have that P (n•l At) = (P (A1))r, because the A 1,..., A, are mutually inde-
pendent. Furthermore, P (Al) > 1 - ne- m . To see this, note that the complement of At is
Af = -{U I{W_ > m}}, and P (Wi > m) = e-eim . So, by the union bound, we have

P (A<) < e-esm < ne-m
i=1

where the last inequality follows because Vi, 9i > 1.
Finally, putting all this together, we have that

2

Letting 1 - ne- m > e completes the proof. O

Proof of Theorem 5.4.8

Before we proceed with the proof of the Theorem, we describe the quantization scheme.
In step 2 of the algorithm A Q, node i quantizes the sample it draws, a realization of
(Wli)T denoted by wz. The quantizer Q maps points in the interval [0, m] to the set
{1,2,... , M}. Each node also has a "codebook," Q-1, a bijection that maps {1, 2,... , M}
to {wql, wq2 , ... WqjM }, chosen such that for a given y, Iw' - Q-'Q(wi) I < . We will denote
Q-'Q(wi) by (wu)Q.

While we do not further specify the choice of the quantization points, wqk, we will use
the fact that the quantization error criterion can be achieved by a quantizer that divides the
interval [0, m] to no more than M intervals of length y each. Then, the number of messages
will be M = m/7, and the number of bits that the nodes communicate is log M.

Proof. We seek an upper bound on the (e, 6)-computation time of the algorithm A Q, the
time until, with probability at least 1- 6, all nodes i = 1,..., n have estimates ^Q that are
within a factor of 1 is of y. That is,

P(U%('i=i 1 [(1 - e)y, (1 + e)y]}) < 6.

First, suppose that we may communicate real-valued messages between the nodes. We
analyse the effect of quantization on the convergence of the node estimates to the desired
1 ± e factor of y. For this, we compare the quantized algorithm, AQ, with the modified
algorithm A$.

Note that for the above quantization scheme, for all i, 1 and any realization of (Wli)T
denoted by w ,

D Q 1 -yy l +71



hence,

min (w') Q mi w[ - -y, min w•+
i=1,...,n [i=1,...,n i=l,...,n

and,

1 min (w)Q min w , 1 min w+7.i (5.3)
r 1= i=1,...,n = i=l,...,n r i= ,...,n

1=1 Lin=1

Note that E r min(w•f) is a realization of (?QY)-I.
Now, suppose that the information spreading algorithm, D, is used so that in O(rY'Pr(6/2))

time,

P lý U -. (5.4)

Consider the case where {nZL={W = W}}, we have from Lemma 5.4.9 that, for any p E
2

(0, 1/2), if m = Inn - In (1 - e-

(1r  Y YUy .)•) 1P 1( (1 - p) (1 + _) e- r .

Combining with (5.3), we have that

PU () ( 1 - ) - (1 +/) + I n { I} W e-r 6

But the event

is equivalent to

1(0?) V ((1 + (p + y)) -'y, (1 - ( + y'Y))-y) }.

And, letting e = /1 + yy,

((1 + e)-1, (1 - e)-l) C (1 - 2e, 1 + 2e).

So,

P (Uz 91 {i - yj > 2ey n, {w'=w }) <•-r

Letting r > 6p- 2 In 26 - 1, we have that

e < -.
-2

Combining this with (5.4) in the Total Probability Theorem, we have the desired result,

P(U =I{& ef [(1 - 2e)y, (1 + 2e)y]}) < 6.

Finally, recall that when the nodes communicate their real-valued messages, with high
probability all nodes have estimates of the minima that they need in the computation of
the estimate of y in O(rTP'r(6/2)) time. So, the computation time is of that order.



Now, when instead the nodes need to communicate log M bits, as in the quantization
algorithm described in this section, the information-spreading algorithm will be slowed
down by log M. Each bit requires TsPr(6) time slots to disseminate through the network, so
(log M)T;pr(6) time slots are needed until the quantized messages are disseminated and the
minima computed. Consequently, the computation time of the quantized algorithm will be
O((log M)rTpr(6/2)).

But, M = m/y, and by design, for a given ' we choose m = Inn - In (1 - e ); so
m = O(log(n)). Furthermore, we choose y, such that 7 = EO(). Then,

log M < log log n + log n,

so, log M = O(log n) bits are needed.
As we have previously seen, for p E (0, 1/2), r > 6 - 2 In2V- 1 . But, I = E - yy; and,

7 = O(1/n) so, yy = 0(1). We therefore have, for e E (yy, y-y + 1/2),

TmP(e, 6) = O ((log n)e 2 (1 + log 6-1)Tspr(6/2)).

5.5 Summary

We have shown how a distributed algorithm for computing separable functions may be
quantized so that the effect of the quantization scheme will be to slow down the information
spreading by log n, while the remaining performance characteristics of the original algorithm
will be virtually unchanged, especially with respect to its dependence on conductance. This
result is stated in Theorem 5.4.8.

Combining the result of Theorem 5.4.8 with that of Theorem 5.4.7 yields Theorem 5.4.5.
Comparison with a lower bound obtained via Information Theoretic inequalities in Chap-
ter 4 reveals that the reciprocal dependence between computation time and graph conduc-
tance in the upper bound of Theorem 5.4.5 matches the lower bound. Hence the upper
bound is tight in capturing the effect of the graph conductance 4I(P).



Chapter 6

Bounds Capturing Computational
Limitations

In our derivation of lower bounds in previous chapters, we assumed no constraints on nodes'
computational abilities. They had no limited memory or power. In fact, we assumed that
they could run whatever algorithm necessary to make their computations, and they could
employ whatever communication algorithm (encoding and decoding) needed. We assumed
no constraints on the evolution of the nodes' estimates, Xi(k), apart from the desired mean
square error criterion. Because of this, we had to loosen our lower bounds to the point of
considering the mutual information between Xj(T) and the initial conditions, rather than
the mutual information between the sequence (Xi(1),... , X(T)) and the initial conditions.
As a result, we obtained lower bounds that must hold regardless of the computation or
communication algorithm that is used.

In this chapter, we explore, via two examples, lower bounds that capture, in addition to
communication constraints, the effect of limited computational resources. Such scenarios
arise, for example, in belief propagation algorithms or multi-agent problems when there are
bit constraints. In these scenarios, nodes make specific, usually simple, computations.

In section 6.1 we consider limitations that arise due to the computational architecture.
Specifically, we consider algorithms that have a tree-based architecture. The computation
at any node can depend only on that node's initial condition and messages received from
child nodes. We apply techniques of Chapter 4 to a simple 3-node tree where messages flow
via channels from the leaf nodes to the root node. The root node is to compute a function
of its own initial condition and the initial conditions of the leaf nodes. We obtain lower
bounds on channel capacities if at time T the mean square error in the root node's estimate
is within a known interval.

In section 6.2 we consider two nodes that can communicate via quantized messages with
the goal of computing the average of their initial values. We fix the computation scheme at
each of the nodes: the updated estimate of the average at a node is a convex combination of
its own data and the data it receives from the other node. We obtain a lower bound on the
number of bits that must be communicated between the nodes in order for the norm of the
error in the nodes' estimates to converge to zero at a desired rate. The goal is to capture the
trade-off between accuracy of the estimates and the communicated bit requirements, and
hence resources dedicated for communication. Because we fix the computation scheme, we
are able to explicitly incorporate the effects of the computation scheme into our analysis.



6.1 Lower Bounds for Tree-Based Algorithms

In this section, we consider computational limitations that arise for algorithms that run
over directed trees. In particular, any computation at a node can depend only on that
node's initial value and messages received from that node's children. Messages are received
via noisy channels.

Consider the directed tree shown in Figure 6-1. Each node has an initial condition,
Xi(0). Node 1, the root, receives messages from its children, nodes 2 and 3. Node 2 sends
its messages through a channel with capacity C 21; similarly, node 3 sends its messages
through a channel with capacity C31. The root needs to acquire an estimate of a given
function of the initial conditions in the network, C = f(XI(0), X 2(0), X 3 (0)). We denote
its estimate of C at time T by XI (T). Suppose that at time T, the mean square error
in the estimate is in an a-interval, E(XI(T) - C)2 < 2- 1. Then, the channel capacities
are bounded from below, as a function of a, T, and the differential entropy of the desired
function.

To derive the lower bounds, we use the techniques developed in Chapter 4. First, we
derive a lower bound on TC 21. Consider the cut that divides the network to a set containing
nodes 1 and 3, S = {1, 3}, and a set containing node 2, S c = {2}. Information traverses
this cut via channel C21. In Chapter 4, by using Network Information Theory arguments,
we saw that

T Ci > I(Xs(T);Xse(0) Xs(0)),
iES c jES

which, when substituting for S = {1, 3} and S c = {2}, becomes

TC21 > I(XI(T), X3(T); X2 (0) Xi (0), X3(0)).

However, note that in the case of the directed tree, any estimate at node 3, X 3 (T), can
only depend on node 3's own initial condition and messages received from its children, and
hence cannot depend on the initial conditions of node 2, X2(0). So,

I(Xi (T), X3 (T); X2 (O)X(0), X3 (0)) = I(Xi (T); X 2(0) X1 (0), X3 (0)).

Figure 6-1: The root node receives messages through channels from its children. It computes
a function of the initial conditions in the network.



Now, we have that

TC21 _ I(XI(T);X2(0)|XI(0),X3(0))

Ž I(XI(T); ClXI (O), X3 (0))
a 1

_ h(CIXI(0),X 3 (0)) + a - -log 2re,2 2

where the second inequality follows by the Data Processing Inequality and the last inequality
follows by the same arguments used in Chapter 4.

Similarly, for S = {1, 2} and Sc = {3},

a 1
TC31i h(C|X I(O),X2(0)) + -- log 2re.

2 2

Finally, for S = {1} and S c = {2, 3},

a 1
T(C21 + C31) 2 h(C|X1(0)) + - -log 27re.

2 2

Putting these inequalities together, we have the following theorem.

Theorem 6.1.1. Consider the network of 3 nodes arranged in a directed tree, in Figure 6-1.
The root receives messages from its children via noisy channels and estimates a function of
the initial conditions in the network, C = f(Xi(O),X 2(0),X 3 (0)).

If at time T the mean square error in the root's estimate of C is within an a-interval,
E(X 1(T) - C)2 < 2- a , then, the channel capacities must satisfy

C21 > I (h(cxi(o), X3(O)) + 2 - log 2re

C31 > (h(CIX,(), X2(O)) + 2 - log 2re

1 (h(caX,(O))+ 1
C21 + C31 h(C (0)) + log 2re . (6.1)

Remark Suppose we define a "capacity region," the region of capacity vectors, (C21, C31),
that are necessary for E(X1(T) - C)2 < 2- a to hold. This is somewhat analogous to the
rate regions we defined in Chapter 2. Recall that, there, the rate region was the set of
code rates that are both necessary and sufficient for the probability of decoding error to
approach zero asymptotically. Here, in the case of a "capacity region" it only makes sense
to consider necessity. If we wanted to consider "tightness," we need to look at lower bounds
on T, in terms of the capacities, and produce an algorithm with computation time achieving
the lower bound, as we have done in Chapter 5.

The utility of a capacity region is that it provides us with a "negative result." For a
given T and a, if a vector, (C21, C31), is not in the capacity region, then no algorithm will
satisfy E(XI(T) - C)2 < 2-c. The set of inequalities (6.1) define the capacity region. Its
shape will, in general, depend on the differential entropy terms and the value of a. One
possible shape is shown in Figure 6-2.

Example 6.1.2. Consider the 3-node directed tree of Figure 6-1. Suppose the initial
conditions were independent and identically distributed, each Normal with mean zero and



C31

C21

Figure 6-2: The region of capacities that are necessary to ensure the accuracy level a in the
root's computation at time T.

variance v. Let C = E3 iX 3 (0). Then,

h(CIX 1(O),X 3 (0)) = 2log 2re322v

h(CIXi(O),X 2(0)) = log 2re32v

h(CIXi(0)) = 2 log 2e(22 + 32)v

Substituting in the lower bounds of the set of inequalities (6.1), we have the following
capacity region.

c 21 > (a + log v) + log3 22

C31  2 (a+ log V) + log 32

C21 + c31 _T 2 ( + log() + 2 logC2 2 + =32)).

Therefore, the channels must be such that they are able to accommodate more information
reaching the root about the random variable with the larger weight in the sum, C.

6.2 Quantized Consensus: A Two-Node Example

Recently, there has been a resurgence of interest in the consensus/flocking problem, some
formulations of which are a special case of work done by Tsitsiklis [32] in the 1980's. For
example, in the case of the flocking problem, which models the aggregate behavior of schools
of fish or flocks of birds, each agent updates its estimate of a certain parameter, like direction
of motion, as a function of information it receives from its set of neighbors, which varies
across time. In [15] a discrete-time model of flocking (Viscek model), where for a fixed
communication topology agent update equations are linear and communication between
pairs of agents is bidirectional, is analyzed using tools from matrix theory. Results provide
(sufficient) conditions, involving the frequency of communication of the agents, under which



the asymptotic convergence of the estimates of all the agents to the same constant value is
guaranteed.

Similar results are provided in [23], for a more general model for the agent dynamics.
Now, still in discrete-time, agent dynamics are allowed to be nonlinear, provided that the
nonlinear function describing each agent's dynamics (update rule) satisfies a strict convexity
assumption. Set Lyapunov theory and graph theory are used to derive necessary and/or
sufficient conditions for asymptotic agreement under both unidirectional and bidirectional
communication cases.

In the work done by Tsitsiklis [32], also in discrete-time, agents, or "processors," ex-
change some or all of their estimates, or values of their state variables, with other processors.
Each agent updates its estimate by taking a linear convex combination of its estimate and
estimates of the same variable that it received from other processors, possibly with delay.
However, in addition to using information that is received from other processors to update
its estimate, each agent may (but does not necessarily have to) add a quantity that it com-
putes, possibly corrupted by noise. For example, this quantity could be that which causes
the agent's state to move such that a cost function of the states is minimized.

Under certain assumptions on the agent update model, the communication topology and
frequency, and the cost function, it is shown that the estimates of all the agents asymptoti-
cally converge to the same value. Further assumptions are needed to show that the value to
which the states converge is a stationary point of the cost function or the global optimum.
Key in the method of proof is the ability, due to linearity of the agent update model, to
come up with a "global" state that describes the entire system.

The results of the original work [32, 33] are restated for the consensus problem in [2].
Convexity of the update equations, strong connectivity of the nodes, and bounded delays
are among the conditions that are needed to guarantee asymptotic consensus. A new result
presented is that the bounded intercommunication intervals requirement can be relaxed if
the communication between the nodes is bidirectional (symmetry). Further, it is shown
that the bidirectional communication need not occur simultaneously; it suffices that the
nodes exchange and update their values within a bounded interval of time.

In a special case of the consensus problem, the "average consensus" problem, the nodes
each have an initial state and the goal is for each of the nodes to acquire an estimate of an
average of all the initial states in the network by receiving information from its neighbors.
This problem is the focus of the work by [26]. Here, agent dynamics are linear continuous-
time and communication delays are allowed. The conditions on communication topologies
that ensure average consensus are presented; it is found that if the graphs formed by the
communicating nodes are always strongly connected and "balanced", average consensus will
be achieved, and the rate of convergence is related to a property of the graphs. Analysis
makes use of Lyapunov equation, matrix theory, and graph theoretic tools. Olfati-Saber
goes on to make use of the idea of achieving average consensus by suggesting a scheme for
distributed Kalman filtering using an algorithm that depends on average consensus reached
on quantities measured and computed by individual sensors [25].

The work in the literature explores the effect on achieving "consensus" of communication
topology, that could vary across time, or communication of varying strength, as modeled by
weights on the communication links. Some of the work even allows delays. However, when
a communication link is present, no further communication constraints are assumed. In this
chapter, we study the effect on achieving "average consensus", or computation of the average
of the data in the network, that communication constraints impose. Specifically, we start
with the simple case in which the nodes are fully interconnected, but communicate over a



noiseless finite rate channel, that is, via quantized messages. If there are no communication
constraints, each node should have acquired the average value after the first communication
occurs. If communication occurs via quantized messages, however, this is no longer true.
We seek necessary conditions on the rate of communication of the nodes for the error in
each node's estimate of the average to be small beyond some prescribed time.

This problem does not fit into any of the frameworks mentioned above, and those of
which we know. Even the most general of the frameworks, [23] which allows nonlinear
updates, does not apply in our case because the strict convexity assumption is violated.
Further, even if there was a way to fix this, the results presented there still need to be
somehow related to the communication constraints imposed by the channels between the
nodes.

We present a formulation for 2 interconnected nodes below. The 2-node case is an
illustrative exercise. First, even for this simple case, various issues concerning the interplay
between computation and communication arise. Second, a correct formulation and results
derived for the simple 2-node case can be extended to any n-node fully interconnected
network.

The more interesting results possibly lie in further extensions. The first direction is to
consider communication topologies that are not fully interconnected; equivalently, we allow
the rates of the channels connecting some of the nodes to be zero. The second direction is
to consider more general channels between the nodes, and use the techniques of Chapter 4.
In this case, however, we make explicit assumptions on the evolution of the node estimates,
and use these in our inequalities.

6.2.1 Problem Statement

We consider two nodes, 1 and 2, that communicate via quantized messages. Node 1 sends
information to 2 through a channel with rate R 1 > 0 and node 2 sends information to 1
through a channel with rate R 2 > 0 (R1 and R 2 are the information capacities of the noiseless
channels). There are two components to this system: computation and communication. The
computation part refers to the updating that each of the nodes performs on its state, which
is an estimate of the average of the initial conditions of the two nodes. The communication
component refers to a node's sending of information through an encoder, noiseless channel,
and decoder to the other node. Specifically we have,

1 Computation. Assume that node 1, (node 2), performs its updates at times ki, (li), E
Z+ , i = 1, 2, 3, .... Then,

x(ki+ 1) = alxl(ki) + a22 2(ki) (6.2)
2(li + 1) = a 1 (l i) a 2X2 (li),

and
xi(ki+m) = xl(k+l1) m=2,...,ki+l - ki (63)

2 (li +n) = 2(li + 1) n = 2, ... 1 - i,

where x1, x2 E R
n are the states of the nodes which represent their estimate of the

network average, c = aixi(O) + aQ22(0). 11, 12 GE n are the inputs to nodes 2 and
1 respectively, that are received through the noiseless channels, at the output of the
decoders. For simplicity, we assume n = 1 through out, though it is possible to extend
arguments to any n E Z+ .Finally, al and a2 E R+\{0}, and ay + a 2 = 1.
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Figure 6-3: Two nodes communicate a finite number of bits for computing the network
average.

2 Communication. Suppose that the state at node 1 (node 2) is available at its encoder,
E 1 (E 2) which interfaces the node with the communication channel, C1 (C2). Then,
the outputs of each of the decoders, D1 and D2, which interface the channels C1 and
C2 to nodes 2 and 1, respectively are

:i(k) = (x1(k),xi(k 2 ), -. .,x1(kn),k) (6.4)
12(k) = 2(X212(),X2(12),--,X2(n),k), (6.4)

where kn and 1, are the latest times at which communication occurs before k, kn+l >
k > kn and 1n+1 > k > In. 0i, i = 1, 2, represents the operation of the encoder,
channel, and decoder between the nodes.

6.2.2 Convergence to the Network Average

Our goal is to derive a necessary condition on the rate of communication of the nodes for
the convergence, with rate r, of each node's state, the estimate of c, to the actual value c.
However, to begin, we show that there exists a certain scheme, under which for any E > 0
there exists a time, T, such that xi (k) - clI < E, V k > T.

An Illustrative Scheme

Consider the following scheme, in which we assume that the encoders and decoders, (Ei, Di),
i = 1, 2, have upper bounds, Li, of the magnitudes of the initial conditions, x1(0) and x2(0).
The computation update occurs at both nodes simultaneously once only at time T. At every
time k < T, node 1 (node 2) sends R 1 (R2) bits noiselessly to node 2 (node 1), so we have
&11(k) = 1(x 1(0),k), (i 2 (k) = 2 2 (x 2 (0),k)). The map qi has the following operation. Ei
is composed of a bijection, fi, of the interval [-Li, Li] onto [0, 1], which maps xi(0) to a
number in the unit interval. The binary representation of this is found, and Ri bits are
sent over the channel Ci at every time step. These bits are received at the decoder, Di,
which by time k has the first kRi bits in the binary representation of fi(xi(0)). This is
converted to decimal to obtain a number in the unit interval. This is then mapped back
onto [-Li, Li], using f- 1 . The output of Di at time k, li(k), will be an approximation of
xi(0) with magnitude of error lei(k)l = I.i(k) - xi(0)l < Pi2- k .2

Now, when the update occurs at time T, we have for node 1,

xx(T) = alzx(T-1)+a22 2(T-1)
= alxl(0) + a 2 X2(0) + a2 2 (T - 1) - a222(0) (6.5)
= c + a 2(i 2(T - 1) - X2(0)).



So, at time T, zxi(T) - cl < a 2/322- (T-1)R2 and x2(T) - clI • 0 1 12- (T-1)R1 . So, to ensure
that Ixi(k)- cI < , V k > T we must have that T > max{1 - 1 log , 1 - log }.

Here, we note that our communication scheme presumes that the decoders have infinite
memory to store the received bits. Encoders and decoders are envisioned to be located at the
nodes; for example, E 1 and D2 are located at node 1. So, because we have already assumed
infinite memory in the decoders, hence the nodes, we may assume infinite memory at the
encoders. In practice the memory of the nodes not only must be finite, but may be required
to be small to satisfy design constraints, such as physical size and energy consumption. The
more interesting results probably arise in the case that the nodes have finite memory and
must therefore encode and decode in real time.

Second, we note that the update equations 6.2 add constraints to the problem by explic-
itly requiring that the computation at node i makes use only of the most current value of xi.
Clearly, if the nodes were assumed to have infinite memory, then this is a rather artificial
requirement; it seems inefficient not to allow the nodes to use all information that they have
access to, in particular, all past values of their own estimates of c. We have adopted the
structure of equations 6.2 in keeping with the formulations the literature, and as a starting
point, so that comparison can be made.

Indeed, if the requirement on the structure of the update equations was relaxed, then
the optimal strategy when both nodes have infinite memory is trivial. Node i sends its
initial value, xi(0), to node j according to the encoding/decoding strategy described above.
As time passes, node j will have a better estimate of xi(0), xi(k) = Oi(xi(0), k), which
it may combine to its own initial value: xj(k + 1) = ajxj(0) + axii(k). Thus, the nodes
may continuously update their estimates as they receive information. The longer the nodes
communicate, the better their estimates of c become.

But this is not true under the update equations 6.2. For example, suppose that the input
to Ei by node i is its current state (estimate of c), which it must then send according the
scheme described above. Then, once the first update occurs, no further communication be-
tween the nodes can improve the nodes' estimates of c. Under the above encoding/decoding
scheme, ýi(T - 1) - xi(O) • 0, so, xi(T) < c. Now, re-using the above scheme, starting
node i at xi(T) and updating at T' > T will result in |xi(T') - cl Ixi(T) - cl because
(i) the communication scheme consistently underestimates the value sent over the chan-
nel, and (ii) the updates are convex combinations. So min(xi (T), x2 (T)) - 6 < xi(T')
max(xl(T), X2 (T)) < c 1.

Furthermore, we note that under the naive scheme described above, which does not use
the infinite memory to remember past estimates, once the update occurs at time T, no
further updates by the nodes can improve the nodes' estimates of c. In particular, even if
node 1 had access to x2(T), it does not know whether x2(T) is a better or worse estimate
of c than xi(T), because it does not know c. Finally, using similar arguments, one can see
that there is no advantage in the first updates of xl and X2 occurring asynchronously.

Necessary Conditions

We wish to show that if there is a computation/communication scheme for which there
exists a T such that lxi(k) - cl < 32 -Tr for all k > T, then h(R 1, R 2) > r for some h. Note
that if the conclusion holds for a scheme that satisfies the stated condition then it must
hold for any scheme that satisfies the stronger requirement that the rate of convergence of

1The 6 arises due to the particular encoding/decoding scheme and the finite rate communication. Recall
that in this case, we will have x,(T') = alx,(T) + a 2 12 (T) and x 2(T') = a 2x 2 (T) + all(T).



the estimate to c is r: |xi(k) - cl < 0 2-kr Vk. Clearly, lxi(k) - cl < 32 -kr Vk implies that
there exists a T such that |xi(k) - cI < 32 -Tr for all k > T.

We assume that the upper bounds, Li, of the magnitudes of the initial conditions, xi(0)
and x2 (0) are known, which enables us to make simple counting arguments. We consider
two scenarios. The first is where there is a single update at each node, or IKI = L = 1,
where K = {k, k2,.. . } and L = {l1,12,... } are the sets containing the update times of the
nodes. For this scenario, because the "computation" part of the scheme is trivial, we can
show that if there is a scheme for which there exists a T such that lxi(k) - c <• 0 2 -Tr for
all k > T, then h(R 1, R 2) > r. Further, we expect that the bound we derive (the function
h) is tight.

The second scenario is that for which one or both of IKl and LI are greater than 1, that
is, there can be several updates. Here, without considering the structure of the updates at
all, one can show that the weaker statement holds, namely, if there exists a scheme such
that xzi(k) - cl < 1 2 -kr Vk then g(Ri, R 2) > r for some g. We do not know how tight the
bound that we obtain is. Because we do not take into consideration the constraints imposed
by the nature of the computation, we expect that it may not be achievable.

First Scenario (IKI = LI = 1) For the first scenario IKI = ILI = 1, consider node 1. It
follows, as in equations 6.5, that

Ixi(k) - c = Q2 l• 2(k* - 1) - x2(0)I

for all k > k*, where k* E K. Now, assume that T > k*, which must be the case if xi(O) : c
for i = 1, 2 because xi(k) = zi(0) for k < k*. This assumption is not restrictive because
the effect of communication that occurs for k < k* can be manifested in xi(k) only for
k > k*. These k > k* are the times for which |xi(k) - cj /3 2- Tr can hold as a result
of communication, which is the concern here. To illustrate this point, suppose xl(0) = c,
which implies that x2(0) = c because c = aixi(0) + a2x 2(0). Then, Jxi(k) - cj = 0 for all
k < k*, independently of information exchanged, which allows no conclusion concerning the
relationship between r and R 1, R 2.

So, by assumption, it then follows that we must have :i2(k* - 1) - x2(0)l •5 2-T •

Furthermore, this must hold for any x2(0). But since the channel is noiseless finite rate,
at time k* - 1 there can be at most 2R2 (k*- 1) choices for x2(0). That is, the decoder can
choose among at most 2R2(k*- 1) values for 12(k* - 1) and X2(0) must be within a radius of

-2- T r . So, if x2(0) E [-L 2 , L2], then the decoder must be able to cover [-L 2, L2] with a

maximum of 2 R2 (k*-1) "cells" each having a maximum radius of -2 - T r Thus, we must
have that

2 R2(k* - 1) 2 - T r > L 2 -
a2

So, rewriting our condition, we have that r < k7 1 R 2 + 10g Similarly, fromT T a L-- Similarly, from
node 2, we get that r _< l*R1, + I log % So, we conclude that r < min{l*-1Ri +

}log ' k*-l R2 +- log T 2  }.

Second Scenario (IKI or ILI > 1) First we note that the reason we need to consider
this scenario separately is the fact that the node update equations, 6.2, require that xi(kj)

be used in the computation of xi(kj + 1). Indeed, if we were to use xi(0) at every update
instead of xi(kj), then the proof of scenario 1 will go through.



However, rather than derive a particular encoding/decoding scheme and make any ex-
plicit assumptions on the computation besides those of the communication/computation
formulation, we simply assume that there exists a scheme under our formulation such that
xzi(k) - cl 5I 2- kr Vk 2 and show that g(Ri, R 2 ) > r for some g. Thus the derived bounds

may not be tight.
Suppose, for simplicity, that k E K, L Vk E N. Consider node 1. We have that

xi(k + 1) = a1xl(k) +-- a2 2(k).

So,
ixil(k + 1) - cl = IQaz(xi(k) - c) - a2(c - -2(k))|II •< 2 -(k+ l )r,

and hence

lailxi(k) - c|l - a2: I 2(k) - cill < 02- kr

which we rewrite as

1 i 2 (k) - cl •< - (a IlXz(k) - cI + 02-kr).
a2

But, Ixl(k) - cl , /2 - k r so,

1+ a,|i~2(k) - c I <p + 2-kir
Q2

Now, using this inequality together with the assumption that IJx2(k) - cll < 02 -kr, and the
triangle inequality we have that

lix2(k) - I2(k)i ixX2(k) - c- 1i2(k) + c
< izx2(k) - cli + jI2 2(k) - c|i (6.6)

0 (1 + 1+ai) 2 -kr

Here we use the same counting argument we have used before. Inequality 6.6 must hold
for arbitrary x2(k). Now, because we have assumed that updates may occur at each time
step, x2 (k + 1) = a 2 2(k) + a l-1(k), or, x2(k) = ± 2 1- i a k - - i 1l(i), we note
that at time k, x2(k) lies in an interval of length 2akL 2. However, because the channel is
noiseless finite rate, at time k there can be at most 2R2k choices for x2(k). So, in order for
inequality 6.6 to be true, we must have that

2 R2 k/(1 + 1 )2 -kr > akL 2.a2

Rewriting, and using the fact that al + a 2 = 1 we have that r < R2 - log a2 - 1 log L2 .

Similarly, starting the analysis from node 2 we have that r < R 1 -log al - ¼ log L . Finally,
combining these we have that

1 Llal 1 L 2a 2r < min{Ri - log a, -- log , R 2 - log a2 - - log }.
k 20 k 20

2 We believe that we can easily derive a similar result for Ixi(kj) - c < /3 2 - kjr Vj, where kj c K for i = 1
and kj E L for i = 2. But, this is merely an exercise in book-keeping, which we may come back to as time
permits.



Thus, our analysis has led to an upper bound on the rate at which the error in node's
estimates can converge to zero, if nodes can only communicate via quantization of given
resolution. That the bound is tight is not clear. In order to show this, one would need
to produce an algorithm that achieves the error rate under the given communication con-
straints.

Still, the bound captures the effect of the computation algorithm, that is imposed on
the nodes, in a qualitatively intuitive way. Specifically, the "log ai" term arises due to the
computation scheme. The closer the ai to 1, the more heavily node i's own initial condition
is weighted in c. Thus, node i's value needs to be communicated to the other node more
accurately so that the other node can compute c with the desired accuracy.

6.3 Summary

In this chapter, we incorporated the effect of computational limitations into our lower
bounds. We considered two examples. In the first, the computational limits arose from
having an underlying tree architecture. We showed how the approach of Chapter 4 is
applicable; we characterized the capacity region. A future direction is to generalize the
three node example that we considered here.

In the second example, we considered a popular model for distributed computation,
where each node updates its estimate by taking a convex combination of its own data and
data received from neighboring nodes. We looked at a case where the communication con-
straint consisted of the requirement that a finite number of bits is exchanged. In this case,
we were able to produce a bound using simple inequalities on norms. A future direction
would be to use the techniques of Chapter 4 in the more general setting of having channels
between nodes. We would make explicit assumptions on the evolution of the process gov-
erning the node estimates, Xi(k). It is likely that this would entail the use of more powerful
techniques or machinery applied to the sequence of estimates.





Chapter 7

Future Directions

We have set out to study distributed computation under communication constraints, in a
setting where there is a network of nodes, each having a piece of information that may
be needed by other nodes for computing a given predetermined function. In particular,
we sought to understand the limitations imposed by the communication constraints on the
computation performance that may be expected of the nodes of the network.

Two Information Theoretic formulations rendered themselves naturally to model "com-
munication constraints." In the first, the subject of Chapters 2 and 3, the communication
constraint was that nodes compressed their sequences of data before broadcasting noise-
lessly to all other nodes. The performance criterion required from each node was that as
the sequence length increased, the probability of error, in recovering the entire sequence of
corresponding function values, asymptotically approached zero.

In the second formulation, the subject of Chapters 4 and 5, the communication constraint
was that nodes had to transmit their messages via noisy channels, some of which may have
capacity zero, that is, not all nodes need to be interconnected. The performance criterion
for the nodes, in this case, was that the mean square error in nodes' estimates of the function
to be computed be bounded after some amount of exchange of information.

In both of the above formulations, we assumed no computational limitations; our bounds
captured limits due to communication constraints. In Chapter 6, however, we began to
consider situations where computational limitations arise. We illustrated the use of our
lower bound techniques via two examples; and, we suggested that this is an area that is
open for further investigation. In the following paragraphs, we recapitulate the main results
of this thesis and suggest possible future directions.

7.1 Computation via Compressed Data

In Chapter 2, we looked at compression rates required for communicating nodes to compute
a function of all the data in the network with low probability of error. Our formulation
is motivated by the problem of estimation, when the sensing is distributed, of a stochastic
process that may be generated by a dynamic system. Each source variable represents the
measurements collected by one of the nodes. The nodes may communicate their measure-
ments, and, it is desirable to do so after having compressed the outgoing messages (as it
leads to savings in power used for transmission, for example). The nodes are assumed to
broadcast their messages to all the nodes in the network, which is a situation that may
arise in communication via satellites. Even though our formulation (and results) imply



that consensus is reached asymptotically, for N sufficiently large, the formulation is still
reasonable when the time scale of the evolution of the dynamic system is much slower than
the time scale of communication.

The formulation presented in this chapter for studying distributed computation when the
communication of the nodes is constrained is useful for three reasons. First, the inequalities
that define the rate region are simple; they involve the conditional entropy rates of the
function K, which are easy to compute. Second, the formulation can be easily extended
to an arbitrary number of nodes, and hence the rate region can easily be defined for an
arbitrary number of nodes. Finally, our set-up inherently involves feedback.

We have seen that the lower bound to the boundary of the rate region for K achievability
also is a lower bound to the SW omniscience rate region, which means that if the objective of
the nodes is to reliably acquire a function of all the data in the network, they may only need
to exchange information at rates lower than would be required for each of them to acquire
all other nodes' data. We have seen that this is rarely true for the two node case, but,
when there are more than 2 nodes, things change. Indeed, in Chapter 3, for the modulo-2
sum computation example, we presented a source for which we showed achievability of a
point that does not belong to the omniscience rate region. This point turned out to be
the vertex of the cone defining the lower bound to the K-rate region boundary, defined by
the inequalities in Theorem 2.2.1. Furthermore, the example was generalized to modulo-q
summation when the source random variables take values on a finite field of order q.

The next question that arises naturally is: what are other functions or sources for
which we can show that there exist codes with rates arbitrarily close to our lower bound
to the "K-rate region" boundary. Another approach is to look for tighter bounds to the
"K-rate region" for certain functions of interest. One possibly fruitful avenue is to explore
coding schemes that involve feedback, where nodes are allowed to update their estimates
of K as they receive messages from other nodes and hence adjust their outgoing messages
accordingly.

In another direction, one may seek to characterize the rate region, for the distributed
computation set-up of this chapter, under further communication constraints. For example,
suppose that the nodes were required to compress their messages, before broadcasting them,
but now must do so securely. That is, the encoding must occur such that an eavesdropper
cannot compute K. Then, the shape of the rate region must change according to how much
secrecy is imposed on the nodes.

7.2 Computation via Noisy Channels

In Chapter 4, our use of basic Information Theoretic definitions and inequalities has led to
a lower bound that we have applied to a formulation for distributed function computation.
In Chapter 5 we applied the Information Theoretic technique to a scenario where nodes
communicate via erasure channels to compute the sum of all the initial values in the net-
work. The lower bound that we obtained is tight in capturing the spectral graph property,
conductance, that represents the effect of the topology of the network.

Immediate extensions include generalizing the information rate lower bounds, for exam-
ple, investigating various distortion measures for the nodes' performance. Another avenue is
the use of the tools developed in this thesis to obtain tighter lower bound and performance
limitations for restricted computational models, like directional algorithms such as belief
propagation. We have illustrated this for two examples in Chapter 6.



More fundamentally, one of the factors that allowed for the derivation of such a simple
bound is that we have abstracted away the interdependence of the nodes' estimates as they
evolve over time. We believe that this contributes to some "looseness" in the bound; and, if
nothing else, it is the reason that the bound does not capture the dynamics of computation.
One way that this might be remedied is to consider alternate information quantities, such
as directed information.

In a different direction, open is the question of the achievable information rates and
corresponding channel codes that can be used in the network setting, especially where the
presence of feedback information may be taken into account. We have had the need to
consider achievability in this thesis. In particular, in Chapter 5, we presented a simple
algorithm for the computation of separable functions via erasure channels. By providing an
algorithm that achieves our Information Theoretic lower bound, we showed that our bound
is tight. Equivalently, we have produced the fastest algorithm with respect to its dependence
on the conductance of the underlying graph. But, because the channels are simple, we did
not need to explicitly consider code rates. Further, we did not need to harness the power
of feedback in this scenario.





Appendix A

Appendix for Chapter 4

A.1 Proof of Proposition A.1.1

Proposition A.1.1. For y > 0, subject to E'L yi 7y and yi > 0, -•n_, yi is maximized
when yi = 2.

Proof. One way to see this is the following. First, the vector that achieves the maxi-
mum, y* = [y*... yn]' must lie on the boundary of the optimization region, meaning that

(-*=+ Yj < E - E, then for anyE(-• y= = 7; otherwise, if for some e > 0 we have that n y < - e, then for any6 E (0, e), (y1 + 6) + Z =2 y < 7 but (yY + 6) 1~=2 y* > n= 1 yi*, contradicting the opti-
mality of y*.

Next, substituting yl = 7 - Ei=2 Yi in the function we wish to optimize, we obtain

f(Y2, ... , Yn) = (7 =- i2 Yi) n=2 yi; differentiating f with respect to yk for k = 2,... n,
we have

d n n
dyf = y (7 - 2yk - yi).

i=2 i=2i k ifk
Setting the derivatives to zero for each k, k = 2,... n we obtain n- 1 equations in n- 1
unknowns, in matrix form:

(In-1 + ln-11'n-1)y = 71n-1,

where In-1 is the identity matrix with dimension n - 1, ln-1 is the vector of n - 1 ones
and ý = [y2 - - - n]'.

To solve for ý, we use the identity, (In + AB)-1 A = A(Im + BA) - 1, for any two matrices
A E R n xm and B E Rmxn. Letting A = 1 n-1 and B = A',we have that

(In-1 + ln-11'n_)-11n-1 = n-1 (n- 1))-

So, Yi = 2
Finally, computing the second derivatives of f and evaluating at yi = -, we have that

for kj= i2,... f = -2 ()n - 2 . So, the matrix of second derivatives is negative
semi-definite. O



A.2 2-Node Network Example

In this section, we illustrate the techniques of Chapter 4 for the special case of 2 nodes. We
show an application for which our lower bound can be used to relate the rates of the channel
block codes to the channel capacities and the rate of convergence of the mean square error
to zero.

Consider two nodes, 1 and 2, communicating via noisy channels. Let Xl(k), X 2(k),
and C be continuous scalar random variables. Then, the following lemma will be used to
show that if the mean square error in the nodes' estimates is required to converge to zero
exponentially, then information flow between the two nodes is lower bounded by a term due
to the desired rate of convergence.

Lemma A.2.1. If the mean square error converges to zero with rate r, E(Xi(k) - C)2 <

02- kr, where 0, r E R+\{0}, then

1 kr
I(Xi(k);C) 2 h(C)- -log 2rep + -

2 2

Proof. First, we have that

I(Xi(k); C) = h(C) - h(CIXi(k))

= h(C) - h(Xl(k) - CIXl(k))

(a)
> h(C) - h(Xl(k) - C)

(b) 1
> h(C) - - log 2ireVar(Xi (k) - C)2
(c) 1
> h(C) - -log 27reE(Xi(k) - C)2

2

where,

(a) follows because conditioning reduces entropy,

(b) follows because the Normal distribution maximizes entropy over all distributions with
the same variance, and,

(c) follows because for any random variable X, Var(X) • E(X 2), and the logarithm is
a monotonically increasing function.

A similar inequality can be derived for the conditional mutual information, I(Xi (k); C IW),
where W is a random variable.

Corollary A.2.2. If E(Xi(k) - C)2 < 32- kr then

1 kr
I(Xi(k); CW) Ž h(CIW) - -log 27rep + -.

2 2



Proof. We have the same series of inequalities that we encountered in the previous lemma.
But, now, we condition all terms on W.

I(Xi(k); CIW) = h(CIW) - h(CIXl(k), W)
= h(CIW) - h(Xi(k) - CIXI(k), W)

> h(C|W) - h(Xl(k) - C).

O

A.2.1 An Application: A Bound for Code Rates

Next, we use the above corollary to relate the rate, R 12, of the channel code to the rate of
convergence r and the capacity, C 12, of a discrete time memoryless channel between nodes
1 and 2. Below, we let U1 denote the codeword letter at the output of the node 1 encoder,
that is transmitted from node 1 through the channel to node 2. V2 denotes the letter that
is received, at the output of the channel, by the node 2 decoder. The relevant variables are
shown in Figure A-1.

Each node has access to its own initial condition, Xi(0). The nodes exchange information
in order to learn C, a function of both the initial conditions, C = f(XI(0), X 2(0)). We
assume that the codeword that is generated by encoder i for the Ith transmission depends
on node i's initial condition and its past received messages at decoder i; that is, Ui(l) is a
function of V1- 1 and Xi(0). Each encoder generates N channel digits or transmissions per
node sequence of length k. Finally, we assume that the channels between the two nodes are
independent.

The theorem below essentially says that the channel must have enough capacity for
both reliable transmission, meaning arbitrarily small probability of decoding error, and
exponential convergence of the estimates of the nodes.

Theorem A.2.3. If node 1 sends information to node 2 via a discrete time memoryless
channel with capacity C12, such that the mean square error in node 2's estimate of C
converges to zero with rate r, E(X 2(k) - C) 2 </ 32- kr , where 3, r E R+\{0}, then the rate
of the channel code, R 12, must satisfy

r
C12 > ,R 12-2

Proof. First, we use the results of Lemmas 4.3.1 and 4.3.2. Setting S = 12} and Sc = 11},

Figure A-i: Set-up for Theorem A.2.3. Two nodes communicating via noisy channels to
estimate a function of their initial conditions.



observe that

N

NC12 > ZI(U(l); V2 (l) U2 (1))
l=1

> I(X 2(k); Xi(O)1X 2 (0)).

Next, we have that

I(X2(k); X1 (O) 1X2(0)) a) I(X2 (k); X (0), X2 (0) 1X2(0))
(b)

Ž I(X2(k); CX2(0))

where,

(a) that is, I(W;Y,UIU) = I(W;YIU), can be verified by the chain rule for mutual
information:

I(W; Y, UIU) = I(W; YIU) + I(W; UlU, Y)

= I(W; YIU),

because I(W; U|U, Y) = 0.

(b) follows by the data processing inequality, because C = f(X 1 (0), X 2(0)).

So, from Corollary A.2.2,

C12 h(CX 2()) - log 27re, + ),
which holds for all k, and therefore holds as k, hence N, goes to infinity.

Finally, we obtain the desired result by noting the following conditions and facts.

(i) First, h(CIX 2(0)) is finite, as long as, given X 2(0), C is random and has a support
set of non-zero measure.

(ii) Second, R 12 = limk-,, 0 must be finite and smaller than C12 if the probability
of decoding error can be made arbitrarily small, according to the Channel Coding
Theorem.

Ol



Appendix B

Appendix for Chapter 5

As in Chapter 5, we let (Wti)T be the random variable representing the 1th sample at node
i, where the subscript "T" emphasizes that the distribution is truncated from m onwards.
Then, the probability density function of (Wl)T is that of an exponentially distributed
random variable, Wj, with probability density function fw, (w) = Oie-eiw for w > 0, condi-

tioned on the the event A' = {Wi < m). For w E [0, m],

Oie-oiw
f(w,)T () = 1e - Om'

and f(wi) ,(w) = 0 elsewhere.

Let W• = mini=1...n(Wlt)T. Let Wj* = mini=l,...,n Wf', the minimum of independent
exponentially distributed random variables, Wi, with parameters 81,..., On respectively,
then W1 * will itself be exponentially distributed with parameter y = Ei 0i.

Lemma B.0.4. Let W'l,..., W/n be independent random variables. The cumulative distri-
bution function of W17 is identical to that of W1 *, conditioned on the event At = {jn 1Af},
where Ai = { W i _ m},

P(WI 5 w) = P(W1* 5 w lA).

Proof.

P(W1 * Ž wlAi) = P( min W >Ž wI n l1 Af)

i=1

= IP((WlD _ w)
i=1

( P(ntlU{((Wl)T > w})

P where,),

where,



(a) holds because for random variables X1 and X2, the events {min{Xi, X 2) zx} and
{X1 > x} n { X2 > x } are equivalent, and,

(b) follows by the independence of the random variables WI1,..., W17.

The above lemma can be used to show the following theorem.

Theorem B.0.5. Let W1, i = 1,... ,n, be independent exponentially distributed random
variables, each WI with parameter Oi, where Oi _ 1 for all i. Let (Wli)T be the truncated
version of Wli for which P((W1 i)T Ž m) = 0, for some m > 0. The expected value of the
minimum of the truncated exponentials, W1 = mini=1...n(Wl)T, is bounded as follows,

(1- e-ym )-1 1- (1 + m ne-m )  E[iV] (1 - ne-m)-11

(y y y

where y = =-Z= 1 i.

Remark Note that the above bound implies that for all n, as m approaches infinity, the
expected value of W1 approaches 1, which is the expected value of W1*, as should be the
case.

To prove this theorem, we need the following lemma.

Lemma B.0.6. The expectation of W1* conditioned on the complement of Al = {n, {( W I5 m}} ,
is upper bounded as,

1
E[W* IAc] < -+ m.

y

Proof. Consider the event B = { n_ 1 {iWf > m} }, then it is straightforward to verify that
the probability density function of W{* conditioned on B is

f, In B(W) =fye-y(w-m) for w > m

fWB(W) =10 otherwise,

which is the probability density function of an exponential random variable with parameter
y that is shifted to the right by m. Therefore, E[W* B] = -+ m.

Next, the result of the theorem follows by noting that

E[Wi*IB] - E[W|*IA ] _ 0.

To see this,

E[W*IB] - E[W;*IA] = w (fw IB(W) - fwIA'(w)) dw - WfW*IAc(w)dw

> mm fWIB(W) - fw: IA(w) dw - m fw IA(w)dw

=m(f fw IB(w)dw - fw IA(w)dw

=0.



Here,

(b) follows because each of the two integrals in the previous line is equal to 1, and,

(a) holds for the first integral because on (m, oo), w > m and fw ;lB(w) - fW1*IA'(W) > 0,
as will be shown below; and for the second integral because on [0, m], w < m and

fW |IAc(W) > 0.

Finally, to show that for w E (m, oo), fW* B(w) - fW* IAr(w) > 0, we first use the Total
Probability Theorem to express fW{lIA?(W) as

fW*|IA(W) = fW*IAnB(w)P(B|IA) + fW* IAnBc(w)P(Bc|Ac).

Next, recall that B = {n_ I{W1 i > m}}, and Al = {(n I{Wi < mn}}. Then,

AFnBC= {n I{w1  < m} U Inn }} w{ > m{",

which says that not all the W1 's are larger than m, nor are they all smaller or equal to m;
in other words, there is at least one of the W/'s that is smaller or equal to m and one that is
larger than m. So, conditioned on Af n BC, the minimum of the W'1 s, W* , must be smaller

than or equal to m, and P(W1 * < m Ac n Bc) = 1. Hence,

fWAnBc(W){ Ž>0 for0<w<m
= 0 otherwise.

Furthermore, we have that Ac = {U = 1{Wt > m}l} , so it is clear that B c Ac and BnA A =

B so that fWjlAnB(W) fW(IB(w). Observing that P(BIA?) < 1, we have the desired
result, for w > m,

fWl*Ac(W) = fW;*IAnB(w)P(B|IA) 5 fw;IB(w).

Proof of Theorem B.O.5. It follows from Lemma B.0.4 that E[W1] = E[W1*IAI]. By the
Total Expectation Theorem,

E[WV*] = E[WVi* Al]P(Al) + E[W*i A1]P(Ac), (B.1)

where, because W1* is exponentially distributed with parameter y, E[W1*] = 1/y.
Next, we find bounds on P(At) and P(A ), where At = {jni {Wj mi}} and Ac =

{Uil {Wi > m} }. Although it is clear that

n

P(Aj) = (1 - e-'im),
i=1

it is convenient to find upper and lower bounds for P(Aj). First, we have that by the union
bound, n n

P(Ae) < ZP({Wt > m}) = Ie -em < ne- m

i=1 i=1



where the last inequality follows because, for all i, Oi > 1. So,

P(AI) > 1 - ne- m .

Next, observe that Af : {jn I{Wi > m}}, so

n

P(Ac) _ P({n=I1 {W1
i > m}})= f e-om = -e - ym

i=1

So,
P(Aj) < 1- e- ym .

Finally, for the upper bound on E[W* IA1], because E[W;IAf]l _ 0, we have from equa-
tion (B.1),

E[W;*] 2 E[W;*IA]P(Al),

and, rearranging,
1 1E[W IA] 5 E[WW] < (1 - ne-m) - 1

P(A) Y
For the lower bound on E[Wi*IAL], we rearrange equation (B.1),

E[W*A] = P(A) (E[W*] - E[W* IA~]P(A )).

Using the fact that E[W* IAfl < • + m, we obtain the desired result,

E[W* A] (1 -e-m)-1 ( (+ m) ne-m).

(5
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