
 1

The Influence of Inert Anode Material and Electrolyte Composition on 
the Electrochemical Production of Oxygen from Molten Oxides 

 
by 
 

Andrew J. Gmitter 
 

B.S. Ceramic and Materials Engineering 
Rutgers, the State University of New Jersey, 2005 

 
Submitted to the Department of Materials Science and Engineering 

in Partial Fulfillment of the Requirements for the Degree of 
Master of Science in Materials Science and Engineering 

 
at the 

 
Massachusetts Institute of Technology 

 
February 2008 

 
 

©2008 Massachusetts Institute of Technology. 
All rights reserved. 

 
 
 
 

Signature of Author:  ____________________________________________________________ 
Department of Materials Science and Engineering 

December 18, 2007 
 
 
 
 

Certified by:  __________________________________________________________________ 
Donald R. Sadoway 

John F. Elliot Professor of Materials Chemistry 
Thesis Supervisor 

 
 
 
 

Accepted by: __________________________________________________________________ 
Samuel M. Allen 

POSCO Professor of Physical Metallurgy 
Chair, Department Committee on Graduate Students 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4408734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 3

The Influence of Inert Anode Material and Electrolyte Composition on 
the Electrochemical Production of Oxygen from Molten Oxides 

 
by 
 

Andrew J. Gmitter 
 

Submitted to the Department of Materials Science and Engineering 
on December 18, 2007 in Partial Fulfillment of the 

Requirements for the Degree of Master of Science in 
Materials Science and Engineering 

 
ABSTRACT 
 
Shifts in global and political climates have led industries worldwide to search for more 
environmentally sound processes that are still economically viable.  The steel industry is 
studying the feasibility of molten oxide electrolysis, a novel process by which molten iron and 
gaseous oxygen are the products; no carbon dioxide is produced at the site of the electrolysis 
cell.  The research presented in this thesis focuses on the anodic reaction and the preliminary 
development of an inert anode, as well as investigations into the mechanism of the oxygen 
evolution reaction. 
 
Various elements have been considered with the platinum group metals possessing the best 
combination of physical properties to serve as the inert anode.  Cyclic voltammetry at 1575°C 
was used to compare the candidates.  Iridium yielded the highest current density at a given 
overpotential followed by rhodium and platinum regardless of the composition of the electrolyte.  
Speculation as to metal oxide intermediate phases formed and mechanisms for the oxygen 
evolution reaction are discussed. 
 
Notably, the basicity of the molten aluminosilicate electrolyte was found to greatly influence the 
rate of oxygen gas evolution as evidenced by the linear dependence of the current density on 
optical basicity.  This is crucial for the design of a full-scale electrolysis cell as improved 
kinetics of the anodic reaction will yield higher throughput and/or enhanced power efficiency.  
Combining our finding of the relationship between current density and basicity with previous 
authors’ contributions on the effect of partial pressure of oxygen, we argue that to a first 
approximation, the magnitude of the current density is governed by the concentration of free 
oxide ions and by the partial pressure of oxygen in the headspace above the melt. 
 
Lastly, to, in part, address the disparate natures of the interests of steelmakers, glassmakers, 
geochemists, and electrochemists, the difficulties in performing electrochemical measurements at 
extremely high temperatures (~1600°C), and the absence of a comprehensive review of the last 
sixty years of work on oxygen evolution from molten silicates, this thesis is intended to serve as 
an essential guide for future work in this field. 
 
Thesis Supervisor: Donald R. Sadoway 
Title: John F. Elliot Professor of Materials Chemistry 
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CHAPTER 1: INTRODUCTION 
1.1 MOTIVATION 

 

For every ton of pig iron produced, two tons of carbon dioxide are emitted[1].  Considering the 

emissions from the 858 million metric tons of pig iron generated worldwide in 2006[2], as well 

as some portion of coal mining activities, metallurgical coke production, and carbon monoxide 

and carbon dioxide emissions from the basic oxygen process, the global steel industry accounted 

for roughly 7 percent of the anthropogenic contribution to greenhouse gases[3]. 

 

A recent article from the American Iron and Steel Institute (AISI) reported that the US steel 

industry has reduced its energy usage per ton of steel shipped by approximately 28 percent since 

1990 and that the industry’s aggregate carbon dioxide (CO2) emissions per ton of steel shipped 

was reduced by 17 percent[4].  Progress has not come easily as the industry spent over $60 

billion since 1975 on new technologies to improve energy efficiency and productivity[4].  Over 

the past two decades, recycling of steel scrap has been a principal reason for the enhanced energy 

efficiency.  “In addition to the economic benefits, recycling conserves energy, landfill space, and 

natural resources.  Recovery of 1 metric ton of steel from scrap conserves an estimated 1,130 kg 

of iron ore, 635 kg of coal, and 54 kg of limestone[5]”. 

 

Although the American iron and steel industry has made great strides, even outperforming 

targets established in the Kyoto Protocol, “[it] must do more[6].”  Newer, technologically 

advanced production methods must be made available to mitigate greenhouse gas pollution, 

especially abroad.  Lawrence W. Kavanaugh, AISI’s VP of Manufacturing and Technology, 

acknowledges “it will require radical approaches to future steelmaking processes to achieve the 

reductions in energy use[6].” 

 

Four breakthrough technologies are presently sponsored by the AISI to achieve dramatic 

reductions in carbon dioxide emissions[7].  Two proposals rely on carbon sequestration; however 

this is an interim solution because it fails to prevent carbon dioxide emissions, and there are still 

negative impacts associated with strip mining coal to produce metallurgical coke.  Two proposals 

rely on electrolysis, which would yield significantly greener steel assuming the electricity 
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required was generated from greener methods.  The first operates by producing hydrogen gas 

from the electrolysis of water which is then used to reduce concentrated iron ore.  In a final, 

radically different approach, iron oxide is dissolved in a molten silicate and then reduced directly 

by passing current through the cell.  Therefore, if one were willing to invest roughly 1V for the 

indirect hydrogen reduction process, why not attempt to reduce the iron directly using molten 

oxide electrolysis? 

 

Not only is the steel industry interested in reducing greenhouse gas emissions, but the National 

Aeronautics and Space Administration has considered molten oxide electrolysis for producing 

oxygen from lunar or Martian regolith[8-10].  Because of our moon’s substantially lower gravity 

well, launching expeditions from it would be easier than from Earth[8].  The regolith can be a 

source of useful products for space exploration, including oxygen for fuel, oxygen to sustain life, 

structural metals, and silicon[9].  Molten oxide electrolysis would not require additional reagents 

from Earth and is adaptable to different oxide compositions encountered, adding to its 

appeal[8,9].  On Earth, molten oxide electrolysis may also be suitable for the remediation of 

metallurgical and chemical waste[11]. 

 

1.2 MOLTEN OXIDE ELECTROLYSIS AND THE CONCEPT OF AN INERT ANODE 

 

Molten oxide electrolysis is not a new concept.  In fact, the idea was patented in 1906 by Aiken 

who outlined a continuous process for making iron metal by passing current through a molten 

bath of metal oxides more electropositive than iron[12].  It has not been until recent years that it 

has gained traction, notably by the efforts of Sadoway and as witnessed by sponsorship from 

AISI, NASA, the U.S. Army via Universal Technical Research Services (UTRS), and 

Companhia Vale do Rio Doce (CVRD).  At the cathode, iron ions would be reduced to liquid 

iron metal, and at the anode, oxygen gas would be produced if, and only if, the anode was inert; 

Aiken’s patent recommended carbon for the anode which would have yielded carbon dioxide.  

Due to the difference in densities of the liquid metal and molten oxides, the cell would become 

stratified.  A schematic of an electrolysis cell is depicted in Fig. 1.1[13]. 
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Figure 1.1  Electrolysis cell with primary reactions.  Adapted from [13]. 

 

Development of such a cell poses many materials related challenges, especially when identifying 

a suitable anode.  The anode should be inert to avoid costly maintenance shutdowns, preserve the 

optimal interelectrode spacing for power efficiency, and provide good returns on capital 

expenditures.  Adapting several qualities key for inert anodes for aluminum electrowinning[14], 

and adding several parameters applicable to a molten oxide electrolysis system, such an anode 

must satisfy the following stringent requirements: 

 

a) Operate at extremely high temperatures in excess of 1575°C 

b) Possess high electronic conductivity 

c) Resist corrosion / have low solubility in the molten silicate electrolyte 

d) Withstand attack from oxygen 

e) Intermediate phases must not be soluble nor electronically insulating 

f) Exhibit low volatility of metal and metal oxides 

g) As a corollary to (c) and (e), soluble phases must not contaminate the cathode product 

h) Withstand anodic polarization without becoming oxidized 

i) Possess sufficient wettability for intimate interfacial contact with electrolyte 

j) Have robust mechanical properties including resistance to thermal shock and creep 

k) Be simply manufactured and deployed 

l) Not be cost prohibitive. 

Net anodic reaction: 
−− +⇒ egOO 4)(2 2

2  

Net cathodic reaction: 
)(0 lFeneFen ⇒+ −+  
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Further explanation for selecting candidate anodes is provided in 2.4 MATERIALS SELECTION. 

 

Engineering an inert anode was not the primary focus of this thesis, but the results of the 

experiments are important considerations for future implementation and optimization of the 

anode and electrolysis cell.  The main contributions of the research were the following: 

 

• electrochemical experiments were designed that enabled discernment of features of 

different anode materials and different electrolytes 

• a material was identified with superior properties for the inert anode 

• altering the electrolyte composition affected the rate of oxygen evolution, i.e., a higher 

current density was achieved at a higher basicity 

• a first approximation of the functionality of current density and basicity was made. 

 

The following sections provide background information about electrochemistry in molten 

silicates with particular emphasis on anodic polarization and the Butler-Volmer equation.  

Afterwards, the concept of basicity of silicate melts is discussed and the chapters of the thesis are 

enumerated. 

 

1.3 SURVEY OF ELECTROCHEMICAL MEASUREMENTS IN MOLTEN SILICATES 

 

Depending on technologies available and the scope of their research, scientists have used many 

different electrochemical techniques to extract information on the thermodynamics, kinetics, and 

mechanism of a given reaction.  Several fields of study relevant to molten silicates are 

summarized, but the main focus as it pertains to this thesis is 1.3.3 ANODIC REACTIONS.  Bard 

and Faulkner[15] have provided an excellent overview of a variety of electrochemical 

techniques, albeit generally in room temperature aqueous solutions, and they have included many 

pertinent references. 

 

 

 

 



 15

1.3.1 CORROSION 

 

The corrosion of metals and intermetallics for use as electrodes and bubblers for glass melting 

applications has been studied by monitoring corrosion potentials and polarization resistances[16-

20].  Carton[16] et al analyzed the corrosion of pure chromium in borosilicates and found that 

above 1160°C, the chromium depassivated unless the glass was enriched with oxidizers.  They 

also witnessed CrB formation.  DiMartino[17,18] et al studied chromium and chromium 

superalloys and recommended anodically polarizing the metal to develop a coherent Cr2O3 film.  

Littner[19] et al investigated ruthenium additions to molybdenum disilicide and determined Ru 

did not improve the corrosion resistance of MoSi2 despite Ru-rich compound formation at the 

surface.  Interestingly, Sundaram and Speyer[20] polarized their Mo and MoSi2 electrodes at 

+1V and -1V against open circuit potential, very high potentials considering corrosion tests are 

usually performed near open circuit.  Mo performed poorly under anodic polarization due to 

formation of incoherent MoO2, and MoSi2 performed worse under cathodic polarization. 

 

1.3.2 REDOX REACTIONS 

 

Multivalent elements are important in the manufacturing of glass.  Redox constituents impose 

constraints on the refractories that can be used to contain the melt; they affect fining times, fining 

temperatures, and volatile losses; and they also determine optical, electrical, magnetic, and 

thermal properties of the melt and solidified glass[21,22].  The ability to monitor their behavior 

in-situ is desirable as it quickly provides information about the melt and resulting glass[23].  

Thus, redox equilibria have been the focus of many electrochemical studies[21-32].  Redox 

equilibria are important to the molten oxide electrolysis cell because multivalent species such as 

ferrous and ferric ions may permit electronic conductivity via semiconduction or polaron 

hopping[33], resulting in decreased efficiency if the current was able to short across the cell.  

Additionally, higher valence cations would require more electrons for reduction to the metallic 

state. 

 

Many electrochemical techniques have been utilized to probe the behavior of multivalent ions in 

molten silicates including, but not limited to, chronopotentiometry[27,34,35], 
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chronoamperometry[24], linear sweep voltammetry[29] (LSV), cyclic voltammetry[25-27,34,36] 

(CV), AC voltammetry[34] (ACV), normal pulse voltammetry[30,31] (NPV), differential pulse 

voltammetry[34] (DPV), square-wave voltammetry [21-23, 25-28,32,34,36,37] (SWV), and 

impedance spectroscopy[28].  Authors have used these methods primarily to extract information 

regarding redox equilibria[21-25,27,28,30,32] and diffusion coefficients[21,24,26,29,34-38]. 

 

SWV may be the best technique available because of its sensitivity when compared with other 

voltammetric techniques and short runtimes when compared with pulse methods[25,34].  

[Consult Osteryoung and O’Dea[39] for a detailed description of the theory of SWV and relevant 

equations.]  Data extracted from SWV is also quite versatile.  LaFage and Taxil[27] were able to 

distinguish the half-wave potentials for Fe3+/Fe2+ and Fe2+/Fe0.  DeStrycker, Westbroek, and 

Temmerman[25] constructed a calibration plot of peak current vs. concentration for dilute 

concentrations of cobalt oxide.  Additionally, they calculated the number of electrons transferred 

in the reduction of Con+.  These were not possible using CV.  Standard free enthalpies were 

obtained by Russel and Sprachmann[34]. 

 

There have been other notable contributions and unique experiments that did not utilize SWV.  

DeStrycker[24] et al performed chronoamperometry using a platinum rotating disc electrode in 

melts containing 10% Fe2O3 and found that the Levich equation was useful.  Using impedance 

spectroscopy and modeling the results with equivalent circuits, Schirmer and Russel[28] 

concluded simple electron transfer for Fe3+/Fe2+ that was controlled by diffusion.  Vondrak[36] 

et al reported the double layer capacity on Pt at 900°C.  Tilquin, Glibert, and Claes[31] delved 

into the merits of pulse techniques in order to avoid dc distortion factors; however, they 

concluded pulse techniques were time consuming when compared to voltammetric techniques.  

Takahashi and Miura[29] calculated equilibrium constants, K, for mutual interactions of various 

metal cations, e.g. ++++ +⇔+ 3342 CeFeCeFe . 

 

It is also worth mentioning that electrochemical techniques used in molten silicates can be 

extended to studies in molten borates.  Morita, Yamashita, and Maekawa[40] studied the effect 

of electrolyte composition on Cr6+/Cr3+ ratios.  Suzumura, Kawamura, and Yokokawa[41] 
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performed CV in borate systems of varying basicity and developed an analogue to the Pourbaix 

diagram. 

 

There are overarching trends when considering redox equilibria in molten silicates.  Increasing 

the temperature causes a shift in the reduction potential to less negative values[22], and the 

electrolyte composition alters the redox ratio[23,30]. 

 

1.3.3 ANODIC REACTIONS 

1.3.3.1 FORMATION OF MOLECULAR OXYGEN 

 

Unlike the richness of the literature concerning redox reactions of metal cations, systematic 

studies under conditions of anodic polarization are sparse.  What little information collected has 

been quite speculative with respect to the mechanism of oxygen evolution and the hypotheses 

have been incompatible.  Much of the difficulty in elucidating the mechanism stems from the 

fact that the reactants are hosted in a solution, interact at an electrolyte/solid anode interface, and 

the products eventually leave the system as a gas.  Since various phases are involved, simplistic 

schemes such as “diffusion of reduced species in a condensed phase/charge transfer/diffusion of 

oxidized species in the same condensed phase” cannot easily be applied.  Adsorption, desorption, 

intermediate species, nucleation, and coalescence of gas bubbles must all be considered, 

resulting in complex, multi-step reaction schemes.  Furthermore, running experiments at 

extremely high temperatures under controlled atmospheres precludes direct observation, and 

utilizing in-situ spectroscopy/microscopy techniques is extremely challenging. 

 

The primary reaction at the anode involves the transfer of electrons from an anionic species and 

results in the formation of oxygen molecules.  Ultimately, depending on the current density in 

controlled current techniques (or the applied overpotential in controlled potential techniques), 

oxygen would dissolve into the silicate or bubbles would evolve from the anode[42]. 

 

The identity of the anionic reactant species varied.  In one of the earliest electrochemical studies 

in liquid silicates, Bockris, Kitchener, and Davies[43] speculated that gaseous oxygen was 

generated by the discharge of silicate polyanions.  If they would have been able to separate the 
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cell into two compartments, the anolyte would have been richer in silica, and they believed they 

would have been able to determine the identity of the polyanion.  It should be noted that 

regardless of their perceived difficulties, they did not consider a melt comprised of a distribution 

of silicate groups.  Table 1.1 is adapted from [43] and lists the anion discharge reactions. 

 

Table 1.1  Anion Discharge Reactions as Proposed by Bockris, Kitchener, and Davies[43] 

 
ion type 

 
equation 

g equiv. 
O2/Faraday 

Mole 
SiO2/Faraday 

free oxygen ion 22
122 OO e⎯→⎯−−  1 - 

orthosilicate 22
44

4 OSiOSiO e +⎯→⎯−−  1 4
1  

pyrosilicate 23
2

2
66

72 2 OSiOOSi e +⎯→⎯−−  1 3
1  

rings/infinite chains 222
26

3)( OnSiOSiO nnen
n +⎯⎯→⎯−−  1 2

1  

chains 22
3

2
66

114 4)( OnSiOOSi nnen
n +⎯⎯→⎯−−  1 3

2  

sheets 222
22

52 2)( OnSiOOSi nnen
n +⎯⎯→⎯−−  1 1 

 

It was later suggested by Ghosh and King[42] in melts less basic than the orthosilicate 

composition,  a polymerization reaction would occur locally to the surface of the anode such as  
−−− +⇒ 26

72
4
42 OOSiSiO . (1a) 

More generally, the chemical reaction might resemble[44] 
−−−

+
−−

+ +⇒ 224
162

22
13 )()(2 OOSiOSi n

nn
n

nn . (1b) 

In moderately modified melts, orthosilicate units would combine to yield a pyrosilicate unit and 

a free oxide ion; the latter would then react at the anode[42,45].  One argument against this 

mechanism contended that since the mass transport of polymerized silicate units away from the 

electrolyte/electrode interface would be too slow, the anode would become enveloped in a 

passivating silica-rich layer over time, which was not observed[45]. 

 

Another mechanism is one in which the free oxide ion diffuses from the bulk to the anode and is 

consumed[45].  By the LeChatelier principle, the equilibrium concentration of free oxide ions 

would be maintained in the bulk electrolyte.  This point of view was assumed in this work with 

more information related to free oxide ions presented in 1.5 BASICITY OF SILICATES. 
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There are many proposed schemes for the mechanisms of mass and charge transfer leading to the 

formation of molecular oxygen, some of which are discussed here in chronological order. 

 

After reaction (1), Ghosh and King[42] presumed the following steps at 1350°C: 
−− +⇒ eadsOmeltO 2)()(2  

)()(2 2 gOadsO ⇒ . 

They also attempted to determine the rate determining step from Tafel slopes; however they were 

linear only at high current densities.  The finer points of desorption and coalescence were not 

discussed.  They attributed the rate determining step at low current densities to mass transfer, but 

at high current densities, they proposed passivation of the anode as a contributory factor. 

 

Emi, Sakuraya, and Sanbongi[46] were interested in oxygen ion transfer in relation to 

steelmaking.  Utilizing potential step methods, they suggested two possibilities for the rate 

determining step of oxygen evolution from 1200 to 1600°C, both involving two electrons. 
−−− +⇒ eOO 22 2

2
2      or     −− +⇒ eOO 222

2  

Note that while although not explicitly stated, the rate determining step should involve a single 

electron transfer[47].  The most noteworthy contributions of their work regarded exchange 

current densities and an estimation for the transfer coefficient around 0.5.  [Consult Bockris, 

Reddy, and Galboa-Aldeco[47] for a thorough explanation of the Tafel slope, exchange current, 

and transfer coefficient.  See also 1.4 A FUNDAMENTAL ELECTROCHEMICAL EQUATION.] 

 

At low current densities at 1350°C, Suito and Ohtani[48] postulated a reaction sequence as 

follows: 
−− +⇒ eadsOmeltO 2)()(2  

)()( meltOadsO ⇒  

They did not witness either oxygen evolution or formation of an oxide film.  Using galvanostatic 

methods, their potential-time curves yielded oxygen diffusivities.  Their claim of monoatomic 

oxygen diffusing into the slag without further reaction was unusual as it is not expected that 

monoatomic oxygen would be stable. 
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In a lower range of temperatures from 900 to 1000°C, Maric, Brungs, and Skyllas-Kazacos[44] 

concluded that the mass transport of free oxide ions was rate limiting.  CVs indicated a scan rate 

to the ½ power dependence of the peak current.  They also proposed an oxidation mechanism 

that involved the formation of a thin surface film of platinum oxide followed by decomposition 

to yield oxygen. 

]2)()([2 2 −− +−⇒+ eOPtmeltOPt  

)(2)(2 2 gOPtOPt +⇒−  

It was also suggested that the thin surface film could undergo other reactions with the free oxide 

ions, resulting in the formation of a distinct platinum oxide phase and/or a return to platinum 

base metal accompanied with electron transfer. 
−− +⇒+− ePtOmeltOOPt 2)()( 2

2  

and/or 
−− ++⇒+− egOPtmeltOOPt 2)()()( 2

2  

 

Tilquin, Glibert, and Claes[45] studied binary sodium silicates at 1000°C.  As in [44] their CVs 

indicated scan rate dependence of the peak current, and they concluded the diffusion of free 

oxide ions to be rate limiting.  They believed the number of electrons transferred during the rate 

determining step was 2.  Once again, this has not been shown for a well characterized system.  

They also witnessed a small peak prior to the main anodic peak in solutions richer in sodium 

oxide which they attributed to peroxide formation.  Their primary process occurring in all melts 

was the following: 
−− +⇒ eadsOmeltO 2)()(2  

)()( meltOadsO ⇒  

)()(2 2 gOmeltO ⇒  

In basic melts, concomitantly, peroxide ions were subsequently oxidized to yield molecular 

oxygen directly. 
−−−− +⇒+ eadsOmeltOadsO 2)()()( 2

2
22  

−− +⇒ egOadsO 2)()( 2
2
2  
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It was remarkable that they did not expect any adsorption in acidic melts and that they believed 

in both desorption of monoatomic oxygen to combine in the bulk and direct transformation of 

peroxide to diatomic oxygen. 

 

1.3.3.2 REDUCTION OF MOLECULAR OXYGEN TO OXIDE IONS 

 

To more firmly establish reaction mechanisms and rate determining steps using Tafel slopes, it is 

desirable to investigate the reverse reaction[47].  Only one reference discussed it.  Kawakami 

and Goto[49] applied small potentials on a Pt electrode to reduce oxygen of varying partial 

pressures.  Working in binary melts containing no transition metals, they found that physically 

dissolved diatomic oxygen was reduced. 

)(2)( 2
22

1 meltOemeltO −− ⇒+  

 

1.3.3.3 PLATINUM OXIDE FORMATION 

 

When considering the generation of oxygen and/or the reaction of free oxide ions at elevated 

temperatures on metal surfaces, formation of passive or intermediate oxide films must not be 

neglected.  As with evolution of molecular oxygen, there has been speculation from only a few 

authors.  Further complicating the matter is the thermodynamic instability of platinum oxides at 

elevated temperatures[50].  Higgins performed a variety of studies on platinum electrodes under 

alternating current conditions[51], in different oxides including silicates, borates, and 

phosphates[52,53], and over a range of temperatures[51,53,54].  His oscillograms suggested that 

double layer charging occurred first, followed by formation of a monolayer of PtO2, and finally, 

oxygen evolution[52,54].  Notably, oxide film formation was suspected at low current densities 

and high temperatures, but never at high current densities[54].  Higgins also found that the 

charge passed for oxygen evolution was independent of changes of current density but dependent 

on reactions occurring on the anode prior to oxygen evolution[53]. 

 

Maric, Brungs, and Skyllas-Kazacos[44] believed formation of platinum oxide was a necessary 

preliminary step for evolution of gaseous oxygen, and O2(g) was the byproduct of platinum 

oxide decomposition.  The film thickness was related to its formation/decomposition rate.  They 
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believed their relationship of ip vs. ν½ was governed by mass transfer of free oxide ions and not 

due to passivation. 

 

Miura and Takahashi[55] performed anodic tests at 900°C to very high switching potentials to 

5V.  At roughly 1V vs. the Pt quasi-reference electrode, they obtained significant peaks on 

nickel, cobalt, and chromium electrodes and found that passivation indeed occurred to produce a 

thin film of roughly 100% coverage of the electrode.  Perhaps a similar analysis can be 

performed on CVs recorded by Maric, Brungs, and Skyllas-Kazacos[44] to confirm oxide film 

formation on platinum.  Rather than a diffusion-limited peak for the mass transport of free oxide 

ions, perhaps they witnessed passivation of platinum. 

 

In complete contrast, Tilquin, Glibert, and Claes[45] disputed the formation of any platinum-

oxide phases during electrolysis.  They witnessed no colloidal platinum near the anode, nor any 

black deposit on their working electrode. 

 

1.3.3.4 PARASITIC ANODE REACTIONS 

 

Since the molten oxide cell will contain transition metal oxides, particularly iron oxide, there is a 

possibility of oxidizing ferrous ions to ferric ions at the anode, thus resulting in less oxygen 

generation and a lower current efficiency[10,56].  A similar concern was raised by Maric, 

Brungs, and Skyllas-Kazacos[44], but originated from a different reaction.  Rather than directly 

oxidize ferrous iron to ferric iron in its own electrochemical process, they believed that at low 

current densities, the oxygen generated on the anode would be chemically soluble into the 

molten silicate, promoting oxidation of Fe2+ to Fe3+.  In either case, the current efficiency for the 

electrolysis cell would be lower. 

 

As was presented in 1.3.3 ANODIC REACTIONS, the literature review has yielded a variety of 

possible mechanisms, rate determining steps, and kinetic parameters for anodic polarization 

experiments outlined in the literature.  The proposed mechanisms are often contradictory, and 

due to difficulties in observing and controlling reactions in challenging experimental conditions, 

quite speculative.  None of the schemes are supported by enough evidence to be conclusive, but 
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they do provide a useful starting point for discussion.  While the primary focus was on the 

electrode material and electrolyte composition, it was partially the aim of this study to more 

firmly explain the mechanisms of oxygen evolution and describe how platinum group metal 

oxides behave on polarized anodes. 

 

1.4 A FUNDAMENTAL ELECTROCHEMICAL EQUATION 

 

When mass transfer is not limiting the current, or when the applied current is low such that the 

concentration of the electroactive species near the anode is similar to the bulk, the Butler-Volmer 

equation is valid[15].  Charge transfer is rate limiting, and in potential sweep methods, the scan 

rate has no influence on the current generated.  In its most general form for multistep reactions in 

which electron transfer may be occurring in steps other than the rate determining step, the Butler-

Volmer equation is written as 

( )RTFRTF bf eeii //
0

ηαηα −−=  

where i is the current in A, i0 is the exchange current in A, α is the transfer coefficient [no units], 

F is Faraday’s constant, η is the overpotential in V, R is the universal gas constant in J/mol·K, 

and T is the temperature on the Kelvin scale[47].  The subscripts f and b denote the forward and 

back reactions, with forward being anodic throughout this thesis. 
−− +⎯→⎯ eOO f 42 2

2  
−− +⎯⎯← eOO b 42 2

2  

A positive value for η will be used to describe the overpotential for an anodic reaction.  Thus, at 

high anodic overpotentials, the net current is positive. 

 

The exchange current density, i0, has been further defined by Bard and Faulkner[15] as 

bf
OR CCFAki αα **0

0 =  

where F is the Faraday, A is the area of the electrolyte/electrode interface in cm2, k0 is the 

intrinsic rate constant in cm/s, C* is the bulk concentration of species R and O in mol/cm3, and α 

has the same definition as above.  R and O denote the reduced and oxidized species respectively. 

From unpublished results generated in our laboratory, the anodic process was limiting the 

performance of the molten oxide electrolysis cell.  This was concluded from the very sharp 
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increase of cathodic current when a very small negative overpotential was applied vs. the large 

overpotential required to obtain a small increase in anodic current.  Considering the nature of 

depositing a metal ion from a liquid silicate into a pool of liquid metal vs. the nature of 

nucleating a new gaseous phase at the electrolyte/anode interface, this claim made intuitive 

sense. 

 

There are several approaches to increase the rate of a heterogeneous reaction.  Raising the 

temperature promotes faster diffusion and populates higher energy levels.  Increasing the surface 

area, increasing the concentration of reactants (as long as adsorption and desorption are not rate 

limiting), and introducing a more effective catalyst are possibilities.  Presented with the above 

equations for electrode kinetics, what parameters can be altered to enhance i, the current?  

Altering T would influence the magnitude of the exponential function, but this would be trivial 

because the cell temperature is proposed to be beyond the melting point of iron (m.p. 1538°C).  

Increasing the overpotential increases the reaction rate as long as charge transfer is rate limiting, 

but doing so is undesirable because then power consumption is increased.  Increasing the 

concentration of the anionic species, which is believed to be the free oxide ion, is the next 

obvious choice.  Despite such an elementary proposal, it has never been considered in the 

literature!  Furthermore, different electrode materials have different intrinsic rate constants.  In 

addition to comparing the currents generated in different electrolytes, the currents generated on 

different electrodes would also be investigated. 

 

The validity of these arguments rests on the following assumptions: 

 

• The overpotential is dominated by an activation process, i.e, the concentration 

overpotential is negligible 

• The concentration of the free oxide ion at the outer Helmholtz plane is equal to the bulk 

concentration of the free oxide ion 

• Mass transport of the free oxide ion is not rate limiting at 1575°C because diffusion is 

rapid, and the convection occurring as result of bubbling gaseous oxygen leads to a very 

thin double layer 
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• There is an abundance of reaction sites available on the anode, e.g., the electrode does not 

become blocked by O2 gas. 

 

If the hypothesis that increasing the concentration of the free oxide ion to increase the current is 

correct, there are important implications for power efficiency and throughput.  But first, the free 

oxide concentration must be quantified and a scale must be chosen for comparing different 

electrolytes. 

 

1.5 BASICITY OF SILICATES† 

1.5.1 BASICITY AND THE FREE OXIDE ION 

 

Various indices have been used to express the basicity of molten oxides[57].  Basicity is a term 

carried over from the way metal oxides reacted with water.  Network modifiers such as CaO and 

Na2O formed alkaline solutions, network formers such as SiO2 and B2O3 formed acids, and 

intermediates were amphoteric.  Early workers drew analogies to these behaviors while trying to 

explain the dissociation of network anions to yield O2- ions[58].  Higher values for basicity were 

interpreted to correspond with higher concentrations of O2- ions. 

 

The indices for basicity for steelmaking have been loosely tied to empirical observations and 

qualitatively indicate the presence of free oxide ions.  Relating the free oxide concentration to 

thermodynamic parameters has been difficult because defining the activity of the O2- ion in oxide 

melts cannot be measured directly.  Relationships have been drawn from the solubility of CO2 or 

emf values of Na2O in a Na2O-SiO2 melt with respect to pure liquid Na2O.  However, the 

carbonate capacity may have varied when transition metal oxides were present, and Na2O was 

not at dilute concentration.  Thus the validity of these techniques is questionable[59]. 

 

One of the first theoretical models for molten systems was proposed by Temkin.  When an oxide 

compound dissolves in a molten salt, it often completely dissociates with ideal mixing of the 

cationic and anionic lattices preserved.  However, unlike molten halides, silicates are structurally 

                                                 
† For those unfamiliar with the structure of silicates, books by Richardson, Turkdogan, Mysen, Mysen & Richet, and 
Waseda & Toguri are recommended. 
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complex, and ideal mixing is rarely encountered in multi-component, network-forming systems.  

Extending Temkin’s model to silicates is expected to be valid only at dilute concentrations in 

very highly modified melts, and is therefore not a suitable model for the majority of silicate 

systems[60]. 

 

Toop and Samis considered the distribution of oxygen as bridging (O0), non-bridging (O-), and 

free ions (O2-), and considered the following equilibrium condition: 
−− ⇔+ OOO 220 . 

The equilibrium constant was defined as[60] 

))((
)(

20

2

−

−
=

OO

O
TS aa

a
K . 

In the scenario in which the silicate network was fairly basic, i.e., the bridging oxygen activity 

was approximately constant, and the mixing was ideal so that mole fractions could replace the 

activities, the free oxide ion concentration would have a parabolic dependence on the non-

bridging oxygen concentration.  However, this case would not be applicable to acidic melts, and 

ideal mixing may not be a reasonable assumption.  Kapoor and Frohberg improved the model by 

Toop and Samis but a discrepancy was still apparent[59]. 

 

Modern technology has enabled computation as another source for estimating the free oxide 

concentration.  Using statistical mechanical considerations, the IRSID model gave the same trend 

as the model of Toop and Samis[61]. 

 

Spectroscopy has also been utilized to determine the concentration of free oxide ions.  X-ray 

Photoelectron Spectroscopy a.k.a. Electron Spectroscopy of Chemical Analysis (XPS or ESCA) 

relies on differences in the binding energies of the different forms of oxygen.  In the PbO-SiO2 

system, the proportion of the free oxide ion was roughly parabolic with increasing the PbO mole 

fraction[59].  In CaO-SiO2 and CaO-Al2O3 melts which are relevant to the behavior in steel-

making slags, Park and Rhee[62] monitored the free oxide proportion, and it too was roughly 

parabolic with increasing the mole fraction of CaO.  In binary systems, the free oxide proportion 

has been proven to vary parabolically with increasing the concentration of network modifiers.  

But does the free oxide concentration depend on the particular network modifier present?  How 



 27

would the free oxide ion concentration vary in ternary and higher order systems?  And, does a 

scale or basicity indicator exist that gives the proportionality of the free oxide ion across multiple 

electrolyte compositions? 

 

1.5.2 OPTICAL BASICITY 

 

Of all the scales considered, the optical basicity offered the best one with regard to these 

questions.  The model provided an estimate for the extent of negative charge borne by oxygen 

atoms, thus giving a global measure of the concentrations of bridging, non-bridging, and free 

oxide ions[57,58].  The optical basicity has been correlated with the refractive index, viscosity, 

and redox equilibria of transition metal oxides in glasses[63]. 

 

In steelmaking, the exchange of sulfur from the metal to the slag is often written as 

)()()()( 2
22

12
22

1 meltSgasOmeltOmetalS −− +⇔+ , 

with the equilibrium constant  
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As previously mentioned, there is not a thermodynamic definition for the activity of single ions.  

To circumvent this problem, the optical basicity scale was used and the sulfide capacity was 

shown to be correlated in 130 different compositions of binary, ternary, and quaternary mixtures 

containing CaO, MgO, Al2O3, and SiO2[64]. 

 

The optical basicity of individual metal oxides was determined by monitoring the ultraviolet 

frequency shift that occurred when a tracer ion such as Tl+, Pb2+, or Bi3+ was introduced.  The 

probe ion became coordinated by O2- ions, and the extent of negative charge they received was 

dependent on the polarization of the oxygen ions.  The frequency shift in the 1
3

0
1 PS →  transition 

of the d10s2 probe ion corresponded to the electron donating ability of different oxides; hence a 

scale was created with acidic oxides having low electron donating ability and basic oxides 

having high electron donating ability.  CaO was defined as 1.00[63]. 
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Table 1.2. Optical Basicity Measured from Frequency Shifts[63] 

Oxide Optical Basicity Oxide Optical Basicity 
Cs2O 1.7 MnO 1.0 
K2O 1.4 ZnO 0.95 
BaO 1.15 MgO 0.78 
Na2O 1.15 Al2O3 0.60 
SrO 1.1 SiO2 0.48 
CaO 1.00 B2O3 0.42 
FeO 1.0 P2O5 0.33 
Li2O 1.0   

 

An attribute of this scale is that the optical basicity values of individual metal oxides can be used 

to calculate the optical basicity of a mixture by simple addition.  In the following equation, xi is 

the mole fraction, ni represents the number of oxygen atoms in the constituent oxide (2 for SiO2, 

3 for Al2O3), and Λi is the optical basicity of the constituent oxide[57]. 

∑
∑ Λ

=Λ

i
ii

i
iii

melt nx

nx
 

Except for several alkali borates where Tl+ generated two maxima in the frequency shift, this 

equation worked very well[58].  Predicted and measured values matched closely, an excellent 

measure of the robustness of this scale. 

 

There has been some debate as to the values of Λ for individual oxides.  Duffy and Ingram have 

been able to show the strong relationship of optical basicity and Pauling’s electronegativity for 

glass forming oxides[58].  However, this treatment fell short when dealing with transition metal 

oxides, particularly when considering sulfide or phosphorous capacities of slags[57].  Nakamura 

has used Sanderson’s equation for average electron density, 3dzD α= , where α is a parameter 

specific to a respective anion, z is the charge of the cation, and d is the cation-anion distance.  

This approach was extended to fluorides and chlorides[59].  As seen in Table 1.3, Nakamura’s 

values are consistent with those listed above, but they are more compactly distributed. 
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Table 1.3.  Nakamura’s Optical Basicity Scale[59] 

Oxide Optical Basicity Oxide Optical Basicity 
Cs2O 1.18 ZnO 0.91 
Rb2O 1.17 CuO 0.89 
K2O 1.16 Sb2O3 0.84 
Na2O 1.11 Cr2O3 0.77 
BaO 1.08 As2O3 0.72 
Li2O 1.06 Fe2O3 0.72 
SrO 1.04 Al2O3 0.66 
CaO 1.00 TiO2 0.65 
MnO 0.95 GeO2 0.58 
FeO 0.94 SiO2 0.47 
CoO 0.93 B2O3 0.42 
Bi2O3 0.92 CO2 0.40 
MgO 0.92 P2O5 0.38 
NiO 0.92 SO3 0.29 

 

Lastly, Mills has pointed out that when aluminum oxide is incorporated into the melt, cations are 

required to provide charge balance.  He proposed that the metal oxide with the highest optical 

basicity would provide the charge balance, and the mole fraction used for this purpose should be 

subtracted from the calculation of Λmelt[57]. 

 

Despite some of these issues, the optical basicity scale offered the best scale for this research.  

Unless otherwise noted, the values listed in Table 1.2 were those used to calculate Λmelt, the 

optical basicity of the electrolyte. 

 

1.6 SUMMARY 

 

In this chapter, molten oxide electrolysis has been proposed as a breakthrough technology that 

may dramatically reduce greenhouse emissions from steelmaking.  One of the challenges rests in 

the development of an inert anode suitable for the extremely harsh operating conditions.  In 

trying to understand the underlying mechanism of oxygen evolution, it was revealed that what 

little literature existed showed no clear consensus on even the basics of the reaction mechanisms.  

By analyzing some of the parameters in the Butler-Volmer equation, a hypothesis was proposed 

in which increasing the basicity, i.e. the concentration of O2-, of the electrolyte should enhance 
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the oxygen evolution rate at the anode.  The primary outcome of this thesis is centered on this 

hypothesis.  Lastly, the optical basicity scale was chosen because of its ability to take a mixture 

of constituent oxides and give the proportion of free oxide ions in a melt. 

 

It was also the aim of this introductory chapter to provide the silicate specialist with some 

background on electrochemical techniques and the electrochemist with information regarding the 

nature of molten silicates.  Both fields are vital for overcoming the challenges posed by 

developing the molten oxide electrolysis cell, but they are highly specialized and divergent.  

Thus, it may be possible that the small amount of literature on the topic of anodic polarization in 

molten silicates suffers from inaccuracies in interpretation and experimentation because the 

requisite knowledge base was not present.  Conversely, electrochemists have identified reaction 

schemes that do not make intuitive sense to the silicate scientist. 

 

Additionally, molten silicate science is compartmentalized into steelmaking, glassmaking, 

geochemistry, and even welding.  These areas within the broader scope of molten silicates have 

different concerns and often disparate points of view because of the completely different natures 

of their end-products.  This further complicates the matter of identifying suitable information 

because there are so many fields in which to search for references.  A principal review for anodic 

polarization has not been composed until now, and never before has anyone proposed the free 

oxide ion concentration as a key parameter governing the value of the maximum sustainable 

current density at the anode. 

 

CHAPTER 2 will discuss the design of the experiments, highlighting compensation resistance, 

furnace tube construction, materials selection, electrolyte selection, and current density 

measurements. 

 
CHAPTER 3 describes the details of running the experiments, particularly the powder preparation, 

electrode construction, and electrochemical techniques. 

 

CHAPTER 4 provides the results and discussion of cyclic voltammetry of different candidate 

anode materials and attempts to identify phases formed under anodic polarization. 
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CHAPTER 5 lies at the heart of the hypothesis, relating current density and optical basicity into a 

convenient engineering scale.  Kinetic parameters, mainly the transfer coefficients, αf and αb, are 

proposed to be 0.5, and iridium is proposed as the candidate anode for future studies.  The 

current density and overpotential relationships are discussed in context to power efficiency of the 

molten oxide electrolysis cell. 

 

CHAPTER 6 lists a number of questions that should be considered if and when others research the 

feasibility of steelmaking from molten oxide electrolysis. 

 

CHAPTER 7 is the conclusion of this thesis. 

 

APPENDIX A lists the products and suppliers used to construct the furnace cap. 

 

APPENDIX B provides a spreadsheet of roughly 40 additional compositions considered as 

electrolytes for this study and lists the phase diagram, liquidus temperature, mole percents of 

constituent oxides, and optical basicity of an array of eutectic liquids relevant to molten oxide 

electrolysis.   
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CHAPTER 2: EXPERIMENTAL DESIGN 
2.1 PRUDENT ELECTROCHEMICAL PRACTICES IN MOLTEN OXIDES 

 

As highlighted in 1.3.2 REDOX REACTIONS, square wave voltammetry is a superior technique 

because of its speed and sensitivity.  Attempts to use SWV were unsuccessful; however, cyclic 

voltammetry was suitable and still provided many details in a reasonable experimental duration. 

 

CV operates in a three electrode configuration by applying a potential on the working electrode 

vs. a reference electrode as a triangular waveform and monitoring the current response.  The scan 

rate can be adjusted, and depending on the nature of the electrochemical reactions, it can indicate 

the reversibility of a reaction and/or give an approximation for the charging current.  The current 

measured is comprised of two parts, 

cFnet iii +=  

where the Faradaic current, iF, is generated by charge transfer during an electrochemical reaction, 

and the charging current, ic, is caused by the capacitance of the double layer, Cdl in Farads/cm2.  

The absolute magnitude of the charging current is given as 

νdlc ACi = . 

A represents the surface area of the electrode, and ν is the scan rate in V/s.  At least some 

charging current is always present in CV because the potential is being continuously changed.  

Furthermore, the ratio of the peak current to the charging current can be shown to be directly 

proportional to Cdl and ν½, inversely proportional the concentration of the reactant, and a 

complex function of T because of the dependence on ( ) 2
11 TeT − .  These parameters must be 

considered when identifying peak heights in silicates, systems in which Cdl and T are inherently 

high.  But more importantly, the scan rate must be slow enough and concentration of 

electroactive species high enough so that the current measured, inet, is almost entirely due to the 

Faradaic current[15]. 

 

Another consideration is the uncompensated resistance, Ru, which is the resistance between the 

working and reference electrodes.  This is a function of the resistivity of the electrolyte and 
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separation distance of the working and reference electrodes.  Ru is important because the real 

applied potential at the working electrode is 

unetWE RiEE −= . 

EWE is the potential actually applied at the working electrode, and E is the potential applied 

assuming no solution resistance or contact resistance[15].  When inet and Ru are very small, the 

latter term becomes trivial; however, in molten oxide systems, the resistance of the electrolyte 

can be very large.  Despite the importance of iR compensation, almost none of the articles listed 

in 1.3 SURVEY OF ELECTROCHEMICAL MEASUREMENTS IN MOLTEN SILICATES mention if data was 

acquired utilizing it.  Even a small current of 10mA passed through a cell in which Ru was 10Ω, 

would shift the peak potential by 0.1V.  Many papers have hundreds of mA of current which can 

shift peak potentials by tenths of volts and change peak shapes. 

 

Using the work of Semkow and Haskin[65] as a case study, the importance of ν and Ru become 

clear.  They were attempting to extract information about the amount of dissolved oxygen and 

free oxide ions in diopsidic melts at 1450°C.  They stated their uncompensated resistance was 

>1011Ω, a value so large, it was uncertain that a device was capable of measuring it.  (For 

example, a modern Fluke model 1550B ohmmeter requires 5000VDC to measure 1012Ω[66].)  

They also speculated that the concentrations of oxygen and free oxide ions were very low.  

Conservatively assigning a value for Cdl at 150μF/cm2 [46] and using a scan rate of 20V/s, ic/A 

became 3mA/cm2, which was roughly 10% of the peak height.  More importantly, their very high 

scan rates were coupled with no iR compensation.  At higher scan rates, large values of Ru tend 

to flatten out the wave and shift the reduction peak to more negative values, trends witnessed in 

the article written by Semkow and Haskin.  Quoting Bard and Faulkner[15], “Uncompensated 

resistance can thus have the insidious effect of mimicking the response found with 

heterogeneous kinetic limitations.”  Despite their very rigorous and thoughtful analysis of the 

results obtained, the conclusions of the article by Semkow and Haskin[65] were unconvincing 

because their experiment did not measure what it set out to. 

 

Electrochemical reversibility was another concept that was applied to systems in which it was 

not truly applicable[44].  In electrochemically reversible or Nernstian systems, a subtle change of 

electrode potential shifts the equilibrium at the surface of the electrode instantaneously.  Also, 
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the charge transfer resistance is exceedingly small.  For the condition of semi-infinite linear 

diffusion in a Nernstian system, the Randles-Sevčik equation is valid[15], 

2
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Maric, Brungs, and Skyllas-Kazacos used this equation to obtain the product of C*D½; however 

an overpotential needed to be applied, thus violating the Nernstian condition.  Furthermore, 

electrochemical reversibility requires that the position of ip be independent of scan rate, a 

condition not met in their work. 

 

For irreversible systems, the mathematical treatments become arduous.  Bard and Faulkner[15] 

give a case for total irreversibility, which may not be a bad approximation with oxygen evolution 

as the gaseous product is fugitive.  It can be shown that the peak current in this situation is 
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This equation must be modified for the number of electrons transferred.  ip has an additional 

dependence on the transfer coefficient and a different proportionality constant.  Furthermore, ip is 

also a function of ν½ in this scenario, so simply plotting ip vs. ν½ is not a diagnostic for 

“electrochemical” reversibility. 

 

It is important to use electrochemical techniques and equations that are applicable to the system 

under study and take into consideration the effects of high temperature, solution resistance, and 

double layer charging.  The work conducted in this thesis rarely used scan rates greater than 

0.250V/s and always utilized iR compensation techniques. 

 

Researchers performing high temperature measurements must also be cognizant of temperature 

gradients and the usage of dissimilar lead wires contacting their electrodes.  For example, if a 

digital multimeter was connected between two electrodes, the voltage measured may be a 

consequence of the electric field established by the temperature gradient from the hot zone to the 

cool end of the furnace.  When dissimilar metals are used, thermoelectric voltages are set up and 

they can be substantial.  To be accurate, one should measure the voltage of the short circuited 

electrode couple as a function of temperature over the temperature range of the experiment. 
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2.2 TEMPERATURE PROFILE WITHIN THE FURNACE 

 

Regardless of the quality of the insulation surrounding the furnace and the positioning of the 

electrodes, a temperature profile should always be mapped.  The hot zone of the furnace should 

be uniform in temperature to diminish convection.  The electrolyte should be quiescent such that 

mass transport is due to diffusion down a chemical potential gradient, or else many of the 

electrochemical techniques and equations must be reconsidered.  Convection is unavoidable in 

experiments that evolve gases, and while the vertical temperature profile may be uniform, 

convection due to external heating may be possible.  These latter effects were not expected to 

profoundly influence the results. 

 

At elevated temperatures, the dominant heat loss mechanism is radiative.  This can be witnessed 

by the glow of the furnace tube and warmth sensed without physically contacting the furnace.  

To combat this type of loss, it is often desirable to construct a baffle to suspend within the 

furnace tube and reflect the radiation back toward the hot zone.  However, including a baffle 

inside a furnace tube that would have an assortment of electrodes inserted and removed would 

have incorporated additional engineering challenges and was not pursued in these experiments. 

 

The temperature profile also provides the difference between the actual temperature inside the 

furnace tube and the setpoint thermocouple outside the furnace tube.  In molten silicates, it is 

difficult to place a thermocouple directly into the melt because the encapsulation material will 

degrade in the electrolyte.  A refractory ceramic will be soluble in the electrolyte or suffer from 

interdiffusivity issues that arise from an abundance of iron oxide in the melt.  Thus, rather than 

measure the temperature of the molten silicate directly, a correction must be made with the 

setpoint thermocouple.  In this work, temperature profiles made using a custom built 36” Type B 

thermocouple revealed a uniform zone (±5°C) of roughly 3 inches; the setpoint was 1675°C to 

achieve a temperature of 1575°C within the hot zone. 

 

For the specific consideration of electrochemistry in molten silicates, the difference between the 

setpoint and actual temperatures is of prime importance because the experiments are performed 

blindly and one cannot directly observe the molten silicate.  One must be certain the contents of 
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the crucible have become a homogenous melt; 50°C could mean the difference between a two 

phase region and a homogenous liquid.  Since temperature is a key parameter in many equations 

including ip, Tafel slopes, diffusivity, etc., accurate and consistent control of the furnace 

conditions are paramount. 

 

2.3 FURNACE TUBE AND CAP CONSTRUCTION† 

 

It was necessary to maintain a stable atmosphere, and it was desirable that the depths of the 

electrodes were adjustable.  Unlike a system that was going to operate at 1000°C in which steel 

or nickel alloys such as Inconel could be used, a ceramic furnace tube was necessary for 

temperatures approaching 1600°C in oxidizing atmospheres.  Only three materials are commonly 

distributed, namely mullite, alumina, and zirconia.  Mullite is not recommended above 1600°C, 

and zirconia is cost prohibitive, leaving alumina.  Unlike metals, ceramics have wide 

manufacturing tolerances when the diameter of the tube approaches 3 inches because slip-casting 

techniques have to be employed.  McDanel Ceramics lists their tolerance at ±5%, which on 5” is 

¼”!  And, unless expensive finishing techniques such as centerless grinding are employed on the 

fired body, it is rare for a tube to be perfectly cylindrical. 

 

These inconsistencies posed a problem for creating a seal.  At the time of seal and cap 

construction, the lifetime of the furnace tube was unknown, and based on the results from a 

fellow group member who ran his furnace at 1725°C, it was not expected to last more than 5 or 6 

runs.  Rather than machine a complex cap that may not have been able to be used with different 

alumina tubes, off-the-shelf components were used from MDC Vacuum Products.  A -425 

silicone O-ring was used as a filler between the 4.5”OD tube and a 5”ID vacuum flange.  (The 

author concedes this was not the best engineering practice, but the tube did not exhibit significant 

leaks as a very slow bubbling rate of argon through the inlet bubbler was matched by the outlet 

bubbler at room temperature and 1575°C.)  Even with a water-cooled cap, a silicone O-ring was 

used because of its high temperature stability and ease of availability.  While silicone does have 

higher oxygen permeability than most O-ring materials, molybdenum revealed hardly any 

oxidation after exposure above 1000°C for nearly 24 hours.  Perhaps PTFE or Viton® could be 

                                                 
† For a list of products used, manufacturers, and materials, consult APPENDIX A. 
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used in place of silicone if oxygen permeability is a concern.  Or, in a more elaborate design, it 

may be possible to use a double O-ring seal. 

 

On top of the furnace tube, a copper gasket was inserted between knife-edge seats between the 

flange and the cap, also from MDC Vacuum Products.  The cap was a blank flange of stainless 

steel that was machined on the inside to mate to the copper gasket.  Through holes were milled 

around the outside to fasten the flanges on the tube with 5/16” – 24 hex head bolts. 

 

The height of the electrodes had to be adjustable, and it was desirable for the cap to be useful for 

an array of electrode configurations.  Furthermore, the crucible containing the molten silicate 

limited the spacing of the electrodes.  Thus, any fittings used to hold the electrodes would need 

to have small clearances.  A very nice solution was found by using Swagelok Ultra-Torr fittings 

that were bored-through.  One side could be tightened, locking a Viton® O-ring onto the ceramic 

tube used to shroud the electrodes.  The other side was threaded NPT-¼”.  Once the cap was 

tapped to accommodate NPT-¼” threads, the fittings were used with various electrodes, and 

residual holes were plugged with hollow hex plugs.  The Ultra-Torr fittings could accommodate 

¼” or ⅜” ceramic tubes.  A schematic for the furnace cap is illustrated in Fig. 2.1. 
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Figure 2.1  Top view of the cap.  The center NPT – ¼” holes were used for inserting electrodes 
and the outer NPT – ¼” holes were used for the gas inlet and outlet. 
 
At the bottom of the alumina furnace tube, alumina bubbles were used to provide a level surface 

for the crucibles.  An outer “containment” crucible was placed dead center and filled with ¾” to 

1” of alumina bubbles.  The containment crucible was used in case of leakage of the electrolyte 

from the primary crucible.  The “primary” crucible containing the molten silicate was placed 

within the containment crucible, also dead center and level.  More about the crucible materials is 

described in 2.4 MATERIALS SELECTION.  Figure 2.2 is a schematic of the assembled 

configuration.  Maintaining level and centered positions for the whole assembly was essential 

because any natural convection occurring within the melt would be radially symmetric, the 

electrode positions would be radially symmetric and the working electrodes would be equidistant 

from the reference electrode, and the electrodes would not contact the crucible wall upon 

insertion. 
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Figure 2.2  Profile of the furnace tube assembly (approximately to scale). 
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2.4 MATERIALS SELECTION 

2.4.1 WORKING ELECTRODE/ANODE 

 

The exceedingly high operating temperatures for the molten oxide electrolysis cell constrain the 

choices for an inert anode material.  Any host for alloying would have to be a platinum group or 

a refractory metal.  Ceramics may also be considered for their high temperature stability, and 

since they possess electronic and/or ionic conduction mechanisms which are activated processes, 

their conductivities may be sufficient.  However, even the most refractory ceramics would be 

soluble to a certain extent in a molten silicate. 

 

2.4.1.1 METALS 

 

The advantages of metal inert anodes as opposed to ones developed from ceramics or cermets 

guided the author to consider them for study.  Advantages include typically higher electrical 

conductivities, improved fracture toughness and thermal shock resistance, elimination of porosity 

issues, and relative ease of fabrication into complex shapes either through casting or powder 

metallurgy[67].  It is known from the glass industry that platinum group metals have exceptional 

corrosion resistance in silicate melts; however, this does not preclude the possibility that under 

anodic polarization and oxygen evolution, corrosion, solubility, and volatility may become 

issues[68,69]. 

 

The platinum group metals are ruthenium, rhodium, palladium, osmium, iridium, and platinum.  

Osmium and ruthenium have high volatilities at the operating temperatures under oxidizing 

conditions[70].  Palladium has a melting point only several degrees higher than iron.  Thus, the 

only platinum group metals to test are rhodium, platinum, and iridium.  Only if the corrosion 

rates were extremely low would these be suitable as pure metal anodes.  Perhaps their cost could 

be lowered by alloying, yet enough of the bulk property of the platinum group metal could be 

retained for good corrosion resistance and electrode activity. 

 

The refractory metals are niobium, tantalum, molybdenum, tungsten, and rhenium.  They have 

the highest melting points and lowest metal volatility.  However, they are readily degraded by 
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oxygen at moderately high temperatures; as examples, molybdenum would catastrophically fail 

by MoO3 vaporization, and rhenium would form Re2O7 which boils at 393°C[71].  Despite good 

high temperature mechanical properties and much lower costs than the platinum group metals, 

the refractory metals would not be suitable for anodes in molten oxide electrolysis.  Under inert 

gases, refractory metals would be useful as electrodes in the experimental cell. 

 

2.4.1.2 CERAMICS 

 

Ceramics are not typically recognized for their ability to conduct electricity, and with few 

exceptions, they are vulnerable to thermal shock and creep at elevated temperatures.  Upon first 

glance, ceramic materials may not be of much interest; however, their refractory properties to 

withstand corrosive environments stand out.  If a refractory material possessed a low electrical 

resistivity, it may be a suitable candidate for the anode.  Furthermore, ceramics are 

predominantly metal oxides and the anode environment will oxidize the majority of metals, 

carbides, and borides[72].  It would be desirable for a material to not be oxidized to higher metal 

valences, not dissolve into the electrolyte, and not form an electronically insulating film. 

 

The majority of refractory materials utilized in the basic oxygen furnace and electric arc furnace 

are based on magnesia bonded with pitch or blended with chromia[73].  These withstand basic 

slags and iron, but have minimal electrical conductivity.  From the glass industry, the refractory 

materials that are the most resistant to corrosion include Cr2O3, SnO2, and ZrO2[74].  Each of 

these materials possesses a different conduction mechanism: p-type semiconduction, n-type 

semiconduction, and ionic conduction, respectively.  Interestingly, Arrhenius behavior is often 

associated with these mechanisms; therefore the extremely high temperatures should enhance the 

conductivity.  It should be noted that the partial pressure of oxygen, traces of impurities, and/or 

dopants of different valence alter the mode of semiconduction in oxides[75].  Smyth[75] gives a 

fairly extensive description of various defect chemistries.  Conductivity is also influenced by 

grain size, secondary phases residing on the grain boundaries, and formation of liquid 

phases[76,77]. 

 



 43

Cr2O3 is highly corrosion resistant, serving in fiberglass making, one of the most severe glass 

melting operations[73,74,78].  Like most ceramics, it suffers from poor thermal shock 

resistance[78].  Despite its corrosion resistance, it is undesirable for many glassmaking 

applications as dissolved chromium ions impart deep color[72,74,78].  However, this is 

irrelevant to molten oxide electrolysis, and chromium may impart enhanced qualities to the 

cathode product for stainless steel.  Cr2O3 does have some tendency for volatilization above the 

melt line, but compared with all other glass furnace refractories, dense Cr2O3 has the best 

conductivity aside from SnO2[78].  Additionally, Cr2O3 exhibits p-type semiconduction, which is 

favored by oxidizable cations in atmospheres with high partial pressures of oxygen at high 

temperatures[75]. 

 

SnO2 possesses very high corrosion resistance and has the lowest resistivity of all glass furnace 

refractories[78].  From 1000°C to 1400°C, the resistivity is only between 0.0025 and 

0.0045Ωcm[79].  However it is limited by its expense, poor thermal shock resistance, and 

volatility and reduction above 1500°C, and it is never used outside glass contact[78].  The 

current density is also performance limiting so that a large cross sectional area is necessary in 

glass melting applications[74,78].  SnO2 may seem like a good choice for a candidate anode 

because of its good electrical conductivity; however, dissolution of tin and deposition in the 

cathode product may prove to be highly detrimental to the iron or steel.  Tin cannot be tolerated 

above 0.05%[80].  In fact, tramp elements including tin and copper accrue over time and cannot 

be removed from steel.  They are merely diluted by addition of virgin iron into charges of scrap 

high in residual elements[80]. 

 

ZrO2 suffers from poor thermal shock resistance unless stabilized by CaO, MgO, or Y2O3[72].  

Refractories containing zirconium oxides are not resistant to slags containing iron or manganese 

oxides.  Also, while ZrO2 performs well in acidic slags, basic slags react strongly with it[77].  

Despite being an oxygen ion conductor, the high concentration of iron oxide and the basic nature 

of the slag in the molten oxide electrolysis cell would degrade a ZrO2 anode quickly. 

 

Ceramics offer refractoriness and possibly sufficient conductivity at elevated temperatures, but 

the difficulty of manufacturing ceramic electrodes and lack of a supplier on the lab scale 
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excluded them from this study.  The author merely wanted to highlight some of their properties 

which may be helpful for future development of ceramic inert anodes.  This study was restricted 

to platinum group metals; owing to its high melting point, rhenium was also included for initial 

comparisons. 

 

2.4.2 COUNTER ELECTRODE/CATHODE 

 

The counter electrode (which operated primarily as a cathode) utilized in these studies was 

molybdenum.  Mo offered good stability in the silicate when no transition metal oxides were 

present, but it was necessary to run the experiments under flowing argon to prevent oxidation of 

the metal above the surface of the melt.  Other refractory metals may have been suitable for 

contact with the molten silicate, also necessitating an inert atmosphere.  Platinum group metals 

are costly, and their alloys and intermetallics with iron and silicon would have had melting 

temperatures below 1575°C. 

 

2.4.3 REFERENCE ELECTRODE 

 

The reference electrode is critical for controlled potential techniques because it establishes a 

benchmark value of potential against which all measurements of potential difference are based.  

A reference electrode should possess a known potential that approaches ideal nonpolarizability, 

meaning the passage of current through the cell should not affect the potential of the reference 

electrode[15].  Also, the contents of the reference electrode must not contaminate or be 

contaminated by the contents of the bulk electrolyte.  Typically a reference electrode is isolated 

from the bulk electrolyte either through an ionically conducting membrane or a sintered frit. 

 

Outside of room temperature aqueous (and some organic) systems, a true reference electrode is 

difficult to construct or implement.  In these situations, a quasi-reference or pseudo-reference 

electrode is utilized.  A quasi-reference electrode is typically a metal wire that is immersed into 

the electrolyte under the assumption that the bulk solution remains constant.  Although the 

potential is unknown unless standardized by comparison to a true reference electrode, the 

potential remains fixed[15]. 
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In molten silicates, depending on the contents of the melt, a true reference electrode is very 

difficult to implement.  The glass industry has used yttria stabilized zirconia as an oxygen ion 

conductor between a platinum electrode in a reference gas with defined oxygen partial pressure 

and the molten glass.  These electrodes were found to suffer from short lifetimes because of the 

thin zirconia membrane[58].  Additionally, in slags rich in iron oxide, zirconia would likely be 

degraded[77]. 

 

Alternative reference electrodes have been pursued to overcome the disadvantages of zirconia 

reference electrodes.  It was observed that molybdenum used as heating electrodes in electric 

glass melters provided extremely constant potentials caused by the equilibrium of the metal with 

one of its metal oxides.  Suitable metals and metal oxides would require high melting points, low 

solubilities into the electrolyte, and formation of dense, thin, coherent layers of metal oxide.  

Examples included Mo|MoO2, W|WO2, and Ta|Ta2O5[58].  A German patent highlighted some 

of the theory behind the Mo|MoO2 reference electrode[81]. 

 

For simplicity of construction and because it was already being used as the counter electrode, 

molybdenum was chosen as a reference electrode.  This was not before a failed attempt to 

construct a true reference based on aluminum metal in contact with aluminum oxide in solution 

was made.  If the system could have been successfully constructed, it would have been made 

with the following guidelines.  Liquid aluminum metal at 1575°C would have had a density less 

than 2.7g/cm3 and possessed a low vapor pressure.  It would have floated atop a ternary eutectic 

mixture of SrO-CaO-Al2O3 with the SrO and CaO not being reduced aluminothermically.  The 

aluminum would have contacted either carbon or tungsten which would have served as the 

current lead.  The assembly would have been contained within a high purity boron nitride sheath.  

A small hole would have been drilled and packed with boron nitride frit to connect the reference 

electrolyte with the bulk electrolyte.  It may have been a good concept, but implementation was 

almost impossible due to differential thermal expansions of the reference electrolyte and boron 

nitride.  Additionally, the boron nitride was not easily wetted by the bulk electrolyte, and it 

would have only been useful at low partial pressures of oxygen due to oxidation of BN. 

 



 46 

Oxygen reference electrodes have been theoretically conceptualized for possible usage with 

steelmaking slags.  In previous investigations, the oxygen reference electrode utilized a 

metal/metal oxide mixture contained within a zirconia tube.  The metal/metal oxide would 

equilibrate, defining
2Op of the reference; however, it was argued that the equilibrium was ill-

defined because oxygen transfer through the zirconia and the exchange of the redox reaction of 

ferrous and ferric ions may not be equilibrated in the duration of monitoring the slag.  To combat 

this, it was suggested that a Ta|Ta2O5 or a Ti-Mo|TiO2 reference be in direct contact with the 

slag[82].  Thus, from theoretical considerations coupled with the ease of construction, 

availability, and cost of molybdenum rods, Mo|MoO2 provided the best choice for the reference 

electrode. 

 

A Mo|MoO2 electrode was also ideally suited for studying the oxygen evolution reaction in melts 

of varying basicity.  The potential difference between the reference electrode and an anodically 

polarized working electrode would be constant.  Two equilibria can be expressed as follows: 
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The activity of a condensed phase is 1, and since pure gaseous oxygen bubbles are being 

produced locally on the anode, 
2Of can be approximated as 1.  This behavior is analogous to the 

reversible hydrogen electrode in aqueous solutions of varying pH[83]. 

 

2.4.4 CRUCIBLE 

 

Selection of a proper crucible material was important so that the molten silicate would be 

contained for the duration of experiment.  The melt should not be contaminated by the 

degradation of the crucible or else electroactive species would interact or the basicity of the 
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electrolyte would be altered.  In an oxidizing environment and at temperatures approaching 

1600°C, only a handful of crucible materials can be considered. 

 

Platinum group metals were out of question because the vertical crucible furnace would not 

allow for the silicate to be easily poured out while molten.  Additionally, iron oxide in the slag or 

liquid metals functioning as the cathode would have attacked these crucibles. 

 

Molybdenum and tungsten were not as costly as platinum group metals, but they were still 

expensive.  Their usage would have required deposition of silicides to prevent oxidation during 

oxygen evolution.  Mo would also have exchanged with iron ions in melts applicable for 

electrolysis. 

 

Graphite posed difficulties because oxygen evolution would have resulted in carbon dioxide 

formation.  Contamination of the electrolyte with carbonate ions was a possibility, and it may 

have carbothermically reduced iron, thus casting doubt on the efficacy of the electrolysis 

process. 

 

Ceramics certainly avoided problems of oxidation; however, dissolution into the slag was 

possible.  Zirconia would have been degraded by iron oxide slags[77].  Magnesia was not widely 

available, and a conversation with Ozark Technical Ceramics revealed that MgO crucibles may 

be liquid phase sintered, limiting their useful temperature range to only 1150°C.  Alumina in the 

presence of molten silicates containing MgO and CaO could produce intermediate layers of 

hercynitic spinel or CaAl12O19[84].  Furthermore, with an electrolyte containing roughly 15 to 

20wt% Al2O3, alumina crucible dissolution would be reduced[85].  Thus, alumina, a widely 

available crucible material that is relatively economical when compared with the other single-use 

candidates, was chosen for this study. 

 

2.5 ELECTROLYTE SELECTION 

 

Aiken[12] astutely pointed out that the metal oxides in the electrolyte must be more 

electropositive than iron.  The standard free energy of formation is directly related to the 
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standard potential of an electrochemical reaction via the Nernst equation.  Assuming activities 

will not contribute too greatly to the applied potential at which metal oxide will be separated to 

metal and oxygen gas, any metal oxides lying below iron oxide will reside in the melt so long as 

sufficient iron ions are available for reduction.  Any metals less electropositive than iron will 

deposit at the cathode.  The Ellingham diagram (Fig. 2.3) illustrates this concept.  While 

potassium oxide and sodium oxide would have aided in lowering the melting temperature of the 

electrolyte and enhancing the ionic conductivity, they could not serve as fluxing agents in this 

system. 

 

 
Figure 2.3  Ellingham diagram (calculated using HSC Chemistry[86]) at 1atm 

2Op illustrating 
metal oxides suitable for the electrolyte in a molten oxide electrolysis cell. 
 

Compositions for the electrolyte were based on several criteria.  From an array of phase 

diagrams[87], eutectic compositions for FeO-CaO-MgO-Al2O3-SiO2 (as well as Li2O) were 

identified.  Since alumina crucible dissolution was of concern in our experimental setup, the 

electrolyte was required to possess a high enough alumina concentration (15 to 20wt%).  The 

liquidus point of the electrolyte was desired to be below 1450°C so that the system was fully 
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molten at 1575°C after ramping at 85°C/h and a 1h soak.  Also, it was desirable for the 

electrolyte to be molten without the presence of iron oxide so that if the operating electrolysis 

cell was exhausted of iron oxide, the electrolyte would still be molten.  The optical basicity 

values were chosen to range from highly acidic (0.55) to highly basic (0.70).  Table 2.1 lists the 

composition of the five electrolytes chosen.  The optical basicity values were calculated using 

the values in Table 1.2.  Also note that no correction as suggested by Mills[57] has been made 

for the optical basicity values listed in Table 2.1. 

 

Table 2.1.  Optical Basicity of Candidate Electrolytes.  (Compositions in mole percent.) 
 

Name Melting Point(°C) CaO MgO Al2O3 SiO2 Λmelt 
SCAMA1 1222 11.053 13.989 11.054 63.905 0.555 

S1A ~1320 18.654 24.184 11.658 45.503 0.605 
SCAMB2 1234 33.994 11.991 10.011 44.004 0.632 
SCAMB3 ~1400 38.870 14.629 10.894 35.607 0.661 
SCAMB1 1420 43.690 17.235 11.768 27.307 0.693 

 
The optical basicity values listed for the electrolytes were calculated based on powder 

composition pre-firing.  It was assumed that volatilization of the powders had a trivial effect on 

the post-fired composition as there was almost no condensed phases observed on the walls of the 

furnace tube or cap.  Alumina crucible dissolution was not apparent with these electrolytes.  

SCAMA1, SCAMB1, and SCAMB2 were eutectics from quaternary phase diagrams.  S1A was 

related to a ternary eutectic for CaO-MgO-SiO2.  SCAMB3 roughly bisected SCAMB1 and 

SCAMB2.  For a complete listing of melts considered for this study, consult APPENDIX B. 

 
2.6 DETERMINING CURRENT DENSITY 

 

The current density is a crucial performance indicator of the candidate anodes.  Determination of 

surface area could not be done by identifying the melt line or shrouding the electrode.  In the 

severe environment of the molten silicate, ceramic cements dissolved into the electrolyte.  A 

microdisk design failed because the boron nitride sheath used was not easily wettable by the 

molten silicate, and the ceramic binder leached out leaving volume into which the molten silicate 

could wick.  Thus, the best method for determining the current density accurately and reliably for 

the anode candidates relied on bare electrodes and the relationship between current and area. 
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The current is directly proportional to the interfacial contact area of the electrode and the 

electrolyte.  In the proposed cap design illustrated in Figs. 2.1 & 2.2, the depth of the electrode 

could be adjusted consistently with the Ultra-Torr fittings and a micrometer.  By monitoring the 

current as a function of electrode depth, a plot of the current vs. the change in surface area was 

made.  Since 1Ai ∝ , jslopedA
di == , where j is the current density.  The areas utilized were the 

geometric surface areas.  Figure 2.4 illustrates this concept for an Ir working electrode in 

SCAMB2.  The scan rate was 20mV/s, the temperature was 1575°C, and the potential was 2.0V 

vs. Mo|MoO2.  Additionally, from the x-intercept, the initial depth of immersion can be 

calculated and used to estimate the immersion depth at any point.  While making these 

measurements, it was assumed that wetting of the electrolyte was constant and that the edge 

effects on the working electrode were inconsequential. 

 

 
Figure 2.4  The relationship of current and geometric surface area and how it can be used to 
determine the current density.  In this figure, the slope has units of mA/cm2.  The initial depth of 
immersion was calculated to be 5.6mm. 
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2.7 SUMMARY 

 

Issues of containment, electrode placement, reference electrode composition, and electrode area 

determination, all trivial in a room temperature setup, become challenging design considerations 

when faced with determining accurate electrochemical measurements at 1575°C in molten 

silicates.  From an electrochemistry standpoint, the effects of temperature and potentially high 

uncompensated resistance values must be understood and corrected.  Materials selection is 

essential for duplicable results and equipment not failing prematurely.  Key parameters for the 

properties of the electrolyte were identified with particular attention paid to the alumina content, 

melting point, and basicity.  Lastly, a methodology for monitoring the current density was 

provided.   
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CHAPTER 3: EXPERIMENTAL DETAILS 

3.1 POWDER PREPARATION 

 

As-received powders of silicon (IV) oxide, calcium oxide, magnesium oxide, and aluminum 

oxide were stored in glass jars in a drying oven at 100°C.  It was assumed that powders were 

shipped dry from the distributor and that by storing in the drying oven, additional adsorption of 

water or carbon dioxide would be minimized.  Thus, no compensation for losses on ignition was 

made for the composition of the electrolyte.  Metal oxides were of >99% purity, had low losses 

on ignition, and were below -325 mesh. 

 

Powders were measured in 200g batches in ratios specified by the particular electrolyte 

composition.  The batches were dry milled with no milling media in 500mL Nalgene bottles at 

low RPM for roughly 24h.  Prior to being positioned on the mill, electrical tape was wound 

around the cap to seal out moisture. 

 

3.2 ELECTRODE CONSTRUCTION 

 

Molybdenum served as the counter electrode and quasi-reference electrode.  Molybdenum rods 

(Buffalo Tungsten) 0.125”D x 36”L were degreased with a citrus based solvent (PF Solvent from 

PT Technologies).  Mullite tubes (McDanel) 0.25”OD x 0.1875”ID were cut to 33”.  Compared 

with alumina, mullite offered tighter tolerances for the Swagelok Ultra-Torr fittings.  The 

molybdenum rod was positioned within the mullite tube such that 1” remained exposed at the top 

to interface with the potentiostat.  Since the molten electrolyte was only on the order of 1”, 

wicking of the electrolyte up the mullite shroud was guaranteed to be avoided.  In order to seal 

the molybdenum and mullite, PTFE tape was wound tightly around the molybdenum rod 1” from 

the top.  This was then twisted into the mullite tube.  PTFE tape was also wrapped around the 

outside of the mullite to seal the molybdenum/mullite joint.  Attempts were made using 

PTFE/FEP Dual-ShrinkTM tubing (Zeus) to seal the molybdenum/mullite joint, but it was not 

able to be used because the collapse ratio of the heat shrink tubing was not sufficient to tightly 

seal down to 0.125”. 
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The working electrode was constructed using a 0.25”OD x 0.125”ID x 30”L mullite tube 

(McDanel).  A Pt wire (Alfa Aesar) of 0.368mm diameter (Alfa Aesar) served as the current 

lead.  0.5mm diameter wire was used as the working electrode.  Pt, Ir, and Re were supplied by 

Alfa Aesar, and Rh was purchased from Goodfellow.  A mechanically rigid junction was made 

simply by wrapping the 0.368mm Pt wire several times around a 5cm length of the stiffer 0.5mm 

material.  The 0.368mm Pt wire was crimped onto the working electrode using clean pliers.  At 

elevated temperatures, slight interdiffusion of the platinum group metals ensured electrical 

conduction and withdrawal of the working electrode from the silicate.  Roughly 1” was left 

exposed beyond the end of the mullite tube.  At the top of the working electrode assembly, the 

0.368mm Pt wire was threaded through a rubber boot using a syringe as a guide.  The remaining 

length of the Pt was wound on the rubber boot to fix the exposed length of the working electrode. 

 

3.3 FURNACE ASSEMBLY 

 

The vertical crucible furnace (Mellen) used for these experiments was capable of achieving 

1800°C with molybdenum disilicide elements.  A 5.5”OD x 5”ID x 24”L 99.8 alumina round 

bottom, closed-one-end furnace tube (McDanel) sat within a ceramic disk machined in-house to 

permit the tube to stand vertically.  At the throat of the furnace, alumina wool (Cotronics) was 

packed around the 5.5”OD furnace tube.  Hollow alumina bubbles (Zircar) were used to provide 

a surface on which a 4.5”OD x 4.125”ID x 30”L 99.8 alumina round bottom, closed-one-end 

furnace tube (McDanel) could rest.  The 0.25” gap between the two furnace tubes was insulated 

with a lower grade of aluminosilicate wool (Cotronics). 

 

After leveling, the 4.5”OD x 4.125”ID x 30”L furnace tube was filled with roughly 300mL of 

alumina bubbles to provide a level surface on which to place the 750mL cylindrical alumina 

“containment” crucible (McDanel).  Prior to being placed dead center within the furnace tube, 

the containment crucible was filled with approximately 1” of alumina bubbles.  These would 

prevent the 500mL cylindrical alumina “primary” crucible (McDanel) and containment crucible 

from joining.  Additionally, the abundance of alumina would crystallize the bulk of the 

electrolyte in the event of leakage. 
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The primary crucible was filled with 200g of electrolyte and centered within the containment 

crucible, and the furnace tube was again checked for level.  A square scaffold was positioned 

around the top of the 4.5”OD x 4.125”ID x 30”L furnace tube and rested on the cover of the 

furnace.  The height of the top plate could be adjusted with nuts on studs to lock the cap in place.  

First, this prevented lateral movement of the furnace tube when adjusting the electrodes.  

Second, in the unlikely event of the furnace tube rupturing, the scaffold would prevent the cap 

from crashing into the furnace. 

 

Krytox® RFE O-ring grease (Dupont/Loctite) specifically formulated not to degrade silicone O-

ring materials and withstand continuous operating temperatures at 260°C was applied to the top 

of the 4.5”OD x 4.125”ID x 30”L furnace tube.  A -425 silicone O-ring was inserted over the 

furnace tube.  As described previously in 2.3 FURNACE TUBE AND CAP CONSTRUCTION, a flange 

was fitted over the O-ring, a copper gasket was inserted in the knife-edge seal, and the cap was 

placed on the flange.  Since the electrode shrouds were 0.25”, the cap was fitted with the Ultra-

Torr couplings, plugs, and barbed gas outlet before being placed on the furnace tube.  All NPT-

¼” fittings were wrapped with PTFE tape.  Six 5/16” – 24 snugly tightened hex cap bolts fixed 

the cap to the flange.  Next, the flange and cap were pushed down until the cap contacted the 

furnace tube, and the scaffold was raised to lock the cap in place.  For the duration of the 

experiment, the cap was cooled via a recirculating chiller (VWR) set for 15.5°C at a flow rate of 

1.4 gallons per minute. 

 

The electrodes were inserted starting at the center with the reference electrode.  The knurled end 

and the ferrule from the Ultra-Torr fitting were slid up the electrode, and a Viton® O-ring was 

lubricated with silicone grease.  The counter electrode and up to three working electrodes were 

inserted in the remaining spaces (see Fig. 2.1).  The height of the electrodes during heating of the 

furnace was roughly 16” below the top of the furnace tube.  The inlet gas tube was mullite 

(McDanel) 0.25”OD x 0.1875”ID x 20”L.  It was inserted opposite the gas outlet. 

 

The gas inlet was connected in series with a bubbler filled with silicone oil.  Pre-purified 

99.998% argon (Airgas) was bubbled through at roughly 165cc/min into the furnace for the 

duration of heating, running experiments, and cooling the furnace.  This was necessary to 
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prevent oxidation of the molybdenum electrodes.  The outlet gas was also routed through a 

bubbler containing silicone oil and vented.  The quality of the seal was determined by visual 

inspection of the bubbling rates of both the inlet and outlet bubblers, especially when no power 

was applied to the furnace elements. 

 

3.4 TEMPERATURE HISTORY 

 

The furnace was heated from room temperature to 1675°C at a ramp rate of 85°C/h.  The 

setpoint temperature was approximately 100°C higher than the measured temperature of the hot 

zone.  Before lowering the electrodes, the electrolyte soaked for one hour to equilibrate the hot 

zone and to ensure a fully molten electrolyte.  The duration of the electrochemistry experiments 

was on the order of 8h.  After withdrawing the electrodes from the melt, the furnace was cooled 

at a ramp rate of 85°C/h back to room temperature.  

 

3.5 ELECTRODE IMMERSION 

 

The reference electrode was the first electrode to be immersed into the electrolyte.  Since it was 

positioned in the center of the furnace, it could lock the primary crucible in place while the other 

electrodes were adjusted.  The counter electrode was the second electrode immersed.  The 

working electrodes were lowered individually; when not engaged in electrochemical 

measurements, they remained out of contact with the electrolyte.  The leads for the reference, 

counter, working, and sense electrodes from the potentiostat were connected to the 

corresponding electrode in the furnace.  The working electrode was lowered in very small 

increments while monitoring the open circuit potential (OCP).  Once a reading for the open 

circuit potential was witnessed, the height of the working electrode was fixed by tightening the 

Ultra-Torr fitting.  The reference and counter electrodes were then raised slightly to avoid 

contacting the crucible.   

 

The height of the working electrode was adjusted using a set of digital calipers capable of 

measuring 0.01mm (Mitutoyo).  The author concedes that a better device would have been a 

depth micrometer; however, the complications of construction and the linearity of the data 
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obtained using the digital calipers justified the technique used in this thesis.  The working 

electrode was lowered in 5.0mm increments. 

 

3.6 CYCLIC VOLTAMMETRY 

 

The potentiostat used in these experiments was a PARSTAT® 2273 (Princeton Applied 

Research/AMETEK).  Software included POWERCORR® Rev. 2.47 to monitor OCP and 

POWERCV® Rev. 2.46 to measure the compensation resistance and perform cyclic voltammetry 

(Princeton Applied Research/AMETEK).  When the working electrode was inserted into the 

electrolyte, the OCP was monitored until it became stable.  Typical OCP values for the platinum 

group metals were 300±30mV vs. Mo|MoO2.  Next, the working electrode was cycled at 

100mV/s between -0.1 and 1.2V until the i vs. E curves were indistinguishable.  This usually 

required 5 or 6 cycles.  The least electroactive region was recorded and later used as the baseline 

voltage in iR compensation measurements.  The PFIR application of POWERCV® determined Rc 

which was 70% of Ru.  Any greater value for Rc resulted in instability during CV.  These steps 

were performed any time the working electrode height was changed.  This is important to 

consider as Ru was found to depend on immersion depth. 

 

Once the value for Rc was determined, cyclic voltammograms were recorded at 250, 100, 50, and 

20mV/s (and occasionally 500 and 10 as well).  In the majority of cases, the scans were 

performed applying positive potentials starting at 0V vs. Mo|MoO2.  Typical upper vertices 

included 1.2V and 2.0V.  Comparisons of current density measurements were made at 2.0V vs. 

Mo|MoO2. 
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CHAPTER 4: BEHAVIOR OF CANDIDATE ANODES 
4.1 RESULTS 

 

The first investigations of working electrode materials were performed in S1A.  This 

composition was a modified form of an electrolyte used previously in our lab, and it also had an 

intermediate optical basicity value.  It was thought that if an electrode failed in S1A, it would 

also fail in more acidic or basic melts. 

 

Electrodes were typically subjected to potentials ranging from -0.1 to 2.0V vs. Mo|MoO2 at scan 

rates of 250, 100, 50, and 20mV/s.  Fig. 4.1 depicts the behavior usually witnessed on the 

platinum group elements.  Starting at 0V vs. Mo|MoO2 and moving toward more positive 

potentials, the only current was due to the capacitance of the double layer.  At roughly 1V, a 

peak was witnessed on iridium and rhodium, whose identity will be discussed later.  Beyond 

1.1V, the measured current appeared jittery, suggesting the coalescence and evolution of oxygen 

gas bubbles.  At roughly 0.75V, the current changed to cathodic, owing possibly to reduction of 

oxygen molecules to free oxide ions.  Scans were restricted from going less negative than -0.1V 

to prevent silicide formation on the working electrode. 

 
Figure 4.1 Typical features of cyclic voltammograms in molten aluminosilicates at 1575°C. 
WE: 0.5mm Ir  CE: Mo  RE: Mo|MoO2  Scan Rate: 100mV/s  Melt: S1A 
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4.1.1 WORKING ELECTRODE/ANODE TRIALS 

 

The four candidates chosen for the working electrode were iridium, rhodium, platinum, and 

rhenium.  Rhenium was included to explore the behavior of the refractory metals.  Each 

electrode was subjected to the same range of potentials and spent roughly the same period of 

time (2-3h) in the electrolyte.  Figs. 4.2 through 4.5 show the scans of Ir, Rh, Pt, and Re 

respectively in S1A.  More will be discussed in 4.2 DISCUSSION, but it is worth mentioning 

briefly that rhodium sporadically exhibited two peaks in the passivation region, and rhenium 

possessed properties altogether different from the platinum group elements.  The peaks 

associated with metastable film formation and oxygen reduction were scan rate dependent, while 

the oxygen bubble evolution current appeared scan rate independent. 

 
Figure 4.2  Cyclic voltammograms on Ir.  WE: 0.5mm Ir  CE: Mo  RE: Mo|MoO2 
Scan Rates: 250, 100, 50, 20mV/s  Melt: S1A 

 

 

 



 61

 
Figure 4.3  Cyclic voltammograms on Rh.  WE: 0.5mm Rh  CE: Mo  RE: Mo|MoO2 
Scan Rates: 250, 100, 50, 20mV/s  Melt: S1A 

 
Figure 4.4  Cyclic voltammograms on Pt.  WE: 0.5mm Pt  CE: Mo  RE: Mo|MoO2 
Scan Rates: 250, 100, 50, 20mV/s  Melt: S1A 
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Figure 4.5  Cyclic voltammograms on Re.  Note that while all other cyclic voltammograms were 
recorded at 70% iR compensation, only 5% was applied on Re.  WE: 0.5mm Re  CE: Mo 
RE: Mo|MoO2  Scan Rates: 250, 100, 50, 20mV/s  Melt: S1A 
 

4.1.2 A CLOSER LOOK AT PEAK BEHAVIOR 

 

Figs. 4.2 through 4.5 share similar features as highlighted in Fig. 4.1, but several notable 

differences can be seen.  Iridium (Fig. 4.2) and rhodium (Fig. 4.3) had peaks positioned around 

1.0V, but similar peaks were not encountered on platinum (Fig. 4.4).  Instead, platinum appeared 

to have small anodic and cathodic waves around 0.25V.  Rhenium (Fig. 4.5) had a dramatic rise 

in anodic current starting around 0.3V whereas the platinum group elements did not experience a 

significant anodic current until 0.8V and beyond.  In order to better comprehend the peaks, 

particularly those witnessed on iridium and rhodium, scans were performed at 50mV/s and the 

upper and/or lower switching potentials were shifted incrementally. 

 

Fig. 4.6 demonstrated that the anodic passivation peak on iridium remained at the same potential 

and was the same magnitude regardless of whether the scan is performed starting from 0V in the 
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forward direction or from 1.4V in the reverse direction.  Rhodium intermittently possessed single 

peaks (Fig. 4.3) or double peaks (Fig. 4.7) in its passivation region.  There was no correlation 

with the basicity of the melt.  Platinum (Fig. 4.8) exhibited no peaks when applying positive 

potentials, but instead indicated redox reactions centered at 0.25V.  No such tests were 

performed with the rhenium working electrode because rhenium was so badly degraded after its 

initial experiment in S1A that all future trials with it were abandoned. 

 

 
Figure 4.6  Shifting the upper (a) and lower (b) switching potential by increments of 0.1V. 
WE: 0.5mm Ir  CE: Mo  RE: Mo|MoO2  Scan Rate: 50mV/s  Melt: SCAMB1 

(a) 

(b) 
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Figure 4.7  (a) Incrementally increasing the upper switching potential to investigate the anodic 
and cathodic relationships of passivation peaks on rhodium.  Scan Rate: 50mV/s  (b) Both peaks 
shift position and increase in magnitude with scan rate.  Scan Rates: 250, 100, 50mV/s 
WE: 0.5mm Rh  CE: Mo  RE: Mo|MoO2  Melt: SCAMB1 

(a) 

(b) 
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Figure 4.8  (a) Incrementally increasing the upper switching potential.  (b) CV indicating the 
anodic peak at approximately 0.3V is independent of silicide formation.  WE: 0.5mm Pt  CE: Mo  
RE: Mo|MoO2  Scan Rate: 50mV/s  Melt: SCAMB2 

(a) 

(b) 
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4.2 DISCUSSION 

4.2.1 OXYGEN EVOLUTION AND REDUCTION 

 

Fig. 4.1 illustrates the typical behavior encountered on platinum group elements.  If the 

breakdown voltage of MoO2 is used to estimate where molecular oxygen formation is expected 

thermodynamically (0.686V vs. Mo|MoO2), it is clear that a substantial overpotential must be 

applied to generate oxygen bubbles.  Oxygen gas evolution is indicated by the “jitteriness” of the 

j vs. E plot.  What is not easily identifiable is the potential at which free oxide ions are oxidized 

to form oxygen molecules.  These molecules must then coalesce into a bubble of critical radius 

to detach from the electrode and float upwards through the viscous aluminosilicate medium.  Not 

only does oxygen evolution have an activation overpotential associated with it, but iridium (Fig. 

4.2) and rhodium (Fig. 4.3) possess additional signals around 1.0V, interfering with analysis of 

this reaction. 

 

What can be stated with certainty is that oxygen gas evolution is not mass transfer limited.  In a 

range of electrolytes with optical basicity values beyond 0.6, the scan rate had no impact on j vs. 

E behavior (Figs. 4.2 to 4.4).  In fact, even up to 3.5V vs. Mo|MoO2 at a scan rate of 500mV/s, 

there was no indication of a mass transfer, i.e. diffusion limited, peak (Fig. 4.9).  Even at this 

exceedingly high potential, the iridium electrode remained intact, suggesting that free oxide ions 

can quickly diffuse to reach the anode surface or there is a high concentration of free oxide ions.  

Otherwise, electrons would have been ripped away from the iridium working electrode, forming 

Irn+ species that would have dissolved into the molten aluminosilicate electrolyte. 

 

Oxygen bubble reduction is suggested for the cathodic wave which starts around 0.75 to 0.80V.  

It is interesting to note that platinum does not seem to have any passivation peak(s) in this region 

as indicated with iridium and rhodium.  Thus, the cathodic wave is assumed to be wholly 

attributed to the reduction of oxygen molecules to free oxide ions and not related to reduction of 

oxide phases formed on the electrode surface during anodic polarization.  Fig. 4.4 shows the scan 

rate dependence of this cathodic wave on a platinum working electrode.  At high scan rates, 

when returning from 2.0V to 0.7V, there is not sufficient time for the bubbles generated during 

the forward half-cycle to diffuse away from the working electrode.  Any remaining oxygen 
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molecules are reduced back to free oxide ions.  Even at the slowest scan rates (20mV/s), the 

amount of O2 in the vicinity of the working electrode is substantial.  Since the scan rate is lower, 

a smaller cathodic peak is observed.  Scan rates of 100 and 50mV/s show intermediate behavior 

as also witnessed in Figs. 4.2 and 4.3 on iridium and rhodium. 

Figure 4.9  Oxygen evolution behavior up to 3.5V vs. Mo|MoO2 illustrating that mass transport 
of the free oxide ion is not rate-limiting.  WE: 0.5mm Ir  CE: Mo  RE: Mo|MoO2 
Scan Rate: 500mV/s  Melt: S1A 
 

Upon further inspection, for CVs with upper switching potentials of 2.0V on working electrodes 

of approximately 0.2cm2 in S1A, the charge passed for the duration of the oxygen reduction peak 

was on the order of 0.045C.  In other electrolytes, regardless of the working electrode material, 

the same value (0.045C) for charge passed was recorded.  The electrolyte in the vicinity of the 

working electrode was likely saturated by O2 molecules.  It makes sense that the physically 

dissolved O2 concentration is the same in all the electrolytes examined if one considers that the 

value is strongly dependent on temperature but not composition for melts free of transition metal 

oxides[58]. 
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4.2.2 IDENTIFICATION OF PHASES FORMED 

 

As noted in Fig. 4.1 and witnessed in subsequent figures, peaks appeared on iridium and rhodium 

prior to oxygen evolution.  These peaks were attributed to the formation of metastable oxide 

films.  The behavior is not unlike the formation of passive films of chromium (III) oxide on 

stainless steel in aqueous solution in which a kinetically stable barrier layer exists until a high 

enough potential is reached to drive oxidative dissolution[88].  With any passive film, two 

processes are taking place: the passive film is forming (dL+/dt) adding to the barrier layer 

thickness, and/or the passive film is being consumed (dL-/dt).  When the magnitude of dL-/dt is 

greater than (dL+/dt)L=0, the passive film no longer exists and the system becomes transpassive.  

However, unlike chromium oxide on stainless steel, the dL-/dt term at 1575°C is attributed to 

thermodynamic decomposition to metal and oxygen gas and not dissolution to ionic species.  

Table 4.1 lists the Gibbs free energy for a series of reactions involving the platinum group 

elements and oxygen.  Dissolution of the platinum group elements was not witnessed as there 

was no coloration of the electrolyte near the working electrode.  In additional experiments 

performed with Prof. Dihua Wang with pressed pellets of IrO2 at 1575°C, whether left at open 

circuit or under anodic polarization, transformation to iridium was the result with no indication 

of iridium oxide or colloidal iridium metal in the electrolyte. 

 

The notion of a transpassive state for iridium and rhodium is supported by observations of 

Higgins[54] in which a monolayer of PtO2 was formed on platinum working electrodes and the 

oxygen evolution voltage increased with current density.  He witnessed double layer charging, 

formation of an oxide film, and oxygen evolution.  However, at higher current densities, Higgins 

noted that smaller coverage of the working electrode would occur before oxygen evolution.  

Application of higher current densities would be analogous to applying a higher potential.  This 

higher potential was likely beyond the transpassive potential, beyond which metastable PtO2 

would not be formed at all.  Higgins’ observations can be used to support the passivation peaks 

witnessed on iridium and rhodium, but for reasons unknown, at 1575°C in this work, no strong 

indication of passivation was observed around 1.0V on platinum in any electrolyte except for the 

slight inflections at 250, 100, and 50mV/s in Fig. 4.4 

 



 69

The phase of the oxide species on iridium has been speculated to be IrO2.  Table 4.1 lists the 

decomposition voltages and potentials vs. Mo|MoO2 for a variety of phases of each candidate 

working electrode.  The calculated potential for IrO2(s) formation is in very close agreement with 

the observed potential of 0.82V vs. Mo|MoO2 (Figs. 4.1, 4.2, 4.6). 

 

Rhodium sporadically exhibited either one passivation peak or two passivation peaks (Figs. 4.3, 

4.7).  Additionally, rhodium had many oxide phases with decomposition potentials in the range 

of 0.8 to 1.0V (Table 4.1).  No two oxide species can be identified with certainty, although it is 

anticipated that the phase formed around 0.77V vs. Mo|MoO2 contained a rhodium cation of 

lower ionic charge than the phase formed around 0.87V.  This is not only supported by the 

calculated values in Table 4.1, but also a phase such as Rh2O3 may decompose to yield the 

following reaction: 

)()(2)(2)(2 2232 gOsRhOsRhsORh ++⇒ . 

This is highly speculative, but makes some intuitive sense if decomposition occurs by rhodium 

atoms being deposited at the bulk metal substrate/oxide film interface and oxygen molecules 

being ejected from the oxide film/electrolyte interface.  RhO2 would result, and because of 

enhanced electronic conductivity and/or a much thinner layer thickness, the current could 

increase once again to yield a second passivation peak.  In cases where only one peak is 

observed, RhO2 is likely the oxide phase present. 

 
Table 4.1 Calculated decomposition potentials[89] and EMF series (1atm 

2Op ) 

Reaction n ΔG (J) E vs. O2-/O2 (V) E vs. Mo|MoO2 (V) 

)()()( 22 gOsMosMoO +⇒  4 264,826.5 -0.686 0.000 

)()()( 22 gOsIrsIrO +⇒  4 -61,325.4 0.159 0.845 

)()(4)(2 22 gOsRhsORh +⇒  4 33,206.4 -0.086 0.600 

)()(2)(2 2 gOsRhsRhO +⇒  4 -76,310.2 0.198 0.884 

)()(2)( 22
3

32 gOsRhsORh +⇒  6 -97,556.7 0.169 0.855 

)()()( 22 gOsRhsRhO +⇒  4 -89,970.7 0.233 0.919 

)()()( 22 gOsPtgPtO +⇒  4 -166,084.0 0.430 1.117 

)()(2)( 22
7

72 gOsRegORe +⇒  14 474,628.7 -0.351 0.335 
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From purely thermodynamic arguments, the formation of oxide phases of platinum group metals 

at 1575°C is dubious.  Clearly, with such large negative values for ΔG, the formation of an oxide 

phase is counterintuitive.  However, one must consider that the interfacial region between the 

electrode and electrolyte is driven far from equilibrium.  The very fact that the oxide phase has a 

large negative free energy and the temperature is 1575°C should support the notion that thermal 

decomposition is rapid.  This is shown qualitatively on iridium (Fig. 4.3) and rhodium (Fig. 4.4) 

working electrodes where for slow scan rates (20mV/s), almost no passivation peak appears 

because almost as soon as any oxide species are produced, the oxide decomposes to yield metal 

and O2 molecules.  Furthermore, as was described in 4.2.1 OXYGEN EVOLUTION AND REDUCTION, 

the same value for charge passed during the cathodic wave (0.045C) was witnessed on all 

platinum group element working electrodes in all electrolytes.  Any contribution to the cathodic 

wave from oxide film decomposition has been dismissed with the conclusion that any oxide 

phases formed during the forward scan decomposed rapidly.  Thus, in the window of oxide film 

metastability, some oxygen gas evolution is due to oxide decomposition.  Since the dL-/dt term 

should be independent of applied potential, and since IrO2 and RhOx are anticipated to be 

metastable for only a small potential range, beyond 1.1V, all the anodic current is due to the net 

reaction, 
−− +⇒ egOO 4)(2 2

2 . 

 

On neither iridium nor rhodium, no other oxide phases are expected aside from IrO2 and RhOx.  

First, the calculated values listed in Table 4.1 correspond nicely with the observed potentials for 

oxide film formation.  Second, considerations drawn from the CaO-IrO2 binary phase diagram as 

well as the nature of the electrochemical double layer tend to rule out iridate, and by similar 

chemistry, rhodonate phases.  There are no thermodynamically stable binary compounds of CaO 

and IrO2 above 1240°C, and there are none of CaO and Rh2O3 above 1320°C[87].  Since the 

existence of IrO2 is thermodynamically not favorable, this argument bears little weight in the 

context of this chapter.  However, to form a stable iridate phase, a divalent ion would have to 

diffuse to the surface of the electrode and be present to react with an Ir-O complex.  In order to 

reach the electrode/electrolyte interface, the Ca2+ or Mg2+ ion would not only be repelled by the 

anodically (+) polarized iridium anode, but it would also have to diffuse through the inner plane 

of the double layer which would be comprised of densely packed anions.  On the other hand, to 
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form IrO2, adsorbed oxygen species could react on the iridium surface with essentially no mass 

transport limitations, and therefore react as rapidly as charge transfer can occur.  For these 

reasons, IrO2, and by analogy, RhOx, are suggested as the only possible metastable oxide phases. 

 

Attempts were made to calculate the thickness of the film based on the peak height (ip) and 

position of peak potential (Ep)[55].  However, it was soon realized that the equations were not 

applicable because there was not an appreciable concentration of Irn+ in the electrolyte[90].  This 

explained the nonphysical, negative film thicknesses obtained.  Perhaps the Point Defect Model 

by MacDonald[88] and coworkers may be applicable.  The PDM is interesting because it can 

account for potential dependent and independent processes, and the metal ions of the passivation 

layer do not have to be in solution.  The model is complicated and would require refinement to 

deal with thermal decomposition of the passivation layer as opposed to dissolution.  Adding to its 

appeal, the PDM has been shown to work well with PtO defect chemistries in aqueous 

environments[90]. 

 

Platinum did not exhibit a discernable passivation peak around 1.0V like iridium and rhodium.  

Excluding the oxygen evolution reaction and cathodic reduction of molecular oxygen to free 

oxide ions, the features of the platinum working electrode were puzzling.  First, when 

considering passivation of the platinum surface, it may be possible for the decomposition rate of 

PtO2 to be so rapid, that unless scan rates on the order of 1V/s were employed, no peak would 

exist.  Of course, scanning at this rate might introduce artifacts due to the high Cdl and Ru values 

(See 2.1 PRUDENT ELECTROCHEMICAL PRACTICES IN MOLTEN OXIDES).  Perhaps iridium and 

rhodium have the ability to grow a metastable oxide film of several nm but platinum can only 

grow a monolayer resulting in an imperceptible current.  Second, it was peculiar that platinum 

exhibited anodic and cathodic waves around the potential of 0.25V (Fig. 4.8).  The separation 

distance of ip,a and ip,c was 0.09V.  For reversible systems, the separation of Ep,a and Ep,c is 

2.3RT/nF[15].  At 1575°C (1848K), the separation distance is 0.367V/n; 0.09V for ΔEp indicates 

that the number of electrons transferred was 4. 

 

This pair of peaks (Fig. 4.8) appeared whether platinum was the first working electrode 

immersed in the electrolyte or the last.  The most likely transition metal species would have been 
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molybdenum.  Not only was the potential 0.25V away from the Mo|MoO2 reference electrode, 

but the value of n equal to 4 did not correspond to a likely redox couple involving Mon+.  Had n 

been 2, maybe a Mo4+/Mo6+ redox couple was present, but the large shift from the reference 

electrode was still inexplicable.  These peaks were not seen on the other candidate anode 

materials, so a transition metal impurity in the electrolyte was improbable.  Perhaps platinum 

formed a stable phase on its surface that remained intact despite the application of high potentials 

and oxygen evolution.  As shown in Fig. 4.8, the cathodic peak always appeared regardless of the 

upper switching potential.  A calcium platinate phase would be highly unlikely, as even the 

highest decomposition temperature encountered on the CaO-PtO2 phase diagram is 1035°C[87].  

Although the E value for PtO2(g) was listed in Table 4.1, the value for PtO2(s) is not expected to 

be different by more than 0.04V if the formula Higgins[54] lists is extrapolated beyond 1550°C 

to 1575°C. 

 

Rhenium degraded rapidly as oxygen was produced since the boiling point of Re2O7 is 

393°C[71].  Other than a small, needlelike protrusion from its junction with the platinum lead 

wire, it had decomposed entirely.  CVs of the rhenium working electrode showed a significant 

increase in anodic current at 0.31V, a value very close to the predicted formation potential of 

0.335V.  The fact that the free oxide ions reacted at potentials nearly 0.4V less than the 

anticipated value of 0.686V is analogous to the interaction of oxygen and carbon in Hall-Héroult 

cells for the electrolytic production of aluminum.  Because the reaction of oxygen and carbon is 

so favorable, the usage of carbon anodes results in a theoretical reduction of 1.0V of the alumina 

decomposition potential[91].  Despite the significantly greater current densities of rhenium when 

compared with the platinum group metals in S1A, rhenium proved consumable.  Unless the 

oxides of the refractory metals possessed sparingly low volatilities, as a group, they are not 

expected to be satisfactory anodes. 

 

4.3 SUMMARY 

 

CVs of the four candidate anodes were presented in this chapter.  The platinum group elements 

exhibited similar behavior; however, platinum did not exhibit a passivation peak, and it 

possessed a peculiar pair of anodic and cathodic waves around 0.25V.  Iridium and rhodium 
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likely possessed metastable oxide phases formed at approximately 1.0V vs. Mo|MoO2.  

Thermodynamic calculations suggested the phase formed on iridium was IrO2.  Rhodium 

sporadically exhibited either one peak or two peaks, and a rationale was discussed suggesting 

decomposition of Rh2O3 to yield Rh, RhO2, and O2, with RhO2 as the second passivation phase.  

Rhenium decomposed to yield Re2O7, a highly volatile gaseous oxide.  This feature was 

analogous to carbon dioxide formation on graphite in Hall-Héroult cells. 

 

At 1575°C in aluminosilicate melts, the onset potential for the free oxide ion to 

electrochemically react to yield oxygen molecules is anticipated to be around 0.75±0.05V vs. 

Mo|MoO2.  On iridium and rhodium, the reaction of oxygen and metal yields a metastable oxide 

phase that thermally decomposes to yield a small amount of oxygen gas.  However, once the 

applied potential is beyond the transpassive potential, i.e. IrO2 and RhOx are no longer 

metastable and do not form, all oxygen evolution is attributed to the reaction of free oxide ions to 

gaseous oxygen. 
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CHAPTER 5: INFLUENCE OF ELECTROLYTE COMPOSITION ON PERFORMANCE 
5.1 CURRENT DENSITY AS A FUNCTION OF OPTICAL BASICITY 

 

The hypothesis stated in CHAPTER 1 regarded the concentration of the free oxide ion, *
2−O

C , as a 

significant design parameter for governing the current density achieved on the anode at a defined 

overpotential.  The optical basicity scale was chosen because of its ability to provide a global 

measure for the free oxide ion concentration[57].  This section will discuss the results of 

experiments performed in the five aluminosilicate electrolytes outlined in 2.5 ELECTROLYTE 

SELECTION, and will develop a functional relationship of current density and optical basicity on 

iridium, rhodium, and platinum anodes. 

 

Fig. 5.1 displays the j vs. E response of an iridium working electrode in the five electrolytes.  As 

described in 2.6 DETERMINING CURRENT DENSITY, j was determined for each electrode by 

calculating the slopes of current vs. area of immersion lines at fixed scan rates.  Current densities 

determined from experiments performed in different trials but using electrolytes of the same 

composition were most consistent on iridium (within 5%), followed by platinum (within 6%) and 

rhodium (within 18%).  When trend lines were plotted through the average values for current 

density (Fig. 5.2), the data was highly linearly correlated, with R2 values above 0.9 (Table 5.2). 

 

The most significant finding of these plots was that the oxygen evolution current increased with 

increasing optical basicity.  It is also to be noted that the Mo|MoO2 quasi-reference electrode was 

effective as the peak positions of IrO2 passivation and oxygen reduction were consistent across 

all electrolytes.  Rhodium and platinum exhibited the same trends as iridium, although the 

current density values obtained at Λmelt = 0.632 were a bit lower than anticipated.  Table 5.1 lists 

the average current density achieved for each working electrode at 2.0V vs. Mo|MoO2 and 

20mV/s.  It was important to maintain identical experimental conditions and use slow scan rates 

to minimize temperature effects and the contribution of the charging current to the net current.  

Fig. 5.2 is a plot of current density as a function of optical basicity for each working electrode at 

2.0V vs. Mo|MoO2.  The trend lines are drawn with respect to the data points listed in Table 5.1. 
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Figure 5.1  CVs with an iridium working electrode in each of the five electrolytes.  Optical 
basicity values listed adjacent to each voltammogram.  WE: 0.5mm Ir  CE: Mo  RE: Mo|MoO2  
Scan rate: 20mV/s 
 

 

 

Table 5.1  Average Current Density of Working Electrode at 2.0V vs. Mo|MoO2 and 20mV/s 

   Current Density (A/cm2)  

Melt Optical Basicity Iridium Rhodium Platinum 

SCAMA1 0.555 0.018 0.030 0.025 

S1A 0.605 0.276 0.278 0.245 

SCAMB2 0.632 0.312 0.312 0.223 

SCAMB3 0.661 0.535 0.387 0.336 

SCAMB1 0.693 0.641 0.542 0.579 
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Figure 5.2  Current density as a function of optical basicity.  Trend lines calculated from data 
points listed in Table 5.1. 
 

 

 

 

Table 5.2  Equations Describing j vs. Λmelt for Lines Plotted in Fig. 5.2 

Working Electrode m b Correlation (R2) 

Iridium 4.540 -2.500 0.9773 

Rhodium 3.472 -1.875 0.9681 

Platinum 3.621 -1.996 0.9037 
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The validity of the trend lines as accurately predicting current densities from other electrolyte 

compositions was supported by a potentiodynamic test on an iridium plate (2.52cm2) in S1A + 

10wt% FeO.  Λmelt equaled 0.626.  Since the oxygen evolution current showed no dependence on 

the scan rate, the data from 20mV/s experiments were applicable to the near steady state 

conditions of the potentiodynamic trial.  The estimated value for j for this composition was 

0.342A/cm2 compared with the experimental value of 0.351A/cm2 at 2.0V vs. Mo|MoO2.  

Considering the difficulties of making both accurate and precise measurements at 1575°C, 

agreement to within ±3% was astounding. 

 

The notion that the current density was a linearly proportional function of optical basicity was 

also supported by voltammetric studies of Na2O-SiO2 on platinum at 1000°C[45].  This 

relationship was not explicitly stated in the authors’ discussion.  When the mole fractions were 

tabulated as optical basicity values (Table 5.3), and the peak current densities at 50mV/s around 

0.45V vs. a Pt quasi-reference electrode were plotted (Fig. 5.3), a linear relationship was 

obtained.  Unlike the aluminosilicate melts studied at 1575°C in this thesis, the molten sodium 

silicates exhibited a diffusion controlled peak and the temperature was only 1000°C.  

Nevertheless, a linear trend was witnessed. 

 

 

Table 5.3  Optical Basicity and Peak Current Density for Na2O-SiO2 at 1000°C 

ONaX
2

 
2SiOX  Λ j(A/cm2)[45] 

0.222 0.778 0.564 0.018 

0.250 0.750 0.576 0.029 

0.286 0.714 0.592 0.043 

0.333 0.667 0.614 0.053 

0.400 0.600 0.648 0.105 
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Figure 5.3  Trend obtained from reference[45] for j vs. Λ in molten sodium silicates at 1000°C.  
Note that the data point at Λ = 0.614 was omitted from the trend line.  WE: 1.0mm Pt  CE: Pt  
RE: Pt  Scan Rate: 50mV/s 
 

Since the oxygen molecules must coalesce into a critical size to form a bubble which 

subsequently detaches and floats away, it is worth considering the possibility that the viscosity of 

the electrolyte has an effect on the current density.  Since the CVs (Figs. 4.2 through 4.4) 

revealed no dependence on scan rate, and thus no limiting current due to mass transfer of 

reactants or products, this seems to rule out any influence of the viscosity on the apparent 

electrode kinetics in these experiments.  If the viscosity were high, the oxygen bubbles would 

have required a long time to diffuse away from the electrode surface.  Any bubbles adhering to 

the anode would have been areas of electrochemical inactivity because the electrolyte would 

have been physically blocked from interacting at the anode surface.  No anode effect as 

witnessed with CO2 on carbon in molten salts was encountered, likely because the surface 

energies of O2 on platinum group elements in molten silicates were drastically different; the 

bubbles need grow only to small diameters before detaching.  It was likely that the viscosity was 

comparable in all the electrolytes studied, and therefore was not an experimental variable.  This 

was supported by Fig. 9.87a-e, Table 9.26, and Fig. 9.96(I-VII) in the Slag Atlas[57]. From Fig. 
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9.87a-e, S1A, SCAMB2, and SCAMB3 were estimated to have viscosities between 7 and 9 Poise 

at 1500°C.  A variety of synthetic blast furnace slags comprised of CaO-MgO-Al2O3-SiO2 were 

listed and plotted in Table 9.26 and Fig. 9.96(I-VII), respectively.  Remarkably, at 1575°C, all 

measured viscosity values fell between 3 and 4 Poise. 

 

Even if the relationship of j with Λmelt was in fact caused by a different mechanism unrelated to 

the free oxide concentration, there was no denying that the linear equations (Table 5.2), 

applicable to a wide range of molten aluminosilicate electrolyte compositions, could serve as a 

simple engineering scale to enhance productivity at the anode. 

 

5.2 RELATIONSHIPS OF j WITH *
2−O

C  AND
2Op  

 

In the previous section, it was established that the current density exhibited a linear trend with 

increasing optical basicity (Figs. 5.2, 5.3).  It was presumed that the current density increased 

with optical basicity because the free oxide ion concentration increased.  If there truly was a 

causal relationship of *
2−OC  on j, the hypothesis of increasing *

2−OC  to enhance the anodic current 

was correct.  It was assumed there were no other variables affecting the values obtained for j.  

The underlying mechanism of this behavior is developed in this section. 

 

As highlighted in 1.5.1 BASICITY AND THE FREE OXIDE ION, the proportion of free oxide ions has 

been found to increase with network modifier content in a roughly parabolic fashion[59-62].  

Although Park and Rhee[62] studied the binary CaO-SiO2 system while the electrolytes in this 

thesis were CaO-MgO-Al2O3-SiO2 quaternary compositions, it was thought that by adjusting all 

data to the optical basicity scale, the free oxide ion concentrations would be consistent. 

 

Park and Rhee[62] used XPS to obtain the proportion of free oxide ions in a series of glasses 

quenched from 1600°C.  Table 5.4 adapts their data and manipulates it using molar volumes to 

calculate the free oxide concentration, *
2−O

C , in units of mol/cm3.  Note that the notation of Park 

and Rhee was maintained for −2O
X .  This was not the mole fraction of free oxide ions in the glass 

but rather the proportion of the free oxide ion of the total amount of oxygen atoms.  Also, values 
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for the molar volumes of CaO-SiO2 mixtures were not able to be found for 1600°C, so values for 

1700°C were assumed to be adequate.  Figure 5.4 presents the data of Table 5.4 graphically. 

 

Table 5.4  *
2−O

C  Calculated from Proportion of Free Oxide Ions in CaO-SiO2 

CaOX  
2SiOX  meltΛ  −2O

X [62] 1700V (10-6m3)[59] *
2−O

C (mole/cm3)

0.574 0.426 0.689 0.0048 21.4 32.0 x 10-5 

0.520 0.480 0.663 0.0025 21.9 16.9 x 10-5 

0.492 0.508 0.650 0.0017 22.0 11.7 x 10-5 

0.448 0.552 0.630 0.0011 22.1 7.72 x 10-5 

0.400 0.600 0.610 0.0004 22.5 2.84 x 10-5 

0.352 0.648 0.591 0.0003 22.8 2.17 x 10-5 

 

 
Figure 5.4 −2O

C  as a function of Λ in the range of 0.60< Λ<0.70.  Data points listed in Table 5.3. 
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Fig. 5.4 illustrates that the free oxide concentration increased with the square of the optical 

basicity, 2*
2 Λ∝−O

C .  From Fig. 5.2 (and Fig. 5.3, but for a different system at only 1000°C), the 

current density was linearly proportional to the optical basicity, Λ∝j .  The current density was 

therefore dependent on the square root of the free oxide ion concentration, *
2−∝ OCj . 

 

Since the parameters j and *
2−OC are proportional to one another, ratios of j(Λ) and 

)(*
2 Λ−OC should have similar values.  Table 5.5 lists the calculated values for j (equations listed 

in Table 5.2) and *
2−OC  (equation from best fit curve in Fig. 5.4) at optical basicity points of 0.60, 

0.65, and 0.70 on iridium, rhodium, and platinum electrodes.  When ratios are compared for 

Λ = 0.70 and 0.60 and Λ = 0.65 and 0.60, the proportionality *
2−∝ OCj  is undoubtedly 

confirmed.  Except for the ratio j0.70/j0.60 calculated for the rhodium working electrode, all ratios 

listed in Table 5.4 were consistent.  Not only were the relationships for the current density and 

free oxide concentration consistent, but also the ratios for current densities of the three platinum 

group elements were comparable, suggesting the mechanism of the reaction was the same 

regardless of the electrode material. 

 

Table 5.5  Calculated Values for j and *
2−O

C  as Predicted from Best Fit Lines of Figs. 5.2 and 5.3 

Working 

Electrode 
Λ 

j 

(A/cm2) 

*
2−OC  

(mol/cm3) 60.0

70.0

j
j

 
*

60.0,

*
70.0,

2

2

−

−

O

O

C

C
 

60.0

65.0

j
j

 
*

60.0,

*
65.0,

2

2

−

−

O

O

C

C
 

 0.60 0.224 4.00 x 10-5     

Iridium 0.65 0.451 14.1 x 10-5 3.0 3.2 2.0 1.9 

 0.70 0.678 40.5 x 10-5     

 0.60 0.208 4.00 x 10-5     

Rhodium 0.65 0.382 14.1 x 10-5 2.7 3.2 1.8 1.9 

 0.70 0.555 40.5 x 10-5     

 0.60 0.177 4.00 x 10-5     

Platinum 0.65 0.358 14.1 x 10-5 3.0 3.2 2.0 1.9 

 0.70 0.539 40.5 x 10-5     
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The current density appeared to be related to the square root of the concentration of the free 

oxide ion.  Recall that the scan rate had no effect on the oxygen evolution current.  It was 

assumed that even if there was another interfacial phenomenon such as Langmuir adsorption, the 

Butler-Volmer equation was applicable[92].  (See also 1.4 A FUNDAMENTAL ELECTROCHEMICAL 

EQUATION.)  It was tempting to use these relationships as a backdoor approach to determine αf, 

the transfer coefficient for the anodic reaction, 
−− +⎯→⎯ eOO f 42 2

2 . 

The Butler-Volmer equation can be expressed in terms of current density, j, instead of current, i, 

( )RTFRTF
meltOO

bfbf eeCCFkj //*
)(

*0
2

2
ηαηααα −−= − . 

All the parameters in the equation were fixed except for f

O
C α*

2−  as the electrode material (k0), 

furnace atmosphere ( *
)(2 meltOC ), temperature (T), and overpotential (η) were constant.  At an 

overpotential of about 1.2V, the term RTFbe /ηα− became trivial.  Since *
2−∝ OCj , it was apparent 

that αf was on the order of 0.5.  A forward transfer coefficient of 0.5 was reported by Emi, 

Sakuraya, and Sanbongi[46] from Tafel slopes in CaO-SiO2 melts at 1480°C and 1590°C under 

an argon atmosphere.  However, unlike the conclusion presented in this thesis that charge 

transfer limited the electrochemical reaction over a very wide range of potentials, they stated that 

mass transfer became rate limiting in as little as 10msec from decay curves obtained using a 

potentiostatic double pulse method. 

 

The effect of adjusting the partial pressure of oxygen above the headspace in the furnace was not 

examined with any of the five aluminosilicate electrolytes in this thesis.  By systematically 

changing the partial pressure of oxygen above the melt and allowing sufficient time to 

equilibrate, the physically dissolved concentration of oxygen molecules would have shifted in 

accordance with Bunsen’s Law, )(
*

)( 22
)( gOmeltO pTkC = [58].  If holding all other parameters in the 

Butler-Volmer equation constant, b
gOpj α

)(2
∝ , since *

)(2 meltOC  is directly proportional to )(2 gOp .  

Perhaps a value for αb could have been determined for the reduction of oxygen molecules to free 

oxide ions, 
−− +⎯⎯← eOO b 42 2

2 . 
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Suito and Ohtani[48] performed galvanostatic polarization measurements at 1350°C in binary 

alkali silicate melts and found that the exchange current density, j0, increased with )(2 gOp .  Table 

5.6 lists j0 as a function of composition and partial pressure of oxygen for each of the binary 

silicates.  When the values for j0 of a fixed melt composition were plotted against )(2 gOp , in 

many cases, a linear relationship with high correlation was obtained (Fig. 5.5).  Since 

b
gOpjj α

)(0 2
∝∝  and )(0 2 gOpj ∝ , αb was assigned a value of 0.5. 

 

 

 

 

Table 5.6  Exchange Current Density (A/cm2) as a Function of Composition and Partial Pressure 
of Oxygen (Adapted from Suito and Ohtani[48]) 
 

 2Op (atm) 3:2 1:1 2:3 1:2 

 1 0.185 0.180 0.160 0.135 

Li2O-SiO2 0.21 0.150 0.150 0.120 0.130 

 0.03 0.130 0.120 0.105 0.110 

 1 0.505 0.240 0.170 0.135 

Na2O-SiO2 0.21 0.310 0.200 0.140 0.155 

 0.03 0.230 0.145 0.135 0.125 

 1 – 0.290 0.240 0.230 

K2O-SiO2 0.21 – 0.290 0.225 0.230 

 0.03 – 0.155 0.140 0.150 
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Figure 5.5  j0 plotted against )(2 gOp  to estimate αb.  Data points listed in Table 5.6.  The 
3Na2O:2SiO2 and 2Li2O:3SiO2 melts were plotted to illustrate the trend over a wide range of 
optical basicity values. 
 

 

The transfer coefficients, αf and αb have been determined to be 0.5 from the relationships of 

current density with the optical basicity (and therefore the concentration of free oxide ion) and 

exchange current density with the partial pressure of oxygen.  The values of transfer coefficients 

should have been corroborated from Tafel slopes; however, when attempts were made to fit the 

data from CVs out to 2.0V vs. Mo|MoO2, no conclusions could be drawn for α because the plots 

were nonlinear.  Also complicating this treatment was the anodic current occurring prior to 

oxygen evolution due to the formation of metastable oxide films on iridium and rhodium.   

 

The following two equations are useful to describe the mechanisms of multi-electron, multi-step 

reactions[47]: 
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β
ν
γ

α rf
f +=  

β
ν
γ

α r
n b

b −
−

=  

In these equations, γ is the number of electrons transferred prior to the rate determining step, υ is 

the number of occurrences of the rate determining step, r is number of electrons transferred at the 

rate determining step, β is the symmetry coefficient, n is the number of electrons for the overall 

reaction, and f and b denote forward and back reactions.  Assuming the values for αf and αb were 

0.5, and that the activation barrier of the rate determining step was symmetric (β = 0.5), the 

following values were suggested[47]: γf = 1, r = 0, υ = 2, γb = 1, n = 2.  A value of r = 0 could 

make sense if two monoatomic oxygen or two O- species chemically bonded at the rate 

determining step.  However, n = 2 did not support the overall reaction −− +→ egOO 4)(2 2
2 .  

Proper determination of the mechanism for oxygen evolution and reduction would require 

carefully constructed experiments to extract values for αf and αb.  Then, by calculating values for 

γf, r, υ, γb, and n, the exact model for oxygen evolution and reduction could be inferred, along 

with all species involved including but not limited to −2O , )(adsO − , )(2
2 adsO − , )(2 adsO − , 

)(adsO , and )(2 gO . 

 

While a crude estimate for enhancing the current density of the anodic reaction has led to values 

for αf and αb of 0.5, it was clear that more needs to be done in this area if an exact mechanism is 

desired.  Despite the disparity of n = 2 when an overall reaction suggested n = 4, the correlation 

of current density with *
2−O

C  and
2Op is strong and will certainly impact the operation of the 

molten oxide electrolysis cell. 

 

Aside from the relationship of exchange current density with the partial pressure of oxygen, the 

data in Table 5.6 also qualitatively supported the concept that the most basic network modifiers 

contributed the most free oxide ions to the melt.  From Table 1.2, OLiONaOK 222
Λ>Λ>Λ .  The 

optical basicity of the silicate melt has been correlated to a higher concentration of free oxide 

ions, and thus a higher exchange current density.  In Table 5.6, for the same molar ratio of 
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M2O:SiO2, the highest values for j0 were reported for K2O-SiO2, followed by Na2O-SiO2 and 

Li2O-SiO2. 

 

5.3 BEHAVIOR OF THE FREE OXIDE ION IN THE ELECTROLYTE 

 

Undoubtedly, the free oxide ion is the anionic species that participates in electrochemical 

reactions at the anode.  Several authors have drawn this conclusion, but little evidence has been 

provided to support this claim[27,44,45,48].  Perhaps they believed the idea was too elementary 

or obvious.  Or, in many cases, since they were not posed with the task of enhancing the current 

density under electrolysis conditions, they never had reason to question the matter further.  

Whatever the lack of an authoritative basis may have been, the arguments presented in the 

previous section provided a strong case connecting the current density with the free oxide ion 

concentration. 

 

A semi-quantitative connection between the anodic current and the concentration of the free 

oxide ion was found in only one reference.  Interestingly, LaFage and Taxil[27] suggested that 

the product 2
1τj  could be useful as an index of the basicity in soda-lime-silicate glasses.  The 

Sand equation has a linear dependence on concentration (assuming that the diffusion coefficient 

is independent of concentration)[27], 

2

2
1

2
2

1

2
1

* DnFC
j O −

=
π

τ . 

Straight lines were obtained for their melts at 1100°C under an air atmosphere, but they went no 

further to elaborate on the idea that the current was functionally dependent on the free oxide ion 

concentration. 

 

Several authors performing feasibility studies of molten oxide electrolysis from lunar regolith, 

notably from the same university, were of the school of thought that the free oxide ion 

concentration was too low (10-5 mol/L = 10-8 mol/cm3) in molten silicates to sustain electrolytic 

current[8,10,65].  Not only was *
2−OC  low and assumed to be buffered over a wide range of 

compositions, but the formation of new O2- from silicate polymer chains was thought to be a 

kinetically slow process.  In stark contrast to these claims, the free oxide ion concentration was 
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found to range from 5 x 10-5 to 4 x 10-4 mol/cm3 (3 to 4 orders of magnitude greater and 

spanning 1 order of magnitude in range) in melts of similar composition at comparable 

temperatures.  Additionally, from NMR studies, the chemical exchanges among different forms 

of oxygen in molten silicates have been found to be very rapid[45]. 

 

The following concepts elucidate the nature of the free oxide ion in the melt under electrolysis 

conditions: 

 

• The free oxide ion exists as a discrete entity in molten silicates, throughout the bulk and in 

the vicinity of the anode.  It is expected to be the most easily available source of oxygen 

anions at the anode since it is not covalently bound to network formers. 

 

• As the free oxide ions are consumed at the anode, a chemical potential gradient is established 

from the bulk electrolyte to the electrode with a higher concentration of O2- in the bulk.  O2- 

ions diffuse down this gradient at sufficiently high rates (no mass transfer effects have been 

witnessed in this work) resulting in a slight polymerization of the bulk electrolyte as 

exchanges of the form −−−
+

−−
+ +⇒ 224

162
22

13 )()(2 OOSiOSi n
nn

n
nn  occur. 

 

• Concomitantly, as cations from network formers such as Si4+ and tetrahedrally coordinated 

Fe3+ are consumed at the cathode, the melt in the vicinity of the cathode becomes enriched 

with excess oxygen, depolymerizing the silicate structure.  Perhaps these cathodic reactions 

can be depicted as the following: 

)(4)(4)( 24
4 meltOlSiemeltSiO −−− +⇒+  

)(2)(3)( 2
2 meltOlFeemeltFeO −−− +⇒+ . 

Reactions of network modifying cations which are present in the melt to charge balance the 

negative polyanionic clusters likely do not involve free oxide ions: 

)(2)(2 lFeemeltFe ⇒+ −+ . 

 

Since network modifiers have high values for Λoxide (Table 1.2), consumption of their cations 

at the cathode should effectively decrease Λmelt.  When comparing a melt containing FeO 



 89

with an electrolyte free of FeO with the same molar ratios of CaO-MgO-Al2O3-SiO2, it is 

apparent that the melt free of FeO will have the lower Λmelt and hence the lower free oxide 

ion concentration.  This is consistent with O2- being consumed at the anode but not being 

regenerated at the cathode. 

 

Since network formers have low values for Λoxide, consumption of their cations at the cathode 

should effectively increase Λmelt.  If SiO4
4- clusters are considered, more free oxide ions are 

generated at the cathode than are consumed at the anode per Si4+ (4 vs. 2).  This increases the 

free oxide ion concentration. 

  

• Reactions at both polarized electrodes send a ripple across the electrolyte, otherwise the 

anodic reaction would be deprived of free oxide ions.  Thermodynamically, the equilibrium 

distribution of anionic species is desired by the bulk electrolyte.  The exchanges of oxygen 

throughout the melt are rapid (as suggested by NMR[39]) to attain the equilibrium 

distribution of O2-, SiO4
4-, Si2O7

6-, Si3O10
8-, etc.  This equilibrium is predominantly 

established by the composition of the electrolyte with more basic melts possessing a higher 

proportion of free oxide ion, orthosilicate units, and pyrosilicate units as opposed to acidic 

melts containing fewer free oxide ions, longer chains, and ring structures. 

 

There is some evidence supporting these ideas from constant current electrolysis experiments 

performed in S1A+10wt%FeO.  Fig 5.6 is a plot of the voltage of an iridium anode separated 

from a molybdenum cathode by 1.75in (4.45cm) at 2.0A and 1575°C.  The voltages reported are 

vs. Mo|MoO2 positioned 0.875in (2.22cm) from the anode with no iR compensation.  First, the 

voltage is oscillating, indicative of gaseous oxygen evolution.  Second, the potential of the 

electrode increased very slowly with time.  Referring back to Fig. 5.1, to maintain the same 

current density with decreasing Λmelt, the potential must increase.  This is witnessed qualitatively 

in Fig 5.6. 
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Figure 5.6  Potential of the anode vs. Mo|MoO2 during constant current electrolysis at 2.0A. 
Anode: Ir  Cathode: Mo  RE: Mo|MoO2  Melt: S1A+10wt%FeO   
 

 

A high current efficiency of 90% was suggested by Simnad, Derge, and George[93] in binary 

melts of FeO-SiO2 under flowing argon at iron oxide concentrations <70wt%.  Assuming this 

electrolyte behaved similarly, the amount of oxygen gas evolved during electrolysis of 2.0A for 

90min would have been 0.025mol.  The total volume of the electrolyte was only about 65cm3.  

Assuming the FeO behaved similarly to CaO, a melt with an optical basicity of 0.626 would 

merely contain 0.0047mol of O2- initially (Fig. 5.4).  Either the current efficiency was extremely 

low or the free oxide concentration in the bulk electrolyte was replenished from cathodic 

reactions involving either FeO2
- or SiO4

4-.  Quite interestingly, for CaO-Al2O3-SiO2 and MgO-

Al2O3-SiO2 melts under air at 1550°C with iron oxide concentrations of 5wt% and Al/(Al+Si) = 

0.334, for NBO/T approximately equal to 1.1, trends in Fe2+/Fe3+ approached 0.5[60].  

S1A+10wt%FeO was very near these values of Al/(Al+Si) and NBO/T.  If the cathodic reactions 

can be described by 
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( ))(2)(3)(2 2
2 meltOlFeemeltFeO −−− +⇒+  

)(2)(2 lFeemeltFe ⇒+ −+ , 

and if the anodic reaction for the equivalent number of electrons can be represented as 

( )−− +⇒ egasOmeltO 4)()(22 2
2 , 

the free oxide concentration remains constant.  Hence, the potential at the anode remains 

essentially constant.  The slight increase in the potential (Fig. 5.6) was likely due to a higher 

proportion of Fe2+ in the melt.  Another consideration was that the resistance of the electrolyte 

increased slightly with the removal of network modifying Fe2+. 

 

5.4 IMPLICATIONS FOR SCALE-UP 

5.4.1 RECOMMENDATION FOR INERT ANODE 

 

The data presented in Table 5.1 and Fig. 5.2 suggested that iridium would be the best candidate 

to utilize as an inert anode, while rhodium and platinum were comparable.  The trend lines 

indicated the current density achieved on iridium was highest; iridium was the most active anode 

material.  Even if one contended that the trend lines in Fig. 5.2 were not statistically 

differentiable, iridium would still be the best candidate for future development.  Iridium has the 

highest melting temperature at 2446°C (2719K), followed by rhodium at 1964°C (2237K) and 

platinum at 1768°C (2041K).  Iridium should therefore exhibit the best creep resistance and 

mechanical stability at the cell operating temperature forecasted to be around 1600°C (1873K) 

because it has the highest homologous temperature, Tcell/Tmp. 

 

Iridium also possesses the lowest vapor pressure of the candidate anodes[94,95].  Future work 

will determine whether the value is acceptable as any losses of the platinum group metals will be 

costly due to their very high prices.  Another drawback to using iridium is its scarcity.  

Production tends to fall short of industrial requirements despite many of its superior 

properties[96]. 

 

As to why iridium possessed the best current density (Fig. 5.2), the answer remains unclear.  

Without additional tests to extract k0 and the true surface area (which is a function of surface 

roughness at 1575°C), the reason for jIr > jRh ~ jPt cannot be determined.  From the data presented 
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in Fig. 5.2, iridium performed best in terms of current generated per change in geometric surface 

area.  Since the anode shape and depth of immersion will define the macroscopic contact area of 

the anode/electrolyte interface, this metric is satisfactory to the engineer designing the molten 

oxide electrolysis cell.  With expensive materials in highly corrosive melts, minimizing the 

amount of interfacial contact area while maintaining the requisite level of operation is sensible 

and “good enough”.  But to the fundamental electrochemist, discerning whether the higher 

performance of iridium is due to a better catalytic property or rougher surface is important.  

Monitoring the surface roughness in aqueous electrochemistry prior to testing in molten silicates 

is trivial because the morphology will surely be reconstructed at 1575°C to minimize surface 

energy.  The operating temperature of the molten oxide electrolysis cell would enhance diffusion 

along the surface of the grains, most likely yielding a very smooth surface.  If iridium, rhodium, 

and platinum had comparable surface roughness, then k0 of iridium would be highest.  However, 

it may very well be possible that k0
Ir < k0

Pt but roughness(Ir) > roughness(Pt), or vise versa.  

Unless there was a way to quench the working electrode from 1575°C with no change in 

morphology or monitor its surface in-situ to determine the roughness and therefore the true 

surface area, only the metal with the greatest product of k0 and surface roughness can be 

concluded as best barring other operational issues such as volatility, solubility, and cost. 

 

5.4.2 INCREASE THE OPTICAL BASICITY OF THE ELECTROLYTE 

 

As described previously in 5.1 CURRENT DENSITY AS A FUNCTION OF OPTICAL BASICITY, 

increasing the optical basicity of the melt greatly influenced the performance of the anode.  

Referring back to Fig. 5.1, up to 2.0V vs. Mo|MoO2, the anodic current density trajectories were 

divergent over the range of electrolytes.  The process engineer can interpret this plot in several 

ways.  The foreseeable design of the molten oxide electrolysis cell will utilize constant current.  

Melts of higher optical basicity will require less overvoltage for the same current density, i.e., the 

same throughput can be achieved with higher power efficiency.  It is doubtful that a constant 

potential configuration would be built; however, if the overpotential at the anode was held 

constant, the same power consumption would lead to a higher output.  In both scenarios, the 

efficiency of the molten oxide electrolysis cell would be enhanced in melts of greater optical 

basicity. 
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Increasing the concentration of network modifying oxides (hence increasing the optical basicity) 

would also decrease the resistivity of the electrolyte[97].  The potential drop across the 

electrodes amounts to a decrease in power efficiency and is influenced by the anode/cathode 

separation distance and resistivity of the melt.  Since the anode/cathode separation distance must 

be large enough to prevent the interaction of gaseous oxygen and molten metal, decreasing the 

melt resistivity is the only tunable parameter once the interelectode spacing has reached its lower 

limit.  This trend can be shown qualitatively from considerations of the uncompensated 

resistances of 0.5mm diameter iridium working electrodes immersed around 13mm to have 

surface areas around 0.2cm2 (Fig. 5.7).  The distance between the working and reference 

electrodes was roughly 0.875in (2.22cm) in each experiment.  Since the geometry was fixed, Ru 

was an indicator for the melt resistivity. 

 
Figure 5.7  Trend on melt resistivity (as indicated by Ru) plotted against optical basicity.  Line 
drawn freehandedly and merely intended to guide the eye. 
WE: 0.5mm Ir  CE: Mo  RE: Mo|MoO2  WE/RE separation distance: 0.875in (2.22cm) 
 

Important relationships that were not monitored in this thesis were how the optical basicity and 

atmosphere above the electrolyte influenced the redox states of iron.  A higher optical basicity is 
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anticipated to favor Fe3+[58].  This is important for several reasons.  First, if the iron exists 

predominantly as either Fe2+ or Fe3+, the likelihood of cell shorting is greatly minimized.  The 

current will be predominantly transferred by ions as opposed to semicondution or polaron 

hopping[33].  Second, if the majority of the iron in the electrolyte was already present as Fe3+, 

the following reactions would be greatly diminished: 
−++ +⇒ emeltFemeltFe )()( 32  

)()()( 23
22

12 meltOmeltFeOmeltFe −++ +⇒+ . 

Limiting these reactions will maintain high current efficiency of the electrolysis cell. 

 

Increasing the optical basicity is appealing for a variety of reasons, but one must not get too 

carried away with adding basic constituents like CaO and MgO, or else the system will not be 

molten at 1575°C.  Increasing the operating temperature is undesirable because it would further 

decrease the already narrow field of candidates for the inert anode, and it would more rapidly 

degrade the components of the electrolysis cell.  Also, since the source of energy for maintaining 

the cell operating temperature is the Joule heating of the electrolysis current, there may be a 

lower bound on electrolyte resistivity or else the Joule heating might be insufficient. 

 

In 5.2 RELATIONSHIPS OF j WITH *
2−O

C  AND
2Op , the exchange current density was found to 

increase with increasing
2Op .  This observation would be trivial once the molten oxide cell is 

operational because
2Op would increase from 0.21 and approach 1. 

 

5.5 SUMMARY 

 

Adjusting the optical basicity of the electrolyte greatly enhanced the current density on the 

anode.  The underlying reason was found to be the increase in the concentration of the free oxide 

ion.  The current density scaled as *
2−∝ OCj and )(2 gOpj ∝ , but since the partial pressure of 

oxygen is expected to be high in a functional molten oxide electrolysis cell, altering the 

electrolyte composition would be the more effective means at achieving a higher current density. 
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The free oxide ion was present in large enough quantities to sustain electrolytic current.  A 

scheme including reactions at the anode, cathode, and bulk electrolyte was proposed in which the 

free oxide ion concentration varied with the composition of the melt, a value that slowly 

decreases with depletion of network modifiers and slowly increases with depletion of network 

formers. 

 

Iridium was the best anode because it provided the greatest current density.  When other 

properties like its low volatility and high mechanical stability at elevated temperatures were 

considered, iridium stood out as a superior candidate for an inert anode. 

 

Increasing the optical basicity of the melt would impact the power efficiency as a lower 

overpotential would be required to achieve the same current density in a melt of higher basicity.  

The electrolyte resistivity would also be lower for a more basic melt, further enhancing the 

power efficiency.  Since the redox states of multivalent ions are impacted by the basicity of the 

electrolyte, it may also be possible to minimize oxygen solubility and redox looping, thus 

improving the current efficiency of the electrolysis cell. 
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CHAPTER 6: FUTURE CONSIDERATIONS 
 

Over the duration of the past sixteen months of designing and conducting experiments, surveying 

a wealth of literature across many fields, and interpreting results, many interesting conclusions 

have been drawn.  For each result, positive or negative, meaningful or inconsequential, new 

questions arose.  The following questions are posed with some remarks or references for the next 

round of research. 

 

Could a ceramic material function as an inert anode?  (Refer to 2.4.1.2 CERAMICS) 

 

Had it not been for the difficulty of obtaining or fabricating fully dense ceramics, SnO2 and 

Cr2O3 would have been considered for study.  Yttria stabilized ZrO2 (YSZ) closed one end 

tubes (McDanel) were purchased as was silver (Alfa Aesar), but a working electrode was 

never constructed.   The YSZ would have served as an oxygen ion conductor.  Since silver 

oxides are unstable at elevated temperatures[86] and silver has melting point of 962°C, 

gaseous oxygen would have bubbled from this anode.  In the presence of iron oxide 

containing melts, YSZ was predicted to degrade[77], so pursuing this design may have been 

a futile endeavor. 

 

Could a reference electrode be developed to withstand highly oxidizing atmospheres as well as 
be stable in the presence of electrolytes containing iron oxide?  (Refer to 2.4.3 REFERENCE 
ELECTRODE) 
 

A new reference electrode may simply be a quasi-reference electrode composed of platinum 

or iridium.  This would surely withstand oxygen rich atmospheres.  Possibly, the ceramic 

shroud of the Mo|MoO2 electrode could be positioned such that the molybdenum surface is 

not exposed to the gases in the furnace tube.  Or, by depositing a MoSi2 intermetallic phase 

on the exposed surface of the molybdenum rod above the melt line, a passivating layer of 

SiO2 would protect the Mo from oxidation. 
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Rather than a vertical crucible furnace, could a different furnace be used?  (Refer to 3.3 FURNACE 
ASSEMBLY and 2.3 FURNACE TUBE AND CAP CONSTRUCTION) 
 

The furnace utilized in these experiments was a vertical crucible furnace.  While this design 

was good for maintaining atmospheres of inert gases, large batches were required, expensive 

alumina crucibles were single-use, and the heating and cooling times were very slow to avoid 

thermally stressing the alumina furnace tubes.  If studies are pursued to determine the oxygen 

solubility in the melt, solubility of anode materials under polarization, and redox ratios of 

transition metal ions, perhaps an elevator hearth furnace should be used.  Since the molten 

oxide electrolysis cell will operate in oxygen-rich atmospheres, the results would accurately 

represent the behavior in practice. 

 

Could the nature of the passivation peaks on iridium and rhodium be ascertained by the Point 
Defect Model[88] as proposed in 4.2.2 IDENTIFICATION OF PHASES FORMED? 
 

The current density has been shown to vary linearly with the optical basicity for CaO-MgO-
Al2O3-SiO2 melts.  Are comparable values for j obtained in electrolytes comprised of different 
constituent oxides but with the same Λmelt?  (Refer to 5.1 CURRENT DENSITY AS A FUNCTION OF 
OPTICAL BASICITY and APPENDIX B) 
 

A Li2O-Al2O3-SiO2 (19.362-15.068-65.570 wt%) melt decomposed the alumina crucible 

rapidly because alumina was highly soluble.  Also a white, powdery residue was found under 

the furnace cap owing to the volatility of alkali metal oxides.  The answer to this question is 

important because it would bolster the notion that the optical basicity gives the global 

concentration of the free oxide ion; thus the current density at a fixed overpotential could 

serve as a direct measurement of *
2−OC .  It would not alter the proposed usage of CaO-MgO-

Al2O3-SiO2 melts in the molten oxide electrolysis cell. 

 

Could XPS measurements be performed on CaO-MgO-Al2O3-SiO2 melts to quantify *
2−OC ?  

(Refer to 5.2 RELATIONSHIPS OF j WITH *
2−O

C  AND
2Op ) 

 

Because the electrolyte compositions used were primarily CaO and SiO2 and the optical 

basicity gave the proportion of free oxide ions[57], it was assumed that the trend of *
2−OC  vs. 
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Λmelt (Fig. 5.4) was applicable to CaO-MgO-Al2O3-SiO2 systems.  Rather than use this 

approximation, a direct measurement would have been preferable. 

 

The values for αf and αb were suggested to be 0.5.  However, these values did not possess a 
corresponding mechanism that fit the reaction −− +→ egOO 4)(2 2

2 .  Could Tafel plots be 
constructed to determine the oxygen evolution reaction sequence as well as determine the rate 
limiting step?  (Refer to 5.2 RELATIONSHIPS OF j WITH *

2−O
C  AND

2Op ) 
 

This information is desirable to someone interested with fundamental electrochemistry.  It is 

to be noted that determination of these parameters may enhance the performance of the inert 

anode if the surface of the anode can be altered to hasten the rate limiting step.  However, 

since the temperature of the molten oxide electrolysis is so high, any surface modifications to 

catalyze the oxygen evolution reaction are unlikely to last, either by degradation or diffusion 

into the bulk of the anode.  This may in fact be a futile effort for enhancing the current 

density. 

 

Could the electrolyte be separated into an anolyte and catholyte to interrogate the behavior of the 
free oxide ion?  (Refer to 5.3 BEHAVIOR OF THE FREE OXIDE ION IN THE ELECTROLYTE) 
 

It was suggested that the free oxide ion concentration was replenished by polymerization 

reactions and reduction of network forming cations such as Si4+.  If a cation conducting 

refractory material was stable at elevated temperatures, perhaps the electrolysis cell could be 

separated into an anolyte and catholyte.  After constant current electrolysis, the solidified 

silicates could be analyzed for their composition and free oxide concentration. 

 

What are the effects of adding iron oxide to the electrolyte?  (Refer to 5.3 BEHAVIOR OF THE 
FREE OXIDE ION IN THE ELECTROLYTE and 5.4.2 INCREASE THE OPTICAL BASICITY OF THE 
ELECTROLYTE) 
 

Except for an electrolysis experiment performed in S1A+10wt%FeO, all of the melt 

compositions considered were free of transition metal oxides.  The addition of transition 

metal oxides (especially iron oxide in the context of steelmaking) may pose challenges for 

implementation and optimization of molten oxide electrolysis cells.  The behavior of iron 

oxide in melts used in this thesis has yet to be determined. 
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Simnad, Derge, and George[93] suggested a high current efficiency of 90% in binary melts 

of FeO-SiO2 at FeO concentrations <70wt%.  Since the atmosphere was depleted of oxygen 

except for the small quantity generated during electrolysis, the Fe3+ content in the bulk 

electrolyte was expected to be very low.  Hence, shorting via semiconduction and/or polaron 

hopping due to multivalent states was greatly diminished[33].  However, if the oxygen 

content of the headspace in the furnace tube was high and allowed to equilibrate with the 

molten silicate, the Fe3+ content of the melt would have been much higher.  Determination of 

the Fe3+/Fe2+ ratio as functions of optical basicity,
2Op , and iron oxide loading is suggested if 

shorting occurs.  The equilibrium concentration of Fe3+/Fe2+ in the melt should also be 

determined in the presence of liquid iron.  These ratios can be determined using Mössbauer 

spectroscopy, colorimetric wet chemical techniques, or possibly by square-wave 

voltammetry[27,60].  

 

The molten oxide electrolysis cell will operate under highly oxidizing conditions due to both 

the oxygen rich atmosphere and the proposed high basicity melt.  Yang and Belton[98] have 

determined the Fe3+/Fe2+ ratios for slags of similar composition to the electrolytes studied in 

this thesis over a range of basicity and
2Op values.  Fe3+ is highly favored at high basicity 

and
2Op .  Furthermore, iron ore is predominantly ferric in nature.  Compared with cathodic 

reduction of Fe2+ in acidic melts of low basicity, Fe3+ would require an additional electron.  

But the gains in voltage efficiency and throughput far outweigh the decrease in iron 

deposited per electron.  Actually, if detrimental effects of redox looping and oxygen 

solubility at the anode are mitigated and factored, the current efficiency may be greater to run 

in a cell containing predominantly Fe3+. 

 

Iridium has been chosen as the inert anode candidate for future development.  Iridium has a low 
volatility but a very high price.  How can the composition of the inert anode be altered to 
minimize the iridium content and volatile losses?  (Refer to 5.4.1 RECOMMENDATION FOR INERT 
ANODE) 
 

Alloying with a metal of significantly lower cost may be a viable option, especially if the 

alloy resists oxidation or spalling.  A thick anode containing a large fraction of the iridium 

within its core is not an effective use of the iridium.  Perhaps the inert anode would exhibit 
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great enough strength to be fabricated as a thin-walled tube with an end cap.  If not, maybe 

the iridium alloy can be plated on a refractory metal substrate.  The extremely high operating 

temperatures would require a barrier to the interdiffusion of the iridium and the refractory 

metal substrate. 

 

One idea for minimizing volatile losses of iridium is the incorporation of a diffusion barrier 

on the surface.  Perhaps a readily oxidizable element whose stable oxide possesses a 

matching biaxial modulus can be incorporated into the alloy.  Above the melt line, the 

iridium would be jacketed by the diffusion barrier, but where the anode is in contact with the 

molten electrolyte, the oxide phase would dissolve into the melt.  Assuming its expansion 

coefficient is comparable to iridium, an ideal candidate would be alumina.  Alumina would 

not contaminate the electrolyte or the pool of molten metal at the cathode.  The alloy 

composition adjacent to the molten electrolyte would be depleted of aluminum, but since 

iridium is the electroactive material, there would be no detraction in the performance of the 

anode. 

 

What is the best means to determine the current efficiency? 

 

If the cathodic product is separable from the electrolyte and crucible, its mass and 

composition would give the total electrons required to reduce the given amount of metal.  

Since the current and duration are known, the current efficiency is simply calculated.  

However, one would have to wait until the furnace was cool to analyze the product, thus 

limiting the researcher to one heating/cooling cycle per experiment in the vertical crucible 

furnace. 

 

Perhaps oxygen evolution could be a better reaction to study.  The very fact that oxygen is 

fugitive can be an advantage.  An inlet stream of inert gas would be purged until the oxygen 

concentration was zero at the outlet.  While the current is passed, oxygen evolves from the 

anode.  After a transient period dependent on the flow rate of the inlet gas and the volume of 

the furnace tube, the concentration of oxygen in the outlet stream achieves a steady state 

value.  Since the applied current is known, the concentration of oxygen can be determined 
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assuming 100% current efficiency.  Deviation from this concentration can be used to infer 

the current efficiency.  One must be cautious in melts containing transition metal oxides as 

the atmosphere in the headspace of the furnace tube may alter the redox ratio with time as the 

headspace becomes saturated with oxygen.  As the redox values change, so does the 

chemical solubility of oxygen and possibly even the conduction mechanism of the melt.  
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CHAPTER 7: CONCLUDING REMARKS 
 

Molten oxide electrolysis is one of four breakthrough technologies that may drastically reduce 

greenhouse gas emissions associated with steelmaking[7].  Not only would it replace the 

contemporary blast furnace, a capital intensive structure that is the primary source of carbon 

dioxide in modern steelmaking, but the byproduct could be pure oxygen gas, a highly valued 

commodity.  Additionally, a molten oxide electrolysis cell would not displace the physical plant 

already in place with contemporary steel mills; it is simply a new means of generating hot metal.  

It should be viewed as a green technology because of its environmental benefits and 

opportunities for the steel industry to generate profit beyond iron derived products. 

 

Molten oxide electrolysis has been considered by NASA for in-situ resource utilization.  Oxygen 

could be generated from the regolith of planets and moons for respiration and propellant, and 

metals such as iron and silicon could be used for structural and functional materials[8-10].  It has 

even been considered for the remediation of chemical waste[11]. 

 

Though its conception dates back to the beginning of the 20th century[12], only a scant amount of 

literature has been published on topics related to molten oxide electrolysis.  Much stems not from 

electrowinning metals but from oxygen production for space exploration[8-10].  Unfortunately, 

the old literature established a bad precedent as only a narrow range of compositions for the 

electrolyte was considered.  Furthermore, the fields of molten silicate science and 

electrochemistry are both required not only for understanding the behavior of the system under 

electrolysis conditions, but also for properly constructing experiments to extract information. 

 

The work presented in this thesis aimed to overcome the shortfalls of the previous notions of 

how molten oxide electrolysis would operate.  The system as a whole was approached.  Although 

the initial motivation was to develop the inert anode, this was put aside in favor of understanding 

how the electrolyte influenced the anodic current.  It was believed that the development of an 

inert anode for a system with poor efficiency was of little benefit, particularly if the inert anode 

could not function over a range of electrolyte compositions. 
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It has been concluded that the basicity of the electrolyte should be as high as possible, primarily 

to influence the oxygen evolution current, but also to reduce the resistivity and maximize the 

ferric content of the melt.  All of these factor into enhancing the efficiency of the molten oxide 

electrolysis cell. 

 

Iridium has been determined as the best candidate for future development of the inert anode.  

Rhodium and platinum did not have as high a current density, and rhenium, a refractory metal, 

completely volatilized under anodic polarization.  All the platinum group metals are 

exceptionally expensive, but if the corrosion and volatility are negligible, the inert anode could 

always be reclaimed.  Iridium offers a unique combination of properties, but its cost and scarcity 

may be prohibitive unless designs beyond monolithic bodies of pure iridium are pursued. 

 

Despite the rousing enhancements molten oxide electrolysis may offer to a variety of 

applications as disparate as steel production and space exploration, a functional electrolysis cell 

has yet to be developed.  However, the findings reported in this thesis shed new light.  

Experiments were constructed to accurately monitor the behavior of electrode materials and 

determine the influence of the electrolyte composition on the performance of the cell.  The 

approach to the system was unique as were many of the results.  A candidate for the inert anode, 

an absolute necessity for green steelmaking and oxygen generation, was determined.  And while 

speculative, many of the proposed mechanisms were supported by thermodynamic data and 

observations drawn from other fields. 

 

The implementation of a molten oxide electrolysis cell poses many operational and materials 

related challenges, especially with regard to the inert anode.  Ultimately, these hurdles must be 

overcome because the sustainability of our environment and the enabling resource of the 

civilized world are intimately linked.  The author’s outlook is optimistic that the conclusions 

drawn from this thesis will be of great benefit for advancing molten oxide electrolysis from a 

lab-scale novelty to a full-fledged means of green steelmaking and exploration of the cosmos. 
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APPENDIX A 

 

Table A.1  Components to Construct Furnace Cap (see Figs. 2.1 and 2.2)  

Component Description Supplier Part Number Material 

Ultra-Torr Fitting, NPT-¼” x ¼” Tube Swagelok SS-4-UT-1-4BT Stainless Steel 

Hollow Hex Plug, Male NPT-¼” Swagelok SS-4-HP Stainless Steel 

Adapter, NPT-¼” x NPT-¼” McMaster Carr 48805K36 Stainless Steel 

¼” Barbed Fitting x NPT-¼” McMaster Carr 53505K64 Stainless Steel 

6 ¾” Blank Flange MDC Vacuum F675000 Stainless Steel 

6 ¾” x 5” Flange MDC Vacuum F675500 Stainless Steel 

Gasket, 6 ¾” Flange MDC Vacuum GK-500 Copper 

Hex Cap Bolts, 5/16”–24 x 2 ¼” MDC Vacuum BA-300 Steel 

-425 O-ring Grainger 1WKX9 Silicone 

Cooling Lines, ¼” Diameter Grainger 3P669 Copper 

¼” Barbed Fitting x ¼” Tube Swagelok B-4-HC-1-400 Brass 
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APPENDIX B 
Table B.1  Listing of Electrolyte Compositions in Mole Percent (see also Table 2.1) 

Figure[87] Melting 
Point°C FeO Li2O CaO MgO Al2O3 SiO2 Λmelt 

442 1050 - 20.000 46.667 - - 33.333 0.740
443 932 - 23.451 - 14.903 - 61.646 0.583
449 1026 - 30.904 - - 8.524 60.572 0.588
449 1033 - 33.333 - - - 66.667 0.584
450 975 - 28.357 - - 4.595 67.047 0.573
453 1026 - 34.337 - - 7.831 57.831 0.599
598 1320 - - 30.304 11.244 - 58.452 0.601
598 1379 - - 50.295 8.397 - 41.308 0.683
598 1357 - - 27.650 27.858 - 44.493 0.637
598 1350 - - 34.442 17.799 - 47.759 0.637
630 1335 - - 59.064 - 33.222 7.713 0.725
682 1205 66.667 - - - - 33.333 0.740
682 1177 72.808 - - - - 27.192 0.778
682 1178 58.122 - - - - 41.878 0.693
696 1083 44.361 - - - 9.513 46.126 0.640
864 1203 26.957 - 36.521 - - 36.522 0.722
864 1208 33.333 - 33.333 - - 33.334 0.740
869 1070 36.318 - 6.734 - 6.734 50.214 0.632
869 1108 47.515 - 6.872 - 6.872 38.742 0.682
870 1118 35.663 - 26.264 - 5.904 32.169 0.718
870 1125 21.449 - 32.352 - 6.924 39.275 0.679
871 1178 23.626 - 38.187 - 3.669 34.518 0.716
874 1250 53.986 - 27.049 - 5.441 13.524 0.834
875 1215 16.368 - 41.815 - 4.539 37.277 0.698
882 1230 - - 12.651 15.045 9.634 62.670 0.560
882 1235 - - 29.294 14.848 9.244 46.613 0.619
899 1222 - - 11.053 13.989 11.054 63.905 0.555
900 1236 - - 32.808 8.935 8.258 49.999 0.616
909 1270 - - 23.101 18.775 9.391 48.733 0.606
916 1234 - - 33.994 11.991 10.011 44.004 0.632
2246 1295 16.688 - 20.828 20.827 - 41.656 0.662
2652 1310 - - 38.124 4.733 14.286 42.858 0.634
2652 1330 - - 28.980 13.877 14.286 42.857 0.622
2654 1430 - - 41.949 18.041 10.016 29.995 0.686
2661 1420 - - 43.690 17.235 11.768 27.307 0.693
5451 1330 - 13.333 - 10.000 23.333 53.334 0.572
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