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Abstract

Using an ensemble of ultracold Cesium atoms in an optical cavity we demonstrate the
efficient storage and retrieval of quantum information in the form of single photons.
We use a photon that has scattered into the cavity mode to herald a successful
creation of a collective excitation of Cesium atoms and hence our ability to retrieve
a photon from the stored excitation at a later time. Post-selecting out only data
that was preceded by a heralding photon we have achieved single-photon recovery
efficiencies as high as 84%. We construct an atomic quantum memory for arbitrary
optical polarization states using this technique on two spatially overlapped atomic
samples. The two samples constitute a quantum memory making use of a bijective
mapping between a photon polarization and a shared collective excitation in the
atoms. The stored state is later retrieved as a single-photon polarization state. This
memory showed an average fidelity of 0.93(5) for the recovered fiducial states as well
as a conditional autocorrelation function g2 = 0.24(6), indicating the single-photon
nature of the retrieved photons. In this thesis, a general discussion of the techniques
employed and their background theory will be given, followed by a more detailed
explanation of this most recent experiment.

Thesis Supervisor: Vladan Vuletić
Title: Lester Wolfe Associate Professor of Physics
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Chapter 1

Introduction

In a flash of brilliance, Richard Feynmann proposed the use of a quantum system

as a means for computational processing, an idea that has yet to be demonstrated

on a large scale. By utilizing the massively parallel properties inherent in working

in a direct product space, one is able to perform calculations that were previously

considered intractable in a finite amount of time. Subsequently, it was realized that

quantum mechanics was the key to creating secure communications protocols between

disparate parties as the effect an observer has on a quantum system could be used to

identify whether an eavesdropper existed on the communication channel. But what is

the fundamental unit that people could calculate with or could send to each other in

communication protocols? The answer is a new kind of information: Quantum Infor-

mation. This new form of information cannot be approximated by classical quantities

and cannot be reproduced once it has been lost, or decohered. The relevant quantum

information for any given experiment might be an overlap of two wave functions, a

phase relationship between two states, or maybe the degree of entanglement between

two variables.

The storage of quantum information is key to the building of Quantum Networks

and Quantum Computing experiments. A quantum network is defined as a set of

interconnected nodes with the ability to pass information from one node to the next

without degradation of the information [14]. Large scale quantum communication

would only be possible if we had some means to implement such a network. A key
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component in analog networks is the buffer or memory which holds the information

while whatever transfer protocol between two nodes is being initialized. Without a

reliable means of storing quantum information for periods of time longer than the time

required for the initialization, any attempts to facilitate synchronization between two

disparate nodes in a quantum network would be arduous and any hopes of realizing a

large scale secure quantum communications network would be destroyed. Similarly,

quantum computation schemes which involve interactions between many particles

need a buffer to facilitate the propagation of information from one part of the system

to the system’s entirety. But how are we to implement such a buffer, and of what

material should it be constructed?

The most important quantity we must analyze when evaluating what the quan-

tum memory should be constructed from is the time scale of possible storage. At

first sight, photons might seem like the best candidate as we may encode quantum

information in them, but the trapping of photons for long times is extremely diffi-

cult [16]. However, photons stand in the fortuitous intersection between information

carriers and information translators to and from matter. Therefore, the atoms they

strongly interact with are the perfect medium to build a quantum memory. On this

basis, we demonstrate the use of an ensemble of atoms as a storage medium with

decoherence times in the tens of microseconds. With long decoherence times and low

signal degradation our system performance makes our implementation competitive to

the other proposed mechanisms for the storage of quantum information [7, 6, 21].

In particular, we utilize collective excitations of Cesium atoms, known as spin-

waves or magnons, derived from a weak coherent beam to construct a quantum mem-

ory [40]. The read out of the memory is accomplished by the generation of a single

photon that carries the original polarization state. Our procedure uses a low finesse

cavity with many atoms to achieve strong atom-photon coupling without excessive

technical difficulties [2, 4, 39, 3, 27]. By optically pumping two samples of Cesium

atoms we are able to restrict the allowed atomic transitions to a small subset of states

to perform our experiment in. Furthermore, using a heralding scheme, the dynamics

of the system can be simplified to effectively mimic two 3-level systems. This sys-
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tem can be modeled using a combination of creation and annihilation operators in

both the photon number space and the atomic energy space, formally known as a

Jaynes-Cumming model. One important difference from generic models remains as

these operators describe collective excitations shared across many atoms rather than

single-atom excitations. By taking advantage of the heralding process we are able to

store an optical polarization state and retrieve it in the form of a single-photon with

a high-fidelity of input state regeneration.

Thermal motion of the atoms is one of the major causes of decoherence and as such

must be minimized at all cost. To this effect we laser cool and trap the Cesium atoms

in a Magneto-Optical Trap (MOT) as illustrated in Figure 1-1. Once the atoms

are confined in space, they are further cooled by Polarization Gradient Cooling to

temperatures below the Doppler limit. The entire sample is then optically pumped

into two states. The separation into two states allows us to map the two degrees of

freedom of the optical polarization state to those of the atoms, thereby achieving a

bijective mapping of information in the storage process. To facilitate phase matching

a homogeneous magnetic field is applied across the atoms and the samples’ magnetic

moment precesses about the field. Examining one sample, and knowing that the

other sample behaves in much the same way, we will see how a collective excitation

is created and retrieved. A beam, which we call the Write beam, is briefly sent into

the sample to induce a transition of one of the atoms from the ensemble prepared in

the ground state to an excited state, |e〉. This excitation quickly decays into a third

state emitting a photon along the way. Should this photon be emitted into the cavity

mode and be detected, it acts as a flag that the sample has been prepared with one

collective excitation. As each atom in this collection of atoms has a chance of being

the excited atom, a superposition state known as a Dicke state has been created.

Driving the system with a phase matched Read beam induces transitions back into

the ground state with the concomitant emission of a photon.

What makes this scheme viable is the collective enhancement, known as superra-

diance, seen in the last process compared to the free space emission of photons by the

factor, Nη, the effective optical depth of the sample in the optical cavity. As the Read

17



MOT

Figure 1-1: An illustrated overview of the entire experiment. A sample of ultracold
Cesium atoms in an optical cavity stores the polarization state of the Write beam to
be later ejected from the cavity into the polarization analyzation equipment on top of
the resonator. The output of the polarization analyzation coupled with our knowledge
of what the state to be stored actually is allows us to calculate what fidelity we see
in the storage of quantum information[42]

.
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beam travels through the sample, superradiance corresponds to the sample becoming

opaque to the beam as the probability of scattering into the cavity, η is enhanced by

every atom. To control what we store in the system we can vary the Write beam’s

polarization state which generates entanglement between the two optically pumped

samples according to the state by a bijective mapping of input polarization to atomic

entanglement and then to the output photon polarization. As we can control when

the output photon leaves the sample, in essence we have implemented a single-qubit

quantum memory.

In this thesis, all aspects of the design and implementation of this quantum mem-

ory will be explained starting from first principles. While all the pieces of this exper-

iment together form an intricate web, if we analyze each piece individually we can

identify common themes in their operation. By starting with simple techniques and

building up to sophisticated methods widely employed in cold atom experiments, the

complicated behavior of our system will become analytically tractable. Once some of

the methods at our disposal have been explained we will move on to a discussion of

the theory behind the preparation of a cold atomic sample. We will then discuss how

we implement our heralding scheme for single photon generation and subsequently

how we can modify the scheme to be used as a polarization state storage device. Fi-

nally, results will be given from our experiment and a cursory examination of further

extensions of this experiment will be discussed in the conclusion.
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Chapter 2

Preparation of Laser Cooled Atoms

2.1 Lasers

Since the initial conception of a coherent source of microwaves created by population

inversion and stimulated emission, no technology created by physicists has influenced

as wide a variety of fields as communications [22], data storage [20], and medicine [1]

as has the modern Laser [35]. Accounting for the broad range of applications that

the laser lends itself to, it is easy to forget the purpose it serves in an atomic physics

lab: a precise means of exciting narrow transitions between energy levels in atoms.

Were it not for the exquisite control we have over the the frequency of the lasers

used and their narrow linewidth, the manipulations performed in this experiment on

thhe collection of Cesium atoms would be impossible. Lasers allow us to efficiently

address extremely narrow transitions to a degree of accuracy that allows us to see

the doppler the shift caused by a Cesium atom moving 1 cm
s

. To explain how such

control is achieved a brief introduction to lasers is given in Section 2.1.1 followed

by a discussion of how a laser’s frequency is controlled in Section 2.1.2 and a brief

description of the other rlevant instruments we use to control both a laser’s frequency

and its trajectory during the experiment in Section 2.1.3.
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2.1.1 Distributed Feedback Lasers

The concept of a maser or a laser is rather simple and can be explained in the

language of quantum mechanics with relative ease. Quantum mechanically one can

envision creating a laser by utilizing a 3 level system found in Figure 2-1. For ease of

reference we will label these states |0〉, |1〉, and |2〉 labeled the ground, middle, and

highest energy states respectively. In this example we will require that |2〉 has a short

lifetime and there is nothing prohibiting it from decaying to |1〉. In the case of the

early masers one would place whatever atomic vapor exhibits this energy structure in

a standing wave cavity resonant with the |1〉 to |0〉 transition and set up a pumping

mechanism, an oscillating electric field, that would bring electrons up from |0〉 to |2〉.

These electrons would quickly fall down to |1〉. At the beginning of the sequence

spontaneous emission would bring them down to the ground state but eventually the

photons created by this transition, having been trapped inside the cavity, will cause

stimulated emission of even more cavity resonant photons bringing the electrons back

to the ground state only to be repumped and start the process again [28]. As one can

see this creates a process by which more and more photons will be created until an

equilibrium is achieved between photon creation and photon leakage out of the cavity.

This equilibrium is caused by a non-linearity in photon creation. The existence of

state |2〉 is imperative in this setup as Einstein’s absorption and stimulated emission

coefficients being equal prohibits any two level scheme from creating some kind of self

sustaining photon creation reaction.

Schawlow and Townes insight into extending this technique towards smaller and

smaller wavelength photon sources leads perfectly into a more classical description of

the laser in terms of waves instead of photons which we will use to cross the gap from

vapor lasers to semiconductor lasers, specifically Distributed Feedback lasers (DFB).

With the inability to manufacture extremely small cavities useful as standing wave

cavities the transition to lasers was facilitated by designing traveling wave cavities

that would ensure constructive interference for the specific wavelength of light that

was being created [35]. With this in mind a better description of the laser, in classical
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Figure 2-1: A three level system to demonstrate the concept of population inversion,
especially how it is employed in the construction of lasers.

terms, is called for. One can picture a cavity whose center is filled with some kind of

material which we will call a Gain Medium which enhances the amplitude of the field

by a minuscule amount. Assuming the plane wave is resonant with the cavity each

time it bounces from one mirror to the next it will travel through this gain medium

once. However small the gain medium’s addition to the amplitude of the field is, if the

plane wave bounces around in the cavity many times and has an overall gain greater

than the loss through the cavity mirrors, these amplifications will add up and just like

the equilibrium reached when we were discussing discrete photons a new equilibrium

will be reached in which the light that leaks out of the cavity will be replenished by

a single trip through the gain medium [28].

Diode lasers are made from light-emitting PIN junctions, light being created by

the recombination of electron hole pairs. The so-called grating lasers that are widely

employed throughout the physical sciences pick off the light from these diodes in

a wavelength specific way by carefully orienting a reflective grating onto a mirror.

In this way choice of the wavelength is made by simply rotating the grating. The

cavity formed between the grating and the diode, even though it has a low finesse (tge

number of times light bounces back and forth inside the optical resonator) narrows the

laser to less than a megahertz. Two scales of frequency control are left to us. First, a

coarse control by heating or cooling the laser package which controls the length of the

cavity. Second, a more precise control of the frequency based on the current supplied
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to the diode. However, rather than grating-laser diodes, in this experiment we almost

exclusively use DFB laser diodes. These diodes collect the light they emit and send

it into a material with a modulated index of refraction as in Equation (2.1) [23].

n(z) = n+ n1cos(2β0z) (2.1)

Where β0 is a measure of the periodicity of the refractive index in the medium.

Similar to the traveling wave interpretation of laser cavities we can imagine that as

the light travels through this medium, only waves that are at or near the perfect

frequency to constructively interfere with back reflected waves just like a cavity make

it through, Figure 2-2. The linewidth for these semiconductor lasers is also quite

small: for example, we have a linewidth of 2 MHz for the 852 nm diodes that we

purchased from Eagleyard Photonics [15]. There are many causes for the broadening

of frequency. The largest contributor in semiconductor lasers is the change in the

refractive index of the diode itself as electron-hole carrier density in the PIN junction

fluctuates [18]. Now that we have succeeded in creating narrow sources of coherent

light we will move on to how we manipulate them for use in this experiment.

Figure 2-2: Distributed feedback lasers are constructed to have a variable index of
refraction, such that only the desired wavelength of light can constructively interfere
and thus be enhanced. This illustration of this principle is similar to one found in
[23]

.

2.1.2 Laser Locking

The purpose of laser locking is to stabilize the frequency of the laser relative to a

chosen atomic transition. While at first glance this problem might seem trivial, it is
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Figure 2-3: (a) Due to an antisymmetric energy shift between two polarizations of
light, σ±, caused by the addition of magnetic fields, absorption signals of atomic
transitions exhibit shifts dependent on which polarization of light is used to probe
the sample. (b) The electronic DAVLL signal is showcased with the correct locking
point being the middle crossing of zero.

in fact a complicated procedure that is repeated everyday in lab. To begin with, in

this experiment there are six lasers in lab that need to be locked onto various Cesium

transition frequencies. This is most easily accomplished by creating a reference laser

to which all of the other lasers in the lab are locked to. As all of our experiments

are performed in the fine structure or hyperfine structure of Cesium near the 852 nm

D2 line the reference must be locked to this line. This allows us to address different

transitions by locking the other lasers to the reference using beatnote signals.

It should be apparent to the reader that with present technology we cannot create

stable signals on the order of terahertzs to lock to and the best way to lock a laser to

a specific Cesium electron transition is to use a separate carefully controlled sample

of Cesium atoms in a vapor cell to act as our ”source” for the frequency. While these

atoms will exhibit the same electron structure as those found in the chamber, effects

such as doppler broadening of the transition lines and power drift of the reference

laser must be corrected for. Many different approaches to locking a laser to a vapor

cell exist such as Saturated Absorption Spectroscopy, Polarization Spectroscopy, and

other Sub-Doppler Spectroscopy Schemes. We utilize a Doppler-Free Dichroic Vapor

Laser Lock scheme (DAVLL) to accurately lock our reference laser.

In doppler-free DAVLL the beam that is meant to be locked is sent through the

vapor cell with its frequency being swept back and forth. Doppler-free DAVLL can
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be separated into two distinct laser addressing processes. The Doppler-free part of

the laser lock works by splitting the beam to be locked into a strong pump beam

and a weak probe beam. Both beams are sent through the sample propagating in

opposite directions. The pump beam saturates whatever transition it is tuned to

resonance for one velocity class of atoms, while the probe beam as it is propagating

the other direction will address a different velocity class of atoms corresponding to

the same transition and will be absorbed. Measuring the absorption of the probe

beam on the photodiode and dithering the laser frequency, there will be a huge dip

in the probe beam absorption signal when it tries to address the same atoms that the

pump beam has already saturated. This corresponds to the few stationary atoms in

the cell. By selecting out the atoms with no doppler broadening in their frequency

we have decreased the frequency broadening from its previous width on the order of 1

GHz to the 5 MHz linewidth intrinsic to the electron’s coupling to free space during

the atomic transitions.

The second stage of this laser lock, the DAVLL, is meant to recuperate from any

broadening that might be induced by the degeneracy of nearby magnetic sublevels.

Looking at the probe beam’s absorption through the cell on a photodiode, as stated

before the absorption will dip near the central frequency of the transition. Without

a magnetic field, there is no difference in the absorption spectrum between sending

in σ+ or σ− light. However in a DAVLL scheme, we place the sample in a uniform

magnetic field which splits the magnetic sublevels which were all previously degenerate

as can be seen in Figure 2-3. Paying closer attention to the transition energies we see

that σ+ transitions will now be of slightly higher frequency and σ− transitions will

be slightly lower. The most important thing to note about these shifts is that they

are symmetric about the original transition frequency. Therefore if we were to send

in both polarizations of light and subtract the absorption profile of one polarization

from the other, the point where they were equal, i.e. the point the two spectrums

diverged from will be the central frequency of the transition. As the absorption of

the beam is equal at this point and we subtracted one spectrum from the other the

center frequency is the point where the DAVLL signal crosses zero.
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Figure 2-4: A Phase Locked Loop is used to lock one laser to another laser, in our
case the Reference Laser, and is employed in most of the laser locks throughout the
Vuletic lab.

Rather than send in two beams of different polarizations, linearly (lin) polarized

light is sent into the vapor cell as lin polarized light can be decomposed into a su-

perposition of both σ+ and σ− light. Thus the output of the vapor cell is directed

through a λ
4

waveplate set 45◦ from the h-v basis and into a Polarizing Beam Splitter

(PBS). This chain of optics after the vapor cell separates out the two polarizations,

as if we had sent two separate beams through the cell. Both the transmitted and

the reflected port of the PBS is then analyzed in the exact manner which we men-

tioned before, by dithering the frequency of the laser and looking at the difference

of absorption spectra and locking the signal with a PI loop on the current controller

for the laser. To explain how we commonly create this feedback loop on the lasers

current controller we can examine how we lock other lasers to the reference laser.

The MOT and the Repumper laser both use Phase Locked Loops (PLLs) as seen in

Figure 2-4. Picking off some of the reference beam and, for this example, the MOT

laser we spatially overlap the two on a photodiode. As photodiodes only measure

intensity, the photodiode signal will be proportional to both beams’ intensities plus

a cross term seen in Equation (2.2).

I = |Eref |2 + |Erepump|2 + 2ErepumpEref cos(2π∆ν) (2.2)

Unfortunately the beatnote that we now see is on the order of GHz. The first step

is to downconvert this signal by mixing in a fixed 9.2 GHz local source bringing the

signal down to a few hundred MHz. To further downconvert the signal we run this
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Figure 2-5: Similar to the PLL, a Delay Line Lock is used to lock one laser to another
laser.

through a set of two digital counter circuits that bring the signal down to 100 KHz.

This beatnote is then sent into an LM565 phase locked loop IC that includes a

Voltage Controlled Oscillator (VCO). The internal VCO locks itself to this frequency

and a DC voltage derived from the VCO frequency is available on one of the pins.

Next we send the VCO ”control” voltage along with a user controllable voltage to a

difference chip to create our error signal. Finally the output of the difference circuit,

with the possible addition of a user controllable output offset, is fed to the laser

current controller which creates the feedback as changes in the laser current change

the laser frequency and close the feedback loop. To lock these PLLs we electronically

dither the output offset back and forth; when we find the right place for the output

offset the error signal is a linear response of opposite slope to the dithering. Once

the output offset is exhibits this linear behavior, we flip the feedback on and the laser

stays at the correct frequency. The other method employed for locking a laser with

the reference laser is a Delay Line Lock (DLL). Three lasers in our system are locked

with a DLL: the Eta, Gamma, and Cavity lasers. Similar to the previous method

the beatnote is downconverted to a signal on the order of a 100 MHz and then mixed

with a user tunable VCO. The signal is then split with an RF amplifier with one path

going directly to one input of a phase detector and the other going through a delay

line on the order of a meter and then into the phase detector. This phase detection

loop as illustrated in Figure 2-5 creates a DC voltage that is sent into a difference

circuit connected to the laser current controller just like in the PLL circuit.

To be more specific, the added phase that the beatnote sees from having gone

28



through a delay line, Φ, causes the phase detector to create a DC voltage according

to Equation (2.3)

V ∝ cos(Φ) Φ = 2π(∆ν − νV CO)τ (2.3)

where ∆ν is the difference in laser frequencies and τ is the propagation delay [36]. To

lock a DLL one sets the VCO to a point where the error signal crosses zero, where it

exhibits the maximum slope. A simple comparison between possible noise sources for

this kind of measurement shows us that we are in fact photon shot noise limited when

we assume that total power on the photodiode, the sum of the power for the reference

and the laser, is much larger than the power of the laser we are trying to lock. In

addition the uneven power distribution we create on the photodiode allows us to

ignore the power of the reference beam in the calculation of noise, thereby not adding

more noise in the measurement process than we started with, this is common to most

heterodyne measurements. With such exquisite control over frequencies over long

periods of time it is now time to look at techniques for performing quick manipulations

to the lasers’ frequency and direction.

2.1.3 Acousto-Optic Modulators and Electro-Optic Modula-

tors

Implementing the Write and Read scheme and many of the complicated steps in

the preparation of laser cooled atoms requires that we have extremely fast control

of the lasers themselves during the experimental sequence. To this end we employ

two different kinds of devices: Acousto-Optic Modulators (AOMs) and Electro-Optic

Modulators (EOMs). Both can be used to control the power and frequency of the

laser, and while the AOM works on timescales of hundreds of nanoseconds the effects

of EOMs are seen in just a few nanoseconds.

First we examine AOMs as they serve two very useful purposes, by adding or

subtracting a fixed frequency offset to the light and physically deflecting the light’s

normal trajectory. AOMs work by creating an acoustic wave propagating in the

crystal medium the light is traveling through. This acoustic wave sets the crystal to
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deflect the laser towards the propagation of the acoustic wave and in turn adding a

frequency offset (80 or 110 MHz in the Isomet AOMs that are in our experiment) or in

the antiparallel direction from the acoustic wave and in turn subtracting a frequency

offset [29].

ωscat = ω ± ΩAOM

kscat = k ± κAOM

(2.4)

The amount of light deflected is related to the power of the driving signal used to

create the acoustic wave. Controlling this driving power via a computer one is able

to control the amount of laser being deflected or to put it another way, the power of

the beam. However due to the low velocity of the acoustic wave in the crystal, AOMs

are not the fastest amplitude manipulators at our disposal.

EOMs bought from EOSpace are made from a waveguide mounted on a bire-

fringent substrate, in this case lithium niobate. Placing an electric field across the

birefringent substrate changes the phase it imparts on light polarized along the axis of

the electric field. When the light traveling through the lithium niobate interferes with

the light traveling through the waveguide, an effective Mach-Zehnder interferometer

is created [32]. Therefore modulation of the electric field allows one to control the

phase of the output wave which can be used to add a sideband to the carrier light,

and in principle can be used to control the amplitude. However we do not employ

this feature of EOMs in our current experiment. With all these tools in place we will

now examine the process of laser cooling of the atoms.

2.2 Cooling Processes

The longevity of the magnons we create is essential to the process of heralding single

photon storage or generation. If atoms in the sample move in a way that destroys

the phase information created by scattering a Write photon, all collective effects that

make this experiment possible will be destroyed. While the exact mechanism for the

loss of coherence among atoms will be discussed in Section 4.2.2 suffice it to say that

to perform our experiment the kinetic energy and therefore the temperature of the
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Cesium atoms must be reduced. Furthermore, to better address all the atoms for

storage and readout we must spatially confine them to increase their optical depth.

After a brief introduction to Doppler cooling, we will discuss the construction of a

magneto-optical trap (MOT) and the implementation of Polarization Gradient Cool-

ing (PGC) in our experiment.

The first step in laser cooling atoms is localization and isolation of atoms. Our

entire experiment is preformed inside an ultra high vacuum chamber kept at ap-

proximately 3 × 10−9 torr. Each time the chamber is opened, approximately once

every 18-24 months, extreme care is taken to keep the inside chamber clean from any

dust or oil. A lengthy bake out and pump down period follows each opening of the

chamber to ensure that we can perform experiments without contamination from non

Cesium particles. The first and most simple technique for laser atom cooling that will

be discussed is Dopper cooling colloquially known as the application of an Optical

Molasses.

2.2.1 Magneto-Optical Trap

As atoms move with respect to laser sources they observe a doppler shift to the laser

frequency. This classical doppler shift of frequency is only due to the longitudinal

motion of the atom along the direction of propagation of the beam and is equal to:

~k ·~v. The scattering rate for a beam falling on these atoms can be found in Equation

(2.5).

Γsc = P
1+P

Γ
2

P = S
1+δ∗2 δ∗ = δ−~k·~v

Γ
2

S = I
Is

(2.5)

The Raman Scattering equation above characterizes the action of a beam of photons

detuned from atomic resonance by δ and with intensity I = 2Plaser

πw2 where the satura-

tion intensity is 1.1 mW
cm2 . One might wonder how if the atom has an equal probability

to scatter the photon in any direction there will be any kind of net force on the atom.

Given that the incoming photons come from the same directions it is easy to see that

with ∆p ∝ kf − ki averaging over many scattering events sends 〈kf〉 to zero while

31



〈∆p〉 ∝ ki. This implies that the longitudinal motion of atoms along the direction of

propagation of a light source can be damped.

To create a trap that damps the motion of our Cesium atoms in all directions

we use three perpendicular circularly polarized beams that are each retroreflected

through λ
4

waveplates. When aligned, the intersection between all six beams damps

the motion of our atoms in all three dimensions. Working with the beams tuned to

the red of the
∣∣∣62S 1

2
, F = 4

〉
to
∣∣∣62P 3

2
, F = 5

〉
transition, this closed transition works

well for laser cooling, however it is still possible to off-resonantly excite an F = 4 to

F ′ = 4′ transition which decays down to F = 3, even though that sequence of events

is suppressed by a factor of 104. Therefore to combat the loss of atoms in the cooling

process a repumper laser is kept on resonance from F = 3 to F = 4 to bring the

atoms back into the process. Looking along any of the cardinal directions defined by

the beams the atoms feel a force due to the optical molasses proportional to their

velocity, v, in that direction, as can be seen in Equation (2.6).

FDoppler = Γres~k
1+(∆+kv

Γ
2

)2
− Γres~k

1+(∆−kv
Γ
2

)2

FDoppler ≈ −16kΓ2∆~kΓres

(Γ2+4∆2)2
v

(2.6)

This approximation of the Doppler Force leading to a damping term proportional to

velocity allows us to even examine what the optimal detuning is, where we define the

optimal detuning to maximize the change in the force seen near zero velocity. For

Γres = Ω2

Γ
, the optimal detuning, ∆, remarkably enough, turns out to be Γ

2
. While

a cursory examination of the optical molasses might seem to imply that one could

cool their sample down to the recoil limit for cesium, an extremely chilly 595.02 nK

[41]. Upon closer examination one sees that as the velocity of the atom decreases its

ability to preferentially scatter one helicity of light as opposed to the other decreases

and the equilibrium temperature raises considerably to an energy on the order of ~Γ,

or on the order of 100 µK.

While we have greatly confined the atoms in momentum space from where they

started, we have yet to mention how a MOT is created that localizes the atoms
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Figure 2-6: A sample of ultracold Cesium atoms localized in a MOT is visible without
magnification when using an Infrared viewer. In preparing this figure, it was necessary
to apply a nonlinear filter to this image taken with a CCD camera, but only for the
means of visibility on paper.

spatially. By using Anti-Helmholtz coils inside our chamber we can create a linear

magnetic field gradient inside. This magnetic field will split the magnetic sublevels

with the distance between them increasing as atoms move farther from the center

of the coils. Again, relying on preferential scattering arguments as detunings from

resonance decrease as the energy of states change because of the B field, if we orient

the B field correctly with respect to which direction σ+ light propagates we can

engineer it such that atoms will scatter more from counterpropogating beams as they

leave the center of the coils [34]. In the whole, this effect is actually quite small until

you consider the effects that preferentially scattering one helicity of light has on the

state that the atom is in. The atoms by trying to leave the center of the coils are

in fact optically pumped to the F = 4 stretched state (state of maximal angular

momentum along the direction of quantization). In the stretched state more so than

in any other state the atoms scatter even more of the counterpropagating light as

the Clebsch-Gordan in that direction is much stronger. This further enhances the

confinement to usable levels, allowing us to create a MOT small enough to be useful

in addressing a significant proportion of atoms with our Write and Read beams while

still being large enough to be seen by the naked eye, as in the photograph in Figure
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2-6.

2.2.2 Polarization Gradient Cooling

The technique of introducing some preferential scattering into your system is widely

used in all laser cooling experiments from creating a MOT to Sisyphus Cooling,

Cavity Cooling [45], and Polarization Gradient Cooling (PGC). Compared to Doppler

cooling, PGC cooling allows us to get much closer to the recoil limit as it does not

rely solely on scattering induced by detuning. While a MOT requires there to be a

magnetic field near the atoms PGC requires the field to be as close to zero as possible

as all interactions and transitions are induced by the atoms being acted upon by the

laser field.

By superimposing two counterpropagating circularly polarized beams with oppo-

site helicity and same field amplitude an interesting shape is formed. In general,

for the different field amplitudes, the component of the electric field moving in the

positive direction is in Equation (2.7).

E+(z) =
1√
2

(E ′
0 − E0) εx −

i√
2

(E ′
0 + E0) εy (2.7)

Taking the field amplitudes to be the same we see that this complicated expression

simplifies to a linear polarization. Expanding both the left moving and right moving

part of the wave now, a simple relation between the polarization of this system and

the distance along the direction of propagation can be derived, see Equation (2.8).

 εX

εY

 = Rz(−kz)

 εx

εy

 (2.8)

This says that to find the basis where the polarization stays constant all that needs

to be done is to perform a rotation of our fixed coordinate polarizations. Thus the

polarization of the beam is constant in any one place, but is in the shape of a helix

as it winds around down the direction of the propagation of the laser beam.

Going into a slowly moving frame similar to what an atom would see, and working
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through the first order perturbation to the wave function we can see that there is

coupling between the states that angular momentum were previously quantized in and

states in other directions. Retaking the expected value of some angular momentum

component operators, a non-isotropic distribution of angular momentum is discovered

such that there exists a ”Motion Induced Atomic Orientation” [11]. Similar to the way

Zeeman shifts in a MOT cause preferential scattering of certain helicities of light, this

motion induced atomic orientation makes it more likely for atoms to scatter photons

from the beam that counterpropagates their motion such that kinetic energy from

the atom is transferred to the scattered photon and the sample is cooled further. The

difference of scattering events between counterpropagating and copropagating beams

is on the order of k Γscat

∆
v where Γscat is the mean scattering rate of the cesium atom

in its ground state and ∆ is the light shift from atomic resonance. The force the atom

feels is proportional to the number of scattering events times ~k. All that remains is

to construct a coherent plan that includes both trapping atoms in a MOT and then

cooling them with PGC.

To begin the sequence the MOT beams are turned on with the repumper set on

the 3 − 4 transition with the anti-helmholtz coils inside the chamber turned on and

the bias magnetic field coils on the outside of the chamber turned on. After a short

period of time the MOT coils are turned off, at which point the atoms are in the

F = 4 state with a temperature near 100 µK and are falling. After 2-3 ms the eddy

currents in the vacuum chamber, caused by turning off the MOT coils, have rung

down and the magnetic field near the atoms is zero thanks to the bias coils. The

MOT beams are turned back on but this time they are tuned to depump the atoms

from F = 4 to F = 3 as with no magnetic field the normally circularly polarized light

looks unpolarized for each atom with its random orientation. To commence the PGC,

the MOT beams turn off and the Repumper, which is circularly polarized, is shifted

to the blue side of the 3−2‘ transition by the computer controlling the sequence. We

use the 3− 2‘ transition for PGC because of the large imbalance in Clebsch-Gordans

due to the existence of a dark state. After 5 ms the atoms are at approximately

5 µK and are ready to be used for our experiment. There is nothing extremely
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special about this sequence and there are many other plans one could think of for

implementing both a MOT and PGC, but this is what gives us reliable results [31].

With our atoms cooled to very low temperatures we are now able to move forward

with our experiment.
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Chapter 3

Single Photon Generation

Overview

The creation of a high-brightness source of single photons has long been a sought after

prize in quantum optics [43]. The heralded single photon generating mechanism that

we employ lends itself to a variety of applications ranging from quantum communi-

cation to probing the foundations of quantum mechanics, in studies of entanglement

and metrology. In the following sections we will discuss the theory behind putting

atoms in cavities, collective excitations, the technical details of how we implement

our scheme for photon generation, and how by utilizing our source of single photons

we can create a quantum memory for a single qubit.

3.1 Single Atoms vs. Collective Excitations

How does one create a single photon? Assuming we will collect the photon using a

cavity, there seem to be two ways to create a photon: using a single atom or using N

atoms. To understand why we have chosen to use multiple atoms we will examine the

limitations imposed by using one atom to create single photons. As far back as 1946

Edward Purcell saw the great potential that placing atoms in cavities could have on

the various emission processes [33]. To explain the enhancement of scattering into

the cavity we will first look at this problem classically and then calculate it quantum
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Figure 3-1: Atoms in the cavity witness enhancements in scattering rates into specific
directions as if they were part of a phased array of atoms. This is caused by the
imaging of the atom by the mirror a number of times equal to the finesse of the
cavity.

mechanically. We define η to be the single atom cooperativity, a measure of the

probability that a scattered photon will enter the cavity. Geometrically we know

that η is nothing more than the solid angle subtended by the cavity mirrors over the

total scattering area: Ω
4π

. On resonance the cross-section of an atom is equal to λ2.

Therefore the probability of scattering a photon from a beam of waste w is equal to

λ2

w2 . Upon first examination placing the atoms inside the cavity does not seem to offer

any benefits, so how does the cavity enhance scattering?

Instead of imagining the cavity as a closed entity, picture each mirror surface as if

it was a lens that just imaged the cavity and atom on the other side of the mirror. By

utilizing the method of images and noting that the cavity is imaged a number of times

equal to the average number of times a light pulse will bounce back and forth through

the cavity, the Finesse, F
π
, one can see that all the image atoms will act as a phased

array of emitters, Figure 3-1. By requiring constructive interference phased arrays

greatly enhance emission along preferred directions in a narrow frequency range and

are thus very useful in a wide variety of settings [26]. We can just as easily note that

the light in the cavity will have F
π

chances to scatter off the atom and therefore η will

be enhanced by F
π
. Solving for the solid angle and using an approximation for the

beam waist known as the 99 % criterion we find that η obeys Equation (3.1) [38].

η =
3

2π3
F
(
λ

w0

)2

(3.1)

Taking the results of Equation (3.1) one step farther we can ask what percentage of

the photons scattered by this single atom in a cavity system will go into the cavity
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mode compared to free space, the recovery.

Recovery ≈ η

1 + η
(3.2)

Before we move on, it is important to note that we did not have to use a classical

argument to derive the single atom-cooperativity and the recovery. We could just

have easily looked at this problem using quantum mechanics. The reformulation of

this problem is simple: an excited state representing the atom in an excited state

with no photons in the cavity with a linewidth equal to Γ is coupled by a constant g

to a state with the atom in the ground state with one photon in the cavity mode with

a lifetime κ as can be seen in Figure 3-2. As the rate at which the an atom Rabi flops

from |e, 0〉 to |g, 1〉 is proportional to g2, we know that to a reasonable approximation

the rate a photon will be released into a cavity mode will be g2

κ
1. While the probability

of seeing this decay will go like Equation (3.3) as any decays into free space are lost

[9].
g2

κ

Γ + g2

κ

(3.3)

Which when we replace the quantities g, κ, and Γ with their equivalent expression in

terms of classical quanties shows that g2

κΓ
= η gives us our normal equation for the

expected recovery, Equation (3.2).

This is all well and good and is the basis for many other single photon experiments

[19], however there are many technical challenges that make this technique less than

perfect. First, the fabrication of a high-finesse small cavity to trap the atom in.

Second, keeping the atom localized to less than an optical wavelength so as not to

deconstructively interfere with the cavity scattering. Collective excitations offer a

way around these challenges. Placing N atoms inside a medium finesse cavity one

would assume that it would be impossible to easily scatter a single photon into the

cavity mode, instead assuming that shining a laser onto the N atoms would lead to

a poissonian distribution of N photons scattered into and out of the cavity. While

this is true in the general sense, following a heralding scheme and selecting on specific

1This follows from Fermi’s Golden Rule.
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g

Figure 3-2: A two level system with linewidths equal to Γ and κ and a coupling of
g between the levels. The higher level represents an excited atomic state with no
photons in the cavity mode, while the lower level represents an atomic ground state
with one photon in the cavity mode.

triggers that we will discuss shortly, one can use all the atoms as if they were a

phased array of emitters with a greatly enhanced rate of scattering into the cavity

mode, where the enhancement is Nη. To fully understand this quantum phenomenon

a small amount of formalism in notation must be introduced, but once this is done the

reader will be delighted to see that nothing magical or out of the ordinary is taking

place.

3.2 Fock State

The Dirac notation for quantum mechanics represented a great step forward in the

understanding of modern quantum mechanics. Similar to the boon Feynmann dia-

grams gave to quantum field theory, the introduction of a notation that simplifies

or at least obscures the mathematics of calculations is imperative to quickly form-

ing a physical picture of one’s system. At first glance however Dirac notation seems

less than optimal to describe a system of N atoms or N photons. Furthermore a

framework for discussing the electromagnetic field as a system of photons needs to

be created. These rather embarrassing deficiencies are what the procedure known as

Second Quantization is supposed to cure.
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Taking a page from Classical Mechanics it is our intention to no longer treat the

Schroedinger Wave Equation like a scalar, but rather treat it like a Classical Field

Theory. We identify Canonical Coordinates, Ψ(x, t) which is now an operator and

its canonical partner Π, and perform the usual recipe for determining properties of

these fields: writing an action consistent with the Lagrangian created by our field

and setting the first order deviation of the action to be zero [8]. Following these

prescriptions, Ψ(x, t) is found to represent an infinite set of one dimensional harmonic

oscillators. Each oscillator can be thought of as a different mode in the photon

description of light, and each level of a each oscillator is another photon in that

mode. Similar to the normal creation and annihilation operators there exist ak
† and

ak whose commutation or anti-commutation relation is dependent on the class of

particles the state is meant to represent. We will also define a Vacuum state by it’s

relation to these operators.

|Ω〉 =⇒ ak |Ω〉 = 0 ∀k (3.4)

In general, these states are known as Fock States. The Hilbert space these states

occupy, Equation (3.5), is a direct product space of smaller single particle Hilbert

spaces which leads to the property that each component of these states individually

obey the Schrodinger wave equation.

H = h1 ⊗ h2 ⊗ h3 ⊗ · · · (3.5)

There however exists one unfortunate deterrence to the ordered beauty of this frame-

work, namely the problem of ordering in the quantum mechanical operators that will

act on the system. By blindly expanding all operators in terms of the creation and

annihilation operators times the vacuum, and performing all the necessary commuta-

tors one discovers singularities. To combat this we normal order all of our operators

before trying to take inner products between our states. The importance of this pro-

cedure will become clear in Section 3.5 when we are trying to count the number of

photons we have created.
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3.3 Write, Herald, Read

To generate a single photon from an ensemble of atoms we utilize a phenomenon

known as Dicke Superradiance [13]. By creating a large symmetrized state over all

the atoms addressed by our beams we are able to enhance certain decay processes

to highly favor emission into the cavity. Without loss of generality we will analyze

our procedure for an arbitrary 3 level system and then go into more specific models

once the overall procedure is understood. Furthermore we will be using a pseudo

Jaynes-Cumming Hamiltonian to quickly calculate the interactions between levels.

HJC = g
(
a†σ− + aσ+

)
(3.6)

Figure 3-3: A three level system with a

coupling between the two highest levels

due to spontaneous emission as well as an

external field.

Our hamiltonian will be similar to the

one above as it is just describing a system

in which absorption of a photon (a) leads

to excitation of the atom, while emission

of a photon (a†) leads to the lowering of

the atom’s energy state. In this treat-

ment we will consider the action of our

protocol on a system where the atom has

three states available to it |a〉, |b〉, |c〉

seen in Figure 3-3.

Our intention in the following exer-

cise is to create a closed 3 level system

in which each state is a collective, well-

symmetrized state of all the Cesium atoms. First, the sample of atoms is optically

pumped such that all of the atoms are in the state |a〉 with zero photons in the cavity

mode. We will label this state as the ground state of our system, |G〉, defined in

Equation 3.7.

|G〉 = |aaa . . . aaa〉 ⊗ |0cav〉 (3.7)
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A weak coherent beam known as the Write beam is sent into the sample which is

tuned to drive a single atom from |a〉 to |b〉. As discussed previously, we model this

with a modified Jaynes-Cumming hamiltonian found in Equation (3.8).

HWrite = Ω
N∑

j=1

|bj〉 〈aj| ei ~kw·~xj + |aj〉 〈bj| e−i ~kw·~xj (3.8)

Here the j index refers not to separate components of a vector, but rather a different

atom. One reaction was omitted from this hamiltonian as a photon is being either

added to or subtracted from the Write beam itself, however this turns out to be

inconsequential as we can easily model a laser as a coherent state, which is not

effected by the removal of one photon.

Given our initial state |G〉 we act on it with the hamiltonian of the system defined

by the action of the Write beam. The state we get out is a shared single excitation

in which we know that one of the atoms has been excited to |b〉 but cannot tell which

one. Therefore the state is a superposition of each atom having been the atom that

was excited.

HWrite |G〉 =

(
Ω

N∑
j=1

|bj〉 〈aj| ei ~kw·~xj + |aj〉 〈bj| e−i ~kw·~xj

)
|aaa . . . aaa〉 ⊗ |0cav〉

=
(
ei ~kw·~x1 |baa . . . aaa〉+ ei ~kw·~x2 |aba . . . aaa〉+ . . .

)
⊗ |0cav〉

=Ω
N∑

j=1

ei ~kw·~xj |bj〉 ⊗ |0cav〉

(3.9)

The last line of Equation (3.9) is shorthand notation that we will continue to use

throughout this discussion as we will assume that all atoms where the state is not

specified are in the state |a〉. Taking the inner product of this new state with a

normalized version defined in the Equation below,

|E〉 ≡ 1√
N

N∑
j=1

ei ~kw·~xj |bj〉 ⊗ |0cav〉 (3.10)
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Write
Beam g

Read
Beam

Write Read

Figure 3-4: Two three level systems showing the sequence of events in both the Write
and Read processes along with the relevant couplings between all the levels.

we can see what the coupling is between the two levels |G〉 and |E〉.

〈E|HWrite |G〉 =
N∑

i=1

〈bi|
1√
N

Ω
N∑

j=1

|bj〉

=
N∑

i,j=1

Ω√
N
〈bi|bj〉

=
N∑

i,j=1

Ω√
N
δij

=
√
NΩ

(3.11)

Knowing the coupling constant for this transition we can begin filling in the details of

our 3 level system in Figure 3-4. We call this process of transitioning our atoms from

state |G〉 to |E〉 the Write Process. While it might seem that we have miraculously

already driven a collectively enhanced process, looking for one scattering event with

N possible scattering centers would of course be enhanced by N. What follows next

is the creation of our heralding photon from the decay of an atom in its excited state

|b〉 to |c〉 as characterized by its linewidth Γ.

This heralding photon will in turn be detected by us and tell us whether the

write procedure succeeded. The operators acav and a†cav refer to the annihilation or

creation of photons in the cavity mode which will in turn leak out of the cavity due

to its finite linewidth κ. Without the Write beam on, the state is acted upon by an

44



operator C, referred to here on out as the cavity operator, defined in Equation (3.12).

C ≡
N∑

j=1

g
(
cos
(
~kc · ~xj

)
acav |bj〉 〈cj|+ cos

(
~kc · ~xj

)
a†cav |cj〉 〈bj|

)
(3.12)

We can now examine the coupling between state |E〉 and state |L〉 where the latter

state is defined as the cavity operator acting on the former state properly normalized.

For reasons that will become obvious later, this release of a photon into the cavity

mode can be thought of as a successful loading of what some might refer to as a

photon trap.

C |E〉 =g
N∑

i=1

cos
(
~kc · ~xi

)
a†cav |ci〉 〈bi|

1√
N

N∑
j=1

ei ~kw·~xj |bj〉 ⊗ |0cav〉

=
g√
N

N∑
j=1

cos
(
~kc · ~xj

)
ei ~kw·~xj |cj〉 ⊗ |1cav〉 (3.13)

|L〉 ≡ 1√
N
∑N

l=1 cos2
(
~kc · ~xl

) N∑
j=1

cos
(
~kc · ~xj

)
ei ~kw·~xj |cj〉 ⊗ |1cav〉 (3.14)

In a less esoteric sense, if the heralding photon goes into the cavity mode what results

is a phase grating that will later enhance the scattering of future photons into the

cavity mode. Looking at Equation (3.14) we can see the appearance of this phase

grating caused by the phase added to each term by the Write beam. All that remains

is to see what the coupling is.

〈L|C |E〉 =
g√

N
∑N

l=1 cos2
(
~kc · ~xl

) N∑
j=1

〈cj| cos
(
~kc · ~xj

)

·ei ~kw·~xj
g√
N

N∑
k=1

cos
(
~kc · ~xk

)
ei ~kw·~xj |ck〉

=
g

N

N∑
j,k=1

δjk

=g

(3.15)
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The heralding photon will help us post-select out only the trials that succeeded in

creating this phase grating. We should note that this critical step in creating our

phase grating is only enhanced by the cavity coupling constant, so in our case most

of our photons never go into the cavity and create our collective state that we are

looking for. So what do we do know that we have a phase grating?

While the phase grating itself is interesting and will be the fundamental building

block of our quantum memory we will continue our exploration into how to retrieve a

single photon from this system. The first step is to send in the Read beam. It should

be noted that we are directing this beam in after the photon in cavity mode in state

|L〉 has leaked out, therefore our initial state is now acav |L〉. Similar to Equation

(3.8) the operator defined by the action of the Read beam is below.

HRead = Ωr

N∑
j=1

|bj〉 〈cj| ei ~kr·~xj + |cj〉 〈bj| e−i ~kr·~xj (3.16)

Once again we will look at the coupling between our initial state and a well-normalized

version of what is generated by HRead acting on our initial state.

HReadacav |L〉 =
Ωr

∑N
k=1 |bk〉 〈ck| ei ~kr·~xk√

N
∑N

l=1 cos2
(
~kc · ~xl

) N∑
j=1

cos
(
~kc · ~xj

)
ei ~kw·~xj |cj〉 ⊗ |0cav〉

=
Ωr√

N
∑N

l=1 cos2
(
~kc · ~xl

) N∑
j=1

cos
(
~kc · ~xj

)
ei( ~kw+ ~kr)·~xj |bj〉 ⊗ |0cav〉

(3.17)

The normalized state, |E ′〉, is equal to Equation (3.17) save for the omission of

the Ωr factor. Similar to the calculation of the Write decay process (3.15) taking

〈E ′|HReadacav |L〉 just gives us back this same coupling factor Ωr. One last transition

remains to be calculated to complete our sequence in Figure 3-4.

The transition between |E ′〉 and the state which we are after a†cav |G〉 where we
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have created a heralded single photon is mediated by another cavity decay.

C ′ ≡
N∑

j=1

g′
(
cos
(
~kc · ~xj

)
acav |bj〉 〈aj|+ cos

(
~kc · ~xj

)
a†cav |aj〉 〈bj|

)
(3.18)

The difference between cavity coupling constants g and g′ are merely multiplicative

factors whose roots come from the different Clebsch-Gordan coefficients from decaying

into different levels.

〈G| acavC
′ |E ′〉 =

g′√
N

N∑
j=1

ei( ~kw+ ~kr)·~xj (3.19)

=g′
√
N (3.20)

It is this final process that exhibits the collective enhancement we have been seeking

this entire time. Furthermore the recovery we discussed earlier comes directly from

this process which has a rate of Ng′2 which when combined with the decay channels

in the cavity and atom lead to our normal recovery of Nη
1+Nη

.

3.4 Implementation Details

Throughout this chapter the discussion has been kept on a highly abstract level. To

bring this topic more down to earth we will, in this section, focus on some of the

more technical details of implementing this single photon generation procedure and

subsequently the quantum memory or buffer. For purely practicable reasons all of

our experiment is centered around the D2 line of Cesium. As indicated in Figure

3-5 to the right, by utilizing the hyperfine structure of Cesium there are a plethora

of easily accessible levels that can be used for optical pumping and our experiment.

Given the small frequency spacing between the
∣∣∣6P 3

2

〉
hyperfine states we can easily

use EOMs in conjunction with AOMs to quickly change which transitions we are

addressing mid-sequence. There is an even greater degree of freedom afforded to us

by the use of a cavity, the degeneracy created between frequencies an integral number

of Free Spectral Ranges apart.
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F = 3

F = 4

F = 3

F = 4

F = 2

F = 3

F = 4

F = 5

894.593 nm

852.347 nm

251 MHz

151 MHz

201 MHz

1168 MHz

9.192 GHz

Figure 3-5: An energy level diagram showing the separation of the Hyperfine energy
levels in the Cesium atom. All splittings were obtained from Reference [41].

3.4.1 Pound-Drever-Hall Cavity Lock

In considering a standing wave present in an optical cavity, one should notice that

the only condition for constructive interference inside the cavity is that the phase of

the wave needs to change by an integer number times 2π. As such there exist an

infinite set of frequencies of light that will fit inside this cavity as long as they satisfy

the condition that 2πν 2L
c

= d2π where d is an integer. The distance between each of

these frequencies is known as the Free Spectral Range and is an innate feature of any

optical cavity.

∆νFSR =
c

2L
(3.21)

Therefore any beams we use to interrogate the atoms can be scattered into the cavity

as long as their frequency is an integral number of FSRs. The standing wave cavity

that we use has a measured FSR of 2.266 GHz. In the past, this has allowed us to

use different lasers for our read and write beam at different frequencies that differed

by 4 FSRs from each other.

An important fact to take away from this is how important cavity length is to
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constructive interference. While earlier we argued that scattering light from atoms

into the cavity was enhanced by the finesse, it was explicitly assumed that the atoms

were stationary to within an optical wavelength, most importantly however it was

implicitly assumed that the cavity did not change its length. As variation in the

length of the cavity will destroy the cavity induced enhancement just as easily as

movement of the atoms would. To accomplish this cavity length stabilization we

will employ a Pound-Drever-Hall lock with a frequency stabilized laser and vary the

length of the cavity, not the laser frequency [5].

Mounting one of the cavity mirrors on a piezoelectric ceramic crystal allows us

to change the length of the cavity, however a lot more precision is needed than just

gross length corrections. The cavity can be treated just like a normal Fabry-Perot

resonator which only transmits light at or near multiples of the free spectral range.

When the cavity is the correct length to transmit the light of our locked cavity laser

there will be little to no reflection from the input mirror. It should be noted that this

signal is not just a first order reflection of the input beam but also the light that leaks

out of the cavity through the input mirror. On resonance these two will be totally

out of phase and will destructively interfere to null this signal. Unfortunately there

exist many problems for using this nulling intensity signal for the cavity lock. First,

the signal is symmetric about zero and it would be difficult to discern which direction

a cavity length change should be in. Second, any amplitude noise on the cavity laser

would look like a change in the signal we are trying to stabilize. The solution is quite

simple in fact, instead of looking at intensity, we look at the derivative of intensity

which is antisymmetric about the resonance.

To get a DC voltage that can be used as an error signal for the piezo driver we

will add phase modulation to the cavity laser. By introducing a phase modulation

at a frequency Ω the original beam, with frequency ωcav, now acts as a carrier with

two sidebands at frequencies ωcav ± Ω. By performing the exact calculation of the

intensity of the reflected beam it turns out the phase information we are looking for

is on a term coupled to sin (Ωt). To retrieve this signal we pick off the reflected beam

and measure its intensity with a fast photodiode. We then demodulate the signal
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with a frequency Ω and the original modulation signal, which must be fed through

a manually tuned delay line so as to be in phase with the light. Finally we pass our

signal through a low-pass filter, to get rid of all the high frequency noise, and we are

left with a DC error signal that can be fed into a normal control loop for the piezo

drivers. With the cavity length stabilized we are able to enhance the scattering of

light into the cavity.

All that remains to creating a heralded source of single photons is the ability

to detect single photons. For our purposes we are able to use commercially bought

Single Photon Counting Modules (SPCMs) from Perkin-Elmers. At the wavelength

we currently are working at these detectors have a Quantum Efficiency (QE) of 40%.

Finally with all this explained we are ready to create single photons and it is now

only a matter of proving that we have succeeded.

3.5 g2 Measurement

While we can perform our heralding photon generation scheme and see that it works,

we have yet to discuss how the photons we get from this procedure are any different

from attenuated laser light. One of the other popular choices for creating single

photons is thematically similar to just placing attenuators in a laser’s path until only

a few photons can pass through all the attenuators. These light sources act in a

classical manner following poissonian statistics. Therefore the probability of getting

n photons in such a process is equal to the probability of having n events coincide

according to a poisson distribution. For our purposes, as events with three or more

photons are greatly suppressed, all we are interested in is the probability of getting

two photons, P2, which classically is quite simple.

P2 =
1

2
P1

2 (3.22)

Our single photon source should break the equality in Equation (3.22), by suppressing

the probability of multi-photon creation.
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Figure 3-6: A Hanbury-Brown Twiss interferometer with all 4 ports labeled, including
a vacuum port.

Two quantities will play an important role in our discussion of photon statistics:

〈nw〉 and 〈nr〉 the average write rate and the average read rate. The write rate is a

measure of how often a heralding photon is emitted into the cavity mode. As one

should remember the scattering of a photon into the cavity mode on this leg of the

scheme was not collectively enhanced and this quantity will be quite small. Write

rates for recent experiments have been on the order of a few percent, most recently

2%. Read rates are a measure of how often the final photon is observed. Thankfully

due to our high recovery caused by collective enhancement back, the read rate is on

the order of the write rate. Both of these measures are very useful for immediate

evaluation of new data when an experiment is being performed.

The ultimate measure of whether our photons show signs of sub-poissonian statis-

tics is the g2 or grr—w measurement, the read auto-correlation given a write photon
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[37].

g2 =
〈: n2 :〉
〈n〉2

(3.23)

=
〈: a†aa†a :〉
〈a†a〉2

(3.24)

=
〈a†a†aa〉
〈a†a〉2

(3.25)

=
〈n2 − n〉
〈n〉2

(3.26)

Classically this normalized auto-correlation will always be greater than or equal to

1 [28]. Measuring these photon statistics on a Hanbury Brown-Twiss interferometer

like Figure 3-6 one finds that regardless of the interferometry method one uses to get

to the final answer the g2 does not change and the autocorrelation of the total number

of photons is equal to the cross correlation down paths b and c of the interferometer.

The g2 also has one more interpretation that can be quite useful.

g2 =
P2

1
2
P1

2 Classically (3.27)

With this expression the non classical requirement that g2 must be less than 1 is much

more obvious. For the this experiment three SPCMs were utilized to analyze the g2

of our generated photons, 1 SPCM to catch the heralding photon, and the other two

to create a Hanbury Brown-Twiss interferometer. This measurement is especially

time consuming as we must wait until multiple 3-photon events are observed to get a

good limit on our measured value for g2 which was 0.24(6). This takes a considerable

amount of time as not only must this even occur, but also we need to successfully

measure all three photons, a process that is suppressed by the detection path quantum

efficiency to the third QE3, 1
1000

in this experiment.

A less reliable but more useful measure in a day-to-day lab setting is the intensity

cross-correlation gwr.

gwr =
〈: IwIr :〉
〈Iw〉〈Ir〉

(3.28)
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A modified Cauchy-Schwarz inequality signals that classically the field cannot have

a higher cross correlation than auto-correlation for each of the two photons.

gwr
2

gwwgrr

≤ 1 Classically (3.29)

Unfortunately, as was mentioned before, the measurement of grr takes a long time

and requires 2 detectors (the same can be said of gww) as such it is not an extremely

practical inequality to check during each experimental run. Most of these quantities

can be described at a specific time, but for our purposes we will only talk about the

various correlation values at time t = 0. In our experiment gwr ≈ 6 and grr = gww ≈ 2.

This of course leads to a strong violation of the Cauchy-Schwarz inequality.

Looking at the expression for gwr in Equation (3.28) we can rewrite this using

experimental quantities.

gwr =
〈: nwnr :〉
〈nw〉〈nr〉

(3.30)

=
P (r&w)

P (r)P (w)
(3.31)

=
P (w)P (r|w)

P (r)P (w)
(3.32)

=
nwχq

2

nw (nwχ+B) q2
(3.33)

=
1

nw + B
χ

(3.34)

Here B is the probability of getting a background count in our detectors, χ is the

recovery efficiency, and q is the quantum efficiency of our detectors, leaving us with

a simple equation that tells us how the autocorrelation between rights and reads

scale [25]. Given our write rate of .02 we see that at a minimum our gwr should be

50, instead it is 6 telling us that we are strongly background limited and cannot

easily increase our signal. Regardless these results tell us that we have created a

high-efficiency source of heralded single photons and it is time to move on to how we

create a storage device for quantum information.
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3.6 Towards A Quantum Memory

In classical computation one uses a bit as the smallest unit of information. A bit

can take on the values of 1 or 0 and is represented usually as high or low voltage.

The digital abstraction was introduced in the design of modern electronics to allow

one to make a record of the entire state of one’s classical system. By disentangling

the notion of a continuum of states an analog system could exist in and the amount

of information an analog system could encode, we are able reproduce the state of

a digitzed system exactly. Quantum information is different as there is no simple

discretization process which when reproduced will approximate the behavior of your

original quantum system exactly. Therefore we must define a new quantity that can

encode all the information in a quantum system. A qubit is a single particle in a

superposition state of a two state system, |ψ〉 = a |0〉 + b |1〉, where the states |0〉

and |1〉 are orthogonal. By modifying the protocol for single photon generation, the

polarization state of a Write photon, Equation (3.35), will be shared between two

magnons and released at a time of our choosing as if it was stored inside a some kind

of quantum analog to a classical memory.

|ψ〉photon = cos (θ) |+〉+ eiφ sin (θ) |−〉 (3.35)

The first change to the original scheme will be to the polarization of the optical

pumping. Instead of pumping with σ+ or σ− light on 3 − 4′ which would put our

sample of Cesium atoms into one of the stretched states with maximal (or minimal)

angular momentum projection, we instead pump with π polarized light on 3 − 2′.

Successive bursts of optical pumping drive our sample of Cesium atoms into two

groups: A, |F = 3,mf = −3〉, and B, |F = 3,mf = 3〉. As can be seen in Figure 3-7,

we can treat this as two Fock states which will obey the same principles that the

single Fock state obeyed in our discussion of single photon generation earlier.

Assuming that we define the ẑ direction to point along the cavity, our optical

pumping beam will be polarized along the x̂ direction and enter the chamber in the ŷ

direction as seen in Figure 1-1. Our Write beam tuned from F = 3 to 2′ is propagating
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A B

Write Write
Read Read

Figure 3-7: An illustration showing how both samples A and B will emit/absorb π
polarized photons in a similar manner and how their neighboring hyperfine states
are fashioned into a closed three level system. |g±〉 indicates whether the state |G〉
corresponds to a set of atoms with maximal angular momentum projection or minimal
[42].

along the x̂ direction and therefore any photons initially scattered into the cavity that

are π polarized will create entanglement between samples A and B. Note, we did not

have to invoke which sample A or B scattered the photon to know that if it went

into the cavity and was π polarized that each would respond in the same manner.

This choice of polarization selection and propagation axes was specifically chosen such

that the identity of the sample which scattered the photon would be obscured almost

like a quantum eraser in a double-slit experiment. Intentionally obscuring this fact

creates a state that is a direct mapping from the polarization state of the photon,

Equation (3.35), to an entangled state of magnons A and B in Equation (3.36) thereby

transferring all of the information contained in the polarization qubit [42].

|ψ〉Atomic = cos (θ) |1〉A |0〉B + eiφ sin (θ) |0〉A |1〉B (3.36)

What of the Read process, is that changed? We must again find a way to drive

both the shared excitation in sample A and that in sample B back to their respective

stretched states. A π polarized beam along the x̂ direction would accomplish this but
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it is here that problems start to arise. Looking back at the requirements for collective

enhancement on the read process we are reminded that the Read and the Write beam

must be counterpropagating. This of course poses a problem as the Read beam cannot

be polarized along its direction of propagation. Therefore a rather unconventional

solution was decided upon, instead of having a stationary static sample we would

instead have its magnetic moment be rotating throughout the experiment. A B

field of 1.4 Gauss in the ŷ direction created by our Helmholtz coils induces Larmor

precession with a period τL = 2 µs. Thereby allowing us to wait 1
4

of a period after

the Write and send in light polarized along the ẑ which will look like the needed light

along the atoms’ now rotated quantization axis. In the time between our Write and

Read, the polarization is stored between the two magnons so we will call this time

the Quantum Memory storage time.

Figure 3-8: The pulse sequence situated above an illustration of where the collective
atomic spin is pointing at each moment during the sequence [42].

An experimental sequence for this rotating scheme is quite simple, and can be

easily visualized like in Figure 3-8. First the Write beam goes on for 50 ns at a low

enough power that in each run we only excite nw atoms. One quarter of a period

later, the Read beam is turned on for 100 ns. Lastly, at 2 µs into the sequence the

optical pumping is turned on for 75 ns. To prove that there is no overall optical

pumping effect from having the same sample always be addressed as the mf = −3

or mf = 3 state, each trial is made 3 µs long so that every trial which magnon is

the one with maximal angular momentum is switched. And finally 10,000 trials are

performed between repetitions of the laser cooling sequence.

Results from this method of polarization storage are presented in Chapter 5 how-
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ever it is a good time to reflect on what has been accomplished. Starting with atoms

in a high vacuum chamber we have cooled and trapped them and have demonstrated

exquisite control over their internal energy structure. Using techniques of atomic

manipulation invented in the 1950s with computer controlled timing cards accurate

to the nanosecond we are able to control quantum states shared across thousands

of atoms, create a sub-poissionian source of single photons, and even store a single

qubit.
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Chapter 4

Implementation of Long-Lived

Polarization State Storage

While a plan for the construction of a quantum memory was given in the previous

chapter there are many challenges that must be overcome. First, the requirement

that our sample be actively rotating throughout our experiment has transformed the

routine procedure of optically pumping our sample of Cesium atoms into a much more

dynamic problem. Second, the storage time of the quantum memory is only limited

by the decoherence of our atoms’ shared excitations. After a brief introduction to the

general technique of optical pumping and a discussion of how we implemented optical

pumping for our rotating sample, two decoherence mechanisms will be explained along

with our attempts at minimizing their effects on the experiment with the installation

of an Optical Lattice.

4.1 Optical Pumping

First demonstrated in 1949 by Kastler optical pumping is the process of polarizing

a sample of atoms by creating a large population imbalance by means of inducing

transitions in magnetic sublevels by flooding the atoms with light [17]. Application

of the Wigner-Eckhart Theorem for electric dipole transitions provide selection rules

that can be used to map the evolution of the system to its steady state as it absorbs

59



and emits photons. In many of the discussions earlier we assumed this led to a sliding

of an entire atomic population to one of the stretched states, or more generally a

dark state where the atom cannot scatter any photons due to the selection rules. To

create our two samples that will be entangled by our storage photon, two atomic dark

state populations emerge as we send in π polarized light. Over long times, the two

polarizations of light send the populations to opposite ends of the magnetic sublevels

of F = 3 as eventually through a random walk of scattering events the atoms decay

into one of the two dark states. A steady state solution is reached when the optical

pumping time,τOP, is much greater than the lifetime of the excited state: τOP > Γ.

However, in a rotating sample, we are not afforded the luxury of optically pumping

for as long as we want and the problem requires further analysis.

4.1.1 Optically Pumping a Rotating Sample

Trying to optically pump a sample of atoms in a homogeneous magnetic field intro-

duces a number of issues that limit our ability to effectively polarize the sample. In

constructing a MOT we saw that, on average, each time a photon Raman scatters off

an atom, an impulse is felt by the photon. This impulse adds to the momentum and

kinetic energy of the atom. This in turn heats up the atoms, increasing their predis-

position to decohere our state and thereby limiting the amount of time we would like

to send an optical pumping beam into the sample if the atoms are not safely inside a

dark state. In contrast to the upper limit on pumping time, the finite linewidth of the

excited state enforces a minimum amount of time needed to scatter one photon, 2
Γ
,

which is approximately 60 ns. By more fully analyzing the effect the rotation has on

the amount of heating, we can get a better idea of what the trade offs are of changing

the length of the optical pumping pulse.

Classically one could describe Larmor Precession as the rotation of a magnetic

moment around a magnetic field caused by the torque, τ = ~µ × ~B. However this

does not give us any insight into how atoms in the dark state start to scatter photons

once the quantization axis has moved past where it was when the atoms were first

polarized. As the atoms must cycle through the all the magnetic sublevels in a single
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period we expect that some coupling between levels must be created. It is now worth

recalling that our choice of this irreducible representation of our state in terms of the

quantum numbers Fx and mfx was purely a matter of convenience and the state can

be recast in another basis at any time. Thus once the sample has been rotated we

could rediagonalize the states using a basis that itself has rotated with the atoms.

Therefore the amount of coupling between any two states will just be equal to the

inner product of the two states with a rotation acting on one of the states. One could

most easily calculate the final product by decomposing the states into the basis of

the rotation, in this case ŷ.

The first example of such a calculation can be found in Equation (4.1) [44].

|〈f, f |eiβσy |f, f〉|2 = cos2f

(
β

2

)
where β = ωLt (4.1)

Lo and behold, the answer is exactly what we would expect classically as the coupling

of the level to itself turns out to be periodic with a frequency corresponding to the

Larmor period. Performing this calculation for coupling to the nearest magnetic

sublevel state, f − 1, we can find an approximate answer for the coupling between

the dark state and the adjacent state for small t.

|〈f, f |eiβσy |f, f − 1〉|2 =
f

2
β2 +O

(
β4
)

(4.2)

So assuming that we center our optical pumping pulse of length τOP at the exact

moment the polarization of the light and the quantization axis are the same we can

to a good approximation calculate the heating caused by trying to optically pump

while the sample is rotating. Equation (4.3) gives us a measure of the number of

scattering events for one Larmor period per atom per trial.

∫ τOP
2

− τOP
2

Γsc
f

2
β2dτ =

f

24
ω3

Lτ
3
OPΓsc (4.3)

So by requiring that τOPΓsc ≈ 1 we see that backgrounds induced by the rotation

are not small, and it is greatly in our interest to optimize our optical pumping. To
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perform this optimization we will try to maximize both the number of atoms that are

polarized and the accuracy with which we place the optical pumping window in the

experimental sequence.

4.1.2 Probing Through the Cavity

By maximizing the number of atoms in the polarized sample we expect that by

changing the frequencies of lasers, the alignment of the lasers onto the atoms, or

the timing of pulses we intend to see a larger number of atoms involved in optical

pumping. But how are we to measure the number of atoms? The answer lies in

exploiting the cavity. Light sent through an empty cavity will show a transmission

peak at the cavity resonance plus all the peaks separated by an integral number of

FSRs away from resonance. However, a cavity with atoms in it will exhibit a very

different transmission spectrum. Due to a phase shift induced by the photons of

the probe beam hitting the atoms the transmission intensity versus the frequency of

the probe beam will be a double peaked structure [46]. Denoted the Vacuum Rabi

Splitting the peaks themselves will exhibit a width of κ+Γ
2

and will be separated by

g
√
N where N is the number of atoms that are polarized.

To see this signal we send in a weak circularly polarized beam through the cavity

while constantly sweeping its frequency across the cavity resonance; we then monitor

the transmission using a fast photodiode, one of which I constructed, and display it

in real time on an oscilloscope. Figure 4-1 shows an example of what would normally

be seen on the oscilloscope. As interpreting this signal is extremely easy, it serves

as a fantastic diagnostic tool to use for optimizing optical pumping or seeing how

other beams might heat the atoms. It is even routine to send in a superposition

of two circular polarizations of light, lin polarized light, and divide the signal onto

two photodiodes, one for each polarization. One could be used to probe a dark

state population and the other could be used to probe states that we hope would be

empty, allowing us to optimize our optical pumping by both maximizing one signal’s

separation and minimizing the other’s. In the quantum memory experiment a weak π

polarized beam along the x̂ direction is sent through the cavity and picked up at the
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Figure 4-1: (a) A representative measurement of the vacuum Rabi splitting measured
with a probe beam sent through the cavity. (b) A measurement of vacuum Rabi
splitting as it changes in time due to the precession of the samples’ magnetic mo-
ments. The timing of events in our sequence, and the orientation of the magnetic
moments throughout the sequence is shown. The sequence is timed to coincide with
the desirable orientation of the magnetic moments [42].

other end. Tuned to the F = 3 to F = 2′ transition, the stretched states as they were

originally defined should not cause any splitting. However as the sample is rotating

it is obvious that some splitting should reappear.

As we know that the Larmor precession of our sample expressed in couplings

between magnetic sublevels is somewhat sinusoidal we expect the vacuum Rabi split-

ting observed to be similarly sinusoidal. Every time the sample is polarized in the

±x̂ direction we know that if we are correctly pumped then no splitting will occur.

By symmetry arguments, at a quarter and three quarters of the Larmor period the

greatest splitting will occur. So scanning the probe laser’s frequency again and again

and connecting all the line plots we can measure the Larmor precession, as can be

seen in Figure 4-1. This provides us with a valuable tool to tweak the timing of all of

our pulses to align with the atoms’ orientation throughout the experimental sequence.
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4.2 Signal Degradation

A whole host of effects cause a degradation in the recovery signal that is normally

unaccounted for. These unexpected outcomes are caused by a range of antecedents

from static emergent properties of the system to dynamic losses out of our system

which can be described by Lindbladt operators or non-hermitian processes. Drawing

examples from both of these extremes we will examine the variability of recovery due

to the position of the MOT in the cavity and we will discuss the leading limit to our

memory storage time: Doppler Decoherence.

4.2.1 Standing Wave in the Cavity

When considering the requirement for counterpropagation between the Read and the

Write beams the ability to separate them by 4 FSRs seemed to be the ideal solution

to making sure that both ground states of Cesium were driven to the same excited

state. Lurking beneath our naive use of the free spectral range to get what we wanted

was a dark detail that could potentially have destroyed the entire recovery signal. For

a better understanding of how we might destroy our recovery we must recall exactly

what the free spectral range tells us about our cavity.

The FSR tells us what the minimum spacing is between any two frequencies that

would fit into our cavity. As we have chosen the two beams to be on resonance with

the cavity we know our Write frequency fits into our cavity with its field following

some kind of sin (kwx) behavior such that it has a node at both mirrors. A frequency

that is one FSR away from kw will also have nodes at both ends of the mirror, but as

it is the absolute minimum increase in frequency that still fits inside the cavity the

two waves will start in phase, but the higher frequency field will be 180◦ out of phase

with the lower frequency field at the second mirror. When calculating the recovery

from a sample that spans a finite length of the cavity a spatial integral will have to be

evaluated. The problem emerges from the point in the cavity where the two beams are

90◦ out of phase such that the spatial profile of the two beams when integrated over

multiple optical wavelengths is similar to
∫ 2π

kw
0 sin(kwx) cos(kwx)dx which obviously is
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90 Degrees Out of Phase

Figure 4-2: An example of how the phase between two modes, separated by 2 FSRs,
changes inside the cavity. As an entire wavelength is ”lost” between the two mirrors,
there exist two points that are 90◦ out of phase with each other and will exhibit no
recovery if the MOT is placed there.

equal to zero. Similarly, for beams separated by two FSRs there are two points in

the cavity out of phase by 90◦ as can be easily seen in Figure 4-2.

In our present scheme with the Read and the Write separated by 4 FSRs there

are four regions that would give us zero recovery. Near the center of our cavity the

space between two regions of low recovery is only separated by 1.65 cm. Therefore it

is extremely important to localize our MOT to a region of high recovery. To map the

variability one could imagine moving the MOT, optical pumping lasers, and other

lasers repeatedly and seeing the variation in the recovery due to MOT placement in

the cavity. However, by itself, such an exercise would be tedious and would not be

particularly informative as there are a large number of systematic changes in the signal

that occur. A much simpler way of partially mapping this variability in recovery is at

each point of mapping the recovery to change the frequency of the Write beam which

changes the pattern of low recovery points. This experiment was done using a simple

single photon generation scheme by writing in with the write separated from the

read by 3 FSRs and by 4 FSRs and taking the ratio of these two recoveries, thereby

cancelling out the systematic changes of moving all the beams around. The results

can be found in Figure 4-3. When performing the quantum memory experiment the

MOT was placed in a region of high recovery.
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Fraction of
Cavity Length

Ratio of Recovery for the Cavity on Two Different 
Longitudinal Modes for Various MOT Locations

Figure 4-3: Plotted above is the Log of the expected recovery of two different de-
tunings of the Write beam, separated by one free spectral range versus the MOT’s
position in the cavity. To cancel systematic changes in recovery from moving the MOT
around, the data is plotted as the log of the ratio of these two recoveries. As one
can see there is a high level of correspondence between the data and the theoretical
model, the orange line.
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4.2.2 Doppler Decoherence

Doppler decoherence is best described as the dynamic degradation of quantum coher-

ence due to the thermal distribution of velocities in an atomic ensemble. In our early

attempts to describe our system of particles during the Write and Read process we

assumed that the velocity of our atoms was zero such that they did not move dur-

ing or after the process. The collective excitation properties of our atomic ensemble

exemplified by our single photon creation scheme all rely on the atoms to keep the

phase information imprinted on them by the collective scattering of a Write photon.

As we have discussed before we can envision this process as the creation of a phased

array of atoms. However atoms which are moving around will destroy this grating.

If an atom is able to move half an optical wavelength it’s phase information will be

lost, and the collective enhancement into the cavity would be lost as well.

Assuming a simple Boltzmann distribution of atomic velocities, we will examine

the scaling behavior with time that the recovery should follow. Starting with atom j

at ~x0
j when the Write photon is scattered the atom will be at a position ~xj = x0

j + vjt

at a later time t. To examine the probability of recovery at time t we will just find the

probability of overlap between the Write prepared state, |L〉, with the Read prepared

state, |E ′〉. Since we are only interested in seeing the scaling behavior we will combine

normalization factors into An.

|〈L|E ′〉|2 =

∣∣∣∣∣An

N∑
j=1

cos
(
~kc · ~xj

)
cos
(
~kc · ~x0

j

)
e−i ~kw·~x0

jei ~kr·~xj

∣∣∣∣∣
2

=

∣∣∣∣∣An

N∑
j=1

[
cos2

(
~kc · ~x0

j

)
cos
(
~kc · ~vjt

)
− 1

2
sin
(
~kc · ~x0

j

)]
e
−i ~kw·

“
2 ~x0

j+ ~vjt
”∣∣∣∣∣

2

(4.4)

Taking the thermal average of Equation (4.4), defined as 〈f(~v)〉 =
∫∞
−∞ f(v)e−

mv2

2kT d3v,

we find that all the large terms follow a gaussian decay in time e
− t2

τ2
D where τD, known

as the Doppler time, equals
√

m
k2

ckBT
.

The Doppler time is a measure of how long it takes to destroy the phase grating.
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While our discussion has centered around the movement of atoms to destroy our

superposition state, a much more abstract approach can be taken given that each

atom is moving with velocity ~vj. In principle what created the massively symmetrized

state was our inability to distinguish which atom scattered the original write photon.

However if we were to study the photon for a long enough time to know it’s frequency

exactly, and how it differed from its original frequency we would know what Doppler

shift had been incured by the moving atom. Furthermore if we knew this, we would

be able to reconcile which atom did the scattering. This information perspective gives

great insight into how we can vastly increase the doppler time. By confining an atom

inside a deep potential well, we can limit the range of doppler shifts it can put on

scattered photons [12]. This removes the ability to distinguish between the atoms in

our grating by knowing their velocities. Therefore it seems quite obvious what our

next step in creating our memory should be, further confining the atoms’ motion.

4.3 Optical Lattices

While confining the motion of the atoms to localize them in space is the greatest

concern which we hope to address, there are some key differences between what we

want to accomplish with an Optical Lattice versus what was accomplished before with

a MOT. In a MOT we relied upon the off-resonant scattering induced by the beams

to both cool the atoms and localize them in space. For an Optical Lattice we will rely

on light shifts which scale like 1
∆

. At this point in the experimental sequence, during

the Read and Write processes, the atoms are already cooled and more likely than not,

additional scattering will cause some residual heating which would in turn destroy

the coherence of our shared excitation faster. Minimizing Raman scattering is quite

simple as the scattering rate is proportional to Ω2

∆2 and we can make the detuning ∆

extremely large, minimizing scattering while still leaving an effect from light shifts

to dominate the behavior of the system. To this end we use a commercially bought

1064 nm seed which we put through a 10 W fiber amplifier. But what forces do we

have access to that do not involve scattering light that could be of use to us to trap
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atoms?

The answer is a dipole interaction. While neutral atoms have no permanent

electric dipoles, temporary dipole moments are induced in the atom in the presence

of an electric field. In the dressed atom picture all the atoms have been cooled via

PGC in state |g〉 and could absorb a photon to move to an excited state |e〉. Shown

in Figure 4-4 the coupling between these levels change with beam intensity. Treating

the system as a closed two level system and finding the energy spacing between the

two new energy eigenstates we see they are separated by ~Ω(~r) [10].

~Ω(~r) =~
√
w(~r)2 + ∆2

≈~∆ + ~
w(~r)2

2∆

(4.5)

Here w(~r) is the coupling constant between the two original levels and is proportional

to the dipole interaction term: |w(~r)|2 ∝
∣∣∣~d · E(~r)

∣∣∣2. This position dependent light

shift pushes down the energy of the ground state exactly as the Stark effect would

[30]. Due to the Optical Lattice’s beam profile, the light shift is greatest at the center

with a corresponding potential minimum. As we know that F = −dU
dr

, the atoms will

feel a force to localize at points of high beam intensity. This traps the atoms in the

transverse direction of the beam. To create trapping along the longitudinal direction

we retroreflect the beam to create a standing wave pattern, giving us a mostly one

dimensional lattice.

To load the atoms into the lattice without causing an increase in kinetic energy

from just slamming the lattice potential onto the atoms, as there is no guarantee

that they won’t get accelerated by these light shifts, a careful timing procedure has

to be followed. While the procedures for loading a lattice with atoms can be very

intricate, we instead follow a simple protocol [24]. We turn on the lattice during

the polarization gradient cooling so that the scattering that takes place will load the

atoms into the deepest parts of the lattice. The overlap between the PGC and optical

lattice is a few ms, but that is all that is needed. With the lattice on we are able

to hold the atoms in place when turning on our homogeneous magnetic field for 70
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Figure 4-4: Plotted above is the 1D FORT (Far Off Resonance Trap) created with
the retroreflection of a gaussian-like beam. Atoms will be attracted to the areas of
high beam intensity. Due to the beams finite width in the y direction, there is an
extremely small trap in the y direction. Interfering another beam is the only way to
create strong trapping along any direction orthogonal to x.

70



ms, allowing all the stray fields induced by the eddy currents to die down. With the

atoms fully prepared for implementing a quantum memory, we can begin discussing

the final obstacles in our way and the results from the storage of photons from a weak

coherent beam.
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Chapter 5

Polarization Storage

To test our polarization storage we will compare the input state’s polarization to

the output state’s polarization. This measure known as the Fidelity has a maximum

value of 2
3

when only classical means are used to store the polarization of the photon.

Therefore all that needs to be accomplished is the polarization analysis on the output

state to demonstrate a fidelity larger than the classical value of 2
3
. One complication

remains however, as birefringence in all the optical elements through our make shift

polarization analyzer on top of the chamber at the output of the cavity plus bire-

fringence through the windows of the cavity introduce a rotation to the polarization

we are trying to store and read out. As we will prove by correcting this rotation

and examining representative states from different regions of the Poincaré sphere our

quantum memory constitutes a reversible mapping between the state to be stored

and the output of photon.

5.1 Fidelity of Stored Photons

On top of the chamber an array of waveplates and polarizing beam splitters have

been placed such that we can analyze light in any of the three mutually orthogonal

bases: Horizontal and Vertical (H-V), Left circularly polarized and Right circularly

polarized (L-R), or ±π
4

(S-T). Using polarizing beam cubes, we decompose the light

in a manner that sends the two orthogonal states of the basis we are analyzing to
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Figure 5-1: Plotted above is a representation of the Poincare sphere with horizon-
tal and vertical polarization at the north and south pole, respectively. The green
dots represent our data and the blue line represents the trajectory calculated from a
preliminary measurement. We use the disagreement to the intended trajectory to cal-
culate what rotation must be performed on the state to correct for stray birefringence
in the system.

each SPCM separately. Therefore for repeated trials of any single input state we can

in principle measure the output state’s exact Stokes vector. When taking our final

data on state to state mapping this will be the exact method we use. But we have

yet to calculate the rotation the system puts on our input and output.

Rather than trying to analyze single points we will scan through a full great circle

around the Poincaré sphere. This is easily accomplished, as to manipulate the Write

beam to any conceivable polarization we placed a rotatable variable retarder and a

λ
2

waveplate in the path of the beam. A variable retarder acts on the component of

light polarized along its “slow” axis by adding a phase whose magnitude is controlled

electronically by varying the amplitude of a square wave sent to the retarder. Scanning

through a circle is simple as all one has to do is measure the recovery on each SPCM for

a certain setting of all the waveplates and for a fixed value for the retarder voltage, and

then change the voltage and repeat the measurement. Repeating this same sequence

for each of the three bases we can measure interference fringes like in Figure 5-2.
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Table 5.1: Fidelity Measurements for the Six Fiducial States.
Basis H V L R S T

pout 0.85 0.86 0.90 0.96 0.85 0.85
Fmax 0.93 0.93 0.95 0.98 0.93 0.92
Fmeas 0.92(2) 0.92(2) 0.94(2) 0.98(1) 0.90(2) 0.92(2)

Figure 5-2: Plotted above is a representative interference fringe from two detectors
seen when sweeping through one of the aforementioned great circle routes on the
Poincare sphere.

Knowing the fringe visibility and the phase of the fringe in all three bases we are able

to reconstruct which great circle we actually measured as can be seen in Figure 5-1.

The fidelity quoted in Table 5.1 is the overlap between the state we stored and the

state we retrieved, which when the states are parametrized by Stokes vectors makes

for a very simple analytic expression.

F =Tr [ρinρout]

=Tr

[
1

4

(
I + ~σ · ~Sin

)(
I + ~σ · ~Sout

)]
=Tr

[
1

4

(
I + ~σ ·

(
~Sin + ~Sout

)
+
(
~σ · ~Sin

)(
~σ · ~Sout

))]
=Tr

[
1

4

(
I + ~σ ·

(
~Sin + ~Sout + ~Sin × ~Sout

)
+ I

(
~Sin · ~Sout

))]
=

1

2

(
1 + ~Sin · ~Sout

)
(5.1)

The systematic rotation, between the input and the output states, was found
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numerically using Jones Calculus. Relating the input state to the output state by

some unknown rotation which we parametrize as a rotatable variable retarder followed

by a λ
2

waveplate we perform a χ2
ν minimization. The values that this procedure yields

allow us to become reasonably close to correcting for the rotation. To characterize the

quality of our memory we use the 6 fiducial states: H, V, L, R, S and T. At an average

fidelity of 0.93(5) the system performs admirably well, with the greatest limitations

caused by backgrounds [42]. Table 5.1 shows the measured fidelity, the length of the

output stokes vector, and the maximum fidelity one could hope to achieve due to the

output stokes vector magnitude being smaller than one. This change in stokes vector

length is endemic from measuring so many background photons whose polarization is

not the same as the photon that was stored. Comparing the measured fidelity with

the maximum possible fidelity our reproduction of the polarization of the photon

exhibits a high degree of accuracy.
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Chapter 6

Conclusions

Did we cheat nature? By using a system of N atoms that is infinitly more complicated

in its degrees of freedom compared to a single atom system, we have imposed quantum

mechanics on a state which hedges on the macroscopic world. The benefits from this

transition away from the microscopic to near macroscopic quantities allow a freedom

of precision in the fundamental control of our Cesium atoms that is well within the

realms of easily attainable modern technology. Exploiting the collective effects that

allow us to store the photon’s polarization and later create a single photon is not

cheating nature but rather it is finding a loophole left open to us.

Even after all of this work, the greatest deficit of the system is in its decoherence

time. To combat this instead of a 1D optical lattice a 2D optical lattice is being

installed in the system for future experiments. But what can be done with this

system even with long coherence times. The construction of a quantum memory

inside a cavity lends itself to a large number of interesting experiments that probe

the fundamentals of entanglement. Imagine for example that we were to find a way to

increase our optical depth, or decrease our background rate to a point where we could

send in a single photon, entangled in its polarization with another photon, instead

of a weak coherent beam. How would the entanglement be transferred to the two

magnons if at all and what would happen to the scattered Write photon remains an

open question. Many such entanglement transfer experiments are possible. Looking

forward however, it is not unreasonable to see the quantum memory as a tool for
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many other quantum comunication experiments where it can act as a buffer along a

communication pathway.
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