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Abstract

Mathematical knowledge seems to enjoy special status not accorded to scientific

knowledge: it is considered a priori and necessary. We attribute this status to math-

ematics largely' because of the way we come to know it-through following proofs.

Mathematics has come under attack from sceptics who reject the idea that mathe-

matical knowledge is a priori. Many sceptics consider it to be a posteriori knowledge,

subject to possible empirical refutation. In a series of three papers I defend the a

priori status of mathematical knowledge by showing that rigorous methods of proof

are sufficient to convey a priori knowledge of the theorem proved.

My first paper addresses Philip Kitcher's argument in his book The Natuire of

Mathematical Knowledge that mathematics is empirical. Kitcher develops a view of

a priori knowledge according to which mathematics is not a priori. I show that his

requirements for knowledge in general as well as a priori knowledge in particular

are far too strong. On Kitcher's view, some correct proofs may not even convey

knowledge, much less a priori knowledge. This consequence suggests that Kitcher's

conception of the a priori does not respond to properties of mathematics that have

been responsible for the view that it is non-empirical.
In my second paper I examine Imre Lakatos' fallibilism in the philosophy of math-

ematics. Lakatos argued that some mathematical propositions are subject to what

he calls "refutations", by which he means to include falsification on extra-logical

grounds. Lakatos cites Kalmar's scepticism about Church's Thesis as a case in point.

I examine this case in detail, concluding that the failure of Lakatos' thesis in this

prima facie favorable case casts doubt upon the thesis generally.
My third paper is a defense of the classical conception of proof against Thomas

Tymoczko's thesis that only arguments that are surveyable by us can count as proofs.

Tymoczko concluded from his thesis that the computer-assisted proof of the Four



Color Theorem involves an extension of the concept of proof hitherto available in

mathematics. The classical conception regards the computer-assisted proof as a real

proof, which we are unable to survey. Tymoczko recognizes that formalizability is

a criterion for whether an argument is a proof, but he does not, in published work,

note that formalizability and surveyability are often conflicting ideals. The classical

theory recognizes both ideals because it regards the question whether something is

a proof as distinct from the question of whether we can recognize it as such, or how

confident we can be that it is one.

Thesis Supervisor: James Higginbotham
Title: Professor
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Chapter 1

Is Mathematical Knowledge A

Priori: Responses to Kitcher's

Skepticism

1.1 Introduction

What is a priori knowledge? Immanuel Kant was responsible for providing philoso-

phers with an account that has turned out to be both a guiding principle and philo-

sophical conundrum for hundreds of years; he wrote "we shall understand by a priori

knowledge, not knowledge which is independent of this or that experience, but knowl-

edge absolutely independent of all experience".1 Turning these words into a plausible

account of a priori knowledge has proved an arduous task.

Nonetheless, we do have some intuitions about what kinds of knowledge should be

a priori on any reasonable account of a priori knowledge. On standard accounts, math-

ematical knowledge is held to be a priori, necessary, certain. Part of the explanation

1 [Kant 1965], B2-3.
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for this view is that the processes by which we come to know truths of mathematics-

following proofs-offer special guarantees that other types of processes (in particular,

perceptual ones) do not offer. But what is it about these processes that entitles us

to claim these guarantees? Exactly what are these guarantees?

Philip Kitcher, in his book The Nature of Mathematical Knowledge2 lays out

what he sees as two ways of doing epistemology; he calls them apsychologistic and

psychologistic approaches to epistemology. He points out various problems with the

apsychologistic view, and maintains that doing epistemology psychologistically gives

us the best chance for explaining the nature of knowledge in general, and a priori

knowledge in particular. Once he has laid out a conception of a priori knowledge that

fits his constraints on an adequate theory, he proceeds to give us reasons to think

that mathematical knowledge might not be a priori after all. He seems to think that

the guarantees we need for a process to qualify as a warrant for a priori knowledge

are blocked by a number of challenges in cases of mathematical knowledge.

Proponents of a classical view of mathematical proof should take his charges seri-

ously; if we agree with his general approach to epistemology, then we must examine

closely the processes by which we come to follow proofs. It is with that project in

mind that we will come to see that in fact Kitcher's requirements for a priori warrants

are far too stringent; while it is important that the process of say, following a proof,

be immune to certain recalcitrant experiences, we must distinguish between recalci-

trant experiences which offer reasons and experiences which merely undermine my

confidence in the theorem proved. It is to be hoped (by this author) that in fending

off Kitcher's attack on the a priori nature of mathematical knowledge, we will illumi-

nate Kant's famous words, and uncover some assumptions about the a priori so that

it follows that (at least most) mathematical knowledge is a priori.

2 [Kitcher 1984]
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1.1.1 Epistemological Questions

Kitcher says that there have been two approaches used by philosophers to characterize

knowledge. Before the end of the nineteenth century, he says that many philosophers

used what he calls a psychologistic approach to epistemology3 . For them, whether

a belief state was a state of knowledge depended on how the belief was produced.

Of course they supposed that knowledge was a state of true belief; what made it

knowledge was that the processes engendering belief, consisting of events both internal

and external to the subject, were of the appropriate kind. They saw their work in

epistemology as specifying what kinds of processes were the right ones for engendering

knowledge. Kitcher seems to be describing a version of reliabilism--the view that

reliably generated true beliefs constitute knowledge, even though the believer may be

ignorant of the process engendering the belief.

According to Kitcher, the twentieth century ushered in a new view about what

constitutes knowledge, a view which denies that psychological processes have any

relevance for whether a state is a state of knowledge. Kitcher calls this approach

ap8ychologistic because its proponents consider "knowledge [to be] differentiated from

true belief in ways which are independent of the causal antecedents of a subject's

states"4 What is important is the logical connections among a subject's beliefs; If a

subject's belief that p is "connected in the right way" to certain other beliefs, the

subject knows that p".

Kitcher appears to be giving an account of foundationalism in epistemology. Ac-

cording to this view, certain beliefs-foundational ones-are justified because of some

intrinsic quality (e.g. being analytic) of the belief itself, even though the subject may

3Kitcher does not mention any philosophers specifically, but this description could apply to Locke,
Hume, among others.

A [Kitcher 1984], p. 41.
5 Accounts varied, but in particular, p had to be "connected" to its logical consequences; if, say,

p implies q and I know that p, then I should also know that q.
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be ignorant of the existence of this intrinsic quality of the belief.6

Kitcher objects to apsychologistic epistemology because he be'L ves it ignores some

fundamental questions about mathematical knowledge, like "how do we know the

axioms of mathematics?" He says that apsychologistic epistemologists often attribute

to axioms a special status; they are called 'self-evident', 'a priori', 'analytic'. To

attach these labels to mathematical propositions does not, in Kitcher's view, answer

his question. His opponents would argue that these distinctions do help by separating

the epistemological status of the axioms from the ways we come to know them. We

shall consider this issue in greater detail later. However, we should note here that

both foundationalism and reliabilism share the feature that whether a belief counts

as knowledge relies on facts about which the believer may be ignorant.

Kitcher points out that other philosophers (notably Gilbert Harman and Alvin

Goldman') share his dissatisfaction with apsychologistic epistemology. They hold the

view that knowledge depends crucially on having the right kind of process producing

belief. Apsychologistic accounts of knowledge are flawed in that we can cite cases in

which a subject may have a true belief, backed up by excellent reasons and the correct

logical connections to other beliefs, but the circumstances under which the subject

acquired his belief were defective in some significant way, thus precluding knowledge.

So, even if a belief is say,a necessary truth, if it is arrived at by some unreliable

method, then according to the reliabilists, it would not count as knowledge.

Kitcher says that Gettier examples show how the foundational approaches to

knowledge are flawed:

Suppose that X comes to believe that p, p is true, but X's reason for believing

that p is not the "right" kind of reason. Consider the following case. Jane sees Joan

driving a black car, and comes to believe that Joan owns a black car. Joan does own

a black car, but she happened to be driving Janet's black car when Jane saw her. So,

14

6 [Clay and Lehrer 1989], p.xi.
7 [Kitcher 1984], p.41.



Jane's reason for believing that Joan owns a black car justifies her belief, but it is not

sufficient for knowledge.

The literature on this topic is well-known and suggests that justified true belief is

not constitutive of knowledge. Kitcher is using Gettier problems to attack internalist

theories of knowledge here; internalism attributes knowledge based on the internal

features of beliefs (how they are connected to each other) rather than "the relationship

between the belief and what makes it true".8 He uses this set of problems to reject

the apsychologistic view and instead focuses on how beliefs are acquired.

Kitcher suggests that their lack of attention to the psychological processes en-

gendering belief created problems for the apsychologistic epistemologists, especially

when they tried to give a characterization of a priori knowledge. He points out the

problems in one account, given by A.J. Ayer9 , who suggested a way to define a priori

knowledge:

X knows a priori that p iff X believes that p and p is analytically true.

Kitcher says that it follows from the above account that if we can show that

mathematics is analytic (which is no small task), then we can say that we know a

priori all statements of mathematics we believe. But of course this is not a correct

conclusion. I could come to believe a mathematical statement in an unacceptable

way- suppose I come to believe the Pythagorean theorem by dreaming about it, or

hearing it from an unreliable source. My belief would not count as knowledge, let

alone a priori knowledge.

Of course Ayer could respond to Kitcher's charge by saying that a priori is not the

basic notion here, rather analyticity is. It could be that there is a class of propositions,

all of which I know a priori just by coming to believe them. In this case Ayer is

distinguishing between one's reasons for believing something and the evidence for its

truth.

15

s [Clay and Lehrer 1989], p.xi.
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Kitcher notes that apsychologistic epistemologists tried to improve their formuulations-

to make mnore sophisticated versions of justified true belief-hut he says all of them

failed for similar reasons: "Our success [in defeating apsychologistic proposals for

knowledge] results from the fact that the mere presence in a subject of a particu-

lar belief or a set of beliefs is always compatible with peculiar stories about causal

antecedents"' 0 . Kitcher seems completely convinced that Gettier examples preclude

the possibility of any correct apsychologistic characterizations of knowledge. The only

adequate approach for him is to use completely psychologistic principles which count

as knowledge beliefs produced only by certain kinds of processes.

1.1.2 A Preliminary Psychologistic Account of Knowledge

Kitcher introduces a simple psychologistic account of knowledge. He uses the term

'warrant' to refer to those processes which produce belief "in the right way".- His

analysis follows:

X knows that p iff p is true and X believes that p and X's belief that p was caused

by a process which is a warrant for it 2.

Filling out the theory requires specifying conditions on warrants. Most important

to showing that a process is a warrant is showing that, given that some process caused

a belief, it also functioned to warrant that belief. Background conditions- features

of the world both external and internal to the subject's psychology- can affect the

warranting power of a process. Given background conditions, a process may not

qualify as a warrant for some belief.

Kitcher offers an example from perception.'3 Suppose I am looking at some flowers

'o [Kitcher 1984], p. 16.
11 [Kitcher 19 8 4 ],p.1 6 .
' 2Kitcher adds that 'process' refers to a token process, a specific sequence of events- not a process

type. Two processes can both belong to the same type but not both warrant belief that p, given
different background condition.

t8 [Kitcher 1984], p. 2 0 .
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on a table under normal conditions. I come to believe that there are flowers on

the table. According to any reasonable theory of knowledge, perception counts as a

process that can potentially warrant belief. Now suppose that on some other occasion,

the flowers on the table are surrounded by high quality fake flowers which I cannot

distinguish from real flowers. It is possible that I underwent the exact same process in

both cases (I saw them the same way in similar light, etc.). But, because I cannot tell

the real flowers from the fake ones I cannot now be said to have knowledge that there

are real flowers on the table, whereas in the former case I could. So even processes

which are potential basic warrants do not function independently of other beliefs;

background conditions affect the warranting power of a process.

This example is a standard one in epistemological literature; it is used to point out

the contextually relative and sensitive nature of processes; this assumes a strongly

externalist view of knowledge, as facts external to the believer of which she may be

ignorant may influence the warranting power of the process by which she comes to

hold a belief.

Kitcher says that the same process can be a warrant at some but not all times,

depending on background conditions. He will need to fill in the details of how the

warranting process works, what background conditions affect the warranting process,

and how that process is affected. We will see later that in his account of priori war-

rants, he maintains that sufficiently many background conditions interfere with the

warranting processes involved in acquiring mathematical knowledge so as to preclude

its being a priori.

1.1.3 A Psychologistic Account of A Priori Knowledge

Now that Kitcher has outlined a general psychologistic approach to knowledge, he

turns to the special case of a priori knowledge. 'A priori' applies to an item of

knowledge. To say that I know a priori that p is to say that a certain kind of

17



process caused my belief that p. So, to say that mathematics is a priori is to say

how we come to know mathematical statements. But what kinds of processes are

a priori processes? In particular, what kinds of processes are a. priori warrants for

mathematical knowledge?

Kant' well-known explication of a priori knowledge, (given at the beginning of

this paper) leaves a lot unclear. Especially vague is the phrase "independent of

all experience". It is ambiguous- it could mean "independent of all knowledge" or

"independent of any particular item of knowledge".

For purposes of making this more clear, Kitcher uses a standard interpretation of

Kant: an item of knowledge is a priori if any experience which would enable us to

acquire the concepts involved would enable us to have that knowledge. To make this

explicit, Kitcher introduces some terminology.

Let X's experience at t be her sensory state at t. X's sequence of experiences she

has had up to t is X's life at t. A life is sufficient for X for p iff X could've had that

life and gained sufficient understanding to believe that p'4 .

Kitcher uses this terminology to give the following definition of a priori knowledge:

X knows a priori that p iff X knows that p and, given any life sufficient for X for

p, X could've had that life and still have known that p.

Kitcher note that this account will not work; it is far too weak a formulation.

A lot hinges on how we interpret the modality "could've". Does it mean that X

does not actually have to have a life in which X acquires the appropriate concepts?

This account still does not seem to guard sufficiently against defective ways of belief

acquisition. Furthermore, it would seem to follow from Kitcher's first formulation

that I could know a priori e.g. that violet is darker than blue-that statement could

be analytic (on some accounts), and if so, then in any life in which I acquired the

relevant concepts, I would have come to believe it. This argument would also work

14 [Kitcher 1984], p.2 2 .
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on universal empirical knowledge- that there are bodies, etc.

Also, a proper formulation of a priori knowledge should distinguish between empir-

ical knowledge of propositions that can be known a priori and true a priori knowledge;

we have to count as two different processes the cases in which e.g. I come to know

2+2=4 by proving it and by counting small piles of rocks. What we need to do in

order to characterize true a priori knowledge is to specify the ways we actually come

to know a proposition a priori.

Kitcher gives an improved version:

X knows a priori that p iff X believes that p, p is true, and p was produced by a

process which is an a priori warrant for it.

Kitcher has shifted the burden of defining a priori knowledge to the definition

of an a priori warrant. Recall that warrants are psychological processes resulting in

beliefs. But what kinds of processes count as a priori warrants? Clearly, perception

is ruled out, but what does qualify? Kitcher gives no examples of his own but offers

Kant's use of pure intuition (with respect to geometry) as a candidate. He does not

explain what he thinks our intuition is, but assumes it works roughly in the following

way. Using pure intuition, we (roughly) create a mental picture of, say, a triangle,

inspect it, and make judgments about its qualities. What is important to isolate is

exactly what makes that process an a priori warrant.

Kitcher says there are three conditions on a process which purports to serve as an

a priori warrant:

1. it must produce warranted belief independent of experience.

2. it must produce true belief independent of experience.

3. the same type of process must be available independent of experience.

It is unclear what Kitcher wants from 3. A number of things are left vague. Does

he mean the same type of process to be available independent of all experience of just

19



any particular experience? Surely he does not mean the former. As for the latter

option, he is obligated to provide us with a coherent explication.

Kitcher does not want to confine a priori knowledge to necessary truths; he would

like to maintain the possibility of contingent a priori knowledge. He does not give

any examples here, but presumably he not not want the apriority of mathematical

knowledge to hinge on its necessity.

If all a priori truths were necessary, then 1. would follow, says Kitcher. No matter

what experiences we had, our mathematical beliefs would be warranted. Why is

this so, if the warranting power of a process is affected by contextual information or

background conditions? The answer goes roughly as follows:

Everything necessary that is known a priori has the following property: every

process that is a warrant for it is an a priori warrant. Why? Because from its

necessity we know that there are no possible worlds in which it is false, so there is not

a counterfactual situation in which something which was a warrant for a belief ceases

to be one. The only ways that a warrant could lose its warranting powers would be

if 1) the contextual information changes; or 2) there are worlds in which the belief is

false. So, if 2+2=4 is a necessary truth, then it seems to follow that any process I

went through to arrive at that belief would be an a priori warrant for it if it were a

warrant at all.

Kitcher wants very strong requirements on a priori knowledge. He says a priori

warrants should be "ultra-reliable- they never lead us astray"." He adds that it

should follow from his account that "in a counterfactual situation in which an a priori

warrant produces the belief that p, then p".1e

" [Kitcher 1984], p.24.
16 [Kitcher 19 8 4 ],p.2 4 .
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1.1.4 Kitcher's Account of A Priori Warrants

From these considerations Kitcher gives the following analysis of a. priori knowledge:

2. X knows a priori that p iff X knows that p and X's belief that p was produced

by a process which is an a prioii warrant for it.

3. A is an a priori warrant for X's belief that p iff A is a process such that, given

any life e, sufficient for X for p

(a) some process of the same type could produce in X a belief that p;

(b) if a process of the same type were to produce in X a belief that p, then it

would warrant X in believing that p;

(c) if a process were to produce in X a belief that p, then p.

In the above account, Kitcher often refers to types of processes. To understand

what he means here, we need to know how to specify what a process is and how

to divide them into types. Kitcher defines a process as the terminal segment of the

causal ancestry of a belief, restricted to states and events internal to the believer.

Otherwise, he says, the process would not be available independent of experience.

In the interests of neutrality, Kitcher does not give a specific taxonomy for type-

identification of processes. He does say, though, that our intuitions provide some

guidance for dividing them. It is obvious to us that some ways of acquiring beliefs are

different from others. For example, hearing a statement of the Pythagorean theorem

from one's grandmother and following a proof of it clearly should count as different

ways of coming to believe that the sum of the square of the hypotenuse of a right

triangle equals the sum of the squares of the lengths of the two shorter legs. So these

two processes should count as belonging to different types.

Naturally, how fine-grained a distinction we make between types will vary, de-

pending on the context. However, Kitcher warns that some type-division proposals
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would flout any of our principles of taxonomy. Any taxonomy which counts e.g. both

the process of following a proof of a theorem and also hearing it from your grand-

mother as being of the same type Ehould be disallowed. Even though Kitcher claims

the theory is neutral, it must not violate our intuitive principles for what count as

dissimilar ways of forming beliefs. The principles he has in mind may turn out to

influence how we type-identify processes.

1.1.5 Kitcher's Challenge and the Apriorist Response

Kitcher sees his psychologistic framework as constraining the apriorist program in

important ways. If the apriorist philosopher is to succeed in making a priori knowledge

a useful notion for epistemology, then she must follow the form he has specified, and

then fill in the details. She must specify processes according to the restrictions in 3)

and give type-identity conditions which conform to some principles of classification

which are he says are standardly used in dividing processes of belief-formation.' 7 If

her account of a priori warrants has satisfied 3), she succeeds; Otherwise her case for

the existence of a priori knowledge has failed.

I intend to meet this challenge, not by satisfying Kitcher's requirements, but rather

by showing that his analysis places unrealistic constraints on what counts as a priori

knowledge. I will show that the conditions on a priori warrants in 3) result in nothing

being a priori, which is a problem. While there are plenty of reasons to object to

a classical notion of the a priori, Kitcher's approach tries to provide for an account

of a priori knowledge; failing to show that anything satisfies his account makes his

entire epistemological approach less plausible. Also, I will show that there are reasons

to believe that within Kitcher's framework his arguments against a priori knowledge

work equally well against all knowledge. So if he is successful, he will have eliminated

the possibility of any kind of knowledge of mathematics, not just a priori knowledge

17 [Kitcher 1984], p.26.
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of it.

1.2 Kitcher's Attack on Mathematical Apriorism

Kitcher sets up his psychologistic framework to include the notion of a priori war-

rant so he can attack what he calls "mathematical apricrism". According to him,

proponents of mathematical apriorism consider mathematical knowledge to be a pri-

ori knowledge. Since most statements in mathematics are justified by use of proofs,

Kitcher focuses on what he thinks is the traditional notion of proof. He tries to show

that the process (or processes) of following a proof does not meet the requirements

for a priori warrants.

1.2.1 The Role of Proofs in Mathematical Knowledge

Kitcher begins his examination by looking at how we standardly characterize proofs.

He objects to what he calls a structural conception of proofs- the view that a proof

in a system is a sequence of sentences in the language of the system sach that each

member of the sequence is either an axiom of the system or a sentence which results

from previous members of the sequence in accordance with some rule of the system.

He thinks that it is presumptuous to think that proofs in standard formal systems

are the only acceptable kind of proofs.

Other criteria enter into our decisions as well, like acceptance by the mathematical

community. Kitcher's point is well-taken but there are reasons to think that the

mathematical community accepts proofs at least in part because they are of a standard

form. Without standards of formal rigor, it would be much more difficult to tell

whether a proof was acceptable. Also, it is possible that without such standards

mathematicians would have more dispates over whether something was a proof.

Kitcher adds that the notion of proof evolves through time; in the past 100 years,
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we have become more rigorous and advanced. Our proofs are not written in the

language of first-order logic; they are abbreviations of formal proofs. What counts

as a formal, rigorous proof or an informal, abbreviated proof is dependent on the

community. Given the fact that the community changes constantly, what makes out

current proofs "genuine" proofs?

Given that acceptable proofs are informal abbreviations, dependent on the audi-

ence, and in a constant state of change, what makes them "genuine" proofs?

Kitcher says that apsychologistic epistemologists answer Kitcher's question in the

following way: genuine proofs are those whose axioms are "basic a priori principles"

and whose rules of inference are just those that are "elementary a priori rules of

inference". 18 But to say this is not to give a complete explanation, Kitcher responds,

unless accompanying it is a thesis about how these principles can be known, and how

we can use these rules of inference to extend our knowledge[p.37], a thesis which must

be detailed and well-argued.

A better way, says Kitcher, of characterizing proofs within the framework of an

adequate epistemology is to give a functional definition. Proofs are sequences of

sentences that serve a certain purpose for us. But what purpose? Kitcher says the

apriorist would have to explain the purpose as follows:' 9

proofs codify psychological processes which can produce a priori knowl-

edge of the theorem proved. Similarly, to follow a proof is to engage in

a particular kind of psychological process which results in the acquisition

of a priori knowledge.

What does it mean to say that a psychological process can produce a priori knowl-

edge? A number of psychological processes can result in e. g. believing that 2+2=4,

but only certain ones count as following a proof. Kitcher's characterization must

18 [Kitcher 1984], p.3 7.

' [Kitcher 1984], p. 3 7 .
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specify what kinds of processes are the right ones in order to separate a priori from

a posteriori knowledge.

To clarify what he means here Kitcher introduces some terminology. A statement

is a basic priori statement "if it can be known a priori by following a process which

is a basic warrant for belief in it". 20 Recall that basic warrants are processes which

involve no other beliefs, according to Kitcher. So far he has offered no examples of

processes that might qualify.

Kitcher says that proofs must begin from basic a priori staten ents. Further state-

ments result from applications of apriority-preserving rules of inference. A rule is

apriority-preserving just in case "there is a type of psychological process, consisting

in transition from beliefs in instances of the premise forms to the corresponding in-

stances of the conclusion form, unmediated by other beliefs, such that, if the instances

of the premise forms are known a priori, then the transition generates a priori knowl-

edge of the instance of the conclusion form.""21 We are still left not knowing exactly

what he has in mind. For example, it is unclear how his analysis would explain how

we use e. g. modus ponens.

Using these psychologistically defined terms, we can now define proof as Kitcher

thinks the apriorist should:22

To follow a proof is to undergo a process in which, sequentially, one comes

to know the statements which occur in the proof, by undergoing basic a

priori warrants in the case of basic a priori statements and, in the case

of those statements which are inferred, by undergoing a transition of the

type which corresponds to the rule of inference in question.

Characterizing proofs functionally as well as structurally gives us insight into

what purposes proofs serve in mathematics. While it is true that what we mean by

2o [Kitcher 1984], p.38 .
21 [Kitcher 1984], p.38.
22 [Kitcher 1984], p.38 .
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'proof' is 'proof in a standard formal system with a certain form...', that does not

completely explain why we consider those particular sequences to be proofs. What

makes them proofs is that they do a certain job- they convince us of the truth of the

theorem proved, using clear, explicit, accepted reasoning. Proofs serve a prescriptive,

normative function. If I have followed a proof of the Pythagorean theorem, then I can

conclude with impunity that whenever I do computations involving right triangles, if

I add the squares of the lengths of the two shorter legs, the sum will equal the square

of the hypotenuse. Following a proof of a theorem gives me good reasons to believe

that it is true, and these reasons justify my belief in the theorem. In fact, following

a proof compels my belief in the theorem.

The mathematical apriorist would readily agree that proofs are distinguished by

the fact that they increase our mathematical knowledge. Since proofs begin with

basic a priori principles and proceed using apriority-preserving rules of inference, one

can follow a proof and extend his knowledge without adverting to experience; that

is, once he understands the concepts involved, his resulting knowledge is warranted

or justified, matter what kind of experiences he has had.

For Kitcher, "Psychological processes" refers to internal causal processes of the

subject. They must be internal since their production warrants a priori knowledge.

For a proof to "codify" or pattern psychological processes there should be kind of

correspondence between the steps in the proof and the steps in the processes.

On standard accounts, The activity of following a proof of a theorem involves

engaging in a process that results in acquisition of a priori knowledge. Kitcher is

right to point out that we are owed an account of what that process is. The apriorist

could respond that the notion "following a proof" is a primitive notion, but it is in

fact a complicated process. Consider the following example: I come to believe p based

on my belief of p and q. If we examine the individual steps, we see that there is a

transition in my belief state that is somehow brought about by the previous step.
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Whatever makes me make the conclusion is the process; it is the relation between the

step and the transition.

For Kitcher's analysis to be successful, he must also explain how proofs codify

psychological processes. Roughly speaking, we do engage in certain mental activities

when we follow the steps in a proof, but there is no reason to believe that there is

La 1-1 correspondence between the steps in a proof and the psychological processes

we undergo. Kitcher offers no suggestions about how to translate steps in a proof

into psychological processes. And we do not have any intuitions about how many

discrete psychological processes we undergo in applying the rule of modus ponens, for

example. Whereas Kitcher rightly points out that we do undergo some psychological

transitions when we follow proofs, his analysis leaves the details of how this works

unexplained. Of course, so does the apriorist, but that means that his account does

not provide more explanatory power than the standard view.

If the psychologistic epistemologists are right, then the best way to answer the

question "what job do proofs do?" is to be had by looking at what we do when we

follow proofs, and how proofs reflect mental processes we undergo.

This investigation could prove helpful for answering questions in epistemology.

For example, if psychologists discovered that the processes corresponding to steps in

a proof all required perceptual mechanisms, then a case could be made that mathe-

matical knowledge is empirical. On the other hand, if experiments determined that

mental processes in the practice of doing mathematics were just the instantiations

of logical principles, starting from logical axioms, then that would be evidence that

mathematical knowledge is knowledge of logic. Or if psychological data show only

non-empirical mechanisms at work in calculation, that we would be more inclined to

consider mathematical knowledge a priori.

Kitcher's analysis of proof interpreted charitably might, with the appropriate ac-

companying data, yield some hypotheses about how our mathematical practices work.
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But, it fails to take into account the job proofs do- they are arguments, giving us

sufficiently good reasons to believe that a theorem is true. Kitcher never links the

notion of proof to the justification of the truth of a statement; or, more important

for his project, to justification of one's knowledge of mathematics.

Kitcher clearly states that he is rejecting the apsychologistic rendering of knowl-

edge as justified true belief for the reason that the account fails to disqualify as

knowledge cases of true belief acquired in some epistemically defective way. Gettier-

type cases give ample intuitive evidence for the need for an appropriate causal story

if a true belief is to count as a state of knowledge. But in the case of mathematical

knowledge, there are two stories to be told: first, some account of how we acquire

knowledge of mathematics; second, an explanation of how proofs serve to justify our

beliefs that many mathematical statements are true, how proofs reveal the deduc-

tive structure of mathematics, and how we can use them to extend our knowledge of

mathematics.

Frege was interested in working out the details of the second story. He thought

epistemology concerning mathematics should definitely be apsychologistic. 23 Frege

was disturbed that some mathematicians "confuse the grounds of proof with the

mental or physical conditions to be satisfied if the proof is to be given".2 4 He cites one

of his favorite examples from the literature of his time Schroeder's "Axiom of Symbolic

Stability. It guarantees us that throughout all our arguments and deductions the

symbols remain constant in our memory- or preferably on paper".2 5 That psychology

could affect the foundations of mathematics to the extent that we needed safeguards

against mysteriously changing variable letters seemed absurd to Frege. What he

thought affected the foundations of mathematics was the degree of rigor with which

many results were formulated.

"8In "Frege's Epistemology", Kitcher defends the view that his psychologism is not the kind to
which Frege would have objected.

24Grundlagen, p.VIII
"Grundlagen, pp.VIII-IX.
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Frege acknowledges that much of mathematics seems self-evident. To reqiire a

proof of 2 + 2 = 4 is "almost ridiculous". But proofs for Frege do more than just

establish the truth of a theorem: "the aim of proof is, in fact, not merely to place

the truth of a proposition beyond all doubt, but also to afford us insight into the

dependence of truths upon one another". 2B Proofs hold the key to mathematical

advancement. By doing them we learn the limits of application of techniques and

concepts. Proofs uncover part of the deductive structure of mathematics. Knowing

where a theorem fits within this structure helps us decide where and when to look

for new theorems.27

Kitcher's account also does not provide an explanation of how proofs lead us to

mathematical discoveries. The apriorist has no reason to accept his notion of proof,

for it fails to capture key aspects of proof- its use in justification, its use in extending

our knowledge. She can concede the benefits of a causal account in explanation

of the origins of mathematical knowledge. But Kitcher's story may turn out to be

insufficient for purposes of doing work in foundations of mathematics.

1.2.2 Kitcher's Account of Proof

Now Kitcher is ready to provide the following thesis about the form of apriorist

proof:28

4)there is a class of statements A and a class of rules of inference R such that:

a) each member of A is a basic a priori statement; b) each member of R is an

apriority-preserving rule;

c) each statement of standard mathematics occurs as the last member of a se-

quence, all of whose members either belong to A or come from previous members in

eGrundlagen, p.2.
7By "structure", I do not mean logical structure. I merely use the term to refer to whatever

organisation exists in various fields of mathematics. No logicistic assumptions are intended.
28 [Kitcher 1984], p. 3 9 .
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accordance with some rule in R.

He says that whereas 4c) has been traditionally regarded as controversial, 4a) and

4b) have been accepted without question. Since the goal of his program is to uncover

apriorist assumptions about mathematical knowledge, Kitcher considers 4a) and 4b)

just as suspect as 4c). Kitcher makes two criticisms of mathematical apriorism. The

first attacks claims which are instances of 4a); the second examines the apparent

incompatibility between the supposition that many theorems of mathematics can be

known a priori and the fact that some of these theorems can be proved only by

demonstrations of great length.

Kitcher attacks 4a) first, saying that apriorists have committed themselves to the

existence of basic a priori statements, which he thinks is a terrible mistake; processes

traditionally regarded as a priori warrants are in fact not, so they cannot call instances

of 4a) a priori.2 9 I will first consider a worry directed at the general form of his

argument.

Here is the general structure of his argument against 4a):

1')Traditionally, we have regarded many statements as being basic a priori.

2')A necessary condition for basic apriority is being caused by a process which is

an a priori warrant for it.

3')Many statements which have been traditionally regarded as basic a priori are

not caused by processes which serve as a priori warrant for them.

4')Therefore, such statements are not basic a priori.

Kitcher's argument initially looks reasonable, but it depends crucially on the plau-

sibility of 2'). Unless Kitcher's case for 2') is quite persuasive, there is as much reason

to conclude not 2') as there is to conclude 4') Why? Well, we have strong reasons to

think that that 1') is true- intuitions and philosophical traditions support the fact

that many statements are a priori. If Kitcher wants to hold 2'), then he must give

29 [Kitcher 1984], p.39. Kitcher devotes Chapters 3 and 4 to the task of discrediting several

theories of knowledge which are committed to the existence of basic a priori statements.
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evidence for it that either appeals to our views about a priori knowledge or shows us

how our intuitions were mistaken. Otherwise, the more sensible solution is to con-

clude that a priori warrants are not necessary for a priori knowledge. Later in this

section I will argue that this is just what we should conclude.

Kitcher's second criticism questions the correctness of 4) as a characterization of

a priori proof. Consider his inductive argument:3 0 Let S be any true mathematical

statement. By 4c) there is a sequence of sentences, [which is the proof of S], all of

whose members belong to A or come from previous members by one of the rules in R..

We can show by induction, using 4a) and 4b) that every statement in the sequence is

knowable a priori. A fortiori, S is knowable a priori. Hence every truth of standard

mathematics is knowable a priori.

It follows from the analysis above that if S is a proof, (consisting of basic a priori

principles or following from one by use of an apriority-preserving rule of inference)

then we should be able to come to know S by following a proof of it. That process

(following the proof) will then serve as an a priori warrant for the belief that S.

Kitcher says that the existence of very long proofs of mathematical statements

may threaten the inductive argument. There are theorems whose proofs are so long

that one person could take years to go through one of them. Since I am fallible,

it is possible that such a proof contained some errors that I overlooked. I may not

be completely certain that I followed the proof correctly, and my knowledge of the

statement is therefore not a priori.

Kitcher gives three possible resolutions of this conflict:"'

i) we can accept the inductive argument and the point about long proofs, con-

cluding that no version of 4) can be correct.

ii) we can accept the inductive argument and reject the point about long proofs,

thereby concluding that 4) is sufficient to establish apriorism.

0so [Kitcher 1984], p.40 .

"t [Kitcher 1984], p.40 .
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iii) we can reject the inductive argument, concluding that 4) does not suffice to

establish apriorism.

We know that, for familiar reasons, inductive arguments involving vague predicates

are not always valid. Kitcher points out that the worry about long proofs could be

because the term 'a priori' is vague. It is possible that the statements encountered

early in a proof have a high degree of certainty, but inferences resulting in later

conclusions do not preserve certainty. After some point it would not be correct to

ascribe knowledge of the conclusion, just as at some point in the process of adding

1 to a number it would not be correct to call that number 'small'. iii) is certainly a

possible explanation of the problem long proofs present, but saying that 'a priori' is

vague does not tell us whether we should reject apriorism; it is unclear what conclusion

we should draw if it turns out that apriority is a vague notion.

Apriorists, Kitcher says, will oppose iii) and defend a priori knowledge of the

conclusions of long proofs, adopting ii). Kitcher acknowledges Hume's observation

that as we review proofs and others agree that they are correct, we become more

convinced of their truth. But the fact that our certainty increases with agreement of

our peers is not relevant to the truth of the theorems. Kitcher considers uncertainty

about a proof to be incompatible with a priori knowledge of it.

The apriorist will want to separate the psychological feelings of certainty about

proofs from the epistemological status of the theorems proved. He suggests two ways

to defend ii). We could say that uncertainty stems from the fact that most proofs are

informally structured, and formalization would remove any doubt. Another possibility

is to propose that we can know a proposition without knowing it for certain.

The first suggestion clearly will not work. Quite the contrary- presenting a proof

in formal notation will increase its length enormously, exacerbating the problem.

Kitcher correctly notes that some theorems never receive rigorous proofs, even by

informal standards. Also, the activity of formalizing proofs is just as subject to
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errors, so formalization leaves us in a worse state.

What about the second option? Does rational uncertainty preclude a priori knowl-

edge? Kripke thinks not: 3 2

Something can be known, or at least rationally believed, a priori, without

being quite certain. You've read a proof in a math book; and, though

you think it's correct, maybe you've made a mistake. You do often make

mistakes of this kind. You've made a computation, perhaps with an error.

Kripke thinks it is a mistake to conflate apriority and certainty. Kitcher does

acknowledge a distinction: "One can go easily astray here, by conflating a priori

knowledge with knowledge obtained by following a non-empirical process". 33 But

Kitcher disagrees with the view that rational uncertainty is compatible with a priori

knowledge. A priori knowledge for him is, in Mark Steiner's words, "...incorrigible-

we could never be justified in giving it up once it is warranted. And perhaps it is

even unrevisable- meaning that nothing at all could shake our conviction" 34

But Kant never had such stringent requirements for a priori knowledge- for him

it was nonempirical and necessary.35 So it looks like there are at least two notions

of apriority, but Kitcher chooses to attack the more stringent one38 . Mathematical

knowledge probably does not meet the requirements for Kitcher's notion of apriority,

but that is not surprising. Nor is it disturbing; no one would expect that it should.

What is important for the apriorist is that mathematical knowledge be a priori in

Kant's sense, an issue we will examine later.

Kitcher thinks that uncertainty interferes with the a priori warranting process be-

cause experiences could yield situations in which e. g. the book in which the theorem

"'Kripke, 1972,p.39
88 [Kitcher 1984], p. 4 3

TMSteiner, p.452.
8"Steiner, p.452.
8T Steiner, p.452.
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was proved is discredited, or the mathematical community decides to reject the proof.

Kitcher says that when I have doubts arising from following a complicated proof, then

if there are also circumstances under which experiences suggested the falsity of the

theorem (e. g. the book I read was discredited by mathematicians), then I cannot

conclude that I know the theorem a priori. However, this is not the case with regu-

lar warranting processes "because of the kindly nature of background experience". 3

So, rational uncertainty does not preclude knowledge, but it does preclude a priori

knowledge, which leads Kitcher to conclude i).

Why does Kitcher believe that non-apriori warrants are not also undermined by

rational uncertainty? it seems as if he is saying that even if I am warranted in believing

that p (either a priori or a posteriori), I do not know that p unless background

conditions are "right". Non-a priori beliefs must then be less affected by background

conditions, whereas a priori beliefs are more likely to be affected. This is exactly the

opposite of my intuitions about knowledge.

Kitcher does not argue for this point other than to say that if the quality if our lives

were different, that rational uncertainty would preclude knowledge; since many of our

ordinary beliefs are not undermined by experience (unlike some of our mathematical

beliefs), ordinary knowledge is not blocked. I find this argument puzzling; we have

lots of experiences that undermine our perceptual judgments, but few that undermine

e. g. the belief that 2+2=4. Optical illusions, perceptual infirmities, and poor lighting

are all common examples of how experience can lead us astray. But, we do count very

many of our perceptual beliefs as knowledge. If Kitcher allows rational uncertainty

to interfere with a priori knowledge, which we intuitively count as equally or even

more certain than a posteriori knowledge, then I do not see how he can stop rational

uncertainty from precluding knowledge. Certainly any obvious attempts to solve this

problem would strike me as ad hoc solutions, unless they gave compelling reasons to

87 [Kitcher 1984], p.43
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explain away and overcome our intuitions.

Kitcher considers the problem with uncertainty undermining knowledge of long

proofs to be the same one Descartes encountered with deductions in the Regulae.

Since extended deductions "exceeded the scope of what we can simultaneously present

to ourselves"", they are uncertain. Descartes' solution involved practicing following

the deduction to ourselves so often that eventually we can apprehend the entire proof

in one mental act. Although Kitcher, like others, views Descartes' solution as in-

feasible because of our physical limitations, he agrees with Descartes' picture of the

psychological process of following a proof.

Kitcher gives a modern version of Descartes' view.3" A proof begins with an

axiom, which I intuit, and from it I infer (using, perhaps, one-premise rules) the next

statement, and from that the next one, and so on. Suppose also that I can present

to mind only one axiom and three inferential steps in the proof. Then I store the

results, recalling them in order to go on following the proof. In Kitcher's terminology,

I undergo a process which is a basic warrant for belief in the axiom. The problem

arises when I no longer believe the axiom on the basis of the original warrant, but

only because I remember having undergone a warranting process. But that process-

the recollection- is not itself an a priori warrant for my belief in the axiom, so my

belief is uncertain. So we must conclude that no version of 4) can be correct.

It is true that we cannot represent long proofs to ourselves; few mathematicians

would ever consider that a requirement for knowledge of a theorem. In fact, some

psychological studies have shown that we cannot in general represent more than 7

symbols in short-term memory.40 If this is the case, then Kitcher's skeptical worries

about long proofs are ill-founded. Furthermore, his skepticism leaves open the pos-

sibility for other, even more extreme, skeptical worries. For example, maybe during

35

ss [Kitcher 1984], p.43.
S[(Kitcher 1984], pp.44-45.

"ofind reference for this.



the process of following a proof I have forgotten what the words mean. Clearly this is

not a reasonable worry, but it is unclear how Kitcher's skepticism is more moderate

than the above worry.

What Kitcher's analysis shows is that he has constructed a notion of following a

proof such that no one can have a priori knowledge of proofs. We are not required to

conclude that the process of following a proof is not sufficient for a priori knowledge,

but can instead reply that Kitcher places unreasonable restrictions on what consti-

tutes following a proof. It is also unclear whether he has come up with any sufficient

conditions on a priori knowledge.

1.2.3 More Challenges to A Priori Knowledge

Kitcher continues his attack on mathematical apriorism from anther perspective. In

the context of challenging the status as a warrant of Kant's process of pure intuition,

he outlines some standards required of all processes which purport to serve as a priori

warrants. Not only must a process be nonsensuous to qualify, it must be infallible.

Kitcher claims that pure intuition fails as an a priori warrant on the grounds that

it is not infallible. In order to make his claim effective, he will have to 1) give an

account of pure intuition and show that it is fallible; and 2) show that its fallibility

undermines its status as an a priori warrant. He will also claim that his criticisms of

pure intuition apply to all putative a priori warranting processes.

Some terminology is required to formulate Kitcher's thesis. A type of process

which generates belief is called dubitable "if there is a life given which it would be rea-

sonable to believe that some processes of the type engender false beliefs." 41 Consider

some process a, a candidate for an a priori warrant for belief that p. We assume that

we know that a belongs to a type of process, called the availability type of a, such

that a process of that type would be available given any sufficient experience. If a's

4' [Kitcher 1984], p. 5 4 .
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availability type is dubitable, and if I come to believe that p via a, then on Kitcher's

account it is possible that I could come to believe falsehoods via a. Kitcher's thesis

goes as follows:

5) If the availability type of a is dubitable and, if there are lives which would sug-

gest the falsity of p, then there are sufficient lives given which the available processes

of the same type as a would not warrant belief that p.

The idea here is that if I can have grounds for questioning the reliability of a given

type of process for generating warranted beliefs, then if there are also circumstances

under which I have experiences suggesting the falsity of the belief that p, then I would

not be warranted in the belief that p.42 I would not be so warranted because although

a produces p, there could be a process of type a which produced p, but would not

warrant belief that p. This situation violates condition b) on warrants, that is if a

process of the same type were to produce a belief that p, it would warrant belief that

p.

Kitcher acknowledges that he is taking it for granted that there are experiences

which could suggest the falsity of (in this case) geometrical axioms. Does he have

the right to this assumption? After all, he points out that for Kant not only are

mathematical truths necessarily true, but they must necessarily appear to be true;

we cannot even imagine the falsity of mathematical statements.43 It was also Kant

who appreciated the fact that we cannot even imagine the falsity of true mathematical

statements. But Kitcher firmly maintains that even if there are not direct experiences

of the falsity of mathematical statements, there are various indirectt ways of suggest-

ing their falsity. He uses a sample statement from geometry- that the sum of the

angles of a triangle equals 180 degrees, which is a priori according to Kant.

Now, Kitcher considers three kinds of misleading experience which could challenge

42 [Kitcher 1984], p. 54 .

4a [Kitcher 1984], p.55.
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our belief in the statement:44

1. direct challenge- a perceptual experience of a figure which, judged by our very

best criteria, appears to contradict the statement.

2. theoretical challenge- a sequence of experiences which suggest that a physics-

cum-geometry which does not include this statement will provide a simpler total

description of the phenomena than a physics-cum-geometry which does.

3. social challenge- a sequence of experiences in which apparently reliable experts

deny the statement, offer hypotheses about errors we have made in coming to

believe it, and so forth.

Kitcher does not entertain the possibility of veridical challenges, in which our

experiences correctly suggest the falsity of the statement; he agrees to concede that

mathematical truths are necessary, thus excluding the possibility of such a challenge.

Let us examine each of these challenges in turn. Since Kant holds that our psycho-

logical constitution dictates the general structure of experience[p.55], direct challenges

are ruled out. It is certainly hard, on any view, to imagine a perceptual experience

which would suggest the falsity of a mathematical statement. If we allow direct chal-

lenges to be a threat to a priori knowledge then they seem to be a threat to knowledge

as well. Again, the reason for the threat to all knowledge is that all warrants are af-

fected by background conditions. A perceptual experience suggesting the falsity of

a mathematical statement would seem to affect the warranting power of any process

by which we come to know mathematical statements, not just the a priori processes.

Surely Kitcher does not want direct challenges to threaten the status of our mathe-

matical beliefs as knowledge; but if they threaten the apriority of our beliefs, it looks

like they threaten their status as knowledge also.

" [Kitcher 1984], p. 5 5 .
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Theoretical challenges in geometry are much easier to imagine. Discoveries of non-

Euclidean geometries gave new interpretations to many theorems and caused others

to be rejected. But despite this drastic revision in the status of Euclidean geometry,

it is nonetheless true that the sum of the angles of a Euclidean triangle equals 180

degrees, and my knowledge of that theorem is a priori knowledge in Kant's sense, that

is it is nonempirical and necessary. The existence of non-Euclidean geometries does

mean that there is no unique description of the structure of space, but if I relativize

all of my beliefs about Euclidean geometry by prefacing them with "in a Euclidean

system...", then their a priori status remains. Of course, I have in effect replaced my

former geometric beliefs with new ones, but they are still a priori knowledge.

Furthermore, it hard to imagine what kind of problems a theoretical challenge

could present for, say, my arithmetical knowledge. I cannot give an example of any

sequence of experiences which would suggest that a theory without the statement

2 + 2 = 4 would be simpler than a theory with the statement. Perhaps Kitcher does

not expect theoretical challenges to threaten arithmetic knowledge.

So, if worse comes to worst, Kitcher concludes, he can always use social challenges

to make his case. Although it seems unlikely that experts would deny a statement we

accept, we can imagine them producing theorems containing well-hidden flaws which

we cannot detect, theorems that we do not believe but which they argue for convinc-

ingly. Kitcher says that such experiences would suggest the falsity of a mathematical

statement, which is sufficient to preclude our a priori knowledge of it.

Hilary Putnam gives an example of the kind of scenario Kitcher must have in

mind. He describes circumstances under which it would be rational to believe that

Peano arithmetic was inconsistent even though it was not:4 5

Thus, suppose I am caused to hallucinate by some marvelous process(say,

by making me a 'brain in a vat' without my knowing it, and controlling
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all of my sensory inputs superscientifically), and the content of the hal-

lucination is that the whole logical community learns of a contradiction

in Peano arithmetic (Saul Kripke discovers it). The proof is checked by

famous logicians and even by machine, and it holds up. Perhaps I do not

have time to check the proof myself but I would believe, and rationally

so, I contend, that Peano arithmetic inconsistent on such evidence.

Kant would agree that his conception of a priori knowledge is open to social

challenges. He never claimed such privileged epistemological status for pure intuition-

that it be immune from any kind of doubt or peer pressure. Descartes' requirements

for knowledge are closer to Kitcher's; still, Descartes would claim that social challenges

apply only to memories of a priori warrants, not the warrants themselves. Steiner

notes that "Descartes invokes the Deity to bolster only knowledge based upon past

'clear and distinct ideas' "" . Neither Plato nor Descartes would consider present a

priori knowledge so vulnerable. Kitcher, on the other hand, expects a priori warrants

to guarantee the elimation of all doubt- including the doubt that one is rational. If

a candidate process does not result in indubitable true belief, then that process does

not qualify as an a priori warrant.

Surviving social challenges is far too stringent a requirement for a priori knowledge.

It is odd that Kitcher says whereas these experiences do not rule out knowledge, they

do rule out a priori knowledge. He considers only indubitable types of processes to

be sufficient to count as a priori warrants. However, he never offers an explanation

of why he prefers a strict notion of apriority to the Kantian one. Limiting processes

to nonsensuous ones would be reasonable; perhaps other constraints should apply.

Indeed, other constraints should apply. He does too little to explain what count

as sufficient conditions for a priori warrants. But Kitcher stacks the deck against

mathematical apriorism by placing such severe requirements on a priori knowledge,

"Steiner, p.452.
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requirements that mathematical apriorists need not accept.

1.3 A Case Against Kitcher's Views on Challenges

to Knowledge

1.3.1 Introduction

Let us now look at Kitcher's allegations against apriorism from a different viewpoint.

In the last section we saw the social challenge presented as a problem for Kantian

intuition. Recall that a social challenge is any situation suggesting the falsity of (in

this case) our mathematical beliefs due to e. g. apparently reliable experts denying the

statement, offer explanations of how we erred, and so forth. According to Kitcher, a

process does not count as an a priori warrant unless it can withstand social challenges.

I offered objections to Kitcher's requirement of resisting social challenges; in this

section we will see that Kitcher's requirements for a priori knowledge reveal crucial

flaws in his views on mathematical knowledge.

Perhaps there are experiences suggesting the falsity of some of our mathemati-

cal beliefs. There are also experiences suggesting the falsity of some of our non a

priori beliefs . Why doesn't the social challenge apply equally well to say, empirical

knowledge? Kitcher says that rational uncertainty is compatible with non-a priori

knowledge because of the kindly nature of background experience. However, if back-

ground experiences were sufficiently recalcitrant, rational uncertainty could create the

same problems for empirical knowledge as it does for a priori knowledge. I will give

an example of such a situation, which will force Kitcher to adopt one of the following

positions:

1) social challenges are irrelevant to a priori knowledge, because no one requires

immunity from all doubt for any kind of knowledge, no matter what process produces
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it.

2) social challenges undermine a priori knowledge, but also non-a priori knowledge.

The social challenge, if it applies, applies to beliefs regardless of the processes that

produced them.

In order for Kitcher to avoid being committed to one of these positions, he must

explain why social challenges apply to a priori knowledge only. I will show his expla-

nation to be unsatisfactory. We can have experiences suggesting the falsity of many

of our beliefs, but this is more a fact about our psychology than about the processes

through which we acquire beliefs. I will present a psychological study that suggests

we are easily subject to coercion about knowledge of things that are supposed to be

certain; we are less inclined to be swayed about matters which accommodate dissent.

If Kitcher's social challenge is successful, he has shown that processes leading to even

ordinary beliefs fail to qualify as warrants, undermining knowledge itself, not merely

its a priori nature. If he fails, then we can conclude that the social challenge is just a

phenomenon resulting from facts about us and how we rely on others to bolster our

confidence about many matters.

1.3.2 The Study

In his Studies of Independence and Conformity of a Minority Against a Unanimous

Majority, Solomon Asch47 presents a situation in which a social challenge seems to

arise.The experiment tested people to determine the conditions of independence and

lack of independence by a minority of one in the face of unanimous group pressure.

Asch did an experiment in white male college student groups by setting up a dis-

agreement between a single person and a group concerning a simple and clear matter

of fact in the immediate environment. The group that disagreed judged the facts

wrongly; the way the experiment was set up, the data to be judged couldn't reason-

a' [Asch 1966]
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ably be judged incorrectly by a person. The judgments of each person were to be

stated publicly. The object of Asch's cxperiment was to use the response pattern of

the subjects in order to state conditions responsible for independence and failure of

independence in the face of unanimous opposition by the majority.

Description of the Experiment

Asch's experiment was set up as follows. 7-9 white male college students were in-

structed to gather in a classroom to take part in what appeared to be a simple

experiment in visual discrimination. They were instructed by an examiner to match

the length of a given line - the standaid - with one of three other lines. One of the

three comparison lines was equal to the standard. The other two lines differed from

the standard (and from each other) by considerable amounts- 3/4- 1 1/4 inches. The

entire task consisted of 18 such comparisons. Individuals were instructed to announce

their judgments publicly in the order in which they were seated. The comparison lines

were numbered 1, 2, and 3 from left to right. The subjects stated their judgments by

calling out the appropriate number.

This experiment would be just another innocuous test in visual perception if it

were not for one vital fact - all but one member of the experimental group had

met previously with the experimenter and were instructed to respond on certain

trials with incorrect and unanimous judgments. The subject, who was unaware of

this arrangement, heard the majority respond unanimously from time to time with

estimates that clearly contradicted his own observation. The mlajority sometimes

matched the standard to lines that departed from the standard by amounts of 3/4

inch to 1 3/4 inches. The differences in the lines were perceptually obvious; under

control conditions - with subjects judging individually - their estimates were more

than 99% accurate (of 7 control subjects, only two erred- one with one error, one

with two errors) for an average of 0.8% error. So the unsuspecting subject, called
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the critical subject, was put in the position of a minority of one against a wrong and

unanimous majority.

It should be noted that the majority was instructed to announce the judgments

clearly and firmly, but not to take issue with the critical subject. They and the

examiner were advised to act passively and impersonally toward the critical subject

and not to act surprised at his answers.

The examiner read instructions from a card, explaining that the test involved

visual discrimination of the lengths of lines. He instructed the subjects to announce

their judgments aloud and as accurately as possible. The order in which the members

of the group gave their judgments was always arranged (unbeknownst to the critical

subject) so that the critical subject would answer next to last.

The task was 18 comparisons, consisting of a set of nine comparisons shown twice

without a pause. There were also six neutral trials in which the majority responded

correctly. In the interest of establishing some degree of trustworthiness in the major-

ity, Asch made the first two trials neutral. The six neutral trials were numbers 1, 2,

5, 9, 10, and 13. That left twelve critical trials, ones in which the majority responded

incorrectly.

Quantitative Results of Asch's Study

The results of the experiment were surprising. Out of 123 critical subjects, only

29(approximately 25%) made errorless judgments, as compared to the control group,

in which 35 of 37(95%) performances were errorless. The mean number of errors was

4.41 in the experimental group as opposed to 0.8 in the control group. The mean

percentage of error in the experimental group was 36.8 The action of the majority

brought about distortion of 1/3 of the reported estimates. 27% of the subjects made

8-12 errors as determined by the majority while only 24% gave errorless performances.

The experimenters noted that it is significant that the majority elicited widely
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differing reactions from the critical subjects. Also significant, though, was the fact

that most (2/3) of the critical subjects' estimates were correct, which for them showed

that the facts to be judged, not just the majority effect, were influential on the sub-

jects' decisions. The experimenters presupposed that the stimulus conditions exert a

fundamental effect on the character and course of the majority influence. That is why

they choose as the object of judgement "facts or relations that possessed an indepen-

dent status... Group action necessarily derives its significance from the reference it

has to the facts, real or alleged"."48 It is Asch's emphasis on challenging the subjects'

knowledge of an obvious and independent fact that makes this experiment such a

useful example as a candidate social challenge, despite the fact that the knowledge in

question is a posteriori, not a priori knowledge. 49

Qualitative Results of the Study

In addition to computing quantitative results, Asch's group interviewed critical sub-

jects after the experiment. The interviews consisted of a series of questions designed

to uncover the subject's feelings about his answers, e. g. whether he thought they

were right, if he ever answered with the majority against his own choice. Then, after

full disclosure of the purpose of the experiment, the subject was questioned as to his

suspicions about the experiment. Any subjects who definitely suspected the purpose

were eliminated from the study. The rest were questioned about their reactions to

the situation.

The most common reaction was one of puzzlement. They reported having felt that

during the experiment something was wrong, but they could figure out the source of

a [Asch 1956], p.13 .
4 9Recall from earlier discussion that if there are possible experiences suggesting the falsity of the

belief, then if the candidate process is dubitable, the social challenge succeeds in undermining the
status of the process as an a priori warrant. But, if we can show that there are ca.es in which

background experiences interfere with processes which are non-apriori warrants, then it follows that

Kitcher has undermined non-a priori knowledge as well.
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the problem. Later in the interview, when asked who they thought was right and

who was wrong "most subjects, including the staunchest independents, at some time

felt doubt about their accuracy, while the most pliable subjects at times felt the

majority to be wrong"."o What separated the independent subjects(0-2 errors) from

the yielding subjects(3-12 errors) was not so much their immunity from doubt as their

ability to free themselves of it. Virtually all of the subjects experienced conflict, but

their manners of coping with it differed widely. Independents tended to say either

that they felt they were right or, even though they doubted themselves, they felt

obligate-' to report what they saw.

Yielders seemed to find being different intolerable. They thought others were

following the leader, or they doubted their own judgement and gave the majority the

benefit of the doubt. Other yielders denied that they went along with the majority and

underestimated the number of errors they made. Some reported that if the question

had been of a different sort, particularly one which allowed for dissent, they would

have felt more comfortable with answering truthfully - "If it had been a political

question, I don't think I would have agreed if I had a different feeling". s1 Asch

explains the possible reasons for compliance or independence in the following way: S2

Independence requires the capacity to accept the fact of opposition with-

out a lowered sense of personal worth. The independent person has to

organize his overt action on the basis of experience for which he finds no

support; this he can do only if he respects his experiences and is capable of

claiming respect for them. The compliant person cannot face this ordeal

because he translates social opposition into a reflection of his personal

worth. Because he does so the social conflict plunges him into pervasive

and incapacitating doubt.

so [Asch 1956), p.28
s* [Asch 1956], p.4 2.
52 [Asch 1956], p.4 2 .
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Asch's account of the differences between the yielding and the independent sub-

jects postulates that the processes they undergo to arrive at a judgement diverge

crucially. It seems that both groups receive the same raw data regarding the lines,

but for important psychological and sociological reasons, one group is unable to re-

port what is clearly seen in the trials. The explanation for this phenomenon does not

make reference to differences between the perceptual mechanisms of the compliant

and those of the independent subjects. Each subject experienced a situation which

suggested the falsity of his (in this case) perceptual beliefs.

1.3.3 Applying Asch's Study to Kitcher

There are a number of ways to apply this case to Kitcher. Asch's experiment does

appear to present a social challenge to perceptual knowledge. If the social challenge

is successful against ordinary knowledge as well as a priori knowledge, then Kitcher

wins; but as Mark Steiner says, he wins too much."3 Kitcher is interested in attacking

the a priori status of knowledge, not the status of a belief as knowledge simpliciter. If

he does the latter, then the result is a reductio ad absurdum of his thesis, for he will

have undermined the possibility of knowledge at all, a position he cannot reasonably

hold.

Kitcher does try to ward off social challenges to non-a priori knowledge when he

makes the point that reasonable uncertainty is typically compatible with knowledge

because of the kindly nature of background experience.64 But Kitcher does empha-

size, in his discussion of social challenges, that for processes to count as warrants,

background beliefs must also support the belief in question. "If you have reason to

believe that your senses sometimes play tricks on you, then if you also have reason to

think that the perceptual belief which you are inclined to form is false, your percep-

S3Mark Steiner, J. of PHilosophy, find other info.
" (Kitcher 1984], p.4 3

47



tual process (which may, in fact, be perfectly normal) does not warrant the belief"".

Here Kitcher seems to be saying that situations like social challenges do succeed in

undermining knowledge.

The above conclusion, however, does not fit with Asch's experimental data, par-

ticularly with the subjects' reports. Although 75% of the subjects made at least one

error, the explanation for this phenomenon had nothing to do with a fault with their

perceptual mechanisms' ability to warrant belief in their judgments; it had nothing

to do with an inability to arrive at a correct judgement. The critical subjects that

answered incorrectly did so because of subtle influences of peer pressure, because

of fear of being conspicuous, or fear of causing an aberration in the experimenter's

statistics.5 6

The obvious conclusion to draw from the Asch experiment is not that perceptual

mechanisms are not sufficient to generate knowledge; rather, we should see that people

vary in their ability to rise above conflict and self-doubt in order to report their beliefs

accurately. Although Kitcher tries to maintain that social challenges undermine only

the a priori nature of knowledge, he does not explain how he can do so and leave

knowledge intact.

The Asch experiment likely could be modified to involve not a perceptual judge-

ment but one involving some non-empirical process, say, doing simple addition and

reporting the sum. Suppose that the subjects behaved similarly(not an obvious re-

sult, but a possible one if the task assigned were sufficiently simple and the subjects

sufficiently , but not too, mathematically competent). We would no more conclude

that the process the subjects followed in doing addition was faulty than we would

conclude from the Asch experiment that the subjects' visual perception faculties were

faulty.

My proposed modification is meant to suggest that what the existence of the

s [Kitcher 1984], p.56
" [Asch 1956], p.4 7
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social challenge comes to is this: People can have experiences which suggest the

falsity of their a priori beliefs; but then again, people can have all sorts of misleading

experiences. That this is possible is a fact about our psychology, not a fact about

the mechanisms we use to arrive at knowledge, for it can occur regardless of the

mechanism used. That I can be deceived about a proof I have followed does not

mean that I do not know it a priori. If I have engaged in a non-empirical process

resulting in knowledge of the theorem proved, then I can be said to know it a priori.

In my last section I will discuss what I see as Kitcher's misunderstanding of the notion

of proof which has led to his stringent requirements on a priori knowledge.

1.4 Final Comments

We have seen from earlier discussion that Kitcher has very strict requirements on

what constitutes a proof. In this section I would like to show how his conception of

proof overlooks precisely what we think is important about proofs, what sets them

apart from other types of reasons for having beliefs. I believe that the apriorist can

acknowledge the importance of Kitcher's epistemology without having to sacrifice

classical views on proof.

Recall what Kitcher's notion of proof entails. A proof is a sequence of sentences,

each of which is either a basic a priori statement or results from above sentences

through the application of an apriority-preserving rule of inference. For Kitcher,

following a proof is undergoing a series of transitions which generate knowledge of

the theorem proved.

Obviously Kitcher is not defining a notion of actual proof, the kind found in

mathematics texts and taught in mathematics classes; he is talking about an ideal

notion of proof. There is certainly a distinction in mathematics between proofs that

we in practice see and do and the notion of rigorous formal proof. The former are

sketches of the latter, abbreviations which give us the idea of how to go from one step
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to the next and so on to the conclusion. Many steps are left out for the sake of brevity.

If we had to formalize every proof, we would not be able to do much mathematics,

for the process of making a proof rigorous is arduous and time-consuming. However,

we do know how to formalize a proof to make it rigorous. We also have criteria of

correctness for formal proofs.

Mathematician Saunders Maclane echoes this view about proof:S7

An absolutely rigorous proof is rarely given explicitly. Most verbal or

written mathematical proofs are simply sketches which give enough detail

to indicate how a full rigorous might be constructed. Because of the

conviction that comes from sketchy proofs, many mathematicians think

that mathematics does not need the notion of absolute rigor and that the

real understanding is not achieved by rigor.

He goes on to say that, despite some dissenting views, the notion of absolute

rigor plays an important role in mathematics. Kitcher acknowledges that proofs

are almost never written out formally; he says that some theorems in analysis "never

receive general proofs which are rigorous even by the standards of informal rigor which

mathematicians accept.""5 He admits that formal proofs would make the process of

following a proof enormously difficult, making it much harder to generate a priori

knowledge. So Kitcher is not advocating a strictly formal notion of proof for two

reasons: 1) it is not in keeping with our standard mathematical practice; and 2)

in the interests of charity to his opposition, he does not promote a notion of proof

even more prone to the pitfalls he sees on the way to a priori knowledge of theorems.

Kitcher rightly characterizes proofs as serving some function. The problem lies in his

explication of what function they do serve. Not only is a proof a proof in a formal

theory, it is an argument designed to convince us of the truth of the theorem proved.

57 [Maclane 19xx]
ssKitcher, p.26.
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If you understand and believe the premises, then your belief in the conclusion is

justified, it is warranted- that is, your reasons are sufficient to allow you to draw the

conclusion. And your belief is justified because you arrived at it in the right way.

Kitcher says that following a proof is engaging in a series of transitions which

generate knowledge. There are a number of problems with this view. We can say, in-

deed we should say something much stronger than that the above transitions generate

knowledge. The transitions should actually compel belief of the theorem proved. If

you understand and believe the premises, you ought to believe the conclusion. Proofs

have considerable normative power - they allow us to infer ought from is . Proofs

confer entitlement; they allow us to infer statements if we go about it using the appro-

priate rules of inference and the right axioms. Also, the transitions have to generate

knowledge on certain ways; not just any situation in which I draw the conclusion is

a case in which I acquire a priori knowledge of the conclusion.

Not only does Kitcher misconstrue the job proofs do, he attacks apriorism in a

peculiar way. His strategy is as follows. He says that following a proof is engaging in a

psychological process which generates a priori knowledge of the theorem proved. But,

he adds, if the psychological process does not warrant belief against a backdrop of

misleading experience, then our knowledge of mathematics is not a priori. Since the

process does not generate knowledge under averse conditions(under social, possibly

theoretical challenges) then our knowledge of mathematics is not a priori. Kitcher

selects a candidate process, pure intuition, which purportedly warrants knowledge,

but falls prey to such challenges. He concludes that no psychological process will

generate a priori knowledge of theorems of math-ematics.

Here is where Kitcher has made a serious error. He concludes that since he has

found a process which is not an a priori warrant, no process can serve as an a priori

warrant. The real problem at work here is that Kitcher has failed to specify sufficient

conditions on a priori warrants. The apriorist, however, has an account of proof
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which suggests which processes would qualify as warrants. It is not a specific list of

conditions, but rather a line of argument she can follow to reject Kitcher's views, since

the burden of proof is on him to show her how traditional processes fail to warrant a

priori knowledge.

Consider some rule of inference, say, modus ponens. If any rule of inference is

apriority-preserving, surely modus ponens is. What happens when you apply the

rule is this: you come to believe A, you come to believe A -- B. Then, modus

ponens allows you to move from these two premises to conclude B. Is it the case

that believing A and A --+ B always generates knowledge of B? Probably not. It

could happen that I believe A, A --+ B, and not conclude B(suppose I get hit by a

bus before I get the chance to make the inference). Or, I believe A, A -+ B, and

then something happens(lightning strikes, or there is an earthquake) and I come to

believe B. In neither of these cases did the psychological processes I engaged in result

in knowledge of B; in the first case it was blocked by my untimely demise, and in

the second case I was distracted from following the process by a natural disaster.69

But do these cases show that modus ponens is not apriority-preserving? Of course

not. All they show is that not all psychological processes generate knowledge. The

apriorist says that there are processes which work, and what we do when we use

modus ponens to go from A, A --+ B to B is a prime example.

Kitcher has made the situation look bleak by never constructing even a prima facie

plausible example of a candidate process. In our examples above, if sonme process does

not allow us to go from A, A -+ B to B, then maybe we have picked a bad process.

We should not conclude that no process allows us to make the inference; we now

that using modus ponens is exactly the right way to do it. While it is true that a

process must generate knowledge by some kind of transition, not just any kind of

transition will do. The process must generate knowledge in the right way. And it

sI am indebted to George Boolos for discussion of these examples
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is up to Kitcher, not the apriorist, to provide such an account. Since Kitcher has

not only failed to provide necessary conditions for knowledge, but also lacks sufficient

conditions, the apriorist may reject his attack on the apriori nature of mathematical

knowledge.
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Chapter 2

Church's Thesis: a Case Study for

Lakatos' Philosophy of

Mathematics

2.1 Introduction

The late Imre Lakatos put forth a view in Proofs and Refutations that rejects standard

views about mathematics; in particular, he rejects standard accounts of proof and

how proof conveys mathematical knowledge. According to him, classical accounts of

epistemology and foundations of mathematics do not capture what is special about

mathematical practice, and what we come to know by doing mathematics. Stan-

dard views attribute to mathematical axioms special status, e. g. a priori, analytic,

necessary. He says those are the wrong kinds of classifications; we should look at

mathematical knowledge, mathematical proof, and mathematical theories in a com-

pletely different way. The traditional classifications above tell us little about how we

actually come to know mathematical statements. What Lakatos in interested in is

shifting our focus from the structure of proofs and theories to the processes by which
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mathematical statements come to be accepted or rejected.

Lakatos motivates his alternative view by citing what he sees as the failures of

formalism, logicism, and "inductivism" in the foundations of mathematics. Various

attempts to lay the foundations of mathematics in logic, or in inductive proofs and

definitions, or in provably consistent formal systems all met with serious and some-

times insurmountable problems. His reaction to these problems is to jettison the

standard distinctions that are thought to set mathematics apart from the sciences.

Lakatos thinks that we should distinguish mathematical theories from scientific theo-

ries by looking at how they are verified or falsified. The difference between them will

be in the nature of their falsifiers. 1

Lakatos sets up his alternative taxonomy and attempts to show that inathemat-

ics is not verifiable, but rather is conjectural, falsifiable, and subject to refutations.

Therefore, for him, certainty in mathematical knowledge is impossible. If this is the

case, then how does he explain what proofs do? After all, following proofs is how we

standardly acquire mathematical knowledge, knowledge which is considered to be a

priori and certain. Lakatos responds by distinguishing between what he calls "infor-

mal" proofs and formal proofs. For him, the real work of mathematicians is properly

done within the realm of informal mathematics, where theories are tested, refuted,

refined, expanded, and applied to new areas. While formal proofs cannot be refuted,

they also do not expand our knowledge of mathematics by pointing to new areas of

research. Informal proofs, which do not have the standards of rigor required for formal

proofs, may contain assumptions that point to "hitherto unthought of possibilities"2

and new insights.

In order to make his case, Lakatos will have to explain what appears to be strong

evidence against his claim that formalization does not increase fields of mathematical

1'As a student of Popper, Lakatos was heavily influenced by the notions of verification and falsifi-

cation of theories. However, we will focus discussion on Lakatos' use of those notions, which diverges
from Popperian classifications.

2 [Currie and Worrall 1978], p.6 9 .
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inquiry. For example, the systematization of axiomatic set theory had an enormous

impact on modern mathematics. Transfinite induction arose out of this program of

systematization. Lakatos does not think that formalization serves merely hygenic

purposes, as he recognizes that formal proofs have a degree of certainty that informal

proofs lack; rather he considers the program of formalization to be the least fruitful

of mathematical enterprises, as it gives rise to no refutations.

Since it is in the informal theory where we find refutations, the plausibility of his

philosophy of mathematics rests on his account of what kinds of refutations or falsifiers

mathematics is subject. We will need to examine Lakatos' account of falsifiers to see

if mathematics is conjectural.

Lakatos' charges are serious ones, deserving of a thorough response. He concludes

his attack on traditional accounts by suggesting a view which undermines both the

entire epistemological and metaphysical structure and the methodologies behind stan-

dard philosophies of mathematics. Since the cost of making these changes is so high,

the burden of proof is on Lakatos to provide an alternative explanation of mathemat-

ical knowledge. What kind of explanation he provides, how plausible it is, and how

well it applies to actual cases in mathematics will determine how much of a threat

Lakatos' view poses to the apriorist philosopher of mathematics.

Once the stage is set, then, as good Popperians we should test his theory. We will

look at a well-known thesis in mathematics-Church's Thesis-and consider what

would count as refutations of it. Lakatos mentions that Laszlo Kalmar's criticism of

Church's Thesis is a rare and notable case of someone taking seriously the possibility

of refutations in mathematics.3 One might ask why such cases are rare; if there

are few cases which conform to Lakatos' picture of the epistemological structure of

mathematics, then he should either say why that is the case or give other evidence

for his view.
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Lakatos' view certainly does not require that he explain all phenomena in math-

ematics. But, if his theory yields quite counterintuitive results in the intended cases,

or fails to give a coherent account of how actual results in mathematics are known

or are revised, then the apriorist has not been given adequate reason to give up the

position that proof conveys knowledge which is certain.

2.2 Lakatos' View of Mathematics as Fallible

2.2.1 Some Preliminaries: Terminology, Taxonomy

Lakatos begins an article on the foundations of mathematics4 with a discussion of

scepticism as it applies to the philosophy of mathematics. He says that skeptics use

the question "how do you know?" to try to show that there is no foundation for

knowledge. They keep asking "how do you know?" to establish that there is an

infinite regress in all knowledge claims, that "any rational effort to obtain knowledge

is powerless."6

In mathematics, we come to know statements by following proofs. But how do

we know that the proofs actually prove anything? Lakatos says that to prove that a

proposition is true, "foundationalists" must establish that something (e. g. an axiom)

is true, and must also establish some way to transfer truth from proposition to propo-

sition (e. g. rules of inference). A way to answer the sceptic is to construct a system

with true axioms and rules of inference that take us only from true propositions to

true propositions.

According to Lakatos' rational reconstruction of the history of epistemology, the

foundationalists developed three ways to try to fight scepticism and establish a firm

foundation for knowledge. All three ways involved developing what he calls "deductive

SInfinite Regress and the Foundations of Mathematics, in [Currie and Worrall 1978], pp.3-293.
5[Currie and Worrall 1978], p.4.
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systems". He describes the basic characteristics of deductive systems below: 6

Deductive theories [are distinguished by] a principle of retransmission of

falsity from the 'bottom'[(conclusions)] to the 'top'[(premises)]; a coun-

terexample to the conclusion will be a counterexample to at least one

of the premises. . [Also] a principle of transmission of truth holds from

premises to conclusions. We do not demand, however, from a deductive

system that it should transmit falsehood or retransmit truth.

Lakatos does not explain how transmission of truth or retransmission of falsity are

supposed to work in general. It is likely that different systems will transmit truth or

retransmit falsity in different ways, depending on the subject matter. For example,

the rule modus ponens presumably would transmit truth in an axiomatic system of

mathematics, although how it does so would have to be spelled out. Retransmis-

sion of falsity is harder to characterize- we can imagine observations which cause us

to question generalizations in some theory, but how to characterize that process in

general is far from obvious.

Lakatos identifies what considers he considers to be three major programs de-

signed to create a foundation for knowledge. They are not exhaustive, but are mu-

tually exclusive and represent three ways of organizing knowledge into deductive

systems:7': 1) Euclidean (henceforth referred to as EUCL); 2) Empiricist (also called

quasi-empirical, henceforth referred to as QE); and 3) Inductivist (henceforth referred

to as IND). Any mathematical or scientific theory could fall under one of these three

categories.

Lakatos says that EUCL theories are distinguished by the existence of (gener-

ally well-known) axioms at the top, with infallible truth-value injections of the truth

value True , which flows downwards through deductive channels (generally via proof).
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The channels do not admit proof of anything other than true theorems: "Since an

[EUCL] theory contains only indubitably true propositions, it operates neither with

conjectures nor refutations".s

Laka.tos does not provide an example of a EUCL theory or how truth "flows"

downwArds through the system. However, it would seem to follow that first-order

logic is at least a good candidate EUCL theory, with modus ponens and other rules

of inference providing a way to transmit truth through so-called deductive channels.

ZF set theory would seem to be another possible EUCL theory; however, he has not

given us enough information to be able to identify particular mathematical theories

as EUCL or not. Also, he offers no explanations of how a sample truth-value injection

works in a specific EUCL theory.

For Lakatos, QE theories consist of propositions at the bottom (which he calls

basic statements, a term borrowed from Popper) from which "there is a possibility

of infallible truth-value injection... which, if the truth-value is False, flows upward

through the deductive channels (explanations) and inundates the whole system."'

QE theories in general contain either conjectural or demonstrably false propositions.

Again, Lakatos does not give an example of a QE theory, nor does he explain

how a sample "injection" of falsity affects propositions further up in the system. We

can imagine a situation in which the falsity of some key observation statement might

cause us to reject some generalization in a scientific theory. But, we do not know how

in general the falsity of a proposition is supposed to "inundate the whole system."

Lakatos spends less time discussing IND 'heories, as it is the contrast between

EUCL and QE theories that he considers most relevant for philosophy of mathematics.

He says that IND theories differ from the other two in the following way. They are

distinguished by a truth-value injection of True which flows upwards from the basic

statements. This pattern of flow is called the principle of retransmission of truth,
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through which the system is inundated. His explanation of IND theories suffers from

the same problems as do his accounts of EUCL and QE theories.

While it is true that we can construct cases e. g. in which some true observation

statement contributes to the confirmation of a generalization, we are left not knowing

what Lakatos considers to be the canonical examples of this kind of theory or how

he thinks the truth of a statement can "inundate" a system with truth. His charac-

terizations of all three sorts of theories lack the concreteness required to apply them

in specific cases. Lakatos plans to use his distinctions to show that mathematics is

QE, but so far we have little information with which to classify actual theories in this

way. The metaphor of flowing and inundation of truth or falsity does not explain how

propositions in an actual theory are proved or disproved.

Lakatos claims that the patterns of transmission of truth values are independent

of how the truth-values are determined in a particular theory. For example, a QE

theory is not necessarily an empirical one- that is determined by the nature of the

basic statements of the theory. The patterns of flow are even independent of what

flows through the system, e. g. truth or falsehood, probability or improbability.' 0 Of

course Lakatos must qualify this claim, for it is not the case that a "pattern of flow"

could transmit say, axiomhood from axioms to theorems in a system."

QE and EUCL theories differ markedly in how they develop over time. Lakatos

describes three stages of EUCL theory development:

1. the prescientific stage, a period of trial and error;

2. the foundational period, which serves to demarcate the boundaries of the theory;

3. the application period, during which problems inside the system are solved.

Lakatos contrasts the above pattern with that of a QE theory, which

1o [Currie and Worrall 1978], p.29 .
11I am indebted to George Boolos for this observation.

60



starts with problems followed by daring solutions, then by severe tests,

refutations. The vehicle of progress is bold speculations, criticism, contro-

versy between rival theories, problemshifts. Attention is always focussed

on the obscure borders. The slogans are growth and permanent revolution,

not foundations and accumulation of eternal truths. 12

Lakatos engages in polemics against EUCL methodology, calling it "puritanical

and antispeculative"' 3 . Lakatos also considers the IND program a failure, but it is

EUCL theories that are his real target. A large part of the motivation behind his

fallibilism is his interest in showing that attempts to preserve the Euclidean status of

mathematics are wrong-headed and futile. Lakatos takes careful aim at logicism and

formalism, citing what he sees as the failures of Frege, Russell and Hilbert to shore

up the foundations of mathematics with logic or with satisfactory consistency proofs.

The problems of what Lakatos calls the Frege-Russell approach are with the axioms

of the system- they are not indubitably true, and in the case of Frege's system

they were not even consistent. Lakatos describes a controversy during which various

proponents of the EUCL program fought to establish axioms via various methods, e.

g. set-theoretical, constructivist, or logical intuition. Using logical intuition seemed a

promising method for setting up a EUCL mathematical theory, for as Lakatos points

out, "whoever wins the battle for the axioms, logical intuition has to be relied upon to

carry truth from the top to the remote parts of the system."'14 He says that this move

will satisfy skeptics, for even they have to rely on logic to criticize the foundationalists.

"... to show that all mathematics does not need any other but logical intuition will

certainly be a huge gain: there will be only one single source of certainty both for the

axioms and for the truth-transmission.' 516

12 [Currie and Worrall 1978], p. 30.
t8 [Currie and Worrall 1978], p. 29.
"1 [Currie and Worrall 1978], p.12.
t" [Currie and Worrall 1978], p. 13.
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Lakatos reports that Russell's attempt to "trivialize"(Lakatos' term) mathematics

by reducing it to logic failed. Type theory contained axioms that were perhaps

true, but certainly not indubitably true, e. g. those of choice, reducibility, infinity.

According to Lakatos, the axioms explain the theorems, but they do not prove thenm.'

Given that Russell's program failed, what are we entitled to infer about all EUCL

programs? Lakatos would have us believe that all such programs are epistemologically

bankrupt. However, maybe we just lack the satisfactory axioms for capturing the

truths of mathematics. It is possible that Russell's system is a EUCL one, but his

particular attempt failed.

So, if Russell's system is in fact a QE system, it should be testable. If this is the

case, then how do we test it? Lakatos notes that in Russell's system, all the theorems

are derivable in it, so there do not seem to be any potential falsifiers. He suggests that

we test the system for consistency. If Russell's system turns out to be inconsistent,

then it would definitely be a QE theory. If there is no way to show that it is consistent,

then Lakatos' case for the QE status of mathematics might be strengthened. This

concern leads him to look at the another major attempt to provide a foundation for

mathematics, formalism.

Lakatos says that Hilbert's program was designed to end skeptical worries about

foundations by showing the following:"17

1. all arithmetical propositions which are formally proved (the arithmetical theo-

rems) will certainly be true if the formal system is consistent, in the sense that

A and A are not both theorems;

2. all arithmetical truths can be formally proved;

3. meta-mathematics, [a] new branch of mathematics set up to prove the consis-

t1 [Currie and Worrall 1978], p. 1 9 . Of course Russell was aware of this fact. Axioms do not show

theorems to be true; they are no more evident than the theorems they prove.
17 [Currie and Worrall 1978], p.2 0 .
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tency and completeness of formal systems, will be a particular brand of Eu-

clidean theory: a finitary theory, with trivially true axioms, containing only

perfectly well-known terms, and with trivially safe inferences.

Lakatos quotes Hilbert, who contends that "arithmetical truth-and, because of

the already accomplished arithmetization of of mathematics, all sorts of mathematical

truths-will rest on a firm, trivial, 'global' intuition, and thus, on 'absolute truth' "."s

Lakatos concludes that a consistency proof will thus show that mathematics will have

no falsifiers1'.

It should be noted here that Lakatos' description of Hilbert's program is mislead-

ing. He states that the goal of the program was a consistency proof for arithmetic.

In fact, this was not Hilbert's goal, but rather a by-product of his program. What is

important to show is not that arithmetic is consistent, but rather that the use of set

theory to prove facts about arithmetic does not result in new theorems; what can be

proved with the use of set theory should be provable without it.

The complete story of the failure of Hilbert's program is an interesting and com-

plex one. What is important to note here is that G6del's second incompleteness

theorem showed that that it is impossible to prove the consistency of arithmetic us-

ing only finitary methods. Many important results came out of reactions to that

failure, in particular Gentzens' non-finitary proof of the consistency of arithmetic up

to co, using transfinite induction. He draws the conclusion from all this historical

evidence that mathematics is undeniably quasi-empiricist in nature.

2.2.2 Mathematics is Quasi-Empiricist

Lakatos' arguments for the quasi-empiricist nature of mathematics are mainly neg-

ative ones. He maintains that major attempts to show that it is either EUCL or
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IND failed. So by process of elimination, it must be QE. But what does it mean for

mathematics to be QE? Lakatos says that QE theories are conjectural and falsifiable.

So far, we do not have a good idea of what it means for a theory to be falsifiable- how

does the falsity of some statement in the theory affect the status of statements further

up? We have not seen examples of QE theories; we have not seen any explanations

of how particular statements can "falsify" particular theories. Lakatos' view needs to

be filled in with examples from specific cases if we are to see how falsification works.

On standard views, formal mathematical theories, if consistent, are not falsifiable.

It would follow that nothing would count as a potential falsifier for a consistent

mathematical theory. We can imagine the existence of potential falsifiers in science;

basic statements, observations like "the reading on the meter was 3.5", may undermine

some hypothesis. However, in mathematics there do not seem to be any obvious

candidates. Lakatos says that both mathematics and science are QE; the difference

between them is in the nature of their falsifiers.

There are, according to Lakatos, two kinds of falsifiers in mathematics- logical

and heuristic. He states that logical falsifiers are statements of the form p&-np. He

does not explain how they work, but he does mention an example of a logical falsifier.

He claims that Frege's system was 'refuted' by Russell's discovery of a logical falsifier.

Systems can reveal inconsistencies that stem from incorrect axioms or faulty rules of

inference. It is true that most people would agree that mathematics (Lakatos speaks

of comprehensive axiomatic set theories in particular) is subject to logical falsification.

A theory has been logically falsified if one finds a contradiction that can be proved

in the theory.

Lakatos argues that logical falsifiers do not seem to capture the kind of falsification

done by what he calls the 'hard facts'. He seems to be looking for some way to do

in mathematics what we do in science when we use observation statements to test

hypotheses. He says if we limit our scrutiny to formal theories, then we will find only
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logical falsifiers.

Lakatos proposes another way to falsify mathematical theories: "if we insist that

a formal theory should be the formalization of some informal theory, then a formal

theory may be said to be 'refuted' if one of its theorems is negated by the corre-

sponding theorem of the informal theory. One could call such an informal theorem a

heuristic falsifier of the formal theory." 20

While the notion of a logical falsifier is a familiar one in classical mathematics,

the definition of 'heuristic falsifier' relies on an unfamiliar distinction-the difference

between formal and what Lakatos calls 'informal' mathematical theories. We will

examine this bistinction later. First, let us examine a scenario in which he describes

a potential heuristic falsifier.

Take set theory as a sample mathematical theory. It is testable if it is a QE

theory, but how can it be tested? Lakatos suggests two ways to criticize a set theory.

One way is to test the axioms for consistency, looking for logical falsifiers. Another

(more subtle) way is to test the definitions for "'correctness' of their translation into

branches of mathematics like arithmetic." 21 It is unclear what Lakatos means here,

but we will see that the latter test is a search for a heuristic falsifier. Consider the

following scenario: 22

Suppose that we have a formal proof in formal set theory whose intended interpre-

tation is that there exists a non-Goldbachian even number. 2 j Suppose further that a

number theorist proves informally that all even numbers are Goldbachian. If his proof

can be formalized within set theory, it will count as a logical falsifier, for the theory

will have been shown to be inconsistent. But, Lakatos notes that if the informal

20 [Currie and Worrall 1978], p.36.
21 [Currie and Worrall 1978], p. 3 6 .
22 [Currie and Worrall 1978], pp.3 6 -3 7 .

8 A non-Goldbachian even number is one which is not the sum of two primes. Goldbach's Con-

jecture asserts that all even numbers are sums of two primes. It has not yet been proven, although
it has been confirmed for a large number of cases.
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proof cannot be thus formalized, the set theory will not be shown inconsistent, "but

only to be a false theory of arithmetic. The theory is false in respect of the informal

explanandum that it had set out to explain." Lakatos does not explain further, but

he could mean that since the informal proof has the force of a convincing argument

without the rigor of a formal proof, it shows that there is a problem with the formal

theory-namely, that it does not explain some fact demonstrated informally. To rem-

edy the problem, Lakatos suggests we check the definitions (in this case the definition

of 'natural number' may be suspect) and adjust the definitions to accommodate the

heuristic falsifiers.

Lakatos concludes that, as a result of these adjustments, we find that the formal

theory is no longer useful as an explanation of arithmetic; the only way to restore

its usefulness is to eliminate all heuristic falsifiers. It seems as if informal proof

has provided an observation that is at odds with the formal theory. In Proofs and

Refutations, Lakatos suggests two techniques for dealing with heuristic falsifiers: 24 1)

"monster-barring"-rejection of the informal proof on the grounds that it is not really

a falsifier of the formal theory; 2) "lemma incorporation"-make adjustments to the

formal theory to accommodate the new fact shown by the informal proof. But why

does he say that the existence of a heuristic falsifier renders the theory useless? That

is an extreme conclusion, especially considering that monster-barring is an option.

Lakatos' description of the Goldbach's Conjecture case leaves a number of ques-

tions unanswered. He mentions that the informal proof cannot be formalized-why

not? Most proofs are not written in the language of set theory; they are abbrevi-

ations of formal proofs. But, given any proof written in this abbreviated style, we

can translate it into a formal proof. If we could do that in the GC case, then we

would have found a contradiction in set theory. But if we cannot translate it into a

2 4Lakatos has the view that heuristic falsifiers work both against informal and formal theories.

He does not distinguish who they work in the different cases. 1) and 2) here are used in Proofs and

Refutations to work against informal theories, but there is no reason to think that they do not work

against formal theories as well.
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formal proof, we have to ask why. Central to the notion of proof is the fact that it

can be tested for correctness by formalizing it and checking it using some mechanical

procedure.

Lakatos has presented a curious case; we are left unsure how to react to his

scenario. We know what it means for something to be a proof in a formal theory-

roughly, A is a proof in a formal theory T iff it is a sequence of steps, each of which is

either an axiom of T or follows from an earlier step via some accepted rule of inference

in T. There are standards of rigor for formal proofs-- given a sequence of steps we

can tell whether it is a proof in T. If the informal proof of Goldbach's Conjecture

could be formalized, then it would count as a logical falsifier of the formal theory,

showing the theory to be inconsistent.

What we do not know is what an informal proof is. Since we have no idea why it

cannot be formalized, only that it cannot be formalized, we can exercise one of the

following options:

1. We can accept the informal theorist's proof as a rival hypothesis, which may

give rise to a new formal theory. We attribute its status as informal to the fact

that it is part of a theory which has not been formalized yet, but will be. This

option classifies the new proof as a logical falsifier in progress.

2. We can reject the informal proof and conclude that the informal theorist has

simply made a mistake somewhere. Since it does not meet our standards of

rigor for proofs, we need not accept it. Therefore it is not a falsifier at all.

3. We can accept the proof as a heuristic falsifier, but without some criteria to

judge correctness of informal proofs and some guidance as to what to do with

the formal theory in response to it, this option does not provide a direction for

the formal theorist to follow.

The problem with the Lakatos' Goldbach's Conjecture example is that it is rad-
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ically underdescribed. We do not know what the differences are between informal

theories and proofs and formal theories and proofs. We do not know how to judge va-

lidity of informal proofs, or even if validity is an appropriate term to apply to them. In

order to make such decisions, the situation needs more detailed description- Lakatos

needs to give us an example of an informal proof and explain how mathematics pro-

gresses in the face of heuristic falsifiers.

In Proofs and Refutations, Lakatos shows how Euler's Theorem25 changed as a

result of heuristic falsification.

One important thing to note here is that unlike the imaginary Goldhach's Conjec-

ture case, the Euler's Theorem case pre-dated formalization. Until the axiomatization

and formalization of mathematics took place (around the late nineteenth and early

twentieth centuries) there were no standards of rigor for proofs. It was not until a

formal language for mathematics was systematized that standards of absolute rigor

in mathematics were possible.

Since then, formalization has played an important role in mathematics. It is not

one in which we are required to translate all proofs into formal proofs. Formalization

is used to make clear what have been obscure or ambiguous notions. For example,

formalization of the calculus helped clarify the theory of infinitesimals. It helped

make explicit the order of quantifiers. We need not formalize all of mathematics, but

we use it to help uncover, clarify and guarantee correctness in troublesome areas of

mathematics.

Lakatos discusses the differences between informal and formal proofs in an article

entitled "What Does a Mathematical Proof Prove?" 26 For him, all proofs are in one

of the following three categories:

"Euler's Theorem says that for any regular polyhedron, V - E + F = 2. A full treatment of its

development is found in [Lakatos 1976].
2e [Currie and Worrall 1978], pp.6 1 -6 9 . The editors of this volume note that Lakatos changed his

mind about some of the points in the paper and did not plan to publish it.
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1. pre-formal proofs

2. formal proofs

3. post-formal proofs

Both 1. and 3. are informal proofs. 2. includes standard formal proofs in classical

mathematics-finite sequences of statements, each of which is an axiom or follows

from a previous statement via some accepted rule of inference. Formal proofs have

decision procedures for determining whether some given sequence is a proof. Lakatos

says that informal proofs, on the other hand, do not admit of such procedures. He

adds that we should not think that an informal proof is merely a formal proof with

gaps or suppressed premises; it is not just an incomplete formal proof.

Lakatos cites Euler's Theorem as an example of an informal theorem. It is ac-

cepted as a proof, but it contains no postulates and no obvious way to formalize this

reasoning." According to him, the proof is a convincing argument that intuitively

shows the theorem to be true.

There are no specific criteria for correctness of informal proofs. One can show

that something is not an informal proof by "pointing out hitherto unthought of

possibilities."2  In the Euler's Theorem case, the possibility that a polyhedron could

have a hole in it 29 constitutes a possible falsifier. One can incorporate the counterex-

amples into the theorem by expanding the concept of a polyhedron. Or, one can limit

the concept of polyhedron so to restrict the counterexamples.

None of the falsification are on formal grounds-they are all on the level of what

he calls the pre-formal theory. He does not elaborate on what pre-formal theories

are. Lakatos does say that pre-formal theories are subject to formalization, which

27This view is Lakatos'--Mark Steiner (find ref.) discusses the iormalisation of Euler's Theorem

through the development of algebraic topology, resulting in a rigorous demonstration of it.
2s [Currie and Worrall 1978], p.65.
"The picture frame counterexample is one of these cases.
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may yield "unfortunate results." If we formalize too early, he warns, we limit the

subject matter and possibly exclude from consideration new objects of study:

While in an informal theory there really are unlimited possibilities for in-

troducing more and more terms, more and more hitherto hidden axioms,

more and more hitherto hidden rules in thc form of new so-called 'obvi-

ous' insights, in a formalized theory imagination is tied down to a poor

recursive set of axioms and some scanty rules.

In a general pronouncement on formal versus informal theories, Lakatos says:

[Iniormal proofs] prove something about that sometimes clear and empir-

ical, sometimes vague and 'quasi-empirical' stuff, which is the real though

rather evasive subject of mathematics. This sort of proof is always li-

able to some uncertainty on account of hitherto unthought of possibili-

ties. [Formal proofs are] absolutely reliable; it is a pity that it is not quite

certain-although it is approximately certain-what it is reliable about.s0

Lakatos seems worried that formalization will restrict the class of mathematical

statements we can come to know. He says little about how informal theories are

structured, cnd less about what informal proofs are. If informal proofs have no

axiomatic structure, then what structure does he have in mind? Lakatos is trading

on the fact that we know exactly what constitutes a formal proof in a formal theory.

Instead of providing a clear picture of what informal proofs in informal theories look

like, he says that they are not like formal theories in certain ways, and that the proofs

are not restricted in the way formal proofs are. What he fails to give us is any clear

positive picture of the structure or process of informal mathematics.

Lakatos writes that informal proofs are falsified by hitherto untnought of possibil-

ities. But what counts as such a possibility? Surely we are not required to take every
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possible objection seriously, for that would cripple mathematics- no work would ever

get done, no proofs would ever be finished. Lakatos realizes that there are no stan-

dards of correctness for informal proofs, but he considers that a virtue, for he says it

allows us to expand the fields of examination to include bold speculative ideas.

An important question, however, remains: how can we tell the difference between

a legitimate flaw in an informal proof and an irrelevant objection? This is a problem

for all theories, but in the case of mathematics, one can reply to many objections by

pointing to the relevant section of a proof and showing how it is justified.

What Lakatos seems to ignore is that rejecting standards of correctness for proofs

undermines one of the major reasons for proofs in mathematics: they serve to convince

us of the truth of the theorem proved. Of course, intuition plays a role in accepting

a proof-one must agree to the truth of the axioms and the validity of the rules of

inference-but what proofs serve an important justificatory role for us. To rob proofs

of this most important function of bestowing certainty is to take away most of the

power of proofs, This move incurs a great cost for those who are interested in the

growth of mathematical knowledge.

Lakatos is willing to bear the costs involved, for he seems to think that having

standards of rigor for formal proofs will exclude proofs that he considers to be enlight-

ening. He does offer some restrictions on informal proofs; in informal mathematics, for

a proof to be rigorous or valid, there must be no heuristic falsifiers for it. Recall that

according to the Principle of Retransmission of Falsity, the falsity of some statement

will affect the status of statements further up in the system. He does not provide an

account of how this retransmission is supposed to work; there are no specific criteria

for recognizing or applying falsifiers.

Lakatos does admit that it is possible for the flow of refutations to stop, at which

point we will have reached truth. "But of course we shall not know when. Only
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refutations are conclusive-proofs are a matter of psychology.""31

2.2.3 Fallibilism as a Philosophy of Mathematics

Lakatos' diatribe against formalism ends in an extreme conclusion-that we reject the

possibility of certainty in mathematics, and embrace a fallibilist stance. His conclusion

comes as a result of finding that all the major deductive anti-skeptical programs

in mathematics-logicism, formalism, and even intuitionism-share the same flaw:

they reject criticism too early in order to pursue justifications, which he thinks is

antithetical to fostering growth in mathematics. "Different levels of rigor differ only

about where they draw the line between the rigor of proof-analysis32 and the rigor of

proof, i. e. about where criticism should stop and justification should start.""33

In a famous and controversial passage from Proofs and Refutations, Lakatos claims

that certainty in mathematical knowledge is impossible. "'Certainty is never achieved';

'foundations are never found'-but the 'cunning of reason' turns each increase in rigor

into an increase in content, in the scope of mathematics.""34 What makes his com-

ments controversial is how much he discounts the role absolute rigor has played in the

development of mathematics. The editors carefully note that, whereas fallibilism with

respect to the axioms of mathematics is a reasonable position for well-known reasons,

there is no sense in which a rigorously correct proof is fallible; we have methods for

checking to see if something is a proof in a formal system. This is a crucial point to

which we shall return later.

To make his position more explicit, Lakatos tries to compare what a formal proof

adds with what arn informal proof adds to our knowledge. Formalism definitely adds

something to the certainty of the theorem proved- it guarantees that there will not be

81 [Lakatos 1976], p.53.
2In [Lakatos 1976], the term 'proof-analysis' is used to mean the methods of introducing and

incorporating heuristic falsifiers into the informal theory.

88 [Lakatos 1976], p.56.
8" [Lakatos 1976], p.56.
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a counterexample formalizable within that system. But that is no guarantee against

heuristic falsifiers, which must be taken into account. Furthermore, he maintains that

a formal proof gives us no guarantee that the formal system has "the empirical or

quasi-empirical stuff in which we are really interested and with which we dealt in the

informal theory.' 35

Lakatos notes that almost no one has studied the possibility of refutations in

mathematics; he mentions Laszlo Kalmar as an exception. We will examine Kalmar's

attempt at a refutation in the next section. Lakatos maintains that we cannot take

fallibilism seriously without taking the possibility of refutations seriously.36

We will take up Lakatos' challenge and consider a possible refutation in mathe-

matics. Church's Thesis is a key assumption of computation theory which identifies

the intuitive notion of effective calculability with the mathematically rigorous notion

of partial recursive function. It is not a theorem, since it cannot be proven. But,

there is considerable evidence that it is true. Using Church's Thesis as a sample

case, we can entertain the possibility of heuristic falsifiers for computation theory in

the form of arguments against Church's Thesis. Although Lakatos' views need not

apply to all mathematics (he points out that not all branches are equally subject to

heuristic falsification), computation theory presents a promising opportunity to fill

out the details of his alternative philosophy of mathematics. If his fallibilistic phi-

losophy fails to offer a plausible alternative account of mathematical knowledge, that

gives the classical philosopher of mathematics less reason to give up the view that

formal proofs are primary conveyors of certainty in mathematical knowledge.
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2.3 Church's Thesis- A Case Study for Fallibil-

ism

2.3.1 Introduction

We saw in the previous section that Lakatos criticized what he saw as the major

attempts to provide a foundation for mathematical knowledge. He correctly points

out that the problem with inductivism is that it does not provide us with a direction

after heuristic falsification; it is not as if the categories were already set up, ready for

us. In the case of logicism and formalism, we know that there is more to mathematics

than proving theorems.

Lakatos depicts heuristic falsification as an activity that is not accounted for

within the process of systemization of mathematics. If we apply Lakatos' suggestions

to Church's Thesis, then we should expect to see exemplified there the kind of in-

formal mathematical structure, replete with heuristic falsifiers, that Lakatos points

to in mathematics. He cites Kalmar as an example of someone who tried to take

on Church's Thesis. Kalmar attacked the half saying that all effectively calculable

functions are recursive; he thought the idealization was too restrictive. We will see

that in Kalmar's case, his argument is defective, although the reasons motivating his

arguments bear addressing.

Rosza Peter also challenged Church's Thesis, attacking the other half-the half

that states that all recursive functions are effectively calculable. Peter does not accept

that what we can do in principle is at the heart of Church's Thesis. Of course

Turing and Church were not interested in what we can do in practice; they wanted

to characterize a notion of effective calculability that abstracts front our physical

limitations. However, Peter's objection brings up an important question: is there

some notion of effective calculability which is an abstraction of our human capabilities,

but is not our current view? It is with this question in mind that we will examine
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Kalmar's objections to the plausibility of Church's Thesis.

In the Euler's Theorem case Lakatos successfully shows the complex interplay

between what can be proved and what is speculated about. Explaining or accommo-

dating the cylinder and picture frame counterexamples is a matter of adjusting our

terminology and expanding or contracting the theory depending on the costs (e.g.

clarity, explanatory value, naturalness, applicability to a large number of cases).

In the Kalmar case we will not turn up anything promising in the way of a heuristic

falsifier or conjecture. Of course, that Lakatos' view does not conform to logicism is

no drawback. Also, the fact that no promising heuristic falsifiers have turned up in

the Church's Thesis case is not necessarily a point against Lakatos-maybe we have

found he correct characterization of effective calculability, which we can now clarify

both formally and philosophically; we give a formal explication of the notion using

the model of a Turing machine. We can then use that model as an example of what

we can do in principle, abstracting away from certain specific physical limitations.

A close examination of the model may make clear what we mean by "what we can

calculate in principle".

However, we should ask at this point whether there is a perspective from which

we can see heuristic falsification not as the main stage, but just as a phenomenon

that occurs from time to time. That is, we can see heuristic falsifiers as the occasional

by-products of the general program of systematization, an activity fundamental to

mathematics.

Lakatos has taken the business of conjectures and refutations as absolutely central

to mathematics; recursion theory would be a special case of having gotten it right;

the same would be true for the Euler's theorem case, as it has been successfully

formalized in algebraic topology. The appearance of heuristic falsifiers is considered a

symptom of this phenomenon. However, we will see that heuristic falsifiers can indeed

be accounted for within the realm of formal mathematics- they occur as a part of the
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process of formalization. They are an expected if occasional result of mathematical

clarification, a process whose common results are proofs.

2.3.2 Church's Thesis

The case I intend to examine is the well-known and well-established Church-Turing

Thesis, (hereafter referred to as Church's Thesis). Church's Thesis identifies the

intuitive notion of effectively calculable functions with the notions of partial recursive

or Turing-computable, or A-calculable functions, all of which have rigorous, precise

mathematical definitions.

Why should we want to try to identify an intuitive notion with a mathemati-

cally rigorous one? Robin Gandy37 points out 3 motives for trying to give a precise

definition to a vague and intuitive notion:38

* The intuitive notion may be clearly defined in some contexts; one may wish to

extend the definition to a wider range of contexts.

* One may be able to get greater precision and/or a wider range of application

with a precise definition-it gives more power, more positive results; e.g. the

extension of 'integer' and 'prime' from rationals to other algebraic number fields.

* If one wishes to obtain negative results to show that something is not true of

the notion, then one must give a definition of that notion so as to delimit its

extent.

Gandy says that there are problems "which in some special cases can be settled

by calculation, but for which a uniform general computational method of solution

seems unlikely""39

8 [Gandy 1989), pp.55-111.
88 [Gandy 1989],p.56.
,A [Gandy 1989],p.60. He cites as an example diophantine equations, i.e. equations for which the

only valid solutions are integers.
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New methods for solving various problems, developed in the late 19th and early

20th centuries, involved "only known processes of calculation such as could be per-

formed in principle, by [Babbage's] analytic engine". [But] one might speculate that

some as yet undiscovered conceptual framework for a decision might require some as

yet undiscovered process of calculation. ' 40

Such speculation raises an important question: how do we know that we will not

discover new methods that solve non-recursive or non-Turing-computable functions?

The arguments in favor of Church's Thesis will have to be partially empirical in

nature, since the thesis asserts facts about human computational capacities. We will

examine those arguments shortly.

In 1934, Alonzo Church identified "effectively calculable" with "A-definable". His

choice seemed like a good one, as the A-calculus was a powerful system and all the

A-definable functions were effectively calculable. G6del had the view that Church's

Thesis was not subject to proof. Candy reports that G6del wrote in 1934 that the half

of Church's Thesis asserting that all effectively calculable functions are A-definable

seems to be true. However, "...This cannot be proved, since the notion of finite

computation is not defined; but it serves as a heuristic principle." 41

There are a number of standard arguments in favor of Church's Thesis:

1) Many calculable functions have been shown to be recursive. Many natural

classes of functions, e.g ones in elementary number theory, turn out to be recursive.

2) No one has produced a calculable function which cannot be shown to be recur-

sive, or even suggested a plausible method for constructing such a function. Candy

offers a slight variant of this argument, called the "criterion of the failure of diago-

nal arguments": he notes that Kleene was unable to diagonalize out of the class of

A-definable functions.4 2

o40 [Gandy 19 8 9 ],p. 6 2 .
41 [CGandy 19 8 9 ],p. 7 2 .
42 [Gandy 1989],p.78.
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3) Many methods of obtaining calculable functions from calculable functions have

been shown to lead from recursive functions to recursive functions. Furthermore, no

such method has led from a recursive function to non-recursive function.

4) Various definitions have been proposed for the calculable functions; in each

case, all the functions have been shown to be calculable, and the definitions have

turned out to be equivalent.

These argument are not conclusive; they do not constitute a proof of Church's

Thesis. As we saw above, GOdel thought that recursiveness and effective calculability

could not be satisfactorily identified "excepL heuristically". Certainly argument 2)

serves a heuristic purpose; but, it could happen that some genius will discover an

entirely new sort of calculation that outstrips the class of recursive functions. We

encounter the same problem with 3): some new algorithm might proceed by steps

which were not recursive. The equivalence argument also does not provide a proof-

it is possible we have formalized the wrong notion in trying to capture effective

calculability.

Shoenfield43 points out that we can almost prove Church's Thesis; the problem

with proving it is that we have no precise definition of effective calculability. However,

we were able to prove by induction on recursive functions that every recursive function

is calculable. 44

Can we prove the converse-that every calculable function is recursive-in the

same way? According to Shoenfield, the difference between the two cases is the

following: in the former, we isolated properties of calculable functions and predi-

cates which were obvious, even from the vague descriptions of calculable functions.

However, no one has isolated the properties of calculable functions needed to prove

Church's Thesis.4 5
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if we try to prove Church's Thesis, we would try to define the notion "calculable"

directly. We assume a single calculable function F. From F you apply a simple

operation to get a function 0, which is H(F), where H is recursive. If G is recursive,

then so is F. So, if F is calculable, so is G.

What we want to show here is that applying recursive operations on calculable

functions does not lead outside the realm of calculable functions. Furthermore, we

want to show that if G is recursive, then the functions it is derived from are also

recursive. Of course, in this argument G is assumed to be calculable, which makes

the argument circular. However, G results from a single step in the calculation, so it

must be a very simple calculable function; therefore, it is likely to be recursive. If we

absume this, then we can prove that F is recursive. However, since we cannot prove

thr.v G is recursive (however obvious it may seem), we have no proof.

Since the evidence for its truth falls short of rigorous proof, Church's Thesis is

commonly considered an explication of the notion "effectively calculable function"; on

this interpretation it has actual empirical content. Church's Thesis does bring up an

interesting question: what is the appropriate idealization for our human calculation

abilities? In some cases, we know that a proposed idealization has outstripped our

capabilities- e.g. if we allow for infinitely many steps in a calculation, then everything

is computable. However, there do seem to be intermediate cases; we can recognize

sentences of English, but the set of English sentences is not known to be effectively

calculable. 46

Turing wondered what are the possible processes which can be carried out in

computing a real number. He was interested in considering the potential abilities of

a computor, a calculating agent whose capabilities are not subject to certain physical

limitations. On Turing's model of calculation, a computation proceeds by discrete

steps and produces a record consisting of a finite (but unbounded) number of cells,

4I am indebted to Jim Higginbothr.m for this observation.
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each of which is blank or contains a symbol from a finite alphabet, as each step the

action is local and is locally determined, according to a finite table of instructions.47

According to Gandy, Turing's analysis proves the following theorem: Any function

which is effectively calculable by an abstract human being following a fixed routine

is effectively calculable by a Turing machine- or equivalently, effectively calculable in

the sense defined by Church, and conversely.48

Gandy thinks that Turing's work has settled the matter completely-"it shows

that what appears to be a vague intuitive notion has in fact a unique meaning which

can be stated with complete precision." 49

G6del acknowledged the importance of Turing's characterization: " It seems to

me that [the] importance [of the concept of Turing-computability] is largely due to

the fact that one has for the first time succeeded in giving an absolute definition of an

interesting epistemological notion, i.e. one not depending on the formalism chosen". so

2.3.3 Philosophical Arguments in Favor of Church's Thesis

Before we consider an informal argument against Church's Thesis , let us look at

one philosophical argument in its favor, and a somewhat radical characterization of

Church's Thesis.

Mendelson: Church's Thesis or Theorem?

Elliott Mendelson sL offers an analysis of Church's Thesis which he thinks gives us

reasons to believe that it is a theorem. He considers it "completely unwarranted to

say that Church's Thesis is unprovable just because it states an equivalence between

47 [Gandy 19 8 9 ],p.8 1.

48 [Gandy 19 8 9 ],p. 8 1.

4 [Gandy 19 8 9 ],p.8 6 .
SoGandy does note that G6del argued that in our ability to handle abstract concepts we are not

subject to the restrictions described by Turing.
s" [Mendelson 1990]
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a vague, imprecise notion (effectively computable function) and a precise, mathemat-

ical notion (partial recursive function)." 52 If we had enough facts about effective

calculability to prove Church's Thesis the way Shoenfield suggests, then Mendelson

would be absolutely right. We shall see if he can make such a case.

On standard views, Church's Thesis is an explication in Carnap's sense. That is,

it replaces some intuitive notion with a precisely defined one which may or may not

extend beyond the original notion. Furthermore, "confirmation of the correctness of

the [explication]... [is not a matter of proof but] apparently must involve, at least

in part, some empirical investigation."" 3 Mendelson disagrees with this account of

Church's Thesis. He could offer what would be a natural opposing view-that the

two notions simply turn out to be coextensive, but differ in meaning. On this view,

verifying Church's Thesis would not involve complicated analysis of what the terms

mean and how they are used, how they are interrelated. Mendelson suggests that

Church's Thesis is really a theorem. offering as evidence for his view an analysis of

several mathematical theses which are clearly well-accepted parts of mathematics; on

his view, Church's Thesis deserves the same status. He considers the following four

"theses" as well-accepted as Church's Thesis:

1. the identification of the intuitive notion of function with the definition of func-

tion in terms of a set of ordered pairs satisfying the condition If(y, x) E

f and(z, x) E f, then y = z

2. the identification of the intuitive notion of truth in a language with Tarski's

set-theoretic definition of 'B is true in M', for any sentence B and a structure

M for a language L

3. the identification of the intuitive notion of logical validity with the model-

theoretic definition of logical validity-that a first-order sentence is logically
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valid if it is true in all structures

4. the identification of the intuitive notion of limit with the e-S definition of a

limit of a function and the corresponding definition for a limit of a sequence

According to Mendelson, the notion of effectively calculable function is, in cer-

tain ways, just as precise as that of partial recursive function; the latter notion just

happens to be more familiar and formally defined." In the case of the definition of

function in terms of set, he says that the notion of set is not clearer than the notion

of function. Likewise for the other examples of equivalence above: we have shown

that we can replace one notion with another, but we have gotten nothing in the way

of improvements in clarity or intuitive appeal.

Mendelson offers another reason in favor of giving Church's Thesis status as a

theorem. He says, "the assumption that a proof connecting intuitive and precise

mathematical notions is impossible is patently false.""' It is obvious that one-half of

Church's Thesis is true- the half that says all partial-recursive functions are effectively

computable. He provides a short argument for its truth"6 . Of course the starting

functions (e.g. addition) are computable; there are ways to describe easy procedures to

compute them. And the operations of substitution and recursion and the least-number

operator also result in computable functions; again we can describe procedures to

compute such functions. Clearly, if a function is partial recursive, then there is an

algorithm to compute it. So one-half of Church's Thesis has been established to

everyone's satisfaction. Mendelson says that the fact that this proof is not in ZF

"just shows that there is more to mathematics than appears in ZF." 57

Mendelson is here restating Shoenfield's point we noted earlier: that the use of the

predicate "is calculable" prevents us from being about to prove Church:s Thesis for

" [Mendelson 1990], p. 232 .
" [Mendelson 1990] p. 232.
s8 [Mendelson 1990], p.232.
* [Mendelson 1990], p.2 33.
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the following reason: there are not enough obvious facts about effective calculability

to isolate the properties of calculable functions from which it would follow that all

effectively calculable functions were recursive. However, he makes the further point

that it does not matter that we cannot specify their properties well enough to for-

malize them in ZF, for we can know without the help of ZF that the properties of the

effectively calculable functions are exactly those of the recursive functions.

Mendelson's third point is perhaps his most controversial. It is an expansion of

the above point about proof. He thinks that underlying the standard views regarding

Church's Thesis is the opinion th.t the only way to ascertain the truth of a statement

in mathematics is to prove it. He points out that proofs assume axioms and rules

of inference; also, many equivalences like the ones he cites as theses 1-4 above are

"often simply seen(my emphasis) to be true without proof, or are a mixture of such

intuitive perceptions and standard logical and mathematical reasoning."" What he

seems to be saying here is that we should expand the language of mathematics to

include as theorems statements that are true but not proven in ZF; we can increase

the number of mathematical truths by means other than proving them in a formal

system.

The four theses Mendeleon cites are, in certain superficial ways, like Church's

Thesis. Each thesis states an equivalence between two notions, and none of them

are verified by proofs. The evidence given in favor of them seems to be informal or

intuitive rather than rigorous, or they are treated more as definitions than theorems.

Unlike Church's Thesis, though, they are not explications. Showing them to be

explications in Carnap's sense would require that they have some empirical content;

the investigation to settle the matters would involve asking questions outside of the

realm of mathematics. In the case of Church's Thesis it is clear that such questions

are appropriate. We want to know what is the correct idealization of our calculating
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abilities. Determining the answer will at the very least require information about our

octual calculating abilities, which is clearly outside the realm of mathematics.

In the four cases MendebLon describes, we will see that verifying them does not

require such extra-mathematical investigation. If that is the case, then there is good

reaaon to think that Mendelson's four theses are not explications.

Consider first the Weierstrassian definition of limit. It is not1 the case that we had

an clear intuitive notion of limit which was replaced by a more rigorous notion. Before

we had a formal notion of limit of a function or a sequence, there was no uniformly

acceptable way to explain concepts Eke continuity. Mathematicians in the eighteenth

century used the vague term 'infinitesimal' to explain such phenomena.

The c-6 definition made possible the solution to many problems which had, up to

that time, v , satisfactory explanations. Weierstrass's well-known results, along with

others' work, provided the formalism to show that some infinite sequences converge

to finite limits. The definition was accepted and is now included as a standard part

of every elementary calculus textbook.

There is a difference between learning what a partial recursive function is and

learning what a limit is. In the first case, we are replacing a prior intuitive notion

with a rigorous one. In the case of limits, there is a prior intuitive notion (the

geometric one) and a rigorous notion ( the analytic E-b notion). For some questions

o' the form "Does lim,.a f ) = y?", we will be able to give a conclusive answer if

we xse ihe analytic notion, but not if we use the geometric one.

However, the asymmetry does not 'old in the case of Church's Thesis. We could

consider ourselves as having two r 4tions of computability- the intuitive one (efiective

calc:ilability) and the rigorous ore (partial recursivity). But, there are no cases that

come to mind in which a function can clearly be found to be partial recursive, but

there is no clear verdict about whether it is effectively calculable. How can we explain

this apparent asymmetry?
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If we want to analyze Church's Thesis as an explication, we could say one of two

things: 1) it is analogous to the case of limits but that the arithmetization of analysis

has no counterpart in recursion theory; or 2) the two cases are not analogous. It seems

to me that they are not analogous; the other cases Mendelson discusses are about

about mathematical notions relative to a given formalism. Effective calculability is

not just a mathematical notion; effectively calculable is a property independent of

the formalism used. Effectively calculable means computable by humans.

Mendelson stated that one of the properties of an explication is that it cannot be

proven; its correctness is a matter of fit, which involves linguistic as well as empirical

study."5 However, mathematicians do not speculate about whether the formal notion

of limit is an apt replacement for the informal one. Formally defining the notion of

limit helped to tie the calculus to the arithmetic of real numbers, which led to further

foundational work on number theory. 60 For these reasons, the status of thesis 4 is

quite different than that of Church's Thesis.

We have seen that thesis 4 cannot be interpreted as an explication; neither can

thesis 1 be interpreted as identifying the notion of function with that of set of or-

dered pairs. What thesis 1 assures us of is that the notion of function is definable

for all purposes within set theory, that the notion of function is not an additional

notion. But, it certainly does not follow that people believe that a function is a set

a ordered pairs in the same way they believe that the calculable functions are the

partial recursive functions.

Mendelson asserts that in theses 1-3 the notions being defined are in some ways no

"It has been suggested that some explications might be provable-a promising candidate is Frege's
definition of the ancestral in terms of parent. From facts about the parent relation, along with
matk.ematical facts about ancestral induction, perhaps we could actually prove the equivalence of

Frege's definition with the intuitive notion. As Shoenfield pointed out, if we could reduce Church's
Thesis to a minimal set of assumptions about human computation at I apply simple mathematical
operations on the starting functions, it might be possible to prove it. However, in the case of Church's
Thesis, it is not clear how to specify the set of intuitive assumptions about effective computability.

0o [Davis and Hersh 1981] p. 246.
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more vague than the definitions. Fe mentions that the notion of set cannot be thought

of as clearer than that of function. But thesis 1 just asserts that what we can do with

functions we can also do with sets; the notion of function is not primitive within set

theory. Even Mendelson does not think that set theory completely characterizes the

general notion of function.

Also, it is far from obvious that the foundations of set theory are just as vague as

our intuitive notions having to do with functions. While there may be some obscurity

associated with treating a collection of many objects as one object, a function is an

object that takes arguments and returns values in some way or other; those notions

are in many ways less well-understood than the notions of set and member.

Thesis 3-the identification of the intuitive notion of logical validity with the

model-theoretic notion-shows that our intuitive notions of validity coincide with

the formal ones. According to our informal notions, whatever is provable is valid;

also, whatever can be made false is non-valid. Our intuitive notions, along with the

completeness theorem, allow us to prove thesis 3. However, in the case of Church's

Thesis, we do not have the sufficient facts about intuitively calculable functions that,

combined with formal apparatus, allow us to prove Church's Thesis.

Mendelson asserts that one-half of Church's Thesis is obviously true-all partial-

recursive functions are calculable. The starting functions are all calculable; there are

simple procedures to compute them. It follows from the inductive definitions of the

starting functions that the operations of minimization and composition, when applied

to calculable functions, yield calculable functions.

Why does Mendelson think that no one doubts the half of Church's Thesis that

says that all recursive functions are calculable? Answer: the argument is considered

trivial. But why? Rosza Peter objected to Church's Thesis on the grounds that the

characterization of effective calculability was too sweeping, that there were recursive

functions that were not effectively calculable.
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The reason this view is not widely shared is not easy to pinpoint, but we know

that if a function is recursive, it comes from either one of the starting functions, which

we recognize as effectively calculable, or it comes from applying one of the extremely

simple operations of minimization or composition to an effectively calculable function.

We cannot give a sense to the idea that applying one of those steps to something

calculable results in something not calculable.

We standardly consider the problematic half of Church's Thesis to be the part

stating that all functions calculable in the intuitive sense are partial recursive. Finding

a function that is calculable in the intuitive sense but is not partial recursive would

falsify Church's Thesis.

Mendelson offers a final point in his argument that proof is not the only way in

which we come to accept the truth of a statement. It is true that axioms are not

proven. Giving a satisfactory story of why they are accepted is a difficult task, one

which I will not attempt here. But he is not maintaining that Church's Thesis should

be considered an axiom, merely a theorem. Some equivalences between intuitive

notions and rigorous mathematical ones need not be constrained by the requiremeats

of proof, but "often are simply 'seen' to be true without proof, or are based on

arguments that are a mixture of such intuitive perception and standard logical and

mathematical reasoning." 6 '

Perhaps Mendelson is suggesting that we should expand the language of mathe-

matics to include statements containing predicates that have not been defined in ZF,

like effectively calculable. The statement "if f is partial-recursive, then f is effectively

calculable" will be a mathematical statement, but not one provable in ZF, since the

predicate "effectively calculable" is not defined in ZF. The problem with admitting

that statement as a theorem is that the evidence for it (e.g. that we are subject to

finiteness and other restrictions in our calculating abilities) is circular. The question
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keeps presenting itself to us because we are not sure what creatures like us are capable

of computing. If it turns out that we do indeed have the computational abilities that

Church and Turing proposed, then perhaps Church's Thesis is more like a theorem.

However, to say this may commit Mendelson to expanding the realm of mathematics

more than is reasonable; admitting psychology or biology into mathematics (since the

evidence for Church's Thesis may involve those areas) is imprudent at best.

Post's View: A Psychological Interpretation

Emil Post maintained that Church's Thesis should be treated not as a definition, but

rather as an empirical claim about the limits of the formalizing powers of humans. He

says in his 1936 paper6 2, that Church's developments form a "working hypothesis",

although he thinks that Church's Thesis has progressed far beyond the hypothesis

stage. However, he adds the following caveat in a footnote:

To mask this identification under a definition 'ides the fact that a fun-

damental discovery in the limitations of the mathematicizing power of

Homo Sapiens has been made and blinds us to the need of its continual

verification.

Enderton6 3 says that Post considered Church's Thesis to be more of a natural

law than an axiom or definition. Post was interested in distinguishing what can

be done in mathematics by purely formal means from the work which depends on

understanding and meaning. He believed that a. true account of human mathematical

intelligence must be non-mechanical: 4 "Mathematical thinking must be essentially

creative: postulational thinking will then remain as but one phase of mathematical

thinking." Gandy notes that both Post and GSdel believed that a satisfactory theory

of mathematical intelligence must take account of creative and non-finitary reasoning.

62 [Post 1936], p. 1 0 5.

* [Enderton 1977]
" [Gandy 19 8 9 ],p.9 3 .
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Church responded to Post's characterization, saying, "Since effectiveness in the

ordinary sense hasn't been defined, the working hypothesis does not have an exact

meaning. Defining effectiveness to be computability by an arbitrary machine subject

to finiteness restrictions is a good definition; if we do this, we have no need for a

working hypothesis."" 5

Church's response ignores Posts's main point, which is that since the thesis is an

idealization of actual computing powers of humans, we should focus at least part of

our attention on determining what we can do in practice, not just in principle. The

idealization is already somewhat restrictive, as the model prohibits use of infinitely

many steps in calculations. It is still an open question whether the idealization is

correct.

We will now turn to an attempt to present a potential refutation using philosoph-

ical arguments.

2.3.4 An Argument Agaipat Church's Thesis

Laszlo Kalmar 6e also considers Church's Thesis to be more of an explication, not a

theorem in formal mathematics subject to proof or disproof, since it identifies two

notions, only one of which is has a rigoroum mathematical definition. He considers

most arguments for or against it to be pre-mathematical. Kalmar argues against its

plausibility not by giving a counterexample, but by presenting what he considers to

be strange consequences of one half of Church's Thesis.

Kalmar attacks the half of Church's Thesis asserting that every effectively calcu-

lable function is general recursive"'. He focuses on the ramifications of assuming the

contrapositive-that all non-general recursive functionr, are not effectively calculable.

Consider the following function rb(x):

6* [Gandy 1989],pp.85-86.
66 [Kalmar 1956]
6 7Kalmar uses this terminology instead of partial-recursive.

89



the least natural number y for which

) = 0) (x,y) = 0 if there is such a y

0 if there is no natural number y such

thatp(x, y) = 0

Kalmar says that (zx) is an example of a non-general recursive function, and Vp

is some appropriate general recursive function of 2 arguments. He maintains that

the supposition that 4 is not effectively calculable "has strange consequences." He

provides an explanation of what he means be!ow.

Kalmar analyzes ',(x) as follows:68

1) For any natural number p for which 3y 'p(p, y) = 0, then there is a method to

compute the least such y, i. e. 0(p): compute V,(p, 0), •(p, 1), (p(p, 2), etc. (possible

since ' is recursive) until you get a q such that p(p, q) = 0. In this case b(p) = q.

2) But, for any p for which we can prove, "not in the frame of some fixed postulate

system but by means of arbitrary-of course, correct-arguments that no natural

number y such that 'p(p, y) = 0 exists, we also have a method to calculate 0(p):

prove that no natural number y with 'p(p, y) = 0 exists, which requires ... a finite

number of steps," whose result is that 0(p) = 0.

Kalmar claims that his analysis is based on the definition of the function and use

of the law of excluded middle- no other assumptions are made.

Kalmar concludes from the fact that 0 is not effectively calculable and applying

the law of excluded middle, "we infer the existence of a natural number p for which,

on the one hand, there is no natural number y such that Vp(p, y) = 0, on the other

hand, this fact cannot be proved by any correct means, a consequence of Church's

Thesis which seems very unplausible."6 9

When Kalmar speaks of a "method" for calculation, he says he is not assuming

88 [Kalmar 1956],p. 74.
69 [Kalmar 1956],p.74.
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it to be "uniform". 70 In order for a method to count as a decision procedure or

algorithm, it must not depend on the inputs. It must output a value for any input,

not just for some inputs. Whether the "method" Kalmar suggests constitutes a

decision procedure is the crucial to his case against Church's Thesis. We will discuss

this question in detail later.

Kalmar states that the proposition that for some natural number p, there is a

natural number y such that cp(p, y) = 0, would be undecidable, "not in GOdel's sense

of a proposition neither provable nor disprovable in the frame of a fixed postulate

system... but not even admitting any correct means." The fact that Church's The-

sis identifies recursivity with effective calculability by any correct means shows for

Kalmar that the above proposition is undecidable in a "really absolute sense".71 How-

ever, he arguts that this absolutely undecidable proposition is really decidable after

all-it is false:

... this "absolutely undecidable proposition" has a defect of beauty: we

can decide it, for we know it is false. Hence, Church's Thesis implies the

ezistence of an absolutely undecidable proposition which can be decided,

viz. it is false, or in another formulation, the existenc'2 of an absolutely

unsolvable problem with a known definite solution, a very strange conse-

quence indeed.

Kalmar does qualify his result by saying that this consequence cannot be proved

by any correct means since it would have to contain a proof of the undecidability of

the proposition plus a proof of its negation, which is impossible.72

How could it be possible that we can know of the falsity of an undecidable propo-

sition? If the proposition that for some natural number p, there is a natural number

70 [Kalmar 1960],p. 73.
"T [Kalmar 1956],p. 75.
72 [Kalmar 1956],p. 75.
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y such that p(p, y) = 0 is undecidable, that means that there is no single algorithmic

procedure that, given the value of p as input, will output a y such that ýp(p, y) = 0.

In order to be in a position to asse-t the falsity of the above proposition, we must use

a method of computation that outputs its negation. Knowing that we will never have

a effective procedure to decide the proposition is not sufficient. Kalmar says that we

can "see" its falsity.

Kalmar further claims that even the undecidability of the proposition in question

cannot be proved by any correct means. He argues for this conclusion by considering

a general proposition of the form 3y P(y) with a general recursive predicate, hence

effectively decidable property P.

Suppose 3By P(y) is true. Then, since P is decidable, there is some q such that

P(q), and this q can be found in a finite number of steps. So it would follow that

P(q) holds and By P(y) can be decided.7 3

However, if a proposition of the form 3By P(y), with P recursive, is undecidable,

then it does not hold. "Hence, if the undecidability of that proposition could be

proved, then the negation of that proposition could be proved too. Thus, the propo-

sition could be decided, so it would not be undecidable; but that is impossible if only

correct means are allowed.7 4

Kalmar concludes, "the fact that some of the consequences of Church's Thesis

cannot be proven by any correct means is an argument against its plausibility."7 5

Kalmar, citing another paper of Church's on a related topic ,7 6 suggests that

Church's Thesis is a challenge "to find, instead of the class of general recursive func-

tions, either a less inclusive class which cannot be shown to exclude some function

which ought reasonably to be allowed as effectively calculable, or a more inclusive

class which cannot be shown to include some arithmetical function that cannot be

7 [Kalmar 19 56]),p. 7 5.
"' [Kalmar 1956],p.76.
7" Kalmar 1956],p. 7 6 .
'6 [2]in (Kalmar 1956], p.8 0 .
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seen to be effectively calculable.""77 He proposes to answer Church' challenge in the

following way: add to the class of general recursive functions all the arithmetical

functions t(x) defined by an equation of the form #(x) = yL,(p(z, y) = 0) with a

general recursive function Rp of two arguments.

To calculate Ob(p) in a finite number of steps, he advises using the following

method: Calculate in succession 4p(p, 0), ýp(p, 1), p(p, 2) ... and simultaneously try

to prove by all correct means that none of them equals 0, until we find either a q

for which %o(p, q) = 0) or a proof of the proposition stating that no natural number

y with ip(p, y) = 0) exists. the result of the calculation with be either some q in the

first case, or it will be 0 in the second case.

Kalmar acknowledges that he is not presenting a disproof of Church's Thesis,

for there is not an actual proof that -- y p(p, y) = 0, for any given p. He does,

however, consider the above argument to be a challenge to the defender of Church's

Thesis, since he offers what he thinks is a method for calculating O'(p). However, his

method relies on the notion of arbitrary correct means, which is not a mathematical

notion; hence, his arguments against Church's Thesis are pre-mathematical rather

than mathematical.

Kalmar plesents all of these arguments in service of his view about the status of

the concepts related to effective calculability. He summarizes his view below:

There are premathematical concepts which must remain premathematical

ones, for they cannot permit any restriction imposed by an exact math-

ematical definition. Among these belong, I am convinced, such concepts

as effective calculability, or of solvability, or of provability by arbitrary

correct means, the extension of which cannot cease to change during the

development of Mathematics7 .

77 [Kalmar 1956],p.76.
78 [Kalmar 1956],p.79.
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What is crucial to examine here is what Kalmar's view comes to. He is not offering

a disproof of Church's Thesis, but he does seem to be saying that Church's Thesis

restricts what we can count as correct methods of proof. No doubt there are proof

techniques that have not been discovered yet. But for Kalmar's case to be convincing,

he has to offer a method of calculating v(4x) that is an actual algorithm; this means

that the method must fall within: certain restrictions. Any method of computation

for p must not depend on p; no matter what p is'm , the procedure must output a

value.

In order to make his notion of proof by arbitrary correct means explicit, he would

have to do the following: pick some appropriate postulate system, adopt the propo-

sition 3p -3y pc(p,y) = 0 to the new system. But how do we prove the consistency

of the new system? Kalmar cla, ats that "we [would] have to prove (by some correct

means) the verifiability of the new postulate..." So there is no improvement here.

Kalmar responds to this complaint, saying "The consistency of most of our formal

systems is an empirical fact... why do we not confess that mathematics, like other

sciences, is ultimately based upon, and has to be tested in, practice?"8 0

I would like to make a few formal observations about undecidability that will

show how Kalmar's view is misguided. Let us return to the function 4. It is the

characteristic function for the following set, call it A.

set A = {p : y po(p, y) = 0}
A is not recursive, but it is recursively enumerable, i. e. for any p, if p E A, we

have an single algorithmic procedure that outputs precisely the members of A. But,

for all p ý A, there is no single algorithm whose output is exactly those things that

are not members of A, i. e. the members of A, the complement of A. So for any p ý A,

there is no guarantee that we can ever find an effective procedure to show that p B A.

7 0Of course, p must be an input of the appropriate sort, say a number, if the algorithm computes
some arithmetic function.

80so [Currie and Worrall 197 8 ],p. 2 7.



As noted above, it follows from the fact that A is r. e. for any p, if p E A, then we

have a effective procedure to show that p E A. But, there are also some p ý A such

that we can show that p ý A- we have a number of methods at our disposal."s But

which method we use to show that p ý A will depend on p. Different methods will

allow us to show, for different values of p. that p 0 A. These methods do not count

as algorithms, for algorithms do not depend on the inputs. One method of finding

for all p 0 A that p V A is simply to list the members of A. However, that method

requires an infinite number of steps, which violates conditions on algorithms.

Kalmar's general argument says that from the undecidability of 3y P(y) = 0 we

should be entitled to infer that there is no q such that P(q). But that does not follow

from the undecidability of 3y P(y) . We may, through a combination of insight and

luck, find a q such that P(q). All the undecidability of ]y P(y) shows is that we

cannot prove for any given q that P (q).

Kalmar thinks that the formalism of computation theory excessively limits our

notion of effective calculability. Assuming that a non-general recursive function is

not effectively calculable does not have strange consequences-we have seen that

shown formally.

A perhaps more interesting question to consider is why Kalmar views the formal-

ism as so restrictive, if not for technical reasons. He mentions that arguments against

the plausibility of Church's Thesis are philosophical in nature. From what he has said

it appears that he views the boundaries between classes of calculable functions, e. g.

recursive, recursively enumerable, as arbitrary, not useful, or unnatural. But if that

is the case, the Kalmar should give an argument stating why they are unsatisfactory.

Unsurprisingly, he gives no such argument, for it would require giving reasons for his

objections that are presumably motivated by some alternative view of computability.

s t We know that there are p 4 A for the following reason: all the p 4 A are in the complement set

of A, called A. A is called co-r. e. (co-recursively enumerable), which means that its complement is

not recursive and its complement is r. e.. Since A is not recursive, we know it is non-empty (since

the empty set is recursive). All non-empty sets have finite subsets, so A and A have finite subsets.
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This would constitute a major breakthrough in mathematics.

Of course it is possible that we will discover different classes for calculable func-

tions. Work in complexity theory has already created many structures for classifying

problems. But this new field does not threaten the pre-existing structure of compu-

tation theory; it is a supplement to it, increasing our knowledge and understanding of

notions related to calculability. We now have a new vocabulary of terms, with many

new directions to explore.

Key notions in mathematics do change over time and get refined or discarded

through new discoveries. And along with the notions, the formal systems which sup-

port them also get revised, through addition or deletion of axioms and especially

introduction of new proof techniques, definitions. However, just to say that the ex-

tension of concepts like effective calculability "cannot cease to change during the

development of mathematics" is to take an untenable position. Without alternative

directions, we are left with no coherent way of explaining the mathematical phenom-

ena we set out to understand in the beginning. The classical mathematician has no

reason to abandon what is at this point a fruitful, powerful, truth-conveying set of

structures. It is unreasonable to expect Kalmar to some up with new mathemat-

ics to justify his claim, but likewise it is unreasonable to expect anyone to jettison

useful structures, without which there is no obvious mechanism for any growth in

mathematical knowledge.

But what is central here is the process of mathematical systematization; In the

case of computation theory, formalization identifies an intuitive notion-effective

calculability-with a number of equivalent rigorous notions--partial recursive func-

tion, Turing-computable function. Whether we have accurately captured the former

notion by defining it as one of the latter ones is a legitimate question. Formalization

cannot help us answer it, but it can give us tools to increase our knowledge of the

latter notions. If they outstrip or diverge from the original intuitive ones, then de-
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pending on what directions we wish to pursue, we may adjust the formalization or

accept that the intuitive notion has replaced or improved upon by the formal one.

2.4 Concluding Remarks: The Plaulsibility of Fal-

libilism as a Working Philosophy of Mathe-

matics

We have seen that in order to take Lakatos' views seriously, we have to consider

the possibility of refutations in mathematics. This, in turn, requires that he give

a sensible account of falsifiers for theories. Lakates' account requires the existence

of heuristic falsifiers in informal mathematics coming into conflict with systematic

exposition in formal mathematics. We have, however, failed to discover any sense in

which there are such falsifiers.

The history of mathematics contains many accounts of logical falsifiers; for ex-

ample, theories have been shown to be inconsistent due to faulty axioms. It is the

slippery concept of a heuristic falsifier that makes fallibilism less coherent, for it re-

lies on a distinction that has never been made clear. Furthermore, Lakatos states

explicitly that although not just anything can count as a heuristic falsifier, there are

no standards of correctness for the informal proofs which are the candidate heuristic

falsifiers. If the criteria for what count as heuristic falsiiers are not only partially

dependent on fuzzy notions but deliberately kept vague, then it is difficult to make a

plausible case for fallibilism.

Lakatos bases his position on a reaction to what he sees as the failures of induc-

tivism, logicism, and particularly formalism. Lakatos is right to point out that there

is more to mathematics than creating a formal system for the proving of theorems.

Certainy judgments are important in picking new axioms to introduce, new defini-

tions to incorporate; sometimes new results trigger such moves, forcing us to change
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our formalism.

In the case of computation theory, formalization identifies an intuitive notion-

effective calculability-with a number of equivalent rigorous notions-partial recur-

sive function, Turing-computable function. Whether we have accurately captured the

former notion by defining it as one of the latter ones is a legitimate question. Formal-

ization cannot help us answer it, but it can give us tools to increase our knowledge

of the latter notions. If they outstrip or diverge from the original intuitive ones, then

depending on what directions we wish to pursue, we may adjust the formalization or

accept that the intuitive notion has replaced or improved upon by the formal one.

According to this picture of the development of mathematics, heuristic falsification

is not a process that is orthogonal to formal mathematics, but rather one which is

crucial to it.

Lakatos does not suggest that informal mathematics is indiscriminate, sloppy

mathematics. B,•t the lack of any real guidelines as to what are criteria for these

crucial notions force the classical philosopher of mathematics to reject his view out

of hand. Fallibilism is an extreme view, with serious ramifications throughout phi-

losophy. Unless he makes a compelling case, we need not give up proof as a way of

conferring certainty. Although he has reminded philosophers of the lessons we learned

about the limits of formalization, within those limits there are myriad possibilities

for expanding the base of knowledge and moving in new directions.
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Chapter 3

Surveyability and the Four Color

Theorem

3.1 Introduction

Mathematics has come a long way since the Pythagorean theorem. Not only have

we opened up new fields of study, but mathematics has undergone drastic changes in

what count as appropriate methods of proof.

While intuitions often drive the directions we take, we are still constrained by

restrictions on correct methods for doing proofs. Traditionally, one of the prime

characteristics of proofs is that one can follow a correct proof so as to arrive at a pri-

ori knowledge of the theorem proved. According to some accounts of mathematical

knowledge, the process of following a proof meets the constraints imposed on pro-

cesses that purport to confer a priori knowledge. I would not presume to try give

an account of exactly what those constraints are or ought to be; however, we ought

to be able to look at some new mathematical practices and see if they fall outside

the bounds what we used to consider constraints on appropriate methods for doing

proofs.
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For several decades, computers have been used to help ease the computational

burdens on those doing difficult and lengthy calculations. They have been used, for

example, in number theory to generate data on the distribution of primnes. In applied

mathematics, we use computers to generate approximate answers to problems, and

the degree of precision will depend on the task at hand.

The Four Color Theorem is an example of a theorem that was proved using the

computational help of a computer. The Four Color theorem states that every mnap

can be colored using at most four different colors so that no two neighbors are colored

alike'. What makes this theorem worthy of philosophical discourse is that the proof

relies crucially on the results of a computer program writter to test about 1500 cases

of map configurations. It is not the first computer proof2 , but it is the first computer

proof of a mainstream mathematical problem of general interest to mathematicians.

The proof of the Four Color Theorem is too long for any human being to survey or

check in a lifetime. This fact makes some philosophers of mathematics uneasy. The

Four Color Theorem fails to meet a major desideratum for proof: that it be checkable

by a person. Does the existence of unsurveyable proofs force us to change what we

mean by "proof"?

Thomas Tymoczko says yes-since the proof of the Four Color Theorem is not sur-

veyable, it is not a proof in the traditional sense. Furthermore, accepting computer-

aided proofs into mathematics introduces experiment in mathematics, showing that

it is at least a partly empirical discipline.

By "surveyable", Tymoczko must mean "surveyable in practice" rather than "sur-

veyable in principle"; otherwise, the Four Color Theorem would be surveyable. Dis-

tinguishing these two notions will be crucial to uncovering what Tymoczko finds

objectionable in computer-aided proofs.

I agree with Tymoczko that introducing computers into mathematics may in-

'A more technical explanation of the theorem will be presented in section 2.

We will look at a computer proof predating the Four Color Theorem in a later section.
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troduce experimental methods into proofs; however, whether a particular use of a

computer in a proof counts as an experiment will depend on which computer method

is used. Computers have been used to execute procedures in probabilistic algorithms.

Some of the results have the status of proofs.3 However, in the case of the Four

Color Theorem, a computer serves merely as a computational workhorse, performing

millions of operations on a determined number of cases. A person could in principle

perform the operations were it not for physical limitations on lifespan, etc.

I maintain that although it is not humanly surveyable, the proof of the Four Color

Theorem is still a mathematical proof in the traditional sense. The proof of the Four

Color Theorem has more in common with other traditional mathematical proofs than

with results in experimental science.

I will proceed as follows: I will give an overview of the Four Color Theorem,

including some facts about how it was produced and what strategy was used. I will

introduce some philosophical issues that it raises. Then I will look at a series of

arguments by Tymoczko designed to show that mathematics is quasi-empirical. I

discuss some of the popular objections and offer responses to his arguments; however,

I acknowledge that although the Four Color Theorem is a proof in the traditional

sense, it is possible that our conception of mathematical proof will be expanded by

introducing computers into mathematical practice.

3.2 History of the Four Color Theorem

The Four Color Theorem has been a subject of interest since 1852, when Francis

Guthrie first wrote to his brother Frederic that it seemed that countries of every

map could be colored with only four colors such that neighboring countries were

8 Later in this paper I will discuss Michael Rabin's probabilistic algorithm for determining the
primality of large numbers; I maintain that counting it as a "proof" certainly introduces experiment
into mathematics.
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colored differently.4 By neighbors, we mean countries that share a border rather than

countries that meet at a single point (like wedges of a pie); otherwise, the map would

require as many colors as countries. Further constraining what counts as a country

is the requirement that no country completely surround another.

In 1878, Arthur Cayley proposed the Four Color Theorem as a problem to the

London Mathematical Society; Arthur Kempe soon afterwards published a paper

claiming to have solved the problem. To understand his purported solution, we will

need some terminology.

3.2.1 Kempe's Attempted Proof

A map is called normal if none of its regions encloses any other region, and no more

than 3 regions meet at any point. Kempe tried to prove the Four Color Theorem

by reductio ad absurdum. He assumed that there is at least one 5-colorable niap

(a map that requires 5 colors), and tried to derive a contradiction. Kempe assumed

that if there is a five-colorable map, then there is a normal five-colorable map, and

furthermore, a minimal one (one such that any mnap with fewer regions would be

four-colorable). To prove the Four Color Theorem, it suffices to show that a minimal

five-colorable map is impossible. 5

Kempe correctly showed that in any normal map there is at least one region

with five or fewer neighbors, which means that one of four configurations (as seen in

Figure 3-1) must appear on any normal map:

To say that one of these configurations must occur means that the set of config-

urations is unavoidable. Kempe argued that if a minimal normal five-colorable map

had a region with 5 or fewer neighbors, then there would also have to be a normal

map with fewer regions that was also five-colorable. But this contradicts the original

'Steen, [Steen 1978]
S[(Appel and Haken 1980]
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Figure 3-1: Kempe's unavoidable set of configurations

assumption that a minimal five-colorable map exists, thus completing the reductio ad

absurdum argument. 6

Kempe was able to derive the contradiction in the case of regions with 2, 3, or 4

neighbors; however, he was not able solve the problem for the 5-neighbor case.

P. J. Heawood pointed out the problem with Kempe's proof in 1890. He also

studied the more general problem of how to color maps on surfaces other than a

plane, e. g. a torus. Heawood was able to prove many theorems about the number of

colors needed to color such surfaces, but he was never able to use his arguments in

the case of planar surfaces. He was never able to prove the Four Color Theorem.

Kempe's argument did point out two important concepts needed to prove the

theorem:

1. the idea of an unavoidable set of configurations

2. reducibility of the configurations in that set

What reducibility amounts to is the following: if there is a way of showing, by

examining the configuration and the way chains of regions can be aligned, that the

configuration cannot appear on a minimal 5-colorable map, then the configuration is

reducible.

Since Kempe introduced this method, mathematicians have been working on ways

"A more detailed version of Kempe's argument can be found in Steen [Steen 1978].
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to show that large numbers of configurations are reducible. But, a computer is re-

quired since the number of configurations is so large.

3.2.2 20th Century Developments on the Four Color The-

orem

Work on the theorem continued throughout the 20th century. Heinrich Heesch de-

veloped a method called discharging, which was like moving charge in an electrical

network, to find an unavoidable set of configurations. All vertices in a graph are as-

signed a "charge", determined by the number of neighbors at that vertex. All vertices

of degree five are assigned positive charge, and vertices of degree greater than five are

assigned a negative charge. The purpose of the discharging procedure was to develop

a way to insure that all vertices of positive charge (those of degree five) belong to

a reducible configuration. Then, since all triangulations (that is, all graphs under

consideration) must have vertices of positive charge, the configurations in this set are

unavoidable.'

In 1970, Wolfgang Haken started working on discharging with the goal of being

able to show all configurations reducible. He and Kenneth Appel worked with many

others to try to overcome two major problems:

1. reducing the number of configurations in the set, since computer power and

memory requirements were enormous for a problem of this type.

2. reducing the ring size of the configurations.

A ring is a region bounded by circuit of vertices. The number of vertices determines

the size of the ring. We see in Figure 3-2, a ring with 6 vertices, called a 6-ring. Over

the next 6 years, many people contributed to the effort of reducing the complexity

7 [Steen 1978], pp.169-170.
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Figure 3-2: a sample 6-ring

of the problem. John Koch, then a graduate student, wrote programs to check for

reducibility for configurations up to ring size 11.

Ia 1976, Appel and Haken arranged to have their program run on about 1500

cases. They emphasize that the computer's role in the proof was a crucial one:8

A person could carefully check the discharging procedure that did not in-

volve reducibility computations in a month or two, but it does not seem

possible to check the reducibility computations themselves by hand. In-

deed the referees of the paper resulting from our work used our complete

notes to check the discharging procedure, but they resorted to an inde-

pendent computer program to check the correctness of the reducibility

computations.

It should be clear by now that the procedures for proving the Four Color Theorem

involved extensive computational work, far more than had previously been attempted

by any group of mathematicians. In the following section, we will see exactly how

computationally demanding Appel and Haken's task was.

8 [Steen 1978], p.178.
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3.3 Computer Facts about the Four Color Theo-

rem

Appel and Haken's program took more than 1200 hours of CPU time on an IBM

370-168 in 1976. The program tested the unavoidable set of 1478 configurations

for reducibility. The analysis of each case involved generating all possible colorings

of that configuration and checking, using the rules of the discharging procedure, for

reducibility. Demands on run-time and memory increase by a factor of approximately

4 with the addition of one to the length of the ring. For example, one particular 13

ring had 66,430 colorings, whereas one 14 ring had 199,291 colorings. Testing the 14

ring for reducibility took about 10 minutes of CPU time.

As is clear by now, this was a task requiring enormous computational capacity.

Computing speed and available memory have increased at quite a rapid rate since

1976. However, even running these cases on a Cray supercomputer now would, ac-

cording to a computer scientist I asked, require order-of-magnitude 40 CPU hours. He

based his estimate on the hypothesis that computing speed has roughly doubled every

three years. Even taking into account expanding technology in the computer field,

proving the Four Color Theorem is a laborious, not to mention expensive, enterprise,

requiring the most that state-of-the art equipment can offer.

3.4 How the Four Color Theorem Challenges the

Classical Conception of Proof

Some mathematicians do not like the Four Color Theorem because the proof is in-

elegant and non-algebraic (unlike the proof of the Five Color Theorem for planar

graphs), but they accept it as a proof. What problems does its acceptance into

mathematics present for philosophers who hold a traditional view of the role of proof
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in mathematical knowledge? According to this view (at various times put forth by

Frege, Russell and many others), a proof in a system is a sequence of sentences in

the language of the system such that each member of the sequence is either an axiom

of the system or a sentence which results from previous members of the sequence in

accordance with some rule of the system.

It is true that what we mean by 'proof' is 'proof in a standard formal system

with a certain form...', But, that does not completely explain why we consider those

particular sequences to be proofs. What makes them proofs is that they do a cer-

tain job-they convince us of the truth of the theorem proved, using clear. explicit,

accepted reasoning.

Proofs serve a prescriptive, normative function. If I have followed a proof of

the Pythagorean theorem, then I can conclude with impunity that whenever I do

computations involving right triangles, if I add the squares of the lengths of the two

shorter legs, the sum will equal the square of the hypotenuse. Following a proof of a

theorem gives me good reasons to believe that it is true, and these reasons justify my

belief in the theorem. In fact, following a proof compels my belief in the theorem.

Frege was disturbed that some mathematicians "confuse the grounds of proof

with the mental or physical conditions to be satisfied if the proof is to be given". 9

He cites one of his favorite examples from the literature of his time: Schroeder's

"Axiom of Symbolic Stability. It guarantees us that throughout all our arguments and

deductions the symbols remain constant in our memory-or preferably on paper". 1o

That psychology could affect the foundations of mathematics to the extent that we

needed safeguards against mysteriously changing variable letters seemed absurd to

Frege. What he thought affected the foundations of mathematics was the degree of

rigor with which many results were formulated.

But it is not the degree of rigor that is troubling in this case; the Four Color

9Grundlagen, p.VIII
'OGrundlagen, pp.VIII-IX.
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Theorem was presented by Appel and Haken as a definitive, rigorous, complete proof.

Their discharging procedure was proven in a mathematically rigorous fashion to pro-

duce an unavoidable set U of configurations (the actual number of configurations was

around 1475; it has more recently been reduced to around 1000). Comp~lters were

used to develop the discharging procedure and the set U, but once it was produced

it could be surveyed; one can give a surveyable proof that this set U is unavoidable.

However, the last step of the proof-showing that every configuration in U is

reducible- cannot be surveyed in detail. Verifying that last step requires running

a computer program on the configurations to test them for reducibility. An actual

printout of this step would be practically impossible to obtain and certainly impossible

to attend to in a reasonable length of time ( I will treat this issue in some detail later).

Does the existence of a computer-assisted proof force us to change our view of

what it means for something to be a proof? In particular, does the introduction of

computer-verified steps in a proof introduce empirical methods into mathematical

practice? Given that the mathematical community accepts the proof, are we then

forced to accept that mathematics is quasi-empirical after all? Before drawing any

conclusions, we must see what the criterion of surveyability comes to, why it might

be considered important, and whether it conflicts with our intuitions about what

mathematical proofs actually do.

3.5 Thomas Tymoczko on the Four Color Theo-

rem

Thomas Tymoczko [Tymoczko 1979], in his well-known 1979 article, asserts that ac-

ceptance of the Four Color Theorem does indeed force us to adopt what he calls a

"quasi-empirical" account of mathematics. On his view, the existence of computer-

assisted proofs introduces experimental methods into pure mathematics and the philo-
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sophical ramifications of such an introduction are quite serious:"

If we accept the Four Color Theorem as a theorem, then we are committed

to changing the sense of "theorem", or more to the point, to changing the

underlying concept of "proof".

In service of his case, Tymoczko presents what he considers to be three major

characteristics of mathematical proofs, and then questions the extent to which the

Four Color Theorem fits his characterization. He concludes that while the computer

proof of it is a real proof, it represents a departure from the traditional conception.

In particular, it is a proof that is known a posteriori.

Tymoczko lists three characteristics that are true of proofs:

1. Proofs are surveyable.

2. Proofs are convincing.

3. Proofs are formalizable.

A proof is surveyable if it is checkable, comprehensible in its entirety. It must

be possible to be checked definitively by members of the mathematical comlnu-

nity, although such a procedure could take months. According to Tymoczko,

surveyability makes proofs accessible to any competent mathematician. It is

the lack of surveyability that gives Tymoczko pause when deciding whether to

accept the proof of the Four Color Theorem.

Proofs are also convincing; this is a fact about the anthropology of mathematics.

Surveyability and formalizability help explain why they are convincing.

Proofs are formalizable. In practice, we do not formalize proofs, for it would

make them too long (in many cases) to survey or even comprehend. All correct

" [Tymoczko 1979], p. 5 8 .
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proofs do, however, have the property that they can be converted into proofs

in some formal system or other. Having this structure helps explain why proofs

are so convincing.

A natural question that comes to mind is whether these two requirenments of

surveyability and formalizability are at odds. Tymoczko briefly notes that

most mathematicians consider surveyable proofs to be formalizable (Heyting

and Lakatos are notable exceptions), but he focuses on whether formal proofs

are surveyable. The answer is an easy no. Formalizing a proof drastically in-

creases its length, so there must be formal proofs that are not surveyable. By

surveyable, Tymoczko means "can be read over by a mathematician in a hunman

lifetime".

In general, we come to know formal proofs either directly or their existence

is established by means of informal surveyable arguments. Of course, few (if

any) proofs are written formally; what usually happens is that a mathenmati-

cian gives an informal surveyable argument that the formal proof exists. He

notes that "there are general surveyable arguments that any proof in, say, ele-

mentary arithmetic can be formalized in Zermelo-Frankel set theory."' 2 So in

practice, the only way we come to know formal proofs is through the existence

of surveyable proofs.

Tymoczko maintains that the proof of the Four Color Theorem drives a wedge

between the criteria of surveyability and formalizability-the proof of the Four

Color Theorem is formalizable but not surveyable.

However, Appel and Haken's work does convince us of the truth of the theorem;

we are convinced by surveying a proof with a key lemma which is justified by

citing the results of running a computer program; Tymoczko therefore concludes

12 [Tymocsko 1979], p. 62.
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that appeal to the lemma is justified on empirical grounds.

According to Tymoczko, this fact-that appeal to the lemma is justified on

empirical grounds-is both surprising and important, for it has serious ralnifi-

cations for the philosophy of mathematics. We accept that the proof of the Four

Color Theorem is convincing, but being a convincing argument is not sufficient

to establish it as a proof. Tymoczko says that the Four Color Theorem does

not have a surveyable proof-no mathematician can survey the proof of the

reducibility of the unavoidable set U. Another way to put it is that Appel and

Haken's proof is surveyable, except that the key lemma is justified by appeal

to computer, a process which is not surveyable. Either way, he would have us

believe that this evidence forces us to change our conception of mathematical

proof.

To illustrate what he thinks is going on when we use the phrase "appeal to

computer", he offers what he considers an analogous case:

Imagine that on Mars there are mathematicians like there are here on Earth,

except that on Mars there is a genius mathematician called Simon. He can prove

lots of theorems that other people have proved, but he can also prove theorems

that no one else has been able to prove. He justifies steps in his proofs with

"proof too long, but I have verified it". Sometimes people are able to reconstruct

his results, giving traditional proofs, but not always. However, since Simon is

such a mathematical genius, people accept his results, incorporating his results

into their own proofs, justifying them with the line "Simon Says".' 3

Tymoczko says that appeal to computers and appeal to Simon are similar.

If we consider computers to be a legitimate authority but not Simon, then

it is because we have some evidence for the reliability of computers. What

'a [Tymociko 1979j, p.71.
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kind of evidence we provide will be crucial to deciding the status of computer-

assisted proofs. Tymoczko claims that whatever evidence that is, it cannot be

in the form of a surveyable proof, for the proof of the reducibility lenlma is not

surveyable. Therefore, appealing to computers "introduces a new method into

mathematics".14

Does the Four Color Theorem have a formal proof? Most mathematicians think

so. But, the reasons for believing that a formal proof exists are because of the

current proof, which involves appeal to computers. One might object that

this appeal is only a harmless extension of human powers, that the computer

just traces out the steps of the formal proof. Tymoczko says that our reason

for believing that a formal proof exists is the surveyable proof containing the

reducibility lemma that is justified by appeal to the results of a computer-run

experiment. Our evidence presupposes the reliability of computers.

What factors do we consider when assessing the reliability of computers? Ty-

moczko mentions two:

(a) reliability of the machine

(b) reliability of the program

We have to rely on engineers and physicists to design machines that work;

we rely on programmers to write good assemblers, compilers, languages and

programs. In the case of the Four Color Theorem, many mathematicians believe

that the appeal to computers is justified, that computers are a reliable means

of generating correct information. However, Tymoczko claims that since that

guarantees we get from the reliability of computers are not the same guarantees

we get from traditional methods of proof, the Four Color Theorem is not known

14 [Tymociko 1979], p.72.
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with the same degree of certainty. In fact, when put to the test, our faith in

the reliability of computers can be shaken. He gives an example:"5

Suppose some supercomputer were to work on the consistency of

Peano Arithmetic and it reported a proof of inconsistency, a proof

which was so long and complex that no mathematician could under-

stand beyond the most general terms. Could we have sufficient faith

in computers to accept this result, or would we say that the empirical

evidence for their reliability is not enough? Would such a result jus-

tify a mathematician's claim to know that PA was inconsistent, and

would such a mathematician have to abandon PA? These are bizarre

questions, but they suggest that the reliability of computer-assisted

proofs in mathematics, while easy to accept in the case of the Four

Color Theorem, might some day be harder to swallow.

Common philosophical wisdom distinguishes a priori truths from a posteriori

truths in the following time-honored (if imprecise) way: a priori truths are

known independent of experience; a posteriori truths are known only through

experience. Tymoczko concedes that we indeed know many theorems a priori,

but the Four Color Theorem is not one of them. We may know a priori that

the proof with the reducibility lemma implies the Four Color Theorem, but our

knowledge of the reducibility lemma does not take the form of a proof that we

know a priori.

Our knowledge of the reducibility lemma is a posteriori knowledge, for it rests

on empirical assumptions about a computer-assisted procedure.16 He adds that

it is unlikely that anyone will ever come to know the Four Color Theorem a

1s [Tymocsko 1979], p. 73 .
16 [Tymocsko 1979], p.72.
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priori, since it is unlikely that anyone will ever come up with, say, an algebraic

proof of it. Therefore, it is an a posteriori truth, proved via the first a posteriori

mathematical proof."7

Crucial to Tymoczko's case is what he takes "surveyability" to mean. He seenims

to be saying that it means "surveyable in practice". We shall see that this

explication may present problems for Tymoczko; it will at least obligate him to

give a further account which may unduly restrict what we can count as proofs

in the traditional sense.

3.6 Objections to Tymoczko's View

3.6.1 Teller's Comments on Surveyability

Following the publication of Tymoczko's article were a number of replies. Paul

Teller [Teller 1980] considers surveyability to be important, not because proofs

that are not surveyable are proofs in some different sense, "but because without

surveyability we seem not to be able to verify that a proof is correct...it is a

characteristic which some proofs have, and which we want our proofs to have

so that we may reasonably assure ourselves that what we take to be a correct

p:oof is so."1 8

As the field of mathematics progresses, we acquire new methods of surveying,

which allow us to expand our ways of checking proofs. But, we needn't change

our conception of proof to accommodate the shift in the methods of surveying.

Some of the methods we have used include the use of pencil, paper, slide rules,

calculators, and log tables. Using a computer to check the key reducibility

17 [Tymocako 1979], p. 73.
s8 [Teller 1980], p.798 .
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lemma in the Four Color Theorem represents merely "an extension in our means

of surveying, not a change in our concept of proof."' 9

The point is well-taken; relying on computers is not so different from relying on,

say, log tables, presses that print log tables, or calculators. We certainly have to

rely on at least the use of pencil and paper to help us record and remember lines

in a proof when it gets too long for us to apprehend in its entirety. Tymoczko

seems to allow that we can survey proofs using paper and pencil, but not proofs

using computers; he owes us an explanation of the difference between the two

cases, but none appears to be forthcoming.

Tymoczko's Simon example shows us that we might be skeptical about a computer-

generated unsurveyable proof whose structure was too complex for us to under-

stand. Teller admits that we would worry about such a proof, but the worry

consists in whether the proof is correct, not whether the proof (if correct) is a

proof in some new sense. If the proof is correct, then it is just as much of a

proof as those that are humanly surveyable.

The Simon analogy is also used to show that although we consider the appeal to

computers as legitimate (as opposed to the appeal to Simon), our evidence for

their reliability is somewhat shaky. I maintain that we consider computers to be

a legitimate authority because we know how computers work. We have no idea

how Simon works, what laws under which he operates, how his computational

processes work. At this point, the former can be formalized, whereas the latter

cannot.

Tymoczko concedes this last point, and he rightly points out that the kind of

evidence we provide for the reliability of computer-assisted proofs is important.

To distinguish computer-assisted methods from non-computer-assisted ones, he

'to [Teller 1980], p.799 .
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must make exactly the distinction mentioned above: he must give a more de-

tailed account of surveyability in practice that distinguishes traditional cases

like following a proof of, say, the Pythagorean theorem from both the Simon

case and the computer cases.

Tymoczko brings up an important challenge for advocates of a classical view of

mathematics: Does the use of computers introduce experiment into mathemat-

ical proof? Teller responds to the challenge in two ways. First, he denies that

there is any principled difference between the performance of computers and

the performance of mathematicians. Although Tymoczko says that whether we

describe computer-assisted methods of proof as experiments or new methods of

proof is "largely a matter of notational convention" 2o, Teller sees no reason for

us to describe them as the latter. The use of computers represents an expansion

in our means of checking proofs, not a shift in the foundations of mathematics.

Teller's second response trades on a standard intuition about the difference

between "mathematical" facts and "scientific" ones. Experiments establish

spatio-temporal facts like "the meter reading was 4.5 on June 1, 1992, at 2PM."

Correct mathematical proofs, on the other hand, establish non-spatio-temporal

facts. He gives an example:21

If one repeats a proof of a fact about numbers, unlike a measurement

of the charges of an electron, one has to get the same result as before,

again on the assumption that one does not use a mistaken method of

proof and as long as one makes no mistake in applying that method

of proof. And all this goes for computer-executed proofs as much as

for proofs executed by human organisms.

2o [Tymocako 1979], p. 7 6 .
21 [Teller 1980], p.799.
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3.6.2 Experiment and Mathematical Proof

Other critics22 disagree with Teller's view, and hold that use of calculation does

in fact introduce experiment into mathematics. Michael Detlefsen and Mark

Luker23 agree with Tymoczko that the proof of the Four Color Theorem relies

on empirical evidence, but this is not a novel event; many proofs involving

calculation depend upon empirical evidence. They also argue that surveyability

of a proof does not guard it against reliance on empirical factors.

Detlefsen and Luker offer reasons why the Four Color Theorem should not be

treated as novel. First, there are many computer-assisted proofs which predate

the Four Color Theorem2 4 . Second, and more importantly, they argue that there

is no real difference between a proof that involves calculation by a computer

and one that involves calculation by a human. They use Tymoczko's paradigm

case of a proof known a priori, the theorem of Gauss that the sum of the first

100 positive integers is 5050. The proof consists in writing down the numbers

in two rows of fifty columns, as follows:

1 2 3 4 ... 49 50

100 99 98 97 ... 52 51

We notice that the sum of each column is 101 and that there are 50 columns.

We can easily determine by quick calculation that the sum of all 100 integers is

5050.

22notably Michael Resnik [Resnik 1989].
2""The Four Color Theorem and Mathematical Proof", Journal of Philosophy 76, February 1979,

pp.803-820.
24They cite the Lucas-Lehmer algorithm for finding Mersenne primes, and Cerutti and Davis'

computerized proof of the theorem of Pappus, the latter of which we will examine later in this
paper.
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Tymoczko says that a proof "is a unit of reasoning that contains everything

within itself needed for conviction"." However, Detlefsen and Luker take issue

with his claim. They point out that for the above computations to take place,

we must be certain of many things, among them that 26

* the underlying algorithm to be used is mathematically sound.

* the program used is a correct implementation of this algorithm.

* the computing agent correctly executes the program.

* the reported result was actually obtained.

Tymoczko readily admits that we rely on factors like the above to establish

the truth of the Four Color Theorem. Detlefsen and Luker maintain that if

Tymoczko's analysis of proof as "needing nothing outside itself to carry con-

viction" is correct, then we also must rely on factors like the above to derive

Gauss's conclusion from our simple observations. Therefore, they conclude that

empirical considerations enter into the process of proving most theorems in

mathematics.

One might object to their conclusion by trying to give a non-empirical account of

computation. They suggest a promising candidate: "an episode of computation

is taken as being something that is composed of elementary steps, each of which

'in and of itself produces complete conviction' and is crystal clear to the intellect.

Thus, 'computation produces knowledge which is a priori"'.1

Detlefsen and Luker respond to the charge of the apriorist, claiming the above

characterization of computation is misguided. The steps of a computation, they

say, are not supposed to be intuitively obvious, rather simply mechanical steps
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that require no cleverness or insight. Their crucial point, though is this: these

mechanical operations may (and often are) performed on (physical) symbols, not

the things that the symbols represent. Calculation, then, is a physical activity

on physically traceable objects, and therefore relies upon empirical factors for

its success.

Michael Resnik echoes the sentiments of Detlefsen and Luker on this point. He

notes that computation is used in mathematics to support many non-deductive

arguments; for example, in number theory, one can test a general conjecture

by computing some of its instances.2 8 The case of the Four Color Theorem is

also a case in which empirical factors were considered in the execution of the

necessary calculations: 29

In the esoteric computation for the Four Color Proof, the odds are

good that nobody involved knew all the mathematical, computer,

electronic, chemical and physical theory required to give a complete

account of why the computer's computation counts as reliable evi-

dence for the mathematical facts. At least in this sociological re-

spect, the Four Color Computation was very much like a scientific

experiment.

Resnik anticipates the apriorist's objection to viewing calculation as bringing

empirical methods into mathematics. We can in principle deduce mathematical

statements from purely mathematical premises which contain no reference to

physical events. It is these ideal reconstructions that play a normative role in

defining standards of proof.30 Resnik agrees (at least in general) with Tymoczko

2 8Resnik, p.132.
2 9Resnik, p.134.
soResnik, p.140.
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that these nc.mative standards are inappropriate, since we never in practice give

formal proofs.

The purpose of this small digression is to suggest that if Tymoczko wants to

allow that some proofs are known a priori, then he would have to distinguish

between cases in which empirical considerations are relevant and ones in which

they are not.

Tymoczko concedes that we rely on a host of empirical factors when employing

even traditional methods of proof and still maintain that computer-assisted

methods change the face of mathematical proof. He seems to be distinguishing

the cases by saying that the guarantees we get from the reliability of computers

are not the same as the guarantees we get from traditional methods of proof.

Let us now consider a hypothetical case. Suppose it was possible to prove the

Four Color Theorem using just a few axioms and modus ponens. What kind of

guarantees does modus ponens offer us? Well, using modus ponens guarantees

that if you have A and A - B, then you can conclude B. But you also have

to rely on the use of pencil and paper, memory, mental acuity, etc. in order to

be in a position to draw the conclusion.

What kinds of guarantees do computer-aided methods give us? Are they so

different? If you write a computer program correctly and compile it using a

functioning compiler, then, if the power does not go out and you do not run out

of memory or run short on CPU time, then the program will return the correct

result.

It is true that some empirical circumstances will interfere with theses processes,

and likely more circumstances can interfere with computer-aided processes than

traditional processes; however, the difference seems to be one of degree, not kind.

Detlefsen and Luker note that surveyability of a proof does not guard against
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empiricism in mathematics. Tymoczko uses the Simon example to compare the

logic of "appeal to authority" and "appeal to computer". Although there are

many differences in the two cases, neither is as reliable as appeal to first-hand

survey, i.e. looking over the proof oneself. However, there are cases in which

first-hand survey fails to guard against error.3 1 Purported proofs can contain

errors that go undetected for years. Some mathematicians go even further; they

quote Philip Davis:3 2

A derivation of a theorem or a verification of a proof has only prob-

abilistic validity. It makes no difference whether the instrument of

derivation or verification is man or a machine. The probabilities may

vary, but are roughly of the same order of magnitude when compared

with cosmic probabilities.

Detlefsen and Luker do not consider the Four Color Theorem to be an extreme

case of a proof in a new sense, for they view it as merely another computer-

assisted, deductive proof. What they find more intriguing is proofs that use

non-deductive methods, such as Michael Rabin's probabilistic algorithm for

determining the primality of large numbers."3 They believe that probabilistic

methods should be allowed in mathematical proof, but that those methods will

drastically alter the nature of mathematical proof. We will discuss this point

in more detail in section 3.7.1 and section 3.7.2.

8tSee section 7.2 for an example.
"2Detlefsen and Luker, p.816.
88We will discuss Rabin's proof in section 3.7.1.
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3.6.3 More on Surveyability-Has the Proof Really Been

Surveyed?

Israel Krakowski3 4 contends that the proof of the Four Color Theorem has actu-

ally been surveyed; the computer "has, in a step-by-step fashion, surveyed and

proved this lemma [the reducibility lemmla]." " Although Tymoczko objects

that justification by appeal to computers is similar to the unsatisfying Simon

case, Krakowski says that he is not concerned with the process of justification,

but rather with the process of proving that the computer has completed.3 6

What is important to that process is that each step in the calculation has been

taken. To suggest that the computer has not taken the steps assumes some kind

of alternative view of what counts as calculation. Of course things go wrong with

computer calculations, but these are at least as well-understood and predictable

as (if not more so than) the problems that go wrong with human calculations.

Krakowski admits that the proof of the Four Color Theorem "highlights the al-

ready existing empirical elements of mathematical knowledge."3 7 But he main-

tains that by bestowing surveying capabilities on a computer, the Four Color

Theorem can be known a priori.

In the introduction to a collection of essays on empiricism in mathematics,

Tymoczko responds to Krakowski, saying that he does not think admitting

computers to the American Mathematical Society will solve the problem. We

can avoid the problem by treating computers not as new colleagues, but as new

tools for us to use. Then he is yet again faced with the problem of saying which

so-called empirical methods provide us with traditional guarantees, and which

"4'the Four Color Problem Reconsidered", Philosophical Studies 38, 1980, pp.91- 96 .
asKrakowski, p.92.
3 8Krakowski, p.93.
a7 Krakowski, p.95.
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methods do not.

3.6.4 Another Classical Defense of A Priori Proof

Margarita Levin38 objects to the notion that a computer proof of a mathematical

theorem can be like an experiment. Like the other critics, she points out the

obvious analogies between worries about the accuracy of computers and the

accuracy of mathematicians. However, she warns that Tymoczko's argument

may result in having to classify many theorems proved by traditional method as

experiments, too. Since Tymoczko considers the Four Color Theorem a novelty,

then he must not think that mathematical empiricism holds true because of the

human epistemic condition. Otherwise, there would be no reason to distinguish

the Four Color Theorem from any other mathematical theorem.

Levin is right; We do take into account a number of empirical factors in assessing

the reliability of computer-aided methods, but we also use some of those same

factors in assessing the reliability of traditional methods as well. Of course we

have to rely on the laws of physics in order to believe the results of a computer-

aided proof, but we have to rely on the laws of physics to believe most things,

including that a mathematician's work is correct. In addition, we have to rely

on factors less reliable than the laws of physics: the fact that mathematicians

are conscientious and attentive, that we are not hallucinating, etc.

Levin examines a case in which the population of China is called upon col-

lectively to do the calculations needed for some proof. Certainly such a proof

would not be surveyable in practice. If Tymoczko considers this proof classi-

cally acceptable, then it is unclear why he would not accept the computer proof,

8 I"On Tymocsko's Argument for Mathenmatical Empiricism", Philosophical Studies 39, 1981,
pp.79-86.
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which would differ only in the number of calculations and the agents carrying

out the calculations. If he does not consider the proof classically acceptable,

then his point can be made without adverting to computer methods at all, but

then he has the problem that many traditional proofs will now be considered

experiments. In either case Tymoczko must explain what about 'lie Four Color

Theorem makes his case.3 9

If trust in computer hardware is the problem, then Tymoczko still fares no

better, for as Levin says, we place our trust in log tables, printing presses as

well. Does trust in those things bring empirical factors into our proofs which

use them?

Tymoczko's arguments so far fail to convince the philosopher who is a realist

about mathematical proof that lack of surveyability introduces a new element

into mathematical proof. On the realist's view, there exist theorems whose

proofs are too long for us to follow. Nonetheless, there are procedures to de-

termine whether such formal proofs are correct. These theorems are also, on

traditional accounts, considered to be known a priori. Tymoczko would have

to deny the a priori status of such theorems if he maintains this strict view of

surveyability. It is not clear that he wants to do so, for if he does, he may find

himself between the rock and a hard place that Levin describes above.

3.6.5 A Computer Proof Predating the Four Color The-

orem

Mathematicians were worrying about the possibility of new problems being

ushered in by the advent of computers long before the Four Color Theorem was

proved. In a 1969 article on a computer proof of the Theorem of Pappus, Elsie

8 9Levin, p.84.
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Figure 3-3: geometric illustration of the Theorem of Pappus

Cerutti and Phillip Davis4" consider the question "What constitutes a proof in

mathematics?" They bewail the difficulties one encounters when trying to prove

theorems in analytic geometry by doing long algebraic computations; obviously

these kinds of tedious computational tasks are well-suited to computers. Their

paper describes how they developed a computer-executed computational proof

of the theorem of Pappus (for which there exists an analytic proof).4 1

The theorem of Pappus states the following:

Let 11, 12, be straight lines in the plane. On 11, take 3 points PI, P4,

P6 arbitrarily and on 12 take the points P2, P3 , Ps arbitrarily. Now,

connect the points in a criss-cross fashion indicated in Figure 3-3.

Call the points of intersection Pi, Pj, apd Pk. They will turn out to

be collinear.

40"Formac Meets Pappus: Some Observations on Elementary Analytic Geometry by Computer",
American Mathematical Monthly 76, 1976, pp.895-904.

41See citation 4 in Cerutti and Davis, p.905, for one location of the proof.
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The information was represented in the program was as follows: The points

were represented as coordinates. Solving the problem required basic but tedious

algebra, involving solving for the determinant DE of (before reductions) 3,072

monomials. The output (after 4.52 minutes of execution time which included

compiling and preprocessor time) was the line DE = 042.

If the computer printed out the line DE=0, that was sufficient to prove the

Theorem of Pappus4 3 .

Cerutti and Davis also indicated that their computer-assisted methods would

allow them to derive some new theorems or generalizations of old ones. They

discuss examples of generalizations of the theorem of Pappus. One such theorem

they describe as being "derived after an inspection of a machine printout... and

this process can be described as computer assisted theorem derivation."" They

acknowledge, however, the limitations of such methods: "Even with a com-

puter at one's disposal, transformations and shorthand notations may therefore

be sought to reduce storage requirements and to inte:pret the output."45 At

that time memory was limited, so problems had to be formulated around this

constraint.

Cerutti and Davis suggest some possible objections to the proof:4"

What if the programming were erroneous? What if the initial

data were false? What if there was a machine malfunction? What

if the programmer, in a moment of pique, simply programmed the

computer to type out DE = 0 and let it go at that?

4Cerutti and D vis, pp.898-9.
4SThe details of the proof are found in Cerutti and Davis, including how they reduced the number

of monomials to be evaluated.
44Cerutti and Davis, pp.902.
4"Cerutti and Davis, pp.903.
" C erutti and Davis, p.903.

126

I · ' - I II



These are certainly valid concerns. Similar objections, however,

can be raised in the case of conventional proofs. One aspect of math-

ematical proof is that it consists of a finite string of symbols which

must be recognized one by one and processed either by a person or a

machine or by both. Now symbols must have physical traces on paper,

in the brain, or elsewhere and cannot be reproduced and recognized

with perfect fidelity. Human processing is subject to such things as

fatigue, limited knowledge or memory, and to the psychological desire

to force a particular result to come out.

Cerutti and Davis point out that we do have ways to overcome the obstacles

involved in doing computer proofs: we can run the program over and over to

check for errors, we can check the steps in the program ourselves, and we can ask

colleagues to inspect the program and try running similar programs. All of these

activities increase the credibility of the computer-assisted proof. In the case

of traditionally proved theorems, we also go through processes of checking and

rechecking, but despite our best efforts many faulty theorems remain. Detlefsen

and Luker cite group theorist Daniel Gorenstein on the problems with solutions

to the classification problem for finite groups:

... it seems beyond human capacity to present a closely-reasoned,

several-hundred page argument with absolute accuracy. I am not

speaking of the inevitable typographical errors... but of "local" ar-

guments that are not quite right-a misstatement, a gap... there is

a prevalent feeling that, with so many individuals working... every

significant configuration will loom into view sufficiently often and so

cannot remain unnoticed for long. On the other hand, it clearly in-

dicated the strong need for continual reezamination of the existing

"proofs "(my emphasis).
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Cerutti and Davis conclude that a mathematical proof "has much in conmmnon

with a physical experiment; that its validity is not absolute, but rests upon the

same foundation of repeated experimentation." 47

The fact that there are problems in the practice of mathematics is not sufficient

to preclude our being justified in having a priori knowledge of a theorem once

we have followed it. Tymoczko uses the example of imagining a computer proof

of the inconsistency of PA to try to show how our faith in the reliability of

computers could be shaken. Certainly it is unclear exactly how we would take

such news, but it is likely that we would regard this putative result with great

skepticism. However, we would be extremely skeptical of a purported traditional

proof as well. A case like this does not show that the reliability of computer

proofs is hard to swallow; rather, it shows that there are some statements in

mathematics that we are loathe to give up it would take something drastic to

convince the mathematical community that PA is inconsistent, so any methods

used to arrive a such a conclusion would be strictly scrutinized.

3.7 What is the Epistemological Status of Com-

puter Proofs in General?

3.7.1 Probabilistic Methods in Computer Proofs

How can we know that attempting an computer experiment is the best way to

go about solving a mathematical problem? Tymoczko points out "even where

questions of the form P(n) are decidable and we have the techniques to program

a computer to check the instances, we cannot simply run the computer as long

"7ibid. , p.904.
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as it will go, hoping that it finds, say, that 3xP(x) before the computer reaches

its limits. There must be some reason to expect that the computer will stop

with an answer within a reasonable time." 48 In the case of the Four Color

Theorem we can ask why anyone thought that an unavoidable set of reducible

configurations each of ring size less than or equal to 14 could be found. From

the outside, 14 looks no more probable as a bound than 20 or 50 or even 100.

But, if the minimum ring size were 20 or more, the experiment would not have

been feasible.

Mathematician Edward Moore proved that the unavoidable set must include

configurations whose ring size is at least 12. Perhaps Moore would discover a

map requiring the minimum ring size to be 20. Why did Appel and Haken think

their experiment would work?

Tymoczko answers: "they used a sophisticated probabilistic argument, not a

proof, that the ring size could be restricted to 17 or less, and that restriction

to 14 was a good bet. They provided an argument that invested statements of

the form 'there is an unavoidable set of reducible configurations each of which

has a ring size less than or equal to n' with a probability derived from the ratio

of the number of vertices in the configuration to the ring size n." 14

Their strategy is not uncommon in mathematics. One of the most famous

cases of a probabilistic "proof" is Michael Rabin's probabilistic algorithm for

determining if a given number is prime. He contends that it may be possible to

"prove" many statements using computers if we allow the computer to err with

a predetermined low probability.s0 The summary below is based on Kolata'

explication of Rabin's proof.

48Tymocsko, p.79.
49Haken, p.202. A more detailed explanation of their argument can be found in Appendix A.
soG.B. Kolata, "Mathematical Proofs: The Genesis of Reasonable Doubt", Science 1976, pp.989-

990.

129



Details of Rabin's Proof

Rabin's test for primality was based on a discovery that if a number it is prime,

then every integer between 1 and n will pass a certain test (called "being a

witness" for n). If any integer fails the test, then n is not prime. Rabin dis-

covered that if n is not prime, then at least half the integers between 1 and

n will fail Miller's test. If some number between 1 and n. is chosen randomly,

then there is a 50% chance it will fail the test. In general, the probability that

k numbers chosen between 1 and n will fail the test is 1 - k. So we can test

enough numbers until the probability of n's being composite, i.e. not prime, is

acceptably low.

Exact testing of potential primes larger than, say, 1060 takes a very long time,

and may outstrip the computational capacities of our current computers, so the

probabilistic method, in addition to being faster and more efficient, is also a

practical solution to the problem of testing large numbers for primality.

3.7.2 Does the Use of Probabilistic Methods Alter What

Counts as a Proof?

Whereas the use of computer-assisted steps in a mathematical proof does not

necessarily force classical philosophers of mathematics to change their concep-

tion of proof, introduction of probabilistic methods certainly does. Probabilistic

proofs demonstrate the truth of a theorem only within certain degrees of error.

Advocates of the legitimacy of probabilistic proofs argue that (very long) clas-

sical proofs can be considered only probably correct,s1 as they are subject to er-

rors. Probabilistic proofs may be technically easier to understand, much shorter,

stDeMillo, Lipton, and Perlis, "Social Processes and Proofs of Theorems and Programs", Com-
munications of the ACM 22, v.5, May 1979, pp.271-280.
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more perspicuous, and may allow us to isolate important mathematical notions

useful for further research. In the case at hand, some mathematicians maintain

that they have more confidence in results that could be obtained by probabilistic

methods than in many 400-page mathematical proofs52 . Classical proofs may

be so long that no one will be able to comprehend more than the barest outline

of its reasoning, and therefore less able to find errors.

Detlefsen and Luker hold that we should accept Rabin's methods as valid math-

ematical proof techniques because of two things: 1) the high degree of certainty

conferred by his algorithm; and 2) the fact that many proofs using classical

deductive methods fall prey to many kinds of uncertainty.

A case of this kind, involving so-called classical proofs53 actually happened.

Two groups of topologists, one American, the other Japanese, independently

announced results concerning a topological object called a homotopy group.

Their results contradicted each other; since both proofs involved complex sym-

bolic and numeric computations, it was unclear who was wrong. The groups

exchanged proofs, looking for errors; however, they found none, even though

each group was keen on doing so. A third groups enters the scene with another

proof, this one in support of the American result. The Japanese tactically

withdrew to reconsider their proof.

While anecdotal, this story does present a challenge for the proponent of the

classical view. Of course it is true that many factors influence our ability to

assess proofs. But, the fact that verifying the correctness of a traditionally

proven theorem may be incredibly difficult just shows that some proofs are of

sufficient complexity to be (for the time being) beyond our cognitive reach. It

remains that we do have methods to determine if a given proof in a formal
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system is correct. We have correctness conditions for such proofs; they mnay be

impossible to implement in the case of a particular proof because of constraints

on attention and comprehension, but that does not affect their status as proofs,

merely our abilities to verify that status. Furthermore, worries about such

proofs are worries about their correctness, not necessarily worries about that

status of the methods used to prove the theorems.

In the case of computer-assisted proofs, if a program is provably correct, then

computer's role in the proof is a trivial one; it is similar to that role played by

pencil and paper in a traditional proof.

However, if the program is not provably correct, then the fact that it runs on

such-and-such a machine is part of the evidence that the program works. If we

have worked out correctness conditions for computer programs, then, depending

on what those conditions are, the role played by the computer will be as trivial

as that played by pencil and paper. Correctness conditions have not, as of yet,

been worked out. However, at first blush, it would appear that the computer-

verified procedure of the reducibility lemma would meet any reasonable set of

correctness conditions, for it was used for purely computational purposes.

3.8 Closing Comments

Tymoczko has presented us with an account of surveyability from which it fol-

lows that whether an argument counts as a proof (in the traditional sense)

hinges on biological/psychological facts about humans; proofs that can be sur-

veyed in say, less than 60 years count as proofs, but those not surveyable in less

than 60 years do not count as proofs. He also says that surveyability in practice

applies to many traditionally proved theorems but not to theorenms proved by

computers. What is required but not supplied by him is an explanation of how
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to distinguish these cases.

There is a further problem with using the notion surveyability to mean "sur-

veyable in practice". Can we distinguish between what cannot be surveyed in

practice for merely adventitious reasons (e.g. we cannot pay people enough to

survey some proofs) and what cannot be surveyed for intellectual or cognitive

reasons (e.g. humans do not live long enough or have enough cognitive stamina

to survey really long proofs)? Presumably Tymoczko would want the notion

"surveyable in practice" to be immune from limitations on character, but not

biological limitations. However, it is not clear how to make this distinction so

that the cases are divided the way he wants.

The classical account of proof allows for the separation of the questions of

whether something is a proof and whether we can recognize that something

is a proof. What separates mathematical proof from experiment is that there

are standards of rigor for formal proofs; given a sequence of statements in a

formal system, we have a procedure for determining whether it is a proof of

some theorem in that system.

It is obvious that using computers to solve formerly practically unsolvable prob-

lems will change our mathematical practice. Tymoczko rightly points out that

certain crucial questions will have to be answered, like the the following: since

not everything that claims to be a computer proof can be accepted as valid,

what are the criteria for acceptable computer proofs? It seems likely that stan-

dards will be developed and methods refined as we use computers to do more

powerful and complex computational work.

One big issue that has already changed the face of mathematics is the use of

computers in probabilistic algorithms. Michael Rabin's probabilistic algorithm

for determining the primality of large numbers is an example of a a procedure

that mathematicians accept as a proof, but the result is only an answer with
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a certain (albeit high) degree of probability. Using computers in probabilistic

arguments may force a revision of the notion of mathematical proof or force

creation of a new notion in addition to the old one. But what will deterimine

whether use of a certain computer method is not the fact that it is one, but

rather whatkind of method it is. The use of a computer in the proof of the Four

Color Theorem does not seem to represent an introduction of a new method of

proof, but rather an improvement of old methods.

As for the status of the Four Color Theorem, it is hard to accept that this

seemingly essential fact about the nature of planar graphs is an empirical fact.

The Five Color Theorem for planar graphs has an algebraic proof, which is

both surveyable and formalizable; it counts as a traditional proof according to

everyone, including Tymoczko. Assuming that both the Four Color Theorem

and the Five Color Theorem are true, it is odd to attribute a priori status to

the latter and a posteriori status to the former.

There is, however, something unsatisfying about the proof of the Four Color

Theorem; the discharging procedures do offer some information about the con-

figurations in the unavoidable set U, but they do not provide a perspicuous

explanation of what property or properties of planar graphs give rise to four-

colorability.

On the other hand, after the results of the Four Color Theorem were published,

improvements were made in the discharging procedure to reduce the number of

configurations in the unavoidable set to less than 1000.

Maybe what we can learn from the work done on the Four Color Theorem is

how to apply our methods of proof to take advantage of the computational

resources of digital computers. It is an open question what count as acceptable

methods for use in computer-assisted proofs, but one worthy of attention both

by mathematicians and philosophers.
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