
Micromechanical Actuators for Insect Flight Mechanics

by

Hui Zhou

B.S. Tsinghua University, 2002
M.S. Tsinghua University, 2004

Submitted to the Department of Materials Science and Engineering
in Partial Fulfillment of the Requirement for the Degree of
Master of Science in Materials Science and Engineering

at the

Massachusetts Institute of Technology MASSACHUSETTS INSTITUTjf-
OF TECHNOLOGY

June 2008

© 2008 Massachusetts Institute of Technology. JUN 1 6 2008
All rights reserved.

LIBRARIES

MCHNES
Signature of Author

Department of Materials Science and Engineering
M 23, 2008

Certified by
Martin A. Schmidt

Professor of Jectrical Engineering y~d Computer Science
,Thesis Supervisor

Certified by 1 Harry L. Tuller
Professor of Ceramics and Electronic Materials

Thesis Reader

Accepted by
Accepted by Samuel M. Allen

POSCO Professor of Physical Metallurgy
Chair, Departmental Committee on Graduate Students





Micromechanical Actuators for Insect Flight Mechanics

by

Hui Zhou

Submitted to the Department of Materials Science and Engineering
on May 23, 2008 in Partial Fulfillment of the Requirement for the Degree of

Master of Science in Materials Science and Engineering

Abstract

This project aims to develop MEMS actuators to aid in the study of insect flight
mechanics. Specifically, we are developing actuators that can stimulate the antennae
of the crepuscular hawk moth Manduca Sexta. The possible mechanosensory
function of antennae as airflow sensors has been suggested, and recent discoveries of
our collaborators reveal that mechanosensory input from the antennae of flying
moths serves a similar role to that of the hind wings of two-winged insects, detecting
Coriolis forces and thereby mediating flight stability during maneuvers. Early
evidence suggests that mechanical stimulus of the antennae may enable flight control.
In addition, the crepuscular hawk moth Manduca Sexta has a wide wingspan (~110
mm) and is capable of carrying at least one quarter of its own weight. Thus, studying
the flight of Manduca Sexta by attachment of microsystems seems plausible. The
goal of our project is to design and fabricate micromechanical actuators, which will
be mounted onto the moth antennae. Our collaborators will study the flight control
mechanism by mechanical stimulation.

Our first step was to fabricate "dummy" silicon rings for our biologist
collaborators for implant experiment. A series of mounting kits were developed, and
due to the nature of the moth antennae, ring-beam-ring construction was finally
designed and fabricated, like a "shackle", to meet the mounting requirements. Next,
we integrated actuators onto the mounting kit. Piezoelectric film/sheet, piezoelectric-
bender and piezoelectric-stack were considered as the actuators. Live testing was
also taken while the moth was resting or flapping its wings. The moth apparently
responds to the mechanical stimulus under both circumstances, by swinging its
wings and abdomen. Actuation amplifier was also modeled and tested, which might
be used for future mechanical stimulators.

Thesis Supervisor: Martin A. Schmidt
Title: Professor of Electrical Engineering and Computer Science

Thesis Reader: Harry L. Tuller
Title: Professor of Ceramics and Electronic Materials
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Chapter 1 Introduction

Controllable flying machines have many important applications, such as seeking

out targets and collecting intelligence in an unobtrusive manner without exposing

personnel to danger. The current approaches to achieve this capability include

man-made flying vehicles and trained biological flying animals.

Man-made flying vehicles can be well controlled and have large payload

capacity, which make it a choice of controllable flying machines, however, severe

power constraints drastically limit their flight time. Flying insects are arguably the

most efficient flying machines which can fly days to weeks, but they are difficult to

train.

With the development in insect neurobiology and the evolution of Microelectro-

mechanical Systems (MEMS), a third approach is now possible for achieving this

mission capability. MEMS, which are small, light, low-power, and have a diverse set

of electrical, mechanical, chemical, optical, etc. capabilities, are the ideal man-made

system for instrumenting an insect. Such a hybrid insect-MEMS system (HIMS)

would combine the best qualities of the biology (energy storage) and MEMS (precise

control) and lead to a very promising controllable flying machine. Among the flying

insects, we focus on the tobacco hornworm moth Manduca sexta because its sensory

and motor control systems have been well investigated and it has a relatively large

payload capacity.

The overall control mechanism of HIMS is to input a sensory signal to a control

algorithm to elicit a control output signal that will then affect insect flight. Our

approach is to stimulate the external sensory organs of the moth (the antennae) and

study its corresponding response in order to find ways to "drive" the moth following

our order. The signal input MEMS device is thus named the Mechanical Gyroscope

Stimulator (MGS).

To actuate the antennae, we first designed and fabricated the mounting kits as



the bases of the MGS to be attached onto the moth head (Chapter 3). A series of

designs were made and fabricated, from the simple rings, 2-D & 3-D structures, to

the final version which is named "antennal shackle". Piezoelectric actuators were

then integrated into the shackle (Chapter 4). Finite element modeling was presented

and live testing was performed (Chapter 6). Displacement amplification methods are

also discussed in Chapter 5.



Chapter 2 Background

2.1 Biological Background

Among all the flying insects, we focus on the tobacco hornworm moth Manduca

sexta because its sensory and motor control systems are reasonably well understood

and it has a relative large payload capacity. Manduca sexta is a crepuscular hawk

moth which flies under poorly lit conditions. Weighing approximately 2.6g with a

wingspan of approximately 110mm, it ranks among the largest and fastest of flying

insects, capable of moving at speeds in excess of 5m/s with wing beat frequencies of

about 25Hz. They have been recorded carrying payloads of up to 0.7grams.

The possible mechanosensory function of antennae as airflow sensors has been

suggested [1]. It is recently discovered that the moth's antennae experience strong

Coriolis forces during aerial maneuvers, and mechanosensors at the bases of the

antennae are necessary for its flight [2]. Mechanically stimulating one or both

antennae provides an approach that is possible to bias the moth flight and ultimately

achieve a controllable flying vehicle based on this theory.

Figure 2-1 Life cycle of the crepuscular hawk moth, Manduca sexta

(courtesy of John G Hildebrand, University of Arizona).



The life cycle of Manduca sexta lasts about 30-50 days (Figure 2-1). In most

areas, wild Manduca sexta have about two generations per year and three or four

generations per year in Florida. However, our collaborators at the University of

Washington and at University of Arizona routinely culture the moths in laboratory

conditions, providing year-round access to all life stages of the animal. The adult life

span is at least one week, which make them ideal candidate for insect flight

mechanism study and for our stimulation testing.

2.2 Micro-actuators

An actuator is a device that converts energy from one form to mechanical form.

The most common actuation methods include electrostatic, thermal, piezoelectric,

and magnetic actuations [3-5].

(1) Electrostatic Actuation

The electrical actuation relies on the coulombic attraction/repulsion between

charged bodies. The electrostatic-drive micromotor was one of the earliest MEMS

actuators [6]. The motor (Figure 2-2) consists of a rotor that is attached to the

TOP VIEW

CROSS aSCTION

Figure 2-2 An electrostatic micromotor [6]. Figure 2-3 A comb-drive electrostatic actuator [12].



substrate with a hub, and a set of fixed stators, on the periphery. When the stator

electrodes are biased, an electrostatic attractive force will align the rotor tooth with

the biased stator, and multi-phase bias signals lead to continuous rotation. Other

rotary actuators include wobble micromotors [7, 8] and static-induction micromotors

[9, 10].

Another type of electrostatic actuators are linear micromotors. Parallel plates of

the capacitor(s) are allowed to move laterally and parallel to each other. By applying

voltage pulses, the rotor move forward and backward. A typical linear electrostatic

micromotor is called comb-drive device, which uses interdigitated finger capacitors

as shown in Figure 2-3 [11, 12].

(2) Thermal Actuation

Actuation can also be achieved by applying or removing heat. Heat is generated

by different means including using electromagnetic waves (e.g. light), ohmic heating,

or convection heating. The resistive heating is the most popular method used in

thermal actuators. Cooling can be obtained by dissipation and active thermoelectric

cooling.

The thermal bimetallic effect is a very commonly used method for thermal

actuation. The thermal bimorph consists of two materials joined together as a single

element. Due to the difference of thermal expansion coefficients of the two materials,

the bimorph deforms [13]. Compared to electrostatic actuation, thermal bimorph

actuation can achieve relative large movement but need much more power to operate,

and its response speed is quite slow. Thermal actuation can also be achieved with a

single material with bent-beam structures (Figure 2-4) [14-16].

Hot arm

Flexure

Cold arm

Deflection
scale

Direction of motion

Figure 2-4 A lateral thermal actuator [16].



An application of thermal actuation is the inkjet printhead (Figure 2-5). It

consists of a micromachined fluid chamber with an opening. A voltage pulse

produces a vapor bubble to squeeze the liquid ink and eject an ink droplet [17, 18].

Ejcd ink drople

Caity Bubble
ac _n

Passivalft
layer

Thermal
b-t i
UIn.,mII IIrlK

feed hoe

Figure 2-5 Schematic cross-section view of the inkjet printhead [18].

(3) Magnetic Actuation

Magnetic actuation is one of the most widely used actuation methods in our

everyday appliances. The underlying principles and device geometry of the magnetic

macro-actuators and those of the magnetic micro-actuators are the same. Magnetic

micro-actuators also involve permanent

magnets and electromagnetic coils, and can

be categorized according to the magnetic

sources types: a permanent magnet, an

integrated electromagnetic coil, or an

external solenoid. The deposition of rtic
rial

magnetic materials and their patterning and

subsequent processing should be

compatible with the integrated circuit

fabrication processes. A typical fabrication

method of a three dimensional microcoil is

illustrated in Figure 2-6, and some

microcoils are shown in Figure 2-7 and

Figure 2-8. Figure 2-6 Fabrication of a microcoil [3].



Examples of magnetic micro-actuators include magnetic motor [21], flap

magnetic actuator [22], electromagnetic optical scanning mirror [23, 24], and

bistable electrical switch [25].

Figure 2-7 Microcoils [19]. Figure 2-8 Helical and toroid coils [20].

(4) Piezoelectric Actuation

Piezoelectric materials couple mechanical deformation and electrical polarization.

They experience mechanical deformation upon application of an electric field, and

become electrically polarized under mechanical loads. Piezoelectric materials

include single crystals (quartz, lithium niobate), ceramics (lead zirconate titanate,

barium titanate), and polymers (polyvinylidene fluoride). Among all the piezoelectric

materials, the lead zirconate titanate - Pb(Zrx,Til-x)O 3 or PZT - ceramics attract

much attention due to their very high piezoelectric coupling coefficients and high

frequency applications. Polymers and ceramics can easily be deposited over silicon

and patterned. Deposition methods include vacuum evaporation, reactive sputtering,

metal-organic chemical vapor deposition, rf-magnetron sputtering, sol-gel deposition,

and laser ablation techniques.

Piezoelectric actuators are already commonly available in the market, such as a

stack translator from Physik Instrumente (PI) GmbH & Co. KG and bimorph

actuators from Piezo System, Inc. Other piezoelectric actuators include inchworm

linear micromotors [26, 27] and rotational micromotors [28, 29]. Inchworms are

developed to achieve ultraprecision positioning which is essential for optical



alignment, miniature robots, microbiological cell manipulation, and precision

machining. An inchworm motor is shown in Figure 2-9. The inchworm has two

piezoelectric actuators for clamping and a third actuator for creating longitudinal

extension, the motor's displacement. Each of the inchworm's actuators can be

operated independently. The inchworm produces step motion, which originates from

the clamp and release of the two clamping actuators [26].

1 2 3 4 5 6

Direction of Motion

Figure 2-9 Inchworm motor and motor actuation sequence [26].

By transforming the vibration of the stator transducer to rotation motion through

the frictional force, an ultrasonic rotational piezoelectric micromotor was made [29].

The polarization of PZT was normal to the surface. The fundamental bending

vibration of the stator transducer was generated and transformed to rotational motion

as shown in Figure 2-10.
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Figure 2-10 An ultrasonic micromotor [29].
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Chapter 3 Antennal Mounting Kits

3.1 Motivation

It was recently discovered that the moths' antennae have mechanosensors at

their bases, which are necessary for their flight. Mechanically stimulating one or

both antennae might bias the moth flight. The goal of this work is to enable study of

the relationship between the antennal vibration and the moth's flight behavior.

Ultimately, we hope to control the moth's flight via stimulating its antennae.

To study the flight mechanism of the moth while it's flying freely, one can

mount an actuator onto the moth body and locally stimulate the antennae. Manduca

sexta moth is among the largest and strongest insects in the world, and it turns out to

be a good candidate for this study. Its relative "big" head (Figure 3-1) provides us a

large platform for mounting the device. In this chapter, we describe the evolution of

the mounting kits as the bases for the actuators, or "stimulators". All the mounting

kits in this chapter were made of silicon with IC compatible facilities. Once the

appropriate mounting kit was decided, the actuating components were integrated into

it, as discussed in the following chapters.

Figure 3-1 The head of Manduca sexta moth
(courtesy of Armin Hinterwirth, University of
Washington, Seattle).



The thickest part of the antenna of Manduca sexta moth is around Imm in

diameter for the male and around 0.5mm for the female. All the devices shown

below were designed for male moths.

Figure 3-2 An antenna from a male moth (courtesy of Cam Myhrvold,
University of Washington, Seattle).

3.2 Antennal Rings

The structures of the antennal rings are simple but expandable, which makes

them the first design of the mounting kits. The ring thickness is that of the silicon

wafer, which is approximately 0.68 mm (Figure 3-3).

Figure 3-3 Ring structure.

Along with the simple ring design, there are two other designs shown in Figure

3-4. One can mount the actuating components onto the fingers or directly build the

actuators as the fingers (Figure 3-5). By alternatively actuating different parts, we

can tune the antennal vibration, with the moth's reaction helping us to learn its

antennal function during flight.



Figure 3-4 Two more ring structures.

ttachment ri

Actuators

Collar to facilitate
attachment to insect

Figure 3-5 Concept of the ring actuators (courtesy of Martin Schmidt).

The rings were manually mounted onto the moth antennae when the moth was in

hibernation. The mounting process was quite smooth with the aid of tweezers under

a stereo optical microscope. But when the moth came back to life from hibernation,

it resisted the rings very much and quickly threw them off by simply swinging its

head and antennae. The rings turned out not to be stable because of the fact that the

cross-section diameters of the moth antenna are not increasing gradually from the tip

to the base, instead, the antenna is thickest in the middle and the base is much

thinner than the middle part. The hole of the ring must match the thickest part in

order to mount it, which make the moth capable of removing the rings. In addition,

the variation between moths makes the rings unsuitable for every moth. This

required the development of assembly structures to meet the mounting purpose.

3 · liI; .,··-'
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3.3 Assembly Structures

Inspired by zip-like structures, we designed and fabricated a two-dimensional

assembly as shown in Figure 3-6. By adopting the assembly structures, the problems

of the simple rings in section 3.2 could be solved. Such a device can be directly

attached to the base of the antenna without passing through the thickest middle

Figure 3-6 Two-dimensional assembly structures.

region; the three-step zip-like design makes it feasible to adjust the size of the central

hole to fit each new moth. The geometries of the two-dimensional assembly

structures are also easy to modify. Figure 3-7 shows the separate parts. The male

assembly parts have different beam length. Devices with longer beam length are

designed to be more flexible, while those with shorter beam stiffer.

Two-dimensional assembly structures solve the problems existing in the simple

rings, however, they also bring their own inherent concerns. The two-dimensional

structures are difficult to assemble on the moth antenna since there is no flat surface

on the moth head to facilitate the process. Even assembled on a flat surface by

tweezers with the aid of stereo optical microscope, the two-dimensional structures

were only stable in plane, and out-of-plane mismatch could not be avoided when the

assembly was lifted off the bench surface. Subsequently, a three-dimensional
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Figure 3-7 Two-dimensional assembly structures (A-C: male connectors with 300pm, 600gjm, and

900pm long beams, respectively; D: female connector.)

assembly was designed to conquer the out-of-plane problem in the zip-like devices,

as shown in Figure 3-8.

The three-dimensional assembly includes four parts, the base, three clamps, two

protective rings, and the actuation ring. The base is attached to the moth head and

possibly fixed with epoxy or wax, the three clamps hold the three ring-like structures,

the top and bottom one of the three rings are identical and protect the middle ring,

while the middle ring integrates the actuators. All parts are made of 0.68 mm thick

silicon wafer, and assembled manually.

Figure 3-9 demonstrates the parts structures. The clamp (A) has six feet which

insert into the holes in the base (C), and features two spacers to separate the three

rings. The top and bottom fingers clamp the protective rings by fixing the tips into

the slots in the protective rings (D). The middle ring shown in (B) has 16 springs



giving passive feedback to the antennal vibration.

Figure 3-8 Schematic view of a three-dimensional assembly.

B

44I4

Figure 3-9 Schematic view of the three-dimensional assembly parts (A: clamp, B: middle ring,

C: base, D: protective ring.)



The three-dimensional assembly provides a platform for the Mechanical

Gyroscopic Stimulator. The middle ring can also integrate a variety of actuating

components that actively stimulate the antennae motions. And the clamp can be

modified into needle-shape-foot, which enables one to affix the device by

penetrating the needle ends into the moth head directly (Figure 3-10).

Another three-dimensional assembly structure related to this project was also

designed and fabricated, which will be discussed in Appendix B (Heat Sink).

3.4 Antennal Shackle

Three-dimensional assembly structures provide a platform for the micro-

mechanical actuators for moth flight mechanics study. However, it is very

challenging to assemble such devices. After carefully observation of the moth

behavior, we found its antennal motion to be very limited. Though the moth can

throw the simple rings off quite easily, by connecting two rings, the moth might not

be able to remove the "shackle" like structure. Based on this hypothesis, we

fabricated antennal shackles with different hole-sizes and beam lengths.

Shackles were manually fixed onto the moth with the two antennae in the holes

(Figure 3-11), and our hypothesis was proven. Antennal shackles turned out to be

very stable, and the moth with the shackle on its head could fly freely without any

trouble. We further modified the design by adapting to the natural angel of 1540

L
Figure 3-10 A modified three-dimensional device (left: schematic view of a modified clamp,
right: an assembled device on a quarter).



between two antennae, as shown in Figure 3-12.

Compared to the three-dimensional assembly structure, the shackle is much

simpler and easier to handle, and more able to integrate actuating elements due to its

larger surface area. The shackle is the fundamental structure used to develop the

stimulator discussed later in the next chapter.

Figure 3-11 The "Shackle" (A: schematic view, B: live moth with the shackle).

-·)

Figure 3-12 The modified "Shackle" (A: the angle between the moth antennae, courtesy of Ty
Hedrick, University of Washington, Seattle; B: schematic view of the modified shackle).
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Chapter 4 Piezoelectric Actuation

4.1 Motivation and Approaches

The hawk moth Manduca sexta vibrates antennae at a frequency of around 25Hz

equal to its wing beat during flying. To stimulate the moth antennae effectively, the

actuator should have a fast response speed and an adequate force output, require as

little energy as possible to extend flying time between recharging, and be compatible

with the moth motion.

Among the four most common actuation methods, piezoelectric actuation turns

out to be the best candidate. Electrostatic actuation has a fast response, but it is

susceptible to pull-in limitation and there is trade-off between magnitude of force

and displacement. Thermal actuation is capable of achieving large displacement, but

the relatively large power consumption limits its use in our stimulator. Magnetic

actuation is capable of generating large displacement as well, however, the

fabrication processes are quite complex. Piezoelectric actuation is capable of fast

response and achieving moderately large displacement. In addition, miniature

piezoelectric actuating elements are commercially available.

We took three kinds of piezoelectric actuation elements into consideration in

terms of the physical shape, thin film/sheet, bender, and stack. Piezoelectric thin film

deposition methods were briefly described in Section 2.2(4), among which sol-gel

deposition is an attractive mean because it does not require complex equipment and

can generate relatively thick films (up to 1pm) [30]. Piezoelectric sheets up to 2mm

thick, bending actuators and miniature piezo-stacks are commercially available from

vendors such as Piezo Systems, Inc. and Physik Instrumente (PI) GmbH & Co. KG.

All these actuation approaches have been analyzed for our MGS application, and the

details are discussed in the reminder of this chapter.



4.2 Piezoelectric Bi-morph Actuation

The silicon "shackle" is chosen as the base for our Mechanical Gyroscope

Stimulator (refer to Section 3.4). Bi-morph actuation is achieved by piezoelectric

thin films deposited on the silicon substrate or piezoelectric sheets (e.g. PZT sheets

from Piezo Systems, Inc.) attached to the silicon shackle (Figure 4-1). When an

electrical field is applied, the piezoelectric layer deforms and deflects the silicon

shackle as shown in Figure 4-2.

Silicon PZT

Figure 4-1 Schematic top-view of piezoelectric bi-morph structure.

Figure 4-1 Schematic top-view of piezoelectric bi-morph structure.

/

Figure 4-2 Piezoelectric bi-morph made of piezo-layer on silicon half-shackle,
before deformation (left) and after deformation (right).

To analyze the deflection magnitude, the structure is simplified to a

two-dimensional case shown in Figure 4-3. P1 and P2 are the interactive forces

generated between the piezoelectric layer and the silicon substrate. M1 and M2 are

the binding moments caused by P1 and P2. 1, and 12, al and a2 are the lengths and

thicknesses of the piezo-layer and the extended silicon ring. A1 and A2 are the

vertical displacements corresponding to 11 and 12, respectively, and p is the deflection

radius.



Mi Mi

P2 P2

M4 M2

Figure 4-3 The simplified two-dimensional
model. Left: the deformed bi-morph; above:

the interactive region cut off from the

deformed bi-morph.

Because there are no external forces, we have P = P2 = P (1)

Moment balance leads to M, +M2 - Pala 2 =0 (2)

M ( M2
p is the curvature radius: M - 2  (3)

P YE1 2E 2

where I, and 12 are moments of inertia, YE and Y2E are the Young's modulus for the

piezo-layer and silicon, respectively.

Substituting Eq. (3) into Eq. (2), we have

P = E 1 2E (4)
a, +a 2  P

ba3  ba 3

where i ba 2 (5)
12 12

and b is the common width of both parts.

At the interface, strains in the top and bottom layers are equal (for more about

mechanical analysis, please refer to [31]):

P a1  P a2  (6)
d31E + + aa (6)

alb E 2p a2bY2E 2 p

where E is the applied electric field E = ,, /a, . PZT is the most common

piezoelectric material, and is also used in the following analysis. The initial

depolarization field of PZT film/sheet is around 5 x 10 volt/meter. To be



conservative, we assume the applied electric field to be 3 x 105 volt/meter.

Combine Eqs. (4)-(6), we have the deflection curvature K

1 -d 3,E

o (- E 13 E 3

P (YEa 3 + Y2Ea) a2
S +6" (a + a2 ) 1E

(7)
1_ + a + a2

a2 2E ) 2
The vertical deflections of the interactive part and extended ring part are:

A, = p. (1- cosO) = 2psin2(0/2)- 2p. (9/2)2 - 2p-(l1 /2p)2 = 12 /2p

A2 = 12 sing0;:, t o- d 12. -2(l 1 p)

Summarizing the two deflection magnitudes, the total endpoint deflection is

12 1( 2 +

2
A = A1 + A2  (12p .

112)
21

Let yE = 50GPa, Y2E = 170GPa, d31 = -274 x 10- 12m / v, a2 = 0.66mm,

11 = 12 = 4mm. The relationship of the endpoint deflection versus the thickness of the

PZT film/sheet is plotted in Figure 4-4:

C

0
05)

a,
o

ii

Thickness of PZT Film (pm)

Figure 4-4 Endpoint deflection vs. PZT film thickness

(analytical simulation).

Finite element analysis (FEA) modeling was also done to simulate the piezo-

electric bi-morph deflection. The structure for FEA modeling is shown in Figure 4-2

-B n _



(left). The right ends of the PZT sheet and the silicon half-shackle are set to be

mechanically fixed, the applied electric field and the materials parameters are the

same as the settings in the above analytical simulation. The thickness of the PZT

film/sheet varies from 5pm to 2mm. The simulation results are like the one in Figure

4-2 (right), and more details can be found in Appendix A (Fundamentals of

Piezoelectricity Analysis) and Cl (Modeling of Piezoelectric Bi-morph). The plot of

the endpoint deflection versus the thickness of the PZT film/sheet is shown in Figure

4-5 along with the analytical simulation curve:

2.u

1.5
E

0

) 1.0

0.5

0.0

Thickness of PZT Film (pm)

Figure 4-5 Endpoint deflection vs. PZT film thickness

(FEA simulation).

The analytical and FEA simulations achieve quite consistent results with little

difference, which might be caused by the simplification procedure during analytical

modeling. Both curves show a deflection peak within the thickness range of the PZT

layer. In analytical simulation, the -1.8pm deflection peak appears with a 560pm

thick PZT sheet. In FEA modeling, the maximum deflection is -1.5pm at the PZT

thickness of 350pm. In either modeling, the deflection magnitude is below 0.01 pLm if

the PZT film is less than 1 pm thick. As a result, the PZT thin film is excluded from

MGS application since the deflection is apparently too small for moth antennae

stimulation. One workable PZT-Si bi-morph actuation approach is to attach a

0.15mm-Imm thick PZT sheet onto the silicon shackle, which is able to deflect at

the magnitude of over 1 pm.



One way to achieve the bi-morph is to bind PZT and silicon with epoxy since

silicon is not solderable, and solder wires to the top and bottom PZT electrodes. It is

also feasible to deposit a buffer layer, such as a Ti/Au thin film, on the silicon

substrate and have the PZT sheet soldered onto the surface. Wires are then soldered

to the PZT top electrode and to the Ti/Au thin film deposited on the silicon substrate.

4.3 Piezoelectric Bending Actuation

Piezoelectric bending actuators can be built by laminating two piezoelectric

layers to a center shim. The two-layer element produces curvature when one layer

expands while the other layer contracts as shown in Figure 4-6. These transducers

are often referred to as piezoelectric benders.

Fout

j/
/
I/

Figure 4-6 Two-layer piezoelectric bender.

Relative large bending force and the variety of mounting and motion options

make benders a popular choice of design engineers. Our second approach to build

MGS devices is to integrate the benders into the shackle structure. To achieve better

actuation, the shackle is redesigned with three separate parts and connected by the

benders. Two ends of a bender are glued onto silicon, and the middle region

suspended in air. Six designs are shown in Figure 4-7. PZT benders were obtained

from Piezo Systems, Inc., which were cut into 5mm by 2mm pieces. The deflection

magnitude is proportional to length2, and the 5mm-long bender is labeled to deflect

by 5pm. As shown in the FEA modeling result, the shackle's endpoint deflection is

up to 12.5pjm when actuated by the PZT bender (Figure 4-8). The right end of the

bender is mechanically fixed, and the applied voltage is 160V.

T Vin +
-- --- ·------- ----- - M ou. AXout
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Figure 4-7 Schematic view of six Mechanical Gyroscope Stimulators
made of PZT benders (dark gray) and silicon parts (light gray).
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Figure 4-8 FEA modeling of bender actuation.

The benders are attached onto shackle parts by epoxy, and the entire device is

then pushed off the wafer. By this means, the first workable MGS was assembled as

shown in Figure 4-9. The straight beam actuator (top-left design in Figure 4-7) was

also tried on a living Manduca sexta moth, with antennae passing through the

shackle ring holes and the middle of the shackle waxed to the moth head (Figure

..
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4-10).

Figure 4-9 The 1 st Mechanical Gyroscope Stimulator. Silicon parts are fabricated and

kept on wafer (left); PZT benders are attached and the shackle is push off the wafer (top
right); and wires are soldered to complete the assembly (bottom right).

Figure 4-10 Bender-shackle on Manduca sexta.

The PZT bender-shackle is the first MGS device we tried on a moth. It can

generate adequate deflection magnitude, however, it is apparently too big for the

moth and interferes with the moth's flight. For practical use, the device needs to be

smaller.



4.4 Piezoelectric Stack Actuation

Piezoelectric stack actuators are assembled with thin wafers of electro-active

ceramic material electrically connected in parallel. Each layer has its polarization

direction opposite to those of the adjacent layers, and all the layers expand or

contract simultaneously when an electric field is applied (Figure 4-11). The tiny

motions of each layer contribute to the overall displacement. Due to the multi-layer

geometry, the operation voltage of the piezoelectric stack is reduced to -100V

instead of thousands of volts for the same size piezoelectric bulk devices.

S--------

Polarisation

Displacement Blocking Electrical Resonant
[pm @100 VI force capacitance frequency
]20% [N] InF -20% [kHz]
2.2 > 250 25 > 300

Figure 4-11 Design of a piezo stack actuator. Figure 4-12 Piezo stacks from PI.

Miniature piezoelectric stacks are available with a variety of dimensions from

Physik Instrumente (PI) GmbH & Co. KG. The smallest stack is 2 x 2 x 2 mm with

the displacement up to 2.2 pm as highlighted in Figure 4-12. With such stacks, we are

then able to assemble smaller actuating shackles, and two designs are illustrated in

Figure 4-13. With the left design, we can actuate the two antennae independently,

while with the right one we pull or push both antennae simultaneously. For the

independent operation stimulator, the middle attaching part or the two end rings are

also designed with different sizes and shapes. One appropriate piezo-stack shackle

was mounted on a moth, as shown in Figure 4-14.

I w
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Piezoelectric Stacks/
Piezoelectric Stack/

Figure 4-13 Designs of piezo-stack shackles.

Figure 4-14 The 2nd Mechanical Gyroscope Stimulator: schematic view of the silicon parts
(top left); piezo stacks glued on wafer (bottom left); completed stimulator (top right); and the
tested moth with stimulator on head (bottom right).

The 2nd MGS device was made by similar means like the bender-shackle in

Section 4.3. Piezo stacks were glued onto silicon parts with UV-epoxy and then

soldered with wires. The stimulator was then mounted onto the moth, with antennae

passing through the ring holes and the middle section waxed onto the moth's head.

The moth was stimulated while resting or flying with this actuator, and the testing

results are discussed in Chapter 6 (Live Testing).



Chapter 5 Micro-lever Actuation Amplifier

5.1 Motivation

The actuators in Chapter 4 are capable of generating deflections of the order of

microns, and a larger displacement is always favorable to stimulate the moth. On the

other hand, piezoelectric benders and stacks provide a force much bigger than

needed as a MGS device. Thus, can we achieve a greater stimulation magnitude by

using the excess force?

A lever is a rigid object that couples the mechanical force and the distance. For

the lever shown in Figure 5-1, if a 5pxm displacement is applied at the load point A,

the endpoint deflection will reach 144.4pm.

If 5um displacement is applied at point A.
L the end of the lever will deflect by 144.4 um.

Figure 5-1 Demonstration of the micro-lever displacement amplifier.

Based on the leverage mechanism, a micro-lever is designed to amplify the

actuation (Figure 5-2). In this design, a piezo bender is used to demonstrate the lever

amplification, with modeling and testing discussed in the rest of this chapter.
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Figure 5-2 Schematic view of a micro-lever.

5.2 Modeling

The fabricated micro-levers have similar structures as shown in Figure 5-1, with

the in-plane depth set by the thickness of the silicon wafer which is about 680prm.

The horizontal lever beam is 4mm long and 200gtm high, and the vertical supporting

beam is 100pm wide. Micro-levers with a variety of neck widths and load point

offsets, defined in Figure 5-3, are modeled and tested.

Loadponttdftset

Neck vidth

Figure 5-3 Definition of neck width and
load point offset.

(1) Micro-lever Neck Design

For a certain neck width, the shape of the neck plays a role in determining the

maximum stress. For example, the three levers in Figure 5-4 (B-D) have the same

neck width of 30rpm but different shapes. The curvature radii are 35nm, 20pm, 35jim,



25um

D

Figure 5-4 Designs of 30prm-wide micro-lever neck (A: schematic view of the
micro-lever with endpoint deflection of 25pmn; B-D: necks with various curvature
radii and neck locations).

respectively, and the neck of (B) is 15pm lower than (C) and (D). If the endpoint

deflections of the levers reach 25jpm, the von Mises stress at the necks will vary

from 198.6 MPa (B), 261.6 MPa (C), to 230.2 MPa (D) from FEA modeling. At the

same neck height, the bigger the curvature radius, the lower the stress is (C:D); while

with the same radius of 35pm, the half circle geometry is better than a less-than-half

circle one in reducing the stress (B:D). Thus, the micro-levers are designed with

half- circle-shaped necks and the curvature radius equal to half of the difference

between the support beam width (100 pm) and the neck width (30, 40, or 60jPm).

R = (w.b.- wneck)/2 = (100p - wneck) / 2

(2) Actuation Amplification Modeling

A series of micro-levers are analyzed by finite element method with COMSOL

Multiphysics. The shape of the neck is designed like the one in Figure 5-4(B). Neck

width is set as 30, 40, or 601pm, and the load point offset is 150, 300, 500, or 1000gpm.

The piezo benders are the ones described in Section 4.3, and Imm of the bender

length will be fixed inside the silicon frame and thus the effective bender length is



set as 4mm in the modeling. The micro-lever is 680pjm thick into the plane.

The modeling results are listed in Table 5-1 for deflection magnitude and in

Table 5-2 for the maximum von Mises stress concentrated at the neck points. 3-D

illustrations are also shown in Figure 5-5 and Figure 5-6, respectively. For more

details about FEA modeling results, please refer to Appendix C2 (Modeling of

Micro-Lever Actuation Amplifier).

Table 5-1 Endpoint deflection of micro-levers.

Endpoint Deflection Load Point Offset (pm)

(m-) 150 300 500 1000

30 30.68 22.79 16.28 9.37
Neck Width

(Irn) 40 27.09 21.54 15.81 9.30

60 24.00 20.32 15.35 9.22

32

24
E

0

16a0~1

. I

Figure 5-5 Endpoint deflection of micro-levers (FEA modeling).
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Table 5-2 Maximum von Mises stress of micro-levers.

Maximum Stress Load Point Offset (pm)
(MPa) * 150 300 500 1000

30 271.9 263.4 151.3 88.7
Neck Width

(Pm) 40 216.4 171.3 134.2 67.1

60 147.4 124.2 100.7 59.4

300

0n

a)(D

E
E
2S

240

180

120

60

1000 30 0

Figure 5-6 Maximum von Mises stress of micro-levers (FEA modeling).

The free deflection of a 4mm long bender is 2.72ipm in FEA modeling, and the

endpoint displacement of the micro-lever is around one order higher if the load point

offset is less than 300pm. It also clearly shows that both the endpoint deflection of

the micro-lever and the von Mises stress concentrated at the neck point follow the

same trend, and they increase by decreasing the load point offset or the neck width.

And with the same load point offset, though the deflection does not increase much

by shrinking the neck width, the stress is greatly relieved.

6j

."'et 1r)



Micro-levers were assembled for testing. First, the piezo bender is fixed inside

the silicon frame with epoxy. Then wires are soldered onto the top and bottom

electrodes of the bender. Finally, the tip of the bender is secured with the silicon load

point (so-called "contact point") by applying a tiny drop of epoxy (Figure 5-7).

Figure 5-7 An assembled micro-lever.

5.3 Experimental Results

By considering the assembly difficulty and the amplification efficiency, three

micro-levers are chosen, and the endpoint deflections were measured with a Polytec

Scanning Vibrometer 200. The three devices have the same load point offsets of

300pm, and their neck widths are 30jim, 40pm, and 60pm, respectively. One of the

three devices is shown in Figure 5-8. Micro-levers are fixed on glass slides with

epoxy for test handling.

The principle of the deflection measurement is demonstrated in Figure 5-9. In

our experiments, a sinusoidal signal causes the piezo bender to vibrate. The

measurement beam from the interferometer in the scanning head is positioned to a

scan point on the measurement object (the bender or the lever) by means of mirrors

and is scattered back, and the reflected laser light interferes in the scanning head

with the reference beam of the interferometer. A photodetector records the interfered



scattered light, and a decoder in the vibrometer provides a voltage which is

proportional to the velocity of the vibration parallel to the measurement beam. The

deflection magnitude is calculated from the vibration velocity.

Figure 5-8 A tested micro-lever. Top-left: micro-lever with a quarter; top-right: top view;

bottom-left: front view; bottom-right: back view.
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Figure 5-10 Deflection testing points (top view of the micro-lever). Left: testing points of the

micro-lever end; right: testing points of the piezo bender.

Deflecting results of three points were collected and averaged for each

measurement (Figure 5-10). The operation electrical frequency is 7.8Hz, and the

results for the three devices are listed in Table 5-3. The micro-lever endpoint

deflection magnitudes are 28.27, 21.63, 17.49ipm for micro-levers with 30, 40, 60pm

in neck width, respectively.

Table 5-3 Experimental results @ 7.8Hz.

Load Point Offset Deflection (gLm) Effective
d2/dl

= 300pm Bender (dl) Micro-lever (d2) Amp. Ratio

4mm bender 2.32 -- -- --

Micro-lever 30 1.95 28.27 14.5 12.19
Neck Width

(pm) 40 1.80 21.63 12.0 9.32

60 1.36 17.49 12.9 7.54

At the testing frequency of 7.8Hz, the 4mm bender itself deflects by 2.32prm,

which is close to the modeled 2.72pm at static condition. The micro-levers deflect

17.49, 21.63, and 28.27pm with the neck widths of 30, 40, and 60pm, respectively.

The experimental results are quite consistent with the FEA prediction, amplifying the

bender deflection by an order of magnitude successfully.

The differences between experimental and FEA modeling results are also

observed. First, the load point offsets are not exactly 300pm as designed because of



the application of epoxy on the contact points; and second, though the piezo benders

are carefully aligned with the silicon frames under stereo optical microscope, the

manually assembly offsets cannot be avoided. The two effects cause the variation of

the amplification structures and the ratio of d2/dl. Combining with the variation of

material properties and instrumental errors, the effective amplification ratios

(E.A.R.), which are the deflection ratios of the micro-lever over the free bender, are

biased at a small scale from the FEA modeling results.

Table 5-4 Comparison of experimental and FEA results

Load Point Offset Experimental FEA Modeling
= 300pm d2/dl E.A.R. d2/dl E.A.R.

Micro-lever 30 14.5 12.19 8.38
Neck Width

(pm) 40 12.0 9.32 -10 7.92

60 12.9 7.54 7.47





Chapter 6 Live Testing

The Mechanical Gyroscope Stimulator #2, which is described in Section 4.4

Figure 4-14, was mounted onto a living Manduca sexta moth, which was

subsequently stimulated. A tiny magnet was glued on the moth thorax with epoxy,

and the moth was stabilized by fixing the magnet to the iron probe. The experimental

setup is shown in Figure 6-1. Voltage pulses were then applied while the moth was

resting or flapping its wings. The moth was raised by our collaborators in University

of Washington at Seattle, and we brought our MGS devices to Seatlle and did the

live testing there. The peak operational voltage is 100 volts. The LED indicated the

impulses.

Figure 6-1 Experimental setup of MGS live testing.

The live testing was recorded, showing the moth's strong reaction to the antennal

stimulation. With an impulse applied, while the moth was resting, the moth stretched

its six legs and started flipping the wings; while the moth was flapping wings as it

does during flying, the moth swung the legs and the wing flapping magnitude was

enlarged. The same results were observed when either the left or right piezo stack

was activated. In addition, the moth also swung its abdomen when stimulated under



all circumstances. Images captured from the experimental video are shown in Figure

6-2 and Figure 6-3.

It is exciting to see all the moth responses to the mechanical stimulus. It is very

likely that the moth flight can be affected by the abdomen motion, and thus we are

one step closer to our final goal to achieve controllable moth flight.

Figure 6-2 MGS stimulating while the moth's resting.

Figure 6-3 MGS stimulating while the moth's flapping wings.



Chapter 7 Future Work

Future work will focus on further device minimization, actuation amplification,

and multi-degree actuation.

(1) Further Minimization

The Mechanical Gyroscope Stimulator #2 fits the moth, but if it is further

miniaturized, it will definitely work better by reducing the moth's burden. First, the

silicon wafer that we were using is 680gm thick. This led us to consider the use of a

thinner silicon wafer which will lessen the device weight and probably will still be

good enough for operation. Second, the smallest piezo stack we used was purchased

directly from PI, but the vendor also offers customization options. Thus we can order

smaller piezo actuators; at least we can reduce the height of the stack to lighten the

actuator parts.

(2) Actuation Amplification

The actuation amplifiers were modeled and tested with the PZT benders. In the

future, such leverage structures need to be modeled and tested with piezo stacks

which are able to offer comparable actuation magnitude but smaller than the benders

we used. Also the amplifier should be minimized to fit the moth.

(3) Multi-degree Actuation

All the devices modeled and fabricated to now actuate in only one degree,

though the benders are vertically actuating while the stacks are horizontally actuating.

Two-degree or three-degree actuation concepts and the devices are going to be

developed.

However, the focus of attention is subject to change depending on what our



collaborators and other scientists discover or observe regarding the moth flight

mechanism.



Chapter 8 Conclusions

Our project was to aid the study of moth flight mechanisms by mechanically

stimulating the moth antennae. We first developed a series of mounting structures for

the moth antennae, from simple rings, 2-D assembly structures, 3-D assembly

structures, to the finally adopted "antennal shackles". The shackles fit the moth very

well and form the base for the Mechanical Gyroscope Stimulator (MGS).

Once the mounting kits were selected, we tried to integrate the actuation

elements into the shackle structure. Extensive finite element analysis modeling was

performed in the design and evaluation stages. COMSOL Multiphysics is the FEA

tool used. From the FEA modeling results, we excluded the approach of depositing

piezoelectric thin film onto the shackles, and instead, we took several practical

approaches, such as attaching the 350-500tm thick PZT sheet onto the shackle,

using piezo benders as the actuating beams (MGS #1), and the piezo stack MGS #2.

Live testing of MGS #2 was also done by stimulating one moth antenna while the

moth was resting or mimicking flying. The moth reacts strongly to the mechanical

stimulus, which makes it possible in principle to obtain a flight-controllable cyborg

moth.

Actuation amplifiers were also studied, and leverage structures were adopted.

The actuation magnitudes were amplified by an order of magnitude and such

amplifier might be further minimized and used in later MGS devices.
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Appendix A Fundamentals of Piezoelectricity Analysis

The piezoelectric effect was discovered by Jacques and Pierre Curie in 1880. If

certain crystals are subject to mechanical strain, they are electrically polarized and

the polarization degree is proportional to the applied strain. These same materials

also deform when they are exposed to an electric field. This has become known as

the inverse piezoelectric effect.

The piezoelectric effect exists in a number of naturally-occurring crystals, for

instances quartz and lithium niobate. Besides, an important group of piezoelectric

materials are the piezoelectric ceramics, of which lead zirconate titanate (PZT) is an

example. The piezoelectric devices discussed in this thesis, the piezo film/sheet,

piezo benders and piezo stacks, are all made of PZT ceramics, and the materials

properties of PZT are crucial to model the devices performance.

PZT ceramics are polycrystalline ferroelectric materials with the perovskite

crystal structure. Above a temperature known as the Curie point, this crystal lattice is

of cubic symmetry, and the elementary cell is shown in Figure A-l(1). In this

structure, positive and negative charges sites coincide, so there are no dipoles present

in the material. Below the Curie temperature, the crystal lattice is of tetragonal

symmetry and then each cell has an electric dipole (Figure A-1 (2)). When an electric
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Figure A-i PZT elementary cell. (1) Cubic lattice; (2) tetragonal lattice.
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field is applied, the cell can be reversed or biased.

Piezoelectric effects are strongly orientation dependent. To analyze the

piezoelectric devices, the notation conventions are discussed first. PZT ceramics

need to be poled in a particular direction, and the direction of positive polarization is

chosen to coincide with the Z-axis of an orthogonal system (Figure A-2).

Alternatively, the normal stress components along axes X, Y, and Z are denoted by

subscripts 1, 2, and 3, respectively. Shear stress and strain components about these

axes are denoted by subscripts 4, 5, and 6.

Z)3

$6

Polarinbion
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(X)

Figure A-2 Illustration of the axes and directions of stress and strain.

In a piezoelectric crystal, the constitutive equation that relates electric

polarization (D) and applied mechanical stress (7) is

D = dT + EE (A-l)

where d is the piezoelectric coefficient matrix, c is the electrical permittivity matrix,

and E is the electrical field. The general constitutive equation can be written in the

full matrix form (SI units):

S  d l  d 12  d13  d14  d15  d16 -

D 2  = d21 d22 d23 d24 d25 d26

D3 d31 d32 d33 d34 d35 d36_

.T
2 11 12 -13][E 1

3 21 22 23 E2 (A-2)
T

T 31 '32 '33 _E3

......................-....



The terms T! through T3 are normal stresses along axes 1, 2, and 3, and T4

through T6 are shear stresses.

The inverse piezoelectric effect is similarly described by Equation (A-3). The

total strain (S) is related to both the applied electric field and any mechanical stress

(SI units):

where S is the strain vector

written in a matrix form:

r -- I r

S2 S21 S22

S3 _ 31 $32

S4 S41 S42

S 5  s51 s52

S 6 S61 S62

For PZT ceramics, the

tetragonal symmetric lattice:

0

d= 0

0d31

C= 0

0

SI1l

S12

S13
S=

0
0

o0

S = sT + dE (A-3)

and s is the compliance matrix. Equation (A-3) can be

d31

d32
d33

d34

d35
d36

[E,
E2

[E3

(A-4)

matrices of d, e, and s are simplified due to their

0

0

0

0

S12

Sl

S13

0
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0
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0
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(A-5)

(A-6)

0

0

0

0

0

2(s, -sl 2)

(A-7)

Among all the d constants, d33 and d3 1 are sometimes referred to as "piezo gain".

d33 describes the strain parallel to the polarization vector of the ceramics (thickness)



and is used when calculating the displacement of stack actuators; d31 is the strain

orthogonal to the polarization vector (width) and is used for calculating tube and

strip actuators. Typical matrices d and s for PZT-5H are:

0 0 0 0 741 0
d= 0 0 0 741 0 0 xl0-12C/N (A-8)

-274 -274 593 0 0

16.5 -4.78 -8.45 0 0 0

-4.78 16.5 -8.45 0 0 0

-8.45 -8.45 20.7 0 0 0

0 0 0 43.5 0 0

0 0 0 0 43.5 0
0 0 0 0 0 42.6

x 10-12 Pa'- (A-9)s =



Appendix B Heat Sink

To achieve controllable remote flight machines, the power supply is a critical

issue. Our collaborators are trying to harvest energy from the moth itself, such as

thorax motion and also the thermal difference between the moth body and the

environment.

Thermoelectricity refers to a class of phenomena in which a temperature

difference creates an electric potential or an electric potential creates a temperature

difference. In modem technical usage, the term almost always refers collectively to

the Seebeck effect, Peltier effect, and the Thomson effect. All these effects have been

employed in devices using suitable compound semiconductors: thermogenerator

devices for converting heat into electric energy (Figure B-l) and Peltier cooler

devices for pumping heat using a current flow. The heat sink is attached on the Cold

Side or Hot Side to conduct the heat. Silicon is a good choice to build the heat sink

because of its good thermal properties. The thermal conductivity of silicon is 149

W-mI.Ký', close to that of aluminum which is 237 Wm'-K•' 1 . Besides, silicon can be

precisely fabricated at micro-scale.

Low
bmparafi

Figure B-1 Schematic view of a thermogenerator.

The silicon heat sinks we made for our collaborators are other examples of

three-dimensional assembly. Finger-array and the base are fabricated separately, and

the parts are then manually assembled and fixed with epoxy. The fingers are inserted



into the moth body, and also pointed out to air. Finally, a power of -50tW was

obtained by a specially designed thermogenerator attached with the heat sinks.

Figure B-2 The heat sink. Top-left: base part; bottom-left: erected part; top-right: schematic

view of the heat sink; bottom-right: fabricated and assembled heat sinks.



Appendix C Modeling of Piezoelectric Actuation

Cl Modeling of Piezoelectric Bi-morph

Silicon half-shackle is fixed with PZT film/sheet on the top surface. The PZT

film/sheets are 5mm long and 2mm wide. The thickness of the silicon half-shackle is

660gnm, and the thicknesses of PZT film/sheet vary from 5gm to 5000gm in the

following FEA modeling. The FEA modeling results are shown in Table C-i and

plotted in Figure C-1. Individual results are also shown in Figure C-2 - Figure C-20.

Table C- FEA modeling results of silicon half-shackle bound with PZT film/sheet.

PZT(gm) Deflection(gm) PZT(gm) Deflection(gm) PZT (gm) Deflection(gm)
5 0.0575 350 1.46 800 1.168

10 0.314 400 1.454 1000 1.006
30 0.323 450 1.44 1500 0.712

50 0.504 500 1.404 2000 0.527

100 0.867 550 1.368 5000 0.294

200 1.256 600 1.336
300 1.437 660 1.286

1.5

S1.0

C
0

a)

0.5

0.0

0.0

-in- FEA Modelin

m

I.

0 1000 2000 3000 4000

Thickness of PZT Film/Sheet (pm)

5000

Figure C- FEA modeling results of silicon half-shackle bound with PZT film/sheet.
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Figure C-2 Silicon half-shackle with 5tm thick PZT film/sheet.

/

/

Figure C-3 Silicon half-shackle with 0lm thick PZT film/sheet.
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Figure C-4 Silicon half-shackle with 30tm thick PZT film/sheet.
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Figure C-5 Silicon half-shackle with 50pm thick PZT film/sheet.

Figure C-6 Silicon half-shackle with 100ltm thick PZT film/sheet.

Figure C-7 Silicon half-shackle with 200pm thick PZT film/sheet.
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Figure C-8 Silicon half-shackle with 300m thick PZT film/sheet.
Figure C-8 Silicon half-shackle with 300tm thick PZT film/sheet.

LiY --___~ .. _._.____

Figure C-9 Silicon half-shackle with 350jtm thick PZT film/sheet.

Figure C-10 Silicon half-shackle with 400gm thick PZT film/sheet.
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Figure C-11 Silicon half-shackle with 450gjm thick PZT film/sheet.

Figure C-12 Silicon half-shackle with 500pm thick PZT film/sheet.

Figure C-13 Silicon half-shackle with 550gm thick PZT film/sheet.
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Figure C-14 Silicon half-shackle with 600pm thick PZT film/sheet.

/-

Figure C-15 Silicon half-shackle with 660gm thick PZT film/sheet.

Figure C-16 Silicon half-shackle with 800 jm thick PZT film/sheet.
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Figure C-17 Silicon half-shackle with 1000tm thick PZT film/sheet.

Figure C-18 Silicon half-shackle with 1500gm thick PZT film/sheet.

Figure C-19 Silicon half-shackle with 2000apm thick PZT film/sheet.
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Figure C-20 Silicon half-shackle with 5000 tm thick PZT film/sheet.



C2 Modeling of Micro-Lever Actuation Amplifier

Piezoelectric benders are 5mm long and 2mm wide. Because 1mm of the length

is buried inside the silicon frame, the effective bending length of the piezo bender is

set as 4mm. The modeling result of the 4mm bender is shown in Figure C-21, with

the free deflection magnitude of 2.72gtm.

Figure C-21 Free deflection of 4mm PZT bender.

The modeling results of the micro-levers are summarized in Table 5-1 & 5-2,

and plotted in Figure 5-5 & 5-6. The 12 individual results are plotted in Figure C-22

- Figure C-33. In each figure, the top plot is the endpoint deflection of the

micro-lever; the bottom-left one is the deflection of the bender end; and the

bottom-right one shows the von Mises stress of the micro-lever neck region.
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Figure C-22 Modeling results for the micro-lever with 30tm neck width and 150tm load point

offset.
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Figure C-23 Modeling results for the micro-lever with 30tm neck width and 300pm load point

offset.
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Figure C-24 Modeling results for the micro-lever with 30pm neck width and 500tm load point

offset.
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Figure C-25 Modeling results for the micro-lever with 30Rtm neck width and 1000tm load

point offset.
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Figure C-26 Modeling results for the micro-lever with 40jm neck width and 150pm load point

offset.
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Figure C-27 Modeling results for the micro-lever with 40Rm neck width and 300 tm load point

offset.
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Figure C-28 Modeling results for the micro-lever with 40pm neck width and 500[tm load point

offset.
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Figure C-29 Modeling results for the micro-lever with 40tm neck width and 1000~m load

point offset.
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Figure C-30 Modeling results for the micro-lever with 60Rm neck width and 150pm load point

offset.
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Figure C-31 Modeling results for the micro-lever with 60tm neck width and 300gjm load point

offset.
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Figure C-32 Modeling results for the micro-lever with 60tm neck width and 500uim load point

offset.
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Figure C-33 Modeling results for the micro-lever with 60m neck width and 10OOgm load

point offset.
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Appendix D Process Flows

The silicon fabrications were all conducted in Technology Research Laboratory

(TRL) of MIT Microsystems Technology Laboratories (MTL). All the recipes shown

in the process flows are for TRL facilities.

Step Description

Starting material

Photo Lithography
HMDS
Spin Coat Photoresist #1
(AZ 4620, thick)

Pre-bake
Spin Coat Photoresist #2
(AZ 4620, thick)

Pre-bake
Exposure (Mask #1)
Develop
Post-bake

Mounting
Staring materials
Spin Coat Photoresist
(AZ 4620, thick)
Mount
Bake

Etch

Post-treatment
Release
Rinse
Ashing

Surface Passivation
Clean
Oxidation

6" (100) single side polished silicon wafer

HMDS vapor deposition #3
Dispense: static for 15 seconds
Spread: 1500 rpm for 6 seconds
Spin: 1500 rpm for 60 seconds
At 90 0C for 20 minutes
Dispense: 750 rpm for 15 seconds
Spread: 750 rpm for 6 seconds
Spin: 1500 rpm for 60 seconds
At 90'C for 60 minutes
4 intervals, each with 15 sec. exposure and 15 sec. waiting
For no more than 4 min.
At 90 0C for 30 minutes

6" quartz wafer
1500 rpm for bulls-eye pattern

Mount the silicon wafer onto the quartz wafer
At 900 C for 10-20 min

Etch through the wafer with STS-2. Recipe: ole3

Release the silicon wafer off quartz wafer in acetone
Rinse in isopropanol then in DI water
For at least one hour in TRL asher

Piranha clean in TRL Acidhood-
Thermal oxidation in tube B-1



The process flow can
very beginning:

Step
Starting material

Oxidation
Clean
Oxidation

Photo Lithography
HMDS
Spin Coat Photoresist #1
(AZ 4620, thick)

Pre-bake
Spin Coat Photoresist #2
(AZ 4620, thick)

Pre-bake
Exposure (Mask #1)
Develop
Post-bake

be improved by growing a 0.5jim thick oxide layer at the

Description

6" (100) single side polished silicon wafer

RCA clean
Thermal oxidation in tube A-2

HMDS vapor deposition #3
Dispense: static for 15 seconds
Spread: 1500 rpm for 6 seconds
Spin: 1500 rpm for 60 seconds
At 900C for 20 minutes
Dispense: 750 rpm for 15 seconds
Spread: 750 rpm for 6 seconds
Spin: 1500 rpm for 60 seconds
At 900 C for 60 minutes
4 intervals, each with 15 sec. exposure and 15 sec. waiting
For no more than 4 min.
At 900C for 30 minutes

BOE (7:1) in TRL Acid Hood #1

Mounting
Staring materials
Spin Coat Photoresist
(AZ 4620, thick)
Mount
Bake

Silicon Etch

Post-treatment
Release
Rinse
Ashing

Surface Passivation
Clean
Oxidation

6" quartz wafer
1500 rpm for bulls-eye pattern

Mount the silicon wafer onto the quartz wafer
At 900C for 10-20 min

Etch through the silicon wafer with STS-2 (recipe: ole3)

Release the silicon wafer off quartz wafer in acetone
Rinse in isopropanol then in DI water
For at least one hour in TRL asher

Piranha clean in TRL Acid Hood #1
Thermal oxidation in tube B-1

Oxide Etch



Appendix E Mask Layouts

All the devices previously shown were all prepared by single-mask fabrication.

For delicate features, "halo" structures are adopted to improve plasma etch

homogeneity.

(1) Single rings (Section 3.2)
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(2) 2D Assembly (Section 3.3)

(3) 3D Assembly (Section 3.3)



(4) Shackles (Section 3.4)





(5) Shackles (Section 4.3)
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(5) Shackles (Section 4.4)



(6) Micro-levers

a. Neck width 30tm, load point offset 150jtm
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b. Neck width 40tm, load point offset 300tm

c. Neck width 60tm, load point offset 500m



d. Neck width 30pgm, load point offset 1000rpm

(7) Heat Sinks (Appendix B)
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