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Abstract

This thesis focuses on methods of increasing the accuracy of ar-
ticulated structures. Sources of measurement error in articulated
structures were first identified. Various state of the art motion
measuring methods were reviewed and none were found to be entirely
suitable for use with articulated structures. Accordingly, a six degree
of freedom motion measuring system was developed that relied directly
(only) on the stability and accuracy of non-contact displacement measur-
ing sensors. The design is also flexible enough to allow for the
introduction of new types of sensors as they become available. A model
was tested on a simulated one degree of freedom robot and the measured
errors were predicted by the error analysis. On the model tested, which
had the same error amplification factor as a robot with a 90" reach,
endpoint error was on the order of .000625". Subsequently, the errors
present in the test system were identified, and recommendations made to
correct them. A conceptual robot design was then presented which showed
that a five axis robot with a 76" reach and 200 pound payload could be
designed to have a payload to weight ratio of 4:1 and an endpoint feed-
back accuracy of .000284", which is sufficient for most manufacturing
processes the robot may be required to perform. Thus by using the con-
cepts developed, an order of magnitude increase in structural
performance and a two to three order of magnitude increase in accuracy
over existing robots was attained.
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Chapter 1

State of the Art Methods for Increasing

Accuracy of Articulated Structures

1.1 Introduction

This thesis addresses the issues of accuracy and repeatability of

articulated structures. Articulated structures are chosen for study

because they are the most versatile type of manipulator. Presently,

large articulated robotic manipulators (>36" (1 m) reach and 20 pound

(10 kg) payload) can only be used to repeat previously taught positions

to within .010" (.3 mm) (somewhat better performance can be achieved

after an extensive warm up period). Also most systems do not offer the

option of off line programming. Thus articulated robots are used mainly

in dedicated systems where special fixtures have been designed to allow

the robot to manipulate a particular part or perform a specific

function.

Accuracy is defined as how closely measurements are with respect

to an absolute reference standard. Repeatability (often referred to as

"precision'), on the other hand, is defined as the average difference

among a group of measurements. Resolution is defined as the smallest

detectable incremental measurement that the system can make. With

regard to robots, accuracy is the ability to use remote control to

direct a tool's motion along a desired path, or to position the tool at



any desired point in the work envelope. Repeatability is the ability of

the robot to perform a previously taught task. At present, no large,

accurate articulated robots are available.

Current research is attempting to substitute vision and/or com-

pliance devices for accuracy in pick and place operations (used as an

aid in the manufacturing process); however, they cannot provide accuracy

which is required when performing machining operations such as laser and

water jet machining and hole drilling (used as part of the manufacturing

process). At present, accuracy of the former operations, when performed

by articulated robots, is limited to about ± .10" (2.5 mm). The

development of an accurate articulated robot system thus would lead to

large productivity gains in the areas of low reaction force machining.

Accordingly, the objective of this thesis is to develop and test

a sensor system that can determine the true position and orientation of

an articulated structure's joints and endpoint. The system design must

satisfy the following: 1) system accuracy must be limited only by that

of the electronic systems, and 2) the system must not restrict the

motions of the supporting structure. Conceptual designs which employ

the sensor system are also discussed.

This document is organized into chapters which describe the

general design methodology for the sensor system. The design of a

specific test system is also discussed in order to help test the

developed concepts. A brief summary of chapter content is given below:



Chapter 1 (Sections beginning with 1.2) Establishes the background

necessary to identify a region of design space that will lead to a

solution of the robot accuracy problem. First the state of the art and

projected research for increasing accuracy in articulated structures is

discussed. Then the main sources of the problem, mechanical positioning

and sensor system error, are identified. With the cause of the problem

in mind, some of the more "promising" ideas, such as inertial guidance

systems and goniometers, are then discussed in greater detail. Based on

this background information, the "most promising" region of design space

is identified for detailed study, and is the subject of the remainder of

this document. Appendix IA discusses the effect that the availability

of a sensor system to determine precise endpoint location of articulated

structures could have on robot design.

Chapter 2. Discusses the design principle of the goniometer as a method

of performing measurements of an articulated structure's position and

orientation. Relevant literature and patents are cited, and are used as

a starting point for development of a high accuracy multi degree-of-

freedom goniometer for articulated structures.

Chapter 3. Formulates design methodology for a high accuracy multi

degree-of-freedom goniometer to provide precise position information for

articulated structures. A brief overview of available sensor system

building blocks is made and two possible sensor system configurations

are presented (each design is flexible enough to allow new sensors to be

used as they are developed). Methods of incorporating the sensor system



into a robot are also discussed to illustrate applicability of the

sensor system design.

Chapter 4. Presents a detailed discussion of high resolution mechanical

metrology sensor building blocks including: optical devices, LVDT's,

impedance probes, and capacitance probes. Methods of achieving accuracy

in high resolution sensors by the process of mapping are also discussed.

Then a sensor system is chosen to illustrate the concepts presented in

Chapter 3 and following chapters formulate the analytical tools neces-

sary for implementation of this design.

Chapter 5. Formulates methods of error analysis necessary to arrive at

a "Total Error Budget" for predicting the accuracy of a mechanical

metrology system. Sensor linearization, placement and alignment are

discussed for the general case, and also in detail for the goniometer to

be used to illustrate the concepts presented in Chapter 3.

Chapter 6. Formulates analytical models necessary for "optimum" design

of measuring system mechanical components. The methodology described is

not only useful for the design of the test goniometer, but also for the

design of any precision measuring instrument. The detailed design of

the test goniometer is also presented.

Chapter 7. Discusses the methods and results of calibration experiments

performed to calibrate and test the test goniometer components.

Photographs of the experimental system are shown along with detailed

"how and why" explanations of the mechanical metrology procedures.



Analysis of data is performed using the results of Chapter 5 to deter-

mine the expected accuracy of the test system.

Chapter 8. Discusses the methods and results of the final tests to

determine test system performance. Error analysis of the results is

compared to that predicted by the error budget of Chapter 5.

Chapter 9. To illustrate the use of the design methodologies discussed

throughout this thesis, a conceptual design for a five degree-of-freedom

robot is presented. Back of the envelope calculations for performance

of the robot's structural and measuring systems are also presented. The

overall conclusions of the thesis are then presented.

1.2 State of the Art Robot Technology

Assessment of current robotics technology is sometimes difficult

because standards for robot metrology do not yet exist. As a result,

claims of robot performance are often inflated. Table 1.1 lists some

'popular' robots and their performance characteristics based on product

literature and observations. A review of current literature, patents,

and products indicates that no solutions to the robot accuracy problem

will become available in the near future, although various studies

indicate that solutions are possible.

For example, the National Academy of Sciences (NAS) made a com-

prehensive study [1.1] to determine the state of the art and projected

future developments in robotics and artificial intelligence. The study



Table 1.1 Comparison of Robot Performance Specifications

Weight Payload Reach
(lbs) (lbs) (in)

Claimed Rep.
(in)

Actual Rep.
(in)

Bendix
AA-160 3000

Puma 760 650

Cincinnati Milicron:
T3-746 5250

T3-586 5000

T3-726 960

150

225

14

99

102

41

.002

.008

.010

.050

. 0 0 4

.020

.015

Not tested

.060

Not tested

Observed at the National Bureau of Standards' Automated Manufacturing
Research Facility.

Robot



points out that for many operations compliance or vision can be sub-

stituted for accuracy. However, there are some operations such as hole

drilling or laser machining which require accuracy. Moreover, most

compliant systems have a small payload bandwidth, and work well only in

a vertical mode. Vision is expensive, has reliability problems, is hard

to maintain, and has trouble with shiny parts and secondary light

sources. The study also anticipates that in five to ten years robot

payload to weight ratio and accuracy will improve enough so robots will

be mobile and will be able to perform most assembly operations. The NAS

projections are also corroborated by the Society of Manufacturing

Engineers [1.2].

1.3 Sources of Machine Error and Methods of Compensation

It would be desirable for robots to achieve endpoint accuracies

on the order of .001" (25 pm) over 60" (1.5 m) which requires 16 bit

accuracy. Bear in mind that few rotational systems are capable of

achieving this type of accuracy unless they use a pulse counting method

(optical encoder or resolver). Accordingly this section will identify

the major problems that cause robots to be inaccurate and give a

specific example of why the problem cannot be overcome by brute force

(specifying the most accurate components available for present designs).

How accuracy problems in machine tools are solved is also discussed to

provide insight into the emerging field of accuracy enhancement of

mechanical systems.



Robots are inaccurate because they have no sensors to detect

errors caused by, for example, gear backlash or structural deflections.

Thus when calculating position from joint angles, robot controllers

presently assume the structure is rigid. Methods are beginning to be

developed to compensate for some of these motions [1.3, 1.4, 1.5]. The

first reference describes a method and apparatus for calibrating a robot

to increase its repeatability and accuracy; however, the reliability of

the method seems doubtful, and requires periodic updating. The second

reference describes a "manually manipulated teaching robot" whose mo-

tions a large robot are to later follow, but the method addresses the

problem of repeatability, not accuracy. The third reference describes a

method for allowing repeatable adjustment of gear backlash. The above

approaches may help improve repeatability, but will not provide the

breakthrough necessary for significantly increasing robot accuracy and

hence utilization.

As an example of the effect of even small errors on robot ac-

curacy, consider the effect of the following errors from high precision

components: 1) gear backlash e (10 arc-sec [1.5]), and 2) misalignment ý

between encoder shaft and axis of bearing rotation (5 arc-sec [1.6]).

Assume a robot with two 30" (.8 m) articulating arms I, and ' 2 and two

degrees of freedom as shown in Figure 1.1. The endpoint error Aý is:

AT = (E + C)(2X 2  + l) (1.1).

With the above values, Ai = .0065" (.17 mm). Even for this rigid link

model, a reasonable size robot (reach 60", payload 50 lbs (1.5 m, 23



-r

Encoder and gear backlash error Resultant endpoint
error

Figure 1.1 Schematic representation of endpoint error caused by gear
backlash and encoder errors



kg)) would have trouble inserting parts into collets (requires ±.003"

(.08 mm)). Note that remote robot programability (as opposed to teach

mode) is a key to a truly flexible manufacturing system because it is

impractical to re-teach the robot every time a new part is added to the

line. With the above in mind, consider how accurate machine tools are

built:

Physics seems to have taught us that whenever a lower limit on

size is reached, a smaller limit is then discovered. Similarly, no

mechanical system is perfect, and each axis of motion of a tool will

contain the one large degree of intended freedom, and five small error

motions. Simple geometric calculations yield the tolerances and en-

vironmental (temperature in particular) conditions necessary to achieve

the required accuracy. When the tolerances necessary to reduce the

error motions below a threshold are tighter than can be provided by

existing machine tools, extensive finishing by hand is required

(scraping and lapping). An alternative is to make the system repeatable

and map the errors (which may be temperature dependent), or sense and

then compensate for them in real time. This approach can be simply

thought of as feedback control, but the real difficulty is in providing

the feedback signal which may require 16 - 20 bit accuracy. Obtaining

high accuracy feedback signals by mapping or specialized sensing is

known as "Deterministic Metrology".

The term "Deterministic Metrology" can be interpreted as meaning

"silicon is cheaper than cast iron and it doesn't wear". For example,

in 1979 the errors of all three axes' ballscrews and ways of a Brown and



Sharp vertical mill with a 100" (2.5 m) bed were mapped with a laser,

and the controller modified to use this information to achieve position-

ing accuracies of .0002" (.0051 mm) [1 .7]. Work in progress is

attempting to increase the accuracy of a three axis slantbed lathe from

1 milli-inch to 50 microinches (25 pm to 1.2 pm) [1.7]. The necessary

measurements, however, can take months to perform and quantify and the

machine must be recalibrated every few years; thus for the general

machine tool industry it is not feasible to map and compensate for

simultaneous ballscrew and way errors in all axes. At present,

ballscrew backlash and nonlinearity (the latter is only compensated for

along one axis) are the only errors in commercial machine tools that are

compensated for by software corrections. Since machine tools are slid-

ing mass structures where load is not a strong function of position and

errors are not amplified by extended distances, the prospect of error

mapping an articulated structure is not technically feasible; therefor

direct sensing of all the structure's motions will be required.

1.4 Methods for Increasing Robot Accuracy and Repeatability

It is apparent that some robot manufacturers have been trying to

increase structural stiffness in an effort to increase accuracy [1.8].

But robots are typically cantilevered structures where loads and joint

errors are amplified by arm lengths. In contrast, machine tools are

sliding mass structures where load is not a strong function of position;

thus accuracy in machine tools is attained by building a massive struc-

ture with the predominant deformations due to shear and axial loads.

Adding more metal to robots, in an attempt to increase stiffness, can



reduce deformations due to applied loads, but it creates a slow, reach

limited tool, not a fast, dexterous robot. If a robot is to be ac-

curate, it will require a sensor system, which can measure all the

motions of the structural system, to feedback signals to the servo-

actuator system.

The above suggests that a position sensing system that is insen-

sitive to load, age, bearing runout, etc. be developed to sense true

endpoint position. This information can be used as an error signal for

the robot to home in on a desired position either with its own servos,

or it could use a "micromanipulator", as described by Sharon [1 .9], for

final positioning.

In order to determine true endpoint position, two types of sensor

systems must be considered, external and internal. The external systems

include tracking lasers, millimeter radar, acoustic pingers, and inert-

ial guidance systems. The internal systems include the class of systems

broadly known as goniometers. In choosing the best system, note that

relative position information of the robot's links will also be needed

to compute optimum paths.

In addition to accuracy, a major design requirement is that the

sensor system must not restrict the working environment of the robot;

thus most external systems would be difficult to implement because if a

robot were to reach behind a large metal object, an electromagnetic or

acoustic pulse could be blocked. This can be overcome by the use of

many sensors around the work area, but then the versatility and mobility



of the robot is lost. The characteristics of an external laser based

tracking system were studied by Bechek [1.10] and Washington [1.111

confirming the above, although the system has been found to be ideal for

purposes of robot metrology. Even if an array of sensors was feasible,

acoustic pingers are wavelength limited, and are accurate at best to one

part in 1000. Also, as accuracy is enhanced, they become very sensitive

to environmental conditions [1.12]. The main use for acoustic pingers

is in small digitizing machines (2D and 3D) and several relevant patents

have been issued [1.13, 1.14, 1.15]. Millimeter Radar, which operates

in the GHz range, offers better performance, but requires large (10" D

sphere) antennas [1.16, 1.17]. Note that even if a suitable electromag-

netic pinger system were found, two such pingers would be required on

each link to provide position and orientation information necessary for

path planning and control.

Weckenmann and Linhart [1.18] have suggested that gyroscopes

would be able to provide absolute angular positions for robots, but they

did not provide data on sensitivity requirements; thus gyroscopes will

be investigated in some detail below. Gyroscopes and accelerometers

have become the backbone of most navigation systems and an excellent

overview of their history, development, and operation is given by

Kuritsky and Goldstein [1.19]. For application to robots, the true

endpoint position would have to be periodically updated to compensate

for drift. The minimum rotation rate sensitivity is thus governed by

the time between updates of actual robot position. With the assumption



of update time = 30 minutes, robot arm length of 100" (2.5m), and re-

quired accuracy of .001", (25 Pm) the maximum allowable drift rate is

-9
5.6x10 rad/sec.

Because gyroscope sensitivities are geared toward navigation,

they are measured in nautical miles per hour (nmi/h). For purposes of

determining their sensitivity, a speed of 600 nmi will be assumed.

Typical (mechanical) navigational grade gyroscope (jewelled bearings)

will have a sensitivity on the order of .0080/h (3.9x10 - 8 rad/s) and

high precision gyros (air or magnetic bearings) will have sensitivities

of .00030/h (.2 nmi/h) (1.5x10 -9 rad/s) [1.19]. The size and cost of

the high precision units (10" (.25 m) diameter, cost on order of $500 K)

make them impractical for robot use, as well as the fact that they are

generally available only for strategic missile applications. Thus only

optical gyroscopes can be considered.

The fiber optic gyro operates by having two light beams travel in

opposite directions in a fiber optic coil. As the coil rotates about

its longitudinal axis, the optical path length between the two changes,

which leads to a phase shift 0 between the two counter-propagating beams

[1.20]:

- o81TA (1 .2).

Ao is the vacuum wave length, A is the total area enclosed by the fiber

coil, Q is the angular rotation rate, and c is the speed of light. As

of August 1983, the slowest rate of rotation detectable has been



9.7x10 -7 radians per second [1.20] which is two orders of magnitude less

-9
than is needed. Rates of 4.4x10 rad/sec are predicted by Lin and

Giallorenzi [1.21]; however they are based on the temperature being held

to within .0067OC as calculated to be necessary by Shupe [1.22].

Ring laser gyroscopes have the potential of becoming the least

expensive inertial navigation devices. In a laser ring gyro, light

travels around a triangular path and a phase shift is seen between the

clockwise and counterclockwise beams as the unit rotates about an axis

perpendicular to the plane of the triangle. In 1978, a commercial ring

laser gyro 17" (.4 m) on a side gave 4.8x10 - 6 rad/sec accuracy [1.23]

which is three orders of magnitude less than is needed. Accuracies of
-8

5x10-8 rad/sec are predicted; however they will be difficult to achieve

because a phenomenon known as the "lock-in effect" limits the minimum

rotation rate (not accuracy) that the gyro can sense [1.24]. The lock-

in effect produces coupling between the counter propagating light waves

which does not allow a phase shift to occur below minimum rotation

rates.

To measure linear motions, an accelerometer would be needed. The

most sensitive accelerometer is a Mach-Zehnder interferometer. The MZ

interferometer splits a laser beam and transmits its halfs along a

reference fiber optic cable and a sensing cable. The reference cable is

left undisturbed and a physical effect (temperature, acceleration,

sound, etc.) is imposed on the sensor cable. Accelerations as low as

-6
6x10 g have been detected [1.25]. This translates into .0023"/sec2 (58

pm/sec 2 ). Assume that a robot can be "reset" every t seconds, and the



allowable drift during this time is Aý, then the minimum detectable

acceleration is

a . _ (1.3).min  t

-10
If t = 30 minutes, and 6 = .001" ( 25 um), then a . = 6.2x10 in/sec2

(1.6x0 - 11  m/sec2).

From the above, it does not seem that inertial guidance technol-

ogy will be applicable to robot guidance problems in the forseeable

future. It should be noted that the accuracies which are required, 1

part in 100,000, are similar to those needed for strategic missile

applications so any major advances in gyro technology are likely to be

classified.

1 .5 Conclusions

In accordance with the above, this thesis will formulate a

general design methodology for sensing motions of articulated structures

which will relieve the burden of achieving accuracy from the structural

system. The basic design premise will be to remove dependence upon

mechanical precision from sensor system accuracy. Thus accuracy must

only be limited by the sensors and the electronics. The device also

must be able to use a variety of sensors so the system can be upgraded

as more accurate sensors become available.



A key to achieving accuracy is realizing that "good" sensor

accuracy is usually limited to 12 bits (14 - 16 bit accuracy can be

obtained in controlled environments). Thus to accurately measure the

large motions of a robot, which requires at least 16 bit accuracy, some

sort of encoder device (bit accuracy of sensor is enhanced by counting

of regularly spaced perturbations) which excludes the use of commer-

cially available visual, radar, sonar, and inertial guidance systems

(whose accuracy is on the order of 12 - 14 bits). In order to implement

an "encoder" type system, the sensors will have to be located near each

joint which will require a goniometer type device to support the sensors

that will prevent non-measurable structural deformations from introduc-

ing errors into the measurements. This type of system, however, will

require all small degrees of freedom to be measured directly at the

joints using 12 - 14 bit sensors. A conceptual design of this type of

system is shown in Figure 1.2 and is discussed further in following

chapters.

For application to multi-link articulated structures, ideally

each link of the goniometer type device must track its associated struc-

tural link without interfering with the motions of the structural link.

Thus each goniometer link must have six degrees of freedom which will

require six measurements to be made to determine the relative position

of each goniometer link. In general, at each joint the system must be

able to sense two small angular, three small translational, and one

large angular degree-of-freedom (the latter measuring the articulation).

Coordinate transformations between the links will give endpoint position

and orientation of each link. This type of feedback information will
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also raise the possibility of using joint actuators to help damp lower

mode structural vibrations.

The next chapter discusses the state of the art of goniometers

and their application as metrology systems for articulated structures in

greater detail.
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APPENDIX 1A

Effects of Sensor System Design on Structural System Design

If a sensor system were available that could sense all errors

(that produce endpoint errors greater than AE), then in addition to

having a remotely programmable robot, substantial reductions in the

number of required precision robot parts could be realized. The resul-

tant savings would be invested in the silicon of the sensors which does

not change with time. Thus robot design could be based on a maximum

stress criteria similar to aircraft. Note that one of the keys to

implementing automated production facilities on a widespread scale is to

reduce the amount of required initial capital investment and future

operating costs.

As an example of a maximum stress criteria design, let it be

assumed that a ten foot long, cantilevered aluminum box beam is to be

used to support 300 pounds (136 kg) with a maximum design stress of

5,000 psi (34.4 ksi). This would require a box beam seven inches high,

four inches wide with a wall thickness of three-sixteenths inch

(178x102x4.8 mm) The beam would have a section moment of inertia of 26

in (1.08x10-5m ), weigh 4.5 lbs/ft (6.7 kg/m), and deflect .67" (17

mm). On the other hand, a design for minimum deflection of .020" (.51

mm) would require a beam whose cross section is on the order of

20" x8"x5/16" (508x203x7.93). It would have a section moment of inertia

of 864 in' (3.59x10 m 4 ) which would weigh approximately 20 lbs/ft (29.8



kg/m). The resultant savings would be realized not only in structural

materials, but also in drive components. A snowball effect occurs with

the end result of a stress criteria design being a very fast lightweight

accurate robot.

As a robot becomes faster and lighter, the question of control-

lability arises. Book et al [1.26], Burrows and Adams [1.27], and

others have studied control of flexible systems for some time and al-

though the controls problem is difficult, it does not seem

insurmountable. Also the availability of a robot with endpoint feedback

would certainly stimulate new research, as there would be immediate

financial benefits for those who are successful.

As a first look at the controllability of the system relative to

existing robots, compare the natural frequencies of the two former beam

designs. The relative magnitude of the natural frequencies can be

determined by dimensional analysis and use of the Rayleigh Ritz method

[1.28]. The natural frequency wn of a cantilever beam is a function of:

1) Youngs modulus E, 2) mass per unit length m, and endpoint mass M, 3)

length Z, 4) and section moment of inertia I.

SE I  )  2 (1.1A).n miZ4 + MZ5

As shown in Figure 1A.1, the ratio of the natural frequencies of the

deflection versus stress designed beams are about .3 which are not high;

however, more research in this area will be necessary to determine

limits on controllability of flexible structures.
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Chapter 2

Goniometers as Devices for Determining Position of

Articulated Structures

2.1. Introduction

Webster's defines:

goni- or gonio- comb form [Gk gonial: corner: angle <goniometer>

goniometer\go-ne-'~rA-et-er\ n 1: an instrument for measuring angles 2:

DIRECTION FINDER

This chapter will review current literature describing state of the

art of goniometers used in bio-medical, physics, and manufacturing

fields. Existing devices, although crude in the number of measurements

they can make, may provide insight into design methods. Note that in

most applications, the term goniometer is meant to include angle measur-

ing systems that can also measure small changes in length.

2.2 Goniometers Used in Bio-Medical Applications

Chao [2.1] gives convenient definitions for three types of

goniometers: 1) planar goniometer - which only measure angles in one

plane, 2) triaxial goniometer - which can measure angles as a line



traces out a sphere, and 3) spatial goniometer - which can detect posi-

tion and orientation. The latter is the most effective for determining

the actual motion of skeletal linkages because measurements must be made

from points not directly on the bone; thus algorithms are used to con-

vert goniometer readings into readings of the actual motions of the

bones. These studies are used to determine effectiveness of prostheses.

Note that some of the problems associated with medical goniometry

(study of bio-mechanical motions) are directly applicable to goniometers

for robots. The three types of measuring systems: mechanical, optical

and electromagnetic each have their good and bad points. Mechanical

systems such as described by Chao [2.1] or Townsend [2.2] strap onto a

appendage and straddle the joint. Since their mechanical links and

joints are not colinear with the structural members (bones), their

sensors must measure rotations and translations in order to obtain

accurate measurements. The motion of the tissue is analogous to bearing

runout and structural deflections. The mechanical versions offer the

advantage that signal processing is kept to a minimum and that they are

easier to calibrate; however their size precludes their use from any

environment other than in a laboratory. Thus a patient's progress

cannot be monitored during a normal day. In a similar way, a robots

performance must not be hindered by its sensor system.

Optical systems involve stroboscopic photography, infra-red [2.31

and visible light movies, and tracking lasers. An example of the latter

is given by de Vries [2.4] where a rapidly moving spot of light scans a

field which contains one or more photosensitive devices. Note that a



similar system is being developed for robot metrology but it is not

practical for use in a manufacturing environment. The vision systems

are limited in the planes which they can simultaneously view and do not

provide accurate dimensional measurements. For three dimensional

resolution, a stereoscopic system, such as described by Antonsson [2.51,

would be needed, although the system resolution is two orders of mag-

nitude too low (limited to 10 - 12 bits, while 16 bit accuracy is

required)

Electromagnetic goniometers use radio waves or acoustic "pingers"

to determine relative sensor position. The interesting feature is that

the pingers and receivers are all mounted on the patient. This is the

logical thing to do for it allows the patient (or structure) greater

mobility. Such pinging goniometers for medical use are described for

example by Jackson [2.6]; however, they have very nonlinear responses

and are limited to about a degree of accuracy when installed on a

patient (accuracy also limited to about 10 bits).

2.3 Goniometers for Use in the Physical Sciences

Goniometers for use in measuring photo-scattering property experi-

ments and other optical calibration procedures are actually precision

rotational stages. Examples in the literature can be found from: 1)

large (two meters cube) four axis stages for determining properties of

retroreflectors (a device which reflects rays parallel to the incident

rays) with milli-radian accuracy [2.7], to 2) precision rotary tables

with unlimited rotary motion and micro-radian accuracy [2.8], to 3)



monolithic linkage nanoradian accuracy stages (which are range limited

to milli-radians of motion) [2.9].

The first example is a precision index table. The second example

uses a direct drive motor with integral optical encoder and high preci-

sion bearings to achieve arc-second accuracy. They note that runout of

the optical scales, which are photo-etched in place, produce error in

the interpolation of the fringe counting process. The third example is

a clever system of levers connected by thin section springs such that a

large motion on one terminal lever produces very small motion on the

other terminal lever. The levers and springs are all machined from a

single block so hysteresis and backlash are not a problem.

Unfortunately such a system does not provide the 3600 range needed for

robots.

2.4 Goniometers Used in Manufacturing Environments

Many of the goniometers used in manufacturing environments are

similar to those previously described such as precision turntables and

the like. Two interesting patents are cited here. The first is a

mechanism to determine position and orientation of a line in space, and

the second is a planar goniometer attached to a robot. Each of these is

discussed in greater detail below.

The 'Spatial Mechanism and Method' [2.10] is a clever device shown

in Figure 2.1. It uses a system of gears and racks to record the three

Eulerian angles that a single arm can trace out in space (including
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Figure 2.1 * Spatial mechanism for determining endpoint position.
*Reprinted from U.S. Patent 4,419,071
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twist of the arm about its length) and the extension of the arm via a

telescoping tube. Accuracy on the order of one part in 7000 is claimed

which is an order of magnitude less than required for robotic

applications. The device seems to be a miniature portable coordinate

measuring machine. Examples of the latter in full scale can have ac-

curacies in the 50 microinch range when mapped with laser

interferometers, but they are too big and inflexible for robotic

applications.

The 'Monitoring the Location of a Robot Hand' [2.11] patent, shown

in Figure 2.2, describes a knee joint with a planar goniometer attached.

However, it is apparent that if constructed as shown, a large static

error would occur when the linkage is straightened out and gravity

applied normal to its length and the axis of joint rotation. Since the

two links are connected via an angular measuring device (#39 on Fig

2.2), (which is only supported by the links) and supported at their ends

by angular measuring devices #35 and #37, no bending moments can be

transferred about the joint axis. Since no length adjustment is allowed

for, the links will sag until static equilibrium is reached.

As an example, consider the case where each link is of length R and

the weight of the measuring system is M. The linkage will sag by a

small angle E which will cause the links to stretch to a new length of

Z + 6. Using the small angle approximation for the cosine of E, the

angle E is found:

S+ 6(2.1).
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The stretch 6 in terms of the tension T, link cross section area A,

modulus of elasticity E, and length Z is:

6 = TR/AE (2.2).

The tension times the sine of the angle e must balance the weight.

Using this, (2.1), (2.2), and sine s e (for E small) the tension is

found from:

T3 = TM2 + M 2AE (2.3).

To solve (2.3), let a = M 2/3, and b = M 2AE/2, then:

T = ( b + /~b2  aj3 '+ ( b- b 2 -a 3 ) (2.4).

As an example, consider the static case where the links are made from

steel tubing with a 2" (50.8 mm) OD and a 1.75" (44.5 mm) ID and are

each 30" long (762 mm) (weight = 6.625 pounds (3.01 kg) each). With an

angular measuring device weight of 2 pounds (.91 kg), the tension and

stretch are 862 pounds (391 kg) and .0012" (.031 mm) per link. The

latter validates the small angle assumptions. The error is marginally

acceptable; however, the tension would destroy the angular measuring

devices' bearings. Thus any accuracy would soon be lost.

Figure 2.3 shows the type of mechanical linkage that would be

necessary to avoid the above stated problems with Figure 2.2. It shows
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an inner system of measuring beams and linear and angular measuring

devices contained within a series of articulating structural beams.

All the degrees of freedom measured are necessary to accurately deter-

mine the robot's endpoint position and orientation. Accordingly, the

system is very complex and there is much room for manufacturing

error to create inaccuracies in the various sliding joints. As an

example of how a small error can disrupt the system, consider a four

inch long slide near one of the joint encoders. If a gap of only .0001"

(2.5 jim) opens up, then over a distance of 100" (2.5 m), an error of

.0025" (100 Pm) is created. There are too many similar potential

sources of error to make the system practical.

2.5 Metrology Frames

For high accuracy cartesian motion, high precision diamond turning

centers and coordinate measuring machines are evolving with accuracies

in the micro and sub-micro inch range. To achieve such high accuracies,

the concept of metrology frames has evolved. A metrology frame consists

of dimensionally stable platforms mounted on moving parts of the

machine. The platforms hold optics which allow high precision laser

interferometers to measure large linear and small angular displacements.

The concept of using laser interferometery is discussed further in

Chapter 3.



2.5 Conclusions

The idea of using a goniometer to determine robot endpoint position

is a logically correct one; however, since endpoint accuracies of 16

bits are necessary and each robot link can have up to six degrees of

deformation and loads are not always vertical (as in the case of a human

walking), a very complex goniometer will be required. It is important

to note that intuition doesn't work well when applied to measuring very

small distances. Each possible motion must be carefully modeled to

ensure that it will be measured by the system. The design of such a

goniometer will be discussed in greater detail in the following

chapters.
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Chapter 3

Methodology for Achieving High Endpoint Accuracy in

Articulated Structures

3.1 Introduction

Consistent with the conclusions of Chapter 1 and 2, this chapter

will describe a methodology, centered around goniometers, for designing

sensor systems to measure position and orientation of articulated struc-

tures with an accuracy on the order of 16 bits. As the example in

Chapter 1 showed, since these is a large error amplification associated

with cantilevered structures, the basis of the methodology is to

eliminate mechanical coupling between sensors and the motion which they

are measuring. Thus accuracy shall not depend directly on the accuracy

of mechanical components. This is accomplished by requiring that all

measurements be made across air gaps, and the sensor system must be

designed so that its structure is subject only to acceleration induced

loads.

This chapter is organized as follows: In order to develop a high

accuracy goniometer type sensor system for articulated structures, the

basic mechanical metrology requirements are first described. Then

methods of measurement are briefly discussed to provide background on

the types of "building blocks" which are available to satisfy these re-

quirements (Chapter 4 discusses individual types of sensors in greater



detail). The method of locally arranging appropriate sensors into a

geometry that can measure all the required degrees of freedom is then

studied conceptually (detailed methods of error analysis are discussed

in Chapter 5). Conceptual designs for the goniometer links and support

anchors are then discussed (detailed design methods are presented in

Chapter 6). In conclusion, a conceptual design of a robot that incor-

porates the sensor system is presented to illustrate application of the

developed principles.

3.2. Identification of Necessary Measurements for Determining Position

of Articulated Structures

Chapters 1 and 2 concluded that a joint to joint goniometer would

provide the most rugged system for measuring position and orientation of

robots without decreasing dexterity. Also discussed was the condition

that any single large degree-of-freedom is always accompanied by five

small error motions. Thus for articulated structures, whose long links

greatly amplify these error motions, all six degrees of freedom at each

joint will need to be measured. The above implies that there are two

unique coordinate systems located at each joint which are separated by

the air gaps across the sensors. The principle of goniometery, however,

allows each set of coordinate systems in a specific link to be coupled

together. This allows the two coordinate systems at each end of a link

to be modeled as one.



Hence to determine the position and orientation of one

"conglomerated" coordinate system with respect to another, six independ-

ent degrees of freedom between them must be measured. If designed

properly, the rigidly coupled coordinate systems will track their as-

sociated structural links as they move and bend. The robot controller

will then have an accurate "stick" model of the robot whose position and

orientation are determined from the lengths of the links and the

measurements made at the joints.

3.2.1 Methods of Motion Measurement Between Two Coordinate Systems

As previously described, beams (which are loaded only by their own

weight) for support of sensors at joints are required to support groups

of sensors and to track structural beams' motions. The function of a

"measuring beam" is illustrated (see Figure 3.1) as follows: If a con-

necting line intersects a plane of a coordinate system XYZ at the

origin, then two angles (0 and 0) will uniquely define the position and

orientation of the line with respect to the coordinate system. If two

intersection angles (6' and 0') of the line with the origin of another

coordinate system X'Y'Z', the length of the line %, and the twist Y of

the line along its length are also known, the relative position and

orientations of the two coordinate systems with respect to each other

will be uniquely determined. These measurements can all be made by sen-

sors at the ends of the lines, and the lines are hereafter referred to

as measuring beams.

The measuring beams can be "electromagnetic" or "mechanical", i.e.

laser beams or beams made of solid materials, or a combination of the



Figure 3.1 Coordinate systems' relative orientation



two. Note that the slightest external load acting on a measuring beam

may result in a deflection error which is not necessarily repeatable and

which can be magnified up to two orders of magnitude at the end point.

Therefore, if mechanical components are incorporated into the design,

deflections must be elastic and below a threshold unless provisions are

made for their direct measurement. Possible types of measuring beams

are discussed below.

Optical measuring beams would be difficult to use, unless an

initial reference datum was provided. As an example, consider beaming a

laser at a mirror that reflects the light back to the source. The dis-

tance of the mirror from the source can be determined by pulsing the

laser and measuring the reflection time. This is extremely difficult to

do over short distances (on the order of meters), and is impractical for

large scale commercial use. On the other hand, changes in position of

the mirror can be detected very accurately by interferometery which

depends on counting interference fringes. This requires the laser to

pass through an interferometer to a retroreflector, and return back

through the interferometer into the receiving port for analysis. Note

that accuracy is impaired if a count is missed, and the counting speed

is limited to one foot per second, but measurement accuracy on the order

of one part per million (20 bits) is possible [3.1].

A second problem with laser interferometery is that the laser head

is on the order of five inches square by eighteen inches long and costs



$30,000. Since the fringe counting process must be continuous, a mini-

mum of one laser for each degree-of-freedom would be necessary. This

would make the cost of a multi-axis system exorbitant.

Even if laser interferometers were used, then the centers of the

robot arms would need to be hollow in order to accomodate the laser

beams. Thus a logical step is to replace the laser beam with a solid

measuring beam and use sensors at the ends of the beams to detect rela-

tive motion between the ends. Like the laser beam which must be kept

from hitting the walls of the hollow robot arm, the solid measuring beam

must be supported in a way that allows it complete freedom to track the

motions of a structural beam. To prevent errors associated with deflec-

tions, the measuring beam must only be loaded by acceleration of its

structure. In addition, the measuring beam geometry should be kept

simple so deflections can be accounted for with a software correction

(or be kept below a threshold level). Further discussion of the con-

struction of the measuring beams is delayed until after the description

of the measuring devices that are to be held at each end of the measur-

ing beam.

With regard to the placement of groups of sensors, in the measur-

ing beam system, where structural beam ends meet at a joint, the ends of

successive measuring beams would be located in close proximity to each

other (as shown in Figure 3.2). Small range high resolution sensors

could provide information to determine the position and orientation of

one measuring beam with respect to its neighbor. Examples of this type

of sensor include: capacitance and impedance probes, and fiber optic



levers. Also lateral effect diodes can be used to measure X - Y coor-

dinates of the center of intensity of a beam of light. (The physics of

operation of these types of sensors and a detailed description of laser

interferometery is discussed in Chapter 4.) The following section will

examine methods for combining these basic types of sensors into a con-

figuration that will allow all the motions at a joint to be measured.

3.2.2 Placement of Sensors to Measure Six Degrees of Freedom at a

Joint: The Development of the POSOR

There are three basic motions that adjacent measuring beams' sen-

sor groups will be required to make with respect to each other in order

to track a structural beam (as shown in Figure 1): twisting, bending,

and translating. For an articulated structure, these motions are com-

prised of: three small translational, two small rotational, and one

large rotational degree-of-freedom. The nature of these motions lends

them to be detected by looking at the relative motion between two ad-

jacent (essentially parallel) planes. In order to determine the best

method for detecting relative motion between the planes, consider that

the tools available are distance sensors and lateral position sensors.

Also, if desired, local geometry variations (bumps) can be introduced.

Detailed concepts are discussed below.

The combination of sensors to provide accurate determination of

one large and five small degrees of freedom is herein referred to as a

POSOR (POSition and ORientation) device.



One small translational and two small angular degrees of freedom

can be easily determined by looking at the separation between the

planes. Since the planes are always essentially parallel and the large

degree-of-freedom motion can only cause one plane to rotate above the

other, if the separation between the planes is determined at three

points, then the relative distance and orientation between the planes

will be uniquely defined. This concept is illustrated in Figure 3.2

which shows a plane attached to one measuring beam "looking" at an ad-

jacent plane mounted to another measuring beam. If the relative distance

between the three sensors (shown as impedance probes) is known, then

combined with the sensor readings, the Y, a, and 8 motions can be ac-

curately determined.

Since the distance measurements are made across small (.05" (1 .3

mm)) gaps, 12 bit sensor resolution with the sensors spaced 5" (127 mm)

will allow for the angles a and 8 to be determined to 2.4 prad (.5 arc-

sec). As will be discussed in Chapter 4, impedance and capacitance

probes' measurements will not become distorted by small (10) motions of

the planes. Detailed calibration and error analysis of this system is

discussed in Chapter 5.

The Y distance measurements between the planes, however, provide

no information about the relative XZ position or G rotation (i.e. the

two remaining small translational and the large rotational degrees of

freedom) of the plates (coordinate systems which lie at the ends of the

measuring beams). Two systems, for detection of these motions, are

presented here: 1) A "Bumpy Ring Sensor" shown in Figure 3.3, and 2) a
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"Light source Ring - Lateral Effect Diode Sensor" shown in Figure 3.4.

The former has the potential to be the most accurate but will be the

most difficult to develop. The latter is the simplest to build and

test, but it is more sensitive to contamination. Both systems are dis-

cussed in detail below.

The Bumpy Ring sensor shown in Figure 3.3 has three distance

measuring sensors (shown as impedance probes) required to measure three

degrees of freedom for the holonomic system of the adjacent plates;

however the motions are not measured directly. Runout (XZ motion) is

not amplified by the distance from joint to endpoint so 12 bit accuracy

is sufficient. The rotation O is amplified, however, so the 16 bit re-

quired accuracy is obtained by the counting of the bumps as they go by

the sensors. In order to sense the bumps, the sensors are placed out of

phase with each other, so that one sensor looks at the peak, one looks

at the ramp, and one looks at the trough of a bump. The shape of the

signals from the three sensors should remain the same as the inner ring

undergoes small translations, only the amplitudes should change. Thus

by starting from a home bump, runout is determined by looking at the

relative amplitude, and rotation is determined by counts and looking at

the relative phase of the sensor readings.

For angular sensitivity, if the slant is at 450, angular motion E

at a ring radius Rr will produce a sensor reading eR . If fine bumps

are used (.05" (1.3 mm)), an impedance probe with 5 Uin (.13 um)

resolution can be used. Thus a measuring device 5" (12.7 cm) in

diameter could sense rotations of 2 V radians (.5 arc-seconds). With
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regard to sensing relative translational motions between the two rings'

centers, Whitehouse [3.2] has theoretically shown that it is possible

to sense these motions by using three probes of varying sensitivity

spaced asymmetrically around the part. Note that this system will have

to be initially calibrated to account for mechanical inaccuracies in the

shape and position of the bumps.

The lateral effect diode system, shown in Figure 3.4, consists

of a ring of light sources and two lateral effect diodes (provide XZ

coordinates of a light spot on its surface) arranged on the two plates

(which are mounted on the ends of adjacent measuring beams)

respectively. To ensure that each photo diode will always have a light

source hitting its surface, the spacing Z - 6 between the light sources

must be less than the width % across the diodes. To operate the sensor,

the lasers are sequentially pulsed so two light sources do not simul-

taneously strike the surface of a photo diode (or an erroneous signal

will result). Pulsing the light sources also allows for identification

of which light source hit which diode, and also allows the use of a lock

in amplifier to filter noise. To supply the large number of light

sources required, fiber optic cables could lead from all the joints to a

central high beam quality laser whose light is multiplexed to the cables

by a mechanical chopper. Note that a laser is specified because

stability of the beam is important.

From initial calibration measurements the position of each light

source and lateral effect diode in its plane is known. When a pulsed

light source beam intersects a diode, its XZ coordinates are measured.
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After the XZ coordinates of two light sources are found, a simple coor-

dinate transform will uniquely define the XZ position and 0 rotation of

one plane with respect to the other. The key is to design the measuring

beam system so at least one light source is always pointed at a lateral

effect diode regardless of the deflected shape of the structural beam.

Angular resolution is equal to the ratio of diode resolution to diode

spacing, and can be on the order of 25 p/2.5 (10 4rad). A detailed er-

ror analysis and calibration methods for the lateral effect diode

system are given in Chapter 5.

Other methods for simultaneously determining one large and five

small degrees of freedom will undoubtedly become apparent in the future;

however, it is the methodology of using the information from a POSOR to

determine the position of the measuring beams that is important, not

necessarily the method by which it is accomplished.

3.3. Structural Characteristics of the Measuring Beam System to Support

POSORs

This section will discuss conceptual methods for the mechanical

design of measuring beams and methods for structurally isolating them

from the load carrying members of the robot. Since the POSORs described

above will only measure relative motions at the ends of measuring beams,

any non-rigid body motion of the measuring beams will be amplified by

the structures length. This makes accurate calculation of elastic

deflections critical, because they must be kept below a threshold value



(typically below the resolution of the POSORs) to avoid large contribu-

tions to endpoint error. Detailed design calculations for measuring

beams and associated components are discussed in Chapter 6.

A long measuring beam must be supported at two points, roughly at

each endpoint, in such a way that it cannot deform except under the in-

fluence of an acceleration on its own mass (i.e., the beam must not be

loaded by external forces or moments). If possible, the supports should

be located so as to minimize acceleration induced bending moments and

maximize the natural frequencies of the system as shown schematically in

Figure 3.5. The support design must take into consideration the fact

that the structural beam acts as a free cantilever beam, and can undergo

linear and angular motions along and about the X, Y, and Z axes as shown

in Figure 3.6.

A structural beam's deflections, shown in Figure 3.6, impose cer-

tain restrictions on the gimbal support design. Since the structural

beam can deflect sideways in two directions, each end of the measuring

beam must be pinned about two orthogonal axes. In addition, since the

structural beam can twist about its length, one end of the measuring

beam must be pinned about an axis parallel to its length. Furthermore,

since the structural beam's length can change, the measuring beam must

be held in such a way that one end is free to move along its lon-

gitudinal axis. These possible motions form the basic design

requirements for the support gimbals.
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The term gimbal does not necessarily imply the use of ball bea-

rings because the required degrees of freedom are all small. Possible

support schemes include magnetic levitation, air bearings, ball bea-

rings, wire supports, or combinations thereof. In all cases, the lower

the reaction torque and the higher the ratio of the beam moment of iner-

tia to sensor system mass, the lower the induced error in the measuring

beam system. In most cases, simplicity and reliability will be the

chief design criteria, and direct mechanical support will be chosen.

Note that the POSORs can sense bearing runout, so low friction and

breakaway torque are more important than bearing accuracy. For detailed

discussion of various types of gimbals, see section 6.2.3.

3.4 Conceptual High Accuracy Robot Designs

This section will discuss how the measuring beam system can be

used in the design of high accuracy robots. For clarity extensive il-

lustrations are provided but these are only conceptual designs and the

backs of envelopes used to size components are not shown here.

Figure 3.7 shows two measuring beams supported by two and four de-

gree-of-freedom gimbals (sans structural beams for clarity). The POSORs

are of the Light Source - Lateral Effect Diode type. The plates at the

ends of the measuring beams are identified as "transmitting planes" for

the plates which contain the light sources, and as "receiving planes"

for the plates which contain the lateral effect diodes and the impedance

probes. Note that the design lends itself to a series of offset beams

which makes the design of "double jointed" robots easy to accomplish.
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Figures 3.8 through 3.11 show (overall view and details of joints)

how a structural system and measuring system can be combined in a high

accuracy five axis robot (for most high accuracy operations such as

drilling, deburring, and cutting, a sixth axis is not needed). For

these designs, a Bumpy Ring POSOR is used because ultimately it will re-

place the Lateral Effect Diode POSOR. Support wires are also used for

gimbals (see section 6.2.3). The basic construction of the structural

system consists of offset box beams joined by turntable (four point

contact) bearings with integral gear teeth. This allows the drive

motors (electric, pneumatic, or hydraulic) to drive the joints from the

outside which prevents interference with the POSORs. Position control

may be difficult due to gear backlash causing nonlinearities in the con-

trol system, but this can be overcome by using a micromanipulator (not

shown here) as discussed in Chapter 1.

3.5 Remarks

To calibrate and operate a measuring system, its design and method

of manufacture must also be considered. An error analysis can determine

the effect of manufacturing tolerances and sensor accuracy on system

performance and which quantities need to be calibrated. Thus calibra-

tion measurements can be traced to a standard reference which will. help

maintain inter system compatability. These calculations will also give

insight needed for test equipment design.

To demonstrate the principle of the POSOR, that one large degree-

of-freedom and five small degrees of freedom can be simultaneously
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measured, a Lateral Effect Diode POSOR was designed built and tested.

It was chosen because it was easier to build, and the algorithms to

process the data are simpler than for the Bumpy Ring POSOR. For the

Lateral Effect Diode POSOR, two sensor systems must be calibrated, the

position sensing system (collimated light sources and lateral effect

diodes), and the distance measuring system (impedance probes). Detailed

calculations for their design and calibration are presented in Chapter

5. The experimental setup is described in Chapter 7, and Results and

Conclusions are presented in Chapter 8.

3.6 Conclusions

This chapter has developed conceptual methods for uncoupling

mechanical metrology errors from mechanical components (i.e. loading,

wear, and age will not affect the system). Thus measurements can become

as accurate as that of the sensors and initial calibration apparatus.

The result is the development of a device that can measure one large de-

gree of rotational freedom, two small rotational, and three small

translational degrees of freedom. This device can be used with a

goniometer type linkage to measure all the motions of an articulated

structure regardless of its position or applied load.
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Chapter 4

Electromagnetic Sensors for Measuring Small Motions

4.1. Introduction

As pointed out in Chapter 1, any form of mechanical contact

between surfaces whose relative position and orientation are to be

measured, will introduce errors into the measurements. All surfaces

which ride on bearings exhibit this behavior with the result that many

small out of plane motions occur along with the intended motion. The

purpose of this chapter is to discuss various forms of non-contact

mechanical metrology sensors. The first section discusses distance

measurements and the second section discusses lateral position

measurements. Although it will not be used in a POSOR, interferometery

will be necessary to calibrate POSORs, and thus will be discussed in

some detail. The last section discusses methods for increasing accuracy

of sensors.

Note that not only good sensors are required, they must be

mounted correctly. Specifically, they should be rigidly mounted without

stressing the sensor housing, and the axis of measurement should pass

through the point on the body whose motion is of interest. Thus other

small angular motions of the body cannot induce errors (by the lever arm

whose length equals the distance from the measurement axis to the

point). Errors of this type are called Abbe offset errors.



4.2 Distance Measurements

This section will describe various types of non contact distance

measuring devices. Interferometery based distance measurements will not

be discussed until Appendix 4A. Among the non-contact distance measur-

ing devices available, are fiber optic levers, capacitance probes, and

impedance probes.

4.2.1 Fiber Optic Levers

The distance of an object from a fiber optic "lever" can be

determined based on the amount of reflected light that is sensed (an

excellent overview of all types of fiber optic sensors is given by

Giallorenzi et-al [4.11]). A sensor such as described by Kissinger [4.2]

or Frank [4.3] uses transmitting and receiving fiber optic cables. A

comprehensive analysis by Cook and Hamm [4.4] on a seven fiber bundle

with one inner transmitting cable surrounded by six receiving cables

provides an analytical model for evaluating fiber optic lever

performance. The system is shown schematically in Figure 4.1. As the

sensor moves away from the surface, the cross sectional area of the

reflected light beam in the plane of the receiving fibers increases.

Changes in the area of light falling onto the fibers as a function of

change in distance will affect the measured intensity accordingly. Thus

ideally the performance of the fiber optic lever is a function of the

cross section geometry of the lever, the illumination exit angle, and

the distance from the surface (the surface tilting or becoming con-

taminated can quickly lower resolution). For a seven fiber bundle,
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ranges of .025" are possible (note that .05" range will be required for

the goniometer system described in Chapter 3). 12 bit accuracy is

possible, however complex algorithms will be needed to determine the

effect of the POSOR planes tilting on sensor readout. Also, surface

finish becomes extremely critical. In view of these facts, fiber optic

levers would not provide the necessary performance for a POSOR.

4.2.2 Capacitance Probes

Capacitance probes offer the best stability and highest accuracy

of all distance measuring devices, other than interferometers. They are

unaffected by the metallurgical properties of the target material (such

as grain size), and have very low electrical noise levels due to their

low circuit resistance. However, they are sensitive to things that can

change the dielectric constant between them and the target surface.

Earlier forms of probes, such as discussed by Lion [4.5] merely used one

surface as one capacitor plate, and the other as the opposing plate.

The distance between the plates is thus inversely proportional to the

measured capacitance. Various signal processing techniques such as

using a Van Zelst bridge (analogous to a wheatstone bridge circuit used

in strain measurement) are then used to amplify the signal. The ad-

vantage of using a capacitance bridge (Van Zelst Bridge) is that it

provides very high sensitivity with very low resistance; thus thermal

noise, which is proportional to the square root of the system tempera-

ture, frequency, and resistance) is kept to a minimum [4.6]



Recently, a new type of capacitance probe has evolved [4.7],

that does not need contacts connected to both surfaces. Instead, the

effect of a surface on the field lines near a capacitor is measured.

These probes can have very high resolutions (one part in one million)

and can theoretically measure down to tens and hundreds of nanoinches.

Unfortunately they are not yet widely available.

4.2.3 Impedance Probes

Eddy current or impedance probes use the principle of impedance

variation which is caused by eddy currents induced in a conductive metal

target. The coupling between a coil in a sensor and the target is

dependent upon the distance between them. The electronics necessary to

drive the system consists of an oscillator, linearization network,

amplifiers, and a demodulator which provides an analog voltage propor-

tional to distance between coil and target [4.5].

These probes are often used as limit switches to reset "home"

positions on machine tools. Since they're output is not affected by the

material that separates them from the target surface, they are also

often used to sense the thickness of large sheets during manufacturing.

This insensitivity to gunk (as long as the gunk contains no metallic

particles) would make them valuable as POSOR sensors because temperature

and humidity changes and various contaminants are bound to be present

around a robot (unless its used in the electronics industry).

Resolutions on the order of one part in 105 are obtainable from commer-

cially available probes. When calibrated, accuracies of 5 Vin (.13 um)



over a distance of .05" (1.3 mm) are possible. For extreme accuracy, a

ferrous target should not be chosen, since variations in grain structure

can affect the sensor output.

4.3 Lateral Position Measurements

This section discusses photodiode arrays and their application to

measuring lateral displacements. These arrays have found broad use in

video cameras, visual inspection stations, etc., as well as sensors to

detect vibration and small angle changes (autocollimators). The types

of photo detectors available include discrete array and monolithic diode

devices. Their light wavelength sensitivity can range from infrared to

ultra-violet [4.8].

Discrete arrays are one or two dimensional arrays of individual

photodiodes with maximum two dimensional packing density currently on

the order of 1024 by 1024 elements on a one half inch square surface

[4.9]. Such arrays, or charge coupled devices, operate as follows.

Each photodetector accumulates the light charge falling on its surface

and the resultant charge is read by a shift register. The shift

register scans all cells and outputs the light intensity profile. These

detectors are very fast, and can be scanned at 10 - 100 MHz but are not

very accurate.

A monolithic diode, or lateral effect diode is a continuous

medium sensor so it can theoretically provide infinite resolution. The

diode is arranged with a ground contact at its center, and four leads



originating at 900 arranged around its circumference (lateral contacts).

Position information about a light spot is determined by monitoring the

photogenerated currents from each lateral contact.

When a light spot falls on a lateral effect diode, the current

generated from each photon must travel to a lead. The resistance along

the path to the lead determines the net contribution of each photons'

energy to the current at each lateral contact. In this manner, the

lateral effect diode acts as a light controlled variable resistor for

measuring the position of the light spot on the X and Y axes of the

detector. Linearity of the response is thus dependent on the uniformity

of the resistance of the diode surface. Since no manufacturing process

is perfect, the resistance will not be uniform and linearization of the

diodes is mandatory if high accuracy is to be obtained. If lateral

contacts A and C lie on the X axis, and pins B and D lie on the Y axis,

then the X and Y position are given by:

A -CX- A - C (4.1),A +C

B- DY B - D (4.2).

The responsitivity of the diode is the product of the accuracy

and the scan frequency required. O'Kelly [4.10] gives the following for

determining the responsitivity of the diode AR at a signal to noise

ratio of one:



( 4KT/R + E2/R 2 + 2R Pdq )2xL
AR = -------- (4.3).

/2 P RdRA

The variables and their values for a 1.25" square diode are given by the

manufacturer (United Detector Technology, Hawthorne Ca.):

K = Boltzman's constant = 1.38x10 -23 joules/K,

T = temperature = 300 K

R = Resistance between back contacts = 1000 2,

-9E = Amplifier input noise voltage = 10x10 -9 volts// Hz ,

Pd= monochromatic incident power = .001 watts,

R = detector responsitivity = .25 amp/watt,

q = electron charge = 1.60x10-19 coulomb,

L = distance between back contacts = 1.25".

Substituting the above into (4.3), the sensitivity is AR =

-8 -

5x10-8 in// Hz. Typical rise time for the diode is given as 5 psec, so

with light spot oscillation period of 400 psec will give a resolution of

2.5 pin. These values are acceptable for use in the system described in

Chapter 3, and detailed requirements are given in Chapter 5.

4.4 Methods of Increasing Sensor Accuracy and Resolution

To overcome the problem of electrical noise inherent in all

circuits, averaging techniques are used to increase resolution by the

square root of the number of averages taken [4.11]. To allow a large

number of data points to be taken, once the rise time of the sensor is

reached, readings can be collected at the speed of the analog to digital



converter. Note that the conversion in an analog to digital converter

is a deterministic event; thus averaging will not increase its accuracy.

A 16 bit accuracy analog to digital converter (analog to digital con-

verter76) is available from Burr-Brown of Arizona which has a unit

price of $225 (for quantities of 1-25 units) and a conversion time of 17

psec. Allowing 25 psec per data point, 400 samples could be taken in 10

msec which would allow a servo update time of 20 msec.

The above will increase the resolution of a sensor, the accuracy

can be improved only by comparing the sensors output to that of a stan-

dard reference. Laser interferometery provides the best reference, and

the technique for deriving a best statistical fit polynomial to describe

the sensor output is called linearization [4.12]. As long as the sen-

sor's output is repeatable, the accuracy can be made as good as the

statistical curve fitting process used.

4.5 Remarks

A more comprehensive overview of 'robotic' sensors is given in a

report by Hall [4.13] which updates Lion's book [4.5]. However it only

describes sensing methods in general and does not quote accuracy or

resolution limits. Once the specific need for the POSOR sensors is made

known, experts in the field will be no doubt find better ways to make

the required measurements.
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APPENDIX 4A

Mechanical Motion Measurement by Laser Interferometery

Laser Interferometers can be used to measure virtually any physi-

cal event that can cause a phase shift in a laser. This section,

however, will only discuss methods used for measuring distance, angles,

and straightness. Using three basic optics devices, an interferometer,

retroreflector, and a reflector, virtually any motion can be detected.

Combinations of these optics are discussed below.

Interferometeric measurement begins with a stable coherent light

source (Helium-Neon gas laser) and a cylindrical permanent magnet which

causes the laser to oscillate at two slightly different frequencies

(Zeeman splitting) which have opposite circular polarizations. The two

beams f, and f2 pass through optical glass quarter and half-wave plates

which change the circular polarizations of f, and f2 to linear perpen-

dicular polarizations. The beam is then expanded through a collimating

telescope and projected through a 450 beam splitter which sends most of

the beam out of the laser head to the measurement optics. A portion of

the beam is sampled to determine the difference in the frequencies f, -

f2 , and to control the tuning of the laser (maintain output frequency

constant).

During measurement, the beam passes through special optics

(discussed below) which return a portion of the original output beam



(f -f 2 ) and a Doppler shifted frequency component Af if a change in the

quantity to be measured has occurred. A demodulating polarizer makes

their polarizations equal which then allows the Doppler shifted beams to

form interference fringes. The returned component f,-f 2 +Af pulses are

counted. Counts from the f,-f 2 sampled beam (taken before beam left the

laser head) are also made and subtracted from the Af count beam to

correct for any drift between the two beams' frequencies. The above

described process is illustrated in block diagram form in Figure 4A.1.

The optics involved are:

Linear Retroreflector: (Figure 4A.2) an optically ground and polished

three surface prism (trihedral prism, often referred to as a corner

cube) that reflects an incoming laser back parallel to itself and at a

separation distance twice that of the incoming beams' distance from the

corner apex.

Linear Interferometer: This optic is shown in Figure 4A.2 with the

diagonal line representing a polarized beam splitter which reflects the

f, component up to a retroreflector back to the beam splitter which

sends it back to the laser head's receiving port (because it is still

900 to the direction the beam splitter lets light pass through). The

other component f 2 passes through the beam splitter and is reflected

back by the retroreflector through the interferometer and into the

receiving port for comparison with the f, component.
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Figure 4A.1 Block diagram of Laser Interferometer's optical system
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Angular Interferometer: This optic is basically a linear interferometer

with a beam bender located above it as shown in Figure 4A.3. It is used

in angular and flatness measurements.

Angular Reflector: This optic contains two retroreflectors which are

spaced at a precisely known distance apart. It is shown in Figure 4A.3.

Straightness Interferometer and Reflector: These optics must be used as

a matched pair so the reflector will return the two frequency components

directly back to the interferometer. (Figure 4A.4). The interferometer

contains a Wollaston Prism (it has a different index of refraction for

each of the two perpendicular polarity components of the laser beam)

which splits the two component beam from the laser head into two com-

ponents which travel to the reflector along precisely controlled paths.

The orientation of the plane of the two exit paths is adjusted by turn-

ing the interferometer so vertical and horizontal straightness can be

measured. The reflector contains two plane mirrors which reflect the

beam components back along their respective paths to the interferometer.

These optics are combined as follows to perform distance and

velocity measurements, angular measurements, flatness measurements, and

straightness measurements.

Distance Measurement: Figure 4A.2 shows a linear interferometer and a

retroreflector used for distance or velocity measurements. Note that

the incoming beams can be directed around corners, etc., with ap-

propriate beam bending optics. The interferometer splits the f, and f2
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components, sends the f 2 component to the reflector which returns it to

the interferometer with a Doppler shift component Af2. Both beams

return to the laser head, which operates as described previously. The

difference Af2 is then related electronically to distance and velocity.

Angular Measurements: Angular measurements are made from a sine

measurement, the optics are arranged as shown in Figure 4A.3. These

optics create two parallel beam paths between the interferometer and

reflector at frequency f1 and f 2 . Precision optics allow the distance

between the paths to be precisely known (factory calibration traceable

to the National Bureau of Standards). Any rotation of the optics in the

plane of the beam paths will cause a Doppler shift. The changes in the

lengths of the two beam paths divided by the distance between the paths

is the sine of the angle.

Flatness Measurements: Flatness is determined by integrating a series

of angular measurements. It requires that the reflector be moved an

equal distance each time.

Staightness Measurements. The optics are shown in Figure 4A.4.

Initially the two beam paths have the same relative length, but any Y

direction motion will cause the path lengths to differ which indicates a

AY motion of

AY = 2Aisin(6/2) (4A.1).



An initial error in alignment will seem to cause a AY motion as the

optics are moved along the X axis but this is easily subtracted off

using a first order curve fit routine. Variations in the optics setup

can be used to measure squareness and parallelism.

Environmental error is introduced only into distance and velocity

measurements. The errors are: velocity of light compensation, deadpath

error, material temperature, and beam misalignment (cosine error).

The velocity of light through air is dependent upon temperature,

humidity, and pressure. The absolute accuracy of the measurement will

be affected by one part per million for any one of: air temperature

change of 1 oC, air pressure change of .1" (2.5 mm) Hg, or humidity

change of 30%.

A deadpath error is a complication of the velocity of light

error. It is the error associated with the entire path length that the

laser travels through and between the error (the linear scaler multi-

plier of the V.O.L. term, where the V.O.L. term is analogous to the

strain and the total displacement is strain times distance).

If the material temperature changes, then depending on the laser

head position and that of the optics, the measured motion will be that

of the occurring process plus that due to thermal growth. The required

temperature control can be easily calculated for each specific setup

using Hooke's Law.



If the axis of the laser is not coincident with the axis of

motion, then a cosine error will result. This misalignment is removed

during initial setup of the optics by moving the axis back and forth and

looking for a change in the return beams path. A variation on the

cosine error is called Abbe's offset error which basically says that

when making any measurement, the axis of the measuring device should be

as coincident as possible with the axis to be measured.

For more detailed discussions and methods for setting up the

optics, see the Hewlett Packard Laser Measurement System User's Guide

[4.14].
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Chapter 5

Analysis of Statistical Error in a Six Degree-of-Freedom

Measuring Device

5.1 Introduction

This chapter will describe methods for determining the statistical

error in a POSOR (six degree-of-freedom POSition-ORientation sensing

device as described in Chapter 3) although the methodology can be ap-

plied to any system. The first step in determining total system error

is to formulate a "Resolution Error Budget", which assumes everything is

perfect except for the sensors whose errors are characterized by stan-

dard deviations from best fit linearization curves (as discussed in

4.5). The next step is to formulate an "Alignment Error Budget" which

assumes that the sensors are perfect, but there are variations in the

sensors' assumed position and orientation. Calculations are all based

on idealized parameters and deviations from them, and the total system

error (the "Total Error Budget") is found from a propagation of errors

approach. To illustrate the concepts, they are applied to two specific

systems of a POSOR (as described in Chapter 5): the Impedance probe

system, and the Light Source-Lateral Effect Diode System.



5.2 Error Analysis of Mechanical Metrology Systems

In performing an error analysis of a mechanical metrology system,

it is important to draw an "Error Body Diagram" of the system which

shows the geometry of the system and the local sensor coordinate systems

about which errors could exist. The next step is to derive the system

equations and to study the affect that system parameter perturbations

have on system output. The method is analogous to drawing Free Body

Diagrams for mechanics problems: Once the system is modeled answers to

problems are obtained by systematic straightforward analysis. In the

following discussions, all errors are meant to be standard deviations

and physical quantities are assumed to be uncoupled so properties of

random error analysis apply. Thus errors can be combined by assuming

propagation of errors (total deviation is equal to the square root of

the sum of the squares of the individual errors) as described by Ku

[5.1, 5.2]].

The error analysis is critical to the initial design of a mechani-

cal metrology system because it will tell approximately how accurate the

sensors and physical dimensions must be in order to achieve a required

accuracy. For the initial design stage, it is reasonable to assume that

all the parameters of a certain type have the same deviation so the

effect on total system error can be determined. Then a limit to errors

of this type can be set. Examples of this methodology will be given

below for the light source-lateral effect diode system of a POSOR and

for the impedance probe system of a POSOR.
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5.2.1 Formulating the Sensor Resolution Error Budget

For this discussion it is assumed that all high resolution sensors

are based on linear measurements (encoder to shaft misalignments, etc.,

prevent use of rotation sensors as shown in Chapter 1). The first step

in forming the sensor resolution error budget is to draw the "Error Body

Diagram" for the case of "everything perfect except sensor accuracy" as

shown in Figure 5.1. In defining the coordinate system of the sensor

(see Figure 5.1) it will also be assumed that the Z axes are colinear

with the axes of the sensors. For linear measurements of changes in the

distance between the sensor and the target the measurement will be as

accurate as the sensor. On the other hand, angular measurements are

always made using two sensors spaced a known distance (a+b) apart, so

the error in the angle oa due to variations in sensor readings oY2 and

a is:

(a 2 + 2 2

a = - ------ (5.1)a a+b

For a multi-sensor system, each degree-of-freedom must have its

error due to sensor resolution determined. For an articulated structure

that uses POSORs, the effect of sensor resolution at each joint should

be represented by the translational and orientation error that it will

produce at the structure's endpoint. The net effect of all errors is

then determined by propagation of errors.
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5.2.2 Formulating the Sensor Alignment Error Budget

Formulating the Sensor Alignment Error Budget requires the careful

drawing of an Error Body Diagram. Some effects such as the surface

inclination to the sensor require experimental verification to show

that, for example, the target motion is equal to the motion along the

sensor axis [5.3] (even though the sensors' electromagnetic field fans

out). The effect of sensor alignment errors on the system are deter-

mined by introducing variations one at a time into all six degrees of

freedom that characterize the sensors position and orientation.

In the most general sense, assume that a degree-of-freedom ý is

determined by a function that relates the system geometry and the sensor

output. A deviation a in each degree-of-freedom ý that describes the

sensors location must be introduced to determine the error a& it

produces in the desired measurement:

S= fW() - f(ý + a ) (5.2).

For consistency, it is best first to determine the effects of linear

perturbations in the X, Y, and Z coordinate locations of the sensors,

followed by angular perturbations aX, cy, and aZ of the sensors orienta-

tions about the X, Y, and Z axes respectively.
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To illustrate these concepts, the impedance probe system and the

light source-lateral effect diode system of a POSOR are studied in

detail below.

5.3 Analysis of Impedance Probe System

5.3.1 Impedance Probe System Sensor Resolution Error Budget

The impedance probe system is used in a POSOR for determining two

small angular and one small translational degree-of-freedom and is shown

schematically in Figure 5.1. For illustrative purposes, the dimensions

a, b, and c will be assumed to be equal to 1.5", 1.5", and 3" ( 38, and

76 mm) respectively (the spacing for the Impedance Probe System to be

used in the experimental POSOR described in Chapters 3 and 6). The

general system equations describing the degrees of freedom ZXY (Z

motion), a, and B assume that the angles are not Euler angles, but are

rotations of the target plane (X'Y' plane) about the X and Y axes

respectively in the sensor coordinate plane:

XY= z3 + (b + Y)sina - Xsing (5.3),

S= tan-l(-a + b Z (5.4),

-1 - (k2b + £3a)/(a + b)
S= tan (------------ (5.5).
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All error calculations are based on very small perturbations, so small
-I

angle assumptions are valid (i.e. tan f(E) = f(5) ). When applied to

(5.4) and (5.5) and substituted into (5.3):

-- + --- (b + Y +--) + 3,( b + Y - Xa/) (5.6).
XY a+b c a + b

To determine the possible error in the calculation of the distance

between planes at any point, atXYLi' due to an error aoi in probe #i's

reading, Zi and a t are inserted into (5.2) with f(E) given by (5.6):
1 I

aXYn = -Zo X/c

b + Y + Xb/c
-xYg2 a + b Z2a

Xy£ '  1 _ __b + Y - Xa/c ).k
oQyR = ( ---- --T- ----- Jo

(5.7),

(5.8),

(5.9).

With the assumption that all a i are equal, the total error a ZXY is the

square root of the sum of the individual errors squared (propagation of

errors [5.11):

X2  (b+Y+Xb/c)2  (b+Y-Xa/c)a = a( - + ---+ ----- ) 2 (5.10).XYi x2 c (a+b)2  (a+b)

Substituting the given values for a, b, and c with X - Y = 0, a•xY

.71a . If X = -1" (25mm), and Y = 1.5" (38mm) (to be the location of

the center of the lateral effect diodes), then aXaYR = .78a . Note that

if all the errors where assumed to be equal and to occur simultaneously,

then a XY£ = a . Thus the propagation of errors is saying that all the
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errors are not likely to occur at once and thus the expected error

within the region of the probes is less than for any one probe as the

distance from a probe is increased. Note that if the individual probe

coordinates are substituted into (5.7) then aoXYe = a always.

The angular error a .i due to an error in the probe reading a i is

determined by applying the principle of (5.2) to the linearized Equation

5.4 with the following results:

a
a a -- (5.11)9
aL, a + b

-a
a 2•, (5.12).

a~,3 a + b

The net error a a assuming that all the probe errors a are equal is

found by the propagation of errors to be:

a0/ 2
a - a (5.13).

With the given values of "a" and "b", the net error is .47a /in

(.0186a /mm).

Similarly, the angular error aa is determined by applying the

principle of (5.2) to the linearized Equation 5.5 with the following

results:
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0
a 2  _(5.14),

BSI, c

-a b
-2-- (5.15),

B2 - c(a + b)

-c a
a8  --- (5.16).
O83, c(a + b)

The net error ao assuming that all the probe errors at are equal is

found by the propagation of errors to be:

a -ca ---b - ( 2(a2 + ab + b 2 ) )2 (5.17).
= c(a + b)

With the given values of "a" and "b", the net error is ao = .82o /in

(.0321a o/mm).

The next step in determining the total system error is to deter-

mine the effect of errors in the known positions and orientations of the

sensors on the system error. Then the total error budget can be found.

5.3.2 Impedance Probe System Sensor Alignment Error Budget

This section will formulate the impedance probe sensor alignment

error budget by determining the effect of an error in each sensor's

position and orientation coordinate on the linear and angular error of

the impedance probe system. The best method for doing this is to deter-

mine the effects of varying the characteristic physical quantities a, b,
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c, LI, ' 2 , and 13 (shown in Figure 5.1) in the describing equations 5.4,

5.5, and 5.6. Then a table is made which lists all the variations in

the sensor coordinates (6 degrees of freedom) and how they affect the

characteristic physical quantities. By this method, much repetition of

algebraic manipulation is avoided. The effects of errors in the sensor

readings R,. were found above, so only the effects of variations in
1

distance between the sensors needs to be determined.

The linear distance between the two plates of the POSOR at any

point X, Y is determined by the sensor measurements and the spacing

between the sensors as given by (5.6). Inserting "a" and aa into (5.2)

with f(E) given by (5.6) gives the following expression for the error

o XY in the calculated distance ZXY between the plates at any XY

coordinate:

a a (b + Y + Xb/c)(12 - RZ)
XYa = --------------------------- (5.18).

a (a + b)(a + b + oa)a

Similarly, an error ab causes an error a XYb of:

ab (Y - a - Xa/c)(R, - (,)
a (5.19),XYb (a + b)(a + b + )

and an error ac causes an error a XYc of:

Xac  12b + R,a

XYc c(c + a) a b (5.20).
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When evaluating the order of magnitude values given by Equations

5.18, 5.19, and 5.20, the sigma in the denominator is considered small

with respect to a, b, and c and the sensor reading differences are

assumed to be maximum ( on the order of .05" (1.27 mm) for most types of

POSORs). With the previous values of a, b, and c, at the origin (X, Y =

0) the errors are: OZXYa = *00830a , IoXYb = -. 00 8 3a b , and aOXyc = 0.0.

At the coordinates of the center of a lateral effect diode (X = -1", Y =

1.5" (-25, and 38mm) the errors are: cOXY a = .01390a, aaXYb = 0.0, and

GoXYc = .0028a . From these results, the largest error even at a large

error in position of .001" (.0254mm) results in an error of only 14 vin

(.35 pm).

The last step is to determine the effect on the calculation of the

angles a and B from variations in the sensor spacing a a a , and oc .

Proceeding as before with Equation 5.2 using (5.4) and then (5.5) for

f(S), the following relations are found (assumes a >> oa and b >> ab):

(£,2- Z3)aa
a -----------b - (5.21),aa (a + b)'

(£2 - R,)o b

Gab (a+ b) (5.22),

('3 -( £2)bo

S c(a + b) 2--- (5.23),

b Z(a + b) 2
(5.24),
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Ex - (2,b + L3a)/(a + b)

80c ( c2 ) c  (5.25).

With the above basic equations, the effect of any system perturba-

tion on the calculated physical quantities XY, a, and can be

determined. For linear motion perturbations, Figure 5.2 shows the

correlation between sensor XY position errors and errors in the relative

distances between the sensors a, b, and c. Table 5.1 lists various

errors in sensor position and the equivalent oa , ab , and/or ac error

which is to be used in equations 5.18, 5.19, or 5.20 respectively. Note

that the Z position of a sensor is not critical, since the sensors would

have to be calibrated once they are fixed in place (see Chapter 7 for

experimental procedure) and any "error" would be accounted for in the

sensor linearization curve (see Chapter 4).

For angular perturbations (sensor orientation errors), Figure 5.3

shows the general situation for a sensor that has errors in or-

thogonality to the XY plane it is mounted in of aEXi and a EYi about the

X. and Y. axes respectively (subscript i refers to sensor number).
1 1

Since the target planes' rotation is defined by rotations a and B about

the X and Y axes respectively, the equivalent errors in the distance

measurement £i caused by errors a Xi and a y are found from the law of

sines and small angle approximations to be:

iaXi (a xi - 2a)1"EXi "EXia = ------------------- (5.26),ii 2

Zi ayi (a - 28)

ai ---------- ------ (5.27).
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Table 5.1 Correlation Between Impedance Probe XY Position Errors and

Errors in Probe Spacing a, b, and c

Equivalent
aa

0.

=0.

ay2

Equivalent Equivalent

-O xi

=0.
S b
+ b

a +b

o a

a+b

-0 Y3
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These values are used on Equations 5.11, 5.12, 5.14, 5.15, and 5.16 to

determine the error that they cause in the calculation of the angles a

and B.

5.3.3 Formulating the Impedance Probe System Total Error Budget

This section will summarize the effects of system errors on the

calculated values of the desired quantities XY, a and 8. Following

each type of error equation found above were characteristic values for

the errors assuming given values of the sensor spacing a, b, and c and

"worst case conditions". Using these values and those found in Table

5.1, the total error budget for the impedance probe system of the test

POSOR (described in Chapters 3 and 7) is presented in Table 5.2.

Because no obvious problems occur (such as trying to measure an angle

from a long leg rather than from the short leg of a triangle), substitu-

tion of representative values for the sigmas is not done until Chapter 7

where experimental data is obtained.

5.4 Analysis of Light-Source-Lateral Effect Diode System

5.4.1 Light Source-Lateral Effect Diode Sensor Resolution Error Budget

This section will apply the error budget principles of section 5.2

to arrive at the sensor resolution error budget for the Light Source -

lateral effect diode sensor system used in a POSOR to determine one

large rotational and two small translational degrees of freedom. As was

done for the impedance probe system, the first step is do write the
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Table 5.2 Total Error Budget for Impedanoe Probe System for

Test POSOR

Perturbation
Error

Induced
Error

(- 1,1.5

.78a

.01 3 9 0a

0.

.00280c

.019502
EX

.019502
CY

Induced
Error
(a -in)a
.4 7 o0

.0056

.0056y0b

0.

.011 8 0 2  .0103a 2x
FX E X

.0118G 2  .010302
EY " EY
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Induced
Error

Z0,0

.71a

.00 8 30a

-. 00 8 30b

Induced
Error
(a -in)

.820y

.0028 aa

.0028a
b

.00560b

EX .017802EX

.017802F_ y

Total Error Budget for Impedance Probe System forTable 5.2



system characteristic equations which relate the desired quantities to

the physical constants and measured variables of the system.

Figure 5.4 shows the idealized system with the lateral effect

diodes located at X, Y coordinates hi, gi in the impedance probe coor-

dinate system XYZ, and the light sources located at X', Y', coordinates

hli g9 in the light source coordinate system X'Y'Z' (the lateral

effect diodes' coordinate systems are oriented 1800 to the XY coordinate

system only so as to match the experimental setup). As derived in

section 5.3, the X'Y'Z' coordinate system is tilted by the non-Euler

angles a and a. The rotation angle 0 of the X'Y'Z' coordinate system is

defined about the Z' axis. This allows 0 to rotate without changing a

or B and vice versa. The desired quantities are the projected XY

coordinates (along a line parallel to the Z axis) of the X'Y'Z' origin,

and the angle 0.

In determining the system characteristic equations, the first step

is to determine the projected coordinates of the light source onto the

lateral effect diode (hereafter referred to as "diode"). Since the

angles a and B are independent, then the offsets associated with the

light beam being tilted by a and 8 will also be independent. The dis-

tance kXYRi from the light spot to the light source plane is found by

substituting the light spot coordinates Xdi and Ydi into (5.6). From

Figure 5.5, the projected coordinates are found to be:

sin2BXp i = h. - X + i cosa -- (5.28)ip1 1 di XYzi 2
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Ypi = gi - Ydi - XYiC s  2 (5.29).

To determine the projected coordinates XO Y0 of the X'Y'Z' origin, the

projected distances of the light sources coordinates must be subtracted

from (5.28) and (5.29):

sin2BX = h. - X + i cosa 2ja - h .cosB (5.30),0 i di XYUi 2 cs

Y = gi - Ydi - X cos8 -2 gcosa (5.31).

The angle 8 of rotation of the X'Y'Z' coordinate system about its Z'

axis is found from the weighted difference of the Ydi and Xdi coor-

dinates of the light spots. The weighting (by cosa and cosa

respectively) is necessary to prevent a rotation a (or 8) from changing

one leg of the slope triangle. The angle 8 is thus:

(-Y + g, + Yd - g2)cosa
-1 dd (5.32).( = tan hi + X d2- ,) 5.32)tan(-X + h 1 + Xd - h,)cos 8

To prevent numerical errors in the calculation of 0, it might be useful

to use the arc-sine function when near a multiple of r/2.

The error in the X'Y'Z' origin location (ignoring second order

effects from calculation of ZXY ) is directly proportional to the errors

in the diode and light source location coordinates, the diode accuracy,

and to a lesser extent the angles a and 8, as can be seen from Equations

5.30, and 5.31. Errors in the calculation of a and 8 will have to be
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small (on the order of micro radians) for the impedance probe system to

be satisfactory, so the effects of oa and ab can be ignored here.

In order to find the error in the rotation angle 0, it would be

desirable to linearize (5.32) based on: (assumes that 8 is less than

about 100):

tan- 1 (f(ý)) - tan-1 (f( + 3)) = (f(M)) - (f(c + aW)) (5.33).

However, as shown in Figure 5.4, the angle is nearer 900. In order to

allow the use of the same notation, we will look at the arc-cotangent

which has a linearization form similar to (5.33) except that it is valid

near 8 = 90 0 . Also, since errors in a and 8 will be on the order of

microradians, the cosines of these errors will be negligible, even when

amplified by the length of a robot arm. Thus errors in 0 can be calcu-

lated using Equation 5.2 with f(C) given by:

- X + hd + Xd - h2
f() = -- - 2-----2 (5.34).

- Yd, + g + Yd2 - g 2

This assumption will in effect cause a phase shift of 900, so the aX is

really the ay and vice versa.

To determine the effect of errors oX and ay on the XO, Y0 and 0

quantities, Equation 5.2 is used with f(&) given by Equations 5.30,

5.31, and 5.34:
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axo = 0 x (5.35),

aYO = ay (5.36),

- Xd + h +Xd - h2

ex - Y d + g, + Yd2 (5.37)

o (5.38),Y - + g + Yd g2 (5

For illustrative purposes, assume that the diode readings are: Xd  = 0,

Yd, = 0, Xd2 = .5" (12.7 mm), and Yd, = 0. Also assume that the origin

coordinates are: h, = h 2 = -1" (25.4 mm), g1 = 1.5" (38.1 mm), and g 2 =

-1 .5". Thus typical system angular errors are aeX = .0555a X and

ay = .333ay. The basic effect is that the distance between the light

spots (AX) is like a cosine error and is negligible compared to the side

to side motion (AY) which causes a direct effect. The next section will

investigate the effects of position and orientation errors in the light

source and diode locations.

5.4.2 Light Source-Lateral Effect Diode Sensor Alignment Error Budget

The effect of X or Y position errors in the light source and diode

locations can be obtained from Equations 5.20 and 5.21 respectively.

The effect of Z position errors will not affect relative accuracy. The

orientation errors are:

1) Parallelism error between diode axes aZo'

2) Non-orthogonality of axes aZiY

3) Relative flatness of diodes a Xi and aYia
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4) Light source orientation errors a Xi and ay ie8

An angular error peculiar to the linearization process is the deviation

in orthogonality aZiY of the sensor axes relative to each other. For

this system, orientation errors will be converted into equivalent trans-

lational errors (as was done for the impedance probes). These

equivalent translational errors for orientation errors in the light

source and diode locations are obtained from the geometry shown in

Figure 5.5 and are listed in Table 5.3.

5.4.3 Formulating the Light Source-Lateral Effect Diode Total Error

Budget

This section will summarize the effects of system errors on the

calculated values of the desired quantities XO, Y0, and 0. Following

each type of error equation found above were characteristic values for

the errors assuming given values of the diode and light source spacing

and "worst case conditions". Using these values and those found in

Table 5.3, the total error budget for the light source-lateral effect

diode system of the test POSOR (described in Chapters 3 and 7) is

presented in Table 5.4. Because no obvious problems occur (such as

trying to measure an angle from a long leg rather than from the short

leg of a triangle), substitution of representative values for the sigmas

is not done until Chapter 7 where calibration data is presented.
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Table 5.3 Correlation Between Light Source and Diode Orientation Errors

and Errors in Translation

Orientation Equivalent oX
Equivalent Oy

Error

For Diode i:

X 0
2

Xdi Xia
2

Z8e

Ydi Yi
2

Xdi z
2

di ZiY
2SZiy

y a 2
Ydi Ze

2

Y a2
di ZiY

2

For Light Source i:

°Xiia 'XYli oX~ici

£ XY Ri X ia
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Table 5.4 Total Error Budget for Light Source-Lateral Effect Diode

System for Test POSOR

Perturbation Equivalent
Error Error

(a )

aX

aXZ

a B

Z8

aZY

ay

oX

0.

0.

.25 a2
Y

.25 a2

.25a2ZY

.05 cXa

0.

Equivalent
Error
(a 9

0.

oy

.25a 2
Xct

0.

-. 25 a2

Z8

.25a 2
ZY

0.

.05oy

Induced
Error

(oex)

.0555ax

0.

0.

.01390
YB

.0139a

Induced
Error
(aey)

0.

.3333Y

.083302

0.

-.0833oZ

.0098 a2  .0833 02
ZY ZY

.0028X (X

.0167a.,

Note that the values presented above use the values from
Table 5.3 and Equations 5.34 - 5.37.
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5.5 Conclusions

The analysis presented above was based on the assumption that

random errors were introduced to the system. The effects of these

errors on the desired system quantity were found by the use of a dif-

ference equation (5.2). Note that many of the random errors that can

effect system accuracy are errors in fixed quantities, which came about

due to uncertainty in determining these quantities (such as distance

between sensors).

Hence the only error of a random nature that should appear in the

operation of a POSOR would be due to electronic noise. Errors in place-

ment of the sensors, for instance, will not appear as random errors

(because the sensors are "rigidly" held in place), but will manifest

themselves as steadily increasing errors. The meaning of the "predicted

standard deviation of the error" is that the value used to predict the

expected steadily increasing error in the system could itself have an

error in it. The one exception is the error in calibration of the

diodes which will rise and fall as the diode is traversed.

This chapter has presented a general method for formulating sensor

resolution and sensor alignment error budgets. In formulating the error

budget, the dominant errors are identified which allows attention to be

focussed in the areas of greatest potential benefit. Similar error

budgets will be required when determining the relative positions of
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POSORs that are attached to a common measuring beam, but are not neces-

sary for the testing of a single POSOR. Recent work by Vaishnav and

Magrab [5.4] offers the option of determining the relative position of

the POSORS in-situ. The abstract from their paper titled "A General

Procedure to Evaluate Robot Positioning Errors" is quoted below:

"A new approach to characterize the errors that result from

lateral and angular misalignments of the geometric axes of an industrial

robot from their assumed positions and orientations is presented. The

formulation does not use the usual Deavit-Hartenberg approach. First, a

general kinematic formulation for an ideal robot with an arbitrary

number of links is developed. The geometric errors in axes locations

and orientations are then shown to be skew coordinate transformations

with origin translations, and are incorporated into the analysis using

general tensor algebra. The final forms of forward and backward trans-

formations contain up to 9(N+2) error parameters for a robot with N

physical links. Physical meaning of the error parameters as well as a

procedure to calculate these parameters using multiple linear regression

analysis are demonstrated".

126



References

[5.11 H.H. Ku, 'Statistical Concepts in Metrology', Handbook of
Industrial Metrology American Society of Tool and Manufacturing
Engineers, Prentice Hall New York 1967, pp 20-50

[5.2] H.H. Ku 'Notes on the Use of Propagation of Error Formulas',
Journal of Research of the National Bureau of Standards-C
Engineering and Instrumentation, Vol 70C, No 4, 1966

[5.3] D. Daubman, Kaman Instr. Corp., personal communication.
[5.4] Vaishnav, Magrab "A General Procedure to Evaluate Robot

Positioning Errors" to be published in International Journal of
Robotics

127



(this page left blank)

128



Chapter 6

Analysis and Design of Metrology Frame Components for

Articulated Structures

6.1 Introduction

This chapter will formulate the analytical tools necessary for

designing metrology frame structural components (for articulated

structures) as described in Chapter 3. The system building blocks

consist of a measuring beam, support gimbals, and a six degree-of-

freedom POSitioning and ORientation sensing device (POSOR). The first

section describes the overall test system configuration (scale model of

a "real" system). Detailed static and dynamic analysis of measuring

beams is then presented. Various types of gimbals are then investigated

in detail. Design algorithms are described in detail to aid in making

judgement about possible system performance.

6.2. Test System Configuration

The metrology frame design presented here is a possible full scale

model of the system which could be used in the main arms of a 60" (1.5m)

reach robot. In order to test the concept of a POSOR (that one large

degree of rotational freedom and two small rotational and three small

translational degrees of freedom can be simultaneously measured) the

test system is designed to simulate limited motions of a structural
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beam. The large degree-of-freedom, however, is limited to about five

angular degrees to prevent having to use more than two lasers (a larger

degree-of-freedom would require more lasers which only serves to test

how well lasers can be pulsed which is not the subject of the test).

The test system is shown in Figure 6.1, and consists of a POSOR

and a measuring beam that is supported by two gimbals. The gimbals

provide two and four degrees of freedom of motion respectively. The end

of the measuring beam near the two degree-of-freedom gimbal has the

POSOR's sensor plane (this plane contains the impedance probes and

lateral effect diodes) attached to it. The other end of the measuring

beam has an angle plate attached, from which measurements will be made

to determine the accuracy of the POSOR. The four degree-of-freedom

gimbal is mounted to a two axis linear stage which is used to simulate

the bending motion of a structural beam. The two degree-of-freedom

gimbal can rotate about the X axis to simulate twist of the structural

beam. A coordinate measuring machine is used to measure the motions of

the angle plate as the structural beam is moved (gimbals).

6.2.1 Static Analysis of Measuring Beam

This section will discuss the choice of the measuring beam cross

section and placement of the gimbals. The measuring beam contributes to

the weight of the metrology frame and is responsible for its primary

stiffness. Static deflections of the measuring beam, caused by the

accelerated mass of the components supported, are predictable and can be

compensated for with a software correction. Alternatively, the cross
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section of the beam can be chosen such that the slope due to elastic

deflections is below a set threshold (e.g. angular resolution of the

POSERS).

The loading of a measuring beam is shown schematically in Figure

6.2. The following analysis assumes that linear elastic materials are

used. For special applications, where high stiffness and low thermal

growth are desired, composite materials could be used. The bending

moment can be shown to be:

M(x) = -Wl<x> + [Wl(a/b + 1) - W2c/b]<x - a> + [W 2(c/b + 1) -

W a/bl<x - a - b> - W2 <x - a - b - c> + -2-<x> 2 +
2

w [ ( b + a ) 2  c 2 < a> 2  
+

2 b
w -[(b + c) 2  a 2 ]<x - a - b>2  

(6.1).2b

The slope at any point on the beam is:

1 2 2
a(x) = E (-Wj<x>/2 + [W,(a/b + 1) - W2c/b]<x - a>/2 + [W2(c/b + 1)

2 2
- W1a/b]<x - a - b>/2 - W2 <x - a - b - c>/2 + -6-<x> 3 +

w[ (b + a) 2 C 2 ] <( X a> +
6b

- [(b + c) 2 - a2]<x - a - b> + c') (6.2).

The constant C, is evaluated at the point where the bending moment is a

maximum (slope = 0), and the maximum slope occurs where the bending

moment is a minimum. The optimum placement of the supports would not

necessarily be to minimize (6.2); dynamic considerations, resistance to

bearing reaction torques, and minimizing relative motion between the
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POSOR disks must be considered. Also, the moment of inertia I must also

be sufficient to resist bearing reaction torques and to provide suffi-

cient dynamic response.

The static deflection of the measuring beam, which can be compen-

sated for by a software correction, does not have to be considered in

the present tests since the gravity vector will not be changing position

any appreciable amount.

6.2.2 Dynamic Analysis of Measuring Beam Performance

This section will compare the natural frequencies of measuring

beams and structural beams. It is important that the dynamic perfor-

mance of the measuring beam system not restrict the performance of the

structural system. The measuring frame to be modeled is shown in Figure

6.3. Because the inertia of the POSOR plates needs to be considered,

finite element analysis will be used to determine system natural fre-

quencies and modes. As an example, the dynamic performance of a

measuring beam system for a two link robot arm will be evaluated and

compared to the robot arm.

The requirement for dynamic performance of the measuring beam

system is to have the natural frequencies of a single measuring beam be

higher than those of the entire structure. For this example, an

aluminum measuring beam length of 30" (.76 m), OD = 2" (50.8 mm), ID =

1.75" (44.5 mm), with 10" (254 mm) diameter 1/2" (12.7 mm) thick

aluminum POSORs at each end and gimbles located 6" (152.4 mm) from each
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end will be modeled. At least two such measuring beams would run along

the first and second main structural links of an articulating robot.

The robot joint is assumed rigid, so the two links are modeled as an

aluminum structural box beam with length of 60" (1 .52 m), and cross

section 6"x4"x 1 /," (152x102x3 mm). The beam is assumed to be loaded

uniformly by its own weight times a factor of two (this will account for

the weight of the measuring beam, cables, etc., a factor of five or so

is necessary if the actuators are to be considered but they are ignored

here).

The first three structural beam natural frequencies (in one plane)

are easily found in closed form (see for example Meirovitch, Elements of

Vibration Analysis [1.28]) to be (rad/sec): w, = 318, w2 = 199', w 3 =

5583. The first three structural beam natural frequencies in a plane

orthogonal to that above (beam bending sideways) are: w, = 235, w2 =

1475, w, = 4131. The measuring beam mode shapes were determined by

finite element analysis and the results are given in Appendix 6A. The

corresponding natural frequencies are for the plane of vertical bending:

w, = 817, w2 = 1156, w, = 1332, and in the plane of sideways bending: w,

= 886, W2 = 1263, w3 = 1332. The first harmonic of the measuring beam

is thus three times that of the structural beam for both planes of

bending.

The above example shows that it is relatively simple to choose a

measuring beam geometry whose first mode is several times higher than

the articulated structure within which it is made to fit. This ratio

will have to be determined by control engineers who will design the
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controller, but it is important to know that the ratio can be altered.

Thus measuring beam dynamics should not be a problem with respect to

measuring beam system performance.

6.2.3 Analysis of Gimbal Designs

This section will discuss various gimbal designs. The gimbals are

critical elements in the measuring beam system because deflections of

the measuring beam caused by gimbal reaction torques are not predictable

(breakaway torques are not repeatable). Consequently, it is important

to design the system so the effects of the latter are below a desired

threshold. As shown below, the magnitude of the degrees of freedom that

the gimbals must provide are small, so it will be easy to establish and

maintain a suitable reaction torque threshold. Note that since the

POSORs measure all motions of the measuring beam, the gimbals do not

have to be accurate, but they must have a low reaction torque.

The required amount of angular freedom ac that the gimbals must

provide is equal to the structural beam deflection 6 divided by the beam

length R. For the following examples, the range of motion is based on

that encountered in a 30" (.76 m) long rectangular cross section box

beam loaded by a 1000 lb (454 kg) end force (with a design stress of

5000 psi (34.9 MPa)). This beam would have rotations on the order of

.0020 radians, and an axial length change of .001" (.0254 mm).

In a two major link structure (total reach = 2£), each end of the

measuring beam (length 2) can be at the slope imposed by the bearing
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reaction torques. The endpoint error is thus made up of components from

the error at the far end (distance Z,) and the near end (distance £2).

Thus the allowable bending reaction torque r to keep the endpoint error

below a threshold AE is:

r = 2E-I( + ) (6.3).

For a total endpoint error of AC = 50 pin (.0125 mm), E = 10x106 psi (70

GPa), measuring beam OD = 2" (50.8 mm), ID = 1.75" (44.5 mm), and £ = il

= £2 = 30" (.76 m), the maximum allowable gimbal reaction torque is r =

.3529 in-lbs (39.9 N-mm).

For the twisting error about the measuring beam's length, assume

that the error amplification is equal to the length of one measuring

beam. For this case, the allowable torsion is:

GIprý

Using the previous values, the allowable torsion r = .2100 in-lbs (23.73

N-mm). Based on these values and a measuring beam assembly weight of W

= 12 lbs (5.5 kg), wire support, air bearing, and ball bearing gimbals

are analyzed below.
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6.2.3.1 Wire Support Gimbal Design

Wire support gimbals are very simple structures which would re-

quire the least amount of maintenance, and require the least amount of

space. This would allow the measuring beam size to approach the struc-

tural beam size, which would increase static and dynamic performance.

Figures 6.4 and 6.5 show four degree-of-freedom (motions Oy, OZ , OX'

and AX) and two degree-of-freedom (motions 0y and 0Z ) wire support

gimbals respectively. They are similar except that the diagonal wires

shown in Figure 6.5 provide stiffness along and about the X axis. The

gimbal reaction torques are calculated below based on the assumption

that the wires do not have bending or torsional stiffness (e.g. cables).

The initial wire tensions are assumed equal to the measuring beam as-

sembly weight which is on the order of 12 pounds (5.44 kg). With the 12

lb (5.44 kg) measuring beam, a steel wire diameter D of .020" (1 .27 mm)

will have a design stress of 22.3 ksi (155 kPa).

For the four degree-of-freedom gimbal, shown in Figure 6.4, the

reaction torque about the Y axis due to a motion Oy is caused by the two

Z axis wires being displaced in the X directions. The X axis displace-

ment causes the wires to move through an angle E:

OyD

S 21 (6.5),
w
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This causes the two wires to stretch, increase in tension, and impose a

tangential force at the OD of the tube producing a reaction torque ry:

y = (AES2 + 2WM)DE/2 (6.6).

With the previous values, the minimum required wire length would be Zw =

.145" (3.68 mm). The wire stress due to the length change is on the

order of 2850 psi (20 MPa). This shows that for the small required

motions, the wire length can be very small. The same values are ob-

tained for the wires which provide the 6Z degree-of-freedom. For the OX

degree-of-freedom, the same analysis holds except that there are four

wires instead of 2 and typically the amount of error amplification is

less than half the measuring beam length. Thus approximately the same

value is obtained for the required wire lengths. The AX requirements

are even less.

For the two degree-of-freedom gimbal, there are four wires which

act to restrain the 9y motion; hence, the required wire length is .271"

(6.88 mm). These wires will actually have to be longer in order to

clear the measuring beam diameter. For the 0Z motion, the measuring

beam pivots about the bottom wires. For this case, the angle e is:

y D
E (6.7).

w

This causes the three wires to stretch, increase in tension, and impose

a tangential force at the OD of the tube producing a reaction torque ry:
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ry - 3sD(AEe2/2 + W M) (6.8).

The required wire length is found to be .813" (20.7 mm). Two of these

wires will actually have to be longer in order to clear the measuring

beam diameter.

The other degrees of freedom are restrained by wires which are

directly in tension. The first mode of the gimbal supported system can

be estimated by assuming that one wire supports half of the measuring

beam mass, and that the motions are uncoupled, so only translational

motions occur:

n = [2AE/eM M ] 2 (6.9).

With the previous values, and Zw = .8" (20.4 mm), wn = 868 rad/sec which

is on the order of the first mode frequencies found for the example in

section 6.3.2.

This section provided the basic formulas for determining the

minimum required wire lengths for wire support gimbals. Representative

values were found, and it was shown that wire support gimbals could

easily be made to meet most performance specifications. The main ad-

vantage of wire support gimbals are low maintenance requirements;

however, they may be difficult to install (setting wire tension, and

aligning POSOR disks, for instance, may be difficult).
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6.2.3.2 Yoke Type Gimbals

The other major type of gimbals use bearings to support a load,

usually through many degrees of motion. They are considered here be-

cause they are the stiffest type of gimbal that can be constructed, and

are the easiest to install (but they are the most difficult to

construct). Two types of yoke gimbals will be considered here, aeros-

tatic bearing support, and ball bearing support. A yoke gimbal that

uses only aerostatic bearings would provide the lowest reaction torques

(almost un-measurable). The use of ball bearings would lessen manufac-

turing and maintenance costs, but the reaction torque would be much

higher, and fretting corrosion problems could occur. Note that for both

types of gimbals accuracy is not a concern because the POSORs can sense

all motions of the measuring beam.

A two degree-of-freedom gimbal design that uses only aerostatic

bearings is shown in cross section in Figure 6.6. The design is rather

complex; however, it does not require the microinch tolerances normally

associated with aerostatic bearings, since they are designed for low

friction not high accuracy. Analysis of reaction torques is not neces-

sary, because if the bearings have not grounded out, there will be no

reaction torques. The four degree-of-freedom air bearing gimbal would

float the measuring beam in the collar. These designs are too complex

for the simple system required to test the principles of this thesis and

will not be discussed further although methods for designing aerostatic

bearings are discussed in section 6.2.3.5.
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Figure 6.6 Schematic of two degree of freedom aerostatic
bearing gimbal
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Two and four degree-of-freedom ball bearing gimbals are shown in

Figures 6.7 and 6.8 respectively. For the ball bearing gimbals, each

gimbal has a turntable bearing and a pair of yoke bearings; in addition,

the four degree-of-freedom gimbal has an aerostatic bearing assembly.

The aerostatic bearing provides the degrees of freedom along and about

the X axis more efficiently than could a ball bearing assembly. Before

discussing these designs in detail, the expected loads are computed.

In order to evaluate required bearing performance, each set of

bearings is assumed loaded by a force equal to one half the mass of the

system accelerated at the current system value G and produces a reaction

torque caused by the load times the coefficient of friction p acting at

a radius rb. The system's mass is composed principally of a measuring

beam, a receiving plane, a transmitting plane, two holding blocks, the

air bearing assembly, and two yokes; their sum total mass is M . The

distance between the yokes is y , and the length of the measuring beam

is m . The maximum angle of deflection of the round measuring beam

caused by the bearing reaction torque is E :

(M + p(ro - r mim )rb Gi
S = 0M5  1rp- - P2m)lrby (6.10).m E(r - r)/4.10).

o 1

The worst effect of this angular error will be to produce an error

in the angles a, 8, and w which are measured by each POSOR. For the

gross errors of a system with two long main measuring beams, the first

POSOR will measure an angle a that is off by +em and this error acts

over the distance 2£ . At the next joint, an error +E is contributedm m
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Figure 6.7 Two degree of freedom ball bearing gimbal assembly
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Measuring beam

Linear-Rotary
air bearing assembly

Axle

Ball
bearings

Four point contact
ball bearing

Figure 6.8 Four degree of freedom gimbal assembly
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by each measuring beam and acts over the length m . Thus the endpoint

error is 4e Z . If the allowable endpoint error associated with thismm

particular source is A&, then substituting the above into (6.10) and

solving for the maximum allowable value irb:

A•En(r ° - r.)
O 1

Urb - 1M + p(r 2 
- r)m y (6.11).b - -i6TM + Rp(r 2 r GR Rs o 1 m ym

Note that very fine positioning accuracy is only required for the

final position adjustment; thus the major acceleration will be that of

gravity plus a small dither component (the dither would be the final

homing in on the desired position). If the robot dithers sinusoidally

across an amplitude of .010" with a period of .030 seconds (= 3 control-

ler time constants) then the acceleration in addition to gravity is 1g.

Some typical values are (assume acceleration of 2g): ro = 1.0" (25.4

mm), r. = .875" (22 mm), E = 107 psi (70 GPa), M = 12 lbs (5.5 kg), 65
1 S

= .0005" (.0013 mm), p = .2 lbs/in3 (5286 kg/m 3), 9m = 30" (.76 m), and

1 = 18" (.46 m). The allowable value for prb is thus .0082" (.208 mm).

This is not necessarily too restrictive a value to obtain.

Instrument bearings typically have coefficients of friction of

.001, and the radius for the yoke would only be on the order of .3" (7.6

mm) (for a .375" (9.5 mm) shaft). The turntable bearing could possibly

be of the type used in the test model, for although the large radius (1"

(25.4 mm)) resists moment loads well, its coefficient of friction is of

the order of .007 (value given by Kaydon Corp.). Note that for the size

of the components used in the test, the error due to the larger bearings
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prb value will be negligible. For industrial implementation, each

application would have to carefully consider these design values. For

this thesis, the ball bearing design will be used because it is much

simpler to assemble and modify if needed. Chapter 7 describes tests

performed to determine prb for the bearings used. With these values in

mind, the gimbals of Figures 6.7 and 6.8 are discussed in greater detail

below.

The two degree-of-freedom gimbal is shown in Figure 6.7. The

design goals are to make it as reaction torque free and as small as

possible. To meet the design criteria, the design uses a yoke on a

turntable approach. A collar is fixed to the measuring beam by set

screws and epoxy. The base of the collar has a line bored hole in which

an axle is located. The axle is supported by a pair of bearings which

are in turn held in the yoke by a split housing arrangement. This

design allows very delicate preloading of the system so high starting

torques will not be induced. The yoke's base is turned and fits into

the ID of a large diameter KAYDON "Reali-Slim" four point contact

bearing. This bearing is a four point contact bearing which can resist

forces and moments in any direction. By using this one large diameter

bearing the need for a second yoke to straddle the first is avoided.

The four degree-of-freedom gimbal is shown in Figure 6.8, and is

identical to the two degree-of-freedom gimbal except that the collar

which holds the measuring beam is designed as an aerostatic bearing.

This aerostatic bearing will allow the measuring beam to slide and

rotate within the collar. Rolling element bearings were considered, but
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their size and weight prevented their use. For example, a Thompson ball

bushing bearing for a 2" (50.8 mm) diameter shaft weighs 10 pounds (4.5

kg). Also, the use of ball bushings would require a hard wear resistant

surface. The algorithm used to design the aerostatic bearing is dis-

cussed in the next section.

6.2.3.3 Ball Bearing Yoke Design to Resist Fretting Corrosion

The ball bearings used in the gimbals will not see more than one-

half degree or so of rotation; thus the possibility exists for the

breakdown of the lubricant film and for fretting fatigue to occur if

metallic bearings are used. Note that glass ball bearings with polyace-

tal races are available (Jilson Corp 201-488-4646) and can meet the

friction criteria.

Fretting fatigue is caused by repeated alternating sliding contact

of two adjacent surfaces. As noted by O'Connor [6.1], damage can occur

with slip amplitude as small as 40 microinches (1 ým) and Tomlinson et

al. [6.2] puts the figure at values as low as one microinch (.025 Pm) .

The action of fretting tends to increase the coefficient of friction

until stresses high enough to initiate a fatigue crack form; however, we

are more concerned about metal to metal contact resulting in higher

coefficients of friction. This occurs when metal to metal contact

causes local cold welds between asperites which are then torn apart.

The newly exposed fresh metal surface quickly oxidizes and the process

repeats. Thus fretting fatigue is often referred to as fretting

corrosion.
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For the combined loads placed on the gimbals of 6.2 pounds/gimbal

(2.8 kg) @ 2g's acceleration, the bearing stresses are very high. The

compressive stresses for the bearings were determined from a series of

equations initially derived by Hertz and referenced here from Timoshenko

[6.3]. A program CONTACT.FOR, which is given in Appendix 6B, is used to

analyze bearing contact stresses. The equations have complicated func-

tions of the radii of curvature of the surface, but the stress varies as

the cube root of the load. Thus even small loads produce very large

stresses which is why fretting fatigue can so easily occur.

For a 3/8" (9.5 mm) bore 7/8" (22 mm) OD bearing with seven 5/32"

(4 mm) diameter balls, it can be assumed in the worst case only two

balls bear the load. For the yoke bearings this means each ball is at

most loaded by 2.2 pounds (9.8 N). However, the resulting compressive

stresses are 123 ksi (859 kPa). Note that Waterhouse [6.4] suggests

that for hardened steel the applied compressive stress should be 1/5th

to 1/10th of the maximum allowable in order to provide for 107 cycles of

life. Thus fretting fatigue would soon become a problem unless forced

lubrication methods were employed.

The large 2" (50.8 mm) diameter bearing is rated for radial,

thrust, and moment loads. The groove is arch shaped to allow this sort

of loading but it complicates the analysis. Thus to enable an estimate

of the compressive stresses, the applied loads are normalized by the

maximum allowable static loads. The cube root of this ratio times the

maximum allowable compressive stress will thus approximate the maximum

stress imposed by the present loading [6.3]. The combined load of 6.2
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pounds (27 N) thrust and 16 in-pounds (1.8 N-m) moment is equivalent to

a 36.8 pound (164 N) radial load. The maximum radial load the bearing

will support is 683 pounds (3038 N) which generates a 400 ksi (2.8 GPa)

compressive stress (bearing values courtesy of Mike Purchase at Kaydon

Corp.). From the above, the compressive stress for the present case is

found to be 154 ksi (1 .1 GPa) . Thus the Kaydon bearing could also

experience problems with fretting fatigue.

There are several possible methods by which fretting corrosion can

be avoided: 1) force lubrication between balls and races with pres-

surized lubricant, 2) use special greases for oscillating conditions

such as Nye Co.'s RHEOLUBE-951, 3) coat the bearing surface to prevent

metal to metal contact or to provide noncorrosive surfaces, 4) make the

bearings from dissimilar materials. The first solution would be messy

and may contaminate the POSORs' surfaces. The second solution will

require periodic changing of the grease and still has the potential for

failure. The third solution is viable and is currently available from

Fafnir Co. Fafnir's plating process ("Fafcote-TDC") applies a thin hard

(RC-70) chrome plating to the bearing components. The coated "Fafcote"

bearing is not yet in production, so it will be some time before fatigue

data is gathered. Note that the chrome surface will form a hard tough

oxide layer which at least will not corrode. The last option, however,

may also be promising as is discussed below.

Since the loads are so low, the potential exists for using a

plastic such as Teflon or Delrin for the races with glass, steel or

aluminum balls. Note that the plastic has a much lower modulus of
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elasticity than steel so the footprint areas would increase which would

lower the contact stress. If Delrin is used (modulus of elasticity =

450 ksi (3.1 GPa)) and we assume that it is a linear elastic material,

then the maximum compressive stress is found to be 12 ksi (8.4 GPa).

Delrin has a 1% yield strength of 5.2 ksi (36 MPa), and a 10% yield

strength of 18 ksi (69 MPa). The use of soft metals such as brass

results in compressive stresses of 78 ksi (537 MPa) which precludes

their use. Thus it is apparent that more research must be done in this

area if ball bearing gimbals are to be used in commercial metrology

frames.

6.2.3.4 Principles of Aerostatic Bearing Design

Air bearings are normally associated with ultra-precision spindles

that are only moderately loaded but may operate at very high RPM's.

Most low speed ultra low friction applications use oil fluid bearings

because of their greater load carrying capability, and they have less

stringent manufacturing tolerances. Also fluid viscosity terms are

minor at low velocities. However, hydrostatic, as opposed to aeros-

tatic, bearings are messy and would quickly contaminate the POSORs'

surfaces. Thus aerostatic bearings are the only type of fluid-static

bearings that are applicable for use in measuring beam systems.

Aerostatic bearings do not depend on shaft rotation to generate

lift. Instead, high pressure air is forced through capillaries or

orifices into the region between a shaft and a housing. These flow

restrictors prevent the air from selecting an unrestricted exit path.
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The main disadvantage in using air is that it is compressible which for

some designs can lead to instability problems. The designs which are

prone to instabilities are pointed out in the following general descrip-

tion of air bearing design.

A typical aerostatic bearing is shown in cross section in Figure

6.9. Air is forced into a number of pockets which surround a shaft.

The pressure inside the pocket is nearly uniform and drops linearly

across the lands to the atmosphere. As the shaft is displaced, the

land's gap in the displaced direction decreases causing a pressure rise.

The opposing land's gap increases causing a pressure drop; thus an

equilibrium shaft eccentricity is reached. It is possible to eliminate

the lands and have the air flow just between the shaft and the housing,

but then the large region of constant pressure would not be present and

the load rating drops.

If the pockets are too big, then aerostatic instability, or

"pneumatic hammer", as described by Modjarrad [6.5] may occur. This

type of instability occurs because as the bearing surfaces approach, air

will be compressed in some pockets instead of flowing out the bearing.

On the other hand, the opposing pocket will take a finite time to fill.

Thus there is a time lag between the required balancing pressure and the

applied load, and the shaft will oscillate. If the damping effect

provided by the lands is not carefully chosen, then this instability can

occur.
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Various theoretical methods have been used to model pneumatic

hammer. Sun [6.6] describes the phenomenon occurring not only in

pocketed bearings, but in porous surface bearings as well. Pinkus [6.7]

gives a well presented description of the effect, and derives the criti-

cal relationship between pocket and land size. For the present design

application, however, ample performance can be obtained from a non-

pocketed bearing.

Pneumatic hammer can be avoided by not using pockets, which

reduces the load capacity of the bearing but decreases machining costs.

It can also be avoided by using groove compensated bearings, as patented

by Arneson [6.8], which also have a very high load capacity. This

latter type of bearing has shallow longitudinal grooves machined into

the shaft which are calibrated to have a precise flow resistance rela-

tive to the ungrooved portions in such a way as to give the added lift

affect of having pockets without as great a chance of an instability

occurring.

The type of bearing design used in the present application will

thus depend on the type of robot that is to be built. For the present

case of a test system, the theory of operation of a "plain" bearing will

be used to design a plain aerostatic bearing. If after testing, its

performance is not satisfactory, it can be modified to be of the grooved

design.
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6.2.3.5 Development of Aerostatic Bearing Design Algorithm

This section will formulate the equations for fluid flow necessary

to predict performance of aerostatic bearings. Various authors provide

charts and graphs to assist in air bearing design, but they do not give

the designer a feel for what is going on. Thus the equations derived

below will be included in a FORTRAN program that will allow the effects

of the various parameters to be plotted and tabulated. The goal is to

develop a design which has very forgiving dimensional tolerances. Such

a design would thus be economical to implement and should be more

trouble-free.

For plain journal aerostatic bearings, the load capacity is a

function of the bearing geometry and the method used to introduce the

flow. The geometry is changed by altering the length to diameter ratio

and the radial clearance. The method of introducing the flow can be

controlled by varying the inlet orifice size. The net radial restoring

force provided by the bearing can be determined from the Navier-Stokes

equations. The following symbols are defined for this section only:

C inside radius of housing minus outside radius of shaft

Cd orifice discharge coefficient

D shaft diameter

L bearing length

R bearing radius

W load
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a orifice radius

e eccentricity
c

h film thickness

m number of orifices

p pressure

u, v, w linear velocity components

x, y, z cartesian coordinates

E eccentricity ratio e /Cc

4 absolute viscosity

p density

The assumptions made in applying the NS equations are:

1) The height of the film, which separates the surfaces, is very small

compared to the radial and longitudinal distances; thus the curvature of

the bearing can be ignored, and a cartesian reference frame used.

2) There is no variation of pressure across the film; thus 0 = 0.
ay

3) The flow is laminar.

4) There are no external forces on the fluid film (ignore gravity).

5) Fluid inertia forces are small compared to viscous shear forces:

Du Dv Dw
thus - - - 0.Dt Dt Dt

6) No slip condition at fluid/surface interfaces.

7) Since the y dimension is so small compared to the others, only

the higher order derivatives of y are retained.

These assumptions reduce the Navier-Stokes equations to:

x ay2 2 (6.12),
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1 2 2(6.13).
Sax @y2

The dimension X is along the circumference of the bearing and Z is

along the longitudinal direction. For the static case, the surface

velocity is zero, and integrating the above yield:

u = -~ x y(y - h) (6.14),
21 ax

w = -L ýz y(y - h) (6.15).

There will be cross flow from the higher pressure regions to the lower

pressure regions which is accounted for by the continuity equation:

-- (pu) + -- (pv) + -- (pw) = 0 (6.16).ax ay az

Substituting (6.14) and (6.15) into (6.16) and integrating before dif-

ferentiating yields the Reynolds equation for the zero surface velocity

case:

0 = - (hl ap2) + z ( l z) (6.17).ax 9 ax az 5 ( a

Pinkus and Sternlight [6.7] solved (6.17) for a compressible and

incompressible flow with laminar or turbulent feeding. They assumed

that a ring of m orifices are equally spaced about the circumference

of a housing in the center of it. Their results for the compressible

fluid bearing case with orifice inlets are presented below.
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The parameters At and Xt are used to describe flow into the

bearing gap through orifices:

2.25xC2a L2 2m
At C= Cp(p ) --- (6.18),

A = At( 1 + ( 1 + 2/A ) 2 ) (6.19).

The parameter Y is defined as:

(L/D)(1 + t)
Y )/2 (6.20).

t s a

The error function and Dawson's function are denoted by 0 and Y

respectively. The load which the bearing will support is given by:

e (T(vJ y' + L/D ) - T(Y))
3 aE _ LDp a  (-/2)e ( Y2 + L/D ) - (Y) (6.21).
W = 4Y T(L/D)cosh(L/D) + Atsinh(L/D)

The above equations are assembled in a program AIR.FOR which is

presented in Appendix 8A.

6.2.3.6 Digital Analysis of Bearing Performance

The measuring beam's diameter is chosen based on a deflection

criteria as given previously. Thus a logical choice is to design the

aerostatic bearing for the four degree-of-freedom gimbal based on the
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same diameter. This allows the bearing length and orifice size to be

chosen. It is assumed that 80 psi (551 kPa) shop air will be used as an

air supply. The largest loads that the air bearing must resist will be

those caused by robot accelerations. These are generally set by the

robot controller as part of a detailed path plan.

The bearing for the testing unit will be designed for a load of

4g's. Note that the aerostatic bearing must resist the reaction torque

of the yoke bearings about an axis parallel to a radius. Thus two rows

of orifices are arranged around the housing, and are spaced such that

the distance between rows is equal to one half the length of the bearing

housing. A series of holes is drilled in the circumference of the shaft

at the point where they will lie midway between the rows of orifices;

thus the single housing will act as two adjacent bearings and will be

able to resist a moment. This design method is described by Wilcock and

Booser [6.9]. The loads are thus 16.2 pounds (73 N) radial and 32 in-lb

(3.62 N-m) moment.

The input parameters of interest, which can be varied in the

design, are the length L, the radial clearance C, the orifice radius

a, and to a lesser extent the orifice coefficient Cd . The obtainable

surface finish for the bearing surfaces must also be an order of mag-

nitude finer than the minimum surface gap. The parameter which is most

difficult to control, however, is the orifice discharge coefficient.

Each of these parameters will be varied and their effect on the bearings

performance. Then the optimum choice will be made to yield a manufac-

turable bearing.
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Figure 6.10 Aerostatic bearing core
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Figure 6.11 Aerostatic bearing hull
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Orifices have had extensive use as flow metering devices in many

fields and the amount of literature dedicated to their study is

voluminous. Theoretical studies by Rivas and Shapiro [6.10] for rounded

entrance non-contracting orifices indicate that Cd varies with the

Reynolds number in a fairly predictable manner. Other researchers such

as Tsai [6.11], and Perry [6.12] confirm this. The problem is that it

is difficult to determine the Reynolds number for aerostatic bearing

orifices since the flow rate cannot be determined until Cd is known.

Rather than go through an elaborate iterative program, which may yield a

value which is not easily controllable, the effect of a broad range of

orifice coefficients is studied.

The program AIR.FOR was modified to allow the L/D ratio to be

input along with a starting value for the orifice coefficient. The

program then looped over the orifice coefficients incrementing the

bearing gap clearance through a cycle each loop. Data was gathered with

the other parameters set at reasonable values as indicated on the plots.

The results are presented in Figures 6.12 and 6.13. As would be ex-

pected from (6.19), the discharge coefficient, which is raised to a

lower power than the other functions, does not effect the load capacity

of the bearing very much. However it is interesting to note that with

an orifice radius of .030" (.762 mm), the load capacity goes down with

increasing discharge coefficients, while the opposite is true for an

orifice radius of .015" (.381 mm). Evidently, the effect of larger Cd

values is to let too much air into the bearing which does not allow as

large a pressure differential to build up. Of course not letting enough

air in would lead to bearing gaps which would be too small. Since the
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Figure 6.12 Aerostatic bearing performance with Cd = .4 - .8,
a = .030", C = .002", L/D = 1, p = 80 psi
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Figure 6.13 Aerostatic bearing performance with Cd = .4 - .8,
a = .015", C = .002", L/D = 1, p = 80 psi
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orifices used are to have a rather shallow throat length, a midrange

value of .6 will be assumed and an orifice radius of .030" (.762 mm)

will be used.

The effect of the other parameters was then studied using AIR.FOR.

Figures 6.14 through 6.16 show the effect of varying the radial

clearance on the load supporting capability. As shown in Figure 6.14

with a radial clearance of .001" (.025 mm), as the L/D ratio increases

the load capability decreases because too much air is flowing so there

is not a large pressure differential. As shown in Figure 6.15 with a

radial clearance of .002" (.051 mm) the load capability rises then

falls, with the maximum being at an L/D ratio of 1.5. Even at an L/D

ratio of 1, when the radial gap is .0015" (.038 mm), the bearing will

support 22 pounds (100 N). As shown in Figure 6.16, with a radial

clearance of .004" (.102 mm), the performance begins to decrease.

Thus it seems that a workable aerostatic bearing that will run off

of shop air can be obtained if the orifice diameter is .060" (1.52 mm),

the L/D ratio is 1, the maximum radial clearance is .002" (.051 mm),

and two such bearings are placed back to back which will enable moment

loads to be resisted.

6.3 Conclusions

This chapter presented algorithms for designing measuring beam

system components. The static performance of measuring beams subject to

supporting gimbal reaction torques was found and a typical size system
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Figure 6.14 Aerostatic bearing performance with Cd = .6,
a = .030", C = .001", L/D = .5 - 2.5, p = 80 psi
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Figure 6.15 Aerostatic bearing performance with Cd = .6, a = .030,
c = .002", L/D = .5 - 2.5, p = 80 psi
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Figure 6.16 Aerostatic bearing
C = .004", L/D =

performance with Cd = .6, a = .030",
.5 - 2.5, p = 80 psi
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was designed. Similarly, the dynamic performance of a measuring beam

system was compared to the dynamic performance of a typical two link

articulated structure and a typical measuring beam first mode was found

to be twice that of the structure. Various types of supporting gimbals,

air, ball bearing, and aerostatic, were all found to be able to provide

the desired performance. For the test system, a combination air/ball

bearing gimbal system was chosen. Subsequently, a detailed algorithm

was developed to aid in the design of low friction, large bearing gap

aerostatic bearings (very economical to produce).
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APPENDIX 6A

Results of Finite Element Analysis of

Measuring Beam Dynamics
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*~sts EIGENUALUE (NATURAL FREQUENCY) SOLUTION *s*s*

MODE FREQUENCY (CYCLES/TIME)

1 129.798318

2 148.721214

3 183.779175

4 281.818994

5 211.716768

6 426.793661

***st EIGENUECTOR (MODE SHAPE) SOLUTION *sss*
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APPENDIX 6B

FORTRAN Analysis Programs
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CONTACT
0:59

1:39

VAX-11 FORTRAN V3.4-56

DRC0: [SLOCUM.BEARING CONTACT.FOR; 11

Page 2
13-Sep-1984 12:3

12-Sep-1984 12:5

0058 2 + 1.005 E-2*THETA +.2366

EM = 1.155 E-7*THETA**4 -3.466 E-5*THETA**3
2 + .004062*THETA**2 - .2353*THETA + 6.9756

A = EM*(.75*P*(AETA1 + AETA2)/BPA)**.333

B = EN*(.75*P*(AETA1 + AETA2)/BPA)**.333

SIGMAC = 1.5*P/(3.14*A*B)

TAUMAX = .3*SIGMAC

0073 PRINT*, 'A = ',A
0074 PRINT*, 'B = ',B
0075 C
008876 PRINT*, 'THE MAX. COMPRESSIVE STRESS IS: ',SIGMAC,' PSI'
0077 PRINT*, ' '
0078 PRINT*, 'THE MAX. SHEAR STRESS IS: ',TAUMAX,' PSI'
0079 C
0080 END

PROGRAM SECTIONS

Name

0 $CODE
D NOWRT LONG
1 $PDATA

D NO11RT LONG
2 $LOCAL

D WRT LONG

Total Space Allocated

Bytes

1290

521

244

Attributes

PIC CON REL LCL

PIC CON REL LCL

PIC CON REL LCL

SHR EXE

SHR NOEXE

NOSHR NOEXE

2055

ENTRY POINTS

Address

0-00000000

VARIABLES

Address
ype Name

2-00000044
R*4 AETA2

2-00000034
R*4 El

2-00000040
1P*A P

Type

Type

R*4

R*4

R*4

Name

CONTACT

Name
Address

A
2-00000048

BMA
2-00000004

EM9-flapappop

Address Type Name
Type Name

2-00000014 R*4 AETAl
R*4 B

2-00000030 R*4 BPA
R*4 E2

2-0000003C R*4 EN
P*L PT•JT 1

Address T

2-000880018

2-00000000

2-00000010
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0065
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13-Sep-1984 12:3
0:59 VAX-11 FORTRAN V3.4-56 Page 1

12-Sep-1984 12:5
1:39 DRCO: [SLOCUM.BEARING ]CONTACT.FOR;11

0001
0002 PROGRAM CONTACT
0003 C
0004 C CALCULATES MAX COMPRESSIVE AND MAX SHEAR STRESSES
0005 C OF IWO SURFACES IN CONTACT.
0006 C
0007 PRINT*, 'YOUNGS MODULUS OF MATERIAL 1? (PSI)'
0008 ACCEPT*, El
0009 PRINT*, 'YOUNGS MODULUS OF MATERIAL 2? (PSI)'
0010 ACCEPT*, E2
0011 PRINT*, 'POISONS RATIO OF MATERIAL 1?'
0012 ACCEPT*, PNUI
0013 PRINT*, 'POISONS RATIO OF MATERIAL 2?'
0014 ACCEPT*, PNU2
0015 PRINT*, 'APPLIED LOAD? (LBS)'
0016 ACCEPT*, P
0017 C
0018 AETAl = (I-PNUI**2)/EI
0019 AETA2 = (1-PNU2**2)/E2
0020 C
0021 PRINT*, 'IF OBJECT 1 IS INSIDE OBJECT 2 THEN OBJECT 2'
0022 PRINT*, 'HAS NEGATIVE RADII, AND VISA-VERSA.'
0023 PRINT*, ' '
0024 PRINT*, 'IF ANY OF THE FOLLOWING ARE INFINITE, ENTER ZERO'
0025 C
0026 PRINT*, 'MIN. RADIUS OF OBJECT 1? (IN)'
0027 ACCEPT*, R1
0028 PRINT*, 'MAX. RADIUS OF OBJECT 1? (IN)'
0029 ACCEPT*, Rll
0030 PRINT*, 'MIN. RADIUS OF OBJECT 2? (IN)'
0031 ACCEPT*, R2
0032 PRINT*, 'MAX. RADIUS OF OBJECT 2? (IN)'
0033 ACCEPT*, R22
0034 C
0035 PRINT*, 'ANGLE, IN DEG., BETWEEN THE PLANES WITH THE'
0036 PRINT*, 'MIN. OR MAX. RADII?'
0037 ACCEPT*, PSI
0038 C
0039 PSI = (3.14*PSI)/180
0040 C
0041 IF (RI .EQ. 0.) GOTO 100
0042 R1 = 1/R1
0043 100 IF (R11 .EQ. 0.) GOTO 200
0044 Rll = 1/R11
0045 200 IF (R2 .EQ. 0.) GOTO 300
0046 R2 = 1/R2
0047 300 IF (R22 .EQ. 0.) GOTO 400
0048 R22 = 1/R22
0049 C
0050 C
0051 400 BPA = .5 *(RI + Rll + R2 + R22)
0052 BMA = .5*((R1-Rll)**2 + (R2-R22)**2 + 2*(RI-R1l)*
0053 1 (R2-R22) * COS(2*PSI))**.5
0054 C
0055 THETA = 180/3.14 * ACOS(BMA/BPA)
0056 C
0057 EN = 5.454 E-7 *THETA**3 -6.659 E-5*THETA**2
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DATA FOR AIR BEARING DESIGN. enter dimensions in required unitsl l
Enter bearing radius R (mm)
25.4
Enter radial clearance C (mm)
.1016
Enter supply pressure (Pascals)
551584.0
Enter ambient pressure (Pascals)
101353.6
Enter viscosity of air (Kg/m-s)
1.853E-05
Enter density of air (ibm/in**3)
1.183
Enter orifice radius (mm)
.8
Enter discharge coeff.
.6
Enter number of orifices
8.
CHARACTER DATA
Enter 40 character x label for load vs gap thickness
Gap Thickness (mm)
Enter 40 character y label for load
Supportable load (Nt)

end of data input
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10-Sep-1984 13:3
1:58 VAX-11 FORTRAN V3.4-56 Page 1

10-Sep-1984 13:3
1:52 DRCB:[SLOCUM.BEARING]AIR.FOR;35

0001 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
8002 C
8003 C AIR.FOR by Alex Slocum, Sept. 18, 1984, to analyze performance
8004 C capabilities of air bearings
0005 C
000886 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
0007 REAL LOAD(6,20)
0008 REAL mu, L, Lt, m, K, LD
0009 CHARACTER*40, XLABL, YLABL
0810 OPEN(UNIT = 4, NAME = 'AIR.INP', STATUS = 'OLD')
8811 OPEN(UNIT = 7, NAME = 'AIR.OUT', STATUS = 'NEW')
0012 READ(4,10) R, C, ps, pa, mu, rho, a, Cd, m
0013 10 FORMAT( //9(G12.4//) )
0014 READ(4,11) XLABL, YLABL
0015 11 FORMAT( 2( A40// ) )
0016 R = R/1000. ICONVERT mm to m
0017 C = C/1000.
0018 A = A/1000.
8019 print*, R, C, ps, pa, mu, rho, a, Cd, m,
0020 1 XLABL, YLABL, XLABS, YLABS
0021 DO 28 I = 1, 28
0022 LOAD(1,I) = 1000.*C/REAL(I) I surface gap mm
0023 20 CONTINUE
0024 D = 2.*R
0025 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
0026 CCCC LOOP WJER L/D RATIOS
0027 CCCCCCCCCCCCCCCCCCCCCCC
0028 DO 100 I = 1, 5
0029 L = REAL(I)*R
0030 LD = L/D
0031 WRITE(6,12) LD, Cd, 2000.*a
0032 WRITE(7,12) LD, Cd, 2000.*a
0033 12 FORMAT(//10X,'L/D = ',Gl2.4,5X,'Cd = ',G12.4,5X,
0034 1 'Nozzle D (mm) = ',G12.4/10X,
0035 1 'BEARING GAP',5X,'SUPPORTABLE LOAD',5X,' STIFFNESS',5X,
0036 1 'ECCENTRICITY'/10X,' mm ',5x,' Nt ',5x,
0037 1 ' Nt/mm ',5X,' MM' /)
0038 DO 200 J = 1, 20 1 LOOP OVER ECCENTRICITY RATIOS
0039 e = 1. - 1./REAL(J) i ecentricity ratio
0040 AA = (2.25*Cd*Cd*L*L*mu*mu*m*a**4)/(R*R*rho*(ps-pa)*C**6)
0041 Lt = AA*( 1. + SQRT(1. + 2./AA) )
0042 Y = SQRT( ( LD*(1. + Lt) )/( Lt*((ps/pa)**2 - 1. )) )
8843 Ys = Y*Y
0044 fY = SQRT( Ys + LD )
8045 psil = DAWS(fy)/EXP(-fY*fY)
0046 psi2 = DAWS(Y)/EXP(-Y*Y)
0047 FYLD = 2.3562*( EXP(-Ys)*( psil - psi2 )
0048 1 - .8862*EXP(Ys)*(ERF(fY) - ERF(Y) ) )
80049 W = L*D*pa*e*FYLD/( ( LD*COSH(LD) + Lt*SINH(LD) )*Y )
0050 EE = 1000.*C*E
0051 K = W/(EE + 1.E-08)
0052 LOAD( I+1, J) = W
0053 WRITE(7,201) LOAD(1,J), W, K, E
0054 201 FORMAT(9X,G12.4, 7X, G12.4, 4X, G12.4, 5X, G12.4)
0055 200 CONTINUE
0056 WRITE(6,201) LOAD(1,J), W, K, E
0057 100 CONTINUE
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AIR$MAIN 10-Sep-1984
1:58 VAX-11 FORTRAN V3.4-56 Page 2

10-Sep-1984

1:52 DRCO: [SLOCUM.BEARING ]AIR. FOR; 35

0058 CALL QPICTR( LOAD, 6, 20, QY(2,3,4,5,6), QX(1), QXLAB(XLABL),
0059 1 QYLAB(YLABL), QLABEL(4) )
0060 STOP
0061 END

PROGRAM SECTIONS

By

1

Name

0 $CODE
D NOWRT LONG

1 $PDATA
D NOWRT LONG

2 $LOCAL
D WRT LONG

Total Space Allocated

tes Attributes

243 PIC CON REL LCL SHR EXE

267 PIC CON REL LCL SHR NOEXE

904 PIC CON REL LCL NOSHR NOEXE

2414

ENTRY POINTS

Address Type

0-00000000

Name

AIR$MAIN

VARIABLES

Address Type
ype Name

2-0000025C R*4
R*4 C

2-00000270 R*4
R*4 EE

2-00000294 R*4
1*4 J

2-00000234 R*4
R*4 LT

2-00000230 R*4
R*4 PS

2-00000290 R*4
R*4 RHO

2-000001lE CHAR
R*4 Y

2-00000268 R*4

Name
Address

A
2-00000260

D
2-00000288

FYLD
2-00000240

L
2-0000023C

MU
2-0000028C

PSI2
2-00000298

XLABL
2-00000208

YLABS

Address
Type Name

2-0000027C
R*4 CD

2-00000278
R*4 FY

2-0000026C
R*4 K

2-00000244
R*4 M

2-00000254
R*4 PSI1

2-00000248
R*4 W

2-00000264
CHAR YLABL

2-00000284

Type Name

R*4

R*4

1*4

R*4

R*4

R*4

R*4

R*4

AA

E

I

LD

PA

R

XLABS

YS

Address T

2-0000024C

2-0000029C

2-00000274

2-00000238

2-00000250

2-00000258

2-00000280

ARRAYS

Address

2-00000000

Dimensions

(6, 20)

13:3

13:3

Type

R*4

Name

LOAD

Bytes

480
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Chapter 7

Methods and Results of Calibration and Testing Procedures of a

Measuring Beam System for Articulated Structures

7.1 Introduction

Chapter 3 described the necessary components for a goniometer to

measure robot motion using non-contact sensing motions. Chapter 5

derived the error budgets necessary to determine how accurate such a

system could be and Chapter 6 formulated general design algorithms ana

presented a specific test design for a measuring beam system

(goniometer) to determine position and orientation of articulated

structures. This chapter will focus on the procedures for calibration

and testing of the measuring beam system as they were performed. Actual

results will be reported along with their effect on the final measure-

ments (using equations derived in Chapter 5). The final test results

for the assembled POSOR are presented with conclusions in Chapter 8.

The first section of this chapter will discuss the general ex-

perimental setup used in calibrating measuring beam system components.

It wil-1 also discuss errors in the calibration tests caused by environ-

mental effects and physical misalignments in the system. The individual

calibration experiments and their results are then aiscussed in detail.

From the results of the calibrations, the achievable error for the POSOR

is predicted using the system error budgets formulated in Chapter 5.
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The first experiment will be to gather data on the gimbal bearing

coefficients of friction, to ensure that the maximum allowable coeffi-

cient of friction (Equation 6.11) is not exceeded. Also the air bearing

performance will be tested to determine its maximum load capability.

The next set of experiments entail calibrating the light source lateral

effect diode system which includes: determining stability and

repeatability of the lateral effect diodes, linearization of the lateral

effect diodes, determining the X and Y axes offsets of the diodes, and

determination of the light source inclination angles. The last set of

experiments entail calibrating the impedance probe system which includes

tests for: linearization, stability and repeatability, and probe

spacing.

7.2 General Experimental Environment During Calibration of POSOR

Components

All the experiments were performed in a room which was temperature

and access controlled. The general setup is shown in Figure 7.1 which

shows the electronics bench, laser interferometers, and the CNC vertical

machining center used as a stage (these components are discussed in

greater detail in following sections). All critical measurements were

performed with stationary components clamped and epoxied in place, and

all setups were stress relieved with a calibration hammer (a good solid

blow to the vertical machining center table).
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Vertical machining center

Electronics
bench

Laser
interferometers

Figure 7.1 General experimental setup for calibration
of POSOR components



The critical factors in a calibration experiment for a mechanical

metrology system are: temperature control, accuracy of measuring in-

struments, alignment (of sensor axis, measurement axis, and motion

control axis), accuracy of motion control system, and accuracy of

electronics. Before testing the components, however, the system itself

must be tested to determine accuracy, stability, and repeatability.

This is done by using devices such as laser interferometers and standard

reference voltage supplies. These tests are discussed in detail below.

Environment: The atmospheric environment of the room in which the

calibration measurements were made can affect them by way of thermal

expansion, varying the velocity of light, and causing drift in the

electronics. During the entire experiment, the temperature in the room

never varied more than .10 F (.060 C). By keeping the distance between

the laser optics less than .5", 2" and 10" (12.7, 50.8, 254 mm) for the

impedance probes and the lateral effect diode Y and X axis measurements

respectively, the thermal growth error due to the cast iron stage would

be at most .3 pin, 1.2 pin and 6.0 pin (.01, .03, and .15 pm)

respectively. The principal error in the laser interferometer measure-

ments occurred from the changing barometer readings which affect the

velocity of light compensation factor [7.1]. For 24 hour runs, the

worst case error was (.9997300 - .9997350) = 5 pin/inch distance between

the interferometer and the retroreflector. For any one calibration run

(less than 12 hours) the error was (.9997300 - .9997310) = 1 pin/inch.

In general, tests were not run when a changing weather system was

predicted (changing barometric pressure affects the velocity of light in

air). The electronics were not affected by the small variations in air
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properties as was shown by testing with a standard reference voltage

supply.

Mechanical Systems: Calibration measurements are made by varying a

quantity a known amount and comparing it to the sensor reading which

requires careful alignment of the components. For the distance measure-

ments made, the alignment of the axes of the laser interferometer, the

actuation stage, and the sensor was done using a dial gauge set in the

spindle of the vertical machining center. The maximum alignment error

was at most .002 inch per inch which results in a cosine error of 4 pin

per inch of travel. Alignment of angular motion axes is discussed in

the section on determining distance between the impedance probes.

Accuracy and repeatability of the motion control system axes is

important in keeping Abbe's offset error (see section 4.1) at a minimum.

Specifically, yaw, pitch, roll, and straightness of the axes need to be

measured. For the Auto Numerics MVC-10 CNC vertical machining center

used as a stage, the angular motions about the X and Y axes were all

about 1 arc second per inch of travel, and the straightness was on the

order of 5 pinch per inch (.13 pm/m) of travel. The biggest source of

error was a computer controlled stepper motor driven stage as discussed

in detail below.

For reasons discussed in Section 7.4.1 (calibration of the lateral

effect diodes), it was necessary to use a computer controlled stepper

motor driven stage. The accuracy and repeatability characteristics of

the stage (WMich were not good) are discussed below, their effect on the
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calibration of sensors is discussed in the specific description of the

experiment.

The straightness, yaw, and pitch of a Klinger computer controlled

stepper motor driven ball slide stage with .75" of travel were measured

using interferometery techniques described in Chapter 4. These motions

about the stage axis of motion are shown schematically in Figure 7.2.

The straightness is shown in Figure 7.3. The curve is at an incline

because of a misalignment between the laser axis and the stage motion.

Extreme care was not taken during alignment of the straightness optics

because some incline is always present and it is easier to remove the

incline with a software correction. As shown in Table 7.1, 6 runs were

made with a mean variation in straightness of of .000408" (10 pm). The

repeatability, however is only on the order of .001" (.0254 mm). The

yaw is shown in Figure 7.4 and shows a repeatability of about 5 arc

seconds. The pitch is shown in Figure 7.5 and shows a repeatability of

about 2 arc seconds with the exception of a bump of about 10 arc seconds

at an X position of .3" (7.6 mm).

Electronics: All calibration data was acquired digitally. The data

aquisition system and Klinger stage were controlled by an HP 9836

microcomputer. Motions of the machine tool had to be controlled

manually using the machine tool controller. To digitize the sensor

signals, a Hewlett Packard Corp. 3421A Data Aquisition/Control Unit was

used.
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Figure 7.2 Measured errors in Klinger stage motion
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Straightness of Klinger Computer Controlled Stage

Deviation
(in) (in)

-. 000322 .012730 .000410

-.000213 .012335 .000416

-.000193 .012382 .000396

-.000131 .011912 .000399

-.000111 .011923 .000404

-.000086 .012072 .000422

* These are the coefficients to a linear curve fit of individual
runs all shown in Figure 7.3 (i.e y = mx + b)
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Figure 7.4 Yaw of Klinger computer controlled stage
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Figure 7.5 Pitch of Klinger computer controlled stage
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The analog to digital converters in the data aquisition unit are of

the dual slope type so most noise is integrated out. Depending on the

sampling time, different bit accuracies can be obtained. For this

experiment (performed in the static mode), the sampling time was not

important compared to accuracy, so the maximum resolution range (which

allows 10 readings per second from all channels to be taken) on the data

acquisition unit was chosen. In this mode, the 60 cycle noise rejection

is 80 dB. It was found that the best performance was obtained from

taking five readings and discarding the outlying point. This allowed

for filtering of random spikes that seemed to occur once every day or

sO.

The accuracy of the data aquisition system was tested (using a

standard reference voltage supply), and was found to meet the manufac-

turer's specifications [7.2]. For example, when operating in the 51/.

digit range with input range of ± 1 volt, accuracy of ± 65 .V can be

obtained ( 1 part in 15,385 or 14 bits ). This would correspond to

.625"/15385 = 41 pin (1 pm) on the diode and .05"/15385 = 3 pin (.08 pm)

for the impedance probes. Note that the unit had an "auto ranging"

feature which allowed 14 bit accuracy for different maximum voltage

levels.

Similarly, to test the stability of the wire wrapped circuit board

used for processing the diode output, a standard reference voltage

supply was used as an input (to simulate the output from the diodes) to

the board and the output was read with the analog to digital converter.

The accuracy of the system was found to be equal to that of the analog
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to digital converter, so for all intents and purposes, the board was

"perfect". Similarly, the combination of the board and the "regular"

voltage supply were found to be stable to the amount that could be read

by the analog to digital converter.

7.3 Determination of Bearing Coefficients of Friction

This section describes tests on the candidate bearings for use on

the four and two degree-of-freedom gimbals described in 6.4.3.1. These

tests are necessary to determine if bearings designed to resist fretting

corrosion also have low enough coefficients of friction to prevent

distortions of measuring beam components.

The maximum load the aerostatic bearing could support without any

high spots dragging was determined by holding the 2 degree-of-freedom

gimbal while loading weights on top of the bearing. This value was

found to be 20 - 25 pounds. For the back to back bearing construction

shown in Figures 6.10 and 6.11, there is no vent between the rings of

orifices, so the unit was probably acting as a single bearing with an

L/D ratio of 2. The measured radial gap was .0025" with an uncertainty

of about .0002" (.0635 mm, and .0051 mm). With the stall load of 100 N,

Figure 6.15 indicates that this would correspond to a bearing gap of

.0017" (.042 mm). It is not known if the bearing grounded out on a high

spot or if the model is not accurate for the system. In either case,

the bearing was good enough for the POSOR design for which it was

intended.
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For purposes of determining suitability of various ball bearings

for measuring beam gimbal designs, the breakaway coefficients of fric-

tion of various bearings were found using the apparatus shown in Figure

7.6. The outer race was supported, and a thrust load F was applied to

the inner race. From a point coincident with the axis of rotation of

the bearing, a piece of ground shim stock (tolerances of +/- .0001")

was attached and extended radially outward. A deflection was imposed on

the end of the shim stock by a precision linear stage. When the bearing

started to rotate, a reading was made, and then the stage was backed off

until it was no longer touching the shim stock. The bearing radius

times the coefficient of friction is thus:

63EI
b 63E (7.1F).

As discussed in Chapter 6, fretting corrosion is a concern with

limited degree-of-freedom ball bearing gimbal applications. Thus it was

desired to test instrument bearings (tolerance class ABEC 9) as well as

"regular" grade (ABEC 3) bearings that had a hard chrome plating on all

surfaces. The large turntable bearing (tolerance class ABEC 1) used for

the base of the gimbal was only available without chrome plate but a

better grade could probably be obtained with a hard chrome plate. Note

that the irregularities in the chrome plate limit the tolerance class

achievable to ABEC 3. Lubricants used were a light machine oil (MIL-L-

6085) and a fretting corrosion inhibiting grease (Anderol 794). The

bearings tested are shown in Figures 7.7, 7.8, 7.9, and 7.10.
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Figure 7.8 Fafnir "Fafcote" 1/2" bearings lubricated with
MIL-L-6085 oil
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Figure 7.9 Fafnir "Fafcote" bearings lubricated
with Anderol 794 grease
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Figure 7.10 Kaydon "Reali-Slim" 2" bearings lubricated
with MIL-L-6085 oil



For the gimbal yoke bearings, four readings were taken for each of

four bearings of three types of bearings. For the turntable bearing,

only two bearings of the same type were tested. The results are given

in Table 7.2. All the bearings tested satisfied the criteria of Eq.

6.11 with the exception of those lubricated with the grease. Thus the

fretting corrosion problem could be avoided without exceeding the

threshold breakaway coefficient of friction by the use of the "Fafcote"

bearings.

7.4 Calibration of the Light Source-Lateral Effect Diode System

Components

This section will discuss the various tests done on the Light

Source-Lateral Effect Diode system that included: stability, lineariza-

tion, axes offsets, repeatability, and light source inclination angles.

All the tests were made using a test configuration the same as or

similar to the one described below. Following subsections describe each

of the calibration tests in detail, and results are presented. The

total system accuracy is discussed in the summary for this section.

Photographs of the calibration apparatus are shown in Figures 7.11,

7.12, and 7.13. The lateral effect diodes were epoxied to an aluminum

strip with their axes roughly parallel. The flatness to which the

diodes were held to the strip was .005"/inch which yields orientation

errors oXa and a • of .005 radians each (based on measurements on the

glass covering the diodes). The aluminum strip was then mounted to a

block on the stage. The geometry of the system required that the diode
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Table 7.2 Results of Bearing Coefficient of Friction Tests

Bearing

NHBB 3/8"

FAFNIR
55KDDSPCB
FAFCOTE TDC

FAFNIR
55KDDSPCA
FAFCOTE TDC

KAYDON
KAO20XPO

lube

MIL-L-6085

Anderol 794

MIL-L-6085

MIL-L-6085

.000308

.011096

.001033

.002431

*All dimensions are in inches.
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.000069

.002708

.000470

.000711
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Yd axes (diode axes have the subscript "d") were along the machine tool

X axis and it is regretted if this causes any confusion in the dis-

cussion that follows.

The system was aligned with respect to the machine tool coordinate

system using a dial gauge (with .0005" per division, resolution to

.00025" (6.4 pm)) held in the spindle. When aligning the stage, it was

shimmed so its axis of motion was parallel to the machine tool X axis

within .001"/inch of travel, and the glass surfaces of the diodes were

brought to within .005"/inch (.0127 mm) perpendicularity with the

machine tool Z axis. The interferometer optics were mounted within

.002"/inch parallelism with the machine tool axes. Thus the angular

error associated with the measurements along the diode Xd and Yd axes (Y

and X axes of the machine tool) was /.0012 + .0022 + .0652 = .0055

radians. Thus the cosine error (between what a perfect diode would read

and the laser interferometer) over .625" of stage travel would be at

most 9 pin (.23 pm). The error in orthogonality aZZ between the

linearized Xd and Yd diode axes would be equal to that between the laser

interferometers which was /.0022 + .002 - = .0028 radians.

By using a light sources over each diode, two diodes could be

calibrated at once. This also forced the Xd and Yd axes to be parallel.

Since the lasers became warm to the touch after operating for ten

minutes, the entire system was always allowed to soak overnight prior to

a test. Following subsections will describe the results of tests for

stability, linearization, axes offset, repeatability, and light source

inclination angle.
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7.4.1 Determination of Light Source-Lateral Effect Diode System

Stability

The first test was to determine the stability of the system which

did not require the use of the laser interferometer. Note that "system

stability" implies the stability of the diode and the laser. For this

test, the diode behavior was assumed to be linear with .625"/10 volts

and the stability error was the voltage drift times the gain. Diode

stability was tested by taking 3000 samples at a single point near the

edge of the diode over a 12 hour period. During this time, the room

temperature varied by .150. The lasers were anchored in a large

aluminum block with the distance from the anchor point to the first

laser about 5" (127 mm) and the distance to the second laser about 8"

(203 mm). Thus the error due to thermal growth could be .150 x7psx5" =

5.3 pin (1.4 pm). There is no more error for the second laser because

the diodes were also mounted on an aluminum strip, so the net growth

between the lasers and the diodes would be the same.

The errors in stability were random and thus not caused by thermal

growth. The standard deviation of the stability error for the Xd and Yd

axes of diodes 1 and 2 respectively were 89, 101, 41, and 62 pin (2.23,

2.52, 1.03, and 1.55 im) (Note that the equivalent resolution of the

analog to digital converter was shown to be 41 pinches). The source of

the -50 pin (1.3 pm) stability error in diode 1 could be due to the

diodes or to the laser. In either case, the system was judged stable

enough to proceed. Tests using an LED and fiber optic cable with a
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collimating index rod had a system stability only of .0005", so beam

stability is a critical factor.

7.4.2 Linearization of Light Source-Lateral Effect Diode System

This section will discuss the linearization of the lateral effect

diodes. Note that not only the diodes but the entire system associated

with determining the position of the light spots was in effect

linearized, because all the signal processing electronics were used to

gather the data which was compared to the laser readings.

In order to linearize the diodes, the Y axis of the machine had to

be held steady while the X axis (stage) was moved forward, then returned

to the home position. Then the Y axis of the machine tool bed was

incremented and locked. The process was repeated until the entire

surface of the diode was covered. Because the analog to digital con-

verter was so slow, and to allow for settling time between motions, it

took two minutes to read the nine channels of data (8 channels of diode

and one thermister).

Thus for any reasonably thorough mapping of the diodes (on the

order of 15x15 points), the duration of the experiment required it to be

at least semi-automated to prevent human error from ruining the

experiment.

The ideal test condition for mapping the surface of the diodes

would have the multiple Yd passes stop at the same point each time

215



throughout the test (multiple Yd passes and single step increments of

the Xd axis sweep out the aiode). To check how good the position

repeatability was, 10 runs back and forth along the diode Yd axis were

made with 15 stage stops per run and the standard deviation from the

mean (repeatability of stops) was 55 pin. Experience with precision

ball screws has shown that they can be repeatable to 10 microinches (.25

- .50 pm) [1.7]. The rotational error of the stepper could be at most

.25 steps and the stage has 5 pin/step resolution, so about 15 pin of

error can be accounted for. Since the laser interferometer beam was

about 2" (50.8 mm) from the stage axis and the stage yaw repeatability

was 5 arc seconds, the rest of the error was probably due to Abbe's

offset error (2"x25 prad = 50 pin (1.3 um)). As will be seen below, the

diode Xd axis curve fit polynomials varied little with the Yd position,

so the stage positioning was judged adequate.

During testing, the room had to be kept dark (the diodes detect 60

Hz flourescent lights beautifully). Most, if not all, the noise would

be filtered out by the dual slope analog to digital converter in the

data aquisition module, but it was thought best to eliminate as many

potential errors as possible. Reflections from the laser bouncing off

the protective glass cover of the diode, to the half silvered lasing

cavity mirror and back to the diode presented the biggest "ambient"

light problem. This was overcome by tilting the lasers and covering the

ends with dark felt. Cleanliness was also a concern, so before each

run, the surface of each diode was cleaned with very pure acetone.
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Before mapping the entire diode, trial runs were made along one

edge to determine the number of points needed and the order of curve fit

required. Runs with forty points were made, and curve fits greater than

ninth order were no better than ninth order curves. It was also deter-

mined that 15 points was the minimum number that was needed for a ninth

order fit to prevent the curve from just following individual points.

Note that there is no basic reason of physics that would account

for this high order; however, the wavyness of the silicon (due to

manufacturing process) or the curve merely tracking the poor performance

of the stage could be reasons why a high order fit was required. To

determine if it were the latter, a trial run was made using the machine

tool bed as the stage and a ninth order curve still gave the best fit;

thus even though the stage motion may be causing ripples in the data,

the manufacturing process for the diodes also causes ripples with the

net effect of requiring a high order polynomial to linearize the diodes.

The requirement for a high order linearization curve (on the order

of nine) meant that a 15x15 grid of points had to be mapped. The "raw"

data from the diode linearization experiments is shown in Figures 7.14 -

7.17. It shows the processed diode output (ratio of differences between

back contact voltages) as a function of the (laser interferometer

measured) relative position between the light spots and the diodes. The

diode response is not only non-linear along a particular path, the

curves vary from side to side of the diode. The various curves were

fitted using a "canned" least squares routine with curve order ranging

from third to ninth. The standard deviations of the data from each of
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Figure 7.14 Position of light spot on diode 1 measured by a laser
interferometer, verses diode output
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#1 Y Output

0.25 0.5

Y Position (in)

Figure 7.15 Y position of light spot on diode 1 measured by a laser
interferometer, verses diode output
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#2 X Output

0.25

X Position (in)

Figure 7.16 X position of light spot on diode 2 measured by a laser
interferometer, verses diode output
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#2 Y Output
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Y Position (in)

Figure 7.17 Y position of light spot on diode 2 mepsured by a laser
interferometer, verses diode output

221

1.0

0.0

-1.0

0.0 0.5



the 15 Xd and 15 Yd curves are listed in Tables 7.3 - 7.6. These tables

show that at least a 7th order curve is needed. For each of the diodes'

Xd and Yd axes, the standard deviations of the data from the curves (for

orders 7, 8, and 9) are plotted in Figures 7.18 - 7.21. Table 7.7 lists

the average deviation for all the curves on a particular axis, and the

maximum and minimum deviations. Based on this data, the curves that

seemed to provide the best fit were the ninth order ones (for program-

ming purposes it was desirable that the same order curves were chosen

for both diodes).

The accuracy (standard deviation) of the diodes are thus given by

the a9 row in Table 7.7. It should have been possible to linearize the

diodes with an error on the order of the stability of the diodes.

Whether the large errors were caused by manufacturing processes or large

Abbe's offset error (a result of the stage yaw, pitch and straightness)

is not known. But based on the performance of the diodes when tested on

the machine tool bed (see next section) it is probably the latter.

These errors and their effects on total system accuracy will be dis-

cussed along with other system errors in the summary section on the

Light Source-Lateral Effect Diode System. The coefficients for the Xd

and Yd curves for the two diodes are listed in Appendix 8A along with

all the software developed to analyze the sensory output.

The algorithm for obtaining a linearized value when the light spot

fell between mapped points is discussed in Chapter 8 along with the

other data processing algorithms. It needs to be noted here, that

errors associated with the algorithm were: oXa = 35 pin, oX2 = 25 pin,
1 X2
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Table 7.3 Standard Deviations of Diode 1 X

Linearization Curves

Data from Nth Order

Order of Curve Fit:

4th 5th 6th
Standard Deviations

1427 502

Y
Position

1

2

3

4

5

6

7

8

9

10

11

12

13

14

3rd

3324

3218

3177

3107

3085

2969

2819

2601

2408

2335

2232

2162

1979

2143

15 2429 1258 628

368

209

157

177

176

172

188

283

194

297

292

267

230

232

343

223

1336

1361

1484

1599

1639

1560

1404

1315

1223

1218

1032

969

899

221

150

183

281

271

265

324

240

402

422

416

341

451

7th
(u in)

183

109

165

154

147

184

195

298

206

315

290

283

241

204

348

8th

192

106

165

164

141

155

191

279

202

287

216

300

235

221

272

9th

198

112

173

179

154

162

203

295

211

292

212

267

225

241

214



Table 7.4 Standard Deviations of Diode 1 Y

Linearization Curves

Data from Nth Order

Order of Curve Fit:

4th 5th 6th
Standard Deviations

1502 239 226

1278 273 253

1397 310 119

1404 179 170

1635 208 162

1490 160 159

1608 370 372

1581 265 226

1623 341 330

1570 143 126

1476 157 161

1412 227 232

1232 234 232

1190 240 254

x
Position

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 209

224

1100 1153 211

3rd

1442

1219

1332

1339

1559

1424

1546

1532

1565

1511

1432

1361

1201

1141

7th
(C in)

122

133

125

179

73

159

284

108

205

130

165

214

208

211

192

8th

53

142

131

117

70

97

151

114

211

138

176

202

223

157

206

9th

58

118

136

122

63

85

97

105

159

133

192

188

229

148

218



Table 7.5 Standard Deviations of Diode 2 X Data from Nth Order

Linearization Curves

Order of Curve Fit:

Y 3rd 4th 5th 6th 7th 8th 9th
Position Standard Deviations (± in)

1 1393 1357 340 356 262 227 247

2 1165 1144 396 398 356 262 287

3 917 955 342 362 320 296 302

4 889 929 163 168 176 182 194

5 941 952 171 167 177 189 140

6 1138 1156 264 207 221 222 199

7 1434 1477 352 219 233 231 213

8 1633 1699 357 221 233 246 243

9 1738 1821 334 195 206 215 229

10 1783 1870 340 193 206 206 225

11 1667 1740 264 171 180 176 192

12 1519 1585 173 156 154 158 159

13 1349 1408 192 196 152 161 174

14 1275 1334 319 309 136 106 111

15 1423 1478 371 349 164 175 172
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Table 7.6 Standard Deviations of Diode 2 Y

Linearization Curves

Data from Nth Order

Order of Curve Fit:

4th 5th 6th
Standard Devi

1360 142

X
Position

1
2

3

4

5

6

7

8

9

10

11

12

13

14

115

211

192

255

281

266

306

341

340

247

138

101

148

15 1674 1723 268

226

1054

980

992

1125

1284

1357

1419

1474

1377

1325

1316

1360

1516

3rd

1514

1214

1106

1014

1074

1245

1369

1400

1413

1314

1270

1268

1302

1447

ations

74

44

172

90

147

123

139

118

281

265

176

100

104

157

277

7th
(9 in)

55

39

164

96

157

130

141

125

269

277

185

107

74

63

125

8th

54

41

109

87

163

124

146

96

83

270

62

72

79

67

94

9th

54

39

107

61

109

53

82

62

81

266

57

62

78

62

102
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Figure 7.21 Standard deviations of
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9th order)
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Averages of Deviations from Data for 7th, 8th, and 9th Order

Diode Linearization Curves

Diode Number and Axis

1 X 1 Y 2 X 2 Y

Deviation (w in)

a9

a7high

08high

a9high

071ow

081ow

091ow

221

208

209

348

300

295
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141

112

167

146

137

284

223

229
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53

58

212

203
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356

296

302

136

106

111

135

103

85

277

270

266
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41
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y = 25 pin, and ay - 30 pin (.9, .6, .6, and .8 jm). These valuesY

were obtained by assuming a grid size equal to four times as coarse as

used to map the diodes, and then interpolating to the "known" center

point of the coarse grid. The error for the fine grid was then assumed

to be one fourth that for the coarse grid.

7.4.3 Determination of Light Source-Lateral Effect Diode System

Repeatability

Three types of tests were done to determine repeatability of the

Light Source-Lateral Effect Diode system: back and forth tests on the

Klinger stage, back and forth tests on the machine tool bed, and

repeatability of calculations of the diodes' axes offsets. All tests,

with the exception of the latter, were done toward the edge of the

diodes, and the Xd axis position on the diode was held constant.

The first set of tests were run using the Klinger stage. These

tests were run by computer control and were allowed to run overnight. A

ninth order curve was fitted to each run of the test, and the curves

were compared digitally by subtracting the first run's curve from all

subsequent runs. The results of this test are shown plotted in Figures

7.22 and 7.23. The snape of the curves are all similar owing to the

curve fit; however, their deviation from the first curve is random. For

both diodes, the standard deviation of the repeatability is on the order

of 150 pin (3.75 jm).
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Figure 7.22 Repeatability of diode 1, measured by subtracting linearized
results of first pass from all subsequent passes (stage used
was Klinger)
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Figure 7.23 Repeatability of diode 2, measured by subtracting linearized
results of first pass from all subsequent passes
(stage used was Klinger)
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Since the Klinger stage was known to have poor performance, these

values were questionable, so a similar test was run using the vertical

machining center bed. Figures 7.24 and 7.25 show the results of

repeatability tests on the diodes (made using the machining center as a

stage). The repeatability for diode 1 is on the order of 80 pin (2 Am)

and that for diode 2 is on the order of 40 pin (1 pm). These are equal

to the stability values for the two diodes as discussed in Section

7.4.2.

The effect of the Klinger stage performance on the tests shows up

most noticeably in the Xd axis linearizations. With the optics avail-

able, it was not possible to mount the Xd motion optics on the stage.

Thus only the Y axis motion of the vertical machining center (Xd diode

axis) was measured by the laser and none of the straightness error in

the stage. The pitch and yaw errors in the stage showed up as Abbe

offset errors on the order of 20 pin (.5 jm).

The next set of tests were indirect measurements of the diodes'

repeatability. The diode axes' offsets had to be found and multiple

runs were made. Thus the variation of calculated axes offsets are also

an indication of diode repeatability.

7.4.4 Determination of Lateral Effect Diodes' Axes Offsets

As calibrated, the diodes' Xd and Yd axes were forced to parallel

to within the limit of the orthogonality of the laser interferometers

(found to be .0028 radians). However, it was not possible to determine
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Figure 7.24 Repeatability of diode 1, measured by subtracting
linearized results of first pass from all subsequent
passes (stage used was machining center)
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Figure 7.25 Repeatability of diode 2, measured by subtracting linearized
results of first pass from all subsequent passes (stage used
was machining center)
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where the center of the light sources were, so they could not both be

made to lie on the stage X axis; thus there would be an offset in the Xd

and Yd axes of the two diodes. To determine the resultant offsets A and

B in the diodes' Xd and Yd axes respectively (as shown in Figure 7.26) a

light source was spotted on diode 1, and then moved a known distance Z

(measured by laser interferometer) until it spotted diode 2.

Unfortunately, the setup did not ensure that the path of the light spot

was parallel to the linearized Yd axes of the diodes, thus the following

algorithm was developed.

As shown in Figure 7.26, multiple runs were made corresponding to

starting at the bottom of diode 1 and ending on the bottom of diode 2

(also middle, and top were made). The distances (Z) between groups of

points were measured with a laser interferometer. Since the machine

tool bed was used as the stage for the 3" (76 mm), the multiple runs

will all lie on the same line to within 3 arc seconds (machine tool bed

is good to 1 arc second per inch as discussed in the opening section of

this chapter). Thus the angle D can be easily found from differences in

readings on the same diode. The A and B offsets are thus found from:

S -1 2runl -2ru31) (7.2),
X- X2runl 2run3

A = icoso + X 2 - X ,  (7.3),

B = isino + Y2 - Yi (7.4).
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Figure 7.26
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Schematic representation of test to determine
diode axes' offsets
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Ten runs were made to obtain the angle and distance values. The angle D

was determined from the readings from diodes 1 and 2, and the values

were D, = 89.4362350, oal = .0046660, 2 = 89.5702420, a 2 = .0042640.

When the results from the two diodes were combined, the values were

o = 89.5032390, and , = .0294240. The source of this error (systematic

versus random error) cannot be explained at this time; therefore the

average value will be used to find the offsets A and B. The results of

this portion of the test, however, were very good: A = .051780,

oA = .000012", B = 3.012019", and oB = .000035" (1.3152, .0003, 76.5053,

and .0009 mm). These results also show very good repeatability for the

system. When the effect of the angular error is incorporated into (7.3)

and (7.4) using Equation 5.2, the errors are oA = .001541" and oB

.000037" (.0391, and .0009 mm).

The "proper way" to do the test would have been to use the same

setup as was used to linearize the diodes which would have eliminated

the error in t. Initially this was done, but the data taken was from an

area of the diode that was not linearized. The data could not be

analyzed until the curve fitting interpolation routines were developed

(see Chapter 8) and another user was waiting for the vertical machining

center, thus in the hurry to collect all the data needed for the rest of

the experiment, this mistake was made. When the machine became free

again, the above test and analysis were made.
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7.4.5 Determination of Light Source Inclination Angles

This section will describe the tests and algorithms used to deter-

mine the angles of inclination of the light sources, whose effect on

system accuracy are discussed in 5.4.2. For purposes of analyzing the

data, the light source orientation angles are defined as the Euler

angles 0 and i as shown in Figure 7.27 (compare to the a and B notation

shown in Figure 5.5).

To determine the angles .i and .i for the two diodes, a Z axis

motion must be added to the existing test setup (the vertical machining

center conveniently provided this motion). As the light sources are

moved away (along the Z axis) from the diodes, if they are not or-

thogonal to the diodes, then the light spots will appear to drift across

the diodes as shown in Figure 7.27. The effect of the light sources'

plane not being parallel to the diode plane as the two are moved apart

is overcome by taking one set of readings, and then rotating the light

sources 1800 and redoing the tests. The average of angles ý, and i 2

will then cancel this effect as well as the effect of the Z axis not

being orthogonal to the XY plane. Note that the angle 0 is not affected

by the possible slight misalignment between the planes. For the actual

test, motions along the Z axis were done in steps, and the output from

the diodes was linearized and stored. With a total of I Xd, Yd' and Z

measurements taken as described above, the angles averaged respectively

to yield: (where Z.. is the net motion along the Z axis and subscript i13
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is the diode/light source number, and subscript j is the increment

number):

S= ------ (7.5),i I

I (X2  + y2 ) 2
tan1 id id

1 tan -- ----
i=1 1

1i I
(7.6).

Note that after the light sources were rotated 1800, the c

particular light source will be obtained from data from the

and i for a

other diode.

The angles a Xi and Byz i of the two light sources (as shown in

Figure 5.5) are found from the angles € and p by:

= psin¢

= --cos4

(7.7),

(7.8).

An error in ý is directly proportional to the errors oXia and aYliB'

while an error in p must be evaluated using Equation 5.2:

Xa = -i (sino - sin(O + o0))

oYia = 4(cosý - cos(9 + a ))

(7.9),

(7.10).
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The results of the experiment and the subsequent data analysis are given

in Table 7.8.

7 .4 .6 Summary of Physical Characteristics of the Calibrated Light

Source-Lateral Effect Diode System

The net effect of all the "errors" (system limits) are listed in

Table 7.9. The worst errors were due to the stage and to the error in

diode axes X offset. The root mean square of the errors indicates that

the Light Source-Lateral Effect Diode system will have errors of:

oX = 1572 pin (39 um), ao = 207 pin (5 um), and a0 = 111 pradians. The

meaning of these values with respect to the final system tests will be

discussed in Chapter 8.

7.5 Calibration of the Impedance Probe System

This section will describe the tests performed on the impedance

probe system for: linearization, probe spacing, and stability and

repeatability. First the system electronics are discussed. The in-

dividual test setups are then described in each subsection and results

from the tests are also presented. The summary will evaluate the total

impedance system performance based on the methods developed in Chapter

5.

The electronics supplied with the probes were suspicious in that

screws were used to adjust gain, zero, and linearity. That in itself is

not so bad, but every now and then the readings would change by a couple
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Table 7.8 Results of Light Source Orientation Tests

All Angles in Radians

Light Source 1 Light Source 2

-. 746148 .748083

.0908 .0866

.003996

.000638

-.002713

.000514

-.003996

.001045

.002762

.000707

.001879

.000509

-.002762

.000933

*These o i's are the sum of the aoi and the corresponding

values from (7.20) and (7.21)
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Table 7.9 Results of Light Source-Lateral Effect Diode System

Calibration: The Total System Error Budget

Perturbation

Error

Axes offset
errors:

Value

(pin)

1541

Induced oX
(pin)

Induced

(pin)

1542

0.

induced oY GO
(prads)

85.5

11 .7

Linearization errors:

OX 209

137

206aOX 2

Repeatability:

aX,

Interpolation error:

A1

av
1 1

A
2

Cv

209

0.

206

0.

137

11 .6

45.6

11.4

28.3

80

0.

50

0.

26.7

2.8

16.7

35

0.

25

0.

1.9

8.3

1.4

10.0
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Table 7.9 Continued

Perturbation

Error

Angular errors:

Diode flatness:

GXa
2

gYB 2~q

Diode axes orthogonality error:

oZ

z Y

z zY

6.3

2.1

2.1

Light source orientation errors:

aov 514

oY£1 8

oXga

oYQ 2 6

1045

509

933

Root mean square errors:

1572

Value Induced

(pin)

(prads)

Induced a

(pin)

Induced oa

(prads)

5000

5000

5000

5000

0.

6.3

0.

6.3

2800

2800

2800

1.425.7

0.

25.5

0.

52.3 17.5

1.4

46.7 15.6

207 111
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tenths of a volt. Also it was discovered that if the oscillator-

demodulater box was wapped with the tip of the small adjustment

screwdriver, the readings would shift by many volts. Thus a dedicated

system (robot) would require the use of electrical components whose

properties are fixed and stable.

7.5.1 Linearization of Impedance Probes

The impedance probes had to be linearized in the as mounted posi-

tion on the POSOR plate; thus to avoid large Abbe's offset error, the

vertical machining center bed was used as a stage and the interferometer

was positioned at a point roughly coincident with the centroid of the

triangle formed by the probes. The target was the other POSOR plane.

The setup is similar to the one shown in Figure 7.30, except that a

distance interferometer was used. The oscillator - demodulator boxes

supplied with the probes were adjusted so the zeros between the probes

were offset by about .1 volt, and the gain was set to about .05"/volt

(1.27mm/volt). The "linearity" was also set to make the response as

"linear" as possible.

The linearization curve should not include data beyond the range of

probe stability and repeatability. As shown in Figure 7.28, the probes

are only good out to about .05" (1.27 mm). This however is sufficient

for most POSOR designs (larger diameter probes are available with longer

ranges). The linearization test was conducted by manually controlling

the vertical machining center bed, and signalling the analog to digital

converter when it should read the probe and interferometer channels.
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Figure 7.28 Impedance Probe output voltage and repeatability
as a function of displacement over long distances
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Twenty one points along the path were taken, and various order curves

were tried to determine the most appropriate to fit the data. A fourth

order curve was found to be the best, with deviations on the order of 5

pin (.13 pm). The resulting linearization polynomials' coefficients are

given in Table 7.10. The accuracy of the linearization is discussed in

Section 7.5.4 along with probe stability and repeatability.

There is no easy method for determining the error in orthogonality

between the probes and the plate which they are mounted in. Most of the

effect of such an error, however, can be "calibrated out" by making sure

that the orientation between the plate that holds the probes and the

target plate does not change as they are moved apart. The orientation

angle errors a .xand oa . (discussed in 5.3.2) will thus be equal to the

change in the orientation of the plates as they are moved away from each

other. The equivalent sensor accuracy error is due to the rotation of

the machine tool bed times the distance from the machine ways to the

test. (a form of Abbe offset error). This value is on the order of

.05"x5pradx15" = 3.8 pin (.1 pm).

7.5.2 Determination of Relative Position of the Impedance Probes

In order to determine the probe spacings a, b, and c as shown in

Figure 7.a$ (and in Figure 5.1), known angles a and 8 must be introduced

to the target plane coordinate system and a, b, and c must be calculated

from Equations 5.4 and 5.5. Since two sets of angular interferometer

optics were not available, the angles were introduced and measured
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Table 7.10 Impedance Probe Linearization Coefficients

Displacement = A o +

Ao

Al

A2

A3

A4

AIX + A2X
2

Probe 1

-.0061186

-.0537874

-.0013568

-.0125008

.0040221

+ A 3X
3 + A4X

4

Probe 2

.0096695

-.0569624

.0034440

--.0102412

.0008111
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Probe 3

.0173366

-.0588981

.0103716

-.0180598

.0054609



1.483714 "
o= .006454"

= 0.13561 "
= 0.17283"
= .007313"

7"

105 "

7 1.546159 "
o=.014277"

Figure 7.29 Measured distances between probes, and geometry
for calculating a, b, and c
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separately, and the relative distances between the probes were calcu-

lated as described below (rather than in the probe coordinate system

which may not be aligned perfectly with the coordinate system a and 8

are to be made in). The distance a, b, and c were then found from these

values.

To introduce the angles a and 8 individually, the apparatus shown

in Figures 7.30 and 7.31 was used. The probes were mounted to a plate

which was held to a ground shaft (axle) which was held to the bed of the

machine tool. A dial indicator in the spindle was used to indicate the

axle in to be perpendicular to the spindle to within .0005"/5" (to

account for axle straightness, a measurement was made and the reading

was - .0003'/5", the axle was rotated and the measurement made again and

was on the order of - .0002"/5" but in different directions). The

spindle thus formed one axis of motion and the axle the other axis of

motion. Moving the spindle a finite amount was tricky because of stick

slip. The axle was moved by shimming up the rear end of the plate.

Each run was done separately and the angles were measured with an an-

gular interferometer as shown in Figures 7.30 and 7.31.

The distances between probes 2 and 1, and 2 and 3 were determined

from changes in the angle a and changes in the probe readings Z by:

D 2 - i
2i tana
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A similar algorithm was used for the distances between probes 1 and 2,

and probes 1 and 3. The results and the variations of the readings are

shown in Figure 7.29. All the results were very good (considering that

we are measuring off a cosine, which gives a bigger error, but then the

results are used in a cosine which is not as sensitive to error) except

those for D23 which was measured off the angle a induced by the spindle.

Over several runs, D2 3 was always bad and could not seem to be

corrected. A possible explanation for this is offered below.

A test parameter to be checked is the effect of the spindle and

probe axes not being perpendicular by a small angle E. The effect is to

cause the intended angle ý to be B(1 - cose) and for a rotation a = BE

The former is negligible (tenths of microradians), while the latter can

cause some serious errors if care is not taken. The effect of the

induced angle a is to cause an error a azi in the probe readings .i on

the order of:

=a zi - E(a + b) (7.12).

For this experiment, if 6£. is to be kept below the accuracy of the
1

sensors (5 4in (.13 um)), then using system values of 8 = .05"/3", (a +

b) = 3" (.4233 mm, 76 mm), the tolerance on E is 100 lradians, or

.0005"/5". As noted above, the axes were held parallel to within

.0005"/5". Note that if two sets of angular optics were available,

then both a and a could be measured simultaneously and the problem of

axis alignment could be avoided. Using Equation 5.2 and 7.11 with the

error in a equal to 100 pradians (and difference in sensor readings
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equal to .05" (1.3 mm)), the error in D2 1 is .0179". If the beam (that

held the target plate) attached to the spindle had even this slight

wobble, it would account for the large error in D2 3.

7.5.3 Determination of Impedance Probe Stability and Repeatability

Factors affecting probe stability are methods of mounting, supply

voltage, distance from the surface to be measured, and room temperature.

A valuable lesson in precision calibrations when you are trying to get

more out of a sensor than the manufacturer even knows is possible, is

never assume that what the manufacturer says is correct (better to have

no maps in uncharted waters and be careful, then to plow into a reef!).

These factors are discussed in detail below.

When the impedance probe system was first assembled on the POSOR

plate, the threaded bodies of the probes were screwed into tapped holes

in the plates, and the nuts (supplied with the probes) were gently

tightened down to lock them in place. This was a big mistake, because

the nuts apparently stressed the probe housing enough to cause them to

be unstable (on the order of 100 Uin (2.5 Um)). As was found out after

the experiment, the probes should have been screwed into the POSOR

plate, and then epoxied in place. The stability data for the probes in

the former state (which the experiment was run in) is given below fol-

lowed by measurements (taken after the measuring beam experiment was

completed) with the probes epoxied in place.
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The linearization and repeatability tests were actually combined.

Five runs were made one evening, and five runs were made the next

morning. Curves from the 10 sets of coefficients generated by least

squares routine were then plotted as shown in Figures 7.32, 7.33, and

7.34 (curves are numbered chronologically). The curves show almost a

pure drift. Whether the drift is due to the electronics or stress on

the probe case by the locking nuts at this point was not known. But as

experiments (done at a later date with the locking nuts removed) showed,

probe 1 was insensitive to voltage supply drift compared to the other

probes. Thus the results shown in Figures 7.32, 7.33, and 7.34 (which

show all three probes drifting about the same amount) seem to indicate

that the drift was due to the distortion of the housing. The lineariza-

tion coefficients were the averaged coefficients of those used to obtain

Figures 7.32, 7.33, and 7.34. The error aZ for the linearization curves

is therefore on the order of 100 win.

To determine the "true" stability of the probes, a "cap test" was

done. For the cap test, the probes were epoxied into an aluminum block

with the distance from the probe tip to the target fixed at .02" (.51

mm). The first tests were made to determine the sensitivity of the

probes to a change in the voltage supply. The results are given in

Table 7.11. Similar changes in the voltage supply at different mean

levels (10 and 12 volts) produced similar results. For the gain setting

of .05"/volt (1.27mm/volt), probes 1, 2, and 3 are stable to .000028,

.002582, .002422 inches per one volt change in supply voltage (.7, 64.6,

60.6 4m/volt) respectively. To see if the superior performance of probe

1 was due to the probe or to the electronics, the oscillator -
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Sensor 3 to Surface Distance (in)

Figure 7.34 Repeatability of impedance probe 3, measured by subtracting
linearized results from first pass from all subsequent passes
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Results of Impedance Probe Tests to Determine Sensitivity to

Supply Voltage Variations

Probe output voltages

aVmax aVmin

Before Voltage Change:

Supply:

Probe:

11 .3824

.419050

.784706

.550081

After Voltage Change:

Supply:

Probe:

11 .0169

.418846

.765835

.532376

(293 readings)

.00091

.000041

.000196

.000138

(212 readings)

.00072

.000022

.000209

.000107

Note: the temperature was constant to within .050F during the
experiment.
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.00174

.000070

.000334

.000209

-.00136

-.000090

-.000366

-. 000261

.00373

.000084

.001345

.000594

-. 00077

-.000056

-.000425

-. 000196

Table 7.11



demodulator boxes were switched but the results stayed the same. Probes

2 and 3 are probably the norm with probe 1 being the exception

The variations on the before and after tests, shown in Table 7.11,

are also typical of the long term performance of the probes (assuming

the supply voltage does not change). Thus the probes 1, 2, and 3, can

be stable to 2.1, 9.8, and 6.9 pin (.05, .26, and .17 pm) respectively.

7.5.4 Summary of Physical Characteristics of the Calibrated Impedance

Probe System

The net effect of all the "errors" (system limits) are listed in

Table 7.12. The worst errors were due to the nuts stressing the

threaded case, the voltage drift in the electronics, and the errors in

calculating the probe spacings a, b, and c. Solutions for both of these

problems, however, were presented above (epoxy the sensors in place,

stabalize the electronics, and use two angular interferometers), so for

future systems these errors can be avoided. For the tests to determine

measuring beam system performance, discussed in Chapter 8, the voltage

shift errors will be compensated for digitally, which will also account

for small changes due to the threaded nuts stressing the case.

Two types of error are apparent, the random component and the

steadily increasing component. The former is due to the error in the

linearization curves (-5 pin) and the instability of the probe

electronics as shown in Figure 7.32, 7.33, and 7.34. For probes 1, 2,

and 3, these errors are 5, 20, and 24 pin (.13, .5, and .63 pin)
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Table 7.12 Results of Impedance Probe System Calibration:

Total Error Budget

Perturbation Value
Error

(in)

Induced

z 0,0
(pin)

Induced Induced

-1,1.5

(pin) (Vrad)

Errors that increase with the degree of freedom measured:

Linear errors:

.013561

.017283

.007313

113

143

0.

188

0.

20

Probe orientation errors:

a . o = 5 pin

%eXi " = 4 vin

a Yi = 4 pin

Voltage supply errors:

S2

a Z2

18 pin

21 pin

16 pin

Root mean square values:

Induced

(prad)

182 189 123
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Table 7.12 Continued

Perturbation Value
Error

(in)

Induced
a
(10,0
(pin)

Induced Induced

-1,1.5

(pin)

a ad)

(prad)

Random errors:

7 pin

21 jin

25 pin

Root mean square values:

265

Induced

ad

(prad)

Table 7.12 Continued



respectively. The latter is due to "fixed errors" in the physical

parameters of the system, as well as error in determining the zeroes

voltage drift of the probes. Due to the nature of the error calcula-

tions (Equation 5.2) these latter types of errors will increase from

zero to the maximum value as the measured degree-of-freedom increases.

The root mean square of the errors indicates that the impedance

probe system will have angular errors of o = 132 pradians and a = 111

pradians. The errors in calculated distance between the plates at the

origin and at a lateral effect diode are a = 196 pin (5pm) and
0,0

a Z ,1.5 = 205 pin (5 pm) respectively. These values of course are

subject to the stability of the electronics and the probes. The meaning

of these values with respect to the final system tests will be discussed

in Chapter 8.

266



References

[7.1] Hewlett Packard Corp. 5528A Laser Measurement System User's
Guide, 1982, pp 19-1 - 19-57

[7.2] Hewlett Packard Corp. 3421A Data Aquisition/Control Unit,
Operating, Programming, and Configuration Manual p109

267



(this page left blank)

268



Chapter 8

Experiments to Evaluate Measuring Beam Performance

8.1 Introduction

This chapter will discuss tests used to evaluate the performance of

the measuring beam system that has been the subject of this thesis. Two

questions are to be addressed here: 1) how well can the error analysis

of Chapter 5 combined with the calibration test results of Chapter 7

predict system behavior? and 2) how well the concept of the POSOR works

(can it measure six degrees of freedom simultaneously)? To help answer

these questions, tests based on single degree-of-freedom and multi-

degree-of-freedom motions are performed.

In the sections that follow, the test setup is described, followed

by a discussion of the individual tests and algorithms used to process

the data from the POSOR. Detailed test results are presented and errors

are compared to the values predicted by the analysis methods of Chapter

5 and the calibration results of Chapter 7. A summary of the results is

presented to correlate the results from the various tests.

Recommendations and conclusions are then presented.
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8.2 Test Setup for Evaluating Measuring Beam System Performance

The test system consists of the measuring beam support structure

(shown schematically in Figure 6.1) and the POSOR device which was

calibrated as described in Chapter 7. A photograph of the test setup

for evaluating the performance of the measuring beam system is shown in

Figure 8.1. The major components are: measuring beam components, two

axis stage, twist stage, dial indicators, and a CNC vertical machining

center. The degrees of freedom that were imposed on the measuring beam

were AX, AY, AZ, Aa, Aý, and AO as shown in Figures 8.1 and 8.3.

The mechanics and function of the measuring beam components were

discussed in detail in Chapters 3 and 6. As shown in Figure 8.1, the

measuring beam system is set up on the bed of a three axis CNC vertical

machining center which will be used as a coordinate measuring machine.

The POSOR is at the far right of the figure, and it is shown in greater

detail in Figure 8.2. The light source plate (target plate) is used as

the stationary reference axes for the POSOR. The stand which holds the

target plate is bolted and epoxied to the bed of the machine. The

measuring beam is supported at each end by the two and four degree-of-

freedom gimbals respectively. The two degree-of-freedom gimbal (angular

degrees of freedom about the Y and Z axes shown in Figure 8.1) is lo-

cated near the POSOR and is mounted on a twist stage. The four degree-

of-freedom gimbal (angular degrees of freedom about the X, Y, and Z axes

and linear degree-of-freedom along the X axis as shown in Figure 8.1) is

attached to a two axis stage. As shown in Figure 8.3, the far end of
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the measuring beam has an angle plate attached to it which acts as a

reference surface.

The target plate is supported by a stand that was epoxied and

bolted to the machine tool bed. All the motions measured by the POSOR

are with respect to the target plane. Any error in orientation of the

target plate with respect to the vertical machining center XZ axes would

be amplified by the length of the measuring beam for translation

motions. In securing the support stand for the target plate, the target

plate could not be made "exactly" parallel to the vertical machining

center XZ axes; thus in order to determine the orientation of the target

plane with respect to the vertical machining center, an initial calibra-

tion test was made using the POSOR. This test is discussed in the

following section.

The measuring beam's support gimbals were held by stages which were

used to synthesize structural beam deflections and one large degree-of-

freedom (in the Z direction). The twist stage was located beneath the

two degree-of-freedom gimbal near the POSOR. It consisted of the

bearing/axle assembly that was used in the test to determine the dis-

tance between the impedance probes (see Figures 7.30, and 7.31). This

stage was moved by a jack screw and its motion simulatea the twist of a

structural beam and bearing runout (motion a, AY, and AZ shown in Figure

8.1). The four degree-of-freedom gimbal was supported by a two axis

stage which moved in the Y and Z directions shown in Figure 8.1. These

motions simulated out-of-plane bending of a structural beam and the

large degree-of-freedom motion about a joint. Thus with these two
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stages, the equivalent of six degree-of-freedom motions could be imposed

on the system.

In order to measure the motions of the endpoint of the measuring

beam, an angle plate was attached to one end of the measuring beam to

serve as a reference surface. Dial indicators, held by a beam attached

to the machine spindle, used this angle plate as a reference surface to

position the spindle. This allowed the vertical machining center to be

used as a coordinate measuring machine.

A line was scribed on the angle plate which was 31.500" (.800 m)

from the centroid of the two degree-of-freedom gimbal. Thus when the

twist stage was anchored in place, motions of the endpoint of the

measuring beam would trace out a section of a sphere. Hence the angles

B and 0 would be directly related to the displacements in the Y and Z

directions respectively. Since the total incremental translations were

on the order of .3", the cosine error resulting from an error in the

length (31.5") of .010" (.254 mm) would be .0001" (.0025 mm).

The accuracy of the digital readout of the vertical machining

center along any axis was 0.0002" (measured with a laser interferometer

during calibration tests ). The accuracy to which the angle a could be

determined was based on two Z axis measurements taken 3.5" apart on the

angle plate and was 81 ýrad; however, when the twist stage was not

moved, a should not have changed by more than the runout in the two

degree-of-freedom bearings divided by their spacing. Hence a should

-6have been stable to 50x10 /3 = 17 iirad. Because of this, for the
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translation tests, a measurements were not made. The angles B and O

were accurate to 6 pradians each (based on the assumption that the twist

stage held still while a measurement accurate to .0002" was made at the

angle plate).

8.3 General Description of Tests Used to Evaluate Performance of the

Measuring Beam System.

This section will present the tests designed to evaluate the per-

formance of the measuring beam system. First the initial setup

(initialization) is described. Methods of compensating for zero drift

in the probes is then discussed. The method of performing the motion

tests is discussed followed by a description of each test.

8.3.1 Test Setup Calibration and Determination of Associated Errors

An initial calibration of the system was done to determine the

orientation of the target plane with respect to the machining center

axes. Without compensation for these angles, pure 0 rotation of the

POSOR plates with respect to each other would seem to cause Y and a

motions at the end of the measuring beam. To determine these angles,

the tip of the measuring beam was moved in the Z direction and the

degrees of freedom a, 8, and 0 were measured by the machining center and

the POSOR. To negate the effect of probe zero-drift, only a Z motion

was imposed on the measuring beam; thus the change in gap between the

POSORs was small (on the order of .0020" (.0508 mm)) and the differen-

tial error due to zero-drift on the probe linearization curves (see
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Equation 5.2 and Figure 7.28 and the following paragraph) was on the

order of 10 pin (.26 pm). For the small angles imposed, the error

between the readings from the machining center and the POSOR increased

linearly with the imposed motion. The target plane orientation angles

are those which bring the error to zero along the entire range of

motion. These angles were determined iteratively, using a digital

computer.

The orientation angles aX and BZ about the X and Z axes were found

to be 2.550 and 3.180 respectively. This orientation resembles a cosine

error to the angle 0. To the probes, these angles seemed like an error

in flatness of the target plate with respect to the vertical machining

center YZ axes. This error in flatness was a function of the probe

position over the target plate, which was dependent primarily on the

sine of the angle 6. Hence, the target plane orientation angles were

determined to a degree of accuracy that only induced errors in a and B

on the order of the POSOR errors. Greater accuracy could have been

achieved by performing numerous runs and averaging values, but time

constraints prevented doing this.

For all the remaining tests, the calibration orientation angles

were incorporated into the analysis programs. With regard to other

system errors, the machining center could only measure the angle a with

an accuracy of 81 irad (distance between touch off points was 3.5" and

the accuracy of the readings was only 0.0002"). However, when the twist

stage was not moved, a ought not to have changed by more than the runout

in the two degree-of-freedom bearings divided by their spacing. Hence a
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-6
will be stable to 50x10-6 /3 = 17 prad. The other error in the deter-

mination of the angles a and 8 was the zero-drift of the probes (see

section 7.5.3). As shown in Figures 7.32, 7.33, and 7.34, the probes

were subject to pure drift. Analysis of the electronic circuit showed

that standard accuracy components were used in its design, so presumably

this problem could be remedied by using hybrid circuits. Methods for

compensating for the zero-drift in this experiment are discussed below.

Physically, the zero drift of the probes could only be determined

by "zeroing" the probes using gauge blocks, which was accurate to .02

volts. The zero-drifts were found by using gauge blocks to position the

POSOR plates the same distance apart as when the probes were calibrated.

The probe outputs were read and compared to the voltages at calibration.

This measurement is only as accurate as the probes could be zeroed:

.001"/.05"/volt = .02 volts (Figure 7.28 shows the gain of the probes to

be about .05"/volt). Probe 1 did not drift, while probes 2 and 3 zero

points were found to have drifted by .20 and .30 volts respectively.

To determine the effect of this drift in detecting incremental

motion, representative values of the probe output voltages along with

zero-drifts were substituted into the probe linearization equations

(coefficients given in Table 7.10). The error created by the zero-drift

problem was then evaluated using Equation 5.2. Representative voltages

(with the tolerances associated with finding the new zero points) of .1,

.12, .8, and .82 were substituted into the three probe linearization

polynomials. For this .7 volt range, which corresponds to .035" motion

(.889 mm) the error in incremental motion for probes 1, 2, and 3 was
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351, 264, and 175 pin (8.8, 6.6, and 4.4 um) respectively. This error

is unacceptable, and the reliability of the method is also doubtful (can

one really bring the probes that close to the initial calibration

point?).

Since the dominant error component in the a and 8 POSOR measure-

ments should be random (see Table 7.12), the errors due to zero-drift

would mask the ability of the tests to determine how well the POSOR

could work. Since the zero-drift merely represents a shift on the

linearization curve (an origin shift), and the shift could not be

detected with great enough accuracy by direct measurement, the zero-

drifts for the probes were found (digitally) by minimizing the mean

square error. This will only remove the increasing error component

(discussed in 7.5.4), the random component and any cross coupling terms

between the a and a angles will be unaffected. Appendix 8A lists the

programs (they use the equations developed in Chapter 5) used to deter-

mine the degrees of freedom measured by the POSOR. These programs were

modified with the addition of DO LOOPS to allow combinations of the

three zero-drifts to be tried until the least squares error in the

calculated a and B were found. The accuracy of the computations was

.001 volts, which leads to errors of 18, 21, and 16 pin for probes 1, 2,

and 3 respectively. These errors correspond to about 5 prad error in

angles a and B measured by the POSOR which is less than the accuracy of

the angles measured by the machining center.

Since the POSOR tests were run over a period of three days, the

zero-drifts were expected to change and thus had to be found for each
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test. Changes during the test could not be determined, but are expected

to be small (test is one hour verses 24 hour waits). The values of the

zero shifts found for the different tests are given in Table 8.1. The

zero-drifts are subtle, but the linearization equations are very

sensitive.

8.3.2 Description of the Tests Performed to Evaluate POSOR Performance

The goal of the POSOR is to be able to measure six degrees of

freedom simultaneously using only displacement measuring sensors that

look at the relative motion between two plates. In order to evaluate

this concept, the ability of the system to detect single degree-of-

freedom motions was first considered. Then multi-degree-of-freedom

tests were studied. The tests performed were named according to the

axes along (or about) which the end of the measuring beam was moved.

The names of the tests also coincided with the names of the FORTRAN

programs used to analyze the data (these programs are listed in Appendix

8A).

The tests were performed in the following manner. Initial readings

were taken from the vertical machining center and the POSOR. The

incremental step(s) were made, and the measuring process was repeated.

The measuring process with the vertical machining center used dial

indicators to tell when the surface of the angle plate was touched by

the vertical machining center coordinate system. Readings were taken on

the angle plate at three points whose positions with respect to the

longitudinal axis (parallel to the machining center's X axis) of the
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Table

ZMO

Lateral effect diode

Xdlf .4474

Ydls .2237

Yd1f .2481

Xd2s  .3869

Xd2f .4017

Yd2s .2290

Yd2f .2527

Impedance probe meast

Probe 1 .0021

Probe 2 .0014

Probe 3 .0019

Impedance probe volta

Probe 1 0.00

Probe 2 0.20

Probe 3 0.30

8.1 Summary of Ranges

Test

YMO YZMO

measurements: (in)

.4556 .4547

.4484 .4471

.2219 .2222

.2235 .2402

.3917 .3910

.3852 .3956

.2292 .2292

.2285 .2448

urements: (

.0208

.0092

.0093

age shifts:

0.000

0.100

0.240

of Sensor Motions

TWIS

.4539

.4523

.2176

.2248

.3901

.3891

.2251

.2293

.4557

.4502

.2468

.2867

.4092

.4322

.2335

.2929

in)

.0198

.0091

.0091

-.060

0.180

0.140

.0394

.0452

.0284

-. 185

0.118

0.071

.0126

.0128

.0102

-.148

0.245

0.403
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measuring beam were known to within .001" (.025 mm). From these rea-

dings, the a, Y, and Z motions were found. In addition, when the twist

stage was stationary, the angles a and 0 were determined. The maximum

value of the X reading was about .001" (.025 mm), and since there was no

error amplification associated with determining it, this trivial motion

was not recorded. The tests are discussed below.

Test ZMO was performed in order to determine how well the POSOR

could measure the angle 0 which was induced by introducing a motion

along the Z axis using the two axis stage. The range of motion was .3"

(7.6 mm). For this test, the twist stage was intentionally not moved.

As the two axis stage was moved in the Z direction, it caused slight

motion in the Y direction, but no rotation a was induced because the

aerostatic bearing in the four degree-of-freedom gimbal isolated the

measuring beam from all but Y and Z motions of stage. Any rotation c

detected by the POSOR would be due to wobble in the twist stage (which

was shown above to be on the order of 17 wrad). Thus the measuring beam

pivoted about the two degree-of-freedom gimbal axes and measured motions

(along the Y and Z axes) of the end of the measuring beam corresponded

directly to the angles B and 0. As discussed above, the a and B results

from this experiment were used to determine the orientation angles of

the target plate.

Test YMO was performed in order to determine how well the POSOR

could measure the angle 5 which was induced by introducing a motion

along the Y axis using the two axis stage. The range of motion was .3"

(7.6 mm). Again, the twist stage was held stationary so any rotation a
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detected by the POSOR would be due to wobble in the twist stage. Once

again, the measuring beam pivoted about the two degree-of-freedom gimbal

axes, and measured motions (along the Y and Z axes) of the end of the

measuring beam corresponded directly to the angles a and e.

Test YZMO was the first look at how the POSOR performed when more

than one degree-of-freedom was moved. The range of motion was .3"x.3"

(7.6x7.6 mm) along the Y and Z axes of the machining center. The YZ

motion caused the angles 0 and 8 to be simultaneously introduced. The

twist stage was not moved during this test.

Test TWIS was performed in order to determine how well the POSOR

could measure the angle a and "bearing runout". The range of motion was

a = .30 and runout = .005" (.13 mm). These motions were induced by

tilting the twist stage while keeping the two axis stage fixed. The

motion of the twist stage was rotational (about the X axis), and trans-

lational (along the Y and Z axes). POSOR performance was evaluated by

measuring the angle a and the Y and Z motions at the end of the measur-

ing beam and comparing it to that predicted by the algorithm discussed

below.

Test GEN was performed to evaluate POSOR performance when all axes

were moved simultaneously. The range of motion was a = .30, Z = .3"

(7.6 mm), and Y = .01" (.25 mm). The Y motion at the end of the measur-

ing beam was small because the twist motion had also moved the probes

close to the target plane. POSOR performance was evaluated by measuring

the angle a and the Y and Z motions at the end of the measuring beam and
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comparing the values to those predicted by the data processing algo--

rithm.

8.3.3 Algorithm to Process Sensor Output

This section will describe the programs written to analyze the

output from the sensors of the POSOR and the vertical machining center.

Programs used to control the Klinger stage and the data acquisition unit

are particular to the data acquisition system used and will not be

presented. Data was first gathered on the Hewlett Packard system and

then transferred to a VAX 11/780 computer. All final analysis was done

using FORTRAN programs which are given in Appendix 8A.

The analysis of the tests is based on detecting incremental motions

between the start and the end of the test. To start the test, all

initial readings were made, and the initial values were calculated. At

each step, the readings were made, the values calculated, and the

initial values were subtracted from the calculated values. In the

operation of a "real" robot, the robot motions would also be defined

with respect to an initial home point.

GEN.FOR is typical of the data analysis programs. It is listed in

Appendix 8A and will be outlined here. The program first reads the data

and then opens files for tables and plots. The initial conditions are

calculated using Equations 5.3 - 5.5 and 5.28 - 5.32. The first step is

to add the probe offset voltages and then linearize the probe readings.

The angles a and B are then found. A linear interpolation routine
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(DLINE) is used to evaluate the light spot position on the diodes. Once

the XY coordinates of the light spot are known, the distance between the

plates at that point is calculated so that, with the next motion, the

change in distance can be used to determine the shift of the light spot

due to light source orientation errors. The angle e is then found and

the X, Y, and Z position of the target plane's origin with respect to

the coordinate system of the impedance probes (see for example Figure

5.2). The next set of data points are then processed similarly, except

the initial conditions are subtracted.

The following subroutines are included in GEN.FOR, all are well

annotated and are listed in Appendix 8A:

1) Subroutine CONSTANT.FOR contains all the linearization con-

stants for the lateral effect diodes. These constants are used by the

interpolation subroutine DLINE.FOR.

2) Subroutine DIMEN.FOR contains the physical constants of the

POSOR system such as diode axes offsets, orientation angles, etc.

3) Subroutine PROBLIN.FOR accepts the three probe voltages and

returns the linearized distance values.

4) Subroutine ALBET accepts the linearized probe distance values

and using data on probe spacing from DIMEN, it calculates and returns

the angles a and 0.

5) Subroutine DIST.FOR accepts the probe readings, angles a and B,

system geometric constants and an X,Y position. It then calculates and

returns the distance between the plates at the given X, Y coordinates.

6) Subroutine DLINE.FOR is an interpolation routine used to deter-

mine the linearized position of a light spot on a photodiode. As
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discussed in Chapter 7, the diode linearization curves vary across the

diodes. When the light spot falls between curves an interpolation of

the curve values is necessary. DLINE.FOR determines which curves bound

the light spot and calculates the linearized values for the light spot

using each of the bounding curves. These values are then linearly

weighted according to how close the light spot lies to the curve. A few

iterations are required to determine the linear weighting factor.

The accuracy of the interpolation routine was determined by assum-

ing a linearization curve grid spacing twice that of the actual spacing

and then comparing the interpolated values at the center of each en-

larged grid section to the "actual" values (found by substituting the

same point into the linearization curve that actually passed through

that point). Since the grid area was four times as large as the grid on

the diode, the error associated with the actual grid would be on the

order of one-fourth that found by the above method. Figures 8.4 - 8.7

show how the error varies with position on the diode. As expected, the

linear weighting of the values produces the least error near the center

of the diode (where the diode itself is most linear). Note that these

errors were incorporated into the total light source-lateral effect

diode system error budget given in Chapter 7.

The amount of time to process the data could not be judged on the

VAX; however, an estimate will be made based on an Intel 86/30 board.

If a math processor is used, floating point can be as fast as integer

arithmetic in the chip. One 16 bit addition takes about 4 ýis, and one

16 bit integer multiply or divide takes about 30 us. Eight ninth-order

286



t)U

55

50

45

40

35

30

25

20

15

10

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Diode 1 X Position

Figure 8.4 Interpolation error associated with analysis
routine DLINE. FOR.

287

Cc
E
C)
CO

N.,
c-4)
C

I I I I I I 1 I

AA

I

I



-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Diode 1 Y Position

Figure 8.5 Interpolation error associated with analysis
routine DLINE. FOR.

288

A tb

35

30

25

20

15

10

5

E
C)

Co

N

(D
C

-0.8



-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Diode 2 X Position

Figure 8.6 Interpolation error associated with analysis
routine DLINE. FOR.

289

60

50

40

30

20

10

0
-0.8



60

50

40

30

20

10

tA

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Diode 2 Y Position

Figure 8.7 Interpolation error associated with analysis
routine DLINE. FOR'

290

I I I

0.6 0.8

r T I 1 r r ·

J iI I I

-

-



and three fourth-order polynomials need to be evaluated. Assuming that

the support calculations equal 10% of the number of major calculations,

430 multiplications and divisions need to be made. This will take on

the order of .013 seconds. The analog to digital converters (11 at 100

us including filtering) will add another .002 seconds. Thus at least

one dedicated micro-processor would be required for each joint in order

to analyze all the data.

8.4 Results of Measuring Beam System Tests

This section will present results for each of the tests described

above along with an analysis of the errors. The errors will be analyzed

using the equations formulated in Chapter 5 and the ranges of motion of

the sensors during the tests (see Table 8.1). With regard to the mo-

tions made, The X axis lies along the length of the measuring beam and

the twist about its length is a. The vertical motion of the measuring

beam is along the Z axis, and the angle 0 about the Y axis causes Z axis

motion at the tip of the measuring beam. Side to side motion of the

measuring beam is along the Y axis, and the angle B causes Y axis motion

at the tip of the measuring beam.

As noted earlier, all tests are based on incremental motion;

detailed values for system variables (from the analysis programs) are

presented in Appendix 8B. The "in the neighborhood of" errors based on

the system error budget values obtained in Chapter 7 are given below.
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For the light source-lateral effect diode system, Table 7.9 lists

the following expected root mean square values for errors in measuring

the X (corresponds to Xd), Z (corresponds to Yd) and a motions between

the POSOR plates: aX = 1572 Uin (39.3 im), aZ = 207 pin (5.2 Um), and oa

- 111 Uradians. The error in the angle e will be amplified by the

distance from the POSOR coordinate system origin to the end of the

measuring beam (33.4" or .85 m) when predicting Z motions. Thus the

total expected Z error for the POSOR is aZ = 3914 win (98 Pm).

Note that the ninth order curve fit (see section 7.4.2) used to

linearize the diodes will have eight peaks and valleys with a distance

between a peak and a valley of about .025" (.635 mm). The standard

deviation of the error in straightness for the stage was found to be

.0004" (10 ipm). The period of this error is on the order of .01" (.254

mm) (see Figure 7.3) which can result in a peak to valley error of

.0004" (10 Pm) in the linearization curve, because the ninth-order curve

will map the stage error as well as the diode response. Thus in addi-

tion to the errors accounted for in Table 7.9, a 189 prad error over

.025" (.635 mm) motion across the diode could occur. For purposes of

estimating this error, Table 8.1 lists the linearized diode positions of

the light spots on the diodes at the start and the end of each test.

For analyzing the test results, the errors given in Table 7.9 and by the

calibration stage straightness effects will be scaled by the distance

the light spots traveled across the diodes.
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For the impedance probe system, Table 7.12 lists the expected

increasing and random error components for the distance between coor-

dinate systems and the angles a and 6. For error that increases with

the degree-of-freedom being measured (see Equation 5.2, and Section

5.5), the errors are: a0O,O = 182 4in (4.6 pm), o( = 123 prad, and a =

75 4rad. The random error components are: a 0,0 = 17 iin (.4 pm), a =

11 prad, and a = 6 prad. The error in the angle B will be amplified by

the distance from the POSOR coordinate system origin to the end of the

measuring beam (33.4" or .85 m) when predicting Y motions. Thus the

total expected increasing and random Y errors for the POSOR are a =

2505 pin (63 pm), and a y = 200 pin (98 pm) respectively. Table 8.1

lists the range of motion of the probes for use in evaluating the in-

creasing error component.

As an aid to help in visualizing the motions being measured, keep

Figure 8.1 ready for quick reference.

8.4.1 Results of the Vertical Motion (Z) Motion Test

The Z motion test (vertical motion which corresponds to deflections

of a beam and large angular motions) served two purposes: 1) evaluation

of the POSOR when subjected only to the degree-of-freedom 0, and 2)

determination of the orientation of the target plane with respect to the

vertical machining center coordinate system. The range of Z motion, .3"

(7.6 mm), was induced in 20 steps using the two axis stage. The orien-

tation angle determination results were discussed earlier. The 0 angle

results are shown in Figure 8.8.
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Figure 8.8 shows the angle 8 as measured by the machining center

and the POSOR. The error starts at zero and increased to 68 Prad over a

range of 5756 prad. The standard deviation of the error was 66 prad.

From Table 8.1, the average Xd motion was .009" (.229) mm. Thus the

error induced by the straightness of the calibration stage was a maxi-

mum of 68 prad. The predicted error due to the factors listed in Table

7.9 (such as distance between the diodes, etc.) was 111 prad over .5"

(12.7 mm) of travel across the diodes. For this test, .020" (.51 mm)

was traversed which lead to an error of 4 prad. Note that the error was

not steadily increasing, but jumped to a constant offset at about the

fifth step. This may have been due to a foreign object (gunk) changing

the location of the center of intensity of the light source.

8.4.2 Results of the Side to Side (Y) Motion Test

The Y motion test was used to evaluate the POSOR's performance with

respect to $ motions only (motions of the tip of the measuring beam in

the Y direction which corresponds to sideways motion of a beam). The

.3" (7.6 mm) range of Y motion was induced in 15 steps using the two

axis stage. The probe zero-drift voltages were found (digitally as

described above) to be 0.000, 0.100, and 0.240 volts for probes 1, 2,

and 3 respectively. The results of this test are shown in Figures 8.9 -

8.11.

Figure 8.9 shows the angle a measured by the POSOR without and with

the probe zero-drift voltages. From Equations 5.21 and 5.22, and Table

8.1, the increasing error component should be 0 prad. The accuracy of
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the twist stage is 17 prad. Figure 8.10 shows the value of a measured

by the POSOR increasing to about 25 prad. The expected random error is

11 prad, so a is within the predicted bounds.

Figure 8.10A shows the angle ý as measured by the machining center

and by the POSOR without and with the probe zero-drift voltages

respectively. Figure 8.10B shows the error found by subtracting curve 1

in Fig. 8.10A from curves 2 and 3. For the zero-drift compensated

measurement, the error appears to be random with a standard deviation of

4 grad over a range of 4313 prad. The expected random error component

is 6 " rad. From Equations 5.21 and 5.22 and Table 8.1, the increasing

error component is found to be 13 prad.

Both the a and the ý curves show the large effect that small shifts

in the zero voltage have on POSOR performance. Thus it becomes graphi-

cally apparent that stable electronics must be obtained before a high

accuracy POSOR can be built.

Figure 8.11 shows the angle 0 as measured by the machining center

and the POSOR. The error starts at zero and increases to 230 prad over

a range of 13 vIrad. The standard deviation of the error is 179 prad.

From Table 8.1, the Xd motion is on the order of .007" (.178 mm) which

indicates an error induced by the straightness of the calibration stage

could be a maximum of 53 prad. The predicted error due to the factors

listed in Table 7.9 (such as distance between the diodes, etc.) is 111

grad over .5" (12.7 mrm) of travel across the diodes. For this test,

only .007" (.18 mm) was traversed which leads to an error of 2 prad.
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This places the measured error within 4.3 standard deviations of that

predicted. Another contribution to the error could be due to foreign

material reflecting the light beam.

8.4.3 Results of the Diagonal (Y and Z) Motion Test

The YZ motion test was used to evaluate the POSOR's performance

with respect to 8 and O motions. The ranges of the Y and Z motions were

both .3" (7.6 mm) and were made in 13 steps using the two axis stage.

The probe zero-drift voltages were found to be -0.060, 0.180, and 0.140

volts for probes 1, 2, and 3 respectively. The results of this test are

shown in Figures 8.12 - 8.14.

Figure 8.12 shows the angle a measured by the POSOR without and

with the probe zero-drift voltages. From Equations 5.21 and 5.22, and

Table 8.1, the increasing error component should be 0 prad. The ac-

curacy of the twist stage is 17 prad. The expected random error is 11

irad. Figure 8.12 shows the value of a rising and falling within these

bounds with a standard deviation of 3 irad, so a is well within the

predicted bounds.

Figure 8.13A shows the angle B as measured by the machining center

and by the POSOR without and with the probe zero-drift voltages. Figure

8.13B shows the error found by subtracting curve 1 in Fig. 8.13A from

curves 2 and 3. The error in the zero-drift compensated curve appears

to be random with a standard deviation of 7 prad over a range of 3700

prad. The expected random error component is 6 4rad. From Equations
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5.21 and 5.22 and Table 8.1, the increasing error component is found to

be 13 irad. Thus the motion is tracked quite well.

The results for the a and a motions show that they are uncoupled.

Once again it is shown that the zero offset voltages are critical to the

performance of the system. The stability of the zero-drift is not good

for these experiments, but development of hybrid circuits can be ex-

pected to alleviate this problem.

Figure 8.14A shows the angle O as measured by the machining center

and the POSOR. Figure 8.14B shows the error starts at zero and in-

creases to 112 prad over a range of 3920 prad. The standard deviation

of the error is 92 prad. From Table 8.1, the Xd motion is on the order

of .006" (.152) mm. Thus the error induced by the straightness of the

calibration stage could be a maximum of 45 prad. The predicted error

due to the factors listed in Table 7.9 (such as distance between the

diodes, etc.) is 111 prad over .5" (12.7 mm) of travel across the

diodes. For this test, only .02" (.51 mm) was traversed which leads to

an error of 4 prad. Thus the error would have to be due to the

straightness of the calibration stage, and it is within 2.5 standard

deviations of the predicted error.

8.4.4 Results of the Twisting (a) Motion Test

The TWIS motion test (motion a about the X axis, and small motions

along the Y and Z axes which correspond to twist of a beam about its

length) was used to evaluate the POSOR's performance with respect to O
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and runout motions. The range of the a motions was .30 and the runout

(Y and Z motion) was on the order of .005" (.13 mm). The motions were

made in 15 steps using the twist stage. For both the TWIS and GEN

tests, since the two degree-of-freedom gimbal was no longer steady, the

vertical machining center could not be used to measure the angles B and

6 effectively. Instead, the Y and Z motions of the end of the measuring

beam were measured. These motions consisted of components due to the

rotations 8.and 6, and of components due to translation of the twist

stage as it was rotated. The probe zero offset voltages were found to

be -.060, 0.180, and 0.140 volts for probes 1, 2, and 3 respectively.

The results of the TWIS test are shown in Figures 8.15 - 8.17.

Figure 8.15A shows the angle a measured by the POSOR without and

with the probe zero-drift voltages. Figure 8.15B shows the error found

by subtracting curve 1 in Fig. 8.15A from curves 2 and 3. From

Equations 5.21 and 5.22 and Table 8.1, the increasing error component

(due to uncertainties in the values of the distances between the probes)

should be at most 44 4rad. The accuracy of the twist stage is 17 prad.

The expected random error due to the POSOR is 11 prad, and that due to

the machining center is 81 4rad, so the root mean square random error is

83 4rad. Figure 8.20 shows the error in a increasing until constant at

steps 2 - 10, and then becoming more random. The standard deviation of

the measured error is 53 prad over a range of 5796 prad. Thus the

measurement of a is as accurate as can be expected.

Figure 8.16A shows the motion Y as measured by the machining center

and by the POSOR without and with the probe zero-drift voltages. Figure
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8.16B shows the error found by subtracting curve 1 in Fig. 8.16A from

curves 2 and 3. The error appears to be pseudo random with a standard

deviation of .001627" (40.7 Am) over a range of .005933" (148 pm). The

expected random error component is 200 pin (5 pm). From Equations 5.21

and 5.22, and Table 8.1, the increasing error component is found to be

735 pin (18.3 pm). It is difficult to say what is causing the large

error, but "human" error doesn't seem plausible because of the smooth-

ness of the curve. A possible explanation is that the probes are less

stable at larger gaps, so a shift other than the zero (but probably of

the same order) could have occurred.

Figure 8.17 shows the motion Z as measured by the machining center

and the POSOR. The error between them rises and falls with a maximum

amplitude of about .007" (.178 mm). This could be explained by the

light spot moving up a peak in a linearization curve, and then back down

the other side. From Table 8.1, the full range of X motion is .0055"

(.140 mm) for diode 1, and .0230" (.584 mm) for diode 2. Thus the peak

of the up and down error that could be caused would be .0004"x33.4"/3" =

.0045" (.113 mm). The average distance moved across the diodes was

.027" (.685 mm), so the error contribution from Table 7.9 would only be

.0002" (5 4m). Another cause for the error may be foreign material on

the diode but this does not seem likely. Similarly, the B motion was

constant, so any reflection effects would also be constant; thus the

cause must have been related to the calibration stage effects. Hence

the error is within 1.6 standard deviations of the predicted error.
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8.4.5 Results of the General (Y, Z, and a) Motion Test

The GEN motion test was used to evaluate the POSOR's performance

when subjected to combined a, Y, and Z motions. The ranges of the a, Y,

and Z motions were .30, .005", and .3" (.13 mm and 7.6 mm) respectively.

The motions were made in 10 steps using both the two axis and twist

stages. The probe zero offset voltages were found to be -. 148, 0.245,

and 0.403 volts for probes 1, 2, and 3 respectively. The results of

this test are shown in Figures 8.18 - 8.20.

Figure 8.18A shows the angle a measured by the POSOR without and

with the probe voltage offsets. Figure 8.18B shows the error found by

subtracting curve 1 in Fig. 8.18A from curves 2 and 3. From Equations

5.21 and 5.22 and Table 8.1, the increasing error component should be 6

prad. The accuracy of the twist stage is 17 prad. The expected random

error due to the POSOR is 11 prad, and that due to the machining center

is 81 prad, so the root mean square random error is 83 prad. Figure

8.25 shows the error in a rising then falling with a standard deviation

of 91 prad over a range of 1565 prad. Thus the measurement of a is as

accurate as can be expected.

Figure 8.19A shows the motion Y as measured by the machining center

and by the POSOR without and with the voltage offsets respectively.

Figure 8.19B shows the error found by subtracting curve 1 in Fig. 8.19A

from curves 2 and 3. The error appears to be random with a standard

deviation of 506 pin (12.7 pm) over a range of 7242 pin (181 pm). The
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expected random error component is 200 pin (5 pm). From Equations 5.21

and 5.22 and Table 8.1, the increasing error component is found to be

167 pin (4.2 im). Thus the error is within two standard deviations of

the predicted error. Note that this error is smaller than for the TWIS

test, even though the range of a motion is larger because the probe

readings (distance traveled by the probes) shown in Table 8.1 are lower.

Figure 8.20A shows the motion Z as measured by the machining center

and by the POSOR without and with the voltage offsets respectively.

Figure 8.20B shows the error found by subtracting curve 1 in Fig. 8.20A

from curves 2 and 3. The error grows continuously to a maximum of

.0155", and the standard deviation of the error is .0085" (.216 mm).

From Table 8.1, the Xd motion on diode 1 is .0055" (.140 mm) and on

diode 2 is .0230" (.584 mm). Thus the error induced by the straightness

of the calibration stage could be a maximum of 120 prad, which would be

amplified by the measuring beam to .004008" (.102 mm). The predicted

error due to the factors listed in Table 7.9 (such as distance between

the diodes, etc.) is 111 prad over .5" (12.7 mm) of travel across the

diodes. For this test, the average distance traveled across the diodes

was .0270" (.686 mm), which leads to an error of 6 prad, which is

amplified to .000200" (5 pm) at the endpoint. Thus over the length of

the measuring beam, the error should be at most .0040". The endpoint

error is within 3.9 standard deviations of the predicted error.
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8.5 Summary of Results, and Recommendations

The results are best summarized by looking at Table 8.2 which lists

the results of the measurements, the observed errors, and the predicted

errors. The POSOR measured the angles a and 8 quite well (within the

predicted limits of accuracy of the test setup) except for the B motion

during the TWIS test. These good results, however, depended on the

determination (digitally) of the small (a few tenths of a volt) voltage

shifts in the probes' zeroes. These voltages are listed in Table 8.1.

There is no clear trend, just a casual drift from the first test (ZMO)

to the last test (GEN). Note that test ZMO was performed on the first

day, tests YMO and YZMO on the second day, and tests TWIS and GEN on the

third day.

The O measurements, which were measured by the lateral effect diode

system, were poor (but predictable) and the cause was traceable to the

calibration stage. Thus all the tests produced errors that were within

a few standard deviations of those predicted. Based on these results,

the methodology of the error analysis of Chapter 5 appears correct, and

the POSOR's performance for the multi degree-of-freedom tests was

similar to that of the single degree-of-freedom tests. This indicates

that there is little coupling between the measured degrees of freedom.

From the error analysis presented in Chapter 5, the dominant errors

were shown to be due to sensor inaccuracies. With regard to the im-

pedance probes, it was the zero drift problem which caused 90% of the
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Summary of Test Results to Evaluate Measuring Beam System

Performance

Test

Values (inches and irad where appropriate)

ZMO

max

Predicted:

arand.
aic.aincr.

YMO

<17

<17

4318Smax

Predicted 4
Predicted:

YZMO

<17

3

11

<17

3700

TWIS

5796

53

83

<17

178

GEN

1565

91

83

<17

217

G
orana.

oincr.

Y .144
max

ay

Predicted:

GYrand.

GYincr.

6

13

.123580

.000234

.000200

.000434

221

.000134

.000200

.000434

6

22

.005933

.001627

.000200

.000735

6

5

.007242

.000506

.000200

.000167
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Table 8.2 (Continued)

Test

Values (inches and ýjrad where appropriate)

ZMO

0max

EGmax

(
0

Predicted:

Grand.

aGincr.

max

E Zmax
UZ

Predicted:

Zrand.

0Zincr.

YMO

230

179

68

.181930

.002037

.001637

.000134

.002271

53

.000735

.007682

.005979

.000067

.001770

YZMO

3920

123

92

4

45

.139280

.004108

.003073

.000134

.001503

* For tests ZMO, YMO, and YZMO, Z and Y motions are obtained by multiplying
O and B by 33.4" respectively. For tests TWIS and GEN, 0 and B are obtained
by dividing Z and Y by 33.4" respectively.
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TWIS

26

191

102

6

135

.000876

.006388

.003420

.000200

.004500

GEN

8554

274

120

6

.285700

.015499

.009146

.000200

.004005



system error. This error, however, was compensated for in the analysis

programs. With regard to the lateral effect diode system, the error

introduced by the calibration stage accounted for 95% of the system

error that was predicted. It is also believed that foreign matter on

the diodes (which can cause reflections and shift the center of inten-

sity of the light source) accounted for a significant part of the error

in the experiments.

In view of the above, the following recommendations are made con-

cerning the future development of POSOR devices:

For the impedance probe system:

1) The oscillator demodulator unit must be replaced with a unit

that has no adjustable pots, and does not drift if bumped. More stable

electrical components should also be chosen.

2) The relative probe positions must be found while the angles a

and B are simultaneously measured with angular interferometers.

3) The probes must be secured in a stress free way (epoxied,

instead of held with nuts)

For the lateral effect diode system:

1) This type of system is suitable for use only in laboratory

environments (the diodes are very susceptible to contamination).

2) Stick mirror interferometers (allow direct measurement of

simultaneous X and Y stage motion) should be used to measure the stage

motion directly when mapping the diodes, so Abbe's offset error can be

reduced to microinches.
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3) Stable laser light must be used as opposed to laser diodes;

however, it can be delivered to the required region by fiber optic

cables.

Finally, note that the average endpoint error measured by the

impedance system was .000625" (16 lm), and that of the lateral effect

diode system was .008929" (.226 mm). If one still ponders how the

measuring beam system would work in a real live robot, consider that the

measuring beam was 30" (.762 m) long and the POSOR was only 3" (.0762 m)

in diameter. Thus even if scaled up to a robot with a 90" reach, the

system in question would be one to two orders of magnitude more accurate

than any existing robot. Accordingly, as the conclusion to this thesis,

Chapter 9 will discuss the conceptual design of a robot that uses bumpy

ring POSORs and 5 iin (.13 ýim) accuracy impedance probes (easy to

obtain) to achieve .0005" (.0127 mm) feedback signal accuracy and

payload to weight ratios on the order of five to one.

319



APPENDIX 8A

FORTRAN Analysis Programs
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C DIMEN.FOR by Alex Slocum, Feb. 1, 1985. To load POSOR
C dimns ions
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE DIMEN
COMMON/DIMEN/ a, b, C, dYsep, dXsep, sig1, sig2, rhol, rho2
a a 1.499336
b a 1.536181
c * 2.992558
dYsep a 3.6123189
dXsep a -. 3517893
rbol a -.746148
rho; * .789712
sigl * .083996
sig2 * .882762
RETURN
END

- --
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cccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C ALBET.FOR by Alex 8locua, Jan 21, 1985. To determine inclination
C angles of receiving plane, ALPHA, and BRTA.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE ALBET(ALPl, BET)
CONKON/DIREN/ a, b, c. DYSBP, ODX8P, sig, sig2, rhol, rho2
COMON/PROBE/ Dl, D2, D3, ALPHA, BETA
ALPHA a ATAN( (D2 - D3)/(a + b) )
ALPSH ALPHA
BRTA a ATAN( ( D1 - (D2*b + D3*a)/(a+b) )/c )
BUT a BETA
RETURN
END

SI
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C DIST.POR by Alex Ilocum, Jan 21, 1985. To determine distance
C from receiving plane to transmitting plane, at a given XY.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTIN DIST(X, Y, 0)
COMMON/DIMEN/ a, b, C, DYSEP, DXSEP, sigi, sig2, rhol, rho2
CONMON/PROBE/ Di, D2, D3, ALPHA, BETA
D a D3 + (b + Y)*TAN(ALPDA) - X*TANJ(BC A)
RETURN
END

LI
V
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ccccccccvcccccccccccCCCCcc6, ccccc C Iccc-CCCCCccCCCCCCCcc - ---cccc
C
C PIOUSLL,01 by Alex Slome, Jan 31, 1905, to limartie probe
C readilge.
C

U P1100 3 PSW ii]LW3(D3D, 3, D0)
COIMO/PSMS/ D,. H3, D3, ALMA, ITRA
Dl * m.I61169lIU •2e3+

* -. 53787P35952MI30+
* -. 1113568162131*1D3D**2+
* -. Il5SO 7U61348PD3D**3+
* 1. U4122 6673S115D 4D**
D2 * .916946953736103+

* .S1I56N24I2221*D3D+
* I. 11344384M40P8*D3D** 2+
* . 111241222473PD2D** 3+
* I. 111112121339*DD**W4

D3 * *.1173366419650+
•* -. 588987122953*D3D+
* I. 0111371624954*D3D**2+

f* a. 1 5977491 8*D3D**3+
* .11546 189798125*D3D** 4

EMD
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10111BTINS DLI,(IDI It To IC, TIC)
COgMNu/COQll/ AI(2,15 II), "A(2,151,1)
CDAwN•/po~T/ 1081(15), 108T(15)
1C a * 16. I[IITILISI VALWM
TCP • 1.
ICP2 * 10.
IrC2 * li.
IC * AX(ZD,7,1) IAssume curve 7 tor initial cal
DO 4 I * 2, 16

1C * IC + A1(!D,7,I)1***('I2)
4 CODTINU3
C Use the calculated I value to find curve for T
2111 SP * 1

DPT * 108s(1) - IC
DO SI * 1, 15

IF( A BS(POIT(I)-C).LT.AIS(DIT) ) TBI
DPIT " l081() " XC

C5 O r TIN
IF( (DPT.GT.I.).AID. (IP.GT.I) ) TIg I Set

Zi * -1
ELSE

culation

direction

NEi

IF (IPT.g0.15) IW * -1
C Determine linear interpolation constant

RI1 DPI/( 1POS(Ir) - PlOS(IPI+W) )
C Calculate the two Ts to use in interpolation

TC1 * AT(IDrIP,1)
TC2 a AI(ID,IPI+],r1)
DO 7 I * 2, 1I

TC1 * TC1 + AIY(D, lr,I)*T**(I-1)
TC2 * TC2 + A•(ID,#IPI+W,I)*I**(I-1)

7_ CORNTINU
TC * TCI + R1* (C2-TC1)

C Use the calc. I to find the I curve
IPX a 1
DPI = P05Z(1) - TC
D0 15 I * 1, 15

IF( ABS(P0SZ(I)-TC).LT.ABS(DPI) ) THEN
DPIX * 085(I) - TC
IPX a I

ENDI?
15 CONTINUE

IF( (DPX.GT.S.).AID.(IPI.GT.1) ) TR'U I Set direction
IN * -1

1.83
ENmi

UHDIF
IF (IP. 30.15) IV * -1

C Determine linear interpolation constant
Ri1 a DP[/( )POS(IPX) - 081S(IPI+N) )

C Calculate the rtwo Is to use in interpolation
MC1 * Ai(ID,IP],1)
ZC2 * AI(ID,.IPJ+IN,1)
DO 111 I * 2, 11

XC1 * XC1 + AI(IDIPI,I)*X**(I-1)
ZC2 * ZC2 + AX(IDIPZ+DI,I)*I**(I-1)

111 CONTIMU
aC * IC1 + 31* (IC2-ICl)

C If I and I didn't change in present cycle, return to main
IP (C ( .Q3. ICP).AND.(IC .20. TCP) ) 00O0 l110
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c If I and T usea as ycle-2, oscillating, average and retry
It ( (XC .30. 3CP2).MD.(TC .10. TC12) I) 1S1

ILASl (ICIXCP)/2.
TAM * (TC+TCP)/2.

1CP2 * XCP 10pdate loop values
TCP2 *TCP
UCP 0 IC
TCP a TC
0010 29ll I Go thru another iteratioe
Imp
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C ZNO.FOR by Ale ISlocus, Feb. 1, 1985. To determine Theta motion
C of measuring bean.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCCC

ABAL X(28), T(28), 5(26), L1(20), L2(28), L3(28), ALP

88T(3,28), TRAT(3,28),

)82(150 DB2 ( 26) DT1 ( 20) DT2(28)

COMnO/COlBPrr/ A(2, 15,rl), AT(2,15,16)
COMON/POINT/ 101X(15), POST(15)
CONMlO/DIENl/ a, b, CT, DBP, DEXS, sigl, sig2, tbhol
COINrO/PWADI/ Dl, D2, D3, ALPA, BETA
CHARACTR* 40, ELAB, ALPlLAB, BSTLAB, TH'TLAb
OPEB(UNIT * 1, IAINE " 'aSO.I1', STATUS a 'OLD')
OPBN(UNZT - 2, NAME * '$NO.OuT', STATUS * 'NUI')
XLAB = 'Step Number' IPlot titles.
ALPILAB * 'Alpha (u rad)'
BBTLAB * 'Beta (a rad)'
TBETLAB a 'Theta (u rad)'.
CALL CONSTANT I Load linearization polynomials.
CALL DIyEN I Load POSOR dimensions.

Read data.

DO 5 I * 1, 26
RBAD(1,l ) Y(I), S(I), X(I)
FORMAT(3F8.5)

CONTINUE

B(3,32),

, rho2

DO 6 ! a 1, 26
READ(1,11) L1(I), L2(I), L3(I)
FORIMAT(312.7)

CONTINUI
DO 7 I 1, 20

READ(l,,12) DXI(I), D1Y(I), DX2(I), DT2(I)
FORMAT(4IF12.7)

CONTINUE

Calculate initial conditions.

L2(1) * L2(1) + .2 IAdd offset due to electronics shift
L3(l) a L3(1) + .3 Iftro voltage calibrated at.
CALL PROBLIN( LI(I), L2(l), L3(1) )ILinearize probe readings.
CALL ALBET(ALPEO, BETO) I Det. initial ALPUA, BETA
CALL DLINtB(I, DXZ(l), DYI(1), Z1, 1) MLinearize diode I readings.
1D1 a -.566 - l IDet. global IT coordinates of LASERS on diodes.
D1 *a 1.8 - 11

CALL DLINB(2, DX2(I), DY2(1), 12, 12) ILinearlse diode 2 readings.
1D2 * -. 566 - 12
YD2 * -1.2 - 12
CALL DIST(XD1, TDI, DLlo) IDet. initial dist. from LASBRs to diodes.
CALL DIST(]D2, 11D2, DL2o)
THETO - ATAN( (Yl-T2-D05EP)/(X1I-2-DXSEP) ) IDet. initial THETA.
ALPU(3,1) - 1. ISet plot I axis notion step number.
BET(I,1) - -TAN(T(l)/31.43) IDet. initial measured BETA.
BBT(3,1) - 1.
TEeT(1,1) -ATAN(Z(1)/31.43) IDet. initial measured THEBTA.
TBET(3,1) - 1.
WRITB(2,13) lWrite table header.

13 FORMAT (///5, 'S Notion Results With LASER Angle Offsets'
*//5, 'All angles are in radians'//
*SX,'ALPH(I,I) ALPH(2,I) BET(l,I) BET(2,I) THET(I,I) THET(2,I)'/
*/SX,' 6. 6. 6. 6. 6. 6. ')
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C Loop over data to find ALPHA, BETA, THETA.
C

DO 1 I * 2, 2,
ALPH(3,I) a* rAL(I) I let plot X axis motion step number.
BT(1,I) * -ATAN(T(I)/31.43)- BIT(I,1) IDet. measured BETA.
BET(3,I) a* PAL(I)
TBRE(l,I) * -ATAN(Z(I)/31.43)- THT(I,1) IDet. measured TH•TA.
rHET(3,I) * REALt()

L2(I) * L2(I) + .2 IAdd voltage offsets to probes.
L3(Q) * L3(I) + .3
CALL PR)BLXl( L1(I), L2(I), L3()) )tLinearise probe readings.
D1 * D1 + .133333*8Iy(TEIT(2,I-l)) tAdd l0601 flatness terms.
D2 * D2 + .883333*81I(TEgT(2,I-1))
D3 * D3 - .183333*8IN(TBET(2,I-1))
CALL ALBET(ALPH(2,I), BBT(2,I)) IDet. ALPHA, BETA.
ALPB(2,I) * ALPH(2,I) - ALPHO IDet. net ALPHA, BETA.
BET(2,I) * BET(2,I) - BETO
CALL DLINE(1, DXl(I), DYI(I), Xl, T1) ILinearise diode 1 readings.
XD1 * -.566 - Xl IDet. global [Y coordinates of LASERS on diodes.
YD1 a 1.8 + Y1
CALL DLINE(2, DX2(I), DY2(I), 12, Y2) ILinearize diode 2 readings.
XD2 -.,566 - X2
YD2 = -1.2 + Y2
CALL DIST(XD1, YD1, DLlt) IDet. dist. from LASERs to diodes.
CALL DIST(XD2, YD2, DL2t)
DL1 * DL1t - DLlo IDet. net LASER path length change.DL2 DL2t - DL2o
X11 - X + DL+SIG1*COS(RBO1+THET(2,I-1)) ILASER angle offsets.
Si Y1 Y1 - DL1*SIGl*SIN(RBOI+TrBET(2,I-1))
X2 - X2 + DL2*SIG2*COS(RBO2+THET(2,I-1))
Y2 * Y2 + DL2*SIG2*SIN(RE02+THET(2,I-1))
RNUM * (Y1 - Y2 - DYSEP )*COS(ALPB(2,I))
DNUM * (Xl - 12 - DXSEP)*COS(BET(2,I))
THET(2,I) * ATAN(RNUM/DNUM) - THETO IDet. net THETA.
WRITE(2,127) ALPH(1,I), ALPB(2,I), BZT(1,I), BBT(2,I),

* THET(1,I), THET(2,I) IRecord the ansvers.
127 FORMAT(5X,6(FO.6,22))
lee CONTINUE

DO 316 I * 2, 21 ILoop for standard deviations and plots.
DIEB * BET(2,I) - BET(1,I)
DIFA * ALPH(2,I) - ALPH(l,I)
DIFT a THET(2,I) - THET(1,I)
SUMA * SUMA + DIFA**2
SUMB a SUNB + DIFB**2
SUNT * SUNT + DIFT**2
ALPH(1,I) * ALPH(1,I)/1.B-6 IConvert to aicrorads
ALPB(2,I) * ALPH(2,I)/1.B-6
BET(1,I) - BET(1,I)/1.B-6
BET(2,I) * BMT(2,I)/1.8-6
THET(1,I) * THET(1,I)/1.B-6
TBET(2,I) a THET(2,I)/1.E-6

389 CONTINUE
SIGA = SORT(SU•A/18.) Det. sigmas.
SIGB * SQRT(80UB/18.)
SIGT * SQRT(SUNT/18.)
WRITE(2,117) SIGA, 8IGB, 8IGT

117 PORMAT(4X,'SIGA * ', IP1.6,' SIGB * ',f71.6,' SIGT * ',P719.6)
PRINT*, 'SIGA * ', 8IGA,' 8GB - ',SIGB,' SIGT ', SIGT
ALPB(1,1) a* . ISet plot to start at GO.
BET(1,1) =* .
THET(1,1) * I.
CALL QPICTR(ALP,3,2,Q0Y(1,2), 0QX(3), QXLAB(XLAB), QYLAB(ALPHLAB)
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* ,QLABBL(4) ) IPlot then points up.
CALL OPICTR(DIT,3,21,QT( t2), QX(3), QxOAb(XLAM), QYL(ABETLAB)

* ,QLABEL(4) )
CALL QPICTR(~IST, 3,321,Q,0 (1,2), QX(3), QXLAB(XLA) , QYLABM(TTLAS)
* ,OLABEL(4) )

STOP Ilineesh.
3RD Iits Killer time

H·
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TrO.IOR by Alex locume , Feb. 1, 1985. ?o determine Beta motion
of measuring bean.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-CCCCC=
REAL (15), T(15), I(S1), L1(15), L2(15), L3(15), ALPH(3,i5),

* BET(3.15), THET(3,IS),
* Dl1(IS), DX2(15), DyT(I5), DY2(15)

CONION/COO??/ AX(2,15,lt), AT(2,15,lf)
COMON/POINT/ P06X(15), 08T(15)
COIKMN/DIREN/ a, b c, ,DYSEP, DISBP, sigl, 1ig2, rhol, rho2
CONMON/PWDBE/ D1, D2, D3, ALPHA, BETA
CBARACT3R* 41, ELA, ALPBLAB, BEILAB, TETgLAB
OPEN(UNIT s 1, NAMB * 'YNO.INP', STATUS * 'OLD')
OPEN(UNIT * 2, 3NME * '170.00T', STATUS * '•#')
XLAB * '8tep Number' IPlot titles.
ALPELAB * 'Alpha (u tad)'
BETLAB * 'Beta (u rad)'
TIETLAS * 'Theta (a rad)'
CALL CONSTANT I Load linearisation polynomials.
CALL DIENI 1 Load POSOR dimensions.

C
C Read data.

DO 5 I * 1, 15
READ(1,el) Y(I), Z(I), Z(I)
FORMAT ( 3 8.5 )

CONTI WE
DO 6 I * 1, 15

READ(1,ll) LI(M), L2(I), L3(I)
FORMAT (3F 12. 7)

CONTI UE
DO 7 I * 1, 15

READ(l•,12) DXl(I), DYl(I), DX2(I), DY2(I)
FORMAT (4? 12.7)

CONTINUE

Calculate initial conditions.

9

i
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L2(1) * L2(l) + .2 IAdd offset due to electronics shift
L3(l) * L3(l) + .3 Ifron voltage calibrated at.
CALL PIRBLIN( LI(1), L2(1), L3(1) )ILinearize probe readings.
CALL ALBET(ALPHO, BETO) I Det. initial ALPHA, BETA
CALL DLINE(1, DXIl(), DYI(1), l1, T1) ILinearize diode 1 readings.
XD1 = -. 566 - X1 IDet. global IT coordinates of LASERS on diodes.
YD1 * 1.8 - Y1
CALL DLINB(2, 012(1), DY2(l), 22, Y2) ILinearize diode 2 readings.
XD2 * -. 566 - 12
TD2 * -1.2 - Y2
CALL DIST(XD1, YDl, DLlo) IDet. initial dist. from LASBRs to diodes.
CALL DIST(1D2, DM2, DL2o)
THETO * ATAN( (Y1-Y2-DYSEP)/(11-X2-DXSEP) ) IDet. initial THETA.
ALPB(3,1) * 1. 18et plot i axis notion step number.
BET(1,1) * -ATAN(Y(1)/31.43) IDet. initial measured BETA.
BET(3,1) - 1.
THET(1,1) = -ATAN(Z(1)/31.43) IDet. initial measured THETA.
THET(3,1) * 1.
WRITE(2,13) IWrite table header.

13 FORMAT(///Sz, ' Motion Results With LASER Angle Offsets'
*//Sz,'All angles are in radians'//
*5X,'ALPB(1,I) ALPB(2,I) BET(1,I) BET(2,I) THET(l,I) THET(2,I)'/
*/51X,' I. I. I. I. 8. 0. ')
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C Loop over data to find ALPHA, BETA, TBBA.
C

DO 1M3 I * 2, 15
ALP8I(3,) * RUAL(I) lest plot I axis motion step number.
BT3(1,I) * -ATA(T(I)/31.43)- B3T(1,1) IDet. measured BETA.
BBT(3,9) * RBAL(IZ)
T1B1T(1,) * -ATAU(I(I)/31.43)- T'1T(1,1) IDet. measured TB3TA.
TET(3,I) * RJAUL(!)
L2(Z) * L2() + .2 IAdd voltage offsets to probes.
L3(I) * L3(Z) + .3
CALL POBLIN( L1(I)), L2(I), L3(I) )lLinearise probe readings.
D1 * DI + .133333*8ZI(TBIT(2,I-1)) lAdd PO80R flatness terms.
D2 * D2 + .083333*83IT13TT(2tI-l))
D3 * D3 - .883333*8t11(TIT(2 -1))
CALL ALBT(ALPI(2,I), B3T(2,I)) WDet. ALPHA, BllA.
ALPH(2,I) * ALP1(2,I) - ALPO IDet. net ALPBA, BETA.
BBr(2,I) * BqT(2,I) - abmO
CALL DLINE(1, DD1(I), D1Y(I), 1l, 1) tLinearize diode 1 readings.
1D1 * -. 566 - 11 IDet. global XE coordinates of LASERS on diodes.
YD1 1.8 + I1
CALL DLINE(2, DX2(I), DY2(I), 12, 12) ILinearize diode 2 readings.

. 1D2 * -.566 - 12
T1D2 a -1.2 + Y2
CALL DIST(lD1, TD1, Dltt) IDet. dist. from LASERs to diodes.
CALL DIST(1D2, YD2, DL2t)
DL1 a DLIt - DLlo IDet. net LASER path length change.
DL2 * DL2t - DL2o
Xl * X1 + DL1*ZG1I*COS(RBHO+TBET(2,I-1)) ILASER angle offsets.
Y1 a 11 - DL1*SIG1*SIN(ROBl+TH1T(2,I-l))
12 * X2 + DL2*SIG2*COS(RBO2+THET(2,I-1))
Y2 * 12 + DL2*SIG2*8IN(REB2+BELT(2,.I-l))
RNUM - (Y1 - Y2 - DYSEP )*COS(ALPB(2,I))
DNUM a (X1l - X2 - DXSEP)*COS(BET(2,I))
TBHT(2,,) * ATAN(RNORI/DNUM) - TETO IDet. net THETA.
WRITE(2,127) ALPB(1,I), ALPH(2,I), BBT(1,I), BET(2,I),

* TS3(1,I), THET(2,!) IRecord the answers.
127 FORMAT(SX,6( F 8.6, 2))
1M3 CONTINUE

DO 300 I a 2, 15 ILoop for standard deviations and plots.
DIPS * bT(2,I) - blT(1,I)
DIfA * ALPH(2,I) - ALPB(1,I)
DIFT * TE3T(2,) - TE3T(1,1)
SUONA 80UA + DIFA**2
SUNM * SUMB + D0I"**2
BUNT U 8UNT + DITP**2
ALPH(1.!) a* ALP(1,)/1.2-6 IConvert to micrtrads
ALP (2,!) * ALP(2,!)/1.3-6
531(1,!) * B5T(1,I)/1.3-6
531(2,!) - 53T(2,I)/1.E-6
TET1(1,I) * 13TU(1,!)/1.3-6

TB1T(2,I) - T1ET(2,I)/1.B-6
306 COffTIUE

SIGA * SQRT(U80A/13.) WDet. sigmas.
oS0GB SORT(SUMB/13.)

811T a 8QRT(SURT/13.)
WRITB(2,117) 8IGA, 8IGB, 8GT

117 FORMAT(4ar,'SIGA. ', P11.6,' aIGB " '7,`1.6,' SIGT * ',r13.6)
PRINT*, 'SIGA * ', SIGA,' SIGBS ',SIGB,' SIGT * ', 85GT
ALPN(1,1) "* . ISet plot to start at GO.

T(CALL ,1) .XAB(XAB)
TH1T(1,1) " 3.
CALL QPICTR(ALPH,3,15,Q1(1,2), 0x(3), OXLAB(XLAB), QILAB(ALPULAB)
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* ,QLASEL(4) ) IPlot then points up.
CALL QPICTA(bT,3, S ,OQY(1,2), OX(3), QXLA(XLAB ), QYLAB•s(BTLAs )

* ,OLABSL(4) )
CALL QPICTlR(TU3T, 3,lS,QYl(I,2), QX(3), QXLAB(XLAS), QYLAB (Th'ILAS)
S,QLABBL (4) )
S1TOP I ineesh.

IBND IIlts iller time

i
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C YTNOF.OR by Alex 1ocusm, Feb. 1 1985. To determine Theta and
C Beta motion of Measuring beam.
C
ccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL X(14), 1(14), 3(14), L1(14), L2(14), L3(14), ALPE(3,14),
* StT(3,14), tTBT(3,14),
* DX1(14), D12(14), DYI(14), DT2(14)

CONNON/COCoP/ AX(2,15,1S), AT(2,1s5,1)
CONMON/POINT/ POSX(15), P08Y(15)
CONNON/DIMEN/ a, b, c, DYTSP, DX1BP, sigl, sig2, rhol, tho2
CONNON/PROBE/ Dl, D2, D3, ALPHA, BETA
C9ARACTR* 48, nLAB, ALPHLAB, BSTLAB, TBHTLM
OPEN(UNIT * 1, NAME a 'TSNO.INP', STATUS * 'OLD')
OPEN(UNIT a 2, NAME a 'YSO.U00T', STATUS * '3a1')
XLAB * 'Step Number' IPlot titles.
ALPULAB * 'Alpha (u tad)'
BETLAB a 'Beta (u rad)'
THETLAB * 'Theta (u rad)'
CALL CONSTANT I Load linearization polynomials.
CALL DIMEN I Load POSOR dimensions.

C
C Read data.
C

SDO 5 I 1, 14
READ(1,1t) Y(I), S(I), X(I)

Si10 PORMAT (3F8.5)
- 5 CONTINUE

DO 6 I w 1, 14
READ(1,11) LI(I), L2(I), L3(I)

11 PORMAT(3P12.7)6 CONTINUE
DO 7 I I1, 14

READ(1,12) DXI(I), DY1(I), DX2(1), DY2(I)
12 FORMAT(4P12.7)J 7 CONTINUE

C Calculate initial conditions.
C

L2(1) * L2(1) + .2 IAdd offset due to electronics shift
L3(1) * L3(1) + .3 Ifrom voltage calibrated at.
CALL PROBLIN( Ll(1), L2(1), L3(1) )ILinearize probe readings.
CALL ALBET(ALPHO, BETO) I Det. initial ALPHA, BETA
CALL DLINE(1, DXl(1), DTI(1), Xl, 11) ILinearise diode 1 readings.
XD1 a -.566 - Xl IDet. global Xl coordinates of LASERS on diodes.
TD1 * 1.8 - 11
CALL DLINE(2, DX2(1), DY2(1), X2, Y2) ILinearise diode 2 readings.
102 * -. 566 - X2
YD2 - -1.2 - Y2
CALL DIST(XD1, 1D1, DLlo) IDet. initial dist. from LASERs to diodes.
CALL DIST(XD2, 1tD2, DL2o)
THETO a ATAN( (Yl-T2-DYSEP)/(X1-X2-DXSEP) ) IDet. initial THETA.
ALPH(3,1) a 1. ISet plot X axis notion step number.
BET(1,1) a -ATAN(Y(I)/31.43) IDet. initial measured BETA.
BET(3,1) * 1.
THET(1,) * -ATAN(Z(1)/31.43) IDet. initial measured THETA.
TBET(3,1) = 1.
WRITE(2,13) IWrite table header.

13 FORMAT(///5z, '1Y Motion Results With LASER Angle Offsets'
*//zx,'All angles are in radians'//
*5X,'ALPB(1,I) ALPH(2,I) BET(1,I) BET(2,I) TBET(1,I) THET(2,I)'/
*/15 ,' 1. 0. 9. 1. 1. 0. ')
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C
C Loop over data to find ALPA, BETA, T'I•TA.
C

DO 1M| I * 2, 14
ALPB(31,) * RUAL() ISet plot X axis notion step number.
5BT(1,) * -AAN(T(I)/31.43)- BET(l,1) lDet. measured BETA.
BBT(3,I) * RAL(I)
TET(1,I) * -ATAX(5(I)/31.43)- TET(1,1) MDet. measured TBETA.
THET(3,I) * RZAL(Z)
L2M() * L2(I) + .2 IAdd voltage offsets to probes.
L3(I) * L3(I) + .3
CALL PROBLIN( Li(I), L2(I), L3(I) )1Linearise probe readings.
D1 * DI + .133333*81N(THI•(2,I-1)) tAdd P0803 flatness terms.
02 * 02 + .183333*8IN(TXET(2,I-1))
D3 * D3 - .183333*8IU(TRBT(2,I-1))
CALL ALBET(ALPH(2,I), BET(2,I)) IDet. ALPHA, BETA.
ALP(,) LP(2,I) - ALPBO IDet. net ALPHA, BETA.
SBT(2,I) * BET(2,I) - SETO
CALL DLINE(1, DXl(I), DT1(I), Xl, 1Y) ILinearize diode I readings.
XD1 a -. 566 - Xl IDet. global TY coordinates of LASERS on diodes.
01 a 1.8 + Tl

CALL DLINE(2, DX2(1), DM2(I), X2, Y2) ILinearise diode 2 readings.
XD2 * -. 566 - X2
YD2 = -1.2 + Y2
CALL DIST(XD1, TD1, DLlt) IDet. dist. from LASERs to diodes.
CALL DIST(XD2, TD2, DL2t)
DL1 * DLIt - DLlo IDet. net LASER path length change.
DL2 * DL2t - DL2o
X1 * Xl + DL*SIG1*COS(RHO1l+HET(2,I-1)) ILASER angle offsets.
Y1 * Y1 - DL1*SIG1*SIN(R8O1+TIET(2,I-I))
X2 * X2 + DL2*SIG2*COS(RBO2+?BET(2,I-1))
Y2 * Y2 + DL2*SIG2*SIN(RB02+T4BT(2,I-1))
RNUM = (Yl - Y2 - DYSEP )*COS(ALPH(2,I))
DNUM = (Xi - X2 - DXSEP)*COS(BET(2,I))
THET(2,I) = ATAN(RNUM/DNUM) - THETO Mlet. net TBETA.
WRITB(2,127) ALPB(l,I), ALPB(2,I), BET(1,I), BET(2,I),

TBET(1,I), THET(2,I) IRecord the answers.
127 FORMAT (51,6(F8.6,2X))
198 CONTINUEi DO 30 I a 2, 14 ILoop for standard deviations and plots.

DIfB BET(2,I) - BET(1,I)
DInA A ALPS(2,) - ALPS (1,I)
DIFT = TBHT(2,I) - THET(I,I)
SUMA * SUMA + DIFA**2
SUMB SUMBO + DIFB**2
SUNl * SURT + DIFT**2
ALP(1,I) * ALPH(1I)/1.E-6 IConvert to sicrorads
ALPH(2,I) = ALPB(2,I)/l1.-6
BET(1,I) * BET(1,I)/1.E-6
BBT(2,I) * BET(2,I)/l.E-6
THET(1,I) * THET(1,I)/1.E-6
THET(2,Ir) * THET(2,I)/1.E-6

300 CONTINUE
SIGA * SORT(SUnA/12.) lDet. sigmas.
SIGB = SORT(80UB/12.)
SI•T * SQRT(SWRT/12.)
WRITE(2,117) SIGA, SIGB, 8IGT

117 FORMAT(41,'SIGA * ', I11.6,' SEGB * ',r1,.6,' SIGT * ',116.6)
PRINT*, 'SIGA * ', SIGA,' SIGB - ',SIGB,' SIGT * ', SIGT
ALPB(1,1) * 1. MSet plot to start at GO.
BET(1,1) -* .
THET(1,1) * 1.
CALL QPICTR(ALPB,3,14,QY(1,2), QX(3), OZLAB(XLAB), QYLAB(ALPHLAB)
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* ,QLASEL(4) ) IPlot them points up.
CALL QPICTR(ST,3,.14*QY(1,2), QX(3), QXLAB(ILAB), QTLAB(BETLAB)
* ,OLASEL(4) )

CALL QPICTL(T ,e3,l4,Y(T(l,2), Qx(3), OQXLU(XLAM), QYLnA(TRaTLAB)
* ,QLABIL(4) )
STOP Itineesb.
WND IIts Killer time

ri
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C IRIS.FOR by Alex 81ocum, Feb. 1, 1985. To determine notion
C of measuring beam.
C
CCCCCCCCCCCCCCC CCCCCCCC CCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

REAL 31(15), Y(lS), 32(15), L1(15), L2(15), L3(15), ALPU(3,15),
?TBET(15), ZN(3,1315), D(,(15), Dx(15) DX2(15), DY1(15), DY2(15)
COUNNOI/CO0FF/ AX(2,1S,Il), AT(2,15,1l)
COmNNO/POIIT/ POSX(15), P5 t(15)
COIhON/DIIEN/ a, b, c, DYSEP, DXSEP, sigl, sig2, rhol, rho2
CONION/PRDOB/ Dl, D2, D3, ALPBA, BETA
CBARACTnR*41, XLAB, ALIPHLM YBL, AB, AB
OPIM(UNIT * 1, RMAE * 'WIS.INP', STATUS * 'OLD')
OPWI(UNIT * 2, NAME * '18.00oT', STATUS * '3M#')
ELAB * 'Step lumber' IPlot titles.
YLAB * 'T Notion (nils)'
SLAB * 'S Notion (ails)'
ALPBLAB a 'Alpha (u tad)'
CALL CONSTANT I Load polynomials.
CALL DIREN I Load POSOR dimensions.

P! C
C Read data.
C

DO S I " 1,5
READ(1,1) l1(I), Z2(I), Y(I)

1s FORMIAT(3P8.5)
S CONTINUE

DO 6 I 1, 15
READ(1,11) LI(I), L2(I), L3(I)

11 FORMAT(3F12.7)
6 CONTINUE

DO 7 I * 1, 15
READ(1,12) DXI(I), DY1(I), DX2(I), DY2(I)

12 POR4AT (4F12.7)l 7 CONTINUEC
C Calculate initial conditions.
C

L2(1) * L2(1) + .2 IAdd offset due to electronics shift
L3(1) - L3(1) + .3 Ifrom voltage calibrated at.
CALL PRDBLIN( L1(1), L2(1), L3(1) )lLinearize probe readings.
CALL ALBET( ALPH(21), BETO ) IDet. initial ALPHA, BETA.
CALL DLINE(1, DX1(1), DYI(1), Xl, Y1) ILinearize diode readings.
ID1 * -.566 - Xl tDet. global XY coordinates of LASERa on diodes.
YD1 a 1.8 - Y1
CALL CLINZ(2, DI2(l), DY2(1), 12, Y2) ILinearize diode 2 readings.
-D2 n -.566 -X2
TD2 * -1.2 - 12
CALL DIST(XD1, YDI, DLlo) IDet. initial dist. from LASERs to diodes.
CALL DIST(XD2, 1D2, DL2o)
CALL DIST(I., I., YN(2,1)) IDet. initial dist. between coord. systems.
T1ETD * ATAN( (¥1 - Y2 - DYSEP)/(Xl - Z2-DISEP)) IDet. initial theta.
ALPH(1,) ATAN( (2 1(1) - 22(1) )/3.5 ) IDet. initial measured Alpha.
ALPI(3,l) a 1. ISet plot I axis notion step number.
3S(1,1) * 32(1) + 1.122*( 31(1) - 32(1) )/3.5 IDet initial 2 and Y

RM(2,1) a - (Y1+Y2)/2. Ineasured positions.
3M(3,1) * 1.
3(3,1) * 1.

C
C Loop over data to find ALPHA, Y, S.
C

DO 1M1 I * 2, 15
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ALPH(3,!) * REAL(I) ISet plot I axis motion step number.
T(3,I) RAL(I)
Sn(3,!) * UAL(I)
ALP(1,I1) * ATAN((Si(!) - S32(I))/(3.5-yT())) - ALP(1,1) JAlpha.
L.2() * L2(I) + .2 IAdd voltage offsets to probes.
L3(I) * L3(I) + .3
CALL PRDSLIl( Ll(I), L2(I), L3(I) ) ILinearise probe readings.
01 * DI + .133333*82I(TIBT(1-i)) IAdd P080• flatness teras.
D2 * D2 + .083333*SIN(TIBT(U-1))
D3 * D3 - .i83333*81X(THET(I-))
CALL ALBET(ALPB(2,I), BITA) IDet. ALMBA, BBTA from P08O readings.

,ALP1(2,I) * ALUP(2,I) - AL13(2,1) Isubtract initial readings.
BST * BITA - 3EtS
CALL DLINI(l, D1(I,, DY1(I), X2, Ti) ILinearise diode 1 readings
EDl a -. 566 - Xl ISet. global IT coordinates of LASERs on diodes.
TDl * 1.8 - Y1
CALL DLINE(2, DX2(), DY2(I), 12, Y2) ILinearizse diode 2 readings.
ID2 - -.566 - X2
TD2 * -1.2 - Y2
CALL DIST(XD1, TD1, DLIt) IDet. dist. from LASERs to diodes.
CALL DIST(XD2, tD2, DL2t)
CALL DIST(I., I., DY) IDet dist. between POSOR coord. systems.
DL1 * DLlt - DLlo IDet. net notion.
DL2 * DL2t - DL2o
11 * XZ + DL1*SIG1*COS(R301+THBT(I-1)) ILaser angle offsets.
SYI Y1 - DLl*SiGl*SIN(R01+THET(I-1))
X2 a X2 + DL2*SMG2*COS(RHO2+TBET(I-l))
Y2 * Y2 + DL2*SIG2*SIN(RBO2+THIT(I-1))
RNUM * (Y1 - Y2 - DYSEP )*COS(ALPE(2,I))
DWUM - (Xl - X2 - DXSEP)*COS(BET)
THET(I) * ATAN(RNUM/DNUM) - THETO IDet. net Theta from POSOR.
TH(1,I) * Y(I) + 1.34*ALPH(1,I) IDet. net measured Y motion.
TN(2,I) = - DY + 33.4*BET + YM(2,1) IDet. net POSOR Y motion.
Sl(1,) * 22(I) + 1.822*( 21() - Z2(I))/(3.5-Y(I)) - ZM(1,1)
Sn(2,I) = - (Yl+ Y2)/2. - i3(2,1) - 36.1*TRET(I)

118 CONTIfUI
WRIT (2,13)

13 POROAT(///SzX,'Twist Motion Results'//
* S, 'All dimensions are in inches and radians'//
* rX,'ALPB(1,1) ALPB(2,I) 2SI(1,!) S(2,I) YM(1,I) T(2,I)'*//5z,' 6. 6. 6. I. I. I.')

DO 30 I1 * 2, 15 ILoop for statistics.
WRITB(2,127) ALPB(1,I),ALPH(2,I),2M(1,I),ZM(2,I),YM(1,I),YM(2,I)

127 FORMAT( O4, 6(F9.6,1X) )
DIFA * ALPB(2,I) - ALPB(1,I)
DInl * 23(2,I) - S2(1,I)
DIFr - 7T(2,I) - YT(1,)
SURA * SUNA + DrA'**2
SUNZ * SU- Z + DIFS**2
SONY * BONT + DIr!**2
ALPB(1,I) * ALPB(1,I)/1.I-6 IConvert to microrads.
ALP*(2,I) - ALP8(2,I)/1.B-6
SM(2,I) * S2(2,I)/.Ill IConvert to ails.
SM(1,I) * SH(1,1)/.Il
TY(2,I) * TN(2,!)/.331
TR(1,!) * TM(1,I)/.I1

306 CONITNOE
SIGA * SQRT(SOUA/13.) IDet. sigmas.
SinS * SQRT(SUNS/13.)
SGY * SQRT(SONY/13.)
WRITB(2,117) 81GA, 82GS, SOGY

117 FORMAT(U4,'SGA * ', ?11.6,' SIG1 * ',1I.6,' SIGY * 'r16.6)
PRINT*e 'SIGA = ', SIGA,' SIGZ * ',SMG2,' SIGY = ', SOGY
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ALPB(1,1) * I.
SM(l,1) * I.
TN (1,,1) * I.
CALL QPICTR (ALPS 3, 1, QT (S , 2) , OX(3), QXLAB(IAB), QrLA (ALPBLAB)
SQLABBL(4) ) IPlot thea babies up.
CALL QPICTR(S,3, QTY(1,2), Q1(3) QXLA (XLAB) , QTLAB(SLAB)

* ,QLAbZL(4) )
CALL QPzCTP(T,3,S15,QT(1,2), OX(3), OQXLA(XLAb), QTLM(YLL)

* ,QLAB•L(4) )
STOP IPineesh
END IIts Killer time

I.

pk•.'
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C GU.,FOR by Alex 81ocum, Feb. 1, 1985. To determine motion
C of maasuring bean.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccCCCCCCCCCCCCCC

REAL S1(10), Y(1), 32(1), L1(l), 1,2(1I), L3(1P), ALPUI(3,1),
*T•IT(lt), 3S(3.10), T1(3,11), DX1(li), D02(11), DYI(I8), DT2(1I)
CONNON/COBPF/ AX(2,15,11), AT(2,l5,11)
coNMON/P1OINT/ 0sx3(15), 0OSY(15)
COMNON/DINMN/ a, b, c, DYSEP, DXSPE, 8ig1, sig2, rhol, rho2
COIOXN/PROBI/ Dl, D2, D3, ALPBA, BETA
CIARACT•ER*4, EL]A, ALPLAB, TLAB, SLAB
OPEN(UNIT? 1, ARE *a 'G0.INP', STATUS * 'OLD')
OPE•(UNIT a 2, RAME a 'GEN.TOO', STATUS a 'WS')
1LAB * 'Step Number' IPlot titles.
ILAB * 'Y Notion (eils)'
SLAB * '1 Notion (mils)'
ALPBLAB * 'Alpha (u red)'
CALL CONSTANT I Load polynomials.
CALL DINEN I Load POSOR dimensions.

C Read data.

DO S I a It 11
READ(1,18) l1(I), S2(I), Y(I)

is 1 FORMAT(3F8.5)
S 5 CONTINUE

S)DO 6 I 1, 10
READ(I,11) LI(I), L2(I), L3(I)

11 FORMAT(3F12.7)
6 CONTINUE

00 7 I * 1, 16
READ(1,12) DXI(I), DYI(I), DX2(I), DY2(I)

12 FORMAT(4F12.7)-
7 CONTINUE

S C
L2(1) * L2(1) + .2 IAdd offset due to electronics shift
L3(1) a L3(1) + .3 Ifrom voltage calibrated at.
CALL PROBLIN( L1(1), L2(1), L3(1) )ILinearize probe readings.
CALL ALBET( ALPH(2,1), BETO ) IDet. initial ALPHA, BETA.
CALL DLINE(1, DXI(1), DYI(1), Xl, Y1) ILinearize diode readings.
XD1 a -.56" - Xl IDet. global IT coordinates of LASERs on diodes.
TD1 * 1.8 - Y1
CALL DLINE(2, DX2(1), DT2(1), X2, Y2) ILinearize diode 2 readings.
XD2 * -. 566 - X2
TD2 * -1.2 - Y2
CALL DIST(XDl, TD1, DLlo) IDet. initial dist. from LASERs to diodes.
CALL DIST(XD2, TD2, DL2o)
CALL DIST(I., I., TN(2,1)) IDet. initial dist. between coord. systems.
THETO - ATAN( (YI - Y2 - DYSEP)/(XI - X2-DXSEP)) IDet. initial theta.
ALPB(1,1) = ATAN( ( 31(1) - 32(1) )/3.5 ) IDet. initial measured Alpha.
ALPB(3,1) * 1. ISet plot X axis notion step number.
SM9(1,1) a* 2(1) + 1.822*( 31(1) - Z2(1) )/3.5 IDet initial 3 and Y
31(2,1) - - (Y1+Y2)/2. lmeasured positions.
SM(3,1) * 1.
YN(3,1) a 1.

C
C Loop over data to find ALPHA, Y, ,.
C

DO 11I I - 2, 1I
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ALPB(3,I) * RZAL(M) 18et plot I axis motion step number.
TN(3,I) * RAL(I)
I2(3,!) * RAL(!)
ALPU(1,I) * AT1AN((1(I) - 92(!))/(3.5-T(I))) - ALP,(1,1) Alpha.
L2(I) * L2(I) * .2 IAdd voltage offsets to probes.
L3(M) * L3(M) + .3
CALL PROBLIN( L1(!), L2(1), L3(2) ) ILinearise probe readings.
D1 * D1 + .133333*83N(THr3T(I-1)) IAdd 080oR flatness terms.
02 * D2 + .083333*S1M(TUET(-1i))
D3 * D3 - .083333*8tW(TvIT(I-1))
CALL ALBST(ALPB(2,Z), BITA) IDet. ALIPA, BETA from P0801 readings.
ALPB(2,4) * ALPB(2,!) - ALP(23,1) ISubtract initial readings.
BRT a BBTA - BalO
CALL D~INE(1, DZXl(), DMI(I), X1, TI) LiWnearise diode I readings
XD1 -.566 - X1 18et. global IT coordigates of LASERs on diodes.

ID1 * 1.8 - Y1
CALL DLINE(2, DM2(I), DT2(I), X2, Y2) ILinearize diode 2 readings.
XD2 - -. 566 - 12
0D2 - -1.2 - Y2

CALL DIST(XD1, YD1, DLIt) IDet. dist. from LASERs to diodes.
CALL DIST(XD2, YD2, DL2t)
CALL DIST(I., I., Dr) IDet dist. between POSOR coord. systems.
DLI1 DLIt - DLlo IDet. net notion.
DL2 a DL2t - DL2o

* Xl * xl + DLI'SMGlCOS(RBO1+TIET(I-1)) ILaser angle offsets.
Yi * i1 - DL1*SG1SIN8(RBOI+TnH(Z(I-1))
X2 * X2 + DLr2SIG2*COS(RBO2+TBET(I-1))
Y2 = Y2 + DL2*SIG2*SIN(RBO2+TBzT(I-1))
RNUM * (Yi - Y2 - DYSEP )COS(ALPB(2,W))
DNUM a (Xl - X2 - DXSEP)*COS(BET)
THET(I) = ATAN(RNUM/DNUM) - THETO IDet. net Theta from POSOR.
YM(1,I) a Y(I) + 1.34*ALPB(1,I) IDet. net measured Y motion.
YM(2,I) * - DY + 33.4*BET + Y(2,1) IDet. net POSOR Y motion.
2i(1,I) = Z2(I) + 1.122*( 1(I) - 12(I))/(3.5-T(I)) - ZM(1,1)
2S(2,I) = - (YI+ Y2)/2. - Z1(2,1)- 36.1*TBET(I)

M1 CONTINUE
WRITE(2,13)

13 O.ORM•T(///5x, 'General Notion Results'//
* 51, 'A11 dimensions are in inches and radians'//
* 5X,'ALPH(1,I) ALPB(2,I) 21(1,) 1M(2,I) Y1(1,i) Y1(2,I)'

DO 386 I = 2, 10 ILoop for statistics.
WRITE(2,127) ALPB(1,I),ALPB(2,I),21(1,I),2M(2,I) ,T(1,) ,Y1(2,I)

127 POR•AT( 41, 6(19.6,11) )
DIVA * ALPS(2,I) - ALPB(1, I)
DInI * S1(2,I) - 21(1,I)
DIF a 11 (2,I) - YTX(1,1)
SUMA a SURA + DIFA**2
SUIS * SU01 + DI"**2
SUNTY SUIY + DIFT**2
ALPB(1,I) * ALPB(1,I)/1.E-6 IConvert to microrads.
ALPB(2,I) = ALPB(2,I)/1.Z-6
S1(2,I) = S1(2,1)/.0I1 IConvert to ails.
SM1(1,I) - S2(1,I)/.081
Y1(2,I) a Y1(2,1)/.Of1
11(1,I) a Y1(1,I)/.91

300 CONTINUE
SIGA * 8QRT(SUMA/8.) IDet. sigmas.
SGZ *= SQRT(SUMZ/8.)
SIGY * SQRT(SURY/8.)
WRITB(2,117) SMGA, SIGI, SIGY

117 PORnAT(4X,'S!GA * ', F11.6,' SIGI * ',V1I.6,' SIGY * ',#1I.6)
PRINT*, 'SIGA * ', SIGA,' SIGS * ',SIGZ,' SIGY = ', SIGY

340



ALP(l,1) * I.
SN (1,1) "* .

CALL QPICTR (ALP, 3,11!,QY (1,2), 0X(3), QXLAB(XLA) , QYLAB(ALPBLAB)
* ,QLABBL(4) ) IPot them babies up.

CALL QOPCTR (N,31,Qy(l,2), (3), zX(3), OL(XLAM), QTLAJ(SL~t )
* ,QLAEL(4) )

CALL QPICTR(Y,3,ll,QY(1,2), QX(3) QXLAB(XLM), QTLAB (YLM)
* ,QLABEL(4) )
801P Iprineesh
END !th Ililler time

j
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80U800T9Nl COIMTAN
C00ADN/COFPr/ U(2t,1,tl), A I(2,1,1)
CDMoa/POITW/ P0x (15), o08T (15)
A (1, 1 1) * 1.2980584
Az (1, I 12) * 0.2411558
AM(l, 1, 3) * 0.0294409
At (t I 4) * 0.0743044
Ai(l, 1, 5) * -. 1281114
As(1, 1, 6) a* ".19s545
AM(l 1, 7) * -. 7759064
As (I, 1, 8) * -. 0546077
AX(l It, 9) * 1.1299897
Az(1, 1,10) * 0.1771148
AX(I, 2, 1) * 0.2969180
Ai(1, 2, 2) * 0.2647132
AX(1, 2, 3) * 0.0332551
AM(1, 2, 4) * 1.l532803
AT(1, 2, 5) * -. 0542051
A (1, 2, 6) * 1.1728458
AX(I, 2, 7) * 0.1161345
AX(1, 2, 8) * -. 0315525
AX(1, 2, 9) a 1.1249807
AX(1, 2,13) a* 6.771691
AI(1, 3, 1) * 0.2963723
AI(l, 3, 2) * 0.2710339
AI(i, 3, 3) * 1.1315351
AI(l, 3, 4) - 1.0321375
AX(1, 3, 5) a -. 1746478
AX(1, 3, 6) * 0.1180483
AI(1, 3, 7) * 1.1776102
AI(1, 3, 8) * .13511811
AI(I, 3, 9) * -. 2227452
AX(1, 3,11) * -. 1565716
AT(1, 4, 1) =* .2962838
AI(l, 4, 2) * 0.2745650
AT(l, 4, 3) * I.1186398
AI(l, 4, 4) * 0.,218596
AI(l, 4, 5) a= 3.199147
At(l, 4, 6) a* .1618618
AT(l, 4, 7) * -. 1545973
At(l, 4, 8) * -. 1115216
AI(1, 4, 9) * 0.1136769
AI(i, 4,13) * 1.1333497
AI(i, 5, 1) * 0.2961553
AIX(1, 5, 2) * N.2787391
AI(1, 5, 3) * 1.1121879
AI(1, 5, 4) * 1.1141342
AI(l, 5, 5) * 0.0274019
AM(l, 5, 6) * 0.1952071
AI(1, 5, 7) * -. 0489632
A(l, 5, 8) * -. 1588838
A(I, 5, 9) * -. 0445954
AX(1, 5,1) * 1.1411185
AI(1, 6, 1) * 1.2957592
At(1, 6, 2) * 0.2823121
AZ(1, 6, 3) * 0.0172161
Az(1, 6, 4) * 1.0129517
A(1, S, 5) a -.0479863
AI(1, 6, 6) * 1.1619599
AI(I, 6, 7) * 0.2353677
AI(, 6, 8) * 0.1106622
AZ(1, 6, 9) * -. 3037178
A(l, 6,1C ) * -.1611748
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AX (1,13, 4)
M (1,13, 5)

11(1,13, 6
1(1,13, 7)
1 (1,13, 6)
AI(1,13, 9)

A1(1,14, 1)
S1(1,14, 2)
AX(1,14, 3)
1 (1,14, 4)

AX(1,14, 5)
A (1,14, 6)
AX (1,1, ?)
a1(1,14, 8)
AIX (1,14, 9)

AX (1,15 1)
A1(1,15, 2)
A1 (1,15, 3)
AX(1,15, 4)
AX (1,15, 5)
A1(1,15, 6)
AX(1,15, 7)
AX(1,15, 8)
A1(1,15, 9)
AX(1,15,1,)
AT (1, 1, 1)
At (1, 1, 2)
A t(1, 1, 3)
AYT(1, 1, 4)
A (1, 1, 5)
AT (1, 1, 6)
AT(1, 1, 7)
AYT(1, 1, 8)
A (1, 1, 9)
AT(1, 1,10)
AT(1, 2, 1)
AT(1, 2, 2)
AT(1, 2, 3)
A (1, 2, 4)
AT(1, 2, 5)
AT (1, 2, 6)
Ar(1, 2, 7)
AU (I, 2, 8)
A(1, 2, 9)
AT (1, 2,1t)
AL (1, 3, 1)
A (1, 3, 2)
AT(1, 3, 3)
A (1, 3, 4)
AT (1, 3, 5)
Al (1, 3,1 6)
AT (1 3, 7)
AT (1, 3, 8)
ArT (1, 3, 9)

AT (1, 4, 1)
A(1, 4, 2)
AT (1, 4, 3)
A (1, 4, 4)
AT (1, 4, 5)
ArC(, 4, 6)

1.1724146
.|1825915

1.1305174
0.3128301
0.1922538
*.4069523
*.|343431
6.2917495
0.2561253
1.1163368
1.1998717
1.|158597
W-.191397
0-.657429
,.1172542
.13399395

1.1462138
1.2913544
6.2599675
1.168359
1.1352724
0. 073529
1.2849523
-. 2325023
-. 5879212
0.1799311
1.4611654
0. 2555 282
-. 2619139
-. 1118161
-. 1553111
-. 1328755
-.W138224
1.1976970
-. 1678674
-. 1882147
1.1161112
1.2548558
-. 2618161
-. 1191454
-. 1513244
1.1282253
-. 1112229
-. 6453418
0.1874387
1. 625 431
-. 1896955
1.2539475
-. 2663339
-. 6188771
-.1303122
8.8273599
-. 1432628
-.0123488
1.1264988
-. 1238485
-. 08659337
1.2527574
-. 2696145
0.1133481
-. 1475653
-.0461925
-. 8282198
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LtCtttElIL6T LS•"*1SC91961'9TLZttt'-

gttSt9'*

89S)ttW'tiCITTI'
9SSL9sc'-
S|GSVTTI'-

L99tTT1'|

Stttftt'e

L)tgTt1 oSLL LII -
'"SI)II'-

LgSClS"'l
6919400 *6

SLLCTS9*1f LiCi T *I

(C 'C '[)XY
(c It )IV(t It IV)Xv

(6 T 't C)
Cs *t 't)ZV
(L 'I C)XVY
(9 't 't)ZV
(S 't 't)xV
(t 't 't)IV
(C 't t)xV(t 't 't)XVt 'T 't)zxv

(6 'ST'T)ZV
(U OST'T)XV(L *ST't)•V

(9 'ST'T)Xr

(Q 'STt)1Y(t '5T'T)zY
(9 'ft't) Y(C 'St'T)LV

(t 'st't)zv
(Clttt'T)lY(6 'T't)zv
(8 tt'T) zv

(S 'tt'T)XV

(t '?tft)IV(C 'tt't) LV
(IT'CT'T)IV
(6 'Ct't)JV
(8 'Ct't) Xv
(L •CT'T)IV
(9 'tt't) IV
(S 'C't) TI
(t 'Lt't)LV
(Q 'tT't) IV
(t 'Ct't) xv

(6 'T't)ltY
(C 'Ct't)LV

(S 'Ct't)XV

CT 'lT) IV

( 'tTt)IVr(W Itt'T) T

(t 'ttt) lV
(I 'TT) VY
(9 TTT)ML

(IT'IT'T) XVCELwG I



X(2, 2, 3) * -. 2915l34
A1(20 2, 4) a* 6.646636
A1(2, 2, S) * .12358347
AX(2, 2, 4) * 1.4176044
AX(2, 2, 7) * *-.376129
A1(2, 2, 6) * 1.1351477
A (2, 2, 9) a* 9.269484
AX(2, 2,16) * 6.6169956
A (2, 3, 1) * 1.2500248
M (2, 3, 2) * .32587211
MA(2, 3, 3) * -.6163294
*1(2, 3, 4) * 6.1072338
A1(2, 3, 5) * 16.76347t
A*(2, 3, 4) * -.1581873
AX(2, 3, 7) -*.1944756
A*(2, 3, 8) * 6.375694
A(M 3(2, 9) * l.1555769
AX(2, 3,16) * -. 2317747
AU(2, 4, 1) * 6.2488176
AX(2, 4, 2) * 6.2597455
AM(2, 4, 3) * -0.665583
AX(2, 4, 4) * 0.1863161
AX(2, 4, 5) * 0.1235786
A*(2 , 6) * -. 1137225
AX(2, 4, 7) * -. 1663461
AX(2, 4, 8) * 1.1462771
*A(2, 4, 9) * 1.1561681
*1(2, 4,13) * -.1966549
AX(2, 5, 1) * 1.2474329
AX(2, 5, 2) - 3.2576582
*A(2, 5, 3) - -.6160392
AX(2, 5, 4) * 1.1146656
AM(2, S, 5) - 1.0182279
AX(2, 5, 6) * -. 1417164
AX(2, 5, 7) * -.9668417
A(2, 5, 8) * 1.4413518
AM(2, 5, 9) * 0.1447742
*1(2, 5,1l) * -.3238364
AM(2, 6, 1) * 6.2463868
AX(2, 6, 2) * 3.2587332
*1(2, 6, 3) * 1.1139885
AM(2, 6, 4) * 1.1928919
AZ(2, 6, 5) * -. 9141967
A (2, 6, 6) * -.1667998
A (2, 6, 7) * 6.1453659
A*(2, 6, 8) * 1.4148671
AZ(2, 6, 9) * -. 577312
AM(2, 6,13) * -.3122132
A*(2, 7, 1) * 6.2454442
A*(2, 7, 2) * 1.2611221
A*(2, 7, 3) * 61.127464
*1(2, 7, 4) * 1.1811234
*1(2, 7, 5) a -.1127161
AM(2, 7, 6) * -.09794"1
A*(2, 7, 7) * 6.1379127
AX(2, 7, 8) * 0.4126629
AX(2, 7, 9) - -. 1657922
A*(2, 7,11) a -.2971543
AZ(2, 8, 1) a 1.2444817
AX(2, 8, 2) * 1.2629135
A*(2, 8, 3) * 0.1107276
AX(2, 8, 4) a 1.1656676
*X(2, 8, 5) a 0.1166196
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s •(2, 8, I ) )
AX(23, , 7)
M(2, s, ) 8)
U1(2, 8, 1)
S(2, 8,10)
M(2, 9, 1)
*1(2, 9, 2)
*1(2, 9, 3)
A11(2, 9 4)
*1(2, 9, 5)
u (2, 9, 6)
*1(2. 9t 7)
11M(2, 9, 8)
M (2. 9, 9)
1(2, 9,1O )

11(2,16, 1)
U1(2,16, 2)

RT(2,10, 3)
A*(2,10, 4)

S1(2,10, 5)
AX(2,10, 6)
AX(2,16, 7)

l (2,11, 8)
AX(2,16, 9)
A (2,16,16)

l (2,11, 1)
l (2,11, 2)

AX (2,11, 3)
Al (2,11, 4)
Al (2,11, 5)
Al (2,11, 6)

1 (2,11, 7)
* (2, 11, 8)
A (2,11, 9)

-A (2,11,16)
AX(2,12, 1)
A1(2,12, 2)
*1(2,12, 3)
AZ(2,12, 4)
*1(2,12, 5)
* (2,12, 6)
A (2,12, 7)
A1(2,12, 8)
AZ(2,12, 9)
AZ (2,12,16)
AX(2,13, 1)
*u(2,13, 2)
* (2,13, 3)
*1(2,13, 4)
A (2,13, 5)
A (2,13, 6)
A (2,13, 7)
AZ(2,13, 8)
AZ(2,13, 9)
*1(2,13, 10)
* (2,14, 1)
AZ (2,14, 2)
AM(2,14, 3)
A1(2,14, 4)
AM(2,14, 5)
A*(2,14, 6)
AZ(2,14, 7)
AZ(2,14, 8)

p

U

U

U

U

U,

U

U

S

U

U

U

U

U

U

U

U

U

U

U

S

U

U

U

U

U

UI

U

U

U

U

U

U

a
U

U

U

U

U

U

U

I

I

-. 584893
-.1129591
0.3524444
-.1241396
-.2513222
0.2433911
0.2647444
0.6190158
0,1441474
.01325955

1.1102926
9.1696762
-.6376166
-.1158427
0.2439945
6.2655633
-.0860649
1.1251188
0.0083447
1.1226561
1.1453197
-.1144466
-.17 40992
,.0145682
1.24417 61
0.2631835
-.1113296
,.1324976
-.1165224
S.1198218
1.1551911
-.1485733
-.1729574
1.1497322
S1.2441230

1 0.265130
S-.1662412
S0.0341499
* -. 132518
1 .1535754

S1.6599563
S-.168723

* -.1565715
B 1.1367312
a 1.243561
m 6.2564621
* 6.1117906
1 0.6596554

* -. 1213491
9 0.6613017

* 6.1441417
" -. 6229987
" -.1348916
S6.10520762
- 0.2436372
- 6.2524012
* 1.9955349
S1.68112985
- -. 1497721
- -. 6114256
- 6.1062260
= 6.1237333
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*1(2,14, 9)
AZ (2,14,10)
*1(2,15, 1)
*1(2,15, 2)
A1(2,15, 3)
S(2t,15,S 4)
A(2t ,15, 5)
A*(2,15, 6)
lM(3215, 7)

A*(2s15, 1)
S(2,15,S 9)
* (2,15,10)
AT(2, 1, 1)
1(2, 1, t2)

AT (2, 1 3)
AT(2, 1, 4)
AT (2t, 1, 5)
AT(2t , )1,
Ar(2t , 17)
AT(2, 1, 8)
AT (2, 1, 9)
AT (2, 1,10)
AT(2, 2, 1)
AT(2, 2, 2)
AT(2, 2, 3)
AT(2r 2, 4)
AT(2, 2, 5)
AT(2, 2, 6)
AT(2, 2, 7)
AT (2, 2, 8)
AOT (2, 2, 9)
AT (2, 2,1l)
AT(2, 3, 1)
AT(2, 3, 2)
AT (2, 3, 3)
A*(2, 3, 4)
UA(2, 3, 5)
AT(2 , 63, )
Ar(2, 3, 7)
A (2, 3, 8)
AT (2 3, 9)
T (2, 3,10)

AT(2, 4, 1)
ATr(2, 4, 2)
AT(2, 4, 3)
A1(2, 4, 4)
AT(2, 4, 5)
AT (2, , 6)
AT (2, 4, 7)
AT (2 4, 8)
AT(2, 4, 9)
AT (2, 4,0)
AT (2, 5, 1)
A (2, 5, 2)
AT (2, 5, 3)
AT (2, 5, 4)
AT(2, 5, 5)
AT (2, 5, 6)
AT(2, 5, 7)
AY (2, 5, 8)
AT(2, 5, 9)
AT(2, 5,10)
AT(2, 6, 1)

*-.1117N
0.5044401
0.243407
0.3512254

0.0649182
-.0310991

.*553871
05ft97575
W.0902346
-.0423222
0.1319018
0.2455857
-.2551262
-. 14712576
-. 14094301
01.084183
-. 0845460
-. 1007463
0. 045597 4
0.0118062
-.0429936
1.2457513
-. 2521218
-. 1167263
-. 1755741
-.0923173
-. 1235333
1.0183354
-. 6411195
-. 1130721
1.1398183
6.2458622
-.2498416
1.11118280.1031162
-. 1936846
-. 1628654
1.213523
0.1646969
-.15429H3
-.11719682
1.1128983
0.2458847

,-.2494340
1.16U4154
-.110118
-.13256S8
1.139755
0.0616606
-.2057251
-. 1282968
1.1459976
1.2455689
-. 25 9632
1.1962254
-. 1088189
-. 0381462
1.1146172
0.1427539
-. 4615824
-.0844397
0.2955661

2.2452717
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AT(1, ( , 2)Alr(at It Z)
AT(2, 6, 3)
AT(2, 6, 4)
AT(2, 6, 5)
* (2, 6, 6)
M (2, 6, 7)
AT (26,, t)
A (2, 6, 9)

T(2, f,11)
AT(2, 7, 1)
AT (2, 7, 2)
i (2, 7, 3)
M (2, 7, 4)

TO(2, 7, 5)
AT(2, 7, 6)
AT (2, 7, 7)
AT (2, 7, I)
AT(2, 7, 9)
A* (2, 7,13)
AT(2, 8, 1)
AT(23, , 2)
iA(2, 6, 3)
Ar(2, 8, 4)
AT (2, 8, 5)
A (2, 8, 6)
AT (2, 8, 7)
AT (2, 8, 8)
AY(2, 8, 9)
AT (2, 8,14)
Ai(2, 9, 1)
AY (2, 9, 2)
Ai(2, 9, 3)
A (2, 9, 4)
Ai(2, 9, 5)
A (2, 9, 6)
AT(2, 9, 7)
AT(2, 9, 8)
AT (2, 9, 9)
AT(2, 9,136)
AT (2,1, 1)
AI(2,1O , 2)
A (2,13, 3)
A (2,11, 4)
AT (2,11, 5)
1A (2,11, 6)
AT (2,13, 7)
AT (2,1M, 8)
AT (2,13, 9)
1T (2,13,11)
A1 (2,11, 1)
Ai(2,11, 2)
AT (2,11, 3)
Al (2,11, 4)
AT (2,11, 5)
AT (2,11, 6)
AT (2,11, 7)
A1 (2,11, 8)
AT(2,11, 9)
A (2,11,13)
AT(2,12, 1)
AT (2,12, 2)
AT (2,12, 3)
AT (2 12. A%

AI-q--U I-,

M*.253387
-. 1971113
Me6421298

*.1135522

-. 3637751
-.1287 11
3.2726349
3.2449414
-.2563443
0.0173214
-. 1894997
-.3548414
3.799213
1.1523075
-.3888333
-.1188913
3.3131216
1.2446698
-.2598498
0.1211945
-.1761881
-.1855583
3.3243411
0.1279325
-.2518339
-.0677955
3.1877052
1.2448117
-.2612718
1.1243965
-.1793969
-.1416526
1.1337 831
1.3153132
-.1879231
-.2389352
1.1916712
1.2452132
-.2621284
3.3158796
-.3774327
-.3814841
.06386255

3.1494961
-.3629587
-.3914754
1.2825383
3.2452883
-.2633313
0.1153951
-.0598368
-.1964194
-.1352879
1.2180198
-.1149756
-.1574961

. 6785 I16
3.2449149
-.2634949
1. 17 9953-_ II•QQ't•?
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AT(2,12, 5) * ".#429517
A!(2,12, 6) * -.0127391
AU(2,12, 7) * .9953)224
A3(2,12, 6) * -. 1401t13
AT(2,12, 9) * -*.l6584
A1(2,1,2,1) 0* 0.968U 4
A1(2,13, 1) 0 6.2449369
AT(2,13, 2) -0.2634763
U (2,13, 3) * 6.6I45141
AT(2,13, 4) * -.565367
AT(2,13, 5) * -. 152219
MA (2,13, 6) * -. SNU825
A1(2,13, 7) a* 9.169288
AT(2,13, 8) * -. 1188754
A*(2,13, 9) a* -. 646272
AT(2,13,16) * 6.1668742
AT(2,14, 1) * 6.2441886
AT(2,14, 2) * -.2430669
AT(2,14, 3) a 0.1673298
AT(2,14, 4) * -. 1536187
AY(2,14, 5) a -. 9643621
AT(2,14, 6) 9.01169993
AT(2,14, 7) 16.1164529
AT(2,14, 8) * -.1416259
AT(2,14, 9) * -. 6l29555
A*(2,14,11) * 1.1672611
AT(2,15, 1) * 1.2441211
AT(2,15, 2) * -. 2621487
AT(2,15, 3) * 1.9196259
AT1(2,15 4) , -. 1438383
AY(2,1S5 5) = 0.6173438
AT (2,15 6) * -. 9215954
AT(2,15, 7) - -. 9765727
AT(2,15, 8) = -.1492813
AT(2,15, 9) * 6.1629283
*AT(2,15,1) * -. 6154113
PO8I(1) * -. 16666735
1081(2) * 1.13498995
061Z(3) * 6.17139838

1081(4) * 1.18764547
POS0(5) * 9.14282376
POSI(6) * 1.17849192

0PS1(7) 0 6.21413811
081(86) 6.249898866

1P8O(9) 1* .24562151
081Z(16) * 1.321267M

1081(11) * 1.35697468
108S(12) * 6.39271562
061z(13) * 1.42843718

106Z(14) , 6.44416833
06Z(15S) a 1.49983832

108T(1) - 1.16662138
POST(2) * 1.63566660
POS1(3) * 0.17147417
POS1Y(4) * 0.11728265
108Y(5) * 1.14294950
POST(6) * .17866655
1081(7) = 1.21442593
POSY(8) * .25626213
POST(9) * 6.28628136
POT8(1I) * 9.32185796
POST(11) * 1.35766665
POSY(12) * 8.39347233
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1I08Y(13) a* .4231222
PO8T(14) a* .46532978

)oST(15) * I.51106*12

=UD
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APPENDIX 8B

FORTRAN Analysis Programs' Output and Input Tables
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9919g11 *
889S9s'- 9SLSIO'-
lo9tSeO* LStSlI'-
TLISI*- S9tS9I6
99Lt1*I- S9S39s5-
69t996- L9tII'-
39tth5m IS~telo-
9L$I[ *- 316til*-

96SC1'- 6)9CtE*-
689LCl*- LoESoaI-
IL6SEI*- St 991-C

TL9011*0- 90II-" SILCETI- PtliI-
L96S9I0a- Ittoll-
S6L9It5a toltow

fl9l9lS- ttg~lo

9is9ll*" L9910II*-

&DIS LS9gg'6* * 1013 t19P1 *6 Y VOS

STESS0'I SogtllS lleOll° Mell.$l's
Eggs$SI# STllII S91111'1 lSSll'

STEUI E 6STII0" Sllo9o11 llMM.# T94III9I 6STIlIlI 91111' sees#@.

EttEllls 6StlII'I 61111161 M111'1
Ttlllool 6STIles SIlI'Iof MM*ll'@
UEII9ll £ 1 £1STII*I Selll1 MM11.$

tggt'* tS69)'*s tellsl#* I64116".1
IT916l94 CSToIII colleges ##fees.@
8t196669 o)TIII*I ColilllO
"ce~llose ittolII 9l6 l 90

goggl*I 'I C' cellos* M "ee
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6LTII'1 a
ECtzoo'- C111||'-

UZggg'- 9teeie- 8szooI'" 9T1I1*-
st9use'- 6TII.-

6tEiIe*- * segIII-

LCIII'- 91161*- vrtlff'- 6tll'- 1Still*- 6T119*6- LtTooo*- ctooIII'-
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6)091101
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T)t~l66"6 001111"01
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16111 *

"166966 U1619
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1111604
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11~1111.1' 161111.1
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6116111
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gOptol'- Ot•6e1'-
91Lt6l6' 3T9EO6'*
8LtCll*- SlTICi'-
tTSa'"- 9tTC66'-

biOZSS'- Mtfft6-

SLt616- SSISSll'-
9* *g -96dtb'- 1966166- 96T666-
966f) t'- SEhIl'-
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96tSA*6 1'LI1 MB llg * 9301 SLtllll * VDIS

tSCSt9O*6 tStL l'*S t StsCPt* StCCSTI' S9LtI*l 8L9tg1' 1
Ctti'l*I- tgELfl*@- CS9ttt'I iLESIT*' SGtSTIl' 9CSTIII

LSTII'*I- L lSSMI*I- tl9S9'* guTSSi* T*Stt$ll* L9TTII*l
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1169BI(IUi'I

I*IC~t~t9II~

*1S61L9t96 * 116101999196 ISIUEPI H*I

IOI~t~ttWti III 9U665* S SIIILTE9SEI 911ITLU90*1 66699TOT9191 6616SH19600~ 61119069166~ 116IM19100' Iff"TT19101~

166% Vec e A0s o;4t

* CVLTLff*I 'L9L665lO *ZgCTSSS*f
LLCCI6V?5 'O6TLCIITI@ S,9C901*1

*906II6*S "CCULStI 'S"L3LIII6*

0tg6ti9 g LSSICINT09 'UP11655
ST69OCII OS'JT9910T gI ggngCSg
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Chapter 9

Conceptual Design of a High Performance Robot

9.1 Introduction

As shown in the summary of Chapter 8, a measuring beam system can

provide accurate joint and endpoint position feedback information neces-

sary for a control system to position a large articulated structure

accurately. To illustrate the incorporation of a measuring beam system

into a robot design, this chapter will document the preliminary design

of a long reach, high accuracy, high payload, articulated robot that

uses an internal measuring beam system to provide joint and endpoint

absolute position information. Documentation will include conceptual

assembly drawings and preliminary calculations for the structural and

measuring systems. Thesis conclusions are then presented.

The results of the experiments to determine POSOR performance

(summarized in Table 8.2) found that even for the crude system tested,

a 30" (.762 m) arm with a 3" (.0762 m) POSOR, could measure endpoint

position two to three orders of magnitude better than any large (60" -

90" reach) robot presently available (Note that a 90" arm would use a 9"

POSOR). Specifically, the impedance probe triad could measure out of

plane bending of a structural beam to within .0006" (.0152 mm)(average

of standard deviations of errors from all tests). Even the average

errors of the light source lateral effect diode system, with all its

366



calibration problems, were only .0047" (.1194 mm). In view of the

above, the following sections will discuss measuring beam system perfor-

mance that can be expected from future designs (now that 20/20 hindsight

is available), and the methods by which a measuring beam system and

structural system can be combined to yield a robot that is accurate to

.001" (.0254 mm) and has a payload to weight ratio on the order of five

to one.

9.2 Conceptual Robot Design

This section will first outline the desired properties for the

subject robot. The robot will be designed from the inside out, and from

the end to the base. Hence the measuring beam system will first be

designed to meet the accuracy requirements, and the structural system

will then be designed to fit over the measuring system.

With regard to the overall implementation strategy, cost effective-

ness is best achieved from high volume production. Thus since precision

is removed from the list of structural component requirements, it be-

comes economical to design and manufacture an "all purpose robot". This

type of robot could be used for materials handling and laser, or for

water jet machining or drilling and deburring operations. The materials

handling operations require accuracy only for the ease of off-line

programming, while the materials processing operations require accuracy

for the actual process as well as for ease of off-line programming.

Note that a high payload, and payload to weight ratio capability are

also useful for quickly moving the robot about.
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With regard to the choice of the number of degrees of freedom the

robot should have, consider that most manufacturing processes the robot

will perform would require only five degrees of freedom. Also many pick

and place operations, such as those associated with a turning center,

only require a five degree-of-freedom robot. Thus a five degree-of-

freedom robot design will be developed and presented below.

To make the robot's performance commensurate with the tools it

could replace, robot accuracy along any axis should be on the order of

.001" (.025 mm). Point to point accuracy can be on the order of .0017"

(.0432 mm). For servicing most large machine tools and for drilling

aircraft panels, it should also have a reach of at least 6' (2 m) and a

payload of about 100 - 150 pounds (45 - 68 kg).

Figures 9.1 through 9.4 show how a structural system and a measur-

ing system can be combined to yield a high payload, long reach, high

accuracy, five axis robot. Bumpy ring POSORs are held at the ends of

measuring beams which are supported by wire gimbals. Short measuring

beams are cantilevered directly off of their associated structural beams

by single posts. The basic construction of the structural system con-

sists of offset box beams joined by turntable (four point contact)

bearings with integral gear teeth. This allows the drive motors

(electric, pneumatic, or hydraulic) to drive the joints from the outside

which prevents interference with the POSORs. The controllability of the

robot will depend on the amount of gear backlash and how the control

algorithm compensates for it (in some cases a micromanipulator may be

needed). The control aspects of the problem are not discussed.
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Following sections will describe the measuring system and the structural

system in greater detail.

9.3 Measuring Beam System Design

Factors to consider in the measuring beam system design are the

size of the POSORs, the relative inertia of the measuring and structural

beams, and the design of the wire gimbals. The latter two issues were

discussed in Section 6.2.3. To obtain accuracy on the order of .0017"

(.0432 mm), the feedback signal should be five to ten times better, or

in the range of .00034" to .00017" (8.5 Am to 4.7 im). The sizing of the

measuring beam components used to achieve this accuracy are discussed

below.

9.3.1 POSOR Design

The achievable robot accuracy is dependent on the accuracy of the

POSORs, the measuring beam error (non-measurable deflections), and the

reach of the robot (angular error amplification factor). Given the

desired reach and accuracy design specifications, there are probably

many ways to optimize allocations of the total error budget to the

various system components. The development of such methods is not

discussed here, rather the experience of the designer is relied upon to

provide "in the neighborhood" error allocations of error among system

components.



The first step is to outline the basic design of the POSORs. It is

assumed that bumpy ring POSORs are chosen, and that they will use im-

pedance probes to measure distances as discussed in Chapter 3.

Impedance probes are chosen because they are only affected by metallic

contamination. Note that capacitance probes are affected by any en-

vironmental change which alters the dielectric constant of the gap which

they are measuring. For this system, sensor accuracy is assumed to be 5

pin (.13 pm) which is readily achievable. The stability problem

encountered in the tests of Chapter 8, can be overcome by using hybrid

circuits (recently available from Kaman Instrumentation Corp.). The

outside diameter of the bumpy ring sensors is assumed to be inside

diameter + 2", so the large degree-of-freedom angular accuracy is 5

pin/(outside diameter - 2). The triad of probes used to determine two

small angles is assumed to be on a circle of radius diameter = outside

diameter - 1", so the accuracy is 5 pin/[.75x(outside diameter - 1")].

When determining the robot's endpoint error, there are two extreme

(largest possible error) configurations for the robot as shown Figures

9.5 and 9.6. The first is with the wrist bent at 900 and the second is

with the robot extended fully. In order to meet the reach specifica-

tion, the measuring beams are sized as shown in Figure 9.7. It is

assumed that the terminal link is 8" long and the distance to the center

of the end effector is also 8", so link es is 16" (.406 m) long.

Translational errors are insignificant compared to joint angle errors.

Figure 9.7 shows the measuring beam system sans structural beams

and wire supports. The approximate dimensions for the various links
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indicate that the POSORs nearest the base should be as large as possible

(they are subject to the greatest error amplification). As the end of

the robot is approached, the error amplification decreases and the

smaller the POSORs used, the more dexterous the robot will be. Figures

9.8 - 9.10 show the joints in greater detail.

Figure 9.8 shows the detail of the base of the measuring beam

system. The first measuring beam is cantilevered off the "floor" which

must be structurally isolated from loads imposed by the robot base. A

turntable bearing on the order of 22" (.56 m) diameter will be used, so

that there is plenty of room for the first two POSORs. The second POSOR

is held by a short measuring beam which is held to the robot by a post.

The POSORs used in the base are:

Base Swivel and Shoulder Joint POSORs: The maximum allowable POSOR

outside diameter at this joint is assumed to be 8" (203 mm). Thus the

maximum angular accuracy for the large degree-of-freedom is 5 1in/3" =

1.67 prad. The worst case accuracy for the small degrees of freedom is

5 pin/5.25" = .95 prad.

Figure 9.9 shows the detail of the elbow joint of the measuring

beam system. The third measuring beam (the upper arm measuring beam)

holds the elbow POSOR. The elbow joint will use a turntable bearing on

the order of 12" (305 mm) diameter. Note the right angle extension of

the lower arm measuring beam which will require the four degree-of-

freedom gimbal to be located at this end. The characteristics of the

elbow POSOR are:
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Elbow Joint POSOR: The maximum allowable POSOR outside diameter at this

joint is assumed to be 6" (152 mm). Thus the maximum angular accuracy

for the large degree-of-freedom is 5 iin/2" = 2.50 prad. The worst case

accuracy for the small degrees of freedom is 5 pin/3.75" = 1.33 prad.

Figure 9.10 shows the lower arm portion of the measuring beam

system. This part contains the wrist roll (used to turn a screwdriver)

and the wrist yaw (used to wave goodbye). The wrist measuring beam is

short enough that it can be supported by a single post, while the ter-

minal measuring beam is short enough to allow it to be cantilevered from

the end effector mounting plate. The characteristics of the two POSORs

are:

Wrist Roll Joint POSOR: The maximum allowable POSOR outside diameter at

this joint is assumed to be 5" (127 mm). Thus the maximum angular

accuracy for the large degree-of-freedom is 5 iin/1.5" = 3.33 irad. The

worst case accuracy for the small degrees of freedom is 5 pin/3.00" =

1.67 prad.

Wrist Yaw Joint POSOR: The maximum allowable POSOR outside diameter at

this joint is assumed to be 4" (102 mm). Thus the maximum angular

accuracy for the large degree-of-freedom is 5 yiin/1" = 5.00 prad. The

worst case accuracy for the small degrees of freedom is 5 pin/2.25" -

2.22 prad.

The total endpoint error is a function of the individual joint

errors and the distances from the joints to the endpoint. For the bent
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wrist case shown in Figure 9.5, the root mean square endpoint errors

are: AX = 73 pin, AY = 131 pin, AZ - 190 pin (1.83, 3.28, and 4.75 Vm).

The total displacement error at the endpoint is thus 242 pin (6.05 um).

For the fully extended case shown in Figure 10.3, the total endpoint

errors are: AX - 36 pin, AY = 172 pin, and AZ = 204 pin (.90, 4.30, and

5.10 pm). The total endpoint displacement error is thus 269 pin (6.73

um). For both cases, the root mean square orientation error at the

endpoint is aX = 4.4 prad, ay = 4.2 prad, and aZ = 5.8 Urad. To each of

these errors must be added calibration errors (relative orientation of

POSORs on measuring beams) and errors due to deflection of the measuring

beams. These factors are discussed below.

9.3.2 Gimbal and Measuring Beam Design

The sizing of the wire support gimbals and their locations are

directly coupled as discussed in 6.2.3. The closer to the ends of the

measuring beam the gimbals are placed, the less "runout" there will be

in the POSOR, and the greater flexibility allowed in the structural

beams. However, the farther apart the gimbals are placed, the more they

will deform the measuring beam. Section 6.2.3 found that the gimbals

could be located at the ends of a 30" (.762 m) long, 2" (50.8 mm) out-

side diameter x 1.75" (44.5 mm) inside diameter measuring beam. With

the gimbals at the ends, the endpoint error resulting from deflections

of the major measuring beams in a 60" (1.52 m) reach robot would be 50

pin (1.3 pm) from the first long measuring beam, and 20 pin (.5 um) from

the second measuring beam. Section 6.2.3.1 showed that the wire support
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gimbals can be made using .020" (.508 mm) wires approximately .75" (19

mm) long.

In the example of 6.2.3.1, the measuring beams were assumed to be

made from aluminum; however,to reduce thermal effects, Super Invar

should probably be used. Note however that the target surfaces for the

impedance probes should still be made from aluminum, because a ferrite

grain structure will affect probe accuracy. If an iron alloy is used for

the measuring beams, then the root mean square endpoint error due to

measuring beam deformations is on the order of 18 pin (.45 pm).

9.3.3 Summary of Measuring System Accuracy

Assuming that the system is calibrated many times, so averaging can

be used, the calibration error should be on the order of 50 pin. Thus

the "worst case" endpoint errors (root mean square errors) for the bent

wrist case shown in Figure 9.5 are: AX = 88 pin, AY = 142 pin, and AZ =

198 jin (2.20, 3.55, and 4.95 pm). The total displacement error is thus

260 pin (6.49 pm). For the fully extended case shown in Figure 9.6, the

total errors are: AX = 62 pin, AY = 180 pin, and AZ = 211 pin (1.55,

4.57, and 5.28 pm). The total displacement error is thus 284 pin

(7.10 pm). For both cases, the root mean square orientation errors at

the endpoint are on the order of aX = 6 prad, ay - 6 prad, aZ = 7 prad.
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9.4 Structural System Design

The total reach of the robot (to the center of the grip point) was

shown in Figure 9.7 to be 76" (1.93 m). The desired payload is on the

order of 100 pounds (45 kg) so the robot should be able to apply an

endpoint force of 200 pounds (90 kg). For added dexterity, the three

main joints should be double jointed to allow the robot to "bend over

backwards". The structural system design is presented starting from the

endpoint moving back to the base (as the base components must support

all the components "in front of them").

The most difficult part of the design is choosing the type of drive

system. To meet the payload to weight requirements, hydraulic actuators

must be used (Note that a hydraulic pump unit is not much larger than a

AC to DC converter used for a large machine tool). If large angular

motions at the joints (double jointedness) are to be achieved, then

rotary actuators or motors must be used. Linear actuators (backhoe

configuration) would provide the most economical and most easily con-

trollable system, but the joint rotations would be limited to about

1350.

For the double jointed configuration, vane actuators or hydraulic

motors can be used. The former provide a "direct drive" link while the

latter would use a geroler, vane, or radial piston motor. The geroler

motor has a torque to weight ratio about 1.5 times that of the other

motors (which are also meant for high torque low speed applications).
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One possible problem with the use of geroler motors is that they can

produce jerky motions at fractional RPMs. No reference was found per-

taining to servocontrol of geroler motors, but is assumed here that it

is possible. Even if fine motions are not easily obtainable, a

micromanipulator could be used.

The robot structure is shown (without the measuring beam system) in

Figure 9.11. Following sections describe each joint design in detail.

9.4.1 Wrist Yaw Joint

The wrist yaw joint is the first joint back from the end effector.

It is shown in Figure 9.12. It must accommodate a 4" (102 mm) POSOR.

The payload is applied 16" (406 mm) from the center of the two bearings.

The lower bearing has a sprocket attached to it which is driven by a

chain controlled by two hydraulic pistons. The sprocket is 4" (102 mm)

D, so two 1" (25.4 mm) bore (effective area) pistons with 8" (203 mm)

stroke are required in order to provide ± 1200 yaw motion. The bearings

are about 5" (127 mm) apart, so the radial load on each is 640 pounds

(290 kg), and the thrust load is about 200 pounds (91 kg). Kaydon

Reali-slim KBO20XPO four point contact bearings with the following

properties are chosen for use: 2.000" inside diameter, 2.625" (67 mm)

outside diameter, 5/32"1 (3.97 mm) balls, 5/,6" (7.94 mm) cross section,

static loads: 880 lbs (363 kg) radial, 2200 lbs (998 kg) thrust, and

1020 in-lbs (115 Nt-m) moment. The structural weight of this region

including the actuators is on the order of 50 lbs (23 kg).
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9.4.2 Wrist Roll Joint

The wrist roll joint is also shown in Figure 9.12. The moment at

this joint is 26"x2001bs + 9"x5Olbs = 5650 in-lbs (638 Nt-m). The

maximum roll moment is on the order of 16"x200 lbs = 3200 in-lbs (362

Nt-m). A Kaydon four point contact bearing with a 5" (127 mm) pitch

diameter internal gear is used for this joint. Bearing KDO65XPO has the

following properties: 7.500" (190 mm) outside diameter, 1/ , (6.35 mm)

balls, '/2" (12.7 mm) cross section, static loads: 3640 lbs (1651 kg)

radial, 9090 lbs (4123 kg) thrust, and 12,760 in-lbs (1442 Nt-m) moment.

The outside diameter of the wrist will be on the order of 8.5" (216 mm),

which allows plenty of room for accommodation of the 5" (127 mm)

diameter POSOR. A 1" (12.7 mm) diameter drive shaft will supply 640 in-

lbs of torque (stress in shaft - 20 ksi [140 Mpal) from a Char Lynn 4000

series 6.6 in3/rev geroler motor located at the elbow. The motor weighs

40 lbs (18 kg) and delivers 1290 in-lbs (146 Nt-m) of torque at 1500 psi

(10.5 Mpa) supply pressure, and turns at 110 RPM @ 4 gpm (15 tpm) flow.

The weight of the wrist roll joint is on the order of 30 lbs (13.6 kg).

9.4.3 Elbow Joint

The elbow joint is shown in Figure 9.13. The major moment at this

joint is 39"x50 ibs + 30"x30 lbs + 46"x200 lbs + 15"x10 lbs = 12,200 in-

lbs (1379 Nt-m). A 4"x4"x'/, '" (102x102x3.18 mm) aluminum box beam

connects the wrist assembly to the elbow, and has a design stress of

5000 psi (35 Mpa). The minor moment at this joint is due to the struc-

tural beam offset which allows the structure to be double jointed, and
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the bent wrist position. This minor moment is on the order of 21"x300

lbs = 6300 in-lbs (712 Nt-m). The geroler motors have a 4000 lb (1814

kg) maximum radial load, so a 3:1 gear ratio is required at this joint.

If a 3.5" (89 mm) pitch diameter pinion is used, a 10.5" (267 mm) pitch

diameter external tooth bearing/gear assembly will be required at the

elbow joint. A Kaydon KDO65XPO bearing is chosen, it has the following

properties: 6.500" (165 mm) inside diameter, 1/," (6.35 mm) balls, 1/2"

(12.7 mm) cross section, static loads: 3640 lbs (1651 kg) radial, 9080

lbs (4082 kg) thrust, and 12,720 in-lbs (1438 Nt-m) moment. A Char Lynn

6000 series 19 in3/rev motor with 4800 in-lbs (542 Nt-m) torque at 2000

(13.7 MPa) psi supply pressure is used. The motor weighs 57 lbs (25.9

Kg) and turns at 38 RPM @ 4 gpm (15 ipm). The weight of the elbow joint

(including the motors ) is on the order of 150 lbs (68 kg).

9.4.4 Shoulder and Base Swivel Joints

The shoulder joint is shown in Figure 9.14. The major moment at

this joint is 68" x50 lbs + 60" x30 lbs + 76" x200 lbs + 45" x10 lbs +

30"x150 lbs + 15"x15 lbs = 25,575 in-lbs (2890 Nt-m). The minor moment

is on the order of 25"x400 lbs = 10,000 in-lbs (1130 Nt-m). A

5"x5"x 1 /," (127x127x3.2 mm) aluminum box beam connects the shoulder and

the elbow joints, it has a design stress of 5000 psi (35 MPa). A 6.4:1

gear ratio is required at this joint, which is obtained by using a 3.5"

(89 mm) diameter pinion and a 22.4" (569 mm) pitch diameter gear. The

gear is integral with the bearing at this joint which is a Keene T8-

18E1. This bearing weighs 110 lbs, and has a moment capability of

113,000 ft-lbs (153,000 Nt-m). This is a large over-kill, but it is the
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smallest "large" diameter integral gear bearing available. A Char Lynn

600 series 60 in3/rev geroler motor with 9550 in-lbs (1079 Nt-m) of

torque at 1250 psi (8.6 MPa) is used. The motor weighs 68 lbs (31 kg)

and turns at 14 RPM at 4 gpm (15 ipm).

The base swivel joint uses the same bearing and motor as the

shoulder joint. The housing can be constructed of 1/4" (6 mm) aluminum

plate with stiffeners.

9.4.5 Summary of Structural System Design

The conceptual design of a robot with 76" (1.93 m) reach (base to

center of end effector) was presented. The robot has a end-force

capability of 200 lbs (90.7 kg). The approximate weight consists of:

325 lbs (147 kg) of bearings and gears, 175 pounds (79 kg) of motors,

and 300 pounds (136 kg) of structure and miscellaneous items. Thus the

payload to weight ratio of this 800 pound (363 kg) robot is 4:1

(static).

The design is double jointed, and its success depends on the

ability to control a geroler motor with a hydraulic servoloop. In the

event that the latter is not possible, hydraulic cylinders can be used

with no loss in payload to weight values, but it will no longer be

double jointed (it will become like any other robot).

393



9.5 Remarks

The accuracy of the endpoint feedback signal was predicted to be

.000284" (7.1 jm). The structure, which has a 200 pound (91 kg), weighs

800 pounds (364 kg). Thus an order of magnitude increase in structural

performance and a two to three order of magnitude increase in accuracy

over existing robots was predicted. This will allow a robot to be built

that will be lightweight and fast, with the ability to perform most

machining operations (that have low reaction force) with tolerances on

the order of .001" (.0254 mm).
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Chapter 10

Thesis Summary and Conclusions

10.1 Summary of Experiments to Determine POSOR Performance

The results of the experiments to determine POSOR performance are

best summarized by Table 8.2. The POSOR measured the angles a and 8

quite well (within the predicted limits of accuracy of the test setup)

except for the 8 motion during the TWIS test. These good results,

however, depended on the determination (digitally) of the small (a few

tenths of a volt) voltage shifts in the probes' zeroes.

The 0 measurements, which were measured by the lateral effect diode

system, were poor (but predictable) and the cause was traceable to the

calibration stage. Thus all the tests produced errors that were within

a few standard deviations of those predicted. Based on these results,

the methodology of the error analysis of Chapter 5 appears correct, and

the POSOR's performance for the multi degree-of-freedom tests was

similar to that of the single degree-of-freedom tests. This indicates

that there is little coupling between the measured degrees of freedom.

From the error analysis presented in Chapter 5, the dominant errors

were shown to be due to sensor inaccuracies. With regard to the im-

pedance probes, it was the zero drift problem which caused 90% of the

system error. This error, however, was compensated for in the analysis
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programs. With regard to the lateral effect diode system, the error

introduced by the calibration stage accounted for 95% of the system

error that was predicted. It is also believed that foreign matter on

the diodes (which can cause reflections and shift the center of inten-

sity of the light source) accounted for a significant part of the error

in the experiments.

Finally, note that the average endpoint error measured by the

impedance system was .000625" (16 pm), and that of the lateral effect

diode system was .008929" (.226 mm). If one still ponders how the

measuring beam system would work in a real live robot, consider that the

measuring beam was 30" (.762 m) long and the POSOR was only 3" (.0762 m)

in diameter. Thus even if scaled up to a robot with a 90" reach, the

system in question would be one to two orders of magnitude more accurate

than any existing robot.

10.2 Summary of Conceptual Robot Design Parameters

The conceptual design of a robot with 76" (1.93 m) reach (base to

center of end effector) was presented. The robot has an end-force

capability of 200 lbs (91 kg). The approximate weight consists of: 325

lbs (147 kg) of bearings and gears, 175 lbs (79 kg) of motors, and 300

lbs (136 kg) of structure and miscellaneous items. Thus the payload to

weight ratio of this 800 pound (363 kg) robot is 4:1 (static).

The design is double jointed, and its success depends on the

ability to control a geroler motor with a hydraulic servoloop. In the
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event that the latter is not possible, hydraulic cylinders and/or vane

actuators can be used with no loss in payload to weight values, but the

robot will no longer be double jointed (it will become like any other

robot).

The accuracy of the endpoint feedback signal was predicted to be

.000284" (7.1 uim). Thus an order of magnitude increase in structural

performance and a two to three order of magnitude increase in accuracy

over existing robots was predicted

10.3 Thesis Summary

This thesis focused on methods of increasing the accuracy of ar-

ticulated structures. Sources of measurement error in articulated

structures were first identified. Various state of the art motion

measuring methods were reviewed and none were found to be entirely

suitable for use with articulated structures. Accordingly, a six degree

of freedom motion measuring system was developed that relied directly

(only) on the stability and accuracy of non-contact displacement measur-

ing sensors. The design is also flexible enough to allow for the

introduction of new types of sensors as they become available. A model

was tested on a simulated one degree of freedom robot and the measured

errors were predicted by the error analysis. On the model tested, which

had the same error amplification factor as a robot with a 90" (2.2 m)

reach, endpoint error was on the order of .000625" (15.5 pm).

Subsequently, the errors present in the test system were identified, and

recommendations made to correct them. A conceptual robot design was

398



then presented which showed that a five axis robot with a 76" (1.9 m)

reach and 200 pound (91 kg) payload could be designed to have a payload

to weight ratio of 4:1 and an endpoint feedback accuracy of .000284"

(7.1 im), which is sufficient for most manufacturing processes the robot

may be required to perform. Thus by using the concepts developed, an

order of magnitude increase in structural performance and a two to three

order of magnitude increase in accuracy over existing robots was

attained.

10.4 Thesis Conclusions

Based on the work performed, the following conclusions are made:

1) The POSOR can measure five small and one large degree-of-freedom

simultaneously.

2) The POSOR's accuracy can be predicted using equations formulated and

data on individual sensor performance.

3) The measuring beam system used to support the POSOR can be designed

to support POSORs without deforming beyond a design threshold.

4) The measuring beam and POSOR combination can be used to accurately

determine an articulated structure's joint and endpoint orientation and

position in real time.

5) A robot that incorporates a measuring beam system can achieve ac-

curacies of .001" (.0254 mm) over a reach of 76" (1.9 m).

6) The fundamental accuracy of the measuring beam system is limited

only by the electronics of the system
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10.5 Recommendations

In view of the above, the following recommendations are made con-

cerning the future development of POSOR devices:

For the impedance probe system:

1) The oscillator demodulator unit must be replaced with a unit

that has no adjustable pots, and does not drift if bumped. More stable

electrical components should also be chosen.

2) The relative probe positions must be found while the angles a

and B are simultaneously measured with angular interferometers.

3) The probes must be secured in a stress free way (epoxied,

instead of held with nuts)

For the lateral effect diode system:

1) This type of system is suitable for use only in laboratory

environments (the diodes are very susceptible to contamination).

2) Stick mirror interferometers (allow direct measurement of

simultaneous X and Y stage motion) should be used to measure the stage

motion directly when mapping the diodes, so Abbe's offset error can be

reduced to microinches.

3) Stable laser light must be used as opposed to laser diodes;

however, it can be delivered to the required region by fiber optic

cables.
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In general, the light source-lateral effect diode system is a poor

choice. The bumpy ring sensor should be developed.

Finally, it is recommended that controls researchers begin to study

how to use the feedback data from the measuring beam system. It is also

recommended that a full scale robot be built that uses a measuring beam

system for joint and endpoint feedback.
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