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Abstract

There is significant interest from both the academic and industrial communities for
understanding and controlling the self-assembly behavior of complex macromolecular systems
and has been an active area of research in recent years. Such systems can be designed to result in
a wide range of nanoscale morphologies and greater functionality can be introduced with
increasing complexity.

This thesis focuses on the synthesis and characterization of a class of side chain liquid
crystalline block copolymers (SCLCBCPs) that are based on a low glass transition temperature
(T) siloxane backbone. Moieties that self-assemble into smectic liquid crystalline (LC) phases
are covalently attached to the polystyrene-polyvinylmethylsiloxane (PS-PVMS) block copolymer
backbone. Precise control over the functionalization of the LCs onto the functional siloxane
backbone allows for unique control over the self-assembly and the resulting properties of the
system. The LC content significantly affects the stability of the smectic mesophase and
subsequently the interactions with the inter-material dividing surface (IMDS) with the PS
domains. A strong preference for homogenous anchoring of the LC moieties relative to the
IMDS is observed, and increasing the LC content intensifies the preference for this arrangement.
Utilizing the effects of LC anchoring to alter the self-assembly behavior is a reoccurring theme
throughout this work. Additionally, the mechanical properties of these materials can be precisely
manipulated over several orders of magnitude through variations in LC content and the block
copolymer backbone architecture.

Several methods can be used to manipulate the morphologies of these materials once
synthesized including, thermal annealing and mechanical deformation. Thermal annealing
provides additional mobility for self-assembly often resulting in morphological rearrangements.
Mechanical deformation can be used to orient the self-assembled structures relative to an applied
shear flow. Additionally, the self-assembled morphologies of spin cast into thin films were
investigated. The presence of the substrate has significant effects upon the orientation of the
morphologies; thermal annealing and variations liquid crystal content are shown to be useful
tools for achieving a wide range of thin film morphologies.
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Bayer Chair Professor of Chemical Engineering

Edwin L. Thomas,
Morris Cohen Professor of Materials Science and Engineering
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Chapter 1 Introduction

1.1 Liquid Crystals and Liquid Crystalline Elastomers

Liquid crystals (LC) are molecules that exhibit some degree of order while in a liquid-

like state. Liquid crystals attractive for use in many applications including memory devices,

sensors, and displays. Molecules that exhibit liquid crystalline behavior typically have a rigid

component and some form of molecular anisotropy. The degree of order in these systems can be

quantified by defining a director in the direction of orientation, and calculating an order

parameter. One description is Hermans orientation parameter, which can be defined for axially

oriented systems as:1, 2

f = (3(COS 2)-) (1)

f = c2

Where 0 is the angle between the individual liquid crystal's director and the chosen reference

direction. The factor in brackets represents the mean-square cosine of the azimuthal angle,

calculated from the following equation:

xr/2
I(#)sin # cos 2 bdo

(Ccos2 0 x12 (2)
f I(0)sin~ db
0

This parameter ranges from 1 to -V2, with f = 0 for a completely random distribution of

orientations. When f is 1 or -Y2 the system is completely aligned parallel or perpendicular,

respectively, to the chosen reference direction.



The most common liquid crystalline phases for rod-like LCs are; isotropic, nematic,

smectic A, smectic C, and smectic C* (Figure 1-1) 3. Isotropic phases do not posses any

preferential orientation and have the characteristics of a simple liquid. A nematic phase only

exhibits orientational order in one dimension, resultant from a preference of the liquid crystals to

orient along a common direction. The smectic A phase has orientational order as well as

positional order, forming layers that have the molecules preferentially aligned along the direction

normal to the layers. Another similar smectic phase is the smectic C, where the director is

oriented at some angle 0 to the layer normal. If the molecule contains a chiral center a rotation

of the director will occur in a helical manner, and this is called a smectic C* phase. The distance

over which one full rotation occurs is the pitch.

C) d)

Figure 1-1. Schematic representation of a) isotropic, b) nematic, c) smectic A, and d) smectic C

liquid crystalline phases.
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Ferroelectricity is the ability of a molecule to display a polarization in the absence of an

externally applied field. Spontaneous polarization is when a polarization remains in a material

after the application and removal of an electric field. All ferroelectric materials exhibit

piezoelectricity; the direct piezoelectric effect occurs when an applied field produces a strain in

the material. Conversely, the indirect piezoelectric effect is when an applied strain results in a

polarization. Smectic C* liquid crystals exhibit spontaneous polarization, however due to the

rotation of the director there is no net polarization. This can be overcome by confining the

material between surfaces separated by a distance less than the pitch of the rotation, transforming

the smectic C* into a smectic C phase.

Liquid crystalline (LCP) polymers have attracted recent interest due to their ability to

combine the properties of small molecule liquid crystals and those of a polymer 4. LC polymeric

materials benefit over their small molecule LC counterparts from the mechanical integrity that

the polymer component provides to the system. Additionally, by lightly crosslinking the

polymer a liquid crystalline elastomer (LCE) can be created, allowing for the combination of the

rubber elasticity of a polymer network with the properties of LC phases. This class of materials

can be designed to exhibit a conformational change on the molecular level in response to

thermal, electrical or optical stimulation. The molecular conformational change can lead to a

macroscopic change in the optical, thermal, or mechanical properties of the materials, making

them candidates for electro-mechanical, actuator, and shape memory applications.

The increased viscosity of the liquid crystalline polymer system leads to an increase in

the response time of the liquid crystalline phase. This effect can be minimized by using a

polymer backbone with a low glass transition temperature (T). Siloxane based LCEs present

specific advantages associated with the very low Tg of the siloxane backbone, including a nearly



ideal elastometric response, allowing for the materials to retain their properties over a wide

temperature range, particularly at very low temperatures 5-7

Thermotropic liquid crystalline elastomeric actuators have been developed, where a LC

phase transition leads to a dimensional change or actuation. The polymer backbone can be

forced into a more extended state when the LC is in the nematic state, compared to the isotropic

state, as shown in Figure 1-26. Such nematic LCE fibers have been shown to exhibit reversible

strains of over 30% when heated and cooled above and below the nematic to isotropic transition

temperature (Figure 1-3) 6,8

Polymer backbone
/
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Anisotropic contraction/elonqation

Figure 1-2. Schematic of the liquid crystalline elastomer as an actuator 6.
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Figure 1-3. Fiber actuation under a load of 0.002 N. The 200 mg weight attached to the bottom

end of the fiber is not visible. The fiber is in the extended state in the nematic phase (a) and

contracted in the isotropic phase. The fiber regains its original length upon cooling6.



The electroclinic effect observed in smectic LC phases can be manipulated in order to

create materials that act as reversible actuators. In these materials an applied electric field

induces a tilt in the director of the smectic moieties, which results in a decrease in the smectic

layer thickness, see Figure 1-4. If the smectic layers are uniaxially aligned, the change in

smectic layer thickness translates to a net change in the film thickness. Crosslinked siloxane

networks with side chain smectic LCs have been well oriented through mechanical deformations,

9, 10 and their electro-mechanical properties studied ". These materials have been shown to

exhibit electro-mechanical responses with strains up to 4% with applied voltages of 1.5 V/jim 5,

12, 13. The voltage is significantly less than what is required for other polymeric actuators such as

P(VDF-TrFE), -150 V/[tm. The strain achievable is much greater than that of common ceramic

piezoelectric actuators, -0.15%, but is less than what can be achieved by a LC thermotropic

actuatori. Among the limitations of this actuation mechanism are the maximum strain

achievable and the amount of force per unit area that can be generated. An additional processing

step of achieving uniaxial aligned smectic layers is required, and it should also be noted that the

need for application of an electric field orthogonal to the direction of actuation presents

significant limitations for many applications.
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Figure 1-4. a) Schematic of the measurement geometry for electroclinic LCE actuator. A laser

beam in the interferometer passes twice through the film to measure the thickness modulation

Ah. b) Schematic of the electroclinic effect. Without the electric field, one smectic layer has the

thickness ho. The application of a lateral electric field results in a tilt angle 0 proportional to the

electric field. Each smectic layer shrinks by Ah, resulting in a net strain of the film in the

direction perpendicular to the smectic layer normal5.
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Photo-responsive LCEs present several potential advantages compared with LCEs that

rely on thermotropic phase transitions or application of electric field. The utilization of

photoisomerization of LC moieties in order to produce actuator materials was first proposed by

deGennes 14. This class of materials can be stimulated by exposure to particular wavelengths of

electromagnetic radiation (light), resulting in molecular rearrangements that manifest the desired

effects. For example, this class of materials has been used to create photo-responsive shape

memory polymers is . There are several examples of molecules, including LCs containing azo

groups, that have garnered great interest for their abilities to photoisomerize to generate useful

properties in polymers 16-18

Azobenzene moieties undergo a trans to cis photoisomerization upon exposure to 366nm

light. The trans state is the equilibrium state and the moiety relaxes to the trans state with time.

The return to the trans state can be accelerated with either heat, or stimulation with light >

540nm. The photoisomerization of liquid crystals containing azo moieties has been shown to

disrupt the stability of nematic 19 and smectic20 LC phases. If properly designed the azobenzene

moiety in the trans state can be incorporated into a smectic LC phase, with little effect upon its

stability. However, upon photoisomerization the azobenzene moiety in the cis state has been

shown to significantly disrupt the smectic LC phase, leading to a change in the smectic to

isotropic transition temperature (Tiso) 16, 21, 22. An isothermal smectic to isotropic transition can

be achieved when the Tiso is above operating temperature when the azo moiety in the trans state

and the Tiso is lowered below the operating temperature when the azo moiety is switched to the

cis state. By inducing a smectic to isotropic transition, significant molecular conformational

changes can be achieved, leading to a change in the properties of the material (diffusivity,

mechanical, and dimensional). It has also been shown that dissolving the azo moieties into the



LC phase can result in switching times up to two orders of magnitude faster than if the

azobenzene moiety is covalently attached to the polymer 23. However, the drawback with such a

system is that there is a potential for the depletion of the photo-responsive moiety with time

under certain conditions.

Recently, several groups have utilized photoisomerization to create materials that exhibit

a bending actuation due to the contraction or expansion of a material that has had one surface

exposed to light 23-25. This contraction of the surface of the material exposed to light results in

internal stress in the material that leads to bending of the film (Figures 1-5 and 1-6).

UV

Vis

Light

Homogeneous

Figure 1-5. A schematic of the bending actuation driven by exposure to UV light (366 nm) and

return to upon exposure to visible light (>540 nm) 24
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Figure 1-6. An example of a LCE photo-responsive film that utilizes the photoisomerization of

an azo moiety to create an actuation effect. Photographic frames of the film bending in different

directions in response to irradiation by linearly polarized light of different angles of polarization

(white arrows) at 366 nm, and being flattened again by visible light longer than 540 nm. The flat

film (4.5 mm x 3 mm x 7 /im) lay on a copper stick fixed to a copper plate; a stage under the

plate was set at 85 'C to control the temperature of the film, which was covered by a piece of

blue paper25.
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1.2 Block Copolymers

Block copolymers consist of two or more chemically different polymer segments, or

blocks, connected by a covalent linkage. At lower temperatures nanophase segregation occurs

due to unfavorable enthalpic interactions between the two blocks. The covalent linkage between

the two components prevents macrophase separation. However, heating the system can provide

the entropic driving force for phase mixing to occur, resulting in a disordered state (Figure 1-7).

The temperature where phase mixing occurs is called the order disorder transition temperature

(TODT).

The nanophase segregated block copolymer morphologies that self-assemble under the

right conditions have attracted great interest for numerous applications 26. In bulk a range of

morphologies can be formed including lamellae, bicontinuous gyroids, hexagonal packed

cylinders, and cubic packed spheres, as shown in Figure 1-827. The phase behavior of bulk A-B

block copolymers are determined by three experimentally controllable factors: the overall degree

of polymerization, N, the composition, f (overall volume fraction of the A component), and the

A-B segment-segment (Flory-Huggins) interaction parameter, X. Block copolymers are

increasingly used as templating materials; thus, the ability to control the formation of specific

patterns and structures is of growing interest and applicability.
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Figure 1-8. Top - From left to right, examples of cubic packed spheres, hexagonal packed

cylinders, bicontinuous gyroids, lamellae, inverse bicontinuous gyroids, inverse hexagonal

packed cylinders, and inverse cubic packed spheres. Bottom - Theoretical phase diagram of an

amorphous-amorphous A-B diblock copolymer 8.



Many more complex block copolymer architectures, useful for a wide range of

applications, can be designed and synthesized, including A-B-C and A-B-A triblock copolymers,

graft copolymers, star block copolymers, and dendritic block copolymers. One such application

for A-B-A triblock copolymers is thermoplastic elastomers, where the outer block has a high Tg

(above the operating temperature) and the center block has a larger volume fraction and a Tg

below the operating temperature. When phase segregation occurs the hard domains act as

physical crosslinks creating an elastomer. The advantage that this type of elastomer has over a

conventional chemically crosslinked elastomer is that it can be remolded and processed by

raising the temperature above that of the hard block's T,.

The incorporation of a liquid crystalline component into a block copolymer leads to an

interplay between the liquid crystalline mesophase, significantly effecting the bulk self-assembly

behavior29-36. The presence of a liquid crystalline block has been shown to stabilize certain

morphologies, leading to asymmetries in the phase behavior of the block copolymer, as well as

stabilization of certain liquid crystalline phases 37. The inter-material dividing surface (IMDS) of

the block copolymer mesophase can be used to orient the liquid crystalline mesophase, as the

liquid crystals will preferentially orient with respect to the IMDS due to surface stabilization

effects. Furthermore, the block copolymer IMDS can be used to confine a chiral smectic liquid

crystalline mesophase, allowing for the helix to be unwound38, leading to a material that can

exhibit a net polarization.



Gaining a more complete understanding of the interactions between the block copolymer

and the liquid crystalline mesophases is key for enabling control over the morphologies and thus

the properties of these systems. Recent research has increased in the area of LC block

copolymers, in order to tailor the desired electro-mechanical or electro-optical properties of the

material in it's final form3 1' 32, 36, 39-48

1.3 Controlling the Morphologies of Side Chain Liquid Crystalline

Block Copolymers

1.3.1 Mechanical Deformation

It is desired to control the morphology of these side chain liquid crystalline block

copolymers (SCLCBCPs), namely to achieve uniform orientation of the block copolymer and the

liquid crystalline mesophases.

Alignment of smectic C layers and can be achieved via two uniaxial deformations. The

first uniaxial deformation aligns the director of the liquid crystal. However, there are still two

possible orientations of the smectic layers, and a second uniaxial deformation is applied the

angle o to the first deformation. The angle o corresponds to the tilt angle of the liquid crystal

director relative to the smectic layer normal, as shown in Figure 1-9.
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Figure 1-9. Geometry of sample deformation for achieving aligned smectic C layers".

Due to kinetic restrictions the typical morphology of a solvent cast block copolymer will

be an isotropic multigrain structure. This morphology consists of domains that have a random

distribution of orientations. In order to achieve a morphology that has a monodomain structure

some type of external field must be applied. Examples of various techniques utilized to achieve

well aligned materials include annealing 49, various shear fields9' 32-34, 37, 47, 50-52, as well as electric

and magnetic fields53 . Several means of orientation have been previously reported for lamellar

and cylindrical LC block copolymer systems, including: melt fiber drawing 32, roll casting51 , and

oscillatory shear33 .

The interaction of the LC mesophase with the IMDS determines the orientation of the LC

mesophase relative to the phase segregated morphology of the block copolymer. Figure 1-10

shows two possible models for the orientation of a LC mesophase confined within a cylindrical

domain. In the homogeneous orientation had LC moieties and the smectic layer normal are

Ab.ý



parallel to the IMDS and the cylinder axis. The homeotropic orientation has the smectic layer

normal perpendicular to the IMDS. These same models could be used when considering a

system where the LC mesophase is the matrix and the amorphous block is confined to the

cylindrical domains. For the systems studied in this thesis the homogeneous orientation was

observed in all cases. The homogeneous orientation is entropically favorable as the siloxane

backbone has more conformational freedom than in the homeotropic orientation. Additionally,

when the IMDS possesses curvature there is an additional enthalpic penalty for the homeotropic

orientation.

PS M

Homogeneous orientation Homeotropic orientation

Figure 1-10. Schematic of two possible structures of LC-cylinder in a PS matrix (with a smectic

A LC mesophase). Left: homogeneous (mesogen parallel to the IMDS). Right: homeotropic

alignment (mesogen perpendicular to the IMDS) 54.
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Oscillatory shear alignment of amorphous-amorphous diblock copolymers with a

hexagonal close packed cylinder morphology typically results in cylinders parallel to the

direction of the shear flow 27. It has been shown that the incorporation of a LC can have a

significant effect upon the orientation of the block copolymer relative to the shear flow 33' 35, see

Figure 1-11.
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Figure 1-11. Schematic structural models of smectic layers and cylindrical microdomains with

various anchoring of the mesogens with respect to the IMDS. Flow is along the x direction, y is

the vorticity direction, and z is the gradient direction. (a) Model which places the cylinders in

their preferred orientation along the flow direction and with homogeneous anchoring of the

mesogens. The smectic layers are in the unfavorable transverse orientation. (b) Model which

places the smectic layers in their preferred orientation parallel to the shear flow with

homogeneous anchoring. The cylinders are in the unfavorable perpendicular orientation. (c)

Model which places both the cylinders and the smectic layers in their preferred orientations, with

heterogeneous anchoring. (d) Model which provides a compromise structure in which the

cylinders are transverse and the layers are perpendicular but which maintains homogeneous

anchoring of the mesogens. 33



1.3.2 Thin Films

Block copolymer thin films have attracted much recent interest for potential use in nano-

patterning applications 55' 56. It is desired to achieve systems that exhibit long range order as well

as gain control over the orientation of the domains. Recently progress has been made in

achieving long range order in block copolymer thin films through techniques such as solvent

annealing57, 58, zone casting59, and optical alignment60 . Due to the large interfacial area of the

thin film, the orientation of the domains depends greatly upon interfacial interactions between

the different components and the substrate interfaceS40, 61.63. The surface morphologies of block

copolymer films can be probed with atomic force microscopy (AFM). Additionally, grazing

incidence small-angle X-ray scattering (GISAXS) is a powerful non-invasive technique useful

for investigating the lateral and transverse structures in the interior of such thin films61, 64, 65

The incorporation of a liquid crystalline (LC) component into a block copolymer system

can have significant effects upon the self assembly behavior and domain orientation of thin

films 40, 66, 67. Additionally, liquid crystalline polymer thin films are of particular interest as they

can allow for the introduction of responsive elements into the system, e.g. thermo-, chemo-,

electro-, or photo-responsive. A prime example of a BCP thin film application is utility as

lithographic masks56. Ordered and oriented layers of microphase domains, deposited onto a

suitable substrate are selectively etched to remove one of the block components. Holes in the

resulting mask can then be used to transfer the BCP pattern via other etching or deposition steps.

More complex multi-component systems can be used to etch and remove one or more of the

components allows for holes, pillars, or tubes to be created, examples of this are shown in Figure

1-12.
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Figure 1-12. Left: schematic representation of the envisioned nanotemplates from thin films of

ABC triblock terpolymers. Right Top: AFM phase image of a PI-PS-PLA thin film on a HMDS

modified Si substrate after removal of the PLA block. Right Bottom: AFM phase image of a PI-

PS-PLA thin film after removal of both the PLA and PI blocks.68

Templated self assembly (TSA) is a method of using topographical and/or chemically

patterned templates in order to eliminate defects and induce registration and orientation in thin

films of materials. In contrast to conventional epitaxy in which the lattice of a thin film bears a

well-defined relationship to the lattice of the underlying substrate, templates for TSA are not

required to be crystalline materials. For mesoscale templated self-assembly, the topographical

and/or chemical pattern is used to guide the organization of the component materials. The
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characteristic feature size Ls of templates ranges from the characteristic length scale, Lo, of the

self-assembled materials to sizes much larger than Lo, as illustrated in Figure 1-13.

Crystallin
Materials
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ie Block
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-Ls - 50-5000 nm

Figure 1-13. Illustration of some types of templated self assembly systems. Characteristic

lengths (Lo) of crystalline materials, block copolymers, and colloid assemblies and the

characteristic length (Ls) of the template are indicated69



A variety of block copolymer systems can be ordered through templated self assembly,

including spheres, cylinders and lamellae. Both topographical and chemical pattern templates

can be used to create discrete domains (2-D patterning) or channels (1-D patterning). Figure 1-

14 shows a 1-D template of a cylindrical diblock copolymer. Increasing annealing times allows

for greater registration with the template. For topological templates the edge roughness has an

effect on the extent of ordering. Additionally, defects in the self-assembled pattern by can be

created and controlled by introducing irregularities into the patterns. In chemical templates the

relative interfacial energy contrast between the block copolymer components and the surface

template materials affects the driving forces for regular ordering. If the interfacial energy

difference is low there is less driving force for ordering, increasing the interfacial energy contrast

leads to a greater enthalpic driving force, and increased long range order.



Figure 1-14. AFM images of a cylindrical PS-PEP cylindrical block copolymer in a 95nm deep

and 600 nm wide template. Samples were annealed at 130 0C for: a) 9, b) 14, c) 19, d) 24, and e)

33 hours70

These templating methods can also be applied to liquid crystalline block copolymers;

however, the additional influence of the liquid crystalline mesophase must appropriately be taken

into account. The liquid crystalline mesophase may have anchoring preferences with the IMDS

and/or the substrate affecting the resulting orientation of the block copolymer to the substrate.

Additionally, the influence of the LC mesophase will be highly dependent upon the degree of

order in the LC mesophase, therefore thermal annealing can have a dramatic effect upon the

orientation of such systems (Chapter 5).
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1.4 Thesis Outline

Based on the discussion in this Chapter, the goal of this research is to synthesize novel

side chain liquid crystalline block copolymers, with a functional low Tg siloxane block, and

understand the self-assembly behavior to enable the development of responsive elastomeric

systems. Chapter 2 describes the synthesis and characterization of these materials; a schematic

of the system is shown in Figure 1-15. The synthetic techniques developed enable precise

control over the covalent attachment of the LC moieties to a block copolymer backbone. The

influence of variations in LC content significantly affects the morphologies of both the LC

mesophase and the self-assembled block copolymer structures. Utilizing this control over the LC

attachment, highly tunable morphological, thermal, and mechanical properties are demonstrated.

Several techniques for the synthesis of liquid crystalline triblock copolymers are detailed in

Chapter 3. These triblock copolymers result in thermoplastic elastomers, and the mechanical

properties of the triblock copolymers are compared to the diblock counterparts. Chapter 4

describes the manipulation of the self-assembled morphologies through several mechanical

deformation techniques. It is demonstrated that melt fiber drawing, tensile elongation and

oscillatory shear can be used to obtain well oriented morphologies, and the physics driving the

orientation is studied and understood. Chapters 5 and 6 discuss the thin films morphologies of

these liquid crystalline block copolymers. Chapter 5 focuses on the effects of thermal annealing

upon the orientation of the self-assembled structures relative to the substrate. Chapter 6

describes the effects of LC content and the film thickness upon the self-assembly of the liquid

crystalline block copolymers. These studies provide critical insights in to techniques for

manipulating the self-assembly of nanostructured thin films. Finally, this thesis closes with

conclusions and recommendations for future work in Chapter 7.
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Figure 1-15. Left: Schematic of an amorphous - liquid crystalline block copolymer where

polystyrene is the amorphous block and liquid crystals are attached in a side-on manner to a

siloxane backbone resulting in the liquid crystalline block. Right: Schematic of self-assembled

morphology where the polystyrene domains form hexagonal close packed cylinders and the

siloxane based liquid crystalline block forms a smectic LC mesophase that comprises the matrix.
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Chapter 2 Synthesis and Characterization of

Side Chain Liquid Crystalline Block

Copolymers: Effects of Liquid Crystal

Content

2.1 Introduction

There has been much work done over the past few decades investigating the self-

assembly behavior of block copolymers (BCPs) 1-3 . Precise control over anionic and living free

radical polymerizations allowed for the design of BCPs with specific compositions and lengths3.

Additionally, a wide variety of processing techniques have been used to manipulate the

microphase separated morphologies of block copolymers, including annealing -thermal 4 or

solvent 5- the application of an electric 6 or magnetic7 field, and various mechanical deformation

techniques 8-12 . This control over the self-assembly behavior allows the structure and properties

of such materials to be tailored for specific applications.

The incorporation of a liquid crystalline (LC) component into a BCP has been shown to

have significant effects upon the self-assembly behavior13-19. In the simple A-B BCP systems, in

which two linear amorphous blocks are covalently linked, the morphological phase diagram is

typically symmetrical. When a LC component is introduced several factors including

conformational asymmetry, structural asymmetry, and the anchoring of the LC mesophase to the

(IMDS) can alter the self-assembly behavior. The inter-material dividing surface (IMDS) of the



block copolymer mesophase can be used to orient the liquid crystalline mesophase, as the LCs

will preferentially orient with respect to the IMDS due to surface stabilization effects7' 20. In this

way a well oriented block copolymer mesophase can be used to template order in the LC

mesophase. The ability to systematically control the content of covalently attached LC moieties

enables a unique tunability, allowing for the structure and properties of the LCBCP system to be

tailored for specific applications. Here I will describe a highly tunable LC attachment chemistry,

into a low Tg siloxane backbone, enabling the investigation of a very broad range of LC

morphologies and properties. This is the first example of a system where the block copolymer

self-assembly has been systematically studied specifically as a function of the covalent

attachment of LC moieties.

In this Chapter I will discuss a means of controlling the morphologies through variations

in the initial composition of the block copolymer as well as the LC content2'. We have

synthesized poly(vinylmethyldisiloxane) (PVMS) homopolymers and poly(styrene)-

poly(vinylmethyldisiloxane) (PS-PVMS) block copolymers with varying block lengths. Liquid

crystals containing a siloxane tip were added across the vinyl functionalized polymer via

hydrosilylation 20, 22-24. Six different LCs were synthesized with either a butyl ester or fluorinated

hexyl ester end group and varying lengths of flexible alkyl spacers connecting the mesogen to the

polymer chain. A key advantage of this system is the low glass transition temperature of the

siloxane block, which makes a room-temperature elastomer possible20 . In past studies of liquid

crystalline block copolymers it has been difficult to achieve a material with a low LC block glass

transition temperature, particularly in combination with tunable functionalization. The thermal

properties and self-assembled LC morphologies of these materials were characterized via

differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS), respectively.



A direct correlation was found between the LC attachment percentage and the properties of the

LC mesophase, including the smectic layer spacing and the smectic to isotropic transition

temperature (Tiso) 25 26

The morphology can be tailored through variations in the LC attachment percent allowing

for a single polymer backbone to yield a range of morphologies. The reaction rate of the liquid

crystal attachment is relatively slow, -1% per minute. Thus, it is possible to remove and quench

portions of the reacting solution; enabling a range of attachment percents and morphologies to be

obtained from a single synthesis batch. To the best of our knowledge this is the first example in

which the morphology of a block copolymer can be systematically controlled by variations in

covalently attached side chain liquid crystals. We detail the effects of varying the attachment

percent, which include the interaction parameter (X) between the blocks, as well as the

interactions between the LC mesophase and the block copolymer IMDS.

Furthermore, we demonstrate the ability to systematically tune the elastic modulus and

thermo-mechanical properties of this system over a broad range, through variations in the LC

content. Similar control over mechanical properties has been shown for polymer/inorganic

hybrid materials27, but this is the first example of this nature for a liquid crystalline polymer

system. This unique ability to tailor the morphology and thermo-mechanical properties of these

hierarchically structured materials enables the design of electro-, magneto-, and photo-responsive

systems for use in actuator, sensing, or microfluidics applications.



2.2 Experimental

2.2.1 Instrumentation and Materials

A Waters gel permeation chromatography (GPC) system equipped with 1 Styragel HT3

column (500-30,000 MW range), 1 Styragel HT4 column (5,000-600,000 MW range), 1 Styragel

HT5 column (50,000-4-106 MW range), a refractive index detector, and a UV detector (254nm)

was used for molecular weight measurement relative to polystyrene standards. Tetrahydrofuran

(THF) flowing at Iml/min was the mobile phase. 1H NMR measurements were made with a

Bruker Advance DPX400 400MHz instrument. Samples (-5-10 mg/ml) were dissolved in

CDCl3, with TMS as an internal reference. A TA Instruments Q1000 was used for Differential

Scanning Calorimetry (DSC), the heating and cooling rate was 100 C min-' in all cases. A TA

Instruments Q800 was used for Dynamic Mechanical Analysis (DMA). The heating rate was

30 C min-' and oscillations of amplitude of 25/um were applied to films in 0.02 MPa of tension at

a frequency of 1 Hz. A TA Instruments AR 2000 Rheometer using a 5mm aluminum parallel

plate geometry in an environmental test chamber was used for rheological analysis. The heating

rate was 50C min' and 10% oscillatory strain was applied to films - 0.5mm in thickness. SAXS

studies including temperature dependent SAXS studies were preformed using a Linkam CSS450

shear cell at the X27 beamline at the National Synchrotron Light Source (NSLS) at Brookhaven

National Laboratory (BNL). The wavelength of the X-rays was 0.1371nm, and silver behenate

was used to calibrate the sample to detector distance with a first order scattering vector of q of

1.076nmn- (with q = 47r sinO/X where 20 is the scattering angle and X is the wavelength). Fuji CR

imaging plates were used to collect scattering data. Additional SAXS experiments were

performed at the G1 beamline at the Cornell High Energy Synchrotron Source (CHESS), where

the wavelength was 1.239A. A slow-scan CCD-based X-ray detector, home built by Drs. M.W.



Tate and S.M. Gruner of the Cornell University Physics Department, was used for data

collection. All scattering data were processed using the commercially available software Polar.

A Reichert-Jung FC4E Ultracut E was used to ultracryomicrotome samples of 50-60nm in

thickness. The diamond knife temperature was set at -100"C and the sample temperature set at -

105"C. Samples were then observed with a JEOL 200CX electron microscope in bright field

mode with accelerating voltages of 160-200kV.

TLC plates (Whatman, AL SIL G/UV), hexane, ethyl acetate, ethanol and methanol were

purchased from VWR and used as received. Dichloromethane, toluene and tetrahydrofuran were

taken from an Innovative Technology Pure-Solv 400 Solvent Purification System. Cyclohexane

was purchased from Aldrich, dried over calcium hydride, degassed and vacuum distilled under

nitrogen. Styrene was purchased from Aldrich, washed with 1M sodium hydroxide and dried

over magnesium sulfate. Styrene was degassed and vacuum distilled from calcium hydride just

prior to use. 1,1,3,3-Tetramethyldisiloxane, N, N-dimethylformamide and N, N-

diisopropylcarbodiimide were purchased from Fluka. 4-(Dimethylamino)pyridinium p-

toluenesulfonate (DPTS) was prepared in the method of Moore and Stupp28. All other chemicals

were purchased from Aldrich and used without further purification.

2.2.2 Polymer Synthesis

All manipulation of compounds was performed under nitrogen using standard glovebox

techniques. A poly(vinylmethylsiloxane) (PVMS) homopolymer was synthesized via anionic

polymerization (Figure 2-1). 0.037 mg of 1,4-Bis(hydroxydimethylsilyl)benzene was dissolved

in 30mL of tetrahydrofuran in a 50 mL round bottom flask. 200 /L of n-butyl lithium was then

added and stirred for 5 minutes at which point 5 g of the V3 monomer was added and stirred for



12 hours. Termination of the reaction was performed by end capping with an excess (0.3 g) of

trimethylchlorosilane, with was added and let stir for 1 hour. The solution was then precipitated

into methanol and a viscous oil recovered. The liquid crystal was attached to the resulting

homopolymer in the same manner as for the PS-PVMS diblock copolymer. The number-average

molecular weight (Mn) of the PVMS homopolymer was 21,300 g/mol with a polydispersity index

(Mw/Mn) of 1.14. The substitution percent of the LC onto the homopolymer was similar to that

of the PS-PVMS diblock copolymer.

The synthesis of poly(styrene)-poly(vinylmethylsiloxane) (PS-PVMS) block copolymer

was previously reported20, 29. Several small changes were made to the synthesis previously

described. The initiator for the polystyrene polymerization was n-butyl lithium, and the

purifications of the monomers and solvents are described in the previous section. The D3

monomer was added to the living styrene and reacted for only 6 hours and the V3 monomer was

reacted for 48 hours. All of the anionic polymerizations were carried out in a glovebox in a

nitrogen environment. The resulting polymer is technically a triblock copolymer, however

considering the small amount of hexamethylcyclotrisiloxane added, for simplicity these polymers

will be referred to as PS-PVMS diblock copolymers.
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Figure 2-1. Schematic of PVMS homopolymer synthesis.

2.2.3 Liquid Crystal Synthesis

All syntheses were carried out with modifications on the liquid crystal and

polyesterification chemistries of Svensson et al.30 and Moore and Stupp 28. All manipulations

were performed under nitrogen following standard Schlenk procedure. Throughout this paper the

nBPP4 and nBPP2F4 designation will be used to denote all final, siloxane-containing LC

monomers. P4 denotes the four carbons of the nonfluorinated LC butyl ester end group while

P2F4 denotes fluorination on the last four carbons of the LC hexyl ester group, and n is the

length of the flexible spacer (4, 6 or 8 carbons). A detailed written procedure is provided for the

synthesis of intermediates 1-3 and the product 4BPP4 (Figure 2-2).



Syntheses of the fluorinated compounds 4BPP2F4, 6BPP2F4 and 8BPP2F4 follow

identical methods (Figure 2-3) except for the replacement of butanol by fluorinated hexanol. 6-

Bromo-l-hexene and 8-bromo-l-octene were the respective precursors in the syntheses of

6BPP4/6BPP2F4 and 8BPP4/6BPP2F4. All compounds were further purified following the

4BPP4 procedure unless otherwise indicated. All products and intermediates were verified via

1H NMR spectrometry. NMR data were in accordance with the structures for all cases.
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(1)

n

HO / 0

OH

N

°" -OHCH2O O+ HO\/0 O

1=4,68 PC

DPTS
DCM/DMF

0 
0\--CA-2

+ HO

DIPC
DPTS
DCM/DMF

(2a)

(3)

CH3  CH3

Pt catalyst HSi--O--SiH
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Figure 2-2. Schematic of nonfluorinated LC synthesis.
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Figure 2-3. Schematic of fluorinated LC synthesis.

4'-(3-Buten-1-yloxy)-[1,1'-biphenyl]-4-carboxylic acid (1) Biphenyl precursor to

4BPP4. 4'-Hydroxy-4-biphenylcarboxylic acid (6.43 g, 0.030 mol), potassium hydroxide (5.05

g, 0.090 mol) and potassium iodide (1.00 g, 6.0 mmol) were combined with 450 ml ethanol and

25 ml water in a 1 L round bottom flask. The pale yellow mixture was stirred at 500C. 4-Bromo-

1-butene (6.09 ml, 0.060 mol) was added after 1 h and the mixture was refluxed. After 24 h the

reaction was cooled to OoC and 300 ml water added. After stirring at OoC for 1 h concentrated

hydrochloric acid was added slowly (-9 ml, pH <!). White precipitates were filtered and washed

with cold water. Recrystallization was performed from ethanol. Yield: 2.78 g, 0.010 mol,

34.5%. 1H NMR (DMSO) (6): 2.48 (m, 2H, OCH 2CH 2), 4.05 (t, 2H, OCH 2CH2), 5.13 (q, 2H,



CH=CH2), 5.87 (m, 1H, CH=CH2), 7.03 (d, 2H, ArH), 7.66 (d, 2H, ArH), 7.73 (d, 2H, ArH),

7.98 (d, 2H, ArH).

4'-(5-Hexen-1-yloxy)-[1,1'-biphenyll-4-carboxylic acid Biphenyl precursor for 6BPP4

was synthesized from 4'-hydroxy-4-biphenylcarboxylic acid and 6-bromo-l-hexene (8.02 ml,

0.060 mol). Yield: 8.07 g, 0.027 mol, 90.2%. 'H NMR (DMSO) (8):1.52 (m, 2H,

OCH 2CH2CH2CH 2), 1.73 (m, 2H, OCH2CH2CH2CH2), 2.10 (m, 2H, OCH2CH2CH2CH2), 4.00 (t,

2H, OCH2CH2CH2CH2), 5.02 (q, 2H, CH=CH2), 5.83 (m, 1H, CH=CH2), 7.04 (d, 2H, ArH), 7.66

(d, 2H, ArH), 7.75 (d, 2H, ArH), 7.97 (d, 2H, ArH).

4'-(7-Octen-1-yloxy)-[1,1'-biphenyll-4-carboxylic acid Biphenyl precursor for 8BPP4

was synthesized from 4'-hydroxy-4-biphenylcarboxylic acid and 8-bromo-l-octene (10.07 ml,

0.060 mol). Yield: 8.64 g, 0.027 mol, 88.8%. 'H NMR (DMSO) (8):1.41 (m, 6H,

OCH2CH2(CH2)3CH2), 1.75 (m, 2H, OCH2CH2(CH2)3CH2), 2.05 (m, 2H, OCH2CH2(CH2)3CH2),

4.02 (t, 2H, OCH2CH2(CH2)3CH2), 5.00 (q, 2H, CH=CH2), 5.83 (m, 1H, CH=CH2), 7.05 (d, 2H,

ArH), 7.67 (d, 2H, ArH), 7.76 (d, 2H, ArH), 8.00 (d, 2H, ArH).

(2R)-2-(4-Hydroxyphenoxy)propionic acid butyl ester (2a) In a 1 L round bottom

flask R-(+)-2-(4-hydroxypenoxy) propionic acid (27.3 g, 0.150 mol), butanol (54.9 ml, 0.600

mol) and DPTS (11.74 g, 0.038 mol) were dissolved in 600 ml dichloromethane (DCM) and 60

ml dimethylformamide (DMF). Diisopropylcarbodiimide (DIPC) (27.9 ml, 0.180 mol) was

added. The reaction was stirred for 24 h, filtered to remove urea, washed 3 times with 0.1 M

hydrochloric acid, 2 times with brine and dried with magnesium sulfate. Rotatory evaporation

removed solvent. Further purification was from silica column (4:1 hexane: ethyl acetate). The

product (pink-gray oil) was not air and moisture-sensitive and was stored at room temperature for

later use. Yield: 25.0 g, 0.104 mol, 69.9%. 'H-NMR (CDC13) (8): 0.87 (t, 3H,



OCH2CH 2CH 2CH 3), 1.32 (m, 2H, OCH2CH2CH2CH3), 1.58 (m, 5H, OCH*CH3 +

OCH2CH2CH 2CH 3), 4.17 (m, 2H, OCH2CH2CH2CH 3), 4.68 (q, 1H, OCH*CH3), 6.74 (m, 4H,

ArH).

(2R)-2-(4-Hydroxyphenoxy)propionic acid 3,3,4,4,5,5,6,6,6-nonafluoro-l-hexyl ester

(2b) The fluorinated hexyl ester derivative was synthesized from R-(+)-2-(4-

hydroxypenoxy)propionic acid (1.74 g, 0.0096 mol), fluorinated hexanol (10.1 g, 0.038 mol),

DPTS (0.747 g, 0.0024 mol) and DIPC (1.77 ml, 0.011 mol) in 100 ml DCM and 10 ml DMF.

The product was washed, dried and further purified through silica column (hexane: ethyl acetate

2:1). Yield: 2.90 g, 0.0068 mol, 70.9%. 'H-NMR (CDC13) (8):1.62 (d, 3H, OCH*CH3), 2.46 (m,

2H, OCH2CH2CF2), 4.48 (t, 2H, OCH 2CH2CF2), 4.70 (q, 1H, OCH*CH3), 6.76 (m, 4H, ArH).

4-[(1R)-2-butoxy-l-methyl-2-oxoethoxylphenyl 4'-(3-Buten-1-yloxy)-[1,1'-biphenyl]-

4-carboxylate (3) Vinyl mesogen precursor for 4BPP4. Intermediate (1) (2.60 g, 0.010 mol),

(2) (2.48 g, 0.010 mol) and DPTS (0.81 g, 2.60 mmol) were dissolved in 100 ml DCM and 15 ml

DMF in a 250 ml round bottom flask. DIPC (1.93 ml, 0.013 mol) was added. The reaction was

stirred for 24 h, filtered to remove urea, washed 3 times with 0.1 M hydrochloric acid, 2 times

with brine and dried with magnesium sulfate. Rotatory evaporation removed solvent. White to

pale yellow solid was obtained from silica column (DCM). Yield: 3.91 g, 8.00 mmol, 76.9%.

'H-NMR (CDCl3) (8): 0.93 (t, 3H, OCH 2CH2CH2CH 3), 1.35 (m, 2H, OCH2CH 2CH 2CH 3), 1.65

(m, 5H, OCH*CH3 + OCH 2CH2CH2CH 3), 2.60 (q, 2H, ArOCH2CH 2CH=CH 2), 4.09 (t, 2H,

ArOCH2CH2CH=CH2), 4.19 (m, 2H, OCH2CH2CH2CH3), 4.76 (q, 1H, OCH*CH3), 5.18 (q, 2H,

CH=CH 2), 5.94 (m, 1H, CH=CH 2), 6.94 (d, 2H, ArH), 7.02 (d, 2H, ArH), 7.15 (d, 2H, ArH),

7.59 (d, 2H, ArH), 7.68 (d, 2H, ArH), 8.23 (d, 2H, ArH).

4-[(1R)-2-butoxy-l-methyl-2-oxoethoxylphenyl 4'-(5-Hexen-1-yloxy)-[1,1'-biphenyll-



4-carboxylate Vinyl precursor to 6BPP4. Yield: 8.80 g, 0.017 mol, 64.0%. 'H-NMR (CDC13)

(6): 0.94 (t, 3H, OCH2CH 2CH2CH3), 1.35 (m, 2H, OCH2CH 2CH2CH3), 1.64 (m, 9H, OCH*CH3

+ OCH2CH2CH 2CH 3  + ArOCH 2CH2CH2CH2CH=CH2), 1.83 (m, 2H,

ArOCH 2CH2CH2CH 2CH=CH2), 2.17 (q, 2H, ArOCH2CH2CH 2CH 2CH=CH2), 4.04 (t, 2H,

ArOCH2CH2CH 2CH 2CH=CH2), 4.19 (m, 2H, OCH2CH2CH2CH 3), 4.76 (q, 1H, OCH*CH3), 5.02

(q, 2H, CH=CH2), 5.85 (m, 1H, CH=CH2), aryl region same as 4BBP4 vinyl mesogen.

4-[(1R)-2-butoxy-l-methyl-2-oxoethoxy]phenyl 4'-(7-Octen-1-yloxy)-[1,1'-biphenyl]-

4-carboxylate Vinyl precursor to 8BPP4. Yield: 9.16 g, 0.017 mmol, 57.5%. 'H-NMR

(CDC13) (6): 0.93 (t, 3H, OCH 2CH2CH2CH3), 1.46-1.24 (m, 6H,

ArOCH2CH2(CH2) 3CH2CH=CH2), 1.52 (m, 2H, OCH2CH2CH 2CH 3), 1.60 (s, 3H, OCH*CH3),

1.64 (m, 2H, OCH 2CH2CH2CH3), 1.85 (m, 2H, ArOCH2CH2(CH2)3CH2CH=CH 2), 2.09 (q, 2H,

ArOCH2CH 2(CH 2)3CH2CH=CH2), 4.03 (t, 2H, ArOCH2CH2(CH2)3CH 2CH=CH2), 4.20 (m, 2H,

OCH2CH2CH2CH 3), 4.77 (q, 1H, OCH*CH3), 5.00 (q, 2H, CH=CH2), 5.84 (m, 1H, CH=CH2),

aryl region same as 4BBP4 vinyl mesogen.

4-[(1R)-2-(3,3,4,4,5,5,6,6,6-nonafluoro-l-hexoxy)-l-methyl-2-oxoethoxy]phenyl 4'-(3-

Buten-1-yloxy)-[1,1'-biphenyl]-4-carboxylate Vinyl precursor to 4BPP2F4. Yield: 3.47 g,

0.0051 mol, 91.6%. Product was used in hydrosilylation without column purification. 'H-NMR

(CDCl3) (6): 1.08 (d, 3H, OCH*CH3), 1.55 (m, 2H, OCH2CH 2(CF 2)3CF 3), 2.50 (m, 2H,

ArOCH2CH 2CH=CH2), 4.02 (t, 2H, ArOCH2CH 2CH=CH2), 4.42 (m, 2H, OCH2CH2(CF2)3CF3),

4.74 (q, 1H, OCH*CH3), 5.10 (q, 2H, CH=CH2), 5.87 (m, 1H, CH=CH2), 6.85 (d, 2H, ArH), 6.94

(d, 2H, ArH), 7.06 (d, 2H, ArH), 7.53 (d, 2H, ArH), 7.62 (d, 2H, ArH), 8.13 (d, 2H, ArH).

4-[(1R)-2-(3,3,4,4,5,5,6,6,6-nonafluoro-l-hexoxy)-l-methyl-2-oxoethoxylphenyl 4'-(5-

Hexen-1-yloxy)-[1,1'-biphenyll-4-carboxylate Vinyl precursor to 6BPP2F4. Yield: 13.53 g,



0.020 mol, 100%. Product was used in next hydrosilylation without column purification. 'H-

NMR (CDCl 3) (8): 1.03 (d, 3H, OCH*CH 3), 1.55 (m, 2H, OCH2CH2(CF2)3CF3), 1.75 (m, 2H,

ArOCH2CH2CH 2CH 2CH=CH 2), 2.07 (m, 2H, ArOCH2CH 2CH 2CH2CH=CH2), 2.40 (m, 2H,

ArOCH2CH2CH 2CH2CH=CH2), 3.95 (t, 2H, ArOCH 2CH2CH 2CH 2CH=CH2), 4.41 (m, 2H,

OCH2CH2(CF2)3CF3), 4.72 (q, 1H, OCH*CH 3), 4.93 (q, 2H, CH=CH 2), 5.75 (m, 1H, CH=CH 2),

aryl region same as 4BBP2F4 vinyl mesogen.

4-[(1R)-2-(3,3,4,4,5,5,6,6,6-nonafluoro-1-hexoxy)-1-methyl-2-oxoethoxy]phenyl 4'-(3-

Buten-1-yloxy)-[1,1'-biphenyl]-4-carboxylate Vinyl precursor to 8BPP2F4. Product was

purified through silica column (hexane: ethyl acetate 4:1). Yield: 5.50 g, 0.0078 mol, 49.9%. 'H

NMR: 1.17 (d, 3H, OCH*CH 3), 1.38-1.57 (m, 8H, ArOCH2(CH2) 4CH2CH=CH2), 1.84 (m, 2H,

OCH2CH2(CF2)3CF3), 2.12 (m, 2H, ArOCH 2(CH 2)4CH 2CH=CH2), 4.04 (t, 2H,

ArOCH 2(CH 2)4CH 2CH=CH2), 4.50 (m, 2H, OCH2CH2(CF2)3CF3), 4.82 (q, 1H, OCH*CH3), 5.01

(m, 2H, CH=CH 2), 5.84 (m, 1H, CH=CH 2), 6.92 (d, 2H, ArH), 7.03 (d, 2H, ArH), 7.15 (d, 2H,

ArH), 7.61 (d, 2H, ArH), 7.70 (d, 2H, ArH), 8.23 (d, 2H, ArH).

4-[(1R)-2-butoxy-l-methyl-2-oxoethoxy]phenyl 4'-[4-(1,1,3,3-

tetramethyldisiloxanyl)butoxy]-(1,1'-biphenyl)-4-carboxylate 4BPP4 15 drops (-0.1 ml) of

the hydrosilylation catalyst platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex in

xylene (Pt -2%) was added to a solution containing (3) (3.90 g, 8.00 mmol) in 15 ml toluene.

The resulting yellow solution was added dropwise to a second, stirring solution of

tetramethyldisiloxane (30 ml, 0.170 mol) in 30 ml toluene at 600C. The reaction was stirred at

60°C for 24 hours and toluene was removed by rotatory evaporation. White to pale yellow solid

was obtained from silica column (6:1 hexane: ethyl acetate). Yield: 2.53 g, 4.06 mmol, 50.8%.

6BBP4 was purified through silica column (8:1 hexane: ethyl acetate). Yield: 3.75 g, 0.0058



mol, 33.8%. 8BBP4 was purified through silica column (10:1 hexane: ethyl acetate). Yield:

7.40 g, 0.011 mol, 64.9%. 'H NMR of 4BBP4, 6BBP4 and 8BBP4 share several identical

regions; all differences are indicated in bracket. 'H NMR (CDCl 3, n = 1, 3, 5) (8): 0.09 (s, 6H,

SiMe2H), 0.17 (s, 6H, SiMe20), 0.61 (t, 2H, CH2Si), 0.91 (t, 3H, OCH2CH2CH2CH3), [4BBP4:

1.34 (m, 2H, OCH2CH2CH2CH2Si), 6BBP4: 1.32-1.46 (m, 6H, OCH2CH2(CH2)3CH2Si),

8BBP4: 1.32-1.42 (m, 10H, OCH2CH2(CH2)sCH2Si)], 1.56 (m, 2H, OCH2CH2CH2CH3), 1.64

(m, 5H, OCH*CH3 + OCH2CH2CH2CH3), 1.86 (m, 2H, OCH2CH2(CH2)nCH2Si), 4.03 (t, 2H,

OCH2CH2(CH2)nCH2Si), 4.19 (m, 2H, OCH2CH2CH2CH3), [4BBP4 and 6BBP4: 4.72 (m, 1H,

OCH*CH3), 4.78 (m, 1H, SilH), 8BBP4: 4.70 (m, 1H, OCH*CH 3), 4.75 (q, 1H, SilH)], 6.93 (d,

2H, ArH), 7.03 (d, 2H, ArH), 7.15 (d, 2H, ArH), 7.59 (d, 2H, ArH), 7.70 (d, 2H, ArH), 8.23 (d,

2H, ArH).

All fluorinated compounds were purified through silica column (hexane: ethyl acetate 4:

1). 4BPP2F4 Yield: 2.00 g, 0.0025 mol, 50.9%. 6BPP2F4 Yield: 3.60 g, 0.0043 mol, 22.4%.

6BPP2F4 Yield: 2.50 g, 0.0030 mmol, 20.0%. 'H-NMR (CDC13, n = 1, 3, 5) (8): 0.11 (s, 6H,

SiMe2H), 0.23 (s, 6H, SiMe20O), 0.61 (t, 2H, CH2Si), [4BBP2F4: 1.57 (m, 2H,

OCH2CH2CH2CH2Si), 6BBP2F4: 1.56-1.20 (m, 6H, OCH2CH2(CH2) 3CH2Si), 8BBP2F4: 1.50

(m, 2H, OCH2CH2CH2(CH2)4CH2Si), 1.45-1.23 (m, 8H, OCH2CH2CH2(CH2) 4CH2Si)], 1.66 (d,

3H, OCH*CH3), 1.88 (m, 2H, OCH 2CH 2(CH 2)nCH 2Si), 2.51 (m, 2H, OCH2CH2(CF2)3CF3), 4.04

(t, 2H, OCH2CH2(CH2)nCH2Si), 4.51 (t, 2H, OCH2CH2CH2CH3), 4.72 (m, 1H, OCH*CH3), 4.82

(m, 1H, SiH), 6.95 (d, 2H, ArH), 7.03 (d, 2H, ArH), 7.16 (d, 2H, ArH), 7.61 (d, 2H, ArH), 7.71

(d, 2H, ArH), 8.24 (d, 2H, ArH).



2.2.4 Liquid Crystal-Polymer Attachment

4BPP4 (2.987 g, -1:2.5 molar ratio of polymer vinyl group to mesogen SiH) was

dissolved in 6.5 ml toluene and stirred at 60TC. PS-PVMS polymer (0.464 g, 60/40 molar ratio)

and 7 drops (-0.05 ml) of platinum catalyst were dissolved in 3.0 ml toluene. The resulting clear

solution was added dropwise to the first mesogen solution. The reaction was stirred continuously

at 60TC. 2 to 3 ml of reaction mixture was removed approximately every 12 hours and

precipitated into methanol. White precipitate was filtered, redissolved in the initial volume of

toluene, and re-precipitated into methanol to allow complete removal of excess, unattached

mesogen. White, rubbery solid was isolated by filtering. Rise in LC attachment percent was

monitored with NMR. Yield (increases with respect to reaction time): -0.1-0.3 g. 'H NMR

(CDC13, n = 1, 3, 5) (8): 0.03-0.24 (m, SiMe2OSiMe2 + PVMS SiMe + SiCH2CH2SiMe20), 0.39

(s, 2H, SiCH2CH 2SiMe20), 0.55 (s, 2H, OCH2CH2(CH2)nCH2Si), 0.88 (t, OCH 2CH2CH 2CH3),

1.00 (s, 2H, OCH2CH2(CH2)nCH2Si), [4BPP4: 1.23-1.62 (br. m, 11H, styrene PhCHCH2Ph +

OCH2CH2(CH2)nCH 2Si + OCH*CH 3 + OCH 2CH2CH 2CH 3), 6BPP4/8BPP4: 1.25-1.71 (br. m,

13H/15H, styrene PhCHCH 2Ph + OCH2CH2(CH2)nCH 2Si + OCH*CH3 + OCH2CH 2CH2CH3)],

1.67-2.10 (br. d, 3H, styrene PhCHCH2Ph + OCH2CH2(CH2)nCH2Si), 3.94 (s, 2H,

OCH2CH2(CH2)nCH2Si), 4.13 (s, 2H, OCH 2CH 2CH2CH3), 4.70 (d, 1H, OCH*CH 3), 5.70-6.03

(m, 3H, Si-CH=CH2), 6.26-6.74 (m, 2H, styrene o-ArH), 6.83-7.18 (m, 9H, LC ArH + styrene m,

p-ArH), 7.52 (s, 2H, ArH), 7.62 (s, 2H, ArH), 8.16 (s, 2H, ArH).

The same procedure was used in LC attachment to the PVMS homopolymer. Yield

(increases with respect to reaction time): -0.1-1.5 g. 'H NMR (CDC 3, n = 1, 3, 5) (8): 0.01-0.23

(m, SiMe2OSiMe2 + PVMS SiMe + SiCH2CH 2SiMe20), 0.43 (s, 2H, SiCH 2CH 2SiMe20O), 0.54

(s, 2H, OCH2CH2(CH2)nCH 2Si), 0.91 (m, 3H, OCH2CH2CH2CH3), [4BPP4: 1.38 (m, 2H,



OCH2CH2CH2CH3), 1.53-1.63 (br. s, 2H, OCH2CH 2CH2CH2Si), 6BPP4: 1.28-1.59 (br. m, 8H,

OCH2CH2(CH2)3CH2Si + OCH2CH2CH 2CH 3), 8BPP4: 1.25-1.55 (t, 12H,

OCH2CH2(CH2)sCH2Si + OCH2CH2 CH2CH 3)], 1.63 (m, 5H, OCH*CH3 + OCH2CH2CH2CH3),

1.80 (m, 2H, OCH2CH2(CH2)nCH2Si), 3.99 (t, 2H, OCH2CH 2(CH2)nCH 2Si), 4.18 (s, 2H,

OCH2CH 2CH 2CH3), 4.75 (q, 1H, OCH*CH 3), 5.79 (d, 1H, Si-CH=CH 2), 6.00 (m, 2H, Si-

CH=CH2), 6.97 (m, 4H, ArH), 7.13 (m, 2H, ArH), 7.58 (s, 2H, ArH), 7.67 (s, 2H, ArH), 8.22 (s,

2H, ArH).

2.3 Results and Discussion

2.3.1 LC Attachment

The synthesis of all liquid crystals, polymers, and SCLCBCPs were successfully

completed and the structures verified via 1H NMR. Six different liquid crystals (4BPP4, 6BPP4,

8BPP4, 4BPP2F4, 6BPP2F4, 8BPP2F4) were produced and attached onto PVMS homopolymer

and PS-PVMS block copolymers. The molecular weight of the polystyrene block was

determined via GPC calibrated with polystyrene standards before the addition of the siloxane

monomer. The molecular weights of PS-PVMS block copolymers were obtained from 'H NMR

integration. Table 2-1 summarizes the polymers used in LC attachment, with molecular weight

(Mn), polydispersities (Mn/Mw), and PS/PVMS weight percents. The change in LC attachment

percent was monitored via 1H NMR and calculated with modifications of the characterization

methods described by Moment et al.29. The composition, LC attachment percent, smectic layer

spacing, and thermal properties of selected SCLCBCPs are summarized in Table 2-2.



Summary of number average molecular weights (Mn), polydispersity (Mw/Mn), and

polystyrene weight percent (PS wt%) for PVMS homopolymer and PS-PVMS block copolymers.

Polymer PS Mn PVMS Mn Total Mn M,,/M PS wt%
(g/mol) (g/mol) (g/mol)

PVMS15 0 14,800 14,800 1.23 0
PS27-PVMS14 26,900 14,200 41,100 1.14 65.5
PS35-PVMS12 34,700 11,900 46,600 1.34 74.4
PS61-PVMS18 61,100 18,200 79,300 1.21 77.0

Table 2-2. Summary of composition, LC content, and thermal properties for SCLCBCPs.

Sample name PS wt % PVMS wt % LC wt % attachment % Tiso (oC) D (mr) FWHM (mu)
LCP 4BPP498 0 15 85 78 81 3.37 0.15
LCP6Bpp4126 0 12 88 100 113 3.63 0.12
LCP8spp4122 0 12 88 92 153 3.82 0.14

PS27-LCP4Bpp44 6  37 19 44 31 42 3.75 0.47
PS27-LCP 4Bpp457 32 17 51 41 55 3.53 0.22
PS27-LCP4BPP479 25 15 60 55 67 3.45 0.19
PS27-LCP 4BPP 490 23 12 65 76 83 3.34 0.17
PS27-LCP4BPP4 115 19 10 71 100 90 3.32 0.10
PS35-LCP 6Bpp427 56 19 25 17 - 4.62 2.48
PS35-LCP6Bpp439 47 16 37 30 63 4.10 0.40
PS35-LCP6Bpp447 42 14 44 40 72 3.85 0.22
PS35-LCP6Bpp471 33 11 56 65 115 3.61 0.16

PS35-LCP6BPp 4104 25 9 66 100 135 3.60 0.16
PS35-LCPsBPP426 57 20 23 15 - 5.23 2.29
PS35-LCPsBpp44 4  44 15 41 35 - 4.27 0.26
PS35-LCPsBPP467 34 12 54 57 135 3.91 0.19
PS35-LCP8 spp493 27 9 64 88 148 3.85 0.13

PS35-LCP8 Bpp 4104 25 8 67 100 160 3.82 0.13
PS27-LCP 4BPP 2F4 153 15 8 77 100 120 6.41 0.63
PS35-LCP 6Bpp2F4130 21 7 71 100 132 6.65 0.57
PS27-LCPsBPP2F4153 15 8 77 100 140 6.83 0.71

The hydrosilylation reaction adds SiH-tipped mesogens across the vinyl functionalized

PVMS backbone. This was seen as the disappearance of the mesogen SiH peak around 4.72

ppm, the appearance of characteristic mesogen peaks in the aromatic region (7.47-8.20 ppm), and

the gradual disappearance of Si-CH=CH2 peaks (5.70-6.03 ppm) (Figure 2-4). Six of the twelve

mesogenic aryl protons are unobscured while the other six fuse with styrene peaks between 6.30

and 7.25 ppm. This allows calculation of peak area for each LC aryl proton and each styrene

Table 2-1.



proton by subtracting six LC aryl integrations from the styrene region. The decrease in the areas

under the Si-CH=CH2 peaks was used to measure the increase in LC attachment percentage.

The LC attachment percentage is calculated as [AreaLc proton / (ALC + Avinyl)] x 100%. LC

attachment to the polymer chain is further verified via calculation of the molar fraction of

polystyrene within the polymer chain, which is calculated as [Areaps proton / (ALC + Avinyl + Aps)] x

100%. This fraction is expected to remain constant, because LC attachment to the PVMS block

has no effect on the molar fraction of the PS block. Given that 'H NMR does not distinguish

between the aryl protons from attached and free, excess LCs, this calculation is necessary to

ensure that all liquid crystals present in the final SCLCBCP product are covalently bonded to the

polymer chain. A reduction in polystyrene/(vinyl+LC) ratio indicates the presence of free,

unattached liquid crystals. To eliminate excess LCs the reaction mixture was precipitated into

methanol, the product was filtered, re-dissolved in toluene, and precipitated into methanol for a

second time. Although two precipitations were sufficient for most samples, this process can be

repeated more often if necessary until the original PS/PVMS ratio from the pure polymer is

observed via NMR. Once the PS/PVMS has been brought close to the pure polymer value,

further precipitations do not increase the PS molar percent or decrease LC attachment percent.

The resulting polymer is shown in Figure 2-5.
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Figure 2-4. NMR of side chain liquid crystalline block copolymers with attachment of 6BPP4

on block copolymers. Increase in LC attachment % is monitored by decrease in area under peaks

corresponding to the PVMS vinyl group. LC attachment increases linearly at 1.20%/hr.
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Figure 2-5. Schematic of SCLCBCP where y and z are random, n = 4, 6, or 8, and x is either the

nonfluorinated, -(CH 2)3-CH 3, or the fluorinated, -(CH2)2-(CF2)3-CF 3 alkyl ester.

A linear increase in LC attachment percent was observed for the nonfluorinated LCs on

both PS-27-PVMS14 and PS35-PVMS12 copolymers (Figure 2-6). Although the rate of LC

attachment percent is variable in the presence of different polymer chains and LCs, the increase

remains linear for all samples tested. The variability in rate is also affected by small changes in

sample concentration and the amount of platinum catalyst added, for which more catalyst and

higher concentrations of reaction mixture yield higher reaction rates. In agreement with previous

literature, large amounts of platinum catalyst lead to gray solids that easily undergo

decomposition when heated.
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Figure 2-6. Graph of nBPP4 attachment percent with respect to time. In all cases the attachemnt

percent increases linearly until 100% attachemnt is reached. For the 4 spacer, 6 spacer, and 8

spacer LC attachments the polymer concentrations were 0.049 g/ml, 0.055 g/ml, and 0.039 g/ml;

catalyst concentrations were 0.12 mg/ml, 0.14 mg/ml, and 0.15 mg/ml, respectively.

2.3.2 LC Morphology

The LC morphology was characterized with small angle X-ray scattering (SAXS), where

the presence of a smectic polydomain mesophase was confirmed. The d-spacing of the smectic

layers (D) was measured with SAXS for all LCs with varying attachment percent to the polymer

chain. As expected, larger smectic layer spacings were observed for SCLCBCPs with longer

spacer lengths between the LCs and polymer chain. For all SCLCBCPs containing

nonfluorinated LCs at 100% attachment, D closely matched LC molecular lengths for fully



extended, all trans conformations (calculated using the Accelrys Materials Studio Molecular

Modeling Software). This suggests interdigitation of the liquid crystals from adjacent layers.

For all fluorinated LC's, the smectic layer spacings were close to double those of the

nonfluorinated values. This is indicative of bilayer formation, and is attributed to the favorable

interactions resulting from assembling of the fluorinated LC regions. However, smectic layer

spacings for the fluorinated LCs were slightly less than double single smectic layer spacings;

from this, it is concluded that partial interdigitation of the fluorinated ester end groups occurs at

the interface of LC bilayers. The observed smectic layer spacings (D), calculated molecular

lengths, and schematics of LC morphologies can be found in Table 2-3 and Figure 2-7.

Table 2-3. The d-spacing of the smectic layers was measured via SAXS for 100% attachment of

LCs onto PS-PVMS block copolymer.

nBPP4 aCalculated nBPP4 nBPP2F4 aCalculated nBPP2F4
d-spacing molecular length d-spacing molecular length

4BPPx on polymer 3.4 nm 3.6 nm 6.4 nm 3.8 nm
6BPPx on polymer 3.6 nm 3.8 nm 6.6 nm 4.0 nm
8BPPx on polymer 3.8 nm 4.0 nm 6.8 nm 4.2 nm

aAccelrys Materials Studio Molecular Modeling Software was used to calculate maolecular

lengths



Figure 2-7. Schematic of the observed morphologies of LC smectic layers, showing

interdigitated nonfluorinated LCs (left) and partially interdigitated bilayers for the fluorinated

LCs (right).

The effects of increasing the LC attachment percent to the block copolymer backbone

upon the self-assembled LC morphology were studied for the nBBP4 series. Using SAXS, a

decrease in smectic layer spacing was observed as the LC attachment percent increases. At lower

LC attachment percent, the low LC density leads to a loosely packed smectic mesophase with

poorly defined layer formation. As LC attachment percent increases the greater density of LCs

on the siloxane backbone leads to more tightly packed, interdigitated smectic layers. In all cases

the decrease in smectic layer spacing is limited by the molecular lengths of the liquid crystals.

Consequently, D does not continue to decrease once the LCs become fully interdigitated as

attachment approaches 100% (Figure 2-8). This model is confirmed by the increasing sharpness

of the SAXS peaks as attachment percent increases. The increase in sharpness can be quantified

by looking at the full width at half maximum of the scattering peaks (FWHM). The decrease in

the FWHM indicates more well-defined smectic layers at higher attachment percents (Table 2-2).
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Figure 2-8. Graph of the smectic layer spacing (D) as a function of attachment percent for

nonfluorinated LCs on PS-PVMS block copolymers. Increase in LC attachment percent is

accompanied by decrease in D. Smectic layer spacing is limited by the molecular lengths of the
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Using DSC, an increase in the Tiso of the LCs was also observed with increasing

attachment percent, due to the increase in favorable enthalpic interactions among the LCs. A

similar increase in Tiso with respect to LC attachment has been reported by Martinoty et al.25

Previous works involving main-chain mixed-mesogen LCPs have also demonstrated a tunable

LC clearing temperature via variations in the chemical composition of the mixed-mesogen

blend31. Figure 2-9 shows the Tiso as a function of LC attachment percent for the attachment of

the nBPP4 LC series to block copolymers. No discernible transitions were observed in DSC for

several of the SCLCBCPs with lower LC attachment percent. This is consistent with the broad

SAXS peaks observed for the same samples. This observation suggests that poorly defined

smectic LC mesophases have low enthalpy due to their loose packing. It is also possible that the

lack of a clear first order transition is a consequence of the smectic-to-isotropic transition

occurring over a broad temperature range. Additionally, it was observed that for longer spacer

lengths the Tiso was higher for samples having similar attachment percent. The increased

conformational space provided by the longer spacer, allows for more efficient packing of

mesogens and thus the self-assembly of a more stable smectic mesophase. These results

illustrate how variations in the LC structure and content can be used to obtain a range of smectic

morphologies. Additionally, the smectic-to-isotropic transition temperature (Tiso) can be

precisely tuned over a wide range, from room temperature up to 160 0C, again through variations

in the LC structure and content.
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Figure 2-9. Graph of the smectic to isotropic transition temperature (Tiso) as a function of

attachment percent for nBPP4 mesogens on PS-PVMS block copolymers. No smectic to

isotropic transition is observed for lower attachment percentages.

2.3.3 Liquid Crystal Block Copolymer Self-Assembly

We have shown that the morphology and thermal properties of the LC mesophase are

significantly and systematically affected by the LC attachment percent to the polymer backbone.

The increased stability of the smectic mesophase is resultant from the increased packing density

of LCs on the siloxane backbone at higher attachment percents. These changes in LC

morphology, in turn, have significant effects upon the self-assembled morphology of the BCP.



The self-assembled morphology of the side chain liquid crystalline block copolymers

(SCLCBCPs) were investigated with transmission electron microscopy (TEM) and small-angle

X-ray scattering (SAXS). The attachment of LC leads to an increase in the liquid crystalline

polymer (LCP) volume fraction and a corresponding decrease in the PS volume fraction. The

ability to systematically vary the LC content allows for a range of morphologies to be produced

from a single reaction. These morphologies display similar behavior as the morphologies of

polystyrene-polyacrylate liquid crystalline block copolymers that were investigated in previous

studies32, 33. The neat PS-PVMS block copolymer self-assembles with PVMS cylinders in a

matrix of PS. At low LCP weight percent LCP cylinders and lamellae coexistence is observed.

Further increase in the LC content results in a pure lamellar morphology, coexistence of lamellae

and PS cylinders, and a pure PS cylinder morphology (Table 2-4 and Figure 2-10). It is believed

that the morphologies that display coexistence of cylinders and lamellae are kinetically trapped

metastable states, not equilibrium morphologies. There is further discussion of these transitional

morphology is in Chapter 6. These metastable morphologies are observed in as-cast films and

upon annealing a pure cylinder morphology is observed.

A second polymer backbone was synthesized with a smaller PS block. The neat PS27-

PVMS14 block copolymer also displayed cylinder morphology where the minority PVMS

domains form the cylinders. LC was attached to PS27-PVMS14 for a range of attachment

percents, all samples displayed a morphology consisting of PS cylinders in a LCP matrix as

shown in Table 2-4 and Figure 2-11.



Figure 2-10. TEM images of solvent-cast a) PS61-PVMS18, b) PS61-LCP 4BPp442, c) PS61-

LCP4BPP483, d) PS61-LCP4BPP4135, and e) PS61-LCP 4BPp4152. In all cases the PS domains

appear light. f) Model of PS cylinders coexisting with lamellae.



Figure 2-11. TEM images of solvent-cast a) PS27-PVMS14, b) PS27-LCP4BPP446, c) PS27-

LCP4BPP457, d) PS27-LCP4BPP490, and e) PS27-LCP4BPp4115. In all cases the PS domains appear

light.



Table 2-4. Summary of thermal and mechanical properties*.

Sample name PS Attachment % ILCP 2Tis TODT G' at -300C G' at 400C Morphology
wt % TR (oC) C) (oC) (MPa) (MPa)

PS61-PVMS18 77 0 - 210 PVMS cylinders
PS61-LCP 4spp437 62 18 -10 11 120 2220 1540 LCP cylinders/

lamellae
PS61-LCP4Bpp468 49 48 -2 73 180 2240 370 Lamellae
PS61-LCP4Bpp4101 38 79 14 81 180 2100 130 lamellae/PS

cylinders
PS61-LCP4Bpp4123 33 100 20 89 170 2060 30 PS cylinders

PS27-PVMS14 66 0 - 250 PVMS cylinders
PS27-LCP4BPP446 37 31 0 42 120 2170 270 PS cylinders
PS27-LCP 4Bpp457 32 41 7 55 4150 1740 16 PS cylinders
PS27-LCP4BPP 490 23 76 14 83 220 1550 6 PS cylinders
PS27-LCP4BPP4115 19 100 16 90 230 1580 1.7 PS cylinders

*The polystyrene weight percent, liquid crystal attachment percent, the glass transition

temperature of the liquid crystalline polymer (LCP T), the smectic to isotropic transition

temperature (Tiso), the order-disorder transition temperature (TODT), G' at -300C is the value of

the elastic modulus in the glassy plateau region, and G' at 400C is the value of the elastic

modulus above the LCP Tg are listed for each sample. Data obtained via 'dynamic mechanical

analysis (DMA), 2differential scanning calorimetry (DSC), 3small-angle X-ray scattering

(SAXS), 4rheometry, and 5transmission electron microscopy (TEM).

Temperature dependent SAXS and rheometry were used in order to identify the order-

disorder transition temperature (TODT) of these materials (details provided in Appendix F). The

initial attachment of LC leads to phase mixing at a lower temperature than the neat PS-PVMS

block copolymer. The LCP is more chemically similar to the PS block than the pure siloxane

block leading to a decrease in the segmental interaction parameter 00 and the initial decrease in

the TODT upon introduction of the LC moiety. As the LC attachment is further increased a

systematic increase in the TODT is observed (Figure 2-12).
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Figure 2-12. Plot of the order-disorder transition temperature (TODT) and the smectic to isotropic

transition temperature (Tiso) as a function of attachment percent for PS27-PVMS14, PS27-

LCP4BPP446, PS27-LCP 4BPP457, PS27-LCP4BPP479*, PS27-LCP4BPP490, and PS27-LCP 4Bpp4115.

(*PS 2 7 -LCP4BPP47 9 is material previously studied20 with the same polymer backbone and LC

moiety).

In order to gain insights into the mechanisms driving this phenomena the anchoring of the

LC mesophase relative to the IMDS was investigated. Fiber drawing of the SCLCBCPs was

performed by heating the samples to 1500 C on a hot plate and pulling - 5001m fibers from the

melt with tweezers. SAXS indicates that for all of the materials investigated the cylinder axis

and the smectic layer normal are preferentially oriented parallel to the fiber axis (Figure 2-13).

This orientation indicates that the smectic layers are oriented relative to the IMDS consistent
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with the homogeneous anchoring condition. Similarly, previous studies utilizing oscillatory

shear yielded oriented morphologies that are consistent with the homogeneous anchoring

condition when shearing took place above the Tiso20. This preference for the homogeneous

anchoring condition, even in the isotropic LC state, results in stabilization of the block

copolymer mesophase. Increased functionalization of the LC onto the siloxane backbone leads to

a greater preference for homogeneous anchoring and an increase in TODT. The effect of

increasing the attachment percent is also apparent in the TEM images. The IMDS sharpens and

the morphologies become progressively more ordered as the LC content increase. Higher LC

attachments result in a more well-defined LC smectic mesophase, which provides greater

stabilization of the IMDS due to the preference for homogeneous anchoring. These observations

are consistent with the increase in the Tiso and TODT with increasing LC content.



Fiber draw
direction

Figure 2-13. a) Cartoon showing observed structure relative to the melt fiber drawn direction,

b) SAXS of PS27-LCP 4BPP490 that has been melt fiber drawn.



2.3.4 Mechanical Properties

Dynamic mechanical analysis (DMA) was used in order to study the mechanical

properties of these materials, see Figure 2-14. An elastic plateau is observed for all materials

below the glass transition temperature (Tg) of both of the components. The attachment of LC

moieties to the siloxane backbone results in a systematic increase in the Tg of the liquid

crystalline polymer, due to restriction in the flexibility of the backbone from the presence of the

bulky LC side groups. While raising the Tg, increasing the LC content results in a more

pronounced drop in the elastic modulus. This increase in the magnitude of the transition, at

higher LC attachment percents, is due to the greater weight percent of liquid crystalline polymer

present in the system. The SCLCBCPs resulting from the attachment of LC to the PS61-

PVMS18 block copolymer backbone resulted in a range of morphologies, and subsequently

mechanical properties ranging over several orders of magnitude. When PS was the majority

component or the PS domains formed lamellar domains, the materials retained their mechanical

integrity until temperatures above the PS Tg. However, the materials with cylindrical PS

domains failed at lower temperatures, as the majority LCP domains could not provide sufficient

mechanical integrity to prevent significant deformation under the test conditions. Increasing LC

content leads to failure at lower temperatures for each series of SCLCBCPs.

Here we have demonstrated the ability to tune the mechanical properties, above the LCP

Tg over several orders of magnitude through variations in both the morphology and LC content.

The combination of a Tg below room temperature with the ability to control the elastic modulus

at room temperature, make these materials ideal for custom designing materials for specific

applications. Additionally, the ability to incorporate a responsive functionality into these systems

enables a diverse range of new functional materials to be developed.
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2.4 Conclusions

A series of SCLCBCPs has been synthesized via anionic polymerization, esterification,

and hydrosilylation chemistries with a high degree of control of both the block copolymer block

lengths and the degree of functionalization of the LC along the block copolymer backbone. The

chemistries developed provide a simple route for precisely tuning the LC functionalization. The

slow linear rate of LC attachment, in combination with the ability to remove and quench portions

of the reaction solution to recover products of a specific degree of functionalization, enables a

range of LC attachment to be easily obtained from a single synthesis batch.

The LC content significantly affects the morphology and properties of the LC mesophase,

as well as, the self-assembled morphology of the block copolymer. Variations in the LC content

allow the smectic to isotropic transition temperature to be tuned over a wide range; from room

temperature up to 1500C. Furthermore, numerous morphologies, including LCP cylinders,

lamellae, PS cylinders, and coexistence of lamellae and cylindrical morphologies were obtained

from a single polymer backbone. The tunability enabled through precise control over the self-

assembled morphologies of this system allows for the thermal and mechanical properties

customized. This work demonstrates the systematic control of the LC fraction of

functionalization and the effects upon the resulting self-assembled morphologies.

We have shown that the thermo-mechanical properties of this system can be tailored as a

function of both morphology and LC content. The elastic modulus above the Tg of the LCP can

be tuned over several orders of magnitude, demonstrating unique control over the mechanical

property profile for this system. Furthermore Tg of the siloxane based LCP can be tuned through

LC attachment. The combination of functional LC moieties with a Tg below room temperature

allows for these polymers to be used as responsive elastomeric materials. The systematic and



precise control over both the thermal and mechanical properties of this system enables the design

of responsive materials for specific applications such as electro-mechanical, damping, and

mechano-optical devices.
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Chapter 3 Synthesis and Characterization of

A-B-A Side Chain Liquid Crystalline

Triblock Copolymers

3.1 Introduction

Liquid crystal polymers (LCPs) have attracted great interest in recent years due to their

combination of small-molecule liquid crystalline properties with the properties of polymers1' 2

The combination of a low glass transition temperature (Tg) siloxane-based side chain liquid

crystal polymer and an amorphous polymer produces a side chain liquid crystalline block

copolymer (SCLCBCP) where the LCs are capable of undergoing switching. LC switching can

lead to changes in the electrical, optical, mechanical, and transport properties of the SCLCBCP

system", 3-6. Potential new applications, such as electro-mechanical or mechano-optical

materials, also benefit from the mechanical integrity that the polymer component provides to this

system -4

To achieve optimal field responsive properties, the structures of both the liquid crystal

and the polymer need to be carefully designed. Various methods have been employed in recent

years for the synthesis of both main chain7-9 and side chain0-25 LCPs. LC and polymer

components can be synthesized separately before the LCs are linked to the polymer chain

covalently'3, 15, 17, 21-23 or via hydrogen bonding18, 26. Hydrosilylation chemistry with a platinum

catalyst is a common route for covalent LC attachment1,"' 13, 17, 21-23, 27. Side chain LCPs can also

be synthesized through living cationic' 4 and anionic'0 , 24, 25, 28 polymerization, atom transfer



radical polymerization (ATRP) 16 , and ring-opening metathesis (ROMP) 12 , 16, 20. Slight

crosslinking of the LCP system leads to a liquid crystal elastomer (LCE) that introduces LC

properties into a rubbery polymer network2' 27, 29-32. This crosslinking can be achieved via direct

addition of crosslinker to a mixture of two mesogen monomers31' 32 or the addition of crosslinker

into a hydrosilylation reaction mixture containing LC monomers and polymer backbone27' 29, 30

A-B-A triblock copolymers can be used as thermoplastic elastomers, where the outer

block has a high glass transition temperature (T.), above the operating temperature, and the

center block has a larger volume fraction and a Tg below the operating temperature. When phase

segregation occurs the minority hard domains act as physical crosslinks creating an elastomer 33'

34. The advantage that this type of elastomer has over a conventional chemically crosslinked

elastomer is that it can be remolded and processed by raising the temperature above that of the

hard block's Tg.

The advantage of this system is the low glass transition temperature (Tg = -100C) of the

siloxane block, which makes a room-temperature elastomer possible23. The intermaterial

dividing surface (IMDS) of the block copolymer mesophase can be used to orient the liquid

crystalline mesophase as the LC will preferentially orient with respect to the IMDS due to surface

stabilization effects23' 26, 35. In this way a well oriented block copolymer mesophase can be used

to template order in the LC mesophase. The IMDS has also been shown to unwind the pitch in

the smectic C* phase via confinement of the liquid crystals36.

The functional siloxane based triblock copolymers described in this Chapter allows for

responsive moieties to be incorporated, allowing for a responsive thermoplastic elastomer to be

created. Siloxane based polymers are ideal center blocks for these applications as the low Tg is



necessary for sufficient mobility at room temperature to allow for relatively fast response times at

room temperature.

The living diblock copolymer synthesis described in Chapter 2 can be functionalized in a

variety of ways instead of termination with trimethylchlorosilane. Coupling of living PS-PVMS

diblock via the addition of the difunctional coupling agent, 1,1,3,3-tetramethyl-1,3-

dichlorodisiloxane, was attempted with limited success, and the synthesis scheme used is

described in Figure 3-137, 38. The main difficulty with this synthesis scheme is that very precise

control over the stoichiometry is required. If an excess of the coupling agent is present all of the

functional groups will be capped with the coupling agent and there will be no living chains left to

react with the silyl chloride functional group. If not enough of the coupling agent is introduced,

there will be incomplete coupling. In addition to these stoichiometric issues the kinetics of this

scheme reactions are a hindrance and this coupling scheme requires two reactions to give

quantitative yields. Designing synthetic schemes that allow for reactants to be used in excess

drives the reaction forward allows for higher yields and do not require precise stoichiometry.

Coupling of two polymer chain ends presents kinetic challenges, by using a more reactive styryl

anion, in comparison with the significantly less reactive siloxy anion, the kinetics limitations can

be minimized. The novel triblock synthesis schemes are detailed and discussed. Additionally,

the mechanical properties of the resulting triblock SCLCBCPs are compared to their diblock

counterparts, and attempts at electro-mechanical actuation are discussed.
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Figure 3-1. Synthetic scheme for triblock copolymers via coupling of two identical living PS-

PVMS diblocks.

3.2 Experimental

3.2.1 Synthesis ofA-B-A Side Chain Liquid Crystalline Triblock Copolymers

The basis for the synthesis of the A-B-A side chain liquid crystalline block copolymers is

the anionic polymerization of poly(vinylmethylsiloxane) (PVMS) homopolymers and

poly(styrene)-b-poly(vinylmethylsiloxane) (PS-PVMS) diblock copolymer described in Chapter

2. Instead of terminating the living PVMS or PS-PVMS with trimethylchlorosilane, the

propagating anion was functionalized to allow for further synthesis resulting in a triblock

copolymer.
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3.2.1.1 Living PS Homopolymer Coupling to Difunctional PVMS Homopolymer

This triblock copolymer synthesis scheme involves coupling a difunctional PVMS with

living polystyrene is shown in Figure 3-2. In this method the difunctional PVMS is synthesized

as described in Chapter 2. However, instead of terminating the reaction with

chlorotrimethylsilane, an excess of dichlorodimethylsilane is added to the reaction solution and

let stir for 1 hour. The excess dichlorodimethylsilane is then removed by washing in methanol

and the product is then dried under vacuum and dissolved in THF. Polystyrene of the desired

molecular weight is then synthesized in the typical fashion, and the living PS is combined

directly with the difunctional PVMS solution. A stoichiometric excess of living PS is added in

order to achieve the highest reaction percent. In order to maintain the reactivity of the styryl

anion in THF, the coupling reaction is performed in a -600 C heptane bath within the nitrogen

environment of the glovebox and let stir overnight.
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Figure 3-2. Synthetic scheme for triblock copolymers via coupling of living PS with

difunctional PVMS.

3.2.1.2 Living PS Homopolymer Coupling to PS-PVMS Diblock

Another similar scheme for creating a triblock copolymer involves the coupling of living

PS with a PS-PVMS diblock that has been end capped with dichlorodimethylsilane, and is shown

in Figure 3-3. The PS-PVMS diblock is functionalized by adding an excess of

dichlorodimethylsilane and let stir for 1 hour. The resulting polymer is washed in methanol to

remove the excess dichlorodimethylsilane and then dissolved in THF. The coupling reaction is

carried out as described in section 3.2.1.1
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3.2.1.3. Atom Transfer Radical Polymerization (ATRP) Using PS-PVMS as a Macroinitiator

An alternative technique for creating an A-B-A triblock is to use a PS-PVMS diblock as a

macroinitiator for atom transfer radical polymerization (ATRP), as shown in Figure 3-4. This is

accomplished by functionalizing a PS-PVMS diblock copolymer with an ATRP initiator. An

excess of 2-bromopropionyl bromide is added to the living PS-PVMS diblock copolymer and let

stir for 4 hours. The polymer is then precipitated into methanol and recovered. Since the radical

present during ATRP reaction will attack the vinyl groups on the PVMS block, the siloxane

backbone must be fully functionalized. To easily accomplish this the vinyl groups are

functionalized with an excess of pentamethyldisiloxane using the hydrosilylation chemistry

described in Chapter 2. The resulting polymer was then purified using the same procedure and

dried under vacuum overnight. The copper bromide catalyst is placed under vacuum to remove

any oxygen present. The macroinitiator and ligand are dissolved in styrene and the copper

bromide catalyst is then added to the solution and the polymerization is carried out in bulk

polystyrene at 110 0C. The reaction is monitored by precipitating aliquots into methanol and

analyzing with gel permeation chromatography (GPC). After the desired length is obtained the

remaining solution is precipitate into methanol to stop the reaction.
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3.2.2 Purification of Triblock Copolymers via Fractionation

Fractionation can be used in order to separate the higher molecular weight species

(triblock) from the lower molecular weight species (unreacted diblock and homopolymer). The

fractionation method that has been developed here begins with dissolving the polymer in THF

and adding ethanol until the higher molecular weight species begin to precipitate out. The

solution is then centrifuged and the polymer still dissolved in the THF/ethanol mixture is

removed isolating the highest molecular weight polymer that has precipitated out. Repeating this

process several times allows for the different species of polymer to be separated by molecular

weight. A Waters gel permeation chromatography (GPC) system equipped with 1 Styragel HT3

column (500-30,000 MW range), 1 Styragel HT4 column (5,000-600,000 MW range), 1 Styragel

HT5 column (50,000-4.106 MW range), a refractive index detector, and a UV detector (254nm)

was used for molecular weight measurement relative to polystyrene standards. Tetrahydrofuran

(THF) flowing at lml/min was the mobile phase. GPC was used to characterize the molecular

weights of the initial polymers, the reaction solution after coupling, and the resulting polymers

separated via fractionation.

3.2.3 Mechanical Properties and Electro-mechanical Response of A-B-A and A-B Block

Copolymers

The mechanical properties of the triblock and diblock copolymers were compared using a

TA instruments Q800 for dynamic mechanical analysis (DMA) device. Two different tests were

performed, each on a diblock SCLCBCP and a triblock SCLCBCP. The first test was a strain

recovery test, where the sample film was elongated to a strain of 5% and held for 5 minutes. The

stress was then released and the film was allowed to relax for 20 minutes. Throughout the



experiment a nominal force of 0.001 N was applied to ensure the film was taught. In the second

experiment a constant strain rate of 1% per minute was applied, until a strain of 5% was

achieved, and the strain was allowed to recover at a rate of 1% per minute. Throughout this

experiment the stress was measured. In both cases the stress reached zero before the film fully

recovered, indicative of plastic deformation.

The morphological response to an applied electric field was investigated using X-ray

scattering at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory

(BNL) in Upton, NY. The morphology of the SCLCBCP materials was investigated before and

after the application of a 2500 volt electric field across the film. The SCLCBCP films were

placed in the center of two copper plates and glass spacers were used to control the gap. A

caliper mounted on the top of the device was used to apply pressure to the top plate and to

precisely measure the gap (Figure 3-5). The gap was typically 250C/m resulting in an electric

field of 10 MV/m. Insulating blocks were placed below and above the copper blocks to prevent

short circuits. Additionally, because of the high voltage and small gap distance, the copper

blocks were wrapped in Kapton tape, except for the area in contact with the SCLCBCP films, to

prevent arcing.



Figure 3-5. Picture of the electro-responsive testing device. The sample is placed between the

copper blocks and an electric field of 2500 volts is applied across the gap (the high voltage power

source is pictured in the background). Glass spacers are used to control the gap thickness, which

is measured with the caliper mounted on the top of the device. This device was placed in the

synchrotron X-ray beampath (synchrotron not pictured) and the morphological response to the

applied electric field was investigated with X-ray scattering.
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The approach for electro-mechanical testing involves applying an electric field across the

material while the dimensional change and stress are being monitored in a dynamic mechanical

analysis (DMA) device. An electric field is applied across the material under a constant load and

the strain is measured as a function of the applied voltage (See Figure 3-6). The SCLCBCP films

were coated with a 100nm gold film (deposited by thermal evaporation) on each side and the

edges were trimmed so that the gold film is only present two faces of the film. The film was then

mounted into a TA instruments Q800 for dynamic mechanical analysis (DMA). using custom

insulating grips. A constant force of 0.001 N was applied to the film with and without an applied

electric field.
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Figure 3-6: Left: Schematic of film preparation, the SCLCBCP film is coated with gold on two

faces in order to allow for the application of an electric field (schematic is not to scale for

clarity). Right: Schematic of electromechanical testing setup (Modified from Hiraoka, et al. 5)
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3.3 Results and Discussion

All three of the synthetic schemes described successfully resulted in the synthesis of PS-

PVMS-PS triblock copolymer. The advantages and disadvantages of each synthetic technique

will be discussed in this section. The coupling of living PS homopolymer difunctional PVMS

homopolymer results in a mixture of triblock, diblock where only one functional group has

reacted, unreacted PVMS homopolymer and the excess PS homopolymer. This technique was

the most successful in creating PS-PVMS-PS triblock copolymer. Figure 3-7 shows GPC curves

for the initial PS homopolymer, difunctional PVMS homopolymer, and the resulting mixture

after the coupling reaction.

The PS and PVMS homopolymers were determined to have a weight-average molecular

weight (Mw) of 40,000 and 44,000 g/mol, respectively (A summary of the GPC data is provided

in Table 3-1). It should be noted that all molecular weight measurements are determined in

comparison to PS standards. Therefore, all of the molecular weight measurements are the

average coil size of the polymer relative to a polystyrene homopolymer of a given molecular

weight that has the same average coil size. The GPC trace of the reaction solution after coupling

displayed three primary peaks which are thought to be; 1) triblock copolymer, 2) diblock where

only one functional group has reacted, and 3) a combination of excess PS homopolymer and

small amounts of unreacted PVMS homopolymer. These peaks occur at elution times of 24.7

min (125,000 g/mol), 25.7 min (73,000 g/mol), and 27.2 min (39,000 g/mol), respectively. The

combination of the first and second peaks has a Mw of 127,000 g/mol, and the Mw of the third

peak is 40,000 g/mol. The peaks observed at high elution times (greater than 35 minutes) are

small molecular weight species such as monomers, initiator, or impurities.
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Figure 3-7. GPC curves for the initial PS homopolymer (red), difunctional PVMS (green)

homopolymer, and the resulting mixture after the coupling reaction (black).
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Table 3-1. Summary of coupling and fractionation results.

Sample name Mw (primary peak) PDI Mw (secondary peak) PDI
Initial PS 40,000 g/mol 1.09 - -

Initial PVMS 44,000 g/mol 1.25 -
Reaction solution 127,000 g/mol 1.18 40,000 g/mol 1.05

Fractionation 1 158,000 g/mol 1.12 40,000 g/mol 1.09
Fractionation 2 108,000 g/mol 1.11 44,000 g/mol 1.13
Fractionation 3 79,000 g/mol 1.08 39,000 g/mol 1.04

Figure 3-8 displays the GPC trace for the reaction solution (black), and three subsequent

fractionations (red, green, and blue respectively). The first fractionation (red) primarily contains

triblock copolymer with a Mw of 158,000 g/mol and a small amount of PS homopolymer with a

Mw of 40,000 g/mol. It is believed that the low molecular weight peak is only PS as the PVMS

homopolymer has a higher solubility in the THF/ethanol mixture, and would not precipitate out.

The second fractionation (green) has three peaks that represent a combination of triblock

copolymer at elution times of 25.0 min (101,000 g/mol), diblock copolymer 25.5 min (75,000

g/mol), and PS homopolymer 26.8 min (44,000 g/mol). The combination of the first and second

peaks has a Mw of 108,000 g/mol, and the Mw of the third peak is 44,000 g/mol. The final

fractionation primarily contains PS homopolymer with a Mw of 39,000 g/mol, and a small

amount of diblock copolymer with a Mw of 79,000 g/mol. The intensities of the peaks is highly

sensitive to the concentration of the polymer in the GPC elution solution, thus the intensities of

the curves were scaled for clarity. This displays the ability to effectively separate various species

from the reaction solution and isolate the triblock copolymer. The polymer, PS40-PVMS24-

PS40, from the first precipitation was functionalized with the 4BBP4 mesogen. A 55%

attachment was achieved resulting in the SCLCBCP PS40-LCP4BPP4121-PS40.
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The resulting solution was precipitated into methanol and then dissolved in THF (les than

0.1 weight percent solution). Ethanol was then added and mixed until a small amount of

precipitate was observed. The solution is then centrifuged and the polymer still dissolved in the

THF/ethanol mixture is removed isolating the highest molecular weight polymer that has

precipitated out. Typically, the first precipitation occurs when a 1:1 THF:ethanol ratio is

approached.
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Figure 3-8. GPC curves of a) the reaction solution (black) and three subsequent fractionations

(red, green, and blue respectively). b), c), and d) show only the reaction solution and one

fractionation for clarity.
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The living PS homopolymer coupling to PS-PVMS diblock coupling reaction yielded

similar results as the PS homopolymer coupling to difunctional PVMS reaction. Once again a

mixture of triblock, unreacted diblock, and excess PS homopolymer was obtained and the same

fractionation technique was used to isolate the triblock copolymer. The coupling of PS

homopolymer to the PS-PVMS diblock copolymer resulted in lower yields than the coupling of

PS homopolymer to the difunctional PVMS. Although the coupling to difunctional PVMS

requires two reactions to take place, where the coupling to PS-PVMS diblock only requires one

reaction, it is believed that the functionalization of difunctional PVMS is achieved to a higher

extent than the functionalization of the PS-PVMS diblock. It appears that the simple procedure

for creating the difunctional PVMS homopolymer (initiation, a single propagation step, and

functionalization of the living PVMS) results in a well defined and functionalized polymer.

However, in the case of the PS-PVMS diblock, there are three separate monomers (styrene,

hexamethylcyclotrisiloxane, and 2,4,6-trimethyl-2,4,6-triethynylcyclosiloxane) that must be

added before the functionalization can occur. These additional steps possibly lead to the

introduction of impurities, thus reducing the final functionalization of the diblock copolymer.

It should be noted that the coupling of PS homopolymer to difunctional PVMS results in

a symmetric triblock copolymer. However, the coupling of PS homopolymer to the PS-PVMS

diblock is not symmetrical, as the PS ends were each synthesized separately, and there is a small

amount of PDMS between the PS and the PVMS of the initial diblock (as noted in Chapter 2).

However, the purification of the PS-PVMS diblock is practically easier than the purification of

the PVMS homopolymer, as it is easier to remove the methanol from the PS-PVMS diblock than

the PVMS homopolymer. Additionally the diblock copolymer is a solid at room temperature

allowing for easy handling where the PVMS homopolymer is a viscous oil. The subsequent
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attachment of the LC mesogens to each of the triblock copolymers yielded similar results to the

attachments to the diblock copolymer described in Chapter 2. Overall, though more tedious, the

coupling of PS homopolymer to the difunctional PVMS homopolymer provides better yields and

a more well defined triblock copolymer than the coupling of PS homopolymer to the PS-PVMS

diblock copolymer, and is the preferred technique.

The PS-PVMS diblock was successfully functionalized for use as a macroinitiator for

atom transfer radical polymerization (ATRP). Before the functionalized PS-PVMS diblock

copolymer can be used as a macroinitator for ATRP the vinyl functional groups must be

protected. The presence of vinyl functional groups will lead to side reactions such as

termination, back-biting, or crosslinking of the polymer. The most significant drawback to this

method is that the mesogen must be fully attached to the backbone before the reaction takes

place. In order to vary the attachment percent of the LC mesogen on the block copolymer

backbone the LC must first be attached to the desired functionalization and then a subsequent

hydrosilylation reaction is necessary to protect the remaining vinyl functional groups. This

second hydrosilylation reaction was achieved using an excess of pentamethyldisiloxane and

100% functionalization was achieved in -6 hours. Once the macroinitiator is fully functionalized

the ATRP reaction can take place. The reaction must be monitored by precipitating into

methanol and using GPC analysis to monitor the reaction. The need to monitoring the reaction

leads to a significant decrease in the final yield. Additionally, each attachment percent requires

two additional steps, the completion of the vinyl functional and the ATRP reaction. This creates

a situation where each attachment percent has a slightly different PS block on one end making it

difficult to accurately compare the properties as a function of attachment percent. The synthesis

of a side chain liquid crystalline block copolymer was successfully synthesized using this
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method, however the significant difficulties due to the extra steps required makes this synthetic

scheme much less efficient and practical than the other techniques.

The mechanical property studies indicate that the triblock SCLCBCPs have a greater

ability to recover an applied strain. After applying a strain of 5% for 5 minutes the triblock

copolymer PS40-LCP 4Bpp4121-PS40 recovered 94% of the applied strain within 20 minutes. In

contrast the diblock copolymer, PS61-LCP4Bpp4101, only recovered 60% of the applied strain

under the same conditions (Figure 3-9a). Similarly, looking at the stress-strain curves from the

constant strain rate experiment (Figure 3-9b) the triblock and diblock copolymers recovered 79%

and 67% of the applied strain, respectively. These results indicate that there is more elastic

recovery in the triblock SCLCBCPs and therefore more plastic deformation in the diblock

SCLCBCPs. Each of the materials tested have a similar compositions; polystyrene weight

percents of, 40% and 38% for PS40-LCP4BPp4121-PS40 and PS61-LCP4BPp4101, respectively.

The only significant difference is the block architecture.

This behavior is expected, as the triblock SCLCBCPs possesses physical crosslinks, that

are not present in the diblock SCLCBCPs, due to the A-B-A structure of the triblock copolymer.

These physical crosslinks arise from the covalent linkage of the siloxane based liquid crystalline

polymer blocks between two PS domains. The diblock SCLCBCP has only one covalent linkage

to a PS domain and one free end; thus there is no covalent connectivity between the PS domains.

However, in both the diblock and triblock SCLCBCPs the smectic LC mesophase can act as a

type of a temporary physical crosslink. Although these crosslinks are not covalent, the side chain

liquid crystals, from different polymer backbones, are hindered from moving freely relative to

each other when a stress is applied. Once the LC moieties have slipped past each other, the

deformation is plastic and not recovered.
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Figure 3-9. Mechanical property comparison of triblock and diblock SCLCBCPs. a) Strain

recovery experiment, b) Strain ramp experiment. In both cases the solid line is the triblock

SCLCBCP, PS40-LCP4Bpp4121-PS40, and the dashed line is the diblock SCLCBP, PS61-

LCP4BPP4101.

All of the studies involving the application of an electric field in order to either induce a

morphological or mechanical property change were inconclusive. The in-situ electric field

experiments were performed at National Synchrotron Light Source (NSLS) in Upton, NY. There

was no discernible change in the morphology upon the application of the electric field. The CCD

detector provides a resolution of 0.01 nm for experimental setup used (sample to detector

distance of 2012 mm) and the feature spacing of interest. This requires the change in smectic

layer spacing to be at least 0.3% in order to be detected. In reality, due to the breadth of the peak,

the change in the layer spacing must be significantly larger in order to be resolved. Similar work

was reported by Kohler et. al., citing changes in layer thickness up to 1% as a result of
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electroclinic effects in smectic elastomer films39. In this case small angle X-ray reflectivity was

used to correlate the observed change in film thickness with a change in the smectic layer

thickness. A 0.4% changes in the smectic layer spacing was reported with a 2 MV/m electric

field, however the shift in the data presented by Kohler et. al. is subtle and unconvincing (See

Figure 3-10). This demonstrates the difficulty in such measurements, even in free-standing films

where corresponding lateral extensions are reported. For the desired actuation applications there

would most likely be physical constraints on the film and the material would be expected to

produce some force, resulting in work. Additionally, the presence of glassy polystyrene domains

within this system further hinders any potential electroclinic response. The electro-mechanical

response of these materials was investigated where an electric field was applied across the

SCLCBCPs while under a constant load. Once again the results were inconclusive, as no

changes in the dimensions of the film were observed.
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Figure 3-10. X-ray small-angle reflection profile (smectic layer Bragg peak) of a structurally

similar material near the smectic A-smectic C* phase transition without electric field (+) and in a

2-MV/m electric field (filled squares and circles correspond to two independent measurements)

vs. reflection angle fl/2. For comparison, the zero-field reflex has been shifted in the angular

range by 0.4% to larger angles (open squares)39.
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3.4 Conclusions

Several different methods for synthesizing and isolating PS-PVMS-PS triblock block

copolymers were developed. Of the three techniques detailed the coupling of PS homopolymer

to the difunctional PVMS homopolymer provides the highest yields and the most well defined

triblock copolymer and is the preferred technique. Fractionation from THF/ethanol was

successfully used to isolate the high molecular weight triblock copolymer. The mechanical

properties of the resulting triblock and diblock SCLCBCPs were investigated, primarily to

compare the elastic strain recovery as a function of backbone architecture. In both of the studies

the triblock SCLCBCPs displayed a greater ability to recover an applied strain, which is

attributed to the physical crosslinks resulting for the A-B-A architecture. Attempts to observe

either a morphological of mechanical response of these materials upon application of an electric

field were inconclusive. It is believed that the electroclinic effect of the smectic liquid crystalline

mesophase is not dramatic enough to produce useful morphological or mechanical changes in

this class of materials. The inability to achieve the desired results through the electroclinic

actuation, leads to the investigation and development of the photo-responsive LC moieties

described in Appendix C. It is recommended that more versatile chemistries be developed to

increase the triblock copolymer yields. The difunctional siloxane backbone could possibly be the

basis and the end groups functionalized for attachment of high Tg blocks. The polystyrene outer

blocks could be replaced by another high Tg block, allowing for the advantages of the low Tg of

the siloxane center block and the flexible hydrosilylation chemistry to still be utilized. In order

to create a system that is more responsive, it is recommended that other actuation mechanisms,

such as photo-responsive or chemo-responsive be explored.
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Chapter 4 Effects of Deformation on the

Ordering of Side Chain Liquid

Crystalline Block Copolymers

4.1 Introduction

Molecular alignment of block copolymers typically involves the orientation of nanoscale

domains. Examples of various techniques utilized to achieve well aligned materials include

annealing', various shear fields 2-10, as well as electric and magnetic fields". Side chain liquid

crystalline elastomers (SCLCEs) have attracted recent interest due to their ability to combine the

properties of small molecule liquid crystals and polymers12. The increased mechanical integrity

of attaching a liquid crystalline moiety to a block copolymer backbone can be beneficial for

applications such as electromechanical or mechano-optical materials. Additionally, a

thermoplastic elastomer can be created utilizing the phase segregation of block copolymers,

where the high Tg minority blocks serve as physical crosslinks, allowing the elastomer to be

processed by heating above the Tg of the minority block to achieve an oriented liquid crystalline

monodomain. The inter-material dividing surface (IMDS) of the block copolymer mesophase

can be used to orient the liquid crystalline mesophase, due to surface stabilization effects. In this

way a well oriented block copolymer mesophase can be used to template order in the LC

mesophase.

In this work the smectic liquid crystals are attached to the functionalized siloxane block

of a poly(styrene)-poly(vinylmethylsiloxane) (PS-PVMS) diblock copolymer 13' 14. Gaining a

more complete understanding of the interactions between the block copolymer and the liquid
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crystalline mesophases is key for enabling control over the morphologies and thus the properties

of these systems; thus, recent research has increased in the area of LC block copolymers 9' 10,13, 15-

24. The system discussed here has a unique advantage over other liquid crystalline block

copolymers - a low Tg siloxane block that makes a room temperature elastomer feasible. Here

we investigate the morphologies and the effects of oscillatory shear on the orientation and order

of these LC block copolymers, and find that the orientation of the block copolymer domains is

heavily influenced by the LC orientation. A few means of orientation have been previously

reported for lamellar and cylindrical LC block copolymer systems, including: melt fiber

drawinglo, roll casting3, and oscillatory shear4. In this work, the effects of oscillatory shear have

been shown to introduce preferential orientation of both block copolymer and liquid crystalline

mesophases. Ultimately, transverse orientation of the block copolymer domains is observed in

these systems at temperatures above the LC clearing point, which has never been previously

observed.
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4.2. Results and Discussion

4.2.1 Structural and Thermal Characterization of Side Chain Liquid Crystalline Block

Copolymers

PS-PVMS functional diblock copolymer was synthesized with anionic polymerization,

LCs were synthesized and attached to the block copolymer backbone via hydrosilylation as

described in Chapter 2 (Figure 4-1).

Si

R= Si Si

Figure 4-1. Schematic of side chain liquid crystalline block copolymer (with y and z random).

The number average molecular weight (Mn) of the polystyrene (PS), liquid crystalline polymer

(LCP), and overall block copolymer were determined to be 26,900, 79,400, and 106,300 g/mol,

respectively, with a polydispersity index (Mw / Mn) of 1.28. The NMR based mesogen percent

substitution was 55%, yielding a weight percent is 75% of the block copolymer'3 .
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Differential Scanning Calorimetry (DSC) was used in order to determine the thermal

transitions of the SCLCBCP. Two glass transition temperature temperatures (Tg) were observed

at -140 C and 100 0C corresponding to the Tg for the LCP and the styrene, respectively. The

smectic to isotropic transition temperature (Tiso) of the LC mesophase was observed at 670C.

(Figure 4-2)
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Figure 4-2. DSC heating curve for PS27-LCP 4BPP479.
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Polarized Optical Microscopy (POM) was used in order to observe the presence of

birefringence in the liquid crystalline polymers from room temperature until the smectic C to

isotropic transition temperature of the liquid crystalline phase (Figure 4-3). The focal conic

textures observed indicate a smectic liquid crystalline phase is present. The disappearance of

birefringence when the samples were heated indicates a transition from a smectic C liquid

crystalline phase to the isotropic phase, and in all cases agreed with the DSC data.

Figure 4-3. POM images displaying typical smectic textures observed below the smectic C to

isotropic transition temperature for PS27-LCP4BPP479.

The presence of a disordered smectic C liquid crystalline phase was confirmed via small-

angle X-ray scattering (SAXS). The d-spacings observed are indicative of the presence of

smectic layers. Accelrys Materials Studio Molecular Modeling Software was used in order to

calculate the molecular lengths of the 4BPP4 mesogen attached to the siloxane backbone. The

calculated mesogen length was -3.6 nm. Comparing the experimentally observed d-spacings
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(3.45nm) with the calculated molecular length of the liquid crystalline molecule, it was

concluded that the liquid crystals form smectic C single layers with a tilt angle of -16.6'.

SAXS and TEM were used in order to investigate the morphology of the block copolymer

mesophase (Figure 4-4). A TEM of PS27-LCP4BPP479 indicates a HCP cylinder morphology.

The TEM results are corroborated with SAXS, where several higher order reflections were seen

for PS27-LCP 4BPP479. The observed higher order peaks correspond to scattering characteristic of

a HCP cylinder morphology (Table 4-1).

Table 4-1. Scattering peaks for HCP cylinders as observed in PS27-LCP4BPP479.

Reflection Ratio to 1st order peak q expected (nm-') q observed (nm')
1st order - - 0.158
2 nd order 0.273 0.268
3"r order 0.316 0.324
4 th order 7 0.418 0.414

Temperature dependent SAXS was performed to investigate morphological changes in

the block copolymer mesophase as a function of temperature. At elevated temperatures the

scattering intensity from the first order peak was observed to decrease. In order to systematically

determine the order-disorder transition (ODT), plots of the reciprocal of the maximum scattering

intensity (1/Imax) versus the reciprocal temperature (1/T). Additionally, the wavelength of

concentration fluctuations, above Tiso, and the d-spacing, below Tiso, denoted as (d) was plotted

versus reciprocal temperature, similar to the technique used by Anthamatten et al.24-26. Imax and d

are both observed to decrease with increasing temperature (moving from right to left in Figure 4-

5), above 800 C, and reach a plateau near 170 0 C. The smectic to isotropic temperature was
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observed at 670C via DSC (Figure 4-2). It is concluded that there is the order-order transition

(OOT) near 800 C related to the smectic to isotropic transition. Additionally, this data along with

the disappearance of higher order peaks, leads to the conclusion that the order-disorder transition

(ODT) occurs near 170"C.

The interfacial thickness was determined by the method of Hashimoto25' 26, where the

ln[I(S)*S2] is plotted versus S2, where S = 2sin(O)/X and I(S) is the scattering intensity as a

function of S. From the slope or this graph the interface thickness (t) can be determined, t =

(Islopel/27r)0. 5 as I(S)*S2 is proportional to exp(-2irt 2S2). Using this method interface thicknesses

of-3 nm were calculated.
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Figure 4-4. a), b) TEM images and c) SAXS of solvent-cast PS27-LCP 4BPP479 displaying the

HCP cylinder morphology.
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Figure 4-5. Plots of 1/Imax versus 1/T and d versus 1/T. The smectic to isotropic transition

temperature (TOOT) and the order-disorder transition temperature (TODT) are marked with solid

lines. Where Imax is the maximum intensity of the scattering in the q range of interest and d is the

spacing of the ordered phase below the TODT and the length scale of concentration fluctuations

above the TODT-

4.2.2 Mechanical Orientation

In-situ SAXS studies were performed by applying oscillatory shear with a Linkam

CSS450 shear cell at the NSLS beamline X27C at BNL. Samples were typically films -6x4 mm

with a thickness of 400 mm that were cut to fit the curvature of the channel in the shear cell and

placed between thin plates consisting of kapton tape and mica, less than 100 itm, supported by an

aluminum frame (not in the beam of the path). The sidewalls of the aluminum frame maintained
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the sample shape during shear at high temperatures, and upon cooling the samples were removed

for ex-situ analysis (Figure 4-6). Small slices -1mm were marked and cut in order to investigate

the morphology along the vorticity and shear directions. Due to the small sample size aligning

the samples parallel to the beam proved difficult.

Sample area Shear
Channel

:illation

Figure 4-6. Schematic of sample geometry for in-situ shear experiments.

Initial results indicated that shearing must take place above the polystyrene Tg in order for

there to be sufficient mobility in the system for orientation of the smectic LC or block copolymer

mesophases to occur on the time scales studied (5 min-l hr). Samples of PS27-LCP 4BPP479 were

subjected to 100% shear at a frequency of 1 Hz at 120 0C, which is above the smectic to isotropic

transition and the order-order transition for this sample. The development of preferential

orientation of the HCP cylinders was initially observed within several minutes (in the absence of
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scattering from smectic layers), and after approximately 20 minutes no further significant

increase in the alignment of the domains was observed.

Upon slow cooling (50C/min) after the cessation of shear, smectic layers were observed

to form preferentially oriented in a manner that is consistent with the homogeneous anchoring

relative to the orientation of the HCP cylinder morphology. Both the cylinder axis and the

smectic layer normal were preferentially oriented transverse to the shear direction, i.e. parallel to

the vorticity direction (Figure 4-7). It was also observed that samples that had been previously

deformed could be heated above the smectic LC clearing temperature and the PS Tg, to 1200C

and with a cooling rate of 5SC/min the smectic layer preferential orientation was regained.

However, when the cooling rate is increased to 200C/min significantly less preferred orientation

was observed in the smectic layers. This result indicates that kinetics play an important role in

the formation of the smectic LC mesophase.
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Figure 4-7. a) Cartoon depicting observed predominant structure relative to the direction of

shear. b) 2-D SAXS images of sample after shear of 100% at a frequency of 1 Hz took place at

120 0C for 1 hour. Moving from left to right, the images were taken with the incident beam

parallel to the shear, vorticity and gradient directions, respectively. c) Enlarged views of the 2-D

SAXS images, displaying the low angle scattering for each direction, confirming the transverse

cylinder orientation.
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It is important to note that the cylinders align in the transverse orientation at temperatures

where the liquid crystalline mesophase is in the isotropic phase. The lack of smectic ordering is

confirmed by the absence of scattering over the relevant q range throughout the in-situ shear

experiment. The cylinders would be expected to align in the parallel orientation for an

amorphous-amorphous block copolymer27-29; however, since the cylinders are observed in the

transverse orientation it is clear that even in the isotropic phase, the LC mesophase has an effect

upon the physics of the block copolymer orientation (contrary to previous results from other

work4).

This observation leads to the conclusion that there is residual order in the isotropic LC

mesophase, and this anisotropy is the driving force for the transverse orientation of the cylinders.

It is generally known that liquid crystals at a surface or interface can retain orientation even when

transverse fields or temperatures above the clearing point are introduced. The periodicity of the

PS cylinders is only -40nm, resulting in a situation where surface induced ordering could persist

through the entire LC mesophase. Ordering of the LC moieties parallel to the IMDS (i.e.

homogeneous anchoring) is consistent with the orientation of the smectic layers observed upon

cooling. Additionally, the large size and aspect ratio of the LC moieties in this system could lead

to stronger homeotropic anchoring than in other systems, thus having a grater influence upon the

orientation of the block copolymer morphology.

The SAXS pattern taken with the beam incident parallel to the vorticity direction clearly

shows a hexagonal scattering pattern, indicating that the entire sample is well aligned (the sample

and the beam are both -400pOm). This image was taken slightly off axis, leading to the apparent

increase in intensity along the gradient direction at low q, and the higher q smectic LC scattering

seen along the shear direction. The Herman's orientation parameter (f)30 was used to quantify the
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degree of orientation for the BCP and LC mesophases. This parameter ranges from 1 to -/2, with

f = 0 for a completely random distribution of orientations. When f is 1 or -'/2 the system is

completely aligned parallel or perpendicular, respectively, to the chosen reference direction,

which in this case was chosen to be the vorticity direction. The scattering intensity at the

relevant scattering vector q was analyzed as a function of angle with respect to the reference

direction. An additional method for calculating the orientation parameter, which is more relevant

for systems that do not display uniaxial orientation 31 was calculated. This function has a range of

1 to -1 for perfect alignment parallel and perpendicular to the reference direction, respectively.

The orientation parameters were calculated, and shown in Table 4-2, for each of the incident

bean directions for both the low q (BCP cylinders) and high q scattering (smectic layers). The

orientation parameters were not calculated for the low q scattering along the vorticity direction,

as in this case a hexagonal pattern was observed, rendering these orientation parameters

irrelevant.

Other work has yielded orientation parameters of 0.53 for smectic side chain LC

polymers under a steady shear32 and 0.67 for small molecule LCs oriented using a rubbed

polyimide alignment layer33. Model block copolymer systems such as PS-PEO have been show

to exhibit orientation parameters up to 0.95 under compressive stress and thermal annealing34.

The lower orientation parameter observed in this system compared to those for model block

copolymer systems can be attributed to the larger polydispersity, the PDI in the model systems is

typically less than 1.1 and in this system the PDI is 1.28. Additionally, it is likely that the driving

force for ordering and orientation in this system is not as strong as that of model systems.

Similar materials to those discussed in the main text (a similar mesogen with a higher Tiso,

-160 0 C) were also studied under the same shear conditions (100% strain, 1 Hz, 120 0C). The
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orientation of the smectic layers for these materials was observed to be stronger, with an

orientation parameter of 0.65 for the smectic layers35. This is to be expected, as in the case

where the shearing takes place in the smectic LC phase, the smectic layers are directly aligned by

the oscillatory shear flow. Dissimilarly, for the material described in this paper, the shear takes

place above the Tiso, and the orientation of the smectic layers is more indirectly resultant from a

combination of ordering relative to the IMDS and residual preferential ordering from the

isotropic LC phase.

It is important to note that the images taken along the vorticity direction were taken off

axis. What is observed is a superposition of the scattering that would be observed for an image

taken along the shear direction, with the scattering observed from the image along the vorticity

direction. This results in the presence of scattering in the high q regime (which would be

isotropic for a sample that was aligned with the vorticity direction exactly parallel to the incident

bean. Additionally, there would not be any scattering observed only if the sample had a smectic

LC mesophase that was perfectly uniaxially oriented (orientation parameter of 1) and aligned

exactly parallel to the incident beam.

Table 4-2. Orientation parameter using different functions and different angles.

Sample orientation and Herman's Orientation Anisotropy factor for biaxial
relevant q range parameter orientation

Shear direction, low q 0.37 0.37
Shear direction, high q 0.51 0.49

Vorticity direction, low q Not applicable Not applicable
Vorticity direction, high q 0.43 0.33
Gradient direction, low q 0.28 0.19
Gradient direction, high q 0.31 0.25
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Additionally, anisotropy was observed in the d-spacings of the cylinders relative to the

direction of the applied shear. This result indicates the HCP lattice has been distorted, such that

the cylinder spacings are larger along the shear direction than along the gradient direction (Table

4-3). The hexagonal cylinder lattice appears to be distorted as a result of the oscillatory shear

that was used to align the samples. The d-spacing of the block copolymer mesophase was 40 nm

at room temperature before the material was subjected to oscillatory shear (Figure 4-4). An

increase in the d-spacing was observed along the shear direction, and a corresponding decrease

was observed along the gradient direction.

Table 4-3. Block copolymer d-spacing at room temperature after shear.

Direction of incident beam d-spacing (nm)
Shear direction 38.0 (along gradient direction)

Vorticity direction 37.8 (along gradient direction)
Vorticity direction 42.1 (along shear direction)
Gradient direction 41.6 (along shear direction)

Melt fiber drawing and tensile elongation can also be used to orient liquid crystalline

polymers 36 and liquid crystalline block copolymers10. Fiber drawing of the side chain liquid

crystalline polymers was performed by heating the samples to 1500 C on a hot plate and pulling -

500tm fibers from the melt with tweezers. SAXS indicates that for all of the materials

investigated the cylinder axis and the smectic layer normal are preferentially oriented parallel to

the fiber axis (Figure 4-8). This orientation indicates that the smectic layers are oriented relative

to the IMDS consistent with the homogeneous anchoring.
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Polarized optical microscopy was also used to characterize the orientation of the LC

mesophase in these mechanically deformed films (Figure 4-9). The samples were places between

orthogonal polarizers. If the sample does not display and birefringence then light will pass

through the polarizers. However, if the material possesses birefringence light will pass through

as it is reoriented in between the two polarizers, as shown in Figure 4-3 where the material is

macroscopically isotropic and displays a local focal conic texture. When the fiber is placed

between the orthogonal polarizers the orientation of the fiber relative to the cross polars effects

the observed birefringence. When the sample is oriented parallel to one of the polarizers very

little birefringence is observed, however when rotated to some angle so that the fiber is not

parallel to either of the polarizers birefringence is observed. This observation indicated that the

LC mesophase is macroscopically oriented so that polarization of light due to the sample is

parallel to the fiber axis. Similar results were observed for samples that were oriented through

tensile elongation, as characterized with SAXS and POM. These samples were subjected to a

constant stress of 0.1 MPa at 1400C until a strain of 150% was reached.
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Figure 4-8. a) Cartoon showing observed structure relative to the melt fiber drawn direction, b)

SAXS of PS27-LCP 4BPP490 that has been melt fiber drawn.

Orientaion of
Cross Polars

Figure 4-9. POM images of a fiber of PS27-LCP4BPP479 that has been melt drawn, taken under

cross polars. The image on the left is with the direction of deformation parallel to the cross

polars, the image on the right is the same sample rotated and birefringence is observed.
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4.3 Conclusion

A well defined smectic C side chain liquid crystalline block copolymer has been

synthesized and characterized. For the side chain liquid crystalline block copolymers studied a

cylindrical morphology was observed via TEM and SAXS. When mechanically deformed, the

preferential orientation of the smectic LC and the block copolymer mesophases was observed,

and homogeneous anchoring between the smectic LC mesophase and the IMDS of the cylindrical

block copolymer mesophase was observed.

The transverse HCP cylinders orientation was observed for liquid crystalline block

copolymers that experienced oscillatory shear. The transverse orientation was observed while

shearing took place above the smectic to isotropic transition temperature. The significance of

this result is that it indicates that the presence of the isotropic liquid crystalline phase alters the

orientation of the block copolymer morphology in response to shear, which has not been

previously reported. PS27-LCP 4BPP479 was deformed using oscillatory shear, resulting in a

nearly uniform oriented HCP cylindrical morphology across the thickness of the sample, as

observed via SAXS. Achieving macroscopic orientation of the block copolymer and LC

morphologies is critical for a material that can be used for electromechanical applications.

Future work in this area includes study and optimization of the effects of the morphology

and orientation of the block copolymer and the liquid crystalline polymer mesophases on thermo-

and electromechanical response in these liquid crystalline thermoplastic elastomers.
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Chapter 5 Morphology of Side Chain Liquid

Crystalline Block Copolymer Thin

Films: Effects of Thermal Annealing

5.1 Introduction

Block copolymer thin films have attracted much recent interest for potential use in nano-

patterning applications1' 2. It is desired to achieve systems that exhibit long range order as well

as gain control over the orientation of the domains. Recently progress has been made in

achieving long range order in block copolymer thin films through techniques such as solvent

annealing3, 4, zone casting5, and optical alignment6. Due to the large interfacial area of the thin

film, the orientation of the domains depends greatly upon the relative surface energies of the

blocks7-10. The incorporation of a liquid crystalline (LC) component into a block copolymer

system can have significant effects upon the self assembly behavior and domain orientation for

both bulk materials'11 8 and thin films9' 19, 20. Additionally, liquid crystalline polymers (LCP) are

of particular interest as they can allow for the introduction of responsive elements into the

system, e.g. thermo-, chemo-, electro-, or photo-responsive21

In this work we study the morphology of side chain liquid crystalline block copolymer

thin films, the effects of thermal annealing, and the effects of the liquid crystalline mesophase

upon the self assembly. We probe the surface morphologies of these films with atomic force

microscopy (AFM). Grazing incidence small-angle X-ray scattering (GISAXS) is a powerful

non-invasive technique that we used to investigate the both the lateral and transverse structures
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in the interior of these thin films7' 22 23. For more details on GISAXS see Appendix E.

5.2 Experimental

The synthesis of the polymer, LC moiety, and attachment were previously developed and

described 7' 24. Spin casting was performed by preparing 3, 5, and 7 wt% homogeneous solutions

of the side chain liquid crystalline block copolymer in toluene, and applying a single drop to the

silicon substrate rotating at 2500 rpm. The film thicknesses were between 70nm and 250nm,

measured via profilometry, with the more dilute solutions resulting in thinner films. Some of the

films were then annealed at 1700C under vacuum for 36 hours and cooled to room temperature a

0.5 0C/min. A Dimension 3100 AFM by DI Instruments with a Nanoscope 3A Controller in

tapping mode was used to investigate the surface morphologies. NCH Pointprobe non-contact

mode AFM Cantilevers were purchased from Pacific Nanotechnologies. GISAXS experiments

were performed at the G1 beamline at the Cornell High Energy Synchrotron Source (CHESS).

The wavelength of the incident beam was 1.239A, with a sample to detector distance was

calibrated with silver behenate (first order scattering vector of q of 1.076nm-1 (with q = 4'r

sin(O/X) where 20 is the scattering angle and X is the wavelength). A slow-scan CCD-based x-ray

detector, home built by Drs. M.W. Tate and S.M. Gruner of the Cornell University Physics

Department, was used for data collection. Incidence angles were chosen between 0.120 and

0.220, and the final images are an average often 1 second exposures.
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5.3 Results

The poly(styrene)-poly(vinylmethylsiloxane) (PS-PVMS) functional diblock copolymer

was synthesized via anionic polymerization, LCs were synthesized and attached to the block

copolymer backbone with a hydrosilylation reaction. The number-average molecular weights

(Mn) of the polystyrene (PS), liquid crystalline polymer (LCP), and overall block copolymer

were determined to be 26 900, 79 400, and 106 300 g/mol, respectively, with a polydispersity

index (Mw/Mn) of 1.28. The NMR-based mesogen percent substitution was 55%, yielding a LCP

that is 75% of the overall block copolymer by weight 17,24

The relevant thermal transitions of this material in bulk were determined via a

combination of differential scanning calorimetry (DSC), and small-angle X-ray scattering

(SAXS). Two glass transition temperatures (Tg) were observed at -140C and 1000C

corresponding to the Tg for the LCP and the styrene, respectively. The smectic to isotropic

transition temperature (Tiso) of the LC mesophase was observed at 670C and the order-disorder

transition (ODT) occurs near 170 0C 7.

Figure 5-1 shows AFM phase images of the as-spun and annealed films. In these images

the more rigid PS domains appear lighter and the LCP domains appear darker. The as-spun film

displays disordered PS cylinders oriented perpendicular to the air interface, as evidenced by the

circular bright regions. The annealed films display cylinders parallel to the interface, as

evidenced by the observation of bright lines. This image shows less contrast, most likely due to

the presence of a layer of LCP on the surface that exists in order to minimize the interfacial

energy. A two-dimensional (2D) fast Fourier transform (FFT) of the AFM images measured

averagefeature spacings of 47nm and 48nm for the as-spun and annealed films, respectively.
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Figure 5-1. AFM phase images of a 250nm SCLCBCP thin film a) as-spun, and b) after

annealing at 170 0C for 36 hours under vacuum.

2-D GISAXS images of the as-spun and annealed films are shown in Figure 5-2. The as-

spun film displays scattering that is indicative of features in the plane of the substrate with a

41.5nm d-spacing. The annealed film displays a scattering pattern characteristic of hexagonal

cylinders parallel to the substrate with a d-spacing of 42nm8' 25 . It should be noted that the FFT

of the AFM image yields a measurement of the center to center distance of the features (denoted

as L), which in this case are the PS cylinders. In contrast, GISAXS measures the d-spacing

(denoted as d) between the planes of cylinders. Considering the geometry of cylinders on a

hexagonal lattice the d-spacing differs from the feature spacing by a factor of 2 /N8 (Figure 5-3).

This accounts for the difference in values obtained between the two techniques. Thus, the d-

spacings and orientations observed via GISAXS are consistent with AFM, and additionally

confirm that the orientation persists through the thickness of the film.
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Figure 5-2. 2-D GISAXS images of a 250nm SCLCBCP thin film a) as-spun, and b) after

annealing at 1700 C for 36 hours under vacuum. Both images were taken with an incidence of u,

= 0.170, which is larger than the critical angle of the SCLCBCP (or = 0.140) and less than the

critical angle of the Si substrate (a~ = 0.20), allowing the bulk of the film to be investigated.
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Figure 5-3. Schematic of the geometry of hexagonal close packed cylinders viewed head on.
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Additional GISAXS was performed with a sample to detector distance of 444mm in order

to capture the scattering from the LC mesophase. The smectic layers were observed parallel and

perpendicular to the substrate for the as-spun and annealed films, respectively, as evidenced by

GISAXS (Figure 5-4 a,b). These orientations indicate homogeneous anchoring with respect to

the curved IMDS with the polystyrene cylinders. Additionally, as-spun liquid crystalline

homopolymer displayed smectic layers strongly oriented parallel to the substrate (Figure 5-4 c).

The smectic layer spacings observed were 3.6nm and 3.48nm for the SCLCBCP and the LC

homopolymer, respectively.
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Figure 5-4. GISAXS images of 250nm SCLCBCP thin film a) as-spun, and b) after annealing at

170 0C for 36 hours under vacuum. c) GISAXS image of the liquid crystalline homopolymer as-

spun. All images were taken with an incidence of a = 0.170. d) Schematic of a liquid crystalline

homopolymer with the smectic layers oriented parallel to the substrate.
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5.4 Discussion

The perpendicular cylinder and parallel cylinder morphologies were observed for all

unannealed and annealed samples, respectively, see Figure 5-5. These results were observed for

films ranging from 70nm to 250nm in thickness; the 250nm films are shown as they displayed

the greatest scattering contrast. The smectic layers were observed parallel to the substrate for the

as-spun films and perpendicular to the substrate for the annealed films, as evidenced by

GISAXS. Additionally, a homopolymer of PVMS was synthesized, the same liquid crystalline

moiety was attached, and spin cast under the same conditions. The smectic layers were strongly

oriented parallel to the substrate, with the smectic layer normal perpendicular to the substrate, as

evidenced by GISAXS.

L4I

Figure 5-5. Schematics of the morphologies observed a) as-spun and b) after annealing at 170 0C

for 36 hours under vacuum (schematics are not to scale for clarity).
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In bulk this material displayed a hexagonal cylinder morphology with the smectic layer

normal oriented parallel to the cylinder axis 15, 17. This orientation is consistent with the

homogeneous anchoring relative to the curved PS/LCP inter-material dividing surface (IMDS).

On the time scale of the spin casting process (the solvent evaporates in approximately one

second), the smectic LC layers in the side chain liquid crystalline block copolymer orient parallel

to the substrate, with the smectic layer normal perpendicular to the substrate. The dominant

driving force in the as-spun film is the orientation of the LC mesophase relative to the substrate.

The domination of the LC phase in determining the block copolymer orientation suggests that the

mesophase appears in the film prior to the evolution of block copolymer domains on solvent

removal, enabling the LC orientation to act as a primary influence for morphological

development. The PS domains then phase segregate to form cylinders perpendicular to the

surface in order to maintain the homogeneous anchoring condition. The as-cast perpendicular

cylinder phase appears to have little long range order, as would be expected due to the short time

allowed for ordering. It has been shown that perpendicular cylinders can be achieved in an

amorphous-amorphous block copolymer by creating a solvent evaporation gradient to orient the

cylinders26. However, in this study the solvent evaporation rates were several orders of

magnitude faster than those where this phenomena has been observed.

Annealing above the Tg of both blocks, the Tiso, and near the block copolymer ODT gives

increased mobility to the system. Only when the LC phase is removed above the Tiso, followed

by slow cooling, do we observe the planar arrangement of cylinders typically found with fully

amorphous block copolymers. This is particularly true for systems in which one of the two

blocks preferentially wets the substrate, as is most often observed experimentally. In this case

the minimization of interfacial energies is the dominant driving force, resulting in the hexagonal

cylinders oriented parallel to the surface. This morphology allows the siloxane based LCP block
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to be in contact with both the substrate and air interfaces, thus avoiding the less favorable PS-air

and PS-Si interfaces. Upon cooling, the polystyrene vitrifies, while the LC mesophase is in the

isotropic state, kinetically trapping the parallel cylinder morphology. There is significantly more

interfacial area between the LC mesophase and the IMDS with the PS than with the substrate.

Thus, further cooling below the Tiso leads to an orientation of the smectic layers consistent with

the homogeneous anchoring condition, such that the smectic layer normal is also parallel to the

substrate.

5.5 Conclusion

Grazing incidence small-angle X-ray scattering and atomic force microscopy were used

to investigate the morphologies of side chain liquid crystalline block copolymer thin films. The

perpendicular cylinder morphology was observed in the as-spun films; however upon thermal

annealing the morphology rearranged to yield cylinders parallel to the substrate. The initial

morphology is dominated by the ordering of the smectic LC layers relative to the substrate.

Annealing results in a reorientation of the morphology such that the surface energy of the film is

minimized. Gaining a further understanding of the effects of a LC mesophase upon the

morphologies of block copolymer thin films can lead to greater control over the orientation and

order for these materials, allowing for advances in the use of block copolymers for nano-

patterning.
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Chapter 6 Morphology of Side Chain Liquid

Crystalline Block Copolymer Thin

Films: Effects of Liquid Crystal

Content

6.1 Introduction

Recent there has been a great deal of research directed at controlling the self-assembly of

block copolymer thin films, specifically obtaining the desired orientation of nanoscale features

relative to the substrate"' 2. Recently progress has been made in controlling the morphologies of

block copolymer thin films through techniques such as solvent annealing3, 4, zone casting', and

optical alignment6. Due to the large interfacial area of the thin film, the orientation of the

domains depends greatly upon the relative surface energies of the blocks7-'0. The incorporation

of a liquid crystalline (LC) component into such systems offers a powerful tool for manipulating

the orientation of the self-assembled structures. When a LC component is introduced several

factors including conformational asymmetry, structural asymmetry, and the anchoring of the LC

mesophase to the inter-material dividing surface (IMDS) can alter the self-assembly behavior"''

16. The inter-material dividing surface (IMDS) of the block copolymer mesophase can be used to

orient the liquid crystalline mesophase, as the LC will preferentially orient with respect to the

IMDS due to surface stabilization effects17 19. In this way a well oriented block copolymer

mesophase can be used to template order in the LC mesophase. Additionally, liquid crystalline

157



polymers (LCP) are of particular interest as they can allow for the introduction of responsive

elements into the system, e.g. thermo-, chemo-, electro-, or photo-responsive20 .

In this Chapter I will describe the effects of varying the LC content upon the self-

assembled morphologies of these side chain liquid crystalline block copolymers. The strong

preference for homogenous anchoring creates a situation where the orientations of the LC

mesophase and the block copolymer nanostructures are linked. Using the LC content as a tool to

tune the interfacial interactions of the LC mesophase allows for the orientation and ordering of

the morphologies to be manipulated. The synthetic techniques detailed in Chapter 221 allow for

the systematic control over the covalent attachment of LC moieties to a functional siloxane based

block copolymer backbone. The ability to precisely control the content of covalently attached

LC moieties enables a unique tunability, allowing for the structure of the thin films to be tailored

for specific applications. The surface morphologies of these films are revealed with atomic force

microscopy (AFM) and grazing incidence small-angle X-ray scattering (GISAXS) is utilized to

probe the interior structures. For more details on GISAXS see Appendix E.
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6.2 Experimental

The synthesis of the polymer, LC moiety, and attachment were previously developed and

described in Chapter 221. Spin casting was performed by preparing 4, 2, and 1 wt%

homogeneous solutions of the side chain liquid crystalline block copolymer in toluene, and

applying a single drop to the silicon substrate rotating at 2500 rpm. The film thicknesses were

measured with a Tencor P-10 Surface Profilometer. The higher concentration solutions resulted

in thicker films, as would be expected. The films were then annealed at 1700C under vacuum for

36 hours and cooled to room temperature a 0.5°C/min. A Dimension 3100 AFM by DI

Instruments with a Nanoscope 3A Controller in tapping mode was used to investigate the surface

morphologies. NCH Pointprobe non-contact mode AFM Cantilevers were purchased from

Pacific Nanotechnologies. GISAXS experiments were performed at the GI beamline at the

Cornell High Energy Synchrotron Source (CHESS). The wavelength of the incident beam was

1.239A, and silver behenate was used to calibrate the sample to detector distance with a first

order scattering vector of q of 1.076nnmi (with q = 47r sinO/X where 20 is the scattering angle and

X is the wavelength). A slow-scan CCD-based x-ray detector, home built by Drs. M.W. Tate and

S.M. Gruner of the Cornell University Physics Department, was used for data collection.

Incidence angles were chosen between 0.120 and 0.220, and the final images are an average of

two 1 second exposures.
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6.3 Results and Discussion

The morphologies and thermal properties of these materials are summarized in Table 1.

It was found that increasing the LC content leads to both an increase in the volume fraction of

the liquid crystalline polymer block and an increase in the preference for homogeneous

anchoring of the LC mesophase. Previously we described techniques for the rearrangement of a

liquid crystalline block copolymer through thermal annealing 19. A metastable morphology was

observed in the as-cast film, dominated by interactions of the LC mesophase with the substrate,

and a reorientation driven by a minimization of interfacial energies in the annealed film. Here

we will investigate and discuss the effects of increasing the preference for LC anchoring upon

the thin film morphologies.

Representative grazing incidence small-angle X-ray scattering (GISAXS) images are

shown for annealed block copolymers thin films with different LC contents. The polymer with

the lowest LC content (PS27-LCP4Bpp446, Figure 6-la) displays a disordered cylindrical

morphology. Polymers with an intermediate LC content exhibit an ordered parallel cylinder

morphology (PS27-LCP4 BPP479, Figure 6-1b). Further increase of the LC content, to 100%

functionalization, results in the perpendicular cylinder morphology (PS27-LCP4BPp4115, Figure

6-1c). For all of these morphologies homogenous anchoring of the LC mesophase to the IMDS

was observed, such that the smectic layer normal is parallel to the cylinder axis.
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Figure 6-1. Representative grazing incidence small-angle X-ray scattering images of a) PS27-

LCP 4BPP446, b) PS27-LCP 4BPP479, and c) PS27-LCP 4BPP 4115. The images on the left were taken

with a sample to detector distance of 2,375mm, and the scattering from the block copolymer

mesophase is observed. The images on the right were taken with a sample to detector distance of

442mm and primarily display scattering from the LC mesophase.
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For materials with low LC content the poorly defined LC mesophase does not provide a

strong of a driving force for orientation, resulting in the disordered morphologies for both the as-

cast and annealed films. Increasing the LC content increases the interactions of the LC

mesophase and the IMDS, resulting in an ordered cylinder morphology. As-cast films with this

intermediate LC content display a metastable perpendicular cylinder morphology as the

interactions (i.e. homeotropic anchoring) of the LC mesophase with the substrate are dominant.

With the LC normal oriented perpendicular to the substrate, and the requirement of

homogeneous anchoring of the LC mesophase to the IMDS, the PS cylinders are forced to orient

perpendicular to the substrate. When these films are annealed a reorientation to the parallel

cylinder morphology occurs in order minimize the interfacial energies and avoid unfavorable PS-

air interactions 19. The as-cast thin films of the polymers with 100% LC functionalization also

display the perpendicular cylinder morphology. However, unlike samples with intermediate LC

content annealing does not result in the parallel morphology, as the increased preference for

homeotropic anchoring of the LC mesophase to the substrate prevents reorientation. These

results are summarized in Table 6-1.

Table 6-1. Summary of thin film morphologies.

Sample name PS wt % LC Attachment % As-cast orientation Annealed orientation
PS27-LCP4Bpp446 37 31 Disordered Cylinder Disordered Cylinder
PS27-LCP4Bpp457 32 41 Disordered Cylinder Disordered Cylinder
PS27-LCP 4BPP 479 26 55 Perpendicular Cylinder Parallel Cylinder
PS27-LCP 4BPP 490 23 76 Perpendicular Cylinder Parallel Cylinder
PS27-LCP4BPP4115 19 100 Perpendicular Cylinder Perpendicular Cylinder
PS61-LCP4BPP 483 42 62 Perpendicular Lamellar Parallel Lamellar
PS61 -LCP4BPP4101 38 79 Perpendicular Transitional Perpendicular Cylinder
PS61-LCP4BPP4123 33 100 Perpendicular Cylinder Perpendicular Cylinder
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AFM images of as-cast and annealed films with 100% LC functionalization are shown in

Figure 6-2. Both films exhibit the perpendicular cylinder morphology; however the features

appear more clearly in the as-cast film. In order to minimize the interfacial energy of the system

the polymer-air interface is wet by as layer of liquid crystalline polymer to avoid unfavorable

PS-air interactions. The AFM tip now probes the PS cylinders through the liquid crystalline

polymer layer at the air interface, resulting in the lower contract of the features. Additionally,

heating above the PS glass transition temperature (Tg) allows the system to further equilibrate,

resulting in increased long range order of the cylinders for the annealed film. The unique feature

of this system is that the orientation of the PS cylinders is determined by the interactions of the

LC mesophase with the IMDS and the substrate, leading to a stable perpendicular morphology

for 100% LC functionalization. This ordered perpendicular cylinder morphology is desirable for

many nano-patterning applications.
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Figure 6-2. Atomic force microscopy phase images of PS27-LCP4BPP4115 with 100% LC

functionalization displaying the perpendicular cylinder morphology. The left image is as-cast

and the right image has been annealed at 170 0 C for 36 hours.

A higher molecular weight series (PS61- ) of side chain liquid crystalline block

copolymers was also investigated; these polymers have a significantly larger PS block than the

PS27- series, resulting in larger PS volume fractions for comparable LC functionalization. As

the molecular weight increases, so does the feature spacing of the self-assembled morphologies.

These larger features could not be observed with GISAXS, as the scattering features of interest

were obscured by the beamstop and specular reflectance. For these materials increasing the LC

functionalization leads to a dramatic change in the PS volume fraction, allowing for a range of

morphologies to be obtained from a single polymer backbone.

AFM images are shown in Figure 6-3 a), b), and c) for LC functionalizations of 62, 79,

and 100%, respectively. This increase in LC content reduces the PS volume fraction allowing
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lamellar, transitional, and cylindrical morphologies to be obtained for PS61-LCP4BPp483, PS61-

LCP4BPP4101, and PS61-LCP 4BPp4123, respectively; these results are summarized in Table 6-1.

The as-cast films all display these morphologies oriented perpendicular to the substrate (see

images on left in Figure 6-3). Upon annealing sample PS61-LCP 4Bpp4123 remains perpendicular

cylinders, exhibiting the same behavior as PS27-LCP4BPP4115 from the lower molecular weight

series. Interestingly, annealing of PS61-LCP4BPP4101, which displays a lamellar/cylindrical

transitional morphology in the as-cast film and in bulk, results in a perpendicular cylinder

morphology, with the typical liquid crystalline polymer wetting layer at the air interface. This

result indicates that the cylindrical morphology is stabilized, in favored of the lamellar

morphology. This stabilization was not observed in bulk samples of this material that were

annealed. It is believed that the relatively small sample thickness of the thin film allows for this

rearrangement to the equilibrium morphology to occur more quickly than in bulk.

The perpendicular lamellar morphology observed for PS61-LCP4BPP483 in the as-cast

film and reorients to the parallel lamellar morphology after annealing. This behavior is very

similar to that of PS27-LCP4BPP 479 and PS27-LCP4 BPP490 from the lower molecular weight

series, which have similar attachment percents to PS61-LCP 4BPp483. In a perfect lamellar

morphology there is no curvature of the IMDS, so presumably either the homeotropic or

homogeneous orientations are possible. When considering the conformational space of the

siloxane backbone it is believed that the homogeneous orientation of the LC moieties relative to

the IMDS is more entropically favorable as the siloxane backbone has more conformational

freedom than in the homeotropic orientation. Thus it is believed that, one again, the as-cast

perpendicular morphology is stabilized by the LC anchoring and upon annealing the morphology

reorients in order to minimize the interfacial energy with the air and substrate interfaces.
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a)

b)

c)
Figure 6-3. Atomic force microscopy phase images of a) PS61-LCP 4BPP483, b) PS61-

LCP 4BPP 4101, and c) PS61-LCP4BPp4123. The images on the left are the as-cast films and the

images on the right have been annealed at 1700 C for 36 hours.
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Additionally, the thickness of the film played a role in the morphology. The films

prepared from 2 and 4 wt% solutions displayed the morphologies described above, with film

thickness ranging from 70 to 200 nm. The 1 wt% solutions resulted in films ranging form 20 to

30 nm in thickness; which is less than the periodicity of the block copolymer structures (do). In

this case the system cannot self-assemble into either parallel cylinders or parallel lamellae

without significantly exposing the PS interface to either the air or substrate interfaces, or

suffering significant energetic penalties for perturbing the polymer chain conformation.

GISAXS of these films indicate that there is some form of periodic structure in the plane

of the substrate for the lower molecular weight series. There is no indication of periodic

structure normal to the substrate, as would be expected with films less than the characteristic

periodicity of the block copolymer. AFM yielded inconsistent results, the features appeared

unordered and were not consistent between samples. For this lower molecular weight series of

side chain liquid crystalline block copolymers it is believed that the structures are a combination

of poorly ordered perpendicular and parallel cylinders. For the higher molecular weight series

the film thickness is nearly half of do for these materials, and there was no evidence of any self-

assembled structures. It is believed that the block copolymer forms a simple wetting layer on the

surface, where the liquid crystalline polymer wets the substrate and the PS is exposed to the air

interface. Additional studies were performed using variable rate flow casting in order to create a

thin film with a thickness gradient, and allow the morphologies as a function of film thickness to

be investigate more thoroughly. These samples were prepared at the National Institute for

Standards and Technology (NIST) in Gaithersburg, MD, in collaboration with Kirt Page and

Michael Fasolka. Initial results indicate that the morphologies reported are observed for all

films, until the film thickness approaches do and the morphology becomes unclear.
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6.4 Conclusion

In summary, we have demonstrated a means of utilizing the covalent attachment of LC

moieties to a siloxane based block copolymer backbone as a tool for controlling the thin film

morphologies. Increases in LC functionalization lead to stronger preferences for the anchoring

of the LC mesophase relative to the substrate and the IMDS. By essentially manipulating the

strength of these interactions the morphology of the thin film can be controlled; allowing

disordered cylinder, parallel cylinder, and perpendicular cylinder morphologies to be achieved.

Additionally, a second series of side chain liquid crystalline polymers were studied, which

contained a larger PS block. These materials resulted in perpendicular lamellar, transitional, and

cylindrical morphologies with larger feature spacings.

This is the first example of manipulating the morphology and orientation of liquid

crystalline block copolymer thin films through variations in LC content. This unique control

over the orientation and order of the self-assembled morphologies will allow for the custom

design of thin films for specific nano-patterning applications. Future work in with these thin

films includes investigation of the effects of variations in the surface energy upon the self-

assembly behavior. This work is being conducted in collaboration with Kirt Page and Michael

Fasolka from National Institute for Standards and Technology (NIST) in Gaithersburg, MD.
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Chapter 7 Conclusions

7.1 Summary of Thesis Contributions

The work presented here details methods for synthesizing a new class of side chain liquid

crystalline block copolymers (SCLCBCPs) with a low glass transition temperature (Tg) siloxane

backbone. Synthetic methods for controlling the covalent attachment of liquid crystals (LC) to

both diblock and triblock polystyrene-polyvinylmethylsiloxane copolymers were developed.

Furthermore, the self-assembly behavior of these materials was extensively studied and the

driving forces for the resulting morphologies have been detailed for both bulk and thin film

systems. This work demonstrates the ability to control and manipulate the self-assembled

nanoscale morphologies of these materials through structural modifications, in addition to

various processing techniques.

The work presented in Chapter 2 details the synthesis of polystyrene-

polyvinylmethylsiloxane (PS-PVMS) diblock copolymers and subsequent attachment of liquid

crystalline moieties to the functional siloxane backbone. Exceptional control over the

functionalization of the siloxane backbone was demonstrated, allowing for a wide range of LC

attachment percents to be achieved. The self-assembly behavior of these materials was

investigated as a function of the covalently attached LC content and structure; having a

significant impact upon the morphologies of both the liquid crystalline polymer (LCP) and block

copolymer mesophases. Variations in the LC content allowed for a wide range of morphologies

to be obtained from a single LC attachment reaction, including: LCP cylinders, coexistence of
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LCP cylinders and lamellae, lamellae, coexistence of PS cylinders and lamellae, and PS

cylinders.

In addition to determining the morphology and thermal properties of the LC mesophase,

the LC content was shown to significantly effect the interactions with the inter-material dividing

surface (IMDS) with the nanophase segregated polystyrene domains. As a result of a strong

preference for homogeneous anchoring of the LC moieties relative to the curved IMDS present in

cylindrical morphologies; the order-disorder transition temperature (TODT) was shown to be

highly dependant upon LC functionalization. Furthermore, tunability over the mechanical

properties profiles was demonstrated; allowing the elastic modulus to be varied over several

orders of magnitude through controlling the LC functionalization.

The work in Chapter 3 describes the several synthesis schemes for creating PS-PVMS-PS

triblock copolymers. These materials possess the same functionality as their diblock counterparts

allowing for the covalent attachment of LC moieties. The different approaches for triblock

copolymer synthesis include, the coupling of living PS homopolymer to either a difunctional

PVMS homopolymer or a functional PS-PVMS diblock, and using PS-PVMS diblock copolymer

as a macroinitiator for atom transfer polymerization (ATRP) of polystyrene. Fractionation from

a tetrahydrofuran (THF) - ethanol mixture was demonstrated as an effective method for isolating

the higher molecular weight species resulting from these reactions. This allows for the triblock

copolymer to be purified, removing any diblock, homopolymer, or small molecule impurities.

Additionally, the mechanical properties of the triblock and diblock SCLCBCPs were compared.

The materials based on triblock copolymer backbones displayed greater elasticity than their

diblock counterparts, due to the presence of the physical crosslinks resulting form the A-B-A

block architecture.
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The work presented in Chapter 4 describes the effects of mechanical deformation upon

the morphologies of these materials. Mechanical deformations led to the preferential orientation

of the smectic LCP and block copolymer mesophases. The preference for homogeneous

anchoring of the LC moieties relative to the IMDS of the cylindrical block copolymer mesophase

was shown to be a dominant driving force for determining the orientation of the morphologies.

In-situ oscillatory shear X-ray experiments enabled the alignment of these materials to be

optimized resulting in nearly monodomain morphologies to be achieved. The transverse HCP

cylinders orientation was observed for liquid crystalline block copolymers that experienced

oscillatory shear. This result reveals that the preference for homogeneous anchoring effects the

orientation of the morphology at temperatures above the smectic to isotropic transition

temperature (Tiso).

The work in Chapter 5 details the effects of thermal annealing upon the thin film

morphologies of these SCLCBCPs. Atomic force microscopy (AFM) and grazing incidence

small-angle X-ray scattering (GISAXS) enabled the investigation of spin cast SCLCBCP thin

films. The perpendicular cylinder morphology was observed in the as-spun films; however upon

thermal annealing the morphology rearranged, resulting in cylinders parallel to the substrate. The

initial morphology is dominated by the ordering of the smectic LC layers relative to the substrate;

as the strong preference for homogenous anchoring results in a perpendicular cylinder

morphology. Annealing results in a reorientation of the morphology, to a parallel cylinder

morphology, such that the surface energy of the film is minimized.

Finally, Chapter 6 demonstrates the ability to manipulate the self-assembly behavior of

SCLCBCP thin films through variations in the covalently attached LC content. Once again,

increasing the LC functionalization results in a greater preference for homogeneous anchoring of
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the LCs to the IMDS. By essentially manipulating the strength of these interactions the

morphology of the thin film can be controlled; allowing disordered cylinder, parallel cylinder,

and perpendicular cylinder morphologies to be achieved. Additionally, a second series of side

chain liquid crystalline polymers were studied, which contained a larger PS block. These

materials resulted in perpendicular lamellar, transitional, and cylindrical morphologies with

larger feature spacings.

7.2 Future Work and Recommendations

There are many areas where this work could be expanded upon and further pursued. The

hydrosilylation chemistry can be used to attach a wide range of functional liquid crystalline

moieties to a siloxane polymer backbone. This could be used to impart desired thermo-, electro-,

photo-, or chemo-responsive elements into a polymer system; where the low Tg siloxane provides

mobility, allowing the response to occur at room temperature. The ability to precisely control the

attachment of these functional groups provides a unique tool for tuning the properties of such a

system. When designing such responsive elastomers several issues should be carefully

considered: How will the stimuli effect the self-assembly behavior of the system? How do the

stimuli affect the morphology and properties of the material? How can these effects be harnessed

to provide a useful response? Under what conditions will the material or device be operating

and how do these conditions affect the self-assembly and the performance?

In order to achieve the desired results, it is useful to have flexible chemistries or other

materials parameters allowing for manipulation of the materials properties. One

recommendation regarding this system is that by using the difunctional PVMS as a basis, other

chemistries can be explored for attaching a high Tg outer block resulting in a triblock copolymer.
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Ideally, this outer block could be easily modified, allowing for further modification of the self-

assembly behavior and properties of the system.

The ability to manipulate the thin film morphologies of these systems makes them ideal

candidates for use in nanopatterning applications and as responsive membranes. A wide range of

issues have yet to be explored. The thin films studied in Chapters 5 and 6 were created using

spin casting, however there are many other film preparation techniques that could be used

including: flow casting, dipping, and spray deposition. Templated self-assembly could be used to

achieve increased long range ordering and to systematically introduce defects. The effects of

substrate surface energy upon the resulting morphologies could provide a useful for controlling

the orientation of the morphologies. Selective etching can be used to remove one or more of the

components in the system allowing for porous materials to be created. Some of these issues are

further discussed in Appendix B.

As a result of the inability to achieve useful results from the electroclinic actuation of

smectic C liquid crystalline phases, investigations have begun into the development and

application of photo-responsive LC moieties. The photoisomerization of LCs containing azo

functional groups leads to a significant change in the self-assembly behavior, allowing these

materials to be used in actuation applications. These preliminary investigations are further

discussed in Appendix C.
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Appendix A Incorporation of Nanoparticles

into Side Chain Liquid Crystalline

Block Copolymers

A.1 Introduction

Recently there has been significant interest, both theoretical' 3 an experimental 3-", in the

incorporation of nanoparticles into block copolymer systems. Control over the location of

nanoparticles within the self-assembled nanostructures of block copolymer mesophase is

desirable for many applications including magnetic nanoparticles for data storage, florescence

imaging, catalytic surfaces, and molecular electronics such as light emitting diodes and

photovoltaic devices5' 6, 9. It has been shown that both the size and surface chemistry of the

nanoparticles relative to the length scales and the chemistries of the block copolymer matrix both

are critical in determining the nature of the incorporation of nanoparticles within the block

copolymer mesophase12. In this manner variations in the size and surface chemistries of

nanoparticles have allowed for the location of nanoparticles within these nanostructures to be

controlled' 2 (See Figure A-1). Additionally, the block copolymer self-assembly can be

manipulated through the resulting changes in volume fraction and interfacial effects resultant

from nanoparticle incorporation.
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Figure A-1. TEM image of gold and silica nanocrystals self-assembling within a polystyrene-

block-poly(ethylenepropylene), PS-PEP, block copolymer. Gold nanocrystals appear as dark

spots along the IMDS; silica nanocrystals reside in the center of the PEP domain. Inset:

Schematic of the particle distribution (size proportions are changed for clarity)12

The ability to actively alter the self-assembly of these systems would allow for the

development of materials for a variety of sensing or switching applications3' 11 One approach to

accomplish this goal is to alter the surface chemistry of the nanoparticle, leading to a change in

the equilibrium location of the nanoparticle within the nanophase segregated block copolymer

structure. This has been demonstrated by using activated alteration of the nanoparticle surface
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chemistry, resulting in a change of the equilibrium location of the

copolymer mesophasel3' 14. An example of such surface chemistry

nanoparticle with in the block

is shown in Figure A-2.
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Figure A-2. Top: Reversible Diels-Alder chemistry. Bottom: Schematic of using Diels-Alder

chemistry to alter the surface chemistry of a nanoparticle as a function of temperature".

However, this method relies on the ability to functionalize nanoparticles with specific

functional groups that can respond to stimuli. It would be desirable to design a block copolymer

system that can alter the nanoparticle location without modifying the nanoparticle itself. Liquid

crystalline block copolymer systems offer a unique capability to achieve this goal. The

preference for smectic LC mesophases to avoid interactions with curved interfaces on the length

scale of the smectic layer spacing could be utilized to actively control the location of

nanoparticles within a liquid crystalline block copolymer. When the LC mesophase is in the

isotropic state, the interfacial interactions should dominate the self-assembly behavior. If the
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surfaces of the nanoparticle and the block polymer are properly designed the nanoparticles will

self-assemble within the siloxane based liquid crystalline domains. However, when the system is

cooled into the smectic LC state, the unfavorable steric interactions between the spherical

nanoparticles and the smectic layers should lead to exclusion of the nanoparticles and they will

be driven to the inter material dividing surface (IMDS). This concept is illustrated in Figure A-3.

This novel approach allows for actively manipulating the self-assembly of nanoparticles within a

block copolymer without altering the surface chemistry of the nanoparticle, making this approach

more versatile for a wide range of nanoparticles.
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a) b)

Figure A-3. Schematic of nanoparticle location within a block copolymer as a function of LC

morphology. a) When the temperature is above the smectic to isotropic transition temperature

the nanoparticles self-assemble within the liquid crystalline polymer domains, as the enthalpic

interactions between the surface of the nanoparticle and the siloxane based liquid crystal are

favorable. b) When the temperature is lowered the LC mesophase is in the smectic state and the

nanoparticles are excluded from the siloxane based liquid crystalline polymer domains and

assemble at the interface. In both cases the nanoparticles would not expect to be found within

the polystyrene domains due to unfavorable interfacial interactions, and in case b) the polystyrene

is below it's Tg before the cooling into the smectic state, thus there is not sufficient kinetic

mobility for migration into the PS domains.

181



A.2 Results and Discussion

The first attempt to alter the self-assembly of nanoparticle containing liquid crystalline

block copolymer systems was to synthesize a "soft" nanoparticle with surface chemistry that is

tunable as a function of temperature through Diels-Alder chemistry. These nanoparticles were

synthesized in collaboration with Rick Beyer and Philip Costanzo from the Army Research Lab

(ARL) in Aberdeen, MD. These nanoparticles have a crosslinked siloxane core and PS ligands

are attached through Diels-Alder linkages to the outer surface. This allows for the nanoparticles

to present a surface of PS at lower temperatures, and a siloxane surface at higher temperatures.

A schematic of this system is shown in Figure A-4. These nanoparticles were successfully

integrated into the liquid crystalline block copolymer system. However, due to the similarity

between the chemistry of the nanoparticles and the block copolymer matrix, it was not possible

to image the nanoparticles with TEM due to the lack of electron density contrast.
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Figure A-4. Schematic of structure of soft nanoparticles with tunable surface chemistry. At

lower temperatures the ligands are attached and the nanoparticle has a surface covered in

polystyrene. At higher temperatures, the ligands detach from the crosslinked core and the

nanoparticles have a siloxane based. Also see Figure A-2.
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Two different nanoparticles were designed and synthesized in order to demonstrate the

ability to manipulate the self-assembly of a nanoparticle within a liquid crystalline block

copolymer, through changes in the morphology of the LC mesophase. The key issues in

designing these nanoparticles were the size and surface chemistry of the nanoparticles, as well as

a means of imaging the nanoparticle location. The nanoparticles should be between 2 and 10 Onm

in size to allow them to be on the order of the smectic layer spacing, but less than the domain

size of the block copolymer mesophase. The surface chemistry should be such that there are

favorable enthalpic interactions between the nanoparticles and the siloxane based liquid

crystalline polymer. Finally, it must be possible to image the nanoparticle location within the

block copolymer.

The first choice was to functionalize gold nanoparticles, using thiol chemistry, with

siloxane based ligands. The production of gold nanoparticles of various sizes has been widely

studied and they can be purchased commercially. This approach ran in to difficulties when the

functionalized surface became unstable during the annealing of the system and the

unfunctionalized nanoparticles formed aggregates. I am currently exploring techniques, in

collaboration with Rafal Mickiewicz to achieve a siloxane functionalized surface that is stable

above 140 0 C, thus preventing aggregation of the gold nanoparticles. Due to the high electron

density of gold atoms, the gold nanoparticles can be easily be imaged when incorporated into the

side chain liquid crystalline block copolymer.

The second nanoparticle synthesized was a PAMAM based dendrimer functionalized

with siloxane containing ligands. The synthesis was performed similar to the procedure

described by Dvornic et. al.4 using Michael addition of the siloxane groups to the outer amine

functional groups of the dendrimer. A schematic of the synthesis and a 3-D model of the
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resulting nanoparticle are shown in Figure A-5. The use this type of nanoparticle was designed

to facilitate electron energy loss spectroscopy (EELS) of the system. The PS domains only

conatin carbon and hydrogen, while the liquid crystalline polymer contains silicon and oxygen

atoms, and the PAMAM based nanoparticles are the only species in the system containing

nitrogen. It was hoped that the elemental differences in the different species would allow for

imaging with EELS. However, while the liquid crystalline polymer could be distinguished from

the PS domains, there was not a high enough of a nitrogen signal to detect the PAMAM

nanoparticles.
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Figure A-5. a) Schematic of the attachment of siloxane based ligands to a PAMAM dendrimers.

b) 3-D representation of the resulting nanoparticle, the entire siloxane groups are magenta, while

the oxygen, nitrogen, carbon, and hydrogen atoms are represented in red, blue, green, and white,

respectively.
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A.3 Conclusions

Although none of the techniques described here were successful in demonstrating the

tunability of nanoparticle location within a liquid crystalline block copolymer, the concept of

utilizing the morphology of the LC mesophase to manipulate the self-assembly behavior of

nanoparticle containing block copolymer systems is unique and shows promise. The challenge is

to properly design a nanoparticle that can be imaged within the current system. Future work in

this area includes the investigation into a siloxane surface functionalization of gold nanoparticles

that is stable above the annealing temperatures required. Demonstration of this capability will

allow for other more versatile liquid crystalline block copolymer systems to be developed that

can be used in conjunction with a wide variety of nanoparticles.
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Appendix B Templated Self-Assembly and

Selective Etching of Side Chain

Liquid Crystalline Block

Copolymer Thin Films

B.1 Introduction

In addition to the thin film studies described in Chapters 5 and 6, I initiated preliminary

investigations into the templated self-assembly and selective etching of side chain liquid

crystalline block copolymers in collaboration with Yeon-Sik Jung and Prof. Caroline Ross in the

Department of Materials Science and Engineering at MIT.

A prime example of a block copolymer thin film application is their demonstrated utility

as lithographic masks'. Ordered and oriented layers of microphase domains deposited onto a

suitable substrate can be selectively etched via plasma, ozone, or wet chemical means, to remove

one of the block components. Holes in the resulting mask can then be used to transfer the BCP

motif pattern, via other etching or deposition steps, onto the substrate. More complex multi-

component systems can be used to etch and remove one or more of the components allows for

holes, pillars, or tubes to be created, examples of this are shown in Figure B-1.
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Figure B-1. Left: schematic representation of the envisioned nanotemplates from thin films of

ABC triblock terpolymers. Right Top: AFM phase image of a polyisoprene-block-polysyrene-

block-polylactic acid (PI-PS-PLA) thin film on a HMDS modified Si substrate after removal of

the PLA block. Right Bottom: AFM phase image of a PI-PS-PLA thin film after removal of both

the PLA and PI blocks.2

Templated self assembly (TSA) is a method of eliminating defects and inducing

registration and orientation in thin films of materials using artificial topographical and/or

chemically patterned templates. In contrast to conventional epitaxy in which the lattice of a thin

film bears a well-defined relationship to the lattice of the underlying substrate, templates for TSA

are not required to be crystalline materials. In the concept of templated self-assembly, the
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topography and/or chemical pattern of the templates instead of the atomic lattice of the substrate

are used to guide the organization of the component materials.

A variety of block copolymer systems can be ordered through templated self assembly,

including spheres, cylinders and lamellae. Both topographical and chemical pattern templates

can be used to create discrete domains (2-D patterning) or channels (1-D patterning). Figure B-2

shows a 1-D template of a cylindrical diblock copolymer. Increasing annealing times allow for

greater register with the template. For topological templates the edge roughness has an effect on

the extent of ordering. Defects in the self-assembled pattern by can be created and controlled by

introducing irregularities into the patterns. In chemical templates the relative interfacial energy

contrast between the block copolymer components and the surface template materials affects the

driving forces for regular ordering. If the interfacial energy difference is low there is less driving

force for ordering, increasing the interfacial energy contrast leads to a greater enthalpic driving

force, and increased long range order. These templating methods can be applied to liquid

crystalline block copolymers, however, the additional influence of the liquid crystalline

mesophase must appropriately be taken into account. The liquid crystalline mesophase may have

anchoring preferences with the IMDS and/or the substrate affecting the resulting orientation of

the block copolymer to the substrate.

191



I-

S"

I·

I

3
4

1

3

ii)
1

r
"

"4

jp~

rr

s

i

Figure B-2. AFM images of a cylindrical polystyrene-block-poly(ethylenepropylene) block

copolymer in a 95nm deep and 600 nm wide template. Samples were annealed at 130 0 C for: a)

9, b) 14, c) 19, d) 24, and e) 33 hours3.

B.2 Results and Discussion

Initial studies were performed by using a 10 minute 02 reactive ion etch (RIE) to

selectively remove the PS domains of the side chain liquid crystalline block copolymer thin

films. The first thin film sample investigated was not annealed and display a perpendicular

cylinder morphology. These films were chosen for their presence of PS domains at the air

interface, this allows the 02 reactive ion etch direct access to the PS without having to first

penetrate a liquid crystalline polymer layer, as would be the case for an annealed thin film. The

etch ratio is approximately 10:1 for PS and poly(dimethylsiloxane) PDMS, and the siloxane

based liquid crystalline polymers in this study are expected to have similar properties in response
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to the 02 reactive ion etch. Figure B-3a shows an AFM phase image of a side chain liquid

crystalline block copolymer thin film displaying PS cylinders perpendicular the substrate. After

the 02 RIE scanning electron microscopy (SEM) reveals a porous surface on the thin film. The

selectively removal of the PS domains resulting in the pores and pits observed in the film;

however, it is important to note that some of the liquid crystalline polymer has been degraded.

Additionally, due to the lack of regular ordering in these as-cast films, the features are not well

defined. The depth of the pores is not known, but due to the moderate etch selectivity and the

poor ordering, it is not expected that all of the PS domains have been removed.

a) b)
Figure B-3. a) AFM phase image of as-cast PS27-LCP4BPP479 displaying PS cylinders

perpendicular the substrate. b) SEM image of the same film after 02 reactive ion etch (RIE).

The 02 RIE selectively removes the PS domains, resulting in the porous film.
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In order to obtain more well defined structures a two step etch process was used4. The

first step is a very short CF 4 reactive ion etch (RIE) that removes the top siloxane segregation

layer and another 02 reactive ion etch step to remove PS domains. The removal of the top

siloxane liquid crystalline polymer (LCP) layer allows the second 02 RIE to have more direct

access to the PS domains, and thus enhances the final etch quality. Figures B-4, B-5, and B-6

display a) AFM phase images of films before etching and b) SEM images of the same films after

the two step etch. The samples shown in Figures B-4 and B-5 are as-cast films and the sample in

Figure B-6 was annealed at 1700 C for 36 hours. The need for the CF4 RIE is particularly

important for the films that have been annealed as the siloxane LCP layer at the air interface is

more significant.

a) b)

Figure B-4. a) AFM phase image of as-cast PS61-LCP 4Bpp4 101 which displays a

lamellar/cylindrical transitional morphology in the as-cast film, this lamellar/cylindrical

transitional morphology was also observed with TEM in bulk samples. b) SEM image of the

same film after the two-step etch process, resulting in the porous film.
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b)

Figure B-5. a) AFM phase image of as-cast PS61-LCP 4BPp4123 thin film displaying PS cylinders

perpendicular the substrate. b) SEM image of the same film after the two-step etch process,

resulting in the porous film.

a) b)
Figure B-6. a) AFM phase image of a PS61-LCP4BPP4123 thin film that has been annealed for 36

hours at 170 0C and displays PS cylinders perpendicular the substrate. b) SEM image of the same

film after the two-step etch process, resulting in the porous film.
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B.3 Conclusions

These initial results demonstrate the ability to selectively remove the PS domains in this

system. Future work in this area includes etching of thin films that display lamellar

morphologies and more regular ordering. Additionally, a more selective etch or the

incorporation of an amorphous block that is easier to etch would be desirable. An investigation

into the templated self-assembly of these side chain liquid crystalline polymers is currently

underway.
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Appendix C Photoresponsive Side Chain

Liquid Crystalline Block

Copolymers

C.1 Introduction

Liquid crystalline (LCP) polymers have attracted recent interest due to their ability to

combine the properties of small molecule liquid crystals and those of a polymer '. LC polymeric

materials benefit over their small molecule LC counterparts from the mechanical integrity that

the polymer component provides to the system. Additionally, by lightly crosslinking the polymer

a liquid crystalline elastomer (LCE) can be created, allowing for the combination of the rubber

elasticity of a polymer network with the properties of LC phases. Siloxane based LCEs present

specific advantages associated with the very low Tg of the siloxane backbone, including a nearly

ideal elastometric response and a low glass transition temperature, allowing for the materials to

retain their properties over a wide temperature range, particularly at very low temperatures2 4

This class of materials can be designed to exhibit a conformational change on the molecular level

in response to thermal, electrical or optical stimulation. The molecular conformational change

can lead to a change in the mechanical properties or the dimensions of the materials, making

them candidates for electromechanical, actuator, and shape memory applications. By

incorporating a photoresponsive liquid crystalline moiety into a siloxane based polymer a new

class of photo-responsive liquid crystalline polymers can be created that exhibit unique dynamic

properties.
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Photoresponsive LCEs present several potential advantages compared with LCEs that rely

on thermotropic phase transitions or application of electric field. The utilization of

photoisomerization of LC moieties in order to produce actuator materials was first proposed by

deGennes5. This class of materials can be stimulated by exposure to particular wavelengths of

electromagnetic radiation (light), resulting in molecular rearrangements that manifest the desired

effects. For example, this class of materials has been used to create photoresponsive shape

memory polymers 6. The photoisomerization of incorporated azo moieties has been shown to

disrupt the stability of nematic7 and smectic8 LC phases. There are several examples of

molecules that have garnered great interest for their abilities to photoisomerize to generate useful

properties in polymers 9-11

Azobenzene moieties have been found to undergo a trans to cis photoisomerization upon

exposure to 366nm light (see Figure C-1). The trans state is the equilibrium state and the moiety

relaxes to the trans state with time. The return to the trans state can be accelerated with either

heat, or stimulation with light > 540nm. If properly designed the azobenzene moiety in the trans

state can be incorporate into a smectic LC phase, with little effect upon its stability. However,

upon photoisomerization the azobenzene moiety in the cis state has been shown to significantly

disrupt the smectic LC phase, leading to a change in the smectic to isotropic transition

temperature (Tiso) 9, 12, 13. An isothermal smectic to isotropic transition can be achieved when the

Tiso is above operating temperature when the azo moiety in the trans state and the Tiso is lowered

below the operating temperature when the azo moiety is switched to the cis state. By inducing a

smectic to isotropic transition, significant molecular conformational changes can be achieved,

leading to a change in the properties of the material (diffusivity, mechanical, and dimensional).
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trans cis

Figure C-1. A schematic of a side-chain liquid crystalline polymer in the trans and cis

conformations.

Recently, photoisomerization of azo moieties has been utilized to create materials that

exhibit a bending actuation due to the contraction or expansion of a material that has had one

surface exposed to light 14-16. This contraction of the surface of the material exposed to light

results in internal stress in the material that leads to bending of the film (Figures C-2 and C-3).

Light

UV

HomoeneoVis
Homogeneous

Figure C-2. A schematic of the bending actuation driven by exposure to UV light (366 nm) and

return to upon exposure to visible light (>540 nm) 15
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Figure C-3. An example of a LCE photoresponsive film that utilizes the photoisomerization of

an azo moiety to create an actuation effect. Photographic frames of the film bending in different

directions in response to irradiation by linearly polarized light of different angles of polarization

(white arrows) at 366 nm, and being flattened again by visible light longer than 540 nm. The flat

film (4.5 mm x3 mm x7 Am) lay on a copper stick fixed to a copper plate; a stage under the plate

was set at 85 'C to control the temperature of the film, which was covered by a piece of blue

paper. The bending time for the four different bending directions was within 10s, when the light

intensity of 366-nm linearly polarized light was 3.5 mW cm -2 after exposure to visible light

longer than 540 nm (547 nm, 24.2 mW cm-2; 577 nm, 26.8 mW cm-2 ), the bent film reverted to

the flat state in about 10s 16
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Incorporation of these photoresponsive azo moieties, into the side chain liquid system

previously developed, allows for the creation of a unique novel class of photoresponsive

actuators, where the morphology and properties can be manipulated though stimulation with UV

light. In this Chapter I will detail the synthesis of these materials and discuss the effects of UV

photostimulation upon the morphology and mechanical properties of these materials.

Additionally, by utilizing a liquid crystalline block copolymer system, nanotemplating of a thin

film liquid crystalline mesophase can be achieved. This allows for the potential to selectively

etch a liquid crystalline block copolymer thin film, leaving behind the nanotemplated liquid

crystalline polymer mesophase. If the remaining liquid crystalline mesophase is crosslinked, a

nanoporous LCE that can be photostimulated to create a tunable porosity membrane can be

created. Further discussion of selective etching of thin films can be found in Appendix B.

C.2 Experimental

C.2.1 Instrumentation and Materials

400 MHz 1H NMR spectra were obtained from a Bruker Avance-DPX400 NMR

spectrometer and processed using Topspin 1.3. Molecular weights (MW) of polymers were

made relative to a polystyrene standard on a Waters gel permeation chromatography (GPC)

system equipped with 1 Styragel HT3 column (500-30,000 MW range), 1 Styragel HT4 column

(5,000-600,000 MW range), 1 Styragel HT5 column (50,000-4- 106 MW range), a refractive index

detector, and a UV detector (254 nm). Tetrahydrofuran (1 ml/min) was the mobile phase. A

Thermal Advantage Instruments Q1000 was used for differential scanning calorimetry (DSC),

the heating and cooling rate was 10'C min-' in all cases. A Carl Zeiss Axioskop polarized light

microscope was used in order to observe the presence of birefringence in the liquid crystalline
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polymer. A Dymax Blue Wave 200 light source with a Thorlabs, Inc. FGUV W53199 ultraviolet

(UV) filter in order to induce a trans to cis isomerization in the azo containing LC moieties. I

would like to note an important safety precaution regarding the UV light source: NEVER look

into the binoculars of the light microscope when the UV light is on. Any reflected UV light off

of the sample (which is then magnified) could cause seriously damage to one's eyesight. Only

use a camera to take images of samples in this case.

SAXS experiments were performed at the G1 beamline at the Cornell High Energy

Synchrotron Source (CHESS). The wavelength of the X-rays was 1.239A, and silver behenate

was used to calibrate the sample to detector distance with a first order scattering vector of q of

1.076nm-1 (with q = 47r sin0/X where 20 is the scattering angle and X is the wavelength). A slow-

scan CCD-based X-ray detector, home built by Drs. M.W. Tate and S.M. Gruner of the Cornell

University Physics Department, was used for data collection. All scattering data were processed

using the commercially available software Polar. For the polarized light microscopy and small-

angle X-ray scattering experiments a Linkam CSS450 shear cell was used to heat the samples.

Rheological analysis was performed using an Advanced Rheometric Expansion System (ARES)

at the Hatsopoulos Microfluids Laboratory at the Massachusetts Institute for Technology (MIT).

TLC plates (Whatman, AL SIL G/UV), hexanes, ethyl acetate, and methanol were

purchased from VWR and used as received. Dichloromethane (DCM), toluene and

tetrahydrofuran were taken from an Innovative Technology Pure-Solv 400 Solvent Purification

System. Cyclohexane was purchased from Aldrich, dried over calcium hydride, degassed and

vacuum distilled under nitrogen. Styrene was purchased from Aldrich, washed with IM sodium

hydroxide and dried over magnesium sulfate. Styrene was degassed and vacuum distilled from

calcium hydride just prior to use. 1,1,3,3-Tetramethyldisiloxane, N, N-dimethylformamide
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(DMF) and N, N-diisopropylcarbodiimide (DIPC) were purchased from Fluka. 4-Butoxyaniline

was purchased from TCI America. 4-Hydroxy-4'-methoxyazobenzene was purchased from

SJPC Fine Chemicals. 4-(Dimethylamino)pyridinium p-toluenesulfonate (DPTS) was prepared

in the method of Moore and Stupp'7 . All other chemicals were purchased from Aldrich and used

without further purification.

C.2.2. Synthesis of Photoresponsive Liquid Crystalline Block Copolymers

All polymer syntheses were performed under nitrogen following standard glovebox

techniques. Syntheses of poly(styrene)-poly(vinylmethylsiloxane) homopolymer has been

previously reported 8' 19. All mesogen synthesis and mesogen-polymer attachment reactions were

performed under nitrogen following standard Schlenk techniques. A detailed schematic of these

reactions is provided in Figure C-4.
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Figure C-4. Synthesis of a side chain liquid crystalline polymer with an azobenzene moiety,

where: (x/n) 100% is the attachment percent.
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4-Butoxy-4'-hydroxyazobenzene (1) was synthesized following the exact procedure

detailed by Vanoppen et al, with 4-butoxyaniline as starting material 20 . No recrystallization was

necessary. Yield: 15.68 g, 58.00 mmol, 100.0%. 'H NMR (CDC13) (6): 0.91 (t, 3H, -

OCH 2CH 2CH2 CH3), 1.45 (m, 2H, -OCH 2CH 2CH2CH3), 1.71 (m, 2H, -OCH 2CH 2CH 2CH 3), 4.02

(t, 2H, -OCH 2CH2CH2CH3), 6.93 (d, 2H, -ArH20(CH2)3CH3) 7.08 (d, 2H, -ArHzOH), 7.75 (q,

4H, -ArH 2N=NArH2-).

4-[(4-butoxyphenyl)azo]phenyl ester 4-pentenoic acid (2) In a 250 ml round bottle

pentenoic acid (2.55 ml, 25.0 mmol), 4-butoxy-4'-hydroxyazobenzene (1) (6.76 g, 25.0 mmol),

and 4-(dimethylamino)pyridinium p-toluenesulfonate (DPTS) (1.84 g, 6.3 mmol) were dissolved

in 90 ml DCM and 14 ml DMF. N, N-diisopropylcarbodiimide (DIPC) (4.65 ml, 30.0 mmol)

was added to the resulting dark brown solution. The reaction was stirred at room temperature

under nitrogen for 24 h, filtered to remove urea, washed 3 times with 0.1 M hydrochloric acid,

twice with brine, and dried with magnesium sulfate. Solvent was removed via rotatory

evaporation. The resulting dark brown solid was further purified via column chromatography on

silica gel (7:1 hexanes: ethyl acetate). Bright orange solid was obtained as final product. Yield:

5.19 g, 14.70 mmol, 80.0%. 'H NMR (CDC13) (6): 0.97 (t, 3H, -OCH 2CH2CH2CH3), 1.49 (m,

2H, -OCH 2CH2CH2CH3), 1.77 (m, 2H, -OCH 2CH2 CH2CH3), 2.50 (m, 2H, -COOCH2CH2-),

2.68 (t, 2H, -COOCH2CH2-), 4.02 (t, 2H, -OCH2CH2CH2CH3), 5.10 (q, 2H, -CH=CH2), 5.89

(m, 1H, -CH=CH2), 6.97 (d, 2H, -ArH 20(CH2)3CH3), 7.19 (d, 2H, -ArH2COO-), 7.87 (t, 4H, -

ArH2N=NArH2-).

4-[(4-butoxyphenyl)azo]phenyl ester 5-(1,1,3,3-tetramethyldisiloxanyl)valeric acid

(3) In a 200 ml round bottle a mixture of tetramethyldisilane (22.2 ml, 125.7 mmol) and toluene
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(32 ml) was stirred under nitrogen at 60TC. In a separate batch vinyl mesogen intermediate (2)

(2.22 g, 6.3 mmol) was dissolved in 15 ml toluene. 12 drops (-0.08 ml) of the hydrosilylation

catalyst platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex in xylene (Pt -2%) was

added to the mesogen solution, and the resulting orange solution added dropwise to the stirring

silane/toluene mixture. The entire reaction mixture was stirred under nitrogen at 600C for 24 h.

Solvent was removed via rotatory evaporation. Bright orange solids were obtained after column

chromatography (9:1 hexanes: ethyl acetate). Yield: 2.00 g, 5.69 mmol, 90.3%. 'H NMR

(CDCl3) (8): 0.08 (s, 6H, -CH2Si(CH3) 2OSi(CH3) 2H), 0.17 (s, 6H, -CH 2Si(CH3) 20Si(CH3)2H),

0.60 (t, 2H, -CH 2Si-), 0.98 (t, 3H, -OCH2CH2CH2CH3 ), 1.49 (m, 4H, -OCH2CH2CH2CH3 + -

COO(CH2)2CH2CH2-), 1.79 (m, 4H, -OCH 2CH2CH2CH3 + -COOCH2CH2(CH2)2-), 2.58 (t, 2H,

-COOCH2(CH2)3-), 4.03 (t, 2H, -OCH 2CH2CH2CH3), 4.69 (m, 1H, SiHll), 6.99 (d, 2H, -

ArH20(CH2)3CH3), 7.20 (d, 2H, -ArH 2COO-), 7.89 (t, 4H, -ArH 2N=NArH--).

4-[(4-butoxyphenyl)azoJphenyl ester 10-undecenoic acid (4) was synthesized

following exact procedure as (2), with 4-butoxy-4'hydroxyazobenzene and 10-undecenoic acid as

major starting materials. Bright orange solids were obtained from column chromatography on

silica gel (8:1 hexane: ethyl acetate). Yield: 3.71 g, 8.50 mmol, 50.1%. 1H NMR (CDC13) (8):

0.98 (m, 2H, -OCH 2CH2CH2CH3), 1.21-1.56 (m, 12H, -COOCH2CH2(CH2) 6-) 1.78 (m, 4H, -

OCH2CH2CH2CH3 + -COOCH2CH2(CH2)6-), 2.03 (m, 2H, -OCH 2CH2CH2CH3), 2.56 (t, 2H, -

COOCH2(CH2)7-), 4.02 (t, 2H, -OCH2CH2CH2CH3), 4.95 (q, 2H, -CH=CH2), 5.80 (m, 1H, -

CH=CH2), 6.98 (d, 2H, -ArH20(CH2)3CH3), 7.20 (d, 2H, -ArH2COO-), 7.88 (t, 4H, -

ArH2N=NArH2-).

4-[(4-butoxyphenyl)azojphenyl ester ll-(1,1,3,3-tetramethyldisiloxanyl)undecanoic

acid (5) was synthesized following the exact procedure as (3), with vinyl intermediate (4) as the
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major starting material. Bright orange solids were obtained from column chromatography on

silica gel (9:1 hexane: ethyl acetate). Yield: 2.83 g, 5.00 mmol, 58.3%. 'H NMR (CDC13) (8):

0.04 (s, 6H, -Si(CH 3)2OSi(CH3)2H), 0.14 (s, 6H, -Si(CH 3) 20Si(CH3)2H), 0.51 (t, 2H, -

COO(CH2) 9CHr-), 0.97 (t, 3H, -OCH2CH2CH2CH3), 1.21-1.45 (m, 14H, -

COOCH2CH2 (CH2) 7CH 2-), 1.50 (m, 2H, -OCH2CH2CH2CH3), 1.77 (m, 4H, -

OCH2CH2CH2CH3 + -COOCH2CH2(CH2)8-), 2.56 (t, 2H, -COOCH2(CH2)9-), 4.03 (t, 2H, -

OCH2CH2CH2CH3), 4.65 (m, 1H, -SiH), 6.98 (d, 2H, -ArH 20(CH2 )3CH3), 7.19 (d, 2H, -

ArH2COO-), 7.88 (t, 4H, -ArH 2N=NArH2-).

4-[(4-methoxyphenyl)azolphenyl ester 10-undecenoic acid (6) was synthesized

following the same procedure as (2), with 10-undecenoic acid and 4-hydroxy-4'-

methoxyazobenzene as major starting materials. Bright orange solids were obtained from

column chromatography on silica gel (dichloromethane). Yield: 17.16 g, 43.50 mmol, 87.0%.

1H NMR (CDCl3) (6): 1.03-1.47 (m, 10H, -COOCH2CH2(CH2)sCH2-), 1.75 (m, 2H, -

COOCH2CH2(CH2)6-), 2.03 (m, 2H, -COO(CH2)7CH2-), 2.56 (t, 2H, -COOCH2(CH 2)7-), 3.87

(s, 3H, -OCH3), 4.96 (q, 2H, -CH=CH2), 5.80 (m, 1H, --CH=CH2), 7.00 (d, 2H, -ArH20CH3),

7.20 (d, 2H, -ArH 2COO-), 7.90 (d, 4H, -ArH2N=NArH2-).

4-[(4-methoxyphenyl)azoJphenyl ester 11-(1,1,3,3-tetramethyldisiloxanyl)

undecanoic acid (7) was synthesized following exact procedure as (3), with vinyl intermediate

(6) as the major starting material. Bright orange solids were obtained from column

chromatography on silica gel (7:1 hexane: ethyl acetate). Yield: 3.23 g, 6.12 mmol, 48.2%. 1H

NMR (CDC13) (8): 0.06 (s, 6H, -Si(CH 3)2OSi(CH3) 2H), 0.16 (s, 6H, -Si(CH3) 20Si(CH3)2H),

1.23-1.47 (m, 16H, -COOCH 2CH2(CH2)s8Si-), 1.75 (m, 2H, -COOCH2CH2(CH2)8Si-), 2.57 (t,
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2H, -COOCH2(CH2)9Si-), 3.86 (s, 3H, -OCH 3), 4.68 (m, 1H, SiH), 7.00 (d, 2H, -ArH 20CH3),

7.21 (d, 2H, -ArH2COO-), 7.90 (d, 4H, -ArH 2N=NArH2-).

All attachment of SiH-tipped liquid crystals to PS-PVMS diblock copolymers and PVMS

homopolymers follow identical hydrosilylation and workup procedures. The attachment of

mesogen (7) to 70:30 molar ratio PS-PVMS diblock copolymer is provided as example.

In a 50 ml round bottle SiH-tipped mesogen (7) (2.011 g, 3.80 mmol) is dissolved in 6 ml

toluene. The resulting bright orange solution is stirred under nitrogen at 600C. In a separate 20

ml vial the PS-PVMS diblock copolymer (0.500 g) is dissolved in 3 ml toluene. To the polymer

solution 7 drops (-0.04 ml) of the previously mentioned Pt catalyst was added, and the clear

polymer/Pt solution added dropwise to the stirring mesogen solution. The reaction was stirred

constantly under nitrogen at 600C. A portion of the reaction (-0.2 ml) was pulled approximately

every 24 h and precipitated into stirring, room temperature methanol. The resulting white solids

were filtered, re-dissolved in toluene, re-precipitated into methanol and filtered again to remove

all excess mesogen. % attachment of mesogen onto polymer increases linearly with time

(-%/o/h) and has been confirmed via 1H NMR. Attachment rate is highly dependent upon

reaction concentration and amount of Pt catalyst used. 1H NMR data correspond to previous

attachment reactions and have all been previously reported18 .

C.3 Results and Discussion

The polymer that will be discussed in this section is a PVMS homopolymer with a

number average molecular weight (Mn) of 14,800 g/mol and a LC attachment percent of 67%,

yielding a polymer with a total molecular weight of 80,700 g/mol, and will be referred to for the
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rest of this section as: LCPazo81. Differential scanning calorimetry (DSC) was used in order to

identify the smectic to isotropic transition temperature (Tiso) of the liquid crystalline polymer.

The Tiso for LCPzo81 measured via DSC was 124oC. Polarized light microscopy was used to

confirm the Tiso and to investigate the morphological response to UV stimulation. A room

temperature, focal conic textures were observed, indicating the presence of a smectic liquid

crystalline phase. The liquid crystalline polymers were then heated until birefringence was no

longer observed, indicating a transition from a smectic liquid crystalline phase to the isotropic

phase. In all cases agreed this temperature corresponded to the Tiso determined with DSC.

The response to UV light was investigated by heating the samples to temperatures a few

degrees below the Tiso. The samples were then exposed to UV light from a Dymax Blue Wave

200 light source with a Thorlabs, Inc. FGUV W53199 filter. In most cases, full or partial

disappearance of birefringence was observed upon stimulation with UV light. The UV light was

subsequently removed and the birefringence returned indicating reversibility of the system. It

should be noted that these experiments are less than ideal, as the incident white light used to

investigate the birefringence of the materials includes wavelengths > 540 nm, which are know to

accelerate the relaxation from the cis to the equilibrium trans conformation. Thus, when the

materials are stimulated with UV light they are also exposed to the white light from the

microscope. As a reminder, to avoid possible damage to the eyes never look into the binoculars

when performing experiments with UV light, always use the camera to take images and monitor

the transitions.

Small-angle X-ray scattering (SAXS) was used in order to further characterize the

morphological response of the liquid crystalline polymers to UV stimulation. SAXS provides

information regarding the periodicity of the smectic layers, and has the additional advantage of
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not requiring light with a wavelength > 540 nm, that can hinder the trans to cis isomerization.

With no UV light, each liquid crystal film was heated using a Linkam CSS450 shear cell to a

temperature immediately below the smectic to isotropic transition temperature, 1200C, and POM.

Then UV light was applied while the temperature is held constant for 15 minutes. A decrease in

the scattering corresponding to the smectic layer spacing was observed upon exposure to UV

light (see Figure C-5). The trans to cis isomerization, upon exposure to UV light, destabilizes

the smectic mesophase, which accounts for the observed decrease in scattering.
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UV light rheometery experiments were performed around the optimal transition

temperatures observed in the SAXS experiments. In these experiments, the sample was allowed

to equilibrate during an oscillatory shear experiment, the UV light was then applied inducing a

decrease in the shear modulus (G'). Once the system reached a steady state the UV light was

then removed and the experiment was continued until the system stabilized once again. A

significant decrease in the shear modulus of the material was observed upon exposure to UV

light (see Figure C-6). This property change is highly reversible as the shear modulus sharply

increases upon removal of the UV light, and nearly reaches it's original value. For the sample

tested in this experiment the sample area was smaller that the area of the parallel plates, therefore

the magnitude of the shear modulus could not be calculated. Further studies are currently

underway to systematically evaluate the response of these materials as a function of LC

attachment percent and temperature. Initial results indicate that the response is diminished when

the LC attachment or temperature are decreased.
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C.4 Conclusions

This initial study demonstrates the ability to reversibly alter the morphology of side chain

liquid crystalline polymers containing azo moieties through stimulation with UV light. The UV

light induces a trans to cis isomerization, which disrupts the smectic LC mesophase. This

morphological rearrangement can be used to manipulate the mechanical properties of the

material. In this study we demonstrated a drop in the shear modulus of an order of magnitude.

Future work includes investigating the effects of LC architecture and attachment percentage upon

the responsive properties of this class of materials as well as the temperature dependence of the

response. The low Tg siloxane backbone is an important component of these materials, enabling

for elastomeric response at or near room temperature.
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Appendix D Quantitative Characterization of

Carbon Nanotubes Forests with

X-ray Scattering

D.1 Introduction

In the course of performing synchrotron X-ray studies for my core thesis work and

through conversations with Ben Wang we realized the utility of X-ray scattering for investigating

the morphologies of carbon nanotube forests. In collaboration with Ben, John Hart, Ryan

Bennett, and Prof. Robert Cohen we have developed methods for the quantitative

characterization of vertically aligned multi-wall carbon nanotube (MWCNT) forests1' 2

Films of carbon nanotubes (CNTs), grown by chemical vapor deposition (CVD)

processes, have shown promise for use in nanoelectronics 3, energy absorbing foams4,

superhydrophobic surfaces5, and power applications6. The bulk morphology of these films, as

well as the CNT dimensions, can be tailored through careful selection of catalyst and growth

conditions.7 8 A significant amount of tortuosity and CNT entanglement can be present despite

efforts to create vertically aligned films.9' 10 This entanglement can decrease the performance in

certain applications and enhance suitability in others. Therefore it is important to understand the

bulk morphology of CNT films to determine the appropriate choice of applications, as well as to

relate this morphology to the reaction conditions.
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Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have

been the methods of choice to characterize the structure and arrangement of MWCNTs that make

up these films. 8, 9 TEM is a powerful tool that gives direct visualization of CNT dimensions and

internal structure with resolution down to the angstrom scale; however it is inherently a local

measurement. To obtain average CNT diameters using TEM requires many individual

measurements from multiple micrographs, making the analysis of the macroscopic films tedious.

In addition it is difficult to maintain the spatial correspondence between the location of the film

and the TEM sample. SEM provides a mesoscopic view of MWCNT film morphology, but

subjective image analysis is required to compare order and alignment and the resolution of SEM

is typically insufficient to measure CNT diameters, see Figure D-1.

Figure D-1. Scanning electron microscopy (SEM) image of a vertically aligned multiwall

carbon nanotube forest. Inset: transmission electron microscopy image of a single multiwall

carbon nanotube.
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Scattering methods, such as small-angle X-ray scattering (SAXS) are useful for

investigating features on the order of 1 - 100 nm. Though SAXS is not a direct visualization

technique, it provides a Fourier transform of real space information. For a typical SAXS setup

with a beam spot size on the order of a few hundred microns, the resulting data samples over

millions of CNTs and can reflect a "locally averaged" measurement of CNT morphology, see

Figure D-2.

Y

z

beam spot:

Figure D-2. Schematic of the experimental setup for small-angle X-ray scattering of multiwall

carbon nanotube forests. A motorized stage provides spatial resolution allowing for the

morphology to be investigated as a function of position within the film.

D.2 Experimental

Small-angle X-ray studies were performed at the Gl beamline station at the Cornell High

Energy Synchrotron Source (CHESS). The wavelength of the X-rays was 0.1239 nm, and the

sample to detector distance was calibrated with silver behenate (first order scattering vector of q
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of 1.076nm-' (with q = 47r sin(O/X) where 20 is the scattering angle and X is the wavelength). A

slow-scan CCD-based X-ray detector, home built by Drs. M.W. Tate and S.M. Gruner of the

Cornell University Physics Department, was used for data collection. Additional studies were

performed at the X27C beamline at the National Synchrotron Light Source (NSLS) at

Brookhaven National Laboratory (BNL). The wavelength of the X-rays was 0.1371 nm. Data

were collected on a MarCCD X-ray detector with a pixel width of 0.158 mm. Both systems use

motors connected to the sample fixture, which allowed fine control of the positioning of the

sample, relative to the incident X-ray beam, to study the local CNT morphology at various

locations in the film.

D.3 Results and Discussion

We have that shown small-angle X-ray scattering (SAXS) is a powerful tool for

investigating the morphologies of multiwall carbon nanotube (MWCNT) films' , 2. By fitting the

SAXS data to a model for cylindrical form factor, the average CNT diameter and an estimate of

the standard deviation can be determined. The diameters determined through SAXS correspond

well to high resolution transmission electron microscopy (HRTEM) data. SAXS provides the

advantage of sampling millions of CNTs in a single image, and additionally provides spatial

resolution not accessible through HRTEM. The ability to characterize the CNTs as a function of

position within the film allows us to create a morphological map of both the orientation and

diameter, see Figure 3.

We observed and quantified a change in morphology from entangled to vertically aligned

growth through the thickness of a film. We also noted a widening in the average CNT diameters

through the height of the CNT forest. We speculate that this observation can correspond to
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preferential growth of wider CNTs. For film morphologies that are dictated by base-growth

mechanism we include the possibility that the CNTs narrow as they grow from the substrate, with

the widest portion of an individual CNT located at the top of the film.

Hermans CNT diameter
orientation parameter

low high low high

Figure D-3. Morphological map of the CNT forests. The alignment is highest in the center of

the film and the diameter is largest at the top and center of the forest.

Systematic studies of the morphologies of the CNT forests as a function of variations in

the growth conditions are underway and will provide insights into the fundamental mechanisms

of the CNT growth process. We have recently developed instrumentation that allows for in-situ

investigation of the CNT growth process. By monitoring this process in real time we are able to

directly correlate the growth conditions to the morphology of the CNT forest. Gaining a

complete understanding of this process is critical for enabling materials structure and properties

to be optimized and customized for specific applications.
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We have also investigated the effects of mechanical manipulations upon the

morphologies of these MWCNT forests', including uniaxially compression and densification

through solvent evaporation. A low angle scattering feature in the data, corresponding to the

interparticle structure factor, allows us to extract information about the packing density of the

CNTs. We have recently performed ultra small-angle X-ray scattering (USAXS) measurements

which confirm this result and additionally reveal the presence of CNT aggregates in these films.

This analysis allows for determination of the average spacing between the CNTs which varies

significantly with mechanical manipulation. Additionally, we have used wide-angle X-ray

scattering (WAXS) to determine the number of grapheme sheets present in the nanotube walls,

i.e. the number of walls in the multi-wall carbon nanotubes.

D.4 Conclusions

X-ray scattering can be used to provide rich morphological information that is not

accessible through conventional microscopy techniques. By using a combination of ultra small-

angle, small-angle, and wide-angle X-ray scattering, (USAXS), (SAXS), and (WAXS)

respectively, we have demonstrated the ability to characterize the morphologies of carbon

nanotube films over a wide range of length scales. USAXS enables the characterization of the

average spacing and aggregation of the nanotubes. SAXS allows for quantitative

characterization of both the diameter and orientation of CNTs. WAXS can allow the number of

average walls in the multi-wall nanotubes to be determined. All three of these techniques

provide locally averaged information allowing for spatial resolution of the morphologies within

the films. These techniques and analysis can easily be applied to single wall CNTs, zinc oxide

nanowires, and a variety of other similar systems.
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Appendix E Applications of Grazing Incidence

Small-Angle X-ray Scattering for

the Characterization of Thin Films

E.1 Introduction and Experimental

I initially utilized grazing incidence small-angle X-ray scattering (GISAXS) for the study

of the side chain liquid crystalline block copolymer thin films, described in Chapters 5 and 6. As

I became more familiar with this technique I discovered, what I believe to be, the untapped utility

of this powerful technique for the characterization of a wide range of nanostructured thin film

systems. GISAXS is a powerful non-invasive technique that we used to investigate the both the

lateral and transverse structures in the interior of these thin films -3. In this section I will describe

several examples of my work where GISAXS proved to be a valuable tool for revealing the

structure and dynamics of various thin films. Among the systems studied with GISAXS are;

layer-by-layer films containing nanoscale clay platelets and amphiphilic micelles, nanoparticles

templated via amphiphilic block copolymers, and the in-situ study of the dynamics of the

coalescence of nanoparticles as a function of temperature. None of this work would have been

possible without the guidance and support of Arthur Woll at the G1 beamline at the Cornell High

Energy Synchrotron Source (CHESS).

The typical GISAXS setup includes a stepper motor that enables precise control over the

y and z position and the horizontal tilt of the sample. The thin film sample, usually on a silicon

substrate is placed on the sample stage and the position and tilt of the sample is calibrated using
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an ion chamber. The ion chamber detects the intensity of the incoming beam and by moving the

sample in front of the beam allowing its position relative to the X-ray beam to be found. It is

critical for GISAXS to precisely know the angle of the incident beam relative to the substrate. In

order to achieve the maximum scattering contrast an incident angle (ao) is chosen below the

critical angle (o~) of the substrate and above the critical angle of the thin film. Silicon has a

critical angle of 0.200, where the beam is reflected and there is negligible X-ray transmission

through the silicon. Typical polymer films have critical angles -0.14'. When the incident angle

is between the %b of the substrate and the %a of the film, the beam probes the entire thickness of

the film. In this case there are four primary modes of scattering:

1) Scattering of the incident beam upon entry to the film.

2) Transmission through the film, followed by reflection by the silicon substrate, and

scattering from the film.

3) Scattering of the incident beam upon entry to the film and subsequent reflection by the

substrate.

4) Transmission through the film, followed by reflection by the silicon substrate, scattering

from the film, and reflection once again by the substrate.

Each of these scattering modes results in a different scattering angle from the sample. The first

two scattering modes are the most intense and subsequently dominate the resulting scattering

pattern. However, if the incident angle is less than the %c of the thin film, and the film has

sufficiently low surface roughness, then the incident beam is reflected by the sample and only

penetrates -10nnm into the film. Thus for films significantly thicker than the penetration depth,

only the top surface of the film is probed and only the first scattering mode is observed.
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The wavelength of the incident beam at CHESS is 1.239A, and silver behenate was used

to calibrate the sample to detector distance with a first order scattering vector of q of 1.076nm-1

(with q = 47 sinO/h where 20 is the scattering angle and X is the wavelength). A slow-scan CCD-

based x-ray detector, home built by Drs. M.W. Tate and S.M. Gruner of the Cornell University

Physics Department, was used for data collection. Incidence angles were typically chosen

between 0.120 and 0.220, and the final images are an average of two 1 second exposures. The

sample detector distance is chosen to best capture the scattering over the desired q range,

between 100mm and 2000mm for features ranging from 0.5 nm to 100nm, respectively. A

typical experimental setup is shown in Figure E-1. In the next section I will briefly describe a

few of the thin film systems that I have characterized with GISAXS. As a note grazing incidence

diffraction (GID) is a similar technique, there is no fundamental difference between GISAXS and

GID, except the typical length scale of interest. The technique is typically referred to as GISAXS

when studying materials with larger feature sizes, from a few nanometers up to a micron, and

GID when the feature size is less than a few nanometers.
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-Thin film

ibstrate

Figure E-1. A schematic of a typical grazing incidence small-angle X-ray scattering (GISAXS)

setup. Scattering along the qy direction is resultant from structures in the plane of the film,

scattering along the qz direction is resultant from structures parallel to the substrate.
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E.2 Results and Discussion

E.2.1 GISAXS of layer-by-layer thin films containing nanostructured clay

Using the layer-by-layer (LbL) assembly technique, a polymer-clay structure can be

created from a combination of LbL materials: poly(ethylene imine), laponite clay, and

poly(ethylene oxide)4. This trilayer LbL structure is assembled using a combination of hydrogen

bonding and electrostatic interactions. A layered anisotropic structure was observed with

GISAXS, which resulted in in-plane ion transport 100 times faster than cross-plane at 0% relative

humidity as measured by electrochemical impedance spectroscopy (EIS). The GISAXS

characterization (see Figure E-2) was critical for understanding the structure property relationship

of these materials.
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Figure E-2. GISAXS scattering data of a PEI/Li-clay/PEO LbL film. Scattering reveals there is

regular 14 A spacing in the direction perpendicular to the substrate. This data indicates the clay

platelets are oriented parallel to the substrate surface.
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E.2.2 GISAXS of layer-by-layer thin films containing amphiphilic micelles

To confirm the presence of micelles in the LbL films, GISAXS was performed on LbL

films composed of PPO-PAMAM and PAA5. The films contained either empty micelles or

micelles encapsulating triclosan. Figure F-3 displays a GISAXS spectrum with strong scattering

seen in the qy direction (y) at 0.6 nm1 . From the GISAXS data, it was established that there was

regular spacing of 10.5 nm and 11.7 nm in the plane parallel to the substrate for the films with no

drug and with drug, respectively. Additionally, for the film containing drug, scattering in the

Angstrom length scales indicate the presence of triclosan, which has crystallized within the

micelles. As reported in earlier work, the triclosan loading is unusually large in the linear-

dendritic block copolymer micelles, yielding stabilized nanoparticles containing bulk drug within

the core of the micelle. There is also evidence of regular spacing on the nanometer length scale of

the same order of magnitude in the direction normal to the substrate, which would correspond to

the spacing of the micelles in the qz direction. However, the scattering is less intense and

inconclusive due to interference of the beam stop and specular reflectance. The spacing in the

LbL films revealed by GISAXS is of the same order of magnitude as the size of the micelles

experimentally determined by dynamic light scattering and TEM.
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Figure E-3. GISAXS scattering data of a 10 bilayer LbL film composed of PPO-PAMAM

micelles and PAA. Scattering reveals there is regular spacing of 10.5 nm spacing in the direction

parallel to the substrate. There is some evidence of scattering in the plane perpendicular to the

substrate but is inconclusive.

E.2.3 GISAXS of block copolymer templated nanoparticles

Iron nanoparticles can be templated using a PS-b-PAA micellar film onto an A120 3-

coated Si substrate 6. The amphiphilic block copolymer poly(styrene-block-acrylic acid) (PS-b-

PAA) forms micelles in solution which are capable of self-organizing into ordered structures on

surfaces. By spin-coating these solutions onto a variety of substrates a quasihexagonal arrays of

PAA spheres within a PS matrix can be created. The carboxylic acids groups in the PAA

domains can be utilized in an ion-exchange protocol to selectively sequester iron ions, which

results in iron nanoparticles that are nearly monodisperse in size. Using an oxygen plasma etch
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the PS-PAA block copolymer can be removed leaving behind only the iron nanoparticles. These

nanoparticles can then be used to catalyze the growth of CNTs in a thermal chemical vapor

deposition (CVD) process. For the sample shown in Figure E-4, GISAXS revealed an average

nanoparticle spacing of 33 nm. Similar systems using polystyrene-b-poly(4-vinylpyridine), PS-

P4VP, can be used to template gold nanoparticles.
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Figure E-4. GISAXS scattering data from an iron nanoparticle array indicating a hexagonal

array of particles with an average spacing of 33 nm.

E.2.4 In-situ GISAXS of the kinetics of nanoparticle coalescence

By heating a 2 nm iron film on an A120 3-coated silicon substrate to 8200 C in a reducing

hydrogen-helium environment, the iron film coalesces forming iron nanoparticles. In-situ

GISAXS can be used to monitor this process the dynamics of the nanoparticle coalescence can be

231



studied7 . Using a custom built furnace the temperature and annealing environment can be

controlled while the collecting GISAXS data. No coalescence was observed in a pure helium

environment indicating that hydrogen is necessary for the process to occur. In the hydrogen-

helium environment the initial coalescence begins to occur at -6500C and further develops with

increasing time and temperature. These iron nanoparticles can be used for the growth of carbon

nanotubes, and understanding the nanoparticle formation process can enable the control over

nanoparticle size and subsequently the size of the carbon nanotubes.
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Figure E-5. GISAXS scattering data from an iron film on an A120 3-coated Si substrate that has

formed nanoparticles due to coalescence of the iron film at 8200C. The average nanoparticle

spacing is 42 nm.
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E.3 Conclusions

Grazing incidence small-angle X-ray scattering (GISAXS) can be used to investigate a

wide range of nanostructured thin films. This technique allows for the nanostructured

morphology both parallel and perpendicular to the substrate to be investigated. GISAXS can also

be used for in-situ monitoring of physical phenomena, providing insights that cannot be accessed

through conventional microscopy techniques.
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Appendix F Measurement of Order-Disorder

Transition Temperatures (TODT)

F.1 Small-angle X-ray Scattering and Rheology

Temperature dependent small-angle X-ray scattering (SAXS) was used to investigate the

effects of increasing LC content upon the self-assembly behavior. Analyzing the reciprocal of

the maximum scattering intensity (1/Imx) as a function of the reciprocal temperature (1/T) allows

for systematic determination of the order-disorder transition temperature (TODT). Additionally,

the wavelength of concentration fluctuations, above TODT, and the d-spacing, below TODT,

denoted as (d) was plotted versus reciprocal temperature 1' 2. An example of this type of analysis

is shown in Figure Fl.

Additionally, rheometry was used to confirm the order-disorder transition temperatures

that were determined via temperature dependant SAXS. The TODT is characterized by a maxima

in tan delta, which is the ratio of the loss modulus (G") and the storage modulus (G'), as shown

in Figure F2. The values for the TODT Obtained via rheometry were consistent with those from

SAXS, however due to the faster ramp rate, 50 C/min for rheometry compared to 30 min

equilibration for SAXS, the values were typically -20 0 C higher than those from SAXS. Some

samples were not investigated via SAXS or rheometry as they had not yet been synthesized or

there was not sufficient material available, respectively.

It is difficult to compare the TODT for the samples resulting in the attachment of LC to the

PS61-PVMS18 backbone to the samples synthesized with PS27-PVMS14 for several reasons.
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Both the molecular weight and the polydispersity of these polymers differ, and this has an effect

upon the TODT. Additionally, while homogeneous anchoring of the LC mesophase with the inter-

material dividing surface (IMDS) is exclusively observed in this system where the PS domains

form cylinders, it is expected that either homogeneous or heterogeneous anchoring could exist for

lamellar morphologies 3. As the LC anchoring is a significant driving force for the self assembly

of these materials it is expected that the anchoring will influence the TODT. In depth studies into

the lamellar and transitional morphologies are currently underway.

TODT = 250oC
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Figure Fl. Plot of 1/Imax versus 1/T and d versus 1/T for sample PS27-PVMS14. Where Imax is

the maximum intensity of the scattering in the q range of interest and d is the spacing of the

ordered phase below the TODT and the length scale of concentration fluctuations above the TODT-
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Figure F2. Rheometry for sample PS27-LCP 4BPP446. G' is the storage modulus, G" is loss

modulus, and tan delta = G'/G". The polystyrene Tg is observed at 110 0 C and the TODT is

observed at 155 0 C.
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