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Abstract

The problem of buckling and coiling of jets of viscous, Newtonian liquids impacting a plate
has received a substantial level of attention over the past two decades, both from experimental
and theoretical points of view. Nevertheless, most industrial and everyday life fluids are non-
Newtonian, and their rheological properties affects their behavior in this problem. The present
work aims at studying the instabilities of jets of such fluids falling on a plate, via both phe-
nomenological descriptions and theoretical analysis of jet motion and shape. Several fluids with
different rheological properties, including viscous Newtonian oil, model non-Newtonian fluids,
and commercial shampoos, are used and different dynamical regimes are documented. A special
focus is placed on viscoelastic, shear-thinning cetylpyridinium (CPyC1) solutions. In concen-
trated solutions, CPyCl surfactant molecules have been shown to assemble in long wormlike
micellar structures, which gives the fluid its non-Newtonian properties. Jets of CPyCL solution
show several novel shapes and dynamical regimes not observed in the case of Newtonian fluids.
The present study provides quantitative experimental measurements and mechanisms for these
novel features.
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Chapter 1

Introduction

Situations where a continuous stream of material is flowing downward onto a plane surface occur

in both everyday life and industrial applications. Honey poured on toast, shampoo flowing out

of a bottle, as well as numerous other examples in the oil, food, and cosmetic industries, are

similar problems in which the stability of the streamline is a crucial feature (figure 1-1 (a) and

(b)). For example, in these industries, bottles or other containers are often filled with different

types of fluids, often having large variations in their rheological properties. This is usually done

by moving the container below a nozzle connected to a reservoir of fluid. When the liquid flows

from the nozzle, it creates a case of vertical jet of fluid impacting an horizontal surface with an

imposed initial flow rate, and this is the problem studied in this work. The nozzle can also be

lowered inside the bottle and raised as the bottle gets filled (a technique called "diving nozzle",

figure 1-1 (c)), the nozzle can have varying shape, and the imposed flow rate can be varied by

an automatic control system.

Depending on the fluid properties and the control parameters such as flow rate, the jet

can exhibit different behaviors or regimes. The preferred regime from the industrial point of

view is almost always the most stable one, with the jet remaining steady and the fluid flowing

homogeneously in the container. Nevertheless, in most experimental conditions, the jet is not

steady, for example capillarity can lead to drop breakup[l] (figure 1-1 (d)), low-viscosity fluids

may undergo an hydraulic jump[2] (figure 1-1 (e)), or compressive forces can force the jet to

buckle and to move out of the nozzle axis[3] (figure 1-1 (a) and (b)). And even if the jet is steady
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Figure 1-1: Photos and sketches of several possible jetting situations. a) Jet of honey falling

on a toast b) Jet of shampoo falling on a hand c) "Diving nozzle" filling technique, in which

the nozzle is lowered inside the bottle d) Jet breakup e) Hydraulic jump f) Stack of fluid

accumulating under the jet g) Fiber drawn by a wind-up mechanism, used with polymeric

fluids h) Free-falling jet i) "Leaping" shampoo or Kaye effect.
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the rheological properties of the fluid may prevent it from spreading uniformly in the container.

For example, fluids with a yield-stress, very common in the food and cosmetic industries, will

tend to build up a growing stack of material under the nozzle (figure 1-1 (f)), reaching the

top of the container before it is entirely filled. Air bubbles can also be trapped by the various

instabilities, leading to incomplete filling[4].

For these reasons there is an economic and technological interest in studying the rheological

and flow parameters that control how the jet deforms. From a more fundamental point of view,

the interplay between different forces explains the transitions between the various regimes,

although most of them have been studied only in the simplest case of Newtonian fluids. In

addition, the motion of buckled viscous jets is a matter of study in itself. The displacement of

the centerline is often periodic, either having a circular trajectory around the vertical nozzle

axis, or a pendulum-like planar oscillatory motion. The regularity of the periodic motion can

in some cases be maintained for an extended period of time, building very regular stacks with a

critical height that depends on the viscosity of the fluid. In other cases the jet quickly switches

between two different frequencies, trajectory radius or plane of confinement, and may even

switch between different flow regimes, up to the point where the motion loses all regularity and

becomes chaotic ([3], [5], [6]).

So far, the research on jets impacting a plate has mostly focused on Newtonian fluids,

for example with viscous fluids such as silicone oil. The object of the present work is to

extend the field of study to non-Newtonian fluids, because of their relevance to many industrial

problems, and to study how the rheology of the fluid affects its jetting behavior. The main

focus of the study will be jets of wormlike micellar fluids, which are good model fluids for

many products in the cosmetic industry, and because they have pronounced and tunable non-

Newtonian properties, such as viscoelasticity and shear-thinning[7]. Other fluids will also be

used for comparison purposes, such as a Newtonian silicone oil, shampoo bases, commercial

shampoo, and polymer solutions.

The goal of the study is threefold. Firstly, it is an exploration of the unknown jetting behav-

ior of these non-Newtonian fluids with respect to both flow parameters and fluid properties. For

that purpose, extensive description of the possible regimes is provided, and dimensionless num-



bers characterizing the experiments are defined to obtain a clear picture of the regime diagram.

These elements are used to establish experimental regime maps for several non-Newtonian flu-

ids. The second objective is to understand the transitions between the regimes, which requires

balancing the different forces at play using dimensional analysis and scaling laws. The third goal

is to identify and document several of the most peculiar non-Newtonian features, such as the

jet shape and jet motion, to find underlying physical mechanisms, and to compare theoretical

scaling laws to experimental measurements.

The thesis is divided into six chapters including this introduction. Chapter 2 presents an

extensive review of the existing literature on jets, as well as on non-Newtonian fluids. This

review is especially focused on the elements used in this study, such as jets falling on plates and

wormlike micellar fluids. Chapter 3 describes the experimental methods, including the charac-

terization of non-Newtonian fluids and experimental setups to study the jets themselves. The

parametrization of the problem and the relevant dimensionless numbers are defined in Chapter

4, followed by the description of the experimental results, including the regime diagrams, the

critical conditions for transitions between regimes, and the influence of experimental parame-

ters on jet shape and motion. In Chapter 5, physical mechanisms are proposed for the observed

phenomena, and are used to derive scaling laws for the jet shape and motion, as well as the

transitions between flow regimes. These theoretical laws are compared to experimental data

and discussed. Finally, Chapter 6 we present the conclusions of the study and draw perspectives

for future work.



Chapter 2

Literature overview and background

Jets of Newtonian fluids and rheological properties of non-Newtonian liquids have been exten-

sively studied in the literature, but the intersection of the two domains is primarily focused

on fibers drawn out of polymeric fluids (figure 1-1 (g)) and elasto-capillary breakup, in which

the elastic forces in the fluid thread resist the thinning action of surface tension. Nevertheless,

spectacular phenomena can occur with non-Newtonian fluids, such as the "leaping shampoo"

or Kaye effect, shown on figure figure 1-1 (i). The goal of the present research is to extend a

problem that has been studied only with Newtonian fluids, the buckling instability and subse-

quent unsteady motion of a jet falling on a plate, to non-Newtonian fluids. An overview of the

literature covering jets, jet buckling, and relevant non-Newtonian fluid rheology is provided in

the present chapter.

2.1 Liquid columns and jets

The subject of jets of fluids exiting a nozzle has been studied under a wide range of viewpoints.

It could be, for example, the conditions to actually form a jet rather than to have fluid dripping

from the nozzle. The shape of the jets under different physical situations is another subject

covered in the literature. In order to provide a clear overview of the state of the art in this

domain, the general topics of capillary thinning and breakup of liquid columns and of jets are

first described in this section. Then, the problem of a jet falling on a plate is covered in detail,

from the shape of stable jets, the conditions under which they buckle, to the subsequent coiling
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Figure 2-1: Instabilities of a fluid jet impacting a plate. a) The jet remains axisymmetric at

low heights. b) Compressive forces in the jet lead to buckling at critical aspect ratio. c) Coiling

jet. d) Folding jet. All photos are jets of a solution of CPyCl wormlike micelles, which will be

detailled farther, excepted for photo c), with a silicone oil jet.

motion of the buckled jets.

2.1.1 Capillary breakup of liquid columns

Several physical forces can act on fluid columns, typically viscosity, inertia, gravity, and surface

tension[8]. The effect of surface tension, or capillary force, is to destabilize the column, leading

to thinning and breakup, whereas fluid inertia and viscosity tend to resist and slow down this

breakup process. Non-Newtonian fluid properties, such as viscoelasticity, can also play a role[9].

The magnitude of each force can be estimated by dimensional analysis, and the comparison of

two forces gives a dimensionless number that helps characterize the phenomenon and relevant



regimes. For example, the ratio of inertial forces to viscous forces is represented by the Reynolds

number Re = LU/v, where L and U are characteristic transverse length and axial velocity of

the jet, and v is the fluid dynamic viscosity. For example in the situation presented in figure

2-1 (a), L = ao, the nozzle radius, and U = Q/(7ra ), with Q the imposed flow rate. In the

same fashion, the Ohnesorge number compares the capillary forces to the viscous forces, and

is usually written as Oh- 2 = aL/pV2, where a is the surface tension of the fluid, and p its

density. Another way to interpret these dimensionless number is as comparison of timescales:

the characteristic timescale over which diffusion-like viscous effects happen is tv = L2/v, inertial

(convective) charateristic timescale is ti = L/U, and processes balancing surface tension and

viscosity typically take place over tvisc-cap = Lpv/a. The dimensionless number can then be

written as

Re v = LU Q (2.1)
ti V 7rao'

and

Oh-2_ tv _ aL aao  (2.2)
tvisc-cap PV2  pV 2

Jet column are destabilized by surface tension, eventually leading to breakup into drops,

when the value of Oh- 2 is much larger than unity. Most of the state of the art of jet breakup is

covered in the comprehensive review by Eggers and Villermaux[9]. At large Re and Oh - 2, Lord

Rayleigh[1] studied the breakup of inviscid columns of fluids under the effect of surface tension.

Clanet and Lasheras also worked on inviscid jets and the transition between dripping faucets

and continuous jets[10]. At still Oh - 2 > 1 but Re < 1, the problem shifts to the visco-capillary

thinning and breakup, studied by Papageorgiou[11]. Eggers developed an asymptotic theory

for pinch-off in universal situation called inertial-viscous regime[12], and Doshi and co-workers

also derived similar scaling laws for generalized Newtonian fluids[13], thus taking into account

some non-Newtonian effects. The effect of non-Newtonian properties on jet breakup was also

studied by Anna and McKinley[14], taking into account fluid viscoelasticity in elasto-capillary

thinning. At large Re, another effect is that the jet becomes turbulent, and the aerodynamic

friction can break it into a spray of droplets.
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Figure 2-2: a) Jet of silicon oil impacting a bath of silicon oil and entraining air[17]. The pictures
show steady situations, with increasing jet velocity from left to right and top to bottom. b)
Water "fishbones" obtained from the collision of two liquid jets[18] c) "Polygons" of liquid
obtained by extruding a water-glycerin mixture from an annulus[19].
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2.1.2 Jets: the different situations

One way to sort the studies related to fluid jets is by looking at the imposed boundary condition.

For jets falling from a vertical nozzle, many bottom-end boundary conditions are possible (figure

1-1). Most of the time, the jet is considered to be free falling, accelerating under the influence

of gravity, as is the case when capillary breakup is studied. Polymer solutions, because of their

capacity of withstanding large axial stresses, can be drawn into fibers by a windup mechanism

(figure 1-1 (g)): in the study by Matovich and Pearson[15], the bottom condition is either

imposed velocity or imposed driving force. Another set of conditions involve the presence of

a bottom surface on which the jet impacts. Jets of low-viscosity fluid (Re > 1) impacting

on a plate often create an hydraulic jump (figure 1-1 (e)), a phenomenon first described by

Rayleigh[2] with an inviscid theory, while later Watson[16] showed the importance of viscosity

in the phenomenon. Jets of more viscous fluids (Re < 1) can either spread uniformly on the

plate, or buckle[3] and undergo a time-dependent motion. This situation is detailled on figure

2-1 and is covered below.

The jet can also fall into a bath of the same or a different liquid, and Lorenceau[17] described

how air is entrained along with the jet in such a situation (figure 2-2 (a)). A variety of other phe-

nomena can be obtained by varying boundary conditions, two beautiful examples being Bush's

fishbones (figure 2-2 (b)) created by having two jets to collide[18], and fluid polygons (figure

2-2 (c)) when jets comes from an annulus[19]. The jet can also be oriented upward, creating an

"umbrella" shape[20]. The external medium can be changed from air to vacuum or to a viscous

fluid in order to study the influence of specific gravity, as illustrated by Cruickshank[26], or of

friction with the external medium[21].

The case of interest in this study is the case when the jet falls on a plate. The jet can either

spread on the plate, homogeneously or with a hydraulic jump, or buckle when the compressive

stress are too large. Bejan[22] points out that buckling occurs typically with a wavelength on the

order of the jet radius, and therefore requires a height of fall at least of the order of the radius

to appear. Kimura and Bejan described such a buckling with water[23], on length scale shorter

than the capillary length ,-1 = Vrupg in order to avoid capillary breakup. Nevertheless, in

the present study, we are interested in downward-pointing jets, with viscous fluids, at low Re
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Figure 2-3: a) Situation at low height: the jet is steady, the shape is governed by the balance

between gravitational and viscous forces. b) Theoretical jet profiles for different values of /.

and Oh- 2, impacting on a flat plate. The main focus is on established regimes rather than

transient phenomena, therefore the real condition is a thin layer of viscous fluid covering the

bottom plate, rather than the plate alone. We now review in more detail the literature covering

this situation.

2.1.3 Shape of steady flows

The figure 2-3 (a) shows the situation at low height, with a round nozzle. The nozzle-plate

distance is H, and the fluid exits the nozzle of radius ao with an initial flow rate Q. At low

height - the precise criteria will be defined in the next section - the jet remains stable and spread

homogeneously on the plate. The vertical axis is noted z, from z = 0 at the nozzle and z = H

at the plate. The problem is axisymmetric, with the jet radius at height z noted a(z), and

is reduced to a one-dimensional problem. The fluid velocity is assumed constant throughout

any horizontal cross-section, and inertial and surface tension effects are neglected, so the flow

is governed by a balance between gravity and viscosity. Cruickshank and Munson[24] have

shown that the shape of the jet is given by a transcendental equation depending on the value

p= 0.41 (H=3cm, Q=1nr/min)
-- = 1.36 (H=10cm, Q=lmI/min)
- = 4.1 (H=15cm, Q=0.25mVmin)



of 3 = H/aoK, where K is given by K 2 = 6Qvlga4 and g is the acceleration of gravity.

If p = 1, the shape of the jet is described by

a(z) 1
-- (2.3)ao 1 aoK

For 3 < 1, then

a(z) sinh(cl)
a0o sinh(cl - - sinh(cl))

cl - 3 sinh(cl) = 0, cl # 0 (2.4b)

For p > 1, the shape is described by

a(z) cos(c2)
ao cos(a cos(C2) + C2)

p cos(c2) + C2 =- , C2 - (2.5b)
2 2

Jet profiles obtained from these equations for different values of / are shown in figure 2-3

b. Note that it is only for 3 > 7r/2 (covered by equation (2.5a)) that the jet thins under the

influence of gravity instead of monotonically enlarging while spreading on the plate. For typical

experimental values, v = 200 cm 2/s, Q = 3 mL/min, a0o = 1.25 mm, this gives H = 3 cm. If

the height of fall is lower, it does not allow a significant gravitational acceleration, and then

the radius remains constant. / is therefore the important factor that controls the onset of

gravitational thinning. The onset of gravitational thinning is

• g _7r

= Hao (2.6)

which can be re-arranged into

Hthinning r Q1/2 (2.7)

This means that when the flow rate is larger, the nozzle must be higher for gravitational

thinning to take place.



2.1.4 Gravitational thinning

Fluid particles accelerate along the jet as result of the competition between the effect of gravity

and the resisting effects of viscosity. Inertia is negligible since the Reynolds number as defined

in equation (2.1) is small. Because of the incompressibility of the fluid, the jet thins from an

initial radius ao to a final value al. Thinning occurs mostly in the tail of the jet, as defined in

figure 2-1 (c). The gravitational stress in the tail is the weight of a column of fluid of height IVG,

where 1VG = (v 2/g) 1/3 is the characteristic length over which gravitational and viscous effects

balance each other. The stretch rate is Q(1/a 2 - 1/a2)/H, therefore the extensional viscous

stress is given by 37Q(1/a 2 - 1/a2)/H for a Newtonian fluid, where 77 is the dynamic viscosity.

The force balance gives

3rl •  a2 ) = pgl

For al < ao, this can be simplified into

al ~ 3v (2.8)HglVG

Note that this scaling law for al does not refer to ao: for a height of fall large enough

(p > 7r/2) so that al < ao, then the final radius of the jet is entirely determined by the force

balance in the tail.

2.1.5 Buckling

The steady jet is actually stable only for a relatively narrow range of parameters(figure 2-1.(a)).

At larger heights, even if the solution of equation (2.5a) remains valid, it is no longer stable,

and the jet tends to buckle. Any variation sideways of the centerline of the jet gives rise to

outward-pointing viscous stresses that push the jet even farther. These problems are a subset

of the general subject of flow instabilities, and were classified by Bejan[22] as obstacle-driven

instabilities of jets at low-Reynolds number. Taylor[25] and Cruickshank[26] were among the

first to study the buckling problem, shown schematically in figure 2-1.(b). Cruickshank and

Munson[3] studied jet buckling experimentally in the cases of planar and axisymmetric jets of

Newtonian fluids. Theoretical derivations in good agreement with these experimental results



were developed by Cruickshank[27] and Tchadarov[28] in the axisymmetric geometry and Yarin

and Entov[29] in the planar one.

Cruickshank showed that an axisymmetric jet can buckle according to two modes, azimuthal

and non-azimuthal (that we call respectively coiling and folding in this thesis) and derived a

critical buckling height for each mode, given by

H
= 7.663 (coiling) (2.9a)

2ao
H

= 4.810 (folding) (2.9b)
2ao

where H is the height of fall and ao is the radius of the nozzle. Experiments with Newtonian

fluids show that in most cases, the jet transitions directly from stable jet to coiling jet, at a

critical height given by (2.9a). A significantly higher critical height was reported (figure 11 in

[3]) at low flow rate and high surface tension, respectively characterized by vQ/ga4 < 10 and

c/pgao > 1, where Q is the flow rate, v is the kinematic viscosity, a the surface tension, and p

the density.

However, Cruickshank ([3] and [27]) that above an upper limit on the Reynolds number,

as defined in equation (2.1), the instabilities disappear. For cylindircal jets, this limit is Re

= Q/rvao = 1.2. He also reports that just below this limit, for 1 < Re < 1.2, two transitions

from a stable jet to folding and from folding to coiling were observed as the height of fall

was progressively increased. The first transition or buckling happens roughly at the critical

height predicted by (2.9b), and the height of the folding-coiling transition is approximately

given by (2.9a), although this is harder to measure experimentally because of the difficulty at

distinguishing between coiling and folding at the low values of H/2ao at the buckling transition.

The Reynolds number defined at the nozzle exit, Re = 2Q/iraov must also be sufficiently

low, otherwise the jet spreads on the plate, in some case leading to hydraulic jump as in figure

1-1 e). The limits are[3]

Rec cire = 1.2 (2.10)



in the axisymmetric geometry, and

Rec plan = 0.56 (2.11)

in the plane case. On the other extreme, at very low flow rate, the fluid does not form a

fully continuous jet. It either drips from the nozzle[20] or forms a jet that is destabilized by

surface tension before it reaches the bottom plate[l].

Only when all of these conditions are met can fluid buckling occur, which is the reason

why it typically happens with viscous fluids such as silicone oil and not with water, although

Bejan[22] reminds us that another type of buckling, caused by inertia and the friction with the

surrounding medium, happens at large Reynolds numbers and has been observed with water.

In all the above analysis the surface tension parameter ac/pgag that compares the thinning

processes due to capillarity and to gravity is much smaller than unity. Cruickshank and Munson

have reported experimental data for a surface tension parameter slightly larger than one[3], but

never to the point that the destabilizing action of the capillary forces breaks the jet into droplets.

2.1.6 After buckling: coiling of Newtonian jets

After buckling, round jets of viscous fluid oscillate periodically in a coiling motion around the

vertical axis (figure 2-1.(c)). The coiling motion can be extremely periodic, as can be seen

on figure 2-4 (a). Studying this problem requires us to understand the forces at play, as well

as predicting the radius of the coils and the frequency of this periodic motion. Other aspects

can be studied, for example, Pouligny and Chassandre-Mottin[4] studied the entrainment of air

bubbles in the folds of viscous sheets, which is important in problems such as bottle filling, food

processing, or nuclear waste disposal.

In the limit of large heights of fall, Mahadevan and co-workers([5] and [30]) derived both

expressions for the coiling radius and frequency from a balance between viscous and inertial

forces in the coil, the viscous forces arising from the curvature of the jet in that region. Ribe[6]

showed that this analysis was a subset of a broader picture, with three distinct regimes, viscous,

gravitational and inertial, depending on which forces were dominant. The scaling laws for coiling
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Figure 2-5: a) Coiling jet of Newtonian silicone oil b) Schematic view of the coiling motion of

an axisymmetric jet of Newtonian fluid

amplitude and frequency are presented below. His simulations and experiments by Maleki and

co-workers of the frequency of coiling as a function of height, for a given flow rate, were in

good agreement and showed multi-valued frequencies at the transition between gravitational

and inertial regimes[311.

2.1.7 Theoretical analysis of Newtonian coiling

After the onset of buckling of a cylindrical jet, the jet tends to fall vertically, therefore subjecting

the outmost part of the buckled region to a buckling torque that pushes it farther away from

the vertical axis. This process can be dominated by different forces, either gravity (the weight

of the fluid in the tail), the viscous stresses induced by the downward flow that resist sideways

motion, and at high coiling frequency, the rotational inertia in the coil can also be the main

S

g force:

Jriving
e: inertia



buckling force. The curvature of the jet, in return, leads to shear velocity gradients across

the jet cross-section that create a viscous torque that resists the deformation, analogous to the

strain-induced elastic torque in a bent beam. At the onset of buckling this torque is negligible,

and increases with further bending. When it becomes equal to the driving torque, further

bending is prevented, and the only way to dispose of the incoming fluid is sideways, in an

azimuthal motion (figure 2-5 (a)). The curvature and the torques remain the same in that

motion (figure 2-5 (b)), therefore the coiling of Newtonian jet can be studied by balancing the

different contributions to the torque at the outmost point of the jet (see [5] and [6] for details).

Forces involved in Newtonian coiling.

One can divide the coiling regime into different subregimes, according to which force drives

buckling, therefore leading to a different balance and different scalings for the frequency of the

motion and the radius of the coils. Under the assumption that the jet radius is constant in the

coil, frequency, coiling radius, and final radius of the jet, are connected by the conservation of

volume

Q = irRa2  (2.12)

The resisting torque is always due to viscosity. Viscous stresses arise because of the velocity

gradient between the inner part of the curved jet where the velocity is smaller and the outer

part where it is maximum. The velocity gradient scales like Ulal/R 2, where Ui = Q/ira2 is

the axial velocity just before the coil In a fashion similar to beam-bending in solid mechanics,

the viscous stress TQ/7rR 2al integrated over the jet cross-section vanishes, but the integrated

torque remains non-zero and scales like [30]

77Qa2 (2.13)
Tresistingoiling R2(2.13)

Predictions for amplitude and frequency

Viscous regime At low heights of fall, the whole tail of the jet is bent sideways, and the

force controlling the motion is the viscous torque caused by the fixed vertical orientation of the

nozzle (the first driving force in the schematic view of figure 2-5 b)). It is also a shear-induced

torque, around a characteristic curvature 1/H, that scales like rQa /H 2. The torque balance



leads to [6] the scaling laws for the coiling radius Rv and frequency Q2v given by:

Rv , H (2.14a)

•v 2H (2.14b)a2H

In this regime, the jet motion is controlled by external parameters such as height of fall and

imposed flow rate, whereas in the other two regimes the fluid selects its own dynamics through

a balance of forces involving intrinsic fluid properties as well as external parameters.

Gravitational regime At larger heights of fall, only the lowest part of the tail is bent, on

a length scale of the coiling radius R. The weight of the fluid in this part is of the order of

pgRa2, the lever arm is of order R, so the buckling torque is pgR 2a . Using the scaling (2.8) for

al, the torque balance gives [6] the scaling laws for the coiling radius RG and frequency ?Gc:

RG ~, (2.15a)

G H H2 (2.15b)

The transition from viscous to gravitational regime happens [6] for £Gc - 2Qv, or HVG

(Qv/g)5/12ao2/3. Note that if this height HvG is lower than the buckling height Hbkling =

2 x 7.663ao, then coiling simply starts in gravitational mode (a schematical view of this situation

is provided in figure 5-2). Indeed, for typical experimental values of v = 200 cm 2/s, a0 = 1.25

mm, and Q = 3 mL/min, HVG -- 0.5 cm while HBuckling - 1.9 cm. Note also that a simpler

force balance between gravitational and viscous forces, in other words given by P m 1, would

have led to a result quite similar of H •- (Qv/g)1/2ao 1 which shows the consistency of the force

balance.

Inertial regime When the rotational inertia in the coil becomes important it can drive the

coiling as well. The inertial force in a rotational reference frame scales per unit volume as pf2 R,

so the torque scales as pQ2R3 a2. The torque balance together with (2.8) and (2.12) leads to



[30] the scaling laws for the coiling radius RI and frequency Q2

RI ' ug Q (2.16a)

1 ( 5H (2.16b)

This regime becomes the most stable one when QI > 2QG [6], i.e. for HGI " (Q9/g5)1/' 6 .

For the values used above, this represents H = 11.0 cm. Note that for %G < QI, < 2(QG, the

system is multivalued, with the solution oscillating between the two possible frequencies, as

reported in figure 2-4 (b).

2.1.8 Similar and related problems

Viscous sheets

The case of planar viscous sheets, created using a long slit instead of a round nozzle, has also

been studied by Skorobogatiy and Mahadevan[32] and extended by Ribe[33]: in that case, the

viscous sheet folds on itself back and forth. A viscous jet that is confined in two dimensions,

for example a thread of viscous soap falling on a soap film, or a geological layer flowing under

tectonic forces (figure 2-4 (c)) follows the same pattern[32]. Once again, different regimes with

different scalings for the amplitude of folds and frequency of motion exist, depending on the

respective magnitude of the viscous and inertial forces.

Elastic ropes and sheets

A connected problem with striking similarities has been presented by Mahadevan and Keller

for the folding of elastic sheets[34] and the coiling of elastic ropes[35], and has been extensively

covered by Habibi and co-workers[36]. The elastic material is continuously fed downward onto

a planar surface, with an experimental setup reminiscent of applications such as the folding of

drapes and of paper, and the pattern spontaneously formed by a rope that falls on the ground.

The force that resists bending is the elasticity of the material, and the elastic bending stiffness

in this situation is the direct analog of the viscous one in the fluid case. For elastic ropes of

circular cross-section, the best analog of the viscous round jets we have been discussing, Habibi



gives the magnitudes per unit length of the three forces that can play a role:

Elastic force FE - Ea R - 3  (2.17a)

Gravitational force FG - pgao (2.17b)

Inertial force FI , pU2a2 R-1 (2.17c)

where E is the elastic modulus and U is the imposed downward velocity. Three regimes

are possible depending on which force dominates. The elastic regime happens at low height,

for which the amplitude of the deformation is solely bounded by geometrical constraints. The

gravitational regime happens at larger height and moderate velocities, and the inertial regime

begins beyond large enough values of height and velocity. The force balances, derived in a way

similar to the viscous jet problem, lead to the coiling frequency in each regimes:

QE - UH - 1  (2.18a)

G ,, U(pg/Ea2)1/ 3  (2.18b)

Qs ,, U2(p/Ea,)1/2  (2.18c)

The only qualitative difference between the coiling motions of flexible elastic ropes and

round viscous jets is the existence of two resonant eigenmodes within the inertial regime of the

elastic ropes. The two eigenmodes are the "whirling shaft" in which the rope is totally rigid

and the "string" in which its bending resistance is negligible. As a result, Habibi shows that the

numerically-simulated frequency as a function of height in the inertial regime oscillates around

the predicted value of mI, alternatively entering one of the two eigenmodes.

Kaye effect

A side interest of this problem is to help understand the phenomenon of "leaping shampoo"

or Kaye effect, as can be seen in figure 1-1 (i). Jets of some non-Newtonian fluids, including

some commercial shampoos, falling on a plate from moderate heights, around ten or twenty

centimeters, tend to produce a bouncing jets, an phenomenon first described in 1963 by Kaye[37]

and studied by Collyer and Fisher[38] and Versluis and co-workers[39]. The criteria for the



appearance of the secondary jumping jet is a significant shear-thinning character of the fluid,

creating a thin lubrication layer on which the jet "slides". Nevertheless, all shear-thinning

fluids do not seem to systematically lead to the Kaye effect, and studying the behavior of

non-Newtonian jets may help to derive an additional criteria.

2.2 Non-Newtonian fluids

As we have shown above, the instabilities demonstrated by both elastic solids and viscous liq-

uids have a qualitatively similar behavior. A natural route is to investigate what happens when

the flowing material is a viscoelastic fluid. Does an "intermediate" material behave the way the

two extremes do, or does a different physical mechanism lead to different behavior? Moreover,

the range of non-Newtonian properties that can be exhibited by a fluid jet is not limited to vis-

coelasticity: shear-thinning or thickening behavior, the presence of a yield stress, or thixotropy,

are all likely to have a great influence on the regimes shown by jets. In addition, real-life fluids

are almost never Newtonian. Pastes and gels are ubiquitous in the healthcare, cosmetic, and

food industries. The kitchen and the bathroom are full of examples of rheologically complex

fluids, from ketchup and mayonnaise to foaming detergents, skin creams, and hair conditioners.

Wormlike micellar fluids are non-Newtonian fluids that have recently attracted a lot of attention

for their strong, tailorable viscoelastic properties, their ease of use, and the possibility they offer

as model fluids for everyday life products[40]. We now present a brief overview of the main

characteristics of non-Newtonian fluids, as well as a deeper description of wormlike micellar

fluids.

2.2.1 Newtonian versus non-Newtonian behavior

Newtonian fluids are defined by the fact that they follow Newton's description of viscosity.

According to this description, the relationship between the shear stress 7 imposed to a fluid

and the shear rate y at which it deforms (or, reciprocally, the imposed shear rate and the induced

shear stress) is linear: T = --. The coefficient of proportionality 77 is called viscosity. Newtonian

fluids tends to be composed of small molecules without significant ordering or supramolecular

structures, with common examples such as honey, silicone oil, and water.



Most fluids, nevertheless, do not follow this pattern, or only for a limited range of shear

rates and stresses. Fluids that show a deviation from Newtonian behavior in experiments are

commonly referred to as non-Newtonian fluids[41].

There are many kinds of non-Newtonian behaviors. Perhaps the simplest departure from

linear behavior is Generalized Newtonian Fluid in which the viscosity is a function of shear

rate or shear stress. If r7(') decreases with increasing shear rate, the fluid is said to be shear-

thinning; if it is increasing, the fluid is shear-thickening. Most dilute polymer solutions are

shear-thinning, whereas a concentrated corn starch suspension is a common example of shear-

thickening material.

Viscoelasticity means that the material can have solid-like and fluid-like responses to an ex-

ternal stimulus, i.e. that the stress is both a function of the strain and the strain rate. Typically,

such a material will respond like a solid when submitted to rapid or short-term experiments,

and will flow or creep at long times. Time becomes a critical parameter of an experiment, since

viscoelastic fluids are "memory" fluids, with the effect of external actions decaying over time.

Soft rubbers and polymer solutions are two examples of viscoelastic materials at the two ends

of the solid-fluid continuum.

Yield stress fluids are materials of infinite initial viscosity, which flow with little resistance

once the imposed stress overcomes a certain yield value, for example dense pastes such as

toothpastes are usually considered yield stress fluids. However, the concept of yield stress is

abstract, and arcvra pe - everything flows, as pointed out by Barnes[42] and "Dr. Watson"[43].

In other words, there is only an apparent yield stress, denoting the transition between a power-

law regime of very large yet finite creep viscosity at low stresses and a Newtonian regime of

lower viscosity at larger stress. In order to avoid the controversy the term "critical stress fluids"

may be preferred to cover all fluids with such two viscosity regimes. For example, mayonnaise

and ketchup are common critical stress fluids. Thixotropic fluids are yet another type of fluids,

in which their history of deformation determines the present response with strong hysteresis.

All of this properties could be of interest from both scientific and industrial point of views.

Nevertheless, all non-Newtonian fluids are not equally suited for our study. During jet experi-

ments, many problems arise: yield stress fluids, for example, usually require a lot of energy to
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Figure 2-6: Schematic view of the wormlike micelles assembly process

be pumped to flow, they tend to neck and to fall in large drops instead of forming a jet, it is

hard to get rid of trapped bubbles in the system, and they form a heap or mound rather than

spreading spontaneously on the plate[44]. Shear-thickening fluids are even more troublesome,

since they will thicken when pumped to flow, and are often two-phase fluids prone to sedimen-

tation. Thixotropic fluids will be critically affected by the stresses needed to pump them to jet,

thus leading to very difficult reproducibility of the experiments

This study focuses primarily on wormlike micellar solutions, both strongly viscoelastic and

shear-thinning, and with jetting properties suitable for this study. Their non-Newtonian char-

acteristics make the jet behavior qualitatively different from its Newtonian counterpart. They

are also very convenient to use, especially when compared to polymer melts or polymer solu-

tions in organic solvents, and their properties can be easily tuned by varying the concentration

of surfactant or salt.

2.2.2 Micellar Fluids

Structure

Wormlike micellar fluids are concentrated aqueous solutions of one or more ionic surfactants,

as well as a counter-ion salt (figure 2-6). At very low surfactant concentration, the solution

is homogeneous, but when the concentration increases above a critical threshold, the critical



micellar concentration or CMC, the surfactant molecules spontaneously assemble in spherical

structures. In these spherical micelles of nanometric size the surfactants point their organic

tail towards the center and bear their ionic head outside, satisfying both tail segregation and

ionic repulsion driving forces. Adding a large enough counter-ion reduces the curvature of the

optimal shape, by screening the ionic interactions. The same effect can also be attained by using

an additional surfactant of a different length, changing the steric hindrance between the tails.

The change of optimal curvature leads, for some combinations of surfactants and counter-ions,

to changes in the shape of the assembly[45].

Several shapes can be obtained, and some carefully chosen systems exhibit long linear struc-

tures, called wormlike micelles, in some parts of their phase diagrams. Solutions of erucyl bis(2-

hydroxyethyl) methyl ammonium chloride (EHAC) were used by Yesilata and co-workers[7],

Rothstein[46] used cetyltrimethylammonium bromide (CTAB). Rehage and Hoffmann[40] as

well as Berret and co-workers[47]used a solution of CetylPyridinium Chloride (CPyCl) and

salicylic salt (NaSal) in brine that is employed in this study.

Properties

Wormlike structures at high enough concentrations in surfactant and salt are long enough to

entangle, therefore giving pronounced viscoelastic properties to the solution. Stress relaxation

with wormlike micelles can operate along two processes: the first one is reptation, similar to

the stress relaxation process of polymers described by de Gennes[48], and the second one is a

breakup-recombination process that is unique to living systems. The respective characteristic

timescale for each of these relaxation processes are Ar and Ab and Cates showed that, for

Ab < Ar, the small oscillation shear rheology is well described by a single-relaxation-time

Maxwell model of characteristic time [49]

A = (ArAb) (2.19)

In steady shear flow, wormlike micellar solutions are critical-stress fluids, with a character-

istic shear rate 1/A and a zero-shear-rate viscosity l70 that is strongly dependent on the salt

concentration. For shear rates above 1/A, it is found that the shear stress remains constant at



a critical stress of the order of ATro.

In addition, both A and ro0 are observed to be strongly temperature dependent, in an

Arrhenius-type dependence with a very large activation energy. The strong variations of rheo-

logical properties with temperature comes from two effects acting in the same direction. The

first is a polymer-like behavior in which reptation, a thermally activated process, happens faster

at higher temperature. The second is specific to supramolecular structures: the breakup rate

increases with temperature, which is not only a stress relaxation process on its own, but also

tends to shorten the average length of wormlike micelles, thus requiring a shorter length for

reptation.

Extensional rheology studies of wormlike micellar solutions have been conducted by capillary

breakup experiment (CaBER) ([7], [50]), and showed a significant extension strengthening of

the fluid, likely due to the alignment of the wormlike micelles in the extension flow[46], quite

like what happens for dilute polymer solutions. For example, in the case of CPyCl micellar

solutions, Bhardwaj and co-workers have shown[50] that the fluid first undergoes an initial

phase of Newtonian visco-capillary thinning[7]. As the liquid bridge thins, the extension rate,

denoted i, increases, until the local Weissenberg number Wimid = Aý = 0.5. At that point

the wormlike micelles are stretched by the flow too rapidly to relax, which lead to extension

thickening with elastic stress buildup resisting the breakup of the thin filament. In contrast to

polymer solutions however, when the local tensile stress become too large for the micelles to

resist, rupture en masse of the entangled chains results in filament breakup[46]. In addition,

thin liquid bridges and jets have a large area-to-surface ratio, and therefore solvent evaporation

can tend to cool the fluid and increase the surfactant concentration, both effects increase the

viscosity and lower the thinning rate.



Chapter 3

Experimental methods

Experiments play two important roles in this thesis. The first set of experimental methods

presented here are used to characterize the fluids employed in the jetting, which is especially

important for non-Newtonian fluids because some of their characteristic properties can vary

drastically with the flow conditions and mode of deformation. The second set covers the tech-

niques used to both describe qualitatively the different flow regimes of a jet falling on a plate

and study quantitatively the jet behavior.

3.1 Rheological characterization of test fluids

Although the main focus of the study is the behavior of jets of wormlike micellar solutions,

several other fluids are also considered. Some fluids such as silicone oils and Boger fluids

are used as reference fluids, for qualitative comparison purposes only, but shampoo bases and

commercial shampoo are also used to connect the research to industrial applications.

3.1.1 Fluid formulations

Micellar fluid

The type of fluid we use mostly for this study is are solutions of CPyCl and NaSal in brine (100

mM of NaCl salt solution). Following the study in [50], a fluid in the desired range of viscosity

and elasticity in obtained with the concentrations [CPyC1] = 100 mM, and [CPyCl]:[NaSal] =

2:1. For the sake of comparison two other fluids were prepared with the same brine and the



same [CPyC1]/[NaSal] ratio but [CPyCl] = 75 mM and [CPyCl] = 150 mM respectively. The

three fluids will be denoted CPyC1 100, 75 and 150 in the rest of the study. CPyCl and NaSal

were obtained in dry form from MP Biomedicals and Sigma-Aldrich respectively.

Shampoo bases

Another class of fluid we investigate is a range of shampoo products, in order to relate our

research to industrial subjects. These products include shampoo bases (shampoo without some

of the fragrances and active products added at the end of the industrial process), with different

amount of NaCl salt, respectively 1.5, 1.8 and 2.7% wt. These will be referred to as SB

1.5, SB 1.8, and SB 2.7 respectively. Shampoos are, among other components, concentrated

surfactant solutions. These surfactants assemble into different types of micelles as they do for

CPyCl solutions, often leading to non-Newtonian behavior. As the amount of salt increases,

the micelles get longer, thus increasing these effects. The increase in viscosity that results from

adding salt is called "trimming" in industrial operations[44].

Reference fluids: silicone oil and Boger fluid

Other fluids of interest were a silicone oil T41 from Gelest, Inc and a Boger fluid, which is a

dilute (0.025 wt %) solution of high molecular weight polystyrene in highly viscous styrene. The

polystyrene has a molecular weight of 2.25x 106 g/mol, with a monodispersity index of 1.03.

The silicone oil will be used as a reference Newtonian fluid, and the Boger fluid will be used for

qualitative comparison purposes, because it is a viscoelastic fluid that is not shear-thinning.

Commercial Shampoos

Two commercial shampoos are used in this study, "Totally Twisted" from Herbal Essence (re-

ferred to as Herbal in this study) and Pantene Pro-V "Classic Clean Shampoo and Conditioner"

(referred to as Pantene). Because of their complex formulation, with many components on which

we have little control, the commercial shampoos will not be used in most of the study. Their

use will be limited to investigate some of the aspects of the Kaye effect or leaping shampoo, a

spectacular phenomenon which is only partially understood.
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Figure 3-1: a) Diagram of small amplitude oscillatory shear rheology in plate-plate geometry

b) Diagram of small amplitude oscillatory shear rheology in cone-plate geometry c) Diagram of

Capillary Breakup Extensional Rheology (CaBER).

3.1.2 Shear and extensional rheology tests

Small amplitude oscillatory shear

Small amplitude oscillatory shear rheology tests are easy to set up and to analyze through simple

physical models. In the simplest geometry, called the plate-plate geometry (figure 3-1 (a)), the

sample, which could be a fluid or a soft solid, is loaded between two plates. An oscillatory

shearing motion is imposed on the sample by imposing either an oscillatory angular displacement

or torque on one of the plate. The rheometer measures the corresponding sample response,

respectively the torque or the displacement. Experiments on homogeneous single-phase fluids

are usually conducted with a plate-cone geometry (figure 3-1 (b)), where the use of a truncated

cone in place of one of the plates creates a shear rate that is approximately constant throughout

the sample. Other geometries such as Couette cells allow the investigation of complex or low

viscosity fluids that would otherwise be difficult to analyze in the simplest geometries. The

information provided by small amplitude oscillatory shear tests is the magnitude of the in-

phase and out-of phase components of the sample response with respect to the input, as a

function of oscillation frequency.

For example, if one impose an oscillatory deformation y(t) = 70 sin(wt), the fluid response
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Figure 3-2: Schematic typical result of rheological tests on several class of fluids. a) Typical
result of steady shear rheology tests on Newtonian fluids (1), shear-thinning fluids (2), shear-
thickenning fluids (3), and fluids with a yield stress. b) Typical results of CaBER tests on
Newtonian fluids (1) and dilute polymer solutions (2).

is the stress a(t), which in the linear limit can be written a(t) = G' sin(wt) +G" cos(wt). G' and

G" are respectively called the storage and loss moduli, as they represent the amount of energy

respectively stored elastically and lost through viscous dissipation. In addition, the dependency

of G'(w) and G"(w) with the oscillation frequency also gives valuable insights into the fluid

properties. Purely elastic materials are characterized by G" = 0, whereas purely viscous,

Newtonian fluids are characterized by G' = 0. In the simple Maxwell model for viscoelastic

fluids, the fluid response is modelized by a spring of modulus Go and a dashpot of viscosity

770 = G0 A in series. In this model, A is an important parameter with the dimension of a time:

it is called the characteristic relaxation time of the fluid, and has a critical importance in the

onset of non-Newtonian phenomenon. In this model, G' and G" are simply given by

(Aw)2G'(w) = Go ( (3.a)1 + (Aw)2
Aw

G"(w) = Go1 + (A) (3.1b)1+ (Aw)2

S"mid



Experimentally, it is very simple to find A with fluids following the Maxwell model: the

curves of G'(w) and G"(w) cross for w = 1/A.

Steady Shear

Steady shear tests often use the cone-plate geometry, but impose a continuous, unidirectional

shear on the sample. What is tested is not the linear viscoelastic response but the fluid viscosity

as a function of the shear rate ', or shear stress 7 imposed. In the case of the cone-plate

geometry, the shear rate is given by the rotation frequency w and the small cone angle 0 by

-=w sin(0) ~ wO. Note that in the cone-plate geometry the shear rate is independent of

the radius. For the plate-plate geometry, the shear rate depends on the radial distance r, with

=(r) = rR/d. The viscosity is simply given by 77 = 7//.

In the case of Newtonian fluids, the viscosity is constant and is commonly denoted 7ro

(figure 3-2 (a) line (1)). Fluids for which the viscosity decreases with shear rate are called

shear-thinning (figure 3-2 (a) line (2)). Most dilute polymer solutions have a plateau viscosity

at low shear rate, and are shear-thinning at high shear rate. The critical shear rate is often found

to be •c = 1/A, which can also be written as the critical dimensionless Weissenberg number Wi

= "•,A = 1. It is also possible that the viscosity is constant at 7ro under a given critical shear

stress, and drops by many orders of magnitude above this shear stress. In terms of shear rate,

this means that the viscosity approaches a plateau below a given shear rate and decreases like

rq - 1/- above this rate. In that case, the shear stress is approximately constant during the

shear-thinned portion and is equal to rT = ro0Yc. If the viscosity increases with the shear rate,

such as concentrated suspension of corn starch, the fluid is said to be shear-thickening (figure

3-2 (a) line (3)). For materials with a yield stress, the viscous stress increases with the shear

rate in an affine fashion 7 = roj+ Tc where 7r is the yield or critical stress (figure 3-2 (a) line

(4)).

CaBER

Capillary Breakup Extensional Rheology (CaBER, figure 3-1 (c)) experiments provide insights

in the transient extensional behavior of fluids, which may be very different from the shear

rheology in the case of non-Newtonian fluids[7]. The fluid sample is initially loaded between



two circular plates. Then, an elongational step strain is imposed to the fluid, by quickly raising

the top plate (usually in 30 to 50 ms). The fluid forms a liquid bridge between the two plates,

which thins under the influence of surface tension. The thinning process is balanced by viscous

resistance, and, in the case of viscoelastic fluids, by elastic stresses in the elongating filament.

The mid-filament radius amid is measured by a laser micrometer, which gives the local extension

rate [7]
2 damid

e= (3.2)amid dt

The local and time-dependent extensional viscosity qE is defined by the approximate force

balance[7]

i7E - (3.3)
amid

Combining (3.2) and (3.3) leads to a simple measurement for the extensional viscosity[7]

77E 2 a (3.4)
dt

For Newtonian fluids, Trouton[53] showed that the extensional viscosity is constant and is

simply given by kinematic considerations by 71E = 30. The ratio TrE/'qO is called the Trouton

ratio, and is equal to 3 for Newtonian fluids. In this case, substituting this constant viscosity

in (3.4) leads to the result that the mid-filament radius thins linearly (figure 3-2 (b) line (1)),

amid(t) 1 t (3.5)
ao tvisc-cap

where ao is the initial radius and tvisc-cap is a time characteristic of the visco-capillary

thinning process . The precise expression for this timescale is given by Papageorgiou[11]:

tvisc-cap = 14 .1ao0 o (3.6)

While the shear and extensional viscosity are directly related one to each other for New-

tonian fluids through the Trouton ratio, the case of non-Newtonian fluids is more complex, not

only because their extensional behavior can be dramatically different from Newtonian fluids, but

also because it is often not correlated with shear rheology. A well-known example of such non-



Newtonian extensional behavior is the extreme extension-strengthening of polymer solutions, up

to the point that many polymers like Nylon can be drawn into fibers. Extension-strengthening

is often caused by the alignment and extension of polymer molecules along the flow that cre-

ates an additional elastic stress that helps resisting the extension[15]. Additional phenomenon

such as solvent evaporation, because of the diverging area-to-volume ratio, and intermolecular

secondary interactions, may also increase the jet resistance to extension. On the other hand,

yield stresses or extension-thinning behaviors would accelerate breakup. As a result, two fluids

can have a misleadingly close shear behavior and be very different in extension. For example,

among the test fluids that are presented below, CPyCl solutions and commercial shampoos have

a similar behavior in shear (both are shear-thinning) but, in CaBER experiments, the former

tends to form long threads while the latter breaks faster (because of differences in extensional

viscosity).

Among the possible types of non-Newtonian flow behaviors, the extensional response of

viscoelastic fluids in CaBER experiments has been described by Entov and Hinch[54] and stud-

ied by Anna and McKinley[14]. After the first phase of viscous thinning, the ever-increasing

extension rate become larger than the polymeric relaxation rate. The molecules are stretched

by the flow, leading to elastic stresses and a new elasto-capillary balance. The Trouton ratio

becomes very large, typically several orders of magnitude larger than for Newtonian fluids, and

the radius thins exponentially[54] as

amid(t) e-t/3A 
(3.7)

ao

Therefore the characteristic breakup or thinning time scales as A, the elastic relaxation time

(figure 3-2 (b) line (2)). A thin thread is formed that resists the capillary thinning process.

Ultimately, depending on the fluid properties as well as the rate of solvent evaporation compared

to the thinning rate, it eventually breaks up or forms a solid fiber, as in fiber-drawing[15].

3.1.3 Rheological properties

We now cover the different rheological tests applied to the test fluids in order to characterize

them. The linear viscoelastic properties were performed on all fluids on an ARG2 rheometer,



in a cone-plate geometry of 40 mm diameter, at 22.50C. We obtain the values of important

fluid parameters such as the zero-shear rate viscosity o0 and the characteristic relaxation time

A, which are summarized in Table 3.1.

Micellar fluid

Shear Rheology The CPyCl solutions exhibited a strong viscoelastic behavior, that is well

characterized in oscillatory experiments at low frequencies by a single-mode Maxwell model as

figure 3-3 (a). The relaxation time A in this model is directly related to the characteristic times

of the stress relaxation processes in wormlike micellar solution, reptation (Ar) and breakup (Ab)

as shown in equation (2.19).

All the solutions were also strongly shear-thinning (figure 3-3 (b)), which translates into

a clear critical or plateau shear stress (figure 3-3 (c) shows the example of CPyCl 100). This

plateau stress corresponds to the stress level that is sufficient to break the intermolecular bonds

holding the surfactant molecules in the wormlike micelles, leading to their breakup in smaller

aggregates. This apparent strong shear-thinning, with q - 1/- , actually signals the onset

of shear banding, as predicted by Spenley and co-workers[55] and verified by Berret and co-

workers[56]. As can be seen on figure 3-3 (b), below the critical shear rate of the order of

ýc - 1/A, CPyC1 solutions show a plateau or zero-shear-rate viscosity, which is the value

reported in Table 3.1.

Another non-Newtonian effect is the first normal stress difference that arises because the

shear flow tend to align the wormlike micelleswhich leads to a streamline tension resulting in

a normal stress difference[41]. The figure 3-3 (d) shows that the first normal stress difference

increases approximately linearly with the shear rate. At low shear rate, where the first normal

stress difference is expected to scale quadratically with the shear rate[41], the measured value

are below the sensitivity threshold of the ARG2 rheometer.

Extensional rheology The sequence of snapshots shown on figure 3-4 a shows a typical

CaBER experiment conducted on a CPyC1 100 solution. The diameter of the plates is 6mm,

and they are initially separated by 1.2mm. A step-strain is imposed, pulling the plates apart

in 50ms to 4.8mm, which represent a Hencky strain E = ln(4.8/1.2) = 1.4.
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As shown in figure 3-4 (b), the three solutions behave in a qualitatively different pattern

in this experiment. CPyCl 75 has such a small viscosity that it almost immediately enters an

regime of elasto-capillary exponential thinning. At the other end of the spectrum, CPyCl 150

is almost gel-like, and the liquid filament is sustained for an extended period of time. Breakup

eventually occurs but usually not at the midplane[50], thus the typical analysis used in CaBER

is not applicable. The CPyCl 100 fluid shows the most interesting pattern for our jetting

experiment of a viscoelastic fluid with strong non-Newtonian effects, although with a viscous

component allowing jets to form and flow.

The first part of the thinning is dominated by a balance between capillary and viscous

effects. The midplane diameter thins linearly in time. As this diameter decreases; the extension

rate increases, until it starts triggering non-Newtonian effects. The wormlike micelles become

increasingly aligned by the extension flow, building up elastic stresses, which lead to extension-

thickening. The Trouton ratio Tr = 7EI7O0 versus time is plotted in figure 3-4 (c). The main

features are the Newtonian behavior (Tr = 3) during the first part of the experiment, and the

extensional thickening (Tr > 30) that follows. Since thin filaments and very large extension

rates are required for extension-thickening to take place, it will only play a limited role in jetting

experiments described in Chapter 4. More precisely, extensional viscosity will be only taken in

account near the jet breakup limit, at low flow rates, and the precise criteria for this limit will

be derived below in Chapter 5.

Temperature dependence The rheological properties of wormlike micelles solutions are

very dependent on temperature, for two reasons. The first one is the evolution with temper-

ature of the two characteristic timescales of the relaxation processes, Ar and Ab. Ar refers to

the reptating motion of the chain segments and Ab represents a thermally-activated breakup

process. Everything else held constant, both decrease exponentially with temperature. The

second source of dependency is the variation of the characteristic length of the micelles, which

are dynamic structures. Their average length depends exponentially on the thermally-activated

processes of association/dissociation of the surfactant molecules at the ends of the micelles[49].

This affects Ar through a power law dependency according to the reptation theory of de

Gennes[48]: if we denote Le the characteristic length of the micelles, Ar scales as L3_4 . The
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temperature dependency of both timescales are compounded into A, the Maxwell model fit

parameter of figure 3-3 (a), through the connection given by equation (2.19) A = (Ar Ab) .

The temperature dependency of A can be fitted with an Arrhenius equation of the form

A() = AT = ATrefexp (AH ( T1 )) (3.8)

The ratio aT = AT/ATref is called the shift factor. In figure 3-5 (a) we show with Tref=

21.5 0C that the temperature dependency of the shift factors follows the Arrhenius model with

a very large activation energy. This in turns leads to a large temperature dependency of the

viscosity of the fluid.

In first approximation, the viscosity of a viscoelastic fluid such as CPyC1 100 is related

to its elastic modulus and longest relaxation time by rlo = GoA. Provided that the length of

the micelles is long enough for them to entangle, the elastic modulus depends mostly on the

surfactant concentration. Rubber elasticity theory suggests that Go varies only linearly with

temperature[57]. An estimate of Go, the norm of the complex modulus |G*I = 'G' 2 + G" 2,
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is indeed found to be approximately constant with temperature, as can be seen on the right-

hand side of figure 3-5 (b). As a result, the zero-shear-rate viscosity of the solution varies

exponentially with temperature. This is experimentally found to be true, with an exponential

factor of the same order as the elastic relaxation time. CPyCl 100 viscosity drops from 25.2

Pa.s at 20 0C to 9.3 Pa.s at 2500C. This means that in order to get meaningful experiments with

this type of fluid, the temperature must be either carefully controlled, or measured for each

experiment in order to adapt the fluid properties in accordance with equation (3.8).

Another effect of the temperature can be seen in capillary breakup and filament stretching

experiment, as well as during the breakup of the jet falling on a plate at very low flow rate.

In these cases, the liquid, initially transparent at ambient temperature (22-230C), becomes

white. Direct temperature measurement with a thermocouple immersed in the small mound

of white liquid falling on the bottom plate shows that its temperature can be as low as 160 C.

This suggests the explanation that the whitening is caused by the Krafft transition, that is,

the precipitation of surfactant from the solution when the temperature becomes lower than

a critical temperature called the Krafft temperature[58]. The Krafft temperature is not to

be confused with the Krafft point, which is a temperature that depends on concentration, at

which the surfactants start assembling into micelles. The Krafft temperature can be measured

either by visual observation of turbidity or by the drastic change in most physical properties

when the precipitation occur. Figure 3-5 (b) offers one example of such measurement, with the

abrupt change of the slope of the norm of the complex modulus |G* in a small-oscillation test

when plotted against T. This leads to a Krafft temperature for CPyCl 100 of 18.000C, which is

consistent with estimates from direct visual observations.

The cooling in itself is likely due to the evaporative cooling of water, which has a strong

effect on the temperature of thin filaments because of their diverging area to volume ratio.

The smaller radius also increases the local capillary pressure, which is turn make the chemical

potential of the solvent higher and accelerates evaporation. Another possibility connecting

evaporation and visual appearance of turbidity could simply be that the filament dries, leaving

only solid surfactant. In any case, these extreme cooling and drying effects tend to appear only

the limit of very large jet height and low flow rates (for example H = 25 cm, Q = 2 mL/min).



a) b)

Figure 3-6: Jets of CPyC1 100 from a height of H = 4 cm observed through crossed polarizers.
a) Continuous jet (Q = 3 mL/min), mostly black except for some effects of curvature: there is
little alignment of the micelles along the flow. b) Thin micellar filament just before breakup.
The filament whitens, suggesting a significant alignement of the micelles under the strong
extensional flow.

Nevertheless, even out of the range of whitening transition, evaporation-driven cooling and

concentration increase leads to large increase in viscosity when the residence time of a fluid

particle in the jet becomes of the order of the typical time for the temperature change to take

place. In other words, as the height of fall increases and the flow rate decreases, the variability

in the local viscosity increases.

Birefringence A way to directly visualize the non-Newtonian properties of wormlike micellar

solutions is to look at them through crossed polarizers. This experimental technique reveals the

difference between isotropic regions and zones with a significant level of order in transparent

materials placed between the polarizers. Isotropic zones remain black, whereas the ordered zones

appear brighter as the degree of order increases. Therefore, observing micellar jets through
crossed polarizers can reveal whether a significant orientation and alignment of the micelles by
the flow takes place[46]. The large photo-elastic coefficient of wormlike micellar solutions[59]

allows good results with minimal experimental constraints. Nevertheless, in the case of jets
of circular cross-section, this technique is limited to qualitative understanding of the wormlike
alignment process in extension flow, because curvature effects are difficult to take into account
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quantitatively [60].

The images in figure 3-6 show two examples of birefringence experiments. Figure 3-6 (a)

shows a jet from a moderate height (H = 4 cm) and a sufficient flow rate (Q = 3 mL/min) so

that acceleration of gravity is negligible with respect to the velocity of the flow. The image is

essentially dark, except for some effects of curvature near the jet edges, which is a hint that

little ordering is taking place. The extension rate ý is of the order of Q/ira2H = 0.17, and from

CaBER experiments (figure 3-4) the extensional viscosity at that extension rate is similar to

what would be observed for a Newtonian fluid, with Tr x 3. Figure 3-6 (b), on the opposite,

shows a very white and bright thin filament. In this case, extension-strengthening is at its

maximum, and elastic stresses resist the filament breakup.

Shampoo bases

The three shampoo bases SB 1.5, SB 1.8, SB 2.7 display weak non-Newtonian effects. SAOS

experiments (figure 3-7 (a)) show that the characteristic relaxation time for each solution is

significantly shorter than for CPyCl solutions. Unlike the CPyCl solutions, the shampoo bases

could not be fit satisfactorily by a single-mode Maxwell model, and required a multiple-mode
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Figure 3-8: Shear rheology experiments on three industrial shampoo bases with various amount
of salt. N SB 1.5 * SB 1.8 A SB 2.7. a) Midplane diameter as a function of time b) Trouton
ratio as a function of time.

analysis. The fit given by TA Analysis software used six modes, with a set of relaxation times Ai

and the associated modulus Gi. The characteristic time A reported in Table 3.1 is the weighted

average A = E AjiGi/ Gi. The fact that shampoo bases are complex fluids with many more

components than CPyCl solutions explains why this more complicated analysis is required,

nevertheless, shampoo bases remain qualitatively similar to weakly viscoelastic fluids such as

dilute polymer solutions. For example, the value of 1/A is of the order of the crossover between

the storage and loss moduli curves on figure 3-7 (a).

Steady shear experiments show that the shampoo bases are shear-thinning fluids, for which

the viscosity does not plateau even at the lowest shear rates attainable in the ARG2 rheometer.

The three shampoo bases used here show consistently that the viscosity scales as r ~ <- 1/3 at

low shear rates, and 7r -'-1 once they reach a critical shear rate (figure 3-7 (b)). The critical

shear rate is of the order of 1/A, as expected. As the salt content of each solution increases,

the viscosity increases, a behavior likely due to the increase in length of the micellar structures

as salt screens the repulsive interactions between the surfactant head groups. In terms of shear

stress, all solutions have a critical shear stress close to 100 Pa (figure 3-7 (c)), which is once

again understood as the critical stress at which the average micellar structures are broken.
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CaBER experiments show that all solutions behave as expected for Newtonian fluids. The

midplane radius thins linearly in time, without forming a long-lasting filament (figure 3-8 (a)),

and with no significant extension-strengthening (figure 3-8 (b)). This, along with the very short

relaxation times observed in shear rheology, suggests that the micellar structures within the

shampoo bases are much shorter than for CPyC1 solutions.

The fact that shampoo bases do not reach a plateau viscosity at low shear rates means

that it is difficult to define a characteristic viscosity that could be used in dimensional analysis.

A solution is to arbitrarily choose the viscosity for a shear rate of ls - 1, at which none of the

solutions has reach the critical stress. This is the viscosity r1s,-, that is reported as characteristic

viscosity in Table 3.1.

Reference fluids

Figure 3-9 shows shear and extensional properties for two comparison fluids used in this study

as baselines to which CPyC1 solutions and shampoo bases are compared. One is silicone oil, a

purely Newtonian fluid, and the other one is a Boger fluid, a dilute solution of high molecular

weight polymer that does not shear-thin. Figure 3-9 (a) shows the steady shear rheology of

both fluids which, as expected, have a constant viscosity. In addition, it can be noted that both

are fairly viscous fluids, with values of viscosity of the same order as CPyCl 100, which make

them suitable for jetting experiments. Figure 3-9 (b) shows the evolution of midplane diameter

in CaBER experiments for both fluids, which are typical of the two rheological categories. The

silicone oil filament thins linearly in time, as expected from (3.5), while the Boger fluid is fitted

by an exponential curve. The fitting parameter is the elastic relaxation time given in Table 3.1,

and is much larger than for CPyC1 solutions or shampoo bases.

Commercial shampoos

Figure 3-9 (c) shows rheological properties of two different shampoos. Despite being from

different brands, and of different types (one is a shampoo only, the other one is shampoo and

conditioner) they have very similar rheological properties in shear. They are both moderately

viscous fluids, with strong shear-thinning behavior (7 - Ay-'1 , which is related to a plateau shear

stress of the order of 7~•A) starting at a similar shear rate. It is likely that both formulation
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have been adjusted in a similar fashion with additives in order to meet identical consumer

preferences.

Caber experiments on commercial shampoos (figure 3-9 (d)) do not discriminate between the

shampoos as well. Once scaled for the slight difference in zero-shear viscosity, both experiments

show a very similar pattern. The midplane radius thins linearly with time as Newtonian fluids

do, and show an acceleration of thinning just before breakup. This can be connected to the

shear thinning properties of both shampoos: as the radius thins, the extension rate increases,

until it reaches the point where the viscosity of the shampoos drop, leading to an acceleration

of thinning.

CPyCl solutions

A (s)

70o (Pa.s)

E,
Shampoo bases

A (s)
71s-1 (Pa.s)

Eq

CPyCl 75

0.606
8.98
13.3

SB 1.5

0.118

10.8

2.45

CPyCl 100

0.722

18.8
12.4

SB 1.8

0.146

13.5

2.80

CPyCI 150

0.898

54.0

10.9

SB 2.7

0.193

29.6

2.86

Reference fluids

A (s)
o70 (Pa.s)

Eq
Commercial shampoos

A (s)
o70 (Pa.s)

Eg

Table 3.1: Rheology data for the three
at 22.5 OC.

silicone oil

0

99.7

0

Herbal

0.0707

16.7

1.27

CPyC1 solutions and

Boger fluid

5.48

751

59.9

Pantene

0.0479

12.8

0.940

the three comparison fluids used

3.2 Experimental setup for jet analysis

Two setups were used for the jetting studies in this research. The first setup simply involves

the fluid being pumped to a nozzle, from where the jet falls onto a plate. Direct observation
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Figure 3-10: Experimental setups. a) Experimental setup for regime diagram and quantitative

measurements. b) Experimental setup for trajectory visualization.

of the jet profile and dynamics is sufficient to obtain the flow regime, and a video camera is

used for quantitative measurements. The second setup is more subtle and helps to precisely

understand the motion of the jet, by using a laser shining along the jet. Several problems that

prevented this second setup from providing accurate quantitative measurements are discussed

along with the description. Another point discussed in this section is the precise definition and

possible variants of the bottom plate condition.

3.2.1 Direct observation

The fluid is pumped by a Stoelting flow rate controller from a 60 mL syringe through a flexible

plastic tube into a nozzle. The nozzle is attached vertically to a vertical-axis stage controller, and

the liquid falls onto a plate below the nozzle (figure 3-10 (a)). The plastic tube is approximately

20cm long, which leads to a residence time of fluid particles in the tube between 10 and 20

secondes, exceeding greatly the relaxation times listed in Table 3.1. This ensures the relaxation

of any stress occurring at the exit of the syringe. We mostly report results obtained with a
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circular nozzle of diameter ao = 1.25 mm, but the influence of the nozzle radius as also been

investigated with two additional sizes, ao = 0.775 mm and ao = 2.40 mm. The behavior of

the jets has been recorded using a BlueFox digital videocamera at a frame rate of 30 to 50 fps.

Frequency measurements were done by frame counting, and amplitude measurement were done

with the image analysis software ImageJ using an image of a ruler as reference. A high-speed

videocamera Phantom V from Vision Research has been also used to capture rapid phenomena

such as jet breakup and the Kaye effect, at frame rates of 500 to 800 fps.

3.2.2 Trajectory tracking with laser

Another setup was used to follow the trajectory of the jet, inspired from an experimental

technique used by Versluis[39]. A red laser beam shines through the jet using a T-shape nozzle

and is guided along the jet like in an optic fiber (figure 3-10 (b)). A camera records it through

the bottom plate, using a mirror at a 450 angle, and an image analysis code then evaluates

the precise position of the spot. The technique allows for the qualitative understanding of the

trajectory of the jet in folding motion, including the tracking over many periods that reveals

the stability of the folding regime. Its shortcoming are that the liquid jet is an imperfect

waveguide, and therefore let the laser beam shine through the free surface of the jet when

the angle of incidence is too large, which happens at large amplitude. On the other hand, at

small amplitude, the jet motion does not affect the position of the laser spot. This means that

quantitative measurements from these experiments could not be obtained.

3.2.3 Discussion of the bottom-plate condition

Two questions regarding the bottom-plate conditions must be addressed to ensure that the

problem is correctly defined. First of all, the jet does not fall directly on the plate, but on a

thin layer of fluid that is covering the plate. We are only interested in well established regimes,

for which the jet falls on a layer of fluid, as opposed to the jet falling on a clean plate that is

transitory. The thickness of that layer is "chosen" by the fluid, to balance the viscous stresses

between the upper, free layer and the no-slip plate-fluide interface with the incoming flow rate.

This thickness is taken in account in the measurement of the height of fall, which is defined as

the distance between the fluid layer and the nozzle. The spreading fluid is either allowed to



fall in a secondary reservoir when it reaches the end of the plate, or the plate is cleaned before

being totally covered.

The second point is that other geometries than the plate could be envisioned and be relevant

to industry. The jet could fall on a bath of the same or of a different fluid, on an inclined plane,

or on a curved surface. Different plate sizes or evacuation mechanisms could also influence how

fast the fluid layer drains into the secondary reservoir. In the present study, we are interested

in planar geometries. The evacuation mechanism does not play a significant role, because of

the fact that the layer thickness is taken into account for the measurement of the height of

fall, and the short duration of the measurement. The liquid bath, in the end, is the only

alternative that could lead to dramatically different behavior such as air entrainment[17], at

least at large incoming speed. Nevertheless, for the moderate jet speeds involved in most parts

of the parameter space studied in this thesis, all phenomenon of interest such as jet motion

occur on timescales shorter than the spreading time for the viscous fluids used. As a result, the

jet dynamics studied in our experiments always take place on a small mound of fluid that has

not spread completely.



Chapter 4

Experimental Results

The experimental exploration in this chapter aims at understanding the specific aspects of non-

Newtonian jets, and is based on a dimensional analysis that helps in comparing one experiment

to another. After describing the dimensionless variables characterizing the experiments, two

types of results are presented. First of all, a qualitative description of the different flow regimes

is important because some of these types of flow are new with respect to the existing studies on

Newtonian fluids. These regimes are mapped onto the space of dimensionless parameters, with

special attention to transitions between flow regimes, and compared to theoretical expectations

for Newtonian fluids. The second type of result is the quantitative measurements of jet shape

and motion in order to understand some of the novel and specific features of non-Newtonian

jets.

4.1 Dimensional analysis

4.1.1 Purpose

Dimensional analysis is the process of identifying a set of relevant variables (experimental

parameters, fluid properties, measurement outputs) of the problem, and combining them in

order to scale them and compare their relative importance in a systematic way. This means

nondimensionalizing the variables with relevant, characteristic values for the problem. This

allows direct comparison between different experiments with different fluids, as well as the

derivation of meaningful scaling laws. Without this step, the relevance of experimental or



theoretical results would be confined only to the precise set of experimental conditions for

which they were derived or measured.

The practical way to create a nondimensionalization scheme is to use Buckingham's II-

theorem[62]. With N independent variables expressed in terms of P fundamental physical

dimensions, a set of K = N - P dimensionless groups is sufficient to describe the experiment.

The dimensionless groups can be done by any combination of the initial variables, although

physically meaningful groups are more useful and understandable.

We use three types of variables (some of them will be defined later):

* The external parameters (figure 3-10 (a)):

- The imposed flow rate Q (in m3 /s)

- The height of fall H (in m)

- The nozzle radius ao (in m)

- The acceleration of gravity g (in m/s 2)

* The fluid properties (Table 3.1):

- The fluid's kinematic viscosity vo0 (in m 2 /s)

- The fluid's density p (in kg/m 3 )

- The fluid's characteristic relaxation time A (in s)

- The fluid's surface tension a (in kg/s 2)

* The measured outputs (figure 2-1 (c) and (d).

- The jet radius above the swell al (in m)

- The jet radius after the swell a2 (in m)

- The amplitude of folding L (in m)

- The frequency of folding f (in s- ')



We keep the notation R and Q used in the literature, for example in [6], for respectively the

radius and frequency of coiling. All variables being either expressed in terms of time, length,

mass, or combinations thereof, we need 12 - 3 = 9 dimensionless groups to characterize the

experiments performed.

4.1.2 Nondimensionalization scheme

The first step is to define relevant (i.e., meaningfully related to processes taking place in the ex-

periment) length and time scales with some of the variables, and use them to nondimensionalize

the rest of the variables. The forces in balance along the flow in the jet (i.e. the tail, as localized

in fig 2-1 (c) and (d)) are the gravity that tends to accelerate and stretch the jet, and viscosity

that resists the process. This competition can be characterized by a time scale tVG = (vo0/g 2)

and a length scale lyc = (vo/g) , where vo is the zero-shear-rate kinematic viscosity. These

scalings will typically be relevant as long as extension-strengthening does not happens, which

is true in most cases (figure 3-4). On length and time scales larger than these estimates, the jet

thins by an amount determined by the balance of the two forces. Therefore, it is reasonable to

adimensionalize the experimental parameters with these scales to obtain dimensionless heights

and flow rates:

H* 1V - H V2 (4.1)

1

Q*= Q tVG Q (4.2)
VG 0

The ratio of the elastic relaxation timescale to this gravito-viscous timescale gives an elasto-

gravitational number. Non-Newtonian effects arise in the jet when the stretch rate, driven

by gravity and resisted by viscosity, becomes larger than the relaxation rate of the wormlike

micelles. Therefore, the elasto-gravitational number characterizes the magnitude of these effects

Eg = - A 0 (4.3)
tVG jet at points along its stream (i = 0, 1,

In a similar fashion, the radius of the jet at points along its stream (i = 0, 1, 2) (as localized



in fig 2-1 (d)) can be scaled by the same length scale

1

ai = G ai (4.4)
IVG \2

In the folding regime, the dimensionless outputs to measure are scaled in the same fashion

1

f =f tVG 2 (4.5)

L* L (4.6)
IVG 02

Capillary effects are characterized by the Ohnesorge number that has already been defined

in (2.2):

Oh-2 ao aaopOh -2 2o (4.7)

The nondimensional framework is now complete and sufficient with nine dimensionless

groups (equation (4.4) defines three groups). Nevertheless, we can define additional relevant,

although redundant, parameters: the Reynolds number defined in (2.1), and the aspect ratio,

defined by

Re = Q- (4.8)
aov a*

and

E a (4.9)

The jets are slender body with e < 1. This dimensionless group will be mostly used in this

thesis as a dimensionless height, under the form e-1/2 = H/2ao, reminiscent of equation (2.9a)

and (2.9b).

Capillary thinning processes happening on a time t should also be scaled by the characteristic

time for visco-capillary breakup[11] tvisc-cap = 14.1aopvla = 14.10h2 a2/v rather than tv

t v
- t (4.10)

tvisc-cap 14.10h2a0



4.2 Regime diagrams

The first type of results we seek in this study is a complete exploration and qualitative descrip-

tion of the different behaviors the jet can take. This will be the aim of the first part of this

section. The subsequent parts are devoted to the second aim of this section, mapping these

regimes, for the different fluids of interest, with respect to dimensionless axes defined in the

previous section. Experimental maps are established for silicone oil, shampoo base SB 1.8, the

micellar fluid CPyC1 100 and commercial shampoo jets. A specific interest is devoted to the

boundaries between the different jet regimes of CPyCl 100, with the objective to find scaling

laws governing the transitions.

4.2.1 Description of the different regimes

In this part we systematically explore and compare qualitatively the different flow regimes for

the different fluids. This is a phenomenological review that will be used in the next parts to

draw regime maps for the different test fluids.

Steady jet

In this regime, the jet is steady over time, and the fluid spreads homogeneously on the plate,

as shown on figure 2-1 (a). The shape of the jet is well described by the equations (2.3), (2.4a)

or (2.5a). This regime happens when the jet is not buckled, which means at low height of fall,

and is similar for all the test fluids.

Non-continuous jets

In this regime, that happens at low flow rate, the jet is non-continuous. This means, most of the

time, that the fluid will drip from the nozzle rather than form a jet; however for viscoelastic fluids

with large extensional viscosity, it may also mean the formation of persistent thinning filaments

between the nozzle and the plate with beads of fluids periodically sliding down the filament. The

figure 4-1 illustrate several situations for different fluids being dispensed in the non-continuous

jet regime. This transient situation is a direct application of CaBER experiments, and is also

reminiscent of the beads-on-a-string[51] and gobbling phenomena[61].



a)

Figure 4-1: Typical views of the non-continuous regime at low flow rates for several fluids. a)

Silicone oil b) SB 1.8 c) Boger fluid d) CPyCl 100. Silicone oil and SB 1.8 are viscous fluids

which develop little extensional stresses, and encounter visco-capillary breakup at low flow rate.

The shear-thinning property of SB 1.8 also enhance breakup through necking. The first stage

of capillary thinning is similar for Boger fluid and CPyCl 100, but elastic stresses eventually

grow, leading to a thin thread. White bars are 1 cm high.

a)
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Figure 4-2: Typical views of coiling regime for several fluids. a) Silicone oil, H* = 1.0, Q* =

3.1 x 10- 4 b) SB 1.8, H* = 3.2, Q* = 1.4 x 10- 4 c) Boger fluid, H* = 1.0, Q* = 8 x 10-6 d)

CPyCl 100, H* = 0.9, Q* = 1.3 x 10- 4. Note especially that CPyCl is the only jet that remains

straight until the contact point with the fluid layer. White bars are 1cm high.

Coiling

Coiling is a type of periodic motion exhibited by a buckled jet. After buckling the jet is pushed

sideways by the incoming flow, until it reaches a radius R. At that point the preferred motion

that minimizes the viscous stresses is azimuthal (figure 2-5 (b)). The contact point between

the jet and the plate then describes circles. Figure 4-2 shows pictures of coiling for several

fluids - note especially that the jet of CPyCl 100 is the only one to remain straight until the

point of contact with the fluid layer on the bottom plate, a situation allowed by the rheological

properties of CPyC1 solutions, and specifically their strongly shear-thinning viscosity. All the

other jets are significantly twisted or buckled above the fluid layer, a feature that renders

previous analysis for the coiling of Newtonian fluids only marginally applicable to CPyCl jets

because of the way viscous stresses are localized.

Folding

The folding regime is also defined by an oscillatory motion of the buckled jet, but contrary to

coiling, the jet remains confined in a plane. This motion is similar to the folding motion of

a)
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Figure 4-3: Different views of folding motion a) Folding jet as it reaches the central vertical

position. b) The same jet at its farthest position, at the onset of buckling under the jet's

weight. c) An example of trajectory obtained for a jet of CPyCl 100, from a height H = 11.4

cm (H* = 3.86), with a flow rate Q = 3 ml/min (Q* = 1.06 x 10-4). The values of the Reynolds

and Ohnesorge number Re = 10- 3 and Oh2 = 10- 4 are typical of the jetting experiments in

this thesis.
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viscous jets either confined in two dimensions, or exiting a long slit, as described in Skorobogatiy

and Mahadevan[32], although in the present case it happens even for a cylindrical jet free to

move in all directions. To our knowledge, such a 2D motion for an axisymmetric nozzle and

a round jet has not been described before. The only reference to such a folding motion from

cylindrical jet we found was in the work of Cruickshank and Munson[3], in a limited window of

large flow rates and small height of fall:

Q, (•-1 H

Q* H
1 < Re = < 1.2 and 4.810 < - - < 7.663 (4.11)

a 2 2ao

In the folding regime, the buckled jet of wormlike micellar fluid moves sideways (figure 4-3

(a)) until it reaches a maximum amplitude L (figure 4-3 (b)), and then folds back on itself. The

plane of oscillation sometimes rotates around the vertical axis. This rotation happens when the

fluid is rather viscous, the falling jet forming a small heap before spreading away. During the

back-and-forth folding motion, the jet sometimes falls from the heap, thus initiating a fold in a

different plane. This can sometimes trigger a rotational coiling motion, especially close to the

boundary between the two regimes. The jet is truly in the folding regime if it tends to go back

to folding in these cases, otherwise it may be classified as a bistable regime.

Figure 4-3 (c) shows an example of the jet trajectory obtained by the laser tracking system.

One can see the oscillatory motion primarily in a fixed plane, thus justifying the concept of

folding. We can also see the events of coiling, that occurs when the fluid builds up a secondary

mound from which the jet tends to be deflected. Nevertheless, after two coils, the jet comes

back to its folding motion, because this regime is more stable under these specific experimental

conditions.

Bistable regime

In this regime the jet either coils or folds, depending on the history of the flow and the lower

boundary conditions. Small perturbating events, such as the presence of a heap of fluid, can

trigger the switch between the regimes. In this case both regimes are stable and the system

can be forced from one to another.
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Figure 4-4: Successive views of the high-flow-rate rupture of a jet of CPyCl 100, at H* = 4.8
and Q* = 2.7 x 10- 4 (H = 16 cm, Q = 10 mL/min). All snapshots are separated by 24 ms,
and the black bar is 1cm high.

High-flow-rate rupture

At large flow rates and high extension rate, micellar fluids tend to break in a rubber-like ductile

failure[46]. This happens when the weight of the fluid column pulling on a particular cross-

section of the jet, usually close to the nozzle, becomes larger than the stress the micelles can

sustain. As a result, the micelles break locally, leading to a local weakening of the jet, in return

leading to rupture of the entangled micelles. This creates a fracture pattern reminiscent of
rubbery failure in solid mechanics, as can be seen in figure 4-4. Since the weight of the column

of fluid is the driving force of this mode of jet breakup, it happens at large flow rate and height
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Figure 4-5: Example of jet behaviors at large jet inertia, ie at large height of fall and flow rate.
a) Inertial folding of CPyCl 100, in which the jet remains straight and vertical down to the
folded part, as opposed to sideway motion in gravitational regime. , H* = 6.0, Q* = 1.6 x 10- 4

b) High-velocity impact and buckling of SB 1.8 jet, as opposed to growth of buckling instability
from stable jet at lower velocities. This is a transient phenomenon. H* = 3.8, Q* = 2.8 x 10- 4

c) Chaotic motion of commercial shampoo. As the jet inertia increases, commercial shampoo
coiling evolves from regular coiling to chaotic motion through period-doubling, precession, and
isolated events of large-amplitude motion. H* = 1.9, Q* = 6.5 x 10- 5 d) At even larger inertia,
a jet of Herbal Essence commercial shampoo "jumps", a phenomenon called the Kaye effect.
H* = 7.8, Q* = 8.2 x 10- 4. Black or white bars are 1cm high (approximately for a), b), and
c)).

of fall. A more precise analysis of this condition will be done below in Chapter 5.

Inertial regime behaviors

Jet behaviors at large height of fall and flow rate, that is at large jet inertia, are qualitatively

different from what is seen at more moderate experimental parameters. In case of CPyCl

jets (figure 4-5 (a)), the jet remains straight and vertical and only the very end of the jet

is deflected to the side, as opposed to the entire jet being pushed sideways in gravitational

regime. In this regime, the long travel time through the air, coupled with the very large surface

to volume ratio, makes the cooling effects due to evaporation very important: in addition to

the associated increase in viscosity, this sometimes leads to a Krafft transition with a solid-like

a•a)



jet falling and breaking. The slightest air current also makes the jet oscillate, which is why

quantitative measurement of frequency and amplitude in this regime are difficult for CPyCl

jets.

The large velocity of the impacting jet can also lead to more extreme behaviors. Figure

4-5 (b) is a jet of SB 1.8 impacting the bottom plate and buckling in several places at once.

Nevertheless, this is only a transient phenomenon, and the established regime in this case is

simply coiling. Figure 4-5 (c) and (d) show jets of commercial shampoo at large inertia, which

offer good examples of other extreme behaviors. As the height of fall increases, the coiling

motion of the shampoo jet goes through period doubling and "figure of eight" patterns, and

eventually becomes chaotic (figure 4-5 (c)). At even larger heights of fall, the jet sometimes

slides on the liquid layer, a thin layer of locally shear-thinned fluid acting as lubricant. These

large-amplitude events eventually turn into "leaping shampoo" as the height of fall in increased

still further. The Kaye effect happens for shampoo jets (as well as other non-Newtonian fluids

as described by Kaye[37] and Collyer[38]) falling on a plate. At large enough heights of fall and

flow rate a spectacular secondary jet emerging out of the liquid layer, for example the figure

4-5 (d) shows the leaping jet of Herbal Essence shampoo.

4.2.2 Regime diagram for Newtonian fluids

We know map the different regimes into the parameter space for the different test fluids. This

requires to use dimensionless parameters so that it is possible to draw general conclusions from

different fluids, and especially for the two external parameters H, the height of fall, and Q, the

imposed flow rate. The group for the flow rate is Q* = Q(g/v 5 )1/ 3 as defined in equation (4.2),

but two groups can be used for the height of fall, E-1/2 = H/2ao or H* = H(g/v 2) 1/ 3 . The

former is suited for low-height phenomenon, where the geometry constrains the jet dynamics,

while the latter is more suited to larger heights when gravitational thinning takes place. We

choose to draw the regime maps using e-1/2 because it relates to the buckling criteria (2.9a)

and (2.9b) from Cruickshank and Munson[3].

Figure 4-6 (a) is a regime map of silicone oil T41, for which only three regimes are typically

observed: steady jet, dripping, and coiling. Note that sub-classification of coiling in viscous,
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Figure 4-6: Regime maps for silicone oil (a), shampoo base SB 1.8 (b) and Herbal Essence
commercial shampoo (c). The first two fluids show only three behaviors in the ranges of height
and flow rate investigated; steady jet (A), dripping (0), and coiling (.). Herbal Essence
shampoo also shows chaotic coiling (X) and leaping jet (*). Solid lines are guide to the eyes
for regime transitions, while the dashed line is Cruickshank's prediction for buckling transition
((2.9a) for (a) and (2.9b) from (b) and (c)).
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gravitational and inertial regimes is not taken in account here, since it is hard to determine

without actually measuring the coiling frequency. This can be done by frame counting using the

setup of figure 3-10 a), and it is the object of the studies by Ribe[6] The buckling transition at

moderate flow rates are consistent with (2.9a) (dashed line). At large flow rates, the increased

compressive stress favors buckling, and the transition happens at a lower height.

The dripping-jetting transition (solid line) is observed to be given by the scaling law

E-1 - Q*'-.7 In other words and using (4.2) and (4.9), the flow rate required to maintained a

continuous jet increases with height of fall and scales as

Q , H1 / 1 7  Ho0 6  (4.12)

4.2.3 Regime diagram for shampoo bases and commercial shampoo

The regime map for SB 1.8 is presented in 4-6 (b), and maps for other shampoo bases are

qualitatively comparable. SB 1.8 undergoes the same behaviors as silicone oil, although several

features are slightly different. The regime map for Herbal Essence commercial shampoo is

shown in figure 4-6 (c) and despite being quite similar to the regime map for SB 1.8 in most

of the parameter space, presents two additional jetting regimes. As the jet inertia is increased,

at larger heights and flow rates, the coiling motion becomes increasingly chaotic, as shown on

figure 4-5 (c), before the onset of the Kaye effect (figure 4-5 (d)).

For both fluids, the buckling occurs at a lower height than Newtonian fluids, C-1/2 -_ 5

rather than E-1/2 _ 7.5, possibly because shear-thinning facilitates buckling. The dripping

transition happens at a height scaling as H - Q. This means that dripping is favored with

SB 1.8 and Herbal Essence shampoo compared to Newtonian fluid, which is not surprising

since shear-thinning is expected to favor breakup, by a mechanism similar to necking in plastic

deformations.

4.2.4 Regime diagram for CPyCl 100

Figure 4-7 shows the experimental regime map for CPyCl 100. Several features can be noted in

comparison to the Newtonian diagram of figure 4-6 (a). Among the features that are somewhat



* U

0 U

Non-contin
M U

U

UQUS
0

a 0

M A A

A A A.

........... I

Foldin Failure

Bistable0 * (D T TIL 1 @0*

oiling. m.Jm . . . . . o

U on U U U U U.

U mA A A A w m a

A AA AAAA

Steady A A

* *

a A A

A A A

S . . . .. ... I

10-3

Q* = Q/(v5/g) 1/3

Figure 4-7: Experimental regime map of CPyCl 100 in the e-1/2 and Q* space. The regimes
are: steady (A), non-continuous flow (N), coiling (.), folding (0), bistable coiling and folding
(0), elastic rupture (*). The lines are guides to the eyes.

102

0a

I
II

S101
" 7.66

4.81

100

I . 1 a . 5 1 1 1 . I II

- - - --1

0

10 "5 10-4



similar to the Newtonian map, stable, axisymmetric jet is maintained at low heights of fall,

non-continuous jet happens at low flow rate, and most of the parameter space is occupied by

time-dependent buckled jets. Nevertheless, significant changes are visible, such as the existence

of the folding regime, the ductile failure at large flow rates, the coexistence of folding and

coiling regimes, and the different slope of the dripping-jetting transition. CPyCl 75 and 150

have a behavior similar to CPyC1 100. A more precise study of CPyCl 100 regimes boundaries

is presented below.

4.2.5 Regime diagram for the Boger fluid

For experimental reasons it has not been possible to obtain a full regime map for the Boger

fluid. In general terms, the Boger fluid tend to follow the Newtonian pattern, displaying only

coiling in the buckled part of the regime space. The main departure from Newtonian behavior

appears at low flow rate, where its strong elasticity resists capillary breakup in a fashion similar

to CPyC1 solutions. No folding dynamics has been observed with a cylindrical jet of Boger

fluid.

4.2.6 Experimental scaling laws for the regime transitions of CPyCl solu-

tions

Detailed investigation of the transition between regimes has been conducted for various CPyC1

solutions and experimental conditions (flow rate, height of fall, and nozzle size). The various

graphs of figure 4-8 present the data for one transition each, with respect to the most relevant

axes at that transition. The horizontal axis is always Q* = Q(g/lv 5)1 /3, which scales for the

effect of viscosity and allows the direct comparison between the different solutions. The vertical

axis is either e-1/2 = H/2ao or H* = H(g/v 2) 1/ 3, depending on which allows the collapse of

the data set. E-1/2 is expected to be more relevant at low heights, whereas H* should be better

at larger heights when gravitational thinning takes place. The nozzle radius was corrected using

the equation (5.16) to take into account the die-swell effect which will be covered in Chapter

5. Jets of non-Newtonian fluids tend to swell as they exit a nozzle, and the correction for this

phenomenon is especially important at large flow rates and small nozzle radii
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C-1/2 - 7.6 ± 1 c) Transition from folding to coiling when the height of fall is decreased from
a large height for a given flow rate. d) Appearance of jet rupture event when increasing flow
rate for a given height of fall.
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Buckling limit

Figure 4-8 (a) shows that when the aspect ratio e-1/2 = H/2ao reaches a critical value close

to 4.81, the prediction given by (2.9b) (solid line), the jet buckles and starts folding. A strong

hysteresis between stable and folding regimes when the height of fall is varied continuously

explains in part the scatter of the data. Nevertheless, the transition happens for 3 < E-1/2 < 8

when Q* is varied across three orders of magnitude. Newtonian fluids buckle at a higher value

of 6- 1, E-1/2 _ 7.66 as given by (2.9a).

First Folding-Coiling transition

Above the limit given by (2.9a), the jet switches to the azimuthal mode of instability and

begins to coil (figure 4-8 (b)). This is the limit at which Newtonian jets usually buckle and

start coiling. This immediately suggests that the analysis that led to the limits (2.9a) and (2.9b)

for the Newtonian fluids is still valid for the CPyCl solutions, although in the case of CPyCl

solutions the folding mode is stabilized by mechanisms that do not exist in the Newtonian case.

A complete discussion will be presented in the Chapter 5.

Experiments show that the transition between the folding and coiling occurs over a rather

ill-defined range of height for which the two modes alternate, the switching between the two

being triggered by random events such as the jet falling from a heap of liquid that has not

evenly spread out. Cruickshank[27] also noted this problem in the narrow parameter range

where folding was observed with Newtonian fluids. It is interesting to note that when the

ambient temperature was closer to 250C, so that the viscosity was lower, the heaps of liquid

were less pronounced, and the frequent switching was replaced by a bistable region, leading to

a large hysteresis in the transition. Overall, there is some scattering around the predicted value

of e-1/2 - 7.66 for that transition, with 4 < e-1/2 < 12, but once again this remains valid over

three orders of magnitude for Q*.

Second Folding-Coiling transition

When the height of fall was raised even more, a second transition occurs (figure 4-8 (c)), from

coiling back to folding, with an even more pronounced bistability than the first transition, as



can be seen on the regime map of figure 4-7. Because of it, we measured the transition from

coiling to bistable folding and coiling. In other words, from the coiling regime and for a given

flow rate, we raised the height until we saw the first events of folding. For this transition, the

parameter that allowed the best collapse of the data was the dimensionless height of fall H*

rather than e-1. In contrast to the measurements of the previous two boundaries, the critical

height for this transition varies with the flow rate. Experimentally, the scaling dependency is

close to H* _ Q*1/3

Jet rupture at large flow rate: ductile failure

At very large flow rates, the wormlike micelles cannot sustain the axial stresses anymore and

break en masse, leading to the solid-like failure of the jet (figure 4-8 (d)). The flow rate required

to observe jet rupture decreases with height, and scales as Q* - H*- 1/ 1. 54 = H*-0. 65 . There is

an overlap between the coiling and jet rupture zones, for which the jet has enough time to coil

a few times before breaking.

Dripping-Jetting transition at low flow rates

Instead of Newtonian dripping (figure 4-1 (a)), the non-continuous regime for CPyCl 100 was

observed to consist of long, thin filaments prevented from breakup by elastic forces (figure 4-

1(d)). A significant difference with the Newtonian regime map is that the transition between

the non-continuous and continuous jet happens for almost all heights at a constant flow rate,

Q* > Qmin. Since the elasticity of the entangled micelles holds the thread and prevents breakup,

a continuous jet is sustained above a threshold flow rate.

4.3 Quantitative measurements

The second step of the experimental part of this study is the quantitative measurement of

several features of non-Newtonian jets. These include both the study of the jet profile and of

motion of CPyCl jets in folding regime, because both are qualitatively different from the shape

and motion of Newtonian jets or shampoo jets. The influence of the viscoelastic properties of

Boger fluids on gravity-driven jets properties has been studied by Chai and Yeow[63], but to
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Figure 4-9: Close view of jet exiting nozzle at large flow rates. The white bar is 1cm high. a)

Silicone oil, Q* = 5.7 x 10- 4 b) SB 1.8, Q* = 3.7 x 10- 4 c) Boger fluid, Q* = 6.9 x 10- 5 d)

CPyCl 100, Q* = 2.7 x 10- 4

our knowledge, the specific features of jets of CPyCl solutions have not been described before.

A qualitative comparison with the other fluids of interest will also be provided.

4.3.1 Jet shape

Die swell

Some viscoelastic fluids, for example most dilute polymer solutions, swell when exiting a nozzle.

This is a well-known effect[52], taken into account in problems such as fiber drawing. Figure

4-9 shows qualitatively the extent of this phenomenon for the different fluids of interest at

comparable dimensionless flow rates. Newtonian silicone oil and weakly viscoelastic SB 1.8 do

not show any noticeable swell at the nozzle, Boger fluid shows a large swelling, and CPyCl 100

shows moderate swelling.

Gravitational thinning

Newtonian jets falling from a sufficient height (equation (2.5a)) thin continuously under the

acceleration of gravity, until a balance between gravitational and viscous forces is reached.

After that point the radius is constant, even in the coil. CPyCl jets undergo at first the same
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Figure 4-11: Typical view of bottom part of the jet at large height, showing that only CPyCl

solutions show reverse die swell among the studied fluids. White or black bars are 1cm high a)

Silicone oil, H* = 3.9, Q* = 2.3 x 10- 4 b) SB 1.8, H* = 3.2, Q* = 1.4 x 10- 4 c) Boger fluid

H* = 3.0, Q* = 8.0 x 10- 6 d) CPyCl 100 H* = 4.7, Q* = 5.3 x 10- 5

process of gravitational thinning followed by gravito-viscous steady state. This steady-state

radius is al, as defined on figure 4-10 (a), or a* = al/lVG = al(g/v 2)1/3 in dimensionless terms

(equation (4.4)). This gravity-thinned radius was measured experimentally from snapshots

obtained in the setup described in figure 3-10 (a). The results that are shown on figure 4-10

(b) reveal that in dimensionless form, this radius scales as

a*l • 1/2 (4.13)

Reverse swell

Figure 4-11 show typical views of the bottom part of jets of several fluids, at a large height

of fall (H* > 3). In this regime the jet is significantly thinned with respect to the original

diameter, the amount of gravitational thinning being given experimentally by equation (4.13).

Of all the fluids shown (silicone oil, shampoo base, Boger fluid, and CPyC1 100) only CPyCl

b)



100 does not maintain a constant diameter as it approaches the fluid layer. CpyC1 jets instead

differ significantly by widening at their base (figure 4-11 (d)) just before reaching the fluid layer.

The final radius a2, as defined on figure 4-10 (a), can be up to three times larger than a,. We

call this widening reverse swell, because it is reminiscent the die-swell effect. In both cases,

non-Newtonian jets widen as they relax stored elastic normal stresses. To our knowledge, this

novel feature of CPyC1 jets has not been mentioned in existing literature.

Contrary to die swell phenomenon, reverse swell of CPyCl jets is not related to the upper

boundary condition. The swelling does not happen at a position determined from the nozzle,

but rather at a height h above the lower plate and fluid layer. On this length scale h, the jet

widens from a radius al to a larger value a2. The amount of swelling is characterized by the

swelling ratio a = a2/al. Experimental measurements shown on figures 4-10 (c) and (d) show

that a and h* = h/lvG = h(g/v 2) 1/ 3 scale as

a P / 3  (4.14a)

h* - (H*2Q*)- 1/ 3  (4.14b)

4.3.2 Jet dynamics

The folding regime of CPyCl jets is studied in detail because it is qualitatively different from

the dynamical motion of Newtonian jets. Viscous Newtonian fluids coil regularly over a wide

range of heights of fall, and have been studied extensively ([5], [6]). Newtonian fluids only

show folding with sheets flowing from a slit or, with round nozzles, in very specific and limited

conditions[27] such as using a bath of fluid of matching density to suppress the effect of gravity.

In the case of CPyCl jets, folding is easily accessible with round nozzles (figures 4-3 (a) and (b)).

The variations of folding frequency f and amplitude L with respect to experimental parameters

are presented in figure 4-12.

Multiple series of experiments were performed to fully capture the folding dynamics, in two

sets. In the first one, three series of amplitude and frequency measurement were made using

the setup described on figure 3-10 (a), with a fixed flow rate and varying height. The imposed
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flow rate was Q = 2 mL/min for the first two series and Q = 5 mL/min for the third one. The

series of tests were conducted at different ambient temperatures, 22.50C, 20.600C, and 21.500C

respectively, which also affects the viscosity of the fluid, leading to three values of imposed

dimensionless flow rates: Q* = 4.3 x 10- 5, Q* = 7.1 x 10-5, and Q* = 1.7 x 10-4.For each

series, the flow rate was held constant, while the fall height of the jet was varied from 1.2 to

20 cm (0.4 < H* < 6.7). Note that amplitude data were difficult to collect at low values of H*

and are therefore given over a smaller range than frequency data. In the second set of tests,

four series of experiments were performed with a fixed height of fall and varying flow rate.

The heights of fall H were 5, 6, 9 and 10 cm (with temperatures of 22.500C, 21.30C, 21.80C,

and 22.50C and dimensionless height H* of 1.7, 1.9, 3.2, 3.4 respectively), with a flow rate Q

varying between 0.5 and 9 mL/min (1.5 x 10-5 < Q* < 2.1 x 10-4). All experiments were made

using the CPyCl 100 fluid, because it is the CPyCl solution most suited for studying jets as was

discussed from figure 3-4 (b), and because it helps in eliminating other possible dependencies,

especially regarding fluid rheology. The elastogravitational number for this fluid at 22.500C is

E, = A (g2/vo) - 12.4, which means that significant elastic effects are expected to take place

at sufficient fall heights, when gravitational thinning is important.

Experimental results and associated scaling laws are shown on figure 4-12. Graphs a and b

show the frequency measurements, while c and d display the amplitude data. Graphs a and c

show the first set of experiments with fixed flow rate, while b and d show the second set with

fixed height of fall. Data points for each set of experiments were collapsed using experimental

scaling laws obtained from the other set. In the cases where the collapse of data changed slightly

the scaling exponent, by less than 1% and largely within the experimental error, the collapse of

the data of the other set were adjusted with the new exponent. Eventually, the experimental

scaling laws for folding motion are found to be

For frequency, f* H*0.66 Q*- 0.19  (4.15a)

For amplitude, L* H*0. 50 Q*0. 60  (4.15b)

where, as defined in the nondimensionalizing scheme, H* = H(g/v 2 ) 1/3, Q* = Q(g-y5)1/3-

f* = f(v/g 2)1 / 3 , and L* = L(g/l2) 1/ 3 . The power laws (4.15a) and (4.15b) are obtained



from global regression of all experiments taken together, but each series of experiments gave

dependencies that differs sometimes significantly from the overall trend. The causes for these

variations are difficult to control and result from experimental parameters, such as effect of

temperature on extensional viscosity, effect of ambient humidity on evaporation and cooling,

or rheological aging of the solution. These parameters are constant for a given series of ex-

periments, but vary from series to series, therefore statistical analysis based on the hypothesis

of stochastic deviation from a trend is not applicable. It is only possible to give the range of

scaling exponents obtained from different series, which are provided in Table 4.1.

Overall exponent Range of exponents

H* dependency of f* 0.66 0.4 - 1.2

Q* dependency of f* -0.19 -0.18 - - 0.5

H* dependency of L* -0.50 -0.1 - - 0.7

Q* dependency of L* 0.60 0.45 - 0.8

Table 4.1: Range of scaling exponents obtained for various series of experiments, compared to
global scaling exponents obtained from regression to full data set.



Chapter 5

Analysis

The theoretical analysis in this chapter is focused on the experimental results obtained for

wormlike micellar solutions, with the purpose to derive scaling laws of their non-Newtonian

features with respect to external parameters and fluid properties. First, the dynamics in the jet

as it falls are investigated, as they governs the jet's shape. Wormlike micellar jets share some

common behavior with Newtonian jets, and at the same time display some strong deviations

due to elastic and extension-stiffening properties. Next, the jet motion is investigated, and

especially the novel folding motion. A theoretical mechanism is provided, and scaling laws are

derived from it and compared with experimental results. This mechanism and other physical

consideration are used, at last, to provide criteria that describe the experimentally observed

transitions between regimes.

5.1 Dynamics in the tail

5.1.1 Die swell

Tanner[52] gives the die-swollen radius aswe,,,ll (figure 2-1 (d)) as a function of shear stress 7S

and the shear compliance Js:

asel= ao 1 + 0.13 + -Js(TS)2 (5.16)

where the term 1.13 is a correction for purely Newtonian swell effects. For a constant



viscosity Boger fluid, 7s is proportional to flow rate, rs = 7l(Q/a3). Therefore, aswe,,, scales as

aswell/ao _ Q1/3 in the limit of large flow rates. With a shear-thinning fluid such as CPyC1

wormlike micellar solution, JS = 1/Go = A/ir0, and Ts is the smaller of 7r0/A and r 0Q/ira3 , since

we know from figure 3-3 (b) that the shear stress is bounded. Therefore, aswell/ao is limited to

1.085 in most experiments, i.e. no more than 8% of die swell, and this minor correction does not

scales significantly with problem parameters. The following scaling analysis will all use ao as

initial radius, and asweu will be used only when quantitatively comparing experimental values

to predictions.

5.1.2 Gravitational thinning of CPyCl jets

While the balance of gravitational and viscous forces that is used to derive the expression

for al in equation (2.8) has been made for Newtonian fluids, the dynamics in the tail are, to

the first order, the same for viscoelastic jets. The figure 4-10 (b) shows that the dependency

a Q*/H* still holds for CPyCl jets. The elastic stress is negligible with respect to the

viscous stress, and therefore does not affect significantly the thinning process, or at least its

dependency on Q and H. For gravitational thinning to occur, the fall height of the jet must be

sufficiently large, and the imposed flow rate sufficiently low, in order to let gravity significantly

accelerate the fluid particles during their residence time in the jet. As we stated in equation

(2.6), gravito-viscous thinning occurs for P = Hao0  g/i6Qv > 7r/2, or, in dimensionless terms

and omitting the multiplying constant, for

Q*1/2
t*hinning > a (5.17)

5.1.3 Reverse swell

The reverse swell (figure 4-10 (a)) is a very peculiar feature of jets of wormlike-micellar jets, in

which the jet widens at its base, becoming between two to three times wider than the thinnest

part of the tail, on a height scale of around a centimeter. For Newtonian jets, the jet is constantly

thinning down to the coil region, where the radius is constant. In the case of CPyC1 micellar

jet, this reverse swell effect arise from the non-Newtonian viscoelastic character of the liquid.

As the fluid accelerates under the effect of gravity, the fluid elements stretch, the wormlike



micelles get aligned and store elastic energy. When the stretch rate becomes weaker, because

of the deceleration imposed by the presence of the plate, the stretched molecules recoil, which

leads to the dilation in the horizontal plane. A noticeable reverse swell is therefore possible

for a Weissenberg number Wistretch = A(U1 - Uo)/H = Eg(H* - Q*/a*2 ) greater than one.

Note that this condition requires H* > Q*/a02, which means that the fluid particles must be

accelerated during the fall. For practical purposes (in order to get a measurable reverse swell),

the condition is more realistically H* > Q*/a*2 , which simplifies the condition for reverse swell

to

Wi = EgH* > 1 (5.18)

For example, the jet used in figure 4-10 (a) is characterized by a large value of Wi = 29.8

and a significant reverse swell.

The reverse swell is reminiscent of the die-swell phenomenon, and a derivation similar to

that given by Tanner[52] can be used to predict the amount of swelling. The assumption is that

no external force acts on the fluid elements over the length scale of recoil h, thus we neglect

gravity on the scale of h < IlVG as well as the reaction of the bottom plate. If Nlis the first

normal stress difference in the fluid just before the swell, P the hydrostatic pressure in the jet,

I the identity matrix, and a = a2/al is the swell ratio, the force balance can be written as

3G 0 0 G2 0 0
-PI + 0 3G 0 0 2  0 =0

0 0 3G + N 0 0 14

This corresponds to three equations with four unknowns. Eliminating P among these equa-

tions leads to

a= (1+3 (5.19)

The viscoelastic fluid elements will be considered as purely elastic during the stretch process

in the tail of the jet. This does not imply that the elastic component of the tensile stress is

more important that the viscous part, which would not be true, but only that the elastic part

does not relax during the time of fall, which is legitimate for moderate residence time in the jet

and Wi > 1. We can therefore equate N1 to the tensile stresses from rubber elasticity theory,



given by

N = 3G ao (5.20)((l 0ao

We have already assumed that al <K ao (significant thinning), therefore the first order

approximation of (5.20) combined with (5.19) gives

2

a = (5.21)

In dimensionless form, and using the value for algiven by (2.8), one finds that the swell

ratio a should vary as

a = - a 2 H* (5.22)

The data in figure 4-10 (c) shows a good agreement between the experiments and the

scaling behavior predicted by (5.22). The equation (2.8), which was al - (Q/H)1/2(l/g2)1/ 6

when omitting the multiplying constant, can be rewritten in dimensionless terms as

a, - (5.23)

This scaling law is verified on figure 4-10 (b). Combining (5.22) and (5.23) also leads to the

following scaling for the final radius a2:

ai a H2 ) (5.24)

In dimensional terms, this is

Q)3 ( 
1 / 18  (5.25)

Note that, rigorously speaking, the elongation-free state taken as reference occurs after the

normal stresses built up in the nozzle are relaxed, that is, at the die swell, rather than at

the nozzle. This means that the occurrences of a0o in equations (5.20) to (5.24) ought to be



modified using (5.16) to use aswell. Nevertheless, as already mentioned, the error is bounded

by the strong shear-thinning properties of CPyCl 100, and does not affect the dependency of

the final swell radius a2 on H* and Q*.

In addition, the reverse swell process takes place on a height h, determined by the balance

between the characteristic speed for the flow downward in the swollen region, which can be

averaged to Q/7irla 2, and for the upward propagation of viscous effects, v/h. Using (5.24), this

leads to the following dimensionless expression for h

h* = H *2Q*  1/3 (5.26)

which is verified for most series of experiments figure 4-10 (d). This can be written in

dimensional term as ( 4 1/3 /7 1/9

h a )ao) (/ o (5.27)
h H2 Q  g (5.27)2

Everything else being equal, h scales as v7/9. This means that low-viscosity viscoelastic

fluids will display a sharp reverse swell, whereas for very viscous viscoelastic fluids it will not

be really noticeable. For example, for a0o = 1.25 mm, H = 9 cm, Q = 2 mL/min (which are

typical values at which reverse swell is seen with CPyCl 100) and the viscosity values given in

Table 3.1, the height of the reverse swell is of the order of 5 mm for CPyCl 100 and 1.6 cm

for Boger fluids. Since the lateral extent of the swell, given by a2 - al, is of the order of the

millimeter, the swell is not visible within experimental error for Boger fluids. Another way to

say the same thing is to derive the swell slope, s = (a2 - al)/h, using (5.25) and (5.27). In the

limit of a2 > al (which is a rather strong approximation) we obtain

s = (a2 - al)/h, (HQ)1/ 2g 1/9
s = (a2/3 13/18 (5.28)
a0 0

Equation (5.28) has a limited validity because of the assumption a2 > al is not true in

most cases, however, it underlines that experimentally noticeable reverse swell require a fluid

with a viscosity as low as possible. Since elasticity is important as well from the condition

(5.18), fluids such as CPyCl 75 or CPyCl 100 are ideally suited to observe reverse, in contrast

with high viscosity fluids such as the Boger fluid or low elasticity fluids such as commercial



shampoos.

In addition, a larger value of h means that an increased time in the swell is available for

the macromolecules to relax, which may invalidate the purely elastic recovery assumption used

to derive (5.21). As a result, it is not possible at the present time to be certain whether very

viscous viscoelastic fluids such as Boger are not prone to reverse swell at all, or if it is simply

not experimentally noticeable. For example, Chai and Yeow[63] studied the shape of jets of

Boger fluid and found a small widening at the base, although the bottom boundary condition

is a bit different from here: the jet was falling straight into a pool of the same liquid and was

not buckled. Testing the mechanism described in this section would rather require the use of

a fluid different from CPyCl but with comparable features of significant elasticity, especially

large elastic component of extensional stress, and moderate or low viscosity.

5.2 Scaling laws of jet motion

5.2.1 Folding mechanism

The mechanism of folding of CPyCl wormlike micellar solution has different roots from New-

tonian coiling. Even when the jet is pushed sideways, experimental observations show that it

remains relatively straight (figure 5-1 (a)), whereas Newtonian jets were bent and twisted over

a significant height from the bottom plate. This is allowed by the shear-thinning properties of

the fluid which limit the shear stress in the curved region, as shown on figure 5-1 (c), and it

is likely that shear banding takes place in that process. The shear stress 7(ý)' in the curved

region is bounded by 770/A, as shown on figure 3-3 (c), regardless of the curvature, whereas

it scaled with the curvature squared in the Newtonian case (equation (2.13)). The point of

contact of the jet with the lower layer of fluid can therefore be in line with the centerline of the

jet, and moves at the same pace as the rest of the jet. Since it is not twisted the jet does not

coil and follows a straight motion.

As the jet translates further and further sideways the weight of the inclined jet tends to

pull it back toward the vertical axis. This creates a bending torque within the jet, and it is

resisted by a viscous torque that appears when the lower part of the jet bends (figure 5-1 (d)).
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Figure 5-1: Different views of folding mechanism. a) View of a CPyCl jet at the farthest

position. b) Schematic view of folding mechanism: the jet tends to fall vertically under its own

weight, which is resisted by a viscous torque c) At the farthest position of the oscillation, just

at the onset of buckling of the main part of the jet under the weight of the jet, the fluid is

not sheared, whereas the contact zone with the fluid layer is in highly shear-thinning or shear-

banding conditions. d) Close-up of the buckled region of the jet, in which curvature induces
shear stress Txz



When the jet reaches its maximum amplitude L, the gravitational torque becomes larger than

the viscous torque, and the jet buckles back toward the center line. Such a situation is shown

on figure 5-1 (b). The jet then makes a new contact point with the layer of liquid, continues

its movement because of the steady incoming flow of fluid, and the process repeat itself. It is

now possible to analyze what happens at the extremal point of this motion in order to derive

scaling laws for the amplitude and frequency of folding. This analysis is similar to the scaling

laws developed in Skorobogatiy and Mahadevan (2000)[32], except that here, the fact that the

jet is straighter changes slightly the relevant scales.

5.2.2 Theoretical folding scaling laws

Connection between amplitude and frequency

The maximum amplitude of folding is given by the balance between a driving torque that tends

to bend the jet, and a viscous torque that resists it. The frequency of folding is directly linked

to the amplitude through the horizontal velocity U3 of the contact point of the jet with the

fluid layer by fL , U3. This horizontal velocity U3 can be roughly estimated as the horizontal

component of U2 = Q/7ra2: it is approximately zero when the jet is vertical, and largest when

it approaches L. This feature can be checked on the laser trajectory of figure 4-3 (c): two

successive points on the trajectory are approximately separated by the same amount of time,

and they are much closer in the center of the trajectory than on its sides, thus confirming a

lower horizontal velocity close to the vertical axis. This lower velocity is the most relevant to

characterize U3 , and it scales as U2a2/L. As a result f and L are linked by

fL , U2 =* f , Q  (5.29)
L L2a2

Various regimes exist depending on which force dominates in the jet. The possible driving

forces are either viscosity, gravity, or inertia. The resisting force is always viscosity. Table 5.1

summarizes the influence of H* and Q* in all cases encountered, theoretically as well as experi-

mentally. It also provides a reminder of the scaling laws for Newtonian coiling in nondimensional

terms, in order to compare the two types of motion.



Viscous regime

As for Newtonian fluids, at low heights of fall, the driving force for folding is the viscous stress

in the fluid near the nozzle. As for viscous coiling, the range of heights of fall of viscous folding

will be limited by both buckling height and transition to gravitational folding, and may not

be observable. In the cases where viscous folding occurs, no gravitational stretching occur, so

ao = al = a2. In this regime the jet amplitude is geometrically constrained by the nozzle-plate

distance H, which means that

Lv , H (5.30)

The expression for frequency is found using (5.29):

fy H2ao (5.31)H2ao

In the viscous regime the motion of the jet is therefore totally constrained by the external

parameters of the experimental setup, rather than fluid properties.

Gravitational regime

For larger heights of fall, the driving torque is a gravitational torque acting on an arm given by

the extremal position L. This torque scales as

Tdriving - pgHa2L G  (5.32)

At the maximum amplitude L the jet falls backward, bending on the length scale IVG typical

of the opposing influence of gravity and viscosity. The typical curvature of the jet just at that

moment is of the order of . = 1/L, and this leads to shear motion within the curved region,

with viscous stresses that develop between the outer region of larger velocity and the inner

region. The viscous stress in this situation, r~x, is the direct analog of the elastic stress in beam

bending: it vanishes in the middle of the jet and increases linearly along the cross-section.

Following this analogy in the fashion developed in [32], the stress is written

z Q
Txz7 = 70 7loXK " 770 o - Q2 (5.33)

LG a1VG



Note that at the very onset of bending, the liquid is not sheared, therefore the zero-shear

viscosity is used. As expected the viscous force d2Fv = Txzdxdy integrated over the jet cross-

section vanishes. The elementary viscous torque, 62Tv = xTz,,dxdy, nevertheless, remains

non-zero after integration. Approximating the cross-section to a square, the resulting torque is

al al a2Q(5.34)

Tresisting Xxzdxdy =o (534)
-- al --1

The balance between the two torques gives a scaling law for the amplitude of folding

LG -v' c1gH (5.35)

In dimensionless form, we obtain the following scaling law

L -* 1/2  (5.36)

The expression for a2 in (5.29) is found using (5.24), which leads to a dimensionless expres-

sion for the frequency in this regime:

(Q*5H*)
1/ 6

f a2/3L (5.37)
a0  G

We can then derive the dimensionless folding frequency in gravitational regime:

1 (H* 7 1/6
fA (5.38)

a0*2/3 Q*

The transition between viscous and gravitational regimes takes place for / = Hao g/6Qv >

7r/2 from equation (2.6). For CPyCl 100, a0o = 1.25 mm, and Q = 3 mL/min, this is equivalent

to H = 3.3 cm. Once again, at low flow rate, the jet may transition directly from steady flow

to gravitational coiling, as will be shown in the next section in figure 5-3.



Inertial regime

In contrast to the inertial regime for coiling ([5] and [6]), the type of inertia that drives folding

is not the centrifugal (rotational) inertia but the linear, axial inertia. The fluid in the jet tends

to travel along a vertical path, witch provides a restoring force returning the folded part of the

jet toward the center. The inertial force per unit length is pQ2/a2, which leads to a torque that

scales as
pLIQ2

Tdriving a2  (5.39)a1
In this regime the length of the bent region is much smaller than for the gravitational regime,

and scales with L rather than IVG. This leads to a viscous torque that scales as

a2 (5.40)
Tresisting 770 L(5.40)

This leads to a folding amplitude that scales as

L I  •v•o (5.41)

In dimensionless terms and using (5.23), this is written

L (_L ) 13 (5.42)

The equation (5.37) is once again used to obtain the scaling for folding frequency:

H*3/2 *1/6f~ ,*2/3 6  (5.43)
1 *2/3
a0

The inertial regime is expected to appear at large heights, of the order of heights required

to have pQ2/a 2 - pgHa2 or, with CPyC1 100 values, H • 9zV/(gl 2) = 26.5 cm. In addition,

the inertial force pQ2/a2 scales as HQ (using (2.8)): the inertial force is therefore increasing

toward the upper right-hand-side corner of the regime diagrams such as figure 4-7. Nevertheless,

at these heights, thermal effects are very important, which affects dramatically the viscosity.

For this reason, no systematic quantitative measurement has been conducted in this regime.



Qualitatively, the jet shown on figure 4-5 (d) is a good example of inertial regime, with a

straight, vertical jet and a very small folding amplitude.

5.2.3 Comments and comparison with experimental results

The dependency on the height of fall, flow rate, and nozzle radius of the measured variables

of the jet motion dynamics are summarized in Table 5.1. The frequency and radius for the

coiling motion of Newtonian jets has been gathered from the equation (2.14a) to (2.16b), while

the frequency and amplitude for the folding motion of CPyCl jets is taken from the equations

(5.30) to (5.43). The last row of Table 5.1 is the experimental scaling law found for the folding

of CPyC1 100 in gravitational regime.

The first point to make from the observation of Table 5.1 is that motion in coiling and

folding share overall the same trends. Despite being based on quite different mechanisms, both

modes see their frequency and amplitude evolve in the same direction with respect to either

height of fall or flow rate in most cases, even if the values of the scaling exponents are different.

One of the main difference between coiling and folding in the influence of height of fall within

the gravitational regime: whereas coil radius does not change significantly with height of fall,

the fold amplitude decrease as the square root of height of fall.

Folding experiments performed for this study fall mostly within the gravitational regime.

At the larger heights required for the inertial regime, significant evaporation cools the fluid

and substantially underestimates the scaling of viscosity by vo; in many experiments we see

that the fluid dries or undergoes surfactant precipitation which leads to a brittle fracture. The

viscous regime is constrained between buckling and transition to gravitational folding, and

the low heights involved makes both frequency and amplitude measurements imprecise. In

the gravitational regime, a large scatter was observed between the scaling exponents of the

various series of experiments, due to the sensitivity of CPyC1 solutions to several external

factors difficult to control. One of the most important source of variation is possible pre-

shear in the syringe, the tube, and the nozzle, and pre-shear is known to have a significant

impact on extensional rheology for micellar solutions [64]. Other factors include the ambient

temperature and relative humidity which control evaporation, possible aging of the solutions



used, and variations in fluid preparation from batch to batch. Despite these limitations, the

overall scaling dependency, obtained from the collapse of all the data at the same time in figure

4-12 and reported in Table 5.1, is in fairly good agreement with theoretical predictions, which

fall within the ranges of experimental exponents given in Table 4.1.

Frequency Radius/Amplitude

Viscous Coiling H - 1Qao2  H

Gravitational Coiling H2Q- 1/4  Q1/4

Inertial Coiling H10/3Q- 1/ 3  H-4/3Q1/3

Viscous Folding H-2Qa 1 H

Gravitational Folding H7/6Q-1/6ao 2/ 3  H-1/2Q1/2

Inertial Folding H3/2Q1/6a0 2/ 3  H-2/3Q 1/ 3

Experiments Folding H. 66Q-0 .19  H-0 .50 Q0 .60

Table 5.1: Theoretical scaling laws for the different motions and regimes, with respect to height
of fall, flow rate and radius.

5.3 Analysis of regime maps

5.3.1 Newtonian fluids

Based on previous studies and experimental map of figure 4-6 (a), we can draw a schematic

two-dimensional regime map for circular jets of Newtonian fluids (figure 5-2). The line (a)

is the buckling transition, and our experimental data are consistent with the prediction by

Cruickshank[27] given in equation (2.9a).

The dripping-jetting transition for a jet falling on a plate from a distance H (line (b)), has

not been considered in the literature, to our knowledge. It is, for example, different from the

dripping-jetting transition at the nozzle without taking into account what happens downstreams

considered by Clanet and Lasheras[10]. The transition happens because of the destabilizing

effect of surface tension, which tend to increase the amplitude of any perturbation on the jet

radius. In all generality, it requires that the residence time of any fluid particle in the jet be

larger than the timescale on which the destabilization takes place. Based on this idea, it is

possible to derive a criteria for the dripping transition, by approximating the jet falling on a
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plate from a height H to the upper portion of length H of a free-falling jet. If destabilization

happens during the time required for the jet to flow on that length, then the jet falling on a

plate can be considered destabilized as well. Note that both the destabilizing effect of the lower

part of the free-falling jet, that pulls fluid out of the upper part, and the stabilizing effect of the

bottom plate, that has the opposite effect, are neglected in this approximation. Therefore, it is

expected that the following scaling laws will tend to favor the dripping regime in comparison

to experiments.

This transition can take place along several lines depending on which forces resists the

destabilization process. In the case of viscous silicone oil, the residence time of a fluid particle

in the jet is of the order of a2H/Q, while the characteristic time before capillary instabilities

break the jet into droplets is tvisc-cap = 14.1ao1o0/a. Omitting the multiplying constant, an

estimate for this transition is therefore

a2H ao0ro

Q

H - Q•0 (5.44a)
oao

This can be re-arranged in dimensionless terms:

-1 Q*O h2

e- (5.45)dripping r•

This indeed overestimates the dripping: the required flow rate for continuous jet scales here

as H - Q, compared to H , Q1.7 experimentally.

The line (c), given by equation (2.10), represent the maximum flow rate above which no

instability arises because inertia dominates over viscous effects. One a side note, the "stable

jet" regime is of industrial importance, because it avoids any problematic instability.

The zone (d) of the map is the area of the parameter space covered by studies on steady

jetting[24] and jet buckling[3]. The zone (e) shows the area covered by investigations of coiling

behavior as a function of height of fall ([5], [6])

The slope of the two lines separating the viscous, gravitational and inertial regime of coiling



have been calculated as fG/I2V and I/.QG being held constant, using scaling expressions

derived by Ribe[6] and listed in equation (2.14b) to (2.16b). The transition between viscous

and gravitational coiling is given by

G g \5-/4 H= constant
VH ao v&Q

H- 1 vQ 5/12

p5/12- 5/3 (5.46)
ao

The transition between gravitational and inertial coiling regimes occur at a larger height of

fall, that scales with flow rate according to the following scaling law:

fI H4/3 g
5/12

g H43/ Q1/12 = constant
QG V 3/4Ql/12

H 9Q Q 1/ 16

E-1 Q*1/16  (5.47)

Nevertheless, no experimental confirmation for these boundaries has been made in this

thesis, and only the coiling regime is reported on figure 4-6 (a). The transition between the

coiling regimes has been studied by Ribe[6], including the multivalued frequency at the gravito-

inertial transition[31] Note that it is also possible that the jet transitions directly from steady

jet to gravitational coiling, especially at low flow rate, as can be seen on the schematic map of

figure 5-3.

5.3.2 CPyCl solutions

Based on the experimental data gathered on the experimental the map (figure 4-7) and quanti-

tative measurements (figure 4-8), we can draw a schematic regime map for CPyCl jets, shown

on figure 5-3.
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Buckling transition

In our experiment the buckling transition, shown on the schematic map 5-3, line (al), always

happens from stable jet to folding when height is increased, and for a critical height close to the

prediction of equation (2.9b) established for Newtonian fluids, as shown on figure 4-8 (a). For

Newtonian fluids, this transition from stable jet to folding was observed either in a transient

fashion or in a narrow range of conditions listed in equation (4.11), whereas it takes place in all

three solutions CPyC1 75, 100 and 150, and for the three sizes of nozzle. We understand it by

incorporating the effect of shear-thinning that stabilizes folding by reducing the viscous torque

in that geometry. Non-Newtonian effects in this situation can be characterized by a Weissenberg

number Wibuckling = AQ/7ra3. Since Wibuckling a 1 - 10 for the range of experiments studied

here, shear thinning indeed takes place.

The small value of the aspect ratio C-1 at this transition makes it important to take into

account the die-swell effect, therefore, the vertical axis of the figures 4-8 (a) and (b) are the

aspect ratio redefined as E- 1 = H/asweuI, where amseu is calculated with (5.16). Despite that

correction, we still note that for CPyCl 100 and the smallest nozzle (symbols (0) in figure 4-8

(a)), the required aspect ratio for the transition from steady jetting to buckling increases with

the flow rate.

First coiling-folding transition

A second transition between folding and coiling mode happens when the height of fall is in-

creased (figure 5-3, line (a2)). As was mentioned in [27], the measurement of that transition is

complicated by the large range of aspect ratios for which the jet is bistable and switches back

and forth between the two modes. Nevertheless, despite the scattering of the data, it appears

clearly on figure 4-8 (b) that the transition happens roughly at the aspect ratio predicted by

(2.9a). The standard deviation on the buckling aspect ratios is below 50%, while at the same

time Q* changes by three orders of magnitude.



Second folding-coiling transition

At an even larger height, another transition happens (figure 5-3, line (b)), from coiling back to

folding mode (figure 5-3, line (b)). Experimental results are presented in figure 4-8 (c). The

respective stability of the two periodic regimes can be obtained by comparing the two viscous

torques that would occur in each case, forming their ratio K. For K < 1, coiling is favored,

otherwise folding is dominant. The folding torque is already known from (5.34). The coiling

torque must be written using the folding amplitude LG, or, in other word, we consider the

viscous torque that would develop if the folding jet at its maximum amplitude LG initiated a

coiling motion. The expression for K is therefore :

Tresistingcoilng oQal /L_ IVG 1
K= oilg_1/ G - (5.48)

Tresistinfolding oaQ/VGLG LG GL

Using equation (5.36), we obtain the following scaling for the folding-coiling transition

(K 1/2 (5.49)

The transition happens for K P 1, or for

H}olding-coiling r Q* (5.50)

This simple, first order model does not take into account the specificity of coiling of CPyCl

jets. For example, because of the straighter jet allowed by shear thinning, the viscous stress in a

coiling micellar jet may be different from what has been developped for Newtonian coiling. As

a result, it does not capture very well the trend of the transition which scales as H ransition

Q* 1/3, as measured on figure 4-8 (c).

Dripping-jetting transition

It is understood, as described in the experimental section, that the dripping-jetting transition

does not necessarily means jet breakup, because viscoelastic fluids tend to leave thin connecting

threads that resist breakup. In case of viscoelastic solutions forming long threads, the transition

to non-continuous phase is triggered when the flow rate is not sufficient to overcome the elasto-



capillary thinning (figure 5-3, line (c)). In this case, the thinning rate is given by 1/3A (from

equation (3.7)), while the characteristic residence time is given by Tres - Hathread/Q, where

athread is the radius of the filament. For moderate values of E- 1, this can be found by picturing a

drop of fluid existing the nozzle of volume a , being stretched into a filament of volume Hathread.

This leads to a residence time Tres,, - a3/Q. The timescale balance leads to a dripping-jetting

transition independent of height of fall:

Qcontinuous , ag/A (5.51)

This crude estimate captures the transition from dripping to jetting at a constant flow rate

in the case of CPyCl solutions. As the elasticity of the solution increases, a progressively lower

flow rate is required. Nevertheless, it is expected that at large height of fall, evaporation cooling

will slow down breakup, thus requiring even less fluid flow. Indeed, this trend can be seen on

figure 4-7.

Large-flow rate ductile failure

Large flow rate jet breakup (figure 5-3, line (e)) happens at the nozzle, and the required flow

rate decreases with the height of fall. This suggests that breakup occurs when the weight of the

fluid in the jet becomes larger than the maximum stress that the micelles are able to sustain.

The weight of fluid in the jet is of the order of aswe,,alHpg - x/H-. This leads to a scaling of

the required flow rate for breakup that scales with height of fall as

Qfailure , H-1 (5.52)

This is a slightly more pronounced dependency than the experimental scaling from figure

4-8 (d) of Qfailure - H-0 .6 5 . It is possible that neglecting dynamic effects such as gravitational

acceleration and shear banding at the nozzle at large flow rate has diminished the importance

of the flow rate on the stress at the nozzle. Taking them into account may lead to an exponent

closer to experimental values.



Figure 5-4: Views of jets of commercial shampoos (Herbal Essence (a, b) and Pantene Classic

(c, d)) at large height of fall and flow rate, Q = 25 mL/min, H = 24 cm (Q* = 8.2 x 10- 4

H* = 7.8 for Herbal, Q* = 13 x 10- 4, H* = 9.4 for Pantene). Herbal shampoo shows Kaye
effect (a) whereas Pantene Shampoo & Conditioner does not (c). Both jets are deviated when
approaching a ruler rubbed on a cloth and charged with a static charge (b, d). Black bars are
1cm high.

5.3.3 Shampoo and shampoo bases

Dripping transition of shampoo bases

The dripping transition of SB 1.8 (figure 4-6 b) is similar to what happens for Newtonian fluids,

although with a smaller slope. The dripping-jetting limit is given by Q* - H*, which means

that dripping is favored in comparison to Newtonian fluids such as silicone oil, which can be

understood as the destabilizing effect of shear-thinning

Kaye effect

In the Kaye effect, the expelled jet is actually the continuation of the incoming jet, "sliding"

on a thin layer of fluid of low viscosity and turning upward on the side of liquid heap. As can



be seen on figure 4-6 (c), the Kaye effect takes place at large values of e- 1 and Q*, that is, at

large terminal jet velocity. Shear-thinning has been identified by Versluis and co-workers[39]

as a required fluid property. The proposed mechanism was that jets of viscous fluids would

first build a mound, followed by the jet sliding on the side on the mound. The momentum

of the impacting jet would dig a spoon shape, which causes the trajectory of the outgoing jet

to reach higher and higher heights. In this mechanism, shear-thinning is required to create a

layer of low-viscosity fluid between the jet and the mound, acting as a lubricant. Nevertheless,

other fluid properties or experimental conditions may be necessary as well, because not all

shear-thinning fluids undergo the Kaye effect. Intense shear-thinning should thus be viewed as

a necessary but not sufficient condition.

For example, while Herbal Essence shampoo and Pantene Classic shampoo & conditioner

have extremely similar shear and extension rheology (figure 3-9 c and d) and characteristic fluid

properties (Table 3.1), the former does undergo the Kaye effect (figure 5-4 a) but the latter does

not (figure 5-4 c). A tentative hypothesis could have been that because of slight differences

in chemical formulation, one jet would get electrostatically charged with static as it travels

through the air, and that electrostatic repulsion near the mound would help starting the Kaye

effect. In this hypothesis, electrostatics would be involved in this onset of the Kaye effect, while

shear-thinning would be the required condition for sustaining it. Nevertheless, direct voltage

or static charge measurements or grounding are difficult because of the small dimension and

the fluid nature of the jet, and a simple electrostatic attraction with a plastic ruler rubbed on

a cloth shows no difference between the two jets (figure 5-4 b and d).

The last hypothesis to explain why Pantene 2-in-1 shampoo and conditioner do not leap

despite having the same rheological properties as Herbal shampoo is the existence of a damper

in conditioner formulation that would dissipate incoming kinetic energy.
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Chapter 6

Conclusion

After presenting the existing knowledge on jets of Newtonian fluids and describing non-Newtonian

fluids and especially the wormlike micellar fluids, we have underlined the strong industrial inter-

est for the investigation of the behavior of non-Newtonian fluids falling on a plate. Rheological

properties of wormlike micellar solutions were characterized, along with other fluids, a silicone

oil as a Newtonian reference, a viscoelastic but not shear-thinning Boger fluid, and a number of

industrially relevant shampoo products. Two experimental setups were described for the study

of jets and, with the help of a suitable nondimensionalizing scheme, we obtained several types

of results. First a number of jetting regimes were qualitatively described, and the influence of

the rheological properties of the different fluids on their jetting behavior was made clear. These

regimes were mapped in the appropriate parameter space with a special emphasis on the tran-

sitions between regimes. Subsequently, the novel features of non-Newtonian wormilke micellar

jets were investigated quantitatively, especially their shape, with a reverse swell that does not

exist for Newtonian fluid, and their dynamics, with a folding regime that is not observed with

cylindrical jets of Newtonian and Boger fluids. Theoretical mechanisms were suggested in each

case, and the scaling laws derived from them compared well with experimental results, thus

providing a good understanding of a several features of non-Newtonian jets.

We also investigated the Kaye effect, in which a jet of shampoo "leaps" sometimes up to

heights two orders of magnitude larger than the jet radius. We showed that the shear-thinning

criteria proposed by Versluis[39] is a required, but not sufficient, condition for the Kaye effect
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to take place. Two commercial shampoos with very similar rheological properties in both shear

and extension showed different behavior: one was very prone to leaping while the other one.was

not. Therefore, additional mechanisms different from rheological arguments seem to be needed

to fully explain the Kaye effect.

6.1 Jets of wormlike micelles

Jets of non-Newtonian fluids impacting on a plate are shown to behave in a qualitatively

different fashion from their viscous analog. Wormlike micellar solution jets especially have a

distinct shape, with a reverse swell that, to our knowledge, has never previously described. Jet

motion was also qualitatively different, with a back-and-forth folding motion obtained from a

round jet, which has only been observed previously in naturally 2D systems such as a planar

jet or a jet confined in a plane.

Wormlike micellar fluids falling on a plate can undergo several different jetting behaviors. At

low flow rates, the jet is not continuous, and the increased extensional viscosity over Newtonian

fluids leads to the creation of a thin thread that resists breakup (figure 4-1 (d)). As long as the

imposed flow rate is sufficient to prevent the eventual, the jet will appear continuous, regardless

of the height of fall. This is in marked difference with Newtonian fluids where the required flow

rate increased with height.

At low aspect ratios, the jet is steady, as is observed for Newtonian jets [24]. The buckling

transition between the low-height, axisymmetric situation, and the time-dependent regime, is

interpreted in terms of the Newtonian perturbation analysis developped by Cruickshank[27].

The transition between steady jet and periodic motion happens in a folding mode that was not

stable in most cases with Newtonian fluids, but that is stabilized by the effect of the shear-

thinning property of the solution.

After buckling, the motion of wormlike micellar jets is different from Newtonian jets, which

only show coiling around the vertical axis ([3], [5] and [6]). Wormlike micellar fluids above the

buckling limit can either coil or fold back and forth in a pendular motion confined to an axial

plane (figure 4-3), depending on the experimental conditions. This can be rationalized by the
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shear-thinning property of the solution, which allows for a straight jet without twisting torques

leading to coiling in the Newtonian case. The scaling analysis provided in Chapter 5 captures

well the evolution of folding frequency and amplitude with experimental parameters. As the

height of fall is progressively raised from the steady jet regime above the buckling transition,

the jet begins by folding. At a larger height, a second transition between the folding and coiling

mode happens at a critical aspect ratio that is similar to the buckling aspect ratio for Newtonian

fluids[27]. At an even larger heights of fall that increases with the flow rate, a third transition

takes place, from coiling back to folding. This contrasts with both jets of fluids of constant

viscosity such as Newtonian and Boger fluids and elastic ropes [35], which are steadily coiling

around the vertical axis in the time-dependent regime. The experimental investigation of these

transitions is shown in figures 4-7 and 4-8, and a schematic overview is presented in figure 5-3.

Another feature of wormlike micellar jets is the abrupt widening at their base, which we

refer to as reverse swell. As can be seen on figure 4-11, a sharp and pronounced reverse swell

is a feature that was unique to CPyC1 solutions among our test fluids. The reverse swell

phenomenon is reminiscent of die-swell and we explained it by the relaxation of elastic stresses

in the jet stored during gravitational acceleration and stretching. The theoretical prediction

of the amount of swelling of equation (5.22) is verified experimentally (figure 4-10 (c)).It is

interesting to note that while the thinning in the top part of the jet is well predicted by a balance

between gravitational and viscous forces as in the Newtonian case, predicting the reverse swell

requires the use of a rubber-like approximation similar to elastic solid. This underlines how

novel features of jets emerge from the specific non-Newtonian rheological properties of the fluid

used.

6.2 Applicability to industrial. problems

The present contribution is connected to industrial problems in several ways. It is obviously

directly applicable to concentrated surfactant solutions forming wormlike micelles, as well as

other viscoelastic fluids ubiquitous in food and cosmetic industries. Since very large flow rates

and deformation rates are used in industry, some behaviors described here for moderate flow

rates may not be relevant. Nevertheless, insights in low flow rate behavior, and especially
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the connection between extensional viscosity and ability to resist breakup, can be useful to

understand "stringiness" in consumer products. It can also help to prevent spills occurring

when a thin string or filament of fluid remains between nozzle and bottle after filling. Another

direct application of the regime maps we provide is that buckling limits can be seen as universal,

which may be used as a design criteria for diving nozzle.

In a more general fashion, the framework developed here could be use to study any other

type of fluid. The nondimensionalizing scheme and the idea of mapping instabilities on regime

diagrams shown in Chapter 4 , as well as the physical mechanisms described in Chapter 5, can

also be applied to yield stress materials such as pastes or concentrated emulsions, to gels, foams,

etc. Although the actual dynamics of the jetting behaviors may not be the same as for CPyCl

solutions, the same tools can be used to explore them. Shear rheology can be connected to the

torques controlling the jet instabilities, and extensional rheology determines whether the fluid

tends to jet or form drops.

Another contribution of this work is the investigation of large-amplitude events, chaotic mo-

tion, and the Kaye effect, of shampoo jets. These phenomena are linked to industrial problems

such as incomplete filling, air entrapment, and spills, in situations such as the filling of shampoo

bottles.

6.3 Future work

Several suggestions for improvements and extensions can be made from this study. First of all,

CPyCl solutions could not be studied at large heights, because the jet becomes so thin that

evaporative cooling as well as air currents dramatically affects its properties and motion. These

problems could be at least partially alleviated by using an air-tight enclosure with a controlled

atmosphere maintaining a high humidity.

A second point is that the theoretical tools such as the dimensionless framework presented

in this study can be used for any other fluid. It has been pointed out that fluids only need

sufficient extensional viscosity in order to form jets at low Reynolds number, therefore many

non-Newtonian fluids could be used, such as polymer solutions or colloidal suspensions.
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In addition, the principle on which this work is based, extending Newtonian-only ex-

periments to different non-Newtonian fluids, could be applied elsewhere; for example to on

Pouligny's study of air entrapment in silicone oil folds[4]. The relevance of non-Newtonian flu-

ids in food, cosmetic, oil, or healthcare industry, has already been underlined, and entrapment

of air bubbles is a major industrial concern[44].

The theoretical explanation of reverse swell led to the conclusion that all fluids with low

viscosity but a large elastic component in extension should display a reverse swell similar to

CPyC1 solutions. It has not been possible to test this hypothesis with shampoo bases that are

insufficiently elastic, or with a Boger fluid which is too viscous. The investigation of polymer

solutions with rheological properties somewhat similar to CPyCl 100 could represent a good

test for this theory.

From a theoretical point of view, a more thorough analysis could look at combining the

Newtonian equations developed by Mahadevan[5] and Ribe[6] with non-Newtonian constitutive

equations. This could provide equations allowing the computation of the jet shape and dynamics

of jet motion for different fluids.

Lastly, for the problem of Kaye effect, a more systematic investigation of the phenomenon

for different fluids could help in explaining why shear-thinning fluids do not necessarily lead to

jumping jet, in spite of Versluis' general predictions[39].
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