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Abstract

Robot manipulators largely rely on complete knowledge of object geometry in order
to plan their motion and compute successful grasps. If an object is fully in view,
the object geometry can be inferred from sensor data and a grasp computed directly.
If the object is occluded by other entities in the scene, manipulations based on the
visible part of the object may fail; to compensate, object recognition is often used
to identify the location of the object and compute the grasp from a prior model.
However, new instances of a known class of objects may vary from the prior model,
and known objects may appear in novel configurations if they are not perfectly rigid.
As a result, manipulation can pose a substantial modeling challenge when objects are
not fully in view.

In this thesis, we will attempt to model the shapes of objects in a way that is
robust to both deformations and occlusions. In addition, we will develop a model
that allows us to recover the hidden parts of occluded objects (shape completion),
and which maintains information about the object boundary for use in robotic grasp
planning. Our approach will be data-driven and generative, and we will base our
probabilistic models on Kendall's Procrustean theory of shape.

Thesis Supervisor: Daniela Rus
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Thesis Supervisor: Nicholas Roy
Title: Assistant Professor
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Chapter 1

Introduction

Shape modeling and analysis arises in many different disciplines, with numerous ap-

plications ranging from computer graphics and robotics to archeology and medicine.

The specific problems one encounters in each field are as varied as they are important.

Consider a service robot in a restaurant which is tasked with unloading a dish-

washer. In order to know where to put dishes it retrieves, the robot must be able to

recognize each dish as an instance of a specific dish type (e.g. plate, fork, cup). This

problem is known as object recognition. Furthermore, to plan the sequence of grasp-

ing actions it must perform in order to transport the dishes from the dishwasher to

the cupboard, the robot must infer any hidden parts of objects which are not fully in

view because they are occluded by other dishes or parts of the dishwasher. This is the

problem of object completion. A dishwasher can be a particularly cluttered environ-

ment, which may make the resulting inference problems more challenging. Thus, it is

imperative to leverage the information that is present in the environment to perform

these tasks as quickly and as accurately as possible. Unfortunately, we cannot use the

color or patterns on a dish to figure out what kind of an object it is. Many dishes are

very uniform in color, with no discernible markings, while others have complicated

patterns, but one cannot say "all red dishes are cups", or "all dishes with a striped

pattern on them are plates". Instead, we must rely on the geometry of the dishes, in

order to classify them and plan grasping actions.

In medicine, an AI system may be responsible for examining a CAT scan or an



X-ray in order to screen a patient for heart problems, or for determining if a tumor

is likely to be cancerous. The AI must first determine which part of the image

corresponds to the organ of interest, and which part corresponds to the surrounding

tissue, or background. This problem is called image segmentation, and can be greatly

aided by prior models of object shape. Once the object is segmented out of the image,

the system must infer the probability of cancer, or of abnormal heart function, based

on the appearance and shape of the object in one or more images. It can then display

this information to a doctor, who can decide whether or not to perform surgery.

No one shape modeling technique will be able to answer all questions in every

domain. However, within a specific domain, one may formulate a set of guidelines

which roughly capture the properties any shape modeling method should have in

order to be most useful to problems in that domain. In computer graphics, these

properties may be things like ease of use in calculating lighting effects and collisions,

ability to represent scanned objects from the real world, and smoothness/resolution.

In robotics and computer vision, on the other hand, we care mostly about accuracy

and the ability to perform complicated inference tasks, such as shape recognition

("what is it?") or shape completion ("what does the hidden part of that object look

like?").

In robotics, we also want to use these models to accomplish practical tasks such

as navigation and object manipulation, which require action-effect estimation (e.g.

"how likely is it that I will drop this object if I place my fingers here, here, and

here?" or "what is the probability that I can fit through that small opening in the

wall?"). Both of these questions would be trivial (dynamics aside) in a world with no

uncertainty, such as inside a computer game. However, in the real world we must deal

constantly with uncertainty in not only sensing, but also in modeling and prediction.

In this thesis much of the discussion and methodology will be motivated by prob-

lems encountered in robotics-specifically, grasp planning with incomplete observa-

tions; however, it should be noted that the shape modeling framework and inference

capabilities presented here are applicable to a wide range of fields.



1.1 Background

The ability to easily infer the geometry of the world around us is something that

humans often take for granted, yet some of the most challenging problems in robotics

and computer vision in recent years have dealt with precisely these issues. In mobile

robotics, the problem of simultaneous localization and mapping (SLAM) has kept

researchers busy for decades, while the corresponding problem in computer vision-

known as structure from motion (SFM)-has also posed quite a challenge to scientists

in the field. In each domain, the goal is to accurately estimate the geometry of the

environment around the robot (or camera) from noisy sensor data, while at the same

time recovering the trajectory of the robot (camera) through the world. In computer

vision, the problem is compounded by the sheer volume of sensory data which must be

processed. In both the SLAM and SFM communities, recent breakthrough techniques

have increasingly used statistical tools to handle the errors in sensing and estimation

[58, 10]. By modeling not only the best estimate of the world geometry, but also

the covariances of those estimates, robust solutions to SLAM and SFM are becoming

more attainable.

Neither SLAM nor SFM are considered to be shape modeling problems in the

traditional sense, as they deal with the geometry of whole environments, not individ-

ual objects. However, we believe that the lessons from these two problems can and

should be applied to modeling the shapes of objects.

In the computer vision community, a great deal of progress has been made in recent

years on many shape recognition tasks, from retrieval to classification to segmenta-

tion. Several state-of-the-art approaches employ general-purpose shape descriptors

(such as "shape contexts") that transform the original shape geometry into a more

discriminative feature space and apply nearest-neighbor classification in this new fea-

ture space [2, 34, 50].

Although results of these state-of-the-art methods are impressive, there are two

types of problems on which these discriminative approaches typically fail. The first

is when the shape of objects within a shape class varies in a non-trivial way (for
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Figure 1-1: Shape classes with high variance, due to articulation (left) and biology
(right). It is very difficult to construct a single shape metric which will enable robust,
accurate discrimination of shape categories for classes such as these.

-- hidden

observed (noisy)

Figure 1-2: Boundary estimation. We want to predict the spatial location of every
point on an object's boundary (both hidden and observed).

example, in an articulated object or an animal silhouette, as in Figure 1-1). In these

cases, the same type of object can look very different depending on the instance, and

either the shape distance must be modified in order to take these deformations into

account1 , or multiple instances of the same object class must be stored in the shape

database in order to encompass the full spectrum of variability within the class.

The second type of problem on which these discriminative approaches to shape

analysis can fail is when we have incomplete observations of objects; either because of

the limits of the sensor's field of view or because of object occlusions, as in Figure 1-3.

For applications such as robotic grasping, we also want to perform additional inference

'It should be noted that Ling et. al's "inner distance" does do a very good job of modifying the
shape context descriptor to handle articulated objects [34].

I



(b) Segmentation (c) Contours

Figure 1-3: (a) A collection of toys in a box. The toys partially occlude each other,
making object identification difficult. (b) A segmentation of the image, based on
color. (c) Partial object contours which must be used to perform geometric object
recognition.

tasks other than shape recognition, such as shape completion or boundary estimation

(Figure 1-2). In these cases, it is not enough to just recognize what an object is-we

must also infer the correct geometry of the new object given the shape class it belongs

to (and given a partial and/or noisy estimate of the new shape's geometry).

In this thesis, we will attempt to solve both of these canonical challenges-shape

variation and occlusions-at the same time. Although the resulting inference problems

are quite complex, we feel that handling these types of uncertainties is one of the key

challenges which must be solved if we are to develop AI systems capable of operating

in the real world.

In the classical computer vision literature, there is considerable work on recogniz-

ing occluded objects, e.g., [33, 28, 21]. Recognizing and localizing occluded objects

when the objects are rigid is known as the "bin-of-parts" or "bin-picking" problem.

Despite being described by early vision researchers as the most difficult problem in

automatic assembly [20], there were many successful systems developed in the 1980's

which solved the bin-of-parts problem in controlled environments. Most systems used

greedy, heuristic search in a "guess-and-test" framework. Thus, in order to scale well

with the number of object classes (and the number of objects in the image) they

needed to be especially greedy, pruning away as much of the search space as possible

to avoid an exponential running time. As a result, these approaches were especially

(a) Original image



sensitive to variations in shape.

An explosion of interest in object detection and segmentation in recent years has

led to many advances in modeling shape variability [9, 8, 15, 4]. However, most of

these shape deformation models have been applied in constrained environments, de-

tecting only a handful of prescribed object types-for example in medical imaging [38]

or face detection [8].

1.2 Our Approach

We wish to model the shapes of objects in a way that is robust to both deformations

and occlusions. In addition, we desire a, model that allows us to recover the hid-

den parts of occluded objects (shape completion), and which maintains information

about the object boundary for use in robotic grasp planning. Our approach can be

summarized as follows:

1. Dense: We model an object's shape with a dense set of points along the ob-

ject's boundary. This provides a level of redundancy and completeness which

makes our model robust to many types of sensing noise (such as a poor image

segmentation), while at the same time providing all the necessary information

for planning grasps or other actions based on full object geometry.

2. Data-driven: In order to model the complex shape classes of figure 1-1, it is

our belief that no one discriminative shape metric can handle all possible types

of variation. Thus, we seek models which can be learned from training data.

3. Generative: Although we do explore the use of discriminative methods as a

pre-processing step in object detection and classification (Chapter 5), we pri-

marily seek generative shape models, as we believe these are the most amenable

to robustly performing complicated inference tasks, such as shape completion,

as well as being the most accurate in describing the variability of a class of

objects.



Note that these tenets are not necessarily the most natural ones for every domain.

For example, in the so-called "shape google" application-known as shape retrieval-it

may be more desirable that the shape similarity measure is generic and consistent,

applying to the widest range of objects in a predictable fashion, than that it can

be tailored to perform well on any given dataset. Or, if we do not care about the

original geometry of the object, but we wish only to classify its shape, then we may

not care whether or not we can accurately capture the variability of a shape model

in a generative way-in fact, discriminative approaches will often perform better than

generative ones in such cases.

However, for our application-robotic grasping-it is clear that modeling shape

variation, boundary estimation/shape completion, and the ability to tailor the system

to improve performance over time are all key components when it comes to being

able to grasp deformable, occluded objects in real world environments. We also

speculate that these core capabilities will be increasingly important to computer vision

algorithms for tasks such as image segmentation and class-level object recognition,

although additional work is needed to fully explore these domains.

1.3 Thesis Statement

Learning dense, probabilistic models of object shape allows for accurate geometric

inference of partially hidden, deformable objects.

1.4 Contributions

In this thesis, we provide several novel contributions to the areas of statistical shape

analysis and robotic grasping:

1. We adapt the popular Procrustean shape model to model the dense probabilistic

geometry of object boundaries.

2. We describe a novel graphical model for finding correspondences between the



points of two shapes, and show that this correspondence model improves the

modeling accuracy of probabilistic Procrustean shape models.

3. We derive a solution to the shape completion problem, and use our shape models

to infer the hidden parts of partially-occluded, deformable objects.

4. We demonstrate how a discriminative model of shape parts, also based on

the Procrustean framework, can be trained to detect both full and partially-

occluded shapes, and we show improved performance on an object retrieval task

on a popular shape dataset over all previously published methods.

5. We apply our shape inference algorithms to the task of robotic grasping, and

show that learning probabilistic models of deformable objects allows us to ef-

ficiently recognize and retrieve complex objects from a pile of objects in the

presence of sensor noise and occlusions.

1.5 Outline

We begin in chapter 2 by developing a suitable model for 2-D shape, and reviewing

existing models in the literature. In chapter 3 we discuss the correspondence, or

"shape matching" problem, which must be solved in order to align shapes prior to

inference. Chapter 4 is devoted to the task of shape completion, presenting our

method for inferring the missing parts of occluded objects. In chapter 5 we present

our work on "boosted shape parts", which we use as a pruning heuristic for large-

scale shape recognition problems in which it is computationally prohibitive to find

the likelihoods of a given shape under every possible shape model using the full,

generative methods of chapters 2-4. Finally, in chapter 6 we tie everything together

with an application to robotic grasping.



Chapter 2

2-D Shape Models

2.1 Background

There are currently three major approaches to 2-D shape modeling. The first ap-

proach is to use a set of points, or a point cloud representation. With this model,

shapes are represented as a collection of point locations in the plane. Beyond that,

each point cloud model handles inference differently. The most common inference

tasks are classification and registration. Shape classification is the task of classifying

a new shape given a set of shape classes, such as "triangle", or "fork". Registration

is the task of aligning a prior shape model with a shape in a new scene, which may

be represented by a set of points from a laser range scan, or a set of edge fragments

extracted from an image. In order to align a point cloud with a new scene, one must

figure out which points in the model correspond to which elements of the scene. This

is an example of a "data association", or "correspondence" problem, which is the

focus of chapter 3. Once a point correspondence is found, many point cloud models

then use either a Euclidean distance (in the simplest cases), or more commonly a

Procrustes distance [27] (which is invariant to position, scale, and orientation) or a

bending energy [7, 2] (required to warp one shape into the other), in order to compute

a shape dissimilarity metric. Correspondences are computed either by estimating the

best alignment and the point correspondences jointly, as in the Iterated Closest Point

algorithm [3], or by forming a pairwise assignment cost function between each pair of



points across the two point clouds and using either bipartite matching [2] or relax-

ation labeling [44] to find a good matching. Alternatively, an example of work where

point correspondences are not directly computed is [23], where a Hausdorf distance

is computed in order to perform both matching and registration simultaneously.

The second major approach to 2-D shape modeling is to represent the shape of

an object by a continuous curve. These models can then be subdivided into those

which represent only closed curves (contours) and those which represent either closed

or open curves. The majority of widely-used work in this area has been done on

closed contours, as most of the physical objects people wish to model have 2-D extent

(although handwriting is a good counter-example). Many popular closed contour

models in recent work have used variational methods (e.g. active contours or level

sets) to perform image segmentation and tracking tasks [4, 9, 24, 45]. The basic idea in

both active contours (snakes) and level sets is to use an energy minimization to evolve

an initial curve to fit image intensity data, where energy terms include smoothness and

degree to which the contour fits the image intensities. More general curves (both open

and closed) have been modeled by convex polygon parts [30], fourier descriptors [33],

algebraic curves [54, 57], and turning functions [56], among others. Another closed

curve model which deserves mention is curvature scale space [39], where shape is

modeled by the singularities of a curve evolution process as the curve is smoothed

by a Gaussian kernel. Latecki's convex polygon parts model [30] also models shape

across curvature scales, and this general multi-scale approach is a motivating idea for

some of the work done in this thesis.

The third approach to 2-D shape modeling is found in shape skeletonization.

Shape skeletons are limited to modeling closed contours, and in many cases can be

thought of as simply an approximate dual representation for the object boundary. The

advantage to skeleton models is that they can present a hierarchical decomposition

of shape (e.g. the spine to the limbs to the fingers and toes), and are widely used

on both articulated shapes and on shapes with distinct parts. Some examples of

skeleton-based shape models are medial axis [5], shock graphs [50, 52], and shape axis

trees [17).



Several good survey articles of 2-D shape modeling exist. For a good start, see [51,

60, 59].

2.1.1 A Simple Model for 2-D Shape

In order to accomplish the thesis goals set out in section 1.2 of handling shape de-

formations and occlusions in a way which preserves the original object geometry,

we wanted to keep the model simple, in order to make the inference procedures as

straightforward as possible. Therefore, we chose to use the tried and true method of

representing an object's shape by a set of discrete points around its boundary. The

drawbacks to this model are obvious-we are restricted to closed contours, we can-

not represent (but we can approximate) continuous curves, and as with point clouds

we must solve a correspondence problem in order to compare shapes. However, the

advantages are (i) it can be made as dense as needed, (ii) we have a natural cyclic

ordering of points around the contour which aids us in finding correspondences be-

tween shapes, and (iii) we can draw upon a vast amount of established literature on

the statistical shape modeling of sets of ordered landmarks.

The most influential pioneer of statistical shape modeling was David Kendall, who

developed a rigorous mathematical understanding of the topology of shape spaces,

which we discuss next.

2.2 Shape Space

Let us represent a shape z as a set of n points z1, z2, .. z in some Euclidean space.

We will restrict ourselves to two-dimensional points (representing shapes in a plane)

such that zi = (xi, yi), although extensions to three dimensions are feasible. We

will assume these points are ordered (so that z can be defined as a vector), and

represent a closed contour (such as the letter "O", as opposed to the letter "V"). In

general, the shape model can be made de facto invariant to point ordering if we know

correspondences between the boundary points of any two shapes we wish to compare.

In this thesis, we will use the following two conventions for representing a shape



z, mathematically. First, we define the real shape vector zre as

Zre = [x, yi,x,2, Y2) ... Xn, Yn] T ,  (2.1)

where the 2-D points of z are stacked on top of each other, resulting in a real vector

of length 2n. Second, we define the complex shape vector zco as

Zco = [I + iyl, X2 + iY2, ... n + iyn], (2.2)

where each point of z shows up as a single complex element of zo, so that zoo is a

complex vector of length n. Throughout the remainder of this thesis, we will drop

the 're' and 'co' subscripts from our shape vector notation, and will simply denote a

shape vector by z. If it is not clear whether z is real or complex from the context of

the equations in which z appears, it will be specified.

In order to make our model invariant to changes in position and scale, we can

normalize the shape so as to have unit length with centroid at the origin; that is,

z' = {z'i = (xi- ,yi - )} (2.3)
Z/

7 =(2.4)

where 11z'11 is the L2-norm of the real shape vector z'. We call T the pre-shape of

z. Since 7 is a unit vector, the space of all possible pre-shapes of n points is a unit

hyper-sphere, S~,-3, called pre-shape space'.

Any pre-shape is a point on the hypersphere, and all rotations of the shape lie on

an orbit, 0(T), of this hypersphere. Thus, shape is defined as the orbit of a pre-shape

under 2-D rotation, and the shape space En is defined as the space of all such orbits

of 2-D pre-shapes of n points. If we wish to compare shapes using some distance

metric between them, the spherical geometry of pre-shape space requires a geodesic

distance rather than Euclidean distance. Additionally, in order to ensure this distance

'Following 153], the star subscript is added to remind us that S"- 3 is embedded in R2 , not the
usual R2n- 2



is invariant to rotation, we define the distance between two shapes z and w as the

smallest distance between their orbits:

dp[z,w] = inf[d(, ) : O E O(Tz),O E O(Tw)] (2.5)

d(b, 4) = cos-( • -V) (2.6)

Kendall [26] defined dp as the Procrustean metric, where d(o, ý/) is the geodesic

distance between q and V). Since the inverse cosine function is monotonically decreas-

ing over its domain, it is sufficient to maximize .' -0, which is equivalent to minimizing

the sum of squared distances between corresponding points on q and 0 (since 4 and

, are unit vectors). For every rotation of ¢ there exists a rotation of V which will

find the global minimum geodesic distance. Thus, to find the minimum distance, we

need only rotate one pre-shape while holding the other one fixed. We call the rotated

ý)i which achieves this optimum (O.· (Tm)) the orthogonal Procrustes fit of 7r onto 7,,

and the angle a* is called the Procrustes fit angle.

Representing the points of 7, and -7 in complex coordinates, which naturally

encode rotation in the plane by scalar complex multiplication, the Procrustes distance

minimization can be solved:

dp[z, w] = cos- 1 TI (2.7)

c* = arg(TrTz), (2.8)

where TH is the Hermitian, or complex conjugate transpose of the complex vector T,.

2.3 Shape Inference

Given a set of measurements of an object class, we would like to infer a distribution

of possible object geometry. We will first derive an expression for the mean shape,

and then derive the distribution covariance. After describing the model learning

procedure, we will present an algorithm for computing the likelihood of a new shape



under this model.

2.3.1 The Shape Distribution Mean

Let us assume that our training data set consists of a set of measurements {m1, m 2,...

of objects drawn from the same shape class, where each measurement mj is a com-

plete (but noisy) description of object geometry, a shape vector of length 2n. We

can normalize each measurement to be an independent pre-shape and use these pre-

shapes to compute an estimate of mean shape. If each measurement mI is normalized

to a pre-shape Ti, then the Procrustean mean shape of {•1,..., 7M} is

p* = arg inf Z[dp(ri, p)]2  (2.9)

The pre-shape /t* is formally called the Frechet mean2 of the samples 71,..., 7M

with respect to the distance measure 'dp'. Note that the mean shape is not trivially

the arithmetic mean of all pre-shapes; dp is non-Euclidean, and we wish to preserve

the constraint that the mean shape vector has unit length. Intuitively, what makes

it difficult to find the Procrustean mean shape is that the pre-shapes r1 ,..., TM may

not be rotated into alignment with each other to begin with. We must simultaneously

optimize the rotational alignment of each pre-shape, while at the same time computing

the mean shape p*, subject to the constraint that p* be a pre-shape-i.e. a unit-length

shape vector.

Unfortunately, the non-linearity of the Procrustes distance in the cos-l(.) term

leads to an intractable solution for the Frechet mean minimization. Thus, we ap-

proximate the geodesic distance p between two pre-shape vectors, ¢ E 0(71) and

¢ E 0(T 2), as the projection distance, r,

r = sinp = 1 - cos 2 p. (2.10)

2More precisely, p* is the Fr6chet mean of the random variable ( drawn from a distribution having
uniform weight on each of the samples T1, ... , T1M.



Figure 2-1: Distances on a hyper-sphere. r is a linear approximation to the geodesic
distance p.

Figure 2-1 depicts this approximation to the geodesic distance graphically3.

Using this linear projection distance r in the mean shape minimization yields an

expression for the mean shape fp*

p* = arg inf Z(1- TH l 2) (2.11)
It'11=1 i

= arg sup (TH A)H (H) (2.12)

= arg sup pH iTifH)p (2.13)

= arg sup ,pHSp, (2.14)
1P11= 1

thus, p* is the complex eigenvector corresponding to the largest eigenvalue of S [12].

2.3.2 The Shape Distribution Covariance

With our measurements {ml, m 2 , .. .}, we can now fit a probabilistic model of shape.

In many applications, pre-shape data will be tightly localized around a mean shape, in

such cases, the tangent space to the preshape hypersphere located at the mean shape

will be a good approximation to the preshape space, as in figure 2-2. By linearizing our

distribution in this manner, we can take advantage of standard multivariate statistical

analysis techniques, representing our shape distribution as a Gaussian. In cases where

3The straight-line Euclidean distance, s, is another possible approximation to the geodesic dis-
tance, but it will not enable us to easily solve the mean shape minimization in closed form.
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the data is more spread out, one can use a complex Bingham distribution [12].

Figure 2-2: Tangent space distribution

In order to transform our set of pre-shapes into an appropriate tangent space, we

first compute a mean shape, pu as above 4. We then fit the observed pre-shapes to

pI, and project each fitted pre-shape into the tangent space at p. The tangent space

coordinates for pre-shape Ti are given by

vi = (I - JLH)ejOT, (2.15)

where j2 = -1 and 0* is the optimal Procrustes-matching rotation angle of Ti onto

p. We then apply a dimensionality reduction technique, using principle components

analysis (PCA) to the tangent space training data vi,..., vM to get a compact rep-

resentation of estimated shape distribution (Figure 2-2).

Figure 2-3(a) shows one example out of a training set of images of a deformable

object. Figure 2-3(b) shows sample objects drawn from the learned distribution. The

red contour is the mean, and the blue and green samples are taken along the first two

principal components of the distribution.

2.3.3 Shape Classification

Given N previously learned shape classes Cl,..., CN with shape means p1,...,pZA

and covariance matrices El,..., EN, and given a measurement m of an unknown

object shape, we can now compute the likelihood of a shape class given a measured

4We use [t to refer to the p* computed from the optimization in 2.9 for the remainder of the
paper.

r,



(a) Example Object (b) Class Distribu-
tion

Figure 2-3: (a) An example image of a chalk compass. The compass can deform by
opening and closing. (b) Sample shapes from the learned distribution along different
eigenvalues of the distribution.

object: {P(Cilm) : i = 1...N}. The shape classification problem is to find the

maximum likelihood class, C, which we can compute as

d = arg max P(C m) (2.16)
Ci

=arg max P(mIC)P(QC). (2.17)
Ci

Given the mean and covariance of a shape class Ci, we can compute the likelihood of

a measured object given a class as follows. First, we compute 7, the pre-shape of m,

and we rotate 7 to fit the mean shape pi and project into tangent space, resulting

in a tangent space shape vector, v. Then, we project v onto the top k principle

components (eigenvectors), bl,..., bk, of Ci's covariance matrix, and we compress v

to a vector of length k + 1, where the first k components are the projection scores of

v onto the top k eigenvectors, and the final dimension is the projection distance from

v to the top-k eigenvector subspace. The compressed tangent space coordinates, vI,

of pre-shape 7 with respect to the shape model Ci are

v = bi -v Vi = 1..k (2.18)

Vk1 = IV - BBTvII (2.19)

where B is the matrix with eigenvectors bl,..., bk in its columns.

In order to compute the likelihood of the compressed shape vector, v , with



Table 2.1: Shape likelihood algorithm for computing the likelihood of a particular
shape, x under a tangent space principle components model, S.

respect to C(7's model, we must compress the mean and covariance as well. Since

tangent space is perpendicular to the mean shape, the mean shape remains at the

origin in compressed tangent space. The compressed covariance, E-L, is also easy to

compute; it is a diagonal matrix with the first k diagonal elements being the top k

eigenvalues of the full covariance, and the k+ 1st entry being the sum of the remaining

2n - k eigenvalues (since the k+ 1st dimension of the compressed shape model captures

all of the variation that does not fall along the top k principle components). We then

calculate the likelihood of m with respect to shape class Ci as

p(mAC) = N(v ; 0, E/). (2.20)

The full shape likelihood algorithm is shown in table 2.1.

Finally, assuming a uniform prior on Ci, we can compute the maximum likelihood

class as

o = argmaxAr(v'; 0, CE). (2.21)
c2

SHAPELIKELIHOOD(x, S, k)

Input: Shape x, shape model S (with mean 1L and covariance E), and the
number of principle components, k, to use in computing the likelihood.

Output: Likelihood L = p(x; S)

* Compute 7 -- PRESHAPE(x).

* Rotate r to fit ip.

* Project 7 into I's tangent space to get tangent space coordinates, v.

* Compress v to the k + 1 dimensional vector v ± using the top k eigen-
vectors of the model covariance matrix, E, and compute (or look up)
the compressed covariance matrix, E' .

* Return L +-• (v±; 0, EI).
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Figure 2-4: A sample from six classes of the MPEG-7 shape dataset. The many differ-
ent types of shape variation present have made this dataset an extremely challenging
one for shape recognition algorithms.

2.4 Experiments

In order to compare the performance of different shape metrics with one another, one

needs a common dataset to test them on. In the past decade, the MPEG-7 Shape

B dataset [31] has found great popularity among the shape recognition community,

since being selected as the test set for the MPEG-7 video compression standard. The

MPEG-7 dataset contains 70 classes of 20 shapes each, represented by black and white

image silhouettes, as in figure 2-4.

2.4.1 Retrieval

One common performance test of shape similarity metrics is called the bullseye re-

trieval test. The bullseye test is a leave-one-out (LOO) test, which takes in a query

shape, v, and computes the percentage of matches out of the total number of shapes

per class, m (including the query shape), within the top 2m matches which belong

to the same class as the query shape. (For the MPEG-7 dataset, m = 20, since there

are 20 shapes per class.) The bullseye retrieval rate is the average bullseye rate over

all LOO tests (70 x 20 for the MPEG-7 dataset).

We wanted to see how the Procrustean shape distance compared to other popular

shape metrics in the literature, so we tried running a Bullseye test on the MPEG-7



dataset. Unfortunately, the Procrustean metric is an extremely rigid form of shape

metric. As was mentioned above, the Procrustean metric simply compares the con-

figurations of two sets of ordered point sets, and requires that the two point sets

are already in one-to-one correspondence with each other. However, since shapes are

extracted from the MPEG-7 dataset from the boundaries of silhouette images, there

is no guarantee that the starting points of each boundary will be the same, or that

the boundaries will have the same number of points. The latter problem can be fixed

by sub-sampling n = 100 evenly-spaced points around all of the boundaries, once

they are extracted from the images. To solve the first problem, we must perform a

minimization over all n possible starting points on one shape. Thus, if we let z (i) be

the permutation of z starting from the ith point, that is;

Z
(i )  

(zi, Zi+1, ... , zn, zl, ... , zi-_1), (2.22)

then we can define the Shifted Procrustean Metric, dsp(.), as the minimum Pro-

crustean distance over all possible starting points on one shape,

dsp(z, w) = min dp(z(i ), w). (2.23)

Another challenge that the MPEG-7 dataset presents is that it contains several

"mirror-image" shapes. Thus, shape metrics which are tested on the MPEG-7 dataset

typically also take a minimum distance over reflections, which we do by defining the

Mirrored Shifted Procrustean Metric, dMsp(.), as the minimum Shifted Procrustean

distance over reflections,

dMsp(z, w) = min[dp(z, w), dp(z', w)], (2.24)

where we let z' be the reflection of z about the x - axis (or the y - axis, equivalently).

With this modified Procrustean metric, dMsp(.), we then ran the Bullseye test

on the full MPEG-7 dataset, achieving an average retrieval rate of 77.04%. Impres-

sively, this is slightly higher than the published results for the popular shape context



distance [2], which achieved a Bullseye retrieval rate of 76.51%. The best published

result is 87.23%, due to the Dynamic Space Warping (DSW) of Alajlan et. al; how-

ever, in Chapter 5 we use the Procrustean metric to learn a local shape distance with

AdaBoost which outperforms DSW, achieving a retrieval rate of 89.49%.

2.4.2 Classification

We also wanted to test the performance of the Procrustean shape distance for clas-

sification, as a baseline to compare against the performance of the full probabilistic

models. We ran a 5-fold cross-validated classification test on the MPEG-7 dataset,

using the Mirrored Shifted Procrustean (MSP) metric, together with nearest neighbor

(NN) classification. The classification rate of this NN classifier was 95.86%.

We then tested the performance of the probabilistic Procrustean model of sec-

tion 2.3. First, we computed the mean shape and covariance for every shape class

in each CV training set, using the MSP metric. Then, we corresponded (with MSP)

and classified all testing shapes according to equation 2.21, with different numbers

of principle components, k. The highest classification rate of this MSP classifier was

63.86%, achieved at k = 6 PCs, which was far below the NN classification rate of

95.86%. One possible explanation for this drop off in performance is that, despite

the high variance of many classes in the MPEG-7 dataset, there were enough training

samples per class (16) so that similar shapes to each test shape were usually present

in the training set. Still, the MSP classifier leaves much to be desired, since any

shape class with a large amount of variation will learn models where training shape

parts are incorrectly corresponded to one another, leading to garbled models, as in

figure 2-5.

2.4.3 Procrustean Metric vs. Shape Contexts

The similar performance of the Procrustean metric to the shape context distance on

the MPEG-7 Bullseye test is surprising, since the correspondence algorithm we used

for the Procrustean metric is just a simple scan for a good starting point, whereas the
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Figure 2-5: Shape classes from the MPEG-7 shape dataset which are modeled poorly
with Mirrored Shifted Procrustean (MSP) correspondences. (a-b) Two examples of
shapes from the "deer" class. (c) The mean shape (in red) plotted with shapes
sampled along each of the top 5 principle components for the deer class. (d-e) Two
examples of shapes from the "device6" class. (f) The mean shape (in red) plotted
with shapes sampled along each of the top 5 principle components for the deer class.

shape context uses locally weighted shape signatures to determine correspondences

using a bipartite graph matching algorithm. However, the Procrustean metric makes

up for potentially poor correspondences by achieving full rotation invariance, whereas

the shape context does not achieve this invariance. It is this orientation invariance

(along with the position and scale invariance), which makes the Procrustean metric

such an attractive shape distance on which to base a probabilistic model of object

shape.

In the next chapter, we will seek to improve upon our basic scanning correspon-

dence algorithm. This will become increasingly important as we attempt to capture

the variation in a class of object shapes, since the same parts of an object must be

matched up with each other in order to accurately model the distribution of shapes.

Ea3~
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Chapter 3

Data Association and Shape

Correspondences

Most shape modeling and recognition algorithms rely on being able to solve a cor-

respondence problem between parts of two or more objects. Solving for the most

likely correspondences between sets of data is an open problem in a number of fields,

including computer vision and robot mapping. As object geometries vary due to pro-

jection distortions, sensor error, or even natural object dynamics, determining which

part of an object image corresponds to which part of a previous image is non-trivial.

In 2-D, a shape is often represented as a closed contour [4, 19, 30, 34, 51]. Some

methods use continuous representations of shape contours, matching curve segments

on one contour to those on another [49], or matching the control points of two active

contours [24]. Others use the skeleton of a contour to represent the shape of an

object [50, 52]. For these methods, skeletal tree branches must be matched to each

other, and a tree edit distance is often employed to determine the similarity between

shapes. In this thesis, we represent the shape of an object by a densely-sampled,

ordered set of discrete points around its contour, where one must find an optimal

assignment of the points on one contour to the points on another contour. In each

model, one must solve the correspondence problem in order to proceed with the

computation of shape distances, distributions, and likelihoods.

We have already seen one example of a correspondence algorithm in chapter 2,



where the Shifted Procrustean Metric 2.23 was used to match up the points of one

shape contour with the points on another contour by finding the best starting point,

and assigning the rest of the points in one-to-one correspondence around the two

contours. In this chapter, we will develop a more flexible framework for shape cor-

respondences, and will show that by using this more general framework for data

association, we can improve shape classification performance on the MPEG-7 data

set over the simple Shifted Procrustean Metric.

In order to find correspondences between the points of two contours, one typically

gives a cost function, C(i,j), for assigning point i on the first contour to point j

on the second contour, and these costs are usually assumed to all be independent.

In addition, we may have constraints on the matching; for example, we may require

an order-preserving matching (Figure 3-2). Scott and Nowak [48] define the Cyclic

Order-Preserving Assignment Problem (COPAP) as the problem of finding an optimal

matching such that the assignment of corresponding points preserves the cyclic or-

dering inherited from the contours. Alternatively, if we do not require the assignment

to preserve contour ordering, yet we do desire a one-to-one matching, the problem

may be formulated as a bipartite matching [2] or as a relaxation labeling [44].

3.1 Point Assignment Cost Functions

One recent approach which has had some success using the point-assignment cost

framework is that of shape contexts [2]. The shape context of a point captures the

relative positions of other points on the contour in a log-polar histogram. The point

assignment cost is determined by a X2 distance between corresponding shape context

histograms.

Another option is to simply align the two shapes as closely as possible, e.g. using

a Hausdorff distance [23] or Iterated Closest Point (ICP) [3], and then to compute

the cost function between two points as the Euclidean distance from one point to

the other. Unfortunately, this Euclidean cost method can give poor results when the

contours have large concavities on them, or in the presence of articulation (e.g. the



Figure 3-1: Tool articulation. Euclidean distance cost function is sensitive to articu-
lation and concavities, as well as to the initial alignment (in this case by ICP).

Figure 3-2: Order-preserving matching (a) vs. Non-order-preserving matching (b).
The thin black lines depict the correspondences between points in the red and blue
contour. Notice the violation of the cyclic-ordering constraint between the right arms
of the two contours in the right image. Without the cyclic ordering constraint, these
two shapes may appear to be extremely dissimilar.

opening and closing of a tool-figure 3-1). It is also extremely sensitive to the initial

alignment, so such methods should only be used when it is known, a priori, that the

two shapes will be very similar.

A third method, which we will use in this thesis, is to use local, rather than global

shape information at each point, comparing the shapes of neighborhoods around the

two points in order to determine the point assignment cost. To do this, we will use

the Procrustean shape metric of chapter 2 to compute the shape distance between

two point neighborhoods, and will then take the point-assignment cost as a weighted

sum of neighborhood shape distances over varying neighborhood sizes.

By the nature of object contours, our specific shape correspondence problem con-
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tains a cyclic order-preserving constraint, that is, correspondences between the two

contours cannot "cross" each other. Scott and Nowak [48] define the Cyclic Order-

Preserving Assignment Problem (COPAP) as the problem of finding an optimal one-

to-one matching such that the assignment of corresponding points preserves the cyclic

ordering inherited from the contours. Figure 3-2(a) shows an example set of corre-

spondences (the thin black lines) that preserve the cyclic order-preserving constraint,

whereas the correspondences in figure 3-2(b) violate the constraint at the right of the

shape (notice that the association lines cross.) In the following sections, we show how

the original COPAP algorithm can be written as a linear graphical model with the

introduction of additional book-keeping variables.

Our goal is to match the points of one contour, xl,..., xn to the points on another,

yl,...,ym. Let (D denote a correspondence vector, where qi is the index of y to which

xi corresponds; that is: xi --+ yo,. We wish to find the most likely ) given x and y,

that is, VI* = argmax , p(Q)lx, y). If we assume that the likelihood of individual points

{xj} and {yj} are conditionally independent given (, then

* = argmax 1p(x, yl@)p(O) (3.1)

ýD Z= argmax a J7J p(Xj, y4 )p(m ) (3.2)

where Z is a normalizing constant.

3.2 Priors over Correspondences

There are two main terms to equation (3.1), the prior over correspondences, p(4), and

the likelihood of object points given the correspondences, p(xi, yp). We model the

prior over correspondences, p(4), as an exponential distribution subject to the cyclic-

ordering constraint. We encode this constraint in the prior by allowing p(4) > 0 if

and only if

3W 8.t. Ow < Ow+l <'.." < On < 01 < ... < Ow-1. (3.3)



(a) (b)

Figure 3-3: Local shape neighborhoods. (a) The full contour of a running person.
(b) Closeup of the top of the contour in (a), with local shape neighborhoods about
the point * of size k = 1 (4), k = 2 (U), and k = 3 (A), where the original contour
points are shown as small blue circles (o) and the interpolated neighborhood points
are shown as small red +'s. The neighborhoods are chosen so that the length of the
largest neighborhood (A) is 20% of the full contour length.

We call w the wrapping point of the assignment vector (D. Each assignment vector,

4b, which obeys the cyclic-ordering constraint must have a unique wrapping point, w.

Due to variations in object geometry, the model must allow for the possibility

that some sequence of points of {xi,..., xj} do not correspond to any points in y, for

example, if sensor noise has introduced spurious points along an object edge or if the

shapes vary in some significant way, such as an animal contour with three legs where

another has four. We "skip" individual correspondences in x by allowing Oi = 0.

(Points yj are skipped when ýi s.t. qi = j). We would like to minimize the number

of such skipped assignments, so we give diminishing likelihood to 4D as the number of

skipped points increases. Therefore, for 4D with k skipped assignments (in x and y),

1 exp{-k(4b) - A} if 41 is cyclic ordered
p(4Ž) = (3.4)

0 otherwise,

where ZD is a normalizing constant and A is a likelihood penalty for skipped assign-

ments.



3.3 Correspondence Likelihoods

Given an expression for the correspondence prior, we also need an expression for the

likelihood that two points xi and yo, correspond to each other, p(xi, ypj), which we

model as the likelihood that the local geometry of the contours match. Chapter 2

described a probabilistic model for global geometric similarity using the Procrustean

metric, and we specialize this model to computing the likelihood of local geometries.

We compute this likelihood by first forming a distance metric over local shape ge-

ometry, which we call the Procrustean Local Shape Distance (PLSD). Given such a

distance, d, we compute the likelihood as the probability of d under a zero-mean

Gaussian model with fixed variance, a. Since a is fixed for every local shape corre-

spondence likelihood, we can simply write it as part of the normalization constant to

ensure that the distribution p(xi, y¢j) sums to one. Thus,

1
p(xi, y,) ZPLS exp { - [dpLs(xi, y,)]2} (3.5)

In order to compute the Procrustean local shape distance, we first need a descrip-

tion of the local shape about xi. Instead of simply taking the p closest points to xi

on x's contour, we instead sample points evenly spaced about xi so as to be robust

to local placement of x's points. In other words, we define the local neighborhood of

size k about xi as:

lk(Xi) = (6•(- 2kA), ..., 5I(0 ), ..., 6x'(2kA)) (3.6)

where 6i (d) returns the point from x's contour interpolated a distance of d starting

from xi and continuing clockwise for d positive or counter-clockwise for d negative.

(Also, 6i(0) = xi.) The parameter A determines the step-size between interpolated

neighborhood points, and thus the resolution of the local neighborhood shape. We

have found that setting A such that the largest neighborhood is 20% of the total

shape circumference yields good results on most datasets (Figure 3-3).

The Procrustean Local Shape Distance, dPLS, between two points, xi and yj is
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Figure 3-4: PLSD cost matrix for two butterfly contours (a-b). The cost matrix has
a very regular structure.

the mean Procrustean shape distance over neighborhood sizes k:

dPLs(xi, j) = Jk- dp[qk (Xi), k(Yj)] (3.7)

with neighborhood size prior (. No closed form exists for this integral so we ap-

proximate it using a sum over a discrete set of neighborhood sizes. Experimentally,

we found that summing over k = {1, 2, 3} and setting (1 = 4/7, 2 = 2/7, 3 = 1/7

(so that each local neighborhood distance has half the weight of the neighborhood

distance at the next smallest scale) yielded good results on most shape contours.

In figure 3-4, we see the matrix of squared Procrustean Local Shape Distances

between all pairs of points on two butterfly contours. Note that the squared-distance

matrix has a very regular structure. The dark, high cost rows and columns correspond

to strong local features on each shape-for example, the tips of the wings, or the

antennae; while the light, low-cost rows and columns correspond to flat, smooth

portions of the two contours.

3.4 A Graphical Model for Shape Correspondences

Figure 3-5(a) shows the graphical model for inferring the correspondences assuming

independence of local features x and y. Unfortunately, although the local features

are independent, the cyclic-ordering constraint leads to dependencies between the

1P VIM
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Figure 3-5: (a) A graphical model for the cyclic ordering problem. We assume inde-
pendence of the local features x, and yj, but the components Oi of the correspondence
vector 4) are fully connected. (b) The sub-graph of the I vector after breaking depen-
dencies. Adding states {ai} and w, and choosing w, allows us to express the model
for ( as a cyclic Markov chain. The dependence on {xj} and {yj} is omitted for
clarity.

assignment variables ¢4 in a non-trivial way-in fact, the sub-graph of OI is fully

connected since each ¢4 must know the values of all the other assignments, Oj, in

order to determine whether the matching is order-preserving or not. Computing the

maximum likelihood (I is therefore a non-trivial loopy graphical inference problem.

We can avoid this problem and break most of these dependencies by introducing

variables ai and w, where ai corresponds to the last non-zero assignment before Ob

and w corresponds to the wrapping point from section 3.2. With these additional

variables, each ¢5 depends only on the wrapping point, which is stored in w as well

as the last non-zero assignment, aj; the cyclic ordering-constraint is thus encoded by

pco(qi), such that

1 : if4 > aior

o 4 < ai and wi = i or
pco(q4) = (3.8)

i = 0

0 : otherwise,

which gives (3.9)

Q(4)= -(exp{-k(q) -A}) fJpo(i). (3.10)



where Z, and Z4 are normalizing constants, to make the distributions sum to one. If

we do not initially assign the wrapping point w, the state vector {ai, ¢i} then yields

a cyclic Markov chain (figure 3-5(b)), which leads to a computationally intractable

inference problem. The standard approach to solving this cyclic Markov chain is

therefore to try setting the wrapping point, w, to each possible value from 1 to n.

Given w = k, the cycle is broken into a linear chain (according to equation 3.3),

which can be solved by dynamic programming. It is this introduction of the ai and w

variables that is the key to the efficient inference procedure by converting the loopy

graphical model into a linear chain.

In this approach, the point-assignment likelihoods are converted into a cost func-

tion C(i, ij) by taking a log likelihood, and 4D is optimized using

)* = argmax log Ip(xi, yO)p() llp,((i) (3.11)
i i

= argmin C(i, 0)) + A - k() (3.12)

s.t. Voi pm(Oi) > 0

where k(4) is the number of points skipped in the assignment 1. Solving for 1 using

equation (3.12) takes O(n 2m) running time; however a bisection strategy exists in the

dynamic programming search graph which reduces the complexity to O(nm log n) [36].

We follow Scott and Nowak [48] in referring to the cyclic Markov chain problem as

the COPAP problem and solve it using this dynamic programming solution to the n

"unwrapped" linear Markov chain inference problems.

Figure 3-6 shows examples of the inference process and correspondences between

pairs of contours. Figure 3-6(a) is interesting because the correspondence algorithm

has correctly associated all of the single leg present in the blue contour with the

right-most leg in the red contour, and skipped any associations of the left-leg in the

red contour. Figure 3-6(e), the "beetle" model, shows a failed correspondence at the

top-right legs of two beetles; this is a challenging case because there are a number of

similar structures for the correspondence to choose from.



(a) Bird (b) Dog (c) Running Per- (d) Beetle (e) Beetle

Figure 3-6: Examples of shape correspondences found using the graphical model of
figure 3-5(b). Note that in (e) the top-right legs of the beetles are incorrectly matched
due to the local nature of the point assignment.

3.5 The COPAP Algorithm

3.5.1 LOPAP

Scott and Nowak refer to the n linear Markov chain problems--which occur as a

result of setting the wrapping point, w-as instances of the Linear Order-Preserving

Assignment Problem (LOPAP), so called because solutions P to the LOPAP problem

must be linear-order preserving, i.e. 01 < 02 < ... < On.

LOPAP has a natural formulation as a shortest paths problem, via the following

graph construction (Figure 3-7). Construct an (n + 1) x (m + 1) matrix of nodes, with

directed edges between neighboring edges in the EAST, SOUTH, and SOUTHEAST

directions. Corresponding to each column of edges is a point xi on contour x, and

corresponding to each row of edges is a point yj on contour y. In such a graph, every

path from the top-left-most node to the bottom-right-most node corresponds to a

(not necessarily unique) assignment vector, 4, from x -- y. A SOUTHEAST step

over xi's column of edges and yj's row of edges represents the point correspondence

0i = j. Thus, the cost of each SOUTHEAST edge is Cij = [dpLs(xj, yi)]2. EAST

and SOUTH steps translate to skipped assignments over x and y, respectively, and

thus have a cost of A.
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Figure 3-7: Standard LOPAP graph (with symmetric skipping costs). Diagonal edges
correspond to point assignments, 0j, while horizontal and vertical edges add skipping
penalty, A.

3.5.2 COPAP

COPAP can be solved naively with the solution to n LOPAPs, each with a different

rotation of y's point ordering. The edge rows in the LOPAP graph would be la-

beled (from top to bottom) yi,..., yn in the first LOPAP, Y2,* - , Y,, 91 in the second

LOPAP, etc. These n searches could also be accomplished by adding another copy of

the LOPAP graph below the original graph, as in Figure 3-8. We call this new graph

the COPAP graph, and search from n consecutive starting locations at the top-left

of the graph to n consecutive end points at the bottom-right. The running time of

this solution to COPAP, where we solve each LOPAP with dynamic programming,

is O(n 2rn), since each LOPAP solution takes O(nrm) time to complete, and we must

perform n LOPAPs in total, each independently of the others. We call this algorithm

"DP n-times".

Now consider the state of this "DP n-times" algorithm after finding a shortest

path from si to ej, but before finding the shortest path from si+l to e•-+1 (Figure 3-9).

The shortest path from si•+ to ej+l must lie below the shortest path from si to ej,

since any path from si+l to ei+g which crosses over the previous shortest path would

have been better off to have followed the shortest path between the intersection points

rather than taking the detour above it. The same argument applies if we have already

computed paths below si•+ -- e++l, so that we can constrain our search space from
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Figure 3-8: COPAP graph. The solution to COPAP can by found by computing n
shortest paths, from Sk to ek, and choosing the assignment vector, (k, corresponding
to the shortest one.

above and below, depending on the order in which paths are found in the COPAP

graph.

From [36], we see that the best order in which to compute the shortest paths is

a bisection ordering, starting with Sn/2 --- en/2 at the first level, then sn/4 4 en/4

and S3n/4 --4 e3n/4 at the second level, and so on. There are O(logn) levels in total,

and at each level we perform a series of disjoint bounded searches, with a total of

O(nm) work being done in the DPs at each level. Thus, the total running time of

this bisection algorithm, which we call "DP bisection", is O(nm log n).

3.5.3 COPAP Variants

In the following sections we will need to slightly modify the basic COPAP algorithm

to enforce constraints of the various modeling and inference problems we will face.

None of the variants will be substantially different from the basic COPAP algorithm

above, but it is worth pointing out and setting a naming convention for the variants



e4

Figure 3-9: COPAP bisection strategy. Each shortest path from si to ei is constrained
to lie between the shortest paths below and above it.

to avoid confusion in later sections.

We will use four different variants in this work.

the skipping penalty, A. The fourth variant is for

shape and a complete shape, and modifies point

well. The variants (and their inputs) are:

1. COPAPSYMMETRIC(x, y): The standard

ric spacing costs, A.

Three of the variants modify only

correspondence between a partial

assignment costs (likelihoods) as

COPAP algorithm, with symmet-

2. COPAP.ASYMMETRIC(x, y): Disallows skipped points on x; skipped points

on y have cost A.

3. COPAP.SEMISYMMETRIC(x, y, h): Takes as input two shapes, x and y,

and also a binary mask h; points x, can be skipped only if hi = 1; skipped

points (on y and where allowed on x) have cost A.

4. COPAP_WILD(x, y, h): Takes as input two shapes, x and y, and also a binary

mask h; points xi for which hi = 1 represent "wildcard" points, which can be

skipped with cost A or assigned with cost c to any point yj; all other points on

x cannot be skipped, and skipped points on y have cost A.
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Figure 3-10: A LOPAP graph for the "COPAPASYMMETRIC" problem (with
asymmetric skipping costs). Diagonal edges correspond to point assignments, ¢i,
while vertical edges add skipping penalty, A, and horizontal edges have infinite cost
(and thus cannot be traversed). The remaining COPAP variants have a similar struc-
ture.

Each of the four COPAP variants require only a modification to the costs in the DP

graph to solve; the graph topology remains the same, as can be seen in figure 3-10.

3.6 Skipped Assignments and Model Learning

In the variants of the COPAP algorithm we have described above, we have allowed

skipped assignments, which gives the algorithm the power to skip over points on one

contour which do not match up well with points on the other contour. The ability

to skip assignments is a necessary feature, since it gives the algorithm flexibility

which was lacking from the simple scanning correspondence algorithm of chapter 2.

However, for the purposes of shape comparison and model building, we cannot simply

"throw away" points which are skipped. There are some subtle differences between

how one must handle skipped points for model building, and how one must handle

skipped points for comparing two shapes (or computing the likelihood of a shape

with respect to a tangent space Gaussian model). First we consider the task of model

building, or learning a shape distribution, and then we consider the task of computing

shape likelihoods.

Consider a class of dog shape contours (as seen from the side). Some contours will



(a) (b)

Figure 3-11: Adding skipped points to the matched contours. (a) Corresponded
portions of two flat contours (red and blue solid lines), with correspondences given
by dashed, black lines. (b) The same contours, after corresponding skipped points.
First, where possible (i.e. where it would not violate the cyclic ordering constraint),
skipped points are assigned to each other (the solid green line at center right). Second,
new points are added where no point exists to correspond to an unmatched point on
the opposite contour (solid pink lines at the left and right).

have four legs, while some will have three or even two legs, due to occlusions. If we

correspond a contour with three legs to a contour with four legs, one of the legs will

be skipped in the optimal assignment. If we simply ignore these skipped points, we

will build a model for dog shape containing only three (or two) legs, while we would

like to capture the fact that the model can contain a variable number of legs. Thus,

we will add skipped points to two corresponded shapes, x and y, with the following

two rules (in succession):

1. For segments of points skipped on both x and y, correspond the points on the

segment with fewer points evenly to the points on the other segment.

2. For segments of points skipped only on x (or y), add an equal number of points

to the other contour interpolated evenly between the two nearest points.

These two rules will result in two new contours, x' and y', containing an equal

number of points, in one-to-one correspondence with each other. x' and y' will have

at least as many points as the original contours.

In order to build a shape model from a set of n training shapes, we must bring n

shapes into correspondence with each other, not just two. In order to correspond n

shapes to each other, one could (in theory) set up a giant optimization problem to

find all n assignment vectors simultaneously. However, this approach is likely to be

both complex as well as prohibitively slow. A simpler approach, which we will take,
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Table 3.1: The shape model learning algorithm, with unknown correspondences. In
the first for-loop, an initial estimate of the mean shape, p, is learned. In the second for-
loop, all the training shapes are brought into alignment with p, resulting in a dataset
of matched shapes, X' which are fed into the basic tangent space PCA algorithm of
section 2.3.

is to sequentially add in one shape at a time to the model, each time updating our

estimate of mean shape by corresponding the current mean shape to the new training

shape. At the end of this iterative process, we then re-correspond each training shape

to the mean shape, this time adding skipped points only to the training shapes (and

not to the mean shape), so that we then have n training shapes, all with the same

number of points and in one-to-one correspondence with each other. We then use the

tangent space PCA algorithm from chapter 2 to estimate mean shape and covariance.

The entiie model learning algorithm is shown in table 3.1.

LEARNSHAPEMODEL_COPAP(xl,..., xM)

Input: A set of M full shape contours, {x,... , XM}.

Output: Shape model S consisting of mean shape 1L and covariance E.

* Set p - xl.

* For i =2,..., M:

1. •- COPAP.SYMMETRIC(xi, p).

2. (x'i, p') +- ADD_SKIPPEDPOINTS(x, /, ¢).

3. +-, PRESHAPE(x'e).

4. T • PRESHAPE(/t').

5. Rotate -, to fit r,.

6. p,• i

* For i = 1,...,M:

1. 4- COPAPASYMMETRIC(xi, 1).

2. (x'j, Ip') +- ADD_SKIPPEDPOINTS(xI, ,L, ¢).

* Let X'= {x'l,X' 2,...,X'M}.

* Return (/,, E) +- SHAPE_PCA(X').



Table 3.2: The shape likelihood algorithm, with unknown correspondences. The
asymmetric variant of COPAP is used to ensure that none of x's points are skipped,
so that the tangent space PCA likelihood computation of table 2.1 considers the full
shape contour, x.

In order to compute the likelihood of a shape, z with respect to a shape model,

S, we must bring the shape z into correspondence with S's mean shape, tL. If any

points are skipped on p, we must add points to z, as above. However, if points

are skipped on z, we face a dilemma. If we add points to pj, we must recalculate

the entire shape distribution to account for the new number of points, which could

be extremely computationally demanding. However, if we simply ignore z's skipped

points, there is the very strong possibility that the resulting shape likelihood could

be overly optimistic-we are allowing the likelihood function to simply ignore parts

of shapes which don't match up well with the model! Instead, we choose to use the

asymmetric variant of the COPAP algorithm to disallow skipped correspondences on

z. Thus, it is imperative that any new shape, z, have fewer points than the model.

The full shape likelihood algorithm is shown in table 3.2.

3.7 Experiments

Using the model learning and likelihood models of table 3.1 and table 3.2, which

compute correspondences using the COPAP algorithm which we have explored in

this chapter, we can now test our hypothesis that a more powerful and flexible corre-

SHAPELIKELIHOODCOPAP(x,S,k)

Input: A full shape contour, x, a shape model S with mean /t and covariance
E, and the number of principle components to keep, k.

Output: Likelihood, L.

* +- COPAPASYMMETRIC(x, p).

* (x',/ g') - ADDSKIPPED_POINTS(x, ,, M).

* Return L <- SHAPE_LIKELIHOOD(x', S, k).



(a) Bat (b) Butterfly (c) Dog (d) Fish

(e) Bird (f) Person (g) Coil (h) Tree (i) Turtle

Figure 3-12: Examples of learned models using our model learning algorithms. Each
plotted shape is drawn according from the Gaussian model for that shape class.

spondence algorithm will increase the classification performance of our learned shape

models. Recall that the cross-validated classification rate of our simple Mirrored

Shifted Procrustean (MSP) metric from section 2.4 on the MPEG-7 dataset achieved

a maximum value of 63.86% at k = 6 principle components. Unfortunately, since our

algorithms were mostly written in un-optimized Matlab code, computing correspon-

dences with COPAP on the full MPEG-7 dataset proved to be very time consuming,

so we were unable to run the full cross-validated test with our improved correspon-

dence model. (In section 7.2 we show how we hope to improve the speed of our

correspondence algorithms in future work.) Thus, we ran the classification test on a

single cross-validation set only, with 16 training and 4 testing shapes per class.

We learned models for each class of 16 training shapes using the LEARN_SHA-

PEMODEL_COPAP algorithm (table 3.1), and we computed the maximum likeli-

hood classes based on likelihoods computed from the SHAPE_LIKELIHOOD_COPAP

function (table 3.2). Examples of learned shapes models are shown in figure 3-12.

The classification rate on the test set of the tangent space PCA models learned with

COPAP correspondences achieved a maximum of 79.29% with k = 6 principle com-

ponents, compared to the MSP models' maximum classification rate on the same



MSP-NN MSP-PCA COPAP-PCA
class% 95.71% 65.36% 79.29%

#pcs 9 6

Table 3.3: Maximum classification rates on the MPEG-7 dataset. The discrimina-
tive MSP-NN algorithm performs best, but cannot be used to perform probabilistic
inference, as the generative methods can (MSP-PCA and COPAP-PCA). COPAP-
PCA outperforms MSP-PCA with its more powerful correspondence algorithm, and
achieves its maximum with a lower dimensional model, suggesting is has done a better
job at modeling shape variation.

training and test sets of 65.36% with k = 9 principle components. Thus, we see a

significant improvement -13.93% over the MSP correspondence model-by using CO-

PAP correspondences with the PLSD point assignment likelihood. Table 3.3 shows

the classification performance of the three classification algorithms we have seen so

far: mirrored shifted Procrustean nearest neighbor (MSP-NN), mirrored shifted Pro-

crustean tangent space principle components analysis (MSP-PCA), and COPAP tan-

gent space principle components analysis (COPAP-PCA), all on the same training

and testing sets of 16 and 4 shapes per class, respectively.

3.8 Related Work

The Procrustean Local Shape Distance described in this chapter is similar in nature

to Belongie's shape contexts [2], in that both methods directly use the observed ge-

ometry of the contour in order to compute the shape signature of a point. However,

shape contexts consider the relative global shape with respect to ea.ch point, while

the PLSD captures only local shape information. We chose a local descriptor in this

work because we wish to model global deformations in shape, so our cost function

must be robust to global shape change. We do use a global model of deformation,

which is in contrast to the local triangulation model of [15] or the pairwise model

of [13]. The canonical shape model to use a multi-resolution technique is the curva-

ture scale space model [39]. Our shape correspondence framework is directly taken



from [48]. The specific graphical model interpretations are our own contributions, as

well as the use of the PLSD likelihood. Many other approaches have been taken to

finding correspondences between shapes, for example using relaxation labeling [44].

Cremers et. al. [9] use kernel PCA to represent non-Gaussian shape distributions,

while Felzenszwalb [15] uses Procrustean distributions over triangulations of object

contours to achieve greater robustness with respect to elastic deformations. Our se-

quential model learning algorithm could be improved by using a method such as [13],

who use hierarchical model merging to train shape models using Markov Random

Fields (MRFs).



Chapter 4

Shape Completion

4.1 Shape Completion

We now turn to the problem of estimating the complete geometry of an object from

an observation of part of its contour. We phrase this as a maximum likelihood estima-

tion problem, estimating the missing points of a shape with respect; to the Gaussian

tangent space shape distribution, and we assume (for now) that the partial shape

has already been brought into correspondence with the model via the algorithms of

chapter 3.

Let us represent a shape as:

z = [Z z2] T  (4.1)

where zl = m contains the p points of our partial observation of the shape, and z2

contains the n - p unknown points that complete the shape. Given a shape distribu-

tion S on n points with mean p and covariance matrix E, and given zl containing p

measurements (p < n) of our shape, our task is to infer the last n - p points which

maximize the joint likelihood, Ps (z). (Thus, we implicitly assume that correspon-

dences from the partial shape z to the model S are known-we later show how to

compute partial shape correspondences in order to relax this assumption.)

In order for us to transform our completed vector, z = (zl, Z2)T, into a pre-shape,

we must first normalize translation and scale. However, this cannot be done without



knowing the last n - p points. Furthermore, the Procrustes minimizing rotation

from z's pre-shape to / depends on the missing points, so any projection into the

tangent space (and corresponding likelihood) will depend in a highly non-linear way

on the location of the missing points. We can, however, compute the missing points

z2 given an orientation and scale. This leads to an iterative algorithm that holds

the orientation and scale fixed, computes z2 and then computes a new orientation

and scale given the new Z2. The translation term can then be computed from the

completed contour z.

We derive z2 given a fixed orientation 0 and scale a in the following manner. For

a complete contour z, we normalize for orientation and scale using

' = -Rz (4.2)

where Ro is the rotation matrix of 0. To center z', we then subtract off the centroid:

w = z'- ICz' (4.3)

where C is the 2n x 2n checkerboard matrix,

C =

1 0 ... 1 0

0 1 ... 0 1

1 0 ... 1 0

0 1 ... 0 1

(4.4)

Thus w is the centered pre-shape. Now let M be the matrix that projects into the

tangent space defined by the Gaussian distribution (i/, E):

M = I - // T  (4.5)

The Mahalanobis distance with respect to S from Mw to the origin in the tangent



Figure 4-1: An example of occluded objects, where the bear occludes the compass.
(a) The original image and (b) the image segmented into (unknown) objects. The
contour of each segment must be matched against a known model.

space is:

d = (Mw)TE-1Mw (4.6)

Minimizing d, is equivalent to maximizing Ps (.), so we continue by setting ad equal

to zero, and letting

W1 = Mi(Ii C-1 ) -R (4.7)n a
1 1W2 = M2(12 - C2) R (4.8)
n a

where the subscripts "1" and "2" indicate the left and right sub-matrices of M, I,

and C that match the dimensions of zl and z2. This yields the following system of

linear equations which can be solved for the missing data, z2:

(WIzI + W 2z 2 )TE- 1W 2 = 0 (4.9)

As described above, equation (4.9) holds for a specific orientation and scale. We

can then use the estimate of z2 to re-optimize 0 and a and iterate. Alternatively, we

can simply sample a number of candidate orientations and scales, complete the shape

of each sample, and take the completion with highest likelihood (lowest d,).

To design such a sampling algorithm, we must choose a distribution from which

to sample orientations and scales. One idea is to match the partial shape, z1, to the

partial mean shape, pi, by computing the pre-shapes of zl and I1t and finding the

Procrustes fitting rotation, 0*, from the pre-shape of zi onto the pre-shape of pl. This



angle can then be used as a mean for a von Mises distribution (the circular analog of

a Gaussian) from which to sample orientations. Similarly, we can sample scales from

a Gaussian with mean a0o-the ratio of scales of the partial shapes zl and p1 as in

ito i - 1C11 (4.10)

Any sampling method for shape completion will have a scale bias-completed

shapes with smaller scales project to a point closer to the origin in tangent space, and

thus have higher likelihood. In our experiments this scale bias has not appeared to

provide any obvious errors in shape completion, although more testing and analysis

are needed to determine the precise effect of the scale bias on the quality of shape

completions.

6</
(a) Partial contour to be

completed

(c) Completed as stuffed
animal

(b) Completed as compass

(d) Completed as jump
rope

Figure 4-2: Shape completion of the partial contour of the compass in figure 4-1.
Note that the correct completion (b) captures the knob in the top of the compass.
The hypothesized completions in (c) and (d) lead to very unlikely shapes.

4.1.1 Partial Shape Class Likelihood

The most obvious approach to partial shape class likelihood is to simply complete the

missing portion of the partial shape corresponding to m with respect to each shape



(c)

Figure 4-3: An example of occluded objects, where the bear occludes the compass.
(a) The original image and (b) the image segmented into (unknown) objects. (c)
Partial contour segments to be completed.

class as above (figure 4-2), then classify the completed shape. To make this concrete,

let z = {zl, z2} be the completed shape, where zl is the partial shape corresponding to

measurement m, and z2 is unknown. The probability of the class given the observed

part of the contour z1 is then

P(Clzi) = P(C,zl) JP(C, , Zlz2)dz 2  (4.11)

Rather than marginalize over the hidden data, z2 , we can approximate this marginal

with an estimate z2, the output of our shape completion algorithm, yielding:

P(Cilzl) R -. P(z,, 21Ci) (4.12)

where q is a normalizing constant (and can be ignored during classification), and

P(zl, i2 Ci) is the complete shape class likelihood of the completed shape.

4.1.2 Unknown Correspondences in Shape Completion

Up until now we have assumed that the partial shape to be completed has already

been brought into correspondence with the shape model. We will now show how to

relax this assumption.

In order to calculate the maximum likelihood shape completion of a partial shape,

z with respect to a shape model S, we must know which points in the model corre-

spond to the observed points of z. In practice, z may contain multiple disconnected

(c)
Ir



contour segments which must be connected with hidden contour segments to form a

complete contour--take for example, the two compass handles in figure 4-3. Before

hidden contour segments can be inferred between the handles, the observable contours

must be ordered. In many cases, there may not be a unique way to order the observed

contour segments; however, we can constrain the connection ordering by noting that

the interiors of all the observed object segments must remain on the interior of any

completed shape. For most real-world cases, this topological constraint is enough to

identify a unique connection ordering; in cases where the ordering of components is

still ambiguous, a search process through the orderings can be used to identify the

most likely correspondences.

Given a specific ordering of observed contour segments, we can adapt our graphi-

cal model to compute the correspondence between an ordered set of partial contour

segments and a model mean shape, p. First, we add a set of hidden, or "wildcard"

points connecting the partial contour segments. This forms a complete contour, zc,

where some of the points are hidden and some are observed. We then run a modified

COPAP algorithm, where the only modification is that all "wildcard" points on z,

may be assigned to any of p's points with small, fixed cost E. (We must still pay a

penalty of A for skipping hidden points, however.) Recall from section 3.5.3 that we

called this COPAP variant "COPAPWILD".

In order to identify how large the hidden contour is (and therefore, how many

hidden points should be added to connect the observed contour segments), we use the

insight that objects of the same type generally have a similar scale. We can therefore

use the ratio of the observed object segment areas to the expected full shape area to

(inversely) determine the expected ratio of hidden points to observed points. In our

experiments, we have found that the quality of partial shape completions depends on

correctly estimating the number of hidden points; if no size priors are available, one

may also perform multiple completions with varying hidden points ratios, and select

the best completion using a generic prior such as the minimum description length

(MDL) criterion.

The first shape completion algorithm for partial shapes with unknown correspon-



dences that we tried was to simply correspond the partial contour to the model

according to the above method, and then to complete the partial contour given the

computed correspondences'. However, we found that this procedure was often insuffi-

cient to ensure a good completion. Since we were relying on the algorithm perfecting

the partial shape correspondences the first time around, any mistakes in the data

association would show up in the resulting completion. Instead, we found that an it-

erative procedure worked best-first, compute the partial shape correspondences and

initial completion as above; then re-compute the shape correspondences given the

completion; then complete the shape with respect to the new correspondences, etc.

This iterative procedure was found to significantly improve the performance of our

shape completion algorithm. The full shape completion algorithm with unknown

correspondences is shown in table 4.1.

'Note that the entries of the shape distribution mean and covariance can always be transposed
in order to ensure that the first p points are observed and the last n - p points are hidden.



COMPLETESHAPESEGMENTS({xl, ... ,XM}, S, k, R)

Input: Set of M partial shape contours (polylines) {X1,...,xM}, shape
model S (with mean 4), number of principle components, k, and size ratio
R.

Output: Completed shape, y.

* x +- CONNECTPARTIALCONTOURS(xl,..., XM).

* Add hidden (wildcard) points between the partial contours in propor-
tion to the size ratio, R, resulting in (x, h), where x is the full shape
contour with both observed and hidden points, and h is the hidden
points mask.

* Sub-sample x down until it has some fraction (e.g. 1/2,3/4,...) of the
points that the model mean, p has-taking care not to remove observed
segment endpoints-and update h.

* ( ~+- COPAP_PARTIAL(x, h, pt).

* Set x' +- ADDSKIPPEDPOINTS(x, p, <D), and update h -+ h'.

* y COMPLETESHAPE(x', h', S).

* L -- SHAPELIKELIHOOD(y, S, k).

* Ybest - Y.

* Lbest - L.

* While L Lbest:

1. x +- y.

2. Sub-sample x down to a fraction of p's points; update h.

3. i +- COPAPSEMISYMMETRIC(x, h, p).

4. x' - ADDSKIPPED_POINTS(x, I, ¢); update h -+ h'.

5. y - COMPLETESHAPE(x', h', S).

6. L < SHAPELIKELIHOOD(y, S, k).

7. If L > Lbest:

- Ybest 4- Y.
- Lbest - L.

* Return y +- Ybest.

Table 4.1: The partial shape completion algorithm.



Chapter 5

Boosted Shape Parts

Recall from section 1.2 that in this thesis we are primarily interested in shape infer-

ence tasks which require us to accurately model the variation of a class of objects. In

particular, we have spent a great deal of time developing a framework for the com-

pletion and classification of partially occluded shapes. However, performing partial

shape classification has thus far required the correspondence, completion, and likeli-

hood computation of a given partial shape with respect to each and every model in

a database of shape models. In this chapter, we explore the use of learned, discrim-

inative models, for pruning away unlikely classifications before we must perform the

full, probabilistic analysis.

Specifically, we present a method for learning a discriminative classifier of partial

object shape, called Procrustean Boosted Shape Parts (PBSP). We use a variation

of AdaBoost [16] based on Procrustean shape analysis, with one-vs-all logistic re-

gression as the weak classifier. As an added bonus, we will show that by learning

models from training data, we can achieve improved performance on shape retrieval

over all previous (non-learning) methods. We will also set new benchmarks for a

partial shape classification task. Ultimately, the work in this chapter fits into the

overall shape analysis system in this thesis as a first-pass pruning method towards

detecting, segmenting, and completing the boundaries of partially occluded objects,

as in Figure 5-1. Once our partial shape detector is used to prune away unlikely

classifications, more sophisticated methods which take into account the whole scene



Figure 5-1: Two cluttered scenes, containing the same set of object types (drawn
from the MPEG-7 shape dataset), but which vary in shape. We wish to classify all
of the partially-hidden objects, based purely on shape geometry.

geometry can be used to form a final analysis of the image.

5.1 A Boosted Detector of Shape Parts

We will use a parts-based model, where the part match of a shape x to a part y is given

by the minimum Procrustean shape distance between y and all the local (contiguous)

features on x. In order to be robust to noise and differently-sized features, we consider

parts of varying sizes, and across multiple levels in image scale space. However, in

contrast to many previous approaches to modeling shape parts using properties of a

single contour (such as curvature), we will use machine learning (AdaBoost) to pick

the most discriminative shape parts for a given training set.

5.1.1 Part Match

The Procrustean metric of chapter 2 assumes that z and w are two complete shapes.

We can generalize the same metric to the distance between a contour segment or part

and a complete shape. Given a shape contour part z with p points, and a complete

shape x with n points, we define the shape part match of x to z, r(x, z), to be the

minimum Procrustean shape distance from z to any contiguous contour fragment of



length p on x, or

r(x, z) = min dp((Xi, ...,Xi+p-l), z) (5.1)

(We assume that indexing is modular to avoid ugly wrap-around notation.) Note

that a low shape part match here indicates a good match, while a high shape part

match indicates a bad match.

5.1.2 AdaBoost

We are inspired in our approach by the Viola-Jones object detector [61], which uses

boosting to select discriminative features in a cascaded, one-vs-all classification sys-

tem. The Viola-Jones classifier uses millions of simple, rectangular features (blocks of

O's and l's) which are convolved with images to generate feature responses-the higher

the response, the better the match to a given feature. AdaBoost is used to learn a

classifier based on boosting weak classifiers trained on the image features. The Viola-

Jones classifier specifically uses decision stumps (a decision tree with depth 0) as the

weak classifier, although we will see that decision stumps are prone to over-fitting

in the shape classification problem. At each iteration in the boosting algorithm, the

most discriminative feature on a weighted set of training images is selected for the

next decision stump, and the decision stump is added to the classifier with weight in

proportion to the discriminative power of the selected feature. The weights on the

images in the training set are then updated based on the feature that was just added.

The power of Adaboost lies in how the weights on the training observations are

updated; observations that are classified correctly receive lower weight on the next

iteration, while observations that are classified incorrectly receive higher weight. The

weights bias the next weak learner towards the observations which are close to the

margin. The generic, discrete version of Adaboost is summarized in table 5.1.

5.1.3 Procrustean Boosted Shape Parts

To begin with, let C be the boosting class, i.e., the class we are trying to detect,

and let all the training shapes which belong to C be labeled with a "1" (and all the



Table 5.1: A high-level overview of the Adaboost algorithm.

rest with a "0"). Additionally, the weights of the training images wi are initialized

to be uniform. At each iteration of the PBSP boosting algorithm, we consider every

possible contour fragment of every training shape in the boosting class, C, at a range

of sizes and levels in image scale space. For each contour fragment, or feature z ('), we

compute a decision stump that classifies the images with respect to class C based on

the Procrustean shape part metric (equation (5.1)) between z(i) and each complete

training image. We retain the decision stump that has the highest weighted accuracy.

Logistic Regression

At each round of boosting, we select the most discriminative shape part to add to

the model, given the current weights on the training data. The weak learner must

therefore handle two responsibilities: (1) select the most discriminative feature, and

(2) fit a class membership likelihood function to the weighted training data if only

that single feature was used for classification. In Viola-Jones, both (1) and (2) are

ADABOOST(X, c, A)

Input: Training data X, labels c E {0, 1}, and weak learning algorithm, A.

Output: A classifier, H(x).

* Initialize weights w on training data.

* For t = 1, 2,...,T:

1. Generate a weak classifier, Ht, by training the weak learner, A,
on the weighted training data.

2. Update the weights, w, based on the performance of Ht on the
training data; elements which are correctly classified get their
weight reduced, while elements which are misclassified by Ht get
increased weight.

3. Add Ht to the ensemble of weak classifiers, {H 1,... , Ht- 1} with
weight at in proportion to Ht's classification rate.

* Output the final classifier: H(x) = E•T atHt(x).
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Figure 5-2: Boosted shape parts. In the leftmost column are four shapes from different
categories in the MPEG-7 Shape B dataset: "Bone", "bird", "snake", and "device4".
In the columns to the right are the first six boosted shape parts chosen by the PBSP
algorithm. Shape parts are shown with thick red points, while the remaining portions
of the contour they were chosen from is shown in the thin, dotted blue line. Note that
in the triangle (device4) class, the top five most discriminative features were chosen
to be at a lower, smoothed resolution in image scale space.

computed using decision stumps. Unfortunately, although decision stumps are a

good choice for identifying discriminative features, they are also prone to over-fitting

without large training data sets. In Figure 5-3, we see that the decision stump

classifier incorrectly classifies two validation shapes in the detection class, placing

two green circles to the right of the decision boundary.

Experimentally, we found that the smooth probabilities given by logistic regression

improved the final, boosted classification rates in contrast to decision stumps. In

Figure 5-3, logistic regression yields a probability curve which gives probability of

at least 30% to the two validation set outliers that were incorrectly rejected by the
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Figure 5-3: Logistic regression vs. decision stumps as a weak classifier of shape part
responses, learned for the first "Bone" shape part in Figure 5-2. The decision stump
classifier incorrectly classifies two validation shapes in the detection class for this
shape, placing two green circles to the right of the decision stump's boundary.

decision stump. Decision stumps can be trained with only one pass over the sorted

list of responses, while logistic regression requires a slower, iterative algorithm. We

therefore use decision stumps to identify the best feature to boost on each iteration,

and then fit a Logistic Regression (LR.) model to the weighted set of training image

responses. Although logistic regression is slower to learn, by using a better learner

we see improved overall learning performance.

Finally, given N object classes, we learn a single boosted one-vs-all classifier for

each class, then compute the probability that a new shape, x, belongs to a given class,

C, in proportion to the class membership likelihood,

P(C x) = a -p(x; Mc) = a - f exp f,(x; Mi,c) (5.2)

where f (x) is the feature response of the learned logistic, p(x; Mc) is the corre-

sponding one-vs-all probability of shape x under logistic regression model ]Mc, C

is the indicator variable for class membership of the random variable x, and a is a

normalization constant.

One must be careful, however, as logistic regression can also be prone to over-

fitting if the training observations are well-separated. Thus, we use a regularized ver-

sion of logistic regression, which penalizes high "slopes" in the probability curve [47].

a trn obs(O)
8 12 val obs(0)

O trn obs(1)
6 O val obs(1)

-stump
4 ---- LR

2



Logistic regression (for binary classification) attempts to fit a probability curve of the

form
1

P(C = 1|r) =
1+ e-(a+br)

to the training data, where r is the shape part match distance between the shape x

and the selected feature, as in equation (5.1). Regularized logistic regression has data

log-likelihood
N 2

,N(a, b) = [ci(a + bri) - log(1 + ea+bri)] - b
i=1

where the ci's are the training observation labels (1 or 0), and the ri's are the shape

part match distances to individual features xi of the training data. A validation

training set is used to select the best penalty, A (by learning LR models with sev-

eral different A's and choosing the model which maximizes the validation set data

likelihood). From a Bayesian point of view, the regularization penalty, A, defines a

zero-mean Normal prior on parameter b with variance .

5.1.4 The PBSP Algorithm

The PBSP algorithm is shown in Table 5.2. Given training and validation observa-

tions, (x, c), ... , (x N , c N)) and (x(, 1)), . , (xM , c( M), where x' i) and x$ )

are shapes and ci( ) and cQi) are class membership labels, and given No and N 1 are

the number of negative and positive training observations, respectively, the PBSP

algorithm uses Real AdaBoost [16] with penalized logistic regression [47] as the weak

learner to learn a set of feature response functions, fi(x), ..., fT(x) in lines 1-5. The

total response function f (x) is simply the sum T =1 ft(x) of the T feature responses.

The final class likelihood function is computed using a second round of LR on the

training and validation set total responses.

5.1.5 Boosted Ensembles

Our weak learner (regularized logistic regression) requires a validation set in addition

to the training set. This requirement yields a natural method for generating an



LEARNPBSP(Xt, ct, Xv, cV)

Input: Training shapes and labels Xt = {xZ),... N)} and ct =
{ct ) ,... , }N), and validation shapes and labels Xv = {x( 1) ,... , and

cy = {~c) ... ,c) }.
Output: Set of feature response functions, {f (x),..., fT(X)}.

* Initialize training data weights wi = -4, for = 0,1, respectively.

* Repeat for t = 1, 2, ...,T:

1. For each positive training shape part, zj C xt()Vi s.t. cti) = 1,
compute the shape part match scores r i) = r(xi ) , zj).

2. Fit a decision stump to the weighted match scores for each zj and
choose the shape part z* whose decision stump has the lowest
weighted training set error.

3. Using the validation data to select A, fit a penalized LR classifier
on the weighted training responses to z* to obtain a class proba-
bility estimate pt(x) = P,(c = 1ix; z*) E [0, 1].

4. Set ft(x) - log "-p) E R.

5. Set wi - wi exp[-cft (xi)], i = 1, 2, ..., N, and renormalize so that
Ei=Wi i.

* Set the total response function, f(x) -- =1 ft(x).

* (Optional) Fit a penalized LR classifier to the combined validation and
training total responses f(x(')) to obtain the binary class likelihood
function p(x) = P(y = 1 x).

Table 5.2: The PBSP Algorithm learns a one-vs-all shape classifier using training and
validation observations.



ensemble of boosted classifiers. We use cross-validation (CV) to break up our training

data into 5 pairs of training and validation sets. For each training-validation pair

(Ti, V1) we run boosting to generate a strong classifier, Bi. Given a new shape,

x, which we wish to classify as either belonging to the boosting class, C, or not, we

compute the probability of class membership, P(CIx) as the average class membership

probability over the 5 CV boosted classifiers.

5.2 Shape Classification

To classify a full shape, x, the feature responses, ft(x), are computed using the

minimum Procrustean shape part distance r(x, z) of equation (5.1). Since shapes

are fully observed, this shape part match function is always well defined, and we

can compute the class probabilities according to equation (5.2). However, if x is the

partially occluded contour of some shape, then we cannot easily compare a learned

feature z with every local point on x. Recall that the distances are computed from

segments of local contours that strongly predict shapes in our training data. Even

though feature z is evaluated at a point on x, the feature z is still being matched

against p points on x. When evaluating z against a point in x that is near one of the

ends of an incomplete contour, there may not be p points to match against.

We can therefore proceed by either computing the part match using only those

local features on x which are completely observed (all p points are visible), or by

computing a partial shape part match function, which computes the similarity between

a fully-observed shape part, z, and all local (contiguous) features on x, whether they

are partially hidden or not. The main difficulty with matching only the fully-observed

features on x is that if x is short, large (and highly informative) deformations of

the shape towards the ends of the partial contour will tend to be ignored in the

classification process. As a result, short partial contours tend to resemble all other

shapes equally. Consider the example in Figure 5-4, where the shape part on the left

is a good match to the top of the partially-hidden shape in the center. However, since

there are not enough observed points at the top of the center shape, we must use a



(a) shape part (b) occluded shape (c) part match

Figure 5-4: Partial shape part match. (a) A shape part which we wish to detect, (b)
a partially-occluded shape (occluded parts shown with a thin, dotted line), and (c)
the correct part match. We would like to form a shape similarity metric which can
handle missing/occluded points.

partial shape part match function in order to see that the given shape part is similar

to the top of the occluded shape.

5.2.1 Similarity of Partially-Occluded Shapes

Let y denote a local point vector on x, and z is a learned feature. Assuming y and

z are fully observed vectors of p points each, we can normalize their positions and

scales, and compare them using the Procrustean distance. However, if y has k missing

points (out of p), then we can still compute the distance between y and z by taking

an expectation over the missing parts. Let Yobs be the observed portion of y, and let

Zobs be the corresponding portion of z. Similarly, Yhid and Zhid are the hidden part of

y, and corresponding part of z. (Note that Zhid is actually observed-the hid subscript

is simply to indicate the correspondence to Yhid.) The expected distance between y

and z can be written as

EyhidlYobs,z[dp(y, z)] = dp(Yobs, Zobs)+

EyhidlYobs,z [dp(y, z) -dp(yobs, Zobs)]

that is, the Procrustean distance between the observed portions of the two shapes,

and an expectation over the additional distance incurred by occluded components of



the shape feature.

Note that the expectation is taken with respect to Yhid, and the distribution is

conditioned on Yobs and the feature z. This distribution is high dimensional and

requires considerable training data to learn accurately. In practice, we found a good

approximation to the expected distance was to learn a function approximator for the

expected distance directly, conditioned only on the number of visible and occluded

points. Piece-wise linear regression performed well at approximating this function,

such that for k missing points out of p total,

Eyhidlob,z [d(y, z) - dp(Yobs, Zobs)] (d) ()

where d = dp(Yobs, Zobs). Thus, we define the partial Procrustean shape distance

between a partially observed shape Yobs and a fully observed shape z as

d)(ybs, z) + (d) (5.3)

We call -y(-) the occlusion penalty, and we model 7y() as a piece-wise linear func-

tion by scaling the linear regression model with the distance between the observable

components to ensure that the occlusion penalty is independent of the overall dis-

tances involved. To estimate the occlusion penalty model from training data, we take

m randomly sampled pairs of local shape parts, (y(l), z( 1)), .. , (y(m), z(m)), from the

training set and compute the difference in shape distances,

A() = dp(y(i), z(i) - dp(Y(i) s, )

for each possible number k occluded points out of p total points. We occlude points in

a single contiguous segment, at the end of y(i), since most real scenes have occlusions

which extend over multiple neighboring boundary points. (In other words, the event

that xi+1 is occluded is highly correlated with the event that xi is occluded.)

We discretize d into a large set of evenly-spaced values over the full range of

Procrustean distances between the two features (from 0 to 7r/2), and for each d we
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Figure 5-5: Piece-wise linear regression of the occlusion penalty, y, with respect to
the observed (partial) shape distance, d.

regress A as a function of k, with slope y(d) and intercept zero:

I(k)

Finally, to avoid negative occlusion penalties (in the case of high observed shape

distances, d), we introduce a second linear component to the model, such that for

some value d-, if d > dr, then 7(d) = 0. We find the lowest d value, dy, such that

7(d) < 0, and we fit a two-piece linear model to 7y(d), resulting in

7(d)= •(d -d^) if d<d,

(d) O .w.

Experimentally, we found that this two-stage linear fit for 7 is well-justified. In

Figure 5-5, we see the second stage regression of -y vs. d, with three estimates from

the first stage regression of A vs. ý shown together to illustrate the low variance of

these estimates.

To compute the partial shape part match function, we simply replace the Pro-

crustean distance, dp(.), with the partial Procrustean distance, d)(.), in equation (5.1),



yielding

r*(x, z) = min d* ((xi,..., Xi+p-l), Z) (5.4)

where some of the points xj may be hidden.

5.3 Shape Retrieval

Although the main focus of our parts-based model is on the detection and classification

of partially-hidden shapes, we can also use our learned shape models for the task of

shape retrieval. Given a new shape, v, the problem of shape retrieval is to find

all the shapes in a database, X which are most similar to v. Typically, a generic

shape metric is specified ahead of time (such as the Procrustean shape distance of

equation (2.7)). However, by inducing a learned shape distance on shape space,

we will show improvement upon previous retrieval benchmarks on a standard shape

retrieval dataset (MPEG-7).

For any shape, v, we compute the total class response function, fc + f(v; C)

(Table 5.2), with respect to each shape class, C. We then define the shape part

signature of the shape v by the vector (((v)) = [f, f 2, ... ,fN]. The dissimilarity

between two shape part signatures is then computed with the Euclidean distance

metric.

5.4 Experimental Results

We evaluated our algorithm on the MPEG-7 shape dataset [31], the de facto standard

for comparison of 2-D shape recognition algorithms. Recall that the MPEG-7 dataset

has a total of 70 shape classes, with 20 shapes per class, for a total of 1400 shapes.

Within many classes, there is a great deal of shape variability. Some of the variability,

such as in the "device-6" (pentagon) class, may be seen as high-frequency noise in

morphological image scale space, as the boundaries become very similar at a lower

resolution, when the cuts are filled in by image dilation (Figure 5-6).

We extracted 100 evenly-spaced points from the boundaries of each shape in the
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Figure 5-6: Two shapes taken from the "device6" class of the MPEG-7 dataset,
which become very similar after performing an image dilation. (a-b) The original
shape images. (c-d) Boundary contours extracted from the original images. (e-f) The
smoothed shapes, after performing image dilation. (g-h) The boundary contours of
the smoothed shapes.

MPEG-7 dataset to form our level 1 shape dataset (in image scale space). We also

extracted 50 evenly-spaced points from each shape boundary after dilating each image

by a 15-pixel-wide Gaussian dilation mask, to form a level 2 shape dataset.

We then trained our Procrustean Boosted Shape Parts (PBSP) recognition algo-

rithm using shape part features of 15 points at both levels in scale space, and per-

formed a five-fold cross-validation (CV) to estimate classification and detection/false

positive rates of both full and partially-observed shapes. For classification, maximum

likelihood estimation was used, while detection was performed by thresholding the

class membership likelihood function for each class. In addition, we used the boosted

shape models to learn a distance metric for shape retrieval.

5.4.1 Retrieval

The standard shape retrieval task on the MPEG-7 dataset is called the bullseye test.

The bullseye test is a leave-one-out (LOO) test, which takes in a query shape, v, and

computes the percentage of matches out of the total number of shapes per class, m

I
I



CPF [55] IDSC [34] DSW [1] PBSP
84.05% 85.40% 87.23% 89.49%

Table 5.3: Bullseye retrieval results on the MPEG-7 dataset. PBSP with shape part
signatures outperforms all previous, non-learning methods.

(including the query shape), within the top 2m matches which belong to the same

class as the query shape. (For the MPEG-7 dataset, m = 20, since there are 20 shapes

per class.) The bullseye retrieval rate is the average bullseye rate over all 70 x 20

LOO tests.

After training boosted shape parts models on our five cross-validation training

sets, we ran a bullseye test on the test shapes in each CV set, comparing each test

shape to all 70 x 20 shapes in the MPEG-7 dataset. This is equivalent to the LOO

bullseye test, since the CV test sets form a partition over the full MPEG-7 dataset.

Using shape part signatures with Euclidean distance to compare each given test shape

with all 70 x 20 shapes in the MPEG-7 dataset, we achieved a bullseye rate of 89.49%,

an improvement over the best previously published results, which used prescribed,

rather than learned distances (Table 5.3).

5.4.2 Classification

In Figure 5-7, the correct classification rate is plotted vs. the number of shape

part features (rounds of boosting) used to represent each shape class. With only 3

shape parts per class, the average CV classification rate is already 90%. The highest

rate is 94.07%, achieved with 11 features. As a baseline for full shape classification,

we used the Mirrored Shifted Procrustean Metric, dMsp(.) with a nearest neighbor

(NN) classifier from section 2.4. This baseline classifier achieved an average CV

classification rate of 95.86%±1.17%, which is higher than the PBSP classification rate;

however, the PBSP classifier is unique in that it is designed to be robust to occlusions.

The Procrustean NN classifier cannot be used to compare partially-occluded shapes.
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Figure 5-7: Full shape classification. Correct classification rate plotted vs. number
of features (rounds of boosting) on the MPEG-7 dataset for PBSP and Procrustean
NN. Error bars are drawn at 1 standard deviation.

5.4.3 Detection

Detection differs from classification in that some small number of false positives are

acceptable-it is the true positives which we are trying to maximize, first and foremost

(while minimizing false positives as much as possible). It makes sense to optimize

detection (rather than classification rates) in the partial shapes setting of Figure 5-1.

In this case, partial shape detection can be used as a pre-processing step towards

a more complete image analysis (which uses the entire scene geometry), by pruning

away unlikely classifications until only a few candidates remain, thereby making the

search over object configurations efficient.

For detection, we investigated three different methods for setting the class like-

lihood thresholds from PBSP. First, we set a fixed threshold directly on the total

feature responses, f(x), from Table 5.2. Second, we used validation sets to find the

minimum perfect detection rate (MPDR) threshold on the validation set, again di-

K
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Figure 5-8: Full shape detection/false alarm rates. A comparison of three different
methods for setting detection thresholds (MPEG-7).

rectly on the total feature responses. And third, we used logistic regression on the

validation sets to fit likelihood functions on the total feature responses, and instead

of thresholding the feature response functions, we set a threshold on the likelihoods.

This third method (LR) outperformed the first two on the MPEG-7 full shape dataset

(Figure 5-8).

We also used the models learned with PBSP on the full shape dataset to detect

partially occluded shapes. We generated occluded shapes by taking each shape in the

test set and removing a contiguous segment of points at random with size between 10%

and 50% of the contour. We generated one partial shape dataset for each percentage

of occluded points and then used the PBSP models together with LR thresholding to

detect the partial shapes in each dataset. In Figure 5-9, we see the false positive rates

plotted for each percentage of occluded points, where we fix the true positive rate

at 90%. One improvement we can make to the PBSP learning algorithm for partial

shape detection is to generate partially occluded shapes from the training validation
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Figure 5-9: Detecting partial shapes. When fixing the true positive rate to 90%,
the false positive rate is plotted vs. percent occlusion for full-shape LR validation
(black dotted line), and partial-shape LR validation (blue solid line) on the MPEG-7
shape dataset. Incorporating' partial shapes into the training algorithm reduces false
positive rates.

sets, and then to use these partial shapes to validate the weak logistic classifiers

learned in Table 5.2. In Figure 5-9 we see the effect of this partial shape validation on

the resulting false positive rates. Further improvements in recognition may be made

by incorporating partial shapes into the feature selection phase of boosting, as well.

5.5 Discussion and Related Work

Several attempts have been made previously at boosting shape parts for partial object

detection. In [62], edgelet features are boosted to detect pedestrians and cars from

images. In [42], boosting is used to generate a "Boundary-Fragment-Model" detector,

and is used to detect cars, airplanes, cows, horses, and bottles. Shape contexts

are boosted in [41] to learn models of hand shapes for sign language and gesture

recognition.

The only other work that we are aware of on boosted shape parts to have evaluated

their algorithm on the MPEG-7 dataset is [29]. However, they used only a 10-class

subset of the full MPEG-7 dataset, and achieved a lower classification rate (90%)



than our algorithm achieved on the entire dataset of 70 classes. To our knowledge,

we are the first to apply boosting to learn a parts-based shape classifier on such a

large dataset. In [18], Ghosh and Petkov compare shape contexts [2] with distance

multisets on partial shape detection under varying types of occlusions. However, they

only report results on a subset of the MPEG-7 dataset, so we are unable to compare

our method to theirs directly. They did show that shape contexts perform poorly

under many types of occlusions, while their own method-distance multisets-performs

well on a subset of the MPEG-7 dataset. But, since their results were evaluated

using training data only, the actual generalization performance of their algorithm

may be below what is reported. Their evaluation of shape contexts-a global shape

descriptor-on partial shape recognition tasks lends further support to our assertion

that local shape descriptors are most useful for partial shape analysis.



Chapter 6

Manipulation using Probabilistic

Models of Object Geometry

Robot manipulators largely rely on complete knowledge of object geometry in order

to plan their motion and compute successful grasps. If an object is fully in view,

the object geometry can be inferred from sensor data and a grasp computed directly.

If the object; is occluded by other entities in the scene, manipulations based on the

visible part of the object may fail; to compensate, object recognition is often used

to identify the location of the object and compute the grasp from a prior model.

However, new instances of a known class of objects may vary from the prior model,

and known objects may appear in novel configurations if they are not perfectly rigid.

As a result, manipulation can pose a substantial modeling challenge when objects are

not fully in view.

Consider the camera image' of four toys in a box in figure 6-1(a). Having a prior

model of the objects is extremely useful in that visible segments (such as the three

visible parts of the stuffed bear) can be aggregated into a single object, and a grasp

can be planned appropriately as in figure 6-1(b). However, having a prior model

of the geometry of every object in the world is not only infeasible but unnecessary.

Although an object such as the stuffed bear may change shape as it is handled and

'Note that for the purposes of reproduction, the images have been cropped and modified from
the original in brightness and contrast. They are otherwise unchanged.



(a) Original Image (b) Recovered
Geometries

Figure 6-1: (a) A collection of toys in a box. The toys partially occlude each other,
making object identification and grasp planning difficult. (b) By using learned models
of the bear, we can identify the bear from the three visible segments and predict its
complete geometry (shown by the red line; the dashed lines are the predicted outline
of the hidden shape). This prediction of the complete shape can then be used in
planning a grasp of the bear (planned grasp points shown by the blue circles).

Algorithm 1 The Manipulation Process.

Require: An image of a scene, and learned models of objects
1: Segment the image into object components
2: Extract contours of components
3: Determine maximum-likelihood correspondence between observed contours and

known models
4: Infer complete geometry of each object from matched contours
5: Return planned grasp strategy based on inferred geometries

placed in different configurations, the general shape in terms of a head, limbs, etc. are

roughly constant. Regardless of configuration, a single robust model which accounts

for deformations in shape should be sufficient for recognition and grasp planning for

most object types.

6.1 The Manipulation Process

Our goal is to manipulate an object in a cluttered scene-for example to grasp the

bear in figure 6-1(a). Our proposed manipulation process is given in algorithm 1. The

input to the algorithm is a single image which is first segmented into perceptually

similar regions. The boundaries or contours of the image segments are extracted, and

we analyze them with the methods of chapters 2-4 of this thesis.

·



6.1.1 Grasp Planning

Given an estimate of the geometry of a detected object, we can plan a grasp for a

manipulator. We have developed a grasp planning system for our mobile manipulator

(shown in figure 6-2), a two-link arm on a mobile base with an in-house-designed

gripper with two opposable fingers. Each finger is a structure capable of edge and

surface contact with the object to be grasped.

Figure 6-2: Our mobile manipulator with a two link arm and gripper.

The input to the grasp planning system is the object geometry with the partial

contours completed as described in Section 4.1. The output of the system is two

regions, one for each finger of the gripper, that can provide an equilibrium grasp for

the object following the algorithms for stable grasping described in [40]. Intuitively,

the fingers are placed on opposing edges so that the forces exerted by the fingers can

cancel each other out.

The grasp planner is implemented as search for a pair of grasping edges that yield

maximal regions for the two grasping fingers using the geometric conditions derived

by Nguyen [40]. Two edges can be paired if their friction cones are overlapping. Given

two edges that can be paired we identify maximal regions for placing the fingers so

that we can tolerate maximal uncertainty in the finger placement using Nguyen's

criterion [40].
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(a) ring (b) bat (c) rat (d) bear (e) fish (f) wand

(g) ball (h) banana (i) dolphin (j) jumprope (k) compass

Figure 6-3: Examples of one shape from each of the 11 classes of toys. Several of
the classes contain objects which deform, either because of articulations (compass,
jumprope) or because of the object's soft material (rat, bear, fish, dolphin). Two
other classes (ring, bat) contain multiple instances of rigid objects.

6.2 Results

We built a shape dataset containing 11 shape classes. One example object from each

class is seen in figure 6-3. We collected 10 images of each object type, segmented the

object contours from the background, and used the correspondence and shape distri-

bution learning algorithms of chapters 2 and 3 to build probabilistic shape models

for each class, using contours of 100 points each. Our training data set is relatively

sparse and therefore prone to over-fitting. In order to avoid this problem, we reduced

the dimensionality of the covariance using Principal Components Analysis (PCA).

Reducing the covariance to three principal components led to 100% prediction ac-

curacy of the training set, and 98% cross-validated (k = 5) prediction accuracy. In

figure 6-4, we show the effects of the top 3 principle components on the mean shape

for each class.

In figures 6-5 and 6-6 we show the results of two example manipulation experi-

ments, used to set algorithm parameters. In each case we seek to retrieve a single

type of object from a box of toys, and we must locate and grasp this object while

using the minimum number of object grasps possible. In both cases, the object we

I
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(a) ring (b) bat (c) rat (d) bear (e) fish

(f) wand (g) ball (h) banana (i) dolphin (j) jumprope (k) compass

Figure 6-4: Shape models learned for each of the object classes. The red contours are
the mean shapes, and the others are sampled along each of the top three eigenvectors.

wish to retrieve is occluded by other objects in the scene, and so a naive grasping

strategy would first remove the objects on top of the desired object until the full

object geometry is observed, and only then would it attempt to retrieve the object.

Using the inferred geometry of the occluded object boundaries to classify and plan

a grasp for the desired object, we find in both cases that we are able to grasp the

object immediately, reducing the number of grasps required from 3 to 1. In addition,

we were able to successfully complete and classify the other objects in each scene,

even when a substantial portion of their boundaries was occluded. The classification

of this training set of 7 object contours (from 6 objects classes) was 100% (note the

correct completions in figures 6-5 and 6-6 of the occluded objects).

For a more thorough evaluation, we repeated the same type of experiment on 20

different piles of toys. In each test, we again sought to retrieve a single type of object

from the box of toys, and in some cases, the manipulation algorithm required several

grasps in order to successfully retrieve an object, due to either not being able to find

the object right away, or because the occluding objects were blocking access to a

X



(a) Original (b) Segmentation (c) Contours
image

(d) Bat Comple- (e) Rat Comple- (f) Grasp
tion tion

Figure 6-5: An example of a very simple planning problem involving three objects.
The chalk compass is fully observed, but the stuffed rat and green bat are partially
occluded by the compass. After segmentation (b), the image decomposes into five
separate segments shown in (c). The learned models of the bat and the rat can
be completed (d) and (e), and the complete contour of the stuffed rat is correctly
positioned in the image (f). The two blue circles correspond to the planned grasp
that results from the computed geometry.

stable grasp of the desired object. Figures 6-7 and 6-7 show 2 of the 20 trials in our

experiment. Both trials are examples in which it took the robot more than one grasp

to retrieve the desired object.

In figure 6-7, the object to be retrieved is the purple fish, which is initially occluded

by the green bat. After segmentation and contour completions, the algorithm is able

to recognize the fish (Figure 6-7(d)), but it realizes that the bat is in the way, and

so it plans a grasp of the bat (Figure 6-7(e)) and removes it. This time, the fish is

again completed (Figure 6-7(i)) and successfully classified as a fish, and a grasp is

planned and executed (Figure 6-7(j)). All contours all correctly classified throughout

the experiment.

In figure 6-8, the object to be retrieved is the yellow ring, which is initially occluded

by both the blue bear and the green bat. After segmentation and contour completions,

the algorithm is able to recognize the ring (Figure 6-8(d)), but it realizes that it must

remove the bat before it can access the ring, so it plans a grasp of the bat (Figure 6-

1



(a) Original im- (b) Segmentation (c) Contours
age

(d) Bear Com- (e) Dolphin (f) Grasp
pletion Completion

Figure 6-6: A more complex example involving four objects. The blue bat and the
yellow banana are fully observed, but the stuffed bear and dolphin are significantly
occluded. After segmentation (b), the image decomposes into five separate segments
shown in (c). The learned models of the bear and the dolphin can be completed (d)
and (e), and the complete contour of the stuffed bear is is correctly positioned in the
image (f). The two blue circles correspond to the planned grasp given the geometry.

8(g)) and removes it. This time, the ring is again correctly completed and identified

(Figure 6-8(k)), and a grasp is executed (Figure 6-8(1)), but fails due to the weight of

the bear lying on top of the ring. After another round of image analysis, the ring is

successfully retrieved (Figure 6-8(p)). Note that the rat was misclassified as a bear

throughout this experiment; however this classification error had no effect on the

retrieval of the ring.

In total, 52 partial and 49 complete contours were classified, 33/35 grasps were

successfully executed (with 3 failures due to a hardware malfunction which were

discounted). In table 6.1, we show classification rates for each class of object present

in the images. Partially-observed shapes were correctly classified 71.15% of the time,

while fully-observed shapes were correctly classified 93.88% of the time. Several of the

errors were simply a result of ambiguity-when we examine the > 5% detection rates

(i.e. the percentage of objects for which the algorithm gave at least 5% likelihood to

the correct class), we see an improvement to 80.77% for partial shapes, and 97.96%



for full shapes. While a few of the detection errors were from poor or noisy image

segmentations, most were from failed correspondences from the observed contour to

the correct shape model. The most common reason for these failed correspondences

was a lack of local features for the COPAP algorithm to latch onto with the PLSD

point assignment cost. These failures would seem to argue for a combination of local

and global match likelihoods in the correspondence algorithm, which is a direction

we hope to explore in future work.

(a) Original image

(d) Fish Completion

(g) Original image

(b) Segmentation

(e) Bat Completion

(h) Segmentation (i) Fish Completion

(c) Completions

(f) Bat Grasp

(j) Fish Grasp

Figure 6-7: Example of an experiment where more than one grasp is required to re-
trieve the desired object (the purple fish). The robot is able to immediately recognize
the fish, but it is required to first remove the bat before a good grasp of the fish is
available.

6.3 Related Work

In addition to the related work on shape analysis discussed throughout the previous

chapters of this thesis, we also build on classical and recent results on motion plan-

1



Object Partial Complete
ring 3/8 15/15
bat 7/10 8/10
rat 9/13 4/4
bear 7/7 7/7
fish 9/9 6/6
banana - 1/2
dolphin 1/2 -
compass 1/3 5/5
totals 37/52 46/49

71.15% 93.88%
detect > 5% 42/52 48/49

80.77% 97.96%

Table 6.1: Classification rates on test set.

ning and grasping, manipulation, uncertainty for modeling in robot manipulation,

POMDPs applied to mobile robots, kinematics, and control. The initial formula-

tion of the problem of planning robot motions under uncertainty was the preimage

backchaining paper [35]. It was followed up with further analysis and implementa-

tion [11, 14], analysis of the mechanics and geometry of grasping [37], and grasping

algorithm that guarantees geometrically closure properties [40]. Lavalle and Hutchin-

son [32] formulated both probabilistic and nondeterministic versions of the planning

problem through information space. Our manipulation planner currently does not

take advantage of the probabilistic representation of the object, but we plan to ex-

tend our work to this domain.

More recently, Grupen and Coelho [22] have constructed a system that learns op-

timal control policies in an information space that is derived from the changes in the

observable modes of interaction between the robot and the object it is manipulating.

Ng et al. [46] have used statistical inference techniques to learn manipulation strate-

gies directly from monocular images; while these techniques show promise, the focus

has been generalizing as much as possible from as simple a data source as possible.

It is likely that the most robust manipulation strategies will result from including

geometric information such as used by Pollard and Zordan [43].



(a) Original image (b) Segmentation (c) Completions

(f) Ring Comple- (g) Bat Grasp
tion

(k) Ring Comple- (1) Ring Grasp
tion (Failed)

(h) Original image

(m) Original image

(i) Segmentation

(n) Segmentation

(p) Ring Grasp
(Succeeded)

Figure 6-8: In this experiment, three grasps were necessary to retrieve the desired
object (the yellow ring). The robot is able to immediately recognize the yellow ring,
but it is required to first remove the bat and the bear before a successful grasp of the
ring is achieved.
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Chapter 7

Conclusion

7.1 Accomplishments

In this thesis, we have used the Procrustean shape metric to develop dense proba-

bilistic models of object geometry. In chapter 2, we started out with a, simple shape

similarity metric-the Procrustean shape distance, and we saw how it achieved invari-

ance to position, scale, and orientation. We then used this shape metric to build a

probabilistic model of object geometry, based on tangent space principle components

analysis. We experimented with our first correspondence model as part of the Mir-

rored Shifted Procrustean (MSP) metric, which scanned for the best starting point to

align the points of two contours according to the Procrustean metric, and we showed

that many shapes were not aligned properly with this simple correspondence method,

resulting in poorly modeled shape classes and a relatively low classification rate on

the MPEG-7 shape dataset.

In chapter 3, we developed a novel graphical model for shape correspondences,

based on the Cyclic Order-Preserving Assignment Problem (COPAP) framework. We

presented a new likelihood model for local shape similarity, based on the Procrustean

Local Shape Distance (PLSD), and we described in detail how COPAP-PLSD could be

solved with dynamic programming by breaking dependencies in the graphical model.

We then gave detailed algorithms for combining the COPAP-PLSD correspondences

with the tangent space PCA shape models of chapter 2, and we showed improved



shape classification over the basic scanning (MSP) correspondences on the MPEG-7

dataset.

In chapter 4, we derived a solution to the shape completion problem, and we used

our shape models to infer the hidden parts of partially-occluded, deformable objects.

In chapter 5, we demonstrated how a discriminative model of shape parts, also

based on the Procrustean framework, could be trained to detect both full and partially-

occluded shapes, and we showed improved performance on an object retrieval task

(the "bullseye" test) on the MPEG-7 shape dataset over all previously published

methods.

Finally, in chapter 6, we applied our shape inference algorithms to the task of

robotic grasping, where we demonstrated the applicability of our algorithms by show-

ing that learning probabilistic models of deformable objects allows us to efficiently

recognize and retrieve complex objects from a pile in the presence of sensor noise and

occlusions.

7.2 Lessons Learned and Future Work

7.2.1 Algorithmic

Unfortunately, the improved correspondences of COPAP-PLSD in chapter 3 came

at a cost: speed. A correspondence between two shape contours of 100 points each

took around 1 second on average (on an Intel Pentium 4, 3.2 GHz computer), which

is several orders of magnitude slower than would be necessary for real-time shape

analysis in the complex scenes of chapter 6. Of course, by moving our code base from

Matlab to C and optimizing our code, we should be able to achieve at least an order

of magnitude in speed-ups. However, we also believe that there is room to streamline

the algorithm itself. While the MSP correspondence algorithm is linear in the number

of points on each contour, O(n + m), COPAP is super-quadratic: O(nm log n). Fur-

thermore, although computing the PLSD cost matrix has a theoretical time bound

of O(nm) since both the number of neighborhoods and the number of points in each



neighborhood are fixed, the constants are often quite high, meaning that it usually

takes more time to fill up the cost matrix than it does to solve the resulting dy-

namic program! This leads naturally to the idea of using a different shortest paths

algorithm-rather than dynamic programming-to find solutions in the COPAP search

graph. Unfortunately, after experimenting with multiple heuristics in the A* search

algorithm which attempt to exploit the regular structure of the PLSD cost matrix,

we have found that there is simply no way to guarantee an optimal solution with-

out exploring most of the nodes in the COPAP search graph, on average. This is

because COPAP is solved by trying each and every wrapping point and solving the

resulting lineax correspondence problems. However, we have observed in practice that

most wrapping points lead to extremely sub-optimal solutions-if the tail of one dog is

matched to the other dog's head initially, how can one hope to match the rest of the

animals' body parts correctly? It is this line of reasoning that may ultimately lead to

better heuristics for the COPAP algorithm which prune entire wrapping points from

the COPAP search in order to reduce time spent on unlikely correspondences.

Another line of reasoning which seems promising is to compute correspondences

hierarchically, starting from a small set of high-importance "anchor" correspondences

and then filling in between them with LOPAP searches. We have already noted-by

looking at the structure of the PLSD cost matrix-that unique, high-curvature local

shape features tend to dominate the point assignment cost terms in the correspon-

dence likelihood. Thus, it makes sense to try to assign these high-cost points first, and

then to fill in correspondences on the flat regions between them. The difficulty with

this approach is that a single mistake in the "anchor" correspondences can ruin the

chance for a good overall correspondence; thus a search over anchor correspondences

might be necessary in order to provide robustness to these types of errors.

Luckily, if the correspondence algorithm is made to be more efficient, there is hope

that all of the shape modeling and inference procedures can be made quite speedy.

Since we use principle components analysis to reduce the dimensionality of our shape

models, computing the likelihood of a shape under a tangent space PCA model is

linear in the number of points on the shape. And if it turns out to be impossible to



speed up correspondence-finding; well then, there's always Moore law!

In order to analyze the scenes in chapter 6 for our grasping experiments, we made

a number of key assumptions to focus our evaluation on the performance of our

shape analysis algorithms. In particular, we assumed that a prior segmentation was

available, and that object segments were already grouped together, so that no search

over possible segments groupings was necessary. Although shape models have been

shown to be useful in performing image segmentation, we feel that segmentation is

out of the scope of this work. However, a search over segment groupings likely to

be unavoidable in any real world scenarios when objects vary in appearance (unlike

the objects chosen for our experiments, which were all composed of solid colors). In

cases where this search is necessary, the shape part detection scheme of chapter 5

can be used to prune away unlikely classifications. However, it will probably also

be necessary to add additional pruning steps in order to make the algorithm more

feasible, for example by including negative information, since knowledge of where an

object isn't located is often just as important as where an object is located.

7.2.2 Experimental

A quick look at the top ten most misclassified shape classes in the MPEG-7 dataset

according to the COPAP-PCA model reveals a few key weaknesses of bur correspon-

dence algorithm. Four of the top ten most misclassified shape classes are "device3",

"device4", "device6", and "device9", which all contain widely varying deep cuts in

their shape contours. Skipping over these cuts will incur a large skipping penalty;

furthermore, some portions of the cuts are actually flat, locally, and do match well

with other flat portions, which may lie on the exterior of the shape. Five other classes

in the top ten are examples of classes with varying protrusions: "ray", "bird", "but-

terfly", "camel", and "horse". Some bird contours have two feet, while others have

only one; some camel contours have two humps and four legs, others have one hump

and two legs, etc. In fact, the two problems-cuts and protrusions-can be seen as

highly-related dual problems. While the skipping penalty in COPAP encourages the

smoothing out of assignments, the correct correspondence of two shapes with cuts or



protrusions may be to skip over large portions of the contours. This is because such

portions of contours contain a disproportionate number of points in comparison with

the ratio of area of the cut or protrusion to the area of the entire shape.

One potential solution to the cuts and protrusions problem which we have ex-

plored is to model the object at multiple scales in image scale space. If an image is

blurred (or dilated), cuts will be filled in, and protrusions will lose detail, seeming

more uniform. For example, using such scale space techniques we have managed to

raise the MPEG-7 classification rate of COPAP-PCA from 79.29% to 86.79%, an

improvement of 7.5%. However, in order to really solve the cuts and protrusions

problem, it will most likely be necessary to make a more fundamental change to our

shape models, either by using a skeletonized, parts-based model (where each part is

modeled by one of our probabilistic contour models) to learn a hierarchical model

of shape, or by incorporating additional information into the correspondence model,

such as orientation, curvature, or spacing.

We would also like to investigate the use of other probability densities for mod-

eling shapes in shape space. While tangent space PCA has many benefits-including

simplicity-many of the shape classes we have encountered in our work would be bet-

ter modeled by a multi-modal distribution, such as a Gaussian mixture model or a

complex Bingham. Additionally, we expect that the sequential model learning algo-

rithm of chapter 3 could be vastly improved by using a hierarchical model merging

algorithm, which would merge similar shapes until merging no longer improves the

model; such a technique would lend itself quite nicely to generating mixture models

for shape densities.

As we mentioned above, shape completion could also be improved by incorporat-

ing negative information. In addition, the current method of partial shape correspon-

dences for shape completion can be quite brittle; to become robust to more complex

shapes than the ones we encountered in the grasping experiments in chapter 6, one

would need to find a way to (approximately) marginalize over correspondences by

keeping around multiple hypotheses of correspondences and trying each one until a

completion is found which satisfies the scene geometry. We also believe a brute-force



sampling strategy or search for scene geometry may be beneficial as a back-up to full

probabilistic inference when there is simply not enough geometry present to make

good correspondences to the prior models.

In the process of testing our grasping algorithms, we discovered that our hardware-

which consisted of a basic two-link arm and a servo-powered gripper which could

open and close, and which relied on rubber bands to maintain contact with its target

object-was simply not up to the task of manipulating many complex, small, or heavy

objects. Thus, our primary concern in choosing a dataset of objects (other than that

it included different types of shape variation) was whether or not the robot was able

to pick them up with its simple gripper configuration. Even after carefully choosing

our dataset, we still encountered numerous failed grasps, due to the hardware of the

system. Therefore, in order to focus on the performance of the geometric algorithms

in this thesis, we have left out these hardware failures from our results. However, in

order to make a system which can take full advantage of the sophisticated inference

procedures which we have developed in this work, it is imperative that the hardware

be made more robust.

Finally, it should be pointed out that we did not actually use the probabilistic

models of object geometry to compute grasps; we simply assumed that our estimate

of the maximum likelihood geometry of the scene was correct, and planned grasps

accordingly. Ultimately, to be really useful for grasp planning, we will need to find a

way to use the probabilistic, local geometry of objects to compute grasps which are

robust to object deformations and scene uncertainty.
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