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ABSTRACT

We reason that if there are nurnbers, they are abstract and therefore acausal. The
question thus arises as to how we have knowledge of these objects. My thesis consists of
three parts, each of which explores a response to this question.

Charles Parsons has argued that we know about the numbers because we can
apprehend (or "intuit") some abstract objects such as expression-types which form a
model for arithmetic and which therefore stand as representations of the numbers.
Although I think we can intuit some abstract objects in the way Parsons describes, I
show that our knowledge that arithmetic has a model cannot be based on our intuition of
these objects. I conclude that intuition does not offer a route to the numbers.

Constructivists such as the traditional intultionists offer a different sort of
answer. They argue that numbers are constructions which describe the mental processes
one goes through in doing mathematics, albeit at a certain level of abstraction. Our
knowledge of these constructions is thought to be straightforward since, after all, they
are objects of our own experience. I show that this account of the numbers Is circular,
and that the only way to avoid this circularity commits the intuitionist to a version of
mathematical finitism. I conclude that numbers are not mental constructions.

Mathematical antirealists such as Michael Dummett argue that the truth of a
mathematical statement cannot intelligibly transcend evidence for the truth of that
statement, and that an account nf mathematical truth which recognizes this fact commits
us to an intuitionistic logic and mathematics. I show that Dummett's arguments for
intuitionism involve the crucial assumption that one's understanding of a language is
constituted by one's linguistic behavior. I argue that Dummett's reasons for making this
assumption are not well-grounded and, therefore, that his arguments for intuitionism
fail.

Thesis Supervisor: George Boolos
Title: Professor of Philosophy
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1. INTRODUCTION: BENACERRAF'S DILEMMA

1. My thesis is concerned with questions about the natural numbers: Are

there such numbers? If there are these numbers, what kind of entities are

they? How do we have knowledge of them? In discussing these questions I

find it useful to consider the dilemma presented by Paul Benacerraf in his

article "Mathematical Truth".1 As Benacerraf observes, we talk as though

there are numbers. We claim, for example, that there is a number which

succeeds the number 4, and that there is an infinity of prime numbers. This

common way of talking is reflected in the most widely accepted theories

of truth which treat expressions such as "the number 4" as genuine

referring expressions. Yet we reason that if there are numbers, they are

abstract hence acausal. 2 Benacerraf claims, however, that the best

theories of knowledge are causal. If he is correct, then there is an obvious

dissonance between what we take to be the best theory of truth for

mathematics and what some, at least, take to be the best epistemology. We

then face a dilemma ("Benacerraf's dilemma") in deciding which of these

1 Benacerraf [2].

2 It is notoriously difficult to give a satisfactory account of what makes
an object an abstract object. For present purposes I will assume that an
object is abstract if it lacks spatiotemporal location and if it is acausal. I
recognize, however, that this characterization may not be a completely
happy one. Abstract objects such as types may enter the causal swim
through their concrete tokens. And it might take an extreme realist to hold
that, for example, English words and sentences have always existed.
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theories we should revise or abandon.

Benacerraf's dilemma is sometimes stated more forcefully. If, as

Benacerraf claims, there is an incompatibility between the most widely

accepted theories of mathematical truth and knowledge, then one might

claim that either our mathematical statements are not true or

mathematical truths are unknowable. Yet I do not -think this more dramatic

way of stating the dilemma gets to the real issue. There are mathematical

truths; the statement "2+3=5", for example, is true. Moreover, we have

some mathematical knowledge. We know that 2+3=5 if we know anything.

It seems to me, therefore, that Benacerraf's dilemma is best thought of as

a challenge: How can we construct a coherent account of mathematical

truth and knowledge? I believe that a satisfactory response to this

challenge will involve a satisfactory response to the questions with which

I began this essay.

In the following chapters I examine three responses to this challenge.

Before I turn to those responses, however, I will first consider one

strategy for resolving Benacerraf's dilemma which I do not find attractive

but which brings to the fore an important assumption that I wish to make.

I will also discuss why I do not think Benacerraf's claim that the best

theories of knowledge are causal threatens either the view that there are

mathematical truths, or the claim that we have mathematical knowledge.

2. One extreme strategy for resolving Benacerraf's dilemma is to give

up the view that mathematical singular terms refer. (One might argue, for

example, that expressions such as "the number 4" function syntactically
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but not semantically as singular terms.) I do not find this strategy

attractive. I agree with Benacerref that a satisfactory analysis of singular

terms should be applied uniformly across the language, and I see no

alternative to treating expressions such as "Rudolf Carnap" (as that

expression features in "Rudolf Carnap published the Aufbau in 1928"), or

"Germany" (as that expression features in "Germany seeks reunification")

as referring expressions. My reason for thinking that an analysis of

singular terms should be applied uniformly across the language is the

usual one. I know of no satisfactory grounds for treating "Germany" but not

"the number 4" as a referring expression. For the purposes of this paper,

therefore, I will assume that mathematical singular terms refer.

By assuming that numerical singular terms refer, I have assumed that

the correct answer to the ontological question "Are there numbers?" is

"There are". 3 Yet this assumption leaves unanswered what I think of as

the primary metaphysical question concerning numbers; namely: What kind

of entities are they? One might argue, for example, that the numbers are

some sort of mental construction. (I will argue in chapter three that they

are not.) One might also argue that the numbers are "platonic" objects

which exist independently of mathematicians. Now, although I do not make

any assumptions about the nature of the numbers (my goal, after all, is to

discover what their nature is), it does seem to me that a satisfactory

3 In his [ill, Benacerraf has argued that there is no unique collection of
objects to which number expressions refer. On this view, for example, "the
number 4" is a kind of dummy name referring to the fifth element in any
progression which satisfies the Dedekind-Peano axioms. If Benacerraf is
correct, then my assumption that number expressions refer to a unique set
of objects is incorrect. I shall not, however, take up Benacerraf's point
here.



account of what the numbers are will show that they are abstract. If the

numbers were concrete, they would have spatiotemporal location. But, as I

see it, the very question of where the numbers might be located (in

France?) betrays a misunderstanding of the concept of number.

1. I now review why Benacerraf thinks the best theories of knowledge

(and, as we shall see presently, of reference) are causal. I present this

review in order to show that the reasons Benacerraf gives for adopting

causal theories are not so compelling that we must abandon either the

view that number expressions refer, or the claim that we can have

mathematical knowledge.

Benacerraf writes:

I favor a causal theory of knowledge on which for X to know
that [a statement] S is true requires some causal relation to
obtain between X and the references of the names, predicates,
and quantifiers of S. I believe in addition in a causal theory of
reference, thus making the link to my saying knowingly that S
doublu causal (Benacerraf [2] p.412).

If Benacerraf is correct, then some causal theory of reference best

explains how the name/bearer relation is established for number

expressions, and some causal theory of knowledge best explains how we

know our arithmetical statements are true.4 Benacerraf does not discuss

4 Note that a satisfactory mathematical epistemology will need to explain
how we acquire our mathematical knowledge only if mathematical
knowledge is something acquired. It may not need to explain how we
acquire our mathematical knowledge if our mathematical knowledge is
innate or otherwise apriori. Although Benacerraf acknowledges this last
point, he does not pursue it. (See Benacerraf [2] p.414.) For the moment I
shall not pursue it either, although I shall return to it briefly in chapter 5.
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which theories he thinks accomplish these tasks because he wants to make

certain general points not tied to the success or failure of any particular

causal theory. What I will consider here is what he thinks these general

points are.

Consider reference first. As with any discussion of reference, it is a

good idea to begin with Frege for whom the sense of a proper name

provides a condition (often expressed in terms of definite descriptions)

such that whatever satisfies that condition is the referent of that name.

Following common practice, I will call this type of theory a description

theorg of reference. So, for example, one's sense of "Rudolph Carnap" may

be given by the descriptions "Frege's most famous student", "the author of

the Aufbau", and so forth. What is important to note is that the description

theory is entirely compatible with reference to abstract objects. One's

sense of "4", for example, may be given by the descriptions "the square

root of 16", "the number of major points on the compass", and so on.

Some find a description theory inadequate not just for mathematics but

for epistemologically more straightforward cases as well. Recall, for

example, Kripke's story of a community which associates the name "a"

with a set of conditions which they take to be satisfied by individual A but

which in fact is satisfied only by another individual B who is causally

isolated from that community.5 If the description theory is correct, then,

when a community member uses "a" with A in mind he is nevertheless

referring to f. But how can the community members refer to someone from

5 See Kripke [1] lectures I and II. Here I depart from Benacerraf's
exposition.
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whom they are causally isolated? If the only acceptable response to this

last question is that they cannot, then it appears the description theory is

inadequate. An alternative theory sensitive to the problem of causal

isolation may seek to link the name "a" with an object A just in case there

is an unbroken, reference-preserving causal chain linking one's use of "a"

to refer to A back to an original ostensive definition of A as "a".6 But if we

accept the claim that a satisfactory theory of reference must contain this

causal component, then Benecerraf's problem with reference to abstract

objects is clear: Abstract objects are acausal; consequently, number

expressions cannot refer to abstract objects.

In response to this last point, it is not clear to me that we need direct

causal contact with abstract objects in the way Kripke's example

suggests. If Quine is correct, deferred ostension will do.7 We may, to use

his example, explain the abstract singular term "alpha" by pointing to a

suitable Greek inscription. Moreover, it may be that pointing to this

inscription involves enough causal contact with the type of which the

inscription is a token to satisfy any reasonable causal constraint on

reference. (We shall see something like this in Parsons's account of

mathematical intuition.) It seems to me, therefore, that the argument that

we cannot refer to the numbers because of their causal isolation is far

from conclusive. And, if I am right about this last point, I do not see the

description theory seriously imperiled by questions of causal contact.

Finally, if a causal theory of reference is truly incompatible with

6 The suggestion has been made by Kripke, among others.

7 See Quine [21 pp.39-41.
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reference to numbers, it seems to me that the correct conclusion to drew

from this incompatibility is not that there are no numbers, but rather that

a causal theory of reference is simply not the appropriate theory to

explain how we refer to the numbers.

The basic idea behind a causal theory of knowledge is even more

straightforward. How do I know, for example, that "There is a red book on

my desk" is true? According to Benacerraf, for me to know "There is a red

book on my desk" is true: There must be a red book on my desk; I must be in

the relevant state of belief that there is red book on my desk; and that

there is a red book on my desk "figures in a suitable way" (to be spelled out

by the particular causal theory) in the explanation of how I come to believe

there is a red book on my desk.8 Benacerraf claims this explanation

typically establishes a causal connection between those objects which

make the statement true and my belief that the statement is true. One way

this connection might be established in the present case is by giving an

account of how unfiltered sunlight reflects off the book and strikes my

retinas, setting off a further causal chain in my nervous system and brain,

inducing in me the belief that there is a red book on my desk. But, it is

argued, claims to mathematical knowledge cannot be explained in this way.

If numbers are acausal, there can be no causal relation obtaining between

those states of affairs by virtue of which a number statement is true and

one's belief that the statement is true.

It is not clear to me that Benacerraf's sketch tells us enough about how

we have knowledge of ordinary physical objects to be very useful. That

II

8 Benacerraf [2] p.412.



complaint aside, however, my main point is the same as that offered with

respect to the causal theory of reference. If adopting a causal theory of

knowledge for mathematics leads to the conclusion that we have no

mathematical knowledge, then the obvious lesson to draw is that

mathematical knowledge is not causal knowledge. (Note, however, that this

conclusion is not meant to rule out the possibility that a satisfactory

epistemology for mathematics might have some causal component.)

Therefore, even if Benacerraf is correct that some causal theory best

explains how we know some statements are true, it is another matter

entirely whether a causal theory can best explain how we know our

mathematical statements are true.

A. In the following chapters I examine three responses to the challenge

of constructing a satisfactory account of mathematical truth and

knowledge. Charles Parsons has argued that we know about the numbers

because we can apprehend (or "intuit") some abstract objects such as

expression-types which form a model for arithmetic and which therefore

stand as representations of the numbers. Although I think we can intuit

some abstract objects in the way Parsons describes, I show that our

knowledge that arithmetic has a model cannot be based on our intuition of

these objects. I conclude, therefore, that intuition does not provide a route

to the numbers. In two appendices I argue that accounts of mathematical

knowledge offered by Resnik and Berkeley fail for relevantly similar

reasons.

Constructivists such as the traditional intuitionists (Brouwer, Heyting,

at i.) offer a different sort of answer. They argue that numbers are
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constructions which describe the mental processes one goes through in

doing mathematics, albeit at a certain level of abstraction. Our knowledge

of these objects is thought to be straightforward because, after all, they

are objects of our own experience. I show, however, that the intuitionists'

account of the numbers is circular, and that the only way I see of avoiding

this circularity commits the intuitionist to a version of mathematical

finitism. I conclude that numbers cannot be mental constructions.

Contemporary antirealists such as Michael Dummett argue that the

truth of a mathematical statement cannot intelligibly transcend evidence

for the truth of that statement, and that an account of mathematical truth

which recognizes this fact commits us to an intuitionistic logic and

mathematics. I show that Dummett's arguments for antirealism involve the

crucial assumption that one's understanding of a language is constituted by

one's linguistic behavior. I argue that Dummett's reasons for making this

assumption are not well-grounded and, therefore, that his arguments for

mathematical antirealism fail. I conclude with some brief comments about

how I plan to continue my investigation, focusing on the view that

mathematical knowledge is not causal knowledge.

13



2. PARSONS'S THEORY OF MATHEMATICAL INTUITION

1. Introduction.

In a number of recent articles, Charles Parsons has argued that we

know about the numbers because we can apprehend, or "intuit", certain

kinds of abstract objects such as expression-types which form a model for

arithmetic, and which therefore stand as representations of the numbers. 1

Although I think we can intuit some abstract objects in the way Parsons

describes, I argue that our knowledge that arithmetic has a model cannot

be based on our intuition of these objects. I conclude that intuition does

not offer a route to the numbers.

Following this introduction, I divide this chapter into two main

sections and two appendices. In section 2 I outline how Parsons thinks

intuition works, how he thinks we intuit mathematical objects, and why he

thinks our knowledge that arithmetic has a model involves our intuition of

these objects. I present my objections in section 3. In the first appendix I

discuss Michael Resnik's structuralist account of numbers which I think

fails for the same sort of reason that Parsons's account fails. In the

second appendix I argue that Berkeley's account of geometric knowledge

involves an appeal to something very much like intuition, and that it fails

as well.

1 Parsons [2], [3], [5] and [7].
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2. Parsons's account of mathematical intuition.

(2i). How Parsons thinks we intuit some abstract objects.

According to Parsons, we apprehend, or "intuit" a type whenever we

perceive or imagine an object as a token of that type.2 Consider, for

example, the following underlined array of ink: Theaetetus. By perceiving

this array of ink as a token of the word-type "Theaetetus", Parsons claims

the reader intuits the word-type "Theaetetus". 3 Consider another example.

The reader is invited to imagine an inscription of "Theaetetus". In thinking

of that image as a token of the word-type "Theaetetus", Parsons claims the

reader intuits that word-type. He concludes:

At least one kind of essentially mathematical intuition, of
symbol- and expression-types, is perfectly ordinary and
recognized as such by ordinary language (Parsons [3) p.155).

2 It is unclear whether Parsons thinks we can intuit objects other than
types. He lists the following as examples of intuitable objects: symbol-
types and expression-types, geometric figures "as traditionally
conceived", and "perhaps" sets or sequences of concrete objects (Parsons
[8] p.2, [2] p.43, [31 pp. 153-54). He does not, however, say whether he
thinks this list is exhaustive.

A terminological point: Parsons distinguishes two uses of "intuition"
common to the philosophic literature (Parsons [3] pp. 146-147). The first is
what he calls the "propositional attitude" use, an example of which is "I
intuit that statement A is true", where what is meant is that the truth of
A is in some sense evident or self-evident. Parsons suggests that the
Cartesian clear and distinct perception may be an intuition of this kind.
The second use is what Parsons calls "object-relational", an example of
which is "I intuit (object) A", where "intuit" expresses a relation between
the intuitor and object q. It is obviously this second use of "intuition" with
which we are primarily concerned here.

3 Obviously, one might lack the conceptual resources to see the underlined
array of ink as a word-token. In that case, Parsons concludes that one
would perceive the array of ink but would not intuit the word-type. See
Parsons [3] pp.154,162.
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I agree that what Parsons describes as the intuition of symbol and

expression types is perfectly ordinary. I shall now explain why he thinks it

is "essentially mathematical". 4

(2ii). How Parsons thinks we intuit mathematical objects.

In order to see how Parsons thinks we intuit mathematical objects, we

first need to see which objects Parsons thinks are mathematical.

According to Parsons, what is "essential" to mathematical objects "is the

relations constituting the structures to which they belong". 5 Therefore,

following Parsons, we may say that what is essential to an arithmetical,

or number-theoretic object is that it occupies a place in some structure

which has the form

x(o), x(l), x(2),..., x(n), x(n+ 1),

ir which, paraphrasing Russell, there is an initial object, a successor to

each object, no repetition of objects, and every object in the series can be

reached from the initial object in a finite number of steps.6 Following

4 Here the reader may expect an account of how Parsons thinks intuition
works; what psychological mechanisms are responsible for it, and so forth.
I do not think, however, that this would be a reasonable expectation. No
one, to my knowledge, has any idea how the phenomenon which Parsons
describes as intuition works. Yet with the exception of some extreme
nominalists I do not think anyone really doubts that we do intuit some
symbol and expression types in the manner just described.

5 Parsons [3] p.151. See also Parsons [8] p.2.

6 Russell [1] p.8. These are, of course, the conditions codified by the
Dedekind-Peano axioms.
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common practice, I will call any sequence of objects satisfying these

conditions an "o-sequence". 7

In order to see how Parsons thinks we intuit these arithmetical

objects, it will be useful to introduce a simple language L whose only

basic symbol is the "/", or stroke.8 The well-formed expressions in L are

finite linear strings of strokes (////, for example). Following Persons, we

may say that we intuit the stroke symbol-type whenever we perceive or

imagine an object as a stroke, and that we intuit a stroke string

expression-type whenever we perceive or imagine an array of strokes as a

token of that type. So far, so good. Now consider the sequence

L# : /,0//,&///,"////, ... .

If we interpret the initial single stroke as the series' initial object, the

operation of concatenating one stroke to the right of any stroke string as

successor, and if the series continues in such a way that it satisfies each

of Russell's conditions, then the stroke strings which make up L# form an

o-sequence.

7 Two comments may be in order here: First, In order to recognize an
object as a number-theoretic object, it may be sufficient that we
recognize that object as an element in some initial segment of an o-
sequence. After all, the child who can perform some elementary
arithmetical operations may know about the number 4, but may not know
that the number series is infinite. Second, if all that is essential for an
object to be a number-theoretic object is that it occupies a place in some
o-sequence, then it appears to be the case that any object is, or can be, a
number-theoretic object. Suppose, for example, that we think of the moon
as an element in some o-sequence. So conceived, it follows on Parsons's
view that the moon is an arithmetical object.

8 See Parsons [2] p.43-46, [3] pp.153-154.
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We now have all the information we need to see why Parsons thinks we

can intuit number-theoretic objects. Parsons thinks that whatever objects

form an co-sequence are number-theoretic objects. Thus, presumably, the

stroke strings which make up L# are number-theoretic objects. And since

we can intuit at least some of these objects, it follows that we can intuit

at least some number-theoretic objects.9

(2iii). Why Parsons thinks our knowledge that arithmetic has a model is
intuitive.

We now know what Parsons thinks intuition is and how he thinks we

intuit some mathematical objects. In this section I consider why he thinks

our knowledge that arithmetic has a model is intuitive. I'll begin by

outlining when Parsons thinks knowledge is intuitive.

Parsons writes:

I shall not call knowledge intuitive unless it rests on the
intuition of objects (Parsons [71 p.2 15).

I interpret this claim in what I take to be the most straightforward way:

Our knowledge that a statement S is true is intuitive just in case it

involves our intuition of those objects which make S true. Now, Parsons is

unclear about how much propositional knowledge he thinks can be founded

9 I add the qualification that we can intuit ansome number theoretic objects
because while it is clear to me that we can intuit very short stroke string
expressions such as ////, it remains to be seen in what sense we can
intuit a string of 1010 strokes. Of course, much depends on how we
interpret the modality in the claim that one ncan intuit a stroke string of
such-and-such a length. I'll return to this issue in section 3.

18



on the intuition of objects. It may be, for example, that our knowledge that

"// is a stroke string" is true involves only our intuition of the relevant

stroke string. It is less clear, to me at least, to what degree Parsons

thinks our knowledge that "/// succeeds //" is true is intuitive since he

claims our knowledge of operations such as successor is not intuitive. 10

If my interpretation of Parsons's claim is correct, we may conclude

that Parsons thinks our knowledge that arithmetic has a model is intuitive

because he thinks it involves our intuition of those objects which make the

Dedekind-Peano axioms true. The Dedekind-Peano axioms are:

(PA 1) Zero is a natural number. (N(O)).

(PA2) Zero is not the successor of any natural number.
(Vx(Nx-)(x'•O))

(PA3) Every natural number has a successor which is also a
natural number. (Vx(Nx-+3y(y=x'&Ny))).

(PA4) Different natural numbers have different successors.
(VxVy(Nx&Ny& xwy-4x'•y')).

(PA5) If a property F holds of zero, and holds also of the
successor of every natural number of which it holds, then F
holds of every natural number.
(VF[F (0)& VxVy(Fx&y=x'-.Fy)-ýVz(Nz -F z)]).

At first glance, therefore, it appears Parsons thinks our knowledge that

the Dedekind-Peano axioms have a model is intuitive because he thinks we

can intuit the natural numbers. The problem with this conclusion, however,

10 Parsons [7] p.215. Compare: In order to see that one object is to the left
of another object, it is not enough that we see the two objects; we must
also see that they stand in a particular spatial relation to one another. See
also Persons [7] p.225 where he contrasts operations with objects and
states explicitly that the iteration operation is not given in intuition.
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is that even though Parsons thinks our knowledge that the Dedekind-Peano

axioms have a model is intuitive, he does not think we can intuit the

natural numbers. More precisely, he does not think we can intuit the

natural numbers directly. I'll now explain this qualification.

In order to see why Parsons does not think we can intuit the natural

numbers directly, it will be useful to introduce the distinction he draws

between what he calls "pure" abstract objects and what he calls "quasi

concrete" abstract objects. 1 1 Intuitable objects such as expression-types

are quasi concrete; they are abstract, but have concrete instances. 1 2 Pure

objects, on the other hand, are not intuitable because they have no

concrete instances. One way to see how Parsons thinks of pure objects is

to see why he thinks the natural numbers are pure. According to Parsons,

we can intuit various quasi concrete objects which, taken together, form

various quasi concrete o-sequences. (L' is thought to be one such

sequence.) Parsons claims, however, that there is no principled way to

identify any particular quasi concrete co-sequence as the natural numbers.

He writes:

This thesis [that w-sequences are given in intuition] does not
imply that numbers are given in intuition. One could draw that
conclusion only by an arbitrary and questionable construal of
numbers as elements of the intuitively given structure [...1
(Parsons [5]).

11 Parsons [6] p.25, [8] pp.2-3.

12 Note that Parsons does not identify concrete objects with material
objects. He thinks the intuition of a type can be founded on the perception
or imagining of a token of that type. Thus Parsons classifies an imagined
visual image as a concrete object.
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Rather, Parsons thinks of the natural numbers as those pure, wholly

abstract objects which make up an o-sequence independently of any way it

might be presented quasi concretely. 13 He writes:

[...] we look in vain for anything else to identify [pure objects]
beyond the basic relations of the structures to which they
belong: for the natural numbers 0, S (successor), and perhaps
arithmetic operations [...] (Parsons [8]1 p.2)

Therefore, as I understand it, Parsons thinks we indirectly intuit the pure

natural numbers through our direct intuition of their various quasi

concrete representations. 14 As an example of how Parsons thinks we do

13 It may be useful to think of the pure natural numbers in the way Resnik
suggests; that is, as structureless points in the wholly abstract o-
sequence. See appendix A.

14 Parsons sometimes draws the direct/indirect distinction in terms of
weak versus strong intuitability. He writes: "An object is strongly
intuitable if it can be intuited, i.e., if it can itself be an object of
intuition. An object is weakly intuitable if it can be represented in
intuition without itself being intuitable" (Parsons [4] p.496).

Parsons is not at all clear about what he thinks constitutes the
representation relation he sees obtaining between pure and quasi concrete
objects. One way to think of what Parsons may have in mind is to consider
what I take to be the analogous relation Kant saw obtaining between what
he characterized as pure and empirical intuitions. (See, e.g., Kant [I]
A 19ff.) For example, Parsons writes: "I do think that the objects
considered in arithmetic and predicative set theory can be construed as
forms of spatiotemporal objects" (Parsons [1] p.135). I understand Parsons
to be claiming that the pure numbers give the form 1,2,3,... any quasi
concrete series of objects must take in order to represent the pure number
series. I suggest, therefore, that we think of what Parsons sees as the
weak or indirect intuiting of a pure object though the direct intuition of a
quasi concrete representation of that pure object as analogous to a Kantian
pure intuition. I believe this reading is supported by Parsons writing of
Kant's theory that: "An empirical intuition functions, we may say, as a pure
intuition if it is taken as a representative of an abstract structure"
(Parsons [1 p.136).

We are now in position to see how Parsons's theory of intuition, if
correct, might lead to a solution of Benacerraf's dilemma. Following
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this, I'll now consider why he thinks our knowledge that L' forms a model

for arithmetic is intuitive.

Because we are now concerned with the question of why Parsons thinks

our knowledge that L# forms a model for arithmetic is intuitive, it will be

useful to recast the Dedekind-Peano axioms in the following way: 15

(PA1') / is a stroke string.

(PA2') / is not the successor of any stroke string.

(PA3') Every stroke string has a successor which is also a
stroke string.

(PA4') Different stroke strings have different successors.

(PA5') If a property F holds of /, and holds also of the
successor of every stroke string of which it holds, then F
holds of every stroke string.

The most detailed account Parsons gives as to why he thinks our

knowledge that L# forms a model for the Dedekind-Peano axioms is the

following. 16

Suppose our numerals are to be /, //, ///, ////, and so forth,
and suppose (as fits the notation better), our theory is to be

Parsons, we may say that number expressions refer to the numbers. We
know about the numbers through our intuition of their representations.
Moreover, because intuition involves the causal processes of perception or
imagining, intuition may even be compatible with a reasonable causal
constraint on knowledge or reference.

15 The formalization remains the same as that given for PA1-5. Substitute
"/" for "0" and read "N" as "is a stroke string".

16 I have changed the logical notation to fit the available print. Parsons's
"•L" is his notation for the result of concatenating a single additional
stroke to a stroke string ..
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of positive intehers.

We can say that the number 1 exists because we can
construct an inscription equivalent to "/". We can say that
every number has a successor, because given an inscription of
the form /.../ we can add another / to it. It is clear, moreover,
that if two such inscriptions are of the same type, then so
are their successors, so we have x=u-Sx=Su.

If we have two inscriptions n and b such that aL and bL are of
the same type, it is clear that a and b are also. Hence we have
Sx=Su-x=u.

This covers all the Dedekind-Peano axioms except induction
(Parsons [2] p.46).

It will be useful to go over this passage in some detail. According to

Parsons, our knowledge that the initial stroke string exists is intuitive

because we can intuit the initial string /. Indeed, by conceiving of the "/"

which ends the previous sentence as a token of that stroke string type, the

reader has just done so. Thus, Parsons concludes, our knowledge that PA 1'

is true Is directly intuitive. Furthermore, because Parsons thinks that L'

represents the pure number series, he concludes that PA 1 is true and that

our knowledge that it is true is therefore indirectly intuitive. Note,

however, that something extra is needed in order to see that PA1' (and

therefore (PA )) is true; namely, that the "/" is intuited not just as a

stroke string, but also as the initial element in an o-sequence.

Parsons does not say why he thinks PA2' is true or why he thinks our

knowledge that it is true is intuitive. One reason he may think PA2' is true

is that concatenation (successor) can only extend the length of a stroke

string. Therefore, one stroke string can succeed another stroke string only

if it consists of at least two strokes. It is unclear, however, that this

conclusion is intuitive since, as I have observed, our knowledge that one
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stroke string succeeds another depends in part on our understanding of

successor, and Parsons thinks that our understanding of successor is not

intuitive. I conclude, therefore, that Parsons owes an explicit account of

why he thinks our knowledge that PA2' is true is intuitive.

Parsons thinks our knowledge that every stroke string has a successor

is intuitive because he thinks that if we are given an inscription of any

stroke string, we see that we can add another stroke to it. Of course, we

must also see that the extended string succeeds the original string.

Therefore, when Parsons claims our knowledge that one stroke string

succeeds another is intuitive, I take it that what he means is that we can

intuit those objects which we otherwise know stand in the successor

relation to one another.

It is easy to see why Parsons thinks that if we know we can add a new

stroke to any given stroke string inscription we may conclude that every

stroke string type has a successor. Two stroke string inscriptions &, b are

inscriptions of the same type iff there is a 1-1 correspondence between

the strokes which compose a and those which compose b.17 Therefore, if

we extend a stroke string inscription of length n to one of length J••., the

inscription changes from being a token of the stroke string type of length n

to being a token of the stroke string type of length n+I. Therefore, if any

stroke string inscription can be extended, it follows that every stroke

string type has a successor. Therefore, if every stroke string inscription

can be extended, it follows that PA3' (and thus PA3) is true. It is, of

17 Parsons [2] p.45. More generally, two inscriptions are of the same type
just in case they spell the same.
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course, another matter whether we can always add a new stroke to any

given stroke string inscription and, if we can, whether our knowledge that

we can is intuitive. Parsons thinks we can always add a new stroke and

that our knowledge that we can is intuitive. It is these claims which I find

most controversial and to which I return in section 3.

Finally, Parsons claims that if we are given two stroke string

inscriptions n, h which we know are tokens of the same type, we may

conclude that their successors .oL, bL are also tokens of the same type.

Similarly, Parsons thinks that if two inscriptions ma, bL are tokens of the

same type, we see that removing one stroke from each inscription leaves

us with two inscriptions a, h which are also of the same type. It is,

however, unclear to me why Parsons thinks our knowledge that 1 added to

or taken away from equals yields equals is intuitive. To claim it is

intuitive makes it appear to be some form of empirical knowledge, yet

Parsons is explicit that his theory is not empiricist. 168 I conclude,

therefore, that Parsons owes a more fully developed account of why he

thinks our knowledge that no two stroke strings have the same

predecessors or successors is intuitive.

As Parsons concludes, this covers all the Dedekind-Peano axioms except

the induction axiom. Parsons thinks our knowledge that PA5' is true is not

intuitive. He writes:

Induction as a general principle has an essentially higher-
order character, and for that reason it seems evident that it
cannot be intuitively known (Parsons [7] p.227).

18 For a brief but critical appraisal of empiricism see Parsons [3] pp. 151-
152.
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If I understand him correctly, Parsons thinks our knowledge that PA5' is

true cannot be intuitive because he thinks the values of the second-order

quantifier (whatever they turn out to be) are not intuitable. 19 Therefore,

to conclude, when Parsons claims our knowledge that L# forms a model for

arithmetic is intuitive, I take him to mean that our knowledge that L#

forms a model for arithmetic involves our intuition of those stroke strings

which make PA1'-4' true. As yet, however, I think it is unclear whether we

should accept this conclusion for any of the axioms except, possibly, PA1'.

3. Whu our knowledge that arithmetic has a mudel is not intuitive.

(3i). In this section I argue that our knowledge that L# forms a model

for the Dedekind-Peano axioms is not intuitive. In particular, I argue that

our knowledge that every stroke string has a successor cannot be intuitive.

Recall that Parsons thinks we know every stroke string has a successor

[...] because given an inscription of the form /.../ we [see that
we] can add another / to it (Parsons [21 p.46).

What I will consider is whether Parsons's reason for thinking every stroke

string has a successor is a good one, and to what degree, if any, it involves

intuition.

As I understand it, Parsons's argument for thinking any stroke string

can be extended is a straightforward case of reasoning by universal

generalization (UG). 20 Recall that UG arguments proceed in the following

19 See also Parsons [3] p.46, [4] p.164.

20 See Parsons [3] section v. One might suppose we could show that any
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way. In order to establish the truth of a general statement of the form

"VxEx" from a set of assumptions 0, we first derive "Ea" from Q. Then, if 0

doesn't involve n, the inference from "Ea" to "VxEx" is logically

permissible, since what could be established about a on the basis of Q

could be established about any object in the relevant domain. Parsons's UG

argument goes as follows. We first show that some exemplar stroke string

inscription can be extended. We then show that there is nothing particular

to this inscription which figures in our seeing that it can be extended. We

stroke string inscription can be extended using mathematical induction.
Parsons, however, warns us that such a proof would be circular (Parsons
[3] pp.157-158). There is, I think, another problem with using
mathematical induction here. In order to show that any stroke string
inscription can be extended using mathematical induction, two things must
be demonstrated:

(i) An initial stroke string inscription of the form "/" can be
extended by concatenating one additional stroke to it.
(ii) If a stroke string inscription of length n can be extended by
concatenating one additional stroke to it, then the extended stroke
string of length n+l can be extended by concatenating one additional
stroke to it.

Demonstrating (i) is trivial: Construct an inscription of a single stroke and
show that it can be extended by adding another stroke to it. Thus //
establishes (i). The difficulty comes with (ii). A demonstration of (ii)
proceeds by showing that if the antecedent condition obtains, the
consequent condition follows. But the antecedent condition for (ii) obtains
just in case there is an infinity of stroke string inscriptions. Therefore, a
demonstration of (1i) involves the question-begging assumption that there
is an infinity of stroke string inscriptions. (I include this argument
because I will argue that Parsons's UG strategy suffers from the same sort
of difficulty.)

Finally, It might also be thought that the fact we can physically extend
inscriptions of strings of 1-n strokes (for some finite n) supports the
enumerative inductive conclusion that any stroke string inscription can be
extended. But what underlies this suggestion Is a form of Millian
empiricism and, as we have seen, Parsons's theory is not empirlcist.
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generalize, concluding that every stroke string inscription can be extended

and, therefore, that every stroke string type has a successor.

Parsons's UG argument depends on our knowing that there is nothing

about the exemplar stroke string inscription which figures in how we know

that inscription can be extended. All that individuates stroke strings is

their number of strokes. Therefore, Parsons's UG argument depends on our

knowing that the number of strokes which make up the exemplar

inscription does not figure in how we know that inscription can be

extended. Indeed, the two ways Parsons suggests we might think of the

exemplar inscription assumes that the number of strokes which make up

the inscription is irrelevant to our seeing that it can be extended. He

writes:

There seems to be a choice between imagining [a stroke
string inscription] vaguelu, that is imagining a string of
strokes without imagining its internal structure clearly
enough so that one is imagining a string of n strokes for some
particular n, or taking as paradigm a string (which now might
be perceived rather than imagined) of a particular number of
strokes, in which case one must be able to see the
irrelevance of this internal structure, so that in fact it plays
the same role as the vague imagining (Parsons [31 pp.156-57).

I will show that neither way of thinking of the exemplar inscription gets

Parsons the results he requires.

Parsons's first suggestion is this. To imagine a stroke string

inscription "vaguely" is to imagine an inscription consisting of no definite

number of strokes. Since the inscription consists of no definite number of

strokes, and since a stroke string is individuated solely by the number of

its strokes, the imagined inscription could be an inscription of any stroke
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string. Therefore, by showing that this imagined inscription can be

extended, we may conclude that any stroke string inscription can be

extended and, therefore, that every stroke string type has a successor.

I find two problems with Parsons's suggestion. First, we cannot know

that the result of adding one stroke to a vaguely imagined stroke string

inscription is a stroke string Inscription one stroke longer than the string

was before the new stroke was added. It may be the case, for example, that

in adding the new stroke some other stroke dropped out. The only way we

can be sure that something like this did not occur is by knowing that the

initial array consisted of a string of n strokes (for some particular n), and

that the result of adding the new stroke is a string of n+.L strokes. But this

is exactly what we cannot know about a vaguely imagined stroke string

inscription. Therefore, we cannot conclude that by adding a new stroke to a

vaguely imagined stroke string inscription that the inscription has been

extended.

The second problem is this. Elsewhere Parsons writes:

I shall assume that we do not have obJects unless we can
meaningfully apply the identity predicate. I hardly know how
to begin arguing for this. [...] It is characteristic of objects
that they can be represented in different ways, from
different perspectives. But this statement hardly makes
sense unless it means that the same object is thus
represented (Parsons [4] p.497).

For example, if a and f are both inscriptions of stroke string types, I take

it that Parsons thinks we must be able to tell, at least in principle,

whether they are inscriptions of the same stroke string type. Yet again,

two stroke string inscriptions ~ and k are inscriptions of the same stroke
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string tjpe iff there is a 1-1 correspondence between the strokes which

make up n and those which make up b. But if A and b consist of no definite

number of strokes, it is uncertain what a 1-1 correspondence between the

strokes which make up a and those which make up b could come to.

Therefore, following Parsons's own criterion for stroke string identity, I

conclude that vaguely imagined stroke string inscriptions cannot be

inscriptions of stroke string types, and so whatever knowledge we acquire

through these vague imaginings cannot be intuitive.

In response to this second objection, it may be argued that a /aguely

imagined stroke string inscription is a token of the general stroke string

type whose tokens are stroke string inscriptions of any length. The

problem I find with this response, however, is it involves the assumption

that this general stroke string type is a stroke string of any length. (If

this was not assumed, we could not carry out the generalization step after

showing that some token of this general type can be extended.) But if we

assume that the general stroke string type is a stroke string of any length,

then showing that some token of it can be extended tells us nothing we

have not already assumed. If, for example, we suppose that a vaguely

imagined stroke string inscription is an inscription of n strokes, showing

that it can be extended to a string of n+l strokes shows us nothing new

since it is part of our assumption that the original inscription could be a

stroke string of length n+l. Therefore, as I see it, the assumption that

there is this general stroke string type begs the question of how we know

any stroke string inscription can be extended.

Parsons's second suggestion as to how we might see that the number of
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strokes which make up an exemplar stroke string inscription is irrelevant

to the question of whether that inscription can be extended is this:

Consider a stroke string a of definite finite length n. Any inscription of A,

whether perceived or imagined, will occur against a spatial ground.

Because there is always space in this ground for an additional stroke, the

number of strokes which compose the inscription is irrelevant to the

question of whether that inscription can be extended. Therefore, since the

number of strokes which compose a is irrelevant to the question of

whether an inscription of a can be extended, a could represent any stroke

string. Therefore, by showing that an inscription of a can be extended, it

follows that every stroke string has a successor.

The problem I find with this second line of argument is with the claim

that there is always space in the ground against which an inscription of a

occurs for an additional stroke. One way to see the problem with this

claim is to consider the kind of space under consideration. Because it is

the space in which perceived or imagined inscriptions occur, it can only be

physical space or imaginable space. (Roughly speaking, I think of

imaginable space as the space in one's "mind's-eye" against which

imagined inscriptions occur.) Yet, as I will argue, to think of this space as

either physical or imaginable soace begs the question of how we know any

stroke string inscription can be extended.

Suppose we think of the space against which a stroke string inscription

occurs as actual physical space. Since it is assumed that there is always

room in this space for an additional stroke, it must also be assumed, or

otherwise known, that actual physical space is either infinitely divisible
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or infinitely extendible. But if we assume that actual physical space is

infinite in either direction, we have then begged the question of how we

know any stroke string inscription can be extended.2 1 And if we have

independent grounds for believing that actual physical space is infinite in

either direction, then those grounds would show us that actual physical

space can form a model for arithmetic, and Parsons's appeal to intuition

would be superfluous.

The situation is the same if we think of this space as actual imaginable

space. Here our knowing that any stroke string inscription can be extended

depends on our knowing that our actual imaginative capacities are infinite.

But if we assume that our actual imaginative capacities are infinite, we

have begged the question of how we know any stroke string inscription can

be extended. Worse, to assume that our actual Imaginative capacities are

infinite is to assume something which is surely false. We cannot, for

example, imagine a string of 1010 strokes. (At the very least, we cannot

imagine a string of 1010 strokes as a string of 1010 strokes. 22)

In addition to thinking we can see that any stroke string inscription can

be extended by considering a spatial array of strokes, Parsons also thinks

we can see that any stroke string inscription can be extended by

21 And, of course, our assumption may simply be wrong; there may be only
a finite number of discrete spatial regions.

22 As I see It, the claim that one can intuit a string of 1010 strokes can
only be understood metaphorically. It Is comparable, perhaps, to the claim
that one can "see" some highly theoretical entity such as a microphysical
particle when the only reason we have for believing that the entity exists
is that it is required for the truth of some otherwise acceptable physical
theory.
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considering a temporally constructed sequence of strokes. He writes:

Alternatively, we can think of the string as constructed step
by step, so that the essential element is now succession in
time, and what is then evident is that at any stage one can
take another step (Parsons [3) p. 156).

This suggestion fails, however, for the same reason it fails for a spatial

array of strokes. If we take a stroke constructed at some moment as

representing the series' initial element, and the construction of an

additional stroke with the passing of each moment as representing

successor, then, at first glance, the resulting sequence certainly appears

to form a model for arithmetic. But the only way it is "evident", as Parsons

claims, that every moment has a successor is to assume that time has no

end, and this assumption begs the question of how we know any stroke

string inscription can be temporally extended. I conclude, therefore, that

Parsons's second line of argument fails if we take the space referred to in

that argument as actual physical space or as actual imaginable space, or if

we reinterpret the argument so as to be about time.

There is, of course, another way to think of the space in Parsons's

argument, and that is to think of it as possible physical space or as

possible imaginable space. Parsons's argument might then go as follows:

Consider a stroke string inscription a of definite length n. Any inscription

of a, whether perceived or imagined, will occur against a spatial ground.

Because it is always possible that there is space for an additional stroke

in this ground, the number of strokes which make up the inscription is

irrelevant to the question of whether that inscription can be extended.

Now, the obvious question to ask here is: How do we know it is always
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possible that there is space for an additional stroke? One response to this

question is that it may be the case that actual physical space consists of

only a finite number of discrete spatial regions. Yet if we understand what

it is for the world to consist of a spatial regions (for some finite n),

surely we could work out what would have to be the case for it to consist

of n+J. spatial regions. In this way we should be able to work out what

conditions would have to obtain in order for any stroke string inscription

to be extended. Similarly, It may be the case that our actual imaginative

capacities are finite. But if we understand what is involved in our

imagining inscriptions of length n, then surely we could work out what

would have to be the case for us to imagine inscriptions of length n*l and,

therefore, what conditions would have to obtain for any imagined

inscription to be extended.

The problem with the foregoing argument is that it too begs the

question of how we know any stroke string inscription can be extended.

One way to see how it does this is to think of the possible situations in

which stroke string inscriptions can be extended in terms of accessibility

to possible worlds. Suppose, for example, that we have worked out what

conditions would have to obtain for a stroke string inscription of any given

finite length to be extended. We could then argue that for any world in

which a stroke string inscription of length a occurs there is an accessible

possible world in which a stroke string inscription of length n+l occurs.

We may then derive the infinity of the number series in the following way.

Let

1 .dvx(Sx-l O3z(Sz&Ezx))
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formalize the claim that necessarily: for every stroke string inscription 1,

there is a possible stroke string inscription Z which extends a. Each of the

possible worlds in which these inscriptions occur must be accessible from

this world. (After all, our concern is with how we know there is an infinity

of stroke string types in this world.) Therefore, we need the transitivity

of accessibility rule R: "if possibly possibly a then possibly 1" familiar

from the modal system S4. Finally, we observe that a stroke string

inscription of length 1, call it "S i", occurs in this world. We may then

derive an infinite sequence of possible stroke string inscriptions in the

following way:

1. uVx(S x-03z(Sz&Ezx))
2. S(1)
3. 03z(Sz&Ez 1)
4. OS(2)
5. 003z(Sz&Ez2)
6. 00S(3)
7. 00S(3)--0S(3) R
8. OS3
9. 003z(Sz&Ez3)
10. 00S(4)

Noting that the existence of a type depends only on the possibility of a

token of that type,23 one might thus conclude that there is an infinity of

stroke string types.24

23 Persons [3] p.160.

24 One may wonder why I have given this example in terms of accessibility
to an infinite series of possible worlds rather then in terms of
accessibility to a single possible world in which there is an infinite
number of stroke string inscriptions. As I see it, nothing Important
depends on setting the example one way rather than another.
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The problem with the foregoing argument is the obvious one. It involves

the question-begging assumption (given as (1)) that any stroke string

Inscription can be extended. Furthermore, intuition plays no role in It other

than the trivial one of demonstrating that a stroke string of length 1

occurs in this world. I hardly think, therefore, that such an argument can

be called intuitive. I conclude, therefore, that Parsons's argument fails if

we take the space referred to in that argument as possible physical space

or as possible imaginable space.

Finally, it may be thought that we know any stroke string inscription

can be extended because we cannot perceive or imagine an inscription

without a surrounding ground, and so cannot conceive of not being able to

extend that inscription to its surrounding ground. It is unclear, however,

whether this simple fact about our conceptual abilities is sufficient to

admit the conclusion that any inscription can be extended. But even if it is

sufficient, I do not see how this knowledge could be intuitive. As we have

seen, Parsons thinks intuition is only of objects, and there is no stroke

string the intuition of which yields the conclusion that any stroke string

inscription can be extended in a non-question begging way.

To conclude this section: The intuition of a type always involves the

perception or imagining of a token of that type, both of which are physical

processes. Therefore, if our knowledge that every stroke string has a

successor is intuitive, I do not see how the modelity in Parsons's claim

that eny stroke string inscription can be extended could be other than some

sort of physical possibility. Yet, as I have argued, interpreting Parsons's

claim In terms of physical possibility fails. I do not see, therefore, what
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the grounds could be for thinking that any stroke string inscription can be

extended could be intuitive. I now turn to the question of how Parsons does

understand the modality in his claim that any stroke string inscription can

be extended. I argue that even if we understand this modality in the way

Parsons suggests, our knowledge that any stroke string inscription can be

extended cannot be intuitive.

(311). Parsons understands the modality in his claim that any stroke

string inscription can be extended as mathematical possibility.2 5 He

explains his conception of mathematical possibility in the following

extended passage.

A tempting way of understanding the possibility in principle
with which we are concerned is as a capacity of the alnd. The
same limitations of actual human capacity, therefore, force
us to interpret such a capability as possessed by the mind in
abstraction from its embodiment in the human organism. [...]
Even a materialistic cognitive psychology might take this
line, if the mind is construed as something like a Turing
machine, and on the 'functional' level the capabilities of the
mind are those of the abstract machine rather than those of
its actual physical embodiment. The last version, however,
makes explicit a difficulty that was already present in the
more traditional ones: the potential infinity that we attribute
to the mind's capabilities, by virtue of the indefinite
iterability of certain operations, is really being conceived by
means of mathematics, rather than its being the case that
some independent insight into the mind's capabilities is
telling us what is possible by way of mathematical intuition,
construction, computation, or proof. The Turing-machine
model makes explicit use of a mathematical model involving
the concept of a computable function in order to say what the
mind can do. There is thus a kind of circularity.

The first lesson to be drawn from this state of affairs is

25 Persons [31 p.158. See also Persons [1] p.140, [2] pp.47-49.
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that the notion of possibility in terms of which it is true, for
example, that for a particular computable function a value
can be computed for any argument is an essentially
mathematical one (Parsons [7) pp.223-24).

Following Parsons, let us say it is mathematically possible to carry out an

arithmetical procedure just in case a suitable Turing machine could carry

out that procedure. For example, suppose we have a Turing machine M for

"constructing" L*.26 We are then to understand the claim that every stroke

string has a successor as the claim that given a string of any length n, M

can construct a string of length nl. Now to the important question: Is our

knowledge of what M can construct intuitive?

To see why Parsons's response to this last question is, or should be, no,

consider the distinction he draws in the following passage between what

he calls "purely mathematical uses" of mathematical possibility and those

uses which he thinks contain an intuitive component.

[...1 it is important to distinguish purely mathematical uses of
this notion [of mathematical possibility] from those in which
it is combined with epistemic or other non-mathematical
concepts. The distinction is illustrated by an ambiguity in the
above statement about a computable function. We may
suppose the function to be given to us by a certain Turing
machine programme. To say that a computation can be
constructed may mean little more than that there can be a
computation from this programme, where a computation is
itself a mathematical object. The word "constructed" may be
taken to be metaphorical, signaling the fact that there is an
order of priority among computations, since longer ones
involve or contain shorter ones. It is another matter to say
that a value can be computed if this is to mean that some

26 The claim that a Turing machine can "construct" a stroke string is
purely metaphorical. Turing machines (as opposed to their various physical
realizations) cannot construct anything. Parsons makes the same point in
the passage I quote below.
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mathematician can arrive at insight as to what this value is.
In this case, what is said to be possible is something
epistemic or psychological, someone's knowing what the
value Is, perhaps by intuiting the constructed computation
and extracting from it the intuition of the value (Parsons [7]
pp.224-25).

Here Parsons claims that our understanding of what M can construct is

based on our understanding of what he calls the "purely mathematical use"

of mathematical possibility. But as we learn in reading the above passage,

Parsons thinks this purely mathematical use of mathematical possibility

does not Involve intuition. It seems to me, therefore, that Parsons is

committed to the view that our understanding of what M can construct is

not intuitive. But Parsons thinks our knowledge that any stroke string

inscription can be extended is based on our understanding of what M carr

construct. Therefore, I do not see how he can fail to conclude that our

knowledge that it is mathematically possible to extend any stroke string

inscription is not intuitive. Furthermore, by Interpreting the modality in

question as mathematical possibility, it seems to me that Parsons has

begged the question of how we know any stroke string inscription can be

extended. If we assume that there is a Turing machine M which can

construct a stroke string of any finite length, then we have, in effect,

assumed that arithmetic has a model, one consisting of an w-sequence of

stroke strings which can be constructed, as it were, by M.27

27 It therefore seems to me that the circularity to which Parsons alludes
in the passage with which I began (3ii) is more serious than he thinks.
Parsons writes:

The question of circularity raised above does seem to me a
serious matter. But it does not, it should be clear, tell
directly against the intelligibility of notions of 'in principle'
possibility of the kind we have been considering, unless the
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(3111). One way to review the problems I find in Parsons's arguments is

to look at his summary of how he thinks we know any stroke string can be

extended. He writes:

I think the matter is thus: we have a structure of perception,
a 'form of intuition' if you will, which has the essential
feature of Erouwer's two-one-ness, that however the idea of
'adding one more' is interpreted, we still have an Instance of
the same structure. But to see the possibility of adding one
more, it Is only the general structure that we use, and not the
specific fact that what we have before us was obtained by
iterated additions of one more. This is shown by the fact that
in the same sense in which a new stroke string can be added
to any string of strokes, it can be added to any bounded
geometric configuration (Parsons [31 p.158).

How are we to unpack this? According to Parsons, we have a structure of

perception, a "form of intuition" if you will, which has the essential

feature that however "adding one more" is interpreted, we still have an

Instance of the same structure.2 8 I take it that one example of a

theory of the mind that is being used is supposed to be part of
a 'first philosophy', prior to mathematics and science
(Parsons [71 p.225).

Insofar as I understand it, I find this response unsatisfying. Parsons
claims the circularity In his account would be objectionable, and his
conception of mathematical possibility unintelligible, only if we first
tried to form a theory of the mind's capabilities independently of, or prior
to, mathematics. I doubt that we could formulate a useful theory of the
mind which did not somehow presuppose mathematics. But I do not think
the circularity threatens the intelligibility of Parsons's conception of
mathematical possibility in the way he thinks. Rather, the circularity
shows that in trying to explain how we know every stroke string has a
successor, an appeal to intuition has no explanatory power.

28 I set aside the reference to Brouwer. Although I briefly discuss
Brouwer's conception of two-one-ness in my chapter on traditional
intuitionism, I find It to be an opaque and unhelpful notion.
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structured perception is our seeing the underlined array of ink Theaetetus

as a word token. (I also take it that what Parsons thinks structures the

reader's perception In this way is the reader's possession of the relevant

concept(s).2 9) Earlier, I suggested that Parsons thinks pure objects can be

construed as forms which quasi concrete objects must take In order to

represent those pure objects. Following this suggestion, I read Parsons as

claiming that our concept of, say, the pure number series yields a form of

intuition which structures our perceptions in such a way that we are able

to perceive or intuit objects as representations of the pure numbers. Thus,

when Parsons claims that this form of intuition has the essential feature

that however we interpret "adding one more", we still have an instance of

the same structure, I take him to mean that, for example, we possess

those concepts which enables us to see /// and //// as instances of the

same structure.

Parsons continues: "to see the possibility of adding one more, it is only

the general structure that we use". Parsons writes in reference to this

passage that: "We can call the possibility In question mathematical

possibility".3 0 Therefore, if our understanding of mathematical possibility

does come from our having the form of intuition of the pure number series,

it seems to me that we know any stroke string has a successor only

becbuse we know prior to any intuition that the number series is

Infinite. 3 1 To continue with the present example, the general structure of

29 See Persons [3] pp.154,162.

30 Parsons [3] p.158.

31 It may be that like Kent, Persons thinks we can acquire insight into our
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a stroke string is that of a stroke string of any length. Following Parsons,

we may represent this stroke string as "/.../". I therefore read Parsons as

claiming that to see the mathematical possibility of adding an additional

stroke to any stroke string inscription, it is only the general structure /.../

that we use. But, no surprise, this is the claim with which we began our

investigation at the beginning of section 3. (Recall that Parsons writes:

"We can say that every number has a successor because given an

inscription of the form /.../ we can add another / to it".) Yet if the

arguments I presented in sections (31) and (31i) are correct, Parsons

argument that we know any inscription can be extended involves either

question-begging assumptions about how we know any inscription can be

extended, or else does not involve intuition.

To sum up: Parsons cannot show that the number of strokes which make

up the exemplar inscription is irrelevant to the question of whether that

Inscription can be extended without making some question-begging

assumption, or without making the argument non.-intuitive, or both. I

conclude, therefore, that his UG argument for showing that every stroke

string has a successor fails. Finally, nothing in the arguments I use to

reach this conclusion is unique to stroke strings; the situation would be

the same for any other series of quasi concrete objects. I conclude,

therefore, that our knowledge that there is a model for arithmetic is not

forms of intuition by considering the content of our empirical intuitions.
(See, e.g., Kant [11 A20/B34ff.) It may be the case that we learn various
truths about the numbers by considering representations of them. But if
the arguments I present here are correct, our knowledge that there is an
infinite number of numbers cannot be intuitive. I suspect a similar problem
faces Kant's view.
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intuitive. Intuition does not provide a route to the numbers.
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Appendix A: Resnik's Structuralism.

Recently, Michael Resnik has offered an account of the natural numbers

which in certain respects is quite similar to Parsons's and which I think

runs into some of the same sorts of difficulties. Resnik writes:

In mathematics, I claim, we do not have objects with an
"internal" composition arranged in structures, we have only
structures. The objects of mathematics, that is, the entities
which our mathematical constants and quantifiers denote, are
structureless points or positions in structures (Resnik [ll
p.530).

For example, Resnik thinks "4" refers to the fourth position in the

structure of the positive whole numbers. He thinks we know about these

structures, or "patterns", as he sometimes calls them, through our

perception or imagining, or, I suppose, intuition, of objects which form

structures isomorphic to (perhaps only some segment of) *he wholly

abstract structure which they instantiate. So, for example, Resnik claims

that 10 puppies in a litter instantlates the first 10 positions In the

structure of the positive whole numbers. 3 2

The obvious question to ask here is similar to that asked of Parsons:

How does Resnik think we know that the structure of the number series is

infinite? According to Resnik:

Infinite patterns are first thought of, I would suggest, by
thinking of finite patterns as indefinitely extended (Resnik

32 Resnik (11 pp.532-33. Note the similarity between Resnik's wholly
abstract structureless points and Parsons's pure numbers. Note also that
they both believe that we know about these wholly abstract objects
through our contact with their instantiations.
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[1] p.53 1).

As an explanation of how we know a finite series of objects can always be

extended, Resnik suggests an analogy with how we think of music. He

writes:

[...] knowing that there is no greatest natural number may be
like knowing that given a song in which a measure is
repeated, say, twice, there is (or could be) another in which
it is repeated three times (Resnik [11 p.531).

Here I think Resnik runs into trouble. How are we to understand the claim

that any musical phrase can be indefinitely iterated? Resnik agrees that

the modality in this claim cannot be any kind of physical possibility. He

writes:

[...] the epistemology of mathematics is no more (or not much
more) mysterious than the epistemologies of linguistics and
music. Like mathematics, they begin with experience,
abstract from it and arrive at the unexperienced (and,
perhaps, like mathematics, even the unexperientable) (Resnik
[1] p.53 1).

When Resnik writes that this reasoning takes us into the
t unexperientable", I take it he is committed to the view that this reasoning

takes us beyond what is physically possible, even in principle. But at this

point the analogy with music breaks down. A musical phrase considered

independently of how it might be acoustically realized is simply a set of

logical or mathematical relations. I do not see, therefore, how thinking of

the iteration of a musical phrase is supposed to aid in our thinking of how

the number series can be indefinitely extended, since to think of music In

this way Is to think mathematically. Therefore, I do not see how we could

interpret the modality in Resnik's claim that a musical phrase can be
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indefinitely iterated as other than mathematical possibility. But, as we

have seen, we must know what is mathematically possible in order to

conclude that every number has a successor or, In this case, that any

musical phrase can be indefinitely iterated. I conclude that our knowledge

that the structure of the natural number series is infinite cannot be based

on our perception or imagining (or intuition) of objects instantiating some

finite segment of that structure in the way Resnik thinks. There is nothing

in experience, after all, which tells us we can always go on. I conclude

that Resnik's account of mathematical epistemology fares no better than

Parsons's.
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Aooendix B: Berkeley and intuition.

As I have noted, Parsons's argument for thinking any stroke string

inscription can be extended is an instance of reasoning by universal

generalization. As is well-known, the UG method of proof is common in

mathematics, and especially so In geometry. Moreover, an appeal to

something like intuition can be found in several philosophers' accounts of

how we establish the truth of a mathematical statement using UG. In this

section I examine how something very much like intuition features in

Berkeley's account of geometric knowledge.

Consider Berkeley's strategy for showing that the sum of the interior

angles of any triangle equals the sum of two right angles. Berkeley writes:

[...] though the idea I have in view whilst I make the
demonstration be, for instance that of an isosceles
rectilinear triangle whose sides are of a determinate length,
I may nevertheless be certain it extends to all other
rectilinear triangles, of what sort or bigness soever. And that
because neither the right angle, nor the equality, nor
determinate length of the sides are at all concerned in the
demonstration. It is true the diagram I have in view includes
all these particulars; but then there is not the least mention
made of them in the proof of the proposition (Berkeley [11
p.54).

As Berkeley observes, one way to show that every triangle has the

aforementioned property would be to examine a "demonstration" (i.e., a

physically-realized instance) of every particular triangle. But since we

cannot examine an infinite number of triangles, Berkeley suggests we

prove that all triangles have the property that the sum of their interior

angles equals two right angles by first proving that a particular triangle
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ABC has that property. Then, by showing that ABC's individuating

properties - the length of its sides and magnitude of its angles - play no

essential role in the proof, we may conclude that ABC can represent any

triangle. It follows by UG that all triangles have the property that the sum

of their interior angles equals the sum of two right angles.

The proof that the sum of the interior angles of a Euclidian triangle

equals two right angles is given by Euclid in the following passage:

Let ABC be a triangle, and let one side of it BC be produced to
D; I say that the exterior angle ACD is equal to the two
interior and opposite angles CAB, ABC, and the three interior
angles of the triangle are equal to two right angles. For let CE
be drawn through the point C parallel to the straight line AB.
[1.311 Then, since AB is parallel to CE, and AC has fallen upon
them, the alternate angles BAC, ACE are equal to one another.
[1.291 Again, since AB is parallel to CE, and the straight line
BD has fallen upon them, the exterior angle ECD is equal to
the interior and opposite angle ABC. But the angle ACE was
also proved equal to the angle BAC; therefore the whole angle
ACD is equal to the two interior and opposite angles BAC,
ABC. Let the angle ACB be added to each; therefore the angles
ACD, ACB are equal to the three angles ABC, BCA, CAB. But the
angles ABC, BCA, CAB are also equal to two right angles.
Therefore, etc. Q.E.D. (Euclid [1] 1.32).

By way of illustration, the following inscription may serve as a verifying

instance of Euclid's proof:

A E

B C D

Following Parsons, it seems best to think of the above inscription of ABC

as a token of a triangle-type. Thus, in perceiving the above inscription in
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this way, It may be claimed that we Intuit triangle-type ABC. (Nothing

hangs on the terminological issue of what we call this phenomena.) So

again, the relavant UG argument goes as follows. We see that Euclid's proof

involves no essential reference to the length of triangle ABC's sides or to

the magnitude of its angles. We conclude, therefore, that the above

inscription of triangle ABC could represent any stroke string. We

generalize, concluding that all triangles have the property that the sum of

their Interior angles equals two right angles. It might thus be claimed that

our knowledge that every triangle has the property that the sum of its

interior angles equals the sum of two right angles is intuitive because it

involves our intuition of triangle ABC in the way just outlined.

As I see it, the problem with this argument is a simple one. An

examination of Euclid's proof shows that the intuition of triangle ABC

plays no essential role in that proof. The drawing of triangle ABC and the

intuition of that triangle type may play a useful heuristic role in our

coming to believe that the proof holds, but that is all It does. I conclude,

therefore, that our knowledge that proposition 1.32 holds for all triangles

is not Intuitive. If Euclidian geometry is truly axiomatic, then our

knowledge that proposition 1.32 holds for all triangles follows from the

definitions, axioms and postulates of Euclid's system, and does not involve

the perception, imagining, or Intuition of any triangle.
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3. TRADITIONAL INTUITIONISM

11. In this chapter I consider whether traditional intuitionism might

offer a solution to Benacerraf's dilemma. 1 Recently, Scott Weinstein has

sketched one way such a solution might go:

[...l the intuitionists identify the truth of a mathematical
statement, A, with our possession of a construction, &, which
is a proof of the statement A. This latter statement, that the
construction . is a proof of A, involves no logical operations
and is moreover the application [of] a decidable property to a
given mathematical construction. Hence, this statement does
not itself require a non-standard semantical interpretation
and, it is hoped, can be understood along the lines of
statements like "The liberty bell is made out of brass"', or
perhaps, "The sensation in my right toe is a pain." The idea is
just that the intended intuitionistic interpretation of a
mathematical language reduces the truth of any sentence of
that language to the truth of an atomic sentence which is the
application of a decidable predicate to a term and this latter
sentence can be understood as having an ordinary referential
Interpretation. In addition, the intuitionist view makes it
clear how we come to know the truth of statements of
mathematics. We come to know a statement by constructing a
proof of it and we know that a construction is a proof of a
statement since the property of being such a proof is
decidable (Weinstein [11 pp.268-69).

I divide this chapter into two sections and an appendix. In the first section

I develop Weinstein's sketch, showing why the intuitionists identify the

1 I consider Brouwer, Heyting and Troelstra to be representative
intuitionists. I have added the qualification "traditional" because I do not
wish to consider intuitionists such as Dummett's antirealist at this time.
As we shall see in chapter 4, the philosophical foundations of antirealism
differ significantly from the philosophical foundations of traditional
intultionism.
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truth of a mathematical statement with our ability to undergo a mental

mathematical process. In section 2 I show that this account of

mathematical truth is circular, and I argue that the only apparent way of

avoiding this circularity commits the intuitionists to a version of

mathematical finitism. I conclude with a brief appendix on Brouwer's

conception of the natural numbers.

I1i. In brief, the solution Weinstein outlines is this: Any mathematical

statement A is intuitionistically true iff a corresponding statement of the

form "Construction c is a proof of A" is true. The statement "Construction

£ is a proof of A" is to be understood in the standard referential way; that

is, it is true Iff the mathematical construction c is a proof of A. We know

about these constructions because, as we shall see, they are objects of our

own experience. We know whether a construction g proves A because it is

assumed that "is a proof of" is, in principle, a decidable relation.

There is a difficulty with Weinstein's formulation of when

"Construction £ is a proof of statement A" is intultionistically true which

it will be useful to address before proceeding. Weinstein writes that

"Construction n is a proof of A" is intuitionistically true just in case wn

possess a construction g which proves A. Yet this requirement that A is

true just in case we possess a proof of A surely is too strong. If A is true

just in case we possess a proof of A, then unproven mathematical

statements are not true.2 Suppose, for example, that no one has ever

2 Which is not to say that the intuitionist thinks that the statement is
false. Recall that, according to the intuitionists, a statement A Is false
just in case we have a proof that A Is not provable.
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proven that 31+6=37. (Since mankind has carried out only a finite number

of proofs, many such examples exist, although they no doubt involve much

larger numbers.) If "31+6=37" is true just in case we possess a proof that

31+6=37, It follows that "31+6=37" is not true. Moreover, suppose someone

proves that 31+6=37, but then loses their proof or forgets it. If "31+6=37"

is true just in case we possess a proof, we can only conclude that

"31+6=37" was once true, but no longer is.

The claim that a mathematical statement A is true just in case we

possess a proof of A commits the intuitionist not only to the view that A

is true only during that time when we possess a proof of A, but also to the

view that A is true only for the possessor of that proof. Suppose a

Robinson Crusoe proves that 31+6=37. If "31+6=37" is true just in case

someone proves that 31+6=37, then, unbeknownst to the rest of us,

"31+6=37" becomes true. If Crusoe dies before he has an opportunity to

communicate his proof to anyone else, "31+6=37" becomes not true again,

all without our knowledge. Therefore, if we identify the truth of a

mathematical statement with possession of a proof of that statement,

what it seems we should say is that "31+6=37" is true for Crusoe but not

for anyone else. Yet it now appears that someone who holds that "31+6=37"

is true just in case we possess a proof that 31+6=37 should hold that

"31+6=37" is true for an individual X just in case X possesses a proof that

31+6=37.

I assume that even the intuitionists should find these relativistic

consequences unacceptable. I take it, therefore, that what the intuitionists

should want to say is: A mathematical statement A is true iff a

52



corresponding statement of the form "Construction c Is a proof of A" is

true, and "Construction j Is a proof of A" is true iff we can carry out an

arithmetical procedure which results in our possessing a construction a

which proves A.3 So, for example, since we have a proof procedure for

addition, the intuitionist may conclude that "31+6=37" is true

Independently of whether anyone actually proves that 31+6=37.

J..1. I now turn to the issue of what kind of objects the intuitionists

think mathematical constructions are. According to the intuitionists,

mathematical constructions are those mental processes one goes through

in doing mathematics. 4 A mathematical assertion is both a report that one

has undergone a mental mathematical process and a description of that

mental process, albeit one which is presented at a certain level of

abstraction. So, for example, Heyting writes:

Intuitionistic mathematics consists [...l in mental
constructions; a mathematical theorem expresses a purely
empirical fact, namely the success of a certain construction.
"2+2=3+1" must be read as an abbreviation of the statement "I
have effected the mental constructions indicated by "2+2" and
by "3+ 1" and I have found that they lead to the same result"
(Heyting [11 p.8).

I will present a detailed account of how the intuitionists think we

establish the truth of "2+2=3+1" in the next section. First, however, there

3 Nevertheless, as we shall see, this way of stating the intuitionists'
claim does not resolve all the problems just noted. Also, much depends on
how we interpret the modality In this claim that we sn carry out a
procedure which results In our possessing a proof of A. I discuss this Issue
in section (1vl).

4 See, e.g., Brouwer [1] pp.509-510, Heytlng [1I pp.4,8, Troelstra [I] p.4.
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are four points I wish to note about the intuitionists' account of

mathematical constructions. The first point is that the intuitionists

identify mathematical existence with our ability to effect a construction.

Heyting writes:

In the study of mental mathematical constructions 'to exist'
must be synonymous with 'to be constructed'" (Heyting [11
p.2).

So, for example, the intuitionists think the number 4 exists just in case it

can be constructed. (Again, I will show how the intuitionists think this is

done in the next section.) Second, the intuitionists are thereby committed

to the view that mathematical truths are both empirical and contingent.

They are empirical in the sense noted by Heyting; they report the success

of a mental construction. They are contingent insofar as it is a contingent

matter that there are any beings who possess the mental processes

required for doing mathematics. 5

Third, although the intuitionists think our mathematical terms refer

ultimately to our mental processes, it had better be the case that they

think our mathematical terms refer to the structure, and not the content

of these mental processes. As Frege pointed out at the very beginning of

the Grundlagen, if our mathematical terms referred to the content of our

mental mathematical processes, then, because the content of our

Individual experiences differ, it would follow that our mathematical

expressions would not have common content, and mathematical

5 Thus one way the intuitionists' account of mathematical truth remains
relativistic Is that the existence of mathematical truths depends on the
existence of mathematicians.
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communication would be impossible. 6 The situation, I think, would be even

worse. If our mathematical terms refer to the content of our mental

mathematical processes, then what I mean when I mentally add oranges

would be different then what I mean when I mentally add apples. In this

case mathematics loses its generality; I would need one mathematics for

adding apples, another for adding oranges, a third for adding apples and

oranges, and so forth.

The fourth point involves a clarification in Heyting's claim about when

a mathematical statement is true similar to the clarification I made in

section (liM). If a mathematical statement A is true just in case someone

has undergone a mental mathematical process, then unproven mathematical

statements are not true, etc. Therefore, it had better be the case that the

intuitionists think a mathematical statement A is true iff our mental

mathematical processes are such that someone could undergo that mental

process £ which constitutes a proof of A.7

liy. Time now for some examples. In this section I show how the

intultionists think we construct the natural numbers and how they think

we establish the truth of statements such as "2+2=3+1".

The intuitionists think of the natural numbers themselves as

constructions. One of the more straightforward synopses of how the

6 Frege [1] p.I. See also appendix A.

7 Again, I discuss how we are to understand the modality in this claim in
section (I vi).
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intuitionists think the numbers are constructed is given by Troelstra: 8

Natural numbers are conceived as constructions of a very
simple kind, obtained by juxtaposing units. The basis of this
concept is the observation that we can conceive a unit, then
another unit, look upon this two-ity (pair) as a new entity,
and repeat this process as often as we like. In a picture

I 11 1 I 11 I1, ....

These very simple constructions are so to speak th:""t own
proof: for the concept of a certain natural num ' ,. given by
the number itself, because its mode of ger.z a ton Is at the
same time "proof" that it has been obtained by this process of
generation of natural numbers (Troelstra [1] p. 12).

Here we see that the intuitionists think of a number n as the mental

process one goes through in constructing the numbers from 1 to a. So, for

example, consider how the intuitionists think I construct the number 3.

Following Troelstra, I first conceive of a single unit which I represent as

/. I then conceive of a new unit which I juxtapose with the original unit;

hence //. I now look at // as a single unit which I represent as (//). I

repeat the process of juxtaposing a new unit with the single unit so that I

now have (//)/. Disregarding the various groupings, I now have a

representation /// of the mental process I went through in constructing

the number 3. According to the intuitionists, I now have a proof that the

number 3 exists.9

8 This method of thinking of how the numbers are constructed originates
with Brouwer.
See appendix A.

9 Note the strong metaphysical claim being made here. According to the
intultlonists, nothing is a natural number unless it is constructed in the
way just outlined. Moreover, each number contains within itself sufficient
structure to identify it as a number and to identify its place in the number
series. (By way of contrast, Persons and Resnik think of the numbers as
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In order to prove that 2+2=3+1, I first construct two instances of the

number 2, one of the number 3, and one of the number 1 in similar fashion.

Thus:

I show that 2+2=3+1 by establishing a 1-1 correspondence between the

strokes on the left hand side of the comma wtth those on the right hand

side.10 In establishing this correspondence, I complete an

intuitionistically acceptable proof that 2+2=3+1.

We are now in better position to see why the intuitionists think

"31+6=37" is true even though it is assumed no one has proven that

31+6=37. The intuitionists believe that "31+6=37" is true because our

mental mathematical processes include a constructive procedure for

addition (the one just outlined for 2+2=3+ 1), and because they think

someone could carry out that procedure for 31+6=37. That is, they believe

that someone could construct a series of 31 strokes (or dots, or whatever),

possessing no internal structure, but existing only as elements in an w-
sequence.)

I take It that the intuitionists think of sets in a similar way; namely,
as the mental processes one goes through in conceiving of Individuals as
collections of individuals. For example, I take it the intuitionists think of
(a,b) as the mental process one goes through In conceiving of a and B as a
single collection, and that nothing will count as a set for the intuitionist
unless it is constructible in this way.

10 To say with the intuitionists that there is a 1-1 correspondence
between the strokes on the left hand side of the comma and the strokes on
the right hand side Is to say that a 1-1 correspondence sin be effected
between them. Again, I consider the question of how we are to interpret
this modality in the next section.
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another series of 6 strokes, and a third of 37 strokes, and then establish a

1-1 correspondence between the first two series taken as a single

grouping and the third.I 1I

.ls. I now turn to the question of whether the intuitionists think our

mathematical language captures the entire mathematical content of those

mental processes which they believe constitute our mathematics. I raise

this question only because a review of their writings suggests that they

think something essential to mathematics cannot be represented

linguistically. Brouwer, for example, writes:

L...] the exactness of mathematics [...] cannot be secured by
linguistic means (Brouwer [21 p.443).

Similarly, Heyting writes: 12

[...] we can never be mathematically sure that the formal
system expresses correctly our mathematical thoughts
(Heyting [1] p.4).

11 According to the intuitionists, therefore, we may think of our everyday
method of showing that 31+6=37; e.g.,

31

37

as an abbreviation of the intuitionistically complete proof given in the
manner just outlined. The intuitionists regard this abbreviation as
legitimate because we know what is involved in carrying out an
intultlonistically complete proof, and we know that we could carry out the
complete proof if we so desired.

12 It may be argued that in this passage Heyting is simply voicing the
intuitionists' traditional mistrust of formal systems. Yet it seems to me
that the reason the intuitionists mistrust formal systems is that they
think there is something formal systems cannot represent.
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What we would like to know is what It is about mathematics that the

intuitionists think cannot be represented linguistically. It must be

something they regard as essential, since otherwise it could be simply

ignored. Unfortunately, of course, they cannot say what they think our

language cannot represent. 13

The view that our language cannot capture the entire mathematical

content of our mental mathematical processes commits the intuitionist to

a peculiar and, I think, untenable conception of language. Consider, for

example, the claim Troelstra makes in the following passage:

The language of mathematics is an attempt (necessarily
nearly always inadequate) to describe [...) mental
constructions. Talking about intuitionistic mathematics is
therefore a matter of suggesting analogous mental
constructions to other people. Similarity between the thought
processes of various human individuals makes such
communication possible (Troelstre [I] p.4).

Here Troelstra claims that a mathematical assertion (e.g., "2+3=5") is an

attempt to describe a particular mathematical construction. Yet because

he also thinks our mathematical language does not capture the entire

mathematical content of our mentals mathematical processes, the most a

mathematical assertion can dr, is to serve as a kind of report to aid other

13 According to Brouwer, what is left out has something to do with our
knowledge of the "exactness" of mathematics. Yet it is an interesting
question how Brouwer could now know that his mathematical experiences
are exact if he cannot somehow represent that exactness to himself. At
this point one may wonder whether the intuitionists think of mathematics
as some sort of activity that goes on independently of thought as well as
of language. If they do, it is an interesting question what they think that
activity is. If they do not, however, they are committed to there being a
division between what we can think and what we can say.
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others in going through the relevant mental mathematical processes

themselves.

It seems to me that Troelstra's conception of language leads to a

serious difficulty. Suppose, for example, that I have a proof of a theorem T

that I wish to tell you about. If I cannot represent the entire mathematical

content of my proof, however, it follows that I cannot communicate the

entire mathematical content of my proof to you. The best I can do is

suggest to you how the proof might go. But if something essential to my

proof has been left out of my report, there is no way for you to be sure

what it is I am suggesting you prove, or how that proof might go. Nor is

there any way for me to know whether you have carried out the proof I

suggested to you. In this situation it seems to me that genuine

mathematical communication becomes problematic, if not impossible. Yet

the situation is even worse. If our language does not capture the entire

mathematical content of our mental mathematical processes, then we as

individuals cannot have coherent mathematical experiences across time.

Suppose I have committed my proof of T to paper. If I was not sure that

this written report captured the entire mathematical content of my proof,

then I could not now be sure that I had in fact proven T. I am, in effect, left

in the position of not knowing whether T Is true at any time other than the

time I am going through the mental process which the intuitionists think

constitutes my proof of T. It seems to me, therefore, that the intuitionist

who believes that language does not capture the full mathematical content

of our mental mathematical experiences is committed to a kind of ultra-

solipsism about mathematical knowledge. He can claim to know only that

mathematics which is immediately and introspectively present to him in
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the form of a mental mathematical experience he his having at a particular

time. 14

This and related problems have led most intuitionists to accept the

view that language does capture the entire mathematical content of our

menial mathematical experiences. Heyting, for example, writes:

If a natural number were nothing but the result of a mental
construction, it would not subsist after the act of its
construction and it would be impossible to compare it with
another natural number, constructed at another time and
place. It is clear that we cannot solve this problem if we
cling to the idea that mathematics is purely mental. In
reality we fix a natural number, x say, by means of a material
representation; to every entity in the construction of x we
associate, e.g. a dot on paper. This enables us to compare by
simple inspection natural numbers which were constructed at
different times (Heyting [1) p. 15).

For the purposes of this paper, I will assume that the intuitionist position

is as Heyting outlines it here. That is, I will assume that the intuitionists

believe our mathematical terms refer ultimately to extra-linguistic

mental processes, but that they also believe our mathematical language

captures the complete mathematical content of these processes. 15

14 Brouwer seems to have accepted this conclusion.

15 Note, however, that there now appears to be a tension in Heyting's
account of language. In the passage just quoted, Heytlng accepts the view
that language captures the complete mathematical content of our mental
mathematical experiences. Yet in the passage quoted previously (which is
from the same work), Heytlng claims that language does not convey
genuine mathematical information. A similar tension exists in Troelstra's
work. If Brouwer avoids this problem, It is only because he accepts some
of the more troublesome consequences discJssed above.
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i. t. I now turn to the question of how the intuitionists understand the

modality In their claim that a mathematical statement A is true just in

case we ran undergo that mental process which constitutes a proof of A. It

seems to me that the philosophical appeal of traditional intuitionism (such

as it Is) depends on its promise of a naturalized epistemology for

mathematics. But such an epistemology is possible only if we identify our

mental mathematical processes with our physically realized psychological

processes. Therefore, it seems to me that the intuitionists are committed

to interpreting the modality in their claim that A is true just in case we

ran go through that mental process which constitutes a proof of A as some

kind of physical possibility.16

The intuitionists do not, of course, believe it is possible to go through

every mental mathematical process in practice. They do not, for example,

believe it is physically possible to construct any finite number in practice.

Yet they recognize that they must admit numbers which they cannot

construct in practice into their calculations or find themselves committed

to some version of mathematical finitism. They claim, therefore, that it is

possible to go through any mental mathematical process in principle. For

example, although they recognize that we cannot construct numbers

greater than, say, a In practice, they claim that given sufficient time and

memory, our mental mathematical powers are such that we can construct

them in principle. 17

16 It Is not clear to me that Brouwer would accept this conclusion. Here,
however, I think we have to distinguish between Brouwer's mysticism and
the other intuitionists' more scientifically responsible psychologism. I
discuss this issue further in the appendix.

17 The intuitionists sometimes explain what mathematics they think we
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To summarize thusfar According to the intuitionists, a mathematical

statement A is true iff a statement of the form "Construction £ Is a proof

of A" Is true. "Construction g is a proof of A" is true iff we can, In

principle, undergo that (physically realizable) mental process , which

constitutes a proof of A We know about these constructions because they

describe our (possible) mental processes, albeit at a certain level of

abstraction.

21. I now present my objections to the view just summarized. As I see

it, the intuitionists' account of mathematical truth is circular. One simple

way of seeing this circularity is the following. Suppose a mathematical

statement A Is true iff one can, in principle, undergo a mental process.

Suppose, moreover, that two individuals X and Y each go through a mental

mathematical process but get A and not-A respectively. The problem is

this: If a mathematical statement is true just in case one undergoes a

mental process, it follows that X's and Y's results are each true, even

though they are mutually inconsistent. X's results are true relative to the

can do in principle using the device of the ideal mathematician; that is, the
mathematician unencumbered by limitations of time and memory. (See, e.g.,
Brouwer [21 p.443, Troelstra [I] pp.4,95ff.) It is important to note that if
the ideal mathematician is to be used to explain what mathematics we can
do in principle, its powers must be linked to what we can do In practice. I
think it is therefore questionable whether the intuitionists can include
Increased memory among the ideal mathematician's powers. It may be the
case that an increased memory capacity would involve a change in our
psUchologlcal structures such that the structure of our mental
mathematical powers would also change. But an Ideal mathematician with
different mental mathematical processes cannot be used to explain what
mathematics we can do with our mental mathematical processes, even in
principle.
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mental process he went through in carrying out his proof, and Y's results

are true relative to the mental process he went through in carrying out his

proof. The situation is, in fact, worse. Suppose X goes through a mental

process at time t(1) and another mental process at time t(2), but gets A at

t(1) and not-A at t(2). Again, if a mathematical statement is true just in

case one can go through a mental process, then both A and no•-A are true

for X. Thus, an account of mathematical truth which holds simply that a
1

mathematical statement Is true iff we can go through a mental process is

clearly inadequate. What the account lacks is any notion of mathematical

normativity. Therefore, what the intuitionist had better say is that a

mathematical statement A is true iff one can, in principle, undergo ibithat

mental process which constitutes a proof of A. But now the intuitionist

owes an account of what constitutes the right mental process, and it is

surely a necessary (if not the sole) criterion for a mental mathematical

process being the right mental mathematical process that it yields the

right mathematics. (It yields 2+3=5 and not 2+3=6, for example.) It seems

to me, therefore, that the intuitionists' account of what makes A true

cannot rule out the unacceptable possibility that inconsistent

mathematical statements are each true unless they build into their

account of when A is true a definition of mental process which they can't

explain without recourse to mathematics. Therefore, I conclude, the

intuitionists' account of mathematical truth is circular.18

18 I recognize that there would be no circularity if the intultionist had a
workable conception of proof which did not have a notion of truth built
into it. I claim, however, that they have no such conception. The obvious
appeal to proof in a formal system is not open to the intuitionists because,
as we have seen, they believe mathematics cannot be adequately
represented in a formal system. The intuitionists could avoid the
inconsistency of finding both A and not-A true by claiming that the
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211. I now consider three likely responses to the argument just

presented. The first is this. Let us assume that our mathematical

statements are true by virtue of our (possible) mental mathematical

processes. Moreover, following Troelstra, let us assume that as humans we

share common mental processes. 19 It follows that a check on whether one

has undergone the right mental process in carrying out a proof is that one's

mathematical results are in accordance with the results of the community

of mathematicians. 20

Even if we accept the claim that what makes our mathematical

statements true is our mental mathematical processes, there are (at

meaning of negation is other then the classical one. Yet the resulting
mathematics would surely be too trivial to take seriously. (I owe this last
point to Bob Stalnaker.)

The influence of Fregc's anti-empiricist arguments should be apparent
here. Recall that the intuitionists think our mathematical theorems
express purely empirical facts. (See section (liii).) But Frege points out
that our evaluation of empirical facts often presupposes mathematics. For
example, Frege notes that it is because we know that 5+2=7 that we know
that when we add 2 units of liquid to 5 other units of another but do not
get the expected total that we can assume that some other process such as
a chemical reaction is at work (Frege [11 9). So, Just as Frege made it
clear that mathematics is not about pebbles, I contend that it is not about
bits of mental "stuff" either.

19 By claiming that X and Y share common mental processes, I assume that
Troelstra means that they share a common type of mental process.

20 Note that this way of establishing how we know our mathematical
statements are true conflicts with the intuitionists' claim that language
can only imperfectly represent the content of our mental mathematical
experiences. As I have noted, if we cannot adequately represent our our
mental mathematical experiences linguistically, we cannot check to see if
others have had the same experience.
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least) two rather obvious difficulties with the claim that we know we

have the right mathematical results when our results accord with the

results of the community of mathematicians. First, mathematical trul.i

cannot be a matter of consensus. Suppose, for example, that part of the

population ingests a drug which alters their mental processes In such a

way that their mathematics differs from those who do not ingest the drug.

Not only would we then have two populations with a mutually inconsistent

mathematics (which is bad enough), but we would also have no way of

knowing which population we should check our results against. (We can't,

of course, choose the population whose mathematics yields the "right"

results without falling into a circle.)

The second difficulty is somewhat more involved. In order for the

intuitionists to claim that two individuals X and Y share common mental

mathematical processes, they must know that there is an isomorphism

obtaining between X's and Y's mental mathematical processes. But in order

to know that there Is this isomorphism, there must be a construction, a

mental process, which establishes this Isomorphism. Yet this mental

process must go on in someone's mind (Where else?), and now the

intuitionist is caught in a regress. Suppose, for example, that X and Y agree

that "2+3=5" is true. What they need to know is whether they mean the

same thing by "2+3=5". As intuitionists, they agree that they mean the

same thing if they share common mental processes, and so they agree that

they mean the same thing if there is an Isomorphism obtaining between,

say, the mental process c which X went through in proving 2+3=5 and the

mental process g which V went through in proving 2+3=5. For purposes of

illustration, let us suppose that X proved that 2+3=5 by establishing a 1-1
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correspondence between

In the way outlined in section (liv), and that V proved that 2+3=5 by

establishing a 1-1 correspondence between

in the same way. Now, X establishes this isomorphism between £ and d by

going through a new mental process a' which establishes a 1-1

correspondence between the "/" symbols and the "*" symbols. Similarly, Y

establishes the isomorphism by going through a new mental process d'

which also establishes a 1-1 correspondence between the "/" and "'"

symbols. They conclude that there is an isomorphism obtaining between a

and d. But no ground has been gained. What they need to know now is

whether they mean the same thing by "There is an isomorphism obtaining

between c and d". Clearly, X and Y will enter into a regress by attempting

to answer this question by going through new mental processes a" and t"

which purport to establish an isomorphism between c' and d'.

The same problem arises if we consider the individual checking his own

computations. In order for X to know that the mental process Q he goes

through in carrying out a proof at one time is the same mental process as

the mental process A he goes through in carrying out the proof at a later

time, X must establish an isomorphism between £ and d. But what

establishes this isomorphism cannot be a mental process. Suppose it is

thought to be a mental process a. What then establishes the isomorphism

between a and a on the one hand and d and a on the other? If the answer is
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another mental process, then the same regress has set in.2 1

I conclude that the intultionists' attempt to identify mathematics with

mental processes leaves them with no intuitionistically acceptable

grounds for thinking there is an isomorphism obtaining between X's and Y's

mental mathematical processes, and therefore it leaves them with no

intuitionistically acceptable grounds for claiming that we know we

21 The reader may notice a similarity between the type of argument I
present here and the one used by Kripke in his account of Wittgenstein's
rule following considerations. (See Kripke [1] ch. 1). As Kripke points out,
the skeptic who argues there is no fact of the matter as to whether by
"plus" I mean what he means by "quus" will not be satisfied by my
producing a rule which I claim to follow and which is incompatible with
his use of "quus". Suppose, to use Kripke's example, I claim that my use of
"plus" to refer to the addition function is governed by a rule that
determines how addition is to be continued in novel cases and which is
incompatible with his use of "quus" (Kripke [I1 pp.15-16). A crude rule
might be: To add x to U: count out x many marbles in one heap, u many in
another; Join the two heaps; count the number in the new common heap.
Yet, as Kripke notes, if the skeptic has his wits about him he will now
question whether by "count" I refer to the act of counting or the act of
quonting.

The reader may also notice a similarity between the argument I present
here and that used by Quine to show that the truths of logic are not
conventional (Quine 111 pp. 103-104). (I do not, of course, mean to claim
that Quine's and Kripke's arguments are at all similar.) Quine showed that
if we set up certain logical conventions in the form of general statements,
we need logic to derive the truths of particular cases from the general
case. But, on pain of regress, the logic used to carry out these derivations
cannot be a matter of convention. If it was, then the convention governing
it would have to be expressed in the form of general statements for which
we would need logic to derive particular cases. But then the logic used to
carry out this derivation cannot be a matter of convention. If it was a
matter of convention, then.... This regress can only be stopped by a logic
which is not a matter of convention. Quine's point is: Logic cannot be a
matter of convention. My point is: Mathematics cannot be a matter of
mental processes. (George Boolos has pointed out to me that this argument
has a much older pedigree. It can be found, for example, In Lewis Carroll's
"What the Tortoise said to Achilles'.)
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undergo the same mental processes in carrying out our proofs.22 The fact

that they typically do make this claim leads me to suspect that they have

smuggled intuitionistically unacceptable assumptions into their

arguments.

The second response to the objection I present in (21) is that the only

essential mental process involved in constructing the numbers is that of

adding new units to previously constructed units.23 Therefore, it might be

argued that anyone able to go through the mental process of adding 1

correctly will have an objective standard against which he can check his

arithmetic proofs; and, furthermore, that he will have at least the same

basic mathematics as anyone else able to add 1 correctly.

It may be the case that anyone able to add 1 correctly will have the

same basic mathematics as anyone else able to add I correctly (at least if

it is assumed in both cases that one can always gg n adding 1 correctly).

Yet how do we know when we have added one correctlu? 2 4 If the

intuitionists' criterion for adding 1 correctly is that one gets 1,2,3,... then

22 1 do not wish to question the view that as humans we share common
psychological structures. What my arguments are meant to show is that
mathematics cannot be explained in terms of psychology, not that
psychology cannot admit of mathematics. Indeed, I do not see how one
could formulate a useful psychological theory which did not somehow
presuppose mathematics.

23 See section (liv).

24 This, of course, is the problem which troubles Wittgenstein. How do we
know, he asks, that we don't continue the series 1,2,3,4,... by
1002,1004,1006...? See the rule following considerations in Wlttgenstein
[11] p185-219.
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It seems to me the intuitionist Is caught In the same circle noted in

section (21). For example, the intuitionist who claims that "2+1=3" is true

Just in case we can go through that mental mathematical process a which

yields 3 when 1 Is added to 2 knows that £ is the right mental process only

because he knows that "2+1=3" is true.25

The third response is this. Suppose we assume that what makes our

mathematical statements true is our mental mathematical processes.

Furthermore, suppose we assume that our mathematical language captures

the complete mathematical content of our mental mathematical

experiences.26 Then, because we share a common language, it follows that

we share common mental processes. The problem with this response,

however, is It seeks to explain the conclusion that we share common

mental processes by assuming that we share a common language.

Therefore, someone taking this line of argument cannot explain our sharing

a common language In terms of our sharing common mental processes.

21i1. In this section I present one reason why I think the traditional

intuitionist is committed to some form of mathematical finitism. Again,

let us suppose that what makes our mathematical statements true is the

structure of our mental mathematical processes. So, for example, let us

assume that "2+*3=5" reports a brute fact about how these processes work.

Furthermore, let us suppose we know that "2+3=5" is true because, given

25 As an example of how this problem is passed over by the intuitionists,
recall that Troelstra's account of how we construct the numbers simply
assumes that we know how to add one correctly.

26 See section (liii).
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the structure of these mental processes, we cannot conceive of 3+2 not

equalling 5.27 I will call this account of mathematical truth and

knowledge the "brute" theory. I claim that the intuitionist who wishes to

avoid the circle noted in section (21) is a brute theorist.

One problem with the brute theory is that the only mathematical

statements the brute theorist knows to be true are those statements the

mental mathematical processes for which we have actually undergone. The

theory leaves the brute theorist with no intuitionistically acceptable

grounds for saying what may be the case in counterfactual situations such

as those involved in attempting to prove that 31+6=37. (If the brute

theorist claims we will find that "31+6=37" is true, then he has fallen into

the circle noted in (21).) But since we have undergone only finitely many

mental mathematical processes, the brute theorist cannot claim to know

that there are infinitely many mathematical truths. In effect, the brute

theorist is committed to the view that a mathematical statement A is true

just In case we can, in practice, go through that mental process £ which

constitutes a proof of A.

The reader who agrees with me thusfar may see what is coming. If the

argument I presented in sections (21) and (211) are correct, then the

intuitionist has no intuitionistically acceptable grounds for thinking we

share common mental mathematical processes, and so has no

intultlonistlcally acceptable grounds for claiming that others know the

27 Thus, although the intuitionists believe it is a contingent matter that
there are any mathematical truths because it is a contingent matter that
there are any mathematicians, it is consistent with their view to argue
that what mathematical truths there are there are necessarily.
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mathematics he knows. Moreover, if the argument I present in this section

is correct, the intuitionist has no intuitionistically acceptable grounds for

thinking there are any mathematical truths other than those he has

actually proven. It seems to me, therefore, that the intuitionist is

committed not only to an extreme form of mathematical subjectivism, but

he is committed to an extreme form of mathematical finitism as well.

2t. As I noted in section (21), the intuitionists' account of

mathematical truth lacks a viable conception of mathematical normativity.

One reason I think it does Is that it is unclear what the intuitionists'

notion of mathematical objectivlty Is. I recognize that it Is difficult to

give an adequate account of objectivity. Yet I think it will be useful to

consider what the intuitionists' account might be.

Perhaps the least controversial account of objectivity comes from the

natural sciences where, roughly, what is objective is that which is

independent of us, and so what is scientifically true is not a matter or

human judgment. If we adopt this account of objectivity for mathematics,

it appears we should claim that what Is objective about mathematics is

independent of us, and therefore what is mathematically true is not a

matter of human judgment. I think this account of mathematical

objectivity is the right one. Nevertheless, it has two consequences which

may be thought objectionable. First, it pushes one naturally In the

direction of platonism with its attendant difficulties. Second, it appears

to beg the question against the intuitionist by defining what Is objective

in terms of what is independent of us.
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I'll set platonism aside for another time.2 8 I do not think, however, that

platonism has been shown to be any more implausible than intuitionism. In

response to the second point, I do not see how an alternative account of

mathematical objectivity might go. I do not think we can equate

mathematical objectivity with what the individual knows, or even with

intersubjective agreement. The individual is often wrong, and "2+3=6" Is

surely false, even if a massive drug ingestion leads us all to believe

otherwise. Neither does it seem right to claim that what is objective is

what we know to be the case under epistemically ideal conditions. I do not

know what more ideal conditions there could be under which we could

determine whether "2+3=5" is rallU true, or that "2+3=6" is ureall false.

Furthermore, even if we accept the view that what makes our

mathematical statements true is the structure of our mental

mathematical processes, we could not identify epistemically ideal

conditions with the proper functioning of those processes. Change those

mental processos by ingesting a drug and what counts as proper

functioning changes as well. (And again, we cannot characterize proper

functioning of a mental process in terms of that process giving us the

right mathematical results without falling into a circle.) I conclude that

the intuitionist owes an account of mathematical objectivity, and I predict

he will not be able to provide an intuitionistically acceptable one.

2i. To conclude: I hope to have shown two things in this chapter. First,

that traditional intuitionism does not offer a satisfactory philosophy of

mathematics, and certainly does not offer a satisfactory solution to

28 I do discuss platonism in chapter 1 and chapter 4, appendix B.
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Benacerraf's dilemma. Second, it seems to me that traditional intuitionism

represents an unsatisfactory halfway point between classical

mathematics and finitism. Perhaps it has enjoyed what success it has had

because there are those who find the foundations of classical mathematics

unsatisfactory and get recognize finitism to be at least as unattractive.2 9

Yet this halfway point Is unsatisfactory for the reason most halfway

points are unsatisfactory; it picks up the worst rather than the best of

both worlds. Intuitionism is mathematically unattractive because it leads

to an unacceptable truncation of mathematics. (So would finitism.) I hope

the arguments I have presented here demonstrate Its philosophical

unacceptability.

Finally, one may question whether there is a version of intuitionism

which is compatible with the central philosophical tenets of traditional

intuitionism and which avoids the difficulties I have presented here. I do

not think there is. The defining characteristic of traditional intuitionism

is its mentalism. Moreover, it is this mentalism which is initially

attractive because it promises an account of mathematical knowledge

consonant with a naturalized epistemology. Abandon this mentalism and

the intuitionist is left without an account of what mathematical objects

are, or how we could have knowledge of them. I conclude that the

traditional intuitionist cannot abandon his mentalism and remain a

traditional intuitionist.30

29 There Is a story to be told about why intuitionlsm has often appeared
attractive. Perhaps, however, this Is a story better suited to the history or
sociology of ideas.

30 As I discuss In the next chapter, intultionlsm without the mentalism
leaves us with something very much like Dummett's antirealism.
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Anpendix A: Brouwer on the natural numbers.

According to Brouwer, we derive the structure of the natural number

series from our observation of how time passes. The most accessible

characterization Brouwer gives of how he thinks this is done is given in

the following passage:

(...] intuitionist mathematics Is an essentially languageless
activity of the mind having its origin In the perception of a
move of time, i.e. of the falling apart of a life moment into
two distinct things, one of which gives way to the other, but
is retained by memory. If the two-ity thus born is divested of
all quality, there remains the empty form of the common
substratum of all two-ities. It is this common substratum,
this empty form, which Is the basic intuition of mathematics
(Brouwer [1) p.510.).

As I understand the view presented in this passage, Brouwer thinks that,

for example, I am aware of thls(1) singular present moment. I am

subsequently aware of ibJS(2) singular present moment which is distinct

from, and succeeds, moment 1, the memory of which I retain. Here what

Brouwer calls a "life moment" (moment 1) has "fallen" into two distinct

parts: moments 1 and 2. Now, while the content of these two moments as I

have experienced them Is subjective, I am supposed to note the irrelevance

of these subjective qualities, disregard them, and thereby extract the

pure, or "empty" form of the move from 1 to 2. Brouwer calls the

awareness of this move from 1 to 2 the "basic Intuition" of mathematics.

The basic intuition is clearly meant to be that of successor. Thus we see

that Brouwer thinks our understanding of successor comes from our
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understanding of how time passes.

Let us assume, for the moment, that Brouwer is correct that what he

calls the "basic intuition" gives us successor. How, then, are we supposed

to derive the potential infinity of the number series? One idea which does

not work is the following: Having observed this(1) moment, and ithi(2)

moment, I then become aware of ibhi(3) moment, and observe that moment

3 is distinct from moments I and 2 which are now seen as a singularity

from which 3 has "fallen away". This process continues through moments

4, 5 and so on, and at some point I conclude that this process can always

go on; that for any moment a there will be a moment n+l which is distinct

from, and succeeds, moment n. A moment's reflection, however, shows that

this conclusion is a bad one. There is nothing in my observation of

moments 1-n which allows me to conclude that there is, or will be, a

moment n+.l. Therefore, our knowledge that there is a potential infinity of

numbers cannot be based on our apprehension of how time passes.

Brouwer thinks we derive the infinity of the number series in another

way. As I understand it, Brouwer thinks our understanding of the basic

intuition (the move from 1 to 2) is derived from our observation of how

time passes. The potential infinity of the number series, however, is based

on what he calls the "unlimited self-unfolding" of this basic intuition.3 1

What Brouwer means by this is anything but clear. What I take him to mean

is that the type of move which the basic intuition represents (i.e.,

successor) can be repeated an unlimited number of times, thereby
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generating the series 1,2,3,...,n,n,.1... . What we want to know, of course, Is

why he thinks this process of adding one can be indefinitely iterated. It

seems to me that the answer to this question lies in how we are to

Interpret the modality in his claim that the basic intuition can be

indefinitely iterated.

I noted in section (Ivl) that the best, and perhaps only way to interpret

the Intultionists' modality is as In principle physical possibility. Yet if the

arguments I presented In section 2 are correct, the intuitionist has no way

of knowing what mathematics is physically possible in principle without

reintroducing mathematics. Moreover, the intuitionist cannot equate what

is mathematically true with what is physically possible in practice

without ending up a finitist. Therefore, as I see it, interpreting the

intuitionists' modality as physical possibility fails. But the view that our

mental mathematical powers do not involve our physical powers leaves the

Intuitionist without any way of tying their account of mathematical

knowledge to a naturalized epistemology.

Equally severe consequences follow if we try to interpret the modality

in any other way. The intultionists' modality cannot be logical possibility

because the intuitionists reject the view that mathematics can be founded

on logic.3 2 Neither can it be some kind of mathematical possibility.33

What the intuitionists think of as mathematically possible Is simply what

mathematics we can do. Therefore, the claim that a mathematical

32 See, e.g., Brouwer [ I p.510.

33 See chapter 2 section (311) for a discussion of mathematical
possibility.
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statement A is true just in case it is mathematically possible to construct

a proof of A is vacuous. I conclude that there is no way of interpreting the

modality In Brouwer's claim which is intuitionistically acceptable, non-

circular, and non-question begging.
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4. DUMMETT'S MATHEMATICAL ANTIREALISM

1. Introduction.

In this chapter I examine Michael Dummett's arguments for

mathematical antirealism, his thesis that the correct account of how we

understand our mathematical language leads to the adoption of a proof-

conditional semantics for that language, and that the adoption of this

proof-conditional semantics leads to the rejection of classical

mathematics in favor of intuitionism.

I divide the chapter into five sections and two appendices. Before I

outline the content of these sections, however, I wish to make two

introductory comments. First, when Dummett concludes that we should

reject classical mathematics in favor of intuitionism, what he means is

that Intuitionistic logic, not classical logic, represents the correct mode

of mathematical reasoning. As I have indicated, Dummett bases this

conclusion on issues having to do with how we understand our

mathematical.language" Thus the arguments Dummett offers in support of

intuitlonistic logic are of a very different sort from those offered by the

traditional intultionists. (Recall from chapter 3 that the traditional

intuitionists argue against classical mathematics primarily on grounds

having to do with what they take to be the nature of mathematical

experience.) Second, mathematical antirealism is the doctrine which

results from the application of certain general arguments about

understanding to the mathematical fragment of our language. Because my
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criticisms of mathematical antirealism will be directed at these general

arguments, they will most likely apply to other areas of discourse where

antirealism threatens as well (antirealism about the past, for example). I

will not, however, discuss these other varieties of antirealism here.

Now to the content of the various sections. In section 2 I present what I

take to be the crucial assumption underlying Dummett's general argument

for antirealism. This assumption is that one's understanding of an

expression is constituted by one's linguistic behavior. I outline why

Dummett makes this assumption, and I show that the arguments he offers

in support of this assumption fail, in fact, to support it. I conclude that his

assumption that behavior constitutes understanding Is unsecured. In

section 3 1 show how the assumption that behavior constitutes

understanding figures in Dummett's argument for mathematical

antirealism. I argue that because this assumption is unsecured, his

argument for mathematical antirealism is likewise unsecured. (A note of

caution: I find Dummett's arguments somewhat obscure. Therefore, the

a1ccount I present in sections 2 and 3 might best be characterized as a

rational reconstruction.)

In section 4 I argue that understanding should not be identified with

behavior. I contend that Dummett's assumption that behavior constitutes

understanding rests on a failure to appreciate the crucial distinction

between the question of how we know whether someone understands an

expression and the question of whether they do, in fact, understand that

expression. I argue that Dummett fails to appreciate the significance of

this distinction because of his uncritical acceptance of Wittgenstein's
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private language considerations. In section 5 1 briefly discuss some

relevant aspects of the private language considerations, and I argue that at

least as they are commonly understood, they fall to provide a secure

foundation for antirealism. In the first appendix I discuss Dummett's

controversial use of "conclusive verification', and in the second appendix I

offer some comments on platonism and the question of mathematical

objectivity.

2. Dummett's keu antirealist assumption.

21. As I have indicated, Dummett's arguments for antirealism center on

questions about how we understand our language. It would be useful,

therefore, to know exactly what Dummett thinks a language is.

Unfortunately, Dummett tends to discuss how he conceives of a language in

only the most vague and general terms. One Important clue is provided by

his characterization of a theory of meaning for a language as a theory

which yields the meaning of every sentence of that language. 1 Therefore, I

do not think that I can go far wrong In claiming that Dummett thinks of

languages extensionally; that he thinks of English, for example, as the set

of English sentences or, perhaps more accurately, as the set of English

sentence/meaning pairs. 2

1 See, for example, Dummett [11 p.99. I should note that Dummett is
admittedly lax about maintaining a sentence/statement distinction. (See
his apology In Dummett [21 p.67.)

2 Throughout I will assume that we can discuss questions about natural
languages by discussing questions about English without loss of generality.
Dummett sometimes writes of language as a practice. (See, for example,
Dummett [7] p.473). I assume that what Dummett means when he claims
that language is a practice is that English, for example, may be thought of
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Now to the question of what Dummett thinks it is to understand a

language or, more precisely, what he thinks it is to understand a statement

of that language. According to Dummett:

The meaning of a statement cannot be, or contain as an
ingredient, anything which Is not manifest In the use made of
it, lying solely in the mind of the individual who apprehends
that meaning [...] (Dummett 151 p.216).

If we assume that what one means by an expression is what one

understands by that expression, then I find two claims in this passage.

These are:

(1) What a speaker X understands by an expression E must be
publicly manifestable.

(2) We are to identify X's understanding of E with X's
behavior.

(1) is stated quite explicitly, and restates the well-known conclusion

of Wittgenstein's private language considerations.3 Unfortunately,

as the practice of using English sentences. It seems to me, however, that
the notion of English as a practice is in some sense dependent on the
notion of English as a set of sentences (or sentence/meaning pairs). If
English were simply whatever expressions English speakers used, then
expressions such as "zeitgeist" or "glasnost" would qualify as English
expressions. Finally, I should note that most cognitive linguists reject an
extensional account of language as unhelpful in the study of what it is to
understand a language. This rejection points to a significant disagreement
between many philosophers and linguists. Much, I think, rests on which
model of language proves more fruitful.

3 See Wittgensteln [11 '201-202, 253ff. An example of the type of
private understanding which (1) is meant to rule out is X's identification
of the meaning of E with some sensation or mental image. It is not meant
to rule out the possibility of a language which, as a contingent matter, is
known only to a single individual. If, for example, every English speaker
but X died of some plague, X would still understand English. (See Dummett
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Dummett gives no explanation of how he understands the private language

considerations, and little about why he thinks they are correct. (He says

only that he finds them "incontrovertible".4 ) This will turn out to be an

important omission.

It is perhaps less obvious that Dummett is committed to (2). I find a

commitment to (2) In his claim that: "The meaning of an expression cannot

b [...] anything not manifest In the use made of It". I recognize, however,

that what Dummett means here is less than clear. Later in this section,

therefore, I will show how his acceptance of (1) leads him to (2).5

There are two terminological points which It will be useful to

introduce here. First, I will call the behavior which I claim Dummett

thinks constitutes X's understanding of E X's linguistic behavilr. It is

Important to note, however, that Dummett thinks X's linguistic behavior

includes not just verbal behavior such as responding "five" to the question

"What is three plus two?", but also includes some non-verbal behavior such

as closing a door in response to a request. The reason Dummett includes

[81 p.208 for a discussion of this last point.)

4 Dummett [6] p.xxxi.

5 It may be a more accurate characterization of Dummett's position to say
that he Identifies understanding with the ability to behave in a certain
way. Yet this changes nothing essential to my point. Let us assume that X
has an ability just In case X can, in principle, exercise that ability.
Therefore, if we think that X understands E just in case X has the ability to
publicly manifest his understanding of E, and if X has an ability just in
case he can exercise that ability, we make the same point by claiming that
X understands E Just in case X can, In principle, publicly manifest his
understanding of E.
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this sort of non-verbal behavior as linguistic behavior is not simply that

closing a door In response to a request is evidence that X understands that

request (although it Is certainly that), but because, as we shall see,

Dummett also thinks that X's purely verbal account of what he understands

by E is not sufficient to show that X really does understand E.

Second, the claim that behavior constitutes understanding certainly

appears to mark Dummett as some sort of behaviorist. Yet we must be

careful here. Dummett is no Skinnerian behaviorist; he nowhere denies the

existence of mental entities. Rather, as we shell see, what Dummett

questions is the role mental entities can play in an account of what it is to

understand a language. Neither is Dummett a Rylian behaviorist; he does

not claim that psychological predicates are logical constructions

developed from behavior. Rather, Dummett is what I will call a

methodoloagical behaviorist. I will explain what I moan by this term in

subsection (2iii).

211. As I have indicated, (2) depends on (1). Dummett offers two

arguments In support of (1). These are known in the literature as the

manifestation and acguisition arguments. 6 In this subsection I show how

these arguments go, and why I think they fail to support (1).

Before I outline how Dummett thinks the manifestation and acquisition

arguments go, it will be useful to introduce the distinction he draws

6 Dummett does not use the "manifestation" and "acquisition" labels. I
adopt these terms from other commentators, t'hough I make no claim that I
understand the designated arguments in the way those commentators
understand them.
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between one's explicit understanding of an expression and one's implicit

understanding of an expression.7 According to Dummett, X's understanding

of E is oxplicit if X can state the rules governing his use of E, or if he can

state how E can be replaced by an equivalent expression E*. X's

understanding of E is implicit if X cannot presently give an explicit

account of how he understands E, but could, in principle, recognize an

explicit account of how he understands E if presented with one.8

Now to the manifestation argument. Remember that Dummett is

attempting to show that what X understands by E must be publicly

manifestable. As we have just seen, X's understanding of E may be either

explicit or implicit. X's explicit understanding of E Is publicly

manifestable by definition. But what If X's understanding of E is implicit?

Dummett writes:

Implicit knowledge cannot [..) meaningfully be ascribed to
someone unless it Is possible to say In what the
manifestation of that knowledge consists: there must be an
observable difference between the behavior or capacities of
someone who is said to have that knowledge and someone who
is said to lack it (Dummett [5) p.217).

7 See, e.g., Dummett [51 p.217.

8 I take It that the existence of implicit knowledge is uncontroversial. We
do not, after all, have an explicit understanding of most of the expressions
we use. Furthermore, as Dummett notes, the existence of implicit
knowledge is easily seen by considering the child learning his first
language. If a child understands an expression just in case he can give an
explicit account of how he understands that expression, he could never
acquire a first language since he would lack the linguistic resources to
state how he understands the expressions he is trying to learn (Dummett
[5] p.2 17).
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There is, I think, no argument here. Dummett claims that we cannot know

what X understands by E unless X can manifest that understanding in his

linguistic behavior. In one respect this claim is correct; we should not

ascribe an understanding of E to X without evidence.9 But the observation

that we should not ascribe an understanding of E to X without evidence

does not license the conclusion that X does not understand E unless he can

publicly manifest that understanding. The fact that one individual Y might

not be able to discover what another individual X understands by E is not

sufficient to show that X does not understand E. It shows only that Y does

not know if X understands E. One reaches the stronger conclusion that X

does not understand E only by adding the premise that X understands E only

if he can publicly manifest that understanding. But that is (1). Therefore,

as I see it, Dummett's manifestation argument does not support (1), but

depends on (1) to make its point.10

9 It is, of course, another matter why this evidence should be restricted to
X's linguistic behavior. Dummett does not say why he imposes this
restriction, although I think we can see one reason why he might. (It is,
moreover, a reason to which I think his views commit him.) The evaluation
of any evidence about understanding will be couched in language.
Therefore, Dummett's point may be that what we understand by the
expressions of that language must be in place before this evaluation can be
carried out. It would follow, therefore, that no non-behavioral evidence is
relevant to the question of how we understand a language. But this
argument assumes that the only evidence which will settle what X means
by E Is behavioral evidence.

10 Note the tension that now exists in Dummett's position. Dummett is
committed to the view that all implicit knowledge can, in principle, be
made explicit. Yet Dummett is also committed to the view that the child
learning its first language will have an implicit understanding of some
expressions which it cannot manifest (at least In any way we could
recognize).

The claim that X understands E just in case X can publicly manifest that
understanding also runs up against what I take to be the straightforward

86



Dummett's acquisition argument is this:11 When someone learns, let us

say, the language of mathematics, he cannot be taught what cannot be

communicated to him. Therefore, it must be the case that what Is

essential to our understanding of our mathematical language is

communicable, hence manifestable.

It no doubt strikes the reader that the acquisition argument may well

fail in cases where we have an innate grasp of concepts associated with

the expressions in question.12 Suppose, for example, that we have an

innate grasp of a concept g. Similar training leads each of us to associate

E with that concept, with the result that we all understand E in the same

way. On this view, therefore, what is essential to one's understanding of E

Is the association of E with c. And because the association of E with c does

not Involve communication, what we understand by E need not be

manifestable.

counterexamples of aphasia cases. We are at a loss to explain how aphasia
victims regain their use of their language without benefit of retraining if
they do not understand their language independently of their ability to
manifest that understanding.

I I See Dummett [51 p.217.

12 What It means to "grasp" a concept has always mystified me. I suppose
It means something like to "have possession of", although this hardly
clarifies the matter since I find it almost as unclear what it means to
"possess" a concept. Furthermore, that we have an Innate understanding of
some mathematical concepts seems especially plausible, but the situation
may not be limited to mathematics. Suppose, for example, that there is
something Innate in us which allows us to pick out a dog as a dog. It seems
to me that In that case Dummett's acquisition argument will fail for talk
about dogs as well.
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As far as I know, Dummett offers only two responses to this objection.

The first is this.13 Suppose X has a grasp of certain concepts antecedent

to his associating any expressions with those concepts. (We may suppose X

has an innate grasp of these concepts.) According to Dummett, X's

antecedent grasp of these concepts can play no role in explaining what it

is for X to understand the expressions he associates with these concepts.

To see why this is so, Dummett asks us to consider the following analogy.

Suppose X is a native speaker of English who learns Chinese. Dummett

claims that a satisfactory account of X's understanding of Chinese will

involve two components: an account of X's ability to associate Chinese

expressions with English expressions, and an account of X's understanding

of those English expressions. But now consider an account of X's

understanding of English which is given In terms of X's antecedent grasp of

concepts associated with those expressions. If this account is analogous

to the account of what it Is for X to understand Chinese (and Dummett

seems to think It must be), then It also involves two components: an

account of X's ability to associate English expressions with certain

concepts, and an account of X's understanding, or grasp, of those concepts.

But, Dummett argues, the analogy breaks down at the first stage. He claims

there is no way to establish an association of English expressions with

concepts without falling into a vicious regress. For example, in order to

establish an association of an expression E with a concept £, we must

linguistically represent c in some way. Suppose we represent it using

expression E'. But now, in order to establish the association of E' with c,

we must again represent £ in some way, perhaps using expression E", and

13 See Dummett [41 pp.5-7.
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so on into regress. Dummett concludes that an account of what it is to

understand an expression which Is given in terms of associating that

expression with a concept must associate that expression with something

which constitutes a grasp of that concept in a way which does not invite

this regress. He claims that this account can only be given in terms of

associating expressions with behavior.

This last claim may be made more clear if we consider a more specific

example. According to Dummett, we cannot explain X's understanding of the

word "square' simply by claiming that X understands the word "square"

just in case he possesses the concept jsuare (and, of course, just in case

he associates "square" with that concept). This because he thinks we are at

a loss to explain what possession of the concept sunuar amounts to

independently of the ways X might manifest that understanding. Dummett

explains:

At the very least, [to grasp the concept s•uarel is to be able
to discriminate between things that are square and those that
are not. Such an ability can be ascribed only to one who will,
on occasion, treat square things differently from things that
are not square; one way, among many other possible ways, of
doing this is to apply the word "square" to square things and
not to others. And it can only be by reference to some such
use of the word "square', or at least of some knowledge about
the word "square" which would warrant such a use of it, that
we can explain what it is to associate the concept sgare
with that word (Dummett [4] p.7).

Thus, Dummett concludes, even if X has a prior grasp of the concept suare.,

that grasp plays no role in an account of what it is for X to understand the

word "square".

The difficulty I find with Dummett's response is it does not address the
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question at hand. The question I posed is: If X has an Innate grasp of a

concept, why must X's understanding of the expression X associates with

that concept be publicly manifestable? Dummett does not respond to this

question. Rather, he simply assumes that in order for X to understand E

what X understands by E must be publicly manifestable. Now, It may be the

case that in order for someone other than X to know whether X understands

the word "square', X must manifest his understanding of "square" in

appropriate ways. But to assume that X does not understand "square" unless

he can publicly manifest that understanding Is simply to assume that X's

understanding of "square" must be publicly manifestable. Therefore, as I

see it, Dummett's first response fails. 14

Now to Dummett's second response. Dummett claims that an account of

understanding which explains X's understanding of E in terms of X's grasp

of antecedently held concepts fails because it leaves X's ability to

understand novel statements unexplained. 15 He thinks that if X's

understanding of a novel statement Is to be explained in terms of X's

antecedent grasp of the concepts associated with that statement, it

follows that X must already grasp those concepts. Indeed, in order to

14 1 think, therefore, that we have some reason to doubt the usefulness of
Dummett's original analogy. According to Dummett, what Is wrong with an
account of X's understanding of Chinese which simply associates Chinese
expressions with antecedently held concepts is that we are at a loss to
explain what it is for X to possess the relevant concepts independently of
the way X might manifest his "grasp" of those concepts. But, as I have
argued, this response simply Ignores the possibility that X's understanding
of Chinese may be the result of X's associating the Chinese expressions
with the relevant concepts.

15 Dummett (81 pp.198-99.
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understand English, it would appear that X would have to come equipped

with all the concepts which can be expressed in English. 16

I find this response unpersuasive. I fail to see why it is required of

someone defending the view that understanding may involve the

association of expressions with antecedently held concepts that they

defend the view that understanding involves onl the association of

expressions with these concepts. There may be cases where understanding

is the result of associating expressions with antecedently held concepts,

and there may be other cases where a different account Is called for.

Moreover, I don't see why It should be the case that, for example, the child

must come equipped with all the concepts which can be expressed in his

language. It may be the case that just as novel statements are understood

compositionally, the concepts associated with these novel statements can

be understood as constructed from more basic concepts.

I conclude that Dummett's defence of the acquisition argument fails. I

claim that the acquisition argument does not support (1), but relies on (1)

to make its point. I conclude, therefore, that both the manifestation and

acquisition arguments are largely embroidery on a theme about the

necessity of the public manifestation of understanding which Dummett

simply takes for granted.

21W1. Setting aside the question of whether Dummett has any good

arguments for (1), we are now in position to see how Dummett passes from

(1) to (2). We know that Dummett thinks that what X understands by E must

16 Some, I understand, have argued for this view.
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be publicly manifestable. Furthermore, we have seen that Dummett thinks

that nothing counts as evidence for X's understanding of E other than what

X can publicly mqnifest. Therefore, as I understand it, Dummett's reason

for thinking that (2) Is correct is methodological. (It is for this reason

that I characterized Dummett as a methodological behaviorist.) That is,

Dummett claims that an account of X's understanding of E goes from an

account of X's linguistic behavior to an ascription of the relevant implicit

knowledge. Since Dummett thinks nothing counts as X's having this implicit

knowledge other than X's linguistic behavior, I take Dummett as concluding

that reference to this implicit knowledge can be dropped from the account

of what it Is for X to understand E. This leaves an account drawn in purely

behavioral terms, hence (2). 17 If, however, the objections I presented in

the previous subsection are correct, Dummett has not established (1). And

since (2) depends on (1), I conclude that he has not established (2)

either.10

17 Dummett's general point seems to be that the inner cannot explain the
behavioral because nothing counts as being in a mental state which does
not first satisfy the behavioral criteria for understanding. But this strikes
me as a form of (now discredited) operationalism applied to the study of
language.

18 It might occur to the reader that Dummett is making a weaker and
perhaps more plausible claim when he argues that understanding is
constituted by behavior. The weaker claim is this: If we assume that
language is an instrument of communication (which it certainly is), then
what one can communicate to others must, in principle, be publicly
manifestable. Stated this way, however, Dummett's claim reduces to the
tautology that one can communicate to others only what one can
communicate to others. Moreover, I do not think this weaker reading
reflects Dummett's actual position. Dummett claims not just that language
Is an instrument of communication, but that it is £glelg an Instrument of
communication (Dummett 151 p.216). This quallfication is crucial. Without
It, we may admit that one cannot communicate what one cannot make
public but still hold that one may understand an expression in some private
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21y. Finally, a brief digression. We are also in position to see why

Dummett thinks that an account of X's understanding of his language will

not include any reference to X's psychological mechanisms. Dummett is

conspicuously silent on this issue. To my knowledge, he offers only one

explicit and one Implicit argument In support of this view. 19

Dummett's explicit argument is this. 20 Imagine a Martian who behaves

In all the ways appropriate to a speaker of English (whatever these ways

may be). Dummett claims that we would attribute an implicit

understanding of English to the Martian even though its psychological

workings are, it Is assumed, different from ours. He concludes, therefore,

that an account of psychological workings are irrelevant to the question of

what it is to understand a language.

The Mertian example does, I think, show that those who place too much

emphasis o" a psychological account of understanding often downplay the

important point that language serves a communicative function. Yet the

example does not show that what the Martian understands by dn English

expression must be publicly manifestable. It shows only that what we

way. Only if It is assumed that language is solely an instrument of
communication is the possibility that X understands E in some private way
ruled out. I conclude, therefore, that the weaker reading is incompatible
with Dummett's actual position.

19 It may be that Dummett thinks that Frege's and Wittgensteln's
antipsychologistic arguments are decisive in this matter, and that he can
safely build on their conclusions. Even if that Is the case, however, he
should at least signal that that Is what he is doing.

20 Dummett [2) p.70.
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know of what the Martian understands by on English expression must be

publicly manifestable. As I see it, therefore, the Martian example felails to

show that an account of what the Martian means by an English expression

can ignore the Martian's psychological mechanisms. (The example does, of

course, show that an account of understanding might not be psychology-

specific.)

I find Dummett'e implicit argument in his claim that one's antecedent

grasp of a concept will play no role in an account of what it is to

understand the expressions associated with that concept. Consider, for

example, the following passage:

[...] we have no idea what structure and character knowledge
conceived as an internal state, may have, apart from the
structure of what is known 1...) we could not Identify (inner
structures) as cognitive ones save by the connections with
their manifestations (Dummett 171 p.6).

Here again, Dummett claims that an account which seeks to explain our

understanding of expressions in terms of inner, or psychological states

will be unable to fix the association of expressions and these inner states

with anything other than the behavioral manifestations of those inner

states. He concludes, insofar as I understand him, that reference to

whatever psychological mechanisms constitute these inner states can be

dropped from the account of what it is to understand these expressions.21

Vet as I argued in the previous subsection, this conclusion depends on the

21 Dummett's conclusion, even if correct, would be so only at the global
level. For example, the singular attribution of psychological states to
explain behavior (e.g., "He winced because he was in pain") Is generally
taken to constitute a legitimate explanation of behavior. (I owe this point
to Jim Higginbotham.)
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unsecured assumption that understanding must be publicly manifestable.

End of digression.

3. Dummett's argument for mathenaticaal.antirealism.

In this section I present Dummett's argument for mathematical

antirealism. I'll begin by outlining Dummett's overall strategy. He writes:

An existing practice In the use of a certain fragment of
language is capable of being subjected to criticism if it is
impossible to systematize it, that Is, to frame a model
whereby each sentence carries a determinate content which
can, in turn, be explained in terms of the use of that sentence
(Dummett (51 p.220).

Some explanation is in order before I state what I think the main clainm of

this passage is. According to Dummett, we "systematize" a language, or

some fragment of it, by constructing a theory of meaning for that

language, or fragment of that language.22 Dummett places three

constraints on the form this theory should take which are relevant to our

concerns. First, the theory should be molecular, not holistic.2 3 It is

difficult to find an article where Dummett does not inveigh against holism.

He writes, for example, that:

1...] I am asserting that the acceptance of holism should lead
to the conclusion that a systematic theory of meaning is
Impossible, I...] my own preference Is, therefore, to assume as
a methodological principle that holism is false (Dummett Ill

22 Dummett recognizes that the construction of a complete theory of
meaning for a language is not a practical project. What we want, he
claims, Is an understanding of those principles which would make the
construction of a complete theory possible in principle (Dummett [1) p.97).

23 See, for example, Dummett [31, 14], (5], [71.
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p.12 12).

Second, when Dummett writes that each sentence has a "determinate"

content, I take him to mean that the content assigned to each statement by

the theory is neither vague nor ambiguous. 2 4 Third, when Dummett claims

that a theory of meaning should explain the content of each statement in

terms of the use made of that statement, I take him to mean that the

theory should explain what the content of each statement Is in terms of

the linguistic behavior which, as we have seen, he thinks constitutes one's

understanding of that statement. So, as I read the above passage,

Dummett's claim is that an existing practice is subject to criticism if it

proves impossible to construct a molecular theory of meaning for the

statements used in that practice which explains the content of each of

these statements In terms of one's linguistic behavior. (Hereafter, I will

omit the qualification that Dummett thinks a theory of meaning shou;d be

molecular as understood.)

Let us apply this claim to the case of mathematics. I now read Dummett

as claiming that our mathematical practices are subject to criticism if it

proves impossible to construct a theory of meaning for our mathematical

statements which explains the content of each mathematical statement in

terms of our linguistic behavior. As we shall see, Dummett does not think

we can construct a theory of meaning which meets this constraint and

which is consonant with classical mathematical practices. He does,

24 There may be an implicit rejection of holism In Dummett's claim that
each statement of the language should have "determinate" content.
According to the holist, the content of each statement is In some way
dependent on the content of each of the other statements of the language,
and so may not be individually "determinate".
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however, think that we can construct a theory which meets this constraint

and which is consonant with intuitionistic mathematics. He concludes,

therefore, that we have "sustematically misunderstood our own

language', 25 and that we should abandon classical mathematics in favor of

intuitionism.

One final note before turning to the details of Dummett's argument.

Dummett claims that intuitionism is philosophically Interesting only

insofar as It represents the sole legitimate method of mathematical

reasoning. He claims that if we could construct a theory of meaning

consonant with our classical mathematical practices, the study of

intuitionism would become "a waste of time".26 My strategy will be to

show that Dummett's reasons for thinking we cannot construct this theory

fall.

I divide the presentation of Dummett's argument against classical

mathematics into several subsections. I first outline (i) what Dummett

thinks the key principle of classical mathematical reasoning is. Following

Dummett, the question then becomes whether we can frame a theory of

meaning for our mathematical statements which explains the content of

each statement in terms of our linguistic behavior and which is consonant

with this defining principle. Next, I review (11) how Dummett conceives of

25 Dummett [2] p.101.

26 Dummett (3] p.vili. See also Dummett [5] p.215. Note that even if
Dummett is correct that we cannot construct this theory, we might well
conclude that this demonstrates the Inadequacy of his conception of a
theory of meaning.
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a theory of meaning and, in particular, I review two requirements he

places on any satisfactory theory of meaning. I then explain (iii) why

Dummett thinks that a theory of meaning which Is consonant with our

classical mathematical practices cannot meet these requirements. Finally,

(iv) I outline what kind of theory Dummett thinks does account for our

understanding of our mathematical statements, and why he thinks adoption

of this theory leads to intuitionism.

(1). Classical mathematical reasoning is simply mathematical reasoning

using classical logic. We may say, therefore, that the defining principle of

classical mathematical reasoning Is whatever the defining principle of

classical logic is. According to Dummett, the defining principle of

classical logic Is the principle of bivalence. 27 The principle of bivalence

is the principle that any (declarative, sufficiently non-vague) statement to

which It applies is either true or false. Therefore, following Dummett, we

may say that the defining principle of classical mathematical reasoning is

the principle that every mathematical statement is either true or false.

The question, as Dummett sees It, is whether we can frame a theory of

meaning for our mathematical statements which explains the content of

each statement in terms of our linguistic behavior and which is consonant

27 See, for example, Dummett [61 p.xxix. Note that our classical practices
are not characterized by acceptance of excluded middle. 'Av-A' is merely a
logical schema acceptable, under different interpretations, to both
classical and intultionistic logicians.

Dummett recognizes that classical logic can have a different, perhaps
multi-valued, semantics as long as the truth values for this semantics
form a boolean algebra. He claims, however, that this changes nothing
essential to his argument, since each statement can have only one
unchanging truth value from this range of truth values. For a discussion of
this point see Dummett [2] p.103.
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with the principle that every mathematical statement is true or false. If

we can, then Dummett thinks the choice of classical logic for mathematics

is the correct one. If we ccnnot, however, then he thinks the choice of

classical logic for mathematics stands unjustified.2 8 As we shall see,

Dummett thinks that the theory of meaning which supports bivalence is a

truth conditional theory. It will be useful, therefore, to review more about

how Dummett conceives of theories of meaning in general, and a truth

conditional theory of meaning in particular.

(ii). As Dummett summarizes it, the basic purpose of any theory of

meaning is to provide a

detailed specification of the meanings of all the words and
sentence-forming operations of the language, yielding a
specification of the meaning of every expression and
sentence of the language (Dummett [1] p.99).

Although the purpose of a theory of meaning is to give an account of the

meaning of all the statements of the language in question, I will assume

that a theory of meaning is complete just in case it accounts for the

meaning of all the declarative, sufficiently non-vague statements of the

language. Furthermore, I will assume that a theory of meaning is

satisfactory just in case it is complete.

28 Dummett [2 pp. 103-104. Although Dummett thinks that the choice of
logic for a particular domain of discourse as justified by the choice of an
appropriate semantics for thu statements of that domain, it is not clear to
me that this is right. If we think of a logical system pragmatically; that
Is, simply as a device for organizing arguments, then one's justification
for adopting some particular logic may be only that It meets some
antecedently accepted criteria for what constitutes a good argument. I
shall not, however, pursue this issue further.
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Now, according to Dummett, a theory of meatning

must give an explicit account, not only of what anyone must
know in order to know the meaning of any given expression,
but of what constitutes having such knowledge (Dummett [1]
p. 123).

We may divide this claim into two parts. That is, according to Dummett, a

satisfactory theory of meaning must:

(A) Give an account of what a speaker must know in order to
understand any expression of the language.

and

(B) Give an account of what constitutes having this
knowledge.

Consider how Dummett thinks a truth conditional theory of meaning

satisfies (A).29 If a statement S is true, Dummett thinks there must be

something - some state of affairs, let us say - by virtue of which S is

true. Call this state of affairs the ftruth conditions for S. A speaker X

therefore understands S as that understanding is described truth

29 I will assume that the basic structure of a truth conditional theory of
meaning is familiar to the reader. To review briefly: Dummett thinks of a
fully developed truth conditional theory of meaning as consisting of a
theory of reference, a theory of sense, and a theory of force (Dummett [21
p.74). The theory of reference contains axioms which assigns references of
the appropriate kinds to individual words, axioms which govern how
sentences may be formed, and theorems which inductively specify the
conditions under which statements of the language are true. The theory of
sense explains what the speaker's understanding of the relevant parts of
the theory of reference consists in by matching the speaker's
understanding of statements formed in accordance with the theory of
reference with particular abilities. The theory of force gives an account of
the various kinds of linguistic acts (e.g., making a request, giving a
command) which may be performed by making a statement.
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conditionally just In case he understands, or "grasps", the truth conditions

for S. For example, X understands "There is a red book on the desk" truth

conditionally just in case he understands what state of affairs must

obtain (that of there being a red book on the desk) in order for S to be true.

So far, perhaps, so good. The problem, as we shall see in the next

subsection, comes with (B).

We are now in position to see why Dummett thinks acceptance of the

principle of bivalence for our mathematical statements is justified only

by the acceptance of a truth conditional theory of meaning for our

mathematical statements. If bivalence applies unrestrictedly to our

mathematical statements, then it must be the case that for every

mathematical statement S, there is a state of affairs (the truth conditions

for S) which either does or does not obtain.3 0 If I understand him

correctly, Dummett thinks that we understand our mathematical

statements in a way which licenses this conclusion only if the theory of

meaning explains how we understand our mathematical statements is in

terms of our "grasp" of these truth conditions. Therefore, as I understand

him, Dummett concludes that bivalence applies unrestrictedly to our

mathematical statements only if we understand our mathematical

statements truth conditionally. 3 1

30 Dummett [21 p.89. Thus acceptance of bivalence for our mathematical
statements pushes one naturally in the direction of platonism, at least as
that doctrine is usually understood. I have several comments about
platonism which are too lengthy to include as a footnote. See appendix B.

31 Some commentators have noted that acceptance of a truth-conditional
theory of meaning need not commit one to bivalence. For example, one
could hold that the meaning of a sentence is given by its truth conditions,
but also hold that a declarative sentence such as "The present King of
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(iii). Thusfar we have encountered several requirements which Dummett

places on what he thinks constitutes a satisfactory theory of meaning for

a given domain of discourse. Foremost among these requirements is that a

satisfactory theory of meaning must be complete. This requirement is

given in Dummett's requirement (A) that a satisfactory theory of meaning

must give an account of what a speaker must know in order to understand

any statement in the domain. We have also seen that Dummett thinks a

satisfactory theory of meaning must explain the content of each statement

in terms of our linguistic behavior. Therefore, when we consider

Dummett's requirement (B) that a satisfactory theory of meaning must

explain what constitutes having an understanding of any expression of the

language, we see that Dummett thinks this explanation must be given in

terms of the speaker's linguistic behavior.32 Now, in this subsection I

present Dummett's reasons for thinking a truth conditional theory of

meaning is not satisfactory. As we shall see, he thinks it is not

France is bald" is neither true nor false. Perhaps, following Strawson, one
might argue that "The present king of France is bald" is meaningful but at
the present time does not make a statement. One could then argue that
bivalence applies only to statements, and thus does not apply to "The
present king of France is bald". I take it, however, that Dummett thinks the
commitment goes the other way around; that is, that one should not accept
bivalence without accepting a truth-conditional theory of meaning.

32 There is an interesting distinction to be drawn here between Dummett's
project and its Fregean antecedent. Whereas for Frege the grasping of the
sense uf an expression is in some sense primitive, Dummett regards an
account of how sense is grasped as essential to an account of
understanding. (I owe this point to Jim Higginbotham.) Then, because
Dummett thinks that one's understanding of an expression must be
manifestable, it follows that he would think a satisfactory theory of sense
must make explicit the connection between one's understanding of an
expression and the actions which manifest that understanding.
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satisfactory because he thinks it cannot explain the content of each

statement in terms of our linguistic behavior and still be complete.

Some additional set-up is required before I present Dummett's

argument that a truth conditional theory is not complete. When we analyze

our mathematical statements truth conditionally, some mathematical

statements are what Dummett calls "effectively decidable", and the others

are what he calls "non-effectively decidable" (where, to avoid any

ambiguity, what is meant is "not: effectively decidable").3 3 A statement is

decidable if there is a decision procedure for discovering what the truth

value of that statement is. It is effectively decidable if it is possible to

carry out that procedure in a finite number of steps. So, for example, "17

is prime" is effectively decidable. We have a decision procedure

(Eratosthenes's Sieve) for discovering whether a number is prime and, by

any standards, this procedure is effective for 17. A statement is non-

effectively decidable if there is no procedure for discovering that

statement's truth value, or if there is a procedure but it is not one which

Is effective.34

33 Dummett [2] p.81, [5] p.217. I am not sure that Dummett's use of
"effectively decidable" is a happy one in this context. It appears to make
little sense to say that statements are effectively decidable in the sense
that, say, set membership is effectively decidable.

3 4 There may be some difficulties with the notion of non-effective
decidability as I have characterized it here. Consider, for example, the
question of whether "1010+13 is prime" is effectively decidable. If we
follow the definition given above, the answer is clearly yes; we can decide
whether 1010+13 is prime in a finite number of steps. Yet much depends on
the question of how we Interpret the modality In the claim that we &gn
decide whether 1010+13 is prime. I think, for example, that it Is
questionable whether we have any clear conception of what it would be to
physically carry out tha\ enormous a computation. Here we arrive at the
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Beceuse Dummett does not provide an example of a mathematical

statement which he thinks is non-effectively decidable, and because he is

unclear about what he thinks it is for a statement to be decidable in

principle, I find it difficult to be sure which mathematical statements he

thinks are non-effectively decidable. He does write that one linguistic

device which enables us to frame non-effectively decidable mathematical

statements is quantification over infinite totalities.35 I take it,

therefore, that an example of a statement which Dummett would classify

as non-effectively decidable when that statement is analyzed truth

conditionally is Goldbach's Conjecture: "All even numbers are the sum of

two primes". The reason I assume Dummett would classify Goldbach's

Conjecture as non-effectively decidable is that when the quantifier is

interpreted truth conditionally, it is understood to range over an infinite

totality of numbers. Thus, even though it may be assumed that we can

discover whether any particular finite number is the sum of two primes,

we have no effective procedure for discovering whether all even numbers

are the sum of two primes.3 6

We are now in position to see why Dummett thinks a truth conditional

important question of how Dummett understands this modality, and
whether his understanding of it commits him to some version of
mathematical finitism. I suspect it does, but that is a matter for another
paper.

35 Dummett [2] p.81, [5] p.231.

36 Of course, Goldbach's Conjecture would become decidable if either a
proof or counterexample was discovered. Another possible example of a
non-effectively decidable sentence in a formal system might be a Godel
sentence for that formal system.
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theory of meaning for our mathematical statements cannot be complete.

We know Dummett thinks that a truth conditional theory must explain the

content of each mathematical statement in terms of our linguistic

behavior. We also know that Dummett thinks that X understands S as that

understanding is described truth conditionally just in case X grasps the

truth conditions for S; that is, just in case X understands what state of

affairs would have to obtain for S to be true. Therefore, following

Dummett, if X's understanding of S is as that understanding is described

truth conditionally, there must be some linguistic behavior which

constitutes X's grasp of the truth conditions for S. Now, according to

Dummett, a necessary component of this behavior involves X's ability to

recognize, at least in principle, the truth conditions for S as obtaining

should they obtain (and, of course, to recognize these conditions as the

truth conditions for S.)37 The problem, as Dummett sees it, is that in

cases where S is non-effectively decidable, there is no way for X to

recognize the truth conditions for S as obtaining should they obtain. (X

cannot, for example, survey an infinite totality of numbers to see if each

even number is the sum of two primes.) Dummett concludes that there is

no linguistic behavior which constitutes X's understanding of S as that

understanding is described truth conditionally. Therefore, assuming that S

is meaningful, Dummett concludes that our understanding of S cannot be as

that understanding is described truth conditionally. Therefore, if he is

right, a truth-conditional theory of meaning for our mathematical

37 See, e.g., Dummett [5] pp.224-225.
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mathematical statements cannot be complete.3 8

There is the obvious question to raise here: Why must X be able to

recognize, at least in principle, the truth conditions for S as obtaining

should they obtain in order to understand S truth conditionally? As I

understand it, Dummett's response to this question is that to understand a

statement S truth conditionally is to "grasp" the truth conditions for S,

and to "grasp" the truth conditions for S is to be able to recognize the

truth conditions for S as obtaining should they obtain. I believe my reading

of Dummett's position is supported by his claim (noted at the beginning of

section 2) that an account of X's understanding of S must include some

non-verbal behavior, since he thinks a purely verbal account is insufficient

to show that X understands S. The reason Dummett thinks that a purely

verbal account of how X understands S is insufficient to demonstrate an

understanding of S is, I think, quite straightforward. If the schema for the

truth conditional model is simple disquotation, then X can state the

meaning of S without any understanding of S. (For example, X may know

that "The pi-meson is a quark-antiquark pair" is true iff the pi-meson is a

quark-antiquark pair even if X has no understanding of "The pi-meson is a

quark-antiquark pair".) Furthermore, even if we insist that X explain the

meaning of S in other terms, Dummett claims that X is still trapped in a

circle. Suppose, for example, that when asked what S means, X replies that

S means S* (where S* is synonymous with S). If we continue this process

38 In contrast to the positivist, the antirealist does not claim that certain
apparently meaningful statements are really meaningless. Rather, the
antirealist thinks our understanding of these statements cannot be as that
understanding is described truth-condltionally.
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by asking what S* means, and if X continues to respond by claiming that S*

means S**, S** means S***, and so on, then at some point X will be forced

into a circle.39 Dummett concludes:

An ability to state the condition for the truth of a sentence
is, in effect, no more than an ability to express the content of
the sentence in other words. We accept such a capacity as
evidence of the meaning of the original sentence on the
presumption that the speaker understands the words in which
he is stating its truth-condition; but at some point it must be
possible to break out of the circle: even if it were possible to
always find a synonymous expression (Dummett [51 p.224).

The way Dummett thinks that X breaks out of this circle is through X's

exhibiting the appropriate kind of non-verbal behavior. He claims the

behavior which exhibits a truth conditional understanding of S involves X's

behavior when placed in circumstances through which X can discover

whether the truth conditions for S obtain.

To return to our original example, Dummett thinks that because X

cannot survey an actual infinite domain of numbers in order to see if each

even number is the sum of two primes, X's understanding of Goldbach's

39 One might argue that X will not be forced into a circle if his linguistic
resources are in some sense infinite, although in thet case X will be forced
into a regress. A moment's speculation: Here Dummett may be following
Wittgenstein, who in Investgaations *#256-57 argues that, in order for me
to follow a rule there must be a criterion other than what I say by which
another could judge whether I follow that rule correctly. In these sections
Wittgenstein is concerned directly with avowals (e.g., "I am in pain") but
the point may be generalized to include all claims to understanding. (See
also Kripke [21 p.102n83.)

A related reason one might claim that a purely explicit account of
understanding will not do is that it appears that a well-programed
computer could give an explicit account of the meaning of S, S* etc.,
without any understanding of those expressions.
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Conjecture cannot be truth conditional.40 One may respond to this

conclusion by noting that we appear to understand many Statements truth

conditionally even though we are never in positiorn to observe the relevant

truth conditions. It is certainly the case, for example, that we appear to

understand statements about the past truth conditionally even though we

cannot observe past times. 4 1 Much about this response, however, depends

on how we think of our being "in position" to observe the relevant truth

conditions. Dummett thinks that we may legitimately conceive of

ourselves with extended observational powers as long as those extended

powers are linked to our actual observational powers. So, if I understand

him correctly, Dummett thinks we may conceive of ourselves checking a

very large even number to see if that number is the sum of two primes

even though the computation involved is far too great to carry out in

practice. But, Dummett claims, we cannot legitimately conceive of

ourselves checking an infinite totality of even numbers. 4 2 Dummett thinks

the only way we might explain our ability to make such an observation (by

assuming some godlike perspective, by completing an infinite number of

tasks in a finite amount of time, etc.) has no explanatory power because

the powers involved are not extensions of our actual powers. Thus, he

40 X can, of course, say many things about Goldbach's Conjecture: X can say
what would count as a proof of it, what follows from it if is it is true, if
it is false, etc. But, according to Dummett, this fact only supports his
claim that the meaning of a mathematical statement is to be given in
terms of the proof-conditions for that statement, not in terms of its
truth-conditions. More on this presently.

41 Although I think we do understand statements about the past truth
conditionally, I will not consider antirealism about the past here.

42 See Dummett [2] pp.99-100.
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claims, there is no way of connecting the observation of an infinite

totality with how we understand Goldbach's Conjecture.4 3 Dummett

concludes, therefore, that our understanding of statements such as

Goldbach's Conjecture cannot be truth conditional.4 4

(iv). Finally, I turn briefly to the question of what kind of theory of

meaning Dummett thinks best accounts for our understanding of our

mathematical language. Dummett thinks our understanding of our

mathematical language is accounted for by a proof-conditional theory of

meaning, which is a special case of a more general assertability-

conditional theory of meaning. 45 An assertability-conditional theory of

meaning associates with each (declaratite, sufficiently non-vague)

statement of the language a condition such that that statement is

assertable (or, as it is sometimes put, "warrantedly" assertable) just in

43 I take It that Dummett would reject an appeal to compositionality on
similar grounds. That is, it seems to me that Dummett would reject a truth
conditional account of how we understand the universal quantifier as it
features in Goldbach's Conjecture which appeals to our understanding of
the quantifier as it features in statements involving only finite or
potentially infinite totalities. In the latter cases there are ways to
connect the required observations to our actual observational powers. In
the former case there is not. Note the strong conclusion: Our understanding
of the quantifier can only be as that ranging over a finite or potentially
infinite domain.

44 It is in this context which Dummett introduces the principle that if a
statement is true, it must be in principle possible to know it is true
(Dummett [2] p.99). I find this principle quite mysterious. I take it that
Dummett adopts this principle because he thinks that if the notion of truth
is to do ang work, it must be possible in principle to know when something
Is true. Yet I know of no reason why everything In the world should be
cognitively transparent.

45 See, e.g., Dummett [5] pp.225-226.
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case canonical evidence shows that that condition obtains. What counts as

canonical evidence for a mathematical statement is possession of a proof

of that statement, or possession of a method by which we could, in

principle, obtain a proof of that statement.4 6 Thus, Dummett concludes, a

mathematical statement S is assertable just in case we have a method for

obtaining a proof of S, and its negation is assertable just in case we have

a method for obtaining a disproof of S.

There are three points to note about a proof-conditional theory of

meaning. First, S is assertable only if we have a method for obtaining a

proof of S. Therefore, whether S is assertable is tied to the speaker's

knowledge in such a way that assertability, unlike truth, cannot transcend

a speaker's knowledge.47 Second, a proof-conditional theory of meaning

satisfies Dummett's requirements (A) and (B). What X must know in order

to understand any mathematical statement S is what counts as a proof of

S, and what counts as having this knowledge is his ability, in principle, to

recognize a proof of S when confronted with one. Third, a proof conditional

46 For a discussion of canonical versus conclusive evidence, see appendix
A.

47 It is not the case, however, that an assertability conditional theory
supports any kind of individual relativism. You and I may have differing
beliefs about some state of affairs P. But our having these different
beliefs does not thereby warrant our assigning different assertability
values to statements about P. There will be a commonly accepted set of
beliefs about P. Call this, loosely, a theory of P. A statement about P is
thus warrantedly assertable if generally accepted canons of theory
evaluation (whatever they turn out to be) lead us to assert that statement.
If these canons should lead us to revise our be'iefs, or, if we should
somehow change the canons themselves, we would then be warranted in
revising our assignment of assertability values accordingly. Relativism
threatens only if there are irreconcilable canons of theory evaluation.
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theory of meaning supports the choice of intuitionistic, not classical logic

for mathematical reasoning. According to the intuitionist, a statement S is

intuitionistically true just in case we have an effective means of

producing a proof of S. Therefore, unrestricted bivalence fails. Although I

would like to say more about this aspect of Dummett's program, it is

difficult to do so since, to my knowledge, no one has a reasonable idea

what a proof conditional theory of meaning looks like in detail. Therefore I

will stop here.

To summarize section 3: Dummett thinks our classical mathematical

practices depend on our acceptance of classical logic, and that acceptance

of classical logic for mathematics depends on the acceptance of a truth

conditional theory of meaning for our mathematical statements. He argues

that our understanding of our mathematical statements cannot be truth

conditional. (More precisely, he argues that a truth conditional theory of

meaning for mathematics cannot be complete.) He contends that only a

proof-conditional theory of meaning can satisfactorily account for our

understanding of our mathematical statements, and that a proof-

conditional theory of meaning supports an intuitionistic logic for

mathematics. He concludes, therefore, that we should abandon classical

mathematics in favor of intuitionism.

4. Whu Dummett's argument for mathematical antirealism fails.

There are many objections one could raise against Dummett's argument

for antirealism. I shall focus, however, on the single issue of why

Dummett thinks a truth-conditional theory of meaning is incomplete. I will
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argue that his reason for thinking a truth conditional theory is incomplete

is not well-founded, and that we are therefore free to reject his

mathematical revisionism.

We have seen that Dummett thinks a truth-conditional theory is

incomplete because he thinks that behavior constitutes understanding, and

because he thinks there is no behavior which constitutes an understanding

of statements which, when analyzed truth conditionally, are non-

effectively decidable. But as I argued in section 2, Dummett has given us

no reason why we should accept the claim that behavior constitutes

understanding. This alone is sufficient to call into question his conclusion

that a truth conditional theory of meaning is incomplete. I think, however,

that there is additional reason to think his claim that behavior constitutes

understanding is mistaken.

We have also seen that (2), Dummett's claim that behavior constitutes

understanding, depends on (1), his claim that X's understanding of E must

be publicly manifestable. Now, if Dummett is to have (2), the modality in

(1) had better not be some kind of epistemological possibility. If it is, then

the claim that X's understanding of E must be publicly manifestable

reduces to the unexceptional claim that in order to know what X

understands by E, what X understands by E must be publicly manifestable.

But as I have already noted, this epistemological reading does not rule out

the (metaphysical?) possibility that X understands E in some way that X

cannot publicly manifest. Therefore, as I see it, Dummett's argument that a

truth conditional theory of meaning is incomplete depends on the claim

that X cannot have a private understanding of E.
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Consider the following scenario which I introduced in section 2 and

which I intend to serve as a counterexample to Dummett's claim that X

cannot have a private understanding of E. Suppose X and Y have a

sufficiently similar psychological endowment such that each has an innate

grasp of a concept c. (Recall that Dummett does not reject this

possibility.) Similar training in the use of language leads X and Y to

associate an expression E with concept c. Thus, although X and V

understand E in the same way, they need not be able to publicly manifest

that understanding. It follows, on this view, that understanding cannot

legitimately be identified with behavior.

I am not claiming that the above scenario represents the way

understanding works. I am, however, claiming it is possible that it

represents the way understanding works, and that before we take

antirealism seriously an argument is owea why it cannot be the way

understanding works. Dummett offers no such argument. (As I showed in

section 2, Dummett's manifestation and acquisition arguments depend on

the assumption that there can be no private understanding of E.) I conclude

that until Dummett offers some such argument, we need not accept the

claim that behavior constitutes understanding, and we are therefore free

to reject his mathematical antirealism.4 8

48 Burgess makes a similar point on somewhat different grounds.
According to Burgess, Dummett thinks that because we do not have
conclusive, or skeptic-proof evidence that X understands S when S is non-
effectively decidable, we cannot conclude that X understands S. (For more
on this issue of skeptic-proof evidence, see appendix A.) Thus, Burgess
writes:

[Dummett] seems to claim that [the absence of skeptic-proof
evidence] somehow makes communication between
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5. The Private Language Considerations.

I have claimed that Dummett's arguments for antirealism rest on (1),

and that (1) rests on Wittgenstein's private language considerations. Here,

finally, I had better say something about how I understand these

considerations. Although what I write here will be brief, I hope to give the

reader some reason to suspect that (1) remains unsecured. I will focus not

on the private language considerations as such, but rather on the rule

following considerations which, according to at least one interpretation,

underlie the private language considerations.

Recall the skeptical paradox.49 Wittgenstein writes:

mathematicians impossible, and hence makes mathematics as
an activity involving communication impossible. Surely such a
claim would be mistaken. For whether mathematicians X and Y
succeed in communicating through their use of the expression
E surely depends only on whether X and Y do in actual Lact
attach the same meaning to S, and not on whether they
possess skepticism-proof guaranteed knowledge that they do.
One hesitates to accuse a distinguished authority on modal
logic of arguing from 0-p to -Op, but Dummett does almost
seem to wish to move from the (epistemic) possibility that X
and V do not succeed in communicating to the (metaphysical)
impossibility of X and Y not succeeding in communicating"
(Burgess [1] p. 183).

I think Burgess is correct that Dummett has confused the metaphysical
with the epistemological, but not for the reason he gives. As I argue in
appendix A, Dummett's rejection of a truth-conditional theory of meaning
has nothing to do with a requirement that In order to ascribe an
understanding of E to X we must have skeptic-proof evidence that X
understands E.

49 Here I follow Kripke [2]. For present purposes I will assume that Kripke
has Interpreted Wittgenstein's views correctly, even though I recognize -
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This was our paradox: no course of action could be determined
by a rule, because every course of action can be made out to
accord with the rule. The answer was: if everything can be
made out to accord with the rule, then it also can be made out
to conflict with it. And so there would be neither accord nor
conflict here (Wittgenstein [11] 201).

Kripke spells this out with the following example.5 0 We suppose that "+"

denotes the addition function which we may define in the usual way:

(Vx) x+O=x
(Vx)(Vy) (x+y)'=x+y'

Now, suppose X has never added numbers greater than 56, and that he is

now to add 57+68. X does this and gets 125. But X is now invited to imagine

a skeptic who points out that as X used "+" in the past, the result of his

computation should be 5, not 125. The skeptic claims that in the past X

used "+" to denote another function which we will call "quus", symbolize by

"'D", and define as:

(Vx)(Vy) xEy = x+y, if x,y<57
= 5 otherwise.

Now, we think there must be some fact about X's past usage to which X can

appeal in order to show that he does not mean quus. Yet X's past usage is

compatible with his following either rule. Therefore, since there is

nothing to which X may appeal in order to show that X was not following

the quus rule, Wittgenstein concludes that there is nothing about X which

determines which rule he is following. He concludes, therefore, that there

that this is a controversial matter.

50 See Kripke [2] pp.7-21.
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are no facts about what X meant by "+".51

What the previous example is taken to show is that when faced with a

novel situation, X proceeds blindly and without justification. 5 2 But if X

proceeds blindly, then whatever strikes him as right at the moment is

right, and in that case Wittgenstein claims there is no sense to be made of

the claim that X is engaged in a meaningful practice.5 3 Wittgenstein

concludes, therefore, that the individual can only engage in a meaningful

practice within the wider context of a community of practitioners; X

proceeds correctly only when he proceeds in accordance with his

community.

I see a problem with this view. 54 Let us assume that X's past usage of E

is compatible with his following either rule. Yet the only way I see of

getting from the assumption that X's past usage is compatible with his

following either rule to the conclusion that there is no rule which X

follows is by assuming that X's usage constitutes his following a rule. (As

Kripke quite correctly points out, the skeptical paradox is not meant to be

an epistemological problem. 55 If it was simply an epistemological

51 Kripke [2] p.77. There is nothing particular to mathematics here. The
conclusion Is supposed to be general for all expressions.

52 See Kripke [2) p.87.

53 See Wittgenstein [1] #202.

54 I set aside the many problems I see with trying to explain what a
linguistic community is.

55 See Kripke [2] p.21.
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problem, then the fact that X might not know which rule he was following

would not license the conclusion that he is not following a rule.) But how

can usage constitute rule following? Here it may be useful to review the

way I claim Dummett reaches the conclusion that behavior constitutes

understanding. 5 6

Recall that Dummett's argument for (2) proceeds by claiming that we

should not ascribe an understanding of E to X without evidence. Then,

because the only relevant evidence is X's linguistic behavior, the account

of what it is for X to understand E can be given in purely behavioral terms,

hence (2). Suppose we try the analogous argument for the claim that usage

constitutes rule following: We should not think that X is following a rule

without evidence. Then, because the only relevant evidence that X is

following a rule is X's past usage, the account of what it is for X to follow

a rule can be given in terms of usage (that is to say, in terms of X's

behavior). But, because X's usage is compatible with his following

different rules, and usage constitutes rule following, we may conclude

that X is not following a rule, at least when X acts In isolation from the

community.

The problem I found with Dummett's argument is that it rests on the

assumption all understanding must be manifestable. I see a similar

problem with the analogous Wittgensteinian argument. The Wittgensteinian

argument depends on the assumption that what rule X is following must be

discoverable through X's usage. (Otherwise, the fact that we cannot tell
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which rule X is following does not license the conclusion that X is not, in

fact, following a rule.) But it is unclear to me what the grounds for this

last assumption are. I suspect there are none that do not somehow beg the

question at hand. I contend, therefore, that much more needs to be said

about why the private language considerations should be taken seriously,

and much more needs to be said about how they might provide a foundation

for antirealism. In lieu of this account, it seems to me that Dummett's

antirealism remains unsecured.
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ADDendix A: Dummett on conclusive verifiability.

There is some confusion about the role "conclusive verifiability" plays

in Dummett's account of when a statement is true. Consider, for example,

the following passages:

L...] an understanding of a statement consists in a capacity to
recognize whatever counts as verifying it, i.e. as conclusively
verifying it as true (Dummett [21 p. 1 11).

A verificationist theory represents an understanding of a
sentence as consisting in a knowledge of what counts as
conclusive evidence for its truth (Dummett [21 p. 132).

There are two ways one might understand what Dummett means by

"conclusive verifiability" here. The first way involves the claim that, for

example, I have conclusively verified the truth of S and I hold that claim to

be indefeasible. Call this strong conclusive verification. The second way

involves my claim to have conclusively verified the truth of S but hold that

claim to be defeasible. Call this .wak conclusive verification.

The failure to distinguish strong from weak conclusive verification has

led to what I take to be some serious misunderstandings of Dummett's

position. Burgess, for example, has argued that Dummett's antirealism is

based (in part) on the mistaken requirement that to ascribe an

understanding of a statement S to a speaker X, we must be able to strongly

conclusively verify that X understands S.57 Now, because Dummett

restricts evidence of X's understanding of S to how X has used S in the

past, the only evidence that X understands S in a particular way is just
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that X has used S in that way. But, as Burgess correctly points out, no

amount of past evidence will guarantee how things will go in the future; X

may use S in a particular way up to any point, yet it is always possible

that X's future use of S will diverge sufficiently from past use to reveal

that X does not understand S in the way previously ascribed to him.

Therefore, Burgess concludes, the hypothesis that X understands S in a

certain way can never be strongly conclusively verified. Therefore, if X's

under standing of S depends on our ability to strongly conclusively verify

that X understands S, X must not understand S. Furthermore, this

conclusion holds independently of whether X's understanding is

characterized by a truth conditional theory of meaning or an assertability

conditional theory of meaning.

I interpret Dummett's use of "conclusive verifiability" using the week

reading. My interpretation is supported by the fact that, as I understand it,

weak conclusive verifiability functions in the same way as assertability.

Recall that according to the assertability-conditional theorist, we are to

accept the accumulation of canonical evidence that X attaches a certain

meaning to S as reason to ascribe that understanding of S to X. If X's future

use of S reveals a divergence from this use, we revise our ascriptions

accordingly. Note, therefore, that the weak reading does not undermine an

assertability conditional account of what it is for X to understand E. Only

when we do not know what behavior would count for understanding - as

Dummett thinks is the case with truth-conditionally characterized

undecidable sentences - is the case different. In that case there can be no

strong or weak conclusive verifiability since, according to Dummett, there

is no behavior which exhibits such understanding, hence no such
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understanding.5 8

Although I think Burgess has misinterpreted Dummett's use of
"conclusive verifiability", much of the blame for this misunderstanding

must rest with Dummett. Surely the more natural way to read "conclusive

verification" is as strong conclusive verification. Nevertheless, I think the

issue of how we understand Dummett's use of "conclusive verifiability" is

really just one of terminology. If we go through Dummett's writings and

replace "conclusive verification" by some other phrase (perhaps "canonical

verification"), certain confusions may be cleared up. But this change will

not effect the more serious objections to Dummett's program presented in

the body of this paper.

58 Burgess may have been misled by a comment of Chihara's. Burgess notes
Chihara's comparison of Dummett's views about understanding with
Malcolm's views about dreams (Burgess [1] p. 180n4). Malcolm claims that
the only evidence we have of X's dreaming is his behavior, his willingness
to tell dream stories upon awakening. Malcolm concludes that there are no
dreams, only a disposition to tell dream stories. Although Dummett claims
the only evidence we have that X understands S is X's behavior, he does not
conclude that there are no mental phenomena underlying understanding as
Chihara seems to think. Rather, Dummett claims only that reference to
these mental phenomena can play no role in an account of what it is to
understand a language. Therefore, as I understand it, Chihera's comparison
is misplaced.
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Appendix B: Platonism.

As I understand it, platonism is the doctrine that there are abstract

mathematical objects whose existence is independent of our existence,

and whose various properties and relations make our mathematical

statements true or false independently of what we judge to be the case.

Now, if we assume that a statement S is true just in case there is some

state of affairs by virtue of which S is true, it is then easy to see why

acceptance of unrestricted bivalence for our mathematical statements

pushes one naturally (and perhaps inevitably) in the direction of platonism.

If, for example, Goldbach's Conjecture is true, then there must be some

state of affairs by virtue of which it is true. And if we think that the truth

of Goldbach's Conjecture is independent of what we judge to be the case,

then the state of affairs by virtue of which Goldbach's Conjecture is true

or false must be independent of what we know to be the case. What, then,

Is more natural than a platonic realm of mathematical objects to make up

this state of affairs?

Some brief comments are in order here. First, as we have seen,

Dummett thinks our acceptance of classical mathematics does not turn on

a decision about whether or not there are these platonic objects. Rather,

he thinks that metaphysical questions about the existence and nature of

mathematical objects are best addressed by considering what kind of

theory of meaning best represents our understanding of our mathematical

statements. Once we have answered that question, he thinks the "right"

metaphysical" position falls out.59 (And, because Dummett thinks our

S59 See Dummett [51 p.229.
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understanding of our mathematical statements is best represented by an

assertability conditional theory of meaning, he concludes that the "right"

metaphysical position Is constructivist.)

I think Dummett's view that semantics precedes ontology gives us some

insight Into Kreisel's dictum that the important issue In the philosophy of

mathematics Is not the existence of mathematical objects but the

objectivity of mathematical truth. 60 As I understand it, Kreisel's point is

that we must first give an account of what it is for a mathematical

statement to be true independently of what we judge to be the case.

Whether we should then accept the view that there are mathematical

objects depends on the account of objectivity. Platonism offers the

clearest solution to this problem; our arithmetical procedures give us

insight into the way the platonic arithmetical realm is structured, but the

way It is structured is independent of our procedures. As I see it,

therefore, the Important challenge facing the antirealist (and other

constructivists) is whether there is viable anti-platonist account of

mathematical objectivity. I do not know of one.6 1

My second point is that the acceptance of a platonist ontology may not

be an inevitable consequence of accepting unrestricted bivalence for our

mathematical statements. One obvious way of avoiding commitment to a

specific realm of platonic objects is to argue that numerical singular

60 See, e.g., Dummett [5] p.228-29.

61 I evaluate some ways the intuitionist might attempt to develop an
antiplatonist account of mathematical objectivity in chapter 3.
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terms function syntactically but not semantically as singular terms. This,

I take it, Is the gist of Benacerraf's suggestion that arithmetical

statements should be interpreted as statements about any progression

which satisfies the Dedekind-Peano axioms.6 2 Interpreted in this way, for

example, an expression such as "the number 4" Is a kind of dummy name for

the 5th element in any such progression. Thus, following Benacerraf, one

might argue that every arithmetical statement is true or false yet deny

the existence of specifically arithmetic objects inhabiting a platonic

realm. I will not attempt to evaluate this view here.

Finally, we might think of one's rules for, say, addition as reflecting

how things stand platonically. Yet one consequence of Wittgenstein's

skeptical paradox is that there are no such rules. Note, therefore, that the

skeptical paradox is pridm faci incompatible with platonism. Yet if the

arguments I presented in section 5 are correct, the Wittgensteinian still

owes an account of why there cannot be these private rules which regulate

our mathematical practices. I conclude that without further argument,

platonism is not undone by the rule following considerations.
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5. CONCLUDING REMARKS

It may seem to the reader as if very little progress has been made in

answering the questions with which I began this essay. I have, for

example, addressed the ontological question of whether there are numbers

simply by assuming that there are. With respect to the metaphysical

question of what kind of objects the numbers are, I have argued that they

are neither descriptions of mental processes nor antirealist constructions.

I have not, however, put forward a claim as to what I think the numbers

are. One might conclude on the basis of what I have written that I believe

platonism wins by default. That conclusion, however, would be premature

at best. It Is not clear to me that we have a reasonable idea of what the

platonist position really comes to. The rather crude picture of an abstract

domain of mathematical objects which we explore through our

mathematical cogitations is fraught with difficulties. (To name just the

obvious one, it remains completely mysterious how we might have

knowledge of these objects.) Moreover, Dummett's point that the "right"

metaphysical account of the numbers may be only a kind of by-product of

how we understand our mathematical statements has some appeal. One

issue that needs to be considered in much more depth, therefore, is what

the proper relation between semantics and metaphysics is.

In chapter 1 I noted that if a causal theory of knowledge is truly

incompatible with our having arithmetical knowledge, then the obvious

conclusion to draw from that incompatibility is that arithmetical

knowledge is not causal knowledge. (I know of no reasonable grounds for
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abandoning mathematics for a questionable epistemology.) Abandoning the

causal picture, however, does not leave us without alternatives. It is clear

that some knowledge Is not causal. Consider, for example, the statement:

(1) No book on my desk is simultaneously red and blue all
over.

(1) is clearly true. There is, moreover, good reason to think that my

knowledge that (1) is true Is not causally acquired, at least in the way

Benacerraf thinks. If my knowledge that (1) is true Is causal, then,

following Benacerraf, there would be some causal relation obtaining

between the books on my desk and my belief that (1) is true. But my belief

that (1) is true no more involves the books on my desk than my knowledge

that no books in the Venerable Bede's library were ever simultaneously red

and blue all over involves any causal knowledge of his library. Rather, I

know (1) is true because I know aDriori that nothing can be simultaneously

red and blue all over. The moral of this story is not, of course, that

mathematical knowledge is aorlori knowledge. Rather, the moral is that

some knowledge is not causal, and if mathematical knowledge is nariori in

this way, then Benacerraf's causal model is clearly inapplicable. It seems

to me, therefore, that a reasonable strategy to pursue at this point is to

re-examine the traditional view that mathematical knowledge is adriori

knowledge, and to consider what metaphysical picture of the numbers

emerges from that examination. I will not attempt to undertake this study

here. I will, however, briefly mention some relevant issues, especially as

they relate to the work presented in the earlier chapters of this essay.

As Frege observed, the paoriorl/aoosteriorl distinction has to do with
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the grounds used to justify one's judgment that a statement is true. 1 In

discussing apriori truths, therefore, I will take as a starting point the

view that earlori truths are truths the justification of which do not

depend on evidence from sense experience. (As Frege warned, one may

confuse the logical grounds for holding a statement true with the

psychological grounds by which one may come to believe that the

statement is true. The psychological grounds may, of course, involve

particular sense experiences. The logical grounds do not.)

There are, reughly speaking, two ways we might know a statement to be

true adriori. First, we might know a statement is true immediately or non-

inferentially. Second, if we accept the view that deductive logic preserves

the anriori nature of truth (a claim which I accept but am aware may

require defending), then we may also come to know that a statement is

true maorori by deducing the truth of that statement from premises which

are known to be true na•rida in the first sort of way. It seems to me,

therefore, that the obvious point on which to concentrate our attentions is

on truths known immediately or non-inferentially.

So far as I am aware, there are two ways we might know certain

statements to be truth immediately or non-inferentially. The first way

involves intuition. Parsons has spelled out one way intuition might work,

although if the arguments I presented in chapter 2 are correct I do not see

how Parsons's account of intuition could give us the numbers. (I should

note that Parsons does not tie his account of intuition to the claim that
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mathematical statements are true anriori.2 ) I suspect that any other

account of intuition developed along similar lines would face similar

difficulties. 3 Finally, it appears to be the case that one's intuition of an

object is an aoosterlorl process. It is unclear, therefore, how intuition can

lead to agriori knowledge.4

The second way we might know that a statement Is true adriori is by

reflection on the logical interconnection of concepts known arinorl. (For

present purposes I will simply assume that the androri/aposterlori

distinction is applicable to concepts. I am aware that this assumption

needs some spelling out, but I do not think it is too controversial. 5) For

example, we might know that a statement is true nnriori thrnugh our

innate possession of the concepts required to understand that statement.

(It may not be the case that a concept known apriori must be innate. For

the moment, however, I will use the example of an innately held concept to

illustrate my point.) Then, by ruminating on the relations between these

concepts using our (aoriori-preserving) logical machinery, we come to

know the truth of new statements nariori. If these basic concepts include

2 See, for example, Parsons [3] p. 159.

3 It is not clear to me whether one should develop Godel's account of
intuition In a similar way. It is not even clear to me that Godel's account
can be coherently developed. (See Parsons [31 pp.145-146.)

4 This last question surely calls for a Kantian answer. I suspect that In
order to fully understand Parsons's theory of intuition a detailed study of
this aspect of Kant's theory will be required.

5 Because of what he saw as the Interdependence of concepts and
intuition, Kant would see these two ways of knowing truths nnriaorf as
inseparable.
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those sufficient for basic arithmetic, then we are well on the way to

demonstrating our arithmetical truths are, or can be, known adriori.

I am aware that any attempt to develop the view that arithmetical

knowledge is aordori conceptual knowledge faces formidable difficulties.

One obvious difficulty involves giving an account of how concepts known

adadr relate to objects. That is, if we suppose that we possess those

concepts which are responsible for our basic arithmetical knowledge, what

Is it for there to be objects corresponding to these concepts? (Here I

suspect the path may lead back to Frege.) A second, though related

difficulty is that considered in earlier chapters having to do with how we

know the number series is infinite. I do not see how our knowledge that the

number series is infinite could involve only innately held concepts.

Moroover, as is well known, there is nothing in logic (at least as logic is

currently conceived) which tells us what there is or what there can be. It

is unclear to me, therefore, how our knowledge that there is an infinity of

numbers could be apriorl.
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