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Abstract

This thesis treats several information theoretic problems with a unified geometric
approach. The development of this approach was motivated by the challenges en-
countered while working on these problems, and in turn, the testing of the initial
tools to these problems suggested numerous refinements and improvements on the
geometric methods.

In ergodic probabilistic settings, Sanov's theorem gives asymptotic estimates on
the probabilities of very rare events. The theorem also characterizes the exponen-
tial decay of the probabilities, as the sample size grows, and the exponential rate is
given by the minimization of a certain divergence expression. In his seminal paper,
A Mathematical Theory of Communication, Shannon introduced two influential ideas
to simplify the complex task of evaluating the performance of a coding scheme: the
asymptotic perspective (in the number of channel uses) and the random coding ar-
gument. In this setting, Sanov's theorem can be used to analyze ergodic information
theoretic problems, and the performance of a coding scheme can be estimated by ex-
pressions involving the divergence. One would then like to use a geometric intuition
to solve these problems, but the divergence is not a distance and our naive geomet-
ric intuition may lead to incorrect conclusions. In information geometry, a specific
differential geometric structure is introduced by means of "dual affine connections".
The approach we take in this thesis is slightly different and is based on introducing
additional asymptotic regimes to analyze the divergence expressions. The following
two properties play an important role. The divergence may not be a distance, but
locally (i.e., when its arguments are "close to each other"), the divergence behaves
like a squared distance. Moreover, globally (i.e., when its arguments have no local
restriction), it also preserves certain properties satisfied by squared distances.

Therefore, we develop the Very Noisy and Hermite transformations, as techniques
to map our global information theoretic problems in local ones. Through this local-
ization, our global divergence expressions reduce in the limit to expressions defined
in an inner product space. This provides us with a valuable geometric insight to the
global problems, as well as a strong tool to find counter-examples. Finally, in certain
cases, we have been able to "lift" results proven locally to results proven globally.



We consider the following three problems. First, we address the problem of finding
good linear decoders (maximizing additive metrics) for compound discrete memory-
less channels. Known universal decoders are not linear and most of them heavily
depend on the finite alphabet assumption. We show that by using a finite number of
additive metrics, we can construct decoders that are universal (capacity achieving)
on most compound sets. We then consider additive Gaussian noise channels. For
a given perturbation of a Gaussian input distribution, we define an operator that
measures how much variation is induced in the output entropy. We found that the
singular functions of this operator are the Hermite polynomials, and the singular val-
ues are the powers of a signal to noise ratio. We show, in particular, how to use this
structure on a Gaussian interference channel to characterize a regime where interfer-
ence should not be treated as noise. Finally, we consider multi-input multi-output
channels and discuss the properties of the optimal input distributions, for various
random fading matrix ensembles. In particular, we prove Telatar's conjecture on the
covariance structure minimizing the outage probability for output dimension one and
input dimensions less than one hundred.

Thesis Supervisor: Lizhong Zheng
Title: Associate Professor

Thesis Supervisor: Emre Telatar
Title: Professor
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Chapter 1

Introduction

1.1 Place Your Bets

Here is a game that you can play for only one thousand swiss francs. We will toss

one million fair coins a thousand times, and if any coin comes out head more than

750 times, you win two thousand swiss francs. Otherwise you are welcome to play

the game again. Would you like to play?

When tossing one fair coin a large number of times, we expect the average number

of heads to be close to a half. Observing an unusually high number of heads would

be unexpected, but when millions of coins are tossed, this could conceivably happen.

We may be tempted to agree with these statements at first glance, however, if asked

to justify more specifically the validity of such claims, we would run into trouble quite

quickly. There are many ambiguities in these statements: how large should the num-

ber of tosses be? What is an unusually high number of heads? And how strong should

our expectations be? However, our attempt to justify these statements is actually

becoming more confusing by asking these questions. In fact, these questions are not

making much sense individually; the number of coin tosses, the notion of "unusually

high" and the quantification of the word "unexpected" are all interconnected.

There is however, a way to make sense of such statements while circumventing the

questions that caused ambiguities to begin with, and this way is by introducing an

asymptotic perspective. Large Deviations theory provides a framework to define and



analyze very rare events, and the rate at which the probability of such events decays

to zero is characterized.

Let {Xi•}=, be a set of mutually independent random variables defined on a finite

set Z with probability distribution Q, and let Q, denote their empirical distribution

(which is consequently a random distribution). Let H be a subset of probability

distributions such that Q ý cl(II). Sanov's theorem tells us that'

P {Q, E HI} - e-ninfPEn D(PIIQ)

One can use this theorem to conclude that some particular events have asymptotically

negligible probabilities, or more precisely, have probabilities vanishing exponentially

fast with the number of observations; in order to draw this conclusion, what matters

is that the constant

inf D(PIIQ)
PEE

is strictly positive, i.e., that Q ý cl(H). However, the rate at which the exponential

decay occurs is important in many applications and this is precisely the case in infor-

mation theory, where Sanov's theorem can be used to estimate the error probability of

a specific ergodic communication scheme. Let us go back to the coin tossing problem

for now. We can interpret the Xi's introduced earlier as being the outcome of the ith

coin toss, i.e., Xi is a head (H) with probability 1/2 and is a tail (T) with probability

1/2. Let us consider the event that the average number of heads is larger than 3/4,

which is equivalent to requiring that the empirical distribution of the sequence be-

longs to the set H = {P : P(H) > 3/4, P(T) < 1/4}. Hence H is not containing (in

its closure) the uniform distribution U that assigns probabilities (1/2, 1/2) to head

and tail. Applying Sanov's theorem, this event is a very rare event whose probability

decays exponentially fast with n and with exponential rate

C = inf D(PIIU).
PEIl

la precise formulation of this statement, defining -, will be presented in section 2.1.1



If we now toss more than one coin, is the probability of observing one sequence with

an average number of heads larger than 3/4 still very rare? Of course this is more

likely to happen now, but, as long as the number of coins is not growing with n, this is

still a very rare event. However, if the number of coins is growing with n, we become

less confident about such a claim. If it grows sub-exponentially or exponentially fast

with a rate strictly less than C, this is still a very rare event; but if we increase the

exponential rate a tiny bit above C, then this becomes a typical event. Hence, if

the number of coin tosses grows exponentially, there is a phase transition happening

around this critical value of C, where the model undergoes drastic behavioral changes.

It is then crucial to be aware of where such a transition happens. But what is the

value of C? How do we find the minimizer in H of D(PIIU)? If the divergence

were to behave like a distance or a squared distance, the minimizer would be the

distribution assigning probabilities (3/4, 1/4), which would give C O 0.13. Although

the divergence is not behaving as such in general, this conclusion is still true (and

easy to check in the current simple setting). With this analysis in mind, the reader

may make a more informed decision of whether to pay for the game or not.

The phenomenon illustrated in this example is the crux of many information

theory problems. The number of coins to be tossed becomes the number of messages

to be sent. If the house must ensure that having one winning coin is a very rare event,

the communicators must ensure that one error in the messages detection is a very rare

event. The more coins, or the more messages, the more risky. In both cases, an ergodic

setting allows the use of repeated schemes, coin tosses or channel uses, to counter

randomness. The more repetitions, the more randomness cancellations. Then, with

large deviation techniques, critical phase transitions are pointed out. Of course,

the communication problem is much more complex and it is mostly when considering

non-binary channels that the real challenges of understanding the divergence geometry

appear. But let us introduce for now more information theoretic perspectives through

the following simple example of a binary channel. Roberto wants to communicate

messages to Alicia, however, Alicia's dad is unhappy with Roberto talking to his

daughter. The pair found a way around this. They decide to encode all Italian



words they need to communicate with sequences of O's and l's, all sequences having

a constant length of 60. For example, "midnight" is encoded by the sequence of

sixty l's, "church" is encoded by the sequence of sixty O's, whereas "fountain" is

encoded by the sequence of fifty five O's followed by five l's. Then, every night at

nine sharp, Roberto goes on his balcony which faces Alicia's window in the other end

of the village and turns on or off his reading lamp every second, where off corresponds

to the signal 0 and on corresponds to the signal 1. Of course, although Roberto's

imagination when he talks to Alicia is boundless, the young boy does not need 260

words to express his messages. Even if they had to encode all possible italian words,

sequences of length 20 would be sufficiently long, since 220 is over a million. So why do

they need such extended sequences for only a few hundred words they may use? Once

in a while, other lights may turn on and off in the proximity of Roberto's balcony,

causing Alicia to receive an erroneous signal. Hence the pair purposely added extra

signals in their encoding, hoping that by doing so, even if some signals have been

corrupted in the sequence, Alicia could still be able to figure out Roberto's message.

One night, Alicia faced the following dilemma: Roberto was sending her a message

encoding the location at which they would secretly meet at midnight, but that night,

Alicia received a sequence of fifty seven O's and three l's. This was close to the

"fountain" as well as "the church"; she guessed the message was conveying the word

"fountain". At the clock bell's twelfth toll, Roberto did not see Alicia at the church.

After this, Roberto never returned to his balcony. What did the young people do

wrong? Was their encoding inefficient to ensure enough reliability? Was Alicia's

decoding inaccurate?

Assuming that Roberto's neighbors are switching their lights on and off in an ergodic

manner, Alicia and Roberto may not have chosen their code book and decoding rules

in the most efficient way. For example, when Alicia declares that the received message

ending with 001111 comes from the transmitted message ending with 11111 instead

of 00000, she may assume that the channel is flipping 0 to 1 and 1 to 0 with the same

probability, which is less than a half. But if the channel instead very rarely flips the

1's into O's (if she sees no light at all, there are few chances that Roberto had his light



on), her decoding rule was mismatched and suboptimal. Moreover, if the encoding

was avoiding sequences that were as close as the code words for church and fountain,

they may also have better prevented their mistake.

As we will see in the next chapters, when communication takes place over a discrete

memoryless channel, and when codewords are randomly generated from a distribution

Px, the probability that a code word, which has not been sent, achieves a score of at

least y for a score function F, is at most

e-ninfps.t. F(P)Žy D(PIPxxPy) (1.1)

The formal definition and interpretation of these expressions will be given in chapter

3. Roughly speaking, if we denote by Py the marginal distribution of the output

signals (which is uniquely determined by the input and channel distribution), a code

word drawn under Px which has not been sent is independent from the received

sequence, hence its joint distribution is the product distribution Px x Py. Therefore,

previous bound can be obtained in a analogue way as the bound obtained for the

introductory coin tossing problem. It is important to notice that now, the set H

and the reference measure Q depend on quantities to be designed by the receiver

and transmitter, namely the decoder F and the encoding distribution Px. From the

bound given in (1.1), we would like to choose F and Px in order to maximize the

exponent, i.e., to make sure that the probability that a code word which has not been

sent, receives a score larger than gamma, is as small as possible. This allows us to

get a faster exponential decay in the error probability, hence, having in mind the coin

tossing problem, a higher possible data rate for the messages to be sent reliably, or

a more reliable communication scheme for Alicia and Roberto2 . Of course we cannot

approach the whole coding problem over a discrete memoryless channel by simply

looking at the bound (1.1). However, it gives quite an accurate idea of what kind of

mathematical expressions are describing the performance of communication systems.

More generally, it is not so much of a restrictive point of view to claim that

2the rigorous definition of reliable communication will be given in chapter 3



most results in information theory can be stated in terms of optimizing a divergence

expression under some set of constrained probability distributions. Moreover, the use

of the divergence in order to "measure the distance" between probability distributions

is present in many more applications of probability and statistics than just information

theory, and may not always originate from a large deviation principle. Other examples

are: statistical physics, quantum information theory, hypothesis testing, bayesian

updating, EM algorithms and more.

1.2 Problems and Results Description

Motivations

Throughout this thesis we have two complementary motivations. The original mo-

tivation is to determine good coding schemes on the specific information theoretic

problems that we considered, and that are described in this section. Coming up

against familiar difficulties and challenges that have been well documented in the

literature regarding these problems, one may have the impression that in order to

make headway on these subjects, a new perspective may be required. Previous sec-

tions motivated how important the role of the divergence is in asymptotic results and

information theory, hence how important it is to understand its behavior. Via the

presentation of these toy problems, and furthermore, via the problems described be-

low, we wish to underline how appealing and helpful a geometrical perspective would

be. This is the main thrust and second motivation of the work in this thesis; the

development of geometrical methods in information theory.

Therefore our two motivations have been feeding into each other throughout this

work; introducing a geometrical perspective allowed us to make advancements in

solving our problems, and in turn, progression in the problems brought to light some

important geometric principles and techniques. These will be described in the next

section, we now briefly present the problems.



Problems

1. Universality:

Compound memoryless channels model communication over a memoryless chan-

nel whose law is unknown but remains fixed throughout a transmission. The

transmitter and receiver, however, know that the channel law belongs to a given

set. In [5], a generalized notion of capacity is defined for such compound dis-

crete memoryless channels. The random coding arguments must be reexamined

carefully for such problems, but a major difficulty arising in compound channels

is regarding decoding strategies. The optimal decoding rule for a memoryless

channel with known law (and equiprobable messages) is the maximum likeli-

hood (ML) decoding rule. However, on a compound channel, the use of ML

or any decoding rule using a notion of typicality are obviously ruled out, since

the decoder must be defined without knowledge of the channel. It may be

suspected that without making use of the channel law, a decoding rule could

hardly perform as well as a decoder which can make use of the channel law. Yet,

Goppa defined a decoding rule called the maximum mutual information (MMI),

which performed equivalently well with or without the channel knowledge, and

other decoding rules having this property have been introduced in [14], [21],

[19]. Although MMI is theoretically ideal, it has a few drawbacks. Firstly, it

is highly impractical (and so are all universal decoding rule) and secondly, it

is highly dependendant on the discrete nature of the alphabets. The maxi-

mum likelihood is initially hard to implement as well, but its linear (additive)

structure allows the use of algorithms such as belief propagation that simplify

drastically its complexity (when code words have an algebraic structure). In

the final discussion of the survey paper "Reliable Communication Under Chan-

nel Uncertainty", [19], the authors wrote the following conclusion: "the task of

finding universal decoders of manageable complexity constitutes a challenging

research direction". "The maximum likelihood decoder is generally much sim-

pler to implement than a universal decoder (e.g. MMI), particularly if the codes



being used have a strong algebraic structure". The reason for this is that the

maximum likelihood decoders have a linear structure, i.e., the maximum likeli-

hood decoders maximize a score function which is linear over the block length,

since log Wn(y x) = En1 log W(yj xi). However, none of the known universal

decoders3 are linear.

Can a single decoder embody the property of linearity and universality?

In chapter 5, we raised the problem of finding good linear decoders over com-

pound discrete memoryless channels.

2. Multi-user information theory:

In his celebrated paper [29], Shannon established the capacity of the additive

white Gaussian noise channel, whose performance is limited by thermal noise.

In mutli-user communication schemes, interference caused by other users also

perturb the transmitted signals. However, interference is fundamentally dif-

ferent than noise; because it is transmitted by other users, it has a definite

structure. When should we or should we not treat interference as noise? This

a central question raised in the Interference Channel, whose capacity region is

unknown to date. In chapter 6, we consider symmetric Gaussian interference

channel with two users and perform a local analyzes. It has been shown in [3]

that for low interference, the optimal scheme for the sum-capacity is to treat

interference as noise and use independent Gaussian code books. Say that we

are now allowed to move in different directions around independent Gaussian

distributions and want to maximize the sum-rate; how would we move to get a

higher sum-rate? How does the value of the interference coefficient modify the

optimal input distribution? In this chapter, we aim to quantify how to perturb

independent Gaussian distribution in order to hurt or help each of the two users

mutual informations, in particular, we want to identify for which values of the

interference coefficient should we treat interference as noise or not.

3. MIMO channels:
3 achieving capacity or optimal error exponents



If we consider the previous problem but now allow the transmitters and re-

ceivers to cooperate at any time of the communication, we are dealing with a

Multiple Input Multiple Output channel. These channels model in particular,

communication between a receiver and a transmitter having several antennas

available for use. In fully scattered environments, independent structures on the

fading matrix are assumed and it has been shown in [32] that the achievable

rates can be greatly improved with the number of antennas (namely linearly

increased with the minimum between the number of transmitting and receiv-

ing antennas). What kind of independent structures can support such claims?

What are the optimal input distribution (in the ergodic coherent setting) when

the fading matrix distribution has weaker symmetric structures than the one

assumed in [32], or when correlations are present between the fading matrix

entries? How does this change when we consider non-ergodic settings? In the

non-ergodic setting, Telatar's conjecture describes the optimal input covariance

matrix in the i.i.d Gaussian setting. This conjecture can be stated as follows in

the case when the output dimension is one: let us consider the metrics on Ct

induced by all possibles positive definite matrices of trace 1 (llh A = htAh with

A > 0 and trA = 1). Which metric should we chose in order to minimize the

probability that a vector drawn from an i.i.d complex (circularly symmetric)

Gaussian distribution has a length shorter than x? Conjecture: for any x E R,

there exists k = k(x) E Z+, such that the optimal matrices are all contained in

the unitary orbit of the diagonal matrix with k times the value 1/k.

Results

* On a discrete memoryless channel and for compound sets having a finite union

of one-sided components 4 , we found a decoding rule that maximizes a finite

number of linear metrics and achieves the compound capacity (cf. theorem

9). Practically, this gives a linear universal5 decoding rule for most compound

4one-sided set are defined in definition 24, the reader may think for now of union of convex sets
5universality here is only concerned with achieving the same rate as an optimal decoder



sets. MMI can be seen as a generalized maximum a posteriori (MAP) decoder

maximizing all possible metrics induced by any DMC. Hence, our result is telling

that we do not need to take all DMC metrics in order to achieve the capacity on a

given compound set S. It also tells us which metrics are the important ones. By

extracting the one-sided components of S, and taking the MAP metrics induced

by the worst channel of these components, we get a capacity achieving decoding

rule. When S has a finite number of one-sided components, this decoding rule

is generalized linear. We give a geometric interpretation of this result.

* Let g, denote the Gaussian density with mean zero and variance v, and let

T : L -• VL*gv, where g, is the Gaussian density of mean 0 and variance

v. We found that the singular functions of this operator are given by the

Hermite polynomials in L 2 (g9, R) (multiplied by V-,), and the singular values

are powers of ' (which represents a signal to signal plus noise ratio). We

show that for an additive Gaussian noise channel, and for Gaussian inputs,

the operator IIT(L)IIL 2 measures how much variation in the output entropy is

induced by the input perturbation g,(1 + eL). With this novel tool, we can

prove that the optimal input distribution for the sum-rate (unit power for each

users) undergoes a regime transition, if a < 0.68 the i.i.d. Gaussian distribution

is a local maxima of the sum-rate and otherwise it is not a local maxima. This

tells us that for a > 0.68, interference should not be treated as noise and that

the recent sum-capacity expression found in [3] cannot be tight for a > 0.68.

The numerical values given here are expressed as the roots of some polynomials

given in chapter 6.

* For ergodic, coherent, MIMO channels, if the fading matrix and input covari-

ance constraint set are invariant with respect to a subgroup G of unitary matri-

ces, the optimal covariance matrix must commute with G. For the Kronecker

fading model, we characterize a martini-filling optimal power allocation which

preserves, although smoothens, the water-filling characteristics. We prove that

for non-ergodic MIMO channels, Telatar's conjecture, concerning the structure



of the input distribution minimizing the outage probability, is verified in the

MISO case for input dimensions6 n _ 100.

* Other side results included in this thesis are the followings. In section 4.2.2,

a notion of very clear channels, representing the other extreme case of very

noisy channels, is defined. Results concerning capacity and error exponents

on very clear channels are presented. In section 4.3, channels that are getting

noisier with the number of channel uses are introduced (abstracting a model

with limited energy supply or dense interference network, for example). We

show that although the Shannon capacity is zero for such channels, we can still

use codes growing at a sub-exponential scale and whose adapted notion of rate

is bounded by a modified notion of capacity, given by the Fisher information.

1.2.1 Geometric Approach

Geometrical approaches to information theoretic expressions and statistics prob-

lems have been investigated in different aspects. In [8], several geometric proper-

ties (pythagorean theorems) of the divergence are described. In [2],[26] (and in a

work by N. N. Cencov) differential geometric techniques are applied to families of

probability distributions, and to statistical models. The Fisher metric is used as a

Riemannian metric, but instead of considering a connection which is Riemannian,

dual connections, satisfying a generalized metric connection condition, are employed.

The divergence is then defined through those dual connections, in agreement with its

non symmetric behavior, and is shown to satisfy the geometrical results presented in

[8] (independently of the differential structure). The reason for which this geometri-

cal setting is somehow peculiar, is precisely to take into account the non symmetric

nature of the divergence, which at times behaves just like a squared distance, but

in general is not even symmetric, nor has its symmetric sum (½(D(p q) + D(qllp)))

satisfying the triangle inequality.
6 the value 100 is symbolic and expresses the fact that as long as the dimension is given to us,

we could conclude the last step of the proof, which asks to satisfy the increasing property of some
confluent hypergeometric functions. We do not have a general argument to conclude the last step
for generic values of n, due to the complexity of the expressions to manipulate



The approach we take in this thesis is in slightly different. The divergence is not

a distance, but it behaves locally like a squared distance. We use the term "local",

when the probability distributions considered are assumed to be close to each other.

The rigorous meaning of "close to each other" is given in 2.2; in words, we want to

express a setting for which the divergence is well approximated by a squared distance,

since for Q E M (Z) and L E Mo(P), we have

D(Q(1 + eL)IIQ) = e62 L2(z)Q(z) + °(E2)
zEZ

Hence, "global" is simply referring to the case where no local assumptions are made.

But in addition to behave locally like a distance square, the divergence satisfies several

properties of squared distances in the global setting (cf. section 2.1). In chapter 5,

we will see how the divergence expressions appearing in information theory problems

can be cumbersome and hard to manipulate (cf. (5.8)), this is why we develop the

VN and Hermite transformation, to map global problems into local ones. The VN

transformation maps global discrete memoryless channels into very noisy channels.

Very noisy channels have been used since 1963 (by Reiffen) in different contexts,

but here, we are investigating their geometrical properties. Mathematically, this

transformation maps an arbitrary stochastic matrix into stochastic matrices which are

perturbations of a constant column matrix. The Hermite transformation is instead

used to analyze input distribution for the Gaussian interference channel, by perturbing

input distribution in the hermite polynomials directions. As we will see in chapter 4

and 6, these two transformations will precisely map our respective global problems in

the local setting presented just above. In both cases, original information theoretic

quantities are expressed as objects in an inner product space, providing us with a

significant geometrical insight. But the localization is not only providing intuition

or counter-examples on the original problem, it also preserves in some cases most of

the global problem's essence. This allowed us in some cases to lift the results found

locally to global results, such as in the problem of linear universal decoding, where

we could establish a global linear universal decoding rule for most compound sets.



This thesis summarizes some techniques that made significant breakthroughs in our

problems and we believe, would also successfully apply to many other problems in

information theory.

1.3 Thesis Outline

Outline:

The thesis is divided into three major parts. The first part includes chapter 2 to 4 and

set the main global and local geometric ideas in an abstract setting. Chapter 2 is a

generic introduction large deviations and the divergence. We interpret the divergence

has a "distance" governing the geometry of rare events, and precisely because it is

not a formal distance, we spend some time in section 2.1 to understand its global

geometric properties. Section 2.2 introduces the local behavior of the divergence and

of the I-projection. In chapter 3, we deal with the information theoretic setting of

discrete memoryless channels and use the ideas of chapter 2 to understand the global

geometric properties of those channels. In chapter 4 we consider very noisy channels

to introduce the local setting developed in section 2.2 in discrete memoryless channels

and understand their local geometry. The second part of the thesis is the application

of these techniques to the concrete information theoretic problems described in the

previous section. Chapter 5, deals with the first problem on linear universal decoding,

and chapter 6 with the second problem on the interference channel (this chapter is

also containing work in progress). Finally, chapter 7 and 8 are dealing with the third

problem on MIMO channels. Those two chapters are considered to belong to a third

part of the thesis, since they do not use the local to global geometric techniques but

directly consider the global problem.





Chapter 2

Local and Global Settings

We denote by M1 (Z) the set of probability distributions on Z, where Z is a finite

set. We denote by Mo(P) all real functions on Z which are integrating to zero with

respect to P, i.e., Mo(P) = {L : Z -- IRI Z•Ez L(z)P(z) = 0}. Roughly speaking,

we use the term "local" to describe a given problem setting, when the probability

distributions considered are assumed to be close to each other. The rigorous meaning

of "close to each other" is given in 2.2; in words, we want to express a setting for which

the divergence is well approximated by a squared distance, since for Q E MI (Z) and

L E Mo(P), we have

D(Q(1 + eL)IQ) = 2 1IL + (E2),

where

llLl1 = ZL 2()Q(Z).
zEZ

"Global" is then simply referring to the case where no assumptions are made on the

considered probability distributions regarding their "distances", measured with the

divergence. In chapter 5, we will see how the divergence expressions appearing from

asymptotic results in information theoretic problems can be cumbersome and hard

to manipulate (cf. (5.8)). However, working locally allows us to reduce divergence

expressions into objects defined in an inner product space, giving us a better intuition



on how to picture these expressions. Hence, the problems expressed in the local

setting become more tractable and concrete solutions can be found. An important

idea presented in the current chapter is the following. Not only does the divergence

locally behave like a squared distance but also, globally, it satisfies certain properties

of squared distances; with this, the localization will turn out to be a accurate reduction

of the considered problem, allowing us in certain cases to extend local results, to the

global setting.

2.1 Global Geometric Properties of the Divergence

Formally speaking, the divergence is not a distance. Although it is always positive

and vanishes only when its two arguments are identical, it is not symmetric and it

does not satisfy the triangle inequality. Also, its symmetric sum, (D(pllq)+D(q lp)),

does not satisfy the triangle inequality. However, as will be illustrated in the follow-

ing results, the divergence satisfies a few properties that are characteristic of squared

distances.

The set of probability distributions (over a finite set) is not a space; it can be identi-

fied with the simplex of corresponding dimension. If one considers only distributions

having non-zero probabilities, i.e., the open simplex, we have a clear differentiable

manifold structure and tangent planes are easily defined (when borders are included,

see [30] for expressions of the tangent planes). In [2], [26] a differential geometric

framework is introduced, proposing an interpretation of the divergence by the means

of dual connections. The Fisher metric is used as a Riemannian metric, but instead

of considering a connection which is Riemannian, dual connections, satisfying a gen-

eralized metric connection equation, are employed. The divergence is then defined

through those dual connections, agreeing with its non symmetric behavior, but leav-

ing us with an unusual Riemannian geometry. We will not focus on this setting here,

we will simply present a few geometric properties that the divergence satisfies, helping

us to build our first geometric intuition. We start by introducing how the divergence

originate in our problems.



2.1.1 Large Deviations and Induced Geometry

Let {Xi}n 1 be a set of mutually independent random variables defined on a finite

set Z with probability distribution Q E MI (Z), and let Q^. denote their empirical

distribution (which is consequently a random distribution). Let H C MI(Z) be a set

whose closure, cl(II), is equal to the closure of its interior and such that Q 0 cl(II)

(though without latter assumption the forthcoming results become trivial). We now

state the Sanov's theorem in this particular setting, although the theorem can be

stated in much greater generality.

Theorem 1. (Sanov)

- lim -logIP{Q, E II} = inf D(PIIQ).
n-*+oo n PEn

The functional D is called the Kullback-Leibler or Information divergence, as well

as the relative entropy (also denoted h(PIQ)) and we will simply call it the divergence:

D(PIIQ)= P(z) log ) if Supp(Q) M C Supp(P),
zEZ Q

and infinity otherwise.

We adopt the following notation to express previous statement in a more handy

way:

P{(f, E 1} - e- n infPEn D(PIIQ)

where a(n) b(n) means -liMn,++oo log a(n) = - limn,+oo log b(n).

Definition 1. Let II be a closed convex non-empty subset of M, (Z) and let Q E

MI(Z) with Q > 0 (i.e., Q(z) > 0, Vz E Z). The I-projection of Q onto II is

Po = arg min D(PI IQ).
PEH

'Note that since Q > 0, the function P ý D(PIIQ) is continuous and strictly

convex in P, which implies the existence and uniqueness of P0. The assumption

made on II and Q in the definition can certainly be relaxed in order to get meaningful



variant of this definition, but since we will not need a more general setting in this

chapter, we will content ourselves with this definition.

In what follows, several properties of the I-projection will be investigated. We will

see that the I-projection behaves in several respects like an analogue of the Euclidean

projection defined on RN by

po = argmin lip - q 2,
pES

where po E RN and S is a closed subset of RN.

2.1.2 Pythagorean Theorems

In the Euclidean geometry of RIN, an hyper-plane is described by all points x satisfying

a set of 1 < i < N linear equations of the form (fA, X)euci = fT x = ai, with fi E RN

and ai E R. We refer to the fi's as being the normal directions, since for any point x in

the hyper-plane, the other hyper-plane given by all points y satisfying y = x + Ei Aifi

for some Ai's in R, is orthogonal (with respect to the Euclidean inner product) to the

first one. Moreover, the projection of a point onto an hyper-plane belongs to the

intersection with the normal hyper-plane.

We now consider M1 (Z) instead of RN.

Definition 2. Let k > 1, i E {1,..., k}, f" : Z --+ R (normal directions) and ai E R

(shifts). A linear family £{f,a,) in M1(Z) is defined by

L{f,,a} = {P E MI(Z)IV1 < i < k, Epfi = a~}.

Definition 3. Let k > 1, i E {1,..., k}, f' : Z -+ R (directions) and Po G Mi(Z).

An exponential family SPo,(fi} in M (Z) is defined by

$Po,{f,} = {P E MI(Z) 3A E Rk S.t. P = Poe=' A"fi c((A),

where c(A) = (•ZEz Po(z)e •=1Ail fi(z))-1



The linear families will be pictured in a similar way as the hyper-planes in the

Euclidean geometry, the fi's can also be interpreted as normal directions, not with

respect to another linear family, but with respect to an exponential family. Let Cfl, be

a linear family passing through a point Po and Epo,I its "normal" exponential family

passing through Po. As the following theorem shows, we then have similar properties

as in the Euclidean setting, involving the divergence instead of the Euclidean squared

norm. The proofs of this results can be found in [8].

Theorem 2. For any Q E SPo,f, we have

arg min D(PIIQ)= Po.
PCef,Epof

In the Euclidean setting, the projection Po of a vector q on a linear subspace S

is characterized by the orthogonality principle, or equivalently by the Pythagorean

theorem Ilp - q11 2 = lp - po01 2 + I0po - q 12 , Vp E S. In the probability setting, the

following similar result holds, which encompasses the previous theorem.

Theorem 3. Let Q E MI(Z) and

Po = arg min D(PIIQ),
PE-C({i,c i}

then

D(PI Q) = D(P IPo) + D(Po IQ)

and if Supp({jfi,ai,}) = Z, we have

2{j,•,ao , n Sq, = {Po).

If Supp(1£{f,,,}) # Z, last statement holds when SQ,(f} is replaced with cl(EQ,{f})).

This theorem is illustrated in figure 2-1.

Corollary 1. For any directions fl,..., fk and shifts al,. .. k, ,if Q1, Q2 GE Qfl

arg mm D(PI IQ) = arg min D(PIIQ 2).PEL{fi,,i} PE{fifci}



£Qlf

£ f,c,

Figure 2-1: I-projection over a linear family and Pythagorean equality

The statement of this corollary is illustrated in figure 2-2.

We now consider constraint sets that are not necessarily linear, but just convex.

In the Euclidean setting, when minimizing the Euclidean distance from a reference

point to a convex closed set C:

Po = min Iq - p112,
pEC

we clearly have the following inequality

lip - q12 > lip - po112 + llpo - ql12.

Again, a similar result hold for the I-projection.

Theorem 4. Let C a convex set, then Supp(Po) = Supp(C) and

D(PIIQ) > D(PIIPo) + D(PolIQ).

Where the support of a convex set C is defined by the support of the element of C



Figure 2-2: I-projections from a common exponential family onto several linear fam-
ilies



Figure 2-3: Minimization of the divergence over a convex family and obtuse principle

that contains all other elements support.

This theorem is illustrated in figure 2-3.

This result also suggests that D(PIIPo) + D(PoIIQ) - D(PIIQ) could perhaps be

related to a notion of angle between the distributions P, Po and Q at Po, having in

mind the analogy with the Euclidean distance where

I p - poll2 + llpo - ql12 - llp - q112 = 2(p - po, q - po)euci,

which is zero for the orthogonality principle of the projection on linear families, and

negative on convex sets, since the angle must be obtuse. So perhaps we could define

an inner product on the set of distributions such that

(P - Po, Q - Po) oc (D(PIIPo) + D(PollQ) - D(PIIQ)). (2.1)

Of course, a few abuses of the analogy with the Euclidean setting have been made



here. Since we are not working in a space, subtracting distributions takes us out of

the simplex. If one sees Mf(Z) as a manifold, to be equipped with a Riemmanien

inner product, the element of the tangent planes will indeed be measures integrating

to 0, just like the tangent of the curve tP + (1 - t)Po E M1 (Z) with t E [0, 1], which is

P - Po. However, the non symmetric behavior of the Divergence, implies that P and

Q cannot be exchanged in the right hand side of (2.1), and as consequence, such an

inner product (which has to be symmetric) would not take the tangent vector in the

symmetric way suggested by (2.1). Note that when proving the Pythagorean theorem

of the I-projectoin on a linear family, P and Po are both distributions belonging to

the linear family, hence the curve yl(t) = tP + (1 - t)Po C MI(Z), with t E [0, 1], is

included in this linear family and its tangent vector at Po (or at any other points) is

- Y(t) = P -Po.at t=o

Note that 71 is a 1-dimensional linear family embedded in any linear family containing

containing P and Po. But Q and Po both belong to the exponential family (not the

linear family) orthogonal to the linear family containing P and Po, and e(t) =

PtPoi-tc(t) also belongs to that family, with tangent vector at Po given by

a Q• tye(t) = Po(log + D(Pof Q)).

Consider now the Fisher inner product of those curves at t = 0, i.e., 7y(0) = Te(0) = Po

we get

('Y1,Ye)Fisher,t=O = EYI(O) log 7i log y7 (2.2)af t=Lo at t=o
Q 1= Ep (P - Po)(Po log Q + PoD(PoI Q)) (2.3)

= (P(z) - Po(z))log Q(z) (2.4)
= o( Q). (2.5)
D(PI Po) + D(PolIQ) - D(PIIQ). (2.5)



The inner product defined in (2.2) can be expressed in a simpler way by

XY
(X, Y)Fisher,Po = Eo 2 , VX, Y E Mo(Z).

This is an ad hoc way of introducing an inner product structure using those specific

curves. A more rigorous treatment of those ideas can be found in [2], where two

connections are introduced, V and V*, for which the linear and exponential families

71 and 72 are respective geodesics, and that are dual to each other for the Fisher

metric g in the sense that they satisfy the following generalized metric connection

property:

Z(X, Y), = (VzX, Y)g + (X, V*zY)g.

Although the latter definitions may embed the expansions presented in this section in

a more formal differential geometric setting, they also introduce an unusual geometry,

since the connection used is not metric.

More results regarding the geometrical properties of the divergence can be found

in [8], the ones that we presented here are the more fundamental ones, and also the

ones we will use in our problems.

2.2 Local Properties of the Divergence

Although the divergence is not a squared distance, we showed in previous section that

for certain properties, the divergence behaves like a squared distance. In this section,

we will show that when the probability distributions are close to each other, the

divergence does indeed collapse to a squared distance, giving up its non-symmetric

behavior.

Let Q E M1 (Z) and L E Mo(P). The following identity is the main ingredient of

this section:

D(Q(1 + eL)IQ) = c21 L2 (zZ)Q(z) + (E62) (2.6)
zEZ

36



We will use the following terminology to talk about expressions such as Q(1 +eL), we

refer to Q as the limiting distribution and to L as the direction of the perturbation.

2.2.1 Local Large Deviations

Let us go back to our probability framework, where {Xi}=1 are i.i.d. from a distri-

bution Q E M'(Z) and II is as described in section 2.1.1. We now assume that Q is

parameterized by

QE = R(1 + eLQ), e < 1 (2.7)

where R E Mf0(Z) and LQ E Mo(R) and similarly

IIn = {R(1 + eL)IL E A}, (2.8)

where A C Mo(R) is convex closed. Note that we expressed Q and H in a parameter-

ized form to start with, but we could have taken our original Q and H and considered

the following parametrized distributions:

Qt = c(t)QtRn- t = c(t)Retrog = R(1 + t(log . + D(QIIR))) + o(t),

provided that Q and R are strictly positive distributions (and similarly for H). Note

that the addition of D(QI IR) = -ER log - ensures that the direction is centered with

respect to R, forcing the evolute to stay in the simplex at any time. The previous

expansion gives a justification of why we use the letter L for the direction of our local

perturbations, we can think of L as being the (centered) log-likelihood ratio between

the target distribution and the limiting distribution where we want to perform our

local analysis, i.e.,

LQ = log Q + D(QIIR)

37



We could define a linear evolute too:

Q-R
Qt = tQ+(1 -t)R= R+t(Q-R) = R(1 +t Q -

R

where last equality holds only if R is a strictly positive distribution. The meaning

of these specific choices of paths, to get to a limiting distribution, is not investigated

further in this work, but as mentioned in section 2.1, exponential and linear curves

(1-dimensional families) can be interpreted as geodesics with respect to Amari's (e)

and (m) connections. But for the purpose of this section, we only need to care

about the description of these paths near the limiting distributions, which is, as

shown in previous paragraph, described by linear perturbation in the infinitesimal

parameter. The next section will provide an example on how to define and use these

local perturbations in information theoretic settings, for now we will we use the setting

defined in (2.7) and (2.8).

From Sanov's theorem, we have for any e > 0

1
- lim -logIP{Qn E H,} = inf D(PIIQ,)

n-+oo n PErI,

and obviously

lim inf D(PIIQE) = 0,
E-0 PEn,

but what we are interested in is the behavior of these expressions for small e.

Proposition 1. Let R E MI(Z) with R > 0, LQ E Mo(R) and A C Mo(R) convex

compact. Then,
1 1

lim - inf D(PIIQe) = -inf lL - LQIIR,
E---O 2 PEne 2 LEA

where II - HR is the L 2 norm with weight measure R.

Proof. Let M = maxaEx,bcy L(a, b) V LQ(a, b) and T = 1/M > 0. Then

f : e H D(R(1 + eL)IIR(1 + ELQ))



is analytic on (-T, T) and since f(O) = 0 and f is positive, the first two terms in the

Taylor expansion of f are vanishing and computing the second derivative at zero we

get

D(R(1 + EL)IIR(1 + eLQ)) = 2IL - LQ I 2 + o0(2).

But

inf D(PIQ,) = inf D(R(1 + EL)IIR(1 + ELQ)),
PE H LEA

hence

lim I inf D(P Q,) = lim 1 [inf 1- LQ E +
E•-o 2 PE1n e-•o 2 LELA 2

1
= -inf ||L - L Q 12

2 LEA

This result tells us that if we work locally around a distribution R, the I-projection

behaves like a norm-space projection defined in Mo(R), the space of functions having

zero mean under R (i.e., -Ez L(z)R(z) = 0), with the L 2 norm weighted by R. This

is illustrated in figure 2-4

Note that this result strengthens the choice of the inner product defined in section

2.1.1, as illustrated in figure 2-5, since the tangent vector at Po of the exponential

curve is given by Po(log - + D(Q| Po)) and the tangent vector at Po of the linear

curve is given by P - Po = P-Po , the Fisher inner product between between these

two tangent vectors, as expressed in (2.3), is indeed equal to the L2 inner product of

the two directions log - + D(Q Po) and 'P-P with weight Po, i.e.,oP

EPo(P - Po)(log - + D(QJ Po))
Pagreeing with the local result.

agreeing with the local result.



Figure 2-4: Local I-projection in proposition 2.2.1

Figure 2-5: Fisher inner product



2.2.2 Moderate Deviations

The local setting of previous section has been defined by taking first the limit as n

goes to infinity and then the limit as E goes to zero. The current section investigates

what happens if those two parameters are approaching their limits simultaneously.

We keep the same setting as in previous section (with Q > 0) and we consider

E = E(n) such that

E(n) -+ 0, nE(n) -- 00.

Theorem 5. For F C M0o(Z), we have

1 (Qn - Q) E F = e-nE(n)2infur 5 Zzz

or equivalently, for A E Mo(Q)

PQ'{ E Q(1 + e(n)A)} e-' ( 2)2 infeA l•lr

Corollary 1. Let Qe(n) such that limnoo Qe(n) = Q, then

?{€•n) (Qn- Q-(n)) E Fj = e - n s(
n ) 2 Qin f E r LzEZ Q(Z)

Heuristic Proof: we know, from previous section, that

IP{(, E Q(1 + EA)} e- n(e2infLeA l II1+o(e2))

Therefore, if E = e(n) decreases in a way that ne(n)2 tends to infinity, we could expect

the result to hold. In order to prove this rigorously, the Gartner-Ellis theorem can

be used. (A proof of this theorem can be found in [12],[1] in a more general frame-

work). Note that if e(n) tends to zero too fast, e.g. if e(n) = 1/vJn, which implies

nE(n)2 = 1, we then hit the central limit theorem regime, and the events measured in

theorem 5 are no longer rare, i.e. their probabilities are no longer vanishing. So this

result shows that before hitting the central limit theorem regime, a window can be

opened where some rare events see their probabilities decaying slower than the large



deviations events, namely at a sub-exponential rate, yet, decaying to zero.

This concludes the section on local geometric properties of the divergence. In the

next chapters, discrete memoryless channels are introduced, giving an information

theory meaning to the objects treated here. The local approach will then be carefully

investigated on different problems, and a crucial point to remember from the current

chapter, is that, not only is the divergence locally like a squared distance but also

globally it satisfies certain properties of squared distances.



Chapter 3

Discrete Memoryless Channels and

Global Geometry

3.1 Channel Model

We denote by X and y the input and output alphabets, which are two finite sets. A

communication scheme is defined as follows: at time 1, the transmitter sends an input

symbol x(1) E X, over a channel that randomly generates an output y(l) E Y, which

is observed by the receiver. At time n, the input x(n) is sent, and the output y(n)

is received through the same communication channel. We assume the channel to be

memoryless (homogenous) and without feedback, i.e., the probability of receiving the

output sequence y = (y(1),... , y(n)) when the input sequence x = (x(1),. . . ,x(n))

has been sent through the channel is given by:

P(ylz) = I W(y(i)xl(i)),
i=1

where W is a probability transition matrix, i.e., a stochastic matrix of size X x y,

whose entries (W)i,j is denoted by W(jji) and represents the probability of observing

the j-th element of y when the i-th element of A is sent (hence the rows of W add

up to 1). The length of the sequences, which here can be thought as time, the delay

or the number of channel uses, will be called the block length or sometimes simply



the length of the sequences.

This defines a discrete memoryless channel (DMC). Note that a DMC is entirely

characterized by its probability transition matrix W, and we will from now on identify

DMC's with their respective stochastic matrices. Indeed, we will employ the termi-

nologies, channel, transition probability matrix and stochastic matrix to talk about

the same object.

From a communication point of view, DMC's are an abstraction (and simplifica-

tion) of a sequence of communication layers. Symbols from a finite alphabet are not

to be physically transmitted, they are first converted into waveforms by a modulator

and then sent through a waveform channel representing a communication link (such

as mobile radio) where randomness is added. After this, the demodulator maps the re-

ceived waveforms into symbols again. Therefore, discrete channels represent the black

box embodying those different communication layers. The memoryless assumption is

conceivable when "flat fading" assumptions are made on the delay spread mechanism

of the communication model, avoiding intersymbol interferences. In this work, we

are primarily interested in the design of the encoder (encoding the source symbols

into the discrete symbols to be modulated) and decoder (decoding the symbols after

demodulation into the sink). Hence we will focus on this discrete channels and con-

sider their ergodic theory. For more details regarding the communication models, cf.

[16],[17].

We are interested in sending information reliably through such a DMC, i.e., we

want to build an encoding and decoding scheme that ensures a probability of wrong

recovery of each message to be sent, as small as desired. Let us assume that only two

messages have to be transmitted. First, encode them in the input alphabet language

of the channel. In order to have a probability of wrong recovery as small as desired,

it is necessary to add redundancies in the encoding (unless some inputs can never

be confused by the channel, it will not be possible to just encode each message with



one input symbol and ensure reliable transmission). So the dimension of the input

sequences, which we called the block length, has to be exploited. For a finite number

of messages, it is then easy to imagine arbitrarily long block length encoding that

will ensure reliable communication, e.g. encode each message by repeating a symbol

as many times as necessary. One could ask the question of finding the optimal (in

the sense of minimizing the error probability) encoding and decoding strategies for

a finite number of messages, but another problem is to analyze the optimal scaling

between the number of messages that can reliably be sent with respect to the block

length they use. We now investigate more formally the second question.

Definition 4. An encoder of block length n and rate R is defined as a mapping En

such that

E,: m E M = {1,..., M = LenRJ} m x, E Xn.

The image of the encoder defines the code book, denoted by Cn = {xm)}=. A

decoder is defined as a mapping Dn such that

Dn: y E yn'H m EG A,

that is allowed to (and should) depend on the encoder. Note that an encoder (a code

book) and a decoder are implicitly defined for a given rate R. Finally, an n-code of

rate R is a pair of encoder and decoders of block length n and rate R.

Assumption: we assume that for each block length and rate, the messages M to

be transmitted are equiprobable.

Definition 5. We define the average probability of error for a given block length n,

rate R, encoder En, decoder D, and channel W as

Pe(En, Dm, W) = M Pe,m(E,, Dn, W)
mEM

where

Pe,m(En, Dn, W) = W"n(yEn(m)).
y: Dn(y)#m
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We may sometimes replace En by Cn and, when there is no ambiguity, we may

replace D, by a term representing a decoding rule: for example, if ML is used as the

argument for the decoder, we mean that the decoder used for a block length n and

code book Cn, is the induced maximum likelihood decoder. Equivalently, MMI stands

for the maximum mutual information decoding rule. Those specific decoding rules

will be investigated in section 3.2.2.

Instead of the average probability of error, the maximal probability of error can

be defined by maxM_ Pe,m(E,, Dn, W). In most problems, good estimates obtained

on the average probability of error directly lead to a good estimate for maximal

probability of error (i.e., up to some constant factor). For the problem treated here, it

is sufficient to work with the average probability of error. Finally, average probability

of error and error probability are synonyms.

Definition 6. We say that a rate R is achievable for the channel W if for any E > 0,

there exists a block length n, an encoder E, and decoder D, of rate at least R such

that Pe(En, Dn, W) < e.

When the messages are equiprobable, the decoding rule minimizing the average

probability of error for a given code book {xm}IM1 of length n and a channel W, is

the maximum likelihood decoding, defined as follows.

Definition 7. For a given output sequence y of length n, the maximum likelihood

(ML) decoder is defined through the mapping

y - XML(Y) = arg max Wn(ylXm),
xm, m=l,...,M

and if the maximizer is not unique, an error is declared. This is the convention we

use, since ties can be resolved arbitrarily without affecting the forthcoming results.

This convention is however convenient, since it preserves the code words symmetry in

the problem, which will simplify the error probability analysis. Formally, we should

introduce a new symbol in the output alphabet (which represents an error) and is

declared when a tie occurs.



Definition 8. Let x E X" and y C yn. We define the joint empirical distribution

Px,, of (x, y) by
I{i : x(i) = a, y(i) = b}lPx,,(a, b) =

For a code xm and a received output y, we sometimes use the notations P, = Pxm,,y

In general, the notation Pz where z is a vector denotes the empirical distribution of

z, when z is pair of vectors, it denotes the joint empirical distribution, when Z is a

random vector, Pz denotes the empirical distribution of the random vector, which is

a random empirical distribution (and similarly for a pair of random vectors).

Note that

n

W"(YXm) = JJ W(y(i)|Xm(i)) = ] W(bla)nPxmY(ab) - nEpxm,y logW

i=1 aEX,bGY

where Pxm,y denotes the joint empirical distribution of the vectors xm and y. Hence

XML(y) = arg max Epxm,r log W. (3.1)
xm, m=1,...,M

Definition 9. For a given output sequence y of length n, the maximum mutual

information (MMI) decoder is defined through the mapping

y H XMMI(Y) = arg max I(Pxm,y),
xm, m=1,...,M

and if the maximizer is not unique, an error is declared.

This decoder was first introduced by Goppa.

3.1.1 Random Coding

We start with an informal introduction. Let us assume that there exists a rate R > 0

that can be achieved on a given channel which is not a permutation of the identity.

Different codes achieving R may then achieve different exponents in the probability of

error. Let us also assume that achievable rates are bounded (this will be proved soon,



but it can be expected, as one can show that code books growing faster than expo-

nentially, i.e., lim log Mn) = oo, must have a probability of error tending to one).

We then expect that for the rate R, there could be an optimal error exponent. If so,

one may think that in order to achieve the best error exponent for a rate R, the best

structure for the code book should be found. What is a good code book structure? A

rigorous answer to this question would start by exposing what coding theory is and no

general comprehensive answer can probably be found. Informally, a good code should

contain code words that are as spread as possible, i.e., as far from each other as the

rate R allows. It turns out that trying to formulate this problem rigorously, with a

notion of distance, or any explicit mathematical (geometric) construction (which does

not proceed by exhaustive search, such as maximal codes) has not been able to get

to rates as high as what Shannon's results predicted using randomly generated code

books. By drawing the code words randomly under a well chosen distribution, and

proving results for the averaged performance, Shannon, Gallager and Berlekamp have

been able to show the existence of code books achieving error exponents, that still

today, no deterministic "construction" could achieve (notions of "construction" and

"complexity" should probably be defined for a more formal discussion). The random

coding argument can be seen as an application of what is called the probabilistic

method to our problem, although, the argument of Shannon came around the same

time as the seminal work of Erd6s introducing the probabilistic method ideas.

Definition 10. An iid random code book of distribution Px E M, (X), length n, and

rate R (i.e., M = [enRJ) is defined by the distribution pMn, with

M

PX"(Xl,..., XM) =- Pg(xm)
m=1

where

P, (xm) = -I Px(xm(i)).
i= l

Definition 11. We denote by Tn(Px) the set of sequences in X" whose empirical



distribution is Px (which is a non empty set only if Px is such that nPx(a) E Z+,

VaE X).

Lemma 1.

ITn(px) - enH(Px).

Definition 12. A code book of length n is said to have a fix composition Px if all

its code words are elements of T"(Px) (assuming this set is non empty).

Definition 13. A random code book of length n, rate R, and fixed composition

Px, is defined by drawing independently and uniformly at random M = LenRj code-

words {Xm})m= in T"(Px) (assuming this set is non empty), i.e., by the probability

distribution pM(T)

M
pM(T)(x XM) = P(T)(Xm) = (P(T)(x1))M

m=1

where
P(T)(xl)= IT"(Px)

if xl,... ,XM E Tn(px), and zero otherwise.

Let {Xm}1l be an iid random code book with distribution Px, length n and

rate R. The error probability is now a random variable Pe({Xm}M=, Dn, W), whose

value is Pe({xm}r=, Dn, W), with probability P ""({xm}=) defined in definition

10. Therefore, the expectation of the error probability over this random coding en-

semble is given by

EpMnPe({Xm}) =, Dn, W) = EpMn Pe,1({XmIM 1 , Dn, W),

which is the expectation of the error probability when transmitting the first codeword

(w.l.o.g. we pick the first codeword, but any codewords could have been considered

in the right hand side of above equality).



Random coding argument: if for a given n and Dn we have

Ep ,nPe({Xm}M=, Dn, W) < E,

then there exists at least one realization of the random code book, X1 = xl,..., Xm =

xm, that satisfies Pe({zm}mm=, Dn, W) < e. (In fact, many code books are expected

to be good.)

The following theorem gives a lower bound on the largest error exponent that

can be achieved at rate R on a channel W (i.e. an upper bound on the smallest

error probability). This lower bound is proved in [9] using the maximum mutual

information (MMI) decoder and in a modified form in [16] using the ML decoder.

Theorem 6. Let {Xm }m=1 be an iid code book of length n, rate R and distribution

Px. We then have

M -n [inf. ,,=p, D(j)+I R-D(Z( IlP)]

e({Xm}m=1, ML, W) < e

Hence, for any e > 0, if R < C(W), where

C(W) = max I(Px, W),
Px EM(X)

there exists a code book {xm} 1m of length n, with M = [enRJ, such that P({xm},M=, ML, W) <

e. In other words, any R such that R < C(W) is achievable.

These results imply that the highest achievable rate is upper bounded by C(W).

One can prove with a converse result (cf. [9],[16]) that the highest achievable rate

cannot exceed C(W), which is called the capacity of the channel.

We present a different proof than the one mentioned earlier, that uses the same

technique introduced by D. Forney and A. Montanari in [25].



3.2 Error Exponents Estimates

We begin this section by evaluating the averaged error probability of an iid random

code book with ML-decoder. Note that using (3.1)

Epk,fPe,1({Xm}M), , ML, W) = P{Um i{EPx y,v log W <_ EEpx,, log W}}

where

M

P{X 1 = ix,... ,XM = xm, Y = y} = Wn(ylxl) I P"(xm),
m=1

and in particular

n

PJ{X = X1,Y = y} - Pfx(xl(i))W(y(i)xzl(i)), (3.2)
i=1

n

P{Xm = xm, Y = y} = ]7Px(Xl(i))Py(y(i)), Vm 1 (3.3)
i=1

with Py given through the following definitions

AW(a,b) = Px(a)W(bla), Va E X,b E Y (3.4)

Py(b) = Zp'(a,b), VbEy (3.5)
aEX

Mp(a, b) = Px(a)Py(b), Va E X, b E Y. (3.6)

In words, Ai is the joint distribution between the codeword which is sent, in our

case X1 , and the received output, whereas X 2,..., XM have not been sent, hence are

independent of both X 1 and Y. So from the memoryless assumption, we have that

with probability one, the following limits hold 1

n--0oo

P n--*+oo p.
Xm,Y /1.

1since we work with finite sets, the limits hold with the topology induced by R; in the more
general setting, such as in proposition 11, these limits hold with the weak topology



Remark:

If we work with a constant composition (instead of iid) code book {Xm}"= of dis-

tribution PX, we have

Pfix{X1 = X1,...,XM - Xm,Y = Y} - W"(YllX)pT)(xl)
n

- W(y(i)|xi(i))e-nH(Px)
i=1

e-nEpxl,y log WoPx

-- P{X1= ,...,XM = Xm, Y= Y},

and in the exponential asymptotic, the estimate we will get for iid or constant com-

position code book are equivalent.

Note that

{EPx,,y log W < EPxm,y log W} S{Epxl, log EPxm,v log }
" p

EpM, Pe,l({Xm}M= , ML, W) = P{Umi {lEpxl,y log log <- EPxm,
AP- X

log log }}.

Let F : M (X x Y) -- R be any function and let the random variables

Fm = F(Px,,y).

Using the decoder

XF(Y) = arg max F(P;m,y),
xm, m=1,...,M

we then express the expected error probability as

P{Umcl {Fi • Fm}},

recovering the result of the ML-decoder by setting F(jI) = L(/I) = E, log 1.

hence



Proof of (6): We have

P {Um{L1 <i Lm}} (3.7)

= Pf{U,{Li < ynUm,{Lm Ž '7}}} (3.8)

= supP•{L 1 < n Umli{Lm 2 )y}}
yER

The last asymptotic equality results from the following argument. Recall that Lm is

the random variable L(Pxm,y), where Pxm,y is the random empirical distribution of

the joint n-dimensional joint random vector (Xm, Y). So any realization of Pxm,Y is

an empirical distribution belonging to Mn)(X x y) = {P E MI(X x Y)|nP(a, b) E

Z+, Va E X,b E Y}. But

I(n)(X xy)l= n + X |IIYI-1xlly-1
|( |X|HYI - 1

which grows sub exponentially, therefore we can use the union bound to take out the

union of y as a supremum over 7 and be tight in the exponential scale. The same

argument is used in the asymptotic equality below.

P.{Umm#i{Li < Lm}}

sup P{Li < y Umi{Lm >_ 7}, Py = Qy}
"ERy,QyMn) (y)

For any E > 0, the event {PxI 0 B(Px, e)}, where B(Px, e) is a neighborhood of Px,

say, the closure of the norm ball of radius e for the Ll-norm on M 1(X), is vanishing



exponentially fast. Hence, for any e > 0

IP {Um#i{Li • Lm}}

sup P {Li < 7 n Umif {Lm 2 y}, Py = Qy, Px1 E B(Px,e)}
Y,Qy

supP {L 1 < 7, Px, E B(Px,e),Py = Qy}
"y,Qy

SfP{Um#l{Lm > 'Y},Px 1 E B(Px,E),Py = Qy}{Py = Qy - 1

• supP f{L 1 < -y, Px 1 E B(Px,e), Py = Qy}
'Y,Qy

.min(MIP{L 2 > 7, PX1 E B(Px,E),Py = Qy},1)P{Py = Qy - 1

where the second equality above uses the independence of the Xm's and the memo-

ryless assumption (i.e., knowing Y or Py is equivalent). Using Sanov's theorem, we

then get

sup P {L 1 < y, Px, E B(Px, e), Py = Qy} (3.9)
7,Qy

min(MP {L 2  -y, Px 1 E B(Px, E), Py = Qy, 1)P Py =Qy}- 1  (3.10)

- exp(-n inf [ inf D(pi|I J ) (3.11)
y,Qy M: 2LXEB(PX,c),Ay=Qy

L(A)<-

+ R - inf D(t llzp) + - D(Qyl Py)])  (3.12)
,U: JAXEB(PX,E),•,y =Qy

We now argue that in above expression, both infimums taken over the distribution

,p are achieved for the same distribution. This requires two checks, which we outline

here. Note that using continuity arguments, we can think of e as being 0, another

way of avoiding to have the e neighborhood is to work with fixed composition instead

of iid random codes. Let B = {J s.t. 1ax = Px, Iy = Qy, L(p) < 7}. The optimal

y is such that [1J B and MP 0 BC, hence, we can replace B and Bc by aB in both

infimums. We now deal with two I-projections onto the intersections of the same

linear families, the two marginal constraints and OB, a linear family of direction L

and shift y. Note that ,pJ and pP both belong to the same exponential family or-



thogonal to the linear family of direction log 4, which is precisely the direction of L,

since L(p) = E, log 4. Therefore, from corollary 1, the two I-projections appearing

in equation (3.12) must be the same distribution.

Note: the last step uses the specific structure of the ML-decoder, i.e., the fact that

F(p) = E, log is a linear family precisely orthogonal to the exponential family

connecting pJ to pP. Any decoder that does not necessarily have this strong orthog-

onality property, but that still has the same I-projections for both infimums, would

achieve the same exponent of the ML-decoder, which is given by

exp (-n [ inf D(p p ) + R - D(pJ pP)+ .

3.2.1 Exponent at Capacity

In this section, we derive an upper bound to the averaged error probability which is

in general loser than the one of previous section, except for rates close to capacity.

As opposed to (3.8), we will use the following upper bound on the error probability:

we first pick a y E R and notice that

P{Umpli{Li < Lm}}

< I {{L 1 < Y} U {Umpi {Lm > 7}}}

and this is true for any y E R. This upper bound is equivalent to the expression of

the probability of error when using the suboptimal decoding rule that declares the

code word whose likelihood function is more than a threshold given by y, and if there

are more than one such code word, declares an error. Using the union bound, we get

P{Umly {Li < Lm}}

_< P{L1 < 7} + min(MPf{L 2 _ -,}, 1)



and from Sanov's theorem, this gives the following exponent.

sup inf
'yER •"•x=PX,,y=Py

(3.13)D(/p| j ) A inf IR - D(p pyP)y + .
I: A:'U=PXUY=Py

L() )>,y

We now show that this upper bound becomes tight when considering R close to

D(I-ti I p P) = I(Px, W): we know that inf: x=Px,.= P,
Lthis is a consequence of the theorem 5.30. When R =P)

this is a consequence of the theorem 5.30. When R =

D(lljjpP) is achieved at iv',

D(ljllpP) - e, we can take

y = R and the exponent given in (3.13) becomes

o+(1) A [D(j(p ILp ) - o+(1)],

where o+(1) > 0 and lim,\o o+(1) = 0.

3.2.2 Global Geometry of Decoders at Capacity

We now consider decoders that maximize score functions that are not necessarily the

log likelihood.

Definition 14. Let

F: M,(Xx y) -+R,

a decoder is said to maximize the score function F if it is of the form

XF(Y) = arg max F(Pxm,y),
xm, m=l,...,M

and if the maximizer is not unique, an error is declared.

We keep the convention that xl is sent and y is received. For an iid code book of

distribution Px, we define the random variables

Fm = F(Pxm,y),



the error probability (averaged over the random code book) is then given by

P<{Um,{Fi • Fm}}.

When F(Pxm,y) = EPxm., log , we saw two ways to get upper bounds on the error

probability (see previous section) and in this section we are interested in the highest

achievable rates only, and hence the second technique is sufficient.

Proposition 2. The exponent of the error probability averaged over an iid code book

of distribution Px and with decoder maximizing the score function F is lower bounded

by

sup inf D(ap pJ) A inf IR - D(p•|•P ) .
'yE'R '"1x=Px ,`y=Py W•:•X=PX ,y Py

F(A)<y F(pl)>ý-

(3.14)

Therefore the capacity is lower bounded by

(3.15)sup inf D(p P).
PrxM1(Px) 

: 
X=PX4y =Py
F(A)>F(pJ)

Proof. The first part follows from the fact that (3.13) did not depend on the fact that

L was the ML-decoder. For a fixed Pr, if

inf
A: ttX=PX,(G)y=Py

D(p LIP),

there exists e > 0, such that by choosing y = L(pj ) - e, the second term in (3.14)

will be strictly positive, and by the definition of -y, the first term too. O

Definition 15. We define the mismatched mutual information of an input Px, a

channel W, and decoding metric F, by

sup inf
P'EM1 (Px) w A

:  
Y~~L Cy=PY

Ep F>E j F

From proposition 2, previous expression represents an achievable rate, obtained

(3.16)D(y I p').



from a random code book of distribution Px (constant composition or iid), when the

true channel is W and the decoder maximizes the metric F. It has been shown that

this bound is tight (for the achievable rates), when restricted to code books drawn

from a random ensemble but otherwise it can be loose, cf. [11],[23]. It is always

tight, it determines the capacity, for binary inputs, cf. [4]. Figure 3-1 represents this

expression. The region delimitated by the vertical plane represents the constraint

region appearing in the I-projection for the capacity of a maximum likelihood decoder

tuned to the channel. As illustrated, the I-projection of pP onto this region is pi the

distance is D(l jllpP) = I(pli). This arises since both distributions are contained in

the exponential family of direction L = log . If the maximum likelihood decoder

is mismatched to the channel of communication, the constraint set appearing in the

I-projection is not perpendicular to the exponential family passing though pi and p

and the projection's distance is less than D(pUl I IP), as illustrated.

This proposition gives the following sufficient condition to ensure that a decoder

achieves same highest rate as the optimal ML-decoder.

Proposition 3. If a decoder maximizes a score function F and

sup inf D(ipll p ) = D(/ u3dpJP), (3.17)
PxrEM(Px ) A: A-=PX 'AY=Py

the decoder is optimal.

Equivalently, we can rewrite previous propositions as follows. Let BD(IAp , D(1ij IjP))

be the set of all distributions on X x Y for which D(Mp IjP) < D(pij )P)), we then have

the following result.

Proposition 4. Any decoder maximizing a score function F which satisfies

{F(1 u) Ž F(A&)} C BD(pP, D( p iAP))c

is optimal.

Example: F(p) = I(p) = D(•AP||P).

This result is illustrated in figure 3-2. As opposed to the case of a mismatched
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Figure 3-1: Mismatched mutual information
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Figure 3-2: Optimal decoders at capacity

decoder illustrated in figure 3-1, the three I-projecton regions illustrated in this picture

represents decoder that are achieving capacity, since the I-projection of AP onto each

regions is at ji. This is always the case if the regions are excluding the sphere of

radius D(pJ1_p P) = I(ld) centered at /p. Indeed, the maximum mutual information

region is equal to the complement of this sphere.



Chapter 4

Very Noisy Transformation and

Local Channel Geometry

In this section, we use the ideas developed in section 2.2 to analyze Discrete Mem-

oryless Channels. We saw in the previous chapter that the performance of the con-

sidered communication schemes are evaluated through the optimization (alternated

minimizations and maximizations) of divergence expressions under some constrained

(often linearly constrained) probability distributions. In this chapter, we consider

very noisy channels, and as we will see, this setting will bring AJ and pP close to each

other no matter what the input distribution is and will allow us to use the local results

presented in section 2.2. The intuitive geometry described for the local setting will

hence come into the picture. This approach will be particularly useful to design good

decoders (cf. chapter 5) since most decoders, e.g. ML, are "functions of the channel".

In chapter 6 we will perform a local analysis of input distributions that in turn will be

useful to design encoders. In both cases, the same technical ideas of section 2.2 will

be applied. In section 4.1.1,the different information theoretic expressions encoun-

tered till now, such as mutual information and mismatched mutual information, are

analyzed in the very noisy setting. We also mention how the very noisy channels act

on other kinds of channels such as compound and broadcast channels. The problem

of universal decoding over a compound channel will then be investigated in details in

chapter 5, where the very noisy channels will help us getting to general results.



4.1 Very Noisy Channels

Roughly speaking, we want to consider channels which are weakly depending on the

input that is sent. If the transition probabilities of observing any output does not

depend on the input, i.e., the transition probability matrix has constant columns, we

have a "pure noise" channel. So a very noisy channel should be somehow close to

such a pure noise channel. Although we will use the very noisy results to inspire the

proof of global results, we will always give formal proofs of the global results, when

they were achieved.

Definition 16. Terminology

We say that W, is a very noisy channel with limiting distribution Py and direction L

if

W,(ylx) = Py(y)(1 + eL(x,y)), s < 1

where Py E M, (Y) and L : X x y -- R satisfies for any x E X

E L(x, y)Py(y) = 0. (4.1)
yEY

For a given direction and limiting distribution, we refer to the VN transformation of

W by the mapping W --• WE(Py, L). For a given limiting distribution and several

directions, the VN transformation of an expression containing several channels is

obtained by taking the VN transformation of each channel for the common limiting

distribution 1 and their respective directions. If E(W1,..., Wk) denotes an expression

depending on k channels, we define its very noisy limit by

2
lim E- E(W,,E(Py, L), ... , Wk,e(Py, L))

'in the present work, we restricted ourself to consider common limiting distributions, however
different limiting distributions can be considered too



Figure 4-1: Very noisy channels and neighborhoods

VN
and we use the notation -4 to denote

E(WI,e(Py, L),..., W'k,e(Py, L)) Y* lim2 E(W1,e(Py, L),..., Wk,e(Py, L)).
e\O E2

In informal discussions, we will often talk about VN transformations without explic-

itly mentioning the directions. If the expression considered through the VN trans-

formation has a name assigned to it, e.g. mutual information or mismatched mutual

information, the very noisy limit is then named by preceding the original name with

"very noisy", such as very noisy mutual information and very noisy mismatched mu-

tual information. Finally the initials VN refer to "very noisy".

In terms of stochastic matrices, Py leads to a probability transition matrix that

does not depend on the value of x, i.e., a stochastic matrix with constant columns

and We is a perturbation of this specific matrix in a specific direction. Hence, very

noisy channels are living in the neighborhoods of stochastic matrices with constant

columns.

If the input distribution is Px, the induced output distribution through such a very

noisy channel at any e is given by Py(y)(1 + eL(y)), where L(y) = Ex L(x, y)Px (x).



Therefore, the joint distribution induced by the input distribution Px and the channel

We is

i'(x, y) = Px (x)We(yI x) = Px (x)Py(y)(1 + eL(x, y)) (4.2)

and the product measure between the input and output marginals is

t'(x, y) = Px(x)W (ylz) = Px(x)Py(y)(1 + eL(y)). (4.3)

As expected, both distributions are local perturbation of the distribution Px x Py.

Hence, as illustrated in figure ??, for a given input distribution, the very noisy chan-

nels set the induced joint and product distributions in neighborhoods of the following

subset of M1 (X x y) containing the product measures

p E MI(X x Y)Ip = Px x Py, Px E MI(X), Py E Mi(Y)},

which is in matrix notations parametrized by p = diag(Px)l diag(Pz). With this

remark, we are ready to use our results developed in section 2.2.

4.1.1 Very Noisy Information Theoretic Expressions

Very noisy Mutual Information

Let us start by analyzing how the mutual information of such channels behave. From

(2.6) using the distribution (4.2) and (4.3), we get the following fact.

Fact: For any Px E MI(X), Py E M (Y) and L satisfying (4.1), we have

lim 1 I(Px, PE) = IVN(PX, Py, L),
eO\ E2



where

IVN(PX, Py, L)

= E (L (a, b) - L(c, b)Px (c))2P(a)Py(b),
a,b c

which is strictly positive as long as L is not independent of the X-component. We

thus have

I(Px, Pe) = IvN(Px, Py, L)E2 + o(E2).

Previous expansions have been known for long (cf. [20],[16] and references therein).

We now introduce different ways to express the very noisy mutual information. We

give three expressions for IVN, which will all tell us something different. We first need

some notation.

Notations: for L : Xx y -- R, we define L : y -+ •L(x, y)Px(x), L = L - L,

Lx : y --+ L(x, y) and Ly : x -+ L(x, y).

Fact:

IVN(PX, Py, L) = -| L p, (4.4)

- 2 EPx(x) Lx - L 2p (4.5)

* The first expression relates the VN mutual information to the squared norm

(under the product measure Px x Py) of the centered direction L, which belongs

to Mo(Px x Py). Hence the VN mutual information is the energy of an element

in

L2(Mo(Px, Py), Px x Py)

where

Mo(Px, Py) =

{v E RXXY I Ev(x, y)Px(x) = v(x, y)Py(y) = 0},
x y



and the inner product is

-7)= (.) -pXXpy.

The simple fact of recognizing this mathematical structure and expressing very

noisy objects by means of this inner product, will greatly simplify the VN limit

expressions and introduce a geometrical framework for our problems. The next

section will illustrate this further.

* The second expression gives us some intuition on what is happening when we

are optimizing the VN mutual information on the input distributions to get

the capacity. From the KT conditions, the optimal input distribution should

produce a L* = E_ LxP,(x) such that when Pk(x) f 0, the distances from

L* to the Li's are balanced, and otherwise the distances are smaller. In other

words, L* is the center of the smallest sphere containing all the Lx's, and its

radius is the capacity, where we now work with the geometry of £2 (M 0(Py), Py))

(see figure 4-2). This directly gives us an equivalent way of expressing the very

noisy capacity (VNCa):

1
CVN= minmax ILx - L py. (4.6)

2 Px x

Note that these geometrical results have an equivalent formulation in the gen-

eral setting with divergences. Of course, since the divergence is not symmetric, it

now matters how the arguments are evaluated. In particular, the KT-conditions

for the input distribution maximizing the mutual information are:

D(Pyix=xIIlP) = Y, when Pk(x) / 0 (4.7)

< 7, otherwise. (4.8)

And we also have:

C = min max D(PYlx= x Py).
Py xEX

With the next results we will see that the previous VN structure is not specific to



Figure 4-2: Optimal input distribution
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just the mutual information of VN channels, and in fact, a more general structure is

present for several information theoretic VN quantities.

Mismatched Mutual Information

We saw in section 2.2 that locally, the I-projection turns into a norm-space projection.

In this section, we are interested in the specific I-projection given by the mismatched

mutual information in (3.15).

Proposition 5. Let Wo,, = Py(1 + eLo) be the VN transformation of Wo and let us

decode with the metric d = log Wl,,, where W1,, = Py(1 + eLi). Then, taking then the

VN transformation of the mismatched mutual information, we get the following very

noisy limit

1
lim -- inf D(Il IA,10)

"-+O C2 
A:,IX=PxLy=(/lO)y,e

EA log W 1 ,e ?-ELO, e log W1,e

1 2 __1 Lo, LI)2
= - inf IV (L

2 v:_=-= 2 L ||2
(V,L1)ý(Lo, L11

Proof. For each e, the minimizer C, can be expressed as

ME = PxPy(1 + eL)

with L E Mo(Py), i.e.,

L = 0, (4.9)

which ensures that the first constraint, px = Px, is satisfied. Moreover,

My,E = Py(1 + eL),

hence, the second constraint becomes

L = Lo0 . (4.10)



Finally, the third constraint is given by

E Px(a)Py(b)(1 + eL(a, b))[log Py + log(1 + EL1 (x, y))]
aEX,bEy

> E Px(a)Py(b)(l + eLo(a, b))[log Py + log(1 + eLi(x, y))].
aEX,bEY

Using L = Lo, the terms with log Py cancel each other and by taking 6 small enough,

we have

log(1 + ELo(x, y))

log(1 + ELi(x, y))

F-L (x y) -E 2 Lo(x, Y)2

= ELI(X,y)- 2 Ll (, ) 2

2

+ O( 2)

+ 0(62)

so that the third constraint is

(L, L1) > (Lo, LI) + o(1), (4.11)

where we used the fact that L0 = L1 = 0. Therefore, from (4.9), (4.10) and (4.11),

the overall limiting optimization is given by

1
lim - inf
E-*0 62 t'

:
Ax=Px=,.y=(/ O) Y E

Ep log W 1,e>Epole log W 1,

1
D(p p',,) = -20 2

Setting V = L - Lo, the third constraint becomes

(V, L 1) > (Lo, L 1) - (Lo, L1),

but

(Lo, L 1) - (Lo, L 1) = (Lo, L 1)

and, since V = V = 0,

(V, L1 ) = (V, L 1).

This proves the first equality of the proposition and the second one is trivial, since

inf L - Lo 2
L: L=O,L=Lo

(L,L 1 )Ž(Lo,L1 )

o I



Figure 4-3: Very noisy mismatched mutual information

we now have V and L 1 in the same space; the minimization leads to the projection

given by
(Lo, L1) 2

Illll 2

This result says that the mismatched mutual information obtained when decoding

with the mismatched metric log W1,E, whereas the true channel is Wo,,, is approxi-

mately the projection (squared norm) of the true channel direction Lo onto the mis-

matched direction L 1. This result gives an intuitive picture of the mismatched mutual

information (cf. figure 4-3). As expected, if the decoder is matched, i.e., L0 = L1,

the projection squared norm is ILL0112, which is the very noisy mutual information of

L o , and the more orthogonal L1 is to L 0, the worse the mismatched decoding rule is.

By choosing N = 1 and W1 = Wo, we recover the VN mutual information.

Corollary 2.

1 1
lim -. I(Px, P) = E ILoll2. (4.12)
e\06 2



Channels Concatenation

Let P, = PE(Py, L) be a very noisy channel with limiting distribution Py and direction

L.

Proposition 6.

* If QE = PEM, then Q, = Q,(Pz,K), where Pz(z) = ECM(zjy)Py(y) and

K(zly) = Pz(z)- ' E, Py(y)M(zly)L(ylzx).

* If R, = NP,, then RE = R,(Py, NL).

This result is useful when considering multi-user information theory problems,

such as Broadcast channels. If one considers the following situation:

NU -+ X -+ Y

where X -+ Y is a VN channel, and U -- X is a pre-encoding channel and U is

an auxiliary random variable. Note that the distributions of the pre-encoder must

satisfy

PuN = Px.

The overall channel U -- Y is then VN as well, and from previous proposition, its

limiting distribution is Py and the directions is NL.

4.1.2 Inner Product Space Structure

In this section, we discuss in an informal way the result presented in previous sections.

Roughly speaking, what we observed in previous sections can be summarized with

the following schematic mappings. When dealing with a fixed input distribution, the

different information theoretic quantities investigated earlier, which are divergence

optimizations over the set of probability distributions on X x y, become, in the VN

limit, quantities defined in the inner product space mentioned below and illustrated



in figure 4-1

(M,(X x y), D(II')) V) L2 (Mo(Px X Py), , ')Px xPy). (4.13)

We saw rigorous statement of such situation in the specific cases of section 4.1.1. We

also saw that when the input optimization is carried out, such as when optimizing

the input distribution for the mutual information to get the capacity, the VN limit

mapped the problem into a geometrical problem defined in the space

L2(Mo(P) ) (.) ,)p;),

where P; denotes the induced optimal output distribution. For example, the capacity

achieving input distribution is found by looking for the smallest circle containing all

the L,'s (cf. (4.6)).

It is of course possible to construct expressions whose very noisy limit does not

live in the space given in (4.13). However, in the problems of section 5.1, we will see

that sitting in this inner product space is actually of further importance, namely, in

the problem considered, it is only when the VN limit of the quantities of interest ends

up in the space described by 4.13, that the solution turns out to be optimal.

Section 4.2 discusses how the VN transformation can be useful.

4.2 Use of the Very Noisy Transformation

It is common, in Information theory, to analyze problems by considering their limiting

regime with respect to some specific parameter (example: high/low signal to noise

ratio, blocklength). In that regards, the VN transformation can be seen as a limiting

analysis, which is tight when the channel is very noisy. Shannon's results for channel

coding say that the error probability can be made as small as desired by taking the

block length large enough, and the rate of decay is shown to be exponential with

n. In a similar fashion, we saw that the very noisy capacity is tight in a quadratic

scale of the parameter e. In both cases, the discussion of determining how large



the block length should be, or how noisy the channel should be in order to trust our

estimates, is of a different kind and not of interest here. However, these two situations

are also different. If no constraint is imposed, the block length is a parameter that

can be increased as much as desired by the transmitter, whereas the channel noise

structure is given by nature. But there is another point of view on how to use the

very noisy analysis. We are not interested in the very noisy regime per se: what we

want to acquire through it, is a better intuition. We can see it as simplification of a

considered problem, where a nice geometrical insight can be acquired, and that can

lead to suggestions for the solution structure of the general problem. This is in fact

the main attribute used in this work and chapter 5 will show how powerful the VN

transformation is and can lead to the solution of hard problems.

This discussion also raises the following points:

* Are there cases of channels which are given to be very noisy (where the very

noisy transformation is not used as a tool)? And if the capacity of a channel is

zero (e.g. the channel is too noisy), can we still provide information at a rate

other than the exponential rate? Section 4.3 investigates this point.

* Is there also a structure present in the other extreme case, i.e., when the channel

is very clear? How can we trust what the VN structure tells us? Can we use

our very noisy geometry to understand better or answer questions dealing with

non-very noisy channels? Clearly, it can help to find counter-examples, i.e., if

a statement is denied in the VN limit, it will not hold in the general case. But

if a statement holds in the VN limit, can we translate it in a true statement for

the general setting? Sections 4.2.2 and 4.2.1 investigate these points.

4.2.1 Very Noisy Inverse Transformation: Lifting

The VN transformation has the advantage of simplifying the geometry, by setting

the expressions in a inner product space, where we can use our intuition to better

understand or possibly solve the problems. But it is not clear how much of the original

problem's essence has been lost through this reduction. Do we have any guarantee



that a claim proved for very noisy limits must hold in general? No, in fact, one

can find examples desproving this. However, in the problem we have approached in

this work (and other ones not presented here), we will see how statements that were

satisfied in the VN limit found corresponding statements that are true in the global

setting. So could we know when we can trust the VN limit? We do not have an answer

to that question. Nevertheless, we will see in chapter 5 that for a statement holding

in the VN limit, there is a good way to guess what statement should be claimed in the

general setting, and roughly speaking statements that can be expressed as inequalities

between norms expressions seem to successfully lift to general statements. To do this,

one has to figure out what is the expression (defined in (Mi1 (X x y), D(.l .))) that has

a VN limit corresponding to the quantity of interest. We call this procedure "lifting".

We have seen in previous sections that the divergence of two arguments close to each

other maps to a norm in the VN limit, more precisely

D(Pz(1 + EL1) IPz(1 + eL 2)) IL 1 - L2 P (4.14)

hence, each statement in the VN limit that can be expressed in terms of norms can be

lifted to a general statement dealing with divergences. Each steps required to prove

the statement can actually be lifted, but that any lifted proof's step holds is not

guaranteed, in particular, the order in which arguments are place for the divergences

will be crucial. Let us consider the following examples.

Let W1 , W2 be two channels and Px an input distribution. We define p and

pP the joint and product induced distributions respectively. We consider the VN

transformations of W1 and W2 around Py, in the respective directions L1 and L2.

Using (4.14), we have

D(plI P2) VN L 1 - L 2 1 2

DN I L - L2112



hence

D(yzbLiI 2) - D(iI'1 11.) V--) IlL1 - L2112 - IIL1 - L2112 = IIL1 - L2112

where last equality simply uses the projection principle, i.e., that the projection of

L onto centered directions L = L - L is orthogonal to the projection's height L.

Therefore IlL1 - L21j2 > IlL' - L2112 . Having this in mind, one is tempted to claim:

D(p,1 1P2) > D(A'11i|P), (4.15)

which turns out to be true by the log-sum inequality. Now, with the projection

picture in mind, the fact that last inequality holds is not surprising. But the point is

that initially, without having this geometrical picture in mind, it may not be obvious,

when trying to prove a claim, to see the divergence expressions in a geometric way

and know that (4.15) holds. In that respect, the lifting of VN proofs can guide us in

writing down the steps to be proved in the general setting. We conclude this section

with the following comment about the local to global lifting. Most of the inequalities

in information theory are using the concavity of the logarithm; when taking the VN

limit, we are roughly replacing the logarithm expressions with quadratic expressions.

But the function x F-+ -x 2 is also concave, hence, in the respect of convex inequalities,

the local and global problems share a common behavior (as illustrated with previous

example).

4.2.2 Very Clear Channels

In previous sections, we analyzed the behavior of channels tending to a pure noise

channel. It is then tempting to look at the other extreme case, i.e., when the family

of channels is tending to a noiseless channel, where W is called a noiseless channel if

each row of W contains a 1 and not all the rows are the same. In particular, assuming



IXI = [yj = A, let us define

W = I + (W- I), e<1,

where I is the identity channel and W is an arbitrary channel. Note that, as opposed

to the very noisy case when the limiting distribution has full support, we cannot

consider all directions V for which

ZV(x,y) = O, Vx X,
yCY

since the limiting channel is I, we need to ensure that V(i, j) Ž> 0 whenever i $ j.

We will call such channels very clear channels. Surprisingly enough, we could not

find references in the literature regarding such kinds of channels.

For an input distribution Px E M, (X), the joint distribution induced by such

channels is given by

ItL = diag(Px) + e(Px o W - diag(Px)),

hence

(A)y = Px + e(Py - Px)

and

PIE = P x (Px + e(Py - Px)).

Proposition 7.

1(P, W) = H(P) + trV 1
I(Px, W,) = H(Px) + trVe log - + o(E log -),

6 6

where

trV = tr(Px 0 W) - 1.

The optimal input distribution is then clearly the uniform distribution and the



capacity scales as
1 1

C,= log A + trVE log- + o(Elog ).

The main feature attributed to very noisy channels, when very noisy channels were

introduced (cf. [16] and references therein), was the fact that "their error exponents

are known", i.e., the random coding and sphere packing exponents are tight in the

limit. Therefore, before aiming to analyze the geometrical behavior of very clear

channels, we analyze their error exponents. Recall that the random coding and sphere

packing exponents for a rate R, channel W and input distribution Px are given by

Er(R, Px, W) = inf D(p|lPx o W)+ II(p) - R|+,
fI: Ax=Px

Es,(R, Px, W) = inf D(p|IPx o W).
I: =X =PX

I(u)<R

Let us consider a noiseless channel, i.e., W = I and Px o W = diag(Px). Then, by

taking p = diag(Px) we find an upper bound on E,(R, Px, I) given by |H(Px) -

R|+. However, for the sphere packing bound, taking p diagonal is excluded by the

constraint, and the error exponent is infinite below H(Px). This implies that the

tightness of these two bounds in the very noisy limit is not going to occur in the very

clear limit. This may seem contradictory with the fact that the random coding and

sphere packing exponents are equal above the cut-off rate, but it simply means that in

the noiseless case, the cut off rate is at the capacity. For very clear channel, we claim

that the cut off rate and the capacity are tending to H(Px). It is then interesting

to analyze the structure of the error exponent for rates scaling like capacity. If one

considers fixed rates below capacity, the sphere packing error exponent blows up as

C(R) log 1/e,

where C depends on V. For example, if V = 1/(A - 1)IC - I, we have

C = f-'(R),



where

f: E [0, A i f(s) = D(B(s)|IB(A A

and B(s) is the Bernoulli probability measure with IP{0} = s. If

1
R, = CE + R log-

with R < 0. We have the following result.

Proposition 8.

lim Esp(Re< Px W) < R - trV - Rlog R
e-0 E6 trV'

with equality for certain channels, and in fact we conjecture that this is the exponent

for all channels.

We proved that equality holds for symmetric channels W. It would also be inter-

esting to check where the cut-off rate is in term of R.

A similar result holds for universal source coding:

Proposition 9. Let X, be an iid very clear source, i.e. Q, = i + E(Q -6~) for some i

and Q with 1- Qi < r (this implies that h(Q,) 5 relog 1/e). We can then universally

encode this source at the rate R, such that if i = 1 and Q = P, the error exponent is

given by
r

E(re log 1/e, X,)/E -r log - r + 1 - P1,

with 1- P1 < r.

Remark: Note that for both results found in the very clear setting, i.e., proposi-

tions 8 and 9, the exponent structure is of the form 2

de(R,T) - dd(R, T),

where de(R, T) = R - T, dd(R, T) = R log E, T = tr(Px o W) - 1 in the channel case

2with different signs whether it is the channel or source case



and T = 1 - P1 in the source case.

For other quantities investigated in the very noisy section, the problems becomes

much more combinatorial for very clear channels. For example, even for a perfect

channel, the mismatched mutual information is not easy to characterize. We have

raised the point of analyzing very clear channels to examine how channels behave

in the "other extreme" case of very noisy channels. One one hand it would be very

interesting to understand both extreme cases and possibly have an homotopic view

of the problem, on the other hand, any global claim eventually needs a rigorous proof

and the very noisy setting appeared to preserved most of the global problem's essence

in many situations.

4.3 Sub-Exponential Scaling

The main results of information theory makes heavy uses of the fact that for large

block length n, the statistics of a codeword and its output through a channel will be

enough distinguishable enough from the statistics of an independent codewords which

has not been sent and the received output. By choosing appropriate code books and

decoding rules, the receiver would guess a wrong codeword with a probability decaying

to zero exponentially fast with n. The question is how fast can the number of messages

M grow, in order to keep this scenario permissible, and showing it can grow at most

exponentially, the rate R = lim-,,, 19 is the quantity to maximize, leading to then

capacity C. For certain channels, or for certain constraints on the input, the capacity

is zero. No matter how large n is, the error probability cannot be made as small as

desired; actually this statement is not quite true, although C can be zero, it does not

mean that the error probability cannot be made as small as desired, it means it does

not decay exponentially fast to zero. As we will see in what follows, even for zero

capacity channels, one can still allow a number of messages growing to infinity with

an error probability decaying to zero, but the notion of rate will have to be adapted

to the channel.



4.3.1 Degrading Channels

We investigate discrete channels that are "memoryless" but not homogeneous, hence

strictly speaking they are not memoryless according to the definition of memoryless

given in chapter 3. We wish to analyze channels that are penalized with the increase

of the block length. In this scenario, what was our main tour de force to fight the

randomness for discrete memoryless channels, i.e., increasing block length, must be

reexamined carefully.

We introduce a channel model that gets noisier with the block length (i.e., the e

parameter of the VN transformation is a function of the block length n that vanishes

when n grows). Of course, because of this dependence e = e(n), one has to be careful

on how the limits are taken, and this model requires more than just the VN analysis,

namely it requires the use of moderate deviations introduced in 2.2.2. The channel

model is defined as follows: the probability of receiving the sequence y when the

sequence x has been sent, with x e X' and y E yn, is given by

W"(ylx) = fJW(n)(ylx,)
i=l

and

W(n)(y,lz, ) -+ Py(y,).

The speed at which the convergence happens and the direction are relevant to the

problem, we assume that

W (n)(ylId ) = Py(yi)(1 + n-'L(xi, yi)). (4.16)

For such block length penalty channels, with a # 0, the usual notion of capacity is

zero. No matter how you construct your code book, if one considers a number of code

words growing like enR, then for any R > 0, the error probability cannot be made

as small as desired with n, but this might be corrected if the number of codewords

increases sub-exponentially.



Proposition 10. For a channel defined as in (4.16), with 0 < a < 1/2, the maximal

speed at which code books can grow in order to have a probability of error decaying to

zero with the block length n is
1l-2aý

and the coefficient R must satisfy

R < C = max L
PxEMi(X) PxPy

where L(a, b) = L(a, b) - ,,, L(c, b)Px(c).

Proof. The probability of receiving an output yi E Y when xi E X is sent is

W(n)(yiixi) = Py(yi)(1 + n-'L(xi, yi)). (4.17)

We now generate a iid code book {Xm},M= of rate R, length n and distribution

Px E MI (X), Since we deal with equiprobable messages, let us assume that X 1 is

sent. The joint distribution of X 1 and the received output sequence Y has then

independent components and each component is distributed according to

/i(a, b) = Px(a)Py(b)(1 + n-aL(a, b)),

which induces an output marginal distribution given by

(pt)y(b) = Py(b)(1 + n-aL(b)),

hence a product distribution is

p(a, b) = Px(a)Py(b)(1 + n-"L(b)).

The decoding rule we will use, is the equivalent of the decoding rule described in

section 3.2.2. If there exists a unique element i in the code book {zm}" 1 such that

the joint empirical distribution of X and the received output y is within the norm ball



B11.II(p1 (, 6n-), where the norm I|11 does not really matter, and say, is the L2-norm.

If there is more than one such element declare an error. We could have chosen to use

the maximum likelihood decoding with a threshold test as described in section 3.2.1,

however, the decoding rule chosen here is somehow easily pictured and since we only

care about achievable rates and not exponent, it is sufficiently good. We can then

upper bound the error probability by

IXP{X Xi} = P{Px ,Y 0 B(lp, bn-) U Um4lPxm,Y E B(It , 6n-)}

• P{Px1,y O B(,J, 6n-O)} + 1 A MP{Px2,y E B(,j, 6n-0)}

But

P{Pxl,y ý B(J , Sn- )} = P{n (Px ,y - pj) B(0, )},

which, from corollary 1, is decaying exponentially fast as long as S > 0. Moreover,

Pj{Px2,Y E B(•JX, 6n-")} = PinP(Px2,Yj 1Ap) E B(n,( 1 4} -

and

-i(a, b) - AP(a, b) = n-rPx(a)Py(b)(L(a, b) - L(b)).

Therfore,

B(nl(p -P•),6) = B(PxPyL,6)

and again, from corollary 1

IP{Px2,y E B((pi, 5n- )} P{(Px2 - ) E B(PxPyL, 6)}
- infZ,) aE ,by p (b)- l .(4.20)

(4.18)

(4.19)



Therefore, if 1 - 20 < 1 and

R<-2 Pxpy

we can choose 6 > 0 such that the exponent in (4.20) is strictly positive. O

This proof also convinces us that if /P > 1/2, any code book having a number of

messages growing to infinity with n, at any scale, cannot have a probability of error

decaying to zero with n.

4.3.2 Fisher Information as Capacity

Previous result considers channels that become noisier with the block length, and

it shows that as long as the speed of convergence to the pure noise channel is slow

enough, we can still ensure reliable communication with a new definition of rate and

capacity. The capacity took the form that we expected from the very noisy capac-

ity expression of chapter 4. In this section we investigate continuous time channels,

although we have not dealt with such channels till now, we skip for now the introduc-

tion to continuous alphabet channels and directly present the result. An introduction

to continuous alphabet channel is given in chapter 6.

We consider an additive noise channel:

Yi = ui + Zi, i = l, . . ,n

where n is the block length and Zi's are i.i.d. random variables with a differentiable

density (not depending on the ui's), with the following type of constraint on the

inputs us's:
n

n - C a Zu 2 P,

i=1

for some fixed values 0 < a < 1 and P > 0. This means that the available energy is

not scaling with the channel uses (the higher the block length, the lower the power),

with the extreme case of having finite energy if a = 0.

By defining xi = n 2 ui, this problem is then equivalent to the following one:



Channel:

Y = n-xi + Zi, i=l,...,n

constraint:
n

i=1

where in this example, 0 < p 1/2, as we consider a total power constraint, but

with an initial constraint of the form n-~ EC 1 ujuWP < P, the range of the parameter

3 would then be 0 < P < 1/p.

A similar situation could arise in a communication network where the interference

of other users is treated as noise. Let us assume that for specific transmitter and

receiver in the network, the channel of use is modeled as

Y = n-) Xi + Zi + E X i = l, ... ,n
kEN

where Xi, are iid Gaussian (standard) random variables, representing the interference

of a number N of neighboring users. The inputs are constrained with an average

power constraint. Depending on how the number of users in the network grows with

respect to the available network volume, the number of neighbors N can be increasing

with the number of users. The capacity per users may then go to zero, i.e., a number

of messages increasing exponentially fast with the block length cannot be reliably

communicated. However, if the number of neighbors grows slow enough with respect

to the block length, we may still be able to communicate reliably some information at

another scale. Considering a scaling between the number of neighbors and the block

length leads to a channel similar as the one mentioned earlier.

Proposition 11. Let a channel be such that for a block length n,

Yi = n-Oxi + Zi, i = l,..., n

where the Zi's are i.i.d. random variables with variance a2 and differentiable density,



and the xi 's are constrained by

i=n

" If 3 = 0, we are in the usual setting and to ensure reliable communication, the

number of messages can grow at most exponentially fast, as long as the rate R

satisfies

R<C= sup I(X, Y).
X:EX 2 <P

* If 0 < p < 1/2, the shannon capacity is zero. Nevertheless, if the number of

messages M(n) increases sub-exponentially with n, at most like M(n) = e"' - 2•1 ,

we can still communicate reliably, as long as the coefficient fR satisfies

1 P
S< ( = sup -Var(X)J(Z) = -PJ(Z),

X:EX2<P 2  2

where J(Z) is the fisher information of the noise, i.e., J(Z) = fR pz(x))dx

* If 3 2 1/2, then for a number of messages increasing with n , i.e., M(n) - 00o,

no reliable communication is possible.

Proof. We now have X = R and y = R. Let PYIx=x be the probability density of an

output of length n when the input x E Rn is sent through the channel, i.e.,

n

pyIx=x(ylx) = fp (n)(yiIX),
i=1

where

p(n)(yilzx) = pz(yi - n-xi)

But

Pz(Yi - n-Oxi) = Pz(yi) - n- xipZ(yi) + o(n-xx),

hence, let us work for now with the channel transition density given by

n

qyvx=x(ylx) = Hq(n)(yi Xi),
i=1
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where

q(n)(yilxi) = pz(yi) - n-OxipZ(Yi)

and we will deal with the approximation afterwards.

We now generate a random code book as follows: we pick a probability density

Px on R, and we draw independently {Xm}J=, with

Xm(1),... ,Xm(n) iid PX,

this is the natural extension of what we defined to be a iid random code book of

length n and distribution Px in the discrete setting. However, we also need to ensure

that the code book we generated satisfies the average power inequality. We require

then px to have a bounded variance: Var(px) < P - E, for some e > 0, where

Var(px) = fR(a - m(px)) 2px(a)da and m(px) = fRapx(a)da. We can then proceed

as usual using Sanov's theorem to show that code books that are not satisfying the

power constraint have probabilities decaying exponentially fast and use a continuity

argument to get rid of e.

Since we deal with equiprobable messages, let us assume that X 1 is sent. The

joint distribution of X 1 and the received output sequence Y then has independent

components and each component is distributed according to

pnJ(a, b) = q(n)(bla)px(a) = px(a)pz(b) - n- bpx(a)pz'(b),

which induces an output marginal distribution given by

(lPn)y(b) = pz(b) - n-lm(px)pz(b),

hence a product distribution

p, (a, b) = px(a)(Mi)y(b) = px(a)pz(b) - n-m(px)px(a)pz(b).



Note that

/ItJ(a, b) - pl (a, b) = -n-1(b - m(px))px(a)pz(b). (4.21)

For two vectors x E Rn and y E Rn , we define the joint empirical distribution by

Px,y = - ,x(i),y(i),
i=1

where 6 is the Dirac delta distribution. The decoding rule we will use, is the equivalent

of the decoding rule described in section 3.2.2. If there exists a unique element ý in

the code book {Xm} =1 such that the joint empirical distribution Pj,y of 2 and the

received output y, is within the variational norm ball B(pJ, 6n-1), declare 2, otherwise

declare an error.

Pf2 {X X1} = P{pxu,,y B(4,, Jn-l) U Um+ lPm,Y E B(1i, ,n -)}
• JP{PXi,y f B(14O, n-')} + 1 A MIP{px 2,y B(4 )

P{px1,Y ý B(p , 6n-1)} = P{n•(px 1,y - p/) ý B(0, 6)},

which, from the generalization of theorem 5 in [1], is decaying exponentially fast as

long as 6 > 0. Moreover,

P{px2,y E B(pi, 6n-•)} = P{n (px2,y - I-) C B(n•(p/ - pP), 6)}.

and recalling that from (4.22),

ji(a, b) - P (a, b) = n-'(a - m(px))px(a)pz(b).

But

(4.22)



we have

B(n(lP - p-), J) = B((idx - m(px))pxpz, 3) (4.23)

and again, from the generalization of theorem 5 in [1]

IP{Px 2,Y E B(14, 6n-)} = P{n'(px 2,y - CP) E B((idx - m(px))pxpz, 6)}

-nl-201 ilnf I j2a,b) dadb- t+
=e l EB((idX-m(pX))PXPZ,6) R pX(a)Z(b) 4. 24)

Therefore, if 1 - 2/ < 1 and

1 r (a - m(px))px(a)pz(b)R < - dadb,
2 R2 px(a)pz(b)

from a continuity argument, we can choose S > 0 such that the exponent in (4.24) is

strictly positive. Finally, observe that

I (a - m(px)) 2p2 (a) (p') 2(b)
S px(a)pz(b) dadb = Var(px)J(pz),

where Var(px) = fR(a-m(px)) 2px(a)da and J(pz) = fR (b)'(b)db. To get rid of the

initial approximation, we sould restrict ourself to distributions px that are decaying

fast enough, in order to have a finite variance; but this has been taken care of by the

power constraint. O



Chapter 5

Linear Universal Decoding

In memoryless settings, the maximum likelihood (ML) decoder is not only optimal,

but it is also linear, i.e., it maximizes a score function that is additive over the code

length. This linear structure affords several nice properties. In particular, it allows

ML to be considered in a practical setting. In [11], the authors mention that the

class of linear decoders "itself affords many interesting problems" and "may further

enhance the interplay of information theory and combinatorics". They also mention

that "consideration of complexity" may provide a primary reason for the use of these

decoders. However, the optimality of ML is contingent upon knowledge of the channel

law, and in general the channel law is unknown to the transmitter and receiver, such

as for compound channels. In order to account for the user's ignorance of the channel

law, several universal decoders have been proposed ([9], [14], [19], [21]). Although

theoretically optimal, none of these decoders is linear (hence practical) and some

depend heavily on the discrete alphabet assumption.

Are universality and linearity two properties that cannot be embodied by a single

decoder?

In this chapter, we address the problem of finding good linear decoders over com-

pound discrete memoryless channels. We will prove that under minor concessions,

linear universal decoders' exist. Indeed, we will construct such decoders.

'In this work, universal decoders are asked to be capacity achieving; formal definitions of these
terms are given in section 5.2.1 and 5.2.2



5.1 Compound Channels

In this chapter, we use the same setting as in chapter 3. We consider a discrete

memoryless channel with input alphabet X and output alphabet y. The receiver and

transmitter do not know what the exact channel is, i.e., what the exact probability

transition matrix is, all they know is that it belongs to a set S of possible chan-

nels. This is known as a compound discrete memoryless channel. As briefly exposed

in chapter 3, DMC's can be seen as (simplified) models for wireless communication

channels, resulting from the combinations of modulators, waveform transmissions

channel and demodulators, under flat fading assumptions. Assuming that the chan-

nel's law is exactly known at the receiver and transmitter is convenient to analyze

DMC's, but cannot be part of the communication model assumption. Compound

DMC's are appropriate models when the fading is flat and slowly varying. If Tn

denotes the transmission time of a codeword of block length n and T, the channel

coherence time (all units in seconds), slow fading means that Tn < Tc, so that the

channel law remains effectively unchanged during the transmission of a codeword.

Employing training sequences could be attractive if the channel remains unchanged

over multiple transmissions. However, a drawback of this approach is an effective re-

duction of code rates. Moreover, any estimators achieved through training sequences

would still leave us with a certain amount of unknowns in the channel knowledge.

A rate-R, block length-n encoder E, and decoder Dn are defined in the same way

we have defined them for DMC's, in the definition 4 of chapter 3. We denote by

{xm}M= the codebook whose codewords have length n, and by y a received sequence

of length n. Since the channel is memoryless, the probability of observing the output

y when Xm is transmitted is given by

n

Wn(YIXm) = R W(Y(i)wxm(i)),
i=1

where the channel W can be any channels in S. If the set S contains only one channel,

then we are back to the usual definition of DMC.



We assume that the messages to be transmitted are equiprobable. As defined in

chapter 3, we denote by Pe(E,, Dn, W) the average probability of error for a given

block length n, rate R, encoder En, decoder Dn and channel W.

Definition 17. We say that a rate R is achievable on the compound set S if for any

e > 0, there exists a block length n, an encoder E, and decoder D, of rate at least

R, such that for all W E S, we have Pe(E,, D,, W) < e.

The following theorem is due to D. Blackwell, L. Breiman and A. Thomasian (cf.

[5]).

Theorem 7. /5]

The supremum of all achievable rates, on a compound set S, is given by

C(S) = max inf I(Px, W). (5.1)
PrEMi(X) WES

We call (5.1) the compound capacity. This result generalizes Shannon's basic

theorem on the capacity of a single DMC to a set of DMC's. In the basic setting,

an optimal decoder such as maximum likelihood, or any decoders using notions of

typicality, can be used at the receiver, since the channel of communication is known.

In the compound setting this is no longer possible, the encoder and decoder must

then be built efficiently for all possible channels in the set, without knowing what the

exact channel is. Moreover, in the basic (single channel) setting, the random coding

argument proceeds by computing the expected probability of error of a randomly

chosen code and allows us to conclude that a code exists with a probability of error

of at most this expected value. In the compound setting, even if we figure out how

to construct good decoders not depending on the channel knowledge, and even if we

show that the expected error probability of a randomly chosen code is small, this is

not enough to conclude the existence of a code with small error probability for all

channels in S; the expectation may be small because different codes have small error

probability for different channels.



If S is a finite set, it is then easy to check that the random coding argument ensures

the existence of a sufficient number of good codebooks for each channel so that the

the intersection of those good codes is not empty: let IS = K and let {Xm}IM, be a

iid codebook of length n and distribution Px. As in chapter 3, we define the induced

random probability of error when MMI decoding is used over the channel W to be

Pe({Xm}, MMI, W). We know from section 3.2.2, that for any e > 0, there exists a

block length n such that for any W E S,

Ep,1 Pe({Xm}, MMI, W) < K

hence, using Markov's inequality, we have that for any W E S

1
P{Pe({Xm}, MMI, W) > 4} < 22K*

Using the union bound, we have

P{maxPe({Xm},MMI, W) > ej = P{UwES{Pe({Xm},MMI, W) > e}}
WES

1

2'

which implies

P{faxPe({Xm},M=,MMI, W) < e} > 0,

showing that there exists a realization of the codebook {Xm}I=, for which the error

probability is less than e for all W in S.

But for arbitrary sets, more work is required to show that this conclusion is still

valid. In their original proof, the authors in [5] use a decoder that maximizes a uniform

mixture of likelihoods over a family of channels, which is not finite but growth only

as a polynomial in n. Ideally, we would like to take the family of channels to be

the whole set S, but the polynomial grows is necessary to show the existence of a

good codeword from the random coding argument. We now present a proof which is

slightly different from the original proof of [5], but that will be useful to later prove



theorem 8.

Proof. Using the MMI decoder, which is universal as shown in section 3.2.2, we have

for R < I(Px, W),

EpMunPe({Xm}, MMI, W) < e-nEr(R,Px,W) ,

where E,(R, Px, W) > 0 is given in section 3.2. Let us consider R < infwes I(Px, W)-

6, for some 6 > 0, we then have E,(R, Px, W) > 0 for any W E S. We now proceed

to the approximation of S by the polynomial subset.

Lemma 2. [5]

Let S be a set of Ax B stochastic matrices, with A, B E Z+. For any C E Z+ such that

C > 2B 2, there exists a set of A x B stochastic matrices S (C) with IS(c) < (C+ 1)AB,

such that for any W E S, there exists W (C) E S (C) satisfying

IW(bla) - W(c)(ba)l < B/C.

(b 2B2
W(ba) < e - -(C)(b a),

and

, V1<a<A,1<b<B

V<a<A, 1<b< B.

By choosing C = n2, we get the following result.

Lemma 3. [5]

There exists a set S of IXI x lYl stochastic matrices with

ISI < (1 + n2)IX lYI,

such that for any IXI x lYl stochastic matrix W, there exists W E S satisfying for all

x E X n , Dn C yn:

IW(yx) - W(y x)l < Y/n2 (5.2)



W(ylx) 5 e21YI2/n2 E W^(ylx).
yEDn

From (5.2), we deduce that by taking n large enough, we can ensure R < I(Px, W1)-

6/2 for any W E S which is an approximation of W E S, hence

IEpMnP({Xm}, MMI, W1) • e - n Er(RPx V )

From Markov's inequality, we then have

P{Pe({Xm}, MMI, W7) >

and

P{UICVE{Pe({Xm}, MMI, W) > 6}}

6} < e-nE(R,Px,W)

< - e-nEr(R,Px,W)

- (1 + n2)IXIIYIe-ninf 'E § Er(R,Px,IV)

1--ninf Er(R,Px,16V)-- - e

Moreover, using (5.3) and taking n large enough, we have

P{UwES{Pe({Xm}, MMI, lW) > e}} SP{UVc,{Pe({Xm}, MMI, W) > e/2}}

< 2e-ninfgg Er(R,Px,iV)

But for all W E S, we have R < I(Px, W) - 6/2, hence infW,4§ Er(R, PX, W) > 0.

Finally, note that there exists C(IXI, IYl) > 0 such that

OEr(R, Px, W)
OR [R=I(Px,W)

and

E
yEDn

(5.3)

>_ C(OXl, lyl),



therefore, we can take the limit of 6 goes to 0 and as long as R < infwes I(Px, W),

we ensure the existence of codebooks having arbitrarily small error probability for

any W E S. O

5.2 Linearity and Universality

5.2.1 Universal Decoding

The notion of universal decoding, although commonly used in the literature, may

sometimes appear a little bit confusing. First, a decoder is in general making sense

only when considered jointly with its encoder, and talking about a decoder which

is capacity achieving must then implicitly require the existence the complementary

encoder. Moreover, all those definitions are depending on the block length, and the

achievability is an asymptotic notion; so should we talk about a universal sequence

of decoder? The next definitions aim to clarify these points, avoiding superfluous

formalism when possible.

Definition 18. We say that a sequence of encoders and decoders is universal for the

compound set S if it achieves the compound capacity, i.e., if for any R < C(S), e > 0,

there exists n, E, and D, from the sequence with rate at least R, such that for any

W E S, we have Pe(En, Dn, W) < e.

Note that this definition of universality is weaker than the one defined in [19]

and references therein, where a decoder is declared to be universal if it achieves the

same random-coding error exponent as the ML decoder tuned to the true channel of

communication.

Definition 19. (Informal)

We say that a decoder is induced by a "decoding rule" if the mappings D, can be

defined generically for all R, n and E,.

Examples: ML with respect to any distribution, MMI [9], any a and 3 decoders as de-



fined in [10], LZ-based algorithm [21], merged likelihood [14], Generalized Likelihood

Ratio Test (GLRT) [19].

Definition 20. We say that a decoding rule is universal for a family of sets, if for

any compound set S in the family, there exists a sequence of encoders for which the

generated sequence of encoders and decoders is universal for the compound set S.

A decoding rule is universal if it is universal for all subset of DMC's.

Example: MMI, LZ-based algorithm, merged likelihood are universal decoding rule.

ML is a universal decoding rule for singleton sets.

Note that a decoding rule such as MMI decoding does not even require the knowl-

edge of the compound set S, whereas our definition of a universal decoding rule allows

us to use the knowledge of the compound set. But since encoders and decoders must

anyway cooperate and agree on a codebook before the communication takes place,

and since the encoder must know the compound set S (to figure out which rates can

be used), this feature of MMI has no real advantage in this setting.

5.2.2 Linear Decoding

Definition 21. We say that a decoding rule is additive, or linear, and induced by a

metric d (though it may not be a metric in the formal sense), if it is given by

D,(y) = arg max dn(xm, y), (5.4)
m

where

(XMy) = n d(xm(i), y(i)) = Ep,,md
i=1

and d ("the metric") is any real function on X x y.

If the maximizer is not unique, an error is declared.

Example: the maximum likelihood decoder, or more precisely, the corresponding

maximum log-likelihood decoder, with respect to any channel W, is additive and its

metric is given by log W.



Lemma 4. Let n, Px E MI(X) and {xfm},x = C Xn such that Pxm = Px, V1 < m <

M. Then, for any d : X x y ---+ R, a : X - IR and " : y -+ R, the additive decoding

rule induced by the metric d is equivalent to the additive decoding rule induced by the

metric d + a + p.

In particular, there exists W X x y -- R+ with EbEy W(a, b) = 1, Va E X, such

that the additive decoding rule induced by the metric d is equivalent to the additive

decoding rule induced by the metric log W.

Proof. The first part of the lemma is trivial since the codewords {xmf) = have con-

stant composition. For the second part, let

A : a E X E- ed(a,b) > 0

bEY

and

W(a, b) = ed(ab)- logA(a) > 0, Va E X, b c Y.

By construction, W satisfies the required hypotheses and since log W(a, b) = d(a, b) -

log A(a), we can use the first part of the lemma to conclude the proof. EO

An additive decoding rule has certain advantages with respect to a non-additive

one. First, it can be much simpler to implement, in particular if the codes being

used have a trellis structure (with bounded width), the additive structure will allow

the use of algorithms such as Viterbi's algorithm, keeping track of a finite number

of candidates, as opposed to the initial exponential number. If codes such as con-

volutional codes are used, the additive structure also allows to decode successively

without having to wait for the full block length, as would be the case when decoding

with MMI. Other algorithms, such as Belief propagation, also require the additive

structure to be implemented. However, we shall recall here that the notion of univer-

sality we use for decoding rules, requires the existence of a sequence of encoders such

that the generated sequence of codes achieves any rate below capacity. This implies

that if the encoders employed to prove the universality of an additive decoding rule

are not of the required algebraic type (as the ones mentioned previously), the con-



sidered additive decoding rule may not have the claimed complexity. If the random

coding argument is used to show the universality of an additive decoding rule, with

a random codebook of fix optimal type Px, the algebraic structure should be some-

how well represented in the good realization of the random codebook to ensure linear

complexity. However, this discussion is beyond the scope of this work, our goal in this

chapter is to analyze the behavior of those linear decoders over unknown channels

through randomly generated codebooks. This will show limiting performances of the

considered schemes, but the task of making the schemes practical is a different one.

As opposed to decoding rules such as MMI, if we achieve a certain rate using a linear

decoder over a compound set, we at least have the hope to achieve this rate with

the claimed complexities of algebraic codes. Theoretically, additive decoders do not

only seem to naturally suit a memoryless setting, but as we saw in section 2.1, much

more is known when the constraint under which a divergence is minimized (in its first

argument) is linear; we can then use the geometrical properties presented in section

2.1 to facilitate the analysis of the considered coding schemes. Hence, the additive

framework will allow us to understand better the geometry of decoders. Finally, a

universal decoder such as MMI can hardly be generalized to continuous alphabets.

Definition 22. We say that a decoding rule is generalized linear and induced by the

metrics {dk }l 1 , if it is given by

D,(y) = arg max Vk1 d(xm, y) = arg max Vk=EPdk,
m m

where d' is an additive decoding rules induced by the metrics dk and K = K(S) <

+oo does not depend on n.

We talk about "decoding with the metrics {dk }K=1" when such a decoding rule is

used.

Example: GLRT with respect to any finite set of distributions.

Remarks:

Note that formally speaking, the mapping M '- VfKEdk is not linear. However,

it is equivalent to performing finitely many linear decoding rules in parallel and



doing one comparison of finitely many real numbers at the end. Therefore, since

K is finite (not growing with n), all above attributes associated with additive

decoding rules still hold with linear generalized decoding rules. In the following,

we will then often omit the term "generalized" when referring to such decoding

rules.

* We do not allow K to vary with the rate R (indeed, this is voided by the

definition of decoding rules). Therefore, with this definition, a linear and uni-

versal decoding rule is such that for any set S, any rate R with R < C can

be achieved with the same K = K(S) and the same metrics {dk }K=1 . One can

define a weaker notion of linear universal decoder by requiring that for any set

S and rate R < C, there exists a constant K = K(S, R), which is not depending

on n, and a set of metrics {dk (R)}= 1 , such that decoding with these metrics

can achieve R.

* Lemma 4 does not generalize to linear decoding rules, unless the functions a and

/ are constant. Therefore, metrics which are not the logarithm of a stochastic

matrix may and will be relevant.

Problem: we are interested in finding "good" linear decoding rules for compound

discrete memoryless channels. Ideally, we would like to find universal linear decoding

rules (on any families of compound sets). However, it is not clear that this goal

can be achieved; here the meaning of "good" has to be understood in terms of rate

achievability.

5.2.3 Linearity VS Universality

To get started, we need an estimate of what rates can be achieved with an arbitrary

linear decoding rule. We first introduce some notations:

* In the proof of following results, we use constant composition random codes

from a distribution Px. The existence of good encoders are then deduced from

the random coding argument, while decoders are explicitly constructed from the



considered decoding rules. The input distribution Px will be kept fixed through

all the chapter. We will not have results depending on what input distribution

is considered (or that are true only for the optimal input distribution), but we

can always think of dealing with the optimal input distribution, which is defined

for a set S to be

arg max inf I(Px, W),
PxEM1(X) WES

and if the maximizer is not unique, we define Px to be one of the maximizers

arbitrarily.

* Wo E S denotes the true channel of communication

* We define the worse channel of a set S by Ws = minwECl(s) I(Px, W), which

may not belong to S if S is open, but this will not represent a problem.

* L denotes a joint distribution on X x Y

* Plx, py denote the respective marginal distributions in X, y and the induced

product distribution is denoted by AP = I#x x lpy

* When a channel is indexed with a subscript k, the joint and product distribution

generated with first marginal Px are denoted as follows: Wk -~ k = P o
marginals

Wk -- = PXx x(k)y,
where k = 0 is reserved for the true channel and S instead of k for the worse

channel.

Theorem 8. Using the linear decoding rule induced by the metrics {dk}J, we can

achieve the rate

max inf inf D(plthI/). (5.5)
PxEMi(X) WoES I:Ix=Px,,y=(Ao)y

vkl EIdk V - 1 EIA dk

Moreover, observe that:

(5.5) = inf AK=1  inf D(AltAp). (5.6)
WOES -:LA'X=PX, My=(JAO)y

Epdk v=1Eodl

100



Proof. From (3.15), decoding with the metrics {dk JK 1 when the true channel is Wo,

can achieve rates as high as

C(Px, Wo) = inf
v: tX=PXdk V =iEOyd

k=1 k d k>Vjl= tlOd

Therefore, if C(Px, Wo) > 0 and if R < C(Px, Wo), there exists a function (R, Wo) H

E,(R, Px, Wo) > 0 such that

EppnPe({Xm}, {dk}, Wo) e-nEr(R,PX,Wo)

where Pe({Xm}, {d }, Wo) is the random error probability, for a constant composition

random code {Xm} of distribution Px, decoding with the metrics {dk}K=l, when

the true channel is Wo0 . Taking now the proof written for theorem 7, replacing the

MMI decoder by the linear decoder induced by the metrics {dk }=1 and replacing

Er (R, Px, -) by (R, Px, -), we obtain a proof of theorem 8.

5.2.4 Problem Formulation

With this theorem, our problem can be addressed by choosing K, {dk}K=1 in order

to solve

sup sup sup inf
KEZ+ (dk}K=• PEMI(X) WoES

inf
: mx=PX ,y=(Go)y

k= =

and we are interested in achieving (5.8) for a finite K. We know that (5.8) is upper

bounded by maxpxEM1(x) infwEs I(Px, W), we can then ask if there are sets S, for

which we have existence of K = K(S) < +oo and {dk kK=1 such that

inf inf
WoES P:AX=Px, iy=(APo)y

v•lEpdk >•V• 1EOdk

D(pII ) = inf I(Px, Wo), for any or some Px
WoES

and if so, we would like to find the most general characterization of such sets and an

explicit construction of the metrics {dk} k=
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5.3 Very Noisy Case

In this section, we express the problem mentioned above through the VN transfor-

mation around a common limiting distribution Py E Mi(Y), and Pxr M1 (X) is

fixed.

* The VN transformation of the set S is denoted by

Se = {Py(1 + eL)IL E S}

where S C Mo(Py), so that any elements W E S has the VN transformation

We = Py(1 + eL), L E S. For any e, the set Se is convex, respectively compact,

if and only if the set S is convex, respectively compact.

The joint distribution I. of any W E S with marginal Px will then have the VN

transformation

P = PxPy(1 + eL), LES

* When a subscript k is used to denote a channel Wk, the VN transformation is

denoted by

Wk,e = Py(1 + eLk).

* We keep the subscript k = 0

mation is denoted by

for the true channel Wo E S, whose VN transfor-

Wo,E = Pz(1 + ELO), Lo E S.

* If one considers the metrics to be the log of some channels, i.e., dk = log Wk,

the VN transformations are denoted by

dk,E = log Wk,, = log(Py) + log(1 + eLk),

where Lk E Mo(Py) may not have to be in S.
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In the following

Using 4.4, we have the following result.

Proposition 12. For S compact, we have

min I(Px, W)= mmin 2 + o(E2),
WESe 2 LES

where

min IL11 2 = IILs112
LES

is called the VN compound mutual information on S.

5.3.1 One-sided Sets

Let us start by considering K = 1, i.e., when only one metric is used. We recall here

proposition 5.

Proposition 13. Let Wo,E = Py(1 + eLo) and decode with the metric d = log W1 ,,,

where Wl,, = Py(1 + eLi). Then,

1
lim - inf D(it•,ý)
E-O 62 1:ex=PxLy=(1Ao)v,

Ell log WI,,>E EO,e log Wl,,

S- mf IV_ 1 1 (L0, L1)2

2 v: =E=o 2 |IL1112
(V,L1)_(LOL 1 )

As explained earlier, this result says that the mismatched mutual information ob-

tained when decoding with the mismatched metric log Wi,,, whereas the true channel

is Wo,,, is approximately the projection (squared norm) of the true channel direction

Lo onto the mismatched direction L1. This result gives an intuitive picture of the mis-

matched mutual information. As expected, if the decoder is matched, i.e., L0 = L 1,

the projection squared norm is ILo 112, which is the very noisy mutual information

of Lo, and the more orthogonal L 1 is to Lo , the worse the mismatched decoding rule is.
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Figure 5-1: Very noisy one-sided compound set

This picture of the mismatched mutual information directly suggests a first result.

Let S = {L-LIS E S}. Assume S, hence S, to be convex. By using the worse channel

to be the only decoding metric, it is then clear that the VN compound capacity can

be achieved. In fact, no matter what the true channel L0 e S is, the mismatched

mutual information given by the projection of L0 onto Ls cannot be shorter than

jILs I, which is the very noisy compound capacity of S. This is illustrated in figure

5-1. Moreover, the notion of convexity is not necessary. As long as the compound set

is such that its projection in the direction of the minimal vector stays on one side, i.e.,

if the compound set is entirely contained in the half space delimited by the normal

plan to the minimal vector:

(Lo,Ls)2  12
I sl 2

we will be universal with the worse channel metric (cf. figure 5-1 where S can include
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the circle set without violating above condition). We call such sets one-sided sets and

by rewriting the property in terms of norms, we get the following definition.

Definition 23. A compact set S C M0o(Py) is one-sided if

(Lo, Ls)2
SILLs 2, Lo e S ,

where it is sufficient to ensure this property for the X-marginal given by

Px=arg max min lL |2
PxEMi(X) LES

Proposition 14. In the VN setting, decoding with the worst channel metric is uni-

versal for one-sided sets - and is linear.

It is also clear that for a non-onsided set, decoding with one metric gives a mis-

matched random coding capacity which must be less than the compound capacity.

However, the mismatched random coding capacity is known to be tight (i.e., the mis-

matched capacity) only for binary channels, hence only for binary channels, we can

state that decoding with one metric on non-onesided sets cannot achieve compound

capacity for very noisy channels, and the same is to be expected in general and for

non-binary channels.

5.3.2 Finite Sets

Let us consider a simple case of non one-sided set, namely when S contains only two

channels not satisfying the one-sided property, say

s=- {W1, W2}.

A first idea would be to use the metrics di = log W1 and d2 = log W2, i.e., decoding

with the GLRT test using both channels

arg max W,'(ylx,) V Wz2(ylxm).
Xm
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Let us assume w.l.o.g. that Wo = W1. In this situation, one of the two test will be

an optimal ML test with the true channel, but the other test is a ML test with a

channel that has nothing to do with the true channel, and we need to estimate how

probable it is that a codeword which has not been sent looks too typical under that

other channel (i.e., an error event). In other words, we need to compare the values

of the two projections that formula (5.6) provides. We already know that one of the

projection's norm is the mutual information of Wo0 . We need to check if the other

projection's norm can be smaller or must always be greater. We check this here in the

very noisy setting. Using the same notations as previously, we have that the second

projection becomes, in the VN setting,

inf IIL - Loll 2 > I Lo11 2 A IZL1 12  (5.9)
L: L=o, L=LO

(L,L1) _ (IILo 2+11L1 11
2 )

or equivalently

inf llV112 > IILo112 A IIL1112  (5.10)
V: V= =O

(V, ) (I Loll 12+11LI 112)- (L ,L1

But

(llLo 12 + 1L1112) - (Lo, L1)2
1

=- (ll1ZoI2 + -- L1 12 + IlL0 - L1112),

so we need to show

-(llLoll 2 + IIL1112 + ILo - L1112) Ž IIZolI 1II A 11 1112,2

which clearly holds.

This can be directly generalized to any finite sets and we have the following result.

Proposition 15. In the VN setting, GLRT with all channels in the set is universal

for finite compound sets - and linear.
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Figure 5-2: Union of two one-sided components

5.3.3 Finite Union of One-sided Sets

Using ML Metrics

We found a linear universal decoding rule for one-sided sets and for finite sets. Thus,

the next sets that we consider are finite unions of one-sided sets. Assume

S = C1 U C2,

where C1 and C2 are one-sided. Let W1 = Wc, and W2 = Wc2 (cf. figure 5-2). A

legitimate candidate for a linear universal decoder would be to use the GLRT with

metrics W1 and W2, hoping that a combination of earlier results for finite and one-

sided sets will make this decoding rule capacity achieving.

Say w.l.o.g. that Wo E C1 and using (5.6), let us try to verify the following

Ak= 1 AX inf D(•|M)
Ep log Wk >V2= 1Ep log W1

- I(Px, W1) A I(Px, W2).

As opposed to the finite compound set case, we cannot decide in general which one

of the threshold tests IE,o log W1 or E,o log W2, is the maximum. But no matter what
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this maximum is, the result of the k = 1 projection must be greater than I(Px, W1 ),

since when V2IE,o log W1 = E,o log W1, we can use the one-sided result (because we

assumed that Wo E Ci), and if VL1 E,.o log W1 = E,o log W2, the resulting projection

can only be larger than the one in the one-sided case. So all we need to check is that

the second projection does not get too short, i.e.,

inf D(|llIg) Ž I(Px, W1) A I(Px, W2). (5.11)
JA: JMLX=PX, 4y=(Io)y

EI log W2 V I 1 EgAO log W1

Let us first understand what is the meaning of EAo log W1 5 EPo log W2 in the very

noisy setting. With usual notations, we get

Eo log W1 _ Eo log W2 Y ) Lo - L211 5 JjLo - L1j1.

Let us assume that we are in a situation where ILo - L211 = ILo - LII|, then we know

that the expression (5.11) in the very noisy setting is

(LO, L2) ?L°zL21 Ž> _ L1 1 A JIL2j1,
IIL211

and say that |IL 1| = IIL2 1. Since Wo E C1, we do not have any reason to believe

that
(LoO L2)

.>11L 2 11,
il L211

since we do not have the one-sided property for Wo and C2. However, we can still

hope that this holds when we impose I|Lo - L211 = ILo - LI 1. We can write

llLoll 2 - IIL2112 - ILo - L2112

= ILo ll2 - IIL 1Ii2 - iLo - L1112

+I Lo- L,11 2 - _ILo- L2 12

= |ILo012 - [L11 2 - IILo - L112

+IILo - L2112 - ILo - L1112,
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but even with IILo - L211 = IILo - Liai, we cannot control IIo0 - L212 - ILo0 - L1l 2,

and this could indeed be negative. This suggests that the result may not hold. In

fact, we have the following.

Proposition 16. In the VN setting and for compound sets having a finite number

of one-sided components, GLRT with the worse channel of each component is not

universal.

Counter-example: Let X = y = {0, 1}, Px = Py = {1/2, 1/2},

-2 2 2 -2 1 1

Lo = , L1 = and L 2 =-7 7 0 0 1 -1

Note that IILo112 - ll112 - IlLo- L1112 2 0, hence C, = {Wo, W1} is a one-sided

component and L 2 does not belong to that component, hence we define C2 = {L 2}.

We chose the direction such that IlLo - Lill = IlLo - L2 11 and iIL11I2 = IiL2112, to

simplify the counter-example (but it is not necessary). Finally, we have

llol12 _- lIL2 2 --Lo - L2II < 0,

which means that we are loosing rate compared to the compound capacity. This

counter-examples is picture in figure 5-3. In this picture, the two dimensional plane

of the background contains the non-tilde vectors and the line with a negative slope

contains the tilde vectors. Each time a vector is projected into this line, the height

of the projection is the bar-component. We can see that having this extra degrees

in the plan for non-tilde vectors, we can pick L1 and L2 to be equidistant from Lo

(they are indeed on the same circle centered at Lo), in a way that their projection on

the tilde-vectror space are very different, namely, L0o is opposite to L2 , violating the

one-sided property.

A counter-example in the very noisy setting is of course sufficient to prove the propo-

sition.
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Figure 5-3: Counter-example for ML metrics

Using MAP Metrics

We now use different metrics than the one used in previous section, instead of the

ML metrics given by log Wk, we use the metrics

Wk
log (k)

(Pk)Y
(5.12)

which we call the MAP metrics for maximum a posteriori (although they should be

called the "a posteriori" metrics) and which are also sometimes referred to the Fano

metrics in the literature.

As before, let us consider Wo, W1 and W2 such that W1 and W2 are the worst

channels of two one-sided components C1 and C2 , and Wo belongs to C1. We want
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to show that

inf
k4: AX=PX, PLy=(•O)Y

EA log IV_=1 EjO log

(5.13)

since the other projection in the log W1 direction is known to be greater than

I(Px, W1 ) from the one-sided property.

Note that

W2E, log W2
(P2)Y

VN 2
4 (L, L2) - l112 = I(11112 2- 1L - 22 2

Therefore, the VN transformation of (5.13)

inf
L: L=O, L=LO

(L,L 2 ) O(Ll
2 IL2 2 J- 1 2 IO0-L2 2)

IlL - Lo112 > IL1112 A IIL21 2.

So the two cases to check are

1(ILo 11 +I L2112 - IILo - L2112) (Lo, L2)

IIL 211
> ILI A IL21;,

if ILo - L 2 2 ILo - L112; and

l(I[Lo[[2 + I L2112 -_  J Lo - L 112)

I IL211

if lLo - L1 2 • _Lo -L 212

In fact we will check that both inequalities hold with I|L1I instead of ||L1Il A ||L 211

on the right hand side.

Let us investigate the first inequality. As it was the case for the GLRT decoding rule,

the following inequality

d osL2 >i IILe 111A WL211,
does not hold by assumption, since we assume that Wo E C1, and not Wo E C2. But

111

(5.14)

D(tpilp) > A' l(Px, Wk),



Figure 5-4: Bad projection regions

as opposed to the GLRT case, we ask that this inequality holds if ILo - L1112 <

ILo - L2112. As illustrated in figure 5-4, if L 2 is crossing the dashed region, the

projection of L0 onto L2 can be smaller than iiL111 A IIL211,

but because we assume that IILo - L11 2 < JILo - L2 I 2, L2 must be in the small

circle, thus, it cannot belong to the dashed region and the projection must be greater

than IIL111, as illustrated in figure 5-5.

One can also check this analytically. For the first case:

ý(ILoI 2 + L 211 - 2ILo - L21
11L 211

½(IILoi12 + IIL2112 - 211L 11111L 211 - IiLo - L2112)
II L211

ý((IIL 1II - IL211)2 + Iol 112 - IIL1112 - Ilo - L

1lL211
½((lIL 1ll - IL211)2 + IILol112 - I-L1112 - I-o -L

IIL211

112

'2112)

1112)



Figure 5-5: Good projection regions
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where last inequality uses the assumption IL0o - L2112 < jiLO - L1112. Finally, using

the one-sided property, last expression is clearly positive.

For the second case, the same expansion as before gets us directly to

½((lIL 1 ll- lIL 21) + 1L0112 l - 1L11ii - HLo - L11i2 )

I lL211

Hence both cases are satisfied.

Uniqueness of MAP Normalization

Roughly speaking, we saw that combining the worse ML metrics fails to be canonical

for union of one-sided components, but that normalizing the ML metrics properly,

i.e., considering MAP metrics, clears the problem. Is the MAP normalization the

only one that works? Why do we have to use this normalization as opposed to any

other one? We discuss these questions for the very noisy setting.

Let us assume that, instead of normalizing the ML metrics with (,Ak)Y, we nor-

malize it with an arbitrary function around Py, i.e., Py(1 + EMk), where Mk is a

function of y only. We then have

Py(1 + eL2) , 2

EAo log P(1 + EM2) PxPy(1 + ELo)(E(L 2 - M2) - 2 M())P(1 + e1M2 )

Y)g (Lo, L 2 - M2) - (1 L21 2 - MI212)

= (Lo, L2) - II112  + (Lo, 7 2)
1 1

-IL 211i - (Lo, M2) + IM2 1122 2

Hence, the first projection inequality that we checked in previous section, i.e., the

projection of L0 onto L2 is greater than ZL111 A 1L21ll, must now hold if

IILo - L2112 + IlLo - L212 -_ ILo - M2112  (5.15)

< 1Lo - •112+ Lo - LI 2 -Lo - M112. (5.16)
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Let us define

So= Lo-L 2_- o- 1
2 - (Lo - L112  _ Lo -M 2112)

and let us consider binary channels with Px = Py = (1/2, 1/2). In this case, the tilde

vectors (L) are all co-linear, on a same line:

A ) AER.
1

The non-tilde (L) vectors are

S a, bE R.

We can represent this case as pictured in figure 5-3, where the two dimensional plane

of the background contains the non-tilde vectors and the line with a negative slope

contains the tilde vectors. Each time a vector is projected into this line, the height of

the projection is the bar-component. Say we are in the case where (5.16) holds with

equality (this can be assumed). We want to get that

IlLo 2 - I2 o - L2 12 < 0,

which is to say that the first projection inequality is not satisfied, and we need do

this without violating (5.16). But, unless 5 = 0, we can always play with the heights

of the bar-components of the Li's to ensure that (5.16) holds and make L 2 be on the

other side of the origin of Lo and L 1 (which gives a "bad" projection). So allowing an

extra degree of freedom with the bar-vectors gives us an extra dimension with which

we can play to violate the projection inequality.

Also, if we use other kinds of normalization, such as Py(1 + eLk) 2 , then we need
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to ensure that the projection of L0o onto L2 is greater than IILLll A IIL21], if

II1L - L2112 -2ILo - L2112 < I1 0 - 1112 - ILo -- 1112

so we can now define

S= ILo - L211 2- ILo- L11 2

and the issue is raised. It is only when the condition is

IlLo - L2112 < J•Lo - L1 1[2

that the projection inequality is always satisfied. And this is achieved "only" when

the normalization is the MAP one.

5.4 General Case

5.4.1 The Results

The previous section gives us a series of results regarding linear decoders on different

kinds of compound sets, in the very noisy setting. In this section, our goal is to verify

which one of those results can be generalized to the non very noisy setting; we will

see that all of them can actually be generalized. We already know that the negative

results, i.e., statements not holding in the very noisy setting, will not hold as well

in the general setting. In this section we list all the general results and in the next

section, we illustrate how we can lift the very noisy results to achieve the general

ones. The formal proofs are given in section 5.4.3.

Recall: We define the optimal input distribution of a set S by

Px=arg max minI(P;W),
PEMi(X) WES

and if the maximizers are not unique, we define Px to be any arbitrary maximizer.
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Definition 24. A set S is one-sided, if

D(uo||ll) > D(tUollps) + D(psll ), VWo e S. (5.17)

where

Ws = arg min I(Px, W). (5.18)
WECl(S)

Remark: (5.17) cannot hold if the minimizer in (5.18) is not unique.

Proposition 17. For one-sided sets S, decoding with the metric d = log Ws is uni-

versal - and linear.

This result is proved in [11] for convex sets.

Lemma 5. Convex sets are one-sided and there are one-sided sets that are non-

convex.

Proposition 18. For any set S, decoding with the metrics {log W}wEs, i.e., maxi-

mizing D n = maxwEs log W n, is universal, but generalized linear only if S is finite.

Proposition 19. For S = UK=k, where {Ck}k=1 are one-sided sets, decoding with

the metrics dk = log Wck, for 1 < k < K, is not universal.

Theorem 9. For S = UjCk, where ({Ck}=1 are one-sided sets, decoding with the

metrics dk = log w for 1 < k < K is universal - and generalized linear.

5.4.2 Lifting

In this section, we illustrate how the results and proofs obtained in the very noisy

setting can be lifted to results and proofs in the general setting. We consider the case

of one-sided sets, and we use the definitions made in section 5.3.1. In the very noisy

setting, a one-sided set S is such that

(Lo, Ls) 2

.2 II sil2, VLo E S.Ilnsil2
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The first step in order to lift this definition, is to write it with norms instead of inner

products, i.e.,

Definition 25. A compact set S C Mo(Py) is one-sided if

ILo0112 - IILsl 2 -I - L 2 > 0, VLo E S, (5.19)

where it is sufficient to ensure this property for the X-marginal given by

Px=arg max min lL 2.
PxEMi(X) LES

Now that we understand the concept of one-sided sets in terms of inequalities on

"norms", we will lift the definition to the general case. Recall that

D(Pol iiP) V ||Lo - Loll 2 = lILoll2

and

D(psII IP ) ) IlLs - Lsl12 = IlLs112,

therefore, we have candidates for the first two norms appearing in (5.19) and we would

like to lift ILo - Ls l2. We know that

D(juollls) V IlLo - LsI 2

and

D(p•Pl|P ) -~- IlLo - Ls112,

hence

(5.20)

where the last equality simply uses the projection principle, i.e., that the projection

of L onto centered directions L = L - L is orthogonal to the projection's height L,
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implying

Therefore,

D(pol|y|) - D(is iPs) - (D(po I|ts) - D(p' j|p)) > 0 (5.21)

is a lifting of (5.19). Hence, let us assume that S is satisfying (5.21) and let us use

the metric log Ws; we now want to see if this is still a capacity achieving decoding

rule on such set S. In order to lift the proof, let us understand it in terms of norms.

The VN mismatched mutual information is given by

inf IlV 12 (5.22)
V: V=V=0

(V, LS)>(LO,LS)

inf I VIl 2
V: V=V=O

IlVIl2- llv- stl 2  11L0 112 -1Lo- S 112

By looking at the constraints of last expression, and since

V - Ls112 0,

(5.23)

we clearly have

(5.23) _> j12  -o HLo - LsH 2.

In the general setting, the mismatched mutual information is given by

inf D(/ |pP)
m: loX =P, XPy =(CO)y
EA log WSŽE• 0 log WS

(5.24)

(5.25)

expressing the quantities of interest in terms of divergences, i.e., rewriting E, log Ws =

E, log Ws and using the fact that pP = yp (the marginal constraints), last expres-
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sion is equivalent to

inf
A: IAX =PX, tLy =(Ao)y

D(0IIAP)-D( II gS)+ D(API40 St)
>D(jo I I ) - m(Ao II IIs )+D(IA II•P)

D(MI IuP). (5.26)

Therefore, we are replicating the very noisy proof in a very parallel way, and if

D(pIIPs) - D(pIIA, ) > 0,

we conclude that

(5.26) 2 D(polIIP) - D(lolltUs) + D(AIIMP), (5.27)

and by definition of one-sided sets, we have

D(o1I0IP) - D(polius) + D(/ IIPs) 2 D((ps Pis),

which is the compound capacity. So we need to show that

D(/ IIs) - D(/t II/PS) > 0,

(5.28)

(5.29)

which was, as expressed in 5.20, clear for the very noisy setting since I Lo - Lsl12 -

IILo - Ls112 = IlLo - Ls112 > 0. We can rewrite (5.29) as

E, log L-
lPs

> E(E),) log = EE , log , -
(Ps)y E MP s'

which is simply the log-sum inequality (cf. [16]).

Therefore, the definition of one-sided sets through (5.21) is appropriate, and since

D(oIllLP) + D(Ij,'I p) = D(pollfi)
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it is equivalent to

D(poll||) > D(pollis) + D(pIslll), VWo e S.

Of course, the general proof of the one-sided result can be shortened, by using

just a few inequalities. But by doing it step by step with each divergence term, we

illustrate how the local and global results are interacting.

5.4.3 The Proofs

Proof of Lemma 5: Let C a convex set, the for any Px E M (X) the set D =

{fI/ /(a, b) = Px(a)W(bla), W E C} is a convex set as well. For p such that M (a, b) =

Px(a)W(bla), we have

D(LIIp•) = I(Px, W) + D(puyll(,c)y),

hence we obtain, by definition of WC being the worse channel of cl(C),

/c = min D(tLIp').
JEcl(D)

Therefore, we can use theorem 4 and for any po E D, we have the pythagorean

inequality for convex sets

D(uo I|p) _ D(ollpIc) + D(MclII~). (5.30)

This concludes the first claim of the lemma. For the second claim, there are many

examples of non-convex sets which are one-sided, e.g., let X = y = {0, 1} and S =

(2/3 1/3 = 3/4 1/4

1/4 3/4 )2/9 7/9
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We then have that

arg max (I(Px, W1 ) A I(Px, W2)) = (1/2, 1/2)
PxEM1(X)

and

which means that W1 is the worse channel, and W2 satisfies the one sided property:

D(211 -L) - D(ol2n1) - D(p, lMpL) > 0.

Moreover, for any Px E M, (Px), we have

I(Px, W1) < I(Px, W2)

and

D(u211Au') - D(L 2( I 1) - D(pII pI) > 0,

where last two inequalities are strict unless (Px(0), Px(1)) is (1,0) or (0, 1). There-

fore, convex sets are not the only sets for which the one-sided property holds for any

Px. O

Proof of Proposition 17: this is done in section 5.4.2. For convex sets, the result is

proved in [11]. O

Proof of Proposition 18: note that the proof of theorem 8 works for decoding rules

having an infinite number of metrics, so we need to show the following

AwlES inf
E: log W=P

, 
=WS log W

EIA log W 1 •_VW ESEAo log W

and we will see that the left hand side of previous inequality is equal to I(Px, Wo).

Note that VwEsE~0 log W = Eo log Wo = I(Px, Wo) so that the projection cor-
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I((1/211/2), Wi) < 1((1/271/2), W2)

D(pl IA) : AWESI(Px, W),



responding to W1 = Wo, resulting from the metric of the true channel Wo E S, is

I(Px, Wo), as expected. So we need to verify that for any W1 E S,

inf
A: •LX=PX , 1y=(Ao)y
E14 log W 1 -EO•0 log W 0

E, log W1 > Eo log Wo

D(ylII|0) -AwEsI(Px, W). u

= D(pl tp ) - D(L ft1) ! D(toj IL'),

inf D(llI||g)
A: /2X=Px, 2y =(Ao)y
EA log W 1 EIO log W0

inf D(•• p')
A: jAX=PXj/y=P0

D(tjL u)--O(jLL Jil)>VýD0(pI 4p)

_ D(poll AP) = I(Px, Wo).

Note that above inequality simply uses the fact that D(1alIiM) > 0. One could get a

tighter lower bound by expressing (5.32) as

E, log W1 > Eo log Wo <

D(pll|zp ) - (D(|III,) - D(p IIA1)) _ D(OiolIg) + D(APllIyp),

and using the log-sum inequality to show that D(MIIl 1i) - D(yPIIIp) 2 0, (8.23) is

lower bounded by

D(piol Ig) + D(-g II').

Figure 5-6 illustrates this gap. O

Proof of Proposition 19: we found a counter-example for the very noisy setting in

section 5.3.3, therefore the negative statement holds in the general setting. OE
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Figure 5-6: Projections of (5.6) in the case S = {Wo, W1 }

Proof of Proposition 9: using theorem 8, we need to show

inf A.: ,x=Px, y=(IAo)y
V E l log W LV EIO log (

k=ll(PX7 Wk))

D(p•IIp)

(5.33)

We can assume w.l.o.g. that Wo E C1. Then, for any M satisfying

MX = PxI Ay = (Oo)y,)
Wk > VK lEno log Wk

(Uk)Y - k= L (11k)Y
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VK=IE log

(5.34)

(5.35)



we get

D(pl I')(A)D(plpP)

(B) Wk
> Vk=,E, log ()

(C) K Wk
SVk= IEo log (k)

W1" EAo log()
(D) W1
> E, log (

K I(Px, Wk)
A ^= 1 (P, Wk,

where (A) uses (5.34), (B) uses the log-sum inequality:

Wk
SD(p p) + EE, log

((POY)
WkE,l log Wk

= D(plI) - (D(uljk) - D(pPlp>)),
>0

(C) is simply (5.35) and (D) is the one sided property:

W1
EAo log

(ý ) y
Wi- E, log (---ULOY~ = D(po fl ') - (D(ttolyi) - D(p- ' jp))

= D(Po|Ijp') - D(to ti) - D(- l )

> 0.

Hence

inf 1 .If AP)A: AX=PX, Ay=(O)y LJULI
V i(•, lg W) >V i=1Ego logW )

> I(Px, Wj) > Ai=1I(Px, WK)

which proves (5.33) and concludes the proof. O
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5.4.4 Generalized Worst A Posteriori (GWAP) Algorithm

Definition 26. For an arbitrary non empty set S, we define the worse channel set

by

{Ws} = arg min I(Px,W). (5.36)
WEl(S)

Definition 27. GWAP Algorithm

Let S an arbitrary non empty set. If I{Ws}I is finite, we define Co(S) = S, and

Cl(S) = {W E SID(pol|Ipi) > D( IIts) + D(psl pI), VWs E {Ws}},

otherwise Co(S) = * and we stop. Recursively for k > 1, if Ck(S) is empty we define

Ck(S) = 0 and we stop. Otherwise, if I{Wck(s)}j is finite, we define

ck+1(S) = Cl(Ck(S)),

elsewhere, Ck+1(S) = * and we stop.

If the algorithm returns CN(S) = 0 for some N > 1, define the metrics WAP(S) =

{dk }1 to be the MAP metrics of all worst channels encountered by the algorithm

(K = NN• I{ Wc,(s)}I). The linear decoder induced by WAP(S) is denoted by

GWAP(S), for General Worst A Posteriori decoding.

If S is a finite number of one-sided components, the sequence COk never reaches *

and runs up to a finite number of iterations N, for which CN is empty, as illustrated

in figure 5-7. Hence, from theorem 9, GWAP(S) achieves compound capacity on S. If

S is not a finite number of one-sided components, the algorithm may stop and return

*, or may never stop. However, MI(X x Y) is a compact subset of RIIllYl, so we

claim that for any set S, there exists e > 0 and a set S, which is one-sided and such

that decoding with the metrics WAP(S,) can achieve all rates R with R < C - e.

This means that we can find a weak linear universal decoding rule for any compound
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Figure 5-7: GWAP algorithm

set S, which is not the same as linear universal, since WAP(S,) -- 00. The GWAP

algorithm suggests how to construct WAP(SE): If for some k > 0, {Wck(s)}l is not

finite, we pick Ak = Ak(E) and Wk,1,... , Wk,A within

{W E S: I(Px, W) = I(Px, Wc,(s)),

where Wck(s) is an element of {Wck(s)}, in order to have

A IVI=1IMIS(PX, W, Wk,l) - I(PX, Wco(s)) - .

We define Wk,1 to be the worst channels, just like when I{Wck(s)}l is finite. We then

move to Ck+l(S). However, the algorithm may never stop, but because MI(X x y)

is a compact subset of RIxIIYl, we claim that there exists N such that

V•= v1Ak1 IS(PX, W, Wk,l) > I(Px, WCo(s)) - E.
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Polytope Decoder

The GWAP algorithm is universal for most sets (weakly universal in general) and,

as the definition of universality allows it, it depends on the considered compound

set. Since encoders and decoders must anyway cooperate before the communication

takes place to agree on a code, and since the encoder must know the compound set S

to identify which rates can be employed, a decoding rule which is universal without

depending on the compound set may not have a real advantage. However, let us

assume that the highest rate C at which reliable communication can be established

is given to the transmitter and receiver without specifying the compound set S, we

then want to construct a single decoder which will be used on different compound

channel. The question is then which directions do we choose to build our decoding

metrics. Without any knowledge of S, we would like to take the directions in a uniform

way, shaping a regular polytope for which the sphere of radius C is an insphere (the

direction are perpendicular to the polytopes faces). Different orientations of the

regular polytope will achieve different rates on different compound sets. If the set

is a finite union of one-sided components, we know that there exists an orientation

of the directions for which the set S lies outside the polytope. Otherwise, infinitely

many directions are required. However, if we are giving up on an e-portion of the

capacity, i.e., if we want to achieve any rate R < C - e, there always exists a sets of

directions shaping a polytope around the sphere of radius C - e out of which the set

S is contained; indeed, any regular polytope having the sphere of radius C - e has a

circumsphere that will give proper directions. One can then study the relationships

between the dimension of the channel, i.e,. X, y, the capacity value C, the tolerance

e and the number of directions required to achieve C - e.

5.5 Discussion

The MMI decoding rule is remarkable for its theoretical properties. Observe that

W
I(Pm) = sup Epm log (5.37)

WE DMC (Px 0 W)y
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which means that the MMI is actually the GWAP decoders taking into account all

DMC's:

MMI = GWAP(DMC).

When communicating over a compound set S, MMI is achieving capacity, but our

main result tells us that we do not need to take all DMC metrics in the supremum

of (5.37) to achieve the capacity. By extracting the one-sided components of S, it is

sufficient to take the worse channel of these components in the supremum of (5.37)

and still achieve compound capacity. And when S has a finite number of one-sided

components, the GWAP decoding rules is generalized linear. Hence, we are basically

picturing the one-sided components as equivalent classes in the space of decoding

metrics and the MAP metrics as canonical metrics under the max-operator.

Finally, how do we explain the fact that generalized ML metrics are not performing

as well as generalized MAP metrics, after all, we also have

arg max I(Pm) = arg max sup Epm log W,
m m We DMC

which means that the MMI decoding rule is equivalent to the GLRT decoding rule

with all channels, in the sense that decoding regions are the same for both decoding

rules. However, this time we have

I(Pm)# sup Ep logW,
WE DMC

and there is here a subtlety: a received y has different likeliness under different

channels ((pk)Y depends on k). Hence, to determine which input has been sent,

without knowing if the channel that has transformed the input was W1 or W2, we

need to measure how likely it is that x has generated y in agreement with how likely

y is for the different channels. And the MAP metrics, as opposed to the ML metrics,

takes this into account.

It is then surprising that we found in the literature many references discussing

the use of GLRT tests, i.e., which is the usual name for generalized ML decoding,
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whereas we could not find references discussing generalized a posteriori decoding.
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Chapter 6

Gaussian Channels and Local

Input Geometry

In last chapter, we introduced a local analysis of discrete memoryless channels, by

fixing the input distribution and letting the channels become always noisier. This

brought the joint and product distributions (i.e., the joint distribution of the sent

input and received output, and the product distribution of any non-sent input and

the received output) close to each other, allowing us to work in the local setting. This

approach has been useful to construct good decoders in chapter 5. In this chapter,

we look at localization of input distributions. By its nature, this localization will be

useful for input optimization problems, to understand the structure of optimal input

distributions (hence of optimal encoders), or any pre-encoding scheme used in multi-

user information theoretic problems dealing with Gaussian noise. Instead of a DMC's,

we now consider channels which are memoryless but with continuous alphabets. After

analyzing different entropic properties of the operator consisting of convoluting with

Gaussian densities, we consider a Gaussian interference channel problem.

6.1 Additive Gaussian Noise

The channels that are considered in this sections are discrete time continuous alpha-

bets channel, where the continuous input and output alphabets are X = y = R. The
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additive white Gaussian noise (AWGN) channel is defined as follows. At each channel

uses i = 1,... , n, an input x(i) E R is sent, and an output Y(i) is received, resulting

of the addition of mutually independent centered Gaussian random variables:

Y(i) = x(i) + Z(i), i = 1,.. .,n

where

SZ(i)} i NA(0, V).

It would not be realistic to model an encoder on a continuous alphabet without

having any constraint on the possible input magnitudes. A very common limitation

imposed on the inputs is an average power constraint, which requires any n-sequences

of input symbols to satisfy

1 x(i)2 < p
n

i=1

where P E R+. For more details regarding the model, cf. [16],[17].

For continuous alphabets with average power constraint, a valid encoder is a

mapping En: m E {1,..., M = [enR ]} En(m) = xm E R, that must satisfy

Sxm(i)2 < P  Vm E 1, ... M,

and a decoder is a mapping Dn : y E R F m E {1,..., M}.

In the same way we proved it for DMC's, one can show that the maximum of the

mutual information between X and Y, over input distributions satisfying the power

constraint, gives the AWGN channel capacity. The mutual information between X

and Y is then given by

I(X, X + Z) = h(X + Z) - h(Z),
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where, for a random variable W having a density p, h(W) is given by

h(W) = h(p) = - p(y) log p(y)dy,Jw =P p(p)

provided that the integral exists.

We now present several results concerning maximum entropy problems. In the fol-

lowing, maximums or minimums are taken over random variables, since we found this

notation to be common in the literature. Hence arg max, respectively arg min, denotes

the random variable' maximizing, respectively minimizing, the considered functional.

However, in the next section, we will prefer to shift to a functional notation, working

with densities.

Lemma 6. Let Z - A/(O, v), then

arg max h(X + Z) ~ N(O, s), Vs, v > 0.
X: Var(X)<s

Hence, previous lemma implies the following result.

Theorem 10. The highest achievable rate on a AWGN channel with the noise having

mean 0 and variance v is given by

C = sup I(X, Y) (6.1)
X:EX 2<P

P
= log(1 + -) (6.2)

and the optimal input is a centered Gaussian with variance s.

The following result is the Entropy Power Inequality (first proved by Stam).

Lemma 7. For any independent random variable X and Z,

2 2h(X+Z) > 2 2h(X) + 2 2h(Z)

lin general this would be a set of random variables, but in all the considered cases, the set
contained only one element
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When restricted to Z ' Af(O, v), the Entropy Power Inequality reduces to the

following.

Lemma 8.

arg min h(X + Z) A (O, s), Vv, s > 0.
X: h(X)=½ log 27res

Lemmas 6 and 9 together imply

Lemma 9. Let X JAf(0, s), then

arg min h(X + Z) - h(Z) N,(O, v), Vv, s > O.
Z: Var(Z)=v

Which implies that for Xg -- K(O, s),

arg min I(Xg, X g + Z) Af(O, v), (6.3)
Z: Var(Z) <v

i.e., the worse possible additive noise, when considering Gaussian inputs, is Gaussian

as well. For additional treatments of these problems, cf. [7].

6.1.1 Motivation

We presented different variational properties of the entropy of a random variable under

the addition of Gaussian noise. Those properties are important not only for the study

of AWGN, but for many other kinds of channels having addition of Gaussian noise,

such as for example, Gaussian interference channels or Gaussian broadcast channels.

In these examples, more complex optimizations of entropic functions (with additive

Gaussian noise) may appear, e.g. in the two users symmetric interference channel,

treating interference as noise leads to a sum-rate lower bounded by

sup I(X 1,X 1 + aX 2 + Z 1) + I(X 2, X 2 + aXi + Z 2),
X1,X2 : Var(X1),Var(X2)<P

where a, P > 0 and Z 1, Z 2 , .A/(0, v). In this situation, the basic principles presented

earlier cannot be used directly to identify the optimal input distribution. Let Xg -
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A/(O, s), we know that

I(X,, Xf + aX 2 + Z 1) = h(X g + aX 2 + Z 1) - h(aX 2 + ZI),

hence, choosing X 2 to be Gaussian would maximize the first term above, however it

would penalize the second term. And of course, the value of a comes into the picture.

If a = 0 the Gaussian distribution is optimal, and if a is very small, we expect this to

be true as well. In the interference channel, these kinds of conflicting situations are at

the heart of the problem and we would like to acquire a better understanding of them.

Finding a way to quantify the interference, as noise, or as information, is a crucial

point in the understanding of this channel. Analyzing the structure of the input

distribution of the sum-rate under different assumptions is just a first cut analysis. It

also serves as a good illustrative problem for more general problem encountered in the

interference channel. The following questions are relevant for these considerations.

Let X g - .(O, s). If we add an independent Gaussian noise Z to Xg we get a

Gaussian random variable, which has maximum entropy over all input distributions

having variance s. Let us say that we can now perturb a little bit X', and let us

denote by Xg the perturbation. Which "direction" preserves a variance of s and

makes Xg + Z looks less or more Gaussian, i.e., minimizes or maximizes the entropy

of Xg + Z? And if we now have to move from a fixed divergence distance, which

direction makes Xg + Z have maximal or minimal entropy?

6.2 Localization and Hermite Transformation

We start by adopting a different notation for the results of previous section.

Definition 28.
1 _x a))

2

ga,s(x)= e 2s a, xI R, s E +

and

gs(x) = go,().
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We denote by Md(R) the set of densities on R, i.e., positive integrable functions

integrating to 1 on R.

Definition 29. The Divergence between p, q E Md(R) is defined by

D(pJJq) = p(x) log.p() dx,

if Supp(p) C Supp(q), and infinity otherwise.

From now on, we adopt the convention 0 log 0 = 1 and we assume that in the

following, p E Md(R) is such that the quantities of interest are existing (which is true

for the choices of p we will make later). We will use the notation

Var(p) = jp(x)(x - yp(y)dy)2dx.

Note: for p with Var(p) = s,

h(p) = h(gs) - D(plIgs).

Hence lemma 6 is equivalent to

Theorem 11.

arg min D(p*gvlgs,*g,) = go,,, Vs, v > 0. (6.4)
p: Var(p)=s

Definition 30. Let

(K, L), = K(x)L(x)g,(x)dx

and let L 2(gs; R) be the set of real measurable functions L for which |ILIg,, is finite

(i.e., L2g, is Lebesgue integrable). Let Mo(g , ) = {L : R -- IRI fR L(x)g,(x)dx = 0}

and

Mio(g,) = {L : R I R ' L(x)g,(x)dx = 0, inf L(x) > -oo},
JR xER

and let L 2 ( •MO (g), g8) = Mo(gs) n L2 (gs; R). Finally, let P(g,) be the set of all real

136



polynomials in L2((Mo(gs), gs) and let

D(gs) = L2( o( s), g) gn {L : lim -1 (L)g,(x)L(x)dx = 0, L3/ 2 < o}
E\O -E

where De(L) = {x E RI - 1/e < L(x) < 1/E}.

The reason for which we introduce these different sets is the following. For E <K 1,

we have that g,(1 + eL) E Md(R) as long as L E M•(9S). Hence lMo(g8 ) is our sets of

possible directions. In the discrete setting, we did not have to worry about anything

else to carry out our approximations, but here it is of course different. If we aim to

make use of the approximation D(g,(1 + eL)lg,) = c2 L 2 + o(E2 ), we definitely

need L E L 2(gs; R). If L is also polynomial, we will see that no further assumptions are

needed. More generally, L E D(g,) allows the approximation. Moreover, we will see

that for any v > 0, Mo0(g,) and L2(gs; R) are closed under the mapping L - gL * g,,

and so is L 2(• o(gs), g.). The first constraint added in D(g') is also closed under this

mapping, however, we could not proved that the second constraint, i.e. IL3/2 11 < 0,

is closed under Gaussian convolution. It may be that this constraint is not necessary,

or is closed under this mapping. We actually did not try to check this, since for the

application we have in mind, this is not relevant.

Example: sin(x), x2 - 1 are example of valid directions in D(g8 ).

The following result is an analogue of the result in (2.6).

Lemma 10. For L E D(g,),

D(gs(1 + eL) g8 ) = E21LL 12 O (2). (6.5)

Proof.

D(g,(1 + eL)|lgs) = gs(x)(1 + EL(x)) log(1 + EL(x)).

However, if ILL is not bounded, not matter how small e is, log(1 + eL(x)) may not

be well approximated by its taylor expansion for all x E R. More precisely, it is only
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when x E De = {x ER - 1/e < L(x) < 1/e} that log(1 + eL(x)) = eL(x) - E
2 L(x) 2 +

o(E2L(x) 2). Hence,

D(gs(1 + eL)lg)) JD g,(x)(1 + EL(x)) log(1 + eL(x))dx

+"J g,(x)(1 + eL(x)) log(1 + eL(x))dx
CDC

= JD g(x)[1 + eL(x))(eL(x) - e2 L(x) 2/2 + o(e 2L(x) 2)]dx

+ j g,(x)(1 + eL(x)) log(1 + eL(x))dx

g,(x)[eL(x) + e2 L(X)2 + o(E2L(x)2 )]dx

+ J g(x)(1 + eL(x)) log(1 + eL(x))dx

By the Lebesgue dominated convergence theorem, since I Ll s, A IL3 /211 s < oo, we

have
lim 1 D' 122

rn- ID., D(X)gs(X)e 2L(x) 2dx = -IILIl2
E\a\6 2 2 J. 2 g8 )

and

lime \o0 lD. (x)g2(x)o(E2L(x) 2)dx = 0.

So we have to show

lim 1 [j g,(x)eL(x)dx +
E\0 " DeY DI g9(x)(1 + eL(x)) log(1 + eL(x))dx] = 0

DC

Since L E D(gs), we have

JDCg,(x)L(x)dx = - JD

which is a o(E2) by assumption on L. Finally,

JDC g,(x)(1 + eL(x)) log(1 + eL(x))dx <Cg

g,(x)L(x)dx,

g,(x)(1 + eL(x))eL(x)dx,
JD

and using the assumptions on L, we have lim\0o fDC g8(x)L 2 (x)dx = 0 and the last
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term is a o(e 2) as well.

Lemma 11. For L E D(gs) such that II (•8V )3/2Is+ < 00, we have

D(g,(1 + eL) gjlg8 * gv) = 1 2 gLg s+v + 0( 2).IIS ls++~e)

Proof. This lemma is a consequence of the first lemma if we can show that gL* is
9s+v

in D(g,+,) given that L E D(g,). But

9 (gL * g,)(x) g+(x)dxg,+,((x)dx

where equality (6.6) uses Fubini's theorem, since

Igs(t)L(t)g,(x - t)I • (L(t)2gs(t) + gv(x - t)2g-(t)),

and the right hand side of above inequality has a finite integral.
SgL*gv E Mo(g,+,) and it also belongs to •o(gs+,) since

This shows that

(gsL * g,)(x)

gs+v(, x)
> inf L(y) (g8 * gv)(x)

Y- E gs+v(x)
= inf L(y) > -oo.

yER

In order to prove that
gL * gv 2

s+v < 00

given that

we use the following result (for which the proof is provided in lemma 20 below): there
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= fR(gL**g)(x)dx

= JR gs(t)L(t)g,(x - t)dtdx

= JR gv(x - t)dx g,(t)L(t)dt

= R g(t)L(t)dt = 0

(6.6)

IILI 12, < C00,



exists ak E R, k > 0, such that

L = ~k fIs

k

where the /I 1k are orthonormal polynomials with respect to gs. Moreover,

[S * ] *
gs+ H9s+v

S )k/2
s + V fSkvk

Therefore, since ca2k!S- < a k!, for all k > 0, we have that

g, L * ge 12 2II <Lg ,, • ILI1 < 00,
gs+v

where the inequality is strict unless L is a constant. The condition on the third power

is given as an assumption, so we do not have to check it. Finally, we need to show

that

f 1E<L( (gL * g)(x)dx = o(E2),

which holds in a similar fashion as for previous checks, using our assumptions on L,

Fubini and the monotone convergence theorems.

We know that for p E Md(R) with Var(p) = s, we have

h(p) = h(gs) - D(pllgs).

Therefore, statement (6.4) in theorem 11, can locally be expressed as

Corollary 3.

arg
riL * g, 2mm in

LEM*O(R) a.t. g9s+v 9+
(1,L)gs =(x,L)g, =(

2
,L)gg =0

= 0, (6.7)

where 0 means the constant function 0.

This is a corollary of (6.4), since it just means that the Gaussian distribution is a
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local minimum of the divergence function that we are optimizing.

Concerning the entropy power inequality, we can separate the local problem in

two stages and prove it locally with previous expansions.

If we express above quantities in terms of the Lebesgue measure A instead of the

Gaussian one, we have

D(gs(1 + EL)lg s )

(K, L),s

gL * g 2

9S+v 9s+v

= J| LI|A

= (vg-K, Vg-L)A

= L Lgv9--

Proposition 20. Let

T: LE L2(9s; R) -
/-LL * g( (g R),

TtTL = AL, L 0

holds for each pairs

(L, A) E { (Hs], k k0s +V
where

Hk(X) = (_)keX2/2 dk ex 2/2
dxx

k > O, x R

and

H[s](x) = Hk(x/).

These polynomials are the Hermite polynomials (for a Gaussian distribution having

variance s).

This proposition is proved after the following two results.

Theorem 12. For any s > 0, { I}k>o is an orthonormal basis of L 2(g9; R).

A proof of this theorem can be found in [31].

properties of Hermite polynomials.

We also refer to [15] for other
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Since Hi] 1, previous theorem implies in particular that E•' e Mo(gs), for any

k > 0. Moreover, it is easy to check that H1, respectively H2 perturb a Gaussian

distribution into another Gaussian distribution, with a different mean, respectively

variance. It is for k > 3 that Hk perturbations are no longer Gaussian distributions.

Proposition 21.

8  * = S )k/2fe+v, Vs v > 0, k> 0.
9s+v s + v

Important Fact: Propositions 21 is an important feature in addition to propo-

sition 20. It tells us that the eigenfunctions of T acting on L 2(g8; I) are naturally

mapped into the eigenfunctions of T acting on L2(g,+v; R), since the kth eigenfunc-

tion is mapped to the kth eigenfunction contracted by the kth singular value. This

is illustrated in figure 6-1.

Proof. We need to show

s+v

We prove this by induction. For k = 0 the statement is trivial since /oS] - 1. Let us

assume that this is true for k; by taking the derivative on the left hand side, we have

-- [gkfl] * g  = .(g8 k") g, (6.12)

however, by definition we have Hk• = -Hk(x/s) where

Hk(x) = (-1)k eX2/2 dke 2/2
dýXk

hence we get

1k dk e2/2
g'!,l](x) = /2

1427r7 dyk
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*gv

Figure 6-1: Hermite eigenfunctions correspondence

and

g0-kAgH~lk
k + 1 /9= -V-- -g• ÷ .

Therefore, the derivative of the left end side of 6.11 is

/ik g÷fIks 1 *[V 8s k+

and using 6.13 again, the derivative of the right hand side of 6.11 is

- k + s1 +Hs+v]
s+v

putting the equality back together, we proved the induction. O

This result is illustrated in figure 6-1.

Proof of proposition 20: using proposition 21, the claim of this proposition is
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equivalent to:

g S+V] = s )k s]. (6.14)

We proceed by induction, and again for k = 0 the result is trivial. Let us assume that

the equality holds for k. With the arguments of previous proof, we can check that

ax k+1 k I

using this identity in 6.14, we prove that the derivative of our claims holds for k + 1

(and any x),

_ _ t +v] __ i k+1 a R_[8 ]
g9*x k+1 ax k+1'

and since, for any k, no constant can be added in 6.14, we can remove the derivative

and the induction is proved. O

We will now perform a local analysis of the input distributions for the Gaussian

interference channel; instead of using the VN transformation that brings the channel

around very noisy distributions (defined in the discrete setting), we will bring the

input distribution around Gaussian distributions. Using previous results regarding

the Hermite basis, we consider the Hermite polynomials for the directions to perturb

the Gaussian distribution. This process is referred to the Hermite transformation.

6.2.1 Optimal Input for Interference Sum-rate

We consider a memoryless additive white Gaussian noise symmetric interference chan-

nel, which is described by

Yi(i) = x1 (i) + ax 2(i) + Zi(i) (6.15)

Y2 (i) = x2(i) + ax(i) + Z 2(i) (6.16)
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where i = 1, 2,... denotes the channel uses. The inputs alphabet is the real line,

i.e., x1 (i),x 2(i) E R for any i > 1 and the inputs are subject to an average power

constraint:

S xk(i) < P k k = 1,2.
i=1

The random process Zk(.) is (homogeneous) memoryless for k = 1, 2, with marginal

distribution ZI(1), Z2(1) ' AfV(0, 1) and Z1(.) is independent of Z2 (.). The factor

a IR+ is called the interference coefficient.

The capacity region of the inference channel is an open problem. It has been solved

in several particular cases. We know that for small values of the interference, treating

the interference as noise and using the interference channel as two independent AWGN

channels is optimal for the sum-rate (cf. [3]), and for an AWGN, Gaussian random

code books are optimal, as we saw in previous section. We also know that for strong

interference, i.e. a > 1, the optimal coding scheme requires the decoding of both

users messages at each receivers, cf. [27], [28]. It is then tempting to believe that

there are two transitions happening when a varies. For more details regarding the

interference channel cf.[6],[18],[13] and references therein. The first regime should be

when the other message is ignored and treated as noise, then there should be another

regime where we want to partially decode the other message, and finally a regime

where we completely decode the other message.

In this section, we would like to examine for which values of the interference are

the independent Gaussian code books optimal or suboptimal for the sum-rate, i.e.,

we are interested in finding a threshold at which this switch happens. This will tell

us where is the capacity expressions found in [3] no longer valid and it points out

an interference value where "a transition" happens. This serves as a good illustra-

tive problem to introduce the technique developed in previous section, but the result

presented -in this section for the single-letter case can generalize to the multi-letter

case. Therefore, a transition where interference should not be treated has indeed been

found with this technique. Other problems concerning the interference channel are

currently being investigated with the Hermite transformation.
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The sum-rate optimization for the single-letter case is given by

max
X 1 LX 2 s.t.

VarX 1 = VarX 2 =1

I(X 1; X 1 + aX 2 + W1 ) + I(X 2; X 2 + aXi + W2).

Proposition 22. Let al 0.68 be the only real root of a6(2+a 2)3 -(1-a 3)2 ( +a2 )3 =

0 and let a2 = ('21 )½ - 0.79. If a < al, gl x gi is a local maximizer of (6.17),

otherwise gl x gl is not a maximizer. If al < a < a2, 91 x g9 is at a saddle point and

if a a2 , 91 x gl91 is a local minima of (6.17).

This proposition can be generalize to the multi-letter case, but slightly more te-

dious calculations dealing with multivariate Gaussian distributions are required. How-

ever, the essence of the proof is contained in the single-letter case, hence, we focus

here on this case.

Corollary 2. If a > al the sum-capacity C

interference as noise) is not tight.

log(1 + i~) (achieved by treating

It has been shown in [3] to be tight till ao0  0.42 solving ao + a3 = 1/2.

Proof. Note that

I(X; Xi + aX2 + W1) = h(X1 + aX2+ WI) - h(aX2 + W1)

h(X 1 + aX 2 + W1)

h(aX2 + W1)

= h(X± + aX + W1 ) - D(Xi + aX2 + WIjjX + aX + W1)

= h(aX2\ + WI) - D(aX2 + W IIaXg + W 1).

We now proceed to an input localization. Let

pi = g1(1 + eLi), i = 1, 2,

where

(1, Li)g, = (x, Li ,= = (x2, Li)gl = 0 and IILi i, < oo.
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Then,

D(Xi + aX2 + Wl I |X + aX2 + W1 )

D(gl(1L + eL1) * ga2(1 + eLa)) * gl91gl * ga2 * gl),

where

Vi = 1,2, x E R.

g1(1 + eL1) * ga2(l + L(a)) * 1gl

= g1*g2 * g + e(gIL 1* ga2 * gl + 91 * 9a2 2L * 91) + 62 glL1 * ga2L a) * gl,

hence,

D(gl (1 + eLi) * ga2(1 + ELa)) * g I 1g * g2 * g)

2 g1L1 * ga2*91 gl + gl * ga L a) * gl2

2 91 ga * 91
91 *

9 a2 *91

Let us now consider

il ZbkI-,
k>3

L2 = ZCk k1]

k>3

where the largest non-zero coefficient must be even in both expansions and -k>3 b2 V

k>3 c < c00. From lemma 21,

g1 *92 [a] *2]

91* 9ya2 * gl
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But,

L a)(x) = Li(x/a),

+ o(e2).

(6..18)

(6.19)

ga [a2]

ga2+02

Therefore,

( 2 )k/2/ [a2+p2]
+2 P k

9l1 * 9a2 gl
gl * ga2 * gl

1 )k/2[2+a
2 ]

2 + a2
a

2  ,k/2 _[2+a 2

2 + a2 k



glL 1 * ga2 * gl

91 * 9ga2 * 91
S bk 1 )k/2H[2+a

2]

k>3 2 + a

and, since L(a) - k>3 CkHka2]

91 * a2L a) *

91 * ga2 * gl

S ck( 2  ) k / 2 [ 2+a2]

k>3 2 + a

Using (6.20), (6.21) and

(ft[ 2] - [aQ a 2`Hk I H11 )92 .. 2 o

we can express (6.19) as

E2 E (bk + Ckak) 2

k>3

1
(2 + a2)k

Similarly, we get

D(aX2 + WllaXg + W1 )

2

S c( 1  a2 )k + o(E2).
k>3

Finally, from (6.22) and (6.23), we have

I(XI; X + aX 2 + W) - h(Xg + aXg + W ) + h(aXg + W1 )
1 2 + a2

I(X 1;X + aX 2 + W 1) - log( 2)
2 1 + a

= D(aX 2 Wi aX +Wi) - D(XI +aX 2 + WIJX +aX +W)

e2 2 (a2 k (bk + ckak )2 2)
2 ICkk( + a22 (2 + a2)k +

k>3 L
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implying

(6.20)

(6.21)

Vk, > 0,

(6.22)

= D(ga2(1 + + EL)) * gl ga2 * gl)

9ga2La) * g 2

9 a2 * gl
ga2*

9
1

+ o(e2)

(6.23)



This gives us the following localized problem

sup
{bk}k>3,{ck}k>3

(b
k>3

) ( a2 )k+ ck 1 + a2
(bk + Ckak) 2 + (Ck + bkak)2]

(2 + a2)k

where the coefficients must satisfy the conditions imposed earlier. We have

(bk + ckak) 2 + (Ck + bkak) 2

(2 + a2)k

(b2 + c2)a 2k 4bkckak + (b2 + c2)(1 + a2k)

(1 + a2)k (2 + a2)k

a 2 k S a
(2+a 2

(2+a) 2k
(2 + a2)k

bkck

Hence, we have the following optimization

sup E
{bk}k>3{Ck}k>3 k>3

1 2a2 )k+l a)
1+ a2k (b2

(2 + a2)k k + c2) -4 (4a 2 )bkCk}
42 + a ,

(6.24)

The quadratic function

(b, c) E R2 2 y(b2 + c2) - 26bc,

with 6 > 0, is always 0 at (0, 0), positive if 7 65, negative if y7 < -6 and is a saddle

if -6 < 7 < 6. One can check that

( a2 )k

1+ a2J

1 + a2k 1
(2 + a2)kj

ka

2 + a2

are increasing functions on [0, 1] for each k > 3, with a single zero ao(k) which

decreases, so that the smallest zero value is achieved for k = 3 at

ao(3) = 0.6796410242,
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which is the only real root of the polynomial

a6(2 + a2)3 - (1 - a3 )2(1 + a 2)3 .

Successively, we have ao(k) as the only real root of

a2k( 2 + a2)k - (1 - ak)2(1 + a2)k,

with

lim ao(k) = ( ) = 0.7861513770,
k-oo 2

which is the largest root of

a4 + a2 - 1.

This means that when a < 0.6796410242, the product of Gaussian distributions,

i.e., L 1 = L2 = 0, is at least a local maxima (we know it is a global maxima till

0.42, from the paper [3]). When a > 0.6796410242, we can have terms in (6.24)

that are strictly positive, the higher in this interval the more positive terms we can

have. In order for this to happen, we can not take bk = Ck, but bk = -Ck. The

first Hermite polynomial that leads to a positive value for ao(3) = 0.6796410242 is

3a. However, Rt3 is not a valid direction. But for a strictly larger than ao(3), we

can add an arbitrarily small portion of H4 to H3, in order to get a valid direction

that is achieving a higher sum-rate than the Gaussian distribution. Hence, the fact

that certain directions are not allowed in order to satisfy the positive constraint of

the perturbation is virtual in this proof, since we can always add a infinitely small

portion of an even Hermite polynomial of higher degree to make the perturbation

valid. Finally, when a > 0.7861513770, there exists a K such that no matter how we

choose the bk and Ck for k > K, the terms in (6.24) are positive. [O

All results presented in this chapter admit generalizations to the multi-letter (vec-

tor) case. The results developed in this section also give simple "local proofs" (some-

times even tightened versions) of the entropy power inequality, data processing in-
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equality, monotonicity of entropy and other similar results. It also allows us to ap-

proach problems having an additive noise which is slightly non-Gaussian. Finally, it

provides a strong tool to find counter-examples, which is particularly useful for com-

plex problems dealing with interference or broadcast Gaussian channels. This work

is being pursued.
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Chapter 7

Ergodic MIMO Channels

We consider ergodic, coherent, MIMO channels. We characterize the optimal input

distribution achieving capacity for various fading matrix distributions. First, we de-

scribe how symmetries in the fading matrix distribution and the constraint set are

preserved as symmetries in the optimal input covariance; this will allow us to charac-

terize the structure of the optimal covariance matrix and in some cases, it will fully

determine this matrix. We will see that group structures and the notion of commu-

tant appear as key elements. Second, we investigate the Kronecker model, in this

case we will show how an asymmetric structure in the problem is also preserved in

the optimal input structure, leading to a new water-filling situation.

Notation:

We define the following subsets of the n x n complex matrices M,(C), n > 1:

H(n): the hermitian matrices,

H+(n): the hermitian positive semidefinite matrices,

H*(n): the hermitian positive definite matrices,

U(n): the unitary matrices,

11(n): the group of permutations matrices,

C(n): the group of cyclic permutations matrices,

E(n): the group of diagonal matrices with {-1, +1} elements.
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7.1 Channel Model and Capacity

We consider a channel in which a vector input x E X = Ct , t Ž 1, is received as

a vector output y E y = Cr , r > 1, under the following assumptions. At each use

(i 2 1) of the channel:

* an r x t matrix Hi is drawn from an ergodic process having marginal probability

measure IH,

* an r x 1 vector ni is drawn i.i.d from a complex circularly-symmetric Gaussian

(C.C.S.G.) random variable of covariance matrix K, independently from the

Hi's,

* the transmitter, without knowing the Hi's and ni's, sends xi,

* the receiver gets yi = Hixi + ni together with Hi (and hence the term "coher-

ent").

Moreover, the inputs {xi} are constrained in the following way. If the receiver

and transmitter agree on a code book C = {c(1),...,c(M)} C X", n 2 1, then the

code words must satisfy: _ En=1 c(m)ic(m)* E Dr, Vl < m < M, where Dt C H•(t)

is a given compact set (we use H (n) to denote the set of hermitian positive definite

matrices of size n x n).

Let C be the capacity of this channel under this general constraint. Then, denoting

by X a random vector (r.ve.) in Ct, we know from standard information theoretic

arguments that

C(pH, Ct) = max I(X; Y, H)
XECt

where

1. Ct = {XIEXX* E Dt} and Dt C H*_(t) is a compact set

2. N (N) fcr(K) with K E Hý(r)

3. H is a CrXt-random matrix with probability measure PH,
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4. (X, H, N) are mutually independent,

5. Y=HX+N.

Because Ct is entirely determined by Dr, we will note from now on

C(AH, Ct) = C(H, Dt).

A particular example of constraints set is when Dt = {A E H (t)|trA < P}, for

a given P E R. This is equivalent to asking for EX*X < P and is called the

total power constraint. An individual power constraint can also be considered, i.e.

when EIXij2 < Pi, for a given Pi E R, 1 < i < t, then the set Dt would be

{A E H_(t)|lAj < P, 1 < i < t}.

When t = 1, we maximize the mutual information over random variable (r.v.) X

having variance in a compact set of R+, with maximal value, say, P E IR+. In this case,

the optimal input is known to be a C.C.S.G. r.v. with variance P, no matter what aH

is. More generally, one can show that in the vector setting, the Gaussian distribution

is still optimal, but an optimization remains to be done on the covariance matrices in

Dt; the result of which may depend on the distribution IH. In the case where H has

i.i.d. C.C.S.G. entries and Dt is the set of covariance matrices with trace bounded

by a given value P E R (total power constraint), it has been shown in [321 that the

optimal covariance matrix is P It and the capacity is linearly increasing with min(t, r).

Questions:

1. The solution found when H has i.i.d C.C.S.G. entries is not surprising, in the

sense that there are enough symmetries in the problem so that we expect a symmet-

ric solution. But what does enough symmetry mean? What can we say when we have

different symmetric structures, such as for example when we only have i.i.d entries?

In other words, what are the relevant concepts of symmetry and how can we convert

them into a specification of the solution?

2. What can we do when we have asymmetric structures?
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We will develop some algebraic tools and present a result that gives an answer to the

first question. We will see how group structure and notion of commutant comes into

the picture as key features. This result is also applicable to other functionals than the

capacity of MIMO channels. We will then investigate the Kronecker model (defined

later) to get an understanding of the second question. Finally we will evaluate the

capacity in several cases and show that it linearly increases with the dimension of the

channel in several settings, independently of the law of the fading matrix entries.

Definition 31. We define the optimal inputs by

Xopt(PH, Dt) = arg max I(X; HX + N, H),
XECt

where arg maxxEc, f(X), for a real function f, denotes the set of the elements x

satisfying f(x) > f(y), Vy C Ct.

We now use the assumptions we made on the channel to give a more specific expres-

sion for the capacity and the optimal inputs. The fact that the Gaussian distribution

maximizes the entropy under a covariance constraint leads to the following result.

Proposition 23. Let

b: Q E Dt H-- EP" log det(I + K-1HQH*) IR, (7.1)

which we call the mutual information function. Then, according to previous definitions

and assumptions, we have

Xopt (PH, Dt) - •Ct (Qopt),

where

Qopt(PH, Dt) = arg max V(Q)
QEDt
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and

C(pH, Dt) = max O(Q).
QEDt

7.2 Symmetries

7.2.1 Quantifying Symmetries

Assume that the channel has the same output distribution when sending any input

X or a permuted version of it, say, PX, where P is a permutation matrix.

Y = HX + N - Y = H(PX)+ N.

Then, we talk about a symmetry of the channel with respect to that transformation

P. But from previous equivalence, this is to say that

(d)
HP - H.

Remarks:

1. This type of invariance has a natural group structure: assume you have the
(d) (d)

invariance HPj H for a set of matrices Pi, then clearly HPiPj H and
(d)

if Pi is invertible HP-1 ( H. Thus this invariance still holds for the group

generated by this set.

2. In order to compare X and PX, we need to ensure that PX is satisfying the

considered contraint too, i.e. its covariance matrix P(EXX*)P* has to belong

to Dt as well.

3. Groups other than the permutations might be of interest, for example if we want

to consider situation where the symmetry is expressed by keeping the channel

equivalent whether we send an input X or a modified version of it where some

component's signs have been flipped, then the group of diagonal matrices with

1 and -1 is the appropriate group.
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These remarks motivate the following definitions.

Definition 32. Let G be a group in M,(C).

(d)
1. A random matrix is G-invariant (on the right) if Hg a H, Vg e G.

2. A set of matrices D C Mn(C) is invariant in G-conjugation if gQg-1 E D,

VQ E D,g E G.

3. A function I : D -• R is G-invariant if D is invariant in G-conjugation and if

IF(gQg-1) = fi(Q), VQ E D,g E G.

Note that only subgroups of unitary matrices are of interest regarding our MIMO

channel setting, because the mutual information function evaluated at Q depends

on the distribution of HQH*. Examples of functions which are invariant in G-

conjugation for unitary subgroups are all functions of the form x " Ef(MxM*)

where f is any measurable function and M is a random matrix that is G-invariant on

the right. The reason for which a "conjugation" invariance for unitary subgroups is

relevant in our MIMO settings is a consequence of the fact that we are working with

a second order moment constraint, which implies that the mutual information has

precisely the above described form (cf. (7.1)). Finally, examples of groups in M,,(C)

are U(n), which is the largest group we will consider, and its subgroups E(n) and

II(n) (with the usual matrix multiplication), defined as:

1. U(n): the unitary group of size n x n,

2. II(n): the group of permutation matrices of size n x n,

3. E(n): the diagonal matrices group with 1 and -1 of size n x n.

We now gave a definition to quantify symmetries in the problem, through the

group of invariance of H and D, or equivalently of 04, the question is then: how do

we use this invariance in order to get knowledge on the optimal input? In the next

section we will see that this is done through the commutant.
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7.2.2 Invariant Structures

Definition 33. The commutant of G is defined by the algebra Comm(G) = {A E

Mn(C)|Ag = gA, Vg E G} = {A E Mn(C) A = gAg-' , Vg E G}.

We start with a trivial observation linking the commutant and G-invariant func-

tions.

Lemma 12. Let G C Mn(C) be a group and D C Mn(C). Let I : D --- IR a

G-invariant function having a unique maximizer Qopt. Then Qopt E Comm(G) n D.

Proof. We have V)(Qopt) = O(gQoptg-1), Vg E G. We conclude by the uniqueness of

the maximizer. Ol

Note that the bigger the group, the smaller the commutant, which is what we

expect in order to exploit symmetries.

Some inequalities can be achieved by requesting further hypotheses, namely if the

group G is compact, the set D is convex, and the function T is strictly concave, then,

denoting by G a random variable with values in G and probability measure PG on G,

we have by Jensen's inequality

EP" (WGdG- ' ) < (dpG)

where dPG := EPGGDG- 1 and since qI(GdG- 1) = '(d), Vd E D, the last inequality

becomes

(d) < T (dPG)

Note that if QG denotes another probability measure on G, (dPG)QG = dPG*QG, with

PG * QG = fG(Th)*QGPG(dh), where (Th)*QG(F) = QG(Fh- 1), for IF e G. Further-

more, PG * UG = UG * PG = UG, where UG denotes the normalized Haar measure on

the right on G. Therefore we have

S(d) < T(dPG) < T((dPG)UG) = I(dUG),
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which gives, by the last inequality, an estimate dUG belonging to Comm(G) n D,

agreeing with the previous lemma, as TII is strictly concave.

Invariant Structures in MIMO

We rewrite the previous observations in our MIMO channel context.

Proposition 24. Let a MIMO channel be as defined in the introduction and let G be

a subgroup of U(t). If

* the constraint set Dt is invariant in G-conjugation,

* the fading matrix distribution 1 gH is G-invariant,

then

Qopt E Comm(G) n Dt.

Proof. Observe that under these assumptions, the function V in (7.1) is G-invariant,

moreover it is strictly concave on the set of positive definite matrices, thus lemma 12

applies. O

Also note that if G1, G2 are two groups in U(t) and if Dt is invariant in G1-

conjugation whereas IUH is G2-invariant, then

Qopt E Comm(G 1 n G2) n Dt.

We will now see some specific applications of previous proposition. The cases that

we will consider are dealing with the following commutants:

Comm(E(n)) is the set of diagonal matrices in Mn(C),

Comm(In(n)) = {aIn + ,Jnla, E C}, where Jn = 1n ×n ,

Comm(U(n)) = {alEa E C}.
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Corollary 4. Total power constraint

For a given P E R+, we consider Q E Dt = {Q C H_(t) tr(Q) < P}. If pH is

invariant in G-conjugation for a subgroup G of U(t), then Qc E Comm(G) n Dt.

Simply observe that Dt is invariant in U(t)-conjugation. Two interesting cases

of subgroups of U(t) are II(t) and E(t). From what we saw in the examples of the

commutant, if we consider a distribution UH invariant under E(t), then Qc is diagonal

and if it is invariant under -I(t), then Qc will have the same value for all components

inside the diagonal (- if one works in Dt) and will also have the same value for all

elements outside the diagonal, as long as it stays a positive definite matrix. Examples

of E(t)-invariant random matrices are matrices with independent symmetric entries

(symmetric means that Hij (d) -Hij) and examples of II(t)-invariant ones are matri-

ces with i.i.d. entries or jointly Gaussian entries having a covariance matrix of the

form alrt + 3 Jrt.

Corollary 5. Still considering Q E )t, if H is Hl(t)E(t)-invariant, which is for
(d)

example the case when Hij are i.i.d. and H -Hi V1 < i < r, 1 < j < t, then

This is a particular case of corollary 1, where we consider the product group

H(t)E(t) C U(t) containing all permutations matrices with +1 and -1. In this

case we have that Comm(H(t)E(t)) contains only multiples of the identity and since

Q e Dt has normalized trace, the result follows. Note that we did not assume that

the entries of H are Gaussian (which would be a particular case of this) in order to

get Pt as a maximizer. Also note that the group II(t) could be replaced by C(t),

the group of cycling permutations, and we would get the same conclusion. Generally,

this will be true as long as we have a group of invariance G such that Comm(G) is

reduced to the multiple's of the identity.

Corollary 6. Local power constraint

If X is constrained by E Xij2 < Pi for given Pi E R+, V1 < i < t, and if H is
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E(t)-invariant, then Qc = diag(Pi,..., Pt).

The constraint E|X•X2 _ Pi implies that Q E Dt = {Q E Hg(t)jQi• < Pi,V1 <

i < t}, now we no longer have that Dt is invariant in U(t)-conjugation, but we still

have, for example, invariance in E(t)-conjugation. Therefore, if H is E(t)-invariant,

the optimal covariance matrix will be commuting with this group, which means it is

diagonal and thus the optimal diagonal elements are the corresponding Pi's (we can

increase 04 by increasing the trace).

Conclusion: As it has been illustrated in previous example, the problem of symme-

tries should be generally approached in the following way: first identify the invariance

property of the domain Dt in which we are working (we saw examples of total and lo-

cal power constrain (see corollaries 2 and 3), several intermediary cases are possible),

then identify the invariance property of the fading matrix distribution PH, once we

have these two groups of invariance, we know that we can restrict our search of Qc

to matrices commuting with these groups and staying in Dr. Which means that the

commutant is summarizing the information given by the symmetries in the problem.

We saw that in some cases (see corollary 2) this allows us to fully specify the opti-

mal input covariance matrix, whereas in other cases, it only reduces the dimension

of the optimization problem (such as for example in corollary 2, when we have a

E(t)-invariance, we are left with t degrees of freedom for Qc instead of t2  at the

beginning).

7.2.3 Asymptotic Capacity

In [32], it is shown that the capacity is linearly increasing with the dimension of

the channel, more precisely with min(t, r). Although we showed that the covariance

matrix !I was still optimal in a more general setting than in the i.i.d. Gaussian fading

one, we may now wonder whether the linear increase of the capacity can be lost if

we drop this assumption. The following result confirms that in several settings, this
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property is still preserved.

Definition 34. Let M be a matrix in H+ (n), the set of hermitian positive semidefinite

matrices of size n x n. We define the EDF (empirical distribution function) of the

eigenvalues of M, also called the spectral distribution of M, as

P\(M)=-ZA M n
i=1

Proposition 25. Let H = AW, with W having rxt i.i.d. symmetric entries (variance

1) and A E H+(r) admitting a limiting spectral distribution VA. Then, defining m =

r A t, n = r V t and 7 = n/m, we have

lim C(H, Dm) = > 0,
m-400 m

where •• is a constant of the form f log(1 + Px)dpA,A•(x) and 11A, is a probability
measure depending on VA and r.

Proof. This is a consequence of corollary 2 and a theorem of Marchenko and Pastur

(cf. [22]). O

In particular, if r = t and A = I, then /p,1 = 1 Il[o0,4](x)dx.

The capacity gain is not the only great feature of MIMO channels, different kinds of

gains concerning MIMO channels are investigated in [33].

7.2.4 Bringing the Symmetries

In some situations, a symmetric structure is not clearly existing, but with an appro-

priate transformation one can bring some symmetries back into the problem. We now

give two examples of how to carry out such a procedure, they are both based on the

following simple observation.

Lemma 13. Let I : D -+ IR with a unique maximizer Qopt and such that D is
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invariant in G-conjugation. Then, for any M E G, we have

M*QoptM = arg max l(MQM*).
QED

We will use this simple "change of basis" in the following two sections.

The Kronecker model

We define the following specific MIMO channel.

Definition 35. The Kronecker model

We consider the constraint set Dt = {Q e H*(t)Itr(Q) < P}, and H = AWB, where

* A G Mr(C) non-zero,

* B E Me(C) non-zero,

* W is a r x t random matrix being U(t)-invariant on the right.

In this case, the mutual information function 0 is given by

Q E D H 14(Q) = IElog det(I + K-1AWBQB*W*A*).

We now denote the SVD of B by B = UB diag(b)V', where UB, VB e U(t) and b E Rt+.

Using our previous lemma, we can choose M = VB, in order to get that

VZQoptVB = arg max O(VBQVA)
QED

(7.2)

The advantage of having to deal with the above maximization problem

Q " (VBQV )

is a E(t)-invariant function and thus we can restrict our maximization to matrices

being diagonal (with trace smaller than P). In other words, we showed the following

observations:
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Remark 1: the eigenvectors of Qopt are the right-eigenvectors of B and its eigenvalues

qopt = (q'pt, qtpt) are given by

qopt = arg max
qER+ s.t. -•-•=qi < P

E log det(I

+K-'AW diag(qlb ,... qb 2)W*A*).

Note that if the additive noise N is assumed to have covariance K = I and if W

is U(t)-invariant on the left too, then one can equivalently consider A to be diagonal

because det(I + MN) = det(I + NM), no matter what the matrices M and N are

(as long as the dimensions match).

So for this model, we have reduced the number of parameters from t(t + 1)/2 to t

by bringing a Z(t)-invariance, or simply by changing our problem in the right basis

at the transmitter and at the receiver. In the next section we will further investigate

this model.

The Ricean model

We define the following specific MIMO channel.

Definition 36. We consider the constraint set Dt = {Q E H*_(t)|tr(Q) < P}, and

H = A + W, where

* A E Mxt(C) non-zero,

* W is a r x t random matrix being U(t)-invariant on the right and on the left.

* the covariance of the additive noise N is K = I

In this case, the mutual information function 4 is given by

Q E D i-4 O(Q) = E logdet(I + (A + W)Q(A* + W*)).

We now denote the SVD of A by A = UA diagr^t(a)V* (a diagonal matrix of dimension

r A t completed with 0 to dimension r x t), where UA E U(r), VA E U(t) and
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a E IR_̂t. Using our previous lemma with M = UA and the formula det(I + MN)

det(I + NM), we can replace A by diagrAt(a) in the capacity expression. We now

claim that

Q -,- log det(I + (diagrAt (a) + W)Q(diagrAt (a) + W*))

is E(t)-invariant. In fact, although diag'At(a)+ W is not E(t)-invariant on the right, it

is E(t)-invariant in conjugation: for any matrices of the form Zi = diag(1,..., 1, -1, 1,..., 1) E

Mt(C), where the -1 value appears at the ith component, we can consider the matrix

ZirAt e Mr(C) which is equal to Zi completed with 1's if r A t = t and Zi truncated

if r A t = r. We then have

Z[̂ t diag(a)Zi = diag(a), V1 < i < t

and since the matrices Zi's generate the group E(t), we get that H is invariant in

E(t)-conjugation. Therefore, using the formula det(I + MN) = det(I + NM) we

can conclude for the E(t)-invariance of 40. In conclusion, we showed the following

observation:

Remark 2: the eigenvectors of Qopt are the right-eigenvectors of A and its eigenvalues

qopt = (q1pt, .., qpt) are given by

qopt = arg max E log det(I
q6R4+ s.t. Ei= qi<

P

+(diag(a) + W) diag(ql,..., qt)(diag(a) + W*)).

We conclude this section with the following result.

Proposition 26. For the ricean model with r = 1, we have Qopt = VA diag(qopt )V ,

where VA is such that AVA = (c, 0..., 0), ca = (=l A) and

o P-A P-x
qcJPt (A, I)t

t-' t-l

where A = arg maxo< x<p E log(l + x•a + w1112 + = EiZ=2  li 12).

Proof. We only need to check that the eigenvalues can take only two different values
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(the rest of the proposition is a direct consequence of previous expansions). The

reason for this is that in this specific case, the mutual information function

diag(q) ED F- E log(1 + ((c, 0, . . . ,0) + W))(diag(q))

(( 0,..., O)T + W*))

is not only E(t)-invariant but also rI(t)2:t-invariant, where fI(t)2:t denotes the group

of permutations keeping the first component fixed (i.e. the first column is (1,0,... , 0)

for any of these matrices). We also use the fact that the maximum must be achieved

for matrices having trace equal to P (as we can increase b by increasing the value of

the trace). O

7.3 Asymmetries

As we saw in last section, there are not always enough symmetries in order to fully

characterize the optimal input. For example, suppose that H = WB, where W has

r x t i.i.d C.C.S.G entries and B = diag(b), with b E R.t Then we know that the

optimal covariance matrix is diagonal but we do not know the value of the diagonal

elements. Now assume that bl < ... < b, can we then expect that the optimal

covariance matrix should preserve this ordering in some sense?

We will investigate the Kronecker model with H = AWB (cf. previous section) to

analyze these kinds of questions. We will present two propositions that will help de-

scribe the optimal input for such a channel. If the random matrix H were replaced by

the deterministic matrix B, we know that the optimal input covariance has eigenval-

ues qpt given via "water-filing" on the singular values of B (cf. [32]). Two particular

properties of the "water-filing" solution are the following.

1. Monotonicity: if bi > bj then q>Pt > qPt (with equality if b> = bj)

2. On/Off threshold: if bi+l is sufficiently bigger than bi, then the power of P

may consequently be divided amongst the t - i biggest components of b.
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We will see in the next two propositions that these two properties are preserved in

the Kronecker model.

7.3.1 Martini Filling

We start with the monotonicity result.

Proposition 27. We have

Qopt = VB diag(qopt) V

where qopt satisfies

qOpt 0, o1 qpt P

qOpt > qpt if bi > bj, and qOpt opt if bi = b3.

Note: If B = It and #w is G-invariant on the right with G <_ U(t), then Qopt E

Comm(G) n Dt.

Remark: This proposition says that the eigenvectors of Qopt are the right-eigenvectors

of B (which has been shown in previous section) and that its eigenvalues are mono-

tonically distributed with respect to the singular values of B.

In order to prove this result, we need a preliminary lemma. Let A1(M) < ... < A,(M)

denote the ordered eigenvalues of any matrix M E H(n) - we use H(n) to denote

the set of hermitian matrices of size n x n.

Lemma 14. Let n > 1, P E Hý(n) and H E H(n). We then have,

Ak(H + P) > Ak(H), Vk= ,...,n.

Proof. This is a corollary of a Weyl's theorem, which says that for any H 1, H2 E H(n)
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and k=l1,..., n,

Ak(H1) + Al(H 2) < Ak(H 1 + H2) < Ak(HI) + An(H 2)-

To prove the latter result, we use the Courant-Fisher's theorem

Ak(H) = min max
S1,-...-nkECn XEC

n 
s.t. x*z=1

xisl .. sn

x*Hx

and the fact that

A,(H) < x*Hz < An(H), Vx E C" s.t. x*x = 1,

this allows us to write

min max x*Hlx + A,(H 2) > Ak(Hi + H 2)
81sl,.,Sn-kECn xEC

n s.t. x*z=1
J-is1 ,.,

8
n

= min max (x*Hlx + x*H2 x)
Sl,--...,sn-_kEC

n 
xEC

n 
a.t. x*z=1

> min max x*Hix + A,(H 2)
81rsn,8n-kECn xECn s.t. x*x=l

-1al, ....s8n

which proves the Weyl's theorem. The left bound of this result and the fact that

A,(P) > 0 proves the lemma. O

Proof of proposition 27. The initial expression of the mutual information function for

this channel is

O(Q) = Elogdet(I +K-1AWBQB*W*A*).

First note that A affects the function 0 in the same way as K - 1, in other words,

we could consider one of these two matrices to be identity, for example, assume i.i.d.

components for the noise and set A = K-AA. If B = Ir any invariance properties on

the right for iw will be preserved for AW, thus the note after the proposition is a

direct consequence of proposition 24.

The first part of the proposition is proved in the previous section, let us now look at
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the eigenvalues. We have

qopt = arg max E log det(I
qER+ s.t. E 1= qi<P

+AW diag(qlb ,..., qtb 2))W*A*).

Thus we will consider from now on

4': q -E log det(I + AW diag(qib,, .,qtbt))W*A*).

Now observe that if bi = bj then 0 is II(t)ij-invariant, where II(t)ij is the subgroup

of permutations keeping the diagonal elements different than the i and j invariant

(transposition), thus we get from proposition 24 that qopt = qjpt

Now, let P' = P - t=3 qpt, such that qlpt + pt = P'. We will show that if bl > b2 ,

then for any 0 < P' < P,

4( P op > I P
' P' opt O

( 2' 3 "" t 2 '--'3 "

which, by the concavity of 4, implies that

opt opt
q1 > q2

By symmetry of the problem, this clearly implies the result for any components i and

j (other than 1 and 2).

We have
t

(q) = Elogdet(I + qj bAwj(Awi)*)
i=l

where wi is the i-th column of W. For an invertible matrix M, we have the formula

ma,,, log det(M) = (M-l)ji, therefore we have

E tr(I + )Aw(Aw)*)Aw(A )*. =

b2E tr(I + qb qib Awi(Awi)*) '1Awj(Awj)*.

170



Let us denote Xi = Awi(Awi)*, which are hermitian positive semidefinite matrices,

as well as (I + EZ'=> qib'Xi) which is in addition positive definite and invertible. We

define Z = E q3ibXi and Zopt = Ei=3 qPtbXi, we then rewrite

Oq, (q) = bE tr(I + qb 2XI + q2b X 2 + Z)- Xi (7.3)
&qq2 (q) = b Etr(I + qbX + q2bXX2 + Z)-1X2

= b2IEtr(I + q1b 2X2 + q2b X + Z)-IX1 (7.4)

where in the last line we interchanged the random matrices X 1 and X2 , as W is

IT(t)-invariant. To conclude the proof, we must show that if bl > b2

( ,2 -1

bjE tr I + L-b2X 1 + LbbX 2 + Zopt X 1( 2 12 
-1

>b2IE tr I + -b • 2 + 2~-X1I + Zopt ) X1 ,

for any 0 < P' < 1. This is clearly satisfied in the scalar case (r = 1). In the matrix

case, a few more steps (using the previous lemma) are required to show that the result

hold. We now define

X1,X2: [0,1] -* R

by

XI(e) = b tr I+ E ~bX 1(E) + 4b X2 (e) + Zopt Xl(c)

X2(E) = b tr(I + Eýb~ 2 (E) + 2bXb 1(X ) + Zopt XI(E)

where Xi(e) = Xi + EI,. Note that for i = 1, 2, Xi are continuous functions. Therefore,

lim~0o Xi() = Xi(0). Moreover, from (7.3) and (7.4) we have

EXi(O) = 4qiV(q) I' ( ' ot,qoPt , i= 1Pt  12.
Let us now consider ,,3 that X) is in H) and is thus invertible

Let us now consider E E (0, 1], we have that Xj(E) is in H* (r), and is thus invertible,
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so we can write X(e) = tr( lr + Mi or equivalently

1

x(e) = ,j = 1,2= + (Mj)' j=1,2

where

S:= X 1 (e) (b2I+ Pb22b X 2 (E) + b72Zpt)

and

M2 X () b22Ir 2 'bj2blX 2(e) + bi2Zopt

If we try to directly insert XT1(e) in the parenthesis of the above expressions, we

will not be able to apply lemma 14 part (ii), as X1 1(e)X 2(e) may not be hermitian,

even though X'1(e) E H_(r) and X 2(e) E H+(n) (all of these affirmations are in

the probabilistic "surely" sense). However, from lemma 14 part (i), we have that the

non-zero eigenvalues of M1 are the same as the ones of

1 1

X 2 (E) b-21r + b--2b X2 (e) + b-2Zopt Xl (e)

which is equal to

b- 2X-1'() + b72bX, 2 (E)X 2(e)X1 (e)1 1 1
+b 2X, 2(E)ZoptX 1 () =:N 1

and that the non-zero eigenvalues of M2 are the same as the ones of

1 1
X1

2 (e) b-2r + -b- 2b X2(e) + b-2Zopt X 1 (e)

which are equal to

b2 2X 1 '() + b 2 bX 1 2 (e)X 2(e)X (e)
1 21

+b2X, 1
2 (E)ZoptX

l
() =:N2.
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And now we have

N1 - N 2 E H+(r) surely,

therefore, we conclude from lemma 14 that

XI(6) > X2(E) surely, Ve E (0, 1].

Thus, by the continuity of Xi on [0, 1] and monotony of the expectation, we have

X1 (0) > X2 (0) - > q'pt pt

and we conclude the proof. O

We now present an On/Off threshold result.

i.i.d.
Proposition 28. Let bl _ b2 < ... < bt. We assume that r = 1, wlj ir .Ac(1),

V1 < j 5 t. Then, for all j = 1,... , t, there exists b(bj) > 0 such that

if bj+l > b(bj) then qiOpt = 0, Vi = 1,... ,j.

Comments: We will see that one can take b(bj) = , where a is given by the

reciprocal of the function I - 1, with F(a) = E , which is also known as the Ei

or exponential function. The previous result says the following, if there is a value

bj+l such that Pb2 +1 is bigger than d(Pbj), we then know that the optimal qjpt are

zero for i = 1,...,j. In other words, if some of these "gains" (bi's) are two small

compared to some others, we switch off the corresponding antennas.

Proof. In this setting we have

t

(q) = E log(1 + P qidiXi),
i=. Let

with by= ~X=d N, i Ed(1), Vl < i < t and q E O(t) = {x R t xI = 1}. Let
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Zj = 1 + P • j,j+l qX·. We then have

Pd3 X38qo( q) = E P '
Zj + PdjXj + Pdj+1Xj+I

Let 0 < T < 1 and p(j) be a vector with p = T, p = 0 and thus 'i·j,j+l (j)

1 - T. From the concavity of 4, if

9qj,(q) q=p(j) < &qj+ (q)q=p(j), VO < T < 1, (7.5)

then q'Pt = 0, Vi = 1,...,j. Now, (7.5) becomes

Z +TPd X·
E TP <1, VO<T_<1Z + TPdj+,Xj+1

so if for all z > 1 and 0 < T < 1 we have

z +TPdX - z/T + PdjXj-E E <1i,
z + TPdj+iXj+i z/T + Pdj+1X j +l

we are done. Last inequality is equivalent to

1 1
E 1 < 1 Vz> 1.

z + Pdj+IXj+1  z + Pdj'

Let F(a) = E -1 ax, a3+l = Pdj+l and aj = Pdj, we now wonder when

1
F(aj+l/z) < aj Vz 1.1+ aj/lz

For a given p E R+, let a(P) be the smallest number satisfying F(a(3)) • .Then

if for any possible a3 , d(aj) = supz>l za(ay/z) < +oo, we deduce that for aj > a(aj),

we satisfy F(aj+l/z) < 1/, Vz > 1. Let us show that F is a convex function, in

fact
d E( )F(a) = T-+aX)2
da JE( 12 )1+aX
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so we need to verify that
EEX(A+X) 2

E 1
(A+X) 2

is increasing, i.e. by derivation, we need to show that

1 X X 1
E E > E E

(A+X)3 (A+X) 2  (A+X) 3 (A+ X) 2 '

But, by defining dv(x) oc '--, last inequality becomes

1 X
El" EI"X > IE"

A+X A+X

or equivalently

1 1 1
IE"XE" + AE" = E"(A + X)E" > 1

A+X A+X A+X -

which is indeed satisfied by Jensen's inequality. Thus we get that a is convex and one

can also check that it is a continuous increasing function with a(0) = 0. Therefore

a(aj/z) = a(aj/z + 0(1 - 1/z)) < a(aj)/z + 0

and thus

za(aj/z) < a(aj), Vz > 1

which implies that a(aj) = supz> za(aj/z) = a(aj).

b(bj) = V(p.

And we conclude by setting

The function b2(.) is continuous convex and increasing with b(0) = 0, a derivative

of 1 at 0 and of 0 at infinity.

In the following figure, the inverse of the function b2 is plotted.

Let us now look at some numerical examples, we assume that we have r = 6

receiving antennas and P = 1. If for example B is such that its singular values
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U.

2
i+1

2

Figure 7-1: Inverse of b2, p = 1.

have squared given by (b,.. ., b ) = (1, 1,2, 3, 4, 11), it can be seen from figure 7-1

that b6 exceeds the On/Off threshold of b5 and thus the optimal power allocution is

(qma,..., qma) = (0,...,0, 1), i.e. in this case we solved the problem. If we had

(b2,..., b2) = (1, 1, 2, 5, 6, 8), then the previous situation does not hold anymore, but

b4 exceeds the On/Off threshold of b3 and we are reduced to a half-dimensional opti-

mization problem for the values of b4, b5 and b6.

We now compare the on/off threshold for the new water-filling with respect to

the on/off threshold for the usual water-filling. We consider t = r = 2, and denote

the singular values of B by bl < b2 , we distinguish the deterministic fading case

Hd = B and the random fading case Hr = WB, where W has i.i.d. Gaussian

entries. For a given power P, and a given value b2 > 0, the on/off threshold T

is defined as the maximal value such that for bl < T, the power allocation of the

optimal covariance matrix eigenvalues is (q*, q2) = (0, P). Denoting by Td and Tr the

respective thresholds for each case, we have

Td = (1/b 2 + P)-'
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and

Tr = (2z - 1 - 1)/P

where

z = 1 + E(1 + Pb2X) - 1

and

i.e. X is a sum of two independent exponential random variables with mean 1. As

it is shown in the following plot, the random fading threshold is bounded by the

deterministic one, which is consistent with the idea that the random mixing of B

with W (in the expression H = WB) smoothen the optimal power allocation as well.

0 0.5 1

Figure 7-2: Comparison of Td and Tr: water and martini thresholds

We now know how to deal with some cases in which the values of the bi's are quite

different. In what follows, we investigate a case in which the bi's are close to each

other (using first order taylor approximations).

Proposition 29. We assume that r = 1, wlj , c(1), V1 < j < t. Let d be
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a vector of dimension t > 0 with di = b? and M a matrix of dimension t x t with

components

xixj
ij 1 + "=

T t Ek=1 k+We then have q = +o(d - ) where = E diXk

We then have q = • + o(lld - yltll) where y = ZI=, di/t and

lt 1
S t-1+ (It ty

11 M-1lt(lt)T)(d - l1t )

(1t)TM-11
t

Proof. We recall that we are dealing with the following mutual information function,

t

/: (q,d) E O(t) x Rt H Elog(1 + P qidXi),
i=l

and we define its gradient with respect to the first component V : O(t) x Rt -- R t ,

by

Vj : (q,d) E O(t) x RtF-- E d3X
1/P + Ct=1 qdi4X"

For a fixed d, we know, from the Khun-Tucker conditions, that at the optimal value

qopt, the gradient satisfies

V(qopt, d) = clt,

for some constant c E R. We also know from the previous section that for any y E R,

V(11tylt) = c'lt,
t

for some c' E R. By a Taylor's expansion, we have

1
V(q, d) = c'l t + Hl(q - -1t ) + H2(d-t 71t)

1
+o(max(llq - -11t, |ld -, lt ))

where (H1 )ij = (1 (it, 1it) and (H2)ij (1 i t, 1t) Thus, the approximative
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solution q we are looking for should be in the simplex and should also satisfy:

M1t = H 1 ( - -I ) + H2(d- yt)
t

or equivalently

H1

(lt)T

I )0 it)

where

V = -H2(d - t)

In order to solve this linear equation, we need to compute the upper left block of the

previous matrix inverse, which is given by (assuming H1 to be invertible)

1H-1 l tI H lt(lit)T He 1

1 (1t)Tht H 1

the solution of the linear equation is then given by
1=
t= --t

1
(H 1 - (t)TH llt(lt)TH1l)v.

(1t)TH lt 1

Given that the derivative of 0 with respect to the first or second component are

similar, one can simplify the previous solution as done in the statement of the propo-

sition. O

Conclusion: The optimal power allocation is not achieved in the same way as

for the case of a deterministic fading matrix B, but it preserves the following same

properties, the monotonicity and the on/off threshold.
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Chapter 8

Non-Ergodic MIMO Channels

8.1 Channel Model and Outage Probability

In this section, we no longer assume that the process generating H is ergodic. We

now assume that H is chosen randomly at the beginning of all time and is held fixed

for all channel uses. As discussed in [32], the notion of capacity defined in previous

chapter can no longer be employed. No matter how small the rate we attempt to

communicate is, and no matter how large the blocklength is taken to be, there is a

non-zero probability that no codebook and decoding rule allowing arbitrarily small

error probability exist. In other words, the previous notion of capacity is zero in this

case. On the other hand, one can try to minimize the probability that the channel will

not support the rate at which one attempts to communicate, leading to the notion of

outage probability as defined in [32].

Definition 37. The outage probability Pout(R) is defined by

Pout(R, P) = inf P{ (Q, H) < R} (8.1)
QED

where

D = {Q E Ctxt I Q > 0, trQ < P}
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and

S(Q, H) = log det(I, + HQHt).

We also define the outage probability function by P(-, R) : Q H IPJ-{(Q, H) < R}.

8.2 Symmetries

According to definition 32.3., P(-, R) has the same symmetric properties as the ca-

pacity function T for a given fading matrix H distribution, thus P(-, R) is still a

U(t)-invariant function in our setting. Nevertheless, P(-, R) does not necessarily have

a unique minimizer, in particular it is not convex, therefore lemma 12 does not apply

here.

The symmetry properties tell us that we can restrict our search of optimizers to

diagonal matrices, and that the order of the diagonal entries do not matter. If Qo is

shown to be a minimizer of P(., R), i.e. if P(Qo, R) < P(Q, R), VQ E D, then all

elements in its orbit through unitary matrices, bZQo = {UQoVIU, V E U(t)}, will be

minimizers.

8.2.1 Invariant Structure and Telatar's Conjecture

From now on, we assume that H has independent C.C.S.G. entries with variance 1.

In [32], the following conjecture is stated.

Conjecture: the optimal Q's in (8.1) are given by

Pdiag( 1 k,0,...,0)

k

and all multiplications of it by unitary matrices. The value of k depends on the rate:

higher the rate R (i.e., higher the outage probability), smaller the k.
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8.2.2 MISO Case and Gaussian Quadratic Forms

The Multi-Input Single-Output case refers to the same channel, but considering the

number of receiving antennas to be one, i.e., r = 1. In the following, we also assume

P = 1, which simplifies the expressions we are manipulating, but does not reduce the

problem. The conjecture is then stated as follows.

Conjecture 1. Let ((t) := {Q E Ct x t I Q >- 0, trQ 5 1} and (Hi)1,,~t id rc (1).

For all x E R, 3k E {1,..., t} s.t.

1 1
arg mi nP{HQH* < x} = Udiag( ,..., ,0,..., 0).

QEý(t) k k
k

This conjecture has an interesting geometric interpretation. Say that you are given

an random vector which is unitary invariant. You can pick a norm induced from a

positive definite matrix, whose trace must be one. Which norm would you pick in

order to minimize the probability of observing a short vector? Once this part of the

conjecture is proved, the relation between k and R relies on properties of Gamma

distributions. From the previous remark, the statement of this theorem is equivalent

to the following one.

Conjecture 2. LetO(t):= {x e RZ E••= xi 1}, X = (Xi,...,Xt) with {Xi}<i<d

£(1) and (q,X) := E•= 1 qiXi. For allx E R, Sk E {1,...,t} s.t.

1 1
arg min P{(q, X) < x} = I( 1 ... 0,... 0).

qEO(t) k 7k '

k

We now present three lemmas required to prove the theorem. When a random

varible Y admits a density function (which will be the case of all considered random

variables), we will denote it by fy.

Lemma 15. Let X be such that X1 and X, X are mutually independent. Then
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Vx E R, Vq E R n and Vk E 1,...,t},

P{ (q, X) < x}
&qk

(8.2)

Proof. As f(q,x) E LI(R) UCo(RI) (only when t = 1 there is a discontinuity at x = 0),

we can use the Fourier transform to write:

f(q,x) (x)
1

2ir JH (1 + wiqj) eixdw,
j=1

Vx E R*+,

therefore

P{ (q, X) < x} = - ij(1
j=1

+ wiqj)-1 (ew'xwi - 1)dw, Vx E R*

and is zero for negative values of x. Thus we get

9P{<(q,X) -< x}
'9qk

1

2ir

- f(q,X)+qk5(X).

Lemma 16. Let Y be a random variable independent of X 1, X 2 d E(1), and let

x, ql, q2 E R. We then have

fY+qIx,(x) - fy+,q2X(x) = (q2 - ql)f +qiXI+q2X2 (x)

This is easily verified by using Fourier transform.

Lemma 17. For all t > 2 and q E 8(t), we have f(q,x) E C"(R*) n Ct-2(R) and 3!

a E R* s.t. f;q,x)(X) > O, VO < x < a, f(q,x)(a) = 0 and flq,x)(X) < O, Vx > a.

Proof. The fact that f(q,x) E C"(R*) n Ct- 2(R) can be verified by induction, knowing

that the exponential density is in C"(R*) and using properties of convolution and
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(8.4)

-f(q,X)+qk5C(X).

t
(1 + wiqj)- (1 + wLiqk)- ewix d

j=1



differentiation.

Note that Vt > 2 and for q E 0(t) s.t. all qi's are different, which can be written

without loss of generality as ql < q2 < ... < qt, we have

1

f(q,x) (X) = qt-lfqx,(x), Vx E R. (8.5)
i=1 jE{1 ... qt}

s.t.ij

This can also be verified by induction. Moreover, we have that Vx E R, Vt > 2 the

function

.qi -q fq,,x-(x) E IR+
qi - qj

s.t.i~j

is continuous (with the topology which 0(t) inherits as a subset of Rt) and (8.5)

converges when considering equal qj's. So we can restrict ourself to prove the lemma

for q's having all components different (and we will consider such q's in what follows).

For t > 2, we have f(k)Fort> 2, we have f(,)(O) = 0, Vk = 0,..., t - 2 (this is a consequence of the first

statement in the lemma). Let us suppose that there exist a, b > 0 such that a 5 b

and

f~q,x)(a) = f&q,x)(b) = 0. (8.6)

From (8.5), the assumption (8.6), in addition with f(k)(0)= 0 for k = 0,...,t- 2,

implies that there exist al,..., at E R and 1~,..., ft E IR, all different and non-zero,

such that
.1 t... 1

e-3... P3

eab1 . . ea. t

' pb)l ... pbpt
V - /

=1:10.
atJ
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But this is to say that there exists ao,..., at- 1 e R, non all equal to zero, and c E R*+

s.t.

t-3

Z aixi + at2e + at-ecx = 0, Vx E {aPl1,. . ., at}. (8.7)
i=0

Now, if at- 1 = 0 and at-2 = 0, we clearly need ao,..., at- 3 = 0 to ensure t solutions

in (8.7), which lead to a contradiction. If at-1 = 0 or at-2 = 0, we are in the following

situation

ex = p(x), (8.8)

where p is a real polynomial of degree t - 3. But one can verify by induction (using

differentiation and Rolle's theorem) that (8.8) can at most have t - 2 different solu-

tions. Hence we have a contradiction with (8.7). Otherwise, we have at-2, at-1 $ 0

and we are in the following situation

ex + de' = A(x), (8.9)

where d E R* and j is a real polynomial of degree t. With the same argument as

before, one can show that (8.9) has at most t - 1 different solutions, hence we also

have a contradiction and we cannot have a : b. The existence of a, as well as the

sign of the derivatives around a are clearly justified. This concludes the proof of the

lemma. O

Proof of conjecture 2 for t < 100:

Let x E R. From lemma 15, for any 0 < k < t,

P{ (q, X) x} fq = - f q, (x) _ O,
aqk (qX)+qkX 1  <

with X 1 independent of X and X 1 - X 1. We thus conclude that we can replace 0(t)

by O(t) := {q E RJ_ E'=, qi = 1}.
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Using the Kuhn-Tucker theorem, if q* E O(t) minimizes IP{(q, X) < x}, then 3A E R

s.t.

a{ (q*, X) < x}
9qk

I= A,

> A,

Vk s.t. q* > 0,

otherwise.

By lemma 15 and 16,

a P{(q, X) < x}
8qk

aP{ (q, X) 5 x}

ds1

is equivalent to

(qk - Q)f (X) = 0

with X1, X 2, X mutually independent and X2 - X1. Now, let us assume that 0 <

q* < q* (this represent w.l.o.g. that at least two different non-zero values are in q*).

Then

f (q' ,X+qX1 (X) = 0
(q*,X)+q* + 2q

(8.11)

and using (8.4) (with Y = (q*,X) + qTX1, ql = 0 and q2 = q*), we get

f(q*,X)+q*;21 +q9 22(x) = f(q*,X)+qj*k 1(x). (8.12)

We now assume that q*, the third component of q*, is non-zero. By successive use of

(8.4) and by (8.12), we have

(q*,X)+q* +qj 3 (x)
1
Sq(f (q*,X)+q.fi(x) - f(q*,X)+q•;+q;(x))

-- (q*,X)+q* .+q22 (X) - q*,X)q q (X)

* *
q3 ( q*,)x)+q*ý +q* -k2 +q3 -k(X) (8.13)
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But from lemma 17 and (8.11), f'X) is strictly positive on (0, x), thus(q*,X)+q *,k1+q t+(2

f ,x(X) = f i * (x) > 0 (8.14)

Therefore, if q* is not equal to q*, q* or 0, we must have fq ,X • (x) = 0, in
(q*,X)+q*k1 +q*- 3

order to satisfy the KT conditions, but this contradicts (8.13) and (8.14).

We have just shown that the KT conditions for minima can be satisfied only with

points in 8(n) that contains at most two different non-zero values, i.e. a minimizer

has the following form

q* (P , =2 .P.0)...10))
k 1

with k, 1, k + 1 e {0,..., t}, pI, p2 C [0, 1], such that kpl + 1p2 = 1. Let us assume that

k > 2. We define q* := q* + 6el - 6e 2, with 0 < 6 < pl and ei E Rt s.t. (ei)j = 6ij.

Since q* is a minimizer, we have

f )++ () = 0 (8.15)

and using lemmas 15 and 16, we get

a2
2 =P{(q6* X) < x} = 2f q(X+pl+p ( ) .  (8.16)1J2 1 6=0 -(q*,X)+pl3 +pl(2

From the expansions in (8.13) and (8.14), if pi < p2, we get =0P{(q6,X) • x} <

0, and q* cannot be a minimizer. Thus the minimal component in q* has to appear

only once. Say pl appears only once and P2 appears 1 times (1 < 1 < t - 1) and

is greater than pi, i.e. p2 = 121 > pi, which implies pi < '•. At pi = '-, all

components of p* are equal, and the function pi H P{ (q*, X) < x} has an extremum

at that point. Let us assume that there is at most one extremum within (0, 1-L). A

simple computation shows that {(q*, X) } = - +x,(x), which is
P1 =0 I i=1
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strictly negative if and only if x < 1, and P{ (q*, X) < x} = c(l)e-(t+l)x(l +

2 - (1 + 1)x)x+1l , with c(l) > 0, leading to a strictly positive second derivative if and

only if x < . Therefore, no minimum can occur when pi belongs to (0, 1 ).

So we want to show that pi '-P{ (q*, X) < x} has at most one extremum within

1 , 1 - pi 1 - ,
(U, -), wnere q = 0Pl,, · U,..., U). we Know that

I times

(q*X) < } = (pi l )lf1 (,)

We now use p instead of p, and k instead of 1. Let us define

fp,I,J(X) = fpv ixi++-E Yi- Ii(x),
Z=k=

x E R, pE (0,1), k,I, J E Z+,

where {Xi}l<i<,, {Yj}l<k<J 'iid (1). We want to show a contradiction between the

following assumptions:

k>l

1
p, q E (O, ), p q

p,2,k+l() = f, 2 ,k+l(x) = 0, x E R+

(8.17)

(8.18)

(8.19)

Since we are now working with simpler combination of our exponential random vari-

ables, we can express above objects in the time domain with less complications. We

get

e-x/P ( k+1

AxI= (k+ -1) 2 () k + l (8.20)

Ap - Ax
k+1

1

P

(e 
AX

1
p'

k

-1=0
/=0

(-Ax)'

1!
(-AX)k+1
(k + 1)!

1-p
k
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Hence, f,2,k+1(x) = 0 is equivalent to

Ap - Ax
k+ 1 1) (e-x + (-Ax)k+l= 0+ (k + 1)! (8.21)

Let y = Ax, n = k+ 1, Tj(y) = • Sn,_(y) = n- o1 Tj(y) and f(A) = - 1, then

(8.21) is equivalent to

(e- Y - Sn_l(y))(f(A) - k) + Tn(y) = O. (8.22)

By definition

A= 1/p - (n - 1)/(1 - p),

and we can express p in terms of A as

A + n - (A+n)2 - 4A

2A

implying
A+n-f(A) =

This implies that f(A) = t is equivalent to

S= nt(+ n(1 + t) - 1 )

Let y(A) be the solution of 8.22. We want to show that the following cannot

happen: for some x > 0 and n > 2 (where we think of x has being the slope of a

linear function of A), there exists A1 - A 2 with A1 , A2 > 0, such that y(A 1 ) = xA 1

and y(A 2) = xA 2.

In order to show this, it is sufficient to check that

Vn > 2, fn(tn(y)) is increasing in y,
Y
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where

t, y/n - T(y) (8.23)

t nt(1 + 1 - (8.24)n(1 + t) - 1
One can show that

fn(tn(y)) Rn-2 nRn-1 + yRn-2

y Rn- 1 (n - 1)R-_1 + yRn-2'

where

Rn Rn(a) = e-R - S,(y).

Therefore, by defining x = -y, Q_ =n - xRn-(x), we want to show that

Vn > 2 2, Q() is increasing in x,
Qn-l(x)

or equivalently

Vx < 0, Q'(x) is decreasing in n. (8.25)

(Recall that increasing/decreasing refers to strictly increasing/decreasing). Let pn =

Pn(x) = R--(x), such that Qn = n - xpn. Note that

R, = RP (8.26)

R, + Tn = R._n (8.27)
x

Tn = -Tn• 1. (8.28)
n

Note: Ro < 0 and R' = Ro < 0 hence Ro(0) - Ri(x) < 0, Vx < 0, implying R, > 0.

By induction

(-1)n+lRn 2> 0,
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implying

We have

Rn0< < 1.

Qn = -Pn - Pn,

Rn-_2R, I - Rn-2Rn-_1

Rn-2  Tn-2
=xI +1

Rn- 1  Rn- 1

(n-2
= (n - 1)( ~ 1)

n-_1

which implies

and

Q,()= 1 - p -Qn(z) n - xp,

Claim:

Vx < O, n > 2, Pn+1 < Pn 4 n - xpn > 0,

in fact: if n is even, R,_1 > 0, Rn- 2 < 0 and

n - XPn > 0 - 1 > xRn-2

4- xRn- 2 < nRn_1

= xRn,_1 < nRn
nRn

=-> 1>
Zin-1

implying
>XRn--2 nRn Pn1> = P_
nRn-1 xR,~1 pn+i
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Rn-3
x n-1

Tn-2
Rn-1I--

I,_

(8.29)

(8.30)

(8.31)
(8.32)

(8.33)

(8.34)

Q, = xP2 _ (x + )p + (n -2



If n is odd, (8.31) still holds and the next two inequalities are then inverted, but

(8.34) holds again, getting to the same conclusion as that for n even.

To prove the other implication, we need the identity

n

n1--n + x - xPn

which is proved below. With it, we have that 1 > P = (n~+x-xPn)Pn , or equivalently

-xp2 + (n + X)pn - n < 0.

But the roots of above polynomials in Pn are n/x and 1, and since Pn is negative, we

get Pn > n/x, which proves the other implication.

Claim:

(8.35)Pn+1 =
n + X - xpn

In fact:
n T

= 1+- = 1+
x Rn-1

n
-(Pn- 1) - 1 - 1
X

which implies

n T,
x Rn + Tn'

hence
T

Pn+l = 1 + R 1 +Rn
n - 1)-i - 1)

which proves the claim.

Using the properties of confluent hypergeometric functions from [24], we have that

(8.30) holds.

From (8.30) and (8.29), we can then express (8.25) as

VnU> 2, x < 0. (8.36)
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Using (8.35), this is equivalent to

x3r4 - (x + 3n)x2r3 + x[n(3(x + n) + 1) - 1]r 2  (8.37)

-n[2nx + (x + n)(n + 1)Jr + n2(n + 1) < 0, (8.38)

where r = Pn+l.

Since the above polynomial is of degree 4 in r, we can use Ferrari's solution to

express its roots. Moreover, the coefficients signs are such that if ck > 0, then ck+1 > 0,

which implies from Descartes rule of signs, that there is at most one positive root

and 0, 1 or 3 negative roots. Using symbolic computations in Maple, the roots can

be computed in terms of x and n, confirming the number of 3 complex roots and

one negative root for any values of n and x (which is a consequence of the general

structure of the coefficients), and there is an analytic expression of the negative root,

whose size exceeds the size of this page. The polynomial is then negative for values

that are below this negative root. We can use Maple to check that for arbitrary n,

we have Pn+1(x) > ro(x, n). An alternative way is the following. Since Pn+l = 1 + •,

we can equivalently check that _- is in the negative region of a degree 4 polynomial.

We know how to bound S, and Rn arbitrarily close above and below by taking an

arbitrarily large number of summands in its expression. In particular,

Tn Tn Tn
Rn ex - Sn(x) ex(1 - e-xS,(x))

Hence, if we take the example where n is even, we find that for any K which is odd

1 - e-xSn(x) < 1 - SK(-X)S,(x).

We then can write a Maple symbolic code that finds K large enough to lower bound

the original expression by a function which is a weighted sum of exponentials, each

weight being strictly negative.

Finally, [24] gives an approximation to the function R,(x) for x negative; we hope

to avoid Maple symbolic computation using this paper.

194



8.3 Generalizations

Given a sequence of iid random variables, how do we construct a weighted sum of

them (with a sum constraint) in order to minimize the probability of exceeding a given

threshold. If in some examples the exponential distribution arises as the natural

distribution (e.g. amplitude, waiting times), we may be interested in solving the

problem for other distributions too (Gaussian in particular). In general, one can say

several things regarding the moments of this sum, but it seems difficult to solve the

minimization problem we expressed here in a general context. One may wonder for

what kind of other distributions does the conjecture still hold! The proof we provided

(t < 100) is very dependent on the exponential distribution and it is hard to think of

a possible generalization. One can look at other examples. In the case of the Cauchy

distribution, the function q H P((q, X) < x} is constant. In the case of the Gaussian

distribution, the conjecture holds and k can easily be determined.

Proposition 30. Let n E N*, q E O(n), X = (X 1, ... ,X,) with (Xi)•<i< '-d .(0, 1).

For x > 0,

arg min IP{(q,X) • x} (1,0,...0),
qEG(n)

for x < 0,

arg min P{(q,X) < x} = (1/n,... ,1/n)
qEO(n)

and for x = 0, P((q, X) _ x} = 1/2, Vq E 0(n).

The first part of the proof, which is covered by Lemmas 17, 15 and 16 could pos-

sibly be generalized for other distributions. By imposing conditions on the derivative

of the Fourier transform of the sum (or of X 1), such that the KT conditions would

only be satisfied under some symmetry of the qi's. Infinite divisible laws may be a

good point to start, having at hand, the Levy-Khinchine formula.

But without any conditions on the random variables {Xi}'s, except independent

and identically distributed, the conjecture does not hold, i.e., a statement such as in

theorem 2 is not universal. In fact, for n = 2, X 1,X 2  & S(1), x = 1.1, the input that

maximizes this "outage probability" is not of the form (1,0), (0, 1) or (1/2, 1/2) (it
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is around (0.2,0.8)). Thus by choosing Y1, Y2 -XX and y -1.1 we get a counter-

example to the conjecture if stated for any independent real random variables. If

stated for positive random variables, one can consider Z1, Z2 r_1 L - Xl [o,L] for a

large enough L C R+, z = 2L - 1.1 and we get a counter-example for positive random

variables.

However, all these counter-examples are not true generalization of the initial con-

jecture, in fact, the conjecture as stated in 2 is the reduction of theorem 1, so that

(q, X) is a reduction of (H, H)diag(q) in the case when H is unitary invariant and has

iid entries, which implies it is iid CSCG distribution and hence X is iid exponen-

tial. Therefore, a generalization of 2 where (H, H)diag(q) is considered for any unitary

invariant vector H, may still hold.
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Chapter 9

Conclusion

Linear Universal Decoding

We have raised the question whether it would be possible to have linearity and uni-

versality embodied by a single decoder. When a universal decoder is required to be

capacity achieving, we showed that a generalized linear universal decoding rule for

compound sets having a finite union of one-sided components exists. We defined it as

follows: if W1,..., WK are the worst channels of each component, use the generalized

linear decoding rule induced by the MAP metrics log ,..,log WK, i.e., decode

with

X(y) = arg max V=IEP,,,, log Wk
xm, m=1,...,M (ktk)y

where /4k = Px o Wk and the input distribution is the optimal input distribution on

S. We denoted this decoding rule by GWAP(W 1,..., WK). We also found that using

the ML metrics, instead of the MAP metrics W1,..., WK, i.e. GLRT(W 1,..., WK),

is not universal.

We saw that MMI is equivalent to GWAP decoding when all the DMC's MAP metrics

are taken as the worst channels, i.e. MMI = GWAP(DMC). Therefore, our result

tells us that we do not need to take all DMC metrics to achieve capacity, for a

given compound set S, we can restrict ourself to selecting carefully a finite number of

metrics and yet achieve the compound capacity. Those important metrics are found

by extracting the one-sided components of S, and taking the MAP metrics induced
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by the worst channel of these components. When S has a finite number of one-sided

components, the GWAP decoding rule is generalized linear. This allows us to better

understand the representation of the metrics space, with the equivalence relation

of rate achievability. Further works may investigate the notion of universality that

requires optimality in the exponent, as opposed to optimality in the achievable rates.

Another problem, briefly introduced here, consists of using a decoding rule induced

by a fixed number of metrics chosen without the knowledge of the compound set

(most likely in a uniform manner); the relationship between the number of metrics

and the performance would then be analyzed.

Gaussian Noise and Interference

For an additive white Gaussian noise channel, and for Gaussian inputs, we defined

an operator that measures how much variation, a given perturbation of the input,

induces in the output entropy. If g, is a perturbation in the direction L, by an

amount g(1 + eL), then the "non-Gaussianess" of the perturbation is approximately

| IILI|2 and the non Gaussianess of the output distribution is J IIT(L) 2(R) where

T : L - L*g We found that the eigenfunctions of the TtT operator are the

Hermite polynomials tkS1 in L2(g8; R) (multiplied by v), and the eigenvalues are

(_)k. In addition, the eigenfunctions of this operator in L2(gs; R) maps naturally

to the eigenfunction in L2(g,+,; R), since = ( )k/2[+v]. This structure

allows us to better understand the relationship between the interference coefficient a

and the optimal input distributions in a Gaussian interference channel. In particular,

with this structure we could show the optimal input distribution for the single letter

sum-capacity undergoes two regime, where for if a < 0.68 (root of a degree twelve

polynomial) the Gaussian distribution is a local maxima and elsewhere the Gaussian

distribution is not a local maxima. This result can be generalized to the multi-letter

case, hence, interference should not be treated as noise above the given threshold. The

Herinite transformation introduced in this problem is a promising tool for approaching

several multi-user information theory problems having Gaussian noise.
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MIMO Channels

For ergodic coherent MIMO channels, we showed how symmetries (quantified by a

group G C U) in the fading matrix distribution and input constraint set are trans-

formed into symmetries in the optimal input distribution, specifying its structure (it

has to belong to Comm(G)). When the fading matrix is deterministic, the so-called

water-filling power allocation is optimal. We show that when the fading matrix is a

deterministic unitary matrix multiplied by random unitary matrices (the Kronecker

model), the new power allocation is no longer the water-filling, but we characterized

a martini-filling optimal power allocation which preserves, although smoothens, the

water-filling characteristics. Finally, we saw that in a non-ergodic setting, although

the symmetric properties of the outage probability are the same as for the mutual

information, the symmetric structures of the minimizer are much more complex to

analyze (since the outage probability is not convex). We could verify Telatar's con-

jecture in the MISO case for an input dimension t less than one hundred, where the

value one hundred is symbolic and expresses the fact that as long as the dimension is

given to us, we could conclude the last step of the proof, which requires to check that

a certain confluent hypergeometric function is increasing. We do not have a general

argument to conclude the last step for generic values of t, due to the complexity of

the resulting expressions to be manipulated. This problem is equivalent to finding

the positive definite matrices, with fixed trace, minimizing the probability that a vec-

tor's norm (using the norm induced by matrix) exceeds a given threshold. Expecting

symmetric structures in the solutions when "rich" symmetric structures are present

in the fading distribution, such as i.i.d. Gaussian, has been claimed in many ways,

but no neat geometric arguments have been found to date.

Local to Global Geometric Method

Although the divergence may not be a squared distance, it behaves locally as such.

Moreover, globally, it still preserves certain properties satisfied by squared distances

(cf. [8], section 2.2). Therefore the localization provided an accurate and insightful
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reduction of our problems. In chapter 4 and 6, we develop techniques to transform

a global problem into a local one, through the VN and Hermite transformations.

In both cases, global divergence expressions reduced to expressions defined in an

inner product space, which we characterized. This brought geometrical insight to the

problem. Additionally, in certain cases we have been able to "lift" results proven

locally to results that we could prove globally. This technique has been used in

chapter 5 to solve the problem stated for linear universal decoding. In chapter 6,

the same technique has been used to find the eigenfunction structure described in

the preceding section, which is a very promising structure to better understand a

collection of multi-user problems. We believe that the local to global methods can be

successfully employed on a large variety of information theory and related probability

and statistics problems.
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