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'ABSTRACT

Public facilities are characterized in this study by two
attributes, quality and capacity, whose values are assumed to change
over time due to natural factors, use and investments. It is also
assumed that the users of the facility obtain a private benefit
from the use of the facility, which is a function of the character-
istics mentioned above and the total number of users. The objective
is to find and analyze dynamic investment policies for quality and
capacity that maximize the present value of the net social benefits
derived from the operation of the public facility over a planning
period [O,T).

With this objective, dynamic models are developed using optimal
control theory formulations which consider the investments in quality
and capacity as control variables. Alternative assumptions are used
with respect to the continuity or discretness of the investments and
the dependence or independence between the demand for the facility
and its characteristics.

The models formulated are solved using different results of
optimal control theory. Necessary and sufficient conditions for
optimality are obtained in each case and economic interpretations
are given. These conditions describe optimal dynamic investment
rules not previously reported in the literature.
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I. INTRODUCTION

1. Scope of the Study

As the title reveals the objective of this work is the study

of dynamic optimal investment policies in public facilities, with

special consideration given to the transportation case. However,

this statement probably does not adequately convey an understanding

of the analyses attempted in the several chapters that follow. In

order to provide a better idea of the scope of the study we will give

here a brief explanation of what it is meant by each of the key words

appearing in the title.

The word "dynamic" has been extensively used in the economic

literature without always implying the same meaning and rather often

implying vague attributes of the analysis performed. In the words of

Professor Samuelson*, "we damm another man's theory by terming it static,

and advertise our own by calling it dynamic." Thus, it seems

appropriate to agree with Professor Marglin** in that, in view of

the loaded nature of the magic word "dynamic" it seems incumbent upon

anyone who would employ it to demonstrate that he intends something

more by its use that the distinction between bad and good. However,

one feels a certain dissatisfaction with his subsequent definition of

the word dynamic as merely a reference which"is supposed to convey

the idea that time enters in an essential way". This point of view

*See P.A. Samuelson, [1947], pp. 311

**See S.A. Marglin, [1963], pp. 1



is still too unprecise to explain what is meant by the word

dynamic in the title of this work.

We use the word dynamic to refer both to the systems under

study and to the policies proposed in order to influence their be-

havior. The systems that we study are dynamic in the sense that

their characteristics at any given time t will depend on the initial

conditions at a certain time to and the history of the policies

applied over influencing them throughout the planning horizon or

periLoc of analysis [to,t]. As we will see in Chapter III the

evolution of these systems will be governed by differential equations

that specify the rate of change in the values of the variables that

represent the main characteristics of the system. These rates of

change will be influenced by the application of different policies,

which will therefore, to some extent, determine the evolution of

the system. To these policies we also apply the adjective dynamic.

We claim also that we will focus on "optimal" policies. The

word optimal is obviously not justified in an absolute sense but

we use it to mean that, given a model specification, with all the

assumptions and simplifications that any modelling effort in

general requires, an optimization methodology will be applied in

order to obtain values for the independent policy variables used

in the specification of the model. Thus, given a sound specification,

the main characteristics of policies that optimize the behavior

of the system, with respect to a prespecified performance index,

should be obtained.



This study focuses on the analysis of investment policies in

public facilities, for which we take as a special case transportation

and construct illustrations and examples of the theory in terms of

transportation. Although the same, or similar, models to those

presented in the following-chapters could be applied to other public

facilities with similar economic characteristics to transportation,

such as those related to power generation, communications or public

recreation, a strong bias in the author's personal interests has

influenced the decision of concentrating on transportation facilities.

We will assume that the facilities considered are provided and

managed by some public authority. We will also assume that the

users of these facilities obtain a certain utility and perceive a

certain cost from the use of the facility. The cost perceived will

determine what we call the level of service provided by the facility.

If the cost is high the level of service will be low and vice versa.

On the other hand, we will assume that a facility can be characterized

at any time t by the values of two variables, one representing the

capacity of the facility and the other its quality. By capacity

we refer to the ability to accommodate a certain number of users

with an arbitrary prespecified level of service. If the capacity

is increased, eitehr the number of users accommodated could be in-

creased, maintaining the same level of service will be improved if the

number of users does not change. This trade-off is a consequence

of the existence of congestion externalities in the consumption of

the facility, a public good. The variable quality will represent

those characteristics of the facility that do not affect its capacity



but influences the level of service perceived by the users. In

general, the combination of the facility and its users will

define the system over which our analysis will concentrate.

The word investment is used in this work to represent any ex-

pendituremade by the public authority that manages the facility,

with the objective of modifying the capacity or quality of the

facility. An investment policy will be represented by a series

of outlays indexed by time within the period of analysis [t,T].

2. Methodology

The features of dynamic investment decisions that we have

briefly described are difficult to handle with the usual linear

or non-linear programming techniques commonly used in static optimi-

zation. However, modern control theory, as we shall see in the

following chapters, provides a natural framework for the analysis

of the type of problems in which we are interested. All the models

that we use,in order to analyze dynamic investment policies under

different circumstances,are formulated as optimal control models.

Actually, one of our objectives throughout this study has been to

investigate the potentialities of this technique for the analysis

of the type of problems described. Different model formulations

that make use of special results of optimal control theory have

been utilized in order to handle special characteristics of the

problems studied. The treatment presented is in this sense new

and has not been attempted before in the economics or transportation

literature.



When an optimization technique is applied to any problem

the main task is to find the necessary and sufficient conditions

that characterize the optimal'solution. If the problem at hand

has a simple structure, these conditions can sometimes be solved

analytically in terms of the unknowns with respect to which the

optimization is being performed. Even if this is not the case,

such conditions are still the fundamental base for the development

of algorithms that could provide numerical solutions in special

cases. Moreover, even though these optimality conditions may not

be solvable analytically they are of value in themselves. In

economic problems, like those treated in this study, their careful

interpretation can provide important insights about the structure

and characteristics of the optimum solutions. It should be re-

membered that many times models are developed not to provide

solutions which are followed to the letter, but to provide additional

information that together with all other pieces of information

available helps to improve the process of decision making.

3 . Organization and Plan of the Study

The remainder of this study is comprised of three main parts.

The first one corresponds to Chapter II in which the main results

of control theory to be used in the following chapters are set

forth. The principal elements of control models are presented

and necessary conditions for optimality are derived in a heuristic

way for different dynamic models formulations to be used later.

At the end of the chapter, a useful sufficiency theorem is stated.



The second part, comprised of Chapters III to V, is mainly dedicated

to the theoretical analysis of the characteristics of optimal

investments in quality and capacity under different general

assumptions. In Chapter IIIoptimal investments in quality are

studied. Quality is considered there as a continuous variable

whose evolution over time is defined by a general deterioration

function. In the first part of the chapter, it is assumed that

demand is externally specified and independent of the quality of

the facility. In the second part this assumption is relaxed by the

introduction of a dynamic equation that links demand to quality.

The third part extends the models studied to the consideration of

different types of users. Finally, sufficient conditions for

optimality are derived at the end of the chapter.

Chapter IVis devoted to the analysis of optimal investments

in capacity. A dynamic model is set forth assuming general con-

struction and operating cost functions and taking capacity as a

continuous variable. Optimal dynamic investment policies are

derived and given economic interpretations. In the last part of the

chapter the results obtained are applied to different special cases

of interest which have been considered in the economic literature

previously.

Chapter V presents a model formulation in which quality and

capacity are taken simultaneously as decision variables. Capacity

is considered an absolutely discrete variable that can take only

certain prespecified values. Quality is assumed to be a piece-wise



continuous variable that can manifest discontinuities at the times

that capacity is changed. Optimal staging policies for quality

and capacity are obtained and given economic interpretations.

The third part of the study is comprised by Chapters VI and VII.

Here a more applied approach is taken in order to derive decision

rules or solution algorithms in special cases. Chapter VI studies

the influence of demand-quality interrelations in the time staging

of transport facilities. An optimal staging rule is derived and

given economic interpretation. Sufficiency conditions under which

the rule proposed is optimal are analyzed. Finally, a numerical

example is developed in order to compare the results given by the

rule proposed with those obtained from the application of rules

available in the literature.

Chapter VII shows how to use the models developed in Chapter II

in order to obtain solutions in a special case. With this purpose,

the problem of determining optimal maintenance policies for a road

is studied. Linear functional forms are assumed for the dynamics

of quality and demand and the corresponding optimal maintenance

policies are obtained. Then a method to obtain numerical solutions

for a particular case is developed and a numerical algorithm is

proposed.

Finally, in Chapter VIII a summary of the main conclusions is

presented and suggestions for further research are provided.



I. OPTIMAL CONTROL MODELS

1. Introduction

The principal aim of this chapter is to present and describe

the main results of control theory which are relevant for the later

chapters. Some of these results, such as those related to singular

controls (analyzed in Section 3.2) and to model formulations that

allow discontinuities in the state variables and system equations

(Section 3.3) on which Chapters 4 to 7 heavily rely, correspond to

rather special results that may be difficult for the unfamiliar reader

to find in the literature. Nevertheless, the presentation here is

basically heuristic; the reader who wishes to see rigorous proofs

of the results presented should consult the control theory texts re-

ferenced in the bibliography.

We begin by describing the main elements of control models in

Section 2. In Section 3 we present the model formulations used in

later chapters and the necessary conditions corresponding to their

optimum solutions. In Section 4, we make use of some special results

in order to give a general economic interpretation for the adjoint

variables and the Hamiltonian. Finally, in Section 5 we present with-

out any proof the Arrow theorem that is used in later chapters to

derive sufficiency conditions for optimality.

The notation used throughout this chapter assumes that all

vectors are column vectors, with exception of the gradients of any

function which are assumed to be row vectors. Thenk if two vectors

x and y exist in the same space Rn, x'y or y'x will denote the

cartesian product, unless x represents a gradient of some function,



in which case will write xy or y'x'.

2. Elements of Control Models

Control theory deals with dynamic systems. Its objective is to

find ways to optimize the evolution of a system over a certain period

of time [to T] according to a given pre-specified criterion. Any

system, be it physical, economic, or other, can in general be des-

cribed at a given time t in terms of a set of variables of interest

y (t) = (Yl(t),.....,yN(t)). If all of these variables were out of

our control (e.g. we cannot set the values of any of them) we would

have a completely uncontrollable system from our point of view. The

most we can hope for with respect to such a system is to develop a

descriptive model of its behavior. The movement of celestial bodies

could be a good example of this case. However, most of the systems

that engineers and economists deal with are not of this type. In

general, certain attributes of the system, represented by some of the

variables yi, can be controlled and through the interrelations of

these with the rest of the variables, the behavior of the whole system

can be influenced. There are still cases in which it doesn't matter

that we can control the values of selected variables, the system is

not controllable in a certain sense. The notion of controllability

is a very important one in the study of dynamic systems and precise

mathematical statements have been developed to define it. Neverthe-

less, we will not go into them here, given that we do not make any

explicit use of them later. The reader interested in the topic can



consult introductory books in dynamic systems. All that we use in

later chapters is the idea that the result of the application of the

criterion used to evaluate the system can be influenced, by the

manipulation of the controllable variables, and therefore the

behavior of the system can be optimized with respect to this

criterion.

We will denote by V(t) = (Vl(t),...,Vm(t)), with m < N, the set

of variables yi that we can manipulate, which will receive the name of

"control variables". The rest of the variables yi will be represented

by the vector x(t) = (x1(t),.....,x (t)), with n = N-m, and will be

called "state variables". We will have then

y(t) = (x(t),V(t)), y E RN, X e Rn, V E Rm,

Vt [to,T] " ,(2-)

where Rr denotes the space of r-dimensional vectors.

Thus, the first task in the specification of a control model is

to select a set of variables y(t) that can adequately describe the

system of interest at any time t within [t ,T]. The second step is

to classify these variables into "controls" and "states". Sometimes

this classification can be obvious from the characteristics of the

variables involved. However, in itself and from the point of view

of the model it is an arbitrary decision and will depend on the

objectives of the analysis.

The next task is to define a model which indicates how the

values of the state variables x(t) evolve with time. In all contin-



uous-time control models it is considered that evolution of the

system of interest can be described by a system of ordinary dif-

ferential equations

dx(t)/dt = x(t) = f(x(t),V(t),t), t C [t o T] ,(2-2)

x(O) = xo

where in this case the function f: Rn+m+l + Rn provides a dynamic

description of the system. Given the value of the states and the

controls at a certain time t, (2-2) gives us the instantaneous rate

of change in the value of the state variables. Also, if the function

f is valid for all t in [to,T] and we know the values of the state

variables, x , at the initial time, the whole path x(.) followed

by the state' variables can be obtained through the integration of

(2-2), provided that the values of the controls are specified for all

t in [to,T] and the following conditions are satisfied (see Athans

and Falb [1966]).

1. The functions fi(x,V,t), afi(x,V,t)/axj and
afi(x,V,t)/at,(i,j = l,...,n) are continuous in
[to,T].

2. V(t) is a piecewise continuous function mapping
from [to,T] into Rm.

Therefore, it is not necessary that the controls V(t) be con-

tinuous over all [to,T ] . Only the weaker condition of piecewise

continuity is required. This is a general characteristic of all



continuous time control models. In most cases, the values permitted

are also subject to constraints of the form

V(t) C W(t), t [toT ,(2-3)

where ( is a subset of Rm. It may also happen that all possible

values of the states are not permitted, a requirement which can be

expressed in a similar fashion as

x(t) e X (t), t C [toT] ,(2-4)

where X is a subset of Rn. The sets Q and X are called the set of

admissible controls and admissible states respectively. An important

special case of (2-4) is

[p [x(T)] = 0, x(t) E Rn  V t ý T ,(2-5)

indicating that the final state x(T) is constrained to those values

defined by * = 0, but the state at all other times is unrestricted.

The object of control theory is to choose the control function

V(.) in order to optimize a stated objective function or measure

of performance. The performance index is assumed to be of the form

J = k (x(T),T) + fT L(x(t),V(t),t)dt ,(2-6)
to

where k is a terminal payoff, that is assumed to be function of the



value taken by the state variables at the final time T and of the

value of T in itself. L is an instantaneous performance index,

evaluated at each time t in [toT], which is a function of the values

taken by the states and the controls at the time and also of the value

of t. Therefore, the value of J will depend on the values taken by

the controls through the whole period [toT] and the specific path

followed by the state variables x(t) during the same period. This

path is defined by (2-2) for a given control function V(.). The

inclusion of k in (2-6) allows one to give a special weight to the

values taken by the state variables at time T.

We will assume in general that the functions L and k satisfy the

following conditions:

1. The functions L (x,V,t)/ax and 9L(x,V,t)/9t

are continuous in the interval for which

(2-6) is defined.

2. The functions k, ak/ax, fk/Dt, ýx/(ýxat),

ak2/Bx2 and ak2/;t2 are also continuous.

For the analysis of economic systems, both k and L will

represent benefits or costs depending on the case. In the analyses

presented in subsequent chapters, J will always represent total

benefits perceived from the operation of the system during the period

[t ,T] and therefore the problem will be formulated as

Max. J; s.t. (2-2), (2-3) and (2-4). (2-7)

An important element of any control model is what is called

22



the Hamiltonian function, which is defined as

H(t) -L (x(t),V(t),t) +'X(t)f(x(t),V(t),t), t E [to,T] , (2-8)

where L and f are the functions defined in (2-6) and (2-2) and X(t):

[to,T] + Rn. The Hamiltonian plays a role in control models similar

to that of Lagrangian in programming models; consequently, we can

think of a X as a dynamic generalization of the Lagrangian multiplier.

These dynamic multipliers which receive the name of adjoint variables

will be explicitly defined in the following sections, when we develop

necessary conditions for optimality. A general economic interpretation

will be also provided in Section 4. The Hamiltonian function, though

mainly defined for notational convenience, can also be shown to have

a general economic interpretation.

3. Necessary Conditions for Optimality

In this section we will develop necessary conditions for op-

timality for those model formulations used in later chapters. As we

said before, the approach will be heuristic and we refer the

reader to the relevant formal proofs in the literature. Our aim is

to give an intuitive feeling for why the results presented hold and

to motivate their later use. With this purpose we will make the

derivations using only variational techniques.



3.1 Continuous Systems with Final State Constraints and Free
Terminal Time.*

We will assume here that the continuity assumptions formulated

in Section 2 for the functions L(x,V,t) and f(x,V,t) hold for all t

in [t ,T]. Our problem will be formulated as

Max. J = k(x(T),T) + fT L(x(t),V(t),t)dt,(3-)
to

subject to:

x = f(x(t),V(t),t) ,(3-2)

y(x(T),T) = 0, 4 : Rn+ l + Rr ,(3-3)

where (3-3) defines r general conditions that the state variables

have to satisfy at time T. We will consider that this final time is

unspecified.

The main idea is to introduce two sets of multipliers v and X(t)

that allow us to adjoin the equations (3-2) and (3-3) to the per-

formance index (3-1), creating a function similar to the Lagrangian

used in static optimization, and then to analyze the variations

of this function around an optimal solution. Let v be a vector

representing the r multipliers associated with the r equations (3-3).

Given that these equations are static conditions at time T, v will

actually be a vector of normal Lagrangian multipliers that take into

(*)The developments of this section are based on the work of J.V.
Breakwell, [1959], as described in Bryson and Ho [1975].

24



account the influence of variations in the-constraints (3-3) on

the optimum value of the performance index. Let X be a vector of n

multipliers each of them associated with one of the dynamic equations

(3-2). Since these equations can be interpreted as an infinity of

static constraints indexed by t, these multipliers must be functions

of time and will therefore be time-varying analogs of Lagrangian

multipliers.

Adjoining the constraints (3-3) and the system differential

equations (3-2) to the performance index by means of the multipliers

v and X (t) we obtain

J = [k + v'i]

+ fT {L(x,V,t) + X'[f(x,V,t) - x]}dt. (3-5)
to

Now paraphrasing the theory of Lagrangian multipliers, it follows

that in order for V(.) and x(.) to be an optimal control and an

optimal trajectory, the variations dJ of (3-5) around the optimal

solution must be equal to zero.

The differential of (3-5), taking into account differential

changes of x, V, to and T can be written as

dJ = [Dt(T) + L(T)dT + x(T)dx] - L(t )dto

+ fT (Hxg x + HV6V - h'6x)dt ,(3-6)
to

where we have used the definition of H(t) given in (2-8) and the

following notation:



Q(T) = k(x(T),T) + v'"(x(T),T)

H = 2H/9x,
x

H' = OH/'V
=v H•

and 6x, the variation in x, means "for time held fixed." Therefore

dx, the total differential in x, may be written for any time t

dx(t) = 6x(t) + x(t)dt ,(3-8)

Now, integrating the term -6'x by parts in (3-6) we obtain

-IT (X'~x)dt = X'(tn)6x(t.) - X'(T)6x(T)

+ /T (X'6x)dt ,(3-9)

Thus, if we make use of (3-9), to replace the third term of the

integral in (3-6) and of the following relations obtained from

(3-8)

6x(T) = dx(T) - x(T)dT

6x(t ) = dx(t ) - x(t )dt ,

we can write dJ as

,(3-7)

v v



dJ = [ t(T) + L(T) + X'(T)x(T)]dt

+ [ x(T) - X'(T)] dx(T) + A'(t )dx(t ) (310)

-[L(t ) + X'(t )x(t )] dt0

+ iT [(Hx + X')6x + Hv6V]dt
to

We have therefore the variation of J expressed in terms of

variations of the variables x(t ), x(T), x(t), V(t), to and T.

If any of these variables is given, its value will be fixed and

the corresponding variation will be zero causing the term which

it is multiplying to disappear (e.g. if xo and to are given, then

the third and fourth terms in the right hand side of (3-10) will

disappear). If all mentioned variables are assumed free (their

values are not externally specified as data), at an optimum solution

the value of dJ must be equal to zero for all possible values of

dt , dT, dx(t ), dx(T), 6x(.) and 6V(.). This implies that the

coefficients of all these variations in (3-10) must be zero, other-

wise we could always find a set of variations for which dJ > 0.

This leads to the following necessary conditions:

X = -Hx = -Lx - X'f V t [t,T] ,(3-11)

which are called adjoint equations and must satisfy the boundary

conditions:

X(T) = Qx(T) = kx(T) + v'yx(T) ,(3-12)



usually called transversality conditions.

If the final time T is free, a necessary condition for an

optimum value of this variable can be derived by setting the co-

efficient of dT in (3-10) equal to zero to obtain:

Ot(T) = -H(T) = -L(T) - X'(T)f(T). (3-13)

Similarly, if to and x(to) are not specified, necessary conditions

for optimality in these variables are given by:

H(to) = L(to) + x'(to)f(to) = 0 (3-14)

X(to ) = 0 . (3-15)

Obviously, if to and x(t ) are given then dto and dx(to) are

identically zero and therefore X(t ) and H(to) can take any value.

Finally, if no constraints exist for V(t), the variations 16V

can also be arbitrary (within the restrictions imposed by the piece-

wise continuity characteristic that we required in Section 2) and

therefore itscoefficient in (3-10) must also vanish giving:

HV(x*,X*,V,t) = 0, V t e [to,T] ,(3-16)

where the * means that x and X satisfy the equations (3-2) and

(3-11, 3-12) respectively. Notice that by using the definition of

the Hamiltonian, we can rewrite (3-2) as



x = HX(x,X,V,t), V t 1 [to T] ,(3-17)

which is in a sense symmetrical with respect to condition (3-11).

Condition (3-16) implies that at an optimum solution, the Hamiltonian

obtains an extremum value with respect to the control V for all t in

[toT]. Pontryagin's maximum principle guarantees in addition that

this extremum must correspond to a maximum value of the Hamiltonian

with respect to the control (Pontryagin et.al. [1964]).

Until now we have assumed that there are no constraints on

the values which the state variables and the controls can take. If

we introduce control constraints of the form:

V(t) e , V t [toET]

where 2 is a convex set and &cRm, then the variations 6V(t) in

(3-10) are no longer arbitrary. For instance, if the optimal control

is located over a boundary of S2, only variations of V toward the

interior of 2 can be considered. In this case the condition dJ = 0

at an optimum solution must be replaced by the condition dJ _ 0,

given that we have a maximization formulation in (3-1). Because

all the other variables considered are unconstrained their variations

are still arbitrary and therefore their coefficients in (3-10) must

vanish as before. Thus, the necessary conditions (3-11) to (3-15)

are still valid. As a result of that we can write:

dJ = IT (HVGV) dt = 0 ,(3-18)
to



at an optimum solution. This condition will be satisfied for all

admissible variations 6V if

HvSV < 0, Vt [t ,T] ,(3-19)

V*

6V= (V-V ), V

which is a necessary condition for the maximization of the function H

with respect to the variable V over the convex set Q at each time

t : [to,T] (see Luenberger, [1973]). Therefore, the maximization

of the Hamiltonian as a necessary condition for optimality also

carries over to this more general case.

3.2 Linear Systems and Singular Controls*

In this section we will analyze a very important special case

that appears when both the dynamic equations and the integrand of the

objective function are linear in the controls. It is easy to see

that then the Hamiltonian will also be linear in the controls and

can be written as:

H = L(x,V,t) + X'f(x,V,t)

= G(x,X,t) + V'F(x,X,t); G: R2n+l - R , F : R2n+1R m,(3-20)

where G and F can be in the general case non-linear functions of x but

'This section is mainly based on the treatments for linear control
problems presented in Athans and Falb [1966] and Bryson and Ho [1975].
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independent of V.

Obviously, all the necessary conditions developed in the

preceding section are valid for this special case. In particular,

at an optimal solution the Hamiltonian must attain a maximum with

respect to V, for each t in [to,T]. Nevertheless, a problem appears

now in satisfying this necessary condition. We know that linear

functions never attain a maximum in Rm with respect to those variables

for which the slope of the corresponding hyperplane is different from

zero and for those which slope is zero any value in R1 corresponds

to a maximum. In order to avoid notational complications we will

assume in the subsequent discussion that our problem has a single

control. The concepts are the same for problems with many control

variables. Then, the variable V will exist in Rl, the function f will

be a mapping from Rn+2 to Rn and the functions G and F will be mappings

from Rn+ 2 to Rl. Thus, if no additional constraints are defined for

the states and/or the control, the necessary condition requiring

the maximization of the Hamiltonian does not provide any useful

information to characterize the optimal control. Actually, if the

functions L and f (and therefore also G and F) are simultaneously

linear in the states and the control (with F independent of x), the

control problem will be completely linear and a maximum does not exist,

unless constraints are imposed on x and/or V.

In this and subsequent chapters we only deal with control

constraints whose general form will be:

V(t) C , V t [to,T] (3-21)

0 = {V(t):m(t) < V(t) < M(t), t [to,T]}
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Then, the condition of maximizing the Hamiltonian subject to the

constraint V(t) E 2 gives the following functional form for the

optimal control V (.).

M(t) ,if F(t) > 0
V (t) =  m(t) ,if F(t) < 0

undetermined, if F(t) = 0 (3-22)

If the Hamiltonian is completely linear in the states and the

control, it is reasonable to expect that the maximum solution to our

problem will always require the control variable to be at one point

or another on the boundary of the feasible region £. In general,

one or more changes in control, from one point on the boundary to

another point on the boundary, will occur during the time of operation

of the system. The times, t, at which thecontrol switches are

identified by the condition F(t) = 0 and will correspond to only a

countable set in [toT]. The optimal controls thus defined receive

the name of "bang-bang" controls. In later chapters we will also call

bang-bang those portions of an optimal control history during which

the control obtains the value of one of the boundaries of its feasible

region.

Nevertheless, if the Hamiltonian is non-linear in the state

variable x, or presents cross terms in the state and control, the

value of F(t) can vanish identically over a finite interval of time in

[to,T] and then (3-22) does not provide a complete definition of V (t)

along [to,T]. The portions of the optimal trajectory of the system

for which F(t) = 0 are called "singular arcs". In that case, we



must manipulate the other necessary conditions provided in Section 3.1

in order to determine the optimal value of the control, along the

singular arc, which will receive the name of singular control.

Given that the dynamic equation and the performance index are

linear in the control, we can write:

f = a(x,t) + Vb(x,t) (3-23)

with, a : Rn+1 - Rn; b : Rn+l + Rn

L = c(x,t) + Vd(x,t) (3-24)

with, c : Rn+ R

Then the expression of the Hamiltonian becomes:

H = (c + X'a) + V(d + X'b) (3-25)

where according to our previous notation in (3-20)

G = c + X'a; F = d + X'b

Also the gradient of the Hamiltonian will be:

HV = F = d + X'b (3-26)

If the gradient of the Hamiltonian vanishes identically on a singular

arc, its value during this period will be constant and equal to zero

and therefore all its time derivatives must also vanish during the



same period. We will use this property in order to derive an

expression for the singular control, Vs . Thus, the first necessary

condition for a singular arc will be:

F = d + X'b = 0, or, X'b = - d, V t E (tlt 2], (3-27)

where (tl,t 2 ) is a sub-interval of [to,T].

first time derivative of F, we will have:

F = d x + dt + b'X + X'(b x + bt)

Then, if we take the

= 0. (3-28)

However, from necessary condition (3-12) we obtain that:

X = - H = -c' - a'x1 - V(d' + b').x x x x x

and using

can write

(3-29)

(3-23) and (3-29) to eliminate x and X from (3-28) we

F as:

F = dxa - cxb + dt + X'(bxa - axb + bt) = 0+bt)= (3-30)

where, bx is the Jacobian matrix of b with respect to x, ax is the

Jacobian of a with respect to x,cx is the gradient of c with

respect to x and dx is the gradient of d with respect to x. Note that

still the control Vs does not appear explicityly in (3-30). If the

reader follows the derivation of (3-30) from (3-28) he will notice

that the reason is that it is multiplied by a factor that is identi-

cally zero. This is in general a characteristic of the first
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derivative of the Hamiltonian along a singular arc. Therefore,

(3-30), although it constitutes a new necessary condition for the

existence of a singular control, does not provide an explicit ex-

pression for it. New derivatives must be taken in order to obtain

that expression, if it exists. Nevertheless, before doing that let

us use expression (3-30)in order to show some assertions made earlier

with respect to the completely linear case.

If the problem is completely linear in the states and the

control, the functionsb and d must be independent of the states x

(otherwise cross-terms in the states and control would appear, and

the problem would not be completely linear). In addition, the Jacobian

ax and the gradient cx will only be functions of t (because a and c

are linear functions of x). Therefore we will have:

d'a = ; ba = {0}x x

and cxb, axb, dt and bt are only functions of time. Therefore (3-30)

can be written as:

O(t) + A'n(t) = 0 (3-31)

where

E(t) = - Cxb + dt; n(t) = {-axb + bt).

From (3-27) we also have that X' will be a function of t only

along the singular arc and therefore (3-31) will be an equation in t

that in general will be satisfied for a countable number of points

t in [toT3. Therefore no singular arc or singular control exists



in that case and the solution must be purely bang-bang.

Going back to the general case we can take a new time

derivative of F to obtain:

F = a'dxxx + dxta + dxaxx + dxa t

+ b'xxx + xtb + cxbxx + cxbt

+ dtt + X'(b a - axb + b.)
tt x x 6

+ ( Z X.a'b )x - (z XVb'a. )x
1 I xx 1 ixx

+ Xl(bxaxx - axb x + bxta + bxa t

- axtb - axbt + btt) = 0
(3-32)

where dxx, cxx, bix x and aix x are the Hessian matricies of the

functions d, c, bi and ai respectively. If we rearrange terms in

(3-32) we can write:

F = e'x + X'g + h = 0

e'(x,X,t) = a'd + b'C + cb

n n
+ (EXa'b ixx) - (EXib'aixx)

1 1

+ X'(bxax - axb x

gCx,t), = bxa - axb + bt

where

(3-33)

0



h(x,A,t) = dxta + dxat + cxtb + cxbt + dtt

+ , (b a + ba - a b - ab t + btt).

xt xeliminate xt xtand from (3-33) we hattve

Upon using (3-23) and (3-29) to eliminate x and X from (3-33) we have:

where

F = ý2(x,s,t) + VsY 2 (x,X,t) = 0

2 = e'a + h - (c - X'a )g2x x

(3-34)

ý2 = e'b - (dx + X'bx ) g.

In general, the coefficient of Vs, ý2' will not be zero for all t E

(t l t 2 ). When 12 ý 0, we can solve equation (3-34) for Vs , to find

that

Vs = 2(x,1,t)/•2(x,X,t). (3-35)

If, on the other hand 2 = 0, then equation (3-34) reduces to

F '= 2 (x,X,t) = 0 (3-36)

and we must take new derivatives of F until for some ith derivative

we find a function 9k ý 0 that allows us to obtain an explicit

expression for the singular control VSs

Vs k (x,1,t)/3(x3,7t))
s k ''

,(3-37)



The reader can appreciate the notational difficulties involved in

the computation of the higher derivatives in terms of the original

functions a, b, c and d.

It is important to note that if an explicit expression for Vs is

obtained at the kth derivative of F with respect to time, the equations

0i (x,X,t) = 0, i = 0, l,...,(k-l) ,(3-38)

constitute k necessary conditions for the existence of the singular

control Vs. In the case of economic problems, these necessary

conditions can provide economic interpretations for the optimum

policies along a singular arc, as we will see in Chapters 4 and 7.

In Section 3.1 we saw that a necessary condition for an optimum

solution to control problems is the maximization of the Hamiltonian

with respect to the control variables. As we have just seen in this

section, an expression for a singular control is obtained from the

condition:

Hv = F = 0, V t (t lt 2 )  ,(3-39)

which only constitutes a first order necessary condition for the

maximization of the Hamiltonian along a singular arc. A second

order necessary condition for maximization is in general provided by

the concavity condition:

(*)Note that 6 = 0 and ql = 0 are definedin (3-27) and (3-30)
respectively



H < 0. (3-40)VV =

For singular arcs, HVV 0 O, so condition (3-40) yields no use-

ful information. A more useful condition for this case was derived

by Tait [1965]; Kelley, Kopp, and Moyer [1966]; and Robbins [1965].

Its derivation using variational techniques is far from being straight

forward and can be found in Bryson and Ho [1975], so we will only

give here the statement that will be used in the following chapters.

For a maximization problem with a single control variable the condition

can be stated as:

(-1) k/ 2  - (d/dt) kH] < 0 ,(3-41)

which in terms of our notation in the present section can be written

as:

(-1) k/2k(x,x,t) 5 0 ,(3-42)

where k is the order of the time derivative of F at which si 0

for the first time.

Thus, for problems that are linear in the controls but present

non-linearities in the states, or cross-terms in the states and

controls, the functional form of the optimal control V can be

written as:



i|M(t), if F(t) > 0
S(t) =m(t), if F(t) < 0 (3-43)

/6k/k,"if F(t) = 0

It is worth noting that the singular control is also constrained

to be within 2 (see, 3-21). If the problem is completely linear in

the states and controls, the condition F(t) = 0 will be attained at

most at a countable number of times in [t ,T] and the expression of

the optimal control can be simplified to:

V (t) (t) if F(t) > 0 (3-44)m(t), if F(t) < 0

3.3 Systems with Discontinuities in the State Variables and System
Eauations

Some models that we will analyze in this thesis (see, Chapters 5

and 6) present discontinuities in the state variables as well as

discontinuities of the system equations at interior points in [t oT].

Furthermore, the performance index on the constraints may be functions

of the state and/or time at several discrete points in [t ,T]. In

that case we can partition the interval [t oT] in N sub-intervals

Ctit1 t), (i = 1,....N) where tN = T and ti (i = l,...,(N-l))are

the above mentioned interior points of discontinuity. Now the

continuity assumptions formulated in Section 2 for the functions

L(x,V,t) and f(x,V,t) will hold within each sub-interval (t 1 ,t )

and the problem can be formulated as:



N
Max: J = k.(x(ti), x(ti), ti)

i=O

N -
+ /i L.(x(t),V(t),t)dt ,(3-45)

i=l -+

subject to:

x = fi(x,V,t); ti- l < t < t i ,  i = ,...,N ,(3-46)

L.j(x(t ),x(t ),tj) = 0, j = 0,....,N ,(3-47)

where (3-47) defines general conditions that the state variables have

to satisfy at the points tj, j = 1,....,N. The notation ti and t i

is used to represent the moments just before and after t = t i .

In this case the set of variables that we wish to optimize is

(x(t);V(t); ti.i = 0,....,N). Necessary conditions ftr a maximum of J

defined in (3-45), with respect to these variables can be derived

by adjoining (3-46) and (3-47) to (3-45) by Lagrangian multiplier

functions X(t) and constant Lagrangian multipliers v. respectively:

N
J = z [ki + V! i]

i=O

N
+ ti {L i(x,V,t) + X' [fi(x,V,t) - x]} dt . (3-48)

i=l +
i-l

Now we can use the same variational procedure of Section 3.1

to obtain necessary conditions for optimality. It consists in

producing variations of the independent variables around an optimal

solution and analyzing the corresponding variations dJ for the



Lagrangian represented in (3-48).

the notation we will define:

As in Section 3.1, to simplify

+'U '~.(X(t:i x~Ei (ki(x(i)'x(tt ' )'ti)

Hi E Li(x,V,t ) + A'fi(xV,te)

is the Hamiltonian for the interval

(3-49)

,(3-50)

[tii- ,ti]. Then, the

first variation of J, taking into account variations of x(t), x(ti),
1

x(t ), V(t) and ti, (i = 0,...,N), can be written as:

~++ 4 dx(t )]
x d

N
+ i

i--1

N
+ 1
i=l

[Hi (ti)

rti [Hx
+ x
i-l

- x'x(t )]dt i

6x + i
Ox + HV

- [Hi (t_ )- x(i )]dti_ 1

sV - X'~x] dt ,(3-51)

where we have used the following notation

t: (a3i/ati)

1i-
0x :

[a4, ./ax(t)),1

H = (aHi/8x),

i+ [a@i/ax(t )++ i
=

(.Hi//V) .

Now, if we use the intergration by parts:

where Hi

N
dJ -=

i=O

i
1 dt i + Qýx dx(t:)1



t + t+
- 1i (x'6x) dt '(ti- ) 6x(t - i( ) 6x(t•)

titl

+ /ti (i'6x) dt ,(3-52)
+
ti-1

and the relations:

dx(t,) = 6x(ti) + x(t ) dti ,(3-53)
+ + +dx(t ) = 6x(t, ) + x(t ) dti

in expression (3-51) and regroup terms, we have:

N
dJl + Hi (t) Hi+l(t )] dt.

i=0

N N-1L
+ - -x( )] dx(t) + i [ + X'(t ) dx(t( )i~ X 1 1 i =O X 1 1i=l i=O

N t-
+ Z fi [X' + H )6x + H V] dt (3-54)

i=l t
i-l

As in Section 3.1, the first variation of the Lagragian, dJ, has

to vanish at an optimum solution, for arbitrary variations of the

independent variables, if no path constraints exist for the state

variables x(t) and the control variables V(t). This requires that

the coefficients of dti, dx(ti), dx(t ), 6x and 6V in (3-54) be

equal to zero, which provides the following necessary optimality



conditions:

j -.' = -H ; t' < t < t , (i = 1,...,N)

(t) + vi ; i = 0,...i x x x x

k + V Hi+l (t ) - Hi(t); (i
kt + vi •t Hi

,N)

,N-1)

,(3-55)

,(3-56)

,(3-57)

= 0,...,N),(3-58)

Ho = HN+ 1  0

0 +
H O=; ti-V i- (3-59)< t < t1,...,N)

We must also choose vi in such a way to satisfy the constraints

.j = 0 in (3-47). Actually, additional arguments must be made here

in order to justify the vanishing of the Hamiltonian gradient Hi

expressed in (3-59) since, no matter that no path constraints exist

for V(t) inside [tT_ l , tT ] , 6V is not completely arbitrary and must

produce variations dx (ti), dx(t.) and dti consistent with (see,

Bryson and Ho, [1975]).

(3-60)dIj dt + ,x" dx(t ) + ix dx(t) 0 .3j t X 3 X 3

Equation (3-55) defines the adjoint equations, for the adjoint

variables X, along each sub-interval [t- 1 ;ti]. Equations (3-56) and

44

with



(3-57) define transversality conditions that the adjoint variables

must satisfy, at the beginning and end of each sub-interval, in
4-

order that the values of x(ti l) and x(ti) be optimal. Equation

(3-59) corresponds to the familiar Hamiltonian maximization condition

and equation (3-58) provides a set of transversality conditions for

the Hamiltonian, that must be satisfied for optimal solutions of the

times ti (i = O,...,i). Obviously, if some variable considered here

as independent is externally specified, the corresponding variation

in (3-54) will be zero and the necessary condition attached to it

will disappear. For instance, if x (to) is specified, we have dx(t o ) = 0

in (3-54), and equation (3-57), with i = 0, is not required. Similarly,

if ti is specified, the corresponding relation in (3-58) is not re-

quired since dti = 0 in (3-54).

Finally, 'note that equations (3-54), (3-57) and (3-58) imply

discontinuities of the adjoint variables and the Hamiltonian at each

point t,.

4. Economic Interpretation of the Adjoint Variables and the Hamiltonian

In this section, we will take advantage of some results obtained

in Section 3, in order to provide general economic interpretations

for two fundamental elements of any control problem: the adjoint

variables and the Hamiltonian function.

Let us use the system formulation of Section 3.1 and let us

consider the first order variation dJ of the performance index given

by equation r3-10). Then, if we consider an optimum solution x (t),



X (t), V *t) that satifies the necessary conditions (3-2), (3-3), (3-11),

(3-12) and (3-16) for a value of T satisfying (3-13), we can write the

variation of the corresponding performance index value J produced

by variations in the initial conditions t4,x(to) as

dJ = X'(t )dx(t ) - H(to) dt . (4-1)

From this we obtain:

* aJ * aJ(t) H (t ) - t

However, because the above is true for arbitrary to we can write

*(t) x(t) ,(4-2)

* a

H (t) at ,(4-3)

Actually, if we use the principle of optimality (Bellman, [1957])

we have that "any portion of an optimal trajectory J (t), x (t) is

also an optimal trajectory"(see Athans and Falb, [1966]). Therefore,

we can partition our initial interval [t ,T] in two sub-intervals

ft ,T], [t,T] and rewrite the performance index of Section 3.1 as

J = k(x,T) + f L(x,V,t)dt + ,T L(x,V,t) dt . (4-4)
to t



Then, if we consider the sub-problem of optimizing J along the sub-

interval [t,T], an optimum solution to it has to be coincident with

the portion [t,T] of an optimal solution for the problem defined over

the whole interval [t T]. Thus, the variation of 3 with respect to t

and x(t) will be:

dJ = X'(t)dx(t) + H(t)dt, t e [to,T] (4-5)

We must note however that (4-2) and (4-3) are true only if the

performance index is evaluated along an optimal solution; otherwise

expressions (4-1) or (4-5) are not valid.

From (4-2) we have that each adjoint variable represents the

change experienced in the value of the objective function as a

consequence of a change in the corresponding state variable, around

its optimum value, at time t. Therefore, the adjoint variables can

be interpreted as shadow prices for unitary values of the state

variables, around an optimal solution. They are, actually, dynamic

shadow prices, functions of time. In mathematical and economic terms

the adjoint variables are, as we have suggested before, dynamic

generalizations of the concept of Lagrangian multipliers. On the

other hand, we have from (4-3) that the Hamiltonian, evaluated along

an optimal solution path, gives us the change in the value of the

objective function per unit of time. If our performance index re-

presents the total benefits (or total costs) associated with the

operation of the system, along the period [toT], the value of the

Hamiltonian, at time t, represents the total marginal benefit (or



marginal cost), per unit of time, at time t.

5. Sufficient Conditions for Optimality

In Section 3 we have developed necessary conditions for optimal

control problems which are known in the literature as the Pontryagin

maximum principle. Nevertheless, these conditions are not, in

general, sufficient for optimality. In the mathematical literature

few and only rather special results were available until Mangasarian

[1966] proved a rather general sufficiency theorem in which he was

dealing with a non-linear system, state and control variable con-

straints and a fixed time interval. In the maximization case, when

there are no state space constraints, his result was, essentially,

that the Pontryagin necessary conditions plus concavity of the

Hamitonian with respect to the state and control variables, were

sufficient for optimality.

The Mangasarian concavity condition is rather strong and in

many economic problems his theorem does not apply. A very inter-

esting generalization of the Mangasarian result was however pro-

posed by Arrow [1968]. A precise statement and a rigorous proof

of the Arrow sufficiency theorem has been given only recently by

Seierstad and Sydsaeter [1977]. For the type of systems described

in Section 3.1, when the interval [to,T] is fixed and the initial

conditions x(O) = x0 are specified, the theorem can be expressed

as follows: "Suppose (x*(t),V (t)) is an admissible pair satisfying

all the necessary conditions for optimality. Then, if H (x,X(t),t),



as defined below, is concave in x, we have that (x (t),V (t))is an

optimal solution to the problem"

H (x,X,t) = Max H(x,V,X,,.t)

VE (5-1)



III. OPTIMUM POLICIES FOR INVESTMIENTS INI OUALITY

i. Introduction

We can argue that a transportation facility can be characterized

in general by two attributes: quality and capacity. The concept

of capacity is easy to understand and has been the one that has re-

ceived more attention in the economic literature. In the next

chapter we will develop a mathematical model for optimal dynamic invest-

ment policies in capacity and different cases of interest will be

studied in detail. The quality attribute, nevertheless, has not

received much attention and therefore models that study optimum

policies with respect to it are almost non-existent. The development

of such models and the analysis of the characteristics of the optimum

policies derived from them will be our main objective in this chapter.

Special emphasis will be given to the economic interpretation of the

results obtained.

By quality of a facility we will mean those characteristics that

are not related to its capcity, but which affect the utility and/or

cost, and therefore the benefit, derived from its use. In the case of

a road the characteristics will be: the roughness of the surface, the

radius of the curves, the grade of the road, etc. In general, quality

will have to be represented by an index that adequately represents the

characteristics of interest. In the case of a road such an index is

represented by the present serviceability index (PSI) defined by AASHO

[1962] or the virtual length of the road (Miquel. S, [1972]).

We will assume in this chapter that the quality of a facility

can be represented by a continuous variable through all the period



of analysis [O,T]. The case in which discontinuities can appear at

certain interior times in [O,T] will be analyzed in Chapter V.

2. A Mathematical Model for Optimal Investments in Quality. Case
of External Demand

Different factors affect the quality of a facility over the

course of its economic life. Natural factors and normal use are the

principal causes of quality deterioration. On the other hand, this

deterioration can be alleviated or remedied if maintenance or repair

is undertaken. Finally, quality increases can be obtained if enough

money is spent in improving those characteristics that determine the

level of quality of the facility. In this chapter we will use the

word "maintenance" in a generic way to refer to any of the activities

that influence the quality of a facility in a continuous way.

We will assume that we have a transportation facility with a

fixed capacity k which serves homogeneous users. Each of these users

obtains a utility U(t) and perceives a cost C(s,q) each time that they

he/she uses the facility (e.g. from each trip performed). We consider

that the utility is determined by factors external to the model, though

its value will in general be a function of time. This seems a

realistic assumption for all kinds of trips, except for the pure re-

creational ones. In any case it only constitutes a convenient assump-

tion allowing a more simplified analysis and can be dropped without

major consequences. The operating cost function C(s,q) corresponds

to an average variable cost function, which includes all expenses of

user supplied inputs, and it is assumed to depend on the quality of



the facility s and the number of users q, having as a parameter the

fixed value of capacity k. We will make the following assumptions

with respect to the function C

Cs < 0, C 0

C = 0, C > O, C > 0. (2-1)sq qq=

The conditions (2-1) are statements that additional quality will always

decrease operating costs; additional traffic, holding capacity and

quality constant, will increase operating costs because of congestion;

no interrelations exist between quality and congestion. Congestion

only depends on the relative values of level of traffic and capacity.

Finally, C is a convex function of traffic and quality.

Therefore, the net private benefit obtained by an individual

user as a consequence of using the facility can be represented at

any time t by:

BCt) = U(t) - C Cs(t),q(.t)) (2-2)

We will let V(t) represent the amount of money spent on maintenance

at time t, which will be our control variable.

Our focus will be on the determination of optimum maintenance

policies from a public or social point of view. Therefore, our

objective will be to maximize the present value of the private bene-

fits minus the public costs of maintenance, through the life of the

facility. Thus, our objective function can be represented as:



J(V(t)) = fT [B(t)q(t) - V(t)]exp(-pt)dt, (2-3)
0

where T is the economic life and we assume that there is no residual

economic value for the facility at time T. At that time a discrete

predetermined upgrading of the facility will be performed or it will

be destroyed and a completely new facility put in place. Therefore,

no salvage value is associated with time T.

Let the change in quality of the facility be represented by the

following differential equation:

s(t) = f (s(t), q(t), V(t),t) (2-4)

s(o) = s0

where s(t) is an index representing the qualtiy of the facility at

time t, q(t) is the number of users at time t and V(t) is the amount

of money spent on maintenance at time t. Note that s(t) represents

the first derivative of s with respect to the independent variable

time. Expression (2-4) means that the change of quality of the

facility, per unit of time, depends upon the level of quality, the

number of users and the amount spent in maintenance, at the time t

considered.

In addition we will assume that the amount of money that can be

spent in maintenance at each time t is constrained by:

m(t) < V(t) < M(t), V t c 0,T], (2-5)



2.1 Necessary Conditions for ODtimality

If we consider that the demand for using the facility q(t) is

given, for each time t in the period [0,T], then the maximization of

(2-3) subject to (2-4) and (2-5) will determine the optimum maintenance

policy. The problem is an optimal control problem of the type dis-

cussed in Section 3.1 of Chapter II, where the only state variable is

the quality of the facility s(t) and the only control is the amount

spent in maintenance V(t). The Hamiltonian is in this case equal to:

H(t) = {[U(t) - C (s(t),q(t))]q(t) - V(t)}exp(-pt)

+ X(t)f(s(t),q(t), V(t),t), (2-6)

where X(t) is the adjoint variable that must satisfy the adjoint

equation:

(t)= - (DH/as) = (aC/;s) qexp(-pt) - x(3f/;s) (2-7)

where for simplicity we have eliminated the arguments of all the

variables.

Given that the "penalty function" at time T has a null value

(salvage value equal zero) the transversality condition for X

at time T will be

X(T) = 0j (2-8)



The necessary conditions for a maximum of J(V(t)) over V(t) state

that there must exist a function X(t) that satisfies the adjoint

equation (2-7) and the transversality condition (2-8) and that the

optimum control V (t) must be such that the Hamiltonian (2-6) is

maximized for all t in [0,T], i.e.

H(s ,X ,V ,t) > H(s ,X ,V,t), V t E [0,T], (2-9)

where in our case we have from (2-5)

' = {V(t) : m(t) 5 V(t) 5 M(t), V t E [0,T]}, (2-10)

and the * in s and X means that these variables satisfy (2-4) and

(2-7,8) respectively. Expressions (2-4), (2-5), (2-7), (2-8) and

(2-9) constitute a complete set of necessary conditions for our problem.

It is easy to see that the gradient of the Hamiltonian with

respect to the control variable V is given by

HV = fV - exp(-pt), (2-11)

and in order to characterize the value V. that satisfies (2-9) we

can use the following theorem from non-linear programming (see

Luenberger [1973]): If V is a local maximum of the function H over

the convex set Q, defined by (2-10), then:



Hv(V) (V-V ) < 0 (2-12)

If in addition, the Hamiltonian is concave in V over the constraint set

Q, the control V defined by (2-12) will be a global maximum of H.

Given that P, defined in (2-10), is an unidimensional convex closed

set it is easy to see that (2-12) is equivalent to the conditions

HV(V.) = 0,

Hv(V ) O,

HV(V*) k 0,

if m < V < M

if V = m

if V = M

which, using the gradient definition (2-11), can be written as

Xfv = exp(-pt),

Xfv ( exp(-pt),

Xfy > exp(-pt),

if m< V < M

if V =m

if V =M .

These three relations give an expression for the optimum control V

in all possible cases to be found.

2.2 Economic Interpretation of the Necessary Conditions

In this section we will provide economic interpretations of the

necessary conditions for optimality presented in Section 2.1. A

fundamental element of these conditions is the adjoint variable X
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(2-14)

(2-15)



that appears in the expressions for the optimal control V and is

defined by the adjoint equation (2-7) and the transversality con-

dition (2-8).

Expression (2-7) corresponds to a first order ordinary linear

differential equation whose solution can be written as:

X(t) = exp(-ft fsdz){-TCs q exp(-px)exp(fXfsdz)dx +

X(T)exp(Tfs dz)} (2-16)

where we use the following notation

Cs = (DC/as ),and fs = (3f/as)

Upon rearranging (2-16) and using (2-8) we can write x(t) as:

X(t) = - T{[Csexp(,rxf dz)]q(x)exp(-px)}dx (2-17)
t. t

According to (2-1) Cs is always negative and given that q(t) cannot be

negative it is obvious that the integrand in (2-17) will be always

negative. Therefore X(t) will be positive for all t in [0,T] and its

value will increase as T increases. This fact will have important

consequences for the optimal policy V . To obtain an economic inter-

pretation of X(t) we must give an interpretation to each element in

the integrand of expression (.2-17).

To begin-we can note that fs represents the rate of deterioration*

Here we use "deterioration" in a general way. It can mean "improve-
ment"if an increase in quality, reduces the rate of deterioration
of the facility.
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per unit of time, per unit of quality.

fs = (as/es) .

If we change s(t) by one unit, at time t, the rate of deterioration

will change by fs.

Proposition 2.2.1 If x and t are two different times such that

x C [0,T], t E [0,T] and x > t, and fs is a continuous function

of time, then

g (x) = exp(fXf (z)dz)
t

is the "equivalent value" (or residual value), at time x, of one

unit of quality implemented at time t.

In order to demonstrate this proposition let us consider that

the interval (t,x) is divided in n finite time differences At

x-t
n

Then, if we implement one unit of quality in the facility at time

t, it is obvious that after At its value will become

g (t + At) = 1 + f(t) At

given that as we saw above fs represents the rate of deterioration

per unit of time, per unit of quality. Similarly after 2 At the
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value of the unit of quality will transform to

g(t + 2At) = g(t + At) (1 + fs(t + t)At)

= (1 + f (t)t)( + f(t + t)At)

Following the same recursive procedure it is easy to find that

after nat we can write

n-1
g(x) = r [1 + fs(t + i +t)t]7

i=0

If we now take Zn on both sides of this expression we obtain

n-1
£n g(x) = = {Zn[l + f s(zz i

i=0

where we have used the change of variable

zi = t + it, with Lz = z - zi =

and we have also multiplied and divided each term of the sum by the

finite difference Az.

Now we can take the limit in (*) when At goes to zero or n

goes to infinity. Note that the equal sign in expression (*) is

only strictly correct when we take this limit and therefore trans-

form t to a continuous variable. Before that, the right hand side

of (*) constitutes only a discrete approximation to the value of

Zn g(x).



Using the following results from basic calculus:

- the limit of a sum is equal to the sum of the

limits

- the limit of a product is equal to the product

of the limits

- the limit of an is equal to the Zn of the limit

and the well-known limit

lim (1 + ah)(1/h) = exp(a),

h O 0

we obtain from (*) that

zn g(x) =
n-I

lim E
i=O

nz -0

n~3

fs (zi) z

and applying the definition of the definite integral

Zn g(x) =

we obtain

Xfs (z)dz
t

from where we easily get the desired result

g(x) = exp(fXf (z)dz)
t

In order to further clarify this concept we will analyze two

examples.



Example 1: s = - a(t) + fl(q,V,t)

In this case the facility suffers a deterioration of a(t) units of

quality per unit of time, as a consequence of natural factors, and a

change of fl units of quality, as a result of use and maintenance

activities. The rate of deterioration s is independent of the level

of quality. Clearly we will have

fs = 0, and exp (rxfsdz) = 1
t

Given that a change of quality does not have any effect on the rate

of deterioration, the equivalent value, at any time x (x > t), of

one additional unit of quality implemented at time t will be always

one.

Example 2: s = - as(t) + fi (q,V,t)

Here we have changed the characteristics of the deterioration produced

by natural factors. The natural deterioration per unit of time

is now equal to a constant percentage of the level of quality in the

facility at that time. Thus

fs = - a, and exp(/Xf d ) = exp[-a(x-t)]
t

Here, one additional unit of quality at time t will increase the rate

of deterioration of the facility by a units per unit of time and

therefore the equivalent value, at time x, of one additional unit of

quality implemented at time t will be lower than one and equaleXp[--(x-t) -.

Then, if we return to (2-17) we have that
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Cs exp(x f sdz)
t

represents the reduction in operating costs experienced by each user,

at time x, as a consequence of the implementation of one additional

unit of quality at time t (t < x) and therefore, X(t) is the present

value, at time t = 0, of the cost reductions experienced by all the

users of the facility, during the period [t,T] as a consequence of

the implementation of one additional unit of quality at time t. Or in

more general terms, we can say that X(t) represents the present value

at time t = 0, of the total benefits perceived during the period [t,T]

as a consequence of an improvement of one unit of quality in the

facility at time t. The total benefits are calculated without con-

sidering the cost of implementing the additional unit of quality at t.

Now from (2-6) we have that the expression of the Hamiltonian

will be:

H(t) = [(U - C) q - V]exp(-pt) + Af, (2-6)

where for simplicity we have elminiated the arguments of all the

variables. The first term on the right hand side of (2-6) represents

the present value, at time t = 0, of the social benefits produced by

the facility at time t. It is a result of the sum of the private

benefits minus the social costs of maintenance at that time. The

second term is the product of the change of quality experienced by

the facility at time t (as a consequence of the level of quality, the

use and the maintenance experienced by the facility at t) and the



present value associated with a change of one unit of quality at that

time.

Therefore, the Hamiltonian gives us the present value of the

net social benefits associated with the decisions taken with respect

to the operation of the facility at time t. If for instance we decide

not to do maintenance at time t, i.e. V(t) = 0, we will have

H(t) = (U - C)q exp(--t) + Xf(V=0)

where f(V=O) represents the deterioration experienced by the facility

at time t as a consequence of natural factors and the use of the

facility at that time. This deterioration (produced at time t) will

cause an additional cost Xf(V=0O) in the operation of the facility during

period [t,T]. If on the other hand we decide to invest in maintenance

*an amount V(t) = Vc such that no deterioration is experienced at time

t, f(t) = 0, and we will have

H(t) = [(U - C)q - Vc]exp(-pt)

From (2-13) we have that interior optimal values of V in P

will satisfy the necessary condition

Xfv = exp(-pt), m < V. < M

while corner optimum solutions will satisfy (from 2-14 and 2-15)



XfV : exp(-pt), V = m

XfV > exp(-pt), V = M

where fV is the reduction of deterioration, or the quality improve-

ment, produced at time t, by the investment of one additonal dollar in

maintenance at that time and Xfv is the present value, at t = 0,

of the total benefits associated with an improvement of f units of

quality in the facility at time t. The quantity exp(-pt) represents

the present value, at t = 0, of one dollar invested in maintenance

at time t. Therefore, the optimal policy says that maintenance should

be performed at a level such that the present value of the marginal

benefits of maintenance are equal to the present value of the

corresponding marginal costs. If the marginal benefits are higher than

the marginal cost, for all values of V in 0, the maximum possible level

of maintenance should be provided at t. On the other hand, if the

marginal benefits are lower than the marginal cost, for all vaues of

V in :, the minimum possible level of maintenance should be provided at

t. This policy will lead to a global maximization of the Hamiltonian

only if it is concave in V over Q. In other words, if the second

derivative HVV is non-positive. Differentiating (2-11) with respect

to V we obtain HVV fVV and given that X is positive for all t in

[0O,T], the Hamiltonian will be concave if f is concave in V or, there

exists constant or decreasing returns to scale in the production of

quality through maintenance.

For the case of interior solutions, expression (2-13) gives us

only an implicit expression for V . In order to obtain an explicit



expression we would need to specify the form of the deterioration

function f. Nevertheless, if condition (2-13) holds for some finite

time interval within [0O,T], then we can obtain an explicit expression

for V which will give us the dynamic characteristics of such optimum

policy. In particular if (2-13) holds for a finite period of time,

within this period, we will have

H Afv + ;XfV + pexp(-pt) = 0, (2-18)

where we have used the expression of the gradient of the Hamiltonian

from (.2-11) and we have assumed that fVs = fVq = fVt = 0. In other

words, the marginal effectiveness of maintenance fV is only a function

of the amount spent in maintenance at each time t. If we now use

the adjoint equation (2-7) and the necessary condition (2-13) to

eliminate A and " respectively from (2-18) and then divide the re-

sulting expression by the positive value exp(-ot), we obtain

Csqf V - fs+ p + (fvv/fv)V = 0, (2-19)

and then, if fVV < 0, or decreasing returns to scale exist in the

production of quality through maintenance, we can divide (2-19) by

fVV and obtain

V = (fv/fvv)(fs - - Csqf V)  (2-20)

Therefore we will have



V > 0, if - C qfv < - f, fV > 0
V < 0, if - Cqf > - f f > 0
V = O, if - Csqf V  P - fs, or fV = 0

where -Cs q V is the value of the operating costs reductions ex-

perienced by all the users of the facility at time t, as a consequence

of one dollar spent in maintenance at that time and (p-f ) is what is

usually called "effective discount rate" (see Arora and Lele, [1970]).

A stationary solution with V constant will only be obtained if

q(t) - (p - fs)/CsfV.

In particular, if fs, Cs and fV are not explicit functions of time,

q(t) must be constant.

It is interesting to remember here that from (2-17) we concluded

that X(t) will in general increase when T increases and vice-versa.

This fact together with any of the equations (2-13), (2-14), or (2-15)

implies that for an optimum maintenance policy, the amount spent in

maintenance will increase if we decide to use the same facility for

a longer period of time and vice-versa. This to some extent implies

a trade-off between maintenance and replacement policies.

Finally, it is important to note that the case presented in this

section, in which we consider the demand q(t) as externally specified

and fixed for the purposes of the analysis, is not a mere simplification,

but actually corresponds to some real situations. A typical example

would be that of a mine that uses a private transportation facility



in order to take its production out of the extraction site. In that

case the demand q(t) will be determined by the production plan of

the mine and therefore will be external to any model of management

of the facility.

3. A Mathematical Model for Optimum Investments in Quality. Internal
Demand Case.

In the preceeding section we considered a model in which the

demand was externally specified and not affected by the parameters

of the model. Therefore, the benefits associated with the operation

of the facility were affected by the maintenance policy only through

the supply side of the problem. Actually, this influence occurred

through changes in th~operating costs experienced by the given users

and the investment costs in maintenance necessary to produce this

change. In this section we will consider a model formulation in which

the maintenance policy will affect both the supply and demand sides

of the problem. For this, we will assume that the number of users of

the facility at each time t is a function of the history of the quality

of the facility during the; period [0,T], t < T.

Let the change in demand for the facility be represented by

the following differential equation

q = Z (sCt),t), qCO) = . (3-1)

Expression C3-1) means that the demand forusing the facility will

change, per unit of time, as a function of the quality of the
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quality of the facility and some external factors that can be

expressed explicitly as functions of time. The demand for the

facility will therefore no longer be an external condition, but will

be internally determined by the model. -Now we will have two state

variables: quality of the facility and number of users; the same

control as before will be utilized namely the mainenance expenditures.

3.1 Necessary Conditions for Optimality

Now an optimum maintenance policy will be obtained by the

maximization of J(V(t)) subject to (2-4), (2-5) and the new condition

(3-1). The Hamiltonian becomes in this case

H(t) = {[U(t).- C(s(t),q(t))]q(t) - V(t)}exp(-pt)

+ X(t)f(s(t),q(t), V(t),t) + v(t)Z(s(t),t), (3-2)

where ?(t) and v(t) are adjoint variables that must satisfy the

adjoint equations

S(t) = - (aH/s) = Csqexp(-pt)- Xfs -fs s (3-3)

v(t) = -(aH/wq) = [-(U - C) + Cqq]exp(-pt) - Xfq . (3-4)

Again, given that no economic value is attached to the quality of the

facility at time T the transversality condition for X at T will be

X(T) = 0 (3-5)
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Nevertheless, in this case, some value may be assigned to the size

of the demand at time T. The rationale for this is that if the

facility considered is going to be replaced, at time T, by a new

facility, which will perform basically the same function as the old

one, the benefits derived from the use of the new facility at T

will depend on q(T). Let us assume that the value attached to this

demand at time T is represented by a function Y(q(T),T) that will be

added to the formulation of our objective function (2-3). Then, the

transversality condition for v at time T will be given by

v(T) = ('/aq)T = VT * (3-6)

The necessary conditions for a maximum of J(V) over 2 state that there

must exist functions A(t) and v(t) that satisfy the adjoint equations

(3-3), (3-4) and the transversality conditions (3-5), (3-6); and the

value of the optimum control V (t) must be chosen such that the

Hamiltonian (3-2) is maximized for all t in [O,T]:

* * ** ** * * *
H (s ,q ,X ,v,V.,t) > H(s ,q ,X ,v.V,t), V t E [0,T]

(V s £) (3-7)

where.ý2 is defined in (2-10) and the superscript "*" over the state

and adjoint variables means that they satisfy the corresponding

state and adjoint equations. The expressions (2-4), (2-5), (3-1),

(3-3) to (3-6) and (3-7) constitute in this case a complete set of

necessary conditions.



Given that the traffic generation function 2 defined by (3-1)

is not a function of the control V, the gradient of the Hamiltonian

with respect to this variable will have the same expression as in

the case of external demand (see,'2-11):

HV = fv - exp(-pt) (3-8)

Therefore, given that the constraint set Q over which the Hamiltonian

must be maximized is also unchanged, the same expressions will be also

obtained for the optimality conditions specifying the control V.

Interior solutions in Q2 will be given by:

(3-9)XfV = exp(-pt), m < V < M

and in the case of corner solutions we will have

Xf v 5 exp(-pt),

Xfv ? exp(-pt),

if V =m

if V =M

Nevertheless, it is important to note that the adjoint variable X

is here different from that associated with the case of external demand

(compare expression (2-7) and (3-3).

3.2 Economic Interpretation of the Necessary Conditions

As we saw in Section 2.2, for the case of external demand, the

(3-10)

(3-11)



economic interpretation of the necessary conditions relies heavily on

the meaning of the adjoint variables. The main difference between the

necessary conditions for the cases of external and internal demand

lies in the expressions of the adjoint equations. Therefore, we would

expect important changes in the economic interpretation and role of the

adjoint variables. We consider C , Cq f , f and Zs to be expressed

as functions of time, and rewrite (3-3) and (3-4) as

X(t) = - Xf s + [Cq exp(-pt) - v 5s ]  (3-12)

v(t) = [(C + C q) - U]exp(-pt) - fq . (3-13)

We then observe that expression (3-12) corresponds to a first order

ordinary linear differential equation whose solution can be written as

X(t) = exp(-itfsdz) { - TCsq exp(-px) exp(fx sdz(dx) +
t

ITT 1
t zsexp(Ixfsdz) dx + X(T)exp( f sdz)>

which, upon rearranging some terms and using (3-5), can be expressed

as

x(t) = - T{[Csexp xfsdz)]exp(-px)}dx +
t t

tv(x)zs(x)expCx f sdzdx . (3-14)
t



Expression (3-13) can be integrated directly, using (3-6) to obtain

v(t) = /T[U(x) - C(s(x),qCx))]exp(-px)dx
t

+j - C q(x)exp(-px)dx + IT (x)f q(x)dx
t t

+ v(T), (3-15)

The interpretation of X, and v is complicated in this case by the

fact that they are interdependent. We cannot give an interpretation

for X without knowing the meaning of v and vice versa. We must

therefore give a simultaneous coherent interpretation for both. A way

to proceed is the following: we obtained in Section 2.2 an inter-

pretation of X for the case of external demand. We can begin assuming

then that the same basic general interpretation holds here and proceed

to use it in order to obtain an interpretation for v in (3-15). Then

we can go back to (3-14) and check that our initial interpretation of

A is still correct.

Recall that our general interpretation for X in Section 2.2 says

that it represents "the present value at time t = 0 of the total

benefits perceived during the period [t,T] as a consequence of an.

improvement of one unit of quality in the facility at time t". Now

we can proceed to the interpretation of (3-15). Note that C qq(x) is

the cost of the congestion externalities produced by the introduction

of one additional user to the facility at time x (t < x 5 T). It is

equal to the difference between average and marginal operating costs

associated with the facility at time x. Note that fq(x) represents
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the change in quality (or deterioration) produced by an additional

user at time x. We will in general assume fq < 0. Therefore,

Xfq (x) will be the present value, at t = 0 of the loss in benefit

(or cost) associated with the deterioration of facility quality

produced by an additional user generated at time x. Note that this

term includes the effect that the deterioration produced by the

additional user at time x has on all the users of the facility over

the period [x,T].

The first term of expression (3-15) corresponds to the present

value of the private net benefit perceived by a user of the facility

during the period [t,T]. The second term is the present value of the

additional costs incurred by all the users of the facility during

the period [t,T] as a consequence of the additional congestion produced

by the introduction of an additional user during that period. The

third term is the present value, at time t = 0, of the total social

cost associated with the deterioration produced during the period [t,T]

by the introduction of an additional user at time t. The second and

third terms are therefore the externalities, associated with con-

gestion and deterioration respectively, produced by an additional

user during the period [t,T]. Finally, from (3-6) we have that the

last term is the value associated with an additional user at time T.

Therefore, we can say that v(t) represents the present value,

at time t = 0, of the social net benefit produced during the period

[t,T] by the introduction of an additional user at time t. In other

words it is the shadow price of demand at time t.



Given that v(t) is the shadow price of demand, the sum of the

integrands of the second and third terms at any time x gives us

the present value of the amount that, according to an optimum pricing

policy, each user of the facility should be charged at time x. If

we think for instance of a road, the term f q(x) can be very important

for heavy weight trucks that produce considerable deterioration of the

infrastructure. We will show later that the model presented here can

be easily disaggregated to consider different types of users.

Now, we can go back to check the interpretation of k(t) in

(3-14). The first term there is exactly the same obtained in (2-17),

the interpretation of which is "the present value, at time t = 0, of the

cost reduction experienced by all the users of the facility, during

the period [t,T], as a consequence of one additional unit of quality

at time t". In addition we have that

exp(tXfsdz) is (see Section 2.2) the equivalent value,
t

at time x, of one additional unit of quality

implemented at time t

zs (x) is the number of additional users generated at time

x by a change of one unit of quality in the

facility at that time. We will in general assume

Ls >0

zs(x)exp(fXf dz) is then the number of additional users
t

generated at time x by an improvement of an

additional unit of quality in the facility at time t



Note also that the second term of (3-14) is then the present value,

at time t = O, of the social net benefit associated with the new

traffic generated during the period [t,T] as a consequence of the

implementation of an additional unit of facility quality at time t.

The general interpretation of ý(t) is then exactly that with

which we began and that we repeat here: "X(t) represents the present

value, at time t = 0, of the total benefits perceived during the

period [t,T] as a consequence of an improvement of one unit of quality

in the facility at time t". The difference between this case (internal

demand) and that of Section 2 (external demand) is that now X(t)

also includes benefits (or costs) produced as a consequence of new

traffic generated by the quality improvement at time t. These

benefits (or costs) did not appear in Section 2 because in that case

the demand was externally given and was not influenced by changes in

quality of the facility.

Therefore, the adjoint variables X and v correspond exactly to

"shadow prices" associated with unitary values of the corresponding

state variables s and q. They are actually dynamic shadow prices

since they are functions of time. Consequently, it is logical to

expect them to serve as indicators for the implementation of optimum

investment (in the case of X) and pricing (in the case of v) policies.

According to expression (3-14) for the present case of internal

demand, the value of X(t) will be affected by the values that v(x)

takes in the period [t,T]. As we saw in Section 2 the first term on

the right hand side of expression (3-14) is always positive. The

value of the second term could be negative.if v(x) takes negative



values in [t,T]. If that is the case, and assuming the same q(x),

x E [t,T], the value of X(t) would be lower than that corresponding

to the case in which demand is assumed external. The explanation

for this is that, given that quality influences demand and given

a case in which new users produce big externalities with absolute

values in excess to those of their private benefits, the new users

generated by an improvement of quality will make less attractive the

reduction in operating costs Cs produced by the same quality improve-

ment. If the second term in (3-14) is positive, the value of X(t)

will be higher here than in the case of external demand, because

of the positive social benefits attached to the new users generated

by an improvement in quality.

With respect to v(t) we have four terms in the right hand side

of expression (3-15). We will assume that the first term, representing

the net private benefits experienced by each individual user of the

facility, will be always positive, because if at some time x the

operating cost C(s,q) is higher than the utility U(x) an individual

will not use the facility. The second and third terms representing

the externalities produced by each user will obviously be negative.

The last term requires some further analysis.

If we assume that the value given to the amount of demand at

time T,q(T),is equal to the benefits attached to the use of the new

facility (by these q(T) users) for an infinite period of time, begin-

ning at T, we have that



Y (q(T),T) = Jm[U(x) - C'(s(x),q(x))]q(T)exp(-px)dx
T

where C'(s,q) is the function that gives the operating costs of the

new facility. By using (3-6) we also obtain for these circumstances

v(T) = ,f[U - C') - C' q(T)]exp(-px)dx ,(3-16)
T q

where C' is again equal to the operating cost experienced by each user

of the new facility and C' q(T) is the congestion externality produced

over q(T) users of the new facility.

Therefore, the higher the quality and the capacity with which

the new facility will be provided the lower will be C' and C qq and

the higher will be the value of v(T) and consequently of v(t) and x(t).

From (3-15) we can see that v(t) could become negative if the exter-

nalities represented by the second and third terms are high enough.

In general, an increase in the value of these externalities will de-

crease the values of both v and X.

The changes in the values of v(t) and X(t) when the life of

the facility is varied will be given by the derivatives of these

variables with respect to T. Differentiating (3-14) and (3-15) with

respect to T and using the boundary conditions (3-6) and (3-16)

we can easily obtain:



(;(t)/3T) :=- [Csexp('T f dz)]q(T)exp(-pT) +
t

v(T)%s(T)exp(Tf sdz) + IT(3v(x)/3T)
t t

s (x)exp(fXfsdz)dx (3-17)

and

av(t)/3T) = [(C' + C' q(T)) - (C + Cq(T))]exp(-oT)

+ f'T(9(x)/OT)f (x)dx (3-18)
t

In Section 2, when demand was considered external to the model,

we easily concluded that as the life of the facility is increased,

the shadow price of quality X(t) increased for any t in [O,T]. Here

it is impossible to reach a definitive conclusion like that. This

is due to the dynamic interactions between v(t) and X(t) manifested

by the last terms of expressions (3-17) and (3-18). If we assume

v(T) positive then the first two terms of (3-17) will be positive,

but to know the sign of the third term we need to know av(x)/aT over

the interval [t,T]. Also if we assume that the new facility to be

provided at time T constitutes a general improvement over the old one

(higher quality and more capacity) C'(s'(T),q(T)) < C (s(T),q(T)).and

C'q < C q then the first term of expression (3-18) which represents

the difference between the marginal costs on the new and old facili-

ties at time T, will be clearly negative. However, to know the sign

of the second term, we need to know the value of rOX(x)/ýT over the

interval [t,T].



Under the reasonable assumption that the new facility to be

provided at time T constitutes a general improvement over the old

one, the value of av(t)6T cannot be positive for any important

interval of time tin [t,T]. Given that fq (x) is negative, such a

situation would require that DX(x)/3T be negative over an important

period of time in [t,T]. This is highly improbable since according

to equation (3-17), in order for aX(x)/BT to be negative over an

important period of time, it is necessary that a~(x)/"T be negative

over an important period of time in [t,T], which is a contradiction.

Therefore, we would expect av(t)aT to be negative in general, making

the sign of BO(t)/'T uncertain and highly dependent on the magnitude

of each of the terms involved in equation (3-17).

From (3-2) we have that the Hamiltonian in the present case is

given by

H(t) = [U - C)q - V]exp(-pt) + Af + vz

where for simplicity we have eliminated the arguments of all the

variables. It is easy to see that H(t) has here the same general

interpretation as in Section 2.2. It is the present value of the

net social benefits associated with the decisions taken with respect

to operation of the facility at time t.

Given that the general interpretation of X(t) is the same

here as in Section 2.2 and that the optimality conditions for V

have also the same functional form, the interpretation of the optimum

policy is again that maintenance should be performed at a level



such that the present value of the marginal benefits of maintenance

be equal to the present value of the corresponding marginal cost

at each time t. If this is not possible for any value of V E 2,

then the optimum policy is to perform the maximum or the minimum

maintenance possible depending on whether the marginal benefits are

higher or lower than the respective marginal costs. Nevertheless,

the marginal benefit to which we refer here is different than that

in the case of Section 2.2. It is evaluated through the use of X(t)

defined by expression (3-14) instead of (2-17). Moreover, it is

obvious from our analysis of X(t) and v(t) that then the optimum

policies corresponding to expressions (3-9) to (3-11) will be dif-

ferent than those derived from the corresponding expressions in

Section 2.1. As we saw before, in this case X(t) will depend on

the value of v(t) that represents the net social value of a new user

at time t, a quantity for which an important role is played by the

externalities generated.

Let us for instance assume the same demand q(x) for the period

[t,T] as in the case of Section 2. Using this demand schedule we

may simultaneously evaluate (3-14) and (3-15) in general obtaining

a value of X(t) that leads to a different optimum policy at time t

than obtained for the same situation in Section 2. If the assumed

demand q(x) is too low compared with the capacity of the facility

and the users considered do not produce too much deterioration, v(x)

will be positive in the interval [t,T] and the value of 2(t) will be

higher than that obtained in Section 2. Therefore, for the same

deterioration function, more maintenance will be justified



in the present case in order to increase the quality of the facility

and attract new users since those users have a positive social value

(v(t) > 0). This means that the number of users assumed, q(x), is

lower than it shouCL be in order to obtain the maximum possible

benefit out of the operation of the facility. The converse would

happen if the assumed demand q(x) is too high with respect to the

capacity of the facility and/or the users assumed produce too much

deterioration. in order to obtain the same optimal policy for both

cases it is necessary that v(x) = 0, V x e [t,T], which means that

the schedule assumed which will be called q(x), is such that at all x

6 [t,T] the externalities produced by the marginal user are equal

to the private benefits obtained by him plus the net social benefit

of a new user at time T, v(T). If this is the case, q(x) represents

the demand schedule that generates the maximum possible amount of

benefits out of the operation of the given facility (represented by

the operating cost function C (s,q) and the deterioration function f).

This does not mean that this schedule would be the one corresponding

to all the solutions obtained from the application of our model. The

reason for this is that in a particular case the solution of the model

is constrained by the following conditions not considered in our

analysis above:

- Initial demand at t = 0, q(O) = qo

- Demand dynamics, Z (s,t)

- Control constraints, V e 1.



There will be, in general, one value of q(o) (q(0) equal to

q(x=O) and a lower bound M for M in 2 which allows one to reach

q(x) for the facility considered. If q(o) ý ((x=O) or the value of

M in C is lower than M, the model will do what it can to get a solution

that generates a demand as close as possible to q(x) but it will

never exactly reach that level for all x E [O,T]. Note that if v(t)

ý 0 the model will try to optimize the maintenance policy taking into

account its consequences after T. Therefore the optimum policy in

such a case will be decidely different than if we considered that no

facility will be provided after T (v(T) = 0). The solution obtained

for v(T) ý 0 will clearly be a sub-optimum if applied to the case

v(T) = 0. In other words, the optimum policy for the case in which we

assume that a new "better" facility will be provided after T will in

general generate more users than what would be the ootimum if no

facility were to be provided after T. This is easy to check with the

results of our previous analysis of X(t) and v(t) derived from

equations (3-14) and (3-15). There we saw that an increase in the

value of v(T) (an increase in the quality and capacity of the facility

to be provided after T) will cause an increase of x(t), V t E[0,T]

(this increase will be more important as t - T) and therefore, according

to expressions C39) to (42), an increase in the optimum amount of

maintenance for all t.

Contrary to the case of Section 2.2., nothing definitive can be

said here, in general, with respect to the influence of a change

of T on the optimum maintenance policy. Since the analysis is com-

plicated by the introduction of externalities and the existance of a



new facility after T, no general conclusion can be reached regarding

the affect of changes in T. in particular, both positive and negative

values of 3>/3T appear possible, depending on the specific case

analyzed.

It is interesting to note that the model presented in this

section implicitly introduces a pricing policy defined by the adjoint

variable v(t), which as we saw in (3-14) influences the value of X(t)

which represents the attractiveness of quality improvements of the

facility and therefore determines the optimum maintenance policy V(t).

This is a consequence of the explicit consideration of interrelation-

ships between quality and demand. The quality variable is used by

the model to manipulate the cost function C(s,q) in such a way that

it implicitly includes an optimum pricing policy that ensures the

optimum possible utilization of the facility during the period of

analysis. The maintenance policy V (t) is then the control variable

that brings about a quality level at each time such that the relevant

criterion function is extremized.

Finally, we make note that the same comments about the concavity

of the Hamiltonian with respect to the control, made in Section 2.2,

are valid here. In other words, the optimality conditions analyzed

will correspond to a global maximum value of H(t) if decreasing

or constant returns to scale exist in the production of quality over

the whole set Q.

We may also note that for the internal demand case X can be

negative for some t. If that happens, the optimum solution will be

V = m because the only optimality relation that can hold then for V
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is (3-10), given that fV is always positive. This is an obvious

result, given that X is the marginal social value of quality. If this

value is negative, at some point in time, we should try to produce

the minimum possible increase of facility quality. Given that any

amount spent in maintenance produces a positive change in quality,

fV > 0, it is obvious that we should spend the minimum amount possible

in maintenance.

4. Extensions to the Case of Multiple User Types

In preceding sections we assumed a homogeneous type of facility

user. Nevertheless, we usually have in real world cases that public

facilities give service to different types of users simultaneously.

In highways we have cars and trucks, in airports a great variety of

aircraft types can be distinguished, etc. Each of these users

experiences different utilities and operating costs and produce

different congestion and deterioration externalities. In order to

treat this more general case we have to modify the objective

function used before in the following way:

J(V(t)) = rT [Ui(t)- Ci(s,q)]qi(t) - V(t)}exp(-pt)dt
0 i=1

+ T (qi(C),T), (4-1)

where Ui and Ci represent the utility and operating costs perceived

by type i users and qi(t) is the number of type i users at time t.



The quantity n denotes the number of user types or categories.

We in addition have defined:

n
q =: qii

i=1

with q equal to the total number of "equivalent users" over the

facility at time t, and ji is the number of equivalent users

that would produce the same congestion effect as one type i user. The

equivalent user concept used here is completely analogous to that of

"equivalent vehicle" used in highway transportation to represent

congestion effects. It is also important to remember that we are

here using the term "user" to identify an operating unit over the

facility; therefore in the case of a road, our users will correspond

to the vehicles operating over the road.

In this case, the number of state variables will increase to n + 1,

with n of them corresponding to the demands for the n types of users

that we are differentiating and one for the quality of the facilty

as before. The evolution of these state variables will be governed

by the following dynamics:

s = f(s,A,V,t), s(o) = so  (4-2)

qi i(st), qi(o) = qio, (i=l,...,n), (4-3)

n
q= iqi

i=1



where 2i is the deterioration, in terms of quality units, produced

by one user type i, per unit of time.

Finally, we have as before, the control constraint:

m(t) _ V(t) _ M(t), (4-4)

The Hamiltonian corresponding to the control problem (4-1) to (4-4)

can be written as:

n
H(t) = [ z (Ui - Ci)qi - V]exp(-pt) + Xf +

i=1

i=l

and the adjoint equations 4ecome:

(4-5)

1

k k 
qk

n

([Ci/ -/s)qiexp(-pt)

S[ - (Uk - Ck) + lk

- Af - 7- fs "Z i i

n

SlCi qi)]exp(-pt)
i-=

(k = 1,....,n) (4-7)

In a similar way to that used in preceding sections we can find the

following expressions for the adjoint variables X and vk

(4-6)

-xskf ,



(t) -{[ Cisp(fdz(qi(x)]exp(-_x)}dx
t i=l t s

n
+ fT[ v (x)Zis.(x)exp(IXfsdz)]dx, (4-8)
t i=l i t

vk(t) T [Uk(x) - Ck(x)]exp(-px)dx +
t

T n

{ [Ek(l z C qq ( x ) )] e x p ( - p x ) }d x
i=1 iq 1

+ T X(x)qk fdx + vk(T) .  (4-9)
t

In this case vk is the social value of an additional type k user

generated at time t. The first term in (4-9) represents the present

value of the private benefit perceived by each type k user during the

period [t,T]. The second term is the present value of the congestion

externalities produced by a user type k over all the users of the

facility during the same period. The third term represents the

present value of the deterioration externalities produced by one type

k user during the period [t,T]. This deterioration externality is

proportional to the value Bk and includes, through the multiplication

by the value of X, the cost increases experienced by all the users of

the facility during the period [t,T] as a consequence of the

deterioration produced by one type k user during the same period. The

sum of the integrands of the second and third terms is the amount

that should be charged to each type k user for using the facility at

time x if an optimum pricing policy were implemented. The inter-

pretation of ,.(t) is here the same as in preceding sections. The first



term corresponds to the operating cost reductions experienced by

all the users of the facility during the period [t,T] as a consequence

of the implementation of an additional unit of facility quality at

time t. The second term represents the social value of all the

traffic generated during the period [t,T] as a consequence of one

unit of quality implemented at time t.

As before, optimum maintenance policies corresponding to

interior values of V(t) in 2(t) will be given by:

exp(-pt) = X(t) - . (4-10)

An interesting interpretation of this optimum policy can be given

here in terms of welfare economics. For the system defined by the

facility of interest and its userst the quality of the facility is

a public good. Any user of the facility has the same potential con-

sumption of each unit of quality provided. The production function

for the public good "quality" is given at each time t by:

s = f(s,,V,T)

and therefore (af/aV)t is the marginal rate of transformation of

maintenance into quality of the facility at time t. The amount of

maintenance V is here expressed in dollars which will be our numeraire

private good. We can now write (4-10) as:

V V
af . exp(-pt) = ,(t). -(4-11)



The left hand side of (4-11) can then be interpreted as the present

value of the marginal rate of transformation between the public good

quality and our numeraire private good dollars. Let us go back now

to x(t) in 4-8). There

-Cis exp(fxf dz)
t

is the reduction in operating costs experienced by one type i user at

time x, x e [t,T], as a consequence of the implementation of an

additional unit of facility quality at time t. It will therefore

represent how much user i is willing to sacrifice of the private

good, dollars at time x, to pay for one more unit of the public

good, quality provided at time t. This quantity can be then

interpreted as an individualized price for user type i or marginal

rate of substitution at time x, MRSi(x), between the public good,

one unit of quality provided at time t, and the private good, dollars

at time x. Let us now assume first that demand is independent of

quality, Z. = 0, Vi. Then, the second term of X(t) in (4-8)
iS

disappears and the condition for optimality in the provision of the

public good quality, given by (4-11), can be written as:

n

MRT = / E MRSi(x)qi(x)exp(-px)dx. (4-12)
t i=l

Expression (4-12) is an obvious generalization, for the dynamic case,

of the well-known rule of welfare economics (see, Varian, [1968]):



MRT = Z MRS.. (4-13)

In (4-12) since the provision of one unit of quality at time t

has effects on the operating costs expereinced by the users of the

facility throughout the whole period [t,T], the static marginal rates

of substitution, MRSi(x), are added both over all the users of the

facility at each time x and over all the times x in the period [t,T].

The inclusion of the actualization factor, exp(-px), brings this sum

to present value at time t = 0, as is the case for MRT in (4-11).

Nevertheless, rule (4-12) assumes that no further effects are

produced, over the public system analyzed as a consequence of the

provision of one unit of public good, that those that make the users

of the system enjoy the consumption of the additional unit of public

good. In other words, no externalities are assumed in the production

of quality. This assumption holds perfectly for the case just

analyzed in which demand is independent of quality. However, if

kis ý 0 an obvious externality appears in the production of quality.

The production of one additional unit of quality at time t produces

an increase in the number of each type of user of the facility during

the period [t,T], which in turn produces congestion and deterioration

externalities. These externalities are taken care of by the second

term of X(t) in (4-8). As we know, vi(x) is the social value obtained

from the generation (or production) of a new type i user at time x,

x E [t,T]. Then



= E.(x)- (x)exp(j) xdz)dx
t t

is the social value attached to the type i users generated during the

period [t,T] as a consequence of the production of one additional

unit of quality at time t. Given that vi(x) is expressed in terms

of present value at time t = 0, SVi is also expressed in present value.

Now (4-11) can be put as:

nr n
MRT = Z' g MRS.(x)q i (x)exp(-pt)dx + Z SV.

t i=l i= 1

where the last sum represents the total social value of the externalities

generated by the provision of one unit of quality at time t. As with

all othe$ expressions, it is articulated in present value at t = 0. A

similar interpretation of the optimum policy can be given for the

cases of corner solutions for V (t) in G(t).

5. Sufficient Conditions for Optimality

In the preceding sections we have anlayzed investment policies

V (t), t s [0,T], that satisfy the necessary conditions for optimality

specified by the Pontryagin maximum principle. Here we will try

to find some additional conditions that, when taken together with

the necessary conditions already analyzed, form a set of sufficient

conditions for optimality. In other words, we will analyze the circum-

stances under which the Pontryagin conditions produce the optimum



value of J(V(t)) for which we are looking. It is obviously enough

to analyze the most general case of internal demand, given that the

situation in which demand is external can be treated as a special

case.

In order to produce sufficient conditions, we will use the

Arrow theorem for optimal control problems (see Section 5 of Chapter

II). Applied to our case it says that: the policies [V (t),s (t),

q (t)] obtained from the necessary conditions, developed in Section 3.1,

will lead to a maximum of J(V(t)) if H (s,q,X,v,t) is concave in s and

q, for all t [O,T]", where

H (s,q,X,v,t) = Max H (s,q,X,v,V,t), V (5-1)
V

We can distinguish three cases depending on the expression of

the optimal control V

(a) Interior Solution, m(t) < V (t) < M(t)

In this case we can write H as

H = (U - C)q exp(-pt) + 9I + Xf - V (s,q,X,t)exp(-pt), (5-2)

where V (s,q,X,t) is obtained from Xfv = exp(-pt) and

* *
f = f (s,q,X,t) is the deterioration function f in which we

have replaced the control variable V by expression of the optimal

control V (s,q,X,t).

In order for H in (5-2) to be concave we need that its Hessian

H be negative definite or semi-definite.
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H,, H qq
H =

H S
H qs

HSSS

- (2Cq + C qqq) exp(-pt) + Xfqq - V qqexp(-pt)

= - C exp(-pt) + f qs- V qsexp(-pt)

* *,
= - Csq exp(-pt) + Xfss + - V exp(-pt)

where in the expression for HSO we have used the fact that C.I
'71

(see expression 2-1).

If fV is only a function of V or, in other words, if the

effectiveness of maintenance is independent of s and q (fVq = f s = 0),

then

Vqq = Vqs =V =0SS

(5-5)

fqq fqq, fqs = fqs, fss = f s s
ss ss

A*
and the expression for H simplifies correspondingly.

(b) Corner Solution with V = m(t)

with

(5-3)

Hqq

Hsq

H ss

(5-4)

= 0
F-'

and



Now the expression for H will be

H : (U - C)q exp(-pt) + vk + Af - m(t)exp(-pt) (5-6)

and the components of the Hessian H will become

Hqq

Hqs

= (2Cq + C qq)exp(-pt) + fqqq qq qq

= - Csexp(-pt) + Xfqs (5-7)

Hss = - C sq exp(-pt)+ Xfss +  £ss,

In.this case, given that V = m(t), conditions (5-5) are obviously

satisfied.

(c) Corner Solution with V = M(t). In this case

H = (U - C)q exp(-pt) + %'ý + Af - M(t)exp(-pt) (5-8)

and the expression for the Hessian H will be the same as in case

(b), given that (5-6) and (5-8) have the same functional form.

In any particular case, in order for the Hessian H to be

negative semi-definite we must have (see Simmons,[1975])

Hqq < 0,
H *qq
Hsq

H
qs

(5-9)



IV. OPTIMUM POLICIES FOR INVESTMENTS IN CAPACITY, CONTINUOUS CASE

1. Introduction

The analysis of optimum policies of capacity investments for

transportation facilities has been undertaken by different authors in

the economic literature. Mohring (1962), Stroz (1964) and Keeler et

al (1975) developed models that relate optimal pricing and investment

decisions and produced important insights about the nature of optimum

policies. Nevertheless, these models correspond to static formulations

of the problem and fail to produce explicit expressions for the optimum

investment function. Therefore, the study of dynamic characteristics

of the optimum policies is impossible with such models.

In this section we develop a'simply dynamic model for capacity

investments. Following the authors mentioned above, we consider

capacity as a continous variable. The objective is to find explicit

expressions for the optimum investment policies and to use them in

order to analyze the temporal or dynamic characteristics of these

policies in different cases. As has been traditionally argued, the

assumption of a continuous capacity function is not very realistic

for many public facilities, especially those in the transportation

sector which present important plant indivisibilities. Nevertheless,

it has been shown that the models built under this assumption can still

provide a good deal of insight about the problem, if conveniently

analyzed. In any event, we will comment later about the implications



of this continuity assumption and in a subsequent chapter we will

develop a different dynamic model, one that explicitly considers

indivisibilities in the capacity function. The model developed here

will help to complement the resulis obtained there.

2. A Mathematical Model for Optimal Investments in Capacity

We will assume that we have a transportation facility that serves

homogeneous users. Each of these users obtains a utility U(t) and

perceives a cost C (k,q) from each trip performed over the facility.

The utility depends only on external factors to our model and can be

expressed as a function of time. This seems a realistic assumption

for all kinds of trips except for the purely recreational ones. In

any case, it only constitutes a convenient assumption in order to

simplify the formulation of the model and can be dropped without major

consequences other than some increase in the complexity of the asso-

ciated analysis. The operating cost function C (k,q) corresponds to

an average variable cost function, which includes all expenses of

user-supplied inputs, and it is assumed to depend on the capacity of

the facility k and the number of users q. Both variables will, in

turn, be functions of time. For the case of purely recreational trips,

the utility could be also expressed as U (k,q), but as was mentioned

above we will only consider the case U(t) for simplicity. To begin we

will only make very general assumptions about the function C (k,q).

In particular:



C >0, Ck < 0

(2-1)
Cqq O Ckk O, Cqk O 0

The operating cost function will therefore look as in Figure 4.1

Additional traffic, holding capacity constant, will increase operating

costs; additional capacity, at the same level of traffic, will on the

other hand decrease operating costs. Both effects could be zero at

low levels of traffic relative to capacity. In addition, (2-1) states

that the value of Cq will increase with q when k is held constant;

contrarily ICkI will decrease as k increases, reaching a value of zero

at high capacity values (free flow situation); finally, C will decrease

as capacity is added, reaching also a limit value of zero for the free

flow situation.

Let us now define an investment function f, that gives the amount

of investment I necessary to obtain different levels of capacity k.

I = f (k) .(2-2)

We will consider I as a continuous function of the capacity k which,

in turn, will be considered continuous. Different special cases for

the function f are presented in Figure 4.2-,If we differentiate (2-2)

with respect to time we obtain:

i(t) = I(t) = fk k(t) (2-3)



C

C

C
0

3 (q3 > q2 > q1)

Operating Cost Function C(K,q).

iq)
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kk 0, > 0,,kk = 0,
if

fk> 0, f kkk '

fl > 0kk ý

FIUTRE 4. 2 Capacity Production Function f(k).
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where k(t) is equal to the change in capacity produced at time t, fk
is the marginal cost of capacity, and i(t) is the amount of dollars

spent on capacity at time t.

Two state variables will characterize the transport system of

interest: the capacity of the facility at time t, k(t); and the

number of users at time t, q(t). As a control variable we will choose,

the change in capacity of the facility at time t which we will denote

by V(t). With this notation we can now express the expenditures in

capacity, per unit of time, using (2-3), as:

i(t) = fk V(t) (2-4)

We wish to find a function V (t) that maximizes the present value

of the net social benefits of the system over the period of analysis

[O,T]. Therefore the objective function will be:

T
J(V(t)) = :o {[U(t) - C(k,q)]q(t) - fkV(t)}exp(-pt)dt +

Y(k(T))exp(-pT) (2-5)

where p is the appropriate interest rate and Y is the residual value

of the facility at time T, that we assume to be a function of the

capacity of the facility at that time. According to our definition

of V(t) above, the evolution of the capacity of the facility over time

will be determined by the simple differential equation

k(t)= VYt), k(O) = k (2-6)
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Finally, we will assume that there is a limit M in the amount of

capacity that we can provide per unit of time and that, once in place,

capacity cannot be removed (dis-investment is impossible). Therefore,

we will have the following constraints for our control variable:

0 < V(t) < M, V t [O,T] (2-7)

3. Necessary Conditions for Optimality: the functional form of

optimal policies.

The problem of maximizing the objective function J(V(t)) defined

in Equation (2-5), subject to the capacity dynamics (2-6) and the

control constraints (2-7) constitutes an optimal control problem with

fixed terminal time and no state space constraints. In order to specify

the necessary conditions for a maximum of J(V(t)) we need to define the

Hamiltonian function:

H(t) ="{[U(t) - C(k,q)]q(t) - fkV(t)}exp(-pt) + .(t)V(t), (3-1)

where X(t) is the adjoint variable corresponding to the state variable

k(t).

The necessary conditions for a maximum of J(V(t)) over VCt) state

that there must exist a function X(t) that satisfies the adjoint

equation
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S= - (TH/ýk) = [Ckq + fkkV]exp(-pt)

with

X(T) = (3•w/k)T exp(-pT) = XT (3-3)

and that the optimum control V (t) must be such that the value of the

Hamiltonian ( - ) is maximized for all t in [O,T]. This last require-

ment can be denoted as

H(k ,X,V ,t) > H (k ,A ,V,t), V t e [0,T] (3-4)

(V E S)

where £2 is defined by (2-7) and the in k and X mean that these

variables satisfy (2-6) and (3-2) respectively. Expressions (2-6),

(2-7), (3-2), (3-3) and (3-4) constitute a complete set of necessary

conditions for our problem.

It is easy to see that the gradient of the Hamiltonian with respect

to the control variable V is given by

Hv = X - fk exp(-pt) (3-5)

and given that the Hamiltonian is a linear function of V, the optimum

function V (t) will be given by
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M , if H > 0

V (t) 0 , if HV < 0 (3-6)

undetermined, if H = 0

3.1 Bang-Bang Controls

We observe that expressions (3-5) and (3-6) imply that V (t) is a

well defined function of k*(t), X (t) and t as long as the gradient

HV (t) is non-zero. In that case we have

M, if X (t) > f exp(-Pt)
V (t) = (3-7)

0, if X (t) < fk exp(-pt)

and the optimum control is called "bang-bang". In order to give an

economic interpretation of the controls defined in (3-7) we can use

the following equality that holds along an optimum solution (see

Chapter II; Section 4.)

x (t) (k ,t) (3-8)

Expression (3-8) says that X(t) represents the shadow price of

capacity at time t. A more insightful view of X*(t) can be obtained

using the adjoint Equation (3-2). If we integrate (3-2) using (3-3)

we obtain the following expression for X(t):
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X(t) = {I-Ckq(x) - (i/^k)}exp(-px)dx + AT, (3-9)

where we have used the relation

fkk V = ?(fkV)/3K = 9i/3k = i k  (3-10)

In expression (3-9) we have that -Ckq(x) is equal to the total

operating cost reductions experienced by the users of the facility

at time x (x > t) as a consequence of an additional unit of capacity

provided at time t, and ik is the effect that an additional unit of

capacity provided at time t has over the cost of providing capacity

at time x. The value of ik takes into account the changes in the

cost of providing capacity in the future (after t) caused by one

additional unit of capacity provided at time t. Only if there are

constant returns to scale in the facility construction will this term

always be zero within the interval [0,T], because then the marginal

cost of capacity fk is constant for all k. Nevertheless, if f presents

decreasing returns to scale (fkk > 0), ik will be positive as long as

V > 0. On the other hand, if f presents increasing returns to scale

(fkk < 0), ik will be negative for all the periods with V > 0. There-

fore, there exists a clear interrelation between present and future

investment decisions when fkk ý 0. For fkk > 0, future investments,

after t, will decrease the value of X(t), and vice versa for fkk< 0.

It appears then, that more investment will be justified in general

when f presents increasing returns than when it presents decreasing
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returns to scale. In Section 5, this will be clearly shown to be the

case. The value of XT in (3-9) represents, according to (3-3), the

present value of the marginal value of capacity at time T.

The bang-bang policy defined by (3-7) says that capacity should be

provided, at a rate of M units of capacity per unit of time, as long

as the shadow price of capacity remains higher than the marginal cost

of capacity. When the converse happens, capacity should be held

constant. If the gradient function Hv(t) vanishes only at a countable

number of times, within the interval [O,T], our optimal control problem

is called "normal" and the optimum policy V (t) is "bang-bang." The

value of V*(t) switches from one boundary of 0 (defined by (2-7)) to

the opposite one, at certain well-defined times ts given by:

(ts): fk exp(-pts) t E [0,T], (S = 1,2... ,N) (3-11)

Figure 1.3illustrates a function H. and the corresponding V (t) in this

case. HV is then the so-called "switching function". However, given

that our objective function (2-5) is non-linear in the state variable

k, there exists the possibility that HV vanishes identically along

some finite periods of time in [O,T] (see Chapter II, Section 3.2).

The optimum controls during those periods, if they exist, are called

"singular" and will be analyzed in the next section.

3.2 Singular Controls

In the preceding section we assumed that the switching function HV
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vanishes only at a countable number of times in the period [O,T]. In

this section we will analyze the possibility that the gradient HV

vanishes identically over one or more finite periods of time or sub-

intervals in [O,T]. Then we will say that we have a singular optimal

control problem and the periods for which HV = 0 are called singularity

intervals or singular arcs. As we noted in (3-6) the necessary condi-

tion (3-4) do not provide in this case enough information in order to

define V (t) along a singular arc. In the absence of such information,

we must manipulate the other necessary conditions in an effort to

determine a well-defined expression for Vs(t), which receives the name

of singular control.

Singular controls can be in general determined making use of the

following observation (see Chapter II, Section 3.2): "If the grad-

ient HV of the Hamiltonian vanishes identically along a singular arc,

then the time derivatives of HV must remain equal to zero during the

same period." From (3-5) and (3-6) we have that at a singular arc

HV = X - fkexp(-pt) = 0 (3-12)

Thus upon taking the time derivative of (3-12) we obtain

HV = - fkk k expC-pt) + Pfk exp(-pt) = 0 (3-13)

which, making use of the necessary conditions for k and X expressed by

the capacity dynamics (2-6) and the adjoint equations (3-2) and

dividing by the positive value exp C-pt), becomes
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(3-14)Ck k = 0

Now, given that (3-14) must hold along the singular arc we can take a

new time derivative of this expression to obtain

Ckkkq + kqqq + Ckq + fkkk = 0 (3-15)

and using again the necessary condition (2-6) we get from (3-15) the

following expression for the singular control

Vs =-q' {(Ckqq + Ck)/(Ckkq + fkkP)} . (3-16)

In addition, the singular control imust obviously satisfy the control

constraint

0 < Vs 5  M . (3-17)

Given our assumption (2-1) about the cost function C, we can

easily see that VS in (3-16) will automatically satisfy the non-

genativity constraint for all the periods of increasing demand (q > 0)

if

fkk > -Ckk Cq/p) (3-18)

where the right hand side of (3-18) is always non-positive. As we

will see later (3-18) constitutes an additional necessary condition
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for singular arcs.

It is important to note that (3-12) and (3-14) constitute

necessary conditions for the existence of the singular control V5

given by (3-16). In other words, Vs can be an optimum policy only

when condition (3-12) holds. In that case the use of a control Vs

will maintain the solution path on the singular arc, along which

(3-14) is also satisfied. Equation (3-12) tells us that, for all the

values of t along a singular arc, the application of Vs will produce

a level of capacity k (t) such that the marginal benefit of capacity

X (t)exp(pt) is equal to the marginal cost of capacity fk* In addi-

tion, if we put (3-14) as

-Ck q(t) = Pfk (3-19)

we have that, along a singular arc, capacity is provided in such a

way that, at each time t, the marginal reductions in operating costs,

produced by the last unit of capacity, are equal to the rental value

of the cost of providing that unit of capacity. We can think of (3-19)

as the Marglin naive static rule (Marglin, 1963) applied to the mar-

ginal unit of capacity. In that case (3-19) says that the next unit

of capacity will be provided at a time t such that the present value

at t of a perpetual stream of benefits at the immediate rate-Ckq(t)

equals the construction cost of that unit

fk = -[Ckq(t)/P] . (3-20)
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The construction cost of the next unit is the marginal cost of capacity

fk' This rule applies to all the units of capacity provided along the

singular arc.

At the beginning of Section 3 we saw that one of the necessary

conditions that an optimum control must satisfy is the maximization

of the Hamiltonian required by (3-4). It is easy to see that the

control Vs specified by (3-16) does not necessarily satisfy that con-

dition. Actually, we derived Vs from the fact that along a singular

arc HV = 0, which is only a first order condition for the maximization

of the Hamiltonian with respect to the control. Therefore, we still

need a second order condition in order to ensure that Vs corresponds

to a maximum of H(t) and not a minimum or an inflexion point. This

second order condition is provided, in general, by the requirement

that HVV> 0 (see Byson and Ho, 1975). In the linear case, for non-

singular arcs (bang-bang controls), the fact that for all V c £,
* *

HV (V-V ) <0, is a sufficient condition for the maximization of the

Hamiltonian (see Luenberger, 1973). However, for singular arcs we

have both

HV = 0 and HVV = 0 (3-21)

and therefore an additional necessary condition must be applied. This

condition, developed by Tait [1965], Robins [1965] and Kelley et al

[1966], states that in order for Vs to produce a maximum of J(V(t))

it is necessary that in addition to all the necessary conditions

already developed [(2-6), (2-7), (3-2), (3-3), (3-12) and (3-14)] the
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following condition must be satisfied in our case

(HV)V 4V ((d/dt 2H Hv > 0 (3-22)

For our problem it is easy to check that this reduces to

(H )V = Ckkq fkkp  0 (3-23)

Given our assumptions (2-1) about the function C, and given that

q(t) is by definition non-negative, condition (3-23) will be always

satisfied for all f functions with decreasing or constant returns to

scale (fkk > 0). It could be violated nevertheless for functions

that present strong increasing returns to scale if

fkk <-C k(q9/C "

In that case singular control given by (3-16) would not correspond to

an optimal solution to our problem. It is also interesting to note

that (3-23) can be put in the form

S(-Ckq - fk ) < 0 (3-24)

which is a second order condition, with respect to k, for rule (3-19).

The term in parenthesis in expression (3-24) is the net benefit, at

time t, of providing an additional unit of capacity at that time.
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Therefore condition (3-23) ensures that condition (3-19) leads to a

static maximization of benefits at time t.

3.3 Dynamic Optimum Policies

In the preceding sections we have used the necessary conditions

provided by the Pontryagin maximum principle in order to derive

expressions for the optimum controls for our problem. Two cases

were identified and analyzed: bang-bang and singular controls. In

practice, optimum policies will, in general, involve a combination

of both. In that case, the optimum controls will be defined by:

M if . > fkexp(-pt)

St - q {Cq + k)/(Ckk fkexp(-pt) (3-25)

0 , if "A < fkexp(-pt)

A dynamic optimum policy can in general be represented by a path

in the positive quadrant of the space of state variables (q,k). In

that space, bang-bang arcs with V = 0 are represented by horizontal

lines, k = constant, given that along them k = 0 (see Figure 4.4a).For

bang-bang arcs with V = M we have:

k = M => k(t) ks + M(t - ts), (3-26)
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(c) v v
S

(d)

HV- 0

FIGUTJRE 4.4 Optimal Policies in (q,K)

(a) Bang-bang arcs with V - 0,

(b) Bang-bang arcs with V ' , q = C,

(c) Singular arc, H = O, V = Vs,

(d) Optimum Policy representation.
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where ts is the switching time at which the application of V = M

begins and ks is the capacity at that time. Using (3-26) to eliminate

the variable t from the demand schedule q = q(t) we obtain the

following equation for arcs with V = M

q = q((k-ks)/M + ts  (3-27)

Applying the chain rule it is easy to see that the slope of this

curve is given by

dk (  ) (M/q) (3-28)
dq dt d

which is always positive for q > 0. If q = 0 the bang-bang arcs

defined by (3-27) become vertical straight lines in (q,k). Given

a constant value of M the slope (3-28) will change with the value

of q, decreasing when the latter increases and vice versa. in

Figure 4b we represent a family of these bang-bang arcs for a case

with q constant. Finally, an expression for the singular arc in

(q,k) can be obtained from the necessary condition (3-14).

Ck q + Pfk = 0,

For any particular case, this is an equation in q and k that

defines a unique line in (q,k). It specifies the points, or states

of the system, for which the condition (3-12), that defines the

singular arc, holds. Given condition (3-23) this line will always



have a positive slope for q > 0. A singular arc is represented

in Figure 4c. It divides the space (q,k) in two half-spaces;

states of the system represeted by points located below the

singular arc correspond to situations with capacity values lower

than optimum and vice versa for points located above the singular arc.

In that case, the bang-bang arcs represented in Figures 4a and 4b

provide optimum paths to get onto the singular arc. On the other

hand, we can see from (3-3) and (3-5) that the final state of the

system, at time T, can only be over the singular arc, if

Tk(T)exp(-pT) = fkexp(-pT) . (3-29)

This condition will always be satisfied for T = =, but if T is

finite, it will in general be violated. In particular, if the

residual value of the facility v is equal to zero we will have for

any finite value of T

AT < fkexp(-pT) , fk > 0.

If (3-29) does not hold we will have to leave the singular arc

at some time t before T, in order to satisfy the final conditions

(also called transversality conditions) of the problem. Again in this

case, the bang-bang arcs provide optimum paths to follow. We know

from Section 3.1 and 3.2 that an optimal solution can only be formed

by bang-bang and/or singular arcs. Therefore, the optimum solution

to our problem will involve, in general, an initial bang-bang arc
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to get onto the singular arc, the use of such an arc for as long as

possible and a final bang-bang arc in order to meet the final

conditions of the problem. The value of V along the initial and

final bang-bang arcs will depend on the location of the points (q,k)

that represent the initial state of the system (qo,ko) and the optimum

final state (qTk (T)). In Figure 4d we represented a typical

optimum policy. Optimum policies for some special cases of interest

will be analyzed in detail in Section 5.

4. Sufficient Conditions for Optimality

In Section 3 we have found investment policies V (t), t E [o.T],

that satisfy the necessary conditions for optimality specified by the

Pontryagin maximum principle. In this section we will specify the

circumstances under which those policies produce a maximum value

of the objective function J(V(t)). In other words we will study

the sufficiency conditions for our optimization problem. With this

purpose we will make use of the Arrow sufficiency theorem for optimal

control problems (see Chapter II, Section 5).

The Arrow sufficiency theorem, applied to our problem, says

that: the policies [V (t),k (t)] obtained in Section 3 will lead

to a maximum of J(V(t)) in (2-5) if H*(k,X,t) is concave in k, for

all t e [O,T], where

H (k,X,t) = Max H(k,A,V,t) (4-1)

V
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In our case we have three different expressions for H (k,k,t)

depending on the expression of the optimal control V . These are:

(a) Bang-Bang control with V = 0

H = (U - C) q exp(-pt) (4-2)

(b) Bang-Bang control with V = M

H = (U - C) q exp(-pt) + M[x(t) - fkexp(-pt)] (4-3)

(c) Singular control, V = Vs

H = (U - C) q exp(-pt) + Vs[X(t) - fkexp(-pt)] (4-4)

Remember that in this case X=fkexp(-pt) for all t along the singular

are.

The function H will be concave in k if its second derivative

with respect to this variable in non-positive. For case (a) we have

from (4-2) that:

Hkk = - Ckkq exp(-pt) (4-5)

and therefore H will always be concave for this case given that,

according to the assumptions (2-1), Ckk will be always non-negative.

In other words, for bang-bang policies with V = 0 the necessary

conditions provided by the maximum principle are also sufficient

for optimality.

Now, for case (b) we have from (4-3) that
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Hkk = - + fkkkM)exp(-ot) (4-6)

and H will be concave here only if

kk+ fkkkM > 0. (4-7)

Given assumptions (2-1), this condition will always be satisfied

for capacity production functions f with a non-negative third order

derivative fkkk* Therefore for those functions the necessary con-

ditions will also be sufficient for optimality. Nevertheless, if fkkk

is negative then (4-7) defines additional conditions that the

policy obtained from the necessary conditions must satisfy in order

to be optimal. In particular, (4-7) imposes the following constraint

on the value of M:

M < - q (Ckk/fkkk) (4-8)

where the right hand side is positive because q 0, Ckk ? 0 and

fkkk < 0. Now, given that we are analyzing the case V = M, for

which HV > 0, it is obvious that the value of the Hamiltonian will

increase as V increases. Nevertheless, we can only increase V

until it reaches the value -q (Ckk/fkkk), because beyond that value,

the necessary conditions are no longer sufficient for optimality.

Therefore, for the case in which fkkk < 0, the maximum possible value

of the Hamiltonian corresponding to a control that satisfies the
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sufficiency conditions is obtained by choosing

, if M < - q(Ckk kkk ) '

Sif • > - q(Ck kk}kk k

which provides the expression for the optimal

HV > 0, when fkkk < 0.

Finally for case

control in the case

(c) we can obtain from (4-4)

Hkk (Ckkq + Vsfkkk)exp(-pt)

and H will be concave if

Ckk + Vsfkkk > 0

Therefore, we have a similar situation to case (b)

,(4-11 )

in which if fkkk

the optimal control will

V =V

V = -q(Ckk/fkkk),

be given by

, if Vs - q(Ckk/fkkk )'

if Vs > - q ( Ck k/ f kk k )'

where Vs is given by expression (3-16 )

119

V =M

V

(4-9a)

(4-9b)

,(4-10)

< 0

(4-12a)

(4-12b)

V V



5. Special Cases of Interest

The discussion in previous sections has been largely abstract

and theoretical. We have tried to maintain in preceeding sectionthe

highest possible level of generality in our analysis. Some general

assumptions about the operating costs function C were made at the

beginning in order to keep certain realism in the analysis. No

additional conditions about C were later necessary to guarantee

sufficiency. With respect to the construction cost function f, we

began the analysis without special assumptions other than continuity

and differentiability. Later, it was shown that f should satisfy

condition (4-7) in order to guarantee sufficiency in the bang-bang

case with V = M and condition (3-23) for singular paths to be

candidates to produce optimum solutions. Finally, no conditions at

all were necessarS with respect to the demand function q(t) other

than the obvious requirement that the total number of users of the

facility be non-negative for each t in [0,T]. In particular, the

rate of change of demand q can be positive, negative, zero or any

combination of them along the period [0,T].

In this section, to illustrate the results obtained, we will

apply them to some simple special cases. We will in particular assume

that the operating cost function C is homegeneous of degree zero in

q and k. This is equivalent to assuming that the individual operating

costs are dependent only on the volume-capacity ratio of the facility.

This assumption is commonly used in the transportation economics

literature and therefore is interesting to apply our results to this

special case. In analytic terms it implies, using Euler's theorem on
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homogeneous functions (see Allen, [1971])

Ckk + C q = 0 (5-1)

If we differentiate C with respect to time and use (5-1) we can

easily obtain

dC= Ckk(-) 
(5-2)

and taking the derivative of (5-1) with respect to k we can also obtain

Ckkk = - (Ck + Ckq q ). (5-3)

Then, if we use (5-3) in (3-16) we get

Vs = q {Ckkk/Ckk+ + kk) (5-4)

which gives an expression for the optimum singular control in the

homogeneous case. To understand the implications of Vs in this case,

we can use (5-1) in (3-14) to obtain

(Cqq)q = p(kfk) (5-5)

which must hold for all t along a singular arc. Given that C qq is

equal to the congestion costs produced by each user of the facility

at time t, expression (5-5) says that, along a singular arc, the
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capacity k provided at each time t should be such that the congestion

costs, produced by each user, times the numer of users of the

facility be equal to the rental value of the facility when a unitary

cost of capacity equal to the marginal cost of capacity is used. If

each user of the facility is charged a toll such that the total cost

perceived by him is equal to short-term marginal cost,(5-5) leads

to the well-known result that says that, if constant returns to scale

exist in capacity construction, the total income collected from con-

gestion tolls will just cover the total rental costs of the facility or

(C q) q = pf(k), f(k) = yk. (5-6)

This condition must be true for each time t along a singular arc. If

there are decreasing returns, for all possible values of k, fkk > 0,

and then marginal cost tolls will yield an operating surplus, per

unit of time, along a singular arc. With increasing returns, on the

other hand, a deficit per unit of time will appear. Nevertheless,

we must remember that for this last case Vs will be a candidate for

an optimum policy only if (3-23) is satisfied, or in other words,

the increasing returns characteristic is not too strong. In any case

V given by (5-4) constitutes an explicit expression for the imple-
s

mentation of the policy stated by (5-5). Such an explicit expression

has not previously been available in the economic literature. A more

general expression that does not depend on the assumption of homo-

geneity for the operating cost function C is given by (3-16).
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5.1 Constant Returns to Scale in Capacity Construction

In this case we can represent the capacity production function

f = yk, with: fk ' 'kk (5-7)

Therefore, we can write from (3-5) and (3-2):

Hv = A - y exp(-Ot)

X = Ckq exp(-pt)

(5-8)

(5-9)

We will assume here that the planning period is [0,=]; therefore

from (3-3) we obtain

(5-10)T = X() =

and also, that demand is not decreasing, or a > 0, V t E [0,] .

Using (5-7) in (5-4) we can easily get that the expression for

the singular control Vs becomes in this case

Vs = k (q/q) (5-11)

If we now use (2-6) in (5-11) we get that the equation of the singular

arc in the space (k,q) is given by

dk = dq
k q
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Therefore, if constant returns to scale exist in capacity construction

and we can assume that C is homogenous of degree zero in k and q, once

we get onto a singular arc the optimum policy is to increase capacity

in the same percentage as increases in demand.

Equation (5-12) corresponds to a straight line going through the

origin of the space (k,q), (see Figure 4.5a). The equation of this

straight line can also be obtained directly from (3-14) or (5-5) which

represent the necessary conditions to stay on a singular arc. It is

interesting to note that (5-11) implies:

Ck/k) = Cq/q)

which when introduced into (5-2) gives C = 0. Therefore, the operating

cost will remain constant along the singular arc.

Let us assume now that the operating cost function C is given by

CCk,q) = y + a(q/k)n, n > 2, B > 0. (5-13)

This is an obvious extension of those cost functions used in practice

by the U.S. Federal Highway Administration (FHWA) (see Comsis, 1972).

Actually for each fixed value of k, (5-13) transforms into one of the

FHWA functions. From (5-13) we can now get

Ck = B(qn/kn+l)

(5-14)

Ckk = n(n+l)$(qn/kn+ 2)
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C = ný(qn l/kn)

Cqq = n(n-1 )6(qn- 2/kn) ,(5-14)

Cqk = n2 (n-l/kn+l ).

It is easy to check that conditions (2-1), (4-7) and (3-23) are

satisfied in this case; therefore, bang-bang and singular arcs that

satisfy all the necessary conditions will maximize J(V), and combinations

of both will be possible.

Now, from (5-5), (5-7) and (5-14) we can get the following

explicit expression for the equation of the singular arc represented

in Figure 4.5a

k = eq, = = (n/yp)<nli (5-15)

Here 6 is directly proportional to the parameter B describing the influ-

ence of the congestion effects on the operating cost C and inversely

proportional to the rental value of the constant marginal cost of

construction py. If the rental value of capacity increases, less

capacity will be justified for each level of q and vice versa. On the

other hand, the optimum level of capacity for each q will increase if

the cost of congestion 8 increases.

The straight line UT in Figure 5a describes a circumstance for

which the condition X(t) = yexp(-pt) is satisfied. At the initial

time t = 0, if the initial point (q ,ko) is below OS we will have less
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than the optimum capacity and therefore ,(O) > X. On the other hand,

if (q k ) is above O too much capacity will be in place and (0O) < 1.
0, 0

In Figure 4.5b we have represented some typical cases of optimum

singular policies. These are:

Case 1 (A-D-E)

arc AM: Hv > 0,

arc DE: HV = 0,

V = M,(bang-bang)

Vs = k (q/q),(singular)

The terminal point of this policy is (qEkE) at t = w, assuming that

the value of q(t) is bounded, with- qp ) = qE" Note that we do not need

in this case to leave the singular path to meet the final boundary

conditions because

X(m) =yexp(-pcn) = 0.

Therefore if we consider an infinite

actually belong to the singular arc.

arc we must first undertake capacity

AD. To determine the point D we can

horizon, the terminal point will

In order to get onto the singular

construction at a rate M during

use the relation

kD -kA = M (tD-to), kA = k(O)



and the equation of the singular arc evaluated at D:

k D q Dq

where e is given by (5-15).

Case 2. (B-C-E)

V =0

Vs = k(q/q).5

(bang-bang)

(singular)

Here we have assumed the same terminal condition q(o) = qE but we

began with initial conditions (kBq B) that correspond to a point

above the singular path. Therefore, to get onto the singular arc we

must wait until demand increases to qC holding capacity constant during

the period BC. We can determine the point C in a way similar to that

used for D in Case 1.

Case 3. (A-D-F-G)

> 0, V =

= 0, Vs

M

k(q/q)

<0, V. = 0

(bang-bang)

(singular)

(bang-bang)

This case has

responds to a

the same initial conditions A as Case 1

finite planning horizon [O,T] with q(T)

but it cor-

= qG and we in
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addition assume that the final boundary condition for ' (or the trans-

versality condition) is such. that

X(T) = G < yexp(-oT).

Therefore we must leave the singular arc at a point F in order to meet

the final conditions. The point of exit F is given in this case by

X(tF) = yexp(-ot-)

which upon using (5-9) and the final value 'AT' can be written, by

directly integrating equation (5-9) as

/T
-Ckq exp(-t), dt + = exp(-ot F

F

Substituting the value of Ck from (5-14) and using the fact that

capacity is constant after F, this expression becomes

nýKF (n+l) j q n+exp(-pt)dt
F

+ T = exp(-PtF)

Using this equation and the equation of the singular arc evaluated

at F:

kF = 9qF

where • is defined in (5-2), we can cet both kc and tF.

129



5.2 Decreasing Returns to Scale in Capacity Construction.

Here we will assume a capacity production function of the form

f = y'k + 6km , m> 1 . (5-16)

The associated derivatives of interest are

f +

f: =• + dm km -

m- ul\l- I I J (5-17)

fkkk = 6m(m-1)(m-2) km- 3

The linear term r'K was included in (5-16) in order to allow marginal •

costs different than zero for k = 0. This will permit more general

and natural comparisons with the constant return case. Using (5-17)

in (3-2) and (3-5) we can obtain

H = = - (' + Am km-I ) yn(-nt)
- '\ - (5-18)

(5-19)x = (Ckq + 6m(m-1) km- 2V) exp(-pt) .

From (5-4) we have that the expression for optimum singular controls,

when C(k,q) is homogeneous of degree zero, is

Vs = q{Ckkk/(Ckkq + fkk)
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Thus, using (5-14) and (5-17) to replace Ckk and fkk we get the follow-

ing explicit expression for Vs in terms of k,q and the parameters of

the problem

Vs = k (q/q)u (5-20)

with i = n(n+l) B/[n(n+l)a + m(m-l) p6 (km+n/q n+ l )] . (5-21)

where it is obvious that p will be lower than one for all m greater

than one.

Using expression (5-5), the equation of a singular arc when C(k,q)

is homogenous of degree zero, and the expressions for Cq and fk from

(5-14) and (5-17), we can obtain the following equation for the sing-

ular arc

n+l n+l m+nnq - pyk - p mk = 0 (5-22)

which is a curve going through the origin of (q,k). Unfortunately we

cannot obtain for this case an explicit expression k as in the con-

stant returns case. An explicit expression is obtained only if we

eliminate the linear term of f in (5-16), y' = 0; in that case we

have

k = 0 q(n+l)/(n+m) (5-23)
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with

in+m)6 = (nS/m)(nm)

Note that for m > 1 (5-23) describes a concave function of q going

through the origin of (k,q).

The value of u can be expressed as a function of k and the para-

meters of the problem if we use (5-22) to eliminate q from (5-21);

in that case we obtain

n = n(n+l)B/[n(n+l)8 + m(m-l)pnBý(py'k - (m- l ) + p6m) - ] (5-24)

Therefore we can say that the value of u will decrease as k increases,

and therefore q increases (see 5-22), along the singular arc. Now,

from (5-20) and the fact that ' will always be lower than one for

m > 1 we can write, for all t on the singular arc:

(k/k) < (q/q) or (dk/k) < (dq/q) (5-25)

Using the first of these relations in (5-2) we obtain that C > 0,

which means that for the decreasing returns to scale case the optimum

investments in capacity along a singular arc will produce an increas-

ing operating cost function through time as long as q > 0. From the

second relation in (5-25) we get that the optimum percentage increase

of capacity per unit of time will be lower than the corresponding

percentage increase of demand. In addition, from the fact that u

decreases with q, the difference will increase as q increases and
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therefore the singular arc will be concave in q as shown in Figure 4.7a

From (5-22) it is obvious that it will go through the origin of (q,k).

In order to obtain an expression for (dk/dq) we can differentiate

(5-22) with respect to q to obtain

(dk/dq) = n(n+l)ýqn/[py'(n+l)kn + pSm(m+n)k(m+n-l) ] * (5-26)

Using (5-22) again to eliminate q, and after some simple algebraic

manipulations we obtain

n/(n+l)
dk = n(n+l)B[py'/nS + (p6m/nB)k m- 1I  (
dq py'(n+l) + p6m(m+n)k m-l (5-27)

which is always positive. If m > i we will have, for k = 0,

(n+l)-
(dk/dq)k=0 = e' = (n/poy') (5-28)

As we saw before (dk/dq) decreases as q increases. Ify' in (5-16)

has the same value as y in (5-7) we have that the initial marginal

cost of capacity, at k = 0, for the decreasing returns case is equal

to the constant marginal cost corresponding to the constant returns

case. The production cost functions are as shown in Figure 4.6. Then

from (5-15) and (5-28) we have that the singular arc, for the con-

stant returns case, coincides with the tangent to the singular arc

corresponding to the decreasing returns case, at the origin. In

other words 6' = 6, as it is shown in Figure 4.7a. The singular arc for

1 '?



FIGURE 4.6 Capacity Production Costs Function Decreasing
Returns Case
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the decreasing returns case, that is represented by the arc OS,

lies below the straight line.k = eq for all q and is concave. There-

fore, the optimum amount of capacity for the decreasing returns case,

is lower, for all q, than the corresponding optimum amount for the

constant returns case. This difference increases with q, for a given

m, and also increases with m for each q. Some typical examples of

singular policies, similar to those analyzed for the constant returns

case, are depicted in Figure 4.7b.

It is easy to show that the second order condition (3-23) for

singular arcs is satisfied for all m > 1 for the present circumstances.

Nevertheless, the convexity condition (4-7) for bang-bang arcs will

be satisfied for any values of the variables and parameters of the

problem only if m > 2. If 1 <m < 2, then (4-7) will impose additional

conditions to those already analyzed. if we substitute into (4-7) the

expressions of Ckk and fkkk from (5-14) and (5-17) we obtain

y 'm(m-1)(2-m)km-3 < [n(n+l)2/M](qn+i/kn+2), (5-29)

where 0 < (2-m) < 1.

As we saw in Section 4. , this expression can be seen as a condition

for M if we write it as

M _ [n(n+l)B/y'm(m-l)(2-m)(qn+!/km+n-_ ), (5-30)

which gives an upper bound for the value of M, and therefore V (t),
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for each point (q,k) situated below the singular arc. If the value

of M violates condition (5-30) for a point below the singular arc,

then the optimum investment policy at that point becomes (see Section 4):

V = [n(n+)j/y m(m-1)(2-m)](qn+l/k m+ n- 1); (5-31)

this policy should be maintained until the singular arc is reached.

Expressions (5-30) and (5-31) are also applicable to the singular

control if we replace M by Vs

5.3 Increasing Returns to Scale Case

This case is largely symmetrical to the one analyzed in the

preceding section. Nevertheless, the second order conditions are

different. We will simply assume here that the function f is given by

f = E km, O < m < 1 (5-32)

f = m km-k

fkk : E m(m-l)k m-2  (5-33)

fkkk = E m(m-1)(m-2) km- 3

We can find the equation for the singular arc using expressions (5-5),

(5-14) and (5-33) to obtain after simple algebraic manipulations:
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k = q(n+l)/(n+m),
kc = rq

with (n+m)-1
with T = (ns/pem)

which represents a convex function of q going through the origin of

(q,k). A representation of (5-34) is given in Figure4.8a by the arc

The expression for the singular controls is obtained from (5-4),

(5-14) and (5-33). In fact, we find that

V = k(a/oa)' (5-35)

with -' = n(n+l)$/[n(n+l)ý + pem(m-l) (km+n/qn+l)] (5-36)

If we now use (5-34) to eliminate k and q from (5-36) we can obtain

the following expression for 1' as a function only of the degrees

of the functions C and f:

' = (n+l) / (.n+m). (5-37)

Here it is obvious that ij'will be positive and higher than one for

all m between zero and one. In addition V' will increase as m de-

creases or, in other words, the economies of scale increase. There-

fore, we can write for all points along the singular arc:

(k/k) > (q/q) or (dk/k) > (dq/q)
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From the first of these relations we obtain, using (5-2) that C < 0.

Therefore, for the increasing, returns to scale case, the optimum

investments in capacity, along a singular arc, will produce a

decreasing operating cost function through time, as long as q > 0.

From the second expression in (5-38) we deduce that the optimum per-

centage increase of capacity, per unit of time, will be higher than

the corresponding percentage increase of demand. Some typical

singular policies are presented in Figure 4.8b.

It is easy to check in this case that the sufficient conditions

(4-7) and (4-11) for bang-bang arcs with V = M, and singular arcs

respectively are satisfied for all possible combinations of positive

values of q and k. This is because fkkk > 0, as we can check in

(5-33). The second order necessary condition (3-23) for singular

arcs, can-be expressed, using (5-14) and (5-33) as

n(n+l)B(qn+1/kn+ 2) + pE m(m-l)km-2 > 0. (5-39)

Upon rearranging terms this can be written as

k < nq n+l)/(n+m)

with

n = {[(n+l)/(1-m)] (n_/pmm) - (5-40)

Given that the value of m must be between zero and one, it is

obvious that n will be higher than T in (5-34). Therefore, condition

(5-40) will be satisfied for any point along the singular arc.

140



V. OPTIMAL INVESTMENTS IN CAPACITY A•D QUALITY. DISCRETE CASE

1. Introduction

As was mentioned in the preceding chapter, investments in trans-

portation facilities can present important indivisibilities. This

is especially relevant for the capacity variable, feasible values

of which are usually contained in a finite countable set. Thus, the

capacity of a road can only be increased adding new lanes, the

capacity of a port adding new loading sites, etc., where the feasible

increases are obviously discrete. Therefore, the decisions about

capacity provision for individual transportation facilities are in

practice transformed into time staging decisions. In that case,

different discrete levels of capacity are defined and the problem is

to find the optimum time at which a jump from one level of capacity

to the next one must be made. in practice, a given level of quality

is also associated with each level of capacity, which defines a set

of feasible states for the facility. The jump from one state to another

defines a project whose impienentation time must be decided.

In this chapter we will present a mathematical model that treats

capacity as a discrete variable, feasible levels of which are

externally specified, and also allows for discrete jumps in quality

at the times at which capacity is changed. Nevertheless, we will

consider quality as a piece wise continuous function which value is

internally determined by the model at all times t with t E [O,T]. The

necessary conditions for optimalitv will be developed and from them

the characteristics of optimum policies and their economic inter-

Dretation will be derived.
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2. A Mathematical Model for Otimal Staging of Capacity and Quality

As before we will assume that we have a transportation facility

with homogeneous users, who perceive a utility U(t) from each trip

performed over the facility. In addition, let us assume that N

possible levels of capacity have been defined for the facility, each

of them associated with an operating cost function Ci(s,q) like that

defined in Chapter III.The same assumptions made there about the

characteristics of this cost function and the quality variable s are

valid here.

Therefore, the net private benefit obtained by an individual

user from each trip performed over the facility, when the capacity

is at level i is

Bi(t) = U(t) - Ci(s(t),q(t)) ,i ( 1....N C2-1)

Let us use the notation t. Ci = O, 1,....,N-l) to refer to the times

at which an increase of capacity is provided and t. and t. to refer
1 1

to the moments just before and after ti. We will call V(t) the amount

of money spent on maintenance at each time t with t e [ti, t ]
1 i+l

(i = 0,1,....,N-1) and li(s(tt),s(ti)) the investment necessary, at

time ti, to go from a capacity level i to a capacity level (i + 1).

In th.is chapter maintenance will refer to only those activities
that decrease or eliminate deterioration of the facility.
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This investment will be a function of the quality of the facility

just before and after ti. In other words, discrete jumps of quality

are allowed at each time ti at which capacity is increased. Then,

the cost of the fixed increase in capacity will depend on the amount

of quality improvement provided at the same time.

Our objective in this case will be to choose a set of times

t} (i = .... ,N-1), a function V(t) for each interval [t , ti+,

and the values of s(t ) (i = 1,...,N-l) in such a way that the

social net benefit will be maximized. We will assume that the initial

time to and the final time tN = are given. Then, the objective

function can be written as:

+ +
i ;tl,.... N-1 o, .... , N-I

N
i ti-

i=l t (i-l)
{[U(t) - Ct(s(t),q(t))]q(t) - V(t)}exp(-ot)dt

N-1
- 2 I (s(t ),s(t ))exp(-zt i )

i=m

In order to simplify notation we will define

,(2-2)

N-i

i=O

+
Si =1

I = (i/
is+ = (ali/Bsi)

Ii (s(t 4. ,s~ti)exp(-Ftit

(t , S S(t:)i i i ,(2-3)

I
is_ = (aI /asl)

As in Chapter 3 we will in addition assume that the change of

quality in the facility, per unit of time, for all t t i (i = O, 1,
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....,N) can be represented by differential equations of the form

s = fi(s(t),qt),V(t),t), t [tit ], (i = l,...,N), (2-4)

and that the amount of money that can be spent in maintenance at

each t is constrained by

m(t) < V(t) < M(t) . (2-5)

3. Necessary Conditions for Optimality

If we consider that the demand for using the facility q(t) is

given for each time t in the period [to,tN], then the maximization

cf the objective function (2-2), subject to the quality dynamics

(2-4) and the control constraints (2-5) is an optimal control

problem of the type presented in Section 3.3, of Chapter III. The

Hamiltonian is in this case defined by:

Hi = {[U - Ci(s,q)] q - V}exp(-pt) + Xf i ,

t + [t lt], (i = 1,...N) (3-1)

+ + +
and in order for a set (V~t) ,t -1 s' s1,..., N-1 to be

optimal, the following necessary conditions must be satisfied.

x = - (CHi/9s) = Cisq exp(-ct) - ;.fs

t E .t ], ( = ,...N) (3-2)
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X(t i ) = (at/as(t.)) = lis exp(-Pti), (i = 1,...N)

,(tt) = (~/3s(t') = lis+exp(-ti ), (i = 1,...N)

and

(3-5)(80/;ti) = H(i+l) (t ) - Hi (t , (i = 1,...,N-l).

the definitions of ý in (2-3) and Hi in (3-1) this

pi1exp(-pt i) = [Ci(t i) -C ii(t

+ (4- -

(1 5= ....,N-I

.)]q(t i ) e x p ( - p t i )

- V(ti)exp(-pti)]

V(ti) exp( -k t i ,

where we have assumed that the variable q(t) is continuous

t [t o,tN] though its derivative with respect to time can

discontinuous at some points within the same interval.

Finally, the value of V(t) within each interval (t ,ti
to be chosen in such a way that the corresponding value of

Hamiltonian is maximized:

* * * * *

H.(s A ,,V ,t) 4 H.(s ,,\
V1 1V Veo

,V,t), V t [t. t]

(i = 1, .... ,N)
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with:

(3-3)

By using

becomes

(3-6)

for all

be

has+1the)

the

(3-7)



where & is defined as usual by (2-5).

For each interval [ti_1 t ], the problem of selecting an optimum

maintenance policy V.(t) corresponds to the case analyzed in Section 2

of Chapterlli;therefore,V must satisfy (see expressions (2-13) to

(2-15) of Chapter III the following:

X f = exp(-pt), if m < V < M,

X fiV ý exp(-pt), if V = m V t [tl t ], (3-8)

A fiV ? exp(-pt), if V = M (i

4. Economic Interpretation. Optimal Investment Rules

Expressions (2-4), (2-5), (3-2) to (3-4), (3-6) and (3-8)

constitute a complete set of necessary conditions for the problem

defined in Section 2.

As in Section 2.2 of Chapter III we can integrate the adjoint

equation (3-2) for each interval [t- 1 ti]_ , using the boundary value

of X(t:) provided by the transversality condition (3-3), to obtain

X(t) = - fi {[Cisexp(Xf isdz)]q(x)exp(-px)}dx
t t

+ is exp(fi fis dz)exp(-Pt.) (4-1)
t

with

S [t l  t. ] ,  x tt ], (i .... ,N).i -2 i
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The first term in this expression for X(t) was interpreted in

Section 2.2 of Chapter 3 as the present value, at time t, of the

cost reductions experienced by all the users of the facility, during

the period [t,ti], as a consequence of the implementation of one

additional unit of quality at time t. The second term represents

the reduction in construction costs at time ti due to an additional

unit of quality provided at time t. This second term appears because

in the definition of I i we have assumed that quality is an additive

variable. In other words, the cost of providing a level of quality
+ +

s, at time t i , depends on the level of quality si at time t:. In

many practical situations this is not the case and the Ii depends

only on the value of s+. Then, I = 0 and the second term of
i is-

expression (4-1) disappears. We will assume this latter case for

our subsequent analysis. Therefore, as usual, X(t) is the shadow

price of quality at time t.

Expression (3-4) can be used to determine the optimum level of

quality s4 to be provided at time t'. Using (4-1) we can write

I(i.-l)s+exp(-pti I ) =

- fti {[Cisexp( f. isdz)]q(x)exp(-px)}dx (4-2)

i-1 i-1

where the left hand side is the present value of the marginal cost

of quality for project (i-l) and the right hand side is equal to

the present value of the marginal benefits of one unit of quality

implemented at time ti-. This benefit is a consequence of the
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operating cost reductions experienced by all the users of the facility

during the period [ti-+, i, and its value will increase as thei-i,

number of users in the period q(x) increases or the length of the

period increases. We will expect in general that decreasing returns

exist in the production of quality (at least after a certain level

of quality has been reached) and therefore, for a given construction

date t ,i the left hand side of (4-2) will increase with s. On the

other hand we expect that the marginal reductions of operating costs,

produced by quality increases, Cis, will be constant or non-increasing

with s. As a consequence, the right hand side of (4-2) will be non-

increasing with s. In that case, the net marginal benefit per unit

of quality implemented at ti-l will be decreasing with s and relation
+

(4-2) will lead to a value of s+ . that maximizes our objective

function J in (2-2).

The necessary conditions '3-6) give us N-i equations for the

determination of the interior upgrading times t.. Using our

assumption that Ii is independent of the quality of the facility at

ti, which leads to X(t) = 0 due to (3-3) and V (ti) = m (ti)

due to (_3-8), we can rewrite (3-6) as

* + * , t+
pl + [V*(t ) -mt )] - (ti)f (t )exp( Pti)

[Ci(t ) - Ci+l (t.)]q(t i)  (4-3)

The first term on the left hand side of this expression is the

rental value of investment Ii and the second term is the difference

between the optimal amounts spent in maintenance, per unit of time,

148



just after and before the investment 1i is made. Note that if an

optimum maintenance policy is performed within each interval between

investments, this term will be positive or zero. The third term

is the social value of the optimal deterioration of the upgraded

facility at time t i (just after the investment is made). The value
*+

of X (t.) is here given by

i t ti+1 {[C(i+l )sexp( " f i+ dz) ] q (x)exp(-ot)}dx,(4-4)+ (+ (l~

where the "*" in this case means that the optimum maintenance policy

specified by conditions (3-8) is performed during the period [t ,t + ].

Given that we are assuming that only maintenance activities (not

improvements of quality) are performed during each period between
* +

investments, fi+l(ti) will always be negative or zero and therefore

the entire third term will be negative or zero, because X (t~) is

in this case always positive. The actualization factor exp (pt i )

transforms the value of X (tT), that is expressed in present value

at t = t o , to current value at t = ti. All other terms in equation

(4-3) are also expressed in current value at ti. Therefore, the

left hand side of (4-3) is the amount that we save if we postpone

our investment Ii by one unit of time, or in other words, it is the

marginal benefit of postponement per unit of time.

The right hand side of (4-3) is equal to the difference between

the total operating costs of facility users, just before and after

the investment Ii is made. If the investment Ii increases both the

quality and the capacity of the facility, this term will obviously be
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FIGURE 5.1 Operating Cost Function, before and after

the discrete investment is made.
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positive for any positive value of q(t) (see Figure 5.1) In this

case, the free flow cost after the investment, C(i+l)o, will be

lower than before the investment, Cio. given the increase in

quality, and the congestion costs C will also decrease, given

the increase of capacity. Therefore, the difference between

operating costs in (4-3) will be positive and increasing with q.

If the quality of the facility were the same just before and after

the investment, then the free flow costs would be the same in both

cases and a difference between operating costs would only appear

when congestion appears. On the other hand, if congestion does not

exist over the facility and free flow conditions prevail, the

difference between unit operating costs will be constant with re-

spect to q (q < qi, in Figure 5.1) but still the difference between

total operating costs will ircrsase with q if Cio > Ciio ý, i+l)o.

Thus, the right hand side of (4-3) corresponds to the total savings

in operating costs that would be obtained per unit of time if the

investment Ii were undertaken. In other words, it is equal to the

marginal cost derived from the postponement of the investment

decision per unit of time.

Then, we can state rule (4-3) as follows: the optimum time t i ,

for upgrading the facility, comes when the marginal benefit of post-

ponement per unit of time is equal to the marginal cost of post-

ponement per unit of time. This statement corresponds to Marglin's

navie rule (Marglin, [1967]) for dynamic investments. It already

appeared in Chapter IVunderlying the optimum investment policies in

continuous capacity along a singular arc. Remember that the corres-
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ponding optimal policy was interpreted there (see 3-19 in Chapter

IV) as the same rule applied to the marginal unit of capacity.

We make note that rule (4-3) does not apply to the determination

of time to at which the initial investment Io must be undertaken,

because C (to) and m(to) do not exist. For that case, using (3-5)

and the fact that Ho - 0, we obtain

pl + V (t ) - (t )fl(t )exp(pto)

[U(t o) - C1(t )q(to) . (4-5)

The main difference in this case is that U(to) replaces to Ci(tT) of

equation (4-3). Therefore, we need an estimation of the utility
+ *

U(t ) in order to determine the optimum value to.

Both (4-3) and (4-5) are marginal rules saying basically that

the investment should be undertaken when the net marginal social

benefit of postponement becomes zero. In order for this rule to

lead to a maximum value of the objective function, and not a minimum,

we need that a second order condition be satisfied. This second order

condition is obviously that the above mentioned net marginal benefit

must be monotonically non-increasing with ti.  It is easy to see that

this will be in general the case if q(t ) increases with t
* +*

Finally, if we assume that the values of ti and si have been

already determined, the problem of finding optimal maintenance
* +

policies V for each period [t t ] is identical to that analyzed

in Section 2 of Chapter 3, as it is shown by the necessary conditions

C3-8).
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5. Numerical Solutions and Speciai Cases

The necessary conditions developed in the preceding section

can be used to obtain numerical solutions simultaneously for the
4 + +

set of unknowns (V(t),tl,....,tN.-1, s ,s1.....,sN-l)*. Nevertheless,

finding solutions to such problems can be quite involved (see

Bryson and Ho, [1975]). The difficulty of the problem comes from the

fact that the optimum values of V(t),t i and si are all interrelated.
*

For instance, we can see from (4-3) that the optimum values of ti(because + and+
depend on the quality s (because ii,Ci+ 1(t ) and fi+l(t ) are all

+ * +
functions of siland the optimum maintenance policy V (ti). But

from (4-2) we have that the optimum value of s. will in turn depend
1

on the value of ti, and from (3-8) and (4-1) we can see that the

value of V (t) will also depend on the values of ti. Obviously,

the problem will increase in complexity as the number of investments

that we want to analyze increases.

If we make assumptions that break the above mentioned inter-

relations important simplifications can be obtained. For instance,

if we assume that for each investment Ii not only the increase in

capacity, but also the quality s is externally determined and in

addition a maintenance policy ViCt) is specified for each interval,

such that the deterioration fi+1 will be zero or negligible in terms

of its influence on the operating costs, then (4-3) becomes a pure

staging rule:

pi + ^i+l t+) -iCt ) = [ci+(t- C- + t-l + it )= [ )- C i(,)]q(t i) . (5-I)
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This simple rule has the. great attractiveness that it only depends

on the known functions Vi, Ci and the observable quantity q(ti).

Thus, for its application no predictions about the future values

of the variables involved are needed at all if we make the weak

assumption that q(ti ) is not decreasing with time. We can actually

observe the value taken at each time t by the independent variable

q(t) and calculate the values involved in (5-1). The decision to

undertake the investment I i should be made when a value of q(t) is

observed such that (5-1) holds. Of course, if we have an estimation

of the values that q(t) will take throughout the whole planning

period [t o,tN], then we can calculate all the values t i (i = 1,...,N-1)

at time to by means of (5-1).

Now, if we assume that we know the length of the life interval

L[til'ti ] for project il- and the maintenance policy is externally

specified, we can easily calculate the optimum value of si by

means of (4-2), given that we have an estimate for the demand q(t)

throughout the period [t -l1 ti]. Actually if Cis and fis are

constants independent of the value of s, a fact which implies that the

operating cost reductions per unit of quality are independent of

the level of quality and that the natural deterioration per unit of

quality is fixed, then it is not necessary to assume that the

maintenance policy is externally specified, because in that case

the optimum value of sT is independent of V(t) (the right hand

side of equation (4-2) can be integrated without knowing the values

that s takes inside the interval [t tti]). The values of s

and V (t) can be calculated sequencially.
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* +*
Of course, interrelationships between ti and si  can be

heuristically considered if we begin with a set of values of s ,

calculate the set {ti) and go back to check if the initial values
+ +

assumed for si are optimum. The values of si obtained from the

second step, if different than the initial ones could then be used

to reinitiate the process. An iterative procedure of this type

could eventually converge to the optimum values that we are seeking,

although there is no guarantee that such would occur.

The model formulation analyzed in this chapter suffers from two

main limitations. The first one is a consequence of the discrete

characteristic of the capacity investments. If economies of scale

exist in the construction of capacity it could be possible that a

sequence {Ii ) that groups together some intermediate investments

could be better than another one that considers the maximum dis-

aggregation possible. Thus, the savings obtained, in terms of con-

struction costs, when going directly from capacity level i to capacity

level i + 2, instead of passing through an intermediate stage i + 1,

could more than compensate the reduced fitness of capacity to acutal

flow. The problem is that given the absolute discretness of the

capacity variable, the economies of scale charateristics of capacity

construction cannot be built into the model. The model can give an

answer if a specific sequence of investments is externally proposed,

but it cannot internally determine the optimal sequence. If we

want to find such an optimal sequence, the model should be applied

to all possible sequences and the results be compared.

The second limitation is that in practice the demand for the
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use of the facility can be a function of the operational characteris-

tics of the facility. If that is the case, q(t) cannot be externally

estimated but must rather be internally determined by the model. An

additional dynamic equation describing the relationships between

demand and facility characteristics should be introduced. This

relationship is studied in a limited way in the next chapter where

we analyze the influence of such considerations on pure time staging

optimal rules.
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VI. INFLUENCE OF DEMAND-OUALITY INTERRELATIONSHIPS ON OPTIMAL POLICIES
OF STAGE CONSTRUCTION FOR TRANSPORTATION FACILITIES

1.0 Introduction

The need for dynamic investment strategies in transportation is

perhaps clearest and best illustrated in the case of developing countries.

Developing countries are in general characterized by poorly developed

intrastructures. This is particularly true of the transportation sector,

where sparsely connected networks with numerous links providing sub-

standard levels of service are frequently encountered. Furthermore, it

is often argued that in such circumstances investments in transportation,

especially highways, are required in order to foster the growth of hinter-

lands and bring about inter-regional equity. These attitudes not with-

standing, it is not at all clear what the level of service, or as we

shall call it, the quality, of transportation facilities should be and

how discontinuous chances in cuality. such as the reolacement or

uograding of highways, should be staged over time.

Since transportation volumes in underdevelooed countries are

relatively low on inter-city links and rural roads and are only expected

to grow as a consequence of the develoopment process, it is generally not

advisable to implement high volume, high quality facilities immediately;

this conventional wisdom is further underscored by the fact that there

is usually an overall scarcity of public investment funds in such

developing nations. Because of these facts multiple stage development

policies have long been advocated for underdeveloped countries.

Marglin (1967) in a classic study of public investment oolicy

appears to be one of the first to deal w-ith the type of dynamic invest-

ment problems described above in a ceneral way. His "naive static r-ule



states that "the optimal contruction date, to , of a project arrives

when the present value of a perpetual stream of benefits, at the instan-

taneous rate corresponding to to, equals the construction cost of the

project for the first time." Beenhakker and Daskin (1973), though

apparently unaware of the work of Marglin, used the naive static rule

to derive time staging formulas for transportation facilities, correspond-

ing to different assumptions with respect to the way in which demand

increases as a function of time. De Neufville (1969) used dynamic

programming to solve basically the same problem. Finally, Venezia (1977),

also using a dynamic programming approach, derived staging decision rules

for the case of uncertain demands. Venezia's main result may be con-

sidered a generalization of Marglin's naive rule for stochastic demands.

All of the aforementioned efforts make the rather strong assumption that

the transportation demand is independent of the quality of the facility

provided, and in some cases, e.g. Venezia (1977), only the uncongested

case is analyzed.

The interrelationship between transportation level of service,

or quality, and the development of socio-economic activities has been

widely recognized; see e.g. Manheim (1978). In the case of developing

countries they can be especially important, as the numerical example

presented later in this chapter dramatically illustrates. Such inter-

relationships imply that present levels of service (quality) not only

affect the benefits and costs accruing to current users, but also in-

fluence the characteristics of future demand through their effect on

the location and development of new activities within the area of

influence of the facility considered.
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The primary objective of this chapter is to investigate the

influence of the previously mentioned demand-quality interrelationships

on time staging decision rules for transportation facilities. To this

end the case of upgrading a road will be considered. We will assume

that a lump investment which improves the Quality and/or capacity, of

the road in a discrete fashion has been externally defined and the main

question to be answered is when should the investment be undertaken.

In order to analyze this problem a dynamic optimization model will be

stated and solved using the results of optimal control theory, presented

in Section 3.3 of Chapter II.

2.0 The Model

In this section an optimum decision rule for the time staging

roblem with respect to upgrading a road will be derived. We assume

that our system can be adequately described using two variables, the

quality of the road s(t), which will be considered here as a control

variable, and transportation demand q(t), considered as a state variable.

The variable s(t) could in practice be represented by an index that

takes into account the different factors that determine the quality of

a Toad from the point of view of users, such as total length, width,

alignment, type of surfact, etc. (practical ways of handling the variable

s in real applications are proposed in section 5), The

variable q(t) corresponds to the number of users per unit of time.

In order to represent the dynamic interrelationship between

the two variables s(t) and q(t) the followina linear differential

equation is utilized:
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q(t) = a(t)s(t) + b(t) ; q(o) = q (2-V

Where a(t) is the rate of'change in demand, at time t, per unit

of quality; and b(t) represents those effects which are indepencent of

the quality of the facility and which influence the rate of change of

demand. Thus, we are assuming that transportation demand will be

determined by the interaction of our control variable s(t) with the

time-varying parameter a(t) and some external factors, outside our

control, represented by the non-service rate of change of demand, or

"natural" rate of growth of demand, b(t). In general s(t) will be a

function of different factors such as the natural rate of deterioration

of the road, intensity of use, maintenance policy and discrete investments

(see Chapters III and VII). However, for the purpose of this chapter, it

will suffice to assume that within each of the two stages considered,

ETfore and after upgrading of the road, the quality will be constant and

equal to that existing at the beginning of each stage. This perspective

assumes that the appropriate maintenance policy has been perfored

during each stage to ensure the constant quality level assumed to

exist throughout the stage. Thus our control variable must satisfy

the following constraint:

s(t) ES = {s(t): s(t) = s1, V t C [o, t*-];

s(t) = s2, V t c [t*+, T]} (2-2)

Where t* is the time at which the road is upgraded, T is the fixed

terminal time of the planninc period, and the s. are constant rcad
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th
qualities during the i stage. We consider, for expository purposes,

only two stages: stage 1 corresponding to the time interval [O,t*-)

and stage 2 corresponding to the interval (t*-, T]. The arguments given

below may be generalized to any finite number of such stages. It should

be noted that (2-2) defines a functional form for our control variable,

information which will play a key role in the analysis which follows.

We are interested in choosing t* such that the present value of

the net benefits produced during the planning period [0,T] is maximized.

Consequently, we denote our objective as:

Maximize J = /t [U - Cl(s(t),q(t))]q(t) exp (-pt)dt
o

-I(t )exp(-pt*)

T
+ f [U - C2(s(t),q(t))]q(t)exp(-pt)dt

t*+

+ 1(q(T),T) (2-3)

Where U is the average user utility per trip which will in general

be a function of t; Ci(s,q) is the average cost of operating a vehicle

over the road during stage i, which we consider a function of the quality

of the road and the number of users; I(t*) is the amount of resources

necessary to upgrade the road at time t*; T (q(T),T) salvage or residual

value of the road at the end of the planning period; and p is the appro-

oriate constant interest rate. The quantities U, C, I and Y are assumed

to be expressed in terms of some conron numeraire, presumably dollars.
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The problem defined by (2-1), (2-2) and (2-3) is an optimal control

problem where both the objective function J and the constraints (2-2),

are functions of one discrete interior point in time t* e [0,T].

Therefore, in order to find an oDtimum solution we can make use of the

necessary conditions for optimality developed in section 3.3 of Chapter II

for these kind of problems.

3.0 Solution of the Necessary Conditions

The Hamiltonian function for the problem defined in Section 2.0 is:

Hi(t) = (U-C1)q axp (-st) + p(as +b), V t e [o,t*]

H(t)=( (3-i)

H2 (t) = (U-C2 )q exp (-pt) + p(as + b), tE t*+,T

,here for simplicity in notation we have eliminated the arauments of

all variables. The variable p, the adjoint variable, is a function of

time and its interpretation is given later in the discussion. The

symbols t*-and t*+ refer to, respectively, the instants just before and

just after t*.

Necessary conditions for an optimal solution of our problem can

now be expressed as follows: (See Chapter II, Section 3.3)

- Hl//tq, Vt [o,t*-3

P ! 1(3-2)

-rl ^qV, V t £ Lt*+,T]
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p(t*-) = p(t*+) = p(t*), p(T) : ( (3-3)

-- + H1 (t*-) - H2(t*+ = a, (3-4)

where in our case Q = -I(t*) exp (-pt*).

Following the standard terminology we refer to equations (3-2)

as the adjoint equations and the boundary conditions (3-3) as the

transversality conditions. Equation (3-4) determines the extremal

staging time t*. In general, as we saw in Chapter II, in order to

determine the functional form of the extremal controls, the Hamiltonian

must be maximized with respect to them on the interval [o,T]. In

our case this additional necessary condition is redundant in light of

constraint (2-2) which already defined the functional form for s(t).

That is to say, constraint (2-2) replaces in the present problem the

usual maximization of the Hamiltonian as a necessary condition.

We now use (3-4) to find the extremal staging time t*. Upon

performing the differentiation denoted by 3 /3t* and using (3-1),

condition (3-4) may be rewritten as:

-It*, + p I(t*) = [C1(t*) - C2(t*)Jq(t*)

+ -, (t*)a(t*)(s 2 - s l), (3-5)

where It, is the rate of change of the upcrading cost at the extremal
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staging time t*;

Furthermore, the

has been made in

continuity of U,

be expressed as:

u(t*-)

q(Ct*-)

p(t*-)

a(t*-)

note that I can be either positive or negative.

change of variable:

v (t) = p(t) exp ( pt)

(3-5). To obtain result (3-5) vwe have made use of the

q, p, a and b. The continuity of these quantities may

= u(t*+)

= q(t*+)

= p(t*+)

= a(t*+)

U(t*)

= q(t*)

= p(t*)

= a(t*)

(3-7)

b(t*-) = b(t*+) = b(t*)

It is easy to see that if the uograding cost is constant over time

I.,t = o) and demand is independent of the quality of the facility

(a(t) = o), expression (3-5) may be reduced to:

p I(t**)= C(t*) - C2 (t*)]q(t*), (3-8)

where the left hand side is the rental value of the investment needed

to upgrade the facility from sl to s2 and therefore represents the

marginal benefit, per unit of time, obtained from postponement of the

investment decision. The term on the richt-hand side corresponds to

the marginal cost per unit of time, resulting from postponement of the

investment and is a consequence of the operatinc cost reductions that

would be obtained per unit of time if the uspradinc of the road were
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performed, but which are foregone due to postponement. Therefore,

(3-8) says that the upgrading of the facility should be undertaken when

the marginal cost of postponement becomes equal to the marginal benefit

of postoonement, per unit of time. However, because we have assumed

that demand is independent of the quality of the facility, the marginal

cost of postponement only considers the operating costs reductions that

would be experienced, per unit of time, by the current users of the

facility, if the upgrading were undertaken. This is exactly the rule

proposed by Beenhakker and Danskin (1973), and extended by Venezia (1977)

for the case of stochastic demands. The second term on the riaht hand

side of (3-5), which appears if a(t) O, represents the consequence of

explicity considering the interrelationship between quality and demand.

We will turn now to its interpretation.

We saw in section 4 of Chapter II that the adjoint variables

represent in general, dynamic shadow prices for the corresponding state

variables. In this particular case, p(t) is the shadow price of demand

at time t. Thus, p(t) evaluated along an optimal path will describe

how much the objective function would be altered if we change the demand

for transportation by one unit during the period [t,T]. It should be

noted that our objective function is expressed in terms of present

value as is the adjoint variable p(t). Therefore, 7 (t) will represent

the transformation of p(t) to current value at time t. Such a trans-

formation has the advantage of expressing all the important variables of

(3-5) in terms of current values.

Expressions (2-3) and (3-9) allow us to write the following

expression for r (t*):
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r (t) = exp (pt T) t [U - (C2 + C2q*q )] exp(-ct)dt

+ (ýY ) (3-10)

Where the integrand in this expression corresponds to the present

value of the difference between utility and the social marginal cost

due to a trip at time t; the notation C2q* = 0 C2/1 q is used in (3-10),

We are now able to identify the second term on the right side of (3-5)

as the present value of the total benefit (which may be negative)

obtained as a consequence of the new traffic generated at time t* from

the change of facility quality produced by the investment I(t ). We

can see that the sign of this additional term will depend on the sign

of r(t) if we make the reasonable assumption that a(t) > 0, V t E [O,T].

Moreover, r(t*) will be positive when congestion is not high and

utility U remains greater than the social marginal cost during the

period [t ,T]. Nevertheless, in some cases it could happen that the

road improvement generates so much new traffic that at a certain time

during the period [t*,T] the value of the social marginal cost becomes

higher than the average utility U. In that case a negative value of

ii(t ) can be obtained.

4.0 Sufficient Conditions

Before discussing the implications of our demand-quality invest-

ment rule (3-5) in greater detail, we must first analyze the second

order or sufficiency conditions for the optimization model posed in
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Section 2.0. That is to say, we want to know under what circumstances

the extremal solutions obtained in Section 3.0 in fact lead to a

maximum of objective function (2-3). For simplicity we will assume

in the following analysis that construction cost I is constant with

respect to time as is the discount rate p.

Since the decision rule (3-5) is stated as a marginal condition

at time t , it will lead to a maximum of (.2-3) if the benefits per

unit of time generated by the new project are increasing at t ; it

will lead to a minimum if the marginal benefits per unit of time are

decreasing. In analytical terms, if we use the notation:

B(t) = [Cl(t) - C2(t)]qit) + w(t)a(t)(s 2 - Sl), (4-1)

then (3-5) will lead to a maximum if:

B(t ) > 0. (4-2)

Differentiating (4-1) with respect to time and rearranging terms leads

to:

B(t) = q(MC1 - MC2) + (s2 - s l )(a 7 + a r), C4-3)

where:

MCi Ci + C iq. (4-4)
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social cost produced by an additional

t, if the facility is at stage i. Expressions (3-1) and (3-2) may

be used to write:

p(t ) = -[U - MC2(t )] exp(-ot ).

Using (3-6), this

7T(t )

last expression becomes:

p .(t ) - [U - MC2(t )].

Also (2-1) gives:

n(t \ = a (t )s + b(t ).

We may now use the expressions for '(t ) and q(t) , equations

and (4-7), in conjunction with (4-1) and (4-2) to write the following

sufficiency condition:

B(t)/a(t) = (s2 + b/a)(MC1 - MC2)

+ (s 2 - sl)[(U- MC2 ) - 7(p + a-)] > 0,

Where all variables are evaluated at t and:

a= = a/a
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(4-7)

(4-6)

(4-8)

is the marginal user at time
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is the proportionate rate of change of a(t). The expression (4-8)

will have the same sign as B(t) provided a(t) > O, V t c [0,T].

if the investment I(t ) produces an enhancement of facility quality,

without changing capacity, we will have that the average operating cost

Ci will be reduced for all q but Cq = Cq, given that capacity is the

same in both cases. If I(t ) both increases quality and capacity,

then, in addition to a reduction in the average operating costs, we

will have C2q < Clq for all q. Therefore, we will in general

have:

MCl (t) > MC2 (t). (4-10)

In addition, if we assume that a(t ) > 0 and q(t ) > 0, then

(s 2 + b/a) > 0

Consequently, the sufficiency condition (4-8) can be written as:

MC1 - MC2 > [(U - MC2 ) - 7(p + a )], (4-11)

where:

s= 2 - S <) (4-12)S+ <;b/a)
(s 2 + b/a)
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it is assumed in (4-11) and (4-12) that all variables are evaluated

at the extremal staging time t

When congestion does not occur the following identity of course

holds:

Ci = MCi  (4-13)

Under the assumption that (4-13) holds, (4-6) becomes:

S= p - G2  (4-14)

Where G2 represents individual gains obtained for times t > t and is

written:

G2 = U - C2. (4-15)

Thus, a complete specification of a sufficiency condition when there

is no congestion requires that one solve the linear differential

equation C4-14) which will be subject to the boundary condition:

7 (T) = -- exp(pT) (4-16)

which is obtained form (3-3) and (3-6). Boundary condition- (4-16)

makes it clear that in order to determine the value of ,(t) needed

for our sufficiency condition we must assume an expression for the

residual or salvage value of the road. We assume the following:
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' (CT) = ,r G2q(T)exp(-pot)dt (4-17)
T

which states that the salvage value of the road will be equal to the

present value of an infinite stream of benefits, starting at time T,

with a stationary value equal to that obtained at time T. In other

words, we assume that the demand will become stationary at a value

q(T). To simplify the analysis we will further assume that the benefit

measure G2, defined by (4-15), is a constant with respect to time .

In that case:

G2
T (T) -- q(T)exp(p T). (4-18)

p

It follows immediately that a general solution to (4-14), for the

assumptions indicated,'is give by:

G=" 2. (4-19)
0

Therefore, the sufficiency condition (4-11) becomes

(C1 -C 2 ) > - 2. (420)

Simple modifications in the integration of equation (4-14) could allow
the consideration of time dependent variables.
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Clearly, if we assume G2 > 0, then (.4-20) will be satisfied for any

non-negative value of a'(t) since we expect operating cost reductions

brought about by the upgrading of the facility to cause (C1 - C2) > 0.

In the event a' is negative, then we write the sufficiency condition

as:

(C1 - C2 ) > C• G2  (4-21)

Since our sufficinecy expressions depend on B(t*) > 0,

violation of (4-21) implies, for the case of no congestion, that B(t)

is non-positive for t = t . If this is so, application of the decision

rule (3-5) will lead to a minimum rather than a maximum, as Figure 6.1

illustrates. In such a circumstance the increase in marginal benefits

derived from the reduction in costs, q(t)(C ! - C2), will not be enough

to compensate for the decrease in the marginal benefits produced per

unit of time by the new traffic generated as a consequence of con-

structing the new facility. The benefits corresponding to the new

traffic generated by the new facility per unit of time are:

B. (t) = r (t)a(t)(s 2 - sl).

Given that r = 0 (see (4-19)) for the case analyzed, we have that:

B (t) = 7 a(t)(s 2 - sI1

where 7 = B2/P > 0 and s2 > sI . Therefore . < 0 V t - [0,T] since
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B(t)

q~t)(C1 - C2)

t T

FIGURE 6.1 Graphical Representation of the Demand-Quality
Decision Rule for the Case of Decreasing Marginal Beneifts
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we have also assumed that a(t) > 0 and are considering a' < 0.

Therefore the marginal benefits produced per unit of time by the new

traffic generated are in fact decreasing and

IW(t)I > q(C1 - C2 ).

In the case that q(t), as well as a', is negative, both the marginal

benefits derived from the reduction in costs and the marginal benefits

associated with new traffic generated will be decreasing over time.

It is clear that when the circumstances illustrated by Figure 6.1

and described previously in the text occur, a non-interior or corner

.maximum for our objective function will be obtained at t = 0. This

implies that, in effect, a "postponement" in the decision of imple-

menting the new facility has occured which will cause a loss of (B(t) -

pl) marginal benefits per unit of time during the period [O,t*2. Thus,

the optimal construction time is t = 0 if the present value of net

benefits produced during the period [O,t i is superior to the present

value of the losses obtained after t . Otherwise, the facility should

never be constructed. In analytical terms the condition for con-

struction at t = 0 will be:

7T (B(t) - pl)exp(-pt)dt + If[q(T)(C 1 - C2 ) - ol]exp(-pt)dt > 0, (4-21)
o T

where q CT) is given by:
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q (T) = q(0) + rT [a(t)s 2 + b(t]dt. (4-22)
0

Throughout this discussion of the case of no congestion the fact

that the multiplier 7r(t) has been a constant on [0,T] has played an

important role. We conclude this section with a discussion of the

role of ir(t), which in general will be time varying, for the case

of congestion effects.

According to (3-10) the value of ,(t) gives us an indication of

the desirability of generating new traffic at time t. If congestion

externalities do not exist, the benefits derived from any new

traffic generated will depend simply on the difference between utility

and operating costs "perceived" by the new users generated. If con-

gestion is, however, an important factor those benefits will depend

on the difference between utility and marginal cost "produced" by the

new users. This means that we must reduce the benefits obtained by

the new users in the amount of the increase in operating costs that

they produce to the other road users. Therefore, congestion will in

general reduce the desirability of new traffic and, "ceteris paribus",

the desirability of the new investment that generates this traffic.

This fact is represented in our model by the reduction in the value

of l(t ) when MC2 (t) increases (.see again (3-10)). In some limiting

cases, the congestion generated by new traffic could be of such

magnitude that the marginal cost MC2(t) becomes higher than utility U

over some critical portion of the period [t ,T], producing as a con-

sequence a negative value of Tr(t). This may cause an investment that

is justified from the point of view of cost reductions to current
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users to become infeasible if we take into account the congestion

produced by the newly generated traffic. Such cases can be expected

to correspond to relatively low values of U and are, therefore, likely

to be most efficiently dealt with through adjustments in pricing policy.

5.0 Final Remarks and a Numerical Example

The model presented in Section 2.0 has allowed us to show that

the explicit introduction of interrelationships between quality of

serivice and demand has important consequences with respect to the

derivation of optimal investment rules for transportation facilities.

In the case of development projects, where congestion is not an import-

ant factor, the optimal investment rule (3-5) indicates tha0 investments

should be undertaken sooner than indicated by decision rules which take

into account only the benefits derived from cost reductions to current

users. In some extreme cases rule (3-5) will justify investments that

would never be justified by these other rules. On the other hand,

expansion investments will be penalized if the new traffic generated

by them produces too much congestion in the future, causing their

desirability to be less than that perceived by alternative decision

rules.

Decision rule (3-5) can be considered as a generalization of

Marglin's naive rule. The rule has the appeal of being formulated as

a marginal condition at the staging time t . Therefore, its application

only requires the knowledge at time t of the decision variables and

key parameters plus some general assumptions about sufficiency.
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However, not surprisin1gy, every bit of additional information has its

price. In order to apply rule (3-5) we not only need to know the flow

volume q(t ), but also an estimate of the new traffic that would be

generated by the facility. This seems a reasonable price to pay to

obtain a decision rule which will more completely capture the phenomena

important to the time staging of transportation investments.

The discussion in previous sections has been largely abstract

and theoretical. A better grasp of the ideas and implications of our

findings may be obtained with a numerical example. With this purpose

in mind and in order to compare our results with those obtained by other

authors, we will solve the same problem orginally presented by Beenhakker

and Daskin (1973) and subsequently analyzed by Venezia (1977). Beenhakker

and Daskin (1973) found that the optimal sequence for upgrading an

existing road tn Tran involves two stages: the initial construction of

a primitive facility and its subsequent widening and paving after 16

years. The relevant data are as follows:

(1) The cost functions of operating the road at stage j = 1,2

are given by:

Cl(t) = dl + c1q(t) = 553 + 80.60q(t)

(5-1)

C2(t) = d2 + c2q(t) = 3720 + 28.15q(t)

where di represents fixed maintenance costs and the ci are operating

plus variable maintenance costs. The variable t denotes the number of

years from the beginning of the analysis or planning period.
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(2) The costs of upgrading the road are given by:

I(t) = I = 59,900.

(3) The discount factor, p, is 10%.

(4) Traffic grows at a fixed 7.5% per year, before and after

the investment is performed, and the initial flow at t = 0 is 55

vehicles per day (VPD). Thus demand is described by:

q(t) = (T) (5-2)

- where:

q(0) = y = 55 VPD.

T = 1 + r

r = 0.075.

Consequently, the following dynamic description obtains:

q(t) = y (9n r) exp(tin T) = 3.978 exp(.072t). (5-3)

We will assume that (5-3) gives us the evolution of demand before the

investment is made, but contrary to Beenhakker and Daskin (1973) and

Venezia C1977) we will assume that this rate of growth is affected by

the investment I.
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In order to carry out our analysis we use the following

dynamics to represent the system:

q(t) = [y (Zn t)exp(tZn :)]si, V t E [0,t j

(5-4)
q(t) = [y (Zn -)exp(tZn T)]s 2, V t [t~ ,T].

Thus, in terms of the notation of Section 4:

a(t) = y (Zn T)exp(tZn T) = 3.978 exp(0.72t),

V t e [O,T]. (5-5)

To be consistent with Beenhakker and Daskin (1973) we set s, = 1.0.

We will consider different values of s, in order to investigate the

sensitivity of the optimum investment date to the interrelationship

between demand and quality. Specifically we will consider the

set of values:

s 2  = (1.0, 1.2, 1.4, 1.6, 1.8, 2.0)

Since Beenhakker and Daskin (1973) and Venezia (1977) consider a cost

minimization objective, they do not need to use values for the utility,

U, that an average traveller obtains from use of the road. It is

obvious that the restricted cost minimization formulation does not

make sense in our case given the assumed interrelationship between

demand and quality. Such an objective -or our Droblem will lead
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to the obvious opti l solution: do not invest. We wili, therefore,

assume different values of U ranging from a minimum value equal to the

vehicle operating costs before the investment is performed to an

arbitrary upper bound. le are assuming that if the utility obtained

as a consequence of using the road is lower than the corresponding

direct operating cost, flow should be zero. The values of U which

will be considered are given by:

U = (61.2, 70.0, 80.6, 100, 130, 160).

It is easy to see that the expression for our decision rule (3-5) will

be slightly modified in this case due to the presence of fixed

maintenance cost d,, to:

pi + (d2 - C1 ) = (C1 - C2 )q(t*) + .(t )a(t )(s 2 - sl), (5-6)

where:

Ct ) (U - C2 ) /

We can solve (5-6) for t , in this case, obtaining:

Spl+ (d2 - d1)tzn C (5-7)
-n Ly [C - 2) + (n T) (s 2 - s

In Th.ble 6.1 we present the different values of t obtained for
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the different assumptions about the values of U and s2. The first

row of Table i shows the solution obtained by Beenhakker and Daskin

(1973) for all the values of U; the results of this row correspond

to what we would have expected given that s2 = s = , or no influence

of quality over demand exists. For all other cases, substantial

reductions over that value for t previously reported are obtained.

The last row of the table shows the value of jr(t ) that indicates the

desirability of new flow for different values of U. Obviously the

desirability increases as U increases. According to (4-19) second

order conditions for an optimum are satisfied in this case since:

r > 0 => t > ý => a'(t) = Z n T > 0, V t [0,T].

Although the data for U and s2 used in Table 1 is hypothetical, the

ramifications of considering demand-quality interrelationships are

obvious - for certain circumstances one may make gross errors in

predicting the optimal staging time if such interrelationships are

ignored.
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FOR DIFFERENT VALUES OF

U
61.2 70.0 80.6 100 130 160

1 16 16 16 16 16 16

1.2 14.8 14.5 14.1 13.5 12.5 11.7

1.4 13.7 13.1 12.5 11.4 9.8 8.4

1.6 12.6 1 i.9 11.0 ,9.5 7.5 5.8

1i81.8 11.7 10.7 9.7 7.9 5.6 3.6

2 10.8 9.7 8.5 6.4 3.8 1.6

330.5 418.5 524.5 718.5 1018.5 1318.5
_ _ -_ _ _ I _ _ _, _ _,_ _
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VII. A MODEL OF OPTIMAL TRANSPORT MAINTENANCE WITH DEMAND RESPONSIVENESS

1.0 Introduction

In this chapter we formulate and solve a simple dynamic model to

determine optimal maintenance policies for transport facilities. The

formulation corresponds to a special case of the general models pre-

sented in Chapter III for the determination of quality investments. An

example is worked out in detail and an algorithm for obtaining numerical

solutions is proposed. Finally a sufficiency argument is presented.

Dynamic maintenance models have been presented before in the eco-

nomic and management literature for the case of machines utilized in

private industry. Naslund [1966] discusses the history of the problem

of maintenance of machines, including various solution techniques, and

is the first to propose that the problem be formulated as a dynamic

optimization problem which may be solved by application of the Pontry-

again maximum principle. Naslund [1966] outlines how the maximum

principle may be utilized to obtain a solution. Later Thompson [1968]

and Arora and Lele [1970] developed detailed solutions for control

models of optimal machine maintenance. Finally, Bensoussan, et al.

[1974] presents a summary of these control formulations. Though similar

models can be developed to determine optimal maintenance policies for

public facilities (e.g., transport infrastructure), little attention

has been given to such modeling approaches in the economic and trans-

portation literature. This can be explained in part by the fact that



the above mentioned models developed for the case of machines in

the private sector possess some important short-comings that pre-

vent their direct application to the analysis of public facilities.

In particular: (1) the deterioration produced as a result of the

intensity of use of the machine/facility is not considered; and (2)

the potential for a good maintenance policy to reduce operating costs

experienced by present users of the machine/facility is not explicitly

articulated. By virtue of this latter type of savings, the number

of future users may be expected to increase. It is thereby clearly

necessary that an optimal transport maintenance policy reflect con-

sideration not only of the present number of users, but also of the

effect the facility will have in terms of generating additional users.

This interelationship between quality of the facility and demand

generated for its use is not considered in the models mentioned above.

Recently Buttler and Shortreed [1978] have presented a dynamic invest-

ment planning model for the case of road transport. Their formulation

does not provide the economic insights obtained in this chapter and

relies on highly specialized assumptions concerning benefits and

costs; most importantly their dynamical description does not ex-

plicitly consider the interaction of demand and quality.

In the remainder of the chapter the discussion will center around a

dynamic road maintenance model. However, as our presentation will make

clear, the same type of model could be applied to other forms of trans-

port infrastructure and equipment.
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2.0 Descri4tion of the Model

We choose to characterize the transport system of interest, an

abstract road, in terms of two state'variables: the "quality" of the

road at time t, denoted by S(t); and the number of users at time t, de-

noted by q(t). The quality S could be represented by the present

serviceability index (PSI), defined by AASHO [19621, if we are dealing

with a paved road or by a roughness index for lower standard roads.

We will assume that S and q are interdependent variables and that

their evolution over time is defined by the following system of differ-

ential equations:

S(t) = -aS(t) - $q(t) + yV(t), S(O) = So  (2-1)

q(t) = aS(t) + b, q(0) = q0  (2-2)

where

V(t) = rate of maintenance expenses, the control variable

S(t) = quality of the road at time t, a state variable

q(t) = number of road users at time t, a state variable

a= parameter reflecting the natural rate at which the
quality of the road deteriorates, i.e., acS(t) is
the instantaneous rate of deterioration, at time t,
regardless of travel or maintenance.

S= parameter reflecting the deterioration produced by
each user

y = parameter reflecting the rate of increase in road
quality per dollar spent on maintenance per unit time

= parameter reflecting the rate of change in the number
of road users per unit of time, as a consequence of a
unit change in road quality,
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5 = parameter reflecting that portion of the rate
of growth of transportation demand not influenced
by changes in road quality.

Note that equations (2-1) and (2-2) constitute a pair of coupled

differential equations; they relate the value of the input or control

variable V(t) to the outputs or state variables S(t) and q(t). The

formulation given by equations (2-1) and (2-2) represents specific

assumptions about the dynamic behavior of the roadway. Equation (2-1)

assumes that the quality of the facility changes over time primarily as

a result of three separate causes: natural factors, use, and maintenance.

The rate of natural deterioration is assumed to be proportional to the

quality of the facility; this assumption produces a negative exponential

deterioration process of the form depicted in Figure 7.i when the fa-

cility is abandoned and only natural factors have an influence on quality.

This is the usual assumption with respect to physical equipment and

facilities (see Arora and Lele [1970], and Bensoussan et al., [1974]).

In addition, (2-1) assumes that each user of the facility produces a con-

stant deterioration ý per unit of time of use. Finally, it is assumed

that each dollar spent in maintenance produces an improvement y in the

quality of the facility. This linear relation between the rate of change

in quality and maintenance expenditures amounts to assuming that constant

returns to scale exist in the production of quality of the facility.

Though this is not likely to be the case over an infinite range of values

of V(t) it will generally be a good assumption over a limited range of ex-

penditures in maintenance m < V(t) < M, as is the case in many pro-

duction processes. The constant returns to scale assumption is common
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to all maintenance models presented in the economic literature (see

Thompson [1968], Arora and Lele [1970], and Bensoussan et al., [19741).

In the interest of realism we make an additional assumption con-

cerning the effects of maintenance. If we call So the quality of the

new facility at time t=0, then we want to have

S(t) < S, V t L [0,T].

In other words, we assume that pure maintenance cannot drive the quality

of the facility above its original value when new. This implies that

V(t) obeys the following condition:

V(t) < V(t) = y-1 So + ý q(t)). (2-3)

If V(t) is larger than V(t) the excess maintenance expenditure V(t) - V(t)

has a null effect on :he quality of the facility.

Equation (2-2) provides the link between quality of the facility

and demand, creating a maintenance model with demand responsiveness. It

assumes that demand is the consequence of two factors: 1) some exter-

nal development pattern that is outside our control, represented by a

natural rate of growth of demand (which may be negative), and 2) the

quality of the road. Equation (2-2) may be placed in the alternative form

q(t) = a(S(t) - S)+ C, q(o) = qo, (2-4)

where S < SO. If S(t) = S, demand grows at the natural rate b. If

5(t) > S or S(t) < S, the natural rate of growth is respectively

188



increased or decreased by an amount : per unit change of quality. It is

clear upon inspection that (2-4) may be reduced to (2-2) by the obvious

transformation = -tS. Hence,.it will suffice :c consider only the

dynamical description (2-2) in subsequent analyses. For thne most general

circumstance the parameters . and . of equation (2-2) as well as

and y of equation (2-1) would be functions of time. It will suffice for

our purpose to consider these as constants. Of course, the initial values

S and q0 , defined in equations (2-1) and (2-2) respectively, are also

known constants.

We will further assume that there is a utility U(t) attached to the

use of the road which is the same for all users and that there is an

associated operating cost C(S,q). The per user utility may be considered

to be determined entirely by factors exogenous to the model so that i;

is written as a function of t only. Operating cost will, however, gen-

erally depend on road quality and the number of users; it is consequently

written as a function of S and q. We wish to maximize the present value

of net benefits derived from operation of the road over a fixed planning

horizon T. Thus, the objective of interest is:

T
MAXIMIZE J = f{[U(t) - C(S,q)]q(t) - V(t)} exp (-pt)dt, (2-5)

0

where p is a constant discount rate. In (2-5) the utility, cost and

investment functions are of course assumed to be expressed in terms of a

common numeraire, presumably dollars. Hence (2-5) actually represents

the maximization of net benefits measured as dollars.
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The final eiemen; necessary to specify the model is the assumption

that maintenance expenditures will be bounded from above and below.

We express ,nis as:

t) < V(t)< M(tV(t(t)E[O,T] (2-6)

where m(t) and M(t) are respectively the lower and upper bounds on main-

tenance expenditures at time t. The lower bound m(t) will be determined

by the fixed factors of maintenance production at time t; the upper bound

M(t) will be the budcet constraint at time t. Values of y,(t) should ob-

viously correspond to reasonable maintenance expenditures. A range of

such reasonable values for M(t) can be obtained from equation (2-3).
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3.0 The Optimal Maintenance Polity: Necessary Conditions and Economic
Interoretations

The problem of maximizing the objective function J, defined in

equation (2-5), subject to the growth dynamics (2-1) and (2-2), as well

as the limitation on maintenance expenditures (2-6), constitutes an

optimal control problem with fixed terminal time and no state space

constraints. Necessary conditions for such problems were described in

Section 3.1 of Chapter II.

Solution of our optimal control problem begins by specifying the

Hamiltonian function:

H(t) = F[U(t) - C(S,q)]q(t) - V(t)}exp(-pt) (3-1)

+ P,(t)[-aS(t) - 5q(t) + yV(t)] + P2(t)[aS(t) + b].

The adjoint variables Pi(t) must satisfy

Pl(t) = - (TH/;S) P2(t) - (H/ýq)

which take the form

P1 = CSq exp(-pt) + a P1 - a P2  (3-2)

P2 = [U - (C + C qq)]exp(-pt) + 8 P1 (3-3)

In (3-2) and (3-3) the arguments of all variables have been eliminated

for simplicity. The subscripts S and q deno'te partial derivatives with
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The adjoint variables must also satisfy

the following boundary conditions which are a result of

transversality conditions for optimal control

P1(T) = P2 (T) = 0.

the more general

problems

(3-4)

In addition the maximum principle requires that we seek values of the

control V(t) that maximize the Hamiltonian. That is, we seek controls

V such that

H(S, q, PI,

where 2 = [V:

P2' V, t)* H(S, q, P, P2, V,

(t) < v(t) < M(t), Vt]

V V-2 (3-5)

and the superscript "*"; means

that the corresponding variables satisfy the appropriate necessary con-

ditions.

In order to apply the maximum principle it is expedient to rewrite

the Hamiltonian as

H = (U - C)q exp(-pt) - P1(aS + Sq) + P2 (aS + b)

+ [yP 1 - exp(-pt)]V.

From this last expression it is easy to see that the gradient of the

Hamiltonian with respect to the control variable V is given by

HV ='P 1 - exp(-pt).

(3-6)

respect to those variables.

t),

(3-7)



Moreover, since the Hamiltonian is a linear function of V, the extremal

control will obey:

m(t) ,if Pl(t) < -exp (-pt)

V*(t) = M(t) *if P1(t) > exp (-pt) (3-8)

Y
undetermined,if Pl (t) = exp (-pt) .

3.1 Bana-banc Policv

We observe that expressions (3-7) and (3-8) imply that V*(t) is a

well defined function of Pl(t), y and t as long as the gradient HV is

non-zero. If the gradient function HV(t) vanishes only at a countable

number of times within the interval [O,T] our optimal control problem is

called "normal" and the optimum policy V (t) is "bang-bang" (see Section 3.2

f Chapteer , ). The value of V (t) switches from one boundary of its

constraint set to another at certain well defined times given by

Hv(t) = FS(t) = Pl(t) - y exp(pt)]1  = 0 (3-9)

Generally, F (t) is referred to as the "switching function".

To interpret the maintenance policy described by (3-8), we must

give an interpretation of the adjoint variable P1(t). This interpre-

tation is provided by the following identity which holds at optimality

(see Section 4 of Chapter II).
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(t) = J*(S*t) , t[O,T] (3-10)

where the superscript "*" now denotes the fact that J is evaluated along

the optimal solution path. This identity suggests that we interpret

Pl(t) as a dynamic shadow price of quality. As such Pl(t) represents

the additional benefit, in present value, obtained from a unit increase

in road quality at time t. On the other hand, [y • exp(ot)] -' is equa,

to the present value of the amount we should spend on maintenance to ob-

tain a unit increase in road quality at time t.

The (bang-bang) policy states, therefore, that maintenance should

be performed to the extent that the present value of the marginal bene-

fit produced by one additional dollar spent in maintenance at time t,

YP (t), is higher than the present value of that dollar, exp(-ct).

Given that we have assumed constant returns to scale in the production

of quality through maintenance for values of V(t) in ., the marginal

benefit y Pl(t) will be a constant for each t, independent of V(t).

Therefore, we must spend the maximum amount available M(t) as long

as the marginal benefit Y Pl(t) is higher than the marginal cost exp(-pt).

If the marginal cost becomes higher than the marginal benefit we should

spend the minimum possible m(t). The case of equality of the marginal

benefit and the marginal cost can be neglected here, given that it occurs

only at a countable number of times in [O,T].

Further insight can ba gained from the interpretation of equations

(3-2) and (3-3) that describe the evolution of the adjoint variables

Pl(t) and P2(t) during the period of analysis. This interpreation
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requires that we first make note that a general interpretation of P2 (t

can be obtained from the fact that along an optimal solution path

2. ) J (q , t) E: O ,T . (3-11)

As such P2 (t) represents the additional benefit, in present value, ob-

tained from an additional user generated at time t. That is, P2(t) may

be thought of as a dynamic shadow price of demand. Equations (3-2) and

(3-3) correspond to a system of coupled first order ordinary differential

equations in Pl and P2. The solution of this system can be expressed,

using (3-4), as

Pl(t) =-f/ CS exp[-2(x-t)]q(x)exp(-nx) dx
t

T
+ J D(x) ex^p[-(x-t)]dx. (3-12)

P2(t) = r [U(x) - C(x)]exp(-px)dx
t

T T
- f C q(x)exp(-px)dx - fPl(x)B dx. (3-13)

t t

The first term of (3-12) corresponds to the present value of the direct

benefit (operating cost reductions), produced during the period [t,T],

by a unit enhancement of facility quality (through maintenance expendi-

ture) at time t. Note that exp[-a(x-t)] is the equivalent value at time

x of a unit enhancement of facility quality at time t. The second term

of (3-12) is equal to the present value of the benefit attached to the
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new traffic generated during the period [t,T] as a consequence of a unit

enhancement of facility quality a't time t. In expression (3-13) the

first term is the present value of the private benefit perceived by an

individual user of the facility during the period [t,T]. The second term

in (3-13) is equal to the present value of the externalities of congestion

produced during the period [t,T] as the result of an additional user

generated at time t. Finally, the third term in (3-13) represents the

externalities of deterioration produced during the period [+t,T] by an

additional user generated at time t. This last term takes into account

the fact that the deterioration produced by one user affects the opera-

ting costs perceived by all other users of the facility. The sum of the

integrands of the second and third terms of (3-12) is therefore equal to

the value of the externalities produced by an additional user at time t.

This sum is equal to the value of the toll that each user of the facility

at time t should be charged if an optimal pricing policy were applied.

Therefore, even though the bang-bang maintenance policy is expressed

only in terms of Pl(t), we can see that the value of the marginal benefit

attached to a new user of the facility generated at time t, P2(t), also

plays a fundamental role in the interpretation and potential implementa-

tion of the policy. That role is diminished if we assume a = 0.

Nevertheless, even then P2(t) still tells us how much the value of the

objective function J will increase or decrease for a unit change in the

number of users of the facility.

The bang-bang policy is illustrated in Figure 7.2 for the case of a

control set with the respective constant upper and lower bounds M and m.
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3.2 Sinaular Controls

In the preceeding section we assumed that the gradient H,, (or

switching function Fs) vanishes only at a countable number of times in

the period [O,T]. In this section we will analyze the possibility that

the gradient HV vanishes identically over one or more finite periods of

time or subintervals in [O,T], in such a case we say that we have a

singular optimal control problem and the periods for which HV = 0 are

called singular intervals or singular arcs. As we noted in (3-8), the

necessary condition (3-5) does not provide enough information in this

case to define V (t) along a singular arc. In the absence of such infor-

mation, we must manipulate the other necessary conditions in an effort

to determine a well defined expression for the control on the singular

arc, denoted as Vs(t).

Singular controls can in general b- determined by making use of the

following observation: if the gradient H,, cf tne Hamiltonian vanishes

identically along a singular arc, then the time derivatives of HV must

remain equal to zero during the same period. From (3-7) and (3-8) we

have that on a singular arc( see Section 3.2 of Chapter II)

HV = P1 - exp(-pt) = 0. (3-14)

Upon taking the derivative of (3-14) with respect to time and using

the adjoint equation (3-2) to eliminate P1, we obtain

HV = ( CSq + p)exp(-ot) + P, P1 - . P2 = 0 (3-15)
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Now>W if we again use (3-14) to eliminate P, from this last expression,

we can write

HV = (y CSq + a + p)exp(-ct) - P2 =0. (3-16)

An economic interpretation of this condition for a singular arc can be

obtained if we rewrite it as

a P2 exp(pt) - CSq = r/y, r = (c + p) (3-17)

The first term on the left hand side of (3-17) is equal to the present

value, at time t, of the benefits derived from the generation of a new

users at this time as a consequence of a unit improvement of facility

quality. The second term on the left hand side of (3-17) is the total

savings in operating costs, perceived by all users of the facility, at

time t, as a consequence of a unit improvement of facility quality

a: that time. The right hand side of (3-17) is expressed in terms

of the "effective discount rate" r =  + o, and -1, which is equal

to the maintenance investment necessary to obtain a unit improvement of

facility quality at time t. Therefore the right hand side of (3-17) is

equal to the rental value of this maintenance investment, using r as the

interest rate.

As a further step we take the second derivative of (3-14) with re-

spect to time. In doing this we will assume that CSq = 0, or, in other

words, the quality S that we are considering is not capacity related

and therefore has no effect on the congestion produced in the facility
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for each level of use. This assumption is for convenience only; if it

were dropped the only consequence would be a modification of the ex-

pression obtained for the singular control. In Particular, this assump-

tion does not affect the economic interpretation obtained from (3-17).

Using this assumption we obtain

."4* 2 I
HV = (-P y CSq - -p p+ y CSSSq + y CSq)exp(-pt)-Y a P2 = 0.

By using (2-1),(2-2),(3-3) and (3-14) to eliminate S, q, P2 and P:, this

last expression becomes

Hv exp(pt) = CSS y q(-cs-Bq + yV) + y(U-C-C qq)

+ CSY(aS + b - pq) - aS -p(a+ p) = 0. (3-18)

If the operating cost function C is nonlinear in S and therefore CSS is

different from zero, we obtain from (3-18) an expression for the singular

control in terms of the values of the state variables at time t, and the

parameters of the problem. That expression is

V = (y2 qCSS) [CSS y q(oS + sq) - ya(U-C-C q)

+ (CS y(pq - aS + b) + aB + p(a + p)]. (3-19)

Obviously, the singular control VS must also obey the control constraints

(2-6). However, optimal singular controls must satisfy an additional

necessary condition. For a maximization problem with a single control

variable (recall V is a scalar) the condition can be stated as (see
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Section 3.2 of Chapter II

d 2m *
(- )m HV 0 (3-20)

where m is an integer. Note that in our case m = 1. By using (3-18)

it is easy to see that (3-20) becomes

Y2q C > 0. (3-21)

Since q is always positive, (3-21) implies that in order for VS in (3-19)

to be an optimal control, CSS must be positive. This means that no

optimal singular control exists if CSS is negative, or in other words

if C is non-convex in S.

Now we can analyze the case in which C is linear in S and there-

fore Cr = 0. Then condition (3-18) does not provide an expression

for VS and we must take. a new derivative with respect to time, which

after using (2-1) to replace S, can be written as

Hv exp(ot) = -q yh = 0; h = 2aCq + aCqqq + p CS. (3-22)

It is clear that there are only two possibilities of satisfying (3-22):

q = 0 or h = 0, given that Y ý 0. Let us assume first h = 0, q ý 0.

Then, given that we are on a singular arc, we must have

h = qa( 3Cqq + C q) 0. (3-23)

It can now be seen by inspection that if q f 0 we can continue taking

time derivatives without obtainina any expressicn for the singluar
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control. Therefore a singular control will exist in this case only

if q = 0 which corresponds to an *equilibrium solution for the problem.

From (2-2) we see that q = 0 implies that

S = -(b/a) (3-24)

which in turn implies that S = 0. Moreover, if we assume that S cannot

be negative, (3-24) only makes sense if b is negative, or in other words

the demand dynamical description is such that demand decreases when

S = 0. Using (3-24) and (2-1) we obtain

VS -= (ýq - ob/a). (3-25)

in order to obtain the equilibrium value of q in a particular case we

can make use of expression (3-18) with CSS = 0, which constitutes a

necessary condition for the existence of VS. If one utilizes expressions

for Cq and CS in (3-18) associated with a particular cost function C(.)

together with the equilibrium value of S obtained from (3-24), the re-

sult will be an equation in q whose solution, if it exists, will pro-

vide the value of the equilibrium demand. It is important to note that

the singular controls defined by (3-19) and (3-25) will both correspond

to policies whose economic interpretation is that obtained from (3-17),

since that expression constitutes a necessary condition for the exist-

ence of such controls.

Using (2-2) to replace q in (3-22) and taking a new derivative with

respect to time it is easy to obtain
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d. 4 * 2
~--- [( ) HV] = - a( 2 Cq + C q C )exp(-zt). (3-26)

The additional necessary condition (3-20) now corresponds to the case

m = 2 and can be expressed as

-Y a(2aC + Cq q + C <)exp(-pt) < 0.q qqe5 (t

which in turn requires that

a(2Cq + C qq) > -pCS. (3-27)

We can write this last expression as

i (C + C q) >-:.. .  (3-28)

The term in parenthesis in (3-28) is the social cost at time t of intro-

ducing a new user into the facility and the right hand side of (3-28) is

the rental value of the operating cost reductions experienced by each user

of the facility at time t when quality is improved by one unit. The equi-

librium value of q must satisfy (3-27), otherwise Vs given by (3-25)

.cannot be an optimal policy.

In practice, the existence of initial and final conditions that

the variables of the problem must satisfy will not allow the application

of singular controls over the whole period [0,T]. A singular arc, can

be represented as a trajectory in the space of the state variables
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(S,q). In general the initial values (S , q ) will define a starting

point of this trajectory and we will need to make use of the maximum

or minimum values of V(t) in order to get on to the singular arc. On the

otherhand, along a singular arc condition (3-14) must always hold. If

the transversality conditions for the adjoint variables are such that

Y P (T) is not equal to exp(-pt), then the final point of an optimal

trajectory cannot be over the singular arc, where the optimal control

is Vs. Thus we will have to again use the maximum or minimum values

of V(t) in order to meet the final condition of the problem. In our

case it is easy to see from the transversality conditions (3-4) that

the final point of an optimal singular policy will be over a singu-

lar arc only if the period of analysis is [O,=]. Therefore, possible

optimal singular policies will in general involve a combination of

Dang-Dang and singular arcs.

Thus, for singular policies the optimal control will in general have

the form:

t) , if P1 (t) < Yexp (-pt)

V*(t) V (t) exp (-pt) (3-29)

M(t) , if P(t) > exp (-pt).

A representation of such a policy is given in Figure 7.3.
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4.0 Solution in a Particular Case.

In order to illustrate explicitly how the necessary conditions,

presented in Section 3, are used to obtain solutions in a particular

case, we make the following assumptions regarding the functional form

for the utility and operating cost function:

U = constant

C(S,q) = c - sS + 6q 2  (4-1)

where c, C, and S are constants. In addition we assume that the fea-

sible region for maintenance expenditures, ~, is invariant for all t

in [O,T], i.e.,

m < V(t) < M Vt&[O,T]

wh.nere m and M are constant minimum and maximum maintenance expenditures.

Assumption (4-1) describes a circumstance where the user obtains

a constant gross benefit from utilizing the system with costs that de-

pend on the quality of the facility and the number of users. The first

term of the operating cost function is the cost perceived by one user

when the quality of the road is equal to an arbitrary reference value

S = 0 and free flow conditions exist over the road. The second term of

the operating cost function requires a unit increase in facility quality

to bring about an operating cost decrease of e monetary units. Finally,

the last term of the operating cost function considers the effect of

congestion on individual operating costs; it requires operating cost to

increase as the number of users increases. The operating cost functions
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comonly used in practice are those proposed by the U.S. Federal High-

way Administration (COMSIS[1972]> and are of the form C(q) = c + E qn

Although n is taken to be 4 for the case of urban highways, the value

cf n is to a great extent arbitrary as long as the resulting function is

increasing and convex in q. We have chosen in (4-1) a value of n = 2,

that is more appropriate for intercity than for urban situations. The

constant c and 6 are empircally determined parameters for each road

which depend on its length, speed limit and geometric design, including

number of Lanes (COMSIS(1972]). In (4-I) we have also included the term

-ES to take into account the influence of road quality on operating costs.

Note that we obtain the partial derivatives

C -E, C = 2 q,C 2- (4-2)
S q qq

immediately from (4-1).

4.1 Sinqular Case

In order to identify the characteristics of the optimal solution,

we must first analyze the existence of singular controls. From (4-1) it

is easy to check that CSq = CSS = 0. Therefore we can make use of the

conditions developed in Section 3 for such characteristics of the user

cost function. Thus, using (4-1), (4-2) and (3-24) in (3-18) we obtain

3a6q -2 pq - A 0 (4-3)

where

A = a(U-c) - c- - (aS + 1- + l.
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Upon solving (4-3) for q we obtain

q = [EP ( 2 + 12aA)½1]/6ad. (4-4)

Therefore, one condition for the existence of a singular control for

our particular problem is

2 2
p 2>-i2 26A (4-5)

since a real stationary demand does not otherwise exist. A second con-

dition is given by (3-27) which specializes to the form

q > (pe/6a6) (4-6)

and which eliminates from consideration the solution of (4-4) given by

the minus sign of the radical. *Therefore, if (4-5) is satisfied, a

sinzuar control exists and, from (3-25), is given by

* -1VS  - (/I) (4-7)

where

qe = [ p + (ep + 12a2A)0]/6a (4-8)

S = -b/a.e

The quantities qe and Se are respectively the equilibrium values of de-

mand and quality obtained along the singular arc when VS is applied. Ob-

viously a singular control does not exist in this case if VS given by

(4-7) is higher than M or lower than m.
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Since the initial condition (SO, q o) will in general be different

than the equilibrium values (Se, e) given by (4-8), we will need to use

bang-bang controls in order to get on to the singular arc (which in this

case is represented by a point in the space (S,q)). In addition, given

that P1(T) = 0 (see (3-4)), it is easy to see from (3-8) that the op-

timal control will be V = m for values of t close to T, with T finite.

in order to obtain the values of t for which the optimal control changes

from bang-bang to singular and conversely, we must integrate the adjoint

equations and thereby find the values of t for which condition (3-14) is

satisfied. This involves the solution of a two point boundary value

problem essentially identical to that analyzed below in Sections A.2 and

5.0 for the pure bang-bang case.

4.2 Bano-bang Case

If singular controls do not exist, the optimal solution must be

purely bang-bang. In that case in order to completely specify the

cptimal policy V (t) we must find the countable number of times for

which the gradient of the Hamiltonian HV vanishes. This is equivalent

to finding the solutions of the switching function FS(t) given by

(3-9).

Using expressions (4-2) in (3-2) and (3-3) leads to

P1 = -cqexp (-pt) + aP1 - 'P2  (4-9)

P2 = (36q 2 - ES - B)exp(-',t) + P (4-10)
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where

B = U - C (4-1i)

and of course (3-4) still holds, that is

PI(T) - P2(T) = 0. (4-12)

The system described by (4-9) and (4-10) may be uncoupled to yield

P1 - Pa +aBP1 = F(t) (4-13)

where

-(t) = (aB - Eb + pecq- 3a6q2 )exp(-pt). (4-14)

ir order to solve (4-13) for P1it) we neec to find an expression for

q(t). In order to do this we must solve equations (2-i) and (2-2) for

S(t) and q(t), a step which is complicated by the fact we do not have

an exact expression for V(t) before the values of the switching times,

i.e., the roots of equation (3-9), are known. Nonetheless, we know from

Section 3 that the optimal V(t) will be a piecewise continuous function

with values m or M, except for a countable number of points correspond-

ing to the switching times. The derivative of V(t) with respect to time

will be equal to zero for all tE[0,T] not corresponding to a switching

time. This information is adequate for finding general expressions for

S(t) and q(t).
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We restate equations (2-1) and (2-2) as

S = -aS - sq + yV (4-15)

q = aS +c

where V is the unknown optimal function V(t) and dV/dt = 0. System

(4-i5) may then be uncoupled to yield

SmS S + S = -S, (4-16)

a differential equation which is valid everywhere except possibly at the

countable number of switching times. The solution of this differential

equation depends on the roots of its auxiliary or indicial equation

which may be expressed as,

2 ,
mI  - + - - and m2  -- 2 - . (4-i7)

Of course, the precise nature of solutions to (4-10) will depend on the

discriminant in (4-17) which we write as,

2
d - . (4-1•)

The discriminant A is directly related to the intrinsic characteristics

of the dynamics of the problem. The first term in (4-18) is related

to the natural deterioration process; the second term is related to the

deterioration process associated with facility utilization, which we

call use deterioration. In fact, the value of ' is the result of a
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comparison between the second order effects of the natural and use

deterioration processes when an improvement of one unit of quality in

tne facility occurs. The first order effect of a unit increase in the

value of quality on the use deterioration process is an increase in q

given by aq = a. The second order effect is that this increase in users

9q = a produces a use deterioration of the facility given by -3a. For

the same unit change of quality, the first order effect on the natural

deterioration process will be a change OS = -a; the second order effect

2on natural deterioration will be a chanae 'S = 2 . These results can

be obtained directly from an analysis of (4-15) considering periods of

time of unit length. The sign of A can be used to determine which of

the two processes, natural deterioration or use deterioration, dominates.

It should be noted that the auxilliary or indicial equation asso-

ciated with (4-7), the differential equation which determines the ad-

joint variable P1, has roots

rl = + - Ba and r 2  - Ba. (~4-19)

Clearly the discriminant of (4-19) is identical to that of (4-17),

namely A as defined by (4-18). Thus it will suffice in the remainder

of the analysis to consider the three cases A > 0, A = 0 and A < 0.

Of course, any solution for the adjoint variable P1 based on a solution

of (4-15) is, like S and q, valid everywhere except at the countable

number of switching times.
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Case 1. A > 0. In this case the roots mi and m2 are real and un-

equal; the solution of (4-10) becomes,

S = Clexp(mlt) + C2exp(m 2t) (4-20)

Simple integration of the expression for q leads to

q *= C3exp(mlt) + C4exp(m 2t) + C5  (4-21)

where

SaC aC. 2C C
3  m ' 4  m 2

Equation (4-20) and (4-21) give the values of the state variables S(t)

and q(t) for each interval between switching points. The constants of

integration CI , C2 and C5 must be calculated for each inte'rvai using

the corresponding boundary condition for S and q (see Section 5). In

the present case, L > 0, the natural deterioration process dominates

the use deterioration process, and, therefore, the state of the system

denoted as (S(t),q(t)), is explained by monotonic exponential functions.

A typical example of the evolution of the system under these circumstances

is given in Figure 7.4 for the case of one switching.
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During the first period, that is when Vt'. = ", the quality S(t) remains

almost constant due to the influence of a high level of maintenance.

When the switch to V(t) = m occurs, quality begins to decrease

faster and q(t) experiences a second order change (an alteration of

curvature); S(t) will tend to a stable position whose magnitude will

depend on the magnitude of m. Also q(t) will eventually decrease, con-

tinue increasing or tend to level off depending on the amount of de-

crease experienced by S(t).

Case 2. A < 0. In this case the roots mI and m2 are complex

conjugates and we write the solutions for S and q as

exp(-~t)[Clcos( t) + C2 sin( t) -

q = exp(- -t)[C3sin(/j7it) - Ccos(/it)] + C5 (4-22)

wnere

2a(2C 1 • - 4C2 )
3  2c2 +4iA1

+ 4

2a(aC1 + 2/ fli C2 )
C4  = 2 " (4-23)4a + 4 j

Here, the use deterioration process dominates the natural deterioration

process and the evolution of the system becomes oscilatory. This be-

havior can be easily explained as follows: given the high value of R-,
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Fi ure 7. 5 Oscilatory behavior -For the case A<O



the deterioration produced by the users attracted as a consequence of

improvements of quality (or lack of deterioration) due to maintenance

can become higher than the quality improvement that generated the new

users. In such a case, quality will reach a maximum and then decrease

until the reduction of quality brings about a reduction of users such

that quality can begin to increase again. An example of the evolution

of the system when A < 0 is given in Figure 7.5 for the case of one

switching. In Figure T.5, S represents the value of S(t) for which

q(t) = 0; qM is the value of q(t) for which S = 0 when V(t) = M; and

qM corresponds to S = 0 for V(t) = m; that is

-S + vM - -= S + ym
qM m '

Case 3. A = 0. This case is of little practical importance due

to the fact it is not likely to occur. Nevertheless we present

results analogous to those obtained for the other two cases for the sake

of completeness. In this case the roots mI and m2 are real and equal

with value -a/2. Consequently the following solutions obtain

S = Clexp(- t) + C2t exp(- t)

q = C3exp(- t) + C4t exp(- t) + C5  (4-24)

where

= 2a (C 2C2 (4-25)
3 L1 aC

2aC 2
C -4 a



The switching functions denoted by Fs for

are given by the following expressions:

Case 1. A > 0.

Fs = C6exp(r1t.) + C7exp([r2t) + C14exp[(ml-p)t + C15exp[(m 2-o)t]

-.C16exp[(2m1 -p)t] - C17exp[(2m2-P)t]17 1 - C18 exp[(ml +m2-P)t]

(4-26\Lt-LL
+(C19 I )exp(-pt).

Case 2. A < 0.

F = C6exp(k-t) sin(/Tilt + C7 ) + C1 3exp[-(a + p)t] sin( /I t-C9 )

+ C14exp[-(~ + p)t] cos(/1 t-C9 )

sin2( t - C9 )

+ C1 5exp[-(a+p)t]%.I
+ C16exp[-(a+p)t] sin(/ t-Cg)cos(/• t-C9)

+ C17exp[-(a+p)t] cos 2( /• t-C9 ) + (C18 - -) exp(-pt).

Case 3. A = 0.

Fs = C6exp(~t) + C7 texp( t) + C14exp[-( + o)t + C15 texp[-(c+ p)t]+C Zfp~2'

+ C16exp[-(a+p)t] + C17texp[-(a+p)t] + Cl8t2exp[-(a+p)t]

+ (C19 - 1)exp(-pt)

Detailed expressions for all

expressions for F(t) and Pl (

the constants involved, in addition to the

t) that were used to derive F in each case5

are given in Appendix A. That appendix illustrates that a complete speci-

fication of FS in general requires determination of values for Ci ,

218

(4-27)

(4-28)

2̀'

the three cases analyzed



2c, and C7 since all other constants ;illi tnen be defined. A procedure

for doing this is presented in Section 5.

For Case 1, where A > 0, an upper bound for the number of switchings

can be established. The switching function (4-26) is a weighted sum of

exponentials. Pontryagin, et al. [1962, p.12 0] proved that the number

of zeros of a sum of n real exponential functions of a given variable

is at most (n-l). Therefore, the switching function (4-26) will exhibit

at most seven switchings. It is worth noting that for Case 1 the maxi-

mal number of switchings will depend on cost and demand characteristics.

For instance, if no congestion costs are taken into account, i.e., if

5 = 0, we have that C16 = C1 7 = C18 = 0, and therefore the maximal num-

ber of switchings is four since (4-26) is reduced to the sum of five real

exponentials. The same result is obtained if we assume that demand q is

indedenent of the level of service, i.e. that a= 0.

We might alternatively assume that operating cost is constant and

indeDendent of S and q, i.e. that e = = 0, so that C , C = C

17 18 1

Fs = C6 exp(rlt) + C7exp(r 2 t) + (C1 9 - ) exp(-pt), 6 > 0 . (4-29)

Expression (4-29) demonstrates that, in Case 1, for the assumption of

constant operating cost the maximal number of switchings is two. The

assumption of constant operating cost allows expressions (4-27) and

(4-28) to be rewritten respectively as:
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F = C6 exp( t) sin("jT t+C7 ) + (C8 _ 1)exp(-t), < 0. (4-30)

YS- C6exp( t)+ Crtexp( t) + (C9 _ ), o = 0. (4-31)

',e cannot, without additional information, state the maximal number of

switchings admitted by the functions (4-30) and (4-31); we know only that

this maximal number is finite for a fixed planning horizon. This model

formulation, the model resulting from the assumption of constant operating

cost, is the simplest that we can articulate; it has meaning only in the

case when demand is dependent on service, i.e., when the parameter a ý 0

in equation (2-2), for benefits are then affected by maintenance policy

only through the influence that quality of service has on the num- ber of

road users, who experience a constant individual cost which is indepen-

dent of the state variables S and q. This is to be contrasted to the

more general case where benefits are influenced by cnanges in the opera-

ting cost brought about by changes in the state variables; that is to

say, the more general case exhibits both a demand and supply sensi-

tivity. It should also be noted that if C(S,q) = C, a constant, and a= 0

the system is completely uncontrollable and the maintenance policy V(t)

has no effect on benefits, since it cannot impact either the supply or

the demand side of the system. This characteristic of the model is

made clear by noting that since a = e = 0 equation (4-9) with boundary

condition from (4-12)leads to a shadow price of Quality Pl(t) equal to

zero for all tZ[0,T]; consequently, the optimal maintenance policy given
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by (3-8) will be V(t) = m for all tc[O,T] since [y exp(t)]- will al-

ways be positive.

It is worth noting that the boundary condition P1(T) = 0 implies

that the optimum maintenance policy will always have a value V(t) = m

in a neighborhood of T (see (3-8)). This is a direct consequence of

the fact that no conditions involving S(T) (or q(T)), are specified in

the model. in other words, we do not care about the final value of S(t)

as long as the total benefits over the period [0,T] are maximized. This

is a good assumption as long as the period [0,T] comprises the whole

economic life of the road analyzed. The time T can then be considered

as the moment at which an investment that replaces the old road by a

new one is made. If a period shorter than the whole economic life is

considered a residual value representing unrealized benefits or salvage

value should be included in the objective function. This residual value

will naturally depend on the value S(T). In that case the maximum prin-

ciiple says that the final value of P,(t), the value at t = T, must be

equal to the derivative of the residual value function with respect to

S(t) evaluated at T. In this case the possibility that P1(T) > [Y exp

(pt)]-1 exists which would require that V(t) = M in a neighborhood of T.

Sufficiency conditions for the maintenance policies presented in this

section are given in Appendix B.
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know edae of V (0) (optimal policy at t = 0) and to know this we need

to know P (0); b) condition 5 involves knowledge of q(T) which we can

only obtain after we know the whole history of o(t) and therefore the

si:tching times. In order to overcome tnese difficulties the following

i~erative procedure is proposed.

Step 1. Guess an initial value for the optimal maintenance

policy V (0) and a final value for the number of users q(T). In or-

der to facilitate these initial guessings, we can make use of the follow-

ing information obtained from our analysis in Section 3:

* V*(O) can only take on the values m or M.

V*() if P (0) < Y-1

%0, if Pl(0) > -

*The set of possible values of q(T) is bounded due to tihe
following:

V(t) = m, Vt[0O,T] implies q(T) = q

V(t) = M, Vt[0O,T] implies q(T) = qu,

where q, is a lower bound and q an upper bound for q(T). In addition

we know that in our case V(t) = m for t in a neighborhood of T, and

therefore q(T) < q u(T). Obviously we also have q (T) > 0. Thus the

following procedure is indicated:

a) Calculate q,(T) making use of conditions 1, 2, and 3 in

(5-1) and chosing V(t) = m, Vt[0O,T]. Similarly calcu-

late qu(T).

b) ChooseV(o)= 0 and q(T) such that q (T) < q(T) < a (T).A, u



c) Now we can calculate all the integration constants

involved in the switching function Fs , valid for all

t < tI, where t1 is the first switching point

Therefore we can calculate PI(O).

d) Ceck ow i P () < -1d) Check now if P1(O) < - holds. If yes we have a com-

patible set of initial values V(o) and q(T). Other-

wise change the value of V(o) (and q(T) if necessary) until

a compatible initial set is found.

In all the calculations involving S, q, and P! we make use of the solu-

tions and expressions for constants developed in Section 4.

Step 2. Find the smallest root of Fs; this will give us the

first switching point tl. Given that the state variables must be con-

tinuous and that they are a function of V(t) (which is not continuous),

wie must force continuity at each switching point. This requires re-

calculating the constants of integration C! , C2 , and C5 for each solu-

tion interval. That is, we will have different values for these con-

stants for each interval of time between successive switching points.

In order to recalculate the constants, we make use of the following

conditions
+- ^ +

S(ti) = S( ), q(t) (t) (5-2)

S(t. ) = -cS(t) - Sq(t) + yV(t )

where t. is the moment just before and ti the moment just after the

switching time t i . Let q (T) be the value of q obtained for t = T.

- See related comment in Step 2 beiow.

22321)



5.0 An Alcorithm for Determinina Switching Times

As we saw in Section 4, to obtain the values of the switching

times in a particular case we need to calculate the values of five

constants: C1, C2, C5, C6, C7. In order to calculate these constants

we make use of the following boundary conditions:

1) S(O) = So

2) q(O) = qo

3) S(O) = -aS - Bq + yV(o)

4) p1(T) = 0

5) P1(T) = eq(T)exp(-pT)

where the last condition is obtained from the adjoint equation for P( t)

(see (4-9)) using the boundary conditions (4-12).

The calculation of the five integration constants that we need to

specify an optimal policy for the particular case described in Section

4, given the boundary conditions listed above in (5-1), constitutes a

two-point boundary value problem. Finding solutions to this kind of

problem generally requires the use of numerical methods that involve

iterative procedures. An iterative procedure that makes use of the

special characteristics of our problem will be described here. The

method proposed could be classified within the category of neighboring

extremal methods (Bryson and Ho [1975j)

If we analyze our boundary conditions (5-1) we can immediately see

that two main difficulties appear with respect to the use of them in

the calculation of our integration constants: a) condition 3 involves
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Successive switching points are found by appiying these continuity con-

ditions and solving FS = 0 repeatedly for the smallest root greater than

the previously considered switching point.

Steo 3. Compare the calculated value q (T) with q(T), the

value guessed in Step 1. In particular execute the following logic:

a) Calculate q (T) - q(T) = ,q. If aq < stop, where r, is a preset

tolerance. if Aq > r, continue.

b) Let q(T) = q(T) + T~q witn T < 1 and return to Step 1.

The values of .must be chosen at each iteration in such a way that con-

vergence is assured; 1TI= 1 can produce overshooting and a value of KI too

small will slow the convergence process.

iote that because we use throughout the algorithm the general sol-

utions ootained in Section 4 from the application of the necessary con-

ditions provided by the maximum principle, a solution obtained during any

iteration satisfies the system equations (2-1) and (2-2), the adjoint eq-

uations and boundary conditions (3-2), (3-3) and (3-4) and condition (3-5)

requiring maximization of the Hamiltonian. The algorithm then tries to

find a value of P1(T) for the last boundary condition in (5-1) that is

compatible with the other four conditions in (5-1). A special case arises

if we assume that the operating cost function is independent of the quali-

ty variable S, that is if

C = c + -, = 0.



Under this circumstance the boundary condition 5 in (5-1) becomes

P, (T) = 0, and the optimum policy can be found in one ileration of the

algorithm, since no guessing of q(T) is necessary. This can provide an

alternative way for guessing an approximate initial value for q(T) in a

general problem with c ý 0.

226



APPENDIX A: intecration Constants

(Chapter VII)

CASE I. A > 0

Using (4-20) and (4-21), the forcing function '/ in (4-14) may be

written as

E(t) - C8exp[(m -P)t] + C9exp[(m 2-P)t]

-C10exp[(2ml-P)t] - Cllexp[(2m2-)t]

-C12 exp[(m ++m2-) t] + C13exp(-ot)

Cg = psC3 - 6a5C5C3

C9 = peC4 - 6a6C 4C5

C10 = 3a6C2to' 3 Cli

C12 = 6a6C3 C4

C13 = aB - eb + PEC 5 .

From this r

Lthe foliowi

esult we are led to a general soiutior, for equation (4-13) of

ng form since the roots r l and r 2 are real and unequal:

P1  = C6exp(r 1t) + C7exp(r 2t) + C14exp[(ml

+ C15exp[(m2 -p)t] - C16exD[(2ml-o)t]

- C18exp[(ml+m2 -P)t ] + Clgexp(-pt)

-o)t]

- C1 7 exp[(2m2- P)t

(A-2)

whe re
pEC3 - 6a5C5C3

(ml-p) - a(ml-p) + Sa

o0C4 - 6adCAC-

- c(m 2-o)

2 27

whe re

(A-l)

2
= 3a6C

C14

C15

Juu~J

(m2-p)2\



C16

C17

18 .

C 9  =
19

23a6C,
3

(2ml-p, - z(2ml-p) + 3a

3a•C

(2m2_ p ) 2 - E(2m -,) + 3a2

6a6C3 C4

(ml+m2-P) 2 - a(m+m 2 -p) + a

aB - Lb + oEC5
2

p + ap + 8a

and from the solution for the state variables

aCr1
C3  ml and C3 m 1

aC2

m2

CASE 2. a < 0

iNo' using (4-22) and (4-23) the forcinM functi~n :- ' in (4-14) may

be written as

F(;) = C10exp[-( + p)t] sin(/~ t - C9)

+ C11exp[-(a+p)t] sin2(V t - C9)

+ C12exp(-pt) (A-3)
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= (PeC8 - 6a6C 5C8), Ci

= (aB - Eb + oOC -3a6C )5 5

C8 232 4C2Cg = 3 + 4, tan C99

2-3acC,

C4

C 3

From this result we are led to a general solution of (4-13) of the following

form since the roots r I and r2 are imaginary and unequal:

P1 = C6exp(kt) sin(V7 ••t+ C71 + C13 exp[-(S + p)t]

sin(výT t-C9 ) + C14exp[-(•-+ p)t] cos(v/ lAt-C9)

C15exp[-(a+p)t] sin 2 (, 1

sin (VTT t-C) cos(,,/7' , t-

cos2(~"iA t-C ) + .Cl8exp(-

t-C9 ) + C16exor-(a+p)t ]

C9) + C17exp[-(a+o)t ]

K1(pEC 8 - 6aSC5C8 )
2 2K + K2 .1 2

K2(PEC8 - 6aS 5C 8)
2 2K + K1 2

3a6C2
- 8

K3 + 2 IA I

3a6d

K3 + 2 A I

_ 1 (3a6C2 +
v

22K2 +4 (K3 -

4K4

22 AI)2  + 21A I(K3

+ (K3 - 2 1A 1)2

2K - 2 (K3 - 2 I)

4K + (K- i) -

C15K3 + 2 " •C17

where

C10

C12

(A-4)

with

C13

C14

C15

017

016

- 2 I i)1I

|%



(aB - cb + 2C- - 3a6C2)
C =18 2

p + a p + as

2 2=

K 3  [(a + p)2 + a(a + p) - 21, + a$]

K4  = [2/ , (a + p) + 0i•A]

and -rom the solution for the state variables

2a(2C1/ , - aC2)C3  = ,2
2 + 41A1.

2a(aC1 + 2 /7 C2)
C4  = 2

a + 41•I.

CASE 3. a = 0.

Using (4-24) and (4-25), the forcing function F(t) in (4-14) may

be written as

F(t) = C8exp[-(a + p)t] + Cgt exp[-(a + p)t]

-Co10exp[-(a+p)t] - Clit exp[-(a+p)tj

-C12 t2 exp[-(a+p)t] + Cl3exp(-ot) (A-5)
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wnere

S = [EC3 - 6aSC 3C5]

C9 = [p ,C - 06aC4C5j

2
3 3afC33' C11 = 6a6C 3C4

2= 3a6C
4

= (aB - Eb + PEC5 - 3a2C2)

From this result we are led to a general solution for equation (4-13) of

the following form since the roots rl and r2 are real and equal with

va-lue -/2:

= C6exp(t) + Ct exp(2-t) + C14exp[-(% + o)t]

+ C15t exp[-( + .!it] + C 6exp[-(c+p)t]

+ C17t exp[-(a+p)t] + C18t2 exp[-(a+p)t]

+ C19 exp( - p t). (A-6)/I, '- )km- cj

- (PEC 3 - 6a6C5C3)1

1- (pc 4 - 6a6C4C

-1 [6a6C2(3a+2p)
2]

2

1 2+ - 6a6C4K2

+T (cc+p) (PEC 4 - 6a6C4C5 )K1

2 [6a6C3C4 (3a+2p)]
2

1 2S(3aoC 3)
K,

4

Cl0

C12

C13

P1

wnere

C14

C15

C16



1 2 1= - [6a6Cý4(3+2p)] K (6a-C3C
K2 2 K2  3C4)

2

(a - •b + p C5 - 3aC2)
2

(p +cp + a)

K [(" , p+ 22

= (aa + p)

+ a( + t ) + Ba]

+ a(a + p) + Ba]

and from the solution for the state variables

2a 2(c
C = (C -C1c3  a 1 c

2aC 2

4 a

C1 7

C18

C19



APPENDIX B: Sufficient Conditions

Solutions of the form described in Section 4 satisfy all the con-

ditions established by the maximum principle. Nevertheless, these are

only necessary conditions and therefore any solution derived from them

is only a candidate for optimality. In this section we will analyze

the circumstances which cause the policies described in Section 4 to

produce a maximum value of J(V(t)) in (2-5). With this purpose in mind,

we will use the Arrow sufficiency theorem (see Section 5 of Chapter II)

The Arrow sufficiency theorem, applied to our problem, says that a

policy [V (t), S (t), q (t)], obtained from the necessary conditions

provided by the maximum principle, will produce a global maximum of

"V(tj.) in (2-5) if H (S, q, P1, 2, t) is - concave in the state variables

S and q for all t E [O,T], where

H (S, q, P1, P2, t) = Max H(S, q, Pl P2' V, t), t E [O,T].

V EE (3-1)

The results of Section 4 allow us to distinguish three different cases

which lead to distinct expressions for H :

a) Bang-Bang case with V = M.

H = (U-C)q exp(-pt) - P (aS + Rq) + P2(a S + 5)

+ [YP 1 - exp(-ot)]M (6-2)



b) Bang-Bang case with V = m.

H = (U-C)q exp(-pt) - P +(.S + sq) + P2(a S + b)

+ [YP 1 - exp(-pt)]m (B-3)

c) Singular case, V = VS .

H =(U-C)q exp(-ot) - PI(aS + Sq) + P2("S + b) (B-4)

Note that in this last case yPI = exp(-pt). To determine the conditions

for which H is concave we must examine the quadratic form

II"

[q,S] H [ ] (B-5)

", *

Where H is the so-called Hessian matrix associated with H . For the

example problem of Section 4 we have

-'66q

6L E
H = exp(-pt)

0.

(B-6)

For H to be concave the quadratic form (B-5) must be negative definite.

Thus we require for the example problem of Section 4

3-66q + 2sSq < 0. (B-7)
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Since q > 0 this becomes

-36q 2 + ES < 0. (B-8)

Note that (4-1) describes the cost function for the example problem

and can be restated as

C - c S= q2. (B-9)

If C - c > 0 then clearly

s < q-. (B-10)

and also

S S < q2. (B-11)

This last expression is exactly that obtained from (B-8) in solving for

o'. Thus if total costs are always greater than or equal to the costs

which are incurred independent of any quality or congestion effects H

is concave and the Pontryagin necessary conditions are sufficient.

There are clearly other circumstances under which (B-8) holds and

for which the Pontryagin necessary are sufficient; the essential point

is that (B-8) is satisfied in virtually all cases of practical importance.
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VIII. SUMMARY OF RESULTS AND CONCLUSIONS

As mentioned in the introduction, the objective of this work was

the study of dynamic optimal investment policies in public facilities

with special consideration given to the transportation case.

After presenting in Chapter Ti the methodology and the mathematical

results to be used in the rest of the study, Chapter III to V were ded-

icated to developing dynamic models for the analysis of optimal invest-

ments in quality and capacity for both the cases of continuous and

discrete quality/capacity variables. This analysis led to dynamic

optimal investment policies which were given economic interpretations.

The policies derived are general and do not depend on particular forms

of the functions involved in the specification of the models. The

results obtained served to provide important new insights about the

structure and characteristics of optimal investment policies.

In Chapter Iloptimal investment policies in quality were derived

both for the case in which demand is assumed externally specified and

for the case when it is related to the quality of the facility. The

introduction of this interrelationship in the specification of the

model, which had proven impossible before in all the static invest-

ment models used in the literature, was easily accomplished through

the definition of a dynamic equation for the changes in demand over

time.

In Chapter 1Na dynamic model for continuous investments in

capacity was developed and solved. Explicit expressions for the optimal
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value of capacity investments were obtained using general statements

of the construction and operating cost functions involved. These

expressions had not been previously cited in the literature. The

dynamic characteristics of optimal investment policies were also

obtained for the first time and new sufficiency conditions were

developed. At the end of the Chapter, the application of the results

obtained was illustrated for different special cases of interest.

In Chapter V a general dynamic model was proposed to handle invest-

ment discontinuities. The general structure and characteristics of

optimal investment policies in capacity and quality were obtained

under this circumstance and given economic interpretation. It was

shown that the solution of the general problem in a particular case

requires the use of iterative numerical methods. However, practical

marcinal rules were obtained for special cases.

Chapters VI and VII were dedicated to the development of particular

model formulations in order to study some special cases of interest.

In ChapterVI we analyzed the implications of explicitly considering

the interrelationship between level of service and demand on the time

staging of optimal investment decisions. The analysis lead to a new

time staging rule that considers the interrelationships mentioned

above and contains as a special case the naive static rule previously

proposed in the literature. A numerical example presented at the

end of the chapter was used to illustrate the dramatic effect that

demand quality interrelationships can have on optimal time staging

policies.



Finally, Chapter VII was dedicated to showinq how the theoretical

results of Chapter III can be used to obtain cotimal maintenance

policies for a road in a special case. Explicit analytic expressions

were obtained for the optimal solution in terms of the parameters of

the problem and an algorithm to find numerical solutions was proposed.

Throughout the development of this work it has been shown that

modern control theory constitutes a powerful and useful tool for

the analysis of dynamic investment policies. As we have seen it

allows the development of more realistic models and the obtainment

of results impossible to get from static formulations. An apparent

drawback of the application of this technique has been the relative

difficulty confronted in the interpretation of the results obtained.

Nlevertheless, this should not be surprising given that we are dealing

with more complete and general results than Dreviously adhered to in

the literature and also from the fact that we are not commonly used

used to thinking in dynamic terms. if a static formulation corresponds

to a simplification of the system under analysis, it is obvious that

the results obtained will be, though less general and complete, easier

to apprehend. We have also shown that special results of the theory

like those refering to singular controls and to model specifications

with discontinuities in the state variables and dynamic equations can

be fruitfully used in order to obtain more insightfull results or

to analyze problems with special structure. These approahces had not

been used before in the economic literature: it is obvious that a wide

field is open for future research. Other model formulations with

alternative dynamics and objective func:ion s•ecifications other than

238



those used here could be developed. Some interesting extensions

could be the analysis of multimodel systems and multiobjective

specifications. Formulations for the explicit study of dynamic

pricing policies could be also tried. In addition, the developments

of numerical methods for the solution of special models of interest

could be undertaken. Hopefully, the analyses presented here will

serve as a motivation for further study of dynamic investment policies

from a microeconomic point of view.
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