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Abstract The independence results in set theory invite the search for new and justi-
fied axioms. In Chapter 1 I set the stage by examining three approaches to justifying
the axioms of standard set theory (stage theory, Gbdel's approach, and reflection
principles) and argue that the approach via reflection principles is the most success-
ful. In Chapter 2 I analyse the limitations of ZF and use this analysis to set up a
mathematically precise minimal hurdle which any set of new axioms must overcome
if it is to effect a significant reduction in incompleteness. In Chapter 3 I examine the
standard method of justifying new axioms-reflection principles-and prove a result
which shows that no reflection principle (known to be consistent via large cardinals)
can overcome the minimal hurdle and yield a significant reduction in incomplete-
ness. In Chapter 4 I introduce a new approach to justifying new axioms-extension
principles-and show that such principles can overcome the minimal hurdle and much
more, in particular, such principles imply PD and that the theory of second-order
arithmetic cannot be altered by set size forcing. I show that in a sense (which I make
precise) these principles are inevitable. In Chapter 5 I close with a brief discussion of
meta-mathematical justifications stemming from the work of Woodin. These touch on
the continuum hypothesis and other questions which are beyond the reach of standard
large cardinals.
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Introduction

What are the mathematical truths? There was a time when the answer to this

question was thought to be straightforward: the truths of mathematics are those

statements that are derivable from a sufficiently rich set of axioms. A candidate for

such a set of axioms is ZF. These axioms are extremely powerful; they are strong

enough to develop all of current mathematics and constitute what is regarded as the

standard system of mathematics. Can all of the mathematical truths be derived from

the standard system of mathematics? Surprisingly they cannot! This remarkable re-

sult is due to G5del, Cohen, and others. They showed that there are central problems

of mathematics which are not merely tough to figure out-a phenomenon common

to all subjects-but which are in principle impossible to figure out on the basis of

the standard axioms of mathematics. One must therefore seek out and justify new

axioms if one is to come closer to capturing mathematical truth. This is the task I

undertake in this thesis.

I will begin in Chapter 1 by examining three approaches to justifying the standard

system ZF: the traditional approach, Godel's approach, and the approach in terms of

reflection principles. After pointing out that the traditional approach is unsuccessful

I will argue (i) that Gbdel's approach yields a justification of ZF but only at the cost

of assuming AC and (ii) that the approach in terms of reflection principles yields a

justification of ZF (and more) without assuming AC. This naturally leads to the

question of whether reflection principles can justify extensions of ZF that are strong

enough to yield a "significant" reduction in incompleteness. Chapter 2 is devoted

to making precise the notion of a "significant" reduction in incompleteness and to

setting up a mathematically precise Minimal Hurdle which any set of new axioms
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must overcome if it is to effect a significant reduction in incompleteness. This puts us

in a position where we can prove results of the form: axioms of type A can (or cannot)

yield a significant reduction in incompleteness. The first result of this form occurs

in Chapter 3 where I show that no reflection principle known to be consistent can

overcome the Minimal Hurdle. This limitative result encourages us to look for a new

method of justifying axioms. In Chapter 4 I introduce a new method for justifying

axioms and use it to derive two extension principles: EP and GEP. I show that EP

overcomes the Minimal Hurdle and that GEP yields a much greater reduction in

incompleteness-in particular, it implies PD and freezes the theory of second order

arithmetic. In the final chapter I chart out the limitations of this approach and begin

an examination of a new-metatheoretic-method of justification.
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Chapter 1

The Standard System

Our starting point is the standard axioms of set theory and the various justifications

for these axioms. §1.1 begins with a discussion of the fundamental notions of set

theory and concludes with a criticism of the standard justification of ZF. Along the

way I draw a distinction between two conceptions of the universe of sets-actualism

and potentialism, a distinction that will play a central role in subsequent chapters.

§1.2 argues that an approach due to Godel (in unpublished work) yields a justification

of ZF but only at the cost of assuming AC. In §1.3 I argue that reflection principles

give a uniform and streamlined justification of ZF (and more) without presupposing

AC. These principles will be pursued further in Chapter 3 where I chart out the

extent to which one can found extensions of ZF on their basis.

1.1 The Traditional Approach

1.1.1 Primitive Notions. There are two primitive notions in the foundations of

set theory. The first primitive notion is the operation of set formation, which I shall

abbreviate 'set of' or, more explicitly, 'set of x's' where "the variable x ranges over

some given kind of objects" (Gbdel (1964)). The 'set of' operation takes a given kind

K of objects and forms a single object S, called a 'set', which has as members exactly

those objects of kind K. Another way to state this is in terms of collections of objects

considered as many: the 'set of' operation takes a collection C of objects considered
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as many and produces a unity S. The advantage of phrasing matters in this second

way is that it makes it clear that the objects of the given kind are already available,

thus distinguishing it from the naive principle of comprehension that leads to Russell's

paradox. The disadvantage is that when one speaks of a collection considered as many

(what I shall refer to as a plurality) it is tempting to think that one is talking about

an object. I will use the terminology of pluralities but I want to stress two things:

first, that a plurality is not an object, it is an array of objects, and, second, that all

talk of pluralities can be rephrased in terms of given kinds.

The relation 'a is a member of S' is abbreviated 'a E S'. For example, consider

the natural numbers 0, 1, 2, 3, ... Applying the operation 'set of' to this given kind

or plurality we obtain the set {0, 1, 2, 3,... }, an object which has as members all and

only the natural numbers. This object is denoted w.

The second primitive notion is the operation of powerset. This is the operation

which, given a set X, produces the set 9(X) of all arbitrary subsets of X. Here an

arbitrary subset is to be contrasted with a definable subset. As examples of definable

subsets of w consider the set of even numbers and the set of odd numbers. Since there

are only countably many definitions there are only countably many definable subsets

of w. In contrast there are uncountably many arbitrary subsets of w.

Three comments are in order. (1) In formulating the operation of set formation I

said that it forms a set of any "given kind" of objects. It follows that the collection of

"all sets" is not a "given kind" for if it were then we should be able for form the set

of all sets which is impossible. For those who think that "the sets" constitute a given

kind this simple fact will be taken to demonstrate that the operation of set formation

is not a primitive of set theory. Below in §1.1.5 I will argue that the inclination to
view "the sets" as a constituting a given kind rests on a confusion. (2) Granting the

first primitive notion, we can take in place of the second primitive notion the notion

of an arbitrary subset. For given the notion of an arbitrary subset can arrive at the

operation of powerset by applying the set formation operation to the kind of sets

consisting of arbitrary subsets of a given set. (3) One might think that the second

primitive notion can be founded on the first. But this is a mistake. Given a set X
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the first primitive notion allows us to form sets corresponding to any kind of elements

of X. This will yield the definable subsets of X but it will not yield all arbitrary

subsets of X. Of course, the procedure will yield all arbitrary subsets of X if we

appeal to the notion of an arbitrary subset in specifying a given kind; for example,

if we let A be an arbitrary subset of X and consider the kind of object (or plurality)

corresponding to A. But such a justification is circular. The notion of an arbitrary

subset is fundamental. The notion of a plurality in a sense richer than that associated

with definability is derivative.

1.1.2 The Iterative Hierarchy. Given the above primitives we are now in a

position to give an informal characterisation of the iterative hierarchy of sets.

The powerset operation can be iterated. Thus, starting with a given set, say the

set of the natural numbers w, we can take its powerset to obtain 9(w) and then we

can take the powerset of this in turn to obtain t(9(w)), and so on. In this way we

generate a hierarchy w, Y(w), Y(Q(w)), ... Our starting point in this case was

w. But we could have started with any set. For example, we could have started with

the set of giraffes or the set of fundamental particles. Of all possible starting points

there is a simplest, namely, the set which contains nothing, that is, the empty set,

which we shall denote 0. Let us start here, at the simplest point, and construct the

hierarchy of pure sets.

The first level of the hierarchy is V0 = 0. We can take the powerset of this

to obtain V, = Y(0). Continuing in this way we obtain V2 = (9( 0)), V3 =

0t(e (F (0))), ... What next? After all of the finite stages there is the first limit

stage w. At this stage we form the set V& = Un<w V,~, that is, the set consisting of

everything that came before. We are then in a position to start taking powersets

again. And so we continue to the next limit stage w + aw. What next? At this

stage we can form the set Vw+, consisting of everything that came before, that is

V+- = UIJ•<•,, VO. We are then in a position to start taking powersets again ...

15



vw-w

w +w

Notice that there are three salient features in the above account. First, we applied

an operation, the powerset operation, to get from one successor stage to the next.

Second, we applied an operation, the summing up operation (a special case of the set

formation operation), to pass through limit stages. Third, we ended our description

with the elusive three dots ... The first two operations are clear but the three dots

are something of a puzzle since they never seem to go away. For example, suppose

we have applied the summing up operation w-many times. Even then we are not at

an end. For we can apply the summing up operation to get V,.,. Then we can start

taking powersets again ...

1.1.3 Nature. There are two axioms of nature: Extensionality and Foundation.

Extensionality serves to distinguish sets from other objects, such as concepts,

which also, in some sense, collect a plurality into a unity. The axiom of Extensionality

says that two sets A and B are the same if and only if they have the same members;

that is, a set is determined by its members. This is in contrast to a concept. For

compare the concepts beam of light and array of photons. These concepts apply to

exactly the same things (that is, they have exactly the same things "falling under"

them) and yet they are not the same; that is, a concept, in contrast to a set, is not

determined by the objects that "fall under" it.

Foundation serves to rule out certain pathologies by stipulating that each set b is

grounded in the sense that if you pick a member of b and then pick a member of that

and then pick a member of that and so on, then you will eventually "ground out" at

a set which has no members; that is, Foundation asserts that every non-empty set
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has an e-minimal element.

The axioms of Extension and Foundation pertain to the nature of sets. Both are

implicit in our informal characterization of the concept of set as built up from below

by iterating the powerset operation.

1.1.4 Extent. But there is more that is implicit in our informal account than just

the axioms of nature and it is here that we encounter the first issue surrounding the

elusive three dots, namely, the issue of how far the hierarchy extends. We saw that

there is a set 0 and when we applied the summing up operation for the first time

we obtained an infinite set V,. Thus, already at this stage, we have two axioms of

extent: the axiom of Emptyset and the axiom of Infinity. Going further we saw that

there is a level V,.,. At this point we took the easy way out by writing down three

dots.

One would like to say something general about the elusive three dots. There are

two issues. First, there is the issue of whether the three dots span a determinate

totality. Second, there is the issue of which levels the three dots span; for example,

whether there is a level V, that satisfies all of the axioms of ZFC.

1.1.5 Two Conceptions: Actualist and Potentialist. The first issue sur-

rounding the elusive three dots is whether they span a determinate plurality. There

are two views:

(1) ACTUALIST: The sets form a determinate plurality.

(2) POTENTIALIST: The sets do not form a determinate plurality.

In other words, the actualist maintains that "the sets" form a given kind and the

potentialist maintains that they do not.

The actualist owes us an account why the summing up operation does not apply

to "the sets". After all, according to the actualist "the sets" are on a par with the

finite sets insofar as both are determinate pluralities (or given kinds). What then is

it about the former that distinguishes it from the latter in such a way as to render
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the set formation operation inapplicable? The actualist can tell us that the former

is a 'proper class'. But this doesn't answer our question, it just shifts it. For then

we should like an account of the summing up operation does not apply to proper

classes. What is it .about given kinds which form proper classes that distinguishes

them from given kinds that do not in such a way as to render the set formation

operation inapplicable?

The potentialist, of course, doesn't face this problem since the potentialist thinks

that the summing up operation always applies and that consequently there is no

determinate totality V. The actualist finds this absurd. For it would seem that the

above account explicates the concept of set. Why then can we not just consider the

extension of this concept? Surely this is a determinate totality. The potentialist

must maintain that the above account does not explicate the concept of set. How? I

suggest the following response on behalf of the potentialist: It is a mistake to speak

of the above account since we concluded it with the elusive three dots. If we stop the

account at some stage, say when we obtained V,.,, and we treat this as an account of

'the concept of C-set' then we can indeed make sense of the extension of the concept

of C-set. But the concept of set goes beyond the concept of C-set; the extension of

the concept of C-set is a set. What then of the concept of set. Well, there is more

to being a set than being an extensional well-founded object, just as there is more to

being a natural number than having finitely many predecessors. For example, just as

it is impossible for there to be a largest natural number n it is impossible for there

to be a largest set X. In the first case this is because the concept of natural number

involves the closure condition that every number has a successor; in the second case

this is because the concept of set involves the closure condition that every set has a

powerset. But, in contrast to the case of the concept of natural number, there is no

single closure condition (such as closure under powerset) which exhausts the concept

of set. Every time one tries to give a definite account of which closure conditions

embody the concept of set one ends up having described a new set, namely, the

set closed under the proposed closure conditions. One might try to get around this

difficulty by characterizing the concept of set in terms of "all" such closure conditions

18



but again this involves the elusive three dots. Until we have been told what is meant

by the elusive three dots we have not fixed the concept of set and so we have not

fixed the extension V of the concept of set.

I want to underscore two respects in which the actualist-potentialist distinction in

the context of set theory differs from the same distinction in the context of number

theory. First, in the context of number theory the actualist could retreat to higher

ground, say set theory, to justify the view that the totality of natural numbers is an

actual completed totality. But in the context of set theory, the universal nature of the

subject robs the actualist of such a retreat. Second, in the context of number theory

the potentialist view leads to a system which is quite different from a mathematical

point of view than that obtained on the actualist. This is because the central problems

of number theory are not about specific numbers, but instead about all of the numbers.

Many such problems will be regarded as indeterminate by the potentialist. In set

theory the situation is quite different. Almost all of the problems in set theory

pertain to an initial segment of the universe (the analogue of a specific number) and

on such questions the potentialist and the actualist will agree.

In summary, I have raised two problems, one for the actualist and one for the

potentialist. The problem for the actualist is to explain why the operation of set

formation does not apply to the determinate totality consisting of "the sets". What

is it about the nature of this totality (of this given kind) that resists being brought

together to form a set? I do not see how to answer this question. The problem for

the potentialist is to explain why "the sets" do not form a given kind. I have tried

to meet this challenge above by underscoring the fact that "the" concept of set like

the concept of natural number involves closure principles, but that in contrast to the

concept of natural number there is no fixed set of closure principles that we can point

to--each determination of closure principles leads to other richer closure principles,

each attempted determination of "the" concept of set falls short.

I do not profess to have settled the issue between the actualist and the potentialist.

I don't even have a settled view on the matter. For the moment I would like explore

the terrain by investigating the extent to which the actualist and the potentialist can
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justify new axioms. This will entail elaborating the potentialist view. One thing that

I will show is that a version of the potentialist view provides a justification of axioms

which are much stronger than those which can be justified on the actualist view. This

will be shown in Chapter 4.

1.1.6 Stage Theory. The second issue surrounding the elusive three dots is which

levels they span. We have already seen in §1.1.4 that the levels V, and V,., exist. Is

there a level V, which is a model of ZF?

One of the traditional ways of attempting to turn our informal account into a more

precise account-one which will enable us to see more clearly which levels exists-is

due to Shoenfield (1967). Here is a description of the account:

When can a collection of sets be formed into a set? For each set x in the

collection , let Sx be the stage at which x is formed. Then we can form

a set of this collection iff there is a stage S which follows all the S ...

Since we wish to allow a set to be as arbitrary a collection as possible,

we agree that there shall be such a stage whenever possible, i.e. whenever

we can visualize a situation in which all of the stages in the collection are

completed. (Shoenfield (1967, p. 238-9))

In order for this account to be precise one should have to explain the notion of

possibility. Shoenfield does this in terms of what is visualisable. But this will not do

since most of the stages that occur in Shoenfield's discussion (for example, VNl) are not

visualisable; furthermore, such stages (as Parsons (1977) argues) are not intuitable in

any reasonable sense of the notion.

Shoenfield does give an example of what is possible or visualisable in the sense he

intends-the principle of cofinality:

Suppose that we have a set A, and that we have assigned a stage S, to

each element a of A. Since we can visualize the collection A as a single

object (viz. the set A), we can also visualize the collection of stages Sa as
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a single object; so we can visualize a situation in which all of these stages

are complete. (Shoenfield (1967, p. 239))

Using the principle of cofinality Shoenfield gives a justification of Replacement. It

is hardly surprising that one can do this since the principle of cofinality just is the

axiom of Replacement.

What we seek is a general principle which gives a uniform account of a vast array

of the axioms of set theory, one which in justifying a given axiom does not presuppose

that very same axiom. A good example of such an account is due to Gddel.

1.2 Gddel's Approach

1.2.1 The Account of 1933. G-del arrives at the iterative conception by liber-

ating the simple theory of types from three restrictions; first, he permits mixed types,

second, he treats 'a E b' as false (as opposed to meaningless) when the type of b is

less than or equal to the type of a, and third, he admits types of transfinite order. 1

Thus, starting with the empty set of individuals the sets of finite type are: Vo = 0,

V1 = t(Vo), V2 = (VI) -- Vn+ = Y(Vn) ... The hierarchy then continues:

You can make the class of all classes of finite type play the role of the class

of individuals, i.e., take is as a basis for a new hierarchy of types and thus

form classes of type w + 1, w + 2, and so on for each transfinite ordinal.

(Gddel (*19330, p. 7))

That is, we have V•~ 1 = k(VA), Vx = U~< ,, for A a limit ordinal, and V =

This approach resembles the standard approach in that the ordinals are assumed

to be given antecedent to set theory. Gddel makes precisely this point before turning

to a refinement of the approach:

[I]n order to state the axioms for a formal system, including all the types

up to a given ordinal ct, the notion of this ordinal a has to be presupposed
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as known, because it will appear explicitly in the axioms. On the other

hand, a satisfactory definition of the transfinite ordinals can be obtained

only in terms of the very system whose axioms are to be set up. (Godel

(*19330, p. 8))

But we can bootstrap.

The first two or three types already suffice to define very large ordinals.

So you can begin by setting up axioms for these first types, for which

purpose no ordinal whatsoever is needed, then define a transfinite ordinal

a in terms of these first few types and by means of it state the axioms

for the system, including all classes of type less than a. (Call it S0 .) To

the system S, you can apply the same process again, i.e., take an ordinal

3 greater than a which can be defined in terms of the system S, and by

means of it state the axioms for the system Sp including all types less

than j, and so on. (Godel (*19330, pp. 8-9))

In this manner we can bootstrap our way up the cumulative hierarchy: At stage w

we sum up to get V,. Then we apply the powerset operation to get V,4+, Vw+2 and

so on. Given Vw+2 we can set up a system Sw+2 and define a large ordinal al along

which we can iterate the powerset operation to obtain V17. We can then set up a

system S, and define a larger ordinal a 2 which enables us to to bootstrap up to V12

and so on until we reach a limit stage, at which point we sum up to get V,, (where

aw = supn<ý an) as we did at stage w...

One of the things that needs to be spelled out in this account is the resources at

our disposal when defining large ordinals. We are told to set up, in the first step, the

system Sw+2 and then define a transfinite ordinal al in terms of V1 w+2. Our question

is: What role does Sw+2 play? There are four issues: (1) Is Gbdel demanding that al

be given by a well-ordering which is provably a well-ordering in Sw+2? (2) Or can we

consider well-orderings which are definable over V±+2 in the language MJ+2 of SW+2?

(3) Or, even better, can we consider well-orderings which are definable over V/w+2 with
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parameters in V+2 in the language Y£+2? (4) Finally, can we appeal to the Axiom

of Choice?

It does seem that Godel is referring to definability with parameters, otherwise one

couldn't get very far. And it is clear that he is assuming AC since later he notes that

one of the weak points of his account "is connected with the axiom of choice". (Godel

*1933, 19) Granting this, one can obtain pretty long well-orderings. For example,

starting with the parameter V,•1 we can get a well-ordering of length f1 = 2",

where n, is defined to be Card(V,+,), the cardinality of V,+,. It is more convenient,

however, to take a well-ordering of length 3, + 1 since this will take us up to the

successor stage V1 ,+ and we can use the parameter VD, to get a well-ordering of

length nn, + 1. After w-many iterations we reach the first M-fixed point, that is, the

least r such that M,, = n. We can then apply the summing up operation to get VK.

And applying the powerset operation a couple of more times we can get to V,+ 2 and,

taking V,•1 as a parameter, get an even larger ordinal. So the process doesn't bog

down at a fixed point. We can keep going. Notice that:

There are two different ways of generating types, the first consisting of

going over from a given type to the next one and the second in summing

up a transfinite sequence of given types, which we did, e.g., in forming the

type w. (Godel (*19330, p. 9a))

The second operation (when conjoined with operation of taking powersets) is what

ensures that we can keep going. We applied it above to get V,, V,4, and V,. The

only other operation we appealed to was the trivial process of taking power sets

and the significant operation of bootstrapping. Appearances to the contrary, by the

first operation Godel must be referring to what we have called the 'bootstrapping'

operation since this is the centre piece of his discussion. This operation probably also

subsumes the operation of 'jumping' from one level to the next by the application of

the powerset operation. Nevertheless it is useful to separate three ways of generating

types: Powerset, Summing Up, and Bootstrapping. Given that we can "always"

apply the powerset operation and the summing up operation there is no end to the
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hierarchy. But this doesn't tell us very much about how far the hierarchy extends.

The first instance of bootstrapping, namely, going from M, + 1 to :2, + 1 does tell

us something about the extent of the hierarchy. Of course, as before there is no

end to the applications of this operation. But this doesn't add much to the first few

applications of the operation: It just gives "more of the same". What we would like

:is a new operation, one which transcends the previous operations.

In *19330 Gddel does not elaborate on how one might generate new operations.

In fact, he follows the above quoted statement with the following:

Now the statement made by the axioms of the theory of aggregates is

essentially this, that these two processes do not lead you out of the system

if the second process is applied only to such sequences of types as can be

defined within the system itself. [That is to say: If M is a set of ordinals

definable in the system and if to each ordinal of M you assign a type

contained in the system, then the type obtained by summing up those

types is also in the system]. (Gddel (*19330, p. 9a))

By 'axioms of the theory of aggregates' Gbdel means the axioms of set theory "as

presented by Zermelo, Frankel, and von Neumann" (Gbdel *19330, 4), that is, ZF.

Thus Gbdel is recasting the axioms of ZF as saying that the universe of sets is closed

under the two processes that he has introduced.

1.2.2 The Account of 1951. There are two questions that arise: (1) What

exactly is the 'second process'? Godel has given us a hint but he has neither fully

specified it nor even specified it to the extent that it clearly yields the axiom of

Replacement. (2) What is meant by 'defined within the system'? The answers to

both of these questions is implicit in Gddel (*1951), which I will quote at length.

If, for example, we begin with the integers, that is, the finite sets of a

special kind, we have at first the sets of integers and the axioms referring

to them (axioms of the first level), then the sets of sets of integers with

their axioms (axioms of the second level), and so on for any finite iteration
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of the operation 'set of'. Next we have the set of all these sets of finite

order. But now we can deal with this set in exactly the same manner as

we dealt with the set of integers before, that is, consider the subsets of it

(that is, the sets of order w) and formulate axioms about their existence.

Evidently this procedure can be iterated beyond w, in fact up to any

transfinite ordinal number. So it may be required as the next axiom

that the iteration is possible for any ordinal, that is, for any order type

belonging to some well-ordered set. But are we at an end now? By no

means. For we have now a new operation of forming sets, namely, forming

a set out of some initial set A and some well-ordering B by applying the

operation 'set of' to A as many times as the well-ordered set B indicates.

And, setting B equal to some well-ordering of A, now we can iterate this

new operation, and again iterate it into the transfinite. This will give rise

to a new operation again, which we can treat in the same way, and so on.

So the next step will be to require that any operation producing sets out

of sets can be iterated up to any ordinal number (that is, order type of a

well-ordered set.) But are we at an end now? No, because we can require

not only that the procedure just described can be carried out with any

operation, but that moreover there should exist a set closed with respect

to it, that is, one which has the property that, if this procedure (with any

operation) is applied to the elements of this set, it again yields elements

of this set. You will realize, I think, that we are still not at an end, nor

can there ever be an end to this procedure of forming the axioms, because

the very formulation of the axioms up to a certain stage gives rise to the

next axiom. (Gddel (*1951, pp. 3-5))

This account coincides with and extends that of *19330 with the slight difference that

Godel starts with Vo = Z. For comparison let us start with Vo = 0. Thus, as before

Gbdel starts with successive applications of the power set and summing up operation.

This gives Vo, V1 -- V, - -. Va,, V•+, V+ 2 --- The final three dots here indicates

"more of the same". Once we are at some fixed level, say Vw+ 2 we can define various
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ordinals al +1 and iterate the powerset operation a1 +1 many times to get V,,,1. Call

this an instance of the first jump operator. Next we consider the first jump operator

in the general context. This is the operator which given a well-ordering of a set A,

say IAI, allows us to iterate the powerset operation JAl-many times over A, that is,

the operation sending A to IAI (A). As before, starting with the parameter V,+1 we

can get a well-ordering of length A = f 1 + 1 which will bootstrap us up to V3
~,i and

then we can use the parameter V~M to get a well-ordering of length , 1 + 1 and so on.

After w-many iterations we reach the first l-fixed point, that is, the least . such that

,~ = =K. This is where the discussion of *1933o ended. But in *1951 Gbdel continues.

We can reflect on the previous procedure to consider the operation that sends a to

the ath :-fixed point. Call this an instance of the second jump operator. The second

jump operator transcends the first. And we can continue to apply it to yield "more

of the same". But as before it can be transcended to yield a third jump operator and

so on. In this way we yield richer and richer jump operators all of which map sets to

sets. The next step is to reflect on all of this.

But are we at an end now? No, because we can require not only that

the procedure just described can be carried out with any operation, but

that moreover there should exist a set closed with respect to it, that is,

one which has the property that, if this procedure (with any operation)

is applied to the elements of this set, it again yields elements of this set.

(Gddel (*19330, p. 4))

That is, we can consider the operator which maps and ordinal a to the least V, closed

under all of the set functions. This answers both of our above questions. First, Gbdel

has unfolded more of what he means by the second process. Second, we see that

by 'defined within the system' Gddel did not mean definable over the background

universe V; he must have meant that (as he says in "1951) that we are to apply the

operations in V to sets in V. Further evidence of this second point can be found in

the following statement that Gddel certified:

From the very idea of the iterative concept of set it follows that if an
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ordinal number a has been obtained, the operation of power set (Y)

iterated a times leads to a set 9Y(0). But, for the same reasons, it would

seem to follow that if, instead of Y, one takes some larger jump in the

hierarchy of types, e.g. the transition 9 from x to Yxl(x) (where |xz is

the smallest ordinal of the well-orderings of x), ~0(0) likewise is a set.

Now, to assume this for any conceivable jump operation (even for those

that are defined by reference to the universe of all sets or by the use of

the choice operation) is equivalent to the axiom of replacement. (Wang

(1974, p. 186))

It is not too hard to see that a universe which is closed under all such operations

from sets to sets is a model of ZF. Thus we have a justification of the axiom of

Replacement. Even more, one can continue, as Gbdel notes in the above quoted

passage from *1951 and the following continuation of *19330:

But it would be a mistake to suppose that with this system of axioms

[namely, ZF] for the theory of sets we should have reached an end to the

hierarchy of types. For all the classes occurring in the system can be

considered as a new domain of individuals and used as a starting point for

creating still higher types. There is no end to this process [and the totality

of all systems thus obtained seems to form a totality of similar character

to the set of ordinals of the second ordinal class]. (Godel (*19330, pp.

9-10)) 3

In this way one obtains a proper class of inaccessible cardinals.

Note that Gbdel's approach proceeds from the bottom up. This is an advantage.

But there are two weaknesses in the account. First, it presupposes the Axiom of

Choice. Second, it cannot yield weakly compact cardinals. One way to overcome

both of these weaknesses is to resort to a top down approach. Godel actually thought

that such an approach would prove fruitful. In fact he was rather optimistic. In 1977

he wrote:
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Generally I believe that, in the last analysis, every axiom of infinity should

be derivable from the (extremely plausible) principle that V is indefinable,

where definability is to be take in [a] more and more generalized and

idealized sense. (Wang (1977, p. 325); Wang (1996, p. 285))

One way of making the statement 'V is undefinable' precise is in terms of reflection

principles, that is, principles which assert that if a formula with parameters holds in

V then it holds (with the parameters relativised) in some rank initial segment V,.

These principles get around both of the above difficulties, as will be shown in §1.3.

The following (somewhat technical) section on AC can be skipped without loss of

continuity.

1.2.3 Choice. The axiom of choice does not neatly fit into our division of the

axioms into those of nature and those of extent. There has been a great deal of

controversy both over the truth and the nature of the axiom. In this section I will

restrict myself to a couple of brief remarks.

It has been argued by some (for example, Tait) that AC is a truth of second-

order logic which follows from the meaning of the quantifiers. This strikes me as

doubtful for the following reason: A cardinal r, is Reinhardt iff there is a (non-trivial

elementary) embedding j : V -+ V such that cp(j) = t. Kunen showed assuming

ZFC that there are no Reinhardt cardinals. But it is open whether assuming ZF there

can be Reinhardt cardinals. This is a serious question. It amounts to the question of

whether the canonical hierarchy of consistency strength outstrips ZFC. It is not the

sort of question which can be ruled out on the basis of logic alone. But according to

the view that AC is a principle of logic it can be ruled out by logic alone.

It has also been argued (for example, by Parsons) that our reasons for believing AC

are a posteriori. This seems right but it has a surprising consequence. For it may be

the case that the hierarchy of consistency strength outstrips that of the large cardinals

consistent with Choice. Furthermore, these axioms might be "so abundant in their

verifiable consequences, [shed] so much light upon a whole discipline, and [furnish]

such powerful methods for solving given problems (and even solving them, as far
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as that is possible, in a constructive way) that quite irrespective of their intrinsic

necessity they would have to be assumed at least in the same sense as any well-

established physical theory" (Gbdel (1964, p. 265)). In such a situation we would

have to abandon AC. One could view AC as a limitative principle on a par with

V= L. Here V # is to AC what 0# is to V= L.

1.3 Reflection Principles

1.3.1 Motivation. Reflection principles aim to make precise the idea that V is

undefinable, an idea that played a central role in Cantor's original introduction of

set theory and in the subsequent accounts of Zermelo, Ackermann, Bernays, Godel,

and Reinhardt. On this view V is taken as an additional primitive and the axioms

pertaining to it are axioms of nature.

Before giving a precise formulation of reflection principles let me motivate the

idea that V is undefinable. Recall that in §1.1.5 I argued that the concept of set

involves closure principles. Well, which closure principles? It is useful to extract

approximations to the full concept of set by selecting a definite collection of closure

principles C. For example, in a very simple case, C might be closure under powerset.

Let us refer to this approximation of the concept of set as the concept of C-set. A

useful notion is the spectrum of C, defined to be A(C) = {a I V, is closed under C}.

For each Ve, where a E A(C), we shall say that V, meets the concept of C-set. We

shall also say that V1 is a permissible interpretation of the concept of C-set. Thus, in

our present example the first level which meets the concept of C-set is V,, the second

is V,+,, and in general A(C)= Limit Ordinals. By laying on the closure conditions,

one thins out the spectrum and approaches the full concept of set. Notice that as

soon as we fix some definite set of closure conditions C and we consider the precise

concept of C-set we immediately see that it falls short of the concept of set. This is a

key feature of the concept of set: it resists characterisation in terms of some definite

set of closure principles. Thus V is "uncharacterisable" and "undefinable"
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1.3.2 Formulation. The standard way of making the idea that V is undefinable

more precise is in terms of reflection principles. These principles assert that any

statement true in V is true in some smaller V,. Thus, for any 49 one cannot define V

as the collection which satisfies W since for any such ý there will be a proper initial

segment V, of V that satisfies p. More formally, we shall write this as

V • =p(A) 3] V, j=c?(Ar)

where p~( -) is the result of relativising the quantifiers of o(. ) to V, and A' is the

result of relativising an arbitrary parameter A to Va. This is merely a preliminary

characterization of a reflection principle since we have left open (i) the specification

of the language, (ii) the order of parameters, and (iii) the nature of relativisation.

We will fill in these three parameters as we proceed and thereby arrive at the general

characterization of a reflection principle.

Language: At the most general level our language will be YPa,,, the language of set

theory with quantifiers of order < p and parameters of order< y. I will abbreviate

B,• as ~.3- When the quantifiers are to be strictly less than 3 I will write •Z<B,7 and

likewise for parameters. I will use lower case letters x, y, z,... to range over objects

of first order and upper case letters X ( ), Y (), Z( ),... to range over objects of pth_

order and I will drop the superscripts the order is clear from context. The distinction

between first- and higher-order objects and formulas will always be relative to a fixed

universe of sets; thus if our universe of first-order objects is V, we regard X(O) as

ranging over Vs+-lp if 0 is a successor ordinal, and over V,+s if 0 is a limit ordinal.

The order of a formula is taken to be the maximum of the order of its bound variables.

The Levy hierarchy of formulas is defined as follows: A sentence is 70 if it is of

the form 3~1Vx2... Qx n (x 1 ... x,, ay .. am) where Q is V if n is even and 3 if n

is odd and, as indicated by the superscript in E, the quantifiers and parameters

are of order < p. When we want to restrict the parameters to those of a given

order, say those of order < 7 (< y), we will write 'y' ('< i') after '/'. For example,

II%, consists of formulas in Il with parameters of order < 7. The fact that we are
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allowing parameters is notationally indicated by the occurrence of 'r' underneath

'E'. When the ',' under 'E' is absent this indicates that parameters are not allowed.

f~ sentences are negations of Ef sentences.

Relativisation: In general, we will deal with parameters of arbitrary order but

in the present chapter we will restrict ourselves to parameters of second order, that

is, classes in the standard sense. We relativise second-order classes to a level V, by

omitting elements in the class which are not in V,; more precisely, A( 2 ) = A(2) n V. is

the relativisation of the second-order class A(2 ) to V0 . This is how someone living in V,

views the class. We relativise formulas to a level V0 by restricting the bound variables

to the appropriate level; more precisely, the relativisation of ýp(Ac·) ... A~ ' ) to Va

is the statement po(A(1) . . . At").0) obtained by bounding the Pth-order quantifiers

with Vol+O_1 if f is a successor, and with V+~0 if P is a limit, relativising the class

parameters to sets as indicated. This is how someone living in V, interprets the

formula.5 To distinguish notationally between classes and sets we will use [- --], [z

cp(x)] and the like in place of ..- - -}, { p(x)}... and if we wish to be explicit

about the order of a class we will append a superscript such as '(0)' as in the case of

variables and parameters.

1.3.3 First Order. Given the above notation we are now in a position to give a

more general formulation of reflection principles. Let F be a collection of formulas in

Y0,2- V is -reflective iff

VX (y4X) - 3a cp(X))

for all Wp E F where X is of second order. With the exception of the restriction to

second-order parameters with scheme is fully general. The discussion of third and

higher order parameters, which is delicate, will be taken up in §3.2 after we have

exhausted the resources of reflection with second-order parameters.

We are now in a position to begin mapping out the extent of reflection. I will first

state the results in the first order context and then restate and elaborate on these

results in the second-order context.
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Let T be ZF-Replacement -Infinity. This is the theory that we have justified

above and our aim is to justify ZF.

FACT 1. Assume T + Y1,1-reflection. Then ZF holds.

We would like to reflect on the above fact to obtain a level V, which is a model

of ZF. The obstacle to doing this in the context of Y1,1 is that the theory ZF is

not finitely axiomatisable and so there is no single sentence that we can reflect. In

fact, the theory T + 351,-reflection is equivalent to ZF. But there is a schematic

version of ZF and a schematic version of -1,1 -reflection (which I will call ZF' and

••,1 -reflection) such that we have the following:

FACT 2. Assume ZF' + ±.4,1-reflection. Then there is a proper class of inaccessible

cardinals.

(See Feferman (1996) for details.)

1.3.4 Second Order. In this subsection I want to give the reader some insight

into the manner in which reflection principles justify the axioms of extent. It will be

convenient to work in Y2,2.

Minimal set theory (MST) consists of the following axioms of nature: Extension-

ality, Second-order Separation, Foundation and the obvious axioms governing 'rank'.

MST was introduced in Tait (1998b). Note that MST says nothing about the extent

of the set theoretic hierarchy; its models are exactly the rank initial segments Vo, Vi

... V,... Given a theory T, let Spec(T) = {a I V ý T} be the spectrum of T.

For example, Spec(MST) = Q (where 'Q' is the name for the totality of ordinals) is

another way of expressing the fact that MST makes no demand on the height of the

universe. Our aim is to make such demands by supplementing MST with reflection

principles. This will have the effect of "thinning out" the spectrum.

The first step is to derive standard set theory with reflection principles. (The

method of doing this is by now part of the folklore of the subject but I believe it

can be traced back to early work of Ackermann. I will follow the exposition of Tait

(1998b).) Work in MST.
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(1). Consider the formula cpl(X) asserting that the second-order class X is coex-

tensive with a set. Since V is undefinable it is not defined by •o1. In terms of reflection

this says

VX (•c1(X) -- 3a o91 (X));

that is, if X is coextensive with a set from the point of view of V, then it is coextensive

with a set from the point of view of V,. This can happen if and only if V is a

limit level. Thus, Spec(MST + p1-reflection) = Limit Ordinals. Notice also that

in MST + p• l-reflection we can derive the standard axioms of Union, Pairing and

Powerset and we can formulate AC.

(2). Consider the sentence cp2 asserting that there are sets of arbitrarily high rank.

Since V is undefinable it is not defined by cP2. In terms of reflection this says

VX (p2(X) - S ÷ 2(X )

that is, if V thinks that there are sets of arbitrarily high rank the some smaller level

V, must think that there are sets of arbitrarily high rank. But V does think this,

something we established by pl-reflection. So there is a level V, which thinks that

there are sets of arbitrarily high rank. Thus, Spec(MST + W1, p2-reflection) = Limit

Ordinals-{w} and this theory is equivalent to ZF-Replacement.

(3). Consider the sentence y3 (X) asserting that X codes a function whose domain

is a set. (Note that we are saying nothing about whether its range is a set.) Since V

is undefinable it is not defined by 03. In terms of reflection this says

VX (p 3(X) 3 W3 ( X a) ) ,

that is, if V thinks that X is a code for a function whose domain is a set then so

does some smaller Va. But the domain, being a set, gets reflected to itself in V4

and so the range, which hasn't changed either, is a class of V4, that is, a set of V.

Thus, reflecting on y3 has the effect of ensuring that every function applied to a set

yields a set. This is just the Replacement axiom. Thus MST + p1, p2 , p3-reflection
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is just ZF and Spec(MST + ~1, P2, p3-reflection) = Inaccessibles. Notice also that

ZF = MST + 1,2-reflection. Thus, by supplementing MST with reflection principles

we have derived ZF.

(4). Consider the sentence 04 asserting that height of the universe is inaccessible.

By (3) this is true of V. And so by reflection there must be an inaccessible cardinal.

Let p5 be the sentence which asserts that the universe has inaccessible height and

that it contains an inaccessible cardinal. So this is true of V. So by reflection there

are two inaccessible cardinals. Continuing in this way we obtain a proper class of

inaccessible cardinals.

1.3.5 Conclusion. In this chapter I considered three approaches to justifying the

standard axioms of set theory: the traditional approach, Godel's approach, and the

approach based on reflection principles. The traditional approach is unsatisfactory

since it is circular. G5del's approach is unsatisfactory since it assumes AC. The

approach in term of reflection principles is free from both of these problems and has

three additional virtues: First, it provides a uniform account of all of the standard

axioms of extent. Second, it has shown promise in being able to justify axioms beyond

ZF. Finally, it partially fleshes out one of the central features of the universe of sets,

namely, that it is uncharacterisable.

Our goal now is to determine the extent of reflection principles and connect this to

our ultimate aim of reducing the limitations of ZF. We should like to know whether

reflection principles can effect a "significant" reduction in incompleteness. But for

this we must make the notion of a "significant reduction" mathematically precise.

This will be the goal of the next chapter.
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Chapter 2

Independence

Our goal is to find and justify an extension of ZF which effects a "significant" reduction

in incompleteness. The purpose of this chapter is to analyse the limitations of ZF and

give a mathematically precise formulation of the notion of a "significant" reduction in

incompleteness. This will put us in a position to prove theorems of the form: Axioms

of type A cannot yield a significant reduction in incompleteness.

2.1 Limitations

2.1.1 The Incompleteness Theorems. Let us say that a theory T is sufficiently

strong if it is strong enough to encode syntax. For example, PA and the much weaker

theory Q are sufficiently strong. According to Gddel's first incompleteness theorem

any sufficiently strong recursively enumerable theory T is incomplete. According to

Gddel's second incompleteness theorem no sufficiently strong recursively enumerable

theory can prove its own consistency. (Henceforth all of the theories we will consider

will be sufficiently strong and recursively enumerable.)

Suppose that T is consistent. Then there is a true statement that T cannot

capture, namely, Con(T). Thus the theories Q, PA, and ZF fall short of capturing

truth, as witnessed by the true statements Con(Q), Con(PA) and Con(ZF). Let us

concentrate on ZF.

There is an obvious way to overcome this particular limitation of ZF, namely,
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add the true sentence Con(ZF). The trouble is that the new system ZF + Con(ZF)-

although able to capture the truth Con(ZF)-is unable to capture the truth Con(ZF+

Con(ZF)). But we can fix this by extending our system to ZF + Con(ZF) + Con (ZF +

Con(ZF)). In this way we obtain a series of systems each one of which captures a

truth missed by its predecessor.

2.1.2 Benign Limitations. There is something benign about the above brand

of incompleteness. One reason is that if we have good reason for believing a theory T

then we have good reason for believing the statement Con(T) witnessing the incom-

pleteness of T. 4 More importantly, if we know that Con(ZF) is a limitation then we

know whether or not Con(ZF) is true. I am not saying that all consistency statements

are benign; for example, there is nothing benign about Con(ZF+'There is a super-

compact cardinal'). Rather, I am saying that consistency statements that we know

to be instances of incompleteness are benign. The reason such statements are benign

is that if you know that a consistency statement p (or indeed any HI?-statement) is

independent of a correct theory T (which includes a minimal amount of arithmetic,

such as Q) then you know that p is true. (Proof: Let p = Vn 4(n) where b is a

bounded formula. Suppose, for contradiction, that p is not true. Then 3n -vi(n).

Then -10(k) for some k. But then Q F -v(k) since Q is correct for bounded state-

ments. So Q F- 3n -i4(n), which contradicts the assumption that ý is independent

of T). The point is that we do not know that Con(ZF+'There is a supercompact

cardinal') is an instance of incompleteness, since we don't know that it is true.

To summarise: We are discussing the limitations of ZF, that is, we are considering

statements p which are independent of ZF. So far we have encountered one kind of

limitation, namely, the consistency statements. These limitations are benign in that

if we know that a consistency statement p is independent of ZF then we know that

p is true.

Are all limitations benign?
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2.1.3 Serious Limitations. No. Combined results of Gddel and Cohen provide

a vast array of serious statements which we know to be independent of ZF with-

out knowing whether or not they are true. Given what we have said above these

statements are necessarily not . The classic example of such a statement is CH, a

E2-statement.

Let me summarise the contrast between benign and serious limitations. The

statement Con(ZF) is independent of ZF. It exemplifies a limitation of ZF. But it

is benign because the fact that it is a limitation implies that it is true. This is the

case with all FIJ-statement. The statement CH is independent of ZF. But it is serious

because the fact that it is a limitation does not imply that it is true; indeed the fact

that it is a limitation does not provide one shred of evidence that it is true.

The serious limitations pose serious problems. For they put us in a situation where

we know that there are statements that our system is not capturing and yet do not

know whether or not these statements are true. The challenge for new axioms is to

overcome the serious limitations.

2.1.4 Example. CH is an example of a serious limitation but as we will see in

Chapter 5 it is a serious serious limitation. I want to give a more modest example of

a serious limitation.

SPHERE. One cannot take a sphere, split it into finitely many E' pieces, rearrange

those pieces via rigid motions and put them back together to form a sphere of twice

the size.

This is a E¾-statement which is independent of ZF. It is a serious limitation-we know

that either it or its negation exemplifies a limitation of ZF and yet this knowledge

does not provide us with the answer to whether or not it is true.

A couple of remarks are in order. First, if one drops the restriction that the pieces

be ECl then, assuming AC, there are very bizarre pieces which render the sentence is

false, as Tarski and Banach demonstrated. Second, if one replaces the restriction that

the pieces be El by the restriction that they be E or E, then the statement is actually
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provable in ZFC. In short, there is no paradoxical decomposition involving simply

definable (meaning E}) pieces but there is one involving complicated undefinable

pieces. And it is independent of ZF whether there is a paradoxical decomposition

involving E pieces.

So a particular challenge for new axioms is to resolve SPHERE.

2.2 The Minimal Hurdle

Our goal is to overcome the serious limitations of ZF by searching for new axioms.

But we have to be careful. On the one hand, we don't want to set the bar too high

and try to overcome too many of the serious limitations in one shot. On the other

hand, we don't want to set the bar too low and overcome a mere isolated instance of

a serious limitation, such as the limitation involving SPHERE. The aim of the present

section is to analyze the serious limitations of ZF and locate a reasonable place to set

the bar. I will start by introducing some technical machinery. Using this machinery

I will describe the epistemic situation regarding the serious limitations of ZF. I will

then isolate the mathematical source underlying the epistemic situation and use it to

set up a mathematically precise hurdle-the Minimal Hurdle-that any extension of

ZF must clear if it is to effect a significant reduction in incompleteness.

2.2.1 Degrees of Interpretability. Given a recursively enumerable theory T we

can find in an effective manner a primitively recursive theory T' that has the same

provable consequences. This result-due to Craig-allows us to focus, without loss

of generality, on primitive recursive theories. Suppose that S and T are primitive

recursive theories. We write S < T iff there is a primitive recursive translation

function T from from the language of S into the language of T which is such that if

S -p then T H T(p). In such a situation we say that S is interpretable in T. (For a

definition of 'translation function' and further details regarding the material in this

subsection see Lindstrbm (1997, Ch. 6-8)).

Let D be the set of equivalence classes induced by < and let 9 = (D, <) where
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< is treated as the induced relation on degrees and all theories extend ZF. 9 is the

set of degrees of interpretability with respect to ZF.

There are three important features of 9. First, it is a distributive lattice; in

particular, it contains incompatible elements. It is a striking fact that all natural

theories appear to be linearly ordered in 9. Second, S < T iff S h-no C T Eno, where

T H-no is the set of IIo consequences of T. Third, S < T iff T - Con(Sin) for all n.

The second of these features implies that ZF + Con(ZF) > ZF. The third im-

plies that ZF + CH < ZF. This is the crucial difference between the independence

technique-the method of Godel-which demonstrates that Con(ZF) is independent

of ZF and the independence technique--the method of forcing-which demonstrates

that CH is independent of ZF. In the former case one moves upward in the degrees

of interpretability; in the latter case one does not move at all.

2.2.2 The Scope of ZF. In order to motivate the Minimal Hurdle let us examine

in an informal light the successes and failures of ZF. Let's work our way up V and

locate the point at which the serious limitations of ZF first arise. The finite levels

Vo, V1 , V2,... are no problem: indeed there are no limitations of ZF with regard to

these levels. The first infinite level, V,, is essentially the natural numbers N, and the

set of sentences true in this structure is known as first order arithmetic. There are

sentences p of first order arithmetic known to be independent of ZF, for example,

Con(ZF). But this is a benign example. What about serious limitations? Surprisingly,

there are no known natural serious limitations.

FACT 3. There is no known example of a natural sentence p of first order arithmetic

such that (i) p is known to be independent of ZF and (ii) it is not known whether or

not p is true.

I should stress that this is an empirical fact, not a theorem.

The next infinite level, V,/ +1, is essentially the real numbers R and the collection

of sentences true in this structure are known as second-order arithmetic. It is al-

ready here, at the second infinite level-which is just the second infinite rung on the
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transfinite ladder-that ZF falters. In fact, it falters before even getting close to this

rung. To explain this recall that we split the language of second order arithmetic

into increasing levels which we denoted as: E, , El) ... Corresponding to these

language fragments we have fragments of second-order arithmetic. Surprisingly, there

are no known natural serious limitations of ZF with respect to E.l

FACT 4. There is no known example of a natural El sentence y such that (i) ýO is

known to be independent of ZF and (ii) it is not known whether or not po is true.

(The qualifier 'natural' is necessary in the statement of both of the above facts

since one can use Gbdelian methods to cook up artificial counterexamples.)

Unfortunately, this is as far as ZF can go: We know that ZF does have serious

limitations with regard to nE-arithmetic. For example, the statement SPHERE is not

settled by ZF and this limitation of ZF is not benign. Thus, our situation is this:

There are no known serious limitations of ZF with regard to 1'-arithmetic but there

are serious limitations with regard to En-arithmetic. The goal is to obtain a theory

which does for E'-arithmetic what ZF does for E'-arithmetic.

NEED. We need new axioms A such that there are no known natural serious limita-

tions of ZF + A with regard to E4-sentences.

Roughly, this is the minimal hurdle. The trouble is that it is couched in epistemic and

vague terms. But we want to actually prove things about the successes and failures of

proposed extensions of ZF. And for this we need a precise, mathematical formulation

of the minimal hurdle. To arrive at the correct formulation it will helpful to analyze

the success of ZF with regard to E).

2.2.3 Absoluteness. FACT 4 is an epistemic fact. But there is a deep mathemat-

ical fact underlying it. It is not just that people have not been smart enough (using

the present techniques) to find a natural El sentence o such that ZF + p • ZF and

p is known to be independent of ZF; rather, it is impossible to find such a statement

via set forcing. This is made precise in the following theorem.
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THEOREM. (Shoenfield) Suppose V ZF. Then

V y O++ V, c

for any partial order P and for any uE-sentence op.

This theorem says that if you are working in a universe V and you manage to show

that a E• sentence is consistent by constructing a forcing extension V' then that

sentence is actually true in V. In this sense, ZF ensures that consistency implies

truth. As a consequence, one cannot use the method of forcing to show that any El

sentence is independent of ZF. In such a case we say 'ZF freezes 2'.

2.2.4 The Minimal Hurdle. We are now in a position to state in precise math-

ematical terms the minimal hurdle that we are setting up for extensions of ZF.

MINIMAL HURDLE. Freeze Z.3
Let me underscore three points: (1) The hurdle is minimal in that if El is not frozen

then we know that there are serious forms of independence at the third level. (2) The

hurdle is surmountable in that it is in principle possible to overcome it (as we shall

see at the beginning of the next section). (3) The hurdle is significant in that the

following holds for the theories we shall consider: Any such theory which overcomes

the hurdle (a) proves SPHERE and, more importantly, (b) lifts all of the results of

the early analysts (and much more) to the next level; in particular, any such theory

proves IIj-determinacy.

41



to



Chapter 3

Reflection Principles

Our goal is to find axioms that are justified and overcome the Minimal Hurdle. It turns

out that there are many axioms which overcome the Minimal Hurdle; for example,

forcing axioms, large cardinal axioms, and axioms of definable determinacy. The issue

is whether such axioms are justified. There is a standard approach to justifying new

axioms, namely, to use reflection principles to justify large cardinal axioms, axioms

that assert the existence of large sets or levels Va. In this chapter I will chart the

limitations of this approach.

§3.1 continues the investigation of reflection principles by examining higher or-

der reflection wish second order parameters. §3.2 shows that higher order reflection

with third order parameters is inconsistent and discusses two possible ways of skirting

inconsistency. §3.3 introduces the reflection principles of Tait. §3.4 establishes limita-

tive results on reflection. I show that Tait's reflection principles cannot overcome the

Minimal Hurdle. I also prove the consistency of a broad class of reflection principles

and show that these principles (the broadest class of reflection principles known to

be consistent relative to large cardinals) cannot overcome the Minimal Hurdle and so

cannot yield a significant reduction in incompleteness.
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3.1 The Program for Reflection Principles

3.1.1 Indescribables. Up until now we have concentrated on reflection principles

of first order with parameters of second order, that is, we have been dealing with

Y, 2-reflection. And we have seen in §1.3 that such principles provide a uniform

justification of the standard system of set theory ZF and certain weak large cardinal

axioms such those asserting the existence of inaccessible cardinals. We now turn to

richer languages and use stronger reflection principles to derive even stronger large

cardinal axioms.

DEFINITION 5. Suppose C C s. C is closed iff it contains all of its limit points, that

is, points a such that a = sup(C n a). C is club in K iff it is closed and unbounded

in r. Suppose S C K. S is stationary in n iff S n C # 0 for each C which is club in

r). K is Mahlo iff the set of inaccessible cardinals below K is stationary in K.

Work in Y2,2. We have already seen that £2 is inaccessible and that there are arbi-

trarily large inaccessibles below it. Since £ is a limit of inaccessibles there must-by

reflection-be a limit of inaccessibles below it. Even more, there must be station-

arily many inaccessibles below it: For let C be club in Q2. Since V #'C is a club

which is unbounded in the inaccessible 2' there must by reflection be an a such that

V, a'C n a is a club which is unbounded in the inaccessible 2 n a'. Now since C is

club the inaccessible Qna is in C. In other words, C has non-trivial intersection with

the class of inaccessible, which is to say that the class of inaccessibles is stationary.

Thus £ is Mahlo. We can now apply reflection to get a Mahlo cardinal and then a

proper class of Mahlo cardinals and so on.

To transcend the larger cardinals obtained above we need to enrich our language.

The simplest way to define the relevant large cardinals is directly in terms of reflection.

DEFINITION 6. Let P be a set of formulas. An infinite cardinal K is F-indescribable

iff

V, P -reflection.

We can work our way through £2,2 starting with the simplest statements, namely,

those which are -IE,2. For example, Spec(MST±+F ,2-reflection) = H_ ,2-Indescribables ,
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also known as Weakly Compacts. Then we can reflect on this to get unbound-

edly many Weakly Compacts, and the various orders of weakly compacts. The next

qualitative jump comes with JI',2-indescribables. And the path continues with Jrl,-

indescribables, ,2-indescribables, and so on, until we have to jump up to 23,2 and

then Y4,2 and then .- -Y o,2 .-- and so on. Doing so yields indescribable cardinals of

higher and higher order. Trivially, we have the following:

FACT 7. 3p, 2-reflection implies the existence of Mahlo, weakly compact, and inde-

scribable cardinals of high-order.

One cannot squeeze much more out of p4,2-reflection. For example, P2T,2 does not

imply the existence of unfoldable or remarkable cardinals. Furthermore, can show

that 4B,2 cannot overcome the Minimal Hurdle-the reasons will become apparent

in §3.4. Fortunately, we have not exhausted the resources available to us: we have

restricted ourselves to languages involving parameters of only second order. We will

see that difficulties arise already for parameters of third order, that is, in the move to

3.1.2 The Program. Given the initial success of reflection principles in yielding

large cardinal axioms one might conjecture that all large cardinal axioms are ulti-

mately implied by reflection principles. This has been a common view. Thus consider

the following:

(1) Some have expressed hope that reflection principles imply all large cardinal

axioms. For example, Gidel writes:

Generally I believe that, in the last analysis, every axiom of infinity

should be derivable from the (extremely plausible) principle that V

is indefinable, where definability is to be take in [a] more and more

generalized and idealized sense. (Wang (1977), p. 325; Wang (1996),

p. 285)

Since the most natural way to assert that V is undefinable is via reflection

principles and since to assert this in a "more and more generalized and idealized
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sense" is to move to languages of higher-order with higher-order parameters,

Gbdel's proposal amounts to the claim that higher-order reflection principles

imply all large cardinal axioms.

(2) Some have claimed that this hope has already been realized. For instance,

Martin and Steel write:

We know of one proper extension of ZFC which is as well justified as

ZFC itself, namely ZFC + 'ZFC is consistent'. Extrapolating wildly,

we are led to strong reflection principles, also known as large cardinal

axioms (One can fill in some intermediate steps.) These principles

assert that certain properties of the universe V of all sets are shared

by, or "reflect to", initial segments V, of the cumulative hierarchy of

sets. (Martin & Steel (1989), p. 72)

(3) Some have tried to realize this hope. For example, Tait proved an impressive

series of results in this direction in his (1990), (1998a), and (1998b).

So the following program has substantial support.

PROGRAM. (Reflection Principles) Show that reflection principles imply the standard

large cardinal axioms.

If successful this program would entail that reflection principles clear the Minimal

Hurdle by a long shot. A far less ambitious program is the following:

WEAK PROGRAM. (Reflection Principles) Show that reflection principles overcome

the Minimal Hurdle.

3.1.3 Limitations for the Actualist. Our immediate concern is whether the

Weak Program can succeed, that is, whether reflection principles can overcome the

Minimal Hurdle. The actualist trips up right at the start. The trouble is that on

the actualist view the resources of class quantification are limited. Classes must be

treated as virtual in the sense of Quine (1969), p. 16-19 and Quine (1986) p. 71-72,
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that is, classes must be treated in a manner such that they can be defined away; for if

V consists of all of the sets then the powerset of V does not exist. The actualist can

arguably handle schematic reflection principles and thereby justify the existence of

inaccessible cardinals. But the actualist cannot simulate the full powerset of V and

hence cannot simulate full second-order reflection. It is straightforward, for example,

to see that (even with the help of iterated truth theories) the actualist cannot simulate

enough quantification over classes to ensure that the ordinal height of the universe is

weakly compact.

Assume that Q is weakly compact and work in V, where Q is also weakly compact.

Suppose the actualist lives in V = Va. The actualist can simulate talk of classes by

iterating the satisfaction predicate (thereby simulating the construction of L beyond

V) along any well-ordering definable over LQ. For example, one can simulate L4(V),

LQ+p(V), and so on. Let (0C be the supremum of the well-orderings definable over

Ln(V). Now bootstrap, letting (1 be the supremum of the well-orderings definable

over L(0(V), etc. Finally, let C = sup,,, C~. Clearly, (C is less than Q+. Furthermore,

any bootstrapping technique will close off at an ordinal ( < Q+. Now since (2 is

weakly compact we have the following: for any transitive M such that Vn C M and

Card(M) < Q there is an elementary embedding j : M -- N where N is transitive and

crit(j) = (2. Choose (' such that ( < (' < 2+, take M = LC(V), and let j: M -+ N

be the embedding. With this embedding we can reflect more second-order reflection

than the actualist can express, thus obtaining a level V~ below Vp which satisfies all of

the reflection that can be viewed from the point of view of Va. Therefore the actualist

living in Vn cannot possibly simulate enough class-quantification to ensure that 2 is

weakly compact-the actualist could be in Va but a is not weakly compact. 5

The potentialist, in contrast, has no trouble with higher order quantification since

for the potentialist talk of V is to be construed as talk of some permissible candidate

V½ and here second order quantification makes sense: the second order quantifiers 'VX'

and '3X' range over Y(V,), which is just VK+l. Likewise higher order quantification

makes sense: The lth-order quantifiers 'vX(r) ' and '3X ( )' range over •9(V,), which

is just V'4p. In what follows I will use the term 'class' in a relative fashion. For
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example, the phrase 'X is a class' will mean X E £(V,) when we are discussing

the model V, and it will mean X E ý(V,+1) when we are discussing the model

V,+l. Strictly speaking, one should say 'X is a class with respect to M' but since

the relevant model will be apparent from context no confusion will arise if we drop

explicit reference to it.

To summarize: The actualist cannot simulate enough class quantification to state

higher-order reflection principles and so the actualist can barely get off the ground, let

alone use reflection principles to overcome the Minimal Hurdle. But the potentialist,

by treating talk of V as talk of a permissible candidate V,, has access to full higher

order quantification and so can formulate higher order reflection principles. For this

reason we shall henceforth consider the potentialist point of view. Our question,

then, is whether the potentialist can overcome the Minimal Hurdle with reflection

principles.

3.1.4 The Potentialist View. The potentialist and the actualist seem to face

complementary problems: The actualist can motivate reflection by speaking of the

true universe V but has trouble in formulating higher order reflection. The potentialist

has no trouble in formulating higher order reflection but has trouble in motivating

reflection because according to the potentialist the universe of sets is not determinate.

How then does the potentialist speak of V?

Recall our discussion of potentialism in §1.1.5 and §1.3.1. In §1.1.5 I argued that

the concept of set involves closure principles. In § 1.3.1 I motivated reflection principles

by noting that as soon as we fix some precise characterisation of the universe of sets

in terms of a closure principle C we see that it falls short, that is, we see that the

concept of C-set falls short of the concept of set. Recall also that in that section

I introduced for each set of closure principles C the notion of the spectrum A(C)

of C and the notion of a permissible candidate of C. As we strengthen the closure

principles we thin out the spectrum.

I suggest that the potentialist regard talk of V as talk of any point in the limit

of the above thinning process. The spectrum of the concept of set consists of the

48



legitimate candidates for the concept of set. The candidates differ from the candidates

for the concept of C-set in two respects. First, we can specify the concept of C-set

in terms of closure principles but the concept of set cannot be so specified-this is

the gist of our above motivation for reflection principles. Second, we can transcend

the concept of C-set in the sense that there is a concept of C'-set where the closure

principles C' transcend the closure principles C. In contrast the concept of set cannot

be transcended. It is important to note here the difference between (i) surpassing a

legitimate candidate V, for the concept of set by moving to a higher level, say V,+1,

and (ii) transcending a legitimate candidate V, for the concept of set by arriving at

a concept of set with essentially richer closure principles. The potentialist as I am

understanding him believes that a legitimate candidate for the concept of set can

be surpassed but not transcended. The potentialist believes that when one moves

beyond a legitimate candidate it is just more of the same, one never reaches a level

with essentially richer closure conditions.

There is an obvious objection to this last point. Suppose that V, and VA are

legitimate candidates for the concept of set where n < A. Then it would seem that

V, satisfies stronger closure principles since it has a level V17 which satisfies all of

the closure principles inherent in the concept of set. The potentialist reply is that

although this may hold true of the concept of C-set the situation with the concept

of set is quite different. In the case of the concept of C-set the closure principles can

be described and so we can refer to the first element V, of A(C) within the second

element V, of A(C) and so it is indeed true that V\ satisfies stronger closure principles

than V,. But in the case of the full concept of set the second legitimate candidate

does not satisfy that it has a level which meets the concept of set. This is because

the closure principles of the concept of set cannot be specified.

On this version of the potentialist view the legitimate candidates for the concept of

set are order indiscernibles. V is any one of a maximally closed level. No legitimate

candidate can be defined and apart from their order they cannot be distinguished

one from the other. It is in this way that the potentialist preserves talk of V while

maintaining that any set can be surpassed.
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3.2 Higher-Order Parameters

Having thus exhausted the resources of p, 2-refiection let us allow parameters of third

and higher order. The first issue to be dealt with is how to relativise such parameters.

3.2.1 Relativisation. Recall that the relativisation X(2 ), Of a second order class

X (2) to the level V, is X (2) n Va. This is how someone living in V, views X (2). Now

consider a third order class y(3). It consists of various second order classes X (2).

The question is: how we are to relativise y(3) to V,; how does someone living in V,

view y(3)? As a start we might ask how the members X (2) of y(3) are viewed. Well,

we already dealt with this question: each member X (2) is viewed as X (2)". So since

Y(3 ) consists of members of the form X( 2 ) it is natural to take the reflected version

of y(3) to consist of the reflections of the members, that is, y(3)o = X(2)a ) X(2) E

y( 3 )}. More generally, the relativisation Y($+~)a of y(0+1) to V0 is defined inductively

by: Y(-+1)o = {X() jI X( ) E Y(0+)+}. And similarly for / a limit. This is the

most natural course to take. I shall call this version of relativisation unconstrained

relativisation.

3.2.2 Inconsistency. Unfortunately, reflection on third-order parameters with

unconstrained relativisation is inconsistent. Consider the class third-order class A(3)

consisting of all second-order classes that consist of initial segments of the ordinals

that are bounded. Thus A(3) contains the class of ordinals up to 1, and the class of

ordinals up to 2 and, more generally, the class of ordinals up to a for every ordinal

a. More precisely, letting [0 -- a) denote the second-order class of ordinals less than

Swe have A3) =- [[0-.. a) la .
Now look at what happens when we relativise A(3) to a lower level Vp. As described

above, the relativisation of A (3) to V7 is achieved by cutting each element X (2) of A(3)

off at V,. Now take an element of A(3 ) which is taller than /3. When we relativise

this element to Vp it gets cut back to the class of all ordinals below a. Here is the

picture:
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... ... ... ... ... ... .... ... ... .... ... -.- Q

. .i .
A(3) A(3)#

So it is true in V that each member of A(3 ) is bounded in the ordinals, but this is

no longer true of its relativisation A(3 )0 , since for a > ý the class [0 .. a), which is

bounded in V, gets relativised to the class [0 --- 3), which is unbounded in Vj (all of

the lines on the left hand side of the diagram are bounded below the height £t of the

universe V but many of the lines on the right hand side of the diagram are unbounded

in the height 3 of the universe VB). So we have proved:

FACT 8. S3,3 -reflection is inconsistent.

3.2.3 Two Fixes. There are two possible ways to save reflection principles:

(1) Constrain the language.

(2) Constrain the form of relativisation.

Let us consider each approach in turn.

3.3 Tait

The first fix is due to Tait. Notice that the above counterexample arises because we

are allowing ourselves to make statements about what is not in a third- or higher-

order class: all facts about what is in a third- or higher-order class relativise down

correctly. So we might avoid inconsistency by refraining from making "negative"

statements. This is true but why should it matter? It is hard to see any motivation,
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other than the desire to skirt inconsistency, for restricting the language. But doing

so leads to interesting results of Tait.

3.3.1 Fn-reflection. Our first task is to give a precise description of the restric-

tions to be imposed on the language. We will then be in a position to introduce both

Tait's notion of F,-reflection and related notions that will be of use later.

DEFINITION 9. Work in <,. Let lower case letters x, y, z,... range over the first

type and upper case letters X, Y, Z,... range over higher types. A formula ;p E Y<~,

is first-order iff all of the bound variables of 'p are of the first type. (Notice that

we allow free parameters of higher order). We relativise objects X and formulas

Vp £ Y<,, to Vp in the manner described above. (For X of first order XO = X; for

X of higher order (i.e. second or greater) and of type (71 . .. T•n), X =- {(Xif. .

(Xi ... X,) E X}; for 'p(Xi . . . X,) E YFT, 9(X0 .. . Xý) is the result of restricting

the bound variables of first type to (VI, ()) - Vp and those of type 7r = (71 ... T•) to

9((Vp, 71) X ... P(Vx , )).)

(1) 'p E -•<<, is positive ('p E Y<P) if ' is the minimal class of formulas containing

x = y, y, x E y, x B y, x E Y, z x Y, X = Y, (XI...X,) E Y and closed

under A, V, V and 3.

(2) F] is the pointclass

{p E <P , I =VX1 3Y1 • VX,3Y, # where

i) 4 is first-order,

ii) Xi is second-order, and

iii) 74 is of arbitrary finite type}.

(3) Suppose X C R. X is n-reflective in i iff

Vx., x --Xm [V ~ p(X, . x-- X) , 3B E X (9 (XB ...X())]
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for all p(Xi ... X,) E Pn with Xi of arbitrary order. FF-reflection is the schema

stating £ is n-reflective in Q.

(4) Let X C tn and 0 < n < w. Let the variables ? with or without subscripts

range over sequences (T, a < c) such that TQ C V, and for T C Vr let

GT, a = {a < <. TnVI = Y(a)} be the set of points where T correctly guesses

3. IN' is defined recursively as follows:

INa ={X C K jX is stationary in K}

IN,+ 1 ={X C K I V3 T (GT,y n X INQ)} provided IN', 0

IN =N,<•,IN', for A limit.

3.3.2 Ineffables. As we shall see r,-reflection has significant strength. To mea-

sure this strength we introduce the appropriate large cardinal notions, namely, ineffa-

ble cardinals (introduced by Kunen and Jensen) and their generalisations (introduced

by Baumgartner).

DEFINITION 10. Let the variable K range over infinite cardinals. Let X C , and

0 < n < w. Let the variables Y with or without subscripts range over sequences

(S, I a < K) such that S, c a and for S C r let Gs,y = {a < I S n a = 9(a)}

be the set of points where S correctly guesses Y. Similarly, let the variables Y'n

with or without subscripts range over sequences (SQ1....Q al < ..-. a < K) such that

Sal...o CC al and for SC K let Gs,yn = {(a ... an) E []n Sn a, = n(aL1 ... an)}

be the set of points where S correctly guesses y~.

(1) X is ineffable in K iff V.93S (Gsy n X is stationary in K).

(2) X is n-ineffable in K iff VYH"S3W (W C X A\ [W]n C Gs,~s A W is stationary

in Kc), where [W]" is the set of strictly increasing n-sequences of ordinals from

W.

53



(3) In' is defined recursively as follows:

In' ={X C I X is stationary in t}

In+ 1 n ={X CK C V3S (Gs,y X e In")} provided In• 0

In, =fA<jIn, for A limit.

K is completely ineffable iff Vy < (2-)+ (In - a).

3.3.3 Connection. We have the following connections:

THEOREM 11. (Tait) Let X C K. The following are equivalent

(1) X is n-reflective

(2) X e INn.

LEMMA 12. (Baumgartner, Tait) Let X C . If

(1) X E INr then

(2) X is n-ineffable.

COROLLARY 13. Suppose X is n-reflective. Then X is n-ineffable.

The central result is the following:

THEOREM 14. (Tait) Suppose V, satisfies F•-reflection. Then n is n-ineffable.

Tait's theorem shows that F,-reflection has great strength. The key question is

whether it has enough strength to overcome the Minimal Hurdle. The above theorem

does not settle this question; n-ineffable cardinals are too weak. But it does provide

hope; perhaps this is just the beginning and Fr-reflection can yield much more.

3.3.4 Consistency. The first issue we must face is whether Fr,-reflection is con-

sistent. This may seem surprising since up until now reflection principles have played

a foundational role. For we derived first and second order reflection principles from
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our analysis of the concept of set and then we used reflection principles to justify ZFC

and much more. The situation with F,-reflection is, however, different. In contrast

to the earlier reflection principles it is difficult to maintain that it follows from an

analysis of the concept of set. For we have had to impose an ad hoc restriction on

the language in order to skirt inconsistency. Fortunately, large cardinals imply the

consistency of F,-reflection.

THEOREM 15. (Tait) Suppose that r, is a measurable cardinal. Then V, satisfies

IF,-reflection for all n.

Thus the strength of F-reflection is somewhere between that of a cardinal which is

n-ineffable for all n, and a measurable cardinal. If this upper bound were anywhere

near optimal then Fr-reflection would overcome the Minimal Hurdle. This question

was open.

3.4 Limitations

3.4.1 The First Fix. In this section I will show that F,-reflection cannot over-

come the Minimal Hurdle.

DEFINITION 16. For a > w the Erdos cardinalK (a) is the least a such that K - (a) , ",

i.e. such that for each partition P : [,G]<" 2 there is an X E [K]. such that

Card(P [[X]n]) = 1 for all n < w, where P[Y] = {P(a) Ia E Y}.

THEOREM 17. Assume K = K (w) exists. Then there is an 6 < K such that V6 satisfies

F,-reflection for all n.

Proof. We need a preliminary lemma.

LEMMA. (Silver) Assume a > w. Then the following are equivalent

(2) For all structures /W such that

(a) Card(Y'(#)) = w and
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(b) K•C

there is an X E [n]j which is a set of indiscernibles for /W.

Proof. (1) -+ (2): For each partition P : [K]<" 2 we have a homogeneous set X-

that is, an X E [n]j such that Card(P[X]") = 1 for all n < w. Take P : [r]<" - 2

where

P(•1 " (n) = 0 if PL [(I.[ .- (fv(n)]

1 otherwise

where {Y n} enumerates Y(.t&) and fv(n) is the number of free variables in cp.

(2) -+ (1): Fix P : [n]]<W -+2. Consider A = (r, E, P[r.]1 .. Pl[] ... ). Let

X E [K]' be a set of indiscernibles for A. Then X is homogeneous for P since for

((41 """ () and ((~ -- (), both in [X]" , we have P []n((1 ... ) = PI[n]"(( ..- (') by

indiscernibility. E-

Following the proof of Silver-Reinhardt that there is a totally indescribable cardi-

nal less than K we consider the structure 1J = (V, E, <) where < is a well-ordering

of V1K. Let I' = {I} be the indiscernibles of VY given by Silver's theorem. Take the

Skolem hull of these indiscernibles and collapse, letting

dA" = Hull t (I'),

r : d' W A = collapse(A'), and

I = (I').

Notice that I is a set of indiscernibles for A and that by including the well-ordering

< in IY we ensure that these indiscernibles, which we will enumerate as {tk}, obey the

key properties (with respect to .A) obeyed by the Silver indiscernibles (with respect

to L). See Kanamori (1997, Ch. 9) for details.

Now let h : I - I be order preserving and such that crit(h) = tk. This map

uniquely extends to an elementary embedding j : -+ A with crit(j) = t k. We
aim to show that V"M satisfies F•-reflection for all n. This statement is to be regarded

as a statement of M, through the coding of classes as sets.
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Work in M. Fix 'p(Al .-Am) E In. Assume

We would like to show that

jtk) ] a < j(k) Q(j(Ai)a...j(Ad)')

since this would imply
yM ý 3a < Lk '(dA... A').

We have that

Hm (plk (A 1 . Am).

So we would be done if j(A)Lk = A. Unfortunately, this is not always true. For

example, consider

A(3)= [[0... a) I 0 < k]

and notice that j(A(3 ))tk f A( 3) since the former picks up [0 · k)-

Notice, however, that it suffices to prove the following lemma where, for notational

convenience, we let A* = j(A)tk.

LEMMA. Suppose p(Ai ... A) E A ff where / < t•. Then if

V1M  •p(Aw - - -Am)

then

v, ( p(A .. A*).

Proof. Here the second (p is really the natural translation of the first-occurrences

of 'E' between class parameters are reinterpreted in the shift to sets and the class

quantifiers become set quantifiers. The proof is by induction on n.

BASE CASE: Assume (p(Ai - Am) E Fo, i.e. (p(Ai --- Am) is a first order posi-

tive formula with parameters of arbitrary type. It is easy that p(A .- Am) reflects
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to the club C of points below tk which are closed under the Skolem functions for

p(A~ A,m). Thus, 9p(j(A,) . . j(Am)) reflects to the club of points j(C) below

j(lk), by elementarity. But j(C) n C = C and, since C is unbounded in Lk and j(C)

is club, this implies that tk E j(C), that is, op(j(Ai) j(Am)) reflects to tk.

INDUCTION STEP: Assume the claim is true for F ~,. The following are

equivalent:

V M  VX3Y (X, Y, A

Vf 3Y ] (C, Y, A>, for chosen C
VJ K 0(C, B, A some B
v k(C, B*, *)
Vt 3Y/(C*, Y, A*) chosen C, which was arbitrary

vf" VX3YVx 4(X, YA*).

The fourth line is equivalent to the third by the induction hypothesis. The key point

is that the fifth line is equivalent to the fourth since C = C*, which is true because

the universal quantifier VX ranges over second-order classes.

This completes the proof of the lemma. El

Now applying 7r- we have that

Si' K (V,-1(Lk) K rP-reflection, for all n)

and hence that

V (V,-1(k) -reflection, for all n).

Notice that in the proof we made key use of the fact that the universal quantifiers
are second-order. Let YP

2 be •',P except where all universal quantifiers are second-

order. So, using this terminology, we showed that YfP-reflection is consistent and
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weaker than an Erdds cardinal. In fact, the proof shows that one can allow existential

quantifiers of any ordinal order. Thus we have

THEOREM 18. Assume x=- ='(w) exists. Then there is an 6 < t such that Vs satisfies

fP -reflection for all b.

This is the most powerful reflection principle currently known to be consistent.

QUESTION. Are higher-order reflection principles with third-order universal quanti-

fiers consistent?

We are now almost in a position to show that no reflection principle known to be

consistent can overcome the Minimal Hurdle. First we need a lemma.

LEMMA 19. (Woodin (1982)) The following are equivalent:

(1) X # exists for all X.

(2) If Gi is set generic over V and G 2 is set generic over V[G 1], then V[G 1] and

V[G 2] satisfy the same E statements (with parameters from V[G 1]).

Let us say that a set of axioms A is generically invariant if and only if ZF + A

is preserved under set-size forcing extensions. For example, CH is not generically

invariant but ZF and all of the reflection principles that we have considered thus far

are generically invariant.

COROLLARY 20. Suppose ZF + A. If A is generically invariant and ZF + A freezes

EZ then X# exists for all X.

Proof. Assume that A is generically invariant and that ZFC + A freezes E•. Let G1

be set generic over V. Since A is generically invariant, V[G 1] • ZF + A. Suppose

G2 is set generic over V[G 1]. Since ZF + A freezes El we have that V[G01] and V[G2]

satisfy the same Z• statements (with parameters from V[Gi]). Thus, by the lemma

we have that X # exists for all X. H
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Thus if a reflection principle overcomes the Minimal Hurdle it must imply that

X# exists for all X. Assume that k(w) exists. Then L #'t(w) exists'. It follows from

Theorems 17 and 18 that £F-reflection and YP2-reflection hold in some L6 . Since this

model does not satisfy that X # exists for all X we have that neither PF-reflection

and ŽYP2-reflection can overcome the Minimal Hurdle. And since the latter is the

strongest reflection principle currently known to be consistent we have the following:

THEOREM 21. No reflection principle known to be consistent can overcome the Min-

imal Hurdle.

3.4.2 The Second Fix. Let us turn to the second approach, namely, the attempt

to save reflection principles by constraining the form of relativisation. Although it

is difficult to see exactly how to incorporate enough definability constraints to avoid

the problems presented by examples like A ( 3 ), one can point to a general condition

which must be satisfied by any reasonable form of constrained relativisation or even,

arguable, by any form of relativisation. Let M be a model of set theory and suppose

that there is an elementary embedding j : M -+ M which is not the identity. Let

. be the least ordinal moved by j, the critical point of j. Since j is an elementary

embedding everything which is true of a set a E M is also true of j(a) E M, as far

as M is concerned. That is, from the point of view of M the sets a and j(a) are

indistinguishable. (Of course, we, on the outside, can see the difference since, unlike

M, we can see j). Now consider a higher-order class X (O) over V4M, the universe

of M cut off at the Kth level. When one applies j to this class one gets j(X(w)),

which, from the point of view of M, is indistinguishable from X (A ). And it seems

that, in the very least, the modified form of relativisation should be such that when

you relativise j(X ( B )) back down to VlM you get back what you started with, that is,

relativisation should be such that j(X(f))" = X ( ) . This is the definability constraint

on relativisation. The proof of Theorem 17 establishes the following:

THEOREM 22. No reflection principle which meets the definability constraint can over-

come the Minimal Hurdle.

60



3.4.3 Conclusion. The standard way of justifying new axioms is in terms of

reflection principles. This chapter has been devoted to charting out the limitations

of this method. In §3.1.3 we saw that the actualist does not have the resources

to formulate strong reflection principles. In contrast, the potentialist can formulate

and arguably justify strong reflection principles by making use of the notion of a

legitimate candidate for V. Unfortunately, reflection principles which allow third

order are inconsistent. There are two fixes. First, one can restrict the language in

the manner of Tait. In §3.4.1 I showed that Tait's principle of F,-reflection cannot

overcome the Minimal Hurdle. Furthermore, I established the consistency of a series

of reflection principles which are stronger than F,-reflection and showed that they

cannot overcome the Minimal Hurdle. The current situation is that no reflection

principle which is known to be consistent can overcome the minimal hurdle. Second,

one can leave the language untouched and restrict instead the nature of relativisation.

I argued for a natural restriction-the definability constraint-and in §3.4.2 showed

that no reflection principle meeting this constraint can overcome the Minimal Hurdle.

In the next Chapter I will introduce a new kind of principle-the extension prin-

ciples.

3.5 Appendix

In this appendix I will provide an alternative approach to the above theorem. The

reason for doing this is twofold. First, this approach yields further information, for

instance, that n-reflective cardinals relativise to L. Second, it is hoped that this

approach will shed some light on the open question stated above on page 59.

Recall that Tait showed that for X C n, X is n-reflective iff X E IN . Above we

argued in terms of the property of being n-reflective; here we argue in terms of IN,.

We begin with a few definitions. If J is an ideal over K then the dual filter is

J* = {X ) K\X e }
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and the set of J*-stationary sets is

Set

J = 9(rC) \ In'

J =9(r)\ In'

Uci =Y() \ f1lc< (2-)+ In

and let 1= J*, ,9 = J, and i- = fc-

PROPOSITION 23. (Baumgartner) 9,+ 1 and dci are normal filters.

Proof. Suppose, for contradiction, that -9,+1 is not normal. Pick X E Ol, = In-,1

and a regressive function f : X -+ r such that V71 < n (f- 1 [{y}] In>+,). For each

7r < K, choose Y,7 such that for all S,, Gs,,Sn X V In>. We seek a sequence Y

such that a guess S will serve as a guess for some Y,,, thus contradicting our choice

of Y,. Since we cannot fix 77 beforehand we choose our sequence to encode yf(a) (a)
at the ath-stage and ensure that a guess will "freeze" all f(a) to some fixed 7. (This

will become clearer as we proceed.) To achieve these two ends simultaneously we

code pairs of ordinals via an injective function : K x n -+ K and take as our coding

sequence ' such that

9'(a) = r[{:f(a)} x Yf(a)(a))] n a.

We are interested in

c= {a < K I, r[a x ] C a},

the club of closure points of w. By induction we have that In" contains the club filter

(using normality at successor stages) and thus C E In. And by the ineffability of X

we have a guess S such that

Gs, 0 X e Ing
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and hence, by the previous sentence,

Gs,y nX n C e In".

Now notice what our guess S achieves: First, it is easy to see that there must be an ij

such that f(a) = 7 for all aE £ Gs,y nX n C. Second, for / < 7 both in Gs,y nX n C

we have

f(y) (QY) n f = 5(1)

which implies (since we have "frozen" all f(a) to 77),

Thus, letting S, be such that

S,71c 5 Y,(a) forac E Gs,ynX nC
0 otherwise,

we have a guess S, such that Gs,y, n X n C, which contradicts our choice of Y,7.

PROPOSITION 24. In" = IN'

Proof. The inclusion IN' C In' is immediate. For the other inclusion, we proceed

by induction. CASE 0 and CASE A are immediate. CASE 7+ 1: Assume X E

InY+ 0. We begin by constructing a function which will translate 5-sequences

into Y-sequences: Since rc is ineffable it is a limit of inaccessibles. Let C be the

closure of the set of inaccessibles below r, and let w : : r, V1 be such that for all

a E C, 7r Ia: a 2- V,. Notice that Ce In' since, for every successor r + 1, normality

implies that In,, contains the club filter. (Suppose 9 is a normal filter on c, and

suppose, for contradiction, that C is a club in r such that C B 5. Let f(rj) = Cn r7.

f> \ ({C U {0}) is regressive and rs \ (CU {0}) is 5-stationary. Thus, by normality,

there is an a < n such that f-'[a] is 5-stationary, which contradicts the fact that

f-l[c] is bounded.)
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Now fix 7. We seek T such that GT,, nX E INK. Let 9 = - l[7], choose S such

that Gs,ynX E In>, and let T = -[S]. Notice that GT,?nXnC = Gs,ynXnC E Inj.

(Note that the statement of membership is true even for 7 limit). Since In' is a filter,

we have GT,g OnX E In' and hence, by our induction hypothesis, GT,Y. nX E IN>. i

The key idea in the following lemma is due to Jensen and Kunen.

LEMMA 25. Suppose X e In' and X E L. Then L = X E In'.

Proof. We show by induction on 7 that In nL C (In')L. CASE 0: In' n L C (In )L

is immediate since a club in L is a club in V. CASE A: This is also immediate. CASE

S+ 1: Assume In" n L C (In")L. We must show In%'+, nL c (In+Q)L--that is, for

each X E In', n L we must show that VY E L 3S E L (Gs,S n X) E (Inn). So

fix Y E L. We have a witness S in V. We shall show that this witness is in fact

in L. To begin, note that Va < K (Sn a E L) since, for cofinally many a < •,

S n a = (a) E L. Now we want to argue that

(VK, S) K "S E L"

since

Va < K (V, S n a) K "Sna E L"

and K is Il-indescribable. Thus we seek a EZ sentence p such that

(V,, S) ~ p(S) iff S E L.

The key points are (1) S E L iff 3•a < (K+)L (S E L0) and (2) each such Ln can be
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coded by a subset of L,. Thus we take

(p(S) E 3M, E, ir, s such that

(a) M C V, EC Vr xV , secM,

(b) (M, E) is well-founded, extensional and set-like,

(c) (M,E)H V =L,

(d) n : "(M, E) - L " is the collapse map, and

(e) r(s) = S.

So S E L and Gs,y n X E L, since Y, X E L. Hence, by induction, L H G n X E

In". K'

DEFINITION 26. Let M be a transitive standard model such that M H ZFC + n is a

cardinal. •& is an M-ultrafilter iff

(1) (M, V) H W is a n-complete ultrafilter

(2) (M, W) is weakly amenable in the sense that Vf C KM n M ({( < I f(() E

0&} e M.

V is a normal M-ultrafilter iff • is an M-ultrafilter such that (M, LW) H ,W normal.

THEOREM 27. (Kleinberg) Suppose M is a countable transitive standard model of

ZFC. Then the following are equivalent

(1) There is a normal M-ultrafilter over K

(2) M H K is completely ineffable.

Proof. (1) -+ (2): Suppose LW is a normal M-ultrafilter on K.

CLAIM. L C (In")M for all /3 G n M.

Proof. By induction on /3. CASE 0: LW C (In4 )M since normality implies that M

extends the club filter. CASE A: Immediate. CASE 7 + 1: Fix X E LW. We have to
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show that X E (In'D+)M--that is, for each Y E M we must find an S E M such that

G s ,~ n X E (In))M.

So fix Y E M. To find Y' consider the ultrapower 'M/llI. Since t is an external

measure we have no guarantee that "M/I" is wellfounded but we do know that K is a

subset of the well-founded part of "M/1W and that [ca]j = a for each a < K. Notice

that for all A C K such that A = [f], we have

[ca] , E [f] f C{ < K I c (C) E f(C)}IE 0&

and so

[f] = {a < Kl({ < a,  E f(()} £ }.

In particular,

[Y,& f = {a < KI{4 < K I a E 9(()} E £t.

Thus, [9],& E M by weak amenability. Now take S = [9]oŽ. This works since,

letting A4 = {( < [a E Y(()} for each a E S, we have

a0ESAa - fC < K I C E faesncA}= Gs,=

which is in '& by normality. E

Thus (In')M $ 0, for all 3 E £2 n M, and hence M n K is completely ineffable.

(2) - (1): Suppose M ~ is completely ineffable. We seek a normal M-

ultrafilter 'W. We have a normal M-filter, viz., $ei E M. There is a standard way
of extending such a filter to an ultrafilter: Let G be J+ -generic over M where the

ordering on Ji is given by: q < p iff q \ p E fi. G exists since M is countable.

Standard arguments show that G is a normal M-ultrafilter, with the exception of

weak amenability. Kleinberg's insight was to see how the combinatorial properties of

the completely ineffable cardinal K (in particular, the so-called flipping properties)

could be leveraged to ensure weak amenability. To see that # C G, fix X E S and
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notice that {Y £E I Y C X} is dense in .C+ To see that G is normal in the

sense of M fix X E G and f E M such that f : X --+ K is regressive and notice that

{Y C X I f is constant on Y} is dense below X. Finally, we have to show that G is

weakly amenable-that is, for all f E " nM M ({( < , f(() E G} E M). To this

end we make the following definitions. Suppose f, g : -+ 1 (). The sequence g is

a flip of f iff for all a < n, g(a) £ { f(a), K \ f(a)}. The diagonal intersection of f is

Dg - {a < Ka V( < a (a E f(())}. Now fix f E KM n M. We have to show that

{Y E j+ I 3gg f (Y C DO)}

is dense.

CLAIM. For each f : a --+ (Y ) and X E J +i there is a g f and a Y E J+ such

that Y C X n D9 .

Proof. Define Y such that

Y(a) = ( < a I a Ef (()}

and by the complete ineffability of K choose S such that Gs,7 n X E JcJ. Let g E M

be such that

f (C) if C E S
K \ f(() otherwise

Then Y - Gs,y n X C Dg n X, as if a E Gs,y then we have a E f(() = g(() for

each( E Sna and a C \ f(() =g(a) for each ( a \S. O

This completes the proof of the theorem. [

COROLLARY 28. Assume 0# exists. Then L H Lt is completely ineffable, for each

Silver indiscernible t(.

Proof. Let j be an order preserving map from Silver indiscernibles to Silver indis-

cernibles with critical point tc. This map uniquely extends to an elementary embed-

67



ding 3: L -+ L with crit(J) = tc. Set

V I =x c{ C X e L A e j(X)}.

It is straightforward to see that SY is a normal L-ultrafilter. Thus, by Kleinberg's

theorem, L C =t is completely ineffable. O

COROLLARY 29. Suppose that n(w) exists. Then there is a cardinal less than t(w)

which is completely ineffable and hence n-reflective for all n.

Proof. Let n = i(w). Following the proof of Silver-Reinhardt that there is a totally

indescribable cardinal less than r we consider the structure /, = (Ve, E, <) where

< well-orders V,. Let I = { } E K be the indiscernibles of 4 given by Silver's

theorem. Take the Skolem hull of these indiscernibles and collapse, letting

)' =Hull"(I),

ir : 49 3JX' =collapse(Jfl), and

I =-ir(I).

Notice that I is a set of indiscernibles for Vt' and that by including the well-ordering

< in .4 we ensure that these indiscernibles, which we will enumerate as {4}, obey

the key properties (with respect to t') which are obeyed by the Silver indiscernibles

(with respect to L).

Now let j : I -+ I be order preserving and such that crit(j) = •,. This map

uniquely extends to an elementary embedding j: a)' -4 ý9 with crit(j) = T,. Set

V= {X C L4,j X e atA T E(X)}.

It is straightforward to see that V is a normal Jff-ultrafilter. Thus, by Kleinberg's

theorem, 3f' •n is completely ineffable. So we have ) = t, is completely inef-

fable, 41 • L,. is completely ineffable, and finally, since K is inaccessible, V a t, is

completely ineffable. H
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Chapter 4

Extension Principles

In this chapter I will introduce a new series of principles-extension principles-and

show that these principles have much greater scope than reflection principles. The

main result is that unlike reflection principles, extension principles can overcome the

Minimal Hurdle (and much more), thereby effecting a significant reduction in in-

completeness. I will begin in §4.1 by discussing an approach to the justification of

large cardinal axioms due to Reinhardt. I will then show that this approach has

two problems-the problem of tracking and the problem of extendibility to inconsis-

tency. Extension principles are designed to overcome both of these problems. I will

introduce one of the weaker extension principles, EP, in §4.2 and show that it over-

comes the problem of tracking. In §4.3 I will show that EP overcomes the problem

of extendibility to inconsistency and that it overcomes the Minimal Hurdle. I will

also isolate the exact strength of EP. §4.4 is devoted to the much stronger extension

principle GEP. The main result is that GEP implies PD and freezes the theory of

second order arithmetic.

4.1 Reinhardt

4.1.1 Introduction. Reinhardt's approach to the justification of large cardinal

axioms is to take the totality of sets V as a additional primitive and then investigate

and characterise the properties of this primitive. In terms of our earlier distinction

69



between axioms of nature and axioms of extent Reinhardt's approach is therefore to

investigate axioms of nature, but axioms which pertain the nature of the totality of

sets and not to the nature of individual sets.

I will focus on the following three sources: Reinhardt's thesis, Topics in the Meta-

mathematics of Set Theory (1967); an unpublished note, "Some strong axioms of

infinity" (1968); and the paper "Remarks on reflection principles, large cardinal, and

elementary embeddings" (1974).

The bulk of Reinhardt's thesis is concerned with the system of set theory in-

troduced by Ackermann, the main result being that Ackermann's set theory A* is

equivalent to ZF. (Levy had already proved the forward implication). My primary

interest, however, is in the final chapter of the thesis where Reinhardt uses the moti-

vation underlying A* to justify a system ZE which, in modern terminology, yields the

existence of a 1-extendible cardinal. There is a single sentence in the thesis (almost a

parenthetical remark) which indicates how to extend this system to a much stronger

system. It is this sentence which has made the thesis famous. For, assuming the

axiom of choice, the proposed extension is inconsistent.

4.1.2 Ackermann Set Theory. Ackermann's set theory with foundation, A*,

consists of the following axioms in the language of set theory with a constant V:

Extensionality, Separation restricted to V, Foundation, Closure of V under e and C,

and Ackermann's principle:

If {x pQ(x,a, b)} C V (where a, b E V and 'V' does not occur in o) then

{x I cp(x, a, b)} = c for some c E V.

The theory A is the theory A* without Foundation. The motivation for Ackermann's

principle is the idea that any "sharply delimited" collection is a set. The antecedent

of the principle is supposed to give a sufficient condition for being sharply delimited,

i.e. if a collection C of sets is definable with parameters without reference to V, then

C is sharply delimited. I will spell this out in some detail in the next section but first

it will be instructive to state the principal results concerning A and A*
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THEOREM 30. (Levy) If A* F- p'V then ZF - p.

THEOREM 31. (Reinhardt) If ZF H •p then A* 9-V.

THEOREM 32. (Reinhardt) Assume A. Suppose 0 is a formula and P is a finite set

of formulas, each with one free variable. If Oi(V) then there is a V' such that

(1) VE V',

(2) 'b(V'), and

(3) ~"V(x) ++ v' (x) for all x E V.

THEOREM 33. (Reinhardt) Suppose V• 1+ - VB+ 1 where a < p. Then

(1) (Vp+i, E, Va) A and

(2) If V= L, then a is IIl-indescribable.

4.1.3 The Principle of Sharp Delimitation. With these technical results be-

hind us let us now turn to the motivation for Ackermann's principle.

Ackermann thought that in order for a collection to be a set it must be the case that

"what belongs to the collection and what does not belong to it must be sufficiently

sharply delimited" Ackermann (1956, p. 282). Since the collection of all sets is not a

set, it follows that on Ackermann's view the notion of set is not "sharply delimited".

But what is meant by 'sharply delimited'? The antecedent of Ackermann's principle

provides a precise sufficient condition, namely, if {x I |p(x, a, b)} C_ V (where a, b E V

and 'V' does not occur in p) then {z Ip(x, a, b)} is sharply delimited and hence

by the principle is a set. One way to think of the motivation for this is along the

lines of the potentialist conception introduced earlier. On the potentialist view we

have been considering there are many legitimate candidates for V. Let us enumerate

the spectrum of the concept of set as A = { a ae Q}. Thus, for each o, c
A, the structure Vl0 meets the concept of set and so the structure V'> satisfies all

of the closure properties inherent in the concept of set. As noted earlier no one

candidate is better than another. The idea is that the legitimate candidates are order
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indiscernibles. The constant 'V' is to be taken as a variable that ranges over the

various candidates and there is no clear choice as to which candidate is the best one-

they are all on a par, they are indiscernible. The antecedent of Ackermann's principle

says that if a collection C is definable with parameters in V but without reference

to V-that is, if the interpretation of the (intensional) collection C is independent of

the actual reference of 'V'-then the collection C is a set.

We have still not given a precise definition of 'sharp delimitation', although at

the close of the last paragraph we gave a rough formulation, namely, a collection is

sharply delimited if and only if its interpretation is independent of the interpretation

of 'V'. Let us make this more precise, following Reinhardt pp. 72-74. Let p(x) be a

formula with one free variable. It defines a collection over the background universe

which contains (the various candidates for V). Relative to a given candidate V this

collection corresponds to pV = {xI ýp(x) A x E V}. A collection is said to be sharply

delimited if and only if pV is independent of the interpretation of 'V', that is, if and

only if,

Va,j3 ( _V = 7 )

So the principle which says that 'if a collection C of sets is sharply delimited then C

is a set' can be written as

Vc, / ((pVKa = -VK) - 3 E VV (c- = (pVO)

Let us call this principle the principle of sharp delimitation. Notice that this principle

implies Ackermann's principle, since the antecedent of Ackermann's principle is a

sufficient condition for sharp delimitation. But sharp delimitation is broader than

Ackermann's sufficient condition, and so it is natural to consider the system of set

theory based on the stronger principle of sharp delimitation.

DEFINITION 34. The system of set theory A+ consists of the following axioms in the

language of set theory with a constants V and V':

(1) The axioms of A* except Ackermann's principle
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(2) c V'

(3) opV `V' -* 3c E V (c V)

It is easy to see that one can obtain a model of A+ from a fIt-indescribable cardinal.

4.1.4 Comparing the Candidates. Let V,,, Vr,, Vr2, V 4, be the first four can-

didates for V. These are regarded as the possible worlds of set theory, the legitimate

candidates. Working in V,, we would like to examine the structure (V,,2, 7, V ,bo)

and determine what must be true of it if V~, and V,, are to serve as legitimate candi-

dates for V. Reinhardt's basic method for obtaining reflection principles "is to exploit

the principle which says that mathematical truths should be necessary truths" and

"[a]ccording to this principle, if the notion of possibility we have introduced is a good

one, something true in one interpretation of V should be necessarily true, that is,

true in all possible alternative interpretations of V" (p. 76).

This principle is made more precise by specifying the language. First, consider

the standard first-order language of set theory, that is, t,o. In this language the

principle that mathematical truths are necessary truths is expressed by the schema

(pV 0 <4- (PV

In other words, the principle asserts that V,, V,,. Second, consider the language

Y, 1, that is the first-order language of set theory with parameters. When this lan-

guage is interpreted over V,1 the parameters are the elements of V,,. In this language

the principle that mathematical truths are necessary truths is expressed by the schema

v e V (YVKo(x) (X yvVh((x)).

In other words, the principle asserts that V o -4 V1 K. One can justify the above schema

without reference to the notion of possibility by noting that if V o and V, are really

legitimate candidates for V then they had better satisfy the same sentences in as

rich a language as possible (without, of course, making actual reference to V1 o or
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V1,). This avoids the difficulties surrounding how one is to interpret possibility in

the mathematical context where, it would seem, not only are mathematical truths

necessary but also mathematical objects exist necessarily.

Notice that these principles are similar to reflection principles. The main difference

so far is that the all of the statements true of V, are being reflected to a fixed level,

namely V,,. A second difference will become clear when we enrich the language to

include higher-order parameters.

The next step is to consider the languages Y4-2,,1, , 4 ,~,1, ... Doing so

does not lead to a significant improvement in strength. The significant jump occurs

when we try to use the language Y2,2, that is, the language of second-order set theory

with second-order parameters. This is what Reinhardt does at the close of his thesis.

A problem arises when dealing with sentences in £2,2. Recall that in the case

of •~1 the parameters were elements of V,,o and a statement true of a parameter a

over V,, was true of that very same parameter a over V,. But if A is a second-order

parameter over V,,-that is, a subclass of V,,-then this will fail; for example, if A is

unbounded in V,, then the sentence 'A is unbounded' will be true when interpreted

over V,, but not when interpreted over V,,. Thus to each unbounded subclass A of

V,, we need to associate an unbounded subclass j(A) of V,,. It is helpful to think

of the first-order parameters a having names Ca and the second-order parameters A

having names CA. Then the issue is how the name CA is to be interpreted over V1.

Reinhardt outright assumes that there is an interpretation function (equivalently, a

map j) which is such that

Vx E K VX C V (cto(, X) + (, j(X))).

This principle asserts that Vo+ 1 -< V~+ 1, where ro is inaccessible, that is, the prin-

ciple asserts that to is 1-extendible.
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4.1.5 Criticism. There are two problems.

The first problem is that we are not told what j(A) is and we are given no reason

for thinking that there is a way of associating a j (A) to each A in such a way that the

above schema comes out true. We are given no guide as to how to track parameters

from one structure to another. Let us call this the problem of tracking.

The second problem is that the above schema leads to inconsistency when gen-

eralised. "[I]n order to extend [the above schema] to allow parameters of arbitrary

(in the sense of V,, order over V,,) we simply remove the restriction 'X C V1o'" (p.

79; I have changed Reinhardt's 'Vo' to our 'Vo' and so on.) The point is that there

is nothing stopping us from doing this, that is, the justification for a 1-extendible is

also justification for the result of making the above generalisation. The trouble is

that when one does this the result is an elementary embedding j :V - V which, as

Kunen showed, is inconsistent (with AC).6 By the time of his (1974) Reinhardt was

aware of Kunen's result and he refrains from stating the inconsistent axiom. But the

point still remains that the argument he gives for a 1-extendible is also an argument

for the inconsistent axiom. He has not drawn a principled distinction between the

two. Let us call this the problem of extendibility to inconsistency.

4.2 The Principle EP

4.2.1 Tracking Definable Subsets. There is a natural way to overcome the

problem of tracking. Consider two legitimate candidates V' and V" for V where the

former is properly contained in the latter. The problem of tracking is that given an

arbitrary subclass A of V' there is no way of isolating the "corresponding" subclass

j(A) of V". Notice, however, that if A is definable over V' via the formula y and

parameters al1  a, then there is a way of isolating the corresponding subset j(A) of

V", namely by implementing the definition of A over the structure V"-that is, by

setting j(A) ={x E V" | V" ~ p(x, al ... a)}.

On the potentialist view that we are pursuing there are many legitimate candidates

which meet the concept of set. What is V according to the potentialist? It is some Van

75



which meets the concept of set. Thus, for each , E A, the structure Va meets the

concept of set and so the structure Va satisfies all of the closure properties inherent

in the concept of set. Let us add two constants 'V" and 'V"' to the language of set

theory, each of which is intended to denote an element of the spectrum, say V' = V,

and V" = V,, where K, < ,p.

Since each of V' and V" meets the concept of set we know that each is undefinable,

something we made precise in terms of reflection principles. Thus any (higher-order)

statement true of, say, V' reflects to some smaller V,. But we know more than that

V' and V" are undefinable-we know that V' and V" are indistinguishable since each

is a permissible candidate for V, that is, each meets the concept of set. Let me spell

out in detail what it means to say that V' and V" are indistinguishable.

4.2.2 The Principle. We are given two structures, V' and V", each of which

meets the concept of set and such that V' C V". The principle EP can be reached

in eight steps: (1) V' and V" are both models of ZFC. (2) V' and V" satisfy exactly

the same sentences in the language of set theory. For if this were not true then there

would be a sentence rp true in one structure but not in the other and this sentence

would enable us to tell the two structures apart, thereby indicating that the two

structures are not equally good candidates for V. (3) For exactly the same reason V'

and V" satisfy exactly the same sentences in the language of set theory even when

we allow constants for sets common to both structures. Thus V' -< V". (4) Let X be

a subclass of V' which is defined in V' by a formula b with parameters a ... an. Let

j(X) be the subclass of V" which is defined in V" by the same formula b and the

same parameters al -a,~. For example, y might define "the ordinals". In this case,

X consists of the ordinals from the point of view of V' (that is, the elements of N,)

and j(X) consists of the ordinals from the point of view of V" (that is, the elements

of aP). Reasoning as above, we have V' along with X and V" along with j(X) satisfy

exactly the same sentences, that is, (V', X) -< (V",j(X)). (5) Let Def(W) be the set
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of all subsets of M definable in the structure W with parameters in W. Let

Lo(W) = W

La+ i(W) = Def(L,(W))

L,(W) = Ua•cLa(W)

where a is a successor ordinal and A is a limit ordinal. Finally, let L(W) = UJ<aL (W).

Then the map j : L , (V') -+ L1 (V") must be an elementary embedding for otherwise

we should be able to distinguish V' and V". (6) We can now consider definable classes

X over L1 (V') and their analogues j(X) over L4(V"). Reasoning as above, we have

that j : L 2 (V') -+ L 2 (V") is an elementary embedding. (7) Generalising we have that

j : L(V') -+ L(V") is an elementary embedding. (8) Finally, putting all of this to-

gether we have: For each r, A E A such that n < A there is an elementary embedding

jy : L(V,) - L(Vx). As our official principle let us take the following:

EP. For each a there is an elementary embedding

j : L(V,) -+ L(Vx)

such that a < K < A.

Here's the picture:

L(Vr) L(VA)

According to the potentialist view we are pursuing, the permissible candidates V, for

V are equivalent in a sense partially fleshed out by EP.
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4.3 The Strength of EP

4.3.1 Freezing. The following result is a straightforward consequence of the well-

known construction for HI-sets due to Martin and Solovay.

THEOREM 35. EP freezes E.3

Proof. First we note that EP implies that X # exists for all sets X: Fix a such that

X E V,. By EP there is a non-trivial elementary embedding

jr" : L(VK) 4 L(V )

where a < t < A. The restriction of this map to L(X),

j,AX : L(X) -4 L(X)

is an elementary embedding. Thus X# exists.

Now let G C P be V-generic. Choose K > Card(P). EP implies that (VK)# exists.

Let T be the Martin-Solovay tree for a Ifl-set defined by o, constructed relative to

(V,)#. (See Kanamori (1997, Ch. 15) for details, using the sharp in place of the

measurable cardinal.) Since P is a small forcing relative to r the embeddings in the

Martin-Solovay tree lift to embeddings for the corresponding tree in V[G] (by the

proof of the central theorem in Levy & Solovay (1967). Thus TG = T. Now suppose

V - 3Bx p(x). Then x E p[T] C p[T]V[G] and so V[G] -] 3x p(x). Conversely, suppose

that V -l±ex p(x). Then T = TV[G] is well-founded and so V[G] ~ -3]x 'p(x). OL

Thus in the presence of EP on cannot alter the nE-theory via forcing: EP ensures

that as far as E' sentences are concerned consistency via forcing implies truth. We

have finally reached a justified principle which overcomes the Minimal Hurdle and

effects a significant reduction in incompleteness. In particular, EP implies SPHERE

and lifts all of the results of classical descriptive set theory to the next projective

level.
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4.3.2 Sharps. One would like further assurance that EP is consistent. It is easy to

see that 'ZFC + There is a proper class of superstrong cardinals' implies EP. Perhaps

this is not very reassuring. Fortunately, one can prove a much sharper bound. In

the next section I will isolate the optimal bound: EP is equivalent to the statement

'for all X, X # exists'. This will have an interesting philosophical consequence which

I will discuss in §4.3.4. The purpose of the present section is to set up the requisite

machinery.

There are many equivalent formulations of the statement that X # exists. For our

purposes the inner model theoretic formulation will be most useful. In what follows

I will outline the theory without giving proofs. The interested reader is referred to

Steel (1999) and Schimmerling (2001).

Assume X# exists, i.e. there is a non-trivial elementary embedding j : L(X) -

L(X). Our aim is to construct a countable model /A which contains all of the

information inherent in j. We proceed in two steps. The first step is to find a set

which contains the information of the class j. The second step will be to find a set

of cardinality Card(X) which encodes the same information.

The first step. Let , be the critical point of j. It is easy to see that

U={A K I A E L(X) A nC j(A)}

is a normal ultrafilter over L(X). Let us say that a structure (M, e, A) is amenable

if and only A n x E M for all x E M. For example, the structure M = (L(X), E, U)

is not amenable since U 0 M. Moreover, the longest initial segment of L(X) which

has a chance of being amenable is L(,+)M (X). Kunen showed that (L(r+)M (X), c, U)
is indeed amenable. Let us introduce some more terminology.

DEFINITION 36. An X#-premouse is a structure A' = (L4(X), c, U) such that

(1) A- =+)L(X),

(2) L2 (X) • ZF - Powerset+'r is the largest cardinal',

(3) 4' •'U is a normal ultrafilter over r', and
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(4) jA is amenable.

Using this terminology we can summarise the situation as follows: Kunen showed

that if X # exists then there is an X#-premouse.

Let us continue with our assumption that X* exists and see what further infor-

mation we can extract. We work in a language that contains a constant ba for each

a e X. The goal, remember, it to extract enough information to enable us to recover

X#. Given an X#-premouse • = (L\(X), c, U) we can take the ultrapower of A

by U. Assuming the ultrapower is well-founded we can identify it with its transitive

collapse. It is straightforward to show that Log' theorem holds in this setting and that

the canonical map iu(x) -+ [cj]u (where cX : a H x is the constant function with do-

main K) is cofinal in the ultrapower. Furthermore, setting U' = UIEA iu(U n L (X))

we have that the ultrapower &' = (LyA(X), c, U') is an X#-premouse. Thus we can

take the ultrapower of T' by U' and continue in this fashion, so long as the ultra-

power at each stage is well-founded. At limit stages of the process we take the direct

limit. Let us write d.'a for the a t" model of this iteration of k and call it the ath

iterate of A. A is a-iterable if for all p < a if Ult(Ape, U4) is well-founded when

-= / + 1 and the direct limit of the models (A') <B is well-founded when 0 is a

limit ordinal. We say that A' is iterable iff A is a-iterable for all a < Q and we say

that A' is an X#-mouse iff it is iterable.

Now one can show that if X* exists then there is an X#-mouse. (The point is

that A'* = (L(X), E, U) is iterable and the models of the AT-iteration embed into

the corresponding models of the /A*-iteration.) Thus we have an (-length iteration

of A. We can now recover X # . The limit model of this iteration is L(X) and the

critical points of the embeddings are L(X)-indiscernibles. But any order preserving

map from the L(X)-indiscernibles into themselves induces an elementary embedding

from L(X) into itself, which gives us X#. The completes the first step of the analysis:

we have a set-sized structure which encodes X # .

Second step: Suppose A is an X#-premouse. Let Y'v be the language of set

theory Y with an additional constant symbol U7. For Y C M let Hullt (Y) consist

of all elements a e M such that a is the unique element x such that A / op A /b[2, b]
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where cp is a E1 formula of Y'u, 4 is a formula of 2, and b is a sequence of parameters

from Y. We have that Hull< (Y) is a E5-substructure of /f with respect to YU and a

fully elementary substructure of A/ with respect to 2. Let us call an X# premouse

A/ minimal iff A = Hullt(O). The key fact is the following: if there is an X # -

mouse then there is a unique minimal X#-mouse. We let 4o#(X) denote the minimal

X#-mouse. Note that Ao#(X) is countable and that its £-length iteration gives rise

to indiscernibles which yield an elementary embedding from L(X) into itself. Thus

we have outlined the proof of the following:

FACT 37. The following are equivalent:

(1) There is a non-trivial elementary embedding j : L(X) - L(X).

(2) /ok(X) exists.

Thus the class size embedding which constitutes X # can be represented as the count-

able iterable inner model Af0 (X).

4.3.3 Strength. We are now in a position to pinpoint the exact strength of EP. 7

THEOREM 38. Assume that there is a proper class of inaccessibles. Then the following

are equivalent:

(1) EP.

(2) For all X, X # exists.

Proof. (1) -+ (2): As above. (Choose a such that X e VI. Then by EP there is
an elementary embedding j-A : Vs -+ V where a < I < A. The restriction of this

embedding to L(X) witnesses that X# exists.)

(2) -+ (1): Assume that X# exists for all X. Let I be the proper class of

inaccessibles. Fix a. We seek nr, A and jA such that a < n < A and ja : L(V3) +

L(Vx) is an elementary embedding. Start by letting A be an inaccessible greater than

a. We have that (V%)# exists and hence by the results of the previous section that
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Ao = -o#(Vx) = (L,(Vx), E, U) exists. Let

Ho = Hullf• (V,) O o = sup(Ho n VA)

Hn+l = Hull•o (H, U VK) Kn+1 = sup(Hn+ 1 f Vx)

HW = Un<J Hn -= Un<wKn

Now let Ao = collapse(H~) = (L(V,K), E, U) and let 7ro :Ao - Ao be the inverse
of the collapse map. Note that w(A) = A and that ~o is a (V,)#-premouse.

Let (d•a)a<n be the iteration of ,# and let jp : •9 -+ A be the iteration maps.

Let Atg be the limit model and note that A• = L(VA). Let Al = Ult(A.o, U) and

let jol be the ultrapower map. It is easy to check that if we let

[f]M-410 [jo•(f)]-UW

where f : crit(U) - M is a function in 1o0, then the following diagram

j01

J01

commutes and all of the embeddings are elementary with respect to 2. Continuing

in this fashion, supposing that we have obtained rr, we let

[fl " >'6l Fj=a> l
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and take direct limits at limit stages. We thus obtain the following directed system:

Joi jla jao
-IWO ato

?TO IF00

AtD
J01oi 1 Joo

The direct limit map 7r. : L(V,) -4 L(V ) is our desired elementary embedding. O

4.3.4 Inevitability. Our justification of the principle EP has its roots in the

potentialist view of the universe of sets. The potentialist takes seriously the view

that any given kind or plurality of objects can be formed into a set. This has the

consequence that "the sets" do not form a given kind. Nevertheless it seems that we

can make meaningful statements about the concept of set or the totality of sets. There

are a number of ways of explaining this. One way is through the device of typical

ambiguity. Another is to regard V as an order indiscernible, that is, to regard talk of

V as talk of one of (proper class-) many indistinguishable legitimate candidates for V.

On this view when we talk of V we are talking about a set. True we can go further

and take the powerset of this set but in doing so we do not obtain an essentially

richer conception. Of course, we do obtain a trivially richer conception, trivial in the

sense that V,•+ is richer than V1 .But we will never (provided we avoid reference to

V) reach a level which has closure conditions that surpass those of V. This is what

it means to say that we never obtain an essentially richer conception. I present this

view as an option. It is beyond the scope of this thesis to provide a full defense of

the view.

There is another justification of EP. In addition to being justified by the afore-

mentioned conception of set this principle is in a certain sense inevitable. The purpose

of this subsection is to explain the sense in which this is true.

Recall the notion of a generically invariant set of axioms that was introduced in
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§3.4.1: A is generically invariant if and only if ZF + A is preserved under set-size

forcing extensions. For example, 'There is an inaccessible cardinal' is not generically

invariant but 'There is a proper class of inaccessible cardinals' is generically invari-

ant. All of the new axioms we have considered thus far (that is, reflection principles

and extension principles) are generically invariant. (More generally, we have been

investigating axioms which assert that there are large rank initial segments of V with

certain largeness properties P. Suppose T is a theory which yields a rank initial

segment of V with the largeness property P. The theory T has generically invariant

extension T' asserting that there is a proper class of rank initial segments with the

largeness property V. Now our concern is with whether extensions T of ZFC make

a significant reduction in incompleteness. Since the stronger the theory the greater

the reduction in incompleteness we can, without loss of generality, focus on theories

which are generically invariant.)

Now recall Corollary 20 from Chapter 3 which states that if A is generically

invariant and ZF + A freezes E then X# exists for all X. Given this and the theorem

above we have:

COROLLARY 39. If A is generically invariant and ZF + A freezes E, then EP holds.

In this sense the principle EP is inevitable: it is implied by any generically invari-

ant theory which overcomes the Minimal Hurdle.

4.4 The Principle GEP

4.4.1 The Generalised Extension Principle. In overcoming the problem of

tracking we restricted our attention from V to the inner model L(X). The reason for

doing so is that L(X) is built up from below in a definable fashion and the enables

us to track sets via their definitions. This is in contrast to the inner model HOD.

There are, however, other models which are richer than L(X) and yet resemble L(X)

in being built up from below in a definable fashion-for example, the core model KDJ

constructed by Dodd and Jensen. The problem of tracking is thus solved for KDJ and,
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reasoning as above in the case for L(X), we can conclude that conclude that there

is a non-trivial elementary embedding from KDJ into itself.8 More generally let us

formulate the general extension principle thus: Suppose that V, and V\ are legitimate

candidates for V. Suppose that K is an inner model which is built up from below in

a definable fashion and thus admits a notion of tracking. Then there is a non-trivial

elementary embedding j : K(V,) -+ K(V ) where K(X) is constructed in the same

manner as K only with X as the starting point. To make this principle precise and

definite we must specify the class K of models for which the above schema hold.

The inner models that I will need for present purposes are as follows: Steel's core

model K(x) and the models L 17(V,) obtained by taking the constructible closure of

V, and the ordinals under the function f + Sý #(x), that is, letting F be the (class

size) function taking x to A.,#(x), Ltt (Vs) = LF. Both of these models are built up

from below in a definable fashion and so must be non-rigid, that is, there must be an

elementary embedding from each model into itself. Given this we can argue for the

following principle:

GEP. For each x the model KC(x) reaches a Woodin cardinal and for each a and for

each n the model Lf (V,) is not rigid.

The second clause is immediate. The first clause follows from the fact that K is not

rigid and the following theorem of Steel, a proof of which can be found in Steel (1996)

p. 88 ff. Let K be Steel's core model.

THEOREM 40. (Steel) Suppose that K is not rigid. Then KC # 'There is a Woodin

cardinal'.

4.4.2 Projective Determinacy. The principle GEP implies that KDJ is not rigid

and by a result of Dodd and Jensen this implies that there is an inner model with a

measurable cardinal. This gives us the consistency but not necessarily the truth of

the statement that there is a measurable cardinal. Our primary concern, however,

is with truth and not consistency. In this subsection I will show that GEP implies

a host of interesting things which are not provable in ZFC + EP. The central result
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is the following, which is a straightforward application of Woodin's technique of the

core model induction.

THEOREM 41. GEP implies PD.

Proof. Since, by a result of Woodin, PD is equivalent to the statement 'Vx E IR/• (x)

exists', it suffices to prove the latter by induction on n. The base case n = 0 is clear as

noted in §4.3.1. For each a consider Lf (V,). By GEP we have that for arbitrarily

large v there is an amenable measure on 1(v) fn Lt (Va). For each such v and for

each x E L$f(V,) we can build KC(x) up to v as in Steel (1996). Let us denote the

resulting model by KI(x).

CLAIM. For every a and for every v as above the model K,(x) has a level which is

not n + 1-small.

Proof. (Sketch) Suppose not. Fix a and v as above such that all levels of K'(x) are

n + 1-small. One can show that K,(x) ='There does not exist a Woodin cardinal'.

(For details see Steel (2001)). But this contradicts GEP. O

Thus for each a there is a premouse 4J(x) such that (i) ,4A(x) A# 1, (x) (ii), Y

projects to Card(x), and (iii) 4•(x) is iterable for trees in V,. Now suppose that a

and f are greater than Card(x)+ . Since 4A(x) is iterable for trees in V, and AJp(x)

is iterable for trees in VI we can coiterate J4(x) and A,1(x). Since both models

project to Card(x) we have that one model is an initial segment of the other (cf. Steel

(2000b) Corollary 3.12). Since both models are elementarily equivalent to a&#(x)

this means that 4t(x) = Jp(x). Since a was arbitrary this means that we have a

model which is elementary equivalent to A•f4 and is fully iterable. Thus n+1(x)

exists. Since x was arbitrary we have shown by induction that AW(x) exists for all

n and for all x. Thus PD holds. O

Recall that ZFC + EP lifted all of the results of classical descriptive set theory up

to the next projective level. In particular, ZFC + EP implies that there is no para-

doxical decomposition of the sphere in which the pieces are E, a statement which

is independent of ZFC. Unfortunately, the statement that there is no paradoxical
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decomposition of the sphere in which the pieces are El is independent of ZFC + EP.

GEP closes off this independence. In fact we have that for each n < w there is no

paradoxical decomposition of the sphere in which the pieces are E1. Moreover, GEP

lifts the results of classical descriptive set theory up through the projective levels.

4.4.3 Freezing Second Order Arithmetic. The above theorem shows that

GEP settles many questions at the level of second order arithmetic which are not

settled by ZF. In fact, there is no known example of a natural sentence yv of second

order arithmetic such that (i) p is known to be independent of ZF and (ii) it is not

known whether or not p is true. And as' before there is a theorem underlying this

empirical fact.

THEOREM 42. GEP freezes second order arithmetic.

Proof. (Sketch) Let us say that a model M is E -correct if for each a E H(wi)M we

have M ~- p[a] iff V p[a] for each EZ-formula p(v). By the proof of the above

theorem we have that AJ4 (x) exists for all n and for all x. Let W be the result

of iterating the top measure of A4 out of the universe. It follows by a theorem of

Woodin that .k is EZ-correct. (See Steel (1995) §4 for a proof.) Now let P be a

partial order in V and let G C P be V-generic.

CLAIM. V[G] z-'JK is iterable'. Thus (y#)V - (A )V[G]

Proof. As in the proof of Lemma 3.1 of Steel (2002). O

For a E H(wi) let •Y(a) be the constructible closure of a and the ordinals under

the function x -+Af1(x) for each n. Thus

<- V[G] # •[a]

since Jl(a) is E -correct and J(a)V = J(a)V[G]. Therefore, for each n, the E>-

theory cannot be altered by forcing, that is, second order arithmetic is frozen. H
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Chapter 5

Beyond Large Cardinals

Thus far I have argued for the principle EP and the stronger principle GEP. The prin-

ciple EP overcomes the Minimal Hurdle and effects a significant reduction in incom-

pleteness. The principle GEP yields a much greater reduction in incompleteness-in

particular, it implies PD and freezes the theory of second order arithmetic.

The original justifications of these principles was based on an analysis of the

concept of set. In this chapter I would like to elaborate on the kind of justification

introduced in §4.3.4. This kind of justification is a posteriori in the original literal

sense of the term.

5.1 Freezing

5.1.1 The Theory of L(R). Recall the situation in Chapter 4. I provided two

types of justification of EP. The first was based on a version of the potentialist con-

ception of set. The second was in terms of the inevitability of EP: EP is inevitable in

the sense that it is implied by any (generically invariant) theory that freezes EZ. The

nature of this second kind of justification is quite different from what is customary in

mathematics. Typically in mathematics we justify a proposition from deriving it from

other basic propositions and when asked for a justification of the basic propositions

such as the axioms of PA or ZFC we appeal to the nature of the subject matter.

Our second justification of EP is of neither of these two types-it does not proceed
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as a derivation from more basic propositions and it does not involve an appeal to

the nature of the subject matter. Instead it is a meta-theoretical consideration, a

consideration pertaining to theories.

Our meta-theoretical justification has the following form: A good theory of subject

matter S must have property P. All good theories imply X. Therefore X.9 This new

brand of justification can be applied more widely. One way to do this is to replace

3 with richer pointclasses. For example, a good theory of the reals must freeze

the entire projective theory, that is, it must freeze E for all n < w. There are such

theories. For instance, the theory GEP is such a theory. But here the situation differs

from that of EP in that the statement that the projective theory is frozen does not

imply GEP. But there are situations for which this reverse implication holds. For

example, consider the theory of L(R). This is a transfinite extension of the projective

theory-the projective theory is the theory of L1(R). Now a good theory must freeze

the theory of L(R). It turns out that that there are extensions of ZF that can do this.

For example, suppose that there is a proper class of inaccessible. Woodin showed

that 'ZFC + 4 exists' freezes the theory of L(R). Conversely, Woodin showed that

any theory which freezes the theory of L(R) actually implies that ,K, exists. This

provides a meta-theoretical justification of the axiom 'Z exists'. It is inevitable in

the sense that EP was.

5.1.2 Overlapping Consensus. Let me recast the notion of inevitability in dif-

ferent language. Suppose that two people A1 and A 2 each have theories which are

good in the sense that they freeze the theory of L(R). Ai and A 2 might have incom-

patible theories. For example, At might believe T1 = ZFC + PFA while A 2 might

believe T2 = ZFC + CH+'There is a proper class of Woodin cardinals'. Both Ti and

T2 imply that the theory of L(R) is frozen. But the theories are incompatible. For-

tunately, the incompatibility has nothing to do with the success of each in freezing

the theory of L(R). The reason each theory freezes the theory of L(]R) is that each

theory implies the existence of the canonical large cardinal axiom 'A exists'. This

statement lies in the overlapping consensus of T1 and T2 and, in fact, the entire spec-
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trum of theories which freeze the theory of L(R). In other words, there is a common

core on which all good theories agree. It is this common core which we all parties

have reason to believe.

5.1.3 Limitations. We have seen that EP freezes E' and that GEP freezes the

entire projective theory. We have also seen that '.4 exists' freezes the entire theory

of L(R). Each of these axioms is implied by large cardinal axioms; for example, all

three of these axioms are implied by the large cardinal axiom asserting that there is

a proper class of Woodin cardinals. It is natural then to ask whether large cardinal

axioms can freeze much more than the theory of L(R).

In his (1946) Gddel suggested that large cardinal axioms might settle not only

CH but all of the open problems of mathematics. This program-known as G6del's

program-has been remarkably successful, as noted above. Unfortunately, Levy &

Solovay (1967) showed that none of the standard large cardinal axioms can settle

CH. It follows that none of the standard large cardinal axioms can freeze the EZ-

theory. Moreover, it follows from results of Woodin that large cardinals can freeze

every pointclass of complexity strictly below EZ. Thus in choosing CH as a test case

for his program Godel located precisely the point at which the program fails.

5.2 Q-Logic and the Continuum Hypothesis

5.2.1 Strong Logics. Let us recast the above results in more modern language,

the language of strong logics. One of the aims of strong logics is to capture prov-

ability in ZFC + 'Large Cardinal Axioms' in a single logic. Such a logic will make

precise Gddel's suggestion that large cardinal axioms yield the notion of absolute

demonstrability. Henceforth let us assume every large cardinal axiom not known to

be inconsistent.

From the model theoretic perspective first-order logic can be characterized as the

set of sentences true in all structures of the form (M, E) where E is a binary relation

on M. Following Woodin (1999), let F be a collection of test structures of the form
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A = (M, E) where E C M x M and define:

ZFC Fr V iff VAEF (A ZFC-+ ~ c).

As special cases we have first-order logic (by letting F consist of all test structures),

w-logic (by letting I consists of test structures in which w is isomorphic to an initial

segment of E), and P-logic (by letting I consists of test structures such that E is

well-founded). Notice that we are conditioning logic on ZFC and that as we narrow

the class of test structures the logic becomes stronger.

A natural question is whether there is a strongest logic. We have to place some

restrictions on F if Hr is to count as a logic. For if we take 1 = {V} then we have

ZFC -r p if and only if V = y , and it is clear that truth in V is not a logic. There

are minimal conditions which I think that everyone will admit. Let me describe two

of these: generic soundness and generic invariance. A logic Er is generically sound

iff whenever ZFC F-r , and VyJ ZFC then V3 r •p. This says that you can add

each V1 to F without perturbing the logic. A logic Fr is generically invariant iff

for each partial order ?, V ý ZFC F- p iff V k ZFC Kn 'p. Let us say that F-r

is a strong logic iff it is generically sound and generically invariant. It is clear then

that there is a strongest logic which is generically sound, namely, the logic defined by

taking as test structures all and only structures of the form Vj. This logic is called

Q*-logic. Furthermore, under our background assumptions, all of the examples we

have considered so far are generically sound and generically invariant and are thus

strong logics.

There is a natural hierarchy of increasingly strong systems of strong logics that

includes first-order logic, w-logic, 3-logic and reaches much beyond to a limit called

2-logic. The definition of £-logic is natural but complicated. Fortunately, the actual

definition is not important for our purposes.10 What is important is that Woodin

showed that 2-logic is indeed a strong logic, that is, it is generically sound and

generically invariant. (These results are provable in the theory ZFC + 'there is a

proper class of Woodin cardinals', which is much weaker than our background theory.)
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A question which will play a role in the sequel is the following: Is Q-logic as strong

as Q*-logic (in the sense that the two logics prove the same 112-sentences)? The

2-conjecture is the statement that this is indeed the case.

5.2.2 Gbdel's Program. We are now in a position to restate the success of

Gbdel's program.

THEOREM 43. (Woodin) Suppose that there is a proper class of Woodin cardinals.

Then either

(1) ZFC -n 'H(wi) ý ' or

(2) ZFC Hn- 'H(wi) '

for each sentence p.

Furthermore, let p be a sentence of complexity less than that of CH. Then either

ZFC -·*. p or ZFC H-n. -. How much further can one go? Is demonstrable in Q*-

logic the absolute notion of demonstrability, that is, does 2-logic settle all questions

of set theory?

Interestingly, in a postscript to his 1964 paper (dated September 1966) G5del

wrote that in light of Cohen's results

it seems to follow that the axioms of infinity mentioned on footnote 20,

to the extent to which they have so far been precisely formulated, are

not sufficient to answer the question of the truth or falsehood of Cantor's

continuum hypothesis. (Gddel 1964, 273)

As noted above this was later proved by Levy and Solovay in their paper of 1967.11
So one cannot settle CH in ; * logic (or 2-logic) but one can settle every question of

strictly less complexity than that of CH. Thus, in choosing CH as a test case for his

program Gbdel located the precise point at which his program fails.

One must therefore move beyond standard large cardinal axioms if one is to have a

hope of settling CH and (more optimistically) isolate the concept of absolute demon-

strability. In anticipation of this possibility Gddel wrote that
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there may exist, besides the usual axioms, the axioms of infinity, and

the axioms mentioned in footnote 18 [higher-order reflection principles],

other (hitherto unknown) axioms of set theory which a more profound

understanding of the concepts underlying logic and mathematics would

enable us to recognize as implied by these concepts (see, e.g. footnote 23).

(Godel 1964, 265)

Note that even at this point Godel is still referring to the analysis of the fundamental

notions of set theory. This is the most secure footing one could have. But a posteriori

considerations my also (and perhaps necessarily) play a role.

There might exist axioms so abundant in their verifiable consequences,

shedding so much light upon a whole field , and yielding such powerful

methods for solving problems (and even solving them constructively, as far

as that is possible) that, no matter whether or not they are intrinsically

necessary, they would have to be accepted at least in the same sense as

any well-established physical theory. (Gbdel 1964, 265)

5.2.3 The Continuum Hypothesis. In footnote 23 Gddel mentions principles

"which (similar to Hilbert's completeness axiom in geometry) would state some max-

imum property of the system of all sets" in contrast to the axiom V = L which states

a minimum property. He also notes that "only a maximum property would seem to

harmonize with the concept of set explained in footnote 14". There are maximality

principles which have implications for the size of the continuum. For example, the

Proper Forcing Axiom and Martin's Maximum imply that the size of the continuum

is N2. The most fruitful maximality axiom is Woodin's axiom (*). This axiom implies

that the size of the continuum is N2 but it does much more.

THEOREM 44. (Woodin) Suppose that there is a proper class of Woodin cardinals.

Then either

(1) ZFC + (*) Fn 'H(w2) ( p' or
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(2) ZFC + (*) -qn 'H(w 2) • -V

for each sentence 'p.

Thus, in the context of (-logic the theory of H(w2) is finitely axiomatisable via

(*) over ZFC. What is amazing is that through a long series of theorems Woodin

managed to show that such a situation cannot happen unless CH fails.

THEOREM 45. (Woodin) Suppose that there is a proper class of Woodin cardinals.

Let Q be a sentence such that there is a cardinal r, such that V, ZFC + 0. Suppose

that either

(1) ZFC + -n 'H(w 2) 'p' or

(2) ZFC + ± Pn 'H(w 2) #-"p'

for each sentence 'p. Then CH is false.

This provides an argument against CH. Let us say that an axiomatization ZFC+ A

of the structure H(w2) is good if A is finite and ZFC+ A is a complete axiomatization

of H(w2) in (-logic. Thus, we have a good theory of H(w2 ), namely, ZFC + (*).
Furthermore, this implies that CH is false (in fact, it implies that the size of the

continuum is %2). Even more, we know that the only way we can have a good theory

of H(w2) is if CH is false. On considerations of simplicity one could argue that this

is reason to believe that CH is false. To strengthen the case one would have to

show that Q-logic is indeed the strongest logic, that is, one would have to prove the

(2-conjecture.

(One thing that is interesting about the above argument is that it is based on con-

siderations of simplicity. Some philosophers of science have maintained that if one has

to choose between two physical theories that agree on a large domain (that includes

the empirical data and possibly other further essential principles), then one should

choose the simpler theory. Even more, it is often maintained that the simple theory

is closer to the truth. But in physics such situations do not arise naturally. 12 Here we

have such a situation arising at the forefront of mathematical research. What is the
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analogue of the empirical data? One could argue that it contains every mathematical

proposition of set theory which is implicit in the iterative conception of set theory,

say ZF and the small large cardinal axioms and that beyond that one is guided by

considerations of simplicity and the like.)

5.3 The Structure Theory of L(VA+l)

5.3.1 Analogy. There is another approach to resolving CH which is worth men-

tioning. This approach is also due to Woodin. We saw above that large cardinal

axioms freeze the theory of second-order arithmetic and much more. In particular,

they freeze the theory of the structure L(R). The key to the structure theory of L(R)

is contained in a single axiom, the axiom ADL(R) stating that every set of reals in L(IR)

is determined. Now at the upper end of the large cardinal spectrum there is an axiom

which asserts that there is a non-trivial elementary embedding j : L(V+1) -+L(V•/1)

with critical point less than A. What is amazing is the parallel between L(IR) under

the axiom ADL(R) and L(Vx+I) under the above embedding axiom. Here A is the

analogue of w and V•X+ is the analogue of R. As an example of the parallel we note

that under the respective axioms wl is measurable in L(R) and A+ is measurable in

L(Vx+i). This parallel is just the tip of the iceberg. There is a key difference though:

whereas it is clear that ADL(R) is the entire story as far as L(R) is concerned it is

not clear that the above embedding axiom is the entire story as far as L(VA+l) is

concerned. It is very likely that structure theory of L(VA+l) will require more than

the embedding axiom. What has this got to do with CH? Well, it is possible that in

pinning down the structure theory of L(VA+l) we will settle CH. The reason is that

the structure theory of L(VA+l) may involve axioms which (unlike the standard large

cardinal axioms) interfere with the forcing machinery for proving the independence

of CH. Woodin has already pointed out a possible example: Let

S = { < AV I cof(a)= )6}
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where 6 is an infinite regular cardinal less than At. Let f£4 be the ideal of nonsta-

tionary subsets of A+. The following is (arguably) a plausible axiom for the structure

theory of L(VA+l):

AXIOM. For each infinite regular cardinal 6 < A+

is trivial.

Assume the axiom. The point is that if CH fails then the standard way of forcing it

to be true kills the Axiom and if CH holds then it is not clear that one can force it

to fail without killing the Axiom. So the following question is open:

QUESTION. Does the above axiom settle CH?

5.3.2 Conclusion. In this chapter I have discussed two types of justification in

mathematics which are quite different that the kinds of justification which are cus-

tomary in mathematics. The first kind of justification is meta-theoretic. This kind of

justification has the form: Every "good" theory implies X. We saw two examples of

this form of justification. First, in §5.1 the good theories were those which implied

that a given pointclass-such as or the theory of L(R)-is frozen. We saw that all

good theories in this sense have strong implications. For example, in the case of E

all good theories imply SPHERE; in the case of L(R) all good theories imply ADL(R).

Second, in §5.2 the good theories were those that provided a finite axiomatisation of

H(w2) in the context of Q-logic. We saw that all good theories in this sense have

strong implications. For example, all such good theories imply that CH is false. The

second kind of justification is analogical. In §5.3 we saw that principles of analogy

bridging L(R) and L(V&+1) may have implications for the size of the continuum.
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Notes

'This section was inspired by a claim of Parsons (cited by Feferman in his intro-

duction to Gbdel (*19330)) to the effect that the approach of Gddel (*1933o) does not

yield a justification of Replacement. Tait (2001) argues that it does. This conflict let

me to undertake a close examination of Gbdel's texts and reconstruction of Gbdel's

argument.

2Notice that Gbdel is taking the powerset operation as primitive. In other places

(such as Gbdel (1964)) he takes the operation 'set of' as primitive. He seems to

regard the latter as more primitive than the former (see, for example, his statements

in Wang (1996, 8.2.13, 8.2.17), but in his *1951 he writes: "The operation 'set of' is

substantially the same as the operation 'power set'..." (fn. 5). See Parsons (1995),

86-88 for an illuminating discussion of the powerset operation.

3One thing that I find amazing about this quotation (and the end of the *1951

passage quoted above) is that Gddel seems to be espousing the view that the universe

of sets is a potential, not actual, totality. This is in sharp contrast to the common

view that Gddel thought of the universe as closed. (There are similar remarks to be

found in Cantor who, like Godel, is taken as classic example of one who held that the

universe of sets is a completed totality (in contrast to, say, Zermelo). For example,

Parsons (1974) writes "Cantor, in 1899, distinguished what he called "inconsistent

multiplicities" (inkinsistente Vielheiten) by appealing to the irreducibly potential

character of the "totality" of sets; the latter are such that a contradiction results

from supposing a Zusammensein of all their elements (GA, p. 443)".)

4This borders on being a tautology. It seems that if one believes T then one

must believe Con(T). Of course, it is consistent to believe T + -Con(T) but it is

not coherent to believe it. A possible response to this last claim is the following,

something we might call the sorites response: As one iterates the addition of the

consistency statement the consistency strength of the successive systems increases
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and so the likelihood that the system is inconsistent increases; but it is perfectly

reasonable to have doubts about the consistency of some of these higher systems and

so at some point in the procession it must be reasonable to believe T + -Con(T).

This response gets its force from the idea that at some point in the progression it

is reasonable to doubt the consistency of the system. But it is crucial here to be

specific about what one means by "the progression". If by "the progression" one

means the w-length progression then it seems to me that it is incoherent to maintain

T + -Con(T) for any theory in the progression. There is no loss in confidence from

one level to the next. If, in contrast, one intends "the progression" to include a

much longer progression then I agree that there may be points at which one's doubts

reasonably arise but I believe that they arise for a different reason. For example,

suppose that one is a staunch predicativist. Then one will accept the iteration of

consistency sentences (or local reflection principles) up to any ordinal a < Fo. And,
letting T be the base theory and T, the ath-theory in the progression, one will accept

T, + Con(T,). But doubts will arise at the F0th-stage, not because one accepts Tro

but not Con(Tro), but rather because, granting the predicativist view, one cannot

even make sense of Tro-predicative analysis is not predicatively characterisable. In

short, doubts arise not at successor steps of the progression but rather at those limit

stages where one has doubts about the mathematical machinery required to make

sense of the stage.

5Two points are in order. First, although the actualist cannot express the claim

that the height of the universe is weakly compact there may be a way for the actualist

to motivate the claim that there is a level of the universe the height of which is

weakly compact. Second, some actualists might try to maintain that full second-

order quantification over V is available. For example, the advocate of the plural

quantificational interpretation of second order languages might maintain this. I have

not seen a convincing argument for such a position. I won't argue the issue here. It

suffices to note that even if we grant the advocate of plural quantification free access

to second order logic he will have trouble with third or higher order logics. This
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suffices to make my point that the actualist is limited in a way that the potentialist

is not.

6It is an interesting open question whether the inconsistency requires AC. In

fact, there are vast strengthenings of Reinhardt's axiom not known to be inconsistent

without assuming AC. There is an entire hierarchy of "choiceless cardinals" and

it may be the case that the hierarchy of consistency strength outstrips that which

assumes choice. In the end it may turn out to be reasonable to view AC as a limitative

axiom on a par with V = L.

7I am indebted to Richard Ketchersid for very useful discussion of this and the

next section.

'Dodd and Jensen showed that this is equivalent to the statement that there is

an inner model with a measurable cardinal. So we have a justification of such a

model. Note, however, that this is quite different from a justification of the existence

of a measurable cardinal. A further argument would be required to move from the

consistency to the existence of a measurable cardinal. I suspect that such an argument

can be supplied-large cardinals (in contrast, say, to an w2-well-ordering of the reals)

seem to be the type of things which require for their existence only their consistency.

But I will not pursue this thought here.

'There is a natural objection to this form of argument, namely, that there might

not be any good theories. Let us call this the wishful thinking objection. The objector

acknowledges that it would be nice if we had a good theory but maintains that it is

just wishful thinking to maintain that there are any good theories. This objection is

best met on a case by case basis. For the moment let me focus on EP.

In the case of EP the objector maintains that it is mere wishful thinking to think

that there is theory which freezes E. Let me isolate a strong form of this objection.

According to the strong form, the objector is maintaining that it is wishful thinking

to think that there is a good theory which is consistent. Of course, the objector
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need not make such a strong claim; rather, the objector need only maintain that it is

wishful thinking to think that there is a good theory which is true.

My reason for isolating the above strong version of the objection is that I want to

argue against it as a warm-up to an argument against the weaker objection. I think

that we can provide good reasons for the consistency of EP. These reasons are tied

up with inner model theory: If EP is inconsistent then we can derive a contradiction

by assuming it. So assume EP. It follows from inner model theory that there are fine

structural models of EP. But these models involve a lot of control-they are much

like Gbdel's L, in contrast to HOD or V. If there were a contradiction lurking in the

background then it is likely that it would be brought to light in the context of a fine

structural model. Thus there is good reason for believing in the consistency of EP.

Let us then assume that the objector admits that there is good reason to believe

that EP is consistent but still maintains that it is mere wishful thinking to think that

EP is true. There are two steps in my response to this. First, we have seen that EP

is equivalent to 'for all X, X # exists'. So the objector must admit that there are

models of 'for all X, X* exists'. Second, the statement that X # exists is absolute

for proper class transitive E-models of ZF containing X. Thus if there is a proper

class transitive c-model of ZF satisfying 'for all X, X* exists' then this statement is

actually true. It follows that the objector must maintain (i) that there are models of

'ZF + For all X, X # exists' but that (ii) there are no proper class transitive E-models

of 'ZF + For all X, X # exists'. Now this is a logically consistent position but it is one

which is difficult to maintain given the structuralist view of mathematical objects. It

is analogous to maintaining that PA is consistent but that there are no wellfounded

models of PA. This too is a logically consistent position but it is hard to maintain

since from any non-wellfounded model of PA we can extract a wellfounded model of

PA. In short, it is hard to maintain that there are only non-standard models of a

given theory, especially given that there is a canonical method for isolating standard

models from a given non-standard model. I think that this line of argument goes

some way in meeting the concerns of the objector.
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10For those who are interested I will give the definition of £-logic. First, I need to

introduce the notion of a universally Baire set of reals and the notion of a structure

being A-closed where A is a universally Baire set of reals. A set A C R is universally

Baire iff there are trees T and T* such that A = p[T], R - A = p[T*], and, for every

partial order P, V' p[T] U p[T*] = JR. That is, A and its complement R - A have

tree representations which continue to project to complements in generic extensions.

So if A C_ R is universally Baire and V[G] is a generic extension, there is a canonical

representation AG C RV[G] in V[G], namely, p[T]V[G]. Universally Baire sets are thus

definable in a rich sense. Now suppose A C R is universally Baire and M is a transitive

model of ZFC. Then M is A-closed iff for each partial order P E M and V-generic

G C P we have V[G] AG n M[G] E M[G]. Let Fr be the set of all universally

Baire sets. We can now define £-logic: Suppose there is a proper class of Woodin

cardinals. Then ZFC Kn np if there is a A E FI" such that 'p is true in every M which

is a countable transitive model of ZFC that is A-closed. For P C F"r, Qr-logic is

defined similarly, with F in place of F". The resulting directed system (£2r F C FC r

of logics includes w-logic, /-logic and has £-logic at the top.

"Did Gddel know of this result? If so then why the caution? Perhaps he anticipated

the proof.

1 2The only examples I can think of are the Bohmian and the Ghirardi-Rimini-

Weber formulations of quantum mechanics. Both of these formulations are (as far as

is known) empirically equivalent to the standard formulation of quantum mechanics.

Yet considerations of simplicity (largely ontological) and/or clarity (in avoiding the

vague notion of "measurement") have some-mainly philosophers-to prefer one of

these two formulations to the standard formulation.
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