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ABSTRACT

Two dereverberation techniques are applied to synthetic
seismic data and their performance in removing water column
multiples is evaluated and compared. One method is an applica-
tion of homomorphic deconvolution and the other utilizes
linear estimation based on a minimum mean square error criterion.

* The analytical formulations of both methods are discussed.
Performance is evaluated in terms of three criteria: percent
of multiple energy removed, percent of signal (reflector)
distortion, and visual improvement of the data. Results are
presented which represent the performance of both algorithms
for a range of environmental and signal processing parameters

* including white noise level, multiple coherence, reflector/
multiple overlap, filter parameters and water column travel
time estimate. The techniques are found to have comparable
effectiveness on the synthetic data; however, indications are
that homomorphic dereverberation has greater potential in
shallow water applications while the linear technique appears
to be more efficient for deep water data.

THESIS SUPERVISOR: Arthur B. Baggeroer

* TITLE: Associate Professor of Electrical Engineering and
Associate Professor of Ocean Engineering
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CHAPTER I

INTRODUCTION AND PROBLEM STATEMENT

The geologic structure of the earth beneath the seafloor

is most often determined by seismic profiling. The procedure

generally involves excitation of an impulsive acoustic source

near the sea surface and recording of the reflected earth

response with a hydrophone array. Low frequency sound

penetrates the bottom and propagates in the substrata with

reflections occurring at discontinuities in the acoustic

impedance of the earth. The thickness and density of sub-

bottom layers may be estimated from the reflected acoustic

signal, or seismogram.

The earth is modelled as a discrete layered medium with

distinct interfaces for most seismic applications. This

assumed structure, while not strictly accurate, has led to

good processing results in practical seismic work and has the

additional advantage of being analytically tractable. We shall

employ this assumption throughout the present analysis. A

detailed description of the earth model used is given in

Chapter III.

The amount of energy reflected at a discontinuity is

ideally measured by the reflection coefficient,

r2c 2 - rc1c

r2c 2 + r1c I
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where rl, r2 and cl, c2 are the densities and acoustic

velocities in media 1 and 2. Here the sound propagates from

medium 1 to medium 2 and normal incidence has been assumed.

The assumption of normally incident plane waves is generally

made in single channel (one receiver) seismology since it

leads to analytical simplicity and appears to be reasonably

accurate. In utilizing this simplified model we have ignored

near field effects and spreading losses. These are not of

major importance in single channel dereverberation and their

inclusion would unnecessarily complicate the earth model.

It is evident from the reflection coefficient expression

that large reflections occur at points of significant change

in impedance. The largest impedance discontinuity encountered

by seismic signals occurs at the water-air interface where R

is nearly -1. The water-bottom interface is also a strong

reflector in most cases. Thus, the water column becomes a

reverberating channel wherein a significant portion of the

source energy is trapped. Repeated reflections from the bottom,

or multiples, are received at intervals corresponding to the

two-way travel time of sound in the water column. Deeper

reflections from the substrata are masked by multiples when

their arrivals are nearly coincident in time. Since propaga-

tion losses are much smaller in water, the energy in the

multiples is usually large compared to that in the deeper

reflectors. Thus, water column multiples form an unwanted
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component of the seismogram.

The reflection coefficient expression indicates that

all earth layers also introduce reverberation. Except in some

shallow water situations, internal multiples are generally

not a serious problem for two major reasons. Most importantly

the acoustic attenuation in the earth is much greater than

that in water so that very little internal multiple energy

is actually returned to the receiver. Secondly, the reflection

coefficients at earth layer boundaries are usually small

compared to those at the surface and seafloor so that a

relatively small part of the incident energy is actually

trapped.

Figure 1 shows a synthetic seismogram with strong

multiples. Response amplitude is measured on the ordinate

and travel time in seconds on the abscissa. The first large

signal component is the bottom reflection at one second of

travel time or about 750 meters water depth. The first

multiple is an attenuated, phase-inverted replica of this

reflection at two seconds. Note that the return from a

reflection horizon at two seconds travel time would coincide

with this multiple and be obscured. The overall periodicity

of the multiples is apparent in this plot. Actual reflectors

occur at 1.5, 2.2 and 2.9 seconds. Figure 2 shows the seismic

environment which would produce such a seismogram.

The first practical multiple analysis and dereverberation
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algorithm was proposed by Backus [1]. His approach was to

characterize the water column as a sharp, ringing filter with

an impulse response composed of a weighted sum of delayed

impulses. The weights and delays are determined by the bottom

reflection coefficient and the water column travel time

respectively. This model leads to a three-point operator with

elements spaced at intervals corresponding to the two-way

water travel time. Implementation of the Backus filter requires

estimation of the bottom reflection coefficient and water

column travel time. Several aspects of the performance of

this method are discussed in Chapter II.

Spatial processing has also been used to reduce

multiples [2]. Spatial schemes normally require multichannel

arrays of large physical extent which can be effectively focused

to discriminate against reverberation. Such systems are widely

used and quite effective in shallow water but their costs, both

for hardware and data processing, are very high. Hence, there

is still a need for time domain multiple removal techniques in

deep water situations and for single channel systems.

Two techniques have recently been applied to seismic

multiple removal with demonstrated success. The first, an

inverse filter algorithm based on a tapped delay line model, is

due to Baggeroer [3], and is referred to hereafter as the TDL

filter. A tapped delay line is simply a realization of the

time domain convolution of a sicnal and a gapped operator [4].
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Results of this method have proven superior to those of three-

point filtering, at least in some deep water situations.

A nonlinear filtering scheme using homomorphic deconvolu-

tion has been applied to several aspects of seismic signal

processing. The use of this method for dereverberation has

been demonstrated by Stoffa, Buhl and Bryan'5]. The homomorphic

transformation is essentially a mapping from convolution to

addition so that, after transforming, deconvolution can be

accomplished by simple linear filtering. Seismic dereverbera-

tion appears theoretically to be a very promising application

of homomorphic deconvolution because of the distinct properties

of seismic signal components. The method has not, however,

been fully evaluated or widely used in practice.

The motivation for this study arises from the disparate

theoretical mechanisms by which these techniques operate to

perform the same function. Since analytical comparison is

not feasible, this functional, comparative approach is

thought to be the best means of gaining insight into this

interesting problem.

The purpose of the analysis is twofold. First, it is

intended to indicate those factors which have significant

effects on the performance of each algorithm. The factors

to be considered are environmental variables and processing

parameters. These are discussed in Chapter III. Secondly,

the analysis is intended to point out the relative strengths
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and weaknesses of the methods by comparison of results on

similar data.

Each algorithm is evaluated for a range of simulated

processing conditions. Quantitative and qualitative criteria

are specified which provide a comprehensive description of

the manner in which each signal is affected by processing

for multiple removal. These criteria also serve as a basis

for comparison of results. The scope of the analysis and

the specific performance criteria are discussed thoroughly

in Chapter III.
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CHAPTER II

ANALYTICAL FORMULATION AND IMPLEMENTATION

A. Analytical Formulation of the TDL Filter

A simple feedback model for the propagation of reverberat-

ing seismic signals is given by Baggeroer [3]. Multiple

removal based on this model is then formulated as an inverse

filtering problem. The dereverberation filter is designed

using a least squared error criterion and the constraint that

the filter have a tapped delay line structure.

The formulation will be developed here from a different

point of view using Baggeroer's feedback model as a starting

point. A summary of the feedback model is included for clarity.

Figure 3 shows the Laplace transform representation of a

propagating seismic signal. S(s) is the transform of the

source signature. The signal first encounters the downward

travel time delay which corresponds to a phase shift in this

domain. Hb(s) represents the transfer function of the earth

beneath the water column including the reflections from layer

boundaries which comprise the desired information. Internal

multiples or reverberations between the various earth layers

are also included in Hb(s). Another phase shift corresponds

the return of the reflected signal through the water column.

P(s) is the feedback gain representing the water column multiple

mechanism. In most cases this is well approximated by -1,

which corresponds to the nearly perfect pressure release
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reflection at the surface. H (s) includes the observation

effects such as hydrophone bandwidth and array tow depth.

Ambient noise and reciever front end noise are modelled as

additive white Gaussian noise.

The overall transfer function is

-2sT
R (s) H (s) Hb(s) e w

S(s) 1 - P(s) Hb(s) e-2 wW

where T is the one-way water travel time and R (s) is the

received signal without additive noise.

It is apparent that the presence of multiples is due only

to the denominator of this expression. Thusfar we have

assumed implicitly that the earth response can be modelled

accurately as a linear system and that the multiples are

exactly periodic. The validity of these assumptions will

become apparent in the discussion of performance in Chapter IV.

The obvious task is now to design an inverse filter having

the form

-2sT
F(s) = [1 - P(s) Hb(s) e w

Hence, we are required to estimate Tw and the impulse response,

hb(t), corresponding to Hb(s). The earth response need not

be estimated precisely for its entire duration. Estimating

the dominant energy part of hb(t) is adequate to produce an

effective dereverberation filter. A typical deep water
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seismogram has the great majority of its energy concentrated

in the first 200-300 msec of its duration. Effective represent-

ation of this portion of the signal requires about 10-20

filter coefficients, depending on the bottom and source

characteristics.

The transfer function of eauation (1) can be re-written

in series form as

R (s) ca
(s) (n=l)

S(s) n=1

-2nsTn+l w
(-1) Hb(s) e .

The received signal then has the time domain representation

o0

r (t) = s[ho(* 0(t) * I (-1) hb(t - 2nT )]
n=l

where * represents convolution. This can be rewritten as the

sum of the primary return and the multiple signal.

r (t) = s(t) * h (t) *h (t- 2T ) +  (-l)n+lh (t-2nT )
o( t I ( n=2

r (t) = b(t) + m(t)

where

b(t) = s(t) * h (t) * hb(t-2T )

is the received primary and
00

Mr(t) = s(t) * h (t) * C hb(t- 2 nTw)
n=2
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is the received multiple signal.

The estimation problem, given the feedback model of

figure 3, is to determine b(t) in the presence of rm(t) and

white noise, w(t). It is convenient to group the unwanted

iAignal components.

n(t) = m(t) + w(t) (2)

Since the unwanted component is an additive one, we

can consider estimating n(t) and subtracting the result from

the received signal. We then have the filtering prohlem

depicted in figure 4.

r(t) = b(t) + n(

b(t)

Figure 4

Here f(t) is the filter impulse response and n(t) is the

minimum mean square error (MMSE) estimate o:f n(t), given the

received signal r(t).

The number of digital filter coefficients to be estimated

is 2TW+1, where T is the effective duration (portion contain-

ing about 80% or more of the signal energy) of Ih,(t) and W

is the signal bandwidth. The coefficients will then be

spaced at the Nyquist sampling interval of 1/2W seconds.
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The optimum digital filter for n(t) will have coefficients,

f which minimize

1 f
e =E n (i/2W) -ni2)2

i=i
(3a)

-J

Lwhe ZE:

n (i/2W) = I
k=i O

fk rL (i-k) 2

The input in (3b) is shifted by the two-way travel time to avoid

useless filtering of the signal prior to the bottom reflection.

[i /2W, if/2W] is the time interval over which n(t) is observed.

Substituting (3b) into (3a) yieldsS}
e = E fk (i-k) 2T - n(i/2W) .

O O

Minimizing,

e I (i-k) -n(i(i-k)SE 12 fk r 2W 2 T -n(i/2W) r 2W - 2Tif =i- -
O

f

= fk R (i-k)/2W
k=i k rr

o
- Rnr (k/2W+2T ).nr w

Here we have assumed stationarity over the duration of the

multiple period. This assumption has led to effective process-

ing of both real and synthetic data. From (2)

Rr (k/2W+2T w ) = R (k/2W+2T w ) + R (k/2W+2T w )nr w mr w wr w

(3b)

(4)

A

%-- --
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Here it is useful to assume (see ref.E3], p.15) that for shifts

close to 2T the cross-correlation of w(t) and r(t) is very
w

small compared to R (T) which will generally have a peak inmr

this region. This is equivalent to assuming that the white

noise has a very short correlation time compared to 2T . We then

have

Rnr (k/2W+2Tw ) Rmr (k/2W+2T w )

so that (4) becomes

if

fk R rr((i-k)/2W) = Rmr(k/ 2W+2T )  (4a)
k=i

Baggeroer has derived equation (4a) by designing the

Wiener filter for b(t) with the constraint that the filter have

a tapped delay line structure, i.e.

2TW
f(t) = 6(t) - X fk 6(t-k/2W-2T ) (5)

k=o

When our estimate, n(t), is subtracted from the unshifted,

received signal, the resulting overall filter operation has

exactly the form of (5). This indirect approach yields the

estimator equations of reference [3] without imposing the TDL

structure directly.

The above derivation also emphasizes the estimator-

subtractor or prediction error structure of this filter. The

entire impulse response may be written as follows:
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i, 0, O .... 0, -fl' -f2'" "-fk

2T zerosw

This is the prediction error structure for a prediction distance

of 2T w . Equation (4a), however, which generates the {fi .}

differs from the prediction equations in that the right hand

side vector is R mr(T+2T w) rather than R rr(T+2T w). As written,

equation (4a) corresponds to the Wiener filter which produces

the MMSE estimate of m(t) with r(t- 2 Tw) as an input. Subtraction

of this estimate from r(t) whitens only those spectral compon-

ents which are due to the multiple.

It is simply proved that the magnitude of the error in b(t)

is equal to that in the prediction operator.

b(t) = r(t) - n(t)

b(t) = b(t) + (n(t)-n(t))

A A

lb(t)-b(t) = In(t)-n(t)

Thusfar the only departures from optimum estimation have

been the two assumptions of stationarity and the relative

insignificance of R (T+2T ). One further assumption iswr w

required for actual implementation of the filter. Note that

Rmr(T+2T w ) is a required input which is apparently not measur-

able from the given data. Baggeroer has observed that for the

deep water case, which is of primary interest for this method,
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Rmr (T+2 Tw)ý: R rr (T+2T) .

That is, for shifts of nearly twice the water travel time, the

great majority of the crosscorrelation energy is due to m(t).

Hence, the equations used for data processing are given by

f

k fk Rrr((j-k)/2W) = Rrr (j/2W+2Tw) j=0,1,...2TW
k=i

Having seen the analytical formulation of this inverse

filtering procedure it is instructive to compare it with the

Backus three-point method. Processing actual data with both

filters (ref.[31]) has shown the Backus filter to be significantly

less effective. Some reasons for this are apparent from the

foregoing analysis.

The Backus filter is rigidly dependent on the accuracy of

two assumptions. The first, the assumption of strictly periodic

multiples, is violated due to the horizontal separation of

source and receiver. This effect becomes more severe as water

depth decreases. Since the Backus filter is implemented as

only three, equidistant operator coefficients it is very sensitive

to this lack of periodicity. Even if the statistics of the

signal generate very accurate estimates of the bottom reflec-

tion coefficient the filter structure is so simple and rigid

that proper cancellation will not occur if the multiples are

significantly aperiodic.



-22-

A second restrictive assumption of the Backus filter is

that the bottom reflection should be accurately characterized

by a single reflection coefficient. All of the statistical

information available is forced into a single parameter

estimation scheme. It is apparent that such a filter lacks

flexibility for dealing with more complicated bottom interaction

mechanisms.

The relatively better performance of the TDL filter on

real data is apparently due to its greater inherent flexibility.

That is, the finite length impulse response, or prediction

operator, gives the filter a capability for removing reverbera-

tion effectively in cases where the bottom response is not

accurately modelled as a weighted impulse. If the bottom has

a ringing or smearing effect on the incident signal then the

deconvolution operator must be extended in time. The Backus

filter, because of its rigid structure, cannot accomodate these

situations. The TDL structure provides 2TW+l (usually 10-20)

parameters which can be varied in the design procedure to

optimize dereverberation of each seismogram. The special case

of an ideal bottom will generate a filter response which is

essentially a single spike proportional to the bottom reflection

coefficient. This result has been confirmed in the analysis of

synthetic data. In such a case the TDL filter consists

basically of the first two points of the Backus three-point

filter. Performance (multiple energy removed) in these cases
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was found to be essentially independent of operator length.

The structural flexibility of the TDL filter also gives

it some potential for dealing with aperiodic multiples. It

should be noted, however, that the TDL algorithm, like the

Backus and other classical dereverberation techniques, is

essentially a correlation-cancellation operation. Consequently,

increased aperiodicity of multiples can be expected to degrade

performance in all cases.

B. Implementation of the TDL Algorithm

Figure 5 shows a flow diagram of the filter implementation

used for this analysis. Actual programming was done in

Fortran IV for use on a 32K computer. Referring to figure 5,

the correlation function is computed by the standard shift-and-

add operation with no windowing applied. Results of windowing

are included in reference [3]. Correlation time is variable

and may be specified by the operator. The crosscorrelation

function is approximated by the correlation function as discussed

in the previous section.

Solution of the filter equations is accomplished by

conventional matrix inversion. The Toeplitz symmetry can be

exploited for computational savings. Spacing of the operator

elements is determined by the estimated signal bandwidth which

is specified as an input parameter.

Actual deconvolution is implemented exactly as shown in
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figure 6, i.e., by means of a tapped delay line or, equivalently,

convolution with the gapped operator.

C. Analytical Formulation of Homomorphic Deconvolution

A homomorphic system is one which obeys a generalized

principle of superposition and which can be represented as an

algebraically linear transformation between two vector spaces.

A detailed description of the theory of homomorphic systems

is given by Oppenheim and Schafer [6]. This material will not

be repeated in depth here; rather, we shall discuss the basic

characteristics of homomorphic systems for convolution with

emphasis on those properties which facilitate dereverberation.

Additional discussions of these properties are found in

references [51, [71 and [8].

The usefulness of linear systems for separating additively

combined signals is due primarily to superposition. Signals

which are added and happen to be disjoint in the frequency

domain can be separated by means of an appropriate bandpass

filter. Homomorphic systems for convolution have a similar

effect on signals which have been convolved. That is, a

homomorphic transformation maps the input signal to a domain

in which the convolved components may be disjoint. Such a

transformation is illustrated in figure 7.

(n) .. 1X(z) FX(z) e- ^7xI(n) Z - - log [- - Z x (n)

Figure 7
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The mapping characteristic of this system is intuitively

apparent. Suppose x(n) is composed of two components which

have been convolved.

x(n) = x1(n) * x2 (n)

The z-transform operation yields a signal with multiplied

components, X1 (z) and X2 (z). The logarithm output is

X(z) = log[X l1 (z)] + log [X2 (z)].

The inverse z-transform,

x(n) = x1(n) + x2 (n)

preserves the additive combination of the components and yields

a sequence which is real and stable for a real and stable x(n).

The sequence x(n) is called the complex cepstrum of x(n).

Although it is real for real inputs, the "complex" is retained

to emphasize that it contains both the magnitude and phase

information from X(z). Hence the complex logarithm is required

even for real x(n). (We shall omit the modifier here for

brevity.)

The cepstrum variable, n, is normally called the quefrency

(a paraphrase of frequency) or period variable. Filter opera-

tions in this domain are generally similar to those encountered

in the frequency domain. Exact subtraction of xl(n) from x(n)

followed by computation of the inverse cepstrum (figure 8)

yields the sequence x2 (n), exactly, in the time domain.
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(n)- X(z) X(z)(n)x (n) ]--- -1 -- x (n)z 'expl Z

Figure 8

It is this property which renders homomorphic processing valu-

able for deconvolution.

As an example of complex cepstrum transformation consider

a signal composed of a short pulse (2 samples) convolved with

a decaying, periodic impulse train.

x(n) = s(n) * p(n)

x(n) = (n) + 6(n+1)+ * ) (-1)kRk6(n-kT)
k=o

where

IRI < 1 and T > 2

Taking the z-transform,

oo

k k -kTX(z) = (1 + z/2)- I (-1) kR z
k=O

-1-TX(z) = (1 + z/2).(l + Rz )  .

The logarithm then produces a sum

X(z) = log(l + z/2) - log(l + RzT).
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Both terms are simply expanded in Laurent series.

log (1 + z/2) =

-T
log (1 + Rz

- n nn

n=-l n2

-n

nn
(-1) nR

n=l n

, jzj< 2

-nT IRzT < 1

The z-transforms are easily recognized.

_-1)ns(n)- -ln-nn2

n (-1) kRk
p (n) 6(n-

n = -1, -2...-.

-kT) , k = 1,2,...,

x(n) = s(n) + p(n)

We see that s(n) occupies only the negative quefrency

region and p(n) only the positive quefrency region. Exact

deconvolution can be accomplished in this case by zeroing the

desired half of the cepstrum.

The canonic form of homomorphic systems for convolution is

shown in figure 9.

- - A

x (n) - 1
1 x(n)D, y(n) -1j-- y (n)

Figure 9
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-1
The characteristic systems D, and D, are shown in figures 7

and 8 respectively. The system L is a conventional linear

system. When L has a transfer function of 1, then x(n) is

-1
recovered exactly at the output of D, . The choice of L will

determine the effectiveness of deconvolution for a given input

sequence.

Two further specifications are required to ensure the

validity and uniqueness of the transformation. The complex

logarithm is a multivalued function with an infinite number of

branches.

log[X(z)] = log X(z) + j (Arg[X(z)i 2Trk) for all k

where Arg specifies the principal value of the phase. This

ambiguity must be resolved while simultaneously satisfying the

requirement that X(z) be a valid z-transform. Note that if

x(n) is to be real and stable, X(z) must be conjugate symmetric

and analytic in an annulus of the z-plane containing the unit

circle. That is, the real and imaginary parts of X(z) must be

continuous functions of z in the region including the unit

circle. The imaginary part, arg[X(z)], can only be made

continuous by "unwrapping" Arg[X(z)] in such a way that all

jumps of ± 27k are removed. This unique unwrapping leads to a

unique, valid X(z) which transforms to a stable, real x(n).

The requirement of a continuous phase curve poses some computa-

tional difficulties which will be discussed in the following
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section.

It is apparent from the foregoing description that

homomorphic systems have the potential for separating convolved

signals. One might expect, however, by analogy with linear

systems that deconvolution is most effective for signals with

certain cepstral properties. This is, in fact, the case and,

fortunately, seismic signal components are generally amenable

to deconvolution. Recall that a seismogram is modelled as a

convolution of a source signature and an impulsive reflector

series. Reverberation appears as a minimum phase, periodic

addition to the reflector series. Thus, we have

r 0 (n) = p(n) * (b(n) + m(n))

where p(n) is the source signature, b(n) is the desired signal

and m(n) is reverberation. Generalizations can be made concern-

ing the cepstral properties of each component.

The source signature is, in general, a mixed phase, short

duration time sequence. It is clear from the definition of the

z-transform that any such finite sequence transforms to a

rational function of z with no poles except at the origin. In

general

m -
P(z) = C z k (1-a.z ) H (l-b.z) lail, lbjl< 1

i=l j=1

The a. and b. represent zeros inside and outside the unit circle

-krespectively. z corresponds to a linear phase shift.
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^ m -i

P(z) = log C + • log(l-aiz ) + log(l-b z)
i=l j=1

log C n=O

n
^ m a.

p(n) = I n>O
i= n (6)i=l

P bn
n3 n<O

j=l

Here it has been assumed that the linear phase term is removed

before computation. p(n) is a two-sided sequence which is

always of infinite duration but decays faster than 1/n.

Hence, most of the cepstral energy is concentrated near the

quefrency origin.

The reflector sequence is modelled as a train of randomly

spaced impulses which may be mixed phase. Stoffa, Buhl and

Bryan [5] give a general, but very complicated expression

for the complex cepstrum of such a sequence. Some specific

examples are given by Schafer [7]. The resulting cepstrum is

an impulse train with impulses at the time domain impulse

locations, at all their multiples, and at various other loca-

tions, both positive and negative on the quefrency axis. Three

important observations can be made.

The cepstrum of a minimum phase reflector train contains

no contributions for negative quefrency. Consider the special

case of equation (6) in which all the b. are zero. This
3
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corresponds to all zeros being inside the unit circle, i.e., a

minimum phase sequence. Note that p(n) and s(n) in the example

are minimum and maximum phase respectively, leading to causal

and anticausal cepstra.

Secondly, it happens that no non-zero cepstral contributions

occur between the origin (first impulse) and the location of

the second impulse in time, if the time series is minimum phase.

Therefore, the cepstrum of a minimum phase impulse train, unlike

that of a general sequence does not have its contributions

concentrated near the origin. The cepstrum of a minimum phase

impulse train will always contain a gap equal to that between

the first two time domain contributions.

Finally, we observe (see Schafer [7]) that a reflector

series can easily be made minimum phase by exponential weighting.

r'(n) = wnr(n) jwl < 1

k m
-k -R' (z) = C z c l-(aiw)z 1-(bj/w)

i=l

The value of w is chosen so that

-1
b .w - 1 > 1 for all b..

Weighting of the impulse train is effected by weighting of the

entire signal since, if

s(n) = p(n) * b(n)
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then

wns(n) = (wnp(n))*(wnb(n)).

Note that the reflector series may be made minimum phase without

making the entire signal minimum phase. Very little weighting

is normally required in practice.

The remaining contribution to the seismic signal is reverbera-

tion. This component is merely a special case of a minimum

phase impulse train in which the impulses are periodic. It is

easily verified that if

m(n) = ý y(n)6(n-kn )
k=l

then

m(n) = y(n/n ).

The cepstrum is, therefore, periodic with the same period as

the reverberation.

A useful property for deverberation is derived by Stoffa,

et al.[5]. The derivation is summarized here because of its

direct pertinence to seismic processing.

Consider a normalized multiple signal,

m(n) = ý (-1) R 6(n-i2T ) (7)
i=0

where R is the bottom reflection coefficient. Then, as we

have seen
•o ii

m(n) = 6(n-2iT ).
i=l w
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Subtracting the firstj cepstral contributions and transforming,

^ ^ (-1) Rj (n) = m(n) - 6(n-2iT )w
i=1

S i -2iT
Mj(z) =

Ji
i=j+l

0 R -2iTMj (z) = H exp [-- z w] .
i=j+l i

Expanding in a power series

00 M R ik -2ikT
M. (z) 1= H X ki=j+l k=O k!i

S(-Rz2T +k oo -2T 2j+k
M (Z) = 1 + (-Rz w (-Rz w)V

k-I j+k k=3 i=l 2(i+j)(j+k-i) "'

(8)

Comparing (7) and (8), the first j time domain multiples have

been removed completely and the (j+l)st multiple is reduced by

1/(j+l). All succeeding multiples are also reduced. Thus,

removal of only the first cepstrum multiple would remove the

first time domain multiple and reduce the second by 1/2, the

third by 1/3, etc..

Having seen the cepstral properties of each seismic signal

component the advantages of homomorphic deconvolution are

apparent. The source signature and reflector series have their

cepstral energy concentrated in different regions of the quefrency
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axis, thus facilitating removal of the source. The cepstral

contributions of the reverberation occur at predictable locat-

tions so that multiple removal is possible.

Due to the nature of the homomorphic transformation,

linear filtering of the cepstrum is not the normal convolution

operation but a simple zeroing of the unwanted contributions.

That is, the linear filter is generally frequency invariant

rather than time or quefrency invariant. The name "quefrency"

was adopted to reflect this reversal of the customary time and

frequency filtering roles.

The foregoing analysis is based on assumptions similar to

those employed in classical seismic processing. Namely,

we have assumed that the seismogram consists of a source

signature convolved with distinct, impulsive reflectors and

periodic multiples. It is difficult to predict the sensitivity

of the overall processing scheme to these assumptions because

of its complex analytical structure. Hence, various parameters

have been varied in the performance analysis to obtain an

empirical measure of this sensitivity.

Finally, we note that the additive noise was not included

in the analytical formulation of the homomorphic processing

scheme. The algorithm is designed to separate convolved

components and, unfortunately, no effective processing gain is

achieved over added noise. In practive, additive noise has

been dealt with through classical bandpass filtering. This
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performance analysis includes a description of the effects of

additive noise on homomorphic deconvolution.

D. Implementation of Homomorphic Deconvolution

Figures 7, 8 and 9 show the sequence of operations required

for homomorphic deconvolution. A processing scheme was designed

to implement this algorithm in Fortran IV on a 32K digital

computer. A flow diagram of the scheme is shown in figure 10.

Some aspects of the computation are noteworthy.

All z-transforms in the algorithm are implemented via FFT.

Recall from the analytical formulations that z-transforms

involved in the processing of a real, stable sequence are

required to have regions of convergence which include the unit

circle. The discrete Fourier transform is simply a sampling

of the z-transform on the unit circle which, for properly band-

limited signals, is sufficient to specify the signal completely.

Data sequences are normally padded with zeros to reduce cepstral

aliasing, e.g., 2048-point cepstra are computed for 1024-point

seismograms. Since the cepstrum is always of infinite extent,

a truncated version always results in some aliasing when

computation is not done recursively.

The major difficulty in computing an accurate cepstrum is

the computation of a continuous phase curve. The data sequences

are normally sampled at a rate based on the frequency content.

There is no assurance, however, that this sampling rate is adequate

to uniquely specify X(z) = log[X(z)].
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Figure 10 Flow chart of homonorphic dereverberation algorithm.
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The method used for this analysis is due to Tribolet [9] and

is thought to be quite accurate and efficient. The flow

diagram for this algorithm is shown in figure 11.

dX z)
The phase derivative, dz and principal value, ArglX(z)],

are easily computed from the transforms of x(n) and n x(n)

(see appendix A). The values of the derivative are integrated

using the trapezoidal rule and the integral output is compared

with Arg X(z) at each step. If the two values do not agree

within

2n7 ±+ n = 0,+±, ±2,...

where E is a small positive number, the latest computed value

of arg X(z), say a i , is discarded. The routine then returns

to the last correct integration value, computes an intermediate

derivative value, and begins integrating with a step size half

that of the original grid. The integrate-and-compare process

is continued at this step size until a. has been computed
1

correctly or until a comparisen fails. Integration is resumed

at the initial step size in the former case or, in the latter,

step size is again halved. The number of possible step sizes

is theoretically unlimited. The value of c may be adjusted

by trial-and-error for most efficient integration. The

adaptive step feature compensates for the undersampling problem

in a very efficient and accurate manner.

Linear phase contributions are easily identified and

removed from the computed continuous phase curve. Having
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computed the log magnitude and phase, the inverse z-transform

is straightforward.

Linear filtering is accomplished by zeroing the unwanted

cepstrum values. One might consider windowing procedures which

are common in linear filtering, but these were not employed in

the present analysis.

The inverse cepstrum computation is completely straight-

forward since no ambiguities arise in the exponentiation

process. The final steps are shifting the output sequence

by the linear phase value and unweighting the shifted sequence,

if necessary.
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CHAPTER III

DESCRIPTION OF THE PERFORMANCE ANALYSIS

The purpose of this analysis is to evaluate, both quantita-

tively and qualitatively, the performance of the TDL and homo-

morphic dereverberation techniques. Each method is to be

evaluated for a variety of simulated seismic conditions in order

to determine those factors which significantly influence perfor-

mance. The comparative nature of the analysis is intended to

emphasize the relative strengths and weaknesses of each technique.

It should be noted that absolute performance figures are

not inherently valuable, especially when obtained from synthetic

data. The diverse geological and oceanographic conditions

encountered in marine seismology coupled with the many different

processing systems currently employed may be expected to yield

a range of absolute results. The greater value of this analysis

is to indicate the parameters, environmental and mathematical,

which can be expected to affect significantly the performance

of these algorithms. The numbers obtained provide a measure

of the relative performance of the two methods under similar

conditions and, in some cases, provide asymptotic performance

criteria. Synthetic data were chosen so that signal parameters

could be accurately controlled.

Three criteria are specified for comprehensive evaluation

of performance. The first, most direct, measure of effectiveness
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is the percentage of multiple energy removed from the signal.

This is easily measured by calculating the zero-lag correlation

of the signal, in time windows spanning only the multiple

locations, before and after processing. That is, the squared

amplitude (energy) of the signal in the multiple region is

computed after processing and subtracted from the squared

amplitude of the original signal in that region. This

difference is divided by the original energy of the multiple

to yield the fraction of energy removed by processing. The

use of synthetic data facilitates this method of analysis

since reflectors and multiples can be placed in disjoint regions

to avoid ambiguity.

The second criterion is the amount of signal distortion

introduced by dereverberation. This is measured by comparing

reflector energy before and after processing. As before,

reflectors and multiples must be disjoint for meaningful results.

Although these two criteria provide an accurate auantitative

measure of performance they are restricted to situations in

which reflectors and multiples do not overlap. The overlap

case is most important in processing real data since the

multiples then abscure the reflectors most severely. In order

to judge performance in these situations we must evaluate

qualitatively the improvement of visual interpretability.

This visual enhancement of reflector-to-multiple ratio is our

third criterion. It is an important measure in spite of its
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subjective nature since the primary means of seismogram

analysis is visual interpretation.

The analysis is limited in scope to the single channel

processing configuration. Although both techniques are

applicable, in principle, to multichannel processing, the many

additional variables involved and unavailability of appropriate

synthetic data would lead to a complicated extension of this

analysis. A single channel treatment is adequate to identify

the important performance traits of both methods.

Parameters to be varied fall into two general categories;

environmental and operational. The environomental parameters

include noise level, multiple periodicity, multiple-to-signal

level and multiple/reflector separation or overlap. These are

varied within ranges which are thought to be representative of

ambient conditions normally encountered in marine seismology.

Effects of noise level are considered only for the case of

white Gaussian noise. The effects of aperiodicity have not

been evaluated for the TDL algorithm because it is intended

primarily for deep water use where only the first multiple is

usually of interest. Operational parameters refer to those

which can be controlled during processing. These include filter

cutoff frequencies, operator lengths, travel time estimates,

cepstral stopbands, and weighting. Windowing of the correlation

function is not evaluated although a discussion of this subject

is contained in reference 13].

i
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The algorithm used in generating simulated earth impulse

responses is due to Theriault 110]. A brief description of

Theriault's earth model is given here.

The model is based on the following assumptions:

(1) An air gun source generates longitudinal pressure

waves which impinge upon all earth layers as

normally incident plane waves.

(2) All earth layers are horizontally infinite,

parallel and homogeneous.

(3) Abrupt changes in acoustic impedance occur at

each layer interface and these boundaries are

characterized by the customary acoustic reflec-

ion and transmission coefficients.

(4) The earth has a uniform density.

(5) The water column is a non-attenuating fluid

with a perfect pressure release interface at

its surface.

(6) Each layer is characterized by a transfer

function, F(w) which represents the attenuation

and travel time delay for that layer.

These assumptions are incorporated into a lumped parameter

model. Figure 12 shows a frequency domain model of a two

layer earth. The Fi(w) have the functional form

exp -jwx i/(9)j 0.+ 1 -JXi/cJJ c°C~l )
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Hydrophone
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Figure 12 Two layer earth transfer function schematic
(after Theriault).
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where xi, ci and ai are the ith layer thickness, sound speed

and layer attenuation parameter respectively. These transfer

functions are combined using a semi-group property rather than

the usual frequency domain multiplication.

The -1 multiplier completes a feedback loop around the

source which generates the water column multiples. Since the

water column is assumed to have no attenuation the multiples

appear in the earth response as impulses, and in the resulting

seismogram as replicas of the source signature reduced by the

bottom reflection coefficient.

The above multiple mechanism is inadequate for representing

effects of incoherent (distorted) multiples and varying bottom

interaction mechanisms. These effects are introduced by inser-

tion of water column attenuation which causes the bottom response

and multiple responses to be of exponential form given by the

Fourier transform of (9). Thus the bottom response is extended

in time and each multiple is a distorted version of the previous

one. Examples of multiple appearance with and without water

column attenuation are shown in figure 13a and b.

The topmost loop of figure 12 simulates the effects of

finite receiver depth T. Any number of layers with the desired

parameters can be combined into an overall earth transfer

function which is easily transformed to yield the earth impulse

response.

Synthetic seismograms for this analysis were generated by
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Figure 13 (a) Synthetic seismogrimn wi th coherent multiples.
(b) Synthetic seis.mogram ,'7ith distorted niultiples

due to water column attenuation.
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convolution of various Theriault impulse responses with air

gun signatures obtained from actual at-sea recordings. A

typical signature is shown in figure 14.

It is important to note that these seismograms contain

all water column multiples and internal multiples of all

orders. For realistic parameter values earth attenuation

characteristics usually render internal multiples negligible.

Finally, we note one drawback of using this model for

multiple removal analysis. The algorithm produces multiples

which are exactly periodic. This periodicity gives these

seismograms strong correlation characteristics which are not

usually encountered in practice. The lack of periodicity in

actual seismograms is due to the horizontal separation of the

source and receiving array. The difference in travel paths

arising from this separation is illustrated below for a primary

return and first multiple.

surface

bottom

2d
primary path length -coscos a

4d
multiple path length - cos 8
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0.0 0.25 0.50

Figure 14 Air gun signature (obtained by at-sea recordings)
convolved with synthetic earth response functions
to form seismograms.
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For a known separation and water depth the travel time

difference can be easily calculated. This effect becomes

minimal in deep water where cos a and cos a are approximately

equal to one.
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CHAPTER IV

RESULTS

A. Introduction

The results of applying the multiple removal methods

described in Chapter II to synthetic data are described here in

terms of the criteria of Chapter III. Performance based on the

first two criteria is emphasized because it can be quantified

much more accurately. Specifically, the reflectors and

multiples have been positioned at distinct locations in most

cases so that the amount of energy removed from reflectors and

multiples can be measured without ambiguity. This emphasis

leads, however, to a certain lack of realism in several of the

synthetic data plots. Separation of this kind in an actual

seismogram would, of course, eliminate the necessity for

multiple removal. Hence, several cases of interfering reflectors

and multiples are also shown. Although these are not amenable

to quantitative analysis they can be judged on the basis of

the third criterion, viz., improvement of visual record quality.

A second deviation from normal processing conditions has

been required to compare effectively the performance of the

two methods. Homomorphic dereverberation is accomplished in

practice (see [5]) concurrently with source deconvolution,

where practical, since both operations are simply performed

after the cepstrum has been computed. This leads to a

considerable amount of energy removal at each multiple and
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reflector location which is due to source deconvolution alone.

Although this may lead to improvement of the record, the criterion

of energy removed does not accurately measure dereverberation

performance in the same way it does for the TDL results. For

example, source deconvolution might typically lead to 90%

reduction of multiples and 90% removal of reflector energy.

This gross change in configuration cannot be effectively

compared with TDL processing on the basis of energy removed.

Hence, source removal has not been accomplished in most cases

tested. The results of this "partial" processing can be

quantitatively evaluated and easily compared with TDL results.

Cepstral filtering which includes source removal, thus retain-

ing only high quefrency energy, is referred to as "longpass

filtering". Several examples of longpass filtering are included

and interpreted in terms of the third criterion.

The performance of each method is discussed individually

for various processing situations. A direct comparison of the

performance of both methods for the same data is also included.

The comparison is extended in Chapter V.

B. Results of TDL Dereverberation Performance

I. Operator Length, Multiple Distortion and Multiple-to-
Signal Ratio

The number of tap gains required for optimum multiple

removal was found to be highly signal-dependent. Recall from

Chapter II that the tapped delay line is essentially an



-54-

estimate of the high energy portion of hb (t), the earth impulse

response. In most applications the reflected bottom response

is dominant. The time-bandwidth product of this response

would then be expected to govern the filter length requirements.

Measured results confirm this.

Seismograms containing exactly impulsive (one sample)

bottom responses exhibited little or no variation of performance

with filter length. Typical filter impulse responses for a

seismogram of this type are shown in figure 15. The reflection

coefficient in this case is 0.3. The first tap gain is close to

-0.3 in each response, as would be expected from the Backus

formulation in which the second operator point is an estimate

of the bottom reflection coefficient. Increasing filter length

can be seen to cause variation in the "estimation" of the reflec-

tion coefficient. Figure 16 shows energy removed vs. filter

length for this seismogram. Multiple energy removed decreases

slightly with increasing filter length. Reflector distortion

is nearly constant at low values (6% for one and -2% for the

other). The signal used in figure 16 is shown in figure 17a.

The processed result shown was obtained using only one tap.

Introduction of a non-impulsive multiple mechanism was

found to produce a marked dependence of performance on operator

length. Synthetic seismograms were generated with finite

length bottom responses, resulting in distorted multiples

which are not simply weighted replicas of the source signature.
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Figure 15 TDL impulse responses for three operator lengths.
(a) 5 taps (b) 10 taps (c) 15 taps
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Figure 17 (a) Seismogram with coherent multiples.
(b) Result of TDL processing with a one point

operator.
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Figure 18 shows filter performance vs. operator length

for three seismograms having different degrees of distortion

in their bottom reflection mechanisms. This distortion is

equivalent to extension of the bottom impulse response in time.

The signals associated with curves (1), (2) and (3) are shown

in figures 19a, 19b and 19c respectively. The increasing

distortion of the multiple at 2.0 seconds is evident. Curve (1)

corresponds to a signal with very slight multiple distortion.

Operator length is seen to have no effect on performance.

The seismogram corresponding to curve (2) has a bottom impulse

response which is significant for T = .03 seconds. The tap

spacing in this case is 1/2W = 4.88 msec, so that 2TW = 6.1,

and six or seven tap gains should be adequate if the signal

has been properly sampled. Reference to curve (2) confirms

that increasing the filter length beyond seven does not improve

performance. Filters of fewer than seven elements yield

monotonically decreasing performance. The bottom response

for curve (3) is significant for .045 seconds so that, for the

same tap spacing, 2TW = 9.2 and we anticipate that nine or ten

taps will he adequate. This is, in fact, the case.

Figure 20 shows the 5, 9 and 15 point filter impulse

responses associated with curve (3). There is an observable

2 -bt
convergence to a t e shape which is the actual functional

form of the synthetic bottom response. Figures 20a and 20b

exhibit a "diverging tail" effect which was found to be common
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Figure 18 Performance vs. operator length for three signals
with bottom interaction times varying from (1)
impulsive to (3) .045 seconds.
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Figure 19 Seismngrars associated with the curves of figure
18. (a) Curve (1). (b) Curve (2). (c) Curve (3).
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(a)

(b)

(c)

Figure 20 Filter impulse responses associated with Curve (3)
of figure 18. (a) 5 points (b) 9 points
(c) 15 points.
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when the specified filter length is too short. This type of

phenomenon occurs in some numerical approximation methods when

an inadequate number of terms is specified.

It is apparent from the above results that the effect of

operator length is closely related to the bottom interaction

mechanism. As discussed in Chapter II, the filter should be

an estimated replica of the bottom impulse response when the

interaction process can be accurately modelled as a convolution

of the source signature with the bottom response. Figures

15 and 20 are good examples of this behavior.

In the cases summarized in figure 18 performance increases

as multiple distortion increases. This need not be true in

general since bottom interactions may become very complex.

2 -bt
The slowly varying t e responses lead to operators which

have a greater cancellation effect as they are extended. A

higher bandwidth bottom impulse response might not exhibit

this behavior. As it was not possible to include more complicated

bottom responses in the earth model used, these effects were

not investigated further.

Reflector distortion was found to be nearly constant for

all filter lengths tested. The reflector at 2.7 seconds was

essentially undistorted in all cases. The 3.5 second reflector

had an average distortion of 7%. Figures 21-24 show some

processed results for the signals in figure 19. Each of the
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Figure 21 (a) Seismogram with very coherent multiples.
(b) Result of TDL processing with three taps.
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Figure 22 (a) Seismogram with moderately dittnrted m'ultiples;
bottom response is significant for .035 seconds.

(b) Result of processing with 7 taps.
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Figure 23 (a) Seismogram with considerable multiple distortion;
bottom response is significant for .045 seconds.

(b) Result of TDL processing with 11 taps.
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first three figures (21, 22 and 23) show signals before and

after processing with the fewest number of taps required to

achieve optimum performance. Visually, multiple removal is

almost complete in each case. The signal of figure 23a is

shown in figure 24 after processing with 3, 5 and 7 taps.

The improvement from figure 24a to 24c is obvious.

Multiple-to-signal ratio (defined here as the ratio of

energy in the first multiple to that in the largest sub-bottom

reflector, abbreviated MSR) was found to be of little importance

in most cases of interest. For signals in which multiples are

large enough to be a problem (comparable to, or larger than

smaller reflectors), the multiple dominate the crosscorrelation

function so that an effective filter is generated. For these

cases the performance was found to be insensitive to the width

of the time window used for correlation. In the relatively

less interesting case of signals with small multiples, the

performance is greatly dependent on the choice of correlation

window. If large reflectors are included in the window, perfor-

mance is adversely affected because of the large reflector

contribution to the statistics. For some cases of interest

this effect may be a consideration in choosing an appropriate

correlation window. Inclusion of large reflectors should be

avoided.
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Figure 24 Pesults of processing seismogram of f.iure 23a with
inadequate TDL lengths (a) 3 taps (b) 5 taps (c) 7 taps.
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2. Water Travel Time Estimate

It was noted in Chapter II that an estimate of the water

column travel time is required for implementation of the TDL

algorithm. This is accomplished in practice by various methods

including visual estimation, energy detection and correlation

techniques. The estimate appears in the filter design equations

as the minimum shift of the crosscorrelation function, Rmr'

This estimate may also be identified as the prediction distance

when the operator is interpreted as a prediction error filter.

The actual estimation of water column travel time was not

investigated in this analysis. The effects of travel time

estimation on filter performance were, however, considered.

Figure 25 shows the results of water travel time estimation

errors for the ideal case of a signal with impulsive multiples.

The unprocessed seismogram, shown in figure 26a, contains

reflectors at 2.7 and 3.5 seconds and a strong multiple at 2.0

seconds. The actual two-way travel time in this case is 1.0

second. The strong similarity between the bottom reflection

and multiple is apparent.

First multiple energy removed is very sensitive to travel

time estimation, with an error of + 10 msec resulting in a

performance degradation of about 20%. This effect is analogous

to that observed in matched filter receivers in that the

coherent signal components exhibit very high correlation for a

small range of lags. In this case the strong coherence and
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Figure 25 Effects of water column travel time estimate on
multiple removed for a signal with coherent multiples.
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Figure 26 (a) Unprocessed seismogram with impul ive mu!tiJplel.
(b) TDL result based on correct water travel time

estimation.
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Figure 26 (cont'd) (c) Result of TDL processing based on an
early water travel time estirate.

(c) Same processing based on a late estimate.
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multiple periodicity yield the sharp correlation peak for lags

near the water column travel time, which is also the multiple

period.

The second and third multiple performance peaks occur

at 1.08 and 1.04 seconds respectively, and have values of 24%

and 60%. These shifted and reduced peaks are caused by

digitization effects. For such an extremely coherent signal,

a multiple position deviation of one sample (due to sampling

interval round-off) can cause the cancellation operation

to be severely affected. In this case the second and third

multiple performance maxima are due to secondary crosscorrelation

peaks introduced by the periodic oscillations in the source

signature. These peaks occur at intervals approximately

equal to the period of the basic source (air gun) frequency.

The three performance peak values correspond closely to the first

three air gun pulse amplitudes.

Figures 26 b, c and d show the results of on-time, early

and late travel time estimates respectively. In the first case

the multiple has been effectively removed while the early and

late estimates lead to multiples which are still significant

after processing.

The effects of travel time estimation error on the

operator impulse response are seen in figure 27. The optimum

estimate yields an operator with a large peak at the origin,

nearly equal to the bottom reflection coefficient (.2), anda
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Figure 27 TDL filter impulse responses based on travel time
estimates which are (a) 40 msec early, (b) correct,
and (c) 20 msec late.
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smaller peak at the source pulse oscillation interval. The

initial spike is due to the largest peak in the crosscorrelation

function Capproximated here by the correlation function) which

occurs at a shift equal to the two-way travel time. The smaller

peak in the filter is introduced by an additional shift of one

source period. The early (by 40 msec) estimate still allows

observation of the crosscorrelation maximum and yields the

shifted spike of figure 27a. It is evident in figure 25 that

performance is reasonably good for estimation errors less than

about .07 seconds, which is the length of the tapped delay

line. For greater travel time errors the range of correlation

lags computed does not include the peak; hence, the filter is

ineffective. Late travel time always results in poor perfor-

mance since the peak is not observed. Figure 27c shows a

typical impulse response due to late travel time estimation.

The seismogram of figure 28a contains a small reflector

at 2.2 seconds and a larger one at 3.0 seconds. The first

multiple partially overlaps the smaller reflector and the second

multiple coincides with the larger. Figures 28 b, c and d

demonstrate how travel time estimation errors can lead to

ambiguous results. Figure 28b was processed using the correct

travel time, resulting in good resolution of both reflectors.

The early and late estimates lead to the signals of figures

28c and d in which the smaller reflector cannot be clearly

resolved.
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Figure 28 (a) Seismogram with overlapping reflectors and
multiples.

(b) Result of TDL processing based on a correct
travel time estimate.
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Figure 28 (cont'd)

B3I

(c)

(d)

2.0 3.0

4.0
4.0

(c) Result of TDL processing based on a
40 msec early travel time estimate.

(d) Same processing based ona20 m';ec late
estimate.
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Less coherent seismograms exhibit less sensitivity to

travel time estimation as shown in figure 29. Curves (1),

(2) and (3) were generated using the seismograms of figure 19 a,

b and c respectively, which contain increasing distortion in

their multiples. The MSR is considerably lower than in

figure 25 so that the later multiples are not clearly visible.

The crosscorrelation peaks are considerably broader than in

the impulsive multiple signals. Curve (3) , the least coherent

signal, exhibits the lowest sensitivity to travel time estimates.

Increasingly sharper peaks are evident for curves (2) and (1).

The performance degradation due to over-estimation is precipitous

in all cases although the rate of fall-off is related to

signal coherence.

Reflector distortion (not shown) was negligible in all

cases for the first reflector and nearly constant at 7% for

the second.

Examples of processed signals for curves (2) and (3)

are shown in figures 30 and 31.

3. Multiple Periodicity

The effects of aperiodic multiples on TDL dereverberation

performance were not investigated in this analysis since the

algorithm is designed primarily for deep water use, where only

one multiple is significant in most applications. Successful

employment of this technique in shallow water is limited since
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Figure 29 Effects of water column travel time on three signals
with varying degrees of multiple distortion.
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Figure 30 Proces-c d !) ocramw asociated ',,7ith fic-ure 39b
and curve (2) of figure 29. (a) Travel time
estimate 40 msec early (b) 40 msec late.
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Figure 31 Processe(. ':'zcrreamns as7socriated wJith fiturte 19c and
curve (3) of fig1•nu 29. (a.) Travel time estimate 40
msec early (b) 40 msec late.
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the approximation of the crosscorrelation, R mr by the

correlation, Rrr , near the multiple onset is not generally

valid. Reflector energy in the multiple regions is usually

significant in shallow water seismograms.

It is apparent from the TDL formulation and the discussions

of the preceding two sections that the TDL algorithm has

some capability to compensate for aperiodicity in which the

deviation is of the order of the tapped delay line length.

For greater aperiodicities the TDL filter will not be effective

on later multiples. Figure 25 indicates that even slight

deviations can be very detrimental in later multiple removal.

Dynamic corrections can be applied as suggested by Backus [1],

however, these are beyond the scope of this study.

4. Reflector/Multiple Overlap

Figures 32-36 show seismograms before and after processing

for several cases in which multiples and reflectors overlap.

A brief description of each situation is given here.

The seismogram of figure 32a has reflectors at 1.5, 2.1

and 3.0 seconds, and distorted multiples. Significant energy

near 2.0 seconds is removed by processing but a clearly visible

response is still present. Other regions of the signal are

not visibly affected. The visual resolution is not significantly

improved in this case, however, stacking of successive shots

after multiple removal could be employed to enhance the reflector
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Figure 32 Seismogram with reflectors
seconds (a) before and (b)

at 1.5, 2.1 and 3.0
after TDL processing.
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in this situation. The success of stacking would require

that the reflector be more coherent than the residual multiple

after dereverberation.

In figure 33 reflectors occur at 1.5, 2.02 and 3.0 seconds.

Reflectors may be expected to have a strong influence on the

crosscorrelation function in this situation of extreme overlap.

The result is nearly complete removal of the second reflector

with the multiple. The last reflector is clearly visible at

3.0 seconds. In this example the tapped delay line length

(.054 second) is greater than the reflector/multiple separation

(.02 second). The bottom impulse response is significant for

.035 second so that it cannot be estimated accurately with an

operator which is shorter than the reflector/multiple separation.

Even if the bottom response were much shorter, the effect of

the large reflector in the crosscorrelation window would lead

to degraded performance. This example shows worse degradation

than would be expected in practice because the reflectors are

very coherent in this synthetic data. The less coherent

reflections in deep water signals would generally be less

susceptable to removal. When reflector energy is significant

in the crosscorrelation, however, and TDL length is greater than

reflector/multiple separation, the filter design algorithm

essentially interprets the reflector as part of the multiple

and tries to remove it.

Figure 34 contains reflectors at 1.6, 1.95 and 3.0 seconds.
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Figure 33 Seismogram with reflectors at 1.5, 2.02 and 3.0
seconds (a) before and (b) after TDL processing.
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Figure 34 Seismogram with. reflectors at 1.6, 1.95 and 3.0
seconds (a) before and (b) after TDL processing.
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These locations are slightly different from those of figure 33.

Significant energy is present at the second reflector location

after processing. Since the reflector precedes the first

multiple in this case it has a less significant effect on the

crosscorrelation function than the 2.02 second reflector in the

previous example. The variability of performance on individual

seismograms (of similar structure) with overlap again suggests

the use of stacking to enhance reflectors.

The reflectors of figure 35 are situated as in figure 34;

however, the first reflector and multiple are significantly larger

in this case. This seismogram is more typical of a shallow

water return. The processing is quite effective on the first

and second multiples. The aperiodicity of reverberation in

most shallow water seismograms would lead to much poorer

performance on later multiples, in practice.

Figure 36 illustrates a situation where the overlap is

not severe but visual resolution is impaired by the first and

second multiples. Reflectors occur at 1.55, 2.4 and 3.25

seconds. Processing results in effective reduction of both

multiples and significantly improved resolution in the second

and third reflectors.

We conclude from these examples of reflector/multiple

overlap that visual improvement due to dereverberation varies

widely, depending upon several aspects of the individual signal

structure. The bottom impulse response, the extent of reflector/
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Figure 35 Seismogram with reflectors at 1.6, 1.95 and 3.0
seconds (a) before and (b) after TDL processing.
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Figure 36 Seismogram with reflectors at 1.55, 2.4 and 3.25
seconds (a) before and (b) after TDL processing.
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multiple separation, the relative coherence of reflector and

multiples, and the relative sizes of signal components all

appear to affect performance. Each of these factors influences

the effectiveness of the crosscorrelation operation in identify-

ing energy which is specifically due to the multiples.

The visual improvement due to dereverberation can best be

determined by analysis of continuous seismic profiles (presenta-

tions showing many seismograms side-by-side) since coherent

residual energy, if present, becomes apparent as visual trends

in the data. The effects of stacking can also be observed in

this format. It was not practical to generate such a profile

with synthetic data but the single-shot results indicate that

TDL dereverberation is potentially useful for enhancing the

visibility of reflectors which are partially masked by

multiples.

5. Additive White Noise and Filtering

White Gaussian noise was generated in the following manner.

First, a set of uniformly distributed random numbers was

obtained using a standard digital routine. A set of approximately

Gaussian numbers was then formed by summing separate groups of

twelve of the uniformly distributed numbers. The resulting set

was weighted to obtain the desired standard deviation. Figure

37 shows a seismogram with two different levels of added noise,

each lowpass filtered at 50 Hz.
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Figure 37 Seismograms with added white noise, lowpass at 50 Hz.
(a) a =50 (b) a =100.n n
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Figure 38 illustrates the performance of the TDL filter

for various noise levels on a seismogram having disjoint

reflectors and multiples. The maximum noise standard deviation

shown corresponds to a SNR of 0.7 dB. No bandpass filtering

was done prior to dereverberation. The results presented here

are typical of the cases tested. Multiple energy removed

decreases monotonically with increasing noise level; almost

linearly in the case of the first multiple. The later multiples

are more severely affected. As the noise level becomes comparable

to their amplitudes, the filter becomes ineffective in removing

them. This behavior is due to the effect of increasing incoherent

energy in the signal. The correlation-cancellation operation

is designed to detect coherent, periodic components. These

become increasingly masked as more noise is added. For this

reason seismograms with larger multiples exhibit less sensitivity

to noise. Seismograms of similar structure (i.e., exactly the

same reflector and multiple locations) whose multiple energies

differed by a factor of twenty were found to exhibit consider-

able dereverberation performance differences in high noise.

Processing of the signal with the larger multiples resulted in

25% greater removal of first multiple energy.

Lowpass filtering before dereverberation can lead to a

significant improvement in TDL filter performance in some

signals. The plotted results of lowpass filtering two noisy

signals at various frequencies are shown in figure 39.
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Figure 38 Effects of noise level on TDL performance for a
signal with coherent periodic multiples.
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Figure 39 TDL performance vs. lowpass filter cutoff frequency
for signals with coherent (lower curve) and distorted
(upper curve) multiples.

7



-94-

(A third order Butterworth filter was used throughout. The

visual difference in two filtered signals is shown in figure 40.

The first is lowpass filtered at 90 Hz and the second at 30 Hz.)

The seismogram used to generate the upper curve contains

multiples which are considerably distorted while the lower

curve is due to a more coherent signal. Decreasing the pass-

band from 90 to 30 Hz produces a 12% improvement in performance

in the second case but the less coherent signal is relatively

insensitive to filtering. Several other signals evaluated

were found to exhibit the same behavior. The phenomenon is

apparently due to the averaging, or smoothing effect of the

operator in the distortion case. Recall that signals of this

kind tend to have more extended waveforms in their TDL operators

(See figure 20). Convolution of such functions with a noisy

signal "smoothes out" the noise because of the significant

operator length and the random fluctuation of the noise. This

has the twofold result of better overall performance in noise

and less sensitivity to removal of higher frequency noise energy.

Performance degenerates for filter cutoff frequencies below

30 Hz because the spectral energy of the signal itself is

concentrated in this range. Figure 41 shows the distribution

of energy in the frequency domain for the seismogram associated

with the upper curve of figure 39. Most of the energy is

concentrated between 5 and 30 Hz.

Figures 42-45 illustrate the visual improvement of noisy,
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Figure 40 Seismograms with equal white noise levels, lowpass
filtered at (a) 90 Hz and (b) 30 Hz.
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Figure 41 Squared magnitude of the Fourier transform for the
signal associated with the upper curve in figure 39.
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(a) Unprocessed seismogram with added noise, F =50 Hz.
(b) Result of TDL processing. c
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Figure 43 (a) Seismogram of figure 42a with high noise, F =50 Hz.
(b) Result of TDL processing. c
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Figure 44 (a) Seismogram with low noise, F =50 Hz.
(b) Result of TDL processing.
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lowpass filtered (50Hz) signals after processing. Two different

seismograms are shown, each at two different noise levels,

before and after processing. It can be seen from these figures

that no serious reflector distortion occurs due to noise or

filtering.

The presence of white noise has a predictable effect on

the appearance of the TDL operator. The impulse response itself

becomes noisy due to the added incoherent energy and a bias is

introduced into the large cancellation peak. An example of this

is shown in figure 46 for a signal with coherent multiples.

The variation in the first tap gain is significant and the change

in appearance of the overall impulse response is appearent.

C. Results of Homomorphic Dereverberation Performance

1. Introduction

The theory of homomorphic dereverberation is based on the

properties of periodic minimum phase impulse train cepstra. The

incorporation of more realistic effects, such as aperiodicity,

distorted multiples, and non-impulsive reflectors, leads to

analytical intractability in most cases. Hence, in presenting

the experimental results, we view the more complex signal

structures in terms of their relation to the ideal signal models

of Chapter II. In so doing we hope to provide a basic reference

for interpreting observed phenomena, and to provide a stronger

intuitive picture of the mechanisms at work in homomorphic

dereverberation.
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All cepstra used in this analysis are 2048 points in

length. Seismograms contain 1024 points except in cases where

resampling was required. Zeros have been appended as necessary.

The 2048 point length has been used throughout the analysis for

uniformity and reduction of aliasing. In most practical seismic

processing, shorter cepstrum lengths are adequate.

2. Multiple Periodicity

It was shown in Chapter II that later components of a

periodic, minimum phase impulse train can be significantly

reduced by removal of the first one or two cepstral contributions.

This property is potentially valuable for dereverberation,

especially in shallow water cases where several strong multiples

may appear in the data. In order for this property to be useful

it must be relatively insensitive to (at least) slight

aperiodicity since actual reverberation is not exactly periodic.

The result of Stoffa, et al. summarized in Chapter II is

extended here to rapidly decaying, aperiodic, minimum phase

impulse trains.

Consider removing the first j cepstral contributions of

m(n), the cepstrum of a minimum phase impulse train with

contributions C-R) at ni, i = 1,2,3,..., and IRI < i.

We then have

m. Cn) = m(n) - (-R) 6(n-n

00
m.(n) = 6(n-n) .

£=j+l
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Transforming,

Mj (z) = -R) z-n

:=j+l

Exponentiating,

M (z) = expr

Mj (z) =
£=j+l

This may be expressed

M.(Z) =3 £

00=j

Z=j+l

(-R)z -nk I-"

expi(-R) • -n]

as a power series.

0 0 (-R) z-in(

•j+l i=0 i!k

0o

M.(z) = + ( -(-R) nR) 2nz (-R) -3n

=j+L + 2 2  6 3  7 +.

(10)
-in

The rapidly decaying coefficients of z in combine multiplica-

tively to yield the time domain impulse coefficients of m.(n).

If only the first cepstral impulse is removed (j=l), the

largest value attained by the third coefficient in brackets is

t_' 2Z
.LrJ

which is insignificant for reflection coefficients of interest.

All succeeding terms in (10) will be vanishingly small. We

29 Z A
IR 2
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then have the approximate expression
00 -

M.(z) = 1 + z
Z=j+l I- k"

Expanding this product we obtain

(-R) j+k) -n+k (2j+k) -n
M. (z) = 1 + I j-k z + X c ( - R )  z + .

3 k=l j+k k=3

which transforms to

+1 j+2(-R) j 1-R)m.(n) = 6(n) + (-R) 6 (n-n ) + R 6(n-nj )+..
j+l j+1 j+2 j+2

(11)
It is apparent that the remaining terms have been reduced by

factors equal to those obtained in the periodic case.

The above result has been verified experimentally by process-

ing a periodic signal containing only a strong bottom reflection

(R=.55) and multiples (figure 47a). Removal of the first

multiple component in the cepstrum results in 75% and 85% energy

reductions of the second and third multiples respectively.

These correspond exactly to the 50% and 67% amplitude reductions

predicted by (11). The periodicity was then disturbed by

average deviations of 1%, 5%, 10% and 20% of the original

period. In each case the later multiple reductions coincided

with (11). Figure 47 shows waveforms before and after process-

ing for the exactly periodic signal and the case of 20%

aperiodicity.
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Figure 47 (a) Signal composed of only periodic multiples of
the bottom response.

(b) Result of removing the first multiple cepstrum
contribution.
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Figure 47 (cont'd) (c) Signal of (a) with periodicity disturbed
by average deviations of 20% (.2 sec).

(d) Result of removing the first multiple
cepstrum contribution.
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3. IMultiple-to-Signal Ratio

The results obtained for aperiodic reverberation must be

extended to signals containing reflectors as well as multiples

if they are to be of practical use. This is not feasible

analytically due to the nonlinearity of the homomorphic trans-

formation and the reflector characteristics in the earth model

used. Recall that, for this analysis, reflectors have the

2 -btform t2e rather than simply impulses. Each seismogram con-

tains an additive combination of these reflectors with

multiples. The logarithmic operation on the Fourier transform

of this sum causes the cepstral contributions due to reflectors

and multiples to be analytically indistinguishable. Hence,

this phenomenon has been investigated empirically for various

reflector sizes. It was found that cepstral properties of

multiples are essentially preserved in the presence of non-

impulsive reflectors although important effects were evident

in the cases tested.

Percentage removal of the first multiple was found to be

dependent on the width of the cepstral stopband. Figure 48

illustrates this effect for seismograms with different reflector

stengths and periodic multiples. Each signal requires a

stopband of about 200 msec (41 samples) for complete removal

of the first multiple. As notch width is decreased the perfor-

mance becomes increasingly sensitive to MSR. For the smallest

notch width shown C40 msec), performance varies almost 30%
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with MSR. In the absence of reflectors the first multiple

could be completely removed by zeroing one sample of the cepstrum.

It appears that the inclusion of reflectors has the effect of

distributing the multiple energy in the quefrency domain,

although, in all cases tested the energy remains concentrated

near the time domain multiple location. Figure 49 shows the

0.5 second section of the cepstrum centered at the multiple

location for each of the seismograms of figure 48. The cepstra

are identical in form but the absolute cepstral energy increases

with MSR. Three large peaks occur in each cepstrum between

.94 and 1.0 second. This similarity in form suggests that

equal stopbands should produce equivalent percentage reduction

of multiples. We conclude, however, from the experimental

results that a greater portion of the multiple energy is

concentrated near 1.0 second in the higher MSR cepstra. This

effect makes it difficult to select stopband limits by peak

detection or visual inspection of the cepstrum. Notch widths

which yield the best trade-off between multiple reduction and

reflector distortion must be determined by trial-and-error

for particular applications.

4. Multiple Distortion

Since homomorphic dereverberation is theoretically based

on a model of strictly impulsive multiples, it is important to

observe the performance of this technique in the more realistic
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Figure 49 0.5 second section of cepstra at multiple location.
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case of an extended bottom interaction mechanism. We employ

the same bottom response functional form discussed earlier

in this chapter. The seismogram of figure 50a contains

distorted multiples due to a bottom response of .045 seconds

duration. Reflectors are present at 2.7 and 3.5 seconds.

Figure 50b shows the region of the cepstrum centered at the

first multiple location. The peaks are much broader than those

of figure 49. The dominant energy is concentrated near the

multiple location as before but it now appears to be more

distributed.

Table 1 summarizes the effects of varying the stopband

width and location in the cepstrum of figure 50b. First and

third multiple energy removed varies widely while the second

multiple is not significantly affected by the passband dimensions.

In some cases, extending the stopband decreases the amount of

multiple energy removed. Zeroing the .94-.98 second region

results in greatly increased reduction of the third multiple

(74-78%) but first multiple reduction is degraded by 10-12%.

This behavior, which has been observed in several cases, is

not predicted by the theory and is thought to be a computational

effect. The high amplitude oscillations which are dominant in

the left side C.75-1.0 second) of figure 50b, or the low

frequency "drift" which is apparent throughout the section may

be computational noise which contributes to this phenomenon.

Several observations can be made in this case. Although
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Figure 50 (a) Seismogram with distorted multiples
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first multiple location.
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Stopband Limits
(sec)

ist MULT

ENERGY REMOVED

2nd MULT 3rd MULT ist REFL. 2nd REFL.

... .. .---.------- -.---.- .-.-- -.---.-. .-.-. ---- 4-----------.-----

.94-1.06

.96-1.06

.96-1.00

.98-1.02

.98-1.04

.98-1.06

.99-1.04

1.0-1.04

1.02-1.06

.75

.78

.65

7Q

.88

.89

.78

.64

.50

.48

.44

.49

.44

.44

.78 -. 13

.74

.56

.45

.43

.54

.39

.48

.50

.45

.42

.45

.45

-.13

-.12

-.12

-.12

-.12

-.12

-.13

-.13

TABLE 1

EFFECTS OF STOPBAND LIMITS ON PERFORMPANCE

FOR THE SIGNAL OF FIGURE 50.
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performance is somewhat erratic, a stopband of 40-80 msec

which straddles the first multiple onset time yields significant

multiple reduction. The peak performance in this case is about

10% below that achieved with undistorted multiples but the

sensitivity to minor stopband variations is less dramatic.

Reflector distortion does not increase significantly due to the

presence of distorted multiples.

Figure 51 shows processed seismograms resulting from the

application of various stopbands to the cepstrum of figure 50.

Finally, we note that the effects of aperiodicity have

not been discussed in the distorted multiple case. Due to

limitations of the earth model it was not possible to investigate

these effects. Thusfar, however, we have relaxed the theoretical

assumptions regarding periodicity and coherence individually,

and found that homomorphic dereverberation is not critically

sensitive in either case. We surmise that the combination of

these effects would not be catastrophic to performance. Further

investigation is merited since this topic has an important

bearing on the effectiveness of the homomorphic technique in

shallow water dereverberation where later multiples are

significant.

5. Water Travel Time Estimate

In practice, passband location must be determined by

estimation of water column travel time. It is apparent from
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Figure 51 Processed results of the seismogram in figure 50a
for three different cepstral stopbands. (a) 1.02-1.06 sec
(b) 1.0-1.04 sec (c) .98-1.06 sec
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the preceding discussion that the importance of accurate

bottom estimation depends on the seismic environment. In

particular, we have seen that MSR and bottom characteristics seem

to affect cepstral energy distribution. Proximity of multiples

to important reflectors also dictates resolution constraints

on travel time estimation. For the cases analyzed here the

required travel time estimation accuracy would be 20-40 msec

since, as determined in the foregoing discussion, a stopband

of 40-80 msec is generally required for effective dereverberation.

Travel time estimation error of more than half the stopband

width causes the major multiple contributions to be excluded

from the stopband. This degree of accuracy can easily be

attained with existing bottom tracking algorithms.

The reflector/multiple resolution implied by the required

stopband widths is also about 40-80 msec for the data tested.

A discussion and several examples of reflector/multiple resolu-

tion are included in the following section.

6 Reflector/Multiple Overlap

The following six figures illustrate homomorphic dereverbera-

tion of signals in which reflectors and multiples are closely

situated.

Figure 52a shows a seismogram with reflectors at 1.6, 2.02

and 3.0 seconds. The first and second multiples directly inter-

fere with reflectors and the third multiple is barely visible
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Figure 52 (a) Unprocessed seismogram
(b) Result of cepstral notch filtering; .96-1.02 sec
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at 4.0 seconds. The result of applying a cepstral stopband at

.96-1.02 seconds is seen in figure 52b. Most of the energy

near two seconds has been removed but a small reflection is

still visible. The signal of figure 52c results from a stop-

band of .98-1.06 seconds which spans the time domain reflector

location as well as the multiple location. Residual energy

is still present after this processing which indicates that

some of the reflector and first multiple cepstrum contributions

are distributed beyond the immediate vicinity of the time

domain locations.

The seismogram of figure 53a contains reflectors at 1.6,

1.95 and 3.0 seconds. Each reflector is clearly evident after

processing (.98-1.06 second stopband) and first multiple energy

has been greatly reduced as shown in figure 53b. Some of the

removed energy may be due to the 1.95 second reflector; however,

the first multiple in this example is very coherent and its

energy is more likely to be localized near 1.0 second in the

cepstrum. Extension of the stopband closer to the reflector

location (.96-1.06 second) causes complete removal of the

reflector as seen in figure 52c. Visible reduction of the

second multiple at 3.0 seconds and an internal multiple at 2.7

seconds is apparent in figure 52b.

The seismogram of figure 54a has the same reflector place-

ment as that of figure 53a but the multiples in this case are

smaller and less coherent. Application of a cepstral stopband
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at 1.00-1.06 second yields (figure 54b) visible reduction

of all three multiples and well resolved reflections at the

proper locations.

Figure 55a illustrates a seismogram with considerable

multiple distortion and reflectors at 1.5, 2.1 and 3.0 seconds.

A wide cepstral stopband, .98-1.08 second, has a very minor

effect on the first multiple as seen in figure 55b. Extension

of the stopband to 1.12 seconds causes removal of virtually

all signal energy in the region. The relatively wide (.1 second)

reflector/multiple separation cannot be effectively exploited

in this case because the very incoherent multiple in a low MSR

signal requires a large stopband for effective removal (see

figure 48).

The result of longpass filtering the cepstrum of the signal

in figure 55a is shown in figure 56. All cepstral contributions

prior to 1.02 seconds have been set to zero. The bottom and

later reflectors are clearly visible but the 1.5 second reflector

has been removed. This illustrates one drawback to longpass

dereverberation in deeper water. This effect may be acceptable

in some situations, however. For instance, good resolution of

closely spaced, deep reflectors may be obtained by longpass

filtering whereas the earlier reflectors are frequently obvious

before processing.

Figure 57 shows longpass results for a signal with impulsive

multiples and very sharp reflectors at 2.2 and 3.0 seconds.
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The stopband limit is 1.01 seconds in this case. Multiple

removal is complete and both reflectors are clearly visible.

Longpass filtering was found to be most effective for signals

of this type. Very sharp reflectors are more clearly visible

than more distorted reflectors of comparable energy, especially

in noisy signals. Longpass filtering of noisy signals is

discussed later in this chapter.

The low frequency noise present in the reflector region

of figure 57 is typical of that observed in several longpass

results. The cepstra of figures 49 and 50 contain similar

components. No attempt was made in this analysis to remove

this type of noise. The reason for its presence has not been

determined.

7. Additive White Noise and Filtering

The effects of additive noise are not addressed in the

formulation of the homomorphic system for deconvolution since

there are no apparent cepstral properties of noise which can be

exploited for its removal. Linear filtering is a more suitable

way of reducing additive noise in individual signals. This can

be performed prior to, or in conjunction with, homomorphic

deconvolution. The effects of this combined processing in the

special case of Gaussian white noise have been investigated and

are discussed here. The data presented represent a relatively

small number of experiments performed with synthetic data and
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noise generated as previously discussed. These results cannot

be generalized categorically due to the relatively narrow

scope of the experiments and the lack of precise theoretical

characterization of noise properties under homomorphic trans-

formation. The results do indicate performance trends and

computational effects due to additive noise and filtering.

Since noisy signals usually undergo linear filtering prior

to dereverberation, we begin by discussing an important

computational issue which arises when signals are bandpass

filtered. Such filtering introduces spectral recions (stopbands)

containing little or no spectral energy. Recall that the homo-

morphic transformation involves computing the logarithm of the

Fourier transform of the signal. Since the logarithm of zero

is not defined, this computation is not possible in frequency

bands where the Fourier transform is zero. In the case of

lowpass filtered signals this problem can frequently be overcome

by resampling after filtering. Figures 58 a, b and c illustrate

this process. If the sampling frequency is decreased to the

Nyquist rate implied by the filter cutoff frequency, the

resulting discrete Fourier transform will include only the

frequency components in the passband region. Figure 58d shows

a distribution of spectral energy which is not readily amenable

to elimination of the zero region. In this case the baseband

region is zero so that resampling would not be effective.

Investigation of this problem is currently in progress

(Tribolet [11]).
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Figure 58 (a) Unfiltered spectrum sampled at the Nyquist rate.
(b) Spectrum of (a) after lowpass filtering at wc

without resampling.
(c) Filtered spectrum after reampling.
(d) Spectrum with zeros in the baseband region.
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It was found in this analysis that computing the cepstrum

of an over-sampled signal is an unstable procedure which, at best,

requires extensive computation time. The low energy regions

of the spectrum lead to spurious phase derivative values.

Hence, the phase unwrapping algorithm proceeds at small step

sizes, requiring computation of many intermediate values of the

discrete Fourier transform. In many cases the computer algorithm

could not produce an unwrapped phase which was i:n acceptable

agreement with the principal value. Cepstra of over-sampled

signals which were successfully computed, however, generally

yielded dereverberation results comparable to those of properly

sampled signals (see table 2).

Addition of white noise was found to have a computational

effect similar to that described above; phase unwrapping time

is significantly increased. Heavy weighting (w =.98-.99)

was found to reduce computation time considerably for noisy

signals, although some signals require small phase integration

step sizes in isolated sections even when substantial weighting

is applied. Recall from Chapter II that there is no assurance

that the log-spectrum is adequately sampled, even after lowpass

filtering of the signal. Hence, the integration of the phase

derivative cannot be expected to proceed quickly in all cases.

Smoothing of the phase derivative was attempted to

compensate for the effects of noise. A three-point moving

average was applied prior to integration. The resulting inverse

cepstra bore no resemblance to the original seismograms.
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SAMPLING
INTERVAL
(MSEC)

FRACTION OF ENERGY REMOVED
FILTER
CUTOFF(Hz) 1st MULT 2nd MULT 3rd MULT

4.88 ! 50 .91 .064 .25

9.77 50 -. 02 .12 .24i ..

19.53 50

4.88 20
9.77 20

19.53 20

.94 .044

.94 .083

.93

.25

.15

.48 .13

.98 .12 .55

i -

TABLE 2

EFFECT OF RESAMPLING ON MULTIPLE REMOVAL FOR A

NOISELESS SEISMOGRAMP LOWPASS FILTERED AT 50 and

20 Hz. DEREVERBERATION WAS ACCOMPLISHED BY APPLY-

ING AN 80 MSEC CEPSTRAL STOPBAND AT THE FIRST

MULTIPLE LOCATION.
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Figure 59 summarizes the observed effects of noise on

first multiple removal by homomorphic processing. Each

seismogram was lowpass filtered at 50 Hz and resampled by a

factor of four prior to multiple removal. Percentage of

multiple energy removed shows a consistent decrease with increas-

ing noise level. The rates of decrease and amounts of energy

removed are seen to vary widely from one signal to another.

Examples of noisy signals before and after processing are shown

in figures 60 and 61. Significant reduction of the first multiple

is evident in both examples. In the first case, the noise level

is moderate and multiple reduction has a marked effect on visual

quality of the signal. The noise level in figure 61 is consider-

ably higher, resulting in marginal improvement due to dereverbera-

tion.

Second and third multiple energy removed was found to

decrease generally with decreasing noise also, and in some

high noise cases the later multiples were actually enhanced.

Data for a typical signal are tabulated below.

STANDARD
ENERGY REMOVEDDEVIATION

OF NOISE 2nd MULT. 3rd MULT.

0 .29 .32

25 .19 .15

50 .04 .02

100 -. 21 -. 17

TABLE 3
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Figure 59 Effect of added noise on homomorphic dereverberation.
All signals are lowpass filtered at 50 Hz and
resampled.
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Figure 60 (a) Seismogram with moderately high noise, F =50 Hz.
(b) Result of cepstral notch filtering (.8-164 sec).
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(a) Seismogram with very high noise, -' =50 Hz.
(b) Result of cepstral notch filteringc (.80-1.04 sec) .
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Reference to figure 61 reveals that for the higher noise

amplitudes the later multiples are buried so that their removal

is not important.

Reflector distortion, summarized for a typical case in

table 4, was found to be generally more severe than in noise-

less signals but rarely more than 25%.

STANDARD
DEVIATION REFLECTOR ENERGY REMOVED
OF NOISE 1 2 3

0 -.18 .02 .06

25 -.22 -.25 -.22

50 -.07 -.14 -.05

100 .14 -.12 -.09

TABLE 4

EFFECT OF NOISE ON REFLECTOR DISTORTION

FOR A TYPICAL SEISMOGRAM WITH 3 REFLECTORS,

FILTERED AT 50 Hz.

The above results indicate that the addition of noise

leads to decreasing performance with respect to all three

criteria. The behavior is somewhat spurious and frequently

exhibits wide variation from signal to signal.
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Several lowpass filter bandwidths (20, 30, 50, 70, and

90 Hz) were applied to the signals evaluated in figure 59.

The results are shown in figure 62. In each case, first multiple

removal is least effective when the signals are prefiltered at

50 Hz. Figures 63 and 64 illustrate this behavior. The same

seismogram is shown in figures 63a and 64a, lowpass filtered

at 50 and 20 Hz respectively. The difference in appearance is

dramatic. Resolution of the reflectors on either side of the

first multiple (at 1.55 and 2.4 sec) is greatly improved by

dereverberation in the latter case while figure 63 shows very

little visual improvement.

The behavior illustrated in these figures cannot be fully

explained on the basis of the data available. The signals

tested have dissimilar reflector locations and varying amounts

of multiple distortion which implies that the similar performance

dips are not due to similarities in signal configuration. The

observed behavior may be due to the properties of the source

signature (which is common to all three seismograms) or the

characteristics of the recursive third order Butterworth

filter employed. More data using different filter routines

and a wide range of signal characteristics is needed to

completely characterize this behavior. The results obtained

here suggest that a filter bandwidth very close to the bandwidth

of the noiseless signal leads to the best dereverberation

performance. The same result was obtained for the TDL algorithm.
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Figure 62 Effects of lowpass filtering signals with added
white noise prior to homomorphic dereverberation.
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(a) Noisy seismogram lowpass filtered at 50 Hz. and
resampled at 51 Hz.

(b) Result of cepstral notch filtering; stopband
.8-1.04 sec.
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Figure 64 Noisy seismogram lowpass filtered at 20 Hz and
resampled at 51 Hz. (b) Result of cepstral filtering;
stopband .8-1.04 sec.
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Additive noise was found to have a particularly adverse

effect on longpass filtered signals. Noise, which may be

relatively low in the received signal, tends to be amplified

with respect to reflectors in the process of longpass filtering,

especially in the later portion of the signal. Although long-

pass filtering removes a large part of the noise energy with

the source, the overall effect is usually a decrease in SNR.

The advantage of longpass filtering, which includes source

deconvolution, is that greater resolution of close reflectors

can be achieved. It was found that this approach is worthwhile

in low noise signals but not effective when the white noise

level is significant with respect to reflector amplitudes.

Proper resampling after prefiltering was found to be very

important for successful longpass filtering. Figure 65a

illustrates the effect of longpass filtering the cepstrum of a

noisy signal which was first lowpass filtered at 20 Hz but

not resampled. The filtered signal contains relatively low

noise and the sampling frequency is 205 Hz. The processed

result of figure 65b is useless due to the high sampling rate.

Reduction of the sampling frequency to 102.5 Hz leads to the

processed signal of figure 66a. The 3.5 second reflector is

clear but the high background noise almost obscures the 2.7

second reflector. Multiple removal is complete. Resampling

to 51 Hz, which is approximately the Nyquist rate in this case,

leads to some improvement (figure 66b) but the SNR is much lower
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Figure 65 (a) Noisy seismogram lowpass filtered at 20 Hz but
not resampled.

(b) Result of longpass filtering the cepstrum of (a).
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Figure 66 Longpass processing results (a) for the signal of
figure 65a, resampled at 102.5 Hz before processing.
(b) for the signal of figure 65a, resampled at 51 Hz
before processing (c) for a signal identical to
figure 65a with one half the white noise level,
resampled at 51 Hz.
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than before dereverberation (figure 65a), Figure 66c results

from processing identical to that of figure 66b, on the same

signal, with the noise amplitude halved. Both reflectors are

clear and the multiples have been removed but the background

noise is much higher even than in the signal of figure 65a.

Thus, longpass filtering of noisy signals is seen to involve

a trade-off between effective dereverberation and decrease in

SNR. For signals with moderate to heavy noise the reduction in

SNR was found to be unacceptable in the cases tested.

Although this subject was not extensively investigated

there is some indication that lowpass filtering can be employed

to improve the results of subsequent longpass processing.

Figures 67 and 68 illustrate the longpass processing of a

noisy signal after lowpass prefiltering at (a) 70 Hz, (b) 50 Hz

and (c) 30 Hz. In each of the signals in figure 68 the multiples

have been removed but the reflector resolution improves

considerably from (a) to (c). These results are reasonable

in that improvement of performance coincides with increasing

rejection of out-of-band noise; however, the filter and signal

characteristics must be studied more closely to explain this

behavior accurately.

D. Comparative Examples of Processing Results

The foregoing results and discussion illustrate the

performance of the TDL and homomorphic dereverberation algorithms
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Figure 67 Noisy seismogram lowpass filtered at three different
frequencies (a) 70 Hz (b) 50 Hz (c) 30 Hz. Each has
been resampled at 51 Hz which is the approximate
Nyquist rate for the signal without noise.
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Figure 68 Results of longpass filtering the seismograms of
figure 65 a, b and c, respectively.
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for a variety of processing conditions. Several trends in

performance are apparent. Before proceeding to a summary

and discussion of the relative strengths and weaknesses, we

present several examples which allow direct visual comparison

of the techniques. Each of the following figures contains

(a) an unprocessed seismogram and the two processed results

obtained by (b) homomorphic and (c) TDL filtering.

Figure 69 illustrates a noiseless seismogram with multiple/

reflector overlap at both 2 and 3 seconds. Both algorithms

leave asmall amount of energy at the first location and effect

only slight reduction at the second. In general,. both methods

were found to eradicate reflectors which are extremely close

to the first multiple and retain signal components which closely

coincide with later multiples.

In figure 70 the multiple onset occurs .1 second before

the reflector and the MSR is considerably lower than in the

previous figure. In this case the separation is great enough

that both methods retain a significant amount of signal energy

near 2.1 seconds. The homomorphic result is considerably

sharper although very little energy has been removed. Multiple/

reflector separation of .1 second was found to be the approxi-

mate resolution limit of both techniques when reflector onset

is later than multiple onset and travel time is estimated

accurately.

Figure 71 shows a reflector at 1.95 seconds, slightly
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(c)

2.0 3.0 4.0 5.0

Figure 69 (a) Unprocessed seismogram with reflectors at 1.5, 2.02
and 3.0 seconds.

(b) Result of homomorphic processing.
(c) Result of TDL processing.
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Figure 70 (a) Unprocessed seismogram with reflectors at 1.5, 2.1
and 3.0 sec.

(b) Result of homomorphic processing
(c) Result of TDL processing.
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R1 R2 B2, R3

(a)

(b)

(c)

2.0 3.0 4.0

Figure 71 (a) Unprocessed seismogram with reflectors at 1.6, 1.95
and 3.0 sec.

(b) Result of homomorphic processing.
(c) Result of TDL processing.
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before the multiple. Effective dereverberation is accomplished

in both b and c. As in the previous figure the reflector is

better resolved by homomorphic processing. Resolution of both

techniques was generally observed to be slightly better when

reflector onset is earlier than multiple onset, provided travel

time is estimated accurately. In such cases of severe inter-

ference the homomorphic filtering generally yields more distinct

reflections. A further example of this behavior is shown in

figure 72.

The following three figures illustrate dereverberation of

noisy signals. Each seismogram has been lowpass filtered at

30 Hz and the homomorphic outputs as shown have been resampled

at 51 Hz. In this first case (figure 73) the performance of

both methods is comparable. The first multiple is almost

completely removed while other regions of the signal are not

visibly affected. Figure 74 also shows comparable multiple

removal, however, the resolution of the reflectors at 2.6 and

3.4 seconds is somewhat better after TDL filtering. The

homomorphic algorithm was found to produce higher random noise

spikes than the TDL filter. This effect is present in figure

74 and again in figure 75. In both examples the homomorphic

method achieves slightly better multiple removal but the

overall noise level in the result appears higher.
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(b)

(c)

2.0 3.0 4.0 5.01.0

Figure 72 (a) Unprocessed seismocram with reflectors at 1.6,
1.95 and 3.0 sec.

(b) Result of homomorphic processing.
(c) Result of TDL processing.
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Figure 73 Ca) Noisy seismogram with reflectors at 2.7 and
3.5 sec, and lowpass filtered at 30 Hz.

(b) Result of homomorphic processing.
(c) Result of TDL processing.
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Figure 74 (a) Noisy seismogram with reflectors at 1.55, 2.4 and
3.25 sec, lowpass filtered at 30 Hz.

(b) Result of homomorphic processing.
(c) Result of TDL processing.
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Figure 75 (a) Noisy seismogram with reflectors at 2.6 and 3.4
sec, lowpass filtered at 30 Hz.

(b) Result of homomorphic processing.
(c) Result of TDL processing.
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CHAPTER V

DISCUSSION AND SUMMARY

In the preceding chapters we have (1) examined the

theoretical structures of the TDL and homomorphic dereverbera-

tion techniques, (2) established a comprehensive set of perfor-

mance criteria, and (3) presented the results of applying both

methods to synthetic data. Our approach has been essentially

that of perturbation analysis. Through variation of environ-

mental and signal processing parameters we have observed

performance trends due to deviations from the ideal theoretical

models upon which the methods are based. In a more practical

sense the parameter variations simulate a range of seismic

processing conditions. Since there are many different environ-

ments in which these algorithms may be applied, we have not

emphasized the absolute performance figures obtained from the

simple, synthetic data utilized here. Rather, we have tried

to present a behavior profile of both algorithms which indicates

the basic trends and sensitivities with respect to a number

of parameters, interpreted in terms of their theoretical

structures and assumptions. This approach is intended to give

a more general indication of the dereverberation performance

to be expected in different situations. We conclude with a

summary and discussion of the comparative results presented in

Chapter IV.
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In low noise, deep water seismograms the methods have

been found to be comparable for reducing dominant first

multiples (by 75-95% in most cases). The TDL filter requires

accurate signal statistics including an estimate of the multiple-

reflector crosscorrelation function, which must be approximated.

This leads to degraded performance in shallow water situations

where significant reflector energy is within the crosscorrelation

window. The homomorphic method requires no statistical character-

ization of the signal and thus has no similar performance

degradation in shallow water; however, the three-stage cepstral

transformation requires extensive computation which may be an

important limitation for at-sea processing systems. (This

issue will be discussed in more detail later.)

Although the effects of aperiodicity could not be thoroughly

evaluated experimentally the derived result expressed in

equation (11) suggests that the homomorphic algorithm has the

potential to reduce later, aperiodic multiples. The combina-

tion of such processing with source deconvolution by longpass

filtering the cepstra of shallow water seismograms appears to

be the most promising application of homomorphic dereverbera-

tion. More extensive practical evaluation is needed in this

area.

Closely spaced, aperiodic multiples destroy the coherence

of the approximated crosscorrelation function at shifts near

the two-way travel time which, again, limits the effectiveness
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of the TDL filter in shallow water signals.

Increasing white noise level causes monotonically decreas-

ing performance in both methods as illsustrated in figures 38

and 57. The TDL performance fell off more slowly with noise

when both techniques were applied to similar signals. Bandpass

filtering leads to a consistently higher percentage of multiple

reduction by TDL processing of noisy signals. Filter effects

on homomorphic processing are more complex. The cases evaluated

indicate that multiple energy removed is not a monotonic func-

tion of filter cutoff frequency. Considerably more data are

required to determine the precise effects of filter bandwidth

and phase characteristics. The resampling which was found to

be helpful after bandpass filtering may have a detrimental

effect on visual record quality, so that interpolation may be

desirable in some cases.

Reflector distortion does not appear to be a problem for

either technique except in cases where overlap is severe. In

most cases tested less than 10% of the reflector energy was

removed. Close proximity of reflectors to the first multiple

frequently leads to severe distortion by both methods due to

the resulting bias of the crosscorrelation function and the

lack of sufficient cepstral separation. Reflectors close to

later multiples are usually well preserved. This behavior

suggests two applications of the homomorphic algorithm. First,

when regions of geological interest occur after the onset of



-158-

the first multiple, a wide cepstral stopband can be employed at

the first multiple location to reduce later multiples without

distorting reflectors. In very shallow water the stopband may

be extended to include more than one multiple. A second

possibility for avoiding reflector distortion is the use of

weighting coefficients greater than 1.0 to exploit the properties

of mixed phase sequences. The object of this weighting is to

make the reflector train mixed phase while keeping the multiple

sequence minimum phase. This appears to be feasible in many

situations since the z-plane zero of the multiple sequence is

usually well inside the unit circle. Moving some of the reflector

train zeros outside of the unit circle (i.e., making it mixed

phase) will, in general, cause some of the cepstral energy due

to the reflectors to occupy the negative quefrency region.

Even if the reflector train has a maximum phase component

before weighting the same effect can be expected. Thus, the

amount of reflector energy near the first multiple location

may be reduced. Although there is no guarantee that the

resulting notch filtered cepstrum will transform to a seismogram

with less distortion, this technique appears to be worthy of

investigation.

We recall one other reflector distortion effect which was

seen in Chapter IV. We saw in figure 55 that dereverberation

by longpass filtering completely removes reflectors occurring

prior to multiple onset. It was noted that this effect may be
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acceptable if it leads to better resolution of smaller, deep

reflectors.

In terms of our third criterion, visual improvement of the

signal, both techniques were seen to have advantages and

disadvantages. Homomorphic processing usually resulted in

better resolution of interfering signal components in the low

noise signals processed. Increasing noise, however, was seen

to cause homomorphic results more prone to random noise spikes

which degrade the interpretability of the record. The results

of TDL filtering had somewhat better visual resolution in the

noisier signals processed. As noted previously the visual

advantage of the TDL in this case is partially due to the

noisier appearance of the resampled signals produced by

homomorphic processing.

Longpass.filtering was seen to provide the most effective

dereverberation, the best reflector resolution and the best

overall visual quality in ideal cases. Unfortunately it

degenerates quickly with noise and could not be successfully

applied to very noisy signals or signals with important geological

regions preceding the multiple onset. Further research and

experience may well lead to more extensive applicability of

this technique.

The relative simplicity of the TDL algorithm makes it

much more desirable from a computational standpoint. TDL

dereverberation of a 1024 point signal can be accomplished in

3 seconds or less for the operator lengths typically required.
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The three major computational steps are the correlation

operations, solution of the estimator equations and convolu-

tion of the operator with the signal.

The homomorphic computations include weighting, four FFT's

computation of the complex logarithm, phase unwrapping, linear

filtering, complex exponentiation and unweighting. This

algorithm can be expected to take 20 seconds or more for a

1024 point sequence on a small processing computer. In this

analysis the phase unwrapping computation took over one minute

for some noisy signals. These figures are highly dependent

on hardware available and programming efficiency but, in

general, homomorphic dereverberation is several times slower

than the TDL algorithm. Special purpose hardware could be

used to reduce homomorphic computation time significantly,

but the method has not been implemented for processing on a

large scale thusfar.

Storage requirements for the homomorphic algorithm vary

with the FFT routine used, method of cepstrum computation and

cepstrum length. The program used for this analysis requires

about 12 * N bytes of core and 4 * N bytes of disc storage,

wThere N is the cepstrum length. N was twice the signal length

in the cepstra computed. Shorter cepstrum lengths, as

determined by trial-and-error, may produce results with

acceptably low aliasing in many cases. The TDL dereverberation

program used requires about 6 * L bytes of core, where L is
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the data sequence length. No disc storage is required in

this computation. These storage requirements apply to a float-

ing point processing scheme on a machine (HP-2100) which uses

four byte floating point words.

In conclusion, we make some general observations concern-

ing the results of this analysis.

The TDL dereverberation scheme is a simple and efficient

technique which has demonstrated effectiveness in removing

deep water multiples. The analytical structure is well under-

stood and its performance characteristics have been explained

here in terms of that structure. Further refinements in its

implementation may be possible but its potential is essentially

clear at this point.

Homomorphic dereverberation is complex, relatively untested

and requires extensive computation. It has been shown here

to be effective on synthetic data. It appears to be particularly

promising for shallow water dereverberation. The complexity

of the method leads to a number of possible analytic and

computational techniques which can be utilized in its applica-

tion. Certainly, its full potential has not yet been determined

and further investigation is warranted.
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APPENDIX A

COMPUTATION OF THE PHASE DERIVATIVE OF THE Z-TRANSFORM

When computing the complex cepstrum of a sequence, x(n),

it is necessary to determine the unique, continuous phase of

X(z). One way of obtaining the continuous phase is to first

compute its derivative and then integrate numerically. The

computation of the phase derivative from x(n) is discussed

in detail here.

We begin with the z-transform of x(n),

00 -n
X(z) = x(n) z XR(z) + jX (z).

n=-o*

Taking the complex natural logarithm

log X(z) H X(z) = log IX(z)I + j arg X(z)

We see that the phase of X(z) is equal to the imaginary

part of its natural logarithm. The derivative of Xi(z) can be

expressed in terms of easily computable quantities.

dX(z) d log[X(z)] - X'(z) (1)

dz dz X(z)

where the prime indicates differentiation with respect to z.

Expanding (1) and solving for X (z),
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) + (z) + jX (Z)
xR ( xI (Z)
XX

R( ) + jXI (z) =

X R (z) + jX I( z)

Xz(z) - jXR(Z)

XI()= + j XR(Z)
XR(z) + jXI (z)

Separating the RHS into real and imaginary parts,

, XR(Z) Xi(z) - XI(Z) XR(z)
XI (z) =

XR (z) + XI (z)

+, (XR(Z) XR(z) + X(z) X (z))
+ j XR(z) - 2 2

XR (z) + X i(z)

The real part yields an expression for the phase derivative,

^, XR(Z) X'(z) - XI(z) XR(z)
XI (z) (2)

XR(z) + X2(z)

Since the z-transform is actually evaluated on the unit circle

using the discrete Fourier transform (DFT) we set z = ej .

^, XR (ej~) X (e j") - XI (e jW) XR (ejw)
XI (e 3 ) = (3)

XR (e j) + X2 (e j)

Derivatives with respect to eja may be replaced by d since
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dX(ejw)

dwo
=j ej idX(eJ)

de j

and we thus have a common factor of j e j  in each term of (3).

Hence, we need only compute the real and imaginary parts

of X(ejw) and - (X(ejw)) and combine them as indicated in (3).

The derivative of X(ej ) is easily obtained from the sequence

n x(n) as follows:

X (e n x(n) e - jwn
n=-oo

X(ejw)
= jd dw

Re[Xn (ejw)] -X'(e j3 )

Im[Xn (e j , ) ] = XR (e j ) .

The required computation in terms of the DFT is then

^, -(XR (k) XnR(k) + X (k) Xni(k))
X

I (k) =

X2 2x (k) + X (k)]R I


