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Public facilities are characterized in this study by two
attributes, quality and capacity, whose values are assumed to change
over time due to natural factors, use and investments. It is also
assumed that the users of the facility obtain a private benefit
from the use of the facility, which is a function of the character-
istics mentioned above and the total number of users. The objective
is to find and ana]yze dynamic investment policies for quality and
capacity that maximize the present value of the net social benefits
derived from the operation of the public facility over a planning
period [0,T].

With this objective, dynamic models are developed using optimal
control theory formulations which consider the investments in quality
and capacity as control variables. Alternative assumptions are used
with respect to the continuity or discretness of the investments and
the dependence or independence between the demand for the facility
and its characteristics.

The models formulated are solved using different results of
optimal control theory. Necessary and sufficient conditions for
optimality are obtained in each case and economic interpretations
are given. These conditions describe optimal dynamic investment
rules not previously reported in the literature.
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I. INTRODUCTION

1. Scope of the Study

As the title reveals the objective of this work is the study
of dynamic optimal investment policies in public facilities, with
special consideration given to the transportation case. However,
this statement probably does not adequately convey an understanding
of the analyses attempted in the several chapters that follow. 1In
order to provide a better idea of the scope of the study we will give
here a brief explanation of what it is meant by each of the key words
appearing in the title.

The word "dynamic" has been extensively used in the economic

. Tliterature without always implying the same meaning and rather often

implying vague attributes of the analysis performed. Ih the words of
Professor Samuelson*, "we damm another man'sstheory by terming it static,
and advertise our own by calling it dynamic." Thus, it seems
appropriate to agree with Professor Marglin** in that, in view of
the loaded nature of the magic word "dynamic" it seems incumbent upon
anyone who would employ it to demonstrate that he intends something
more by its use that the distinction between bad and good. However,
one feels a certain dissatisfaction with his subséﬁuent definition of
the word dynamic as merely a reference which"is supposed to convey

the idea that time enters in an essential way". This point of view

*See P.A. Samuelson, [1947], pp. 311
**See S.A. Marglin, [1963], pp. 1
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is still too unprecise to explain what is meant by the word
dynamic in the title of this work.

We use the word dynamic tB refer both to the systems under
study and to the policies proposed in order to influence their be-
havior. The systems that we study are dynamic in the sense that
their characteristics at any given time t will depend on the initial
conditions at a cgrtain time to and the history of the policies
applied over influencing them throughout the planning horizon or
peried of analysis [to,t]. As we will see in ChapterIII the
evolution of these‘systems w{11 be governed by differential equations
that specify the rate of change in the values of the variables that
represent the main characteristics of the system. These rates of
change will be influenced by the application of different policies,
which will therefore, to some extent, determine the evolution of
the system. To these policies we also apply the adjective dynamic.

We claim also tﬁat we will focus on "optimal" policies. The
word optimal is obviously not justified in an absolute sense but
we use it to mean that, given a model specification, with all the
assumptions and simplifications that any modelling effort in
general requires, an optimization methodology will be applied in
order to obtain values for the independent policy variables used
in the specification of the model. Thus, given a sound specification,
the main characteristics of policies that optimize the behavior

of the system, with respect to a prespecified performance index,

should be obtained.

1



This study focuses on the analysis of investment policies in
public facilities, for which we take as a special case transportation
and construct illustrations aﬁd eXamp]es of the theaory in terms of
transportation; Although the same, or similar, models to those
presented in the following chapters could be applied to other public
facilities with similar economic characteristics to transportation,
such as those re]gted to power generation, communications or public
recreation, a strong bias in the authar's personal interests has
influenced the decision of concentrating on transportation facilities.

We will assume that the facilities considered are provided and
managed by some public authority; We will also assume that the
~users of these facilities obtain a certain utility and perceive a
certain cost from the use of the facility. The cost perceived will
determine what we call the level of service provided by the facility.
If the cost is high the level of service will be low and vice versa.
On the other hand, we will assume that a facility can be characterized
at any time t by the values of two variables, one representing the
capacity of the facility and the other its quality. By capacity
we refer to the ability to accommodate a certain number of users:
with an arbitrary prespecified level of service. If the capacity
is increased, eitehr the number of users accommodated could be in-
creased, maintaining the same level of service will be improved if the
number of users does not change. This trade-off is a consequence
of the existence of congestion externalities in the consumption of
the facility, a public good. The variable quality will represent

those characteristics of the facility that do not affect its capacity
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but influences the level of service perceived by the users. In
general, the combination of the facility and its users will
define the system over which our analysis will concentrate.

The word investment is used in this work to represent any ex-
penditure ,made by the public authority that manages the facility}
with the objective of modifying the capacity or quality of the
facility. An investment policy will be represented by a series

of outlays indexed by time within the period of analysis [t,T].

2. Methodology

The features of dynamic investment decisions that we have

briefly described are difficult to handle with the usual Tinear

or non-linear programming techniques commonly used in static optimi-
| zation. However, modern control theory, as we shall see in the
following chapters, provides a natural framework for the analysis
of the type of problems in which we are interested. A1l the models
that we use,in ordef to analyze dynamic investment policies under
different circumstances,are formulated as optimal control models.
Actually, one of our objectives throughout this study has been to
investigate the potentialities of this technique for the analysis
of the type of problems described. Different model formulations
that make use of special results of optimal control theory have
been utilized in order to handle special characteristics of the
problems studied. The treatment presented is in this sense new
and has not been attempted before in the economics or transportation

Titerature.
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When an optimization technique is applied to any problem
the main task is to find the necessary and sufficient conditions
that characterize the optimal  solution. If the problem at hand
has a simple structure, these conditions can sometimes be solved
analytically in terms of the unknowns with respect to which the
optimization is being performed. Even if this is not the case,
such conditions are still the fundamental base for the development
of algorithms that could provide numerical solutions in special
cases. Moreover, even though these optimality conditions may not
be solvable analytically they are of value in themselves. In
economic problems, 1ike those treated in this study, their careful
interpretation can provide important insights about the structure
* and characteristics of the optimum solutions. It should be re-
membered that many times models are developed not to provide
sclutions which are followed to the letter, but to provide additional
information that together with all other pieces of information

available helps to improve the process of decision making.

3. Organization and Plan of the Study

The remainder of this study is comprised of three main parts.
The first one corresponds to Chapter 1I in which the main results
of control theory to be used in the following chapters are set
forth. The principal elements of control modé]s are presented
and necessary conditions for optimality are derived in a heuristic
way for different dynamic models formulations to be used later.

At the end of the chapter, a useful sufficiency theorem is stated.

14



The second part, comprised of Chapters III to V, is mainly dedicated
to the theoretical analysis of the characteristics of optimal
investments in quality and capacity under different general
assumptions. In Chapter IIIoptimal investments in quality are
studied. Quality is considered there as a continuous variable
whose evolution over time is defined by a general deterioration
function. In the first part of the chapter, it is assumed that
demand is externai]y specified and independent of the quality of
the facility. In the second part this assumption is relaxed by the
introduction of a dynamic equation that links demand to quality.
The third part extends the models studied to the consideration of
different types of users. Finally, sufficient conditions for
optimality are derived at the end of the chapter.

Chapter IVis devoted to the analysis of optimal investments
in capacity. A dynamic model is set forth assuming general con-
struction and operating cost functions and taking capacity as a
continuous variable. Optimal dynamic investment policies are
derived and given economic interpretations. In the last part of the
chapter the results obtained are applied to different special cases
of interest which have been considered in the economic literature
previously.

Chapter y presénts a model formulation in which quality and
capacity are taken simultaneously as decision variables. Capacity
is considered an absolutely discrete variable that can take only

certain prespecified values. Quality is assumed to be a piece-wise
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continuous variable that can manifest discontinuities at the times
that capacity is changed: Optimal staging policies for quality
and capacity are obtained and given economic interpretations.

The third part of the study is comprised by Chapters VI and VII.
Here a more applied approach is taken in order to derive decision
rules or solution algorithms in special cases. Chapter VI studies
the influence of demand-quality interrelations in the time staging
of transport faciiities. An optimal staging rule is derived and
given economic interpretation. Sufficiency conditions under which
the rule proposed is optimal are analyzed. Finally, a numerical
example is developed in order to compare the results given by the
rule proposed with those obtained from the application of rules
available in the literature.

Chapter VII shows how to use the models developed in Chapter II
in order to obtain solutions in a special case. With this purpose,
the problem of detefmining optimal maintenance policies for a road
is studied. Linear functional forms are assumed for the dynamics
of quality and demahd and the corresponding optimal maintenance
policies are obtained. Then a method to obtain numerical solutions
for a particular case is developed and a numerical algorithm is
proposed.

Finally, in Chapter VIII a summary of the main conclusions is

presented and suggestions for further research are provided.
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11. OPTIMAL CONTROL MODELS

1. Introduction

The principal aim of thié chapter is to present and describe
the main results of control theory which are relevant for the later
chapters. Some of these results, such as those related to singular
controls (analyzed in Section 3.2) and to model formulations that
allow discontinuities in the state variables and system equations
(Section 3.3) on thch Chapters 4 to 7 heavily rely, correspond to
rather special results that may be difficult for the unfamiliar reader
to find in the Titerature. Nevertheless, the presentation here is
basically heuristic; the reader who wishes to see rigorous proofs
_ of the results presented should consult the control theory texts re-
ferenced in the bibliography.

We begin by describing the main elements of control models in
Section 2. In Section 3 we present the model formulations used in
later chapters and tﬁe necessary conditions corresponding to their
optimum solutions. In Section 4, we make use of some special results
in order to give a general economic interpretation for the adjoint
variables and the Hamiltonian. Finally, in Section 5 we present with-
out any proof the Arrow theorem that is used in later chapters to
derive sufficiency conditions for optimality.

The notation used throughout this chapter assumes that all
vectors are column vectors, with exception of the gradients of any
function which are assumed to be row vectors. Thenk if two vectors
x and y exist in the same space R", x’y or y’x will denote the

cartesian product, unless x represents a gradient of some function,

17



in which case will write xy or y’x’.

~

2. Elements of Control Models

Control theory deals with dynamic systems. Its objective is to
find ways to optimize the evolution of & system over a certain period
of time [tO,T] according to a given pre-specified criterion. Any
system, be it phyé%caT, economic, or other, can in general be des-
cribed at a given time t in terms of a set of variables of interest
y (t) = (y](t), ..... ,yN(t)). If a1l of these varjables were out of
our control (e.g. we cannot set the values of any of them) we would
have a completely uncontrollable system from our point of view. The
most we can hope for with respect to such a system is to develop a
descriptive model of its behavior. The movement of celestial bodig;
couid be a good example of this case. However, most of the systems
that engineers and economists deal with are not of this type. In
general, certain attributes of the system, represented by some of the
variables Y55 can be controlled and through the interrelations of
these with the rest of the variables, the behavior of the whole system
can be influenced. There are still cases in which it doesn't matter
that we can control the values of selected variables, the system is
not controllable in a certain sense. The notion of controllability
is a very important one in the study of dynamic systems and precise
mathematical statements have been developed to define it. Neverthe-
Tess, we will not go into them here, given that we do not make any

explicit use of them later. The reader interested in the topic can
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consult introductory books in dynamic systems. A1l that we use in
later chapters is the idea that the result of the application of the
criterion used to evaluate the system can be influenced, by the
manipulation of the controllable variables, and therefore the
behavior of the system can be optimized with respect to this
criterion,

We will denote by V(t) = (V1(t),...,vm(t)), with m < N, the set
of variables Y5 tﬁét we can manipulate, which will receive the name of
"control variables". The rest of the variables Y5 will be represented
by the vector x(t) = (x,(t), ..... ,xn(t)), with n = N-m, and will be
called "state variables". We will have then

N

y(t) = (x(t),V(t)), yeR', xeR, VveRrm,

¥te {to,T] * a(z'])

where R" denotes the.space of rfdimensiona1 vectors.

Thus, the first task in the specification of a control model is
to select a set of variables y(t) that can adequately describe the
system of interest at any time t within [to,T]. The second step is
to classify these variables into "controls” and "states". Sometimes
this classification can be obvious from the characteristics of the
variables involved. However, in itself and from the point of view
of the model it is an arbitrary decision and will depend on the
objectives of the analysis.

The next task is to define a model which indicates how the

values of the state variables x(t) evolve with time. In all contin-



uous-time control models it is considered that evolution of the
system of interest can be described by a system of ordinary dif-

ferential equations

dx(t)/dt
x(0)

]
>
—
‘+
~——
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—
be
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-
-
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ct
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~—
w

te [to’T] ,(2-2)

]
>

nml R" provides a dynamic

where in this casévthe function f: R

description of the system. Given the value of the states and the

controls at a certain time t, (2-2) gives us the instantaneous rate

of change in the value of the state variables. Also, if the function
f is valid for all t in [to,T] and we know the values of the state

. variables, Xys at the initial time, the whole path x(.) followed

by the state’ variabies can be obtained through the integration of

(2-2), provided that the values of the controls are specified for all

t in [to,T] and the followingrconditions are satisfied (see Athans

and Falb [1966]).

1. The functions fi(x,V,t), afi(x,v,t)/axj and
afi(x,V,t)/at,(i,j =1,...,n) are continuous in
[to,T]. '

2. V(t) is a piecewise continuous function mapping
from [to,T] into R™.

Therefore, it is not necessary that the controls V(t) be con-
tinuous over all [to,T]. Only the weaker condition of piecewise

continuity is required. This is a general characteristic of all



continuous time control models. In most cases, the values permitted

are also subject to constraints of the form
V(t) e alt), te [t,,T] ,(2-3)

where © is a subset of R". It may also happen that all possible
values of the states are not permitted, a requirement which can be

expressed in a similar fashion as
x(t) e X (t), te [tO,T] ,(2-4)

where X is a subset of R". The sets 0 and X are called the set of
admissible controls and admissible states respectively. An important

special case of (2-4) is
p[x(MT=0, x(t)eR" ¥t#T ,(2-5)

indicating that the final state x(T) is constrained to those values

defined by ¢ = 0, but the state at all other times is unrestricted.
The object of control theory is to choose the control function

V(.) in order to optimize a stated objective function or measure

of performance. The performance index is assumed to be of the form

3=k (x(T),T) + £ L(x(£),V(t),t)dt ,(2-6)
t
[o}

where k is a terminal payoff, that is assumed to be function of the

~=



value taken by the state variabies at the final time T and of the
value of T in itself. L is an instantaneous performance index,
evaluated at each time t in [tO,T], which is a function of the values
taken by the states and the controls at the time and also of the value
of t. Therefore, the value of J will depend on the values taken by
the controls through the whole period [to,T] and the specific path
followed by the state variables x(t) during the same period. This
path is defined by (2-2) for a given control function V(.). The
inclusion of k in (2-6) allows one to give a special weight to the
values taken by the state variables at time T.

We will assume in general that the functions L and k satisfy the

following conditions:

1. The functions L (x,V,t)/3x and aL(x,V,t)/st
are continuous in the interval for which
(2-6) is defined.

2. The functions k, 3k/9x, 8k/at, dax/(8xst),

2 2

akz/ax and akz/at are also continuous.

For the analysis of economic systems, both k and L will
represent benefits or costs depending on the case.‘ In the analyses
presented in subsequent chapters, J will always represent total
benefits perceived from the operation of the system during the period

[tO,T] and therefore the problem will be formulated as
Max. J; s.t. (2-2), (2-3) and (2-4). (2-7)

An important element of any control model is what is called

22



the Hamiltonian function, which is defined as
H(t) = L (x(2),V(t),t) +alt)f(x(t),V(t),t), t e [t,,T], (2-8)

where L and f are the functions defined in (2-6) and (2-2) and A(t):
[to,T] > R". The Hamiltonian plays a roie in control models similar
to that of Lagrangian in programming models; consequently, we can

think of a A as a dynamic generalization of the Lagrangian multiplier.
These dynamic multipliers which receive the name of adjoint variables
will be explicitly defined in the following sections, when we develop
necessary conditions for optimality. A general economic interpretation
will be also provided in Section 4. The Hamiltonian function, though

' mainly defined for notational ccnvenience, can also be shown to have

a general economic interpretation.

3. Necessary Conditions for Optimalijty

In this section we will develop necessary conditions for op-
timality for those model formulations used in later chapters. As we
said before, the approach will be heuristic and we refer the
reader to the relevant formal proofs in the literature. Our aim is
to give an intuitive feeling for why the results presented hold and
to motivate their later use. With this purpose we will make the

derivations using only variational techniques.
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3.1 Continuous Systems with Final State Constraints and Free
Terminal Time.*

We will assume here that the continuity assumptions formulated
in Section 2 for the functions L(x,V,t) and f(x,V,t) hold for all t

in [tO,T]. Our probiem will be formulated as

Max. J = k(x(T),T) + {T L(x(t),V(t),t)dt ,(3-1)
0
subject to:
x = f(x(t),V(t),t) ,(3-2)
o(x(T),T) = 0, v : R™1 " ,(3-3)

where (3-3) defines r general conditions that the state variables
have to satisfy at time T. We will consider that this final time is
unspecified.

The main idea is to introduce two sets of multipliers v and A(t)
that allow us to adjoin the equations (3-2) and (3-3) to the per-
formance index (3-1), creating a function similar to the Lagrangian
used in static optimization, and then to analyze the variations
of this function around an optimal solution. Let v be a vector
representing the r multipliers associated with the r equations (3-3).
Given that these equations are static conditions at time T, v will

actually be a vector of normal Lagrangian multipiiers that take into

(

*
)The developments of this section are based on the work of J.V.
Breakwell, [1959], as described in Bryson and Ho [1975].
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account the influence of variations in the-constraints (3-3) on
the optimum value of the performance index. Let X be a vector of n
multipliers each of them associated with one of the dynamic equations
(3-2). Since these equations can be interpreted as an infinity of
static constraints indexed by t, these multipliers must be functions
of time and will therefore be time-varying analogs of Lagrangian
multipliers.

Adjoining thé constraints (3-3) and the system differential
equations (3-2) to the performance index by means of the multipliers

v and A (t) we obtain

J = [k + v'u]

+fT‘{

t

L(x,V,t) + 2'[£(x,V,t) - x]}dt. (3-5)

Now paraphrasing the theory of Lagrangian multipliers, it follows
that in order for V(.) and x(.) to be an optimal control and an
optimal trajectory, the variations dJ of (3-5) around the optimal
solution must be equal to zero.

The differential of (3-5), taking into account differential
changes of x, V, to and T can be written as

dd = [o,(T) + L(T)dT + ¢ (T)dx] - L(t,)dt

+ 1 (H8x + HysV - A'6x)dt ,(3-6)
t
0

where we have used the definition of H(t) given in (2-8) and the

following notation:
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o(T) = k(x(T),T) + »'u(x(T),T) ,(3-7)
9, = 90/3t, ¢, = B30/3x

HX = 5H/3X, HV = 3H/5V

and &x, the variation in x, means "for time held fixed." Therefore

dx, the total differential in x, may be written for any time t
dx(t) = &x(t) + x(t)dt ,(3-8)
Now, integrating the term N6x by parts in (3-6) we obtain

=T (ex)dt = At (t )ex(t ) - 2 (T)ex(T)

t

Thus, if we make use of (3-9), to replace the third term of the
integral in (3-6) and of the following relations obtained from

(3-8)

s5x(T) = dx(T) - x(T)dT

6x(t,) = dx(t,) - x(t )dt ,

we can write dJ as
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dd = [0,(T) + L(T) + A (T)x(T)]dt

# Lo, (T) = X' ()] dx(T) + & (¢, )ex(t,) ,(3-10)

SL(e) * A (e )x(E )] d

+ fT [(HX + i')éx + Hvsv]dt

t

We have therefore the variation of J expressed in terms of
variations of the variables x(t,), x(T), x(t), V(t), t, and T.
If any of these variables is given, its value will be fixed and
the corresponding variation will be zero causing the term which
it is multiplying to disappear (e.g. if X, and to are given, then
the third and fourth terms in the right hand side of (3-10) will
- disappear). If all mentioned variables are assumed free (their
values are not externally specified as data), at an optimum solution
the value of dJ must be equal to zero for all possible values of
dto, dT, dx(to), dx(T), éx(.) and &V(.). This implies that the
coefficients of all these variations in (3-10) must be zero, other-

wise we could always find a set of variations for which dJ > 0.

This leads to the following necessary conditions:
A= oH o= -Lo- A, ¥t [t,T] ,(3-11)

which are called adjoint equations and must satisfy the boundary

conditions:

AMT) = @ (T) = k (T) + V', (T) »(3-12)
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usually called transversality conditions.
If the final time T is free, a necessary condition for an
optimum value of this variable can be derived by setting the co-

efficient of dT in (3-10) equal to zero to obtain:
T) = =H(T) = -L(T) - X" (T)F(T). (3-13)

Similarly, if to and x(t_) are not specified, necessary conditions

o)
for optimality in these variables are given by:

H(t,) = L(t,) + ' (t,)F(t

o ) =0 (3-14)

0

A(t)=0. (3-15)

Obviously, if t, and x(to) are given then dto and dx(to) are

identically zero and therefore A(t.) and H(to) can take any value.

0
Finally, if no constraints exist for V(t), the variations &V

can also be arbitrary (within the restrictions imposed by the piece-

wise continuity characteristic that we required in Section 2) and

therefore itscoefficient in (3-10) must also vanish giving:

Hv(x*,k*,V,t) =0, V¥te [tO,T] ,(3-16)

where the * means that x and A satisfy the equations (3-2) and
(3-11, 3-12) respectively. Notice that by using the definition of

the Hamiltonian, we can rewrite (3-2) as
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x = H (x;A,V,t), ¥ te[t),T] ,(3-17)

which is in a sense symmetricéT with respect to condition (3-11).
Condition (3-16) implies that at an optimum solution, the Hamiltonian
obtains an extremum value with respect to the control V for all t in
[to,T]. Pontryagin's maximum principle guarantees in addition tbat
this extremum must correspond to a maximum value of the Hamiltonian
with respect to the control (Pontryagin et.al. [1964]).

Until now we have assumed that there are no constraints on
the values which the state variables and the controls can take. If

we introduce control constraints of the form:
V(it) e, ¥te [tO,TJ

where  is a convex set and 2 cR™, then the variations sV(t) in
(3-10) are no longer arbitrary. For instance, if the optimal control
is located over a boundary of Q, only varijations of V toward the
interior of Q can be considered. In this case the condition dJ = 0
at an optimum solution must be replaced by the condition dJ < O,
given that we have a maximization formulation in (3-1). Because

all the other variables considered are unconstrained their variations
are still arbitrary and therefore their coefficients in (3-10) must
vanish as before. Thus, the necessary conditions (3-11) to (3-15)

are still valid. As a result of that we can write:

dd = /T (Hy8V) dt < 0 ,(3-18)
t
o]
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at an optimum solution. This condition will be satisfied for all
admissible varijations &V if

*

Hy8V g0, ¥ te[t,T] ,(3-19)
sV = (V-V'), Veaq

which is a necessary condition for the maximization of the function H
with respect to the variable V over the convex set Q at each time

te [to,T] (see Luenberger, [1973]). Therefore, the maximization

of the Hamiltonian as a necessary condition for optimality also

. carries over to this more general case.

3.2 Linear Systems and Singular Controls*

In this section we will analyze a very important special case
that appears when both the dynamic equations and the integrand of the
objective function are linear in the controls. It is easy to see
that then the Hamiltonian will also be linear in the controls and

can be written as:

= L(x,V,t) + A'f(x,V,t)

x
1

G(x,A0t) + VIF(x,,t); G: RO L R1, P o REMILEM (3-20)

where G and F can be in the general case non-linear functions of x but

(

)
*’This section is mainly based on the treatments for linear control
problems presented in Athans and Falb [1966] and Bryson and Ho [1975].
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independent of V.

Obviously, all the necessary conditions developed in the
preceding section are valid for this special case. In particular,
at an optimal solution the Hamiltonian must attain a maximum with
respect to V, for each t in [to,T]. Nevertheless, a problem appears
now in satisfying this necessary condition. We know that linear
functions never attain a maximum in R® with respect to those variables
for which the s]oﬁé of the corresponding hyperplane is different from
zero and for those which slope is zero any value in R] corresponds
to a maximum. In order to avoid notational complications we will
assume in the subsequent discussion that our problem has a single
control. The concepts are the same for problems with many control
variables. Then, the variable V will exist in R], the function f will

n+2

be a mapping from R to R" and the functions G and F will be mappings

from Rn+2 to R‘. Thus, if no additional constraints are defined for
the states and/or thé control, the necessary condition requiring

the maximization of the Hamiltonian does not provide any useful
information to characterize the optimal control. Actually, if the
functions L and f (and therefore also G and F) are simultaneously
Tinear in the states and the control (with F independent of x), the
control problem will be completely linear and a maximum does not exist,
unless constraints are imposed on x and/or V.

In this and subsequent chapters we only deal with control

constraints whose general form will be:

Vit) e, ¥te [tO,T] (3-21)
Q= {V(t)m(t) g V(t) g M(t), te[t,TI}

31



Then, the condition of maximizing the Hamiltonian subject to the
constraint V(t) € @ gives the following functional form for the

optimal control V*(.).

* M(t) ,Jif F(t) >0
V(t) = m(t) ,if F(t) <0
undetermined, if F(t) =0 (3-22)

If the Hami]toniaﬁ’is completely linear in the states and the

control, it is reasonable to expect that the maximum solution to our
problem will always require the control variable to be at one point

or another on the boundary of the feasible region Q. In general,

one or more changes in control, from one point on the boundary to
another point on the boundary, will occur during the time of operation
of the system. The times, t, at which thecontrol switches are
jdentified by the condition F(t) = 0 and will correspond to only a
countable set in [to,T]. The optimal controls thus defined receive
the name of “bang-bang" controls. In later chapters we will also call
bang-bang those portions of an optimal control history during which
the control obtains the value of one of the boundaries of its feasible
region.

Nevertheless, if the Hamiltonian is non-linear in the state
variable x, or presents cross terms in the state and control, the.
value of F(t) can vanish identically over a finite interval of time in
[to,T] and then (3-22) does not provide a}complete definition of V*(t)

along [to,T]. The portions of the optimal trajectory of the system

for which F(t) = 0 are called "singular arcs”. In that case, we
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must manipulate the other necessary conditions provided in Section 3.1
in order to determine the optimal value of the control, along the
singular arc, which will receive the name of singular control.

Given that the dynamic equation and the performance index are

linear in the control, we can write:

f = a(x,t) + Vb(x,t) (3-23)
with, a: R RY b R LD

L = c(x,t) + vd(x,t) (3-24)
with, ¢ : ™1 Rl

Then the expression of the Hamiltonian becomes:

H= (; + A'a) + V(d + A'b) (3-25)
where according to our previous notation in (3-20)

G=c+ ra; F= d+ )'b
Also the gradient of the Hamiltonian will be:

Hy = F=d+'b 3-26)

If the gradient of the Hamiltonian vanishes identically on a singular
arc, its value during this period will be constant and equal to zero

and therefaore all its time derivatives must also vanish during the
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same period. We will use this property in order to derive an
expression for the singular control, Vs' Thus, the first necessary

condition for a singular arc will be:
F=d+x'b=0, or,x'b=-d, ¥tce (t],tzj, (3-27)

where (t],tz) is a sub-interval of [tO,T]. Then, if we take the

first time derivative of F, we will have:
F=dxx+dt+bk+x(bxx+bt)=o. (3-28)
However, from necessary condition (3-12) we obtain that:

._.__ S I tos R -
A HX CX aXA V(dX bxk). (3-29)
and using (3-23) and (3-29) to eliminate x and % from (3-28) we

can write F as:

F = dxa - cxb + dt + A'(bxa - axb + bt) = 0 (3-30)
where, b is the Jacobian matrix of b with respect to x, a, is the
Jacobian of a with respect to X5Cy is the gradient of ¢ with

respect to x and dx is the gradient of d with respect to x. Note that
still the control VS does not appear explicityly in (3-30). If the
reader follows the derivation of (3-30) from {3-28) he will notice
that the reason is that it is multiplied by a factor that is identi-

cally zero. This is in general a characteristic of the first
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derivative of the Hamiltonian along a singular arc. Therefore,
(3-30), although it constitutes a new necessary condition for the
existence of a singular contrﬁ], does not provide an explicit ex~
pression for it. New derivatives must be taken in order to obtain
that eXpression, if it exists. Nevertheless, before doing that let
us use expression (3-30)in order to show some assertions made earlier
with respect to the completely linear case.

If the prob]ém is completely linear in the states and the
control, the functionsb and d must be independent of the states x
(otherwise cross-terms in the states and control would appear, and
the problem would not be completely linear). In addition, the Jacobian
3y and the gradient Cy will only be functions of t (because a and ¢

are linear functions of x). Therefore we will have:

dxa = 03 bxa = {0}

and cxb, a*b, dt and bt are only functions of time. Therefore (3-30)

can be written as:

o(t) + A'n(t) =0 (3-31)
where
o(t) = - cb + dy s n(t) = {-ab + by 3.
From (3-27) we also have that \' will be a function of t only
along the singular arc and therefore (3-31) will be an equation in t
that in general will be satisfied for a countable number of points

.

t in {to,T]. Therefore no singular arc or singular control exists

35



in that case and the solution must be purely bang-bang.
Going back to the general case we can take a new time

derivative of F to obtain:

SR . .
F a dxxx + dxta + dxaxx + dxat

“ ' . .
+b CoxX + Cxtb + bexx + bet

t

n . .
+ % A;a bixx)x - (? A;b aixx)x

(

. - .
+ A bxaxx axbxx + bxta + bxat

1
[T}
o

]
[s1]

>
o
+
o

(3-32)

where dxx’ c b. .. and aixx are the Hessian matricies of the

xx* TIXX
functions d, ¢, bi and a; respectively. If we rearrange terms in

(3-32) we can write:
F =e'x+A'g+h=0 (3-33)

1 = H 1
where e'(x,A,t) = a dxx + bxcxx + cxbx

n n
* (ﬁlia biex) = (§Aib 2 x)
+ k'(bxaX - axbx)

g(x,t), = b,a - ab + by

X
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h(x,A,t) = dxta + dxa + Cxtb + cxbt +d

t tt

+ A (bxta + bxat-»axtb - axbt + btt)'
Upon using (3-23) and (3-29) to eliminate x and A from (3-33) we have:

F = ¢2(xskst) + szZ(X’Xst> =0 (3-34)

where ¢, e'a +h - (cX - X'a_)g

X
e'b - (dx + A'bx) g.

fl

Vo

In general, the coefficient of Vs’ wz, will not be zero for all t ¢
(t] tz). When ¥, # 0, we can solve equation (3-34) for Vs’ to find
that

Vg = do(x:0,8)/U, (x,0,t). (3-35)
If, on the other hand wz = 0, then equation (3-34) reduces to
F'= 6,(xoh,t) = 0 (3-36)

-

and we must take new derivatives of F until for some ith derivative

we find a function Y # 0 that allows us to obtain an explicit

eXpression for the singular control VS:

VS = 9 (x,k,t)/wk(xsl,t) . ,(3-37)
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The reader can appreciate the notational difficulties involved in
the computation of the higher derivatives in terms of the original
functions a, b, ¢ and d.

It is important to note that if an'exp1icit expression for Vs is

obtained at the kth derivative of F with respect to time, the equations
95 (x,4,t) =0, 1=0,1,...,(k-1) ,(3-38)

constitute k necessary conditions* for the existence of the singular
control Vs' In the case of economic problems, these necessary
conditions can provide economic interpretations for the optimum
policies along a singular arc, as we will see in Chapters 4 and 7.
In Section 3.1 we saw that a necessary condition for an optimum
solution to control problems is the maximization of the Hamiltonian
with respect to the control variables. As we have just seen in this
section, an expression for a singular control is obtained from the

condition:
H =F=0, ¥te (t] tz) ,(3-39)

which only constitutes a first order necessary condition for the
maximization of the Hamiltonian along a singular arc. A second
order necessary condition for maximization is in general provided by

the concavity condition:

(%)Note that ¢ = 0 and ¢; = 0 are defined. in (3-27) and (3-30)
respectively ;
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HVV <0. (3-40)
For singular arcs, HVV E’O, so condition (3-40) yields no use-

ful information. A more useful condition for this case was derived

by Tait [1965]; Kelley, Kopp, and Moyer [1966]; and Robbins [1965].

Its derivation using variational techniques is far from being straight

forward and can be found in Bryson and Ho [1975], so we will only

give here the statement that will be used in the following chapters.

For a maximization problem with a single control variable the condition

can be stated as:
(K8 B r(d/dt)¥m] £ 0 ,(3-41)

which in terms of our potation in the present section can be written
as:

(-T)k/zwk(x,k,t) <0 ,(3-42)

where k is the order of the time derivative of F at which wi¢ 0
for the first time.

Thus, for problems that are linear in the controls but preseht
non-1inearities in the states, or cross-terms in the states and

controls, the functional form of the optimal control V* can be

written as:
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v

‘JM(t), i F(t)
v e) =4m(t), if F(t)
81/ Uy > 1T FEL)

(3-43)

N

It is worth noting that the sfngular control is also constrained
to be within © (see, 3-21). If the problem is completely linear in
the states and controls, the condition F(t) = 0 will be attained at
most at a countable number of times in [tO,T] and the expression of

the optimal control can be simplified to:

o -1 HY 2 (40

3.3 Systems with Discontinuities in the State Variables and System
Eaquations

Some models that we will analyze in this thesis (see, Chapters 5
and 6) present discontinuities in the state variables as well as
discontinuities of the system equations at interior points in [tOJT].
Furthermore, the performance index on the constraints may be functions
of the state and/or time at several discrete points in [to,T]. In
that case we can partition the interval [to,T] in N sub-intervals
(ti-1=ti)’ (i =1,....N) where ty=Tand t; (i = 1,...,(N=1)) are
the above mentioned ihterior points of discontinuity. Now the
continuity assumptions formulated in Section 2 for the functions
L{x,V,t) and f(x,V,t) will hold within each sub-interval (8, pot,)

and the problem can be formulated as:
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L.(x(t),V(t),t)dt ,(3-45)

subject to:
X = fi(x,v,t); tip <t <ty i=71,...,N ,(3-45)
/ +” + = = -
wj(X(uj),X(tj),tj) 0, J=0,....,N ,(3-47)

where (3-47) defines general conditions that the state variables have
to satisfy at the points tj, j=1,....,N. The notation t; and t:
is used to represent the moments just before and after t = ti'

In this case the set of variables that we wish to optimize is
(x(t);V(t): t..1 = 0,....,N). Necessary conditions for a maximum of J
defined in (3-45), with respect to these variables can be derived
by adjoining (3-46) and (3-47) to (3-45) by Lagrangian multiplier

functions A(t) and constant Lagrangian multipliers Vs respectively:

[
n
-y
n oy =
o
| |
-~
—de
+
<
——d g —
<
- }
—J

AL (6V,) * A0 TR (0Vat) - X1} dt . (3-48)

+
tia

—

~+4
—a
n o1 =z

Now we can use the same variational procedure of Section 3.1
to obtain necessary conditions for optimality. It consists in
producing variations of the independent variables around an optimal

solution and analyzing the corresponding variations dJ for the
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Lagrangian represented in (3-48). As in Section 3.1, to simplify

the notation we will define:

H_: = L_i(X,V,t) + )\‘fi(X5V,t) ,(3'50)

where H. is the Hamiltonian for the interval [t:_],t;}. Then, the

first variation of J, taking into account variations of x(t), x(ti),

x(t:), V(t) and tss (i = 0,...,N), can be written as:
dJ = § [%i dt, + i- dx(t:) + 1+ d (t+)]
1:0 ¢t i ¢X X i ¢X A i
. ML (£D) - Ax(ED)Tdts = [H. (2F enx(sT )74t
soq CHHMM j/49%4 ivtiary “-1/49% 1
N - . . X
o5 st ex + Hy OV - A'6x] dt ,(3-51)
i=1 .+ X
L1

where we have used the following notation

i
¢t = (a(t.z/at.i)

017= [00;/3x(t])],  o1' = [3,/3x(t})]

1. i_
Hx = (aHi/BX), HV - (aHi/BV) .

Now, if we use the intergration by parts:
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- 15 Grex) dt = () ex(t]q) - (E]) &x(¢])

i-1

+ 8 (Atex) dt ,(3-52)
£ |
i-1

and the relations:

dx(t]) = 6x(t]) + x(t]) dt,
5(3’53)
+ty o_ et C+
in expression (3-51) and regroup terms, we have:
N +
= v Is Y -
ddJ i;OLvt + Hi(ti) Hi+1(ti)] dti
+ ; i" A (t3)] dx(t:) +N-] "y A (tT)] dx(t
1:}[¢X - (t.‘)] X ti 150 [¢X | i X 1')
A i
+ T S [A + H])8x + H,8V] dt . (3-54)
i=1 ¢ X v
i-1

As in Section 3.1, the first variation of the Lagragian, dJ, has -
to vanish at an optimum solution, for arbitrary variations of the
independent variables, if no path constraints exist for the state
variables x(t) and the control variables V(t). This requires that
the coefficients of dti, dx(t;), dx(t:), 6x and &8V in (3-54) be

equal to zero, which provides the following necessary optimality
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conditions:

MomeH <t tl, (= 1) ,(3-55)
R N L R T M G R ) ,(3-56)
1 X 1 'X
+ i+ , i+
A(ED) = e, Tk Vg (i =0,...,8-1) ,(3-57)
i i + - .
¢ = ky v} gy = H(ED) - ()5 (= 0,..0,N)(3-58)
with
H0 = HN+T =0
Hy = 05 5 4 <t < th, (i=1,...,N) (3-59)

We must &lso choose Vs in such a way to satisfy the constraints

wj = 0 in (3-47). Actually, additional arguments must be made here

in order to justify the vanishing of the Hamiltonian gradient HQ

expressed in (3-59) since, no matter that no path constraints exist
for V(t) inside [t¥_1,t;], 8V is not completely arbitrary and must
produce variations dx (t;), dx(t:) and dt, consistent with (see,

Bryson and Ho, [1975]).

= J . j" - +.j+ + = . -
dwj v dtJ * Uy dx(tJ) by dx(tj) 0 (3-60)

Equation (3-55) defines the adjoint equations, for the adjoint

variables A, along each sub-interval [t:_}Bt;]. Equations (3-56) and
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(3-57) define transversality conditions that the adjoint variables
must satisfy, at the beginning and end of each sub-intervai, in
order that the values of x(ti;]) and x(t;) be optimal. Equation
(3-59) corresponds to the familiar Hamiltonian maximization condition
and equation (3-58) provides a set of transversality conditions for
the Hamiltonian, that must be satisfied for optimal solutions of the
times t (i = 0,...,H). Obviously, if some variable considered here
as independent is externally specified, the corresponding variation
in (3-54) will be zero and the necessary condition attached to it
will disappear. For instance, if x (t;) is specified, we have dx(tg) =.O
in (3-54), and equation (3-57), with i = 0, is not required. Similarly,
if t, is specified, the corresponding relation in (3-58) is not re-
quired since dty = 0 in (3-54).

Finally, note that equations (3-54), (3-57) and (3-58) imply
discontinuities of the adjoint variables and the Hamiltonian ai each

point t..

4. Economic Interpretation of the Adjoint Variables and the Hamiltonian

In this section, we will take advantage of some results obtained
in Section 3, in order to provide general economic interpretatioﬁs
for two fundamental elements of any control problem: the adjoint
variables and the Hamiltonian function.

Let us use the system formulation of Section 3.1 and iet us
consider the first order variation dJ of the performance index given

*
by egquation (3-10). Then, if we consider an optimum solution x (t),
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A*(t), V*ét) that satifies the necessary conditions (3-2), (3-3), (3-11),
(3-12) and (3-16) for a value of T satisfying (3-13), we can write the
variation of the corresponding performance index value J* produced

by variations in the initial conditions to,x(t ) as

O/

43" = A'(t,)dx(t,) - H(t,) dt,

From this we obtain: -

% *
_3d x 3
A(t) = 3x(E) H(t,) = 5t

" However, because the above is true for arbitrary to we can write

*
NORS 6] | (4-2)
x, o8l
H (t) - = 'é'Tt‘_ 9(d'3)

Actually, if we use the principle of optimality (Bellman, [1957])
we have that fany portion of an optimal trajectory J*(t), x*(t)‘is
also an optimal trajectory'(see Athans and Falb, [1966]). Therefore,
we can partition our initial interval [to,T} in two sub-intervals

[to,T], [t,T] and rewrite the performance index of Section 3.1 as

J= k(x,T) + SEL(x,V,t)dt + ST L(x,V,t) dt . (4-4)
't +
0

-
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Then, if we consider the sub-problem of optimizing J along the sub-
interval [t,T], an optimum solution to it has to be coincident with
the portion [t,T] of an optimél solution for the problem defined over
the wnole interval [toT]. Thus, the variation of J* with respect to t

and x(t) will be:
dd™ = A't)dx(t) + H(t)dt, te [t,T] . (4-5)

We must note however that (4-2) and (4-3) are true only if the
performance index is evaluated along an optimal solution; otherwise
expressions (4-1) or (4-5) are not valid.

From (4-2) we have that each adjoint variable represents the
change experienced in the value of the objective function as a
consequence of a change in the corresponding state variable, around
its optimum value, at time t. Therefore, the adjoint variables can
be interpreted as shadow prices for unitary vaiues of the state
variables, around an optimal solution. They are, actually, dynamic
shadow prices, functions of time. In mathematical and economic terms
the adjoint variables are, as we have suggested before, dynamic
generalizations of the concept of Lagrangian multipliers. On the
other hand, we have from (4-3) that the Hamiltonian, evaluated along
an optimal solution path, gives us the change in the value of the
objective function per unit of time. If our performance index re-
presents the total benefits (or total costs) associated with the
operation of the system, along the period [tO,T], the value of the

Hamiltonian, at time t, represents the total marginal benefit (or
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marginal cost), per unit of time, at time t.

5. Sufficient Conditions for Optimality

In Section 3 we have developed necessary conditions for optimal
control problems which are known in the literature as'the Pontryagin
maximum principle. Nevertheless, these conditions are not, in
general, sufficienf for optima1ity. In the mathematical literature
few and only rather special results were available until Mangasarian
[1966] proved a rather general sufficiency theorem in which he was
dealing with a non-linear system, state and control variable con-
straints and a fixed time interval. In the maximization case, when
there are no state space constraints, his result was, essentially,
that the Pontryagin necessary conditions plus concavity of the
Hamiitonian with respect to the state and control variables, were
sufficient for optimality.

The Mangasarian concavity condition is rather strong and in
many economic problems his theorem does not apply. A very inter-
esting generalization of the Mangasarian result was however pro-
posed by Arrow [1968]. A precise statement and a rigorous proof
of the Arrow sufficiency theorem has been given only recently by
Sejerstad and Sydsaeter [1977]. For the type of systems described
in Section 3.1, when the interval [to,T] is fixed and the initial

conditions x(0) = x_ are specified, the theorem can be expressed

0
as follows: "Suppose (x#(t),v*(t)) is an admissible pair satisfying

*
all the necessary conditions for optimality. Then, if H (x,A(%),t),

48



* *

as defined below, is concave in x, we have that (x (t),V (f))is an

optimal solution to the problem"

*
H (x,A,t) = Max H(x,V,x,t)
Veog (3-1)



III. OPTIMUM POLICIES FOR INVESTMENTS IN OQUALITY

7. Introduction

We can argue that a tranéportation tacility can be characterized
in general by two attributes: quality and capacity. The concept
of capacity is easy to understand and has been the one that has re-
ceived more attention in the economic literature. In the next
chapter we will deve1op a mathematical model for optimal dynamic invest-
ment policies in capacity and different cases of interest will be
studied in detail. The quality attribute, nevertheless, has not
received muchvattention and therefore models that study optimum
policies with respect to it are almost non-existent. The development
~ of such models and the analysis of the characteristics of the optimum
policies derived from them will be our main objective in this chapter.
Special emphasis will be given to the ecdnomic interpretaticn of the
results obtained.

By quality of a facility we will mean those characteristics that
are not related to its capcity, but which affect the utility and/or
cost, and therefore the benefit, derived from its use. In the case of
a road the characteristics will be: the roughness of the surface, the
radius of the curves, the grade of the road, etc. In general, quality
will have to be represented by an index that adequately represents the
characteristics of interest. In the case of a road such an index is
represented by the present serviceability index (PSI) defined by AASHO
[1962] or the virtual length of the road (Miguel. S, [1972]).

We will assume in this chapter that the quality of a facility

can be represented by a continuous variable through all the period
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of analysis [0,T]. The case in which discontinuities can appear at

certain interior times in [0,T] will be analyzed in Chapter V.

2. A Mathematical Model for Optimal Investments in Quality. Case
ot External Demand

Different factors affect the quality of a facility over the
course of its economic 1ife. Natural factors and normal use are the
principal causes of quality deterioration. On the other hand, this
deterioration can be alleviated or remedied if maintenance or repair
is undertaken; Finally, quality increases can be obtained if enough
money is spent in improving those characteristics that determine the
_lTevel of quality of the facility. In this chapter we will use the
word “maintenance“ 1n.a generic way to refer to any of the activities
that influence the quality of a facility in a continuous way.

We will assume that we have & transportation facility with a
fixed capacity k which serves homogeneous users. Each of these users
obtains a utility U(t) and perceives a cost C(s,q) each time that they
he/she uses the facility (e.g. from each trip performed). We consider
that the utility is determined by factors external to the model, though
its value will in general be a function of time. This seems a
realistic assumption for all kinds of trips, except for the pure re-
creational ones. In any case it only constitutes a convenient assump-
tion allowing a more simplified analysis and can be dropped without
majar consequences. The operating cost function C(s,q) corresponds
to an average variable cost function, which includes all expenses of

user supplied inputs, and it is assumed to depend on the quality of
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the facility s and the number of users q, having as a parameter the
fixed value of capacity k. We will make the following assumptions

with respect to the function C

Ciq =05 Coq 20, C o 2 0. (2-1)

wn
0
0
0
n

The conditions (2-1) are statements that additional quality will always
decrease operating costs; additional traffic, holding capacity and
quality constant, will increase operating costs because of congestion;
no interrelations exist between quality and congestion. Congestion
~only depends on the relative values of level of traffic and capacity.
Finally, C is a convex function of traffic and quality.

Therefore, the net private benefit obtained by an individual
user as a consequence of using the facility can be represented at

any time t by:

B(t) = U(t) - C (s(t).a(t)) (2-2)

We will let V(t) represent the amount of money spent on maintenance
at time t, which will be our control variable.

Qur focus will be on the determination of optimum maintenance
policies from a public or social point of view. Therefore, our
objective will be to maximize the present value of the private bene-
fits minus the public costs of maintenance, through the 1ife of the

facility. Thus, our objective function can be represented as:
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J(V(t)) = /T [B(t)g(t) - V(t)lexn(-pt)dt, (2-3)

where T is the economic 1ife and we assume that there is no residual
economic value for the facility at time T. At that time a discrete
predetermined upgrading of the facility will be performed or it will
be destroyed and a completely new facility put in place. Therefore,
no salvage value is associated with time T.

Let the change in quality of the facility be represented by the

following differential equation:

s(t) = f (s(t), q(t), V(t),t) (2-4)

whefe s(t) is an index representing the qualtiy of the facility at
time t, q(t) is the number of users at time t and V(t) is the amount
of money spent on maintenance at time t. Note that é(t) represents
the first derivative of s with respect to the independent variable
time. Expression (2-4) means that the change of quality of the
facility, per unit of time, depends upon the level of quality, the
number of users and the amount spent in maintenance, at the time t
considered.

In addition we will assume that the amount of money that can be

spent in maintenance at each time t is constrained by:

m(t) < V(t) g M(t), ¥t e [0,T], (2-5)
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2.1 Necessary Conditions for Optimality

If we consider that the dsmand for using the facility q(t) is
given, for each time t in the period [0,T], then the maximization of
(2-3) subject to (2-4) and (2-5) will determine the optimum maintenance
policy. The problem is an optima! control problem of the type dis-
cussed in Section 3.1 of Chapter II, where the only state variable is
the quality of the facility s(t) and the only control is the amount

spent in maintenance V(t). The Hamiltonian is in this case equal to:

H(t) = {[U(t) - C (s{t),q(t))Ia(t) - V(t)lexp(-pt)
+ AMe)f(s(t).glt), V(t),t), (2-6)

where A(t) is the adjoint variable that must satisfy the adjoint

equation:

A(t) = - (3H/8s) = (5C/3s) gexp(-pt) - A(3F/3s) (2-7)

where for simplicity we have eliminated the arguments of all the

variables.

Given that the "penalty function" at time T has a null value
(salvage value equal zero) the transversality condition for A

at time T will be

A(T) = 05 (2-8)
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The necessary conditions for a maximum of J(V(t)) over V(t) state
that there must exist a function A(t) that satisfies the adjoint
equation (2-7) and the transvérsality condition (2-8) and that the
optimum control V*(t) must be such that the Hamiltonian (2-6) is

maximized for all t in [0,T], i.e.

*
H(s 7V t) 2 His A TVLt), ¥t e [0,T], (2-9)
(Veq)

where in our case we have from (2-5)
Q= {V(t) : m(t) ¢ V(t) s M(t), ¥t e[0,T]}, (2-10)

and the * in s and X means that these variables satisfy (2-4) and

(2-7,8) respectively. Expressions (2-4), (2-5), (2-7), (2-8) and

(2-9) constitute a complgte set of necessary conditions for our problem.
It is easy to see that the gradient of the Hamiltonian with

respect to the control variable V is given by
Hy = Afy - exp(-pt), (2-11)
*
and in order to characterize the value V. that satisfies (2-9) we
can use the following theorem from non-linear programming (see

* .
Luenberger [1973]): If V s a local maximum of the function H over

the convex set Q, defined by (2-10), then:
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) (V) g0, Yvea | (2-12)

If in addition, the Hamiltonian is concave in V over the constraint set
*

Q, the control V defined by (2-12) will be a global maximum of H.

Given that Q, defined in (2-~10), is an unidimensional convex closed

set it is easy to see that (2-12) is equivalent to the conditions

\
o
-
-~
-
3
A
=
*
N
=

HV(V‘) =

Hy (V) s

A
[en]
-
-t
-
-

1]
3

* *

Hy (V') 2 0, if V=M

- which, using the gradient definition (2-11), can be written as

Afv = exp(-pt), if m«< V* <M (2-13)
4 *

M, g exp(-pt), if Vo =m (2-14)
*

Af, 2 exp(-pt), if Vo =M . (2-15)

: *
These three relations give an expression for the optimum control V

in all possible cases to be found.

2.2 Economic Interpretation of the Necessary'Conditions

In this section we will provide economic interpretations of the
necessary conditions for optimality presented in Section 2.1. A

fundamental element of these conditions is the adjoint variable X
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that appears in the expressions for the optimal control V* and is
defined by the adjoint equation (2-7) and the transversality con-
dition (2-8).

Expression (2-7) corresponds to a first order ordinary linear

differential equation whase solution can be written as:

Mt) = exp(~r% £.dz){-/TC.q exp(-ox)exp (/% dz)dx +
X‘(T)exp(fosdz)} (2-16)

where we use the following notation
CS = (3C/8s), and fs = (3f/3s)
Upon rearranging (2-16) and using (2-8) we can write A(t) as:
A(t) = - tT{[Csexp({xfsdz)]q(x)exp(-px)}dx (2-17)

According to (2-1) C, is always negative and given that q(t) cannot be
negative it is obvious that the integrand in (2-17) will be always
negative. Therefore A(t) will be positive for all t in [0,T] and its
value will increase as T increases. This fact will have important
consequences for the optimal policy V*. To obtain an economic inter-
pretation of A(t) we must give an interpretation to each element in
the integrand of expression (2-17).

To hegin-we can note that fs represents the rate of deterioration*

(

%*

-)Here'we use "deterioration” in a general way. It can mean "“improve-
ment” if an increase in quality, reduces the rate of deterioration
of the facility.
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per unit of time, per unit of quality.

fS = (3s/3s) .

If we change s(t) by one unit, at time t, the rate of deterforation

will change by fs.

Proposition 2:2.1 If x and t are two different times such that

x ¢ [0,T], t € [0,T] and x > t, and fs is a continuous function

of time, then
g (x) = exp({xfs(z)dz)

is the "equivalent value" (or residual value), at time x, of one
unit of quality implemented at time t.
In order to demonstrate this proposition let us consider that

the interval (t,x) is divided in n finite time differences At

L xet
At = .

Then, if we impiement one unit of quality in the facility at time

t, it is obvious that after At its value will become
g (t'+ At) =] + fs(t) At

given that as we saw above fs represents the rate of deterioration

per unit of time, per unit of quality. Similarly after 2 At the
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value of the unit of quality will transform tc

g(t + 2at) = g(t + at) (1 + T_(t + at)at)

1]
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Following the same recursive procedure it is easy to find that

after nAt we can write

If we now take &n on both sides of this expression we obtain

n-1 _
woglx) = T Ganll + £ (z)2)]( 0, (*)

i

[ L I |

0

where we have used the change of variable

. = + 1 i Az = 72, = 7, = At
z; = t 4L, withdz =z, - z; 4 =4t

and we have also multiplied and divided each term of the sum by the
finite difference Az.

Now we can take the limit in (*) when At goes to zero or n
goes to infinity; Note that the equal sign in expression (*) is
only strictly correct when we take this 1imit and therefore trans-
form t to a continuous variable. Before that, the right hand side
of (*) constitutes only a discrete approximation to the value of

in g(x).

(€3]
0



Using the following results from basic calculus:

- the 1imit of a sum is equal to the sum of the
Timits |

- the 1imit of a product is equal to the product
of the Timits

- the 1imit of &n is equal to the in of the limit

and the well-known limit

Tim (1 + ah)(]/h) = exp(a),

h -0
we obtain from (*) that
2n g(x) = 1im :é; fs(zi)Az
Az - 0
: N> e

and applying the definition of the definite integral we obtain

an g(x) = fxfs(z)dz
t

from where we easily get the desired result

“a(x) = exp(s*f (2)dz)
t

In order to further clarify this concept we will analyze two

examples.
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Example 1: s = - a(t) + £1(a,V,t)

In this case the facility suffers a deterioration of a(t) units of
quality per unit of time, as a consequence of natural factors, and a
change of f] units of quality, as a result of use and maintenance
activities; The rate of deterioration s is independent of the level

of quality. Clearly we will have

Given that a change of quality does not have any effect on the rate
of deterioration, the equivalent value, at any time x (x > t), of
one additional unit of quality implemented at time t will be always

one.

Example 2: s = - as(t) + f; (q,V,t)

Here we have changed the characteristics of the deterioration produced
by natural factors. The natural deterioration per unit of time

is now equal to a constant percentage of the level of gquality in the
facility at that time. Thus

fe=-a, and exp(fxfsd ) = exp[-a(x-t)]
t -

Here, one additional unit of quality at time t will increase the rate

of deterioration of the facility by a units per unit of time and

therefore the equivalent value, at time x, of one additional unit of

quality implemented at time t will be lower than one and equalexp[-2(x-t):.
Then; if we return to (2-17) we have that
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CS exp(fxfsdz)
t

represents the reduction in operating costs experienced by each user,
at time x, as a consequence of the implementation of one additional
unit of quality at time t (t < x) and therefore, A(t) is the present
value, at time t = 0, of the cost reductions experienced by all the
users of the facility, during the period [t,T] as a consequence of
the implementation of one additicnal unit of quality at time t. Or in
more general terms, we can say that i(tf) represents the present value
at time t = 0, of the total benefits perceived during the period [t,T]
as a consequence of an improvement of one unit of quality in the
facility at time t. The total benefits are calculated without con-
sidering the cost of implementing the additional unit of guality at t.

Now from (2-6) we have that the expression of the Hamiltonian
+

H(t) = [(U - C) g - Vlexp(-pt) + if, (2-6)

where for simplicity we have elminiated the arguments of all the
variables. The first term on the right hand side of (2-6) represents
the present value, at time t = 0, of the social benefits produced by
the facility at time t. It is a result of the sum of the private
benefits minus the social costs of maintenance at that time. The
second term is the product of the change of quality experienced by
the facility at time t (as a consequence of the level of quality, the

use and the maintenance experienced by the facility at t) and the



present value associated with a change of one unit of quality at that
time.

Therefore, the Hamiltonian gives us the present value of the
net social benefits associated with the decisions taken with respect
to the operation of the facility at time t. If for instance we decide

not to do maintenance at time t, i.e. V(t) = 0, we will have
H(t) = (U - C)g exp(-st) + Af(Vv=8)

where f(V=0) represents the deterioration experienced by the facility
at time t as a consequence of natural factors and the use of the
facility at that time. This deterioration (produced at time t) will
cause an additional cost Af(V=0) in the operation of the facility during
period [t,T]. If on the other hand we decide to invest in maintenance
an amount V(t) = VC such that no detericration is experienced at time

t, f(t) = 0, and we will have
H(t) = [(U - C)q - V_Jexp(-ot)

From (2-13) we have that interior optimal values of V in Q

will satisfy the necessary condition
*
Afv = exp(-pt), m< V. <M

while corner optimum solutions will satisfy (from 2-14 and 2-15)

[¢3)
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N

Afv < exp(-ot), V m

Af

i
=

vy 2 expl-pt), V

nv

where fy is the reduction of deterioration, or the quality improve-
ment, produced at time t, by the investment of one additonal dollar in
maintenance at that time and kfv is the present value, at t = 0,

of the total benefits associated with an improvement of fv units of
quality in the facility at time t. The quantity exp{-pt) represents
the present value, at t = 0, of one dollar invested in maintenance

at time t. Therefore, the optimal policy says that maintenance should
be performed at a level such that the present value of the marginal
benefits of maintenance are equal to the present value of the

‘corresponding marginal costs. If the marginal benefits are higher than

tne marginal cost, for all values of V in O, the maximum possible level
of meintenance should be provided at t. On the otner hand, if the
marginal benefits are lower than the marginal cost, for all vaues of
V in G, the minimum possible level of maintenahce should be provided at
t. This policy will lead to a global maximization of the Hamiltonian
only if it is concave in V over Q. In other words, if the second
derivative HVv is non-positive. Differentiating (2-11) with respect
to V we obtain Hyy = vav and given that X is positive for all t in
[0,T], the Hamiltonian will be concave if f is concave in V or, there
exists constant or decreasing returns to scale in the production of
quality through maintenance.

For the case of interior solutions, expression (2-13) gives us

* .
only an implicit expression for V. In order to obtain an explicit
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' expression we would need to specify the form of the deterioration
function f. Nevertheless, if condition (2-13) holds for some finite
time interval within [0,T], then we can obtain an explicit expression
for V" which will give us the dynamic characteristics of such optimum
policy. In particular if (2-13) holds for a finite period of time,

within this period, we will have
Hy = Ay + Afy U + pexp(-ot) = 0, (2-18)

where we have used the expression of the gradient of the Hamiltonian

from (2-11) and we have assumed that fy, = f, = fy, = 0. In other

q
words, the marginal effectiveness of maintenance fv is only a function
of the amount spent in maintenance at each time t. If we now use

the fdjoint equation (2-7) and the necessary condition (2-13) to
e1iminaté % and respectively from (2-18) and then divide the re-

sulting expression by the positive value exp(-ot), we obtain
qufv - fs_+ p+ (fvv/fv)v = 0, (2-19)
and then, if fvv < 0, or decreasing returns to scale exist in the

production of quality through maintenance, we can divide (2-19) by

fVV and obtain

Vs (fy/fp)(fg - 0 - Caafy) (2-20)

Therefore we will have



! i A -
E* >0, T. qufv <) fs, fv >0
, <0, if - qufv >0 - f's’ f\/ >0
= 1€ - = - =
s 19 qufv o fs’ or fv 0

where -qufv is the value of the operating costs reductions ex-
perienced by all the users of the facility at time t, as a consequence
of one dollar spent in maintenance at that time and (p-fs) is what is
usually called "effective discount rate" (see Arora and Lele, [1970]).

A stationary solution with v constant will only be obtained if

alt) = - (o = f)/CeF,

In particular, if fs, CS and fv are not explicit functions of time,
g(t) must be constant.

It is intérest{ng to remember here thaf from (2-17) we concluded
that A(t) will in general increase when T increases and vice-versa.
This fact together with any of the equations (2-13), (2-14), or (2-15)
implies that for an optimum maintenance policy, the amount spent in
maintenance will increase if we decide to use the same facility for
a longer period of time and vice-versa. This to some extent implies
a trade-off between maintenance and replacement policies.

Finally, it is important to note that the case presented in this
section, in which we consider the demand q(t) as externally specified
and fiXed for the purposes aof the analysis, is not a mere simplification,
but actually corresponds to some real situations. A typical example

would be that of a mine that uses & private transportation facility



in order to take its production out of the extraction site. In that
case the demand g(t) will be determined by the production plan of
the mine and therefore will be external to any model of management

of the faciiity.

3. A MathematicéY'Mode] for Optimum Investments in Quality. Internal
Demand Case.

In the preceeding section we considered a model in which the
demand was externally specified and not affected by the parameters
of the model. Therefore, the benefits associated with the operation
of the facility were affected by the maintenance policy only through
the supply side of the problem. Actually, this influence occurred
through changes in th#qperating costs experienced by the given users
and the investment costs in mainten;nce necessary to produce this
change. In this section we will consider a model formulation in which-
the maintenance policy will affect both the supply and demand sides
of the probiem. For this, we will assume that the number of users of
the facility at each time t is a function of the history of the quality
of the facility during the period [0,T], t < T.

Let the change in demand for the facility be represented by

the following differential equation

g =4 (s(t),t),  ql0) = q . (3-1)

Expression (3-1) means that the demand forjusing the facility will
change, per unit of time, as a function of the quality of the
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quality of the facility and some external factors that can be
expressed explicitly as functions of time. The demand for the
facility will therefore no 1oﬁger be an external condition, but will
be internally determined by the model. Now we will have two state
variables: quality of the facility and number of users; the same

control as before will be utilized namely the mainenance expenditures.

3.1 Necessary Conditions for Optimality

Now an optimum maintenance policy will be obtained by the
maximization of J(V(t)) subject to (2-4), (2-5) and the new condition

(3-1). The Hamiltonian becomes in this case

- H(t) = {Qu(t) - c(s(t).a(t))]a(t) - V(t)lexp(-pt)
tA(t)f(s(t),alt), V(t),t) + v(t)als(t),t), (3-2)

where A(t) and v(t) are adjoint variables that must satisfy the

adjoint equations

A (t) = - (3W/3s) = Coqexp(-pt) - Afg - vi_ (3-3)

v(t) = - {3H/3q) = [~(U - C) + cqq]exp(-pt) S . (34)

Again, given that no economic value is attached to the quality of the

facility at time T the transversality condition for X at T will be

A(T) = 0 ' (3-5)
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Nevertheless, in this case, some value may be assigned to the size
of the demand &t time T. The rationale for this is that if the
faciiity considered is going {o be replaced, at time T, by a new
facility, which will perform basically the same function as the old
one, the benefits derived from the use of the new facility at T

will depend on q(T). Let us assume that the value attached to this
demand at time T is represented by a function ¥{(q(T),T) that will be
added to the formulation of our objective function (2-3). Then, the

transversality condition for v at time T will be given by

The necessary conditions faor a maximum of J{V) over Q state that there
must exist functions x(t) and Q(t) that satisfy the adjoint equations
(3-3), (3-4) and the transversality conditions (3-5), (3-6); and the
value of the optimum control V*(t) must be chosen such that the

Hamiltonian (3-2) is maximized for all t in [0,T]:

 * % %k % * * * %
H (s ,qa ,x ,v,V ,t) 2 H(s ,q ,&» ,v,V,t), ¥ te[0,T]

(Vea@) (3-7)

where @ is defined in (2-10) and the superscript "*" over the state
and adjoint variables means that they satisfy the corresponding
state and adjoint equations. The expressions (2-4), (2-5), (3-1),
(3-3) to (3-6) and (3-7) constitute in this case a complete set of

necessary conditions.
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Given that the traffic generation function & defined by (3-1)
is not a function of the control V, the gradient of the Hamiltonian
with respect to this variable will have the same expression as in

the case of external demand (see, '2-11):
Hy = Afy - exp(-pt) . (3-8)

Therefore, given that the constraint set Q over which the Hamiltonian
must be maximized is alsa unchanged, the same expressions will be also
obtained for the optimality conditions specifying the control V.

Interior solutions in Q will be given by:

*
Afv = exp(-pt), m<V <M (3-9)

and in the case of corner solutions we will have

*

A exp(-pt), if Vv

nA

(3-10)

]
3

*

v

Afy 2 exp(-pt), if v

"
=

(3-11)
Nevertheless, it is important to note that the adjoint variable A

is here different from that associated with the case of external demand

(compare expression (2-7) and (3-3).

3.2 Economic Interpretation of the Necessary Conditions

As we saw in Section 2.2, for the case of externa1 demand, the
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economic interpretation of the necessary conditions relies heavily on
the meaning of the adjoint variables. The main difference between the
necessary conditions for the éases of external and internal demand

lies in the expressions of the adjoint équations. Therefore, we would
expect important changes in the economic interpretation and role of the
adjoint variables. We consider Cs; Cq, fs’ fq and 23 to be expressed

as functions of time, and rewrite (3-3) and (3-4) as

At) = - Mg+ [Cq exp(-pt) - v2] (3-12)

w(t) = [(C +Cq) - Ulexp(-pt) - Af

q (3-13)

q°

We then observe that expression (3-12) corresponds to a first order

ordinary linear differential equation whose solution can be written as

A(t) = exp(-ftfsdz) { - fTCSq exp(-px) exp(fxfsdz(dX) +
A

T X T
ve exp(/F dz) dx + A(T)exn(/ fsdz)l

J

r
t

which, upon rearranging some terms and using (3-5), can be expressed

as
A(t) = - {T{[CseXp({stdz)]exp(-px)}dx +

fT X
t v(x)zs(x)exp({ fsdz)dx . (3-14)
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Expression (3-13) can be integrated directly, using (3-6) to obtain

o(t) = {T[U(x) - C(s(x),a(x)) Jexp (~ox)dx

(x)dx

+ fT - C qg(x)exp(-px)dx + fT A(x)f
t g t g

+9(T), (3-15)

The interpretation of X and v is complicated in this case by the

fact that they are interdependent. We cannot give an interpretation
for A without knowing the meaning of v and vice versa. We must
therefore give a simultaneous coherent interpretation for both. A way
to proceed is the following: we obtained in Section 2.2 an inter-
pretation of A for the case of external demand. We can begin assuming
then that the same basic‘general interpretation hoids here and 5roceed
to use it in order to obtain an interpretation for v in (3-15). Then
we can go back to (3-14) and check that our initial interpretation of
A is still correct.

Recall that our general interpretation for A in Section 2.2 says
that it represents fthe present value at time t = 0 of the total
benefits perceived during the period [t,T] as a consequence of an.
improvement of one unit of quality in the facility at time t". Now
we can proceed to the interpretation of (3-15). Note that qu(x) is
the cost of the congestion externalities produced by the introduction
of one additional user to the facility at time x (t < x ¢ T). It is
equal to the difference between average and marginal operating costs
associated with the facility at time x. Note that-fq(x) represents
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the change in quality (or deterioration) praduced by an additional
user at time x. We will in ggnera? assume fq < 0. Therefore,
qu(x) will be the present value, at t = 0 of the loss in benefit
(or cost) associated with the deferiorafion of facility quality
produced by an additional user generated at time x. Note that this
term includes the effect that the deterioration produced by the
additional user at time x has on all the users of the facility over
the pericd [x,T].

The first term of expression (3-15) corresponds to the present
value of the private net benefit perceived by a user of the facility
during the period [+,T]. The second term is the present value of the
additional costs incurred by all the users of the facility during
the period [t,T] as a consequence of the additional congestion produced
by the introduction of an additional user during that period. The
third term is the present value, at time t = 0, of the total social .
cost associated with the deterjoration produced during the period [t,T]
by the introduction of an additional user at time t. The second and
third terms are therefore the externalities, associated with con-
gestion and deterioration respectively, produced by an additional
user during the period [t,T]. Finally, from (3-6) we have that the
last term is the value associated with an additional user at time T.

Therefore, we can say that v(t) represents the present value,
at tiﬁe t = 0, of the social net benefit produced during the period
[t,T] by the introduction of an additional user at time t. In other

words it is the shadow price of demand at time t.
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Given that v(t) is the shadow price of demand, the sum of the
integrands of the second and ?hird terms at any time x gives us
the present value of the amount that, according to an optimum pricing
policy, each user of the faci1ity'shou1d be charged at time x. If
we think for instance of a road, the term qu(x) can be very important
for heavy weight trucks that produce considerable deterioration of the
infrastructure. We will show later that the model presented here can
be easily disaggregated to consider different types of users.

Now, we can go back to check the interpretation of A(t) in
(3-14). The first term there is exactly the same obtained in (2-17),
the interpretation of which is "the present value, at time t = 0, of the
cost reduction eXperienced by all the users of the facility, during
the period [t,T], as a consequence of one additional unit of quality

at time t". In addition we have that

exp(fxfsdz) is (see Section 2.2) the equivalent value,
t

at time x, of one additional unit of quality

implemented at time t

% (x) is the number of additional users generated at time
x by a change of one unit of quality in the
facility at that time. We will in general assume

25 >0

2s(x)exp(fxfsdz) is then the number of additional users
t
generated at time x by an improvement of an

additional unit of quality in the facility at time t
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Note also that the second term of (3-14) {s then the present value,
at time t = 0, of the social net benefit associated with the new
traffic generated during the period [t,T] as a consequence of the
implementation of an additional uhit of facility quality at time t.

The general interpretation of A(t) is then exactly that with
which we began and that we repeat here: "A(t) represents the present
value, at time t = 0, of the total benefits perceived during the
period [t,T] &s a consequence of an improvement of cne unit of quality
in the facility at time t". The difference between this case {internal
demand) and that of Section 2 (external demand) is that now A(t)
also includes benefits (or costs) produced as a consequence of new
traffic generated by the quality improvement at time t. These
benefits (or costs) did not appear in Section 2 because in that case
the demand was externaily given and was not influenced by changes in
quality of the facility.

Therefore, the adjoint variables X and v correspond exactly to
"shadow prices" associated with unitary values of the corresponding
state variables s and q. They are actually dynamic shadow prices
since they are functions of time. Consequently, it is Togical to
expect them to serve as indicators for the implementation of optimum
investment (in the case of 1) and pricing (in the case of v) policies.

According to expression (3-14) for the present case of internal
demand, the value of A(t) will be affected by the values that v(x)
takes in the period [t,T]. As we saw in Section 2 the first term on
the rignt hand side of expression (3-14) is always positive. The

value of the second term could be negative.if w(x) takes negative
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values in [t,T]. If that is the case, and assuming the same q(x),

x € [t,T], the value of A(t) would be lower than that corresponding
to the case in which demand is assumed gxterna?. The explanation
for this is that, given that quaiity influences demand and given

a case in which new users produce big externalities with absolute
values in excess to those of their private benefits, the new users
generated by an improvement of quality will make less attractive the
reduction in operating costs Cs produced by the same quality improve-
ment. If the second term in (3-14) is positive, the value of A(t)
will be higher here than in the case of external demand, because

of the positive social benefits attached to the new users generated
by an improvement in quality.

With respect to v(t) we have four terms in the right hand side
of expression (3-15). We will assume that the first term, representing
the net private benefits experienced by each individual user of the
facility, will be always positive, because if at some time x the
operating cost C(s,q) is higher than the utility U(x) an individual
will not use the facility. The second and third terms representing
the externalities produced by each user will obviously be negative.
The last term requires some further analysis.

If we assume that the value given to the amount of demand at
time T,q(T), is equal to the benefits attached to the use of the new
faci]fty (by these q(T) users) for an infinite period of time, begin-

ning at T, we have that
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{EU(x) - €*(s(x),a(x))Ja(T)exp(-px)dx
where C’(s,q) is the function that gives the operating costs of the

new facility. By using (3-6) we also obtain for these circumstances

v(T) = ;"[u - C*) - C0a(T)Jexp(-px)dx ,(3-16)
where C’ is again equal to the operating cost experienced by each user
of the new facility and C’qq(T) is the congestion externality produced
over q(T) users of the new facility.

Therefore, the higher the quality and the capacity with which
the new facility will be provided the lower will be C’ and C’qq and
the higher will be the value of v(T) and consequently of v(t) and A(t).
From (3-15) we can see that v(t) could become negative if the exter-
nalities represented by the second and third terms are high enough.
In general, an increase in the value of these externalities will de-
crease the values of both v and A.

The changes in the values of v(t) and A(t) when the 1life of
the facility is varied will be given by the derivatives of these
variables with respect to T. Differentiating (3-14) and (3-15) with
respect to T and using the boundary conditions (3-6) and (3-16)

we can easily obtain:
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(5%(t)/37) = - [Ceexp (/77 dz)Iq(T)exp(~cT) +
t

v(T)zs(T)exp(insqz) + 1 (3v(x)/3T)

, t
£S(x)exp(£xfsdz)dx (3-17)
and
sv(t)/3T) = [(C° + C’qq(T)) - (C+ qu(T).)Jexp(-oT)
¥ thT(aA(x)/BT)fq(x)dx (3-18)

In Section 2, when demand was considered external to the model,
we easily concluded that as the 1ife of the facility is increased,
the shadow price of quality A(t) increased for any t in [0,T]. Here
it is impossible to reach a definitive conclusion 1ike that. This
is due to the dynamic intéractions between v(t) and A(t) manifested
by the Tast terms of expressions (3-17) and (3-18). If we assume
v(T) positive then the first two terms of (3-17) will be positive,
but to know the sign of the third term we need to know 3v(x)/3T over
the interval [t,T]. Also if we assume that the new facility to be
provided at time T constitutes a general imprdvement over the old one
(higher quality and more capacity) C’(s*(T),q(T)) < C (s(T),q(T)).and
C’q < Cq, then the first term of expression (3-18) which represents
the difference between the marginal costs on the new and old facili-
ties at time T, will be clearly negative. However, to know the sign
of the second term, we need to know the value of 5x(x)/3T over the

interval [t,T].
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Under the reasonable assumption that the new facility ta be
provided at time T constitutes a general improvement over the old
one, the value of 3v(t)5T cannot be positive for any important
interval of time tin [t,T]. Given that %q(x) is negative, such a
situation would require that 3A(x)/3T be negative over an important
period of time in [t,T]. This is highly improbable since according
to equation (3-17), in order for ax(x)/3T to be negative over an
important period of time, it is necessary that dv(x)/3T be negative
over an important period of time in [t,T], which is a contradiction.
Therefore, we would expect 3v(t)3T to be negative in general, making
the sign of 3A(t)/3T uncertain and highly dependent on the magnitude
of each of the terms involved in equation (3-17).

From {3-2) we have that the Hamiltonian in the present case is

given by
H(t) = [U - C)g - V]exp(-pt) + Af + V&

where for simplicity we have eliminated the arguments of all the
variables. It is easy to see that H(t) has here the same general
interpretation as in Section 2.2. It is the present value of the
net social benefits associated with the decisions taken with respeﬁt '
to operation of the facility at time t.

Given that the general interpretation of A(t) is the same
here as in Section 2.2 and that the optimality conditions for V
have also the same functional form, the interpretation of the optimum

policy is again that maintenance should be performed at a Tevel
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such that the present value of the marginal benefits o7 maintenance
be equal to the present value of the corresponding marginal cost

at each time t. If this is nét passible for any value of V ¢ Q,
then the optimum policy is to perform the maximum or the minimum
maintenance possible depending on whether the marginal benefits are
higher or lower than the respective marginal costs. Nevertheless,
the marginal benefit to which we refer here is different than that
in the case of Section 2.2. It is evaluated througr the use of A(t)
defined by eXpression (3-14) instead of (2-17). Moreover, it is
obvious from our analysis of A(t) and v(t) that then the optimum
policies corresponding to expressions (3-9) to (3-11) will be dif-
ferent than those derived from the corresponding expressions in
Section 2.1. As we saw before, in this case A(t) will depend on

the vaiue of v(t) that represents the net social value of a new user
at time t, & quantity for which an important role is played by the
externalities generated.

Let us for instance assume the same demand q(x) for the period
[t,T] as in the case of Section 2. Using this demand schedule we
may simultaneously evaluate (3-14) and (3-15) in general obtaining
a value of A(t) that leads to a different optimum policy at time t
than obtained for the same situation in Section 2. If the assumed
demand q(X) is too Tow campared with the capacity of the facility
and the users considered do not produce too much deterioration, v(x)
will be positive in the interval [t,T] and the value of A(t) will be
higher than that obtained in Section 2. Therefore, for the same

deterioration function, more maintenance will be justified
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in the present case in order to increase the quality of the facility
and attract new users since those users have a positive social value
(v(t) > 0). This means that the number of users assumed, q(x), is
Tower than it should be in order to obtéin the maximum possible
benefit out of the operation of the facility. The converse would
happen if the assumed demand q(x) is too high with respect to the
capacity cf the facility and/or the users assumed produce too much
deterioration. In crder to obtain the same optimal policy for both
cases it is necessary that v(x) = 0, ¥ x ¢ [t,T], which means that
the schedule assumed which will be called q(x), is such that at all x
e [t,T] the externalities produced by the marginal user are equal
to the private benefits obtained by him plus the net social benefit
of a new user at time T, v(T). If this is the case, q{x) represents
+the demand schedule that generates the maximum possible amount of
benefits out of the operation of the given facility (represented by
the operating cost function C (s,q) and the deterioration function f).
This does not mean that this schedule would be the one corresponding
to all the solutions obtained from the application of our model. The
reason for this is that in a particular case the solution of the model
is constrained by the following conditions not considered in our
analysis above:

- Initial demand at t = 0, q(0) = 9%

- Demand dynamics, £ (s,t)

- Control constraints, V e Q.
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There will be, in general, one value of q(o) (q(0) equal to
q(x=0) and a lower bound M for M in Q which allcws one to reach
q(x) for the facility considered. If q(p) # q(x=0) or the value of
M in 2 is lower than ﬁ} the model will do what it can to get a solution
that generates a demand as close as possible to q(x) but it will
never exactly reach that level for all x € [0,T]. Note that if v(t)
# 0 the model will try to optimize the maintenance policy taking into
account its consequences after T. Therefore the optimum policy in
such a case will be decidely different than if we considered that no
facility will be provided after T (v(T) = 0). The solution obtained
for v(T) # 0 will clearly be a sub-optimum if applied to the case
v(T) = 0. In other words, the optimum policy for the case in which we
assume that a new "better" facility will be provided after T will in
general génerate more users than what would be the optimum if no
facility were to be provided after T. This is easy to check with the
results of our previous analysis of A(t) and v(t) derived from
equations (3-14) and (3-15). There we saw that an increase in the
value of v(T) (an increase in the quality and capacity of the facility
to be provided after T) will cause an increase of A(t), ¥ t [0,T]
(this increase will be more important as t ~ T) and therefore, according
to expressions (39) to (42), an increase in the optimum amount of
maintenance for all t.

Contrary to the case of Section 2.2., nothing definitive can be
said here, in general, with respect to the influence of a change
of T on the optimum maintenance policy. Since the analysis is com-

plicated by the introduction of externalities and the existance of a
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new facility after T, no general conclusian can be reached regarding
the affect of changes in T. In particular, both positive and negative
values of 5:/3T appear possibie, depending on the specific case
analyzed. '

It is interesting to note that the model presented in this
section implicitly introduces a pricing policy defined by the adjoint
variable v(t), which as we saw in (3-14) influences the value of A(t)
which represents the attractiveness of quality improvements of the
facility and therefore determines the optimum maintenance policy V(t).
This is a consequence of the explicit consideration of interrelation-
ships between quality and demand. The quality variable is used by
the model to manipulate the cost function C(s,q) in such a way that
it implicitly includes an optimum pricing policy that ensures the
optimum pessible utilization of the facility during the period of
analysis. The maintenance policy V*(t) is then the control variable
that brings about a quality level at each time such that the relevant
criterion function is extremized.

Finally, we make note that the same comments about the concavity
of the Hamiltonian with respect to the control, made in Section 2.2,
are valid here. In other words, the optimality conditions analyzed
will correspond to a global maximum value of H(4) if decreasing
or constant returns to scale exist in the production of gquality over
the whale set Q.

We may also note that for the internal demand case X\ can be
negative for some t. If that happens, the optimum solution will be

*
V =m because the only optimality relation that can hold then for V
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is (3-10), given that fv is always positive. This is an obvious
result, given that X is the mgrginal social value of quality. If this
value is negative, at some point in time, we should try to produce

the minimum possible increase of'faci]ify quality. Given that any
amount spent in maintenance produces a positive change in quality,

fv > 0, it is obvious that we should spend the minimum amount possible

in maintenance.

4. Extensions toc the Case of Multiple User Types

In preceding sections we assumed a homogeneous type of facility
user. Nevertheless, we usually have in real world cases that public
facilities give service to different types of users simultaneously.
In highways'we have cars and trucks, in airports a great variety of
aircraft types can be distinguished, etc. Each of these users
experiences different utilities and operating costs and produce
different congestion and deterioration externalities. In order to
treat this more general case we have to modify the cbjective
function used before in the following way:

n - ’
V) = 1 [U;(t) =~ Cy(saq)day(t) - V(t)Iexp(-pt)dt
0 =1 ‘

+ ¥ (qi(T)aT)s - (4'])

where Ui and Ci represent the utility and operating costs perceived

by type i users and qi(t) is the number of type i users at time t.
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The quantity n denotes the number of user types or categories.

We in addition have defined:

with q equal to the total number of "equivalent users" over the

facility at time t, and My is the number of equivalent users

that wouid produce the same congestion effect as one type i user. The
equivalent user concept used here is completely analogous to that of
"equivalent vehicle" used in highway transportation to represent
congestion effects. It is also important to remember that we are

here using the term "user" to identify an operating unit over the
facility; therefore in the case of a road, our users will correspond
to the vehicles operating over the road.

In this case, the number of state variables will increase ton + 1,
with n of them corresponding to the demands for the n types of users
that we are differentiating and one for the quality of the facilty
as before. The evolution of these state variables wi11 be governed

by the following dynamics:

s = £(s,3,V,t), s(o) = S, (4-2)
(.]_i = Zi(Sst), qi(O) = in’ (i=]ﬁ---sn)’ (4'3)
_ n
q-= 15} 81-%



where 25 is the deterioration, in terms of quality units, produced
by one user type i, per unit of time.

Finally, we have as before, the control constraint:
m(t) g V(t) ¢ M(t), (4-4)

The Hamiltonian corresponding to the control problem (4-1) to (4-4)

can be written as:

H(t) = [

]‘

1(Ui

"n o133

- Ci)a; - Viexp(-pt) + xf +

o]

.Z}\)ig‘i’ (4-5)
7:

and the adjoint equations become:

S 8F_Q ~ 4+ 3 A ¢
he -2 —i:](aci/aS)qiexp(-p») S vy (4-6)
v = - S [ - (U, -C,) +ul g C ) Jexp(-ot)

K7 %q S TR AR

In a similar way to that used in preceding sections we can find the

following expressions for the adjoint variables A and Vi



X
. s o
s fodz(qy(x) Jexp(-ox) bdx

n
T )
:.\) (X)X/1S

. (x)exp(fxfsdz)]dx, (4-8)
t

vt = 7TIU (%) = € (x)Texp(-ox)dx +
t
_ fT ' n )

¢ {0 (T Coa.(x))]exp(-px) }dx

i=1 197

+ iTk(x)kaadx + v (T). (4-9)

In this case Vi is the socjal value of an additional type k user
generated at time t. The first term in (4-9) represents the present
value of the private benefit perceived by each type k user during the
period [t,T]. The second term is the present value of the congestion
externalities produced by a user type k over all the users of the
facility during the same period. The third term represents the
present value of the deterioration externalities produced by one type
k user during the period [t,T]. This deterioration externality is
proportional to the value By and includes, through the multiplication
by the value of A, the cost increases experienced by all the users of
the facility during the period [t,T] as a consequence of the
deterioration produced by one type k user during the same period. The
sum of the integrands of the second and third terms is the amount
that should be charged to each type k user for using the facility at
time x if an optimum pricing policy were implemented. The inter-

pretation of A(t) is here the same as in preceding sections. The first
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term corresponds to the operating cost reductions experienced by
all the users of the faci]ity.during the period [t,T] as a conseguence
of the implementation of an additional unit of facility quality at
time t. The second term represents the~socia1 value of all the
traffic generated during the period [t,T] as a consequence of one
unit of guality implemented at time t.

As before, optimum maintenance policies corresponding to

interior values of V(t) in Q(t) will be given by:
exp(-pt) = A(t) . (4-10)

An interesting interpretation of this optimum policy can be given
here in terms of welfare economics. For the system defined by the
facility of interest and its usersy the quality of the facility is
a public good. Any user of the facility has the same potential con-
sumption of each unit of quality provided. The production function

for the public good "quality" is given at each time t by:
s = f(s,3,V,T)

and therefore (af/8v1tis the marginal rate of transformation of
maintenance into quality of the facility at time t. The amount of

maintenance V is here expressed in dollars which will be our numeraire

private good. We can now write (4-10) as:

\
-—g—,i-exp(-ot) = A(t). : (4-11)
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The Teft hand side of (4-11) can then be interpreted as the present
value of the marginal rate of transformation between the public good
ity and our numeraire private good doliars. Let us go back now

to x{t) in [4-8). There

-, jexp(/1F dz)
t

is the reduction in operating costs experienced by one type i user at
time x, x ¢ [t,T], as a consequence of the implementation of an
additional unit of facility qua]i;y at time t. It will therefore
represent how much user i is willing to sacrifice of the private
good, dollars at time x, to pay for one more unit of the public
good, quality provided at time t. This quantity can be then
interpreted as an individualized price for user type i or marginal
rate of substitution at time x, MRSi(x), between the public good,
one unit of quality provided at time t, and the private good, dollars
at time x. Let us now assume first that demand is independent of
quality, b = 0, ¥i. Then, the second term of A(t) in (4-8)
disappears and the condition for optimality in the provision of the

public good quality, given by (4-11), can be written as:

T

MRS, (x)q, (x)exp(-px)dx. (4-12)
1

1 1

e s

MRT = J
t

Expression (4-12) is an obvious generalization, for the dynamic case,

of the well-known rule of welfare economics (see, Varian, [1968]):
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MRT = L MRSi. (4-13)
i

In (4-12) since the provision of ‘one unit of quality at time t
has effects on the operating costs expereinced by the users of the
facility throughout the whole period [t,T], the static marginal rates
of substitution, MRSi(x), are added both over all the users of the
facility at each time x and over all the times x in the period [t,T].
The inclusion of the actualization factor, exp{(-ox), brings this sum
to present value at time t = 0, as is the case for MRT in (4-11).
Nevertheless, rule (4-12) assumes that no further effects are
produced, over the public system analyzed as a consequence of the
provision of one unit of public good, that those that make the users
- of the system enjoy the consumption of the additional unit of public
good. In other words, no externalities are assumed in the production
of quality. This assumption holds perfectly for the case just
analyzed in which demand is independent of quality. However, if
2is # 0 an obvious externality appears in the production of quality.
The production of one additional unit of quality at time t produces
an increase in the number of each type of user of the facility during
the period [t,T], which in turn produces congestion and deteriorétion
~externalities. These externalities are taken care of by the second
term of A(t) in (4-8). As we know, vi(x) is the social value obtained
from the generation (or production) of a new type i user at time x,

x € [t,T]. Then
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SV, = o (x)2s . (x)exp (S _dz)dx
is 3
t t
is the social value attached to the type.i users generated during the
period {t,T] as a consecguence of the production of one additional
unit of quality at time t. Given that vi(x) is expressed in terms
of present value at time t = 0, SVi is also expressed in present value.

Now (4-11) can be put as:

SV.
1

21>

g MRSi(x)qi(x)exp(-pt)dx +
=1 i
where the Tast sum represents the total social value of the externalities
generatad by the provision of one unit of guality at time t. As with

all othes expressions, it is articulated in present vajue at t = 0. A
similar interpretation of the optimum policy can be given for the

*
cases of corner solutions for V (t) in Q(t).

5. Sufficient Conditions for Optimality

In the preceding sections we have anlayzed investment policies
V*(t), t € [0,T], that satisfy the necessary conditions for optimé1ity
specified by the Pontryagin maximum principle. Here we will try
to find some additional conditions that, when taken together with
the necessary conditions already analyzed, form a set of sufficient
conditions for optimality. In other words, we will analyze the circum-

stances uncer which the Pontryagin conditions produce the optimum



vatue of J(V(t)) for which we are looking. It is obviously enough
to analyze the most general case of internal demand, given that the
situation in which demand is external can be treated as a special
case.

In order to produce sufficient conditions, we will use the
Arrow theorem for optimal control problems (see Section 5 of Chapter
II). Applied to our case it says that: the policies [V*(t),s*(t),
q*(t)] cbtained from the necessary conditions, developed in Section 3.1,

*
will tead to a maximum of J(V(t)) if H (s.,g,A,v,t) is concave in s and

g, for all t ¢ [0,T]", where

%
H (s,q,A,v,t) = Max H (s,q,x,v,v,t)’ Ve (5-1)
V
We can distinguish three cases depending on the expression of

*
the optimal control V .

(a) Interior Solution, m(t) < V*(t) < M(t)

*
In this case we can write H as

%*

H = (U - Clg exp(-pt) + V2 + AfT - V*(s,q,k,t)exp(-.ot), (5-2)

where V*(s,q,k,t) is obtained from Afv = exp(-pt) and

* *
f = f (s,9,A,t) 1is the deterioration function f in which we

have replaced the control variable V by expression of the optimal
*
control V (s,g,A,t).
*
In order for H in (5-2) to be concave we need that its Hessian

Nk

H be negative definite or semi-definite.
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with

* * *
s - + - + - -
Haq (2cq cqqq) exp(-pt) Maq quexp( ot)
* * *
Heg = = Coexp(=pt) + A o = V_ exp(-pt) (5-4)
* _ * + %*
Heg = - Cgd exp(-pt) + Moo + V0o Vssexp(-pt)

*
where in the expression for HS we have used the fact that C s © 0

q A q

(see expression 2-1).

If fv is.only a function of V or, in other words, if the

effectiveness of maintenance is.independent of s and q (qu = fvs = 0),

then

and

* _ * -V* _
Vag = Vgs = Vss = O
(5-5)
%* * *
Fo=f £ = f £ = f

qq qq, gs gs, SS SS

A%k
and the expression for H simplifies correspondingly.

%*
(b) Corner Solution with V = m(t)
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Now the expression for H* will be
* ’ *
H = (U - C)g exp(-pt) +v2 + Af - m(t)exp(-ot) (5-6)

A%
and the components of the Hessian H will become

*
= + - +
qu (ch quq)exp( ot) quq
* -
Hqs = - Csexp(-pt) + qus (5-7)
¥ +
Hss = - Cssq exp(-pt) sts + vﬁss

%*
In.this case, given that V m(t), conditions (5-5) are obviously

satisfied.

*
{c) Corner Solution with V M(t). In this case

H'= (U - C)q exp(-pt) + v2 + Af = M(t)exp(-pt) (5-8)

A%
and the expression for the Hessian H will be the same as in case
(b), given that (5-6) and (5-8) have the same functional form.
In any particular case, in order for the Hessian H* to be

negative semi-definite we must have (see Simmons,[1975])

e ]
qq gs
Hog < 0> and N . | 20 (5-9)
H H



IV. QPTIMUM POLICIES FOR INVESTMENTS IN CAPACITY, CONTINUOUS CASE

1. Introduction

The analysis of optimum policies of capacity investments for
transportation facilities has been undertaken by different authors fn
the economic literature. Mohring (1962), Stroz (19€4) and Keeler et
al (1975) developed models that relate optimal pricing and investment
decisions and produced important insights about the nature of optimum
policies. Nevertheless, these models correspond to static formulations
of the problem and fail to produce explicit expressions for the optimum
investment function. Therefore, the study of dynamic characteristics
of the optimum policies is impossib]eAwith such models.

In this section we develop a*simply dynamic model for capacity
investments. Following the authors mentioned above, we consider
capacity as a continous variab1e.r‘The objective is to find explicit
expressions for the optimum investment policies and to use them in
order to analyze the temporal or dynamic characteristics of these
policies in different cases. As has been traditionally argued, the
assumption of a continuous capacity function is not very realistic
for many public facilities, especially those in the transportation
sector which present important plant indivisibilities. Nevertheless,
it has been shown that the models built under this assumption can still
provide a good deal of insight about the problem, if conveniently

analyzed. In any event, we will comment later about the implications
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of this continuity assumption and in a subsequent chapter we will
develop a different dynamic model, one that explicitly considers

indivisibilities in the capacity function. The model developed here

will help to complement the results obtained there.

2. A Mathematical Model for Optimal Investments in Capacity

We will assume that we have a transportation facility that serves
homogeneous users. Each of these users obtains a utility U(t) and
perceives a cost C (k,q) from each trip performed over the facility.
The utility depends only on external factors to our model and can be
expressed as a function of time. This seems a realistic assumption
for all kinds of trips except for the purely recreational ones. In
any case, it only constitutes a convenient assumption in order to
simplify the formulation of the model and can be dropped without major
consequences other than some increase in the complexity of the asso-
ciated analysis. The operating cost function C (k,q) corresponds to
an average variable cost function, which includes all expenses of
user-supplied inputs, and it is assumed to depend on the capacity of
the facility k and the number of users q. Both variables will, in
turn, be functions of time. For the case of purely recreational trips,
the utility could be also expressed as U (k,q), but as was mentioned
above we will only consider the case U(t) for simplicity. To begin we
will only make very general assumptions about the function C (k,q).

In particular:
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o, qu <
The operating cost function will therefore Took as in Figure 4.l
Additional traffic, holding capacity constant, will increase operating
costs; additional capacity, at the same level of traffic, will on the
other hand decrease operating costs. Both effects could be zero at

low levels of traffic relative to capacity. In addition, (2-1) states
that the value of Cq will increase with q when k is held constant;
contrarily iCk§ will decrease as k increases, reaching a value of zero
at high capacity values (free flow situation); finaliy, Cq will decrease
as cépacity is added, reaching alsc a limit value of zero for the free
flow situation.

Let us now define an investment function f, that gives the amount

of investment I necessary to obtain different levels of capacity k.
I=f (k) (2-2)

We will consider I as a continuous function of the capacity k which,
in turn, will be considered continuous. Different special cases for
the function f are presented in Figure 4.2, If we differentiate (2-2)

with respect to time we obtain:

i(t) z1(t) = f k(t) (2-3)
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where ﬁ(t) is equal to the change in capacity produced at time t, fk
is the marginal cost of capacity, and i(t) is the amount of dollars
spent on capacity at time t.

Two state variables will characterize the transport system of
interest: the capacity of the facility at time t, k(t); and the
number of users at time t, q(t). As a control variable we will choose,
the change in capacity of the facility at time t which we will denote
by V(t). With this notation we can now express the expenditures in

capacity, per unit of time, using (2-3), as:
i(t) = f V(t) (2-4)

We wish to find a function V*(t) that maximizes the present value
of the net social benefits of the system over the period of analysis

[0,T]. Therefore the objective function will be:

T
J(v(t)) = 4, {TU(t) - C(k,q)la(t) - f V(t)lexp(-pt)dt +

¥(k(T))exp(-pT) (2-5)

where p is the appropriate interest rate and ¥ is the residual value
of the facility at time T, that we assume to be a function of the
capacity of the facility at that time. According to our definition

of V(t) above, the evolution of the capacity of the facility over time

will be determined by the simple differential equation

k(1) = v(t), k(0) = k,
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Finally, we will assume that there is a 1imit M in the amount of
capacity that we can provide per unit of time and that, once in place,
capacity cannot be removed (dis-investment is impossible). Therefore,

we will have the following constraints for our control variable:

o
WA

V(t) <M, ¥t e [0,T] (2-7)

3. Necessary Conditions for Optimality: the functional form of

optimal policies.

The problem of maximizing the objective function J(V(t)) defined
in Equation (2-5), subject to the capacity dynamics (2-6) and the
control constraints (2-7) constitutes an optimal control probleﬁ with
fixed terminal time and no state space constraints. In order to specify
the necessary conditions for a maximum of J(V(t)) we need to define the |

Hamiltonian function:
H(t) = {[U(t) - C(k,q)]q(t) - f V(t)lexp(-pt) + A (t)V(t), (3-1)

where A(t) is the adjoint variable corresponding to the state variable
k(t).

The necessary conditions for a maximum of J(V(t)) over V(t) state
that there must exist a function A(t) that satisfies the adjoint

equation
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X = - (3H/3k) = [C,a + fiVlexp(-pt) (3-2)

with

A(T) = (3¥/0k); exp(-oT) = ‘A\T (3-3)

*
and that the optimum control V (t) must be such that the value of the
Hamiltonian ( - ) is maximized for all t in [0,T]. This last require-

ment can be denoted as

HOC AV E) 2 H (KL 0,0, ¥ te [0,T] (3-4)
(Veg)

where @ is defined by (2-7) and the * in k and A mean that these
variables satisfy (2-6) and (3-2) respectively. Expressions (2-6),
(2-7), (3-2), (3-3) and (3-4) constitute a complete set of necessary
conditions for our problem.

It is easy to see that the gradient of the Hamiltonian with respect

to the control variable V is given by
Hy = 2 - f exp(-pt) (3-5)

and given that the Hamiltonian is a linear function of V, the optimum

function V*(t) will be given by
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r ] *
M , if H >0
. V
. *
V{t)y=¢0 . , if HV <0 (3-6)
*
undetermined, if HV =0

~

3.1 Bang-Bang Controls

We observe that expressions (3-5) and (3-6) imply that V*(t) is a
well defined function of k*(t), A*(t) and t as long as the gradient

*
HV (t) is non-zero. In that case we have

M, if x*(t) > f: exp(-ot)
Vi (t) = (3-7)

*

*
0, if A (t) < f, exp(-ot)

and the optimum control is called "bang-bang". In order to give an
economic interpretation of the controls defined in (3-7) we can use
the following equality that holds along an optimum solution (see

Chapter II; Section 4.)

3d
ok

2 (t) =

5 (K,t) (3-8)

*
Expression (3-8) says that A (t) represents the shadow price of
capacity at time t. A more insightful view of A*(t) can be obtained
using the adjoint Equation (3-2). If we integrate (3-2) using (3-3)

we obtain the following expression for x(t):



T Calx) - (3i/2k)lexp(-px)ax + A, (3-9)

J
t

where we have used the relation
fka = a(fkv)/aK = 3i/3k = ik (3-10)

In expression (3-9) we have that -qu(x) is equal to the total
operating cost reductions experienced by the users of the facility
at time x (x > t) as a consequence of an additional unit of capacity
provided at time t, and ik is the effect that an additional unit of
capacity provided at time t has over the cost of providing capacity
at time x. The value of ik takes into account the changes in the
cost of providing capacity in the future (after t) caused by one
additional unit of capacity provided at time t. Only if there are
constant returns to scale in the facility construction will this term
always be zero within the interval [0,T], because then the marginal
cost of capacity fk is constant for all k. Nevertheless, if f presents
decreasing returns to scale (fkk > 0), i, will be positive as long as
V > 0. On the other hand, if f presents increasing returns to scale
(fkk <0), ik will be negative for all the periods with V > 0. There-
fore, there exists a clear interrelation between present and future
investment decisjons when fkk # 0. For fkk > 0, future investments,
after t, will decrease the value of A(t), and vice versa for fkk< 0.
1t appears then, that more investment will be justified in general

when f presents increasing returns than when it presents decreasing



returns to scale. In Section 5, this will be clearly shown to be the
case. The value of AT in (3-9) represents, according to (3-3), the
present value of the marginal va?ue of capacity at time T.

The bang-bang policy defined by (3-7) says that capacity should be
provided, at a rate of M units of capacity per unit of time, as long
as the shadow price of capacity remains higher than the marginal cost
of capacity. When the converse happens, capacity should be held
constant. If the gradient function H;(t) vanishes only at a countable
number of times, within the interval [0,T], our optimal control problem:
is called "normal" and the optimum policy V*(t) is "bang-bang." The
value of V*(t) switches from one boundary of Q (defined by (2-7)) to

the opposite one, at certain well-defined times ts given by:
*
X (ts) = fk exp(-pts), ts e [0,T], (S =1,2,....,N) (3-11)

Figure 43i1lustrates a function H; and the corresponding V*(t) in this
case. H; is then fhe so-called "switching function". However, given
that our objective function (2-5) is non-linear in the state variable
k, there exists the possibility that H; vanishes identically along
some finite periods of time in [0,T] (see Chapter II, Section 3.2).
The optimum controls during those periods, if they exist, are called

“singular" and will be analyzed in the next section.

3.2 Singular Controls

In the preceding section we assumed that the switching function HV



w LS ! N

FIGURE 4,3 Bang-bang Policy.




vanishes only at a countable number of times in the period [0,7]. In
this section we will analyze the possibility that the gradient Hv
vanishes identically over one or more finite periods of time or sub-
intervals in [0,7]. Then we will say that we have & singular optimal
control problem and the periods for which HV = 0 are called singularity
intervals or singular arcs. As we noted in (3-6) the necessary condi-
tion (3-4) do not provide in this case enough information in order to
define V*(t) along a singular arc. In the absence of such information,
we must manipulate the other necessary conditions in an effort to
determine a well-defined expression for V:(t), which receives the name
of singular control.

Singular controls can be in general determined making use of the
following observation (see Chapter II, Section 3.2): ,'If the grad-
jent HV of the Hamiltonian vanishes identically along a sfngu?ar arc,
then the time derivatives of HV must remain equal to zero during the
same period." From (3-5) and (3-6) we have that at a singular arc

H, = X - fkexp(-pt) =0 . (3-12)

v

Thus upon taking the time derivative of (3-12) we obtain
Hy = & = fik exp(-pt) + of, exp(-~pt) = 0 (3-13)

which, making use of the necessary conditions for k and X expressed by
the capacity dynamics (2-6) and the adjoint equations (3-2) and

dividing by the positive value exp (-ot), becomes
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Now, given that (3-14) must hold along the singular arc we can take a

new time derivative of this expression to obtain
Ckkkq + quqq + qu + pfkkk =0 (3-15)

and using again the necessary condition (2-6) we get from (3-15) the

following expression for the singular control

Ve = 0 {(Cig * G/ (Cpd + o)) (3-16)

In addition, the singular control must obviously satisfy the control

constraint

HA
=

(3-17)

" *

Given our assumption (2-1) about the cost function C, we can
easily see that V: in (3-16) will automatically satisfy the non-
genativity constraint for all the periods of increasing demand (q> 0)

if

where the right hand side of (3-18) is always non-positive. As we

will see later (3-18) constitutes an additional necessary condition
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for singular arcs.
It is important to note that (3-12) and (3-14) constitute
necessary conditions for the existence of the singular control V:
given by (3-16). In other words, V: can be an optimum policy only
when condition {3-12) holds. In that case the use of a control V:
will maintain the solution path on the singular arc, along which
(3-14) is also satisfied. Equation (3-12) tells us that, for all the
values of t along a singular arc, the application of v: will produce
a level of capacity k*(t) such that the marginal benefit of capacity
*

A*(t)exp(pt) is equal to the marginal cost of capacity fk In addi-

tion, if we put (3-14) as
-qu(t) = pfk , (3-19)

we have that, along a singular arc, capacity is provided in such a

way that, at each time t, the marginal reductions in operating costs,
produced by the last unit of capacity, are equal to the rental value
of the cost of providing that unit of capacity. We can think of (3-19)
as the Marglin naive static rule (Marglin, 1963) applied to the mar-
ginal unit of capacity. In that case (3-19) says that the next unit
of capacity will be provided at a time t such that the present value
at t of a perpetual stream of benefits at the immediate rate-qu(t)

equals the construction cost of that unit

fk = '[CKQ(t)/OJ . (3-20)

109



The construction cost of the next unit is the marginal cost of capacity
fk' This rule applies to all the units of capacity provided along the
singular arc.

At the beginning of Section 3 we saw that one of the necessary
conditions that an optimum control must satisfy is the maximization
of the Hamiltonian required by (3-4). It is easy to see that the
control V: specified by (3-16) does not necessarily satisfy that con-
dition. Actually, we derived V: from the fact that along a singular
arc HV = 0, which is only a first order condition for the maximization
of the Hamiltonian with respect to the control. Therefore, we still
need a second order condition in order to ensure that V: corresponds
to a maximum of H(t) and not a minimum or an inflexion point. This
second order condition is provided, in general, by the requirement
that H§V> 0 (see Byson and Ho, 1975). In the Tinear case, for non-
singular arcs (bang-bang controls), the fact that for all V e &,

* *

HV (V-V') <0, is a sufficient condition for the maximization of the

Hamiltonian (see Luenberger, 1973). However, for singular arcs we

have both

*

and HVV

1]
o

s 0 (3-21)

<< F

and therefore an additional necessary condition must be applied. This
condition, developed by Tait [1965], Robins [1965] and Kelley et al
[1966], states that in order for V: to produce a maximum of J(V(t))

it is necessary that in addition to all the necessary conditions

already developed [(2-6), (2-7), (3-2), (3-3), (3-12) and (3-14)] the



following condition must be satisfied in our case

(Hy)y = =7 {@/dt) iz o . (3-22)

For our problem it is easy to check that this reduces to

Given our assumptions (2-1) about the function C, and given that
q(t) is by definition non-negative, condition (3-23) will be always
satisfied for all f functions with decreasing or constant returns to
scale (fkk > 0). It could be violated nevertheless for functions

that present strong increasing returns to scale if
e < Cypla/el

In that case singular control given by (3-16) would not correspond to
an optimal solution to our problem. It is also interesting to note

that (3-23) can be put in the form

5% (-C,q - fyp) <0 (3-24)
which is a second order condition, with respect to k, for rule (3-19).
The term in parenthesis in expression (3-24) is the net benefit, at

time t, of providing an additional unit of capacity at that time.



Therefore condition (3-23) ensures that condition (3-19) leads to a

static maximization of benefits at time t.

3.3 Dynamic Optimum Policies

In the preceding sections we have used the necessary conditions
provided by the Pontryagin maximum principle in order to derive
expressions for the optimum controls for our problem. Two cases
were identified and analyzed: bang-bang and singular controls. In
practice, optimum policies will, in general, involve a combination

~of both. In that case, the optimum controls will be defined by:

o .
M , if A > fkexp(-pt)

*
voran
LR

1]
A

P b 3L -.* .
=4 Ca * CI/Ca + fLiedi, i & = fexp(-pt)  (3-25)

*
0 , if X

A

fexp(-ot)

A dynamic optimum policy can in general be represented by a path
in the positive quadrant of the space of state variables (g,k). In
that space, bang-bang arcs with V* = 0 are represented by horizontal
lines, k = constant, given that along them k=0 (see Figure 4.4a).For

bang-bang arcs with V* = M we have:

k =M=>k(t) = ks + M(t - ts), (3-26)
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FIGURE 4.4 Optimal Policies in (q,K)

(a) Bang-bang arcs with v'= o,

(b) Bang-bang arcs with V*= ¥, a=C,
(e¢) Singular arc, H: = 0, V= Vo
(d) Optimum Policy representation.



*
where ts is the switching time at which the application of V =M
begins and ks is the capacity at that time. Using (3-26) to eliminate

the variable t from the demand schedule g = q(t) we obtain the

following equation for arcs with V* = M

Applying the chain rule it is easy to see that the slope of this

curve is given by
dk _,dq dt; :
dq =(d dk ) = (M/q) (3-28)

which is always positive for & > 0. If é = 0 the bang-bang arcs
defined by (3-27) become ;ertical straight lines in (q,k). Given
a constant value of M the slope (3-28) will change with the value
of ﬁ, decreasing when the latter increases and vice versa. In
Figure 4b we represent a family of these bang-bang arcs for a case

with g constant. Finally, an expression for the singular arc in

(q,k) can be obtained from the necessary condition (3-14).
Ck q + pfk =0,

For any particular case, this is an equation in g and k that
defines a unique line in (g,k). It specifies the points, or states
of the system, for which the condition (3-12), that defines the

singular arc, holds. Given condition (3-23) this line will always



have a positive slape fcr g > 0. A singular arc is represented
in Figure 4c. It divides the space (g,k) in two half-spaces;
states of the system represeted by points located below the
singular arc correspond to situations with capacity values lower
than optimum and vice versa for points located above the singular arc.
In that case, the bang-bang arcs represented in Figures 4a and 4b
provide optimum paths to get onto the singular arc. On the other
hand, we can see from (3-3) and (3-5) that the final state of the
system, at time T, can only be over the singular arc, if
WR(T)exp(-pT) = fkexp(-pT) . (3-29)
This condition will always be satisfied for T = <, but if T is
finite, it will in general be violated. In particular, if the
residual value of the facility ¥ is equai to zero we wiil have for
any finite value of T

Ay < fkexp(-pT), f, > 0.

k
If (3-29) does not hold we will have to leave the singular arc

at some time t before T, in order to satisfy the final conditions

(also called transversality conditions) of the problem. Again in this

case, the bang-bang arcs provide optimum paths to follow. We know

from Section 3.1 and 3.2 that an optimal solution can only be formed

by bang-bang and/or singular arcs. Therefore, the optimum solution

to our problem will involve, in general, 2an initial bang-bang arc

-t
-t
o



to get onto the singular arc, the use of such an arc for as long as
possible and a final bang-bang arc in order to meet the final
conditions of the problem. The value of V* along the initial and
final bang-bang arcs will depend on the location of the points (q,k)
that represent the initial state of the system (qo,ko) and the optimum
final state (qT’k*(T)). In Figure 4d we represented a typical

optimum policy. Optimum policies for some special cases of interest

will be analyzed in detail in Section 5.

4, Sufficient Conditions for Optimality

In Section 3 we have found investment policies V*(t), t e [o0,T],
that satisfy the necessary conditions for optimality specified by the
Pontryagin maximum principle. In this section we will specify the
circumstances under which those policies produce a maximum value
of the objective function J(V(t)). In other words we will study
the sufficiency conditions for our optimization problem. With this
purpose we will make use of the Arrow sufficiency theorem for optimal
control problems (see Chapter II, Section 5).

The Arrow sufficiency theorem, applied to our problem, says
that: the policies [V*(t),k*(t)} obtained in Section 3 will lead
to a maximum of J(V(t)) in (2-5) if H*(k,A,t) is concave in k, for

all t ¢ [0,T], where

*
H (k,A,t) = Max H(k,2,V,t) (4-1)

Ve
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*
In our case we have three different expressions for H (k,A,t)

*
depending on the expression of the optimal control V . These are:

1}
(]

(a) Bang-Bang control with v

H = (U-C) qexp(-pt) (4-2)

(b) Bang-Bang control with v = M
*
H = (U -C)qexp(-pt) + M[A(t) - fiexp(-pt)] (4-3)
*
(¢) Singular control, V = Ve
*
H o= (U -C)qexp(-pt) + V.IA(t) - f exp(-pt)] (4-4)

Remember that in this case A:fkexp(-pt) for all t along the singular
arc.

The function H*,wi11 be concave in k if its second derivative
with respect to this variable in non-positive. For case (a) we have
from (4-2) that:

*

Hep = = Cpid exp(-pt) (4-5)

and therefore H* will always be concave for this case given that,
according to the assumptions (2-1), Ckk will be always non-negative.
In other words, for bang-bang policies with V* = 0 the necessary
conditions provided by the maximum principie are also sufficient
for optimality.

Now, for case (b) we have from (4-3) that
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*

= a £ - -
Hy g (Cd + Ty Mexp(-ot) (4-6)
and H* will be concave here only if

M:

Vv
[ew]

Ckkd * Frik (4-7)

Given assumptions (2-1), this condition will always be satisfied
for capacity production functions f with a non-negative third order
derivative fkkk‘ Therefore for those functions the necessary con-
ditions will also be sufficient for optimality. Nevertheless, if fkkk
is negative then (4-7) defines additional conditions that the

poiicy obtained from the necessary conditions must satisfy in order

to be optimal. In particular, (4-7) impcses the following constraint

ori the value of M:

where the right hand side is positive because g >0, Ckk > 0 and

fkkk < 0. Now, given that we are analyzing the case V* = M, for

which H; > 0, it is obvious that the value of the Hamiltonian will
increase as V* increases. Nevertheless, we can only increase V*
until it reaches the value -g (Ckk/fkkk)’ because beyond that value,
the necessary conditions are no longer sufficient for optimality.

Therefore, for the case in which fkkk < 0, the maximum possible value

of the Hamiltonian corresponding to z contrel that satisfies the
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sufficiency conditions is obtained by choosing

TR , if M

HA

- Q(Ckk/fkkk)’ (4-9&)

= 1F M - glC . /7F _
v o= - q<ckk/fkkk>’ T2 Q\Csz kkk), (4 gb)

which provides the expression for the optimal control in the case

H; > 0, when f,., . < 0.

kkk
Finally for case (c) we can obtain from (4-4)

*

Hkk = - (Ckkq + Vkakk)eXp(-Qt) ,(4-10)
*
-and H will be concave if

Ckkq + stkkk >0 - ,(4-11)

Therefore, we have a similar situation to case (b) in which if fkkk <0

the optimal control will be given by

Vv = Vs , if VS

WA

= Q(Ckk/fkkk)s (4'123)

v

V = 'q(ckk/fkkk), if VS - q(ckk/fkkk), (4'12b)

where V_ is given by expression (3-16 )



5. Special Cases of Interest

The discussion in previous sections has been largely abstract
and theoretical. We have tried to maintain in preceeding sectionsthe
highest possible Tevel of generality in our analysis. Some general
assumptions about the operating costs function C were made at the
beginning in order to keep certain realism in the analysis. No
additional conditions about C were later necessary to guarantee
sufficiency. With respect to the construction cost function f, we
began the analysis without special assumptions other than continuity
and differentiability. Later, it was shown that f should satisfy
condition (4-7) in order to guarantee sufficiency in the bang-bang

case with V* = M and condition (3-23) for singular paths to be
candidates to produce optimum solutions. Finally, no conditions at
all were necessary with respect to the demand function q(t) other
than the obvious reguirement that the total number of users of the
facility be non-negative for each t in [0,T]. In particular, the
rate of change of demand é can be positive, necative, zero or any
combination of them along the period [0,T].

In this section, to jllustrate the results obtained, we will
apply them to some simple special cases. We will in particular assume
that the operating cost function C is homegeneous of degree zero in
g and k. This is equivalent to assuming that the individual operating
costs are dependent only on the volume-capacity ratio of the facility.
This assumption is commonly used in the transportation economics
literature and therefore is interesting to apply our results to this

special case. In analytic terms it impiies, using Euler's theorem on
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homogeneous functions (see Allen, [1971])

k+Cq=0 | (5-1)

Cy q

IT we differentiate C with respect to time and use (5-1) we can

easily obtain

- Ckk(‘}f‘ - g’) (5-2)

k = ',(Ck + cqu). (5-3)
Then, if we use (5-3) in (3-16) we get

Vo= g k/C. g + ) 4

s = 9 LCk/Ca+ £ el (5-4)

which gives an expression for the optimum singular control in the
*
homogeneous case. To understand the implications of VS in this case,

we can use (5-1) in (3-14) to obtain

(Cqala = plkfy) (5-5)

which must hold for all t along & singular arc. Given that qu is
equal to the congestion costs produced by each user of the facility

at time t, expression (5-5) says that, along a singuiar arc, the



capacity k provided at each time t should be such that the congestion
costs, produced by each user, times the numer of users of the
facility be equal to the rental value of the facility when a unitary
cost of capacity equal to the marginal cost of capacity is used. If
each user of the facility is charged a toll such that the total cost
perceived by him is equal to short-term marginal cost,(5-5) leads

to the well-known result that says that, if constant returns to scale
exist in capacity”construction, the total income coliected from con-

gestion tolls will just cover the total rental costs of the facility or
(Cga) a = pf(k), (k) = vk. (5-6)

This condition must be true for each time t along a singular arc. If
there are decreasing returns, for all possible values of k, fkk >0,
and then margina1‘cost tolls will yield an operating surplus, per
unit of time, along.a singular arc. With increasing returns, on the
other hand, a deficit per unit of time will appear. Nevertheless,

we must remember that for this last case V: will be a candidate for
an optimum policy only if (3-23) is satisfied, or in other words,

the increasing returns charactefistic is not too strong. In any case
V: given by (5-4) constitutes an explicit expression for the imple-
mentation of the policy stated by (5-5). Such an explicit expression
has not previously been available in the economic literature. A more
general expression that does not depend on the assumption of homo-

geneity for the operating cost function C is given by (3-16).



5.1 Constant Returns to Scale in Capacity Construction

In this case we can represent the capacity production function

by
f=yk,  with: f o=y, 5, =0 (5-7)

Therefore, we can write from (3-5) and (3-2):

ju o
n

A -y exp(-nt) (5-8)

> .
i

= C,q exp(-pt}) . (5-9)

" We will assume here that the planning period is [0,x]; therefore

from (3-3) we obtain
o= }\(oo) =0 (5']0)

and also, that demand is not decreasing, or g >0, ¥te [0,°] .
Using (5-7) in (5-4) we can easily get that the expression for

%*
the singular control Vs becomes in this case

Vg =k (a/a) . (5-11)

If we now use (2-6) in (5-11) we get that the equation of the singular

arc in the space (k,q) is given by

dk__ dg (
k q

(04}
]
—
(AN}
-
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Therefore, if constant returns to scale exist in capacity construction
and we can assume that C is homogenous of degree zerto in k and q, once
we get aonto a singular arc thé optimum policy is to increase capacity
in the same percentage as increases in demand.

Equation (5-12) corresponds to a straight Tine going through the
origin of the space (k,q), (see Figure 4.5a). The equation of this
straight Tine can also be obtained directly from (3-14) or (5-5) which
represent the necessary conditions to stay on a singular arc. It is

interesting to note that (5-11) implies:
(k/k) = (a/q)

which when introduced into (5-2) gives C = 0. Therefore, the operating
cost will remain constant along the singular arc.

Let us assume now that the operating cost function C is given by

Clk,q) = v + 8(q/k)", h> 2, 8 > 0. (5-13)

This is an obvious extension of those cost functions used in practice
by the U.S. Federal Highway Administration (FHWA) (see Comsis, 1972).
Actually for each fixed value of k, (5-13) transforms into one of the

FHWA functions:‘ From (5-13) we can now get

(@]
n

= = ng(a"/k™T)
(5-14)

o«
)

(i = n(m)a(a" k™)
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Cy = n8(q" /K"
qu = n(n—1)6(q”"2/k”)' ,(5-14)
qu - nZB(qn-T/knﬂ ).

It is easy to check that conditions (2-1), (4-7) and (3-23) are
satisfied in this case; therefore, bang-bang and singular arcs that
satisfy all the necessary conditions will maximize J(V), and combinations
of both will be possible.

Now, from (5-5), (5-7) and (5-14) we can get the following
_ explicit expression for the egquation of the singular arc represented

in Figure 4:5a
k=s6q, 3= (ng/ye)\" (5-15)

Here 6 is directly proportional to the parameter 8 describing the influ-
ence of the congestion effects on the operating cost C and inversely
proportional to the rental value of the constant marginal cost of
construction py. If the rental value of capacity increases, less
capacity will be justified for each level of q and vice versa. On the
other hand, the optiMum level of capacity for each g will increase if
the cost of congestion B increases.

The straight 1ine 0S5 in Figure 5a describes a circumstance for
which the condition A(t) = yexp(-pt) is satisfied. At the initial

time t = 0, if the initial point (qo’ko) is below 0S we will have less
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than the optimum capacity and therefore A(0) > i. On the other hand,

if (qo,ko) is above 0S too much capacity will be in place and x(0) < X.
In Figure 4.5b we have répresented some typical cases of optimum

singular policies. These are:

Case 1 (A-D-E)

* *

arc AD: HV > 0, y

M,(bang-bang)

—— *_ ‘*
arc DE: Hv =0, Js

k (a/q),(singular)

The terminal point of this policy s (qE,kE) at t = =, assuming that
the value of q(t) is bounded, with q(=) = Qe - Note that we do not need
in this case to leave the singular path to meet the final boundary

conditions because

M=) =vexp(-p=) = 0.
Therefore if we consider an infinite horizon, the terminal point will
actually belong to the singular arc. In order to get onto the singular
arc we must first undertake capatity construction at a rate M during

AD. To determine the point D we can use the relation

kp -ky = M (tp-t ), Ky = k(0)



and the equation of the singular arc evaluated at D:

kp = %9
where 6 is given by (5-15).
Case 2. (B-C-E)
——n * *
arc BC: H <0, V =0 (bang-bang)
arc CE: H: = 0, V: = k(g/q). (singular)

Here we have assumed the same terminal condition g(«) = Qg but we

- began with initial conditions (kB,qB) that correspond to a point

above the singular path. Therefore, to get onto the singular arc we
must wait until demand increases to qc holding capacity constant during
the period BC. We can determine the point C in a way similar to that

used for D in Case 1.

Case 3. (A-D-F-G)

arc AD: H; > 0, " (bang-bang)
o x * . .

arc DF: Hv =0, Vs = k{q/q) (singular)
i'____ * *

arc FG:'Hv <0, V.=0 (bang-bang)

This case has the same initial conditions A as Case 1 but it cor-

responds to a finite planning horizon [0,7] with q(T) = Gg and we in

-
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addition assume that the final bourdary condition for » (or the trans-
versality condition) is such that

AT =

-\
< vexp(-oT).

g

Therefore we must leave the singular arc at a pcint F in order to meet

the final conditions. The point of exit F is given in this case by
A (tF) = YEXP(‘QtF)

which upon using (5-9) and the final value At can be written, by
directly integrating equation (5-9) as
T

! - —r+Y AT +
EF qu exp(-ot) dt

My TV exp(-otF) .

1

Substituting the value of Ck from (5-14) and using the fact that

capacity is constant after F, this expression becomes

nBKF~(n+]) {I " Texp(-ct)dt + 1o = exp(-otg) .
F i

Using this equation and the equation of the singular arc evaluated

at F:

where & is defined in (5-2), we can cet both kF and tF.



5.2 Decreasing Returns to Scale in Capacity Construction.

Here we will assume a capacity production function of the form

f=y'k+6k", m> 1 (5-16)

The associated derivatives of interest are

fo=y' +om K™

s m=-2
fkk = Om(m-])k (5_]7)

The linear term 7'K was included in (5-16) in order to allow marginal

cests different than zero for k = 0. This will permit more general

and natural compariéons with the constant return case. Using (5-17)
in (3-2) and (3-5) we can obtain
Hy = - G+ om k™) exp(-pt) (5-18)

i = (qu + 8dm(m=-1) km'zv) exp(-ot) . | (5-19)

From (5-4) we have that the expression for optimum singular controls,

when C(k,q) is homogeneous of degree zero, is

* .
=qg { r o 1
Vs = 0 Lkl Cya + ofyy )



Thus, using (5-14) and (5-17) to replace Ckk and fkk we get the follow-
ing explicit expression for V: in terms of k,q and the parameters of

the problem
Vo = k (g/q)u (5-20)
with  u = n(n+1) 8/[n(n+1)8 + m(m-1) o8 (K™ "Ny . (5-21)

where it is obvious that u will be lTower than one for all m greater
than one.

Using expression (5-5), the equation of a singular arc when C(k,q)
is homogenous of degree zero, and the expressions for Cq and fk from
(5-14) and (5-17), we can obtain the following equation for the sing-
ular arc

n+1 n+1 .

ngq - pr'k - pé mkm+n

=0 (5-22)

which is a curve going through the origin of (qg,k). Unfortunately we
cannot obtain for this case an explicit expression k as in the con-
stant returns case. An explicit expression is obtained only if we
eliminate the linear term of f in (5-16), y' = 0; in that case we

have -

k = 7 q(m*1)/ (n+m) (5-23)



with

Note that for m > 1 (5-23) describes & concave function of g going
through the origin of (k,q).

The value of u can be expressed as a function of k and the para-
meters of the problem if we use (5-22) to eliminate q from (5-21);

in that case we obtain
w = n(n+1)g/Dn(n+1)8 + m(m-1)pond (ov' k™™ 1) + som)™ 17 (5-22)

Therefore we can say that the value of u will decrease as k increases,
and therefore q increases (see 5-22),along the singular arc. Now,
from {5-20) and the fact that u will always be lower than one for

m> 1 we can write, for all t on the singular arc:
(k/k) <(q/q) or (dk/k) < (da/q) (5-25)

Using the first of these relations in (5-2) we obtain that 6 > 0,
which means that for the decreasing returns to scale case the optimum
investments in capacity along a singular arc will produce an increas-
ing operating cost function through time as long as g > 0. From the
second relation in (5-25) we get that the optimum percentage increase
of capacity per unit of time will be Tower than the corresponding
percentage increase of demand. In addition, from the fact that u

decreases With g, the difference will increase as g increases and
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therefore the singular arc will be concave in g as shown in Figure 4.7a
From (5-22) it is obvious that it will go through the origin of (q,k).

In order to obtain an expression for (dk/dq) we can differentiate
(5-22) with respect to q to obtain

(dk/dq) = n(n+1)8q"/[oy' (n+1)K" + gam(men)k (™17 (5.26)

Using (5-22) again to eliminate q, and after some simple algebraic
manipulations we obtain

m-1 n/(n+1)
dk _ n(n+1)8{oY'/n8 + (pdm/n8)K" "]

| oy' (n+1) + pom(men) k™! (8-27)

which is always positive. If m> 1 we will have, for k = 0,

(n+1)""!

(dk/da) =g =8' = (n8/oY") (5-28)

As we saw before (dk/dq) decreases as q increases. Ify' in (5-16)
has the same value asy in (5-7) we have that the initial marginal
cost of capacity, at k = 0, for the decreasing returns case is equal
to the constant marginal cost corresponding to the constant returns
case. The production cost functions are as shown in Figure 4.6. Then
from'(5-15) and (5-28) we have that the singular arc, for the con-
stant returns case, coincides with the tangent to the singular arc
corresponding to the decreasing returns case, at the origin. In

other words 8' = 8, as it is shown in Figure 4.72.The singular arc for



FIGURE 4.6 Capacity Production Costs Function Decreasing

Returns Case
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the decreasing returns case, that is represented by the arc 05,

lies below the straight 1ine k = &g for all q and is concave. There-
fore, the optimum amount of capacity for the decreasing returns case,
is lower, for all g, than the corresponding optimum amount for the
constant returns case. This difference increases with g, for a given
m, and also increases with m for each g. Some typical examples of
singular policies, similar to those analyzed for the constant returns
case, are depicted in Figure 4.7b.

It is easy to show that the second order condition (3-23) for
singular arcs is satisfied for all m > 1 for the present circumstances.
Nevertheless, the convexity condition (4-7) for bang-bang arcs will
be satisfied for any values of the variables and parameters of the
problem only if m> 2. If 1 <m <2, then (4-7) will impose additional

-

conditions to those already analyzed. If we substitute into (4-7) the

expressions of Ckk and fkkk from (5-14) and (5-17) we obtain

v mim-1)(2-mk™ < CnineT)e/mI(a" 7M7), (

A
($2]
]
no
(Vo)
g

where 0 < (2-m) <1.

As we saw in Section 4. , this expression can be seen as a condition

for M if we write it as

M < [n(n+1)8/y' m(n-1) (2-m)1("F /™01, (5-30)

*
which gives an upper bound for the vaiue of M, and therefore V (%),
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for each point (q,k) situated below the singular arc. If the value
of M violates condition (5-30) for a point below the singular arc,

then the optimum investment policy at that point becomes (see Section 4):
VT = {n(n+)8/y’m(m-1)(2-m)1(qn+1/km+”°1>; (5-31)
this policy should be maintained until the singular arc is reached.

Expressions (5-30) and (5-31) are alsc applicable to the singular

control if we replace M by Vs‘

5.3 Increasing Returns to Scale Case

This case is largely symmetrical to the one analyzed in the
oreceding section. Nevertheless, the second order conditions are

different. We will simply assume here that the function f is given by

f=ck™ 0<m<] (5-32)

£o=em k™!

£ = ¢ m(m-1)K™2

Kk (5-33)

frpe = € m(m=1)(m=2) (-3

We can find the equation for the singular arc using expressions (5-5),

(5-14) and (5-33) to obtain after simple algebraic manipulations:



N V1 R )

with = = (nS/osm)(n+m

(5-34)

which represents a convex function of g going through the origin of

(ask). A representation of (5-34) is given in Figure4.8a by the arc

Al

The expression for the singular controls is obtained from (5-4),

(5-14) and (5-33). In fact, we find that

* .

Ve = kla/qh’ (5-35)
with > = n(n+1)g/[n(n+1)8 + pem(m-1) (km+"/qn+])] (5-36)
If we now use (5-34) to eliminate k and g from (5-36) we can obtain
the foliowing expression for p’ as a function only of the degrees
of the functions C and f:

u’ = (n+1)/(n+m). (5-37)

Here it is obvious that ﬁ’wi]] be positive and higher than one for
all m between zero and gne. In addition p*® will increase as m de-
creases or, in other words; the economies of scale increase. There-

fore, we can write for all points along the singular arc:

(k/k) > (q/q) or (dk/k) > (da/q) (5-38)
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From the first of these relations we obtain, using (5-2) that ¢ <o0.
Therefore, for the increasing returns tc scale case, the optimum
investments in capacity, along a singular arc, will produce a
decreasing operating cost function through time, as long as é > 0.
From the second expression in (5-38) we deduce that the optimum per-
centage increase of capacity, per unit of time, will be higher than
the corresponding percentage increase of demand. Some typical
singular policies are presented in Figure 4.8b.

It is easy to check in this case that the sufficient conditions
(4-7) and (4-11) for bang-bang arcs with V*= M, and singular arcs
respectively are satisfied for all possible combinations of positive
- values of g and k. This is because fkkk > 0, as we can check in
(5-33). The second order necessary condition (3-23) for singular

arcs, cambe expressed, using (5-14) and {(5-33) as
n(n+1)8("™ 1 /k™2) + oe m(m-1)K™2 5 g (5-39)

Upon rearranging terms this can be written as
k < nq(nﬂ )/ (n+m)
with :

n = {L(n+1)/(1-m)] (ng/pem)3 ™ (5-40)

Given that the value of m must be between zero and one, it is
¢cbvious that n will be higher than 7 in (5-34). Therefore, condition

(5-40) will be satisfied for any point along the singular arc.



V. OPTIMAL INVESTMENTS IN CAPACITY AND QUALITY. DISCRETE CASE

1. Introduction

As was mentioned in the preceding chapter, investments in trans-
portation faciiities can present important indivisibilities. This
is especially relevant for the capacity variable, feasible vaiues
of which are usually contained in a finite countable set. Thus, the
capacity of a road can only be increased adding new lanes, the
capacity of a part adding new loading sites, etc., where the feasible
increases are obviously discrete. Therefore, the decisions about
capacity provision for individual transportation facilities are in
practice transformed into time staging decisions. In that case,
different discrete levels of capacity are defined and the problem is
to find the optimum time at which a jump from one level of capacity
to the next one must be made. In preactice, a given level of quality
is also associated with each Tevel of capacity, which defines a set
of feasible states for the facility. The jump from one state to another
defines a project whose impienentaticn time must be decided.

In this chapter we will present a mathematicai model that treats
capacity as a discrete variable, feasible levels of which are
externally specified, and also allows for discrete jumps in quality
at the times at which capacity is changed. Nevertheless, we will
consider quality as a piece wise continuous function which value is
internally determined by the model at all times t with t ¢ [0,T]. The
necessary conditions for optimality will be developed and from them
the characteristics of optimum policies and their economic inter-

oretation will be derived.



2. A Mathematical Model for Optimal Staging of Capacity and Quality

As before we will assume'that we have a transportation facility
with homogeneous users, who perceive a utility U(t) from each trip
performed over the facility. In addition, let us assume that N
possible levels of capacity have been defined for the facility, each
of them associated with an operating cost function Ci(s,q) like that
defined in Chapter IIl.The same assumptions made there about the
characteristics of this cost function and the qué]ity variable s are
valid here.

Therefore, the net private benefit obtained by an individual
user from each trip performed over the facility, when the capacity

is at Tevel { is
B(£) = U(t) - Ci(s(t),alt)) = T....N (2-1)

Let us use the natation ti_(i =0, T,....,N-1) to refer to the times
at which an increase of capacity is provided and t; and t: to refer
to the moments just before and after ti. We will call V(t) the amount
of money spent on maintenance* at each time t with t ¢ [t?, tt+1]
(i = 0,1,....,N=1) and Ii(s(t:),s(t;)) the investment necessa;y, at

time ti’ to go from a capacity level i to a capacity level (i + 1).

*
In ‘this chapter maintenance will refer to only those activities
that decrease or eliminate deterioration of the facility.
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This investment will be a function of the quality of the facility
just before and after ti' In other words, discrete jumps of quality
are allowed at each time ti at which capacity is increased. Then,
the cost of the fixed increase in capacity will depend on the amount
of quality improvement provided at the same time.

Qur objective in this case will be to choose a set of times
{tj} (i =1,....,N=1), a function V(t) for each interval [t?, t;+]]
and the values of s(t?) (i=1,....,N-1) in such a way that the
social net benefit will be maximized. We will assume that the initial

time tG and the final time tN = » agre given. Then, the objective

function can be written as:

+ +

-c(r . M
d\\li’t]s-..-atN"], SO,..--,SN'T)

N -
o5 AIU() - CiGs(e),a(e))]alt) - V(t)texp(-ot)et
i=1 t .
(i-1)
N-1 +
- T L(s(ty),s(tl))exp(-ct,) ,(2-2)
120 1 1

N-1 .
¢ = -1 ILi(s(ty),s(tilexp(-pt.),
i=0
+ + - -
s; = s(ti), S; = s(ti) ,(2-3)
List = (ali/as¥) Iisf = (BIi/as;)

As in Chapter 3 we will in addition assume that the change of
quality in the facility, per unit of Zime, for 2all t ¢ t; (i =20, 1,
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,N) can be represented by differential eguations of the form

é = fi(S(t)7q(_t)9V(t)st); t € Et:-_]‘t;], (] = ]’...,N)’ (2_4)

and that the amount of money that can be spent in maintenance at

each t is constrained by

M(t) .

WA

m(t) g V(t)

3. Necessary Conditions for Optimality

If we consider that the demand for using the facility q(t) is
given for each time t in the period [to,tN], then the maximization

¢t the objective function (2-2), subjeci to the quality dynamics

(2-4) and the control constraints (2-5) is an optimal control
The

problem of the type presented in Section 3.3, of Chapter III.

Hamiltonian is in this case defined by:

Hy = {[U - C;(s.a)]q - Viexp(-pt) + A

(3-1)

+ - .
te [ti_],ti], (1=1,...,N)

) +  + +
and‘1n order for a set (V(t),t],...,tN_], e 51,...,SN-1)* to be

optimal, the following necessary conditions must be satisfied.
A= - (aHi/as) = (.9 exp(-ot) - 2f.,

1 »

te [t 1.t50 (5= 1,
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with:

MEG) = (36/3s(6])) = Tyg exs(eoty), (12 1,...0)

(3-3)
MED) = (B0/3s(£])) = Ligexp(opty), (3= ToooN)  (3-9)
and
(36/3t;) = Hyguqy(£]) = H(E5), (3= 1o NeT)., (3-5)

By using the definitions of ¢ in (2-3) and Hs in (3-1) this
becomes

where we have assumed that the variable g(t) is continuous for all
te [to,tN] though its derivative with respect to time can be
discontinuous at some points within the same interval.

Finally, the value of V(t) within each interval (t:,t;+1) has
to be chosen in such a way that the corresponding value of the

Hamiltaonian is maximized:

* * * * *
Hi(s A,V ,t) 2 Hi(s )

+ -
i s A\ ,V.t)s ¥ t ) [t_'_-l ,t_‘]
¥Vven (1= T,.0.0.0)



where @ is defined as usual by (2-5).

For each interval [t:_1’t;], the problem of selecting an optimum
maintenance policy Vf(t) corfesponds to the case analyzed in Section 2
of ChapterIiI;therefore,V* must satisfy (see expressions (2-13) to

(2-15) of Chapter III the following:

q

A fiV - EXP(-pt), ifmc< V* < M

A f

exp(-pt), if V*

HA

m > ¥ telti g 7], (3-8)

. (1= Thuenia)

iv

A f.y > exp(-pt), if V'

v

iV

4. Economic Interpretation. Optimal Investment Rules

+ Expressions (2-4), (2-5), (3-2) to (3-4), (3-6) and (3-8)
constitute a complete set of necessary conditions for the problem
defined in Section 2.

As in Section 2.2 of Chapter III we can integrate the adjoinﬁ
equation (3-2) for each interval {t:-],t;], using the boundary value

of x(t;) provided by the transversality condition (3-3), to obtain
A(t) = - fti'{[Cisexp(fxfisdz)]q(x)exp(-px)}dx
t t
te
+ Iis_exp(i i f,dz)exp(-ot;) (4-1)

with

+ - - : = 1 i
te [ti_]’tij, X € [t,ti], (i = 1,....,N).
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The first term in this ekpression for 3(t) was interpreted in
Section 2.2 of Chapter 3 as the present value, at time t, of the
cost reductions experienced by all the users of the facility, during
the period [t,t;], as a consequence of the implementation of one
additional unit of quality at time t. The second term represents
the reduction in construction costs at time t; due to an additional
unit of quality provided at time t. This second term appears because
in the definitioﬁ of I; we have assumed that quality is an additive
variable. In other words, the cost of providing a level of quality
s:, at time t?, depends on the level of quality s; at time t;. In
many practical situations this is not the case and the Ii depends

only on the value of s:. Then, I = 0 and the second term of

is-
expression (4-1) disappears. We will assume this latter case for
our subsequent analysis. Therefore, as usual, r(t) is the shadow
price of quality at time t.

Expression (3-4) can be used to determine the optimum level of

. + \ , + . o
quality s. to be provided at time t.. Using (4-1) we can write

L(g-1)seexp (o0t ) =

t
- :€+1

i (4-2)
i-1

{[C,exn( ff f;dz)Ja(x)exp(-px)}dx ;
j-

i

where the left hand side is the present value of the marginal cost
of quality for project (i-1) and the right hand side is equal to
the present value of the marginal benefits of one unit of quality

implemented at time ti-l' This benefit is a consequence of the

p—
4
~1



aperating cost reductions e%perienced by all the users of the facility
during the period [t:_],t;], and its value will increase as the

number of users in the period q(x) increases or the length of the
period increases. We will expect in general that decreasing returns
exist in the production of quality (at least after a certain level

of quality has been reached) and therefore, for a given construction
date ti—l’ the left hand side of {4-2) will increase with s. 0On the:

other hand we expect that the marginal reductions of operating costs,

produced by quality increases, C will be constant or non-increasing

is,
with s. As a consequence, the right hand side of (4-2) will be non-
increasing with s. In that case, the net marginal benefit per unit
of quality implemented at t:-T will be decreasing with s and relation
(4-2) will Tead to a value of 5:-1 that maximizes our objective
function J in (2-2).

The necessary conditians {3-6} give us N-1 equations for the
determination of the interior upgrading times t.. Using our

i

assumption that Ii is independent of the quality of the facility at
- - * . -
t;, which leads to k(ti) = 0 due to (3-3) and V (ti) = m (ti)
due to (3-8), we can rewrite (3-6) as
*, 4+

oL, + IV (£]) = m(3)] - 27 (£))7], (tD)exp( ot.) =
[C;(£7) = Cypp(ED)Talty) (4-3)

The first term on the left hand side of this expression is the
rental value of investment Ii and the second term is the difference

between the optimal amounts spent in maintenances, per unit of time,
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. is made. Note that if an

just after and before the investment I1

optimum maintenance policy is performed within each interval between
investments, this term will be positive or zeroc. The third term
is the social value of the optimal deterioration of the upgraded
facility at time t: (just after the investment is made). The value

* + ] '
of X\ (ti) is here given by

V(e = - ifjn (4475850 tﬁ £ 1411582 Ja(x)exp(-0t ) Jax, (4-4)

1 i+1

i i

where the "*" in this case means that the optimum maintenance policy
specified by conditions (3-8) is performed during the period [t:,t;+1].
Given that we are assuming that only maintenance activities (not
improvements of quality) are performed during each period between
investments, f:+](tq) will always be negative or zero and therefore
the entire third term will be negative or zero, because k*(tf) is

in this case always positive. The actualization factor exp (pti)
* 4 . .
transforms the value of A (ti)’ that is expressed in present value

att= to, to current value at t = ti'

A1l other terms in eguation
(4=3) are also expressed in current value at ti' Therefore, the
left hand side of (4-3) is the amount that we save if we postpone
our investment Ii by one unit of time, or in other words, it is the
marginal benefit of postponement per unit of time.

The right hand side of (4-3) is equal to the difference between
the total operating costs of facility users, just before and after

the investment Ii is made. If the investment Ii increases both the

quality and the capacity of the facility, this term will obviously be
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positive for any positive value of q(t) (see Figure 5.1) In this

case, the free flow cost after the investment, C( , will be

i+1)o

Tower than before the investment, C._, given the increase in

io?
quality, and the congestion costs Cq will also decrease, given

the increase of capacity. Therefore, the difference between
operating costs in (4-3) will be positive and increasing with q.

If the quality of the facility were the same just before and after
the investment, then the free flow costs would be the same in both
cases and a difference between operating costs would only appear
when congestion appears. On the other hand, if congestion does not
exist over the facility and free flow conditions prevail, the
difference between unit operating costs will be constant with re-
spect to q (q < ai, in Figure 5.1) but still the difference between
total operating costs will incrzase with q if Cio > Crist)o.
Thus, the right hand side of (4-3) corresponds to the total savings
in operating costs that would be obtained per unit of time if the
investment Ii were undertaken. In other words, it is equal to the
marginal cost derived from the postponement of the investment
decision per unit of time.

Then, we can state rule (4-3) as follows: the optimum time t:,
for upgrading the facility, comes when the marginal benefit of post-
panement per unit of time is equal to the marginal cost of post-
panement per unit of time. This statement corresponds to Marglin's
navie rule (Marglin, [1967]) for dynamic investments. It already
appeared in Chapter IVunderlying the optimum investment policies in

continuous capacity alaong a singular arc. Remember that the corres-
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ponding aptimal policy was interpreted there (see 3-19 in Chapter
IV) as the same rule applied to the marginal unit of capacity.

We make note that rule (4-3) does not apply to the determination
of time t, at which the initial investment I, must be undertaken,
because Co(t;)
and the fact that Ho = 0, we obtain

and m(t;) do not exist. For that case, using (3-5)

Z)f;(t;)exp(oto) =
I

[U(tg) = Cq(t)alt,

*7+ *
pIo +V (to) - X (t

(4-5)

The main difference in this case is that U(t;) replaces to Ci(t;) of

equation (4-3). Therefore, we need an estimation of the utility
*
o
‘Both (4-3) and (4-5) are marginal rules saying basically that

U(t;) in order to determine the optimum value t
the investment shoq]d be undertaken when the net marginal social
benefit of postponement becomes zero. In order for this rule to

Tead to a maximum valjue of the objective function, and not a minimum,
we need that a second order condition be satisfied. This second order
condition is obviously that the above mentioned net marginal benefit
must be monotonically non-increasing with ti. It is easy to see that
this will be in general the case if q(t ) increases with t .

Finally, if we assume that the values of t: and s;*have been
already determined, the problem of finding optimal maintenance
policies Vf for each period [t:_1,t;] is identical to that analyzed
in Sectiaon 2 of Chapter 3, as it is shown by the necessary conditions

(3-8).



5. Numerical Solutions and Special Cases

The necessary conditions deveioped in the preceding section
can be used to obtain numerical soluticns simultaneously for the

Tl N Y*. Nevertheless,

set of unknowns (V(t),t1,....
finding solutions to such problems can be quite involved (see

Bryson and Ho, [1975]). The difficulty of the problem comes from the
fact that the optimum values of V(t),t; and s: are all interrelated.
Far instance, we can see from (4-3) that the optimum values of t?
depend on the quality s: (because Ii’ci+1(t:) and fi+](t:) are ali
functions of s:)and the optimum maintenance poticy V*(tg). But

from (4-2) we have that the optimum value of s: will in turn depend
on the value of t:, and from (3-8) and (4-1) we can see that the
value of V*(t) will also depend on the values of t:. Obviously,

the problem will increase in complexity as the number of investments
that we want to analyze increases.

If we make assumptions that break the above mentioned inter-
relations important simplifications can be obtained. For instance,
if we assume that for each investment Ii not only the increase in
capacity, but also the quality s: is externally determined and in
addition a maintenance policy Vi(t) is specified for each interval,
such that the deterioration fi+1 will be zero or negligible in terms

of its influence on the operating costs, then (4-3) becomes a pure

staging rule:

oy + Ui (81) = 1) = [65(£3) - ¢



This simple rule has the great attractiyeness that it only depends
on the known functions 91, C, and the observable quantity q(ti).
Thus, for its application no predictions about the future values

of the variables involved are needed at all if we make the weak
assumption that q(ti) is not decreasing with time. We can actually
observe the value takeﬁ at each time t by the independent variable
q(t) and calculate the values involved in (5-1). The decision to
undertake the invéstment Ii should be made when a value of gq(t) is
observed such that (5-1) holds. Of course, if we have an estimation
of the values that q(t) will take throughout the whole planning
period [to,tN], then we can calculate all the values t: (i = 1,...,N=1)
at time t0 by means of (5-1).

Now, if we assume that we know the length of the life interval
[t:_],t;] for project I. ; and the maintenance policy is externally
specified, we can easily calculate the optimum value of s: by
means of (4-2), given that we have an estimate for the demand q(t)
throughout the period [t:_],t;]. Actually if C.. and fis are
canstants independent of the value of s, a fact which implies that the
operating cost reductions per unit of guality are independent of
the level of quality and that the natural deterioration per unit of
quality is fixed, then it is not necessary to assume that the
maintenance palicy is externally specified, because in that case
the optimum value of s: is independent of V(t) (the right hand
side of equation (4-2) can be integrated without knowing the values
that s takes inside the interval [tf_],t;]). The values of s:*

;
*
and V (t) can be calculated sequencially.

-
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0f course, interrelationships between t: and s?* can be
heuristically considered if we begin with a set of values of s?,
calculate the set {ti} and gd back to check if the initial values
assumed for s: are optimum. The values of s: obtained from the
second step, if different than the initial ones could then be used
to reinitiate the process. An iterative procedure of this type
could eventually converge to the optimum values that we are seeking,
although there 1s‘no guarantee that such would occur.

The model formulation analyzed in this chapter suffers from two
main limitations. The first one is a consequence of the discrete
characteristic of the capacity investments. If economies of scale

exist in the construction of capacity it could be possible that a
| sequence'{Ii} that groups together some intermediate investments
could be better than another one that considers the maximum dis-
acgregation possible. Thus, the savings obtained, in terms of con-
struction costs, whén going directly from capacity level i to capacity
level i + 2, instead of passing through an intermediate stage i + 1,
could more than compensate the reduced fitness of capacity to acutal
flow. The problem is that given the absolute discretness of the
capacity variable, the economies of scale charateristics of capacity
construction cannot be built into the model. The model can give an
answer if a specific sequence of investments is externally proposed,
but it cannot internally determine the optimal sequence. If we
want to find such an optimal sequence, the model should be applied
to all possible sequences and the results be compared.

The secand limitation is that in practice the demand for the



use of the facility can be a function of the operational characteris-
tics of the facility. If that is the case, aq(t) cannot be externally
estimated but must rather be 5nterna1?y determined by the model. An
additional dynamic equation describing the relationships between
demand and facility characteristics should be intrcduced. This
relationship is studied in a Timited way in the next chapter where

we analyze the influence of such considerations on pure time stacing

optimal rules.



VI. _INFLUENCE OF DEMAND-QUALITY T
QF STAGE CONSTRUCTICN FOR TRAN

RRELATIONSHIPS ON QPTIMA&L POLICIES
RTATION FACILITIES

1.0 Introduction

The need for dynamic investment strategies in transportation is
pernaps clearest and best illustrated in the case of developing countries.
Developing countries are in general characterized by poorly developed
intrastructures., This is particularly true of the transportation sector,
where sparsely connected networks with numerous links providing sub-
standard levels of service are frequently encountered. Furthermore, it
is often argued that in such circumstances investments in transportation,
especially highways, are required in order to foster the growth of hinter-
lands and bring about inter-regional equity. These attitudes not with-
‘standing, it is not at all clear what the level of service, or as we
shall call it, the quality, of transportation facilities should be and
now discontinuous changes in cualitv. such as the replacement or
upgrading of highways. should be staged over time.

Since transportation volumes in underdeveloped countries are
reiatively low on inter-city Tinks and rural roads and are only expectec
to grow as a consequence of the develooment process, it is generally not
advisable to implement high volume, high cuality facilities immediately;
this conventional wisdom is further underscored by the fact that there
is usually an overall scarcity of public investment funds in such
developing nations. Because of these facts multiple stage development
policies have long been advocated for underdeveloped countries.

Marglin (1967) in a classic study of public investment policy
appears to be one of’the first to deal with the typne of dynamic invest-

-

ment problems described above in & ceneral way. His "naive static rule’

—
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states that "the optimal contruction date, to’ of a project arrives
when the present value of a perpetual stream of benefits, at the {nstan-
taneous rate corresponding to to’ equals the construction cost of the
project for the first time." Beenhakker and Daskin (1973), though
apparently unaware of the work of Marglin, used the naive static rule
te derive time staging formulas for transportation facilities, correspond-
ing to different assumptions with respect to the way in which demand
increases as a function of time. De Neufville (1969) used dynamic
programming to solye basically the same problem. Finally, Venezia (1977),
also using a dynamic programming approach, derived staging decision rules
for the case of uncertain demands. Venezia's main result may be con-
sidered a generalization of Marglin's naive rule for stochastic demands.
A1l of the aforementioned efforts make the rather strong assumption {hal
the transportation demand is independent of the quality of the facility
orovided, and in some cases, e.g. Veneziz (1977), only the uncongested
case is analyzed.

The interrelationship between transportation level of service,
or quality, and the development of socio-economic activities has been
widely recognized; see e.g. Manheim (1978). In the case of developing
countries they can be especially important, as the numerical example
presented later in this chapter dramatically illustrates. Such inter-
relationships imply that present levels of service (quality) not only
affect .the benefits and costs accruing to current users, but also in-
fluence the characteristics of future demand through their effect on
the location and development of new activities within the area of

influence of the facility considered.



The primary objective of this chapter is to investigate the
influence of the preyiously mentioned demand-guality interrelationships
on time staging decision ruies: for transportation facilities. To this
end the case of upgrading a road will be considered. We will assume
that a lump investment which improves the quality and/or capacity, of
the road in a discrete fashion has been externally defined and the main
question to be answered i1s when should the investment be undertaken.

In order to analyze this problem a dynamic optimization model will be
stated and solved using the results of optimal control theory, presented

in Section 3.3 of Chapter II.

2.0 The Model

In this section an optimum decision rule for the time staging
orobliem with respect to upgrading a road will be derived. We assume
that our system can be adequately described using two variables, the
guality of the road s{t), which will be considered here as a control
variable, and transportation demand q(t), considered as a state variable.
The variable s(t) could in practice be represented by an index that
takes into account the different factors that determine the quality of
a road from the point of view of users, such as total length, width,
alignment, type of surfact, etc. (practical ways of handling the variable
s in real applications are proposed in section 5). The
variable q(t) corresponds to the number of users per unit of time.

In order to represent the dynamic interrelationship between
the two variables s(t) and q{t] the following linear differential

equation is utilized:



a(t) = a(t)s(t) + b(t) 5 qlo) = o (2-1:

where a(t) is the rate of change in demand, at time t, per unit
of quality; and b(t) represents those effects which are indepenaent of
the quality of the facility and which influence the rate of change of
demand. Thus, we are assuming that transportation demand will be
determined by the interaction of our control variable s(t) with the
time-varying parameter a(t) and some external factors, outside our
centrol, represented by the non-service rate of change of demanc, or
“natural"” rate of growth of demand, b(t}). 1In general s(t) will be a
function of different factors such as the natural rate of deterioration
of the road, intensity of use, maintenance policy and discrete investments
'{see Chapters III and VII). However, for the purpose of this chapter, it
wiil suffice to assume that within each of the two stages considered,

eTore and after upgrading of the road, the gquality will be constant anc

or

equal to that existing at the beginning of each stage. This perspective
assumes that the appropriate maintenance policy has been perforred
during each stage to ensure the constant quality level assumed o

exist throughout the stage. Thus our control variable must satisfy

the following constraint:
s(t)eS = {s(t): s(t) = sy, ¥ t e [o, t*];

s(t) = S, ¥te [t*+, T]: (2-2)

Where t* i{s the time at which the road is upgraded, T is the fixed

terminal time of the planning period, and the s; are constant rcad
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gualities during the ith stage. e consider, for expasitory purposes,
only two stages: stage 1 corresponding to the time interval [0,t*-)
and stage 2 corresponding to the interval (t*=, T]. The arguments given
below may be generalized to any finite number of such stages. It should
be noted that (2-2) defines a functional form for our control variable,
information which will play a key role in the analysis which follows.

We are interested in choosing t* such that the present value of
the net benefits prbduced during the nlanning period [0,7] is maximized.

Consequently, we denote our objective as:

*

t

Maximize d = /J [U - Cl(s(t),q(t))]q(t) exp (-pt)dt

0

* *

-I(t )exp(-ot )

T
+ 7 [U- CZ(S(t},q(t))]q(t)exp(-ot)dt

t*+

+ Y(q(T),T) (2-3)

Wnere U is the average user utility per trip which will in general

be a function of t; Ci(s,q) is the average cost of operating a vehicle
over the road during stage i, which we consider a function of the quality
of the road and the number of users; I(t*) is the amount of resources
necessary to upgrade the road at time t*; ¥ (q(T).T) salvage or residual
value of the road at the end of the planning period; and ¢ is the appro-
oriate constant interest rate. The quantities U, C, T and ¥ are assumed

to be expressed in terms of some common numeraire, presumably dollars.
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The problem defined by (2-1}, (2-2) and (2-3) is an optimal contro]
problem where both the objective function J and the constraints (2-2),
are functions of one discrete interior point in time t* ¢ [0.T].
Therefore, in order to find an ontimum solution we can make use of the
necessary conditions for optimality developed in section 3.3 of Chapter II

for these kind of problems.

3.0 Solution of the Necessary Conditions

The Hamiltonian function for the problem defined in Section 2.0 is:

~

Hy (2]

(U-C;lq exp (-ot] + n(as +b), ¥V t e [0,t*"]

I
™~
—
P s
~—
n

(U-Ch)g exp (-pt) + plas + b}, ¥ te [t**.T]

where for simplicity in notation we have eliminated the arguments of
all variables. The variable p, the adjoint variable, is a function of
time and its interpretation is given later in the discussion. The
symbols t*-and t*+ refer to, respectively, the instants just before and
just after t*.

Necessary conditions for an optimal solution of our problem can
now be expressed as follows: (See Chapter II, Section 3.3)
-8H]/aq, ¥ te [o,t*]

p =

—~
w
[}
[AS]
—~—

-

‘EHZ/SQ, ¥t £ [t*J";T‘}

-



p(t*=) = p(t*+) = p(t*), o(T) = (’9? ) i (3-3)

](t*“) = Hz(t*J") =0, (3‘4)

where {n our case ¢ = -I(t*) exp (-pt*).

Following the standard terminology we refer to equations (3-2)
as the adjoint equations and the boundary conditions (3-3) as the
transversality conditions. Equation (3-4) determines the extremal
staging time t*. In general, as we saw in Chapter II, in order to
determine the functional form of the extremal controls, the Hamiltonian
must be maximized with respect to them on the interval [0,T7]. In
our case this additional necessary condition is redundant in light of
constraint (2-2) which already defined the functional form for s(t).
That is to say, constraint (2-2) replaces in the present problem the
usual maximization of the Hamiltonian as a necessary condition.

We now use (3-4) to find the extremal staging time t*. Upon
performing the differentiation denoted by 5¢/3t* and using (3-1),

condition (3-4) may be rewritten as:
e+ o 1(t) = [C(t%) - C,(t%)]q(t*)

+ o (t*r)a(t*) (s, - sq), (3-5)

wnere It* is the rate of change of the upgrading cost at the extremal
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staging time t*; note that It* can be either positive or negative,.
Furthermore, the change of variable:

m (t) = p(t) exp { et

has been made in (3-5). To obtain result (3-5) we have made use of the
continuity of U, q, p, @ and b. The continuity of these quantities may

be expressed as:

U(t%-) = U(t%+) = U(t*)
g(t*-) = q(t*+) = q{t*)
p(t*-) = p(t*+) = p(t*) (3-7)
a(t*-) = a(tx+) = a(t*)
b(th-) = b(t*+) = b(t¥)

It is easy to see that if the upcrading cost is constant over time
‘1., = 0) and demand is independent of the gquality of the facility

(a{t) = o), expression (3-5) may be reduced to:

o I(t*) = [Cq(t*) - Cy(t*)]q(t*), (3-8)

where the left hand side is the rental value of the investment needed
to upgrade the facility from Sy to So and therefore represents the
marginal benefit, per unit of time, obtained from postponement of the
investment decision. The term on the right-hand side corresponds to
the marginal cost per unit of time, resulting from postponement of the

investment and is a consequence of the operating cost reductions that

p]

would be obtained per unit of time 1f the upgrading of the road were
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performed, but which are foregone due to postponement. Therefore,
(3-8) says that the upgrading of the facility should be undertaken when
the marginal cost of postponement becomes equal to the marginal benefit
of postponement, per unit of time. However, because we have assumed
that demand is independent of the gquality of the facility, the marginal
cost of postponement only considers the operating costs reductions that
would be experienced, per unit of time, by the current users of the
facility, if the upgrading were undertaken. This is exactly the rule
proposed by Beenhakker and Danskin (1973), and extended by Venezia [1977)
for the case of stochastic demands. The second term on the right hand
side of (3-5), which appears if a(t) # 0, represents the consequence of
explicity considering the interrelationship between quality and demand.
‘We will turn now to its interpretation.

We saw in section 4 of Chapter II that the adjoint variables

represent in general, dynamic shadow drices for the corresponding stiat

M

AY

variables. In this particular case, p{t) is the shadow price of demand

[el)

t time t. Thus, p(t) evaluated along an optimal path will describe

how much the objective function would be altered if we change the demand
for transportation by one unit during the period [t,T]. It should be
noted that our objective function is expressed in terms of present

value as is the adjoint variable p(t). Therefore, 7 (t) will represent
the transformation of p(t) to current value at time t. Such a trans-
formation has the advantage of expressing all the important variablies of
(3-5) in terms of current values.

Expressions (2-3) and (3-9) allow us to write the following

expression for m (t*):



Where the integrand in this expression corresponds to the present

value of the difference between utility and the social marginal cost
due to a trip at time t; the notation C2q* = 5 (,/3 q*is used in (3-10),
We are now able to identify the second term on the right side of (3-5)
as the present value of the total benefit (which may be negative)
obtained as a consequence of the new traffic generated at time t* from
the change of facility quality produced by the investment I(t*). We

can see that the sign of this additional term will depend on the sign .
of =(t) if we make the reasonable assumption that a(t) > 0, ¥ t ¢ [0,T].
Moreover, w(t*) will be positive when congestion is not high and
utility U remains greater than the social marginal cost during the
period [t*,T]. Nevertheless, in some cases it could happen that the
road improvement generates so much new traffic that at a certain time
during the periad [t*,T] the value of the social marginal cost becomes
higher than the average utility U. In that case a negative value of

*
1(t ) can be obtained.

4.0 Sufficient Conditions

Before discussing the implications of our demand-quality invest-
ment rule (3-5) in greater detail, we must first analyze the second

order or sufficiency conditions for the optimization model posed in



Section 2.0. That is to say, we want to know under what circumstances
the extremal sclutions obtained in Section 3.0 in fact lead to &
maximum of abjective function (2-3). For simplicity we will assume

in the following analysis that construction cost I is constant with
respect to time as is the discount rate p.

Since the decision rule (3-5) is stated as a marginal condition
at time t*, it will lead to a maximum of (2-3) if the benefits per
unit of time generéted by the new project are increasing at t*; it
will lead to a minimum {f the marginal benefits per unit of time are

decreasing. In analytical terms, if we use the notation:

B(t) = [Cy(t) = C,(1)Ialt) + n(t)a(t)(s, - 5,), (4-1)

then (3-5) will lead to a maximum if:
B(t) > 0. (4-2)

Differentiating (4-1) with respect to time and rearranging terms leads

to:
B(t) = qUiC; = MCy) + (s - sy)(a 7+ a m), (4-3)

where:

MC; =+ Gy (4-4)

—
(@3}
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is the marginal social cost produced by an additional user at time
t, if the facility is at stage i. Zxpressions (3-1) and (3-2) may

be used to write:

*

* * *
p(£) = -[U - HC,(£)] exp(-ot ). (4-5)
Using (3-6), this last expression becomes:

{r(t*) = o T.r(t*) - U - Mcz(t*)]. (4-6)

Also (2-1) gives:

*

q(t7) = a(t )s, + bt ). (4-7)
'
We may now use the expressions for %(t*) and é(t*), equations (4-6)
and (4-7), in conjunction with (4-1) and (4-2) to write the following

sufficiency condition:

B(t)/alt) = (s, + b/a)(MCy - MC,)

* (sp = sy)[(U- MCy) - 7(e +2a%)] > 0, (4-8)

*
Where all variables are evaluated at t and:

-

a” = a/a

168



is the proportionate rate of change of a(t). The expressicn (4-8)

will have the same sign as é(t) provided alt) > 0, ¥ t ¢ [0,T].

If the investment I(t*) produces an enhancement of facility quality,

without changing capacity, we will have that the average operating cost

o will be reduced for all g but C1q = CZq
*

same in both cases. If I(t ) both increases quality and capacity,

, given that capacity is the

then, in addition to a reduction in the average operating costs, we

will have C2q < C1q for all gq. Therefore, we will in general

have:

%* *
MC](t ) > MCZ(t ). (4-10)
* . *
In addition, if we assume that a(t ) > 0 and q(t ) > 0, then

(52 + b/a) > 0

Consequently, the sufficiency condition (4-8) can be written as:

MC] - MC, > QLU - MCZ) -m(o + a’)], (4-11)
where:
(s, - s7)
Qo= 2 % (4-12)
(s, + b/a)



it is assumed in (4-11) and (4-12) that all variables are evaluated
*

at the extremal staging time t .
When congestion does not cccur the following identity of course

holds:

o
n

MCi (4-13)

Under the assumption that (4-13) holds, (4-6) becomes:
T = cT - Gz (4-14)

*
~ Where GZ represents individual gains obtained fcr times t > t and is

written:
Gz ={ - CZ’ (4-15)

Thus, a complete specification of a sufficiency condition when there
is no congestion requires that one solve the linear differential

equation (4-14) which will be subject to the boundary condition:

™ (1) =(35) exp (o) (4-16)
- T - B

which {s obtained form (3-3) and (3-6). Boundary condition (4-16)

makes {t clear that in order to determine the value of =(t) needed

for our sufficiency condition we must assume an expression for the

residual or salvage value of the road. ke assume the followina:
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v (M) = /° qu(T)ekp(.—,ot)dt (4-17)
| T

which states that the salvage value of the road will be equal to the
present value of an infinite stream of benefits, starting at time T,
with a stationary value equal to that obtained at time T. In other
words, we assume that the demand will become stationary at a value
q(T). To simplify the analysis we will further assume that the benefit

measure G,, defined by (4-15), is a constant with respect to time*.

In that case:

G
¢ (1) = =& g(Mexp(o 7). (4-18)
It foilows immediately that a general solution to (4-14), for the
assumptions indicated,”is give by:

G
T = _g . (4-]9)
o]

Therefore, the sufficiency condition (4-11) becomes

rd

(€ - Cy) > = Q % G, (4-20)

*Simple modifications in the integration of equation (4-14) could allow
the consideration of time dependent variables.

1

~4
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Clearly, if we assume 62 > O; then (4-20) will be satisfied for any
non-negative value of a“(t) sjnce we expect operating cost reductions
brought about by the upgrading of the facility to cause (C] - Cz) > 0.
In the event a” is negative, then we write the sufficiency condition

as:

| -

5 62 (4-21)

Since our sufficinecy expressions depend on é(t*) > 0,
vio}ation of (4-21) implies, for the case of noc congestion, that é(t)
is non-positive for t = t*. If this is so, application of the decision
- rule (3-5) will lead to a minimum rather than a maximum, as Figure 6.1
illustrates. In such a circumstance the increase in marginal benefits
derived from the reduction in costs, g{t )(C1 - CZ)’ will not be enough
to compensate for the decrease in the marginal benefits produced per
unit of time by the new traffic generated as a consequence of con-
structing the new facility. The benefits corresponding to the new

traffic generated by the new facility per unit of time are:

g (t) =7 (t)a(t)(s, - s;).

Given that 7 = 0 (see (4-19)) for the case analyzed, we have that:

ma(t)(s, - 5;)

n

B (t)

.

where 7 = 82/p > 0 and Sy > 57 Therefore 2 < 0 ¥ t ¢ [0,T] since

172



=
a1}
——
ot
*
S
P
wv
[AS)
]
w
—d
—
/

A - -

-

I SR

g T e -

ct

FIGURE 6.1 Graphical Representation of the Demand-Quality
Decision Rule for the Case of Decreasing Marginal Beneifts

-~

(2]



we have also assumed that a{t) > 0 and are considering a* < 0.
Therefore the marginal benefits produced per unit of time by the new

traffic generated are in fact aecreasing and
Is(t)l > q..(c] - Cz)-

In the case that é(t), as well as a”, is negative, both the marginal
benefits derived from the reduction in costs and the marginal benefits
associated with new traffic generated will be decreasing over time.
It is clear that when the circumstances illustrated by Figure 6.1

and described previously in the text occur, a non-interior or corner
.maximum for our objective function will be obtained at t = 0. This
implies that, in effect, a "postponement" in the decision of imple-
menting the new facility has occured which will cause a loss of (B(t) -
oI} marginal benefits per unit of time during the period [0,t*), Thus,
the optimal construction time is t = 0 if the present value of net
benefits produced during the period [O,t*] is superior to the present
value of the losses obtained after t*. Otherwise, the facility should
never be constructed. In analytical terms the condition for con-

struction at t = 0 will be:

;T (B(t) - pD)exp(-pt)dt + f[q(T)(C] - C,) - ollexp(-pt)dt > 0, (4-21)
0 _ .

where q (T) is given by:
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q (T) = q(0) + ST. [a(t)s, + b{t]dt. (4-22)

Throughout this discussion o% the case of no congestion the fact
that the multiplier w(t) has been a constant on [0,T] has played an
important role. We conclude this section with a discussion of the
role of m(t), which in general will be time varying, for the case
of congestion effects.

According to (3-10) the value of w{t) gives us an indication of
the desirability of generating new traffic at time t. If congestion
externalities do not exist, the benefits derived from any new
traffic generated will depend simply an the difference between utility
and operating costs "perceivedf by the new users generated. If con-
gestion {s, however, an important factor those benefits will depend
on the difference between utility and merginal cost "produced" by the
new users. This means that we must reduce the benefits obtained by
the new users in the amount of the increase in operating costs that
they produce to the other road users. Therefore, congestion will in
general reduce the desirability of new traffic and, "ceteris paribus",
the desirability of the new investment that generates this traffic.
This fact is represented in our model by the reduction in the value
of n(t*) when MC2 (t) increases (see again (3-10)). In some limiting
cases, the congestiaon generated by new traffic could be of such
magnitude that the marginal cost MCz(t) becomes higher than utility U
over some critical portion of the period [t*,T], producing aé a con-
sequence a negative value of m(t). This mayv cause an investment that

is justified from the point of view cf cost reductions to current



users to become infeasible if we take into account the congestion
produced by the newly generated traffic. Such cases can be expected
to correspond to relatively low values of U and are, therefore, likely

to be most efficiently dealt with through adjustments in pricing policy.

5.0 Final Remarks and a Numerical Example

The model presented in Section 2.0 has allowed us to show that
the explicit introduction of interrelationships between quality of
serivice and demand has important consegquences with respect to the
derivation of optimal investment rules for transportation facilities.
In the case of develaopment projects, where congestion is not an import-
ant factor, the optimal investment rule (3-5) indicates thet investments
should be undertaken sooner than indicated by decision rules which take
into account only the benefits derived from cost reductions to current
users. In some extreme cases rule (3-5) will justify investments that
would never be justified by these other rules. On the other hand,
expansion investments will be penalized if the new traffic generated
by them produces too much congestion in the future, causing their
desirability to be less than that perceived by alternative decision
rules.

Decision rule (3-5) can be considered as a generalization of
Marglin's naive rule. The rule has the appeal of being formulated as
a marginal condition at the staging time t*. Therefore, its application
only requires the knowledge at time t* of the decision variables and

key parameters pilus some general assumpticrns about sufficiency.
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However, not surprisinlgy, every bit of additional information has its
price. In order to apply rule (3-5) we not only need to know the flow
volume q(t*), but also an est{mate of the new traffic that would be
generated by the facility. This seems a reasunable price to pay to
obtain a decision rule which will more completely capture the phenomena
important to the time staging of transportation investments.

The discussion in previous sections has been largely abstract
and theoretical. A better grasp of the ideas and implications of our
findings may be obtained with a numerical example. With this purpose
in mind and in order to compare our results with those obtained by other
authors, we will solve the same probiem orginally presented by Beenhakker
~and Daskin (1973) and subsequently analyzed by Venezia (1977). Beenhakker
and Daskin (1973) found that the optimal sequence for upgrading an
existing road *n Iran involves two stages: the initial construction of
a2 primitive facility and its subsequent widening and paving after 16
vears. The relevant data are as follows:

(1) The cost functions of operating the road at stage j = 1,2

are given by:

"

Cl(t) = d1 + c]q(t) 553 + 80.60q(t)

(5-1)

Cz(t) =d, + czq(t) 3720 + 28.15q(t)

where d; represents fixed maintenance costs and the c, are operating
‘ i
plus variable maintenance costs. The variable t denotes the number of

years from the beginning of the analysis cr planning period.
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(2) The costs of upgrading the road are given by:

I(t) = I = 59,900.

(3) The discount factor, g, is 10%.
(4) Traffic grows at a fixed 7.5% per year, before and after
the investment is performed, and the initial flow at t = 0 is 55

vehicles per day (VPD). Thus demand is described by:

q(t) = v (1) (5-2)
- Where:
q(0) = y = 55 VPD.
T=1+r
r = 0.075.
Consequently, the following dynamic description obtains:
q(t) = v (2n 1) exp(tan 1) = 3.978 exp(.072t). (5-3)

We will assume that (5-3) gives us the evolution of demand before the
investment is made, but contrary to Beenhakker and Daskin (1973) and
Venezia (1977) we will assume that this rate of growth is affected by

the investment I.



In order to carry out our analysis we use the following

dynamics to represent the system:

q(t) = [y (2n tdexp(tin =)3s,, ¥ t e [0,t7]
(5-4)
- X+
q(t) = [y (2n 1)exp(tan T)Is,, ¥t e [t,T]
Thus, in terms of the notation of Section 4:
a(t) = v (&n T)exp(tin 1) = 3.878 exp(0.72t),
¥te[0,T]. (5-5)

Tc be consistent with Beenhakker and Daskin (1973) we set S, = 1.0.

=
(1

e will consider different values of s, in order to investigate the
sensitivity of the optimum investment date to the interrelationship
between demand and quality. Specifically we will consider the

set of vaijues:

Sy = (1.0, 1.2, 1.4, 1.6, 1.8, 2.0)

Since Beenhakker and Daskin (1973) and Venezia (1977) consider a cost
minimization objective, they do not need to use values for the utility,
U, that an average traveller obtains from use of the road. It is
obvious that the restricted cost minimization formulation does not

make sense in our case given the assumed inierrelationship between
demand and quality. Such an objective “or our orobiem will lead

1

~.4
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to the cbvious optimzl sclution: €0 not invest. We will, therefore,

assume cifferent valies of U ranging from a minimum value equal to the
vehicie operating costs before the inve;tment is performed to an
arbitrary upper bound., We are asﬁuming that if the utiiity cbtained
as a consequence of using the road is lower than the corresponding

direct operating cost, flow should be zero. The values of U which

will be considered are given by:
U= (61.2, 70.0, 80.6, 1C0, 130, 160).

It is easy to see that the expression for our decision rule (3-5) will
be slightly modified in this case due to the presence of fixed

maintenance cost d., tc:
) i

where:
W(t ) = (U - Cz)/C

* .
We can solve (5-6) for t , in this case, obtaining:

. : ' ol + (d, - d,)
| z: T m{ v [(C, - C,) + %n 'r.; T (s, - s )]]r (5-7)
|8 L T U2 A 2 'l

'
rd

*
In Tehle 6.1 we present the cdifferent values of t obtained for
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the different assumptions about the values of U and S, The first

row o7 Table 1 shows the solution obtained by Beenhakker and Daskin
(1973) for all the values of U; the results of this row correspond

to what we would have expected given thai Sp = 5y 7 1, or no influence
of quality over demand exists. For all other cases, substantial
reductions over that value for t* previously reported are obtained.
The last row of the table shows the value of n(t*) that indicates the
desirability of new flow for different values of U. Obviously the

desirability increases as U increases. According tc (4-19) second

order conditions for an optimum are satisfied in this case since:
r>0 =>t>%=a"(t)=4n1>0, ¥tel[0,T].

Although the data for U and S5 used in Table 1 is hypothetical, the
ramifications of considering demand-quality interrelationships are
obvious - for certain circumstances one may make gross errors in

predicting the optimal staging time if such interrelationships are

ignored.

181



ERENT VALUES CF s, and U.

61 70.0 100 130 150
16 18 16 16 16
14, 16.5 13. 12.5 11.7
13. 13, 1. 8.4
12 1. .9, 7.5 5.8
1. 10. 9. 7.9 5.6 2.6
10. 9. 5.4 3 1.6

330.

418.

718.

1018.

1318.5




VII. A MODEL OF OPTIMAL TRANSPORTTMAINTENANCE WITH DEMAND RESPONSIVENESS

1.0 Introduction

In this chapter we formulate and solve a simple dynamic model to
determine optimal maintenance policies for transport facilities. The
formulation corresponds to a special case of the general models pre-
sented in Chapter III for the determination of quality investments. An
example is worked cut in detail and an algorithm for obtaining numerical
solutions is proposed. Finally a sufficiency argument is presented.

Dynamic maintenance models have been presented before in the eco-
nomic and management literature for the case of machines utilized in
private industry. Ngélund [1966] discusses the history of the problem
of maintenance of machines, including various solution techniques, and
is the first to propose that the problem be formulated as & dynamic
optimization probiem which may be solved by application of the Pontry-
again maximum principile. Naslund [1966] outlines how the maximum
principle may be utilized to obtain a solution. Later Thompson [1968]
and Arora and Lele [1970] developed detailed salutions for control
models of optimal machine maintenance. Finally, Bensoussan, et al.
[1974] presents a summary of these control formulations. Though similar
models can be developed to determine optimal maintenance policies for
public facilities (e.g., transport infrastructure), little attention
has been given to such modeling approachés in the economic and trans-

portation literature. This can be explained in part by the fact that



the above mentioned models developed for the case of machines in
the private sector possess some important short-comings that pre-
vent their direct application to ;he analysis of public facilities.
In particular: (1) the deterioration produced as a result of the
intensity of use of the machine/facility is not considered; and (2)
the potential for a good maintenance policy to reduce operating costs
experienced by present users of the machine/facility is not explicitly
articulated. By virtue of this latter type of savings, the number
of future users may be expected to increase. It is thereby clearly
necessary that an optimal transport maintenance policy reflect con-
sideration not only of the present number of users, but also of the
effect the facility will have in terms of generating additional users.
This interelationship between quality of the facility and demand
generated for its use is not cons%déred in the mocels mentioned above.
Recently Buttler and Shortreed [1978] have presented a dynamic invest-
ment planning model for the case of road transport. Their formuiation
does not provide the economic insights obtained in this chapter and
relies on highly specialized assumptions concerning benefits and
costs; most importantly their dynamical description does not ex-
plicitly consider the interaction of demand and quality.

In the remainder of the chapter the discussion will center around a
dynamic road maintenance model. However, as our presentation will make
clear, the same type of model could be applied to other forms of trans-

port infrastructure and equipment.
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2.0 Description of the Model

We choose to characterize tﬁe transport system of interest, an
abstract road, in terms of two state variables: the "quality" of the
road at time t, denoted by S(t); and the number of users at time t, de-
noted by q(t). The guality S could be represented by the present
serviceability index (PSI), defined by AASHO [1962], if we are dealing
with a paved road or by a roughness index for lower standard roads.

We will assume that S and g are interdependent variables and that
their evolution over time is defined by the following system of differ-

ential equations:

$(t) = -aS(t) - Bq(t) + yV(t), S(0) = S (2-1)
a(t) = aS(t) + b, q(0) = g (2-2)

where
V(t) = rate of maintenance expenses, the control variable
S(t) = quality of the road at time t, a state variable
q(t) = number of road users at time t, a state variable
parameter refiecting the natural rate at which the
quality of the road deteriorates, i.e., aS(t) is

the instantaneous rate of deterioration, at time t,
regardless of travel or maintenance.

Q
]

w
[}

parameter reflecting the deterioration produced by
each user

v = parameter reflecting the rate of increase in road
quality per dollar spent on maintenance per unit time

= parameter reflecting the rate of change in the number
of road users per unit of time, as & consequence of a
unit change in roac quality.

0
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> = parameter reflecting that portion of the rate

of growth of transportation demand not influenced

by changes in road quality.
Note that equations (2-1) and (2-2)'consti£ute a pair of coupled
differential equations; they relate the value of the input or control
variable V(t) to the outputs or state variables S(t) and q(t). The
formulation given by equations (2-1) and (2-2) represents specific
assumptions about the dynamic behavior of the roadway. Equation (2-1)
assumes that the quality of the facility changes over time primarily as
a result of three separate causes: natural factors, use, and maintenance.
The rate of natural deterioration is assumed to be proportional to the
quality of the facility; this assumption produces a negative exponential
deterioration process of the form depicted in Figure 7.1 when the fa-
cility is abandonec and only natural factors have an influence on quality.
This is the usual assumption with respect to physical equipment and
facilities (see Arora and Lele [1970], and Bensoussan et al., [1974]),
In addition, (2-1) assumes thét each user of the facility produces a con-
stant deterioration 8 per unit of time of use. Finally, it is assumed
that each dollar spent in maintenance produces an improvement vy in the
quality of the facility. This linear relation between the rate of change .
in quality and maintenance expenditures amounts to assuming that constant
returns to scale exist in the production of quality of the facility.
Though this is not 1ikely to be the case over an infinite range of values
of V(t) it will generally be a good assumption over a limited range of ex-
penditures in maintenance m < V(t) < M, as is the case in many pro-

duction processes. The constant returns to scale assumption is common
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to all maintenance models presented in the economic literature (see
Thompson [1268], Arorz znd Lele [1970], and Bensoussan et al., [19741).

In th

4]

interest of realism we make an additional assumption con-
cerning the effects of maintenance. If we call So the quelity of the

new facility at time t=0, then we want to have

S(t) <S., ¥te [0,T)].

In other words, we assume that pure maintenance cannot drive the quality
of the facility above iZs original value when new. This implies that

V(t) obeys the following condition:

Vs < W) =y (@S, + 8 ). (2-3)

If V(t) is Targer tran ¥{t) the excess maintenance eipenditure V(t) - Q(t)
has a null effect on tne quality of the facility.

Equatien (2-2) provides the link between quality of the facility
and demand, creating @ maintenance model with demand responsiveness. It
assumes that demand is the consequence of two factors: 1) some exter-
nal development pattern that is outside our control, represented by a
natural rate of growth of demand (which may be negative), and 2) the

quality of the road. Equation (2-2) may be placed in the alternative form

P
)

olt) = als(t) - 9+2,  qlo) = q, (2-4)

-

where S < So' If S(t) = g, demand grows at the natural rate b. If
s,

S{t) > S or S(t) the natural rate of growth is respectively

—
ee]
(@)
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transformation > =1(2 - 25,. Hence,.it will suffice to consider only ths
dynamical description (2-2) in subsecuent analyses. For the most general

circumstance the parameters z and b of eguation (2-2) as well as =

w

and v of equation (2-1) would be functions of time. It will suffice for

our purpose to consider these as constants. Of course., the initial vaiues

el

So and Ay defined in equations (2-1) and (2-2) respectively, are also
known constants.

We will further assume that there is a utility U(t) attached to the
use of the road wnhich is the same for all users and that there is an

-
i

associated operating cost C{S,q). The per user utility mey be considered
to be determined entirely by factors exogenous to the modei sc that it
is written as a Tunction of t only. Operatinc cost will, however, gen-
erally depend on rozd quality and the numper of users; it is consequently
written as a function of S and gq. We wish to maximize the present value
of net benefits derived from operation of the road over a fixed planning

horizon T. Thus, the objective of interest is:

T
MAXIMIZE J = gf{[U(t) - C(S,q)1q(t) - V(t)} exp (-pt)dt, (2-5)

where p is a constant discount rate. In (2-5) the utility, cost and
investment functions are of course assumed to be expressed in terms of a
common numeraire, presumably dollars. Hence (2-5) actually represents

the maximization of net benefits measured as dollars.
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he Tinal element necessary toc specify the model is the assumpticn

that maintenance expenditures will be bounded from above and belcw.

We express tnis as:

mot) < V(t) < M(t) ¥(t)e[0,T] (2-6)

where m(t) and M(t) ar

(1]

respectively the lower and upper bounds on mein-
tenance expenditures at time t. The lower bound m{t) will be determined
by the fixed factors of maintenance production at time t; the upper bound
M(t) will be the budget constraint at time t. Values of M{t) should ob-
viously correspond to reascnable maintenance expenditures. A range of

such reasonable values Tor M(t) can be obtained from equation (2-3).



3.0 The Optimal Maintenance Pali¢y: Necessary Conditicns and Economic

Interoretations

The problem of maximizing the objective function J, defined in

equation (2-5), subject to the growth dynamics (2-1) and (2-2), as well

as the limitation on maintenance expenditures (2-6), constitutes an

optimal control problem with fixed terminal time and no state space

constraints. Necessary conditions for such problems were described in

Section 3.1 of Chapter II.

Solution of our optimal control problem begins by specifying the

Hamiltonian function:

H(t) = {Lu(t) - C(S,q)]q(t) - V(t)lexp(-pt)

+ Py (t)[-aS(t) - Ba(t) + YV (t)] + P, (t)[as(t) + b].

The adjoint variabies Pi(t) must satisfy
Pi(t) = - (3H/35) Py(t) = = (3H/3q)

which take the form

-
]

Csq exp(-pt) + o P] -aPb,

o
]

[U-(C+ qu)]exp(-ot) + 8P

In (3-2) and (3-3) the arguments of all varijables have been eliminated

for simpiicity. The subscripts S and g denote partial derivatives with
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respect to those variables. The adjoint variables must aisc satisfy
the following boundary conditions which are a result of the more general

transversality conditions for optimal control problem

PT(T> = PZ(T) = 0. (3-4)

In addition the maximum principle requires that we seek vaiues Of the

control V(t) tnat maximize the Hamiltonian. That is, we seek controls
* 2 L .

YV such that

* *

* * * * * -
» Py, V, t) > H(S, g, P], PZ’ V, t), ¥Vea (3-5)

* *
H(S, q, P]

< V(t) < M(t), ¥t] and the superscript "*" means

where ¢ = [V: m(%)
thai the corresponding variables satisfy the appropriate necessary con-
ditions.

In order to apply the maximum principle it is expedient to rewrite

the Hamiltonian as
H= (U~ C)g exp(-0t) - Py(aS + 80) + Pp(aS +5)  (3-6)

+ [yP, - exp(-ot) V.

From this last expression it is easy to see that the gradient of the

Hamiltonian with respect to the control variable V is given by

Hy = 7Py - exp(-st). (3

v 7)

d
[N
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Moreover, since the Hamiltonian is a linear function of V, the extremal

control will obey:

4 .
n(t) Af Py(t) < Lexp (-ot)
Y
VA(t) = 4 M(t) AP () > Lexp (pt)  (3-8)
o 1.
\undetermmed, if Py(t) = Y exP (-ot).

3.1 Bang-banc Policy

We observe that expressions (3-7) and (3-8) imply that V*(t) is a
well defined function of P]*(t), Y and t as long as the gradient Hy is
non-zero. If the gradient function H;(t) vanishes only at a countable
number of times within the interval [0,T] our optimal control problem is
called "normal" and the optimum policy V*(t) is "bang-bang" {see Section 3.2

*
of Chanter I The value of V (t) switches from cne poundary of its

-
.s g ti.

constraint set to another at certain well defined times given by

* -1

H\J(t) = Fs(t) = P](t‘) - [Y EXp(Dt)] =0 (3‘9)

Generally, Fs(t) is referred to as the "switching function".

To interpret the maintenance policy described by (3-8), we must
give an interpretation of the adjoint variable P](t). This interpre-
tation is provided by the following identity which holds at optimality

(see Section 4 of Chapter II).



N R ¥t=[0,T] (3-10)

where the superscript "*" now denotes the fact that J is evaluated along
the optimal solution path. This identity suggests that we interpret
P](t) as a dynamic shadow price of quality. As such P](t) represents
the additional benefit, in present value, obtained from a unit increase
in road quality at time t. On the other hand, [y . exp(.O’c)]"| is equai
to the present value of the amount we should spend on maintenance to ob-
tain a unit increase in road quality at time t.

The (bang-bang) policy states, therefore, that maintenance should
be performed to the extent that the present value of the marginal bene-
fit produced by one additional dollar spent in maintenance at time t,

: YP1(t), is higﬁer than the present value of that dollar, exp(-ct).
Given that we have assumed constant returns to scale in the production
of quality through maintenance for values of V(t) in 2, the marginal
benefit v P](t) will be a constant for each t, independent of V{t).

Thefefore, we must spend the maximum amount available M(t) as long
as the marginal benefit ¥ P](t) is higher than the marginal cost exp(-ot).
If the marginal cost becomes higher than the marginal benefit we should
spend the minimum possible m(t), The case of equality of the marginal
benefit and the marginal cost can be neglected here, given that it occurs
only at a countable number of times in [0,T1.

. Further insight can b2 gained from the interpretation of equations
(3-2) and (3-3) that describe the evolution of the adjoint variables

P1(t) and Pz(t) during the period of analysis. This interpreation
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requires that we first mzxe note that a general interpretation of Pz(t}

can be obtzined from the fact that along an optimal solution path

* % .
2,(8) = 2LAGEL | yeelo, T, (3-11)

q

QI

As such PZ{t} represents the additional benefit, in present value, ob-
tained from an additional user generated at time t. That is, Pz(t) may
be thought of as a dynamic shadow price of demand. Equations (3-2) and
(3-3) correspond to & system of coupled first order ordinary differential

equations in P, and ?,. The solution of this system can be expressed,
1

Z
using (3-4), as

T
Po(t) = S [U(x) - C(x)lexp{-gx)dx
t

—t

- gf qu(x)exp(-OX)dx - %;P](x)e dx. (3-13)
The first term of (3-12) corresponds to the present value of the direct
benefit (operating cost reductions), produqed during the period [t,T],
by a unit enhancement of facility quality (through maintenance expendi-
ture) at time t. Note that exp[-a{x-t)] is the equivalent value at time
x of a unit enhancement of facility quality at time t. The second term

of (3-12) is equal to the present vaiue of the benefit attached to the

—
(e}
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new traffic generated during the period [t,T] as a consequence of a unit
enhancement of facility quality at time t. In expression (3-13) the
first term is the present value of the private benefit perceived by an
individual usef of the facility during the period [t,T]1. The second term
in (3-13) 1is equal to the present value of the externalities of congestion
produced during the period [t,T] as the result of an additional user
generated at time t. Finally, the third term in (3-13) rebresents the
externalities of deterioration produced during the period [ t,T] by an
additional user generated at time t. This last term takes into account
the fact that the deterioration produced by one user affects the opera-
ting costs perceived by all other users of the facility. The sum of the
integrands of the second and third tefms of (3-12) is therefofe equal to
the value of the externalities produced by an additional user at time t.
This sum is equal to the value of the toll that each user of the facility
at time t should be charged if an optimal pricing policy were applied.

Therefore, even though the bang-bang maintenance policy is expressed
only in terms of P)(t), we can see that the value of the marginal benefit
attached to a new user of the facility generated at time t, Pz(t), also
ptays a fundamental role in the interpretation and potential implementa-
tion of the policy. That role is diminished if we assume g = 0.
Nevertheless, even then Pz(t) still tells us how much the value of the
objective function J will increase or decrease for a unit change in the
number of users of the facility.

The bang-bang policy is illustrated in Figure 7.2 for the case of a

control set - with the respective constant upper and lower bounds M and m.
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Figure 7.2 Bang-Bang Maintenance Policy



3.2 Sinaular Controls

In the preceeding section we assumed that the gradient H: (or
switcning function Fs) vanishes only at a countable number of times in
the period [0,T]. In this section we will analyze the possibility that
the gradient H; vanishes identicaily over one or more finite perijods of
time or subintervals in [0,T], In such a case we say that we have a
singular optimal control problem and the periods for which H; = (0 are

ar arcs. As we noted in (3-8), the

cailed singular intervals or singul
necessary condition (3-5) does no: provide enough information in this
* 0

case to define V (t) along a singular arc. In the absence of such infor-
mation, we must manipulate the other necessary conditions in an effort
tc determine a well defined expression for the control on the sincular

, ! *
arc, denoted as Vs(t).

Singular controis can in generai oe determined Dy making use of the

foilowing observation: if the gradient H, cf the Hamiltonian vanishes
*

identically along a singular arc, then the time derivatives of HV must

remain equal to zero during the same period. From (3-7) and (3-8) we

have that on a singular arc{see Section 3.2 of Chapter II)

Hy = v Py - exp(-pt) = 0. (3-14)

Upon taking the derivative of (3-14) with respect to time and using
the adjoint equation (3-2) to eliminate Py, we obtain

* *x

Hy = (7 Csa + plexp(-at) + v 2 Py - v 2 P, = 0. (3-15)
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Now if we again use (3-14) to eliminate P.i from this last expression,

we can write

* %
Hy = (¥ Cgq + o + plexp(-ot) - v a2 Py = 0.  (3-16)

An economic interpretation of this condition for a singular arc can be

cbtained if we rewrite it as

a P2 exp(pt) - Cq = r/v, r=(a+¢) (3-17)

The first term on the left hand side of (3-17) is equal to the present
value, at time t, of the benefits derived from the generation of @ new
users at this time as a consequence of a unit improvement of facility
quality. The second term on the left hand side of {3-17) is the total
sevings in operating costs, perceived by cil users of the facility,‘at
time t, as a consequence of a unit improvement of facility quality
2t that time. The right hand side of (3-17) is expressed in terms
of the "effective Qiscount'rate“ r=oato, and y-], which is equal
£0 the maintenance investment necessary to obtain a unit improvement of
facility quality at time t. Therefore the right hand side of (3-17) is
equal to the rental value of this maintenance investment, using r as the
interest rate.

As a further step we take the second derivative of (3-14) with re-
spect to time. In doing this we will assume that qu = 0, or, in other
words, the quality S that we are considering is not capacity related

and therefore has no effect on the congestion produced in the facility
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for each level of use. This assumption is for convenience only; if it
were dropped the only consequence would be a modification of the ex-
oression obtained for the singular control. In particular, this assump-
tion does not affect the economic interpretation obtained from (3-17).

Using this assumption we obtain

.. 2 : : .
Hy = (-0 v Ceq =0 o -p + v CSq + v Cgqlexp(-ot)-y a P, = 0.

By using (2-1),(2-2),(3-3) and (3-14) to eliminate S, q, P, and P.s this

2
last expression becomes
.
Hy exp(pt) = Coq v q(-as-Bq +vV) +-ya(U-C-qu)
+Cr(aS+ b - 0q) - a8 -p(a+ o) = 0. (3-18)

if the operating cost function C is nonlinear in S and therefore (.o is
différent from zero, we obtain from (3-18) an expression for the singular
contrcl in terms of the values of the state variables at time t, and the
paremeters of the problem. That expression is

2

* -1
Vs = (v"aCgg) [Cgg v alaS + 8a) - va(U-C-C q)

+ (C vlpq - a5 + b) + af + pla + 0)1. (3-19)

. » . *
Obviously, the singular control VS must also obey the control constraints
(2-6). However, optimal singular controls must satisfy an additional
necessary condition. For a maximization problem with a single control

variable (recall V is a scalar) the condition can be stated as (see
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Saction 3.2 of Chapter 11

8 i *
S e SRR (3-20)

r—

where m is an integer. Note that in our case m = 1. By using (3-18)

it is easy to see that (3-20) becomes

Since q is always positive, (3-21) implies that in order for V; in (3-19)
iC be an optimal control, CSS must be positjve. This means that no
optimal singular control exists if CSS is negative, or in other words
if C is non-convex in S.

Now we can analyze the case in which C is linear in S and there-

fere Cce = 0. Then condition {3-18) does not provide an expression

(3}

L% . . " . .
for VS and we must take 2 new derivative with respect to time, which

after using (2-1) to replace S, can be written as

. .
Hy explot) = -q yh =0; h = Zva + vaqq * o C. (3-22)

It is clear that there ars only two possibilities of satisfying (3-22):

g=0orh-=0, given that Y # 0. Let us assume first h = 0, g # 0.

Then, given that we are on a singular arc, we must have

= i + = -
h qa(3Cqq quq_q) 0. (3-23)

It can now be seen by inspection that if g # 0 we can continue taking

time derivatives without obtaining any exoressicn for the singluar
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control. Therefore a singular control will exist in this case only
if q = 0 which corresponds to an -equilibrium solution for the problem.

From (2-2) we see that é = 0 implies that
S = -(b/a) (3-24)

which in turn implies that S = 0. Moreover, if we assume that S cannot
be negative, (3-24) only makes sense if z is negative, or in other words
the demand dynamical description is such that demand decreases when

S =0. Using (3-24) and (2-1) we obtain

*

Vg =77 (8q - av/a). (3-25)

In.order to obtain the equilibrium value of g in a particular case we
can make use of expression (3-18) wﬁth_css = 0, which constitutes a
necessary condition for the existence of V;. If one utilizes expressions
for Cq and Cs in (3-18) associated with a particular cost function C(:)
together with the equilibrium value of S obtained from (3-24), the re-
sult will be an equation in g whose solution, if it exists, will pro-
vide the value of the equilibrium demand. It is important to note that
the singular controls defined by (3-19) and (3-25) will both correspond
to policies whose economic interpretation is that obtained from (3-17),
since that expression constitutes a necessary condition for the exist-
ence of such controls.

Using (2-2) to replace a in (3-22) and taking a new derivative with

respect to time it is easy to obtain
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Q2

[(___.-d )4 H* = -‘{2 ”(Z”C + fYC 9] + QC )exp(-"t)
g Tragt USRI (3-26)

The additional necessary condition (3-20) now corresponds to the case

m = 2 and can be expressed as

.~,'2 a(Zva + vaqq + DCS)EXP('Qt) < 0.

which in turn requires that

a(ch + quq) 3,-pcs. (3-27)
We can write this last expression as

n.?._(c; C a) > -=C (3-28)

R e = T T

-

Tne term in parenthesis in (3-28) is the social cost at time t of intro-
ducing a new user into the facility and the right hand side of (3-28) is
the rental value of the operating cost reductions experienced by each user
of the facility at time t when quality is improved by one unit. The equi-
Tibrium value of q must satisfy (3-27), otherwise V: given by (3-25)
cannot be an optimal policy.

In practice, the existence of initial and final conditions that
the variables of the problem must satisfy will not allow the application
of singular controls over the whole period [0,T]. A singular arc, can

be represented as a trajectory in the space o7 the state variables
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(S,q). In general the initial values (SO, qo) will define a starting
point of this trajectory and we will need to make use of the maximum
or minimum values of V(t) in order to get on to the singular arc. On the
otherhand, along a singular arc condition (3-14) must always hold. If
the transversality conditions for the adjoint variables are such that
Y P}(T) is not equal to exp(-pt), then the final point of an optimal
trajectory cannot be”over the singular arc, where the optimal control
is V:. Thus we will have to again use the maximum or minimum values
of V(t) in order to meet the final condition of the problem. In our
case it is easy to see from the transversality conditions (3-4) that
the final point of an optimal singular policy will be over a singu-
lar arc only if the period of analysis is [0,*]. Therefore, possible
optimal singular policies will in general involve a combination of
o&ng-pang and singular arcs.

Thus, for singular policies the optimal control will in general have

the form:
[ a(t) , 1F Pyt < %exp (-pt)
)= e i p) s Lep () (52)
LMo 15 o> Lo (oot).

A representation of such a policy ié given in Figure 7.3.
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4.0 Solution in a Particular Case.

In order to illustrate explicitly how the necessary conditions,
presented in Section 3, are used to obtain solutions in a particular
case, we make the following assumptions regarding the functional form

for the utility and operating cost function:

U = constant

C(S,q) =c - S+ 6q2 (4-1)

where ¢, €, and ¢ are constants. In addition we assume that the fea-
sible region for maintenance expenditures, &, is invariant for all t

in [0,7], i.e.,

m < V(t) <M

o
(&

O
—

s 1]

#nere m and M are constant minimum and maximum maintenance expenditures.
Assumption (4-1) describes a circumstance where the user obtains
a constant gross benefit from utilizing the system with costs that de-
pend cn the quality of the facility aﬁd the number of users. The first
term of the operating cost function is the cost perceived by one user
when the quality of the road is equal to an arbitrary reference value
S = 0 and free flow conditions exist over the road. The second term of
the operating cost function requires a unit increase in facility quality
to bring about an operating cost decrease of ¢ monetary units. Finally,
the last term of the operating cost function considers the effect of
congestion on individual operating costs; it reguires operating cost to

increase as the number of users increases. Tne cperating cost functions

(@2}

0



commonly used in practice are those proposed by the U.S. Federal High-
way Administration (COMSIS{1972]) and are of the form C(q) =¢ + & qn.
Although n is taken to be 4 for the case of urban highways, the value

¢f n is to a great extent arbitrary as long as the resulting function is
increasing and convex in q. We have chosen in (4-1) a value of n = 2,
that is more appropriate for intercity than for urban situations. The
constant € and S are émpircally determined parameters for each road
which depend on its length, speed limit and geometric design, including
number of Lanes (COMSIS[1672]1). In (4-1) we have also included the term

-cS to take into account the influence of road quality on operating costs.

Note that we obtain the partial derivatives

immediztely from (4-1),

4.7 Singular Case

In order to identify the characteristics of the optimal solution,
we must first analyze the existence of singular controls. From (4-1) it
is easy to check that qu = CSS = 0. Therefore we can make use of the
conditions developed in Section 3 for such characteristics of the user

cost function. Thus, using (4-1), (4-2) and (3-24) in (3-18) we obtain

3a5q2 -epqg -4 =0 . (4-3)

where
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Upon solving (4-3) for q we obtain
q = [ee } (e%° + 12a32)%1/6a3. (4-4)

Therefore, one condition for the existence of a singular control for

our particular problem is
€ p” >-12 ad4 (4-5)

since a real stationary demand does not otherwise exist. A second con-

dition is given by (3-27) which specializes to the form
q > (pe/6as) (4-6)

and which eliminates from consideration the solution of (4-4) given by
the minus sign of the radical. *Therefore, if (4-5) is satisfied, a

incuiar control exists and, from (3-25), is given by

wn

* -l ]
Vg = v (3q, - =b/a) (4-7)
where
= 22 C By e A -
e = lep * (e7p" + 12284)%]/6as (4-3)
Se = -b/a.

The quantities Ag and Se are respectively the equilibrium values of de-
*
mand and quality obtained along the singular arc when VS is applied. Ob-
*
viously a singular control does not exist in this case if VS given by

(4-7, is higher than M or lower than m.
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Since the initial condition (SO, qo) will in general be different
than the equilibrium values (Se"qe) given by (4-8), we will need to use
bang-bang controls in order to get on to the singular arc {which in this
case is represented by a point in the space (S,q)). In addition, given
that P](T) = 0 (see (3-4)), it is easy to see from (3-8) that the op-
timal control will be V* = m for values of t close to T, with T finite.
In order to obtain the values of t for which the optimal control changes
from bang-bang to singular and conversely, we must integrate the adjoint
equations and thereby find the values of t for which condition (3-14) is
satisfied. This involves the solution of a two point boundary value
problem essentially identical to that analyzed below in Sections 4.2 and

.0 for the pure bang-bang case.

(& 51

.2 Bang-bang Case

>

I7 singular controls do not exist, the optimal solution must be
ourely bang-bang. In that case in order to complietely specify the
cptimal po1i¢y V*(t) we must find the countable number of times for
which the gradient of the Hamiltonian H; vanishes. This is equivalent
to finding the solutions of the switching function Fs(t) given by
(3-9).

Using expressions (4-2) in (3-2) and (3-3) leads to

0 .
]

-eqexp (-pt) + oP, -a P, (4-9)

, = (386° - €5 - Blexp(-at) + 2P,

v I
n



where

B = U-C (4-

—_—
—
S

and of course (3-4) still holds, that is’

SRR MU RGBT (4-12)

The system described by (4-9) and (4-10) may be uncoupled to yield

P] - GP] ta BP] = F(t) (2-13)
where
(t) = (4B - &b + peq - 3:6q2)exp(-ot). L (4-18)

Ir orcer to solve (4-13) for Pi(t) we neec to fing an_expression for
g(t). In order to do this we must solve equations (2-1) and (2-2) for
S(t) and q(t), a step which is complicated by the fact we do not have

an exact expression for V(t) before the values of the switching times,
i.e., the roots of equation (3-9), are known. HNonetheless, we know from
Section 3 that the optimal V(t) will be a piecewise continuous function
with values m or M, except for a countable number of points correspond-
ing to the switching times. The derivative of V(t) with respect to time
will be equal to zero for all te[0,T] not corresponding to a switching

time. This information is adequate for finding general expressions for

S(t) and q(t).



?

S = -aS - 8a + vV | (4-15)

q = aS+ }

s
a z

where V is the unknown optimal function V(t) and dVYdt = 0. System

»

(4-15) may then be uncoupled to yield

S + aé + BS = -8; (4-16)

a differential equation which is valid everywhere except possibly at the

countable number of switching times. The solution of this differential

o

esuation depends on the roots of its auxiliary or indicial eguation

wnich may be expressed as,

2 2
z -2 a_. - { ™ =—g.-_ - . l/ --!7
m ==+ 8. and m 5 Ry . (4-17)

4 2

0f course, the precise nature of solutions to (4-10) wiil depend on the

.

discriminant in (4-17) which we write as,
= & | - 4-1c :
A i Be . (

The discriminant A is directly ralated to the intrinsic characteristics
of the dynamics of ti2 prodlem. Thaz first term in (4-13) is related
to the natural deterioration process; the second term is related to the
deterioration process associated with facility utilization, which we

cail use deterioration. In fact, the value of - is the result of a

¥
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comparison between the second order effects of the natural and use
deterioration processes when an improvement of one unit of quality in
tne facility occurs. The first order effect of a unit increase in the
value of quality on the use deterioration process is an increase in g
given by 3q = ¢. The second order effect is that this increase in users
39q = ¢ produces a use deterioration of the facility given by -8z. For
the same unit change‘of quality, the first order effect on the natural
deterioration process will be a change 35S = -z; the second order effect

: . . . n 2
en natural deterioration will be a change 35S = ¢".

These results can

be obtained directly from an analysis of (4-15) considering periods of

time of unit length. The sign of A can be used to determine wnich of

tﬁe two processes, natural deterioration or use deterioration, dominates.
t should be noted that the auxilliary or indicial equation asso-

ciated with (4-7), the differential equation which determines the ad-

joint variable P], has roots

2 2
o]
7 -6 andr, = 5 -/ % -z, {519

- O
rno= o5 ¢

Clearly the discriminant of (4-19) is identical to that of (4-17),
namely & as defined by (4-18). Thus it will suffice in the remainder

of the analysis to consider the three cases 4 > 0, & = 0 and A < Q.

Of course, any solution for the adjoint variable P1 based on a solution

of (4-15) is, Tike S and q, valid everywhere except at the countable

number of switching times.
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Case 1. A > 0. In this case the roots m, and m2 are real and un-

ecual; the solution of (4-10) becomes,

S = C1exp(m1t) + Czexp(mzt) - §'~ (4-20)
Simple integration of the expression for g Teads to
q .= C3exp(m1t) + Cpexp(myt) + Cg (4-21)
where
C3=%L’ C4=i;2_
1 2

Equation (4-20) and (4-21) give the values of the state variables S(t)

and g(t) for each interval between switching pcints. The constants of
integration Cl’ C2 and C5 must be caiculated for each intervel using

the corresponding boundary condition for S and g (see Section 5). In

tne present case, & > 0, the natural deterioration process dominates

the use deterioration process, and, therefore,'the state of the systiem
denoted as (S(t),q{t)), is explained by monotonic exponential functions.

A typical example of the evolution of the system under these circumstances

is given in Figure 7.4 for the case of one switching.



Curing the first period, that is when V{if} = M, the quality S{t} remains
almost constant due to the influence of a high level of maintenance.
When the switch to V(t) = m occurs, quality begins to decrease

faster and q(t) experiences a second order change (an alteration of
curvature); S{t) will tend to a stable position whose magnitude will
depend on the magnitude of m. Also g(t) will eventually decrease, con-
tinue increasing or ténd to level off depending on the amount of de-

crease experienced by S(t).

Case 2. A < 0. In this case the roots m, and m, are complex

conjugates and we write the solutions for S and g as

s = exp(-§t)[Cicos(/] alt) + Cpsin(/] at)] - 2
qQ = exp(-%t)[c3sin({1 Alt) - Cacos(/! Alt)] + C, (4-22)
where - , -
o o Bl el aG)
3 ol + 414
. . B realg)
4 7 . - (4-23)

a” + 4] 4|

Here, the use deterioration process dominates the natural deterioration
process and the evolution of the system becomes oscilatory. This be-

havior can be easily explained as follows: given the high value of &,
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the deterioration produced by the users attracted as a consequence of
improvements of quality (or lack of deterioration) due to maintenance
can become higher than the aquality improvement that generated the new
users. In such a case, quality will reach a maximum and then decrease
until the reduction of quality brings about a reduction of users such
that quality can begin to increase agein. An example of the evolution
of the system when A < 0 is given in Figure 7,5 for the case of one

switching. In Figure 7.5, S represents the value of S(t) for which

!/

é(t) = 0; EM is the value of q(t) for which S

0 when V(t) = M; and

E% corresponds to $ = 0 for V(t) = m; that is

aS + vM =S 4

™w
Fa)]
=
"
Wl +

Iy =

Case 3. A = 0. This case is ¢T 1ittle practical importance due

+2 the fact it is not likely to occur. Nevertheless we present
results analogous to those obtained for the cther two cases for the sake
of completeness. In this case the roots m and m, are real and ecual

with value -a/2. Consequently the following solutions obtain

S = C1exp(-%t) + (ot exp(q%t)
q = Cqexp(-5t) + Cyt exp(-3t) + Cg (4-24)
where
2C

- _2a ~2 Lo08)
¢y =5 (G -9 528

2aC

C, = - —2



The switching functions denoted by F¢ for the three cases analyzed

are given by the following expreséions:
Case 1. A> 0.

Fg = Csexp(r1t) + C7exp(rét) + C]4exp[(m1-p)tj + C]Sexp[(m2~p)t]

~C15exp[(2m1-p)t] - C]7exp[(2m2-p)t] - C18exp[(m]+m2-p)t]

_ ] o
+(C19' ;0eXp('pt). {(4-20;
Case 2. A < 0.
Foo= Ceexp(%t) sin(/]al't +¢C,) + C]3exp[-(% + 0)t] sin(/8{t-Cy)

+ Cgexpl-(3 + 0)t] cos(/]a] t-Cg) + Cpexpl-(aro)t]
sfn2<¢/ﬂi?t-c9) + C]sexp[-(a+p)t] sin(vfﬂgrt-cg)cos(v/ﬂzrt-Cg)
+ Cy0exp[-(oto)t] cosz(/ngrt-cg) + (Cyg- %J exp(-pt) . '(4-27)

Case 3. A = 0.

s ° Csexp(%t) + C7texp(%t) + C14exp[-(%+-o)t] + C,Stexp[-(%+vo)t]
+ C]GEXPE'(G+D)tJ + c17texP[T(a+p)t} + ClstzexD['(a+p)tJ

+ (c]9 - %—)exP(-ot) (4-28)

Detailed expressions for all the constants involved, in addition to the
expressions for F(t) and P1(t) that were used to derive Fs in each case
are given in Appendix A. That appendix illustrates that a complete speci-

fication of F in general requires determination of values for C,, C,, Co,

-~
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FE’ ang C7 since all other constants will then be defined. A procedure
for doing this is presented in Section 3.

For Case 1, where A > 0, an upper bound for the number of switchings
can be established. The switching function (4-26) is a weighted sum of
exponentials. Pontryagin, et al. [1962, p.120] proved that the number
of zeros of a sum of n real exponential functions of a given variable
is at most (n-1). Thefefore, the switching function (4-26) will exhibit
at most seven switchings. It is worth noting that for Case 1 the maxi-

_mal number of sthch1nqs w111 depend on cost and demand characteristics.

For instance, if no congestion costs are taken 1nto account, i.e., if

5 = 0, we have that C] = 017 = C18 = 0, and therefore the maximal num-

6
ber of switchings is four since (4-26) is reduced to the sum of five real
exponentials. The same result is obtained if we assume that demand q is
independgent of the level of service, i.e. that a= 0.

We might a1ternativé7y assume that operating cost is constant and
independent of S and q, i.e. thate =¢ =0, so that C,, = C

- = C.,.
i+ 15 18

= C17 = C]B = 0. Under this assumption expression (4-26) simplifies ta

-

1 /
F o= C6exp(r1t) + C7exp(f2t) + (819 - ;J exp(-pt), A > 0. (4&-29)
Expression (4-29) demonstrates that, in Case 1, for the assumption of
constant operating cost the maximal number of switchings is two. The

assumption of constant operating cost allows expressions (4-27) and

(4-28) to be rewritten respectively as:
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C6€xp(§t) sin(vTa] t+C7) + (C}8 - %)exp(-ot), A < 0.
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a, N
C6exp(§n) + C7texp(%m) + (C?g - =Jexp{-ot), &
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vie cannot, without additional information, state the maximal number of
switchings admitted by the functions (4-3C) and (4-31); we know only that
this maximal number is finite for a fixed planning horizon. This mode]
formulation, the model resulting from the assumption of constant operating
cost, is the simplest that we can articuiate; it nas meaning only in the
case when demand is dependent on service, i.e., when the parameter a # 0
in equation (2-2), for benefits are then affected by maintenance policy
only through the influence that quality of service has on the number of
road users, who experience a constant}individuaT cost which is indspen-
dent of the state variables S and g. This ié to be contrasted to ihe

more general case where benefits are influenced by cnanges in the opera-
ting cost brought about by changes in the state variables: tha:t is %o

say, the more general case exhibits both a demand and supply sensi-
tivity. It should also be noted that if C(S,q) = C, a constant, and a= 0,
the system is completely uncontrolla