
Efficient tools for the design and simulation of
microelectromechanical and microfluidic systems

by

Carlos Pinto Coelho

Eng., Instituto Superior Thcnico, Universidade Tenica de Lisboa (1999)
M.Eng., Instituto Superior Thcnico, Universidade Tecnica de Lisboa

(2001)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2007

@ Massachusetts Institute of Technology 007.

7

All rights reserved.

, ,-r

Author

Department of Electrical Engineering and Computer Science
August 10, 2007

Certified by w r. . ..-.. . V . *..
K. White
Professor

hsinGpervisor

Accepted by

OF TEOHNOLOGY

OCT I 2 2007

UIBRARIES

.......

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

ARCHIVES

Efficient tools for the design and simulation of microelectromechanical

and microfluidic systems

by

Carlos Pinto Coelho

Submitted to the Department of Electrical Engineering and Computer Science
on August 10, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In air-packaged surface micromachined devices and microfluidic devices the surface to
volume ratio is such that drag forces play a very important role in device behavior and
performance. Especially for surface micromachined devices, the amount of drag is greatly
influenced by the presence of the nearby substrate. In this thesis a precorrected FFT ac-
celerated boundary element method specialized for calculating the drag force on structures
above a substrate is presented. The method uses the Green's function for Stokes flow
bounded by an infinite plane to implicitly represent the device substrate, requiring a num-
ber of modifications to the precorrected FFT algorithm. To calculate the velocity due to
force distribution on a panel near a substrate an analytical panel integration algorithm was
also developed. Computational results demonstrate that the use of the implicit representa-
tion of the substrate reduces computation time and memory while increasing the solution
accuracy. The results also demonstrate that surprisingly, and unfortunately, even though
representing the substrate implicitly has many benefits it does not completely decouple
discretization fineness from distance to the substrate.

To simulate the time dependent behavior of micromechanical and microfluidic systems, a
stable velocity implicit time stepping scheme coupling the precorrected FFT solver with
rigid body dynamics was introduced and demonstrated. The ODE library was integrated
with the solver to enable the simulation of systems with collisions, contacts and friction.
Several techniques for speeding up the calculation of each time step were presented and
tested. The time integration algorithm was successfully used to simulate the behavior of
several real-world microfluidic devices.

Thesis Supervisor: Jacob K. White
Title: Professor

Contents

1 Introduction 8

2 Background 12

2.1 Boundary Integral Equation Formulation 13

2.2 Green's function for a flow bounded by a plane wall 16

2.3 Nullspace and defect in the range . 18

2.4 Boundary Element Method . 19

3 Panel integration 21

3.1 Analytical panel integration . 22

3.2 Assembling the Stokes free space kernel integral 29

3.3 Assembling the Stokes substrate kernel integral 30

3.4 Testing . 33

3.5 N otes . 35

4 Precorrected FFT solver for Stokes flow 37

4.1 Precorrected FFT algorithm . 39

4.1.1 Projection and interpolation . 39

4.1.2 Collocation . 40

4.1.3 Convolution on regular grid . 41

4

4.2 Dealing with the substrate Green's function

4.3 Results and discussion .

4.3.1 Sphere moving near a plane wall

4.3.2 Cylinder over substrate - Effect of substrate discretization

4.3.3 Substrate shadow .

4.3.4 MEMS accelerometer

4.3.5 Proof mass with holes

4.4 Conclusions and future work .

5 A surprising result

5.1 Lateral motion .

5.2 Vertical motion .

5.3 Observations .

6 Time domain simulation

6.1 Boundary integral formulation

6.1.1 Background flow

6.1.2 Protuberances on substrate

6.1.3 Holes in the substrate . . .

6.1.4 Boundary element method

6.2 Time constants and scaling

6.2.1 Stiffness

6.3 Time stepping schemes

6.3.1 Forward Euler

6.3.2 Velocity implicit method .

64

. 6 6

. 6 7

. 6 9

. 7 1

. 7 4

. 7 5

. 7 6

. 7 7

. 7 8

. 7 9

6.4 Coupling the Stokes BEM solver and rigid body dynamics

5

42

44

.. 44

46

48

51

53

56

6.4.1 An explicit coupled solved . . .

6.4.2 Velocity implicit coupled solver

6.5 Interaction with structures

6.6 Updatable solver

6.7 Results

6.7.1 Microwell trap

6.7.2 Pachinko trap

6.8 Conclusions and future work

. 84

. 85

. 87

. 89

. 90

. 9 1

. 9 8

. 103

7 Implementation details

7.1 Projection and interpolation

7.2 Exploiting kernel symmetries to reduce memory usage .

7.3 Specializations for planar topologies

7.4 Precorrection .

7.5 Calculating the image transform from a signal transform

7.6 Preconditioning .

106

. 106

. 110

. 117

. 119

. 125

. 127

8 Conclusions and future work 128

Contributions

* Adapted the precorrected FFT to support non-translational invariant substrate Stokes

flow Greens function.

" Coupled velocity implicit time stepping scheme to accelerated boundary element

solver that enables the stable and efficient simulation of time dependent problems in

microfludics.

" Developed analytical panel integration algorithm for polynomial force distributions

over odd powers of the distance between the source and the evaluation point. This

algorithm can be used to calculate the Stokes velocity field due to polynomial force

and force multipole distributions on flat panels.

* Used C++ template metaprogramming techniques to implement efficient and generic

routines that enable exploiting kernel symmetry to reduce memory requirements for

the precorrected FFT algorithm.

* Developed specializations of the precorrected FFT algorithm for the calculation of

the drag force on surface micromachined devices.

" Demonstrated the surprising result that using the Stokes substrate Green's function

does not decouple structure discretization from distance to the substrate, regardless

of the smoothness of the force distribution.

Chapter 1

Introduction

For small length scales, as the ratio between the surface area and the volume increases, drag

forces play an important role in the behavior of any objects moving in a fluid. For the length

scales and velocities encountered in many micromechanical and microfluidic applications,

the Stokes flow model is known to produce accurate estimates of the drag forces on objects

in a fluid [1, 2]. The Stokes drag force on air-packaged microelectromechanical systems

(MEMS) such as oscillators, accelerometers and micromirrors is an important factor that

significantly influences their dynamic behavior and performance [3, 4, 5, 6]. Especially

for surface micromachined devices, the drag is greatly influenced by the presence of the

nearby substrate [7]. In microfluidic devices the fluid drag force drives the motion of beads

and cells in the flow and is also very important.

Several methods exist for the calculation of the drag forces on objects immersed in Stokes

flow: finite differences [8], immersed boundary methods [9], the finite element method

[10] and the boundary element method [1]. Since, for Stokes flow, the fluid structure only

depends on the boundary configuration at the time point of interest, the boundary element

method is a particularly suitable approach. Moreover, for problems where one is interested

in the time domain evolution of a system, the boundary element method has the advantage

that remeshing the domain at each step is not necessary. Furthermore, using the boundary

element method with appropriate Green's functions it is often possible to drive the motion

of the objects in the flow by specifying a background flow without having to explicitly

discretize the surface of the microfluidic channel or other boundaries that, in other methods,

would just be used to drive the bulk fluid.

The formulation of Stokes flow problems as boundary integral equations can be found in

[11, 12, 1] and is reviewed in Chapter 2. Boundary element methods, based on discretiza-

tion of the boundary integral equations for Stokes flow are briefly reviewed in Chapter 2.

An analytical panel integration scheme for calculating the Stokes velocity due to a force

distribution on a flat panel is presented in Chapter 3. However, naive implementations

of the boundary element method have a prohibitively high cost in both computation time

and memory when applied to large engineering problems. Accelerated boundary element

solvers based on the multipole method [13], panel clustering and wavelets [14] and on the

precorrected FFT method [15], have been applied to the calculation of the Stokes drag

force [16, 17, 18, 6, 19, 20].

In this thesis we present a precorrected FFT accelerated boundary element method special-

ized for calculating the drag force on structures above a substrate. Our method uses the

Green's function for Stokes flow bounded by an infinite plane to implicitly represent the

device substrate, requiring a number of modifications to the precorrected FFT algorithm.

Computational results demonstrate that the use of the implicit representation of the sub-

strate reduces computation time and memory while increasing the solution accuracy. The

modified precorrected FFT algorithm and results demonstrating its use are presented in

Chapter 4.

Our computational results demonstrate that, surprisingly, even though representing the sub-

strate implicitly has many benefits, it does not completely decouple discretization fineness

from distance to the substrate. A detailed description of this important result can be found

in Chapter 5.

The calculation of the trajectories of objects moving in Stokes flow is a convenient tool for

the design of microfluidic devices such as cell traps [21, 22, 23, 24] and micromixers [25].

Time domain simulation is also very important for the design of MEMS devices such as

micromirrors [26].

The Stokes equations state that the pressure, viscous forces and body forces are at balance

regardless of the history of flow, even though the boundaries of the flow maybe changing

in time [1]. When there are no abrupt changes in the fluid velocity, momentum diffuses

throughout the fluid domain much faster than the configuration of the flow is changing

due to the evolution of its boundaries [1]. Therefore, in these conditions, a quasi-static

approach for analyzing the time evolution of the system is appropriate [25]. However, for

small length scales, such as those present in MEMS and microfluidic devices, the ratio of

the drag forces and the mass of the bodies is such that the time constant associated with

transferring momentum between an object and the surrounding fluid is very small. For

typical geometries, the time scale for momentum transfer between the objects and the fluid

is much smaller than the timescale at which the objects move through the devices, which

is usually the time scale of interest in simulation. The existence of the very small time

scale for momentum diffusion makes the problem stiff and severely limits the step sizes

that explicit time integration schemes can use.

To deal with stiffness without incurring the excessive cost of solving a non-linear equation

for the forces on the surface of the object at each time step, we couple the boundary element

Stokes solver with a time stepping scheme that updates the velocity implicitly and the

position explicitly. Using this velocity implicit scheme allows for the stable simulation of

the motion of objects using large time steps. To deal with problems involving collisions,

contacts and friction we coupled our velocity-implicit time integration method with the

freely available rigid body physics library ODE [27]. The quasistatic velocity-implicit time

domain solver for Stokes flow is presented in Chapter 6 where it is applied to a set of

real-world microfluidic problems.

For the implementation of the precorrected FFT solver, C++ template metaprogramming

techniques [28, 29] were used to construct efficient and generic routines that enable exploit-

ing the symmetry of the Stokes flow Green's function's to reduce memory usage. The use

of C++ template metaprogramming techniques also enabled the generic implementation of

most of the building blocks for the precorrected FFT algorithms in a way that makes it easy

for a new solver, with a different kernel, to be developed. Details regarding the implemen-

tation of the more interesting blocks of the precorrected FFT algorithm are presented in

Chapter 7.

Thesis structure

The thesis is structured as follows: in Chapter 2, a review of the Stokes flow model and

the formulation of Stokes flow problems as boundary integral equations is presented; in

Chapter 3, an analytical panel integration scheme for calculating the Stokes velocity due to

a force distribution on a flat panel is presented; in Chapter 4, the precorrected FFT method

is reviewed and extended to support the Stokes substrate Green's function; in Chapter 5, a

surprising result describing the dependency of the solution accuracy on the discretization

of the structures and their distance to the substrate is presented; in Chapter 6, a velocity-

implicit time stepping scheme for the stable and efficient simulation of the motion of objects

in Stokes flow is presented; in Chapter 7, a set of relevant technical contributions are de-

scribed. Finally, in Chapter 8, conclusions are drawn and future work is suggested. While

Chapter 8 is a global conclusions chapter, some of the other chapters also have a local set

of conclusions and suggestions for future work.

Chapter 2

Background

For many air-packaged surface micromachined devices and microfluidic devices, it has

been verified that the characteristic velocity U, characteristic length L, density p and vis-

cosity y are such that the Reynolds number Re = ULp/p is small, the viscous term in the

Navier-Stokes equations for moment conservation dominates over the inertial terms and the

fluid motion can be accurately modeled by the combination of the Stokes equation

-VP+IpV 2u = V -0- = 0 (2.1)

and the continuity equation

V -u = 0, (2.2)

where u is the fluid velocity, P is the pressure, p is

tensor, which can be written elementwise as

O =ik -Pik + pU
Oxk

the viscosity, and o- is the fluid stress

+ Uk
Dxi,)

(2.3)

or in matrix form as

a = -PI +p (Vu + (Vu)T) , (2.4)

where Vu is the Jacobian of the velocity.

The Stokes equations (2.1) can be obtained as an approximation of the Navier-Stokes equa-

tions for momentum conservation

Ou
P_ + Pu Vu = pV2U - VP (2.5)at

where p is the fluid density. The approximation can be justified by non-dimensionalizing

(2.5)

Re ~+ f6 - 96d = 26, - VP(Srt pi U
where Sr = rU/L where r is either an externally imposed time constant or, in its absence,

is the convective time scale and Sr = 1.

The Reynolds number is the ratio of the diffusive time constant for momentum in the fluid

TD = pL 2//u and the convective time constant Tc = L/U it states that the momentum

diffuses through the fluid much faster than it is convected. However, if TC is small it also

means that any objects moving in the fluid are doing so in such a way that the time constant

associated with the changing boundary configuration is larger than the time constant associ-

ated with momentum diffusion. In other words, the fluid reaches a steady state momentum

distribution much faster than the boundaries move; this justifies a quasi-static approach for

time domain integration. Note that the quasi-static time evolution model is not valid if

the fluid motion is starting or stopping or if there are any hard collisions, in which case T

maybe much smaller than the convective time scale.

2.1 Boundary Integral Equation Formulation

An integral equation formulation for the Stokes flow problem can be constructed using the

Lorentz reciprocity identity [1]. The Lorentz reciprocity identity states that if (UA, PA)

and (UB, PB) are the solutions of two Stokes flow problems, defined on the same geomet-

ric domain but with different boundary conditions, the corresponding velocities and stress

IEquations (2.1) and (2.5) are vector equations that expresses momentum conservation along each axis.

tensors are related by

(9 o B _ B'A) =V (UT U (2.6)

wherever the solutions A and B are non-singular.

The Lorentz reciprocity identity can be used to construct a boundary integral equation for

0 B and UB by choosing a problem A that has a known solution, integrating (2.6) over the

volume of fluid domain V and using the divergence theorem to reduce the integral over the

volume of the domain to an integral on its surface, &V,

Jv- (uAB - uBA)dV -UTBn-uUAn)dS = 0 (2.7)
B fA

where fA/B represent the force applied to the fluid at a point on the surface where the

normal direction is n, pointing away from the fluid.

A common choice for problem A is the free-space Stokes flow Green's function, i.e. the

fluid velocity, stress and pressure field produced by applying a point force g at x, to (2.1)

and solving

(-VP + tV2u= J(x - x,)g

V -u = 0,

which yields

11 1
u(x) = 1_GF(X, X,)g -- (I + fT)g (2.8)

87rp 87rp r
1 3 1

8(x) = T- 4 rffT(f-Tg) (2.9)
P x)(=,pF ,)XiXs

where r = x - x, r = ||r||2 and f = r/r. The matrix relating the velocity field at x with

the point force g at xo, GF(X, Xs) in (2.8) is also known as a stokeslet. For simplicity, the
F notation is dropped in this section.

Since the velocity u(x) in (2.8) and the stress tensor o(x) in (2.9) are singular at x,, to

apply (2.7) we exclude a region V,(x,) around x, such that uA(x) and oA(x) are analytical

inside V as illustrated in Figure 2-1.

n.
SM

Figure 2-1: The integration volume V, in gray, is bounded by the substrate, the objects in the fluid,
and an infinite surface Sout. The exclusion volume V, contains the source point x, such that UA (x)
and O-A (x) are analytical in V - V.

D,

Figure 2-2: When the source point x, is located on a smooth surface, for small enough e the
exclusion region V,(x,) is bounded by a hemisphere HE and a disk DE.

The exclusion volume V,(x,), which for convenience is often chosen to be a spherical

section of radius E > 0, is parameterized on e such that its surface and volume are asymp-

totically proportional to e2 and es respectively.

We obtain an equation for UB and fB, which from now on we will refer to simply as u and

f, by applying (2.7) to V - V, which yields

/ fk(x)Gi(X, X,) - pUk (x)Tkij(x, x,)nl (x)dA = 0. (2.10)

When the source point x, is located on a smooth surface, for small enough e the exclusion

region V,(x.,) is bounded by a hemisphere H and a disk De as illustrated in Figure 2-2.

Using surfaces DE and H, (2.10) can be rewritten as

J fk(x)Gki(x, x,) - puk(x)Tk y(x, x.,)n(x)dA = 0 (2.11)
(aV-D) U H,

That can be decomposed into a sum of simpler terms

/ fk(x)Gki(x,=x,)dA = y Uk(x)Tij (x, x,)nj (x)dA + / fk(x)Gki x, xs)

47ruk (xs) for rigid body u and xs on V O() 0

- fk(x)Gki x, xs) -p uk(x)Tkij(x,x,)nj(x)dA+p uk(x)Tki y(x, x)nj(x)dA.

O(e) 0= 0 for xs on disk 47ruk (xS)

(2.12)

Considering only rigid body motion and then computing the limit of (2.12) as e - 0 as the

outer surface Sout stretches to infinity yields

/ fk(x)Gki(x, x,)dA = 87rpUk (X,) (2.13)

Using the symmetry relation G(x, x,) = GT(x8 , x), true for any Stokes flow Green's

function due to the Lorenz reciprocity theorem, and replacing the force on the fluid fk by

the force on the object surface, -fk, results in

/ Gik(x, x)fk(x)dA = -8i7rpui(x,). (2.14)

where the point x, originally defined as the source of the Green's function (UA, 0A), can

now be interpreted as a test point.

2.2 Green's function for a flow bounded by a plane wall

The important forces in many MEMS are the forces acting on thin structures, Sobj, that are

suspended over a substrate, Saii, while the forces on the substrate do not usually determine

device performance. The need to solve (2.14) explicitly for the force on the substrate can

be eliminated by using a Green's function that satisfies a zero velocity condition on the

substrate. Specifically, the Green's function can be computed by solving

-VP + PV 2u = J(x - x,)g

V -u= 0

u(x) = 0, for x on Swai.

(2.15)

im a
x image

Figure 2-3: Schematic representation of source and image source associated with the Green's
function for Stokes flow bounded by a plane wall.

In the presence of the substrate, Swani, as illustrated in Figure 2-3, the solution of (2.15) is

given by

u(x) = Gw(x, x,)g = GF(x, x,)g - GF(x, xi)g
(2.16)

+2h 2 GD (X, xi)Ng + 2hGSD(X, xi)Ng

where h is the normal distance above the substrate of source point xe, N = I - 2nwnT, nw

is the wall unit normal as illustrated in Figure 2-3, xi = Nx, GF is the free-space Green's

function (2.8) and
1

GD(X) = 3iiifi)

is the potential dipole, where ri = x - xi, ri = ||r ||2, ii= ri/ri. The last term in (2.16) is

referred to as the Stokeslet doublet and is given by

i nT - nwiT
+ 2

GR(ri)

(2.17)

Using the definition of GSD, GD and GR, it follows that the substrate Green's function can

GsD(x, xi) = (ri -nw) GD(X, X,)
-h-k

be written as

Gs(x, xS) = GF(r) - GF(ri) - 2hkGD (ri)N+2hGR(ri)N (2.18)

where k is the distance of the evaluation point to the substrate. If the plane normal n, is

aligned with one of the global coordinate axes, GR has only two independent scalar entries,

while GSD in (2.16) has 6 independent scalar entries. Reducing the number of unique scalar

kernels can be used to reduce memory usage and computation time.

Using the substrate Green's function, (2.14) becomes

sb Gw(x,, x)f(x)dA = -87rpiu(x,). (2.19)

2.3 Nullspace and defect in the range

For any Green's function G(x,, x) associated with incompressible Stokes flow, the bound-

ary integral equation for a single body (2.14) is singular and has a rank 1 nullspace given

by f = n. The extension to the k-body case generates a rank-k nullspace [18]. This can

shown by setting f = n and using the divergence theorem

/ Gik(xs,x)nk(x)dA = Gki(x,x,)nk(x)dA = BGki X x,) dA = 0 (2.20)LV JVV OXk

and recalling that Gki(x, x,) = G(x, x,)ei is the kth component of the velocity field due to

a point force along the ith direction applied on x, and that VG(x, x,)ei is the divergence

of that incompressible velocity field, which is zero.

Due to the reciprocity relation, G(x, x,) = GT(x", x), and therefore the defect in the

range of the integral operator in (2.14) is also u(x,) = n(x,). Therefore, for (2.14) to have

a solution, the velocity field must satisfy

/ nT(x)u(x)dA = 0, (2.21)

or equivalently, the net flux over the body surfaces Sobi must be zero. Fortunately, all the

motion velocities u due to rigid body motion satisfy the zero net flux condition (2.21) and

therefore (2.14) has a solution.

For the substrate case, since V - (Gw(x, x,)g) = 0, for any force g, and Gw(x, x,) =

Gw'T (x, x) the nullspace and defect of (2.19) are still the object surface normals n.

There are several approaches to handling the nullspace problem [30, 6]. For the examples

examined in this thesis we used the simplest approach in [6], computing the null-space free

solution by projection.

2.4 Boundary Element Method

The Stokes flow problem defined by the integration volume V and a set of boundary condi-

tions on u(x,) at each point x, on BV is represented, in a continuous infinite dimensional

form by (2.14) or (2.19). However, for almost any practical problem, there is no explicit

analytical solution for (2.14) or (2.19). Approximate values for the forces on the object

surface are generated by limiting the dimension of the solution space and the number of

constraints to a finite number.

There are several ways to generate a finite linear system of equations from the boundary

integral equation (2.14) or (2.19). In this section we describe one of the simplest pos-

sible discretization schemes: constant strength collocation. First the integration surface

BV is discretized into a set of npanels triangular or quadrilateral flat panels. The value of

the velocity and the drag force on each panel is approximated by a constant value. With

this discretization method, velocities and forces can be represented as vectors U and F in

R3x"lpanis. To generate a set of 3npane1s equations using collocation, consider imposing

flpanels

ZjG(Xk, x)F.,dA(x) = -87rpu(Xk)= -87r/U:,k, (2.22)

for k 1. . .npanels, where Xk is the centroid of the kth panel, F:,j denotes the vector force

on the jth panel and U:,k denotes the velocity at the centroid of the kth panel. The resulting

3npanels x 3 npanels system of equations can be represented by

GF = -87rU. (2.23)

Since the substrate surface Swan spans a large area, discretizing (2.14) using (2.22) would

require a large number of panels and would greatly increase the time and memory required

to compute drag forces. Moreover, as the distance between the substrate and the suspended

structures is reduced, the discretization for both Sobj and Swan must be refined because the

forces on the substrate and the bottom of the structures exhibit sharper features that require

finer discretization. Therefore, discretizing the substrate greatly increases the number of

unknowns in the problem, implying that only small to medium complexity problems can

be solved using (2.14) with (2.22). By using a Green's function that implicitly represents

the no-slip no-penetration substrate boundary condition, we remove the need to explicitly

represent the substrate in (2.22) and greatly reduce the number of unknowns in F.

Calculating the panel integrals in (2.22) requires some care because the Green's function

is singular. Algorithms for calculating the panel integrals in (2.22) can be obtained by

generalizing the results in [31] and are presented in Chapter 3.

Equation (2.23) is usually solved using iterative methods such as GMRES [32], and such

methods compute solution approximates by forming products of G with candidate vectors.

For discretized versions of (2.14), the matrix vector products can be computed rapidly

using sparsification techniques such as multipole algorithms [33, 16, 30] or precorrected

FFT (pFFT) methods [15, 34, 35]. Using pFFT methods to solve (2.19) has complications

as described in Chapter 4.

Chapter 3

Panel integration

The entries in the boundary element method matrix (2.23) relate the force distribution over

a flat panel P to the velocity at a test point or the weighted integral of the velocity over a test

panel. The velocity due to a force distribution on a panel can be computed by integrating the

Stokes Green's function. In free space, the Stokes Green's function is called the stokeslet

and is given by (2.8); in the presence of a substrate, the Stokes Green's function is given

by (2.16). In either case, the integrals of (2.8) or (2.16) can be calculated by combining the

appropriate values of

S (mn, p, q) [(X0 - x)m(yo - y)n(zo - Z)P 1dS. (3.1)
p ((X0 - x) 2 + (yo - y) 2 + (zo - z)2)q

In fact, combining the appropriate values of S(rm, n, p, q) can be used to calculate the ve-

locity field due to any polynomial force distribution over P.

The calculation of panel integrals can be performed using analytical or numerical integra-

tion or by combining analytical and numerical integration. Analytical panel integration

algorithms have the advantage that they are accurate but also that, for vector functions,

much of the setup cost and the more expensive function evaluations can be reused for the

different scalar entries of the vector function. On the other hand, using efficient adaptive

quadrature methods for calculating the integral of vector functions has problems because

each entry of the vector kernel may converge at a different rate. If the entries of the vector

kernel are integrated separately many, often not trivial, calculations must be repeated. On

the other hand, if the quadrature rule is applied to the vector kernel integral as a whole, the

kernel with the worst convergence will determine the number of quadrature points to be

used, which will also be inefficient. However, especially when the evaluation point is not

close to the source panel and a fixed quadrature rule can be used for all the kernel entries,

using numerical integration is often more efficient than using the analytical panel integra-

tion methods (see [36] for a list of efficient quadrature rules on triangular panels and other

shapes). Our implementation uses analytical integration for the calculation of the velocity

at a point due to a force distribution on a panel if the point is close to the panel and uses

numerical quadrature [36] if the point is further away from the panel. When using Galerkin

testing our implementation computes the integral over the test panel using quadrature.

In this chapter an analytical panel integration for calculating (3.1) is presented. The al-

gorithm extends some of the results in [31], [37], [38], [39] and [40], uses some different

recursion schemes and is designed for the simultaneous calculation of multiple entries of

(3.1), which is particularly useful when dealing with vector kernels such as (2.8) and (2.16).

The panel integration algorithm can calculate the integral of polynomial distributions over

any odd power of the distance between the evaluation point and the source panel.

This chapter is structured as follows: first, in Section 3.1 the analytical panel integration is

presented; in Section 3.2 and Section 3.3 an efficient way of assembling the Stokes Green's

functions is presented; in Section 3.4 the panel integration algorithm is demonstrated; fi-

nally, in Section 3.5 some comments and suggestions for future work are made.

3.1 Analytical panel integration

In this section, an analytic method for computing (3.1) is presented. Since the algorithm

relies on several recursion relations and geometric transformations an overview of the al-

gorithm is presented in Figure 3-1.

In the following three coordinate systems will be referred to: the global coordinate system,

with (x, y, z) Cartesian coordinates; the panel plane coordinate system, with coordinates

(U, v, w) defined such that the panel lies on a constant w plane; the edge k coordinate

system in which the position of the target point is described as a distance b along edge k,

Ek, and a distance Ak normal to edge k in the plane of the panel. The three coordinate

systems are illustrated in Figure 3-2, Figure 3-3 and Figure 3-4.

Kernel Integrals:
-Stokes free space
-Stokes substrate

(REC 4) *

Surface integrals in global coordinates: global coordinates
P to panel coordinates

S(m,n,p,q) = f r -x)(_Y_ Y Z 0_ lx0 - x u
"r(x 0 - x, y0 - y, z0 -z yo -y = R v

L~~~
Z......

(REC 1)

Surface integrals i

S,(m, n, q) = JP-

n panel coordinates:

u vM dudv
r(u, v, Z)2q+1

(REC 1)

LZO 4 i LYVJ

(REC 2)

Surface integrals in panel coordinates:

SL (0,0, q) = I r)u, 1 dudv
I 1P r(u, v,Z)+

I (REC 1)
Edge integrals in panel coordinates:

E(m,n, q) u(b)'v(b)" - db
fEr(u(b),v(b), Z)2,+1

Edge integrals in edge coordinates:

JAk t)= B cb
fB,.o (b 2 +'A2 +Z +2

panel coordinates
to edge k coordinates

u _ [cos(0) Uk]b-B,,

v_ sin(0k) V 1

(REC 3)

Edge integrals in edge coordinates:

I(k,t) = JE,(2 2)b 1

' kk.6 (b2 + Ak' +Z2iu

Figure 3-1: Overview version of the panel integration algorithm for polynomials over odd powers
of the distance between the source and the target. In the graphic (RECI) refers to equation (3.4),

(REC2) refers to equations (3.9) (3.10) and (REC3) refers to equation (3.11). (REC 4) corresponds

to the material presented in Section 3.2 and Section 3.3.

First a rigid body transformation from the (x, y, z) global coordinate system, illustrated

in Figure 3-2, to a coordinate system (U, v, w) where the source panel is on a plane with

constant w, as illustrated in Figure 3-3, is computed. In the new coordinate system the

I

V3 E y

x

Figure 3-2: Source panel and evaluation point in global coordinate system.

0,

Figure 3-3: Source panel and evaluation point in panel coordinate system.

Figure 3-4: Source panel and evaluation point in the edge coordinate systems.

distance along w between any point in the source and the evaluation point is Z.

Considering the panel vertices and edges, as illustrated in Figure 3-2, a rotation matrix from

the panel coordinate system to the shifted global coordinate system can be determine using

Ru = E1 /||E 1 112

t, = -- (I - RUR.)EN

Rv = Rv/I|Rv12

R, = Ru x Rv

(3.2)

which can be represented in matrix form asEXO - 1 [u]Yo -y = R R, Rw o (3.3)

zo - Z R [wJ

For points on the source panel, in the (u, v, w) coordinate system, w is constant and has a

value of Z. Since w is constant, the integral over the surface of the source panel can be

described as an integral in u and v. For a given q, the integral S(m, n, p, q) can be expressed

as a linear combination of integrals of um'vn'/r(u, v) 2 q+l over the source

S(m',',q)= f _dS
is r(u, V)2 q+l

where m'+ n' < m + n + p. However, whenever possible, it is more efficient to bypass the

explicit calculation of S(m, n, p, q) and to work with SL(m', n', q) instead (see Sections 3.2

and Section 3.3 for further details). In the following the prime notation is dropped for sim-

plicity. The 2D surface integral of umn/r(u, v) 2q+l for nonzero m or n can be computed

using the divergence theorem on the (u, v) plane, which yields the recurrence relations

Ev(m, n - 1, q - 1) - (n - 1)S(m, n - 2, q - 1)
SL (Mn, q) = 1 qX (3.4)

Eu(m - 1, n, q - 1) - (M - 1)SL(m - 2, n,q- 1)

where Eu and Ev are the line integrals

E,(m, n, q) -n"dg** sin 1 u(l)m v(l)" dl
[E ~ =r [-2 dl Er~~l,(3.5)-E,(m, nq)_ k -- S cos k 2+

where [sin Ok, - cos Ok] is the kth edge exterior normal in the (u, v) plane. The angles 6 k

are illustrated in Figure 3-3.

Calculating SL(0, 0, q) and SL (m, n, q)

The values of SL (0, 0, q) and SL (n, n, 0) are required to initiate the recursion (3.4). To

calculate SL(m, n, 0), the two equations in (3.4) can be combined yielding

SL (m, n, q) = (m+n+2)-(2q+1) x (E,(m + 1, n, q) +
(m~n2)-(q~l)(3.6)

E,(m, n + 1, q) - Z 2SL(m,rnq+ 1)),

which can be used to compute SL (m, n, 0) as the values SL(m, n, 1) are being generated.

The value of SL(0, 0, q) can be determined using cylindrical coordinates (p, #, w) such that

u = p cos # and v = p sin # and w is unchanged

SL(0, 0,q) =

1 - 2q J

I /+ax fPmax(4) pdpd#
omin 'prin(p

2 + Z2)q+1/2 ~

1 Pr"ax(4)

(p 2 + Z2)q-1/ 2 Pmi(Od#

and then replacing the integrals over # by integrals over the position along the edge, b,

ncdges B.

SL(0,q 1 J*," q)= 1 1
1 - 2q k,O (p2 2)q-1/2

where d4/db = Ak/(b 2 + Ak). More explicitly

SL(0, 0, q) =
1 ncdges

1- 2q
k=1

AkK(k, q) - 1 -2q

1 -2

where K(k, q) is given by

K(k, q)= Bkl db
]Bk,0 (b2 ±2

AkI(k, 0) + Z tan 1 Zb Bk,1

Akrk (b) I Bk,Zb B Bk 1

+= Z- 1 tan- zb Bk,1[2 / Akrk(b) Bk,o
AkI(k,q-1)+(2q-3)K(k,q-1)

I (2q-l)Z
2

(3.7)

d4b) db
db

(3.8)

(3.9)

q 0

q=I

otherwise

(3.10)

a) When point is over panel A# = 27r. b) When point is not over panel A# = 0.

Figure 3-5: Cylindrical coordinate system used to evaluate S(0, 0, q). The signs associated with
each edge integral are indicated in superscript.

where I(k, p) is the edge integral calculated in the kth edge coordinate system (see Fig-

ure 3-4,

sign (Bk,o) log(Bk,i1/B,o), Ck = 0,p = 0

IBk,1 db sign (Bk,o) (B2 - Bg2p)/2p, Ck = O,p # 0

Bk'o rk(b)2p+1 sign (Bk,o) log(b+ rk(b))IB , Ck # O'p 0

11 ' I Bk,1 + 2(p - 1)1(k, p- 1) ow.

(3.11)

where r2(b) = b2 + C and C = A2 + Z 2 . The expressions for K(k, 0) and K(k, 1) can

be rearranged for accuracy and reduced cost, see [31] for details. To avoid loss of accuracy

in (3.11), expressions of the form am - bm can be computed using

m-1
a"' - k = (3.12)

k=O

where it is assumed that |a| < Ib|, if that is not the case a and b can simply be swapped.

The term A# in (3.9) is 27r if the evaluation point xO is over the source, as illustrated in

Figure 3-5a). If the evaluation point is over an edge A# is 7r. If xo is over a corner, A#

is the internal angle between the two edges that define that corner. If xO is not over the

panel, as illustrated in Figure 3-5b), A# is zero. If xO is on the panel, then SL(0, 0, q) is not

defined for q > 0.

Calculating E, and E,

One way to calculate (3.5) would be to express u and v on each edge as a function of the

position along the edge b, see Figure 3-4, using

Uk(b) = Uk + (b - Bk,o) COS 6 k = ak,u,O + akk,1b

Vk(b) Vk + (b - Bk,o) sin Ok = ak,v,O+ ak,v,1b

and to combine integrals of powers of b over rk(b)2q+1 as in

' u(b)m v(b)" m+n b db
I q+1 : ,p VV1

JEk b2 + 2 n JEk 2 C2q+1

Instead, we introduce a simpler recursion that reuses I(k, q) from (3.11), which is already

used to compute S(O, 0, q), and

J(k, p) rk(b) 2 Bk (3.13)
Bk, 0 (b2 + A2 + Z 2)p+1/ 2 = 1 - 2p

that has a simple integrand for any q. Note that, for accuracy, (3.13) can be calculated using

(3.12). To appropriately combine the values of I(k, p) and J(k, p) we present the following

recurrence relation: If

f u(b)mv(b)" db = 3qmnkp 1 db+
C2q+1 l~~~~ 2(q-p)+1fEk Vb 2 + q Ek b2 +

E(q,m,n,k) I(q-pk)

Z Yq,m,n,k,p f(qp)+
P Ek b2 + k (q-p)+1

J(q-p,k)

where ,3 q,O,O,k,p = 6 q,p and 'Y,O,O,k,p= 0, then

E(q, m + 1, n, k) = E /q,mn,kp 'Bk
pEk

q'Yq,m,n,k,p
E k

Ck,u,O + bak u 1+ d+
b2 + k

bak,u,o + (b2 + C)ak,u.l - Ckak,u,1 d
Vb2 - 2 0 2(q-p)+1

k

E> 'q,m,n,k,pak,u,1I(q - p - 1, k)+
p

E [/q,m,n,k,pak,u,i + 'q,m,n,k,pak,u,O]J(q - p, k)+
p

E [!q,m,n,k,pzk,u,O - k'Yq,m,n,k,pak u,1I - p

3 q,m+1,n,k,p - q,m,n,k,pak,u,O - kYq,m,n,k,pak,u,1 + /q,.mn,k,p-1ak,u,1

7q,m+1,n,k,p - /3 q,m,n,k,pak,u,1 ± Yq,m,n,k,pak,u,O

and similarly

0/qrn,n+I,k,p /3 q,m,n,k,pak,v,O 2'q,m,n,k,pak,v,1 + 'q,mn,k,p-1ak,v,1

qm,n+I ,k,p = 3q,mtnr k,pakv,1 + 1q,mn,k,pak,v,O

3.2 Assembling the Stokes free space kernel integral

Fortunately, to calculate the panel integral of the Stokes free space Green's function

F 1G (r=(I+ffT)
r

(3.14)

it is not necessary to explicitly calculate S(m, n, p, q). Let R represent the rotation matrix

associated with the source panel P and rL = [u w] the value of r in local panel coordinates

such that r = RrL it is clear that

1 1 1
GFr __ I _ jjT) = I -I RrLrILR T

r r r
= RGF(rL)RT. (3.15)

Since R and RT are constants, (3.15) can be integrated using,

SGF (r)dS = RL GF(rL)dSLRT (3.16)

where PL and dSL indicate an integration in the panel coordinate system.

From (3.16) one can conclude that the panel integral can be calculated in panel coordinates

using SL(m, n, q)ZP and afterward surrounded by the appropriate rotations. The panel

integral in local coordinates is given by

SL (0, 2, 1)J GFdSL =SL(0, 0, 0)13 + SL(i, 17 1)

SL(1, 0, 1)Z

SL(l, 1, 1)

SL(0, 2, 1)

SL(0, 1, 1)Z

SL(1, 0, 1)Z

SL(0, 1, 1)Z

SL(0, 0, 1)Z2

where 13 represents the identity matrix with 3 rows and columns.

3.3 Assembling the Stokes substrate kernel integral

The Stokes substrate Green's function

GS(x, x,) = GF(r) - GF(ri) - 2hkGD(ri)N+2hGR(ri)N

GD(ri) = 1 - grir

(3.18)

(3.19)

GR(ri) = ri n T - nw ri (3.20)

is more complicated than GF. The panel integral of Gs can be calculated by setting up

an image panel P, as illustrated in Figure 3-6, over which GF(ri), 2hkGD(ri)N and

2hGR(ri)N can be integrated. The panel integral for the direct and image GF terms can

be computed by following the procedure outlined in Section 3.3.

The panel integrals for GD and GR present some further challenges as, form (3.18), the

(3.17)

where

and

Ph r k

P,

Figure 3-6: Schematic illustration of source panel, image panel and evaluation point.

GD and GR terms are scaled by a term proportional to h, the distance of the source panel

to the substrate. To introduce this dependency on the distance of the source panel to the

substrate, while integrating over the image panel, the identity rT -n. = -h - k can be

used. Note that k is constant but h changes along the panel. Let Ri represent the rotation

matrix associated with the image panel P such that ri = Riri,L and n., = RinW,L, the

value of h can be expressed in terms of ri,L and nw,L using h = -r LwL - k-

To represent 2hkGD(ri)N in terms of ri,L we can use

2hkGD(r 2)N = -2k(rLnWL + k)RikGD(r,L)RTRi (13 - 2nW,LnTL RT
NL (3.21)

= -Ri(2k(rLnW,L + k)GD(ri,L)NL)RT.

To represent 2hGR(ri)N in terms of ri,L we can use

2hGR(r1)N = -Ri(2(rL WL + k)GR(ri,L, nw,L)NL)RT (3.22)

The panel integrals of (3.21) and (3.22) can computed from S(m, n, q)ZP. Note that, since

these panel integrals are being calculated over the image panel ,P, xO will never be on the

panel and therefore there is no need to worry about the possibility of trying to calculate the

integral of a hyper-singular expression at its singular point.

The terms associated with the dipole kernel can be calculated by combining a constant

strength dipole GD0 and a linear strength dipole GD. The panel integral of the constant

strength dipole is given by

SL(O, 2, 2) SL(1, 1, 2) SL(1, O, 2)Z

I ,OdSL = SL(, 0,1)1 3 -3 SL(1, 1, 2) SL (0, 2, 2) SL(0, 1, 2)Z[SL(1, 0,2)Z SL(0, 1,2)Z SL(0 0, 2)Z 2 j
(3.23)

where Pi,L represents the image panel in the image panel coordinate system.

Let

a = [SL(1,1) SL(O, 1, 1) SL (0, 0, 1)Z] nw,L

and
3

i,.j SL (6 i,1 + 6j,1 + 6k,1, 6J,2 + 6j,2 + 4,2, 2)Zai,3+bj,3+k3fnw,L,k
k=1

where 6i,k is the Kronecker delta function and nw,L,k is the kth component of the substrate

normal in the image local panel coordinate system. The panel integral of the linear strength

dipole is given by

01,1 31,2 01,3

L, GfD dSL = a13 -3 2122 #2,3 (3.24)
pi, LL0210,

23

3,1 #.3,2 03,3

Therefore, the total contribution due to the dipole terms is

/ GfdSL = -2k Gf DdSL - k GfOdSL. (3.25)
Ji,L L (Ji, L LjJi, L ,

The contributions associated with the rotlet term, GR, consists of the sum of the panel

integral of a constant strength rotlet GR0 and the panel integral of a linear strength rotlet

G, 1 with strength rTLnWL. Let -0 = [S(1, 0, 1) S(0, 1, 1) S(O, 0, 1)Z]T, the panel integral

of the constant strength rotlet is given by

=; -S -o T (3.26)J GyOdSL 'oL

Let

[SL(2, 0, 1) SL(lI 1,1) SL(11 0, 1) Z] w,L

71= [SL (1, 1, 1) SL(0 71 SL(111) w ,L (3'27)

[SL(1, 0, 1)Z SL071) SL(01) 2) 1 w,L

the panel integral of the linear strength rotlet is

/ G;,1dSL T nT,L ~ T (3.28)
pi,L

and the total rotlet contribution is

/ GidSL = 2 k G R dSL - GR dSL. (3.29)
pi,L L Ji, L L, fi, L

The integral of the Stokes substrate Green's function is then given by

j GsdS =R PL GFdSRT - Ri, GFdSR +

Ri GfdSL - GidSL Ni,LRT
ip,L L fi, LLL

Galerkin

If the boundary element method is using Galerkin testing, the entries of the boundary el-

ement matrix are the weighted integrals over a test panel of the velocity due to a force

distribution over a source panel. To calculate the entries with Galerkin testing our imple-

mentation calculates the integral over the test panel using quadrature rules (see [36]).

3.4 Testing

In this section we demonstrate the panel integration algorithm by plotting the velocity field

produced by a force along the x, y or z direction. The velocity field produced by a force

distribution on a square panel with 1pm side at z = 2pm, parallel to the substrate, is

illustrated in Figure 3-7. For comparison, where for comparison, the velocity field in the

absence of the substrate is also illustrated in Figure 3-7.

34 - 3 -4
03 - 3 - --

2- 5 2-5

50x[pm] x[pm] 0 0

y pm] 5 5 y [pm)] 5 y [pm} -5 -

5 5 5

4 -

0 X0PM] X [PM] X m]

y[pm] -5 y[Im] - -5 YPM-5

Figure 3-7: Velocity field produced by a constant force distribution on a square panel with 1 pm side
at z =2pm. The figures on the top row were produced by integrating the Stokes substrate Green's
function. The figures on the bottom row were produced by integrating the Stokes free space Green 's
function. On the first column, a force along the x axis was applied; on the second column, a force
along y was applied; on the third column, a force along z was applied. To improve visualization of
the field, the length of the arrows in the figures is proportional to the logarithm of the magnitude of
the velocity.

The velocity field produced by a force distribution on a triangular panel with 1pm side at

z =2pm, normal to the substrate, is illustrated in Figure 3-7. For comparison, where for

comparison, the velocity field in the absence of the substrate is also illustrated in Figure 3-7.

The panel integration algorithm was tested by comparing its results to those produced using

adaptive subdivision quadrature methods using the quadrature rules in [36] as the inner

quadrature rule. The results were verified to match to any reasonable degree of accuracy.

y[ym] -5 -5 y[pmj -5 -5

Figure 3-8: Velocity field produced by a constant force distribution on a triangular panel with 1pm

side at z = 2pm placed normal to the substrate. The figures on the top row were produced by

integrating the Stokes substrate Green's function. The figures on the bottom row were produced by

integrating the Stokes free space Green's function. On the first column, a force along the x axis

was applied; on the second column, a force along y was applied; on the third column, a force

along z was applied. To improve visualization of the field, the length of the arrows in the figures is

proportional to the logarithm of the magnitude of the velocity.

3.5 Notes

The panel integration algorithm presented in this chapter does not account for the case

where the evaluation point is on an edge or corner of the panel. Extending the panel inte-

gration algorithm to deal with such cases is not too complicated but it was not necessary

for the purposes of developing the boundary element solver because, for that application,

the evaluation points where either not on the source panel or were interior points on the

source panel.

The velocity due a linear strength force distribution can be calculated by replacing SL (inn, q)

y Iym]
-5' -5

in Sections 3.2 and 3.3 by

SL (m, n, q)
SL(m, n, q)= SL (m + 1, n, q) (3.31)

SL(m, n i 1, q)

and replacing scalar operations by the corresponding pointwise vectorized operations. Nat-

urally the same process can be applied to the computation of the velocity due to higher

order force distributions.

Chapter 4

Precorrected FFT solver for Stokes flow

In this chapter we describe an accelerated boundary element solver for calculating the drag

force on microelectromechanical and microfluidic devices. The drag force on microelec-

tromechanical devices such as oscillators, accelerometers, combdrives and micromirrors is

an important factor that significantly influence their dynamic behavior [3, 4, 5]. Especially

for surface micromachined devices, the drag is greatly influenced by the presence of the

nearby substrate [7]. Stokes drag near the bottom of a microfluidic channel is also impor-

tant for the calculation of the cell trapping dynamics of structures such as those described

in [21], [22] and [23]. However, explicitly accounting for the substrate can be computa-

tionally expensive.

Accelerated boundary element solvers based on the multipole method [13], panel clustering

and wavelets [14] and on the precorrected FFT method [15], have previously been applied

to the calculation of drag forces on MEMS structures [6, 16, 17, 18, 19]. However, with

the exception of the variable order wavelet method used in [19], these implementations of

the boundary element method use a free-space Green's function that requires an explicit

discretization of both the substrate and the suspended structures. The problem with dis-

cretizing the substrate is that a large number of unknowns are needed. In addition, when

the structure is close to the substrate, the substrate discretization must be refined to match

the "shadow" of the structure.

In this chapter we present a more efficient fast BEM solver for structures above a substrate

that uses the Green's function for Stokes flow bounded by a plane to implicitly represent

the device substrate. In particular, we develop an approach based on the precorrected FFT

(pFFT) algorithm [15], as the pFFT method has been demonstrated to be extremely mem-

ory efficient. Such pFFT approaches rely on translation invariance and, as we describe

below, that introduces algorithmic complications when combined with the substrate Stokes

Green's function.

In the following, it is shown that using the Stokes substrate Green's function significantly

reduces memory usage and the time required to calculate the drag force. It is also shown

that, if the substrate is represented explicitly, then for small separation distances between

the structures and the substrate a very large number of panels must be used to represent the

substrate. In Chapter 5, it is also demonstrated that to achieve a given level of accuracy, re-

gardless of whether an implicit or an explicit representation of the substrate is used, the size

of the panels used to discretize the structures must be reduced as the distance between the

structures and the substrate decreases. This result is surprising because the need to refine

the discretization of the structures as the gap decreases is not necessarily driven by a need

to more accurately represent the solution. Nevertheless, it is demonstrated that, despite

the complications introduced in the pFFT algorithm and the fact that the discretization still

needs to be refined as the structures are brought closer to the substrate, using the Stokes

flow substrate Green's function is still worthwhile as it produces more accurate results more

efficiently than by using an explicit substrate discretization.

This chapter is structured as follows. In Section 4.1, the pFFT algorithm is reviewed. In

Section 4.2, the modifications to the pFFT algorithm required to support the Stokes sub-

strate Green's function are presented. In Section 4.3, results validating and demonstrating

the pFFT accelerated boundary element method using the substrate Green's function are

shown. Finally, in Section 4.4, the advantages and limitations of the approach proposed in

this chapter are discussed. The background material, associated with the Stokes flow model

and boundary integral formulation is presented in Chapter 2.

4.1 Precorrected FFT algorithm

The precorrected FFT algorithm, introduced in [15], accelerates the process of calculating

the interactions between N sources and M targets by first applying interpolation to map the

effects of the N arbitrarily located sources to a regular grid, of NG points, then calculating

the interactions between the NG regular grid points using FFT accelerated convolution and

finally interpolating the results from the grid to the M targets. Since the interactions calcu-

lated using this grid based procedure are not accurate enough when the sources and targets

are nearby, in the pFFT algorithm the values of the inaccurate grid based nearby interac-

tions are discarded (effectively subtracted from the result produced by the FFT accelerated

convolution) and replaced with more accurate estimates of the nearby interactions, usually

obtained with numerical or analytical integration.

To use the FFT to accelerate the convolution step on a regular grid, the interactions between

sources and targets must be translation invariant. However, the substrate Green's function

for Stokes flow is not translation invariant on the direction normal to the substrate. In

the following sections the basic concepts and steps involved in the pFFT algorithm are

reviewed.

4.1.1 Projection and interpolation

Consider evaluating a function g(xt, xS, Yt, Ys, Zt, zS) = g(xt, x,), where x, denotes a

source point and xt denotes a target point. The function g can be approximated by polyno-

mially interpolating from a set of samples g(xt, xp) evaluated at a set of points x, near the

source point xs. In particular,

g(xt, x.) = 9(x, x)L(x,) + E,(xt, x,) (4.1)

where, for a given projection order p, L,(x,) is a Lagrangian interpolator, i.e. a polynomial

that is 1 when x, = x, and zero for the remaining sample points, and Ep(xt, x,) is the

projection error. In the context of the pFFT algorithm, this source interpolation is called

projection.

Dually, g(xt, x,) can be approximated by interpolating samples g(xi, x,) evaluated at a set

of points xi near the target point xt. Analogous to (4.1),

g(xt, x,) = Li(xt)g(xi, x,) + Ei(xt, x,) (4.2)

where Li (x,) is again a Lagrangian interpolator and Ei (xt, x,) is the interpolation error.

Projecting the source using (4.1) and interpolating at the destination (4.2) results in

g(xt, x,)= Li(xt) g(xi, x,)L,(x,) + Ei+,(xt, x) (4.3)

where the xi's and x,'s are conveniently chosen points (e.g. a subset of points on a uniform

grid) and Ei+p represents the approximation error.

The accuracy of the above approximation can be improved by using additional information

about g, such as its derivatives with respect to the source and field positions.

4.1.2 Collocation

The BEM collocation matrix G in (2.23) can be approximated using (4.3)

, G f, = E, fs g(xt, x,)f(x,)dS =

Z2 EP Li(xt)g(xi, xp) E, fS, L,(x,)f(xs)dS+

Es fs Ei+p(xs,, xt)f (xs,)dS (4.4)

Iti E gi,p E Pp,s fs + Es Et,sfs,
i p s

Qi+P
Gts

where the matrix PA, is called the projection matrix, and the matrix It,i is called the interpo-

lation matrix. The error term Et,, maybe large if xs and xt are nearby or if the interpolation

stencil for xt overlaps with the projection stencil for x, and the kernel is singular, in which

case the kernel values g(xi, xp) for xi = x,, which cannot be correctly evaluated, will

corrupt the approximation. In the precorrected FFT algorithm the error term for nearby

interactions i.e., Et,s = Gt,s - G'+1, is calculated explicitly and added to the contributions

calculated using projection and interpolation in order to improve the accuracy of the ap-

proximation. For distant interactions, Et,, is negligible and is set to zero thus generating a

sparse matrix fEt, called the precorrection matrix.

The non-zero entries of the precorrection matrix are generated using quadrature schemes [36]

or an analytical method to calculate an accurate value for Gt,8 and by subtracting the grid

based contribution GT. An analytical method for calculating the velocity field due to a

force distribution on a flat panel is presented in Chapter 3.

4.1.3 Convolution on regular grid

If the points xi and x, are points on regularly spaced grids with the same spacing and the

same axis of alignment, and gi,p = g(xi, xp) is translation invariant', then gi,p = ki- is a

block Toeplitz matrix. Therefore, the term in (4.4),

E gi, E P,,fS = (git- (i_' (4.5)

P S P P

can be interpreted as a discrete convolution and can be calculated efficiently using the

FFT algorithm [41]. Calculating the convolution using the FFT to transform both a zero

padded f, and the kernel associated with gi_, to the frequency domain, performing a point-

wise multiplication, and then inverse transforming the result has a computational cost of

O(NG log(NG)). By contrast, calculating the convolution on the grid directly has a cost of

O(NG). A similar interpretation and acceleration scheme can be used for the case where

the kernel is of the form g(xi, x,) = g(xi - Dxp) where D is a 3 by 3 diagonal matrix

with entries that are 1 or -1. For the grid axis corresponding to -1 entries the matrix gi,p

'A function is translation invariant if g (xi, x,) only depends on the relative position of xi and x, and the
two parameter function g(xi, x,) can be reduced to a single parameter function g(xi - xP).

forms Hankel blocks that can be viewed as a discrete convolution of an image source with

a shifted translation invariant kernel [15].

In the following, for simplicity, we will assume that the grid of NG points is arranged in

Nz regularly spaced layers with with Nxy points parallel to the substrate.

4.2 Dealing with the substrate Green's function

Since the Stokes flow substrate Green's function is not translation invariant along the direc-

tion normal to the substrate, the FFT based convolution described in section 4.1.3 cannot

be directly applied to accelerate the calculation of the velocity on the NG grid points. Ex-

amining how the Stokes flow substrate Green's function is not translation invariant along

the direction normal to the substrate leads to several alternatives for extending the pFFT

approach.

The Stokes flow substrate Green's function, repeated from (2.18),

Gw(x, x,) =GF(r)- GF(ri)-2hkGD(ri)N+2hGR(ri)N

Gi"(x,xi)

is not translation invariant along the direction normal to the substrate for two reasons: first,

it is the combination of a direct contribution and an image contribution; second, some of

the image terms are multiplied by h or hk and therefore depend on the absolute position

of the source and the target. The first issue can be addressed by splitting the kernel into

a direct contribution G(x, xo)F and an image contribution Gi"(x, xi). The direct contri-

bution is translation invariant and does not pose any additional challenge. However, the

image contribution Gim(x, xi) has an explicit dependence on h and hk and is not transla-

tion invariant even though the kernels GF, GD and GSD are. To deal with the translation

variant terms, it is possible to move the h and the hk dependence to the projection and

interpolation matrices as in

Ut = Es fS, Gw(xt, xS)dS, =)' Li(xt) x

E, GF(xi, xP , fs, L,(x)dSfS-

E, GF(xi, Nx,) E, fs, L,(x)dSf,+ (4.6)

EP 2G R(Xi, Nx,) E, fs, L,(x)h(x)dSfs+

k(xt) E, 2GD (xi, Nxp) ES fs L,(x)h(x)dSaf.),

which can be written in matrix form as

ut = ES f, Gw(xt, x.)fsdS, =

I t'i }_' G , ES PS fS -

1, ,Gim, Ep~sl
E2 It,i E, 2Gim,R S s+

iIM ,2 m,D s s'i2EP 2G' DES P S.

The resulting FFT accelerated matrix vector product, without the precorrection term, is

illustrated in Figure 4-1. Using this scheme each matrix vector product requires 6 scalar

projections, 6 FFTs, 6 iFFTs and 6 scalar interpolations. Using the symmetry of the ker-

nels, this scheme requires storing 6 scalar kernels transforms for the direct contribution

GF(X, x0) and 14 scalar kernel transforms for the image contribution Gi'm(x, xi).

FFT(GF) *>

FFFT(G)T

FFT(G"D) * -
p V) FF(- FFT iF ~ U

FFT(Gi~D) -* iFFT

Figure 4-1: The velocity on the interpolation grid u can be calculated using 6 projections, 6 FFTs,

6 IFFTs and 6 interpolations and uses 30NG normalized storage for kernel transforms. Note that

the transforms of the Green's functions are computed once and stored.

Splitting the kernel into 20 scalar components while the original kernel has 8 independent

scalar entries seems wasteful. Motivated by this observation, an alternative approach, one

that does not require splitting the kernel nor modifying the projection and interpolation

steps, was considered. Instead of splitting the kernel and using a three dimensional FFT to

accelerate the convolution, in the alternative approach the velocity on each of the Nz layers

of the grid is computed using an explicit convolution of the force distribution on each of

the Nz layers. Since GW is translation invariant along directions parallel to the substrate,

the alternative approach can use two dimensional FFTs to accelerate the computation of the

contribution of the velocity on a layer due to the force on another layer. Therefore, the com-

putational cost of the alternative approach is O(NzNxy log Nxy) = O(NzNG log Nxy).

Since G' is not translation invariant in the direction normal to the substrate and there are

8 scalar kernels, to store the interactions between all the pairs of layers requires memory

proportional to 8NzNxy = 8NzNG.

Despite its simplicity, this alternative approach was abandoned because it does not scale

well as N, increases. Even though splitting the kernel into subcomponents complicates

the projection and interpolation steps and requires more memory, the memory used by the

split kernel approach scales linearly with the number of grid points, while the memory and

time required for the alternative approach grow quadratically with Nz. We found that for

Nz > 4, the split kernel approach was more memory efficient.

4.3 Results and discussion

In this section we compare the results obtained using the pFFT accelerated BEM formula-

tion using the ground plane Green's function with theoretical, numerical and experimental

results.

4.3.1 Sphere moving near a plane wall

The Stokes drag on a sphere moving parallel or normal to a plane wall has an analytical

solution (see [42] and [43] for details). For comparison, the drag force on a sphere dis-

gap Normalized drag - parallel motion Normalized drag - normal motion
h/r-1 coarse mesh fine mesh exact [42] coarse mesh fine mesh exact [43]

15 1.0353 1.0361 1.0364 1.0742 1.0752 1.0755
7 1.0741 1.0751 1.0754 1.1608 1.1621 1.1625
3 1.1603 1.1615 1.1620 1.3772 1.3794 1.3802
1 1.3797 1.3820 1.3828 2.1163 2.1232 2.1255

0.5 1.5908 1.5945 1.5957 3.1812 3.1993 3.2054
0.2 1.9425 1.9501 1.9527 6.2314 6.3131 6.3409

Table 4.1: Normalized drag force on a sphere of radius r whose center is at a distance h from a

wall.

cretization with 1280 panels, labeled coarse, and for a sphere with 5120 panels, labeled

fine, for both in-plane and normal motion were calculated using the precorrected FFT ap-

proach described above. The drag force values, normalized with respect to the Stokes drag

force in free space -67rpurU, where r is the sphere radius and U is its linear velocity, are

summarized in Table 4.1 and illustrated in Figure 4-2. From the table and the figures, it can

be seen that the agreement between the theoretical values and the solution produced by the

above method is very good.

100
Normalized gap = (h-r)/r

.- Exact reference [Brenner1961]
o pFFT coarse mesh
+ pFFT fine mesh

Free space
-Stokes drag

- - - - - - - - - - - - - - - -

10 10 10
Normalized gap = (h-r)/r

Figure 4-2: Normalized drag force density on a sphere of radius r whose center is at a distance

h from a plane wall. The drag is normalized with respect to the Stokes drag force in free space

6,r prU. On the left is the the drag associated with motion normal to the wall, on the right is the

drag associated with motion parallel to the wall.

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

10

..- 0- Exact reference [ONeill1964]
S ~. 0 pFFT coarse mesh

x pFFT fine mesh

--

- Free apace '.
Stokes drag- .

- - - - -- - - - - - --- - - - - -

~

4.3.2 Cylinder over substrate - Effect of substrate discretization

The focus of this section is to analyze the effect of the substrate discretization on the so-

lution accuracy for a simple structure. The example structure was chosen to be a cylinder

with I Opm radius and 2pm thickness. A cylinder discretizations with a median panel radius

of 0.14pm was constructed using Comsol 3.2.

The cylinder mesh was placed over a 40pm by 40pm plane discretized into a set of regular

square panels. The cylinder mesh was then placed at a distance of 5pm, 2pm, 1pm and

0.5pm from the substrate. For each configuration, the drag force on the bottom of the

cylinder was calculated for lateral motion of the cylinder and the total vertical force on the

cylinder was calculated for vertical motion. A reference solution was generated by solving

the same problem but using the implicit substrate representation.

The relative error of the lateral drag force on the bottom of the cylinder is illustrated in

Figure 4-3. It is clear from the figure that, to get within 1% of the reference solution, a

coarse substrate discretization suffices. This result applies to the case where the geometry

of the body is very simple and the force on the bottom of the cylinder and on the substrate

is mostly constant. For cases like the comb-like structure in section 4.3.3 this is not the

case. Another observation to be made from Figure 4-3 is that the relative error for a sepa-

ration gap of 5pm did not decrease limited to 1%; this is due to the use of a finite surface

to represent the infinite substrate. As the cylinder is brought closer to the substrate, the

interaction between the cylinder and the substrate becomes more localized and the 40pm

side square region used to represent the substrate becomes a better approximation of the

actual substrate.

The relative error of the total vertical force on the cylinder for vertical motion as a function

of the radius of the panels used to discretize the substrate plane for several separation

distances between the cylinder and the substrate is illustrated in Figure 4-4. Contrary to

was was observed in Figure 4-3, as the gap size is reduced, the substrate discretization

had to be made much finer to achieve a given accuracy. For the smaller gaps, the finest

substrate discretization did not produce a result within 1 % of the reference solution. This

result clearly emphasizes the advantage of using the implicit substrate representation.

1 0.5 0.33 0.25 0.2 0.17
substrate panel radius [pm]

Figure 4-3: Relative error of the drag force calculated for a cylinder moving parallel to the sub-
strate. The relative error was calculated for a fixed cylinder discretization and for a set of substrate
discretizations and gap sizes.

1 0.5 0.33 0.25
substrate panel radius [pm]

0.2 0.17

Figure 4-4: Relative error of the drag force calculated for a cylinder moving normal to the sub-

strate. The relative error was calculated for aflxed cylinder discretization and for a set of substrate

discretizations and gap sizes.

Observations

Several observations can be made from the results presented in this example. First, for

lateral motion of a simple body like a cylinder, the body and the substrate discretization

do not need to be made very fine to achieve reasonable accuracy. Second, for objects

moving vertically, using the Stokes free space Green's function requires that the substrate

discretization be made very fine to produce accurate results.

gap=0.5pm
- gap=1pm

gap=2pm
gap=5pm

.....

A:

..

4.3.3 Substrate shadow

To compare the accuracy of the results produced by solving the discretized version of

(2.14), where using the free space Green's requires the explicit discretization of the sub-

strate, with the results of solving the discretizated version of (2.19) without an explicit

substrate representation, we chose a non-smooth problem consisting of a comb-like struc-

ture with fine fingers moving over a substrate, as depicted in Figure 4-5.

Figure 4-5: Comb like structure moving over substrate.

The drag force on the structure was calculated using the precorrected FFT algorithm for in-

plane and out-of-plane motion for several separation distances between the comb structure

and the substrate. The value of drag force on the comb structure was calculated for several

combinations of discretizations for the comb and for the substrate. The separation between

the comb and the substrate was also swept over a set of three values. The drag forces

produced by this multidimensional sweep are summarized in Table 4.2.

Several observations can be made from the data in Table 4.2:

The variation with discretization of the results obtained for in-plane motion drag is much

smaller than the variation for the values that were calculated for out-of-plane motion. For

in-plane motion the results were all within 10% of the reference values, regardless of the

discretization used for the substrate. Nevertheless, the error obtained using a coarse sub-

strate discretization is larger than the error obtained using either implicit substrate dis-

cretization or a fine explicit substrate discretization.

gap= 4pm gap= 2p-m gap =1m
comb subs. p.r. lateral vertical lateral vertical lateral vertical
mesh mesh [pm] drag [pN] drag [pN] drag [pN] drag [pN] drag [pN] drag [pN]

r n 0.32 58.65 587.84 89.44 1747.93 141.07 8251.85
c n 2.55 57.52 554.46 87.22 1508.66 136.16 5869.81
m n 1.27 58.21 572.23 88.60 1665.21 139.37 6976.18
f n 0.64 58.51 582.67 89.19 1724.17 140.57 8023.81
c c 2.69 56.94 506.57 86.12 1076.27 133.35 2366.16
m c 1.27 57.61 532.23 87.40 1150.91 136.56 3325.24
f c 0.64 57.92 539.91 87.92 1066.92 135.17 1119.19
c f 0.87 57.04 554.80 86.89 1490.90 135.83 5647.43
m f 0.87 57.73 572.34 88.27 1638.88 138.96 6652.27
f f 0.67 58.03 582.17 88.88 1679.91 140.12 8005.46

Table 4.2: Drag force on a comb like structure moving over a substrate. Results were obtained
using different discretizations for both the structure and the substrate. Lateral drag results were

obtained by setting the structure velocity to -1mm/s along the x axis. Vertical drag results were

obtained by setting the structure velocity to -1mm/s along the z axis. In all cases the fluid viscosity

was y = 1.843 x 10- 5Pa.s. In the table p.r. stands for median panel radius and c, m, and f stand

for coarse, medium and fine meshes. n stands for no mesh indicating that the substrate implicit

solver was used. r stands for the reference mesh.

Focusing on the results obtained with the implicit representation of the substrate it can be

observed that, as the separation between the comb and the substrate is reduced, the drag

calculated for out-of-plane motion depends strongly on the discretization resolution. This

dependence indicates that, for out-of-plane motion, the solution has more variation and

that a large number of constant strength panels is needed to represent the solution. Using a

Galerkin test scheme slightly reduces this discretization dependence but it is still clear that

a finer resolution is needed as the comb is moved closer to the substrate.

Focusing on the drag associated with out-of-plane motion calculated using explicit sub-

strate discretizations, it can be observed that even for a relatively large separation between

the comb and the substrate, the error is strongly dependent on the substrate discretization

resolution. As the distance between the comb and the substrate is reduced, the accuracy

of the solutions produced using a coarse substrate discretization deteriorates significantly.

To reinforce the claim that the cause of this deterioration is the coarseness of the substrate

discretization, consider that, for a fine substrate discretization, the results calculated using

the free-space Green's function approach the results obtained using the implicit substrate

representation.

X 10-3 X 10-
4.5

.5

4100 -4 1004

3.5
3.5

50 50o 3

2. 2.5

2 2
0 2.5 -01.

-100 0.5 -100 0.5

-50 0 50 -50 0 50

100.0350.3100

0.030.025

0.015 0.025

__0.015_ 0.015

-100 0.006

0
-50 0

Figure 4-6: Substrate "shadow" - Drag force density on the substrate under a comb like structure
moving in-plane. The figures on the left where generated using afine discretization for the substrate,
the figures on the right where generated using a coarse discretization for the substrate. In the top
two figures the comb structure was placed at 4/.m above the substrate, in the bottom figures the
comb structure was placed at O.S5im above the substrate.

To illustrate the effect of the substrate discretization resolution, Figure 4-6 shows that the

forces on the substrate form a "shadow" of the comb structure above it. Comparing the

shadows for the two separation distances in Figure 4-6, it is clear that the shadow becomes

sharper as the comb is brought closer to the substrate. Therefore, for small separation dis-

tances, a constant coarse discretization cannot accurately represent the forces on the sub-

strate. On the other hand, for large separation distances, where the shadow of the structure

is much smoother, a coarse substrate discretization produces sufficiently accurate results.

4.3.4 MEMS accelerometer

The substrate implicit pFFT solver was used to analyze the micromachined capacitive ac-

celerometer that was studied in [6] and [19]. Below, the drag force results reported in [6]

and [19] are compared with the results calculated using our solver. For this real world ex-

ample, time and memory usage are reported to reinforce observations made in section 4.3.3

and to point out some additional facts.

In [6] and [19], the combdrive was placed at a distance of 2pm above the substrate and the

mesh, referred to below as mesh c, was used. To study the convergence of the solution with

the discretization resolution mesh c was refined by panel subdivision to produce meshes m,

f and e. For each mesh refinement, the combdrive was placed at a distance of 4pm, 2pm,

Ilym and 0.5pm above the substrate. The drag force results and the time and memory usage

for each case are summarized in Table 4.3.

Comparison to previously published results

For the case of a 2pm gap, the drag coefficient value obtained in [44], was 207.58nNm-is,

corresponding to a quality factor of Q = 29.1. Experimentally the quality factor was

measured to be Qexp = 27. Using the substrate implicit pFFT algorithm with mesh c, the

force estimate 217.26nNm- 1 s was produced, after adjusting for the different value of p

used in [44], this corresponds to a Q = 28.5, which is marginally closer to Qexp. Using a

mesh with 313536 panels, labeled e in Table 4.3, produced a drag force of 223.6nNm-is,

corresponding to Q = 27.7, which is consistent with the result reported in [18].

The result produced in [19] used the far more general variable order wavelet acceleration

method, an implicit representation of the substrate, and the comb mesh labeled c in Ta-

ble 4.3. In [19], the computed drag force was 214.7nNm-'s. According to [19], this result

was calculated in 4685s and required 4.7GB of memory. To achieve similar accuracy with

an identical mesh, the precorrected FFT based solver used 281.4MB and 176.2 seconds.

Although the pFFT solver outperformed the wavelet method on this fairly spatially ho-

mogeneous problem, it is well known that FFT based methods perform poorly on more

comb wall gap p. r. panels memory full GMRES iterations drag
mesh mesh [pm] [pm] [MB] time [s] time [s] [pN]

c n 4 2.39 8418 281.4 183.9 62.1 134 -150.12
m n 4 1.20 33672 1087.2 918.0 376.8 156 -153.07
f n 4 0.64 78384 2507.3 1967.5 515.6 44 -154.17
e n 4 0.32 313536 11921.8 13263.6 6432.0 44 -154.66
c c 4 2.55 12330 401.1 534.9 355.5 270 -149.96
m m 4 1.27 49320 1581.6 3654.4 3051.9 335 -152.87
f f 4 1.10 140976 4461.3 4457.0 2490.1 134 -154.12
e e 4 0.55 563904 18664.8 26399.4 16584.1 103 -154.58
c n 2 2.39 8418 281.4 176.2 54.3 119 -217.26
m n 2 1.20 33672 1087.2 871.7 330.3 139 -221.45
f n 2 0.64 78384 2507.3 1976.8 527.8 45 -222.94
e n 2 0.32 313536 11921.8 13778.9 6970.1 48 -223.60
c c 2 2.55 12330 399.7 686.1 465.0 363 -213.62
m m 2 1.27 49320 1509.3 4017.6 3401.4 442 -220.51
f f 2 1.10 140976 4296.2 6499.5 4647.5 269 -222.94
e e 2 0.55 563904 18577.5 26086.9 14928.9 129 -223.60
c n 1 2.39 8418 281.4 168.7 46.2 103 -343.57
m n 1 1.20 33672 1087.3 833.4 291.5 125 -351.05
f n 1 0.64 78384 2507.3 1952.8 503.8 43 -353.54
e n 1 0.32 313536 11921.8 13943.6 7111.7 49 -354.71
c c 1 2.55 12330 395.7 860.5 621.9 457 -325.05
m m 1 1.27 49320 1483.4 2207.0 1436.2 256 -347.01
f f 1 1.10 140976 4168.3 3982.6 2164.3 139 -352.79
e e 1 0.55 563904 18078.1 31474.9 20791.6 179 -354.33
c n 0.5 2.39 8418 281.4 163.8 41.6 94 -577.46
m n 0.5 1.20 33672 1087.3 821.0 278.7 120 -593.12
f n 0.5 0.64 78384 2507.2 2110.2 663.0 57 -598.01
e n 0.5 0.32 313536 11921.8 14487.1 7665.6 53 -600.67
c c 0.5 2.55 12330 394.2 945.7 699.6 500 -533.30
m m 0.5 1.27 49320 1473.0 4161.6 3305.3 500 -591.06
f f 0.5 1.10 140976 4087.8 7199.4 5353.6 304 -596.16
e e 0.5 0.55 563904 17835.2 29343.2 18781.4 165 -599.73

Table 4.3: Drag force on a the movable comb of a combdrive resonator for lateral motion along
the comb finger direction. The accelerometer is moving at a velocity of lmms-1 in air with p -
1.843 x 10- 5Pa.s. Above c stands for coarse, m stands for medium, f stands for fine, e stands for
finer and n indicates that the substrate was represented implicitly. p.r. stands for median panel
radius. A number of 500 GMRES iterations indicates that GMRES did not converge to a relative
error of 10~4.

inhomogeneous problems [15].

Observations

The results presented in Table 4.3 demonstrate that, for the same combdrive mesh resolution

the pFFT algorithm using the implicit substrate discretization uses less memory and is

faster than the pFFT algorithm using the free space Green's function and discretizing the

substrate. This is true even though the kernels used to represent the substrate implicitly are

much more complicated than the free-space Stokes Green's function. The reason for this

improvement is that not only does the free-space Stokes pFFT algorithm need to account

for the substrate explicitly, but also needs a larger FFT grid to encompasses the substrate

and the objects above it, instead of just the objects. Furthermore, as shown in Table 4.3, the

number of GMRES iterations that is required to achieve the same relative residue norm is

typically much larger for the case where the substrate is represented explicitly suggesting

that the system of equations associated with that formulation is poorer conditioned than the

systems of equations associated with the substrate implicit method.

4.3.5 Proof mass with holes

In surface micromachined devices, parts of the device that cover large areas, such as proof

masses, are often designed with several small holes that facilitate the removal of sacrificial

layers and subsequent release of the device and that reduce the drag the device experiences

as it moves [5].

To effectively predict the behavior of the devices, or to reduce the drag by a given desirable

amount it is necessary to accurately account for the effect the holes have on the drag. For

example, while designing an oscillator, to achieve a high quality factor Q one would want

to maximize the reduction in the drag while minimizing the reduction in mass. While

accounting for the reduction in mass due to adding holes is straightforward, accounting for

the reduction in drag is more complicated since, especially for off-plane motion, the drag

is strongly dependent on the size, number and distribution of the holes and on the distance

between the structure and the substrate.

The effect of the holes in the drag force becomes stronger as the structures are closer to

the substrate and the fluid is "forced" in the holes rather than just being pushed away

from the bottom of the structure. In these cases, accurately representing the presence of

the substrate is especially important. If an explicit substrate discretization method were

to be used, that discretization would have to fine and hence costly. By using an implicit,

accurate representation of the effects of the presence of the nearby substrate, the algorithm

proposed in this chapter allows the computational resources to be better spent in refining

the discretization of the actual suspended structure.

To demonstrate the use of our solver we used Comsol 3.2 to setup a set of meshes of

100pm by 100pm, 2pm thick proof mass. The maximum panel size was set to lpm in

order to guarantee that, even at a close distance to the substrate, the discretization would be

fine enough to represent the solution using constant strength panels. To study the effect of

the size and number of holes on the drag we used Comsol 3.2 to generate meshes with 1,

4, 9, 25 and 100 equally distributed cylindrical holes with a radius of I1Pm, 2pm and 4ptm.

The proof masses were set at a 4pm and lpm above the substrate. In all cases the proof

mass velocity was 1mm/s moving towards the substrate. For comparison, the drag on a

proof mass with no holes was also calculated. The results are summarized in Table 4.4. To

further emphasize the effect of the hole radius on the force distribution on the proof mass,

we present the vertical force on the bottom of a proof mass with 25 regularly space holes

for holes with a radius of Ipm, 2pm and 4pm in Figure 4-7.

Figure 4-7: Force on the bottom of a 100pm by 100pm by 2pm tile moving at Ipm above the
substrate moving towards it at a velocity of Imms- 1 in a fluid with viscosity p = 1.843 x 10-5Pa.s.
The tiles on the figure have 25 equally spaced holes with a radius of 1pm, 2pm and 4pm.

num h. r. gap p. r. num memory full GMRES GMRES drag
holes [pm] [pm] [pm] panels [MB] time [s] time [s] iterations [nN]

0 4 0.56 74128 2138.5 2049.7 555.0 103 14.88
1 1 4 0.56 74314 2144.7 2070.6 579.4 103 14.83
4 1 4 0.56 74408 2148.8 2031.0 545.7 103 14.80
9 1 4 0.55 79192 2339.8 2203.0 580.6 104 14.70

25 1 4 0.55 75930 2207.6 2147.1 588.3 104 14.47
100 1 4 0.55 78454 2319.6 2524.9 817.6 137 13.39
1 2 4 0.56 74180 2140.4 2237.1 749.3 131 14.35
4 2 4 0.56 74486 2149.6 2240.4 747.9 131 13.98
9 2 4 0.56 74554 2154.1 2230.8 733.6 132 13.19
25 2 4 0.56 75406 2181.2 2241.2 721.3 132 11.07
100 2 4 0.55 77542 2250.0 2333.9 718.7 134 6.29

1 4 4 0.56 74060 2137.3 2263.2 745.2 130 12.10
4 4 4 0.56 73426 2125.0 2169.0 696.5 123 10.29
9 4 4 0.56 72494 2108.0 2176.6 710.9 129 7.56

25 4 4 0.56 69162 2040.3 2025.6 617.3 122 3.83
0 1 0.56 74128 2138.5 2048.5 569.0 107 820.67
1 1 1 0.56 74314 2144.7 2042.0 557.6 105 734.05
4 1 1 0.56 74408 2148.8 2063.1 575.4 108 685.26
9 1 1 0.55 79192 2339.8 2214.1 587.4 105 571.56

25 1 1 0.55 75930 2207.6 2077.8 532.9 100 386.42
100 1 1 0.55 78454 2319.6 2723.3 811.7 107 145.15
1 2 1 0.56 74180 2140.4 2267.1 708.0 124 618.38
4 2 1 0.56 74486 2149.6 2233.3 738.3 129 507.10
9 2 1 0.56 74554 2154.0 2265.7 761.4 134 342.78

25 2 1 0.56 75406 2181.3 2098.5 560.6 105 148.38
100 2 1 0.55 77542 2250.1 2092.3 474.6 93 30.03
1 4 1 0.56 74060 2137.4 2685.6 995.1 123 535.79
4 4 1 0.56 73426 2125.0 2236.8 755.6 133 380.58
9 4 1 0.56 72494 2108.0 2067.3 602.9 110 206.26
25 4 1 0.56 69162 2040.3 1919.5 508.3 102 59.08

Table 4.4: Drag force on a square 100pm by 100pm tile, 2pm thick tile moving towards the sub-
strate at a velocity of Imms- 1 in a fluid with viscosity p = 1.843 x 10-5kg/ms. Above h.r. stands
for hole radius and p.r. stands for panel radius.

To validate the results obtained using our solver we compared them to those produced

using the Comsol 3.2 finite element code, which uses a relatively coarse volume mesh with

quadratic elements. The proof mass with 4 holes with a radius of 2pm was chosen at

random to perform this comparison. For the randomly chosen example, the drag calculated

using Comsol 3.2 was 13.98nN for a separation distance of 4ptm and 507nN for a separation

distance of I lym, which is is clearly consistent with the results reported in Table 4.4.

4.4 Conclusions and future work

A precorrected FFT accelerated algorithm for solving Stokes flow problems in the presence

of a substrate was developed and demonstrated. The algorithm was validated against known

theoretical, experimental and computational results and its performance was compared with

previously published results.

Overall the following conclusions were drawn: the pFFT accelerated results closely match

exact analytical results and results previously reported in the literature. Using the implicit

substrate representation produces more accurate results with less memory and significantly

less time than explicitly representing the substrate. Using the implicit substrate represen-

tation produces more accurate results because it accounts for the presence of the substrate

exactly. Using the implicit substrate representation is more efficient because it requires

fewer panels and because the domain that the pFFT grid must cover is much smaller than if

the substrate were to be explicitly discretized. Using an implicit substrate introduces more

scalar kernels, 20 instead of 6, but the speed gain obtained by eliminating the substrate and

reducing the size of the pFFT grid overcomes this cost. The techniques used to extend the

applicability of the pFFT algorithm to non-translation invariant kernels can be exploited in

other applications.

What was a surprising and disappointing outcome of this study, which is further detailed

in Chapter 5 is that out-of-plane motion excites equation modes that reveal the need to

refine the structure discretization as the distance to the substrate decreases. Simulation of

out-of-plane motion also revealed that, when using an explicit substrate, the substrate dis-

cretization must be refined faster than than structure discretization for results to match the

results obtained using implicit substrate discretization. So implicit substrate representa-

tion has benefits but does not entirely decouple structure discretization from distance to the

substrate.

As future work we propose supporting higher order panel force distributions to reduce the

number of panels and improve convergence.

Chapter 5

A surprising result

The Stokes substrate Green's function can be used to implicitly represent the substrate.

By using the Stokes substrate Green's function, a boundary integral formulation involving

only the structures above the substrate can be produced. The boundary integral equations

are discretized by approximating the geometry of the problem by a set of flat panels; by

limiting the solution space to only constant force distributions on each panel and by testing

the equations only at the centroid of each panel.

By removing the need to explicitly represent the substrate it was expected that, unless

the solution became more complicated, the panel discretization for the structures above

the substrate would not need to be refined as the distance between the structures and the

substrate decreases. In this chapter, using a very simple example, we demonstrate that

vertical motion activates modes of the equation that require the discretization to be refined,

regardless of the smoothness of the solution.

In the following, the example of a cylinder with a radius of 10 pm over a substrate is used

to study the effect of discretization refinement on the accuracy of the calculated drag force

for both horizontal and vertical motion.

To study the effect of the cylinder discretization and distance to the substrate on the accu-

racy of the calculated drag force a set of cylinder discretizations were constructed using

Comsol 3.2. Each cylinder mesh was then placed at a distance of 5pm, 2pum, lpm and

0.5[pm from the substrate and the drag force was calculated. The solutions calculated for

the finer cylinder discretizations, with a median panel radius of 0.14pm, were used as refer-

ence. For the gap size of 0.5pm, a finer discretization of the cylinder, with a median panel

radius of 0.07pim, was used to calculate the reference drag forces.

5.1 Lateral motion

For a cylinder moving in a direction parallel to the substrate, the drag force is largest on the

bottom of the cylinder. For a small enough gap, the drag on the bottom of the cylinder can

be accurately predicted using the Couette flow model and is given by

F = Vtpa 2 /h,

where V is the velocity, p is the fluid viscosity, a is the cylinder radius and h is the gap

between the cylinder and the substrate.

The error of the computed drag force on the bottom of the cylinder, as a function of the

median radius of panels used to represent the cylinder is illustrated in Figure 5-1. For these

computations, the Green's function in (2.16) is used to implicitly represent the substrate.

Note that as the discretization is refined, the relative error is reduced at roughly the same

rate, regardless of the gap between the cylinder and the substrate.

10
2 1 0.67 0.5 0.4 0.33 0.29

cylinder panel radius Im]

Figure 5-1: Relative error of the drag force calculated for a cylinder moving parallel to a substrate

for several cylinder discretizations for several gap sizes. The substrate was represented implicitly.

- gap=0.5pm
- gap=lpm
- - -gap=2pm
- - gap=5pm

5.2 Vertical motion

For a cylinder near the substrate that is moving with a velocity normal to the substrate, the

dominant force is the pressure on the bottom of the cylinder. For a small gap h between the

cylinder and the substrate, the pressure on the bottom of the cylinder of radius a moving at

a velocity V in the direction normal to the substrate can be approximated as

P(r) = 3pVh- 3 (q 2 - a2) (5.1)

i.e. a quadratic function of 77, the radial distance to the cylinder's axis, that is scaled by

a factor that is inversely proportional to the cube of the gap [2]. Through our numerical

experiments we have observed that (5.1) is a very good approximation to the pressure on

the bottom of a cylinder, except very near the cylinder edges. Moreover, (5.1) becomes

more accurate as the gap between the cylinder and the substrate shrinks. Therefore, since

the solution is approximately a quadratic scaled by a size dependent factor, it is expected

that a constant force panel discretization should represent the solution to the same relative

accuracy independent of the gap size. Surprisingly, this is not the case. To accurately match

the reference solution, the cylinder discretization must be made finer as the gap shrinks.

Such a result is surprising because the need to refine the discretization with the reduction

of the gap size is not driven by the need to more accurately represent the solution. This can

be observed in Figure 5-2, where the error of the vertical force on the cylinder is plotted

as a function of the median radius of the panels. Contrary to the result in Figure 5-1, the

relative error for the smaller gaps is much larger than the relative error for the larger gaps.

For the smaller gap of 0.5pm a very fine discretization was necessary to accurately match

the reference solution. Moreover, for a given discretization, as the gap size is reduced, the

number of GMRES iterations required to achieve a given convergence tolerance increases.

This increase in the number of iterations suggests that the discretized system's condition

number is rising.

Since the need to make the discretization finer is not driven by the need to more accurately

represent the solution, one possible explanation for the need to increase the number of pan-

- gap=0.5pnm
...... - gap.1pm
- -- - gap-2pmn* ap=5~i

---- gap.5pmn

0.5 0.33 0.25 0.2 0.17 0.14 0.
cylinder panel radius [pm]

Figure 5-2: Relative error of the drag force calculated for a cylinder moving parallel to a substrate
for several cylinder discretizations for several gap sizes. The substrate was represented implicitly.

0.5 1 1.5 2
lI/h

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2
0.5 1 1.5

TI/h

Figure 5-3: Velocity along the z direction due to a force along the z direction located at (0,0, h)
evaluated a point (y cos 0, 1 sin 0, z), where rq is the radial distance from the source point to the
evaluation point. The figure on the left illustrates the vertical velocity field; the darker line marks
the points where the vertical velocity changes sign. The figure on the right illustrates the vertical
velocity as a function of radial position for evaluation points in the same plane as the source.

els as the gap size is reduced is the "behavior" of the Green's function. A possible source

for the behavior is the way that the velocity due to a constant vertical force distribution on

a flat panel changes as the separation distance between the panel and the substrate is re-

duced. The vertical velocity due to a vertical force applied at a distance h above a substrate

behaves as illustrated in Figure 5-3, the velocity is positive near the point where the force is

applied but becomes negative at a radial distance of about 0.888h. For a constant strength

panel of a given size, as h is reduced and becomes smaller than the panel size, the velocity

- -

-

due to a force on one part of the panel will cancel out the velocity due to the force on other

parts of the panel. This effect is clearly illustrated in Figure 5-4 where, for the larger panel

size and small h, the velocity field due to a constant strength panel is greatly reduced and

exhibits a very sharp and complicated behavior. On the other hand, the velocity fields pro-

duced by smaller panels, not subject to self-cancellation at the separation distances in the

figure, keep the smooth shape. The effect is further illustrated in Figure 5-5 where, for a

gap of h = 0.25pm, the vertical velocity field due to each panel is plotted in the same scale

for easier comparison.

3.

0

0
-0.5

Y" -13 . "

-as 0

0.3.

025-

0.01,25"

01.

0.05.

0
0.5

0
-04

Y bsM

.035
0 .5 -0-30-

1.5 04 0.21.5.

0.

2 50.62- 0.2.

0 -AL0.2-

. 01

01.5 0-

Figure 5-4: This figure illustrates the self-cancellation that occurs for larger panel sizes at smaller

gaps by depicting the vertical velocity generated by a constant force panel for three square panels

of varying sizes placed at three gap distances from the substrate. The results on the first row cor-

respond to a gap size of 4pim, on the second row the gap is)pm and on the third row the gap is
O.25 pm. The results on the left column correspond to a panel side of 1 pm; on the middle column to

a panel side of 0.25pm and on the right column to a panel side of 0. 1pm.

panel side = 1pim panel side = 0.25ptm panel side = 0.lysm

Figure 5-5: This figure illustrates the self-cancellation that occurs for the vertical velocity due to a
un'form vertical force on panels above a substrate. The panels on the three figures where placed at
a distance of 0.25pum frm the substrate.

5.3 Observations

Several observations can be made from the results presented in the cylinder example. First,

for lateral motion of a simple body like the cylinder, coarse object discretization achieves a

reasonable accuracy. Second, for objects moving vertically, accurate results are produced

only if the discretization is refined as the gap is reduced, even though the force distribution

smoothness is unchanged. This behavior is observed regardless of whether the substrate

is represented implicitly or explicitly. The practical impact of this observation is that rep-

resenting the substrate implicitly has many benefits but unfortunately does not completely

decouple discretization fineness from distance to the substrate.

Chapter 6

Time domain simulation

The simulation of objects moving in Stokes or creeping flow is a convenient tool for the

design of microfluidic devices such as cell traps [21, 22, 23, 24] and micromixers [25]. The

time domain simulation MEMS devices is also very important for the design of devices

such as micromirrors [26].

As was reviewed in Chapter 2, for problems where the length scale, L, the characteristic

velocity, V, the fluid viscosity p and the fluid density p are such that the Reynolds number

Re=LVp/p is much smaller than one, the inertial terms of the Navier Stokes equations can

be neglected and the Stokes equations can be used.

The Stokes equations state that the pressure, viscous forces and body forces are at balance

regardless of the history of flow, even though the boundaries of the flow maybe changing in

time [1]. The Reynolds number, Re, is the ratio between the time constant for the diffusion

of momentum in the fluid TD = pL2/p and the time constant for convection -Tc = L/V.

When the Reynolds number is small, and there are no abrupt changes in the fluid velocity,

momentum diffuses throughout the fluid domain much faster than the configuration of the

flow is changing due to the evolution of its boundaries [I]. Therefore, in these conditions,

a quasi-static approach for analyzing the time evolution of the system is appropriate [25].

Several methods exist for the calculation of drag forces on objects immersed in Stokes

flow: finite differences [8], immersed boundary methods [9], the finite element method

[10] and the boundary element method [1]. Since, for Stokes flow, the fluid structure only

depends on the boundary configuration at the time point of interest, the boundary element

method is a particularly suitable approach. Moreover, for problems where one is interested

in the time domain evolution of a system, the boundary element method has the advantage

that remeshing the domain at each step is not necessary. Furthermore, using the boundary

element method with appropriate Green's functions it is often possible to drive the motion

of the objects in the flow by specifying a background flow without having to explicitly

discretize the surface of the microfluidic channel or other boundaries that, in other methods,

would just be used to drive the bulk fluid.

It would therefore seem that, to simulate the motion of objects in Stokes flow one would

simply need to use a boundary element solver to calculate the drag force on each object

in the fluid and to use these forces to update the velocity and position of the objects by

integrating the equations of motion. However, for small length scales, such as those present

in MEMS and microfluidic devices, the ratio of the drag force and the mass of the bodies is

such that the time constant associated with transferring momentum between an object and

the surrounding fluid is very small. For typical geometries, the time scale for momentum

transfer between the objects and the fluid is much smaller than the timescale at which the

objects move through the devices, which is usually the time scale of interest in simulation.

The existence of this very small time scale makes the problem stiff and severely limits the

step sizes that explicit time integration schemes can use. Constrained to using very small

time steps, even though the actual solution of interest is smooth, the simulation of realistic

problems becomes too expensive, even if efficient accelerated boundary element methods

are used.

Typically, stiffness is dealt with by using implicit time integration methods. However, since

the forces on the surface of the objects depend on the position, orientation and velocity of

the objects, using an implicit time integration method would require solving a possibly

large boundary element problem involving a non-linear dependence of the forces of the

object on the object position. In this chapter, we demonstrate that the small time constants

that limit the time steps that can be used by explicit time integration methods are due to the

relation between the velocity of the objects and the drag force on their surfaces and not to

the rate at which the fluid structure changes as the objects are convected through the fluid.

To deal with stiffness without incurring in the excessive cost of solving a non-linear equa-

tion for the forces on the surface of the object at each time step, we introduce a method to

couple a time-stepping scheme that updates the velocity implicitly and the position explic-

itly with a boundary element solver for Stokes flow. The velocity implicit time stepping

scheme enables the simulation of the motion of objects using large time steps. We demon-

strate the stability of our method and apply it to a set of microfluidic applications. To deal

with problems involving collisions, contacts and friction we coupled our velocity-implicit

time integration method with the freely available rigid body physics library ODE [27].

This chapter is structured as follows: first, in Section 6.1, the boundary integral equation

formulation of the Stokes flow problems presented in Chapter 2 is extended to support the

definition of background flows and problems involving structures protruding above a sub-

strate or holes on a substrate; in Section 6.2 and Section 6.3 the issue of stiffness in Stokes

flow is illustrated for the case of a sphere in infinite flow; in Section 6.4, the time-integration

schemes presented in Section 6.3 are coupled with rigid body mechanics and a boundary

element solver for the Stokes drag force; in Section 6.5 details about the algorithm and of

how collisions and friction are dealt with are presented; in Section 6.6 optimizations aim-

ing to reuse part of the pFFT solver structures from step to step are presented; finally in

Sections 6.7 and 6.8 results presented and discussed, conclusions are drawn and directions

for future work are proposed.

6.1 Boundary integral formulation

This section is an extension of the presentation in Section 2.1. In this section we describe

how to formulate boundary integral equations for calculating the drag force on objects in

Stokes flow in the presence of a background flow for three special cases that are of special

interest for the simulation of objects moving in microfluidic systems. First, in Section 6.1.1

a boundary integral equation for the drag force on an object immersed in a background flow

is described. In Section 6.1.2 a formulation for calculating the drag on objects immersed in

Figure 6-1: Stokesflow around a rigid body. In the figure uO represents the flow in the absence of
Vb. V is the fluid volume, V is the volume of the rigid body, Sb is the boundary between the fluid
and the rigid body, S is the substrate and Sout represents a surface in the fluid that is considered to
be arbitrarily distant from the other features. The source point xo is represented inside the fluid.

a background flow over over a substrate with protuberant structures is presented; Finally,

in Section 6.1.3 we introduce a formulation for the drag force on objects immersed in a

background flow near a hole in a substrate.

6.1.1 Background flow

A natural way to drive the motion of an object in a flow it is to introduce a background

flow. The background flow is the solution of the Stokes flow problem in the absence of the

perturbation introduced by the presence of the object. By using the linearity of the Stokes

equations a boundary integral equation for the drag on an object moving in a background

flow can be obtained combining a boundary integral equations for the background flow

itself and a boundary integral equation for the perturbation flow [I].

To derive the Stokes flow boundary integral equations for the motion of a rigid body V in

the presence of a background flow ul as illustrated in Figure 6-1. We will first assume

that the source point, xO, for the Stokes Green's function is inside the fluid volume V as

illustrated in Figure 6-1 , we will then consider the case where xo is on Sb, the boundary of

the object.

First we integrate the Lorentz reciprocity identity for the perturbation flow identity over V
excluding an infinitesimal sphere around the source point xo in V and get the boundary

integral equation

JS G(x, xo)f'dS(x) - p T(x,xo)(-ng(x))uD(x)dS(x) = -81rytuD(xo). (6.1)

Due to the no slip boundary condition, the velocity on Sb is u(x) = u +uD = Ub+Wb XX,

where Ub and Wb are the linear and angular velocity of object b. Since u is a rigid body

motion and we are excluding an infinitesimal spherical region of fluid around xO, the double

layer integral in (6.1) becomes

ST(x, xo) (- n (x))uD x (x, xo)(-nf (x))u'(x)dS(x)
Sb S Sb

yielding

lb G(x, xo)fD (x)dS(x) - pj T(x, xo)(-nf(x))u'(x)dS(x) = -8rpuD(xo).

By integrating the Lorentz reciprocity identity for the background flow on the interior of

the body, V, we get

b G(x, xo)f (x)dS(x) - Lb T(x, xo)(-n(x))u (x)dS(x) = 0

where there is no free term in the velocity because the source point is in Vf and we are

integrating over V. The negative sign preceding the normal is meant to emphasize the that

the integral outer normal is -nf.

Adding the two equations yields

lb G(x, xo)(f, + fD)(x)dS(x) = 87puD(xo) = -87p(ub + Wc X XO - u'(Xo))

that can simply be written as

I G(x, xo)f(x)S(x) = -87rp (ub + LO X xo - u'(xo)) (6.2)
Sb

This equation is also valid in the more interesting case when xO is on Sb . To prove this

consider the two integration regions illustrated in Figure 6-2.

Integrating the Lorentz reciprocity identity over V with xO on Sb for the perturbation flow

S (S xo

Sb

Figure 6-2: Integration region with source point xO on the boundary S. The exclusion region is an
infinitesimal hemisphere.

yields

IPvG(x, xo)f'd(x)S(x) - p PV T(x, xo)(-n(x))u(x)dS(x) = -47rpuD(XO).

Since the source point is on the boundary and the velocity is rigid body we have

PV

PV

SbT(x,xo)(-n(x))(u-u')(x)dS(x) = T(x, xo)(-nf(x))u(x)dS(x)-47rpu(xo),

which, for u(x) = Ub + Wb x x, yields

fPv
SG(x, xo)f D(x)dS(x) + p PV T(x,xo)(-nf(x))u*(x)dS(x) =

sb Jsb (6.3)

-47rpuD(Xo) - 4 7rp(ub + We X Xo)

Integrating the Lorentz reciprocity identity for the background flow over V, when the

source point is on Sb, yields

/PV]~ G(x, xo)f'(x)dS(x) -it /s T(x, xo) (-f(x))u'(x)dS(x) = 47rpuO(xO) (6.4)
Sb o Sb

Adding (6.3) and (6.4) produces (6.2), that only differs from the boundary integral equation

without a background flow because of the ul term on the right hand side.

6.1.2 Protuberances on substrate

For the case of microfluidic devices such as the pachinko cell traps [21][22] [23], the moving

objects Sc and the fixed structures S, are close to the bottom of a microfluidic channel but

far enough from the other device walls that the flow field near these walls is not significantly

affected by the presence of S, and S,. In these conditions, the flow field near S, and S, can

be represented by the sum of a background flow u', the Stokes flow solution in the absence

of S, and S, and a perturbation flow uD that, added to ul satisfies the no-slip velocity

boundary conditions on the surface of S, and Sp. Since S, and S, are near the bottom

of the microfluidic device, S, the problem geometry is locally similar to the semi-infinite

problem illustrated in Figure 6-3. When dealing with structures over a substrate S, the

Stokes substrate Green's function [1, 45] can be used to represent the substrate implicitly.

By using the Stokes substrate Green's function only the structures above the substrate need

to be discretized greatly reducing the memory and time required for calculating the drag

force on the objects moving in the flow [45].

To formulate a set of boundary integral equations for the forces on Se and S, we will first

consider only S, and then merge the resulting equation with (6.2). We will first consider

the case where xO is in the fluid volume Vf and afterwards will consider the case where xo

is on Sp.

Integrating the Lorentz reciprocity identity for the perturbation flow over Vf excluding a

spherical region around xO we get

/ G(x, xo)fDdS(x) - pu T(XXo)(-f(X))uD(X)dS(X) = -87rpuD(XO)
Sb US IbUS x)(nx)u xdS)= 8yuDx)

Since uD = -Uoo on Sp and uD = u00 = 0 on S, the equation can be written as

I G(x, xo)fDdS(x) - t T(x, Xo)nf(x)ueo(x)dS(x) = -87rpuD (Xo). (6.5)

Integrating the Lorentz reciprocity identity for the background over V yields

j G(x, xo)fD(x)dS(x) + j G(x, xo)f' (x)dS(x)

+ j G(x, xo)(fm + fD)(x)dS(x) = -87rtpuD(XO)
JS,

If G is the Stokes substrate Green's function the first two integrals are zero and we get

J G(x, xo)f(x)dS(x) = -87ry(u(xo) - u*(xo)), (6.6)

which is equivalent to (6.2). The same identity holds when x0 is on S, (the proof is similar

to the corresponding proof in the previous section).

A boundary integral equation for the force on Se and S, is given by

f G(x, xo)f(x)dS(x) = - 81ry(ub + We x xo - u (xO)) for xo on Sc (6.7)
S, USc 87rpu *(xo) for x0 on S,

00 SoS

Figure 6-3: Stokes flow around a protuberance on the substrate. u' represents the flow in the
absence of the protuberance. Vf is the fluid volume, V, is the volume of the protuberance, S, is
the boundary between the fluid and the protuberance, S is the substrate, except for the part that is
covered by the protuberance, Sb is the part of the substrate that is covered by the protuberance, Se
is the surface of a rigid body moving in the flow and St represents a surface in the fluid that is
considered to be arbitrarily distant from the other features. The source point is not represented in
this figure.

6.1.3 Holes in the substrate

Other microfluidic trap geometries, such as the microwell cell traps presented in [24], can

be described as "holes" in the bottom of a microfluidic channel as illustrated in Figure 6-4.

Since discretizing a significant portion of the substrate near the hole would be expensive

and there would be no way to impose a "natural" background flow because the structures

of interest are in a region where the background flow (e.g. fully developed channel flow) is

not defined, it became necessary to explore alternative formulations.

As in the case for protuberances over a substrate, a formulation using the Stokes substrate

Green's function can be used to eliminate the need to explicitly discretize the substrate.

Such a formulation can be obtained by separating the problem into an interior region Vi

and an exterior region V as illustrated in Figure 6-4. Applying the Lorentz reciprocity

U00 .~.....

Sh

Figure 6-4: Integration regions for the formulation of boundary integral equations for a problem
involving traps formed by a hole on a substrate and objects moving in a background flow.

identity on the exterior region Vf, yields a boundary integral equation on Si for the force

on the interface an the fluid velocity. A background flow can be introduced in the exterior

region, where it is a valid solution of the Stokes flow problem. The equations for the

exterior region are coupled to the equations for the interior region by equating the velocity

and force on both sides of Si. The boundary integral equations for the interior region V use

the free-space Stokes Green's function and do not consider the background flow explicitly.

The resulting system of boundary integral equations is

-47rptu (xo) for xo on S,

-pf T(x, xo)u (x)dS+ G(xo,x)f(x)dS= -87rpuc(xo) for xo on Se
s jss o - -riu(o

1 0 for xO on Sh

-p j TW(x, xo)u(x)dS + Gw (xo, x)f(x)dS = -47rt(u(xo) - u (xo)) for xo on S

(6.8)

Even though (6.8) accurately accounts for the background flow and the presence of the

substrate, this formulation requires introducing an arbitrary boundary in the fluid and uses

the Stokes substrate double layer Green's function. Implementing a solver (6.8) would

require a significant implementation and computational effort because the Stokes substrate

double layer Green's function has many, relatively complicated scalar entries. Accelerating

Ua0

F1 Shp
Figure 6-5: Integration regions for formulation of problem with hole on a substrate using the free
space Stokes flow Green'sfunction. The surface Si is expected to be far enough from Sh and Se that
the velocity at Si is very close to the background velocity.

the matrix vector products involving the Stokes substrate double layer Green's function

using the pFFT algorithm can use exactly the same modified projection and interpolation

schemes described in Chapter 4 but, in the absence of some automation or code generation

step, manually accounting for the large number of of kernels that would result from such

the decomposition scheme used for the single layer Green's function would prove to be

quite cumbersome and error prone.

Alternatively, an approximate solution can be obtained by imposing velocity boundary con-

ditions on Si stating that the velocity on Si is the background flow velocity u"O. This ap-

proximation is valid if Si is far enough from Sh and Sc that the velocity at Si is very close to

the background velocity. Due to the short development length for Stokes flow Si does not

need to be at a very large distance from Sh and Se for this approximation to be valid. The

integration region for this approximate formulation is illustrated in Figure 6-5. Integrating

the Lorentz reciprocity relation over Vi yields

-4pru o(xo) for xo on Si
p T(x, xo)u(x)dS+ x)dS = -8pruc(xo) for xO on Sc

S, J Si+h+c

0 for xO on Sh
(6.9)

where uc represents the rigid body velocity on the surface Sc. The integration region for

this simplified problem is limited to Vi and no exterior region is considered.

If the integral of the background flow u over Si is zero, which is true as long as um is an

incompressible flow, the double layer integral over Si can be eliminated by integrating the

Lorentz reciprocity identity over V and V, and subtracting the resulting boundary integral

equations from (6.9) results in

f -87riu (xo) for xo on Si
G(xo, x) (f(x) - ffut(x)) dS+ G(xo, x)f(x)dS = -87rpuc(xo) for xo on Sc

'Si d SJSh+c
(X) 0 for xo on Sh

(6.10)

that can be solved for f on Si and for f on Sh and Sc. Note that, because of the method

used to eliminate the double layer kernel, the force f on Si is not the the same force f that

is obtained by solving (6.9). Fortunately, the forces on Se and Sh, which are the forces of

interest for calculating the time evolution of the system, are not affected.

6.1.4 Boundary element method

Except for very simple geometries and boundary conditions, there are no analytical solu-

tions for the boundary integral equations (6.2), or (6.7), or (6.10). These boundary integral

equations can be solved approximately by discretizing the surfaces, constraining the so-

lution to be lie in a finite dimensional vector space, and enforcing the satisfaction of the

equations at a finite number of points, collocation, or enforcing that the integral of the

residue, multiplied by test functions, be zero over the discrete elements, Galerkin. Hav-

ing discretized the surface of the problem into n, elements, a straightforward implemen-

tation of the boundary element method would require the calculation of the interactions

between the n, panels requiring O(n') storage, which becomes prohibitively expensive in

both computation time and memory when applied to large engineering problems. Acceler-

ated boundary element methods using the multipole method [16][17][20], the multiresolu-

tion wavelet method [19] and the precorrected FFT method [18] [6] have been applied to the

calculation of drag forces in Stokes flow. Accelerated boundary element solvers that use

specialized Green's functions to save time and memory have also been developed [45] and

were presented in Chapter 4. These solvers produce the instantaneous force on the surface

of objects immersed in Stokes flow given the velocity of those objects at a given time. In

the following we use the solver described in Chapter 4 but the methods that are presented

in this chapter can be integrated with any other boundary element solver for Stokes flow.

For a matter of notational convenience, let F describe the vector of forces on the panels

representing the objects in the fluid and let V represent the vector of velocities on these

panels, possibly weighted or integrated over the panel areas or multiplied by test functions,

depending on the testing scheme that is used. Moreover, let VI a vector of background

flow velocities also evaluated in the object panels according to the discretization of the

boundary integral equations that is being used. Let X represent the configuration of the

objects in the flow. For the case of rigid body motion X is a vector containing the position

and orientation of each object in the flow. In the following we will assume that, a boundary

element solver exists that can solve the equation

G(X)F = -V + 'y(X)VM (6.11)

where -y is a matrix that maps the background velocity vector VI to the appropriate values

on the right hand side of (6.11).

6.2 Time constants and scaling

It would seem that, to simulate the motion of objects in Stokes flow one would simply need

to solve (6.11) for F, calculate the force on each object and use these forces to update the

velocity and position of the objects by integrating the equations of motion. However, for

small length scales, such as those present in MEMS and microfluidic devices, the ratio of

the drag forces and the mass of the bodies is such that the time constant associated with

transferring momentum between an object and the fluid is very small. In this section we

illustrate the small time scale issue by using the trivial example of Stokes flow on a sphere

moving in infinite Stokes flow with uniform velocity v'.

6.2.1 Stiffness

Consider a sphere of radius a and density p moving with linear velocity v in an infinite

fluid domain with viscosity yL and a background velocity v1 along the direction of v. Due

to symmetry, the position of the sphere, x, and its velocity, v, can be represented by scalar

values. In these conditions, the Stokes drag on the sphere is -67rLa(v - v) and the

position and the velocity of the sphere satisfy

x 0 1 x 0
+ v0 (6.12)

A

The matrix A has eigenvalues A0 = 0 and A, = A that correspond to time constants of

ro = oo and ri = . Given an initial position x0 and the initial velocity vo the solution

of (6.12) is

v(t) = v' + (vo - v) exp(-t/ri)
(6.13)

x(t) = xo + v t - (vo - v)Tr(exp(-t/T1) - 1)

For a sphere with a l0pm radius with density p = 103kg/m3 in a fluid with viscosity

p = 8.9 x 104 Pa.s the time constant r is roughly 25ps. On the other hand, we are

interested in tracking the motion of the sphere, the time scale of interest is determined by

ration between v' and the lengthscale of interest for the device, i.e. the convective time

scale, which in microfluidic devices can be on the order of seconds or minutes. It is clear

from (6.12) and (6.13) that the small timescale r exists due to the relation between the

velocity of the sphere, its mass, and fluid drag force on its surface and that this value is not

dependent on the actual position of the object.

The position and velocity in (6.13) are the superposition of a smooth, steady state solution,

and a rapidly decaying homogeneous solution. Except for an initial transient, while the

velocity of the sphere does not yet match the velocity of the background flow, the behavior

of (6.13) is very smooth. However, it will be shown in Section 6.3 that, regardless of how

close v is to o , if an explicit time integration algorithm is used, very small time steps are

needed to maintain stability.

The existence of a small time scale associated with the transfer of momentum from a body

to the surrounding Stokes flow is not limited to the case of a sphere translating in infinite

flow. The rate at which angular momentum is transfered between a rotating sphere and a

background flow is also very high. Moreover, if the sphere, or other object, is close to any

other fixed structure in the fluid, such as the bottom of a microfluidic channel, the drag

force will increase and the time constant associated with the momentum transfer due to

Stokes drag will decrease. In a quiescent fluid, the Stokes drag force will always oppose

the motion of the objects moving in the fluid, extracting momentum from the objects and

dissipating it in the fluid, or transmitting it to other objects in the fluid.

If only a single object is present in the fluid, the work done by the object on the fluid is

entirely dissipated, the fluid does not accumulate kinetic energy. This is demonstrated in

Appendix A, at the end of this chapter.

Note on stiffness and volume discretization methods

In the finite element method as well as in the finite difference and finite volume methods,

the fluid domain is discretized into a set of small elements. The scaling of volume and area

of these elements is such that the time constant associated with momentum fransfer through

viscous forces on the surface of each element is small, even compared to the time scale of

momentum transfer from the bodies immersed in the fluid (which are usually larger than

the fluid elements). Therefore, explicitly discretizing the fluid volume and accounting for

the momentum in its interior will generate yet another, smaller, lengthscale that the time

integration algorithm must deal with.

6.3 Time stepping schemes

This section contains a brief review of a few basic time stepping schemes illustrating the

issues associated with numerically integrating the equations of motion (6.12) for a sphere

E

0.1 . --

1.5-

0.05-

0.5-

0.
0 2 4 6 8 10 0 20 40 60 80 100

time/l time/tI

Figure 6-6: Forward Euler explicit, numerical time integration of equations of motion for a per-
fectly buoyant sphere with 10p4m radius translating in afluid with viscosity yL = 8.9 x 10- 4Pa.s and
density 1000kg/M3 domain with a background velocity of voo = 1mm/s.

translating in a fluid with with background flow v1.

6.3.1 Forward Euler

If (6.12) is integrated using the Forward Euler method with a time step At, the following

iteration is produced

Xk+1 1 At Xk(6.14)

U k+1 j L0 1- A Ilr J o k

This iteration is unstable for At > 2TI. Therefore, regardless of accuracy concerns, sim-

ulating the motion of a lOpm sphere with density 1000kg/m3 in a fluid with viscosity

p = 8.9 x 10- 4Pa.s, would require taking time steps smaller than 5 0 ps. The stability

threshold is independent of vcO.

The position of the sphere was calculated using (6.14) with an initial velocity of v = Om/s

using different values of At. The results are illustrated in Figure 6-6, together with (6.13)

clearly demonstrating the issue with stability.

6.3.2 Velocity implicit method

Since the small time scale T is associated with the update of the velocity, it is reasonable

to expect that using an implicit time integration scheme for updating the velocity update

can result in a stable scheme for integrating the equations of motion (6.12). The simplest

form of the velocity implicit method replaces the Forward Euler update for the velocity by

a Backward Euler update

1 0
0 1 + At/ri

Xk+1

Vk+1

1

[o
At

1

0
[At/Ti]

that yields the iteration

Xk+1
Vk+1 J L0

At

(1+ At/Ti)- 1 + At/Ti) 1 At/Ti
v(6.15)

which is stable for all At. This method is also known as

[46], chapter 5).

the symplectic Euler method (see

A more accurate scheme can use the trapezoidal rule for the position update

At
2

1 + At/Ti

Xk+1
Vk+1 j

2 I 2 + [IVt/TI

1 Jo k At/ri

yielding the iteration

Xk+1]
Lok+1 j

(1 + At/Ti)- 1At 2/2T

(1 + At/Ti>1 At/T

which is stable for any At.

A more accurate scheme can use the trapezoidal rule for the position update and the velocity

((+ (1 + At/I)

(1 + At/ri) 1
L

Xk
Vk

I (00
(6.16)

0.45 - analytical
- - F.EJF.E.

0.4 --- F.EJB.E.-- TRB.E. -
0.35 -i---- TR JTR.

0.3- 1.5-

0.25 - -

0.2-

0.15-
analytical

0.1 - 05 - F.EJF.E.
S- - F.E./B.E.

0.05- - -- TR B.E.

0.05-- --- TRJITR

0 5 10 15 20 0 20 40 60 80 100
timeh timeh

Figure 6-7: Numerical time integration of equations of motion for a perfectly buoyant sphere with
10pm radius translating in afluid with viscosity p = 8.9 x 10~4Pa.s and density 1000kg/M3 domain
with a background velocity ofvx = 1mm/s. FE. stands for Forward Euler; B.E. for Backward Euler
and TR for the trapezoidal method. For example EE./B.E. means that the Forward Euler method
was used to discretize the position update equation and Backward Euler was used to discretize the
velocity update equation.

update.

1 t -- Xk+1 1 At k 0
2 2 + v 0

0 1+ Vk+1 0 1 2 [k][t/]

yielding the iteration

Xk+1 1 o + t2 Vk 1 (1 + At/21) 1 At/271

Vk+ 1 rl±At Vk (1 + At/Ti At/2r(J [i 27-±At _jL i J

which is also stable for any At.

The position of the sphere used in the previous example was calculated using (6.14), (6.15),

(6.16), and (6.17) with a time step of At = 5T. The results are illustrated in Figure 6-7

where it can be observed that (6.15), (6.16), and (6.17) are stable while (6.14) is clearly

unstable for At = 5T.

The local position and velocity truncation errors for the first step of (6.14), (6.15), (6.16)

was calculated for several At and is illustrated in Figure 6-8 where it can be observed that

80

a. >. .
-12.. -8... 1

8 1 0 -- - - - - - - - - - - - - - -- - -n lO-- - - - - - - - - 0 -

14 -10

10 ~ 1060 1 2

..

20 -12.. ..

At At

Figure 6-8: Truncation error for first time step of each numerical integration scheme as a function
of the time step. The figure on the left represents the truncation error for the position; the figure on

the right represents the truncation error for the velocity.

the position and velocity truncation error for (6.14), (6.15) are O(At 2), that the velocity

truncation error for (6.15) is also O(At2) and that the position truncation error for for

(6.16) and (6.17) is O(Ata).

There exists an enormous number of integration schemes for ordinary differential equations

[46]. The purpose of this chapter is not to review all the possible time integration schemes

but to show how they can be coupled efficiently with a boundary element solver for Stokes

flow.

6.4 Coupling the Stokes BEM solver and rigid body dy-

namics

In this section a stable time integration algorithm that couples the Stokes drag forces calcu-

lated using a boundary element solver with a rigid body model for the objects in the flow is

presented. In the following, we consider that objects in the flow are rigid objects of uniform

density that are described by a mesh of flat panels. To model more interesting behavior of

objects such as cells and vesicles in the flow it is necessary to account for the properties of

the membranes of these objects (for details on membrane and capsule simulation see [1],

[47] and [26]). However, the focus of this chapter is to introduce a technique to couple a

boundary element solver and a semi-implicit time integration scheme and our discussion is

limited to rigid body dynamics. Extending the results in this section to the mode general

case of the motion of elastic membranes and shells in flow is left as future work.

First, to introduce some notation and to define relations between the rigid body state and the

panel velocities and position a brief review of some basic principles of rigid body motion

is presented. Then, in Section 6.4.1, a simple explicit time stepping scheme is presented.

Finally, in Section 6.4.2, a more stable velocity-implicit time stepping scheme is presented.

Rigid body motion and notation

To calculate the motion of a rigid body one can use the conservation of linear momentum

P = my and angular momentum L = Iw , where m is the mass of the body, v is its linear

velocity, I is its inertia tensor and w is its angular velocity. In the following, for conve-

nience, we also use q = [vT WT]T. The spatial configuration of a rigid body is determined

by the position of its center of mass, x and by its orientation, which can be represented by

a rotation matrix, R, mapping positions in the body's local coordinate system to the global

coordinate system, or by unit quaternion Q [48]. In the following, X is used to represent

the set of positions and orientations of the rigid bodies in the flow, i.e. the current configu-

ration of the system. The body's inertia tensor is a function of its orientation and is given

by I(X) = RIoRT where 1 is the inertia tensor in the body's local coordinate system. The

center of mass and inertia tensor Io for any constant density object defined by a flat panel

mesh can be calculated using the algorithm proposed in [49].

Linear and angular momentum conservation state that P = f and L = T where f and

T are the total force and torque applied to the object. From momentum conservation it

follows (see [50]) that the velocity and angular velocity of a rigid body satisfy the following

equation

. v] 13M--i (f
(6.18)

(J0 I(X)-l T + L x w 6.8

M(X)--I

where 13 is the 3 by 3 identity matrix. For spherical objects L x W is zero.

Given a rigid body described by a set of n, flat panels, if the Stokes drag force is given by

F E R3nr the Stokes drag force on the object is

ni,

fs = E akF3(k-1)+(1:3) (6.19)
k=1

where ak is the area of panel k. The total torque due to Stokes drag on the object is

flp

Ts = Eak(xk - x) x fk (6.20)
k=1

where Xk is the centroid of panel k. This projection operation, from the panel forces F to

the total force (6.19) and total torque (6.20), is represented in matrix form by a 3n, by 6

matrix B(X) such that

fs = BT(X)F.
Ts

where B(X) is a function of the orientation of each object.

To calculate the Stokes drag on an object using a boundary element solver with a collocation

testing scheme, represented generically by (6.11), a vector V E R3,p with the velocity on

the centroid of each panel is needed. The vector V is given by

V3(k-1)+(1:3) = Vk W X (Xk - x) + v.

This expansion operation is represented in matrix form by a 3n, by 6 matrix A(X) such

that
vV = A(X) = A(X)q

If the BEM solver is using a Galerkin testing scheme, instead of the vector of velocities on

all panels it will need a vector of fluxes V. The vector of fluxes V is given by

V=B(X) = B(X)q

6.4.1 An explicit coupled solved

Using the notation defined in the previous section, the following system of equations rep-

resenting an explicit time integration algorithm coupling the boundary element solver to

rigid body dynamics can be written

1 --AtM-1 (Xk)B(Xk)T qk+1
0 G(Xk) J [F

16 + tK(Xk)
-A(Xk)

0

-Y(Xk)

AtM- 1 (Xk)

0

qk

V00

fext

Text

(6.21)

where fext and Text represent the total externally applied force and torque and

0
0 0

K(Xk) =and L*V L3
0 L(Xky

--L

-L 3 L2

0 -L 1

2 L1 0
1.

The system of equations (6.21) is a block upper triangular system of equations that can be

solved for F by using a boundary element solver. The resulting F is then used to produce

qk+1, which in turn is used to calculate Xk+1 and Qk+1 according to

Xk+1 Xk + At(Vk + Vk+1)/2

Qk+1 (At/2wk+l) * (At/2wk) * Qk

(6.22)

yielding Xk+1. Note that, for numerical stability, the orientation of each object is repre-

sented by a unit quaternion that is updated using finite rotations, instead of incrementally.

6.4.2 Velocity implicit coupled solver

From the results and examples presented in sections 6.3 and 6.2, it is clear that a stable

solver will require that the Stokes drag force be calculated in an implicit manner consistent

with the velocity updating scheme. An implicit scheme can be obtained by modifying

(6.21) such that F depends not only on qk but also on qk+1 i.e.

16 -AtM- 1(X)B(X) T qk+11[aoA(Xk) G(Xk) J L F J
qk

16 + AtK(Xk) 0 AtM- 1(Xk) Voo

-a1A(Xk) -Y(Xk) 0 fext

Text

(6.23)

where, for "Backward-Euler" type update, ao = 1 and ai = 0 and, for a "Trapezoidal"

type update, ao = 1/2 and ai = 1/2. Note that, regardless of the value used for ao

and a 1, the update for the velocity is not entirely implicit because the gyroscopic term

L x w = (Iw) x w, introduces a non-linear dependence on w. For example, for a Backward

Euler update one would need to solve

Wk+1 - k - AtTk+1 + AtlIkwk+1 X Wk+1-

The system of equations (6.23) is not block upper triangular like (6.21) but it can be solved

using GMRES. Alternatively, (6.23) can be reduced to a block upper triangular form by

applying a step of Gaussian elimination yielding

16 -AtM 1 (X)B(X) T 1 qk+1

0 G(Xk) + aotA(Xk)M(Xk)B(Xk) T J LF] I. (6.24)
16 + AtK(Xk) 0 AtM-1(Xk) Voo

-A(Xk)(1 6 + aoAtK(Xk)) 'y(Xk) -AtA(Xk)M-1(Xk) fext

Text

In our implementation use the form (6.24) is used and a solution for

(G + aotAM- 1 BT) F = -A(1 6 +a0AtK)qk-AtAM- 1 [fet T t]+_YVc, (6.25)

is computed using GMRES and the pFFT accelerated representation of G described in

Chapter 4 and a rank 6 update for each rigid object moving in the fluid. Then the calculated

force F is used to calculate qk+1 in a consistent manner that is stable for At much larger

than r. If G does not change with x this scheme is stable for all At, if G changes with x

it might be possible to construct an example where the iteration scheme becomes unstable

but we have not encountered any case where this happens. Regardless of stability, A, B, G

and K are functions of Xk so the time step At is still limited by accuracy concerns i.e. by

the requirement that these matrices be a reasonable approximations to their actual values

for the path from Xk to Xk±1.

External forces

Many interesting problems involve not only fluid drag forces but also forces such as gravity

and electrical forces. Often the relation between the external forces and the mass of the

objects that are to be simulated is such that taking a time step considering the acceleration

due to these forces, without considering the immediate response of the Stokes drag, would

make the simulated object, wrongly, leave the domain of interest. For a simple example

illustrating this problem, consider a spherical bead with a diameter a = 10pm and a density

of Pb = 1010kg/m 3 in an infinite quiescent fluid with density p = 1000kg/m 3 and viscosity

y = 8.9 x 10-4Pa.s. The balance between the Stokes drag force and the gravitational force

imply that the bead's terminal velocity will satisfy 4/3(pb - p)7ra3 g - 6i7rpaV = 0 i.e.

V = 8(pb - p)a2 g/~p, where g = 9.8m/s 2 is the gravitational acceleration. The analytical

solution, for the case where the bead starts from rest is v(t) = Vz * (1 - exp(-t/Ti)) where,

for this example, V ~ 88.1pm/s and r ~ 25ps. For a time step of 0.1s, the analytical

solution will move at most 8. lpm, on the other hand, if the acceleration due to g was

considered separately and a time step of 0.Is was taken, the bead would have been moved

by 485.15pm.

To avoid having to use very small time steps, external forces, fext, and torques, Text, should

be calculated at the beginning of each iteration and the resulting acceleration on the objects

in the flow should be considered by the Stokes flow solver so that an appropriate drag force

can be calculated as in (6.25). An exception to this rule are user computed constraint forces

whose calculation requires access to the total force and torque on each object [51][52][50].

6.5 Interaction with structures

Since the objects moving in the fluid may collide with each other and with fixed structures

in the fluid, collisions, friction and contacts must be modeled. To deal with these issues the

freely available library ODE [27] was integrated with the simulator.

Before each time step, our time integration algorithm checks for collisions between the

objects. To detect collisions and penetrations our algorithm uses the libraries OPCODE or

GIMPACT that are associated with the ODE library.

At the beginning of each step F is calculated for the candidate time step t + At by solving

(6.25). The force and torque on each object is then calculated from F and is used to generate

a candidate state for time t + At.

If a collision was detected at the beginning of the time step, ODE is used to generate a

step candidate that integrates the equations of motion considering not only the forces and

torques due to fluid drag, calculated from F, and external sources, but also contact, friction

and collision forces [27].

If no collision was detected at the beginning of the time step, a candidate state for time

t + At is computed using (6.24) and (6.22).

The candidate state is checked for penetrations and contacts. If there is any penetration

that exceeds a user-defined limit, the candidate state is rejected and the time step size is

reduced. If no excessive penetrations were detected, the candidate state position of each

object is compared against a polynomial prediction based on the position at previous time

steps; if the difference between the two values exceeds a user-defined threshold the step is

rejected. The step size is adjusted using the following criteria [53]

Atnew = Atold'' Errormaximum n+1

(Errorestimate)n+

where n is the order of the integration scheme and the polynomial predictor; Errorestimate

is a user defined tolerance (in meter); Errorestimate is the absolute value of the difference

between the predicted position value and the corresponding candidate state position value;

and is chosen to be about 0.9 to reduce the number of rejected steps. To avoid very large

step variations Atnew/Atold is constrained to be within 0.5 and 2.

After each time step, the time integration routine calls a visitor functor with the state of

each object in the flow and the current simulation time. The visitor functor indicates if

the simulation is to continue or if it should be terminated. By default, the visitor does not

terminate the simulation and the time integration routine finishes only when the end time

specified for the simulation is reached.

Note that when a step is rejected the calculation of F(t + At) for the new step size does

not require setting up a new Stokes flow boundary element operator; only the rank 6 update

operator for each object and the right hand side of (6.25) need to be recalculated.

P ED E

FF: FM

MFW MM

a) No reuse. Full update.
IG P
F

.. -

FF FM

M F MM

EDP

b) Reusing grid data and precorrection entries between fixed structures.

Figure 6-9: pFFT matrices and the updates that must be made from iteration to iteration as the
time integration algorithm is executed. In the figure above the pink color represents sparse storage
or low effort required; red represents high storage or computational effort and white represents no
computational effort (due to reuse). In the figure F stands for fixed and Mfor movable.

6.6 Updatable solver

A significant part of the computational cost of solving (6.25) is setting up the precorrected

FF1' representation of G at each iteration. A large part of this cost is due to the calculation

of the nearby interactions and the precorrection matrix entries. However, in the examples

that are of interest there are usually a few large fixed structures and one or more smaller

moving objects. The interactions between the panels of the fixed structures don't change

from iteration from iteration and can be reused. Also, if from iteration to iteration the FFT

grid spacing is kept constant and the grid is moved and resized by increments of this grid

spacing, the precorrection matrix elements for the fixed structures also don't need to be

recalculated. Reusing the nearby and precorrection for the fixed structures from iteration to

iteration can have large performance benefits. This updatable solver can be implemented

by decomposing the precorrected FFT data structures into a set of block sparse matrices

separated by fixed, F, and movable, M, as illustrated in Figure 6-9.

If there are fixed objects in the simulation and the grid spacing is not changed from iteration

to iteration, the columns in the projection matrix and the rows in the interpolation matrix

associated with the fixed objects don't need to be recalculated. More importantly, the

elements of the matrices containing the accurate values for the nearby interactions between

elements of the fixed objects, ED, and the precorrection entries, used to cancel out the

inaccurate interactions calculated using the grid, Ep, do not need to be updated. If the grid

size doesn't change, the kernel transforms G can also be reused.

For problems where the substrate is not represented implicitly and the free space Stokes

Green's function is used, the nearby interactions between the panels of the same moving

rigid object can be reused from iteration to iteration by wrapping the nearby interaction

matrix in appropriate rotation operators. However, since the objects are moving along the

pFFT grid, the precorrection matrix must still be recalculated. To reuse the previously

calculated nearby interactions, the storage for the nearby interactions must be separated

from the storage for the precorrection term.

6.7 Results

In this section, the stability and effectiveness of the time integration scheme that was in-

troduced in this Chapter is demonstrated by simulating a set problems involving cell traps.

The first set of examples uses a microwell trap and the formulation introduced in Sec-

tion 6.1.3; the second set of examples compares four models of pachinko cell traps and

uses the formulation described in Section 6.1.2 and the Stokes substrate Green's function.

For the examples reported in this section, we used ODE's contact models with dContact-

Approxi and dContactBounce, mu=1, bounce=O. 5, sof t_cfm=Q and sof t erp= . 9. The

relative tolarence for the GMRES linear system solver was set to 10-. The nullspace was

removed from the GMRES search space at each iteration step and a right block diagonal

preconditioner was used.

6.7.1 Microwell trap

The approximate formulation presented in Section 6.1.3 was used to simulate the behav-

ior of objects trapped in a microwell cell trap such as those described in [24]. For the

examples presented in this section a trap with a diameter of 30pm and a depth of 35 1 m

was used. The fluid density was set to pf = 1000Kg/m3 and the fluid viscosity was set

to y = 8.9x 10- 4 Pa.s. The trap and fluid geometry were represented by a triangular mesh

generated using Comsol 3.2. The mesh is composed of 1345 panels for the hole walls, 1012

panels for the substrate and 3595 panels for the fluid boundaries. The discretized geometry,

and a sample trajectory for a bead moving in the trap, are presented in Figure 6-10. The

bead, with density p, is represented by an icosphere with 1280 panels. The velocity on the

fluid boundary was set to that of a fully developed rectangular channel flow for a 3mm wide

and 200tm high channel with a flow rate of F. To study the effect of changing the flow

rate F and the bead density p on the trapping behavior and to analyze the performance of

the transient solver, the flow rate F was set to the values of 1 OOpL/s, 200pL/s and 400pL/s

while the bead density p was set to 1000kg/m 3, 1010kg/m 3, 1050kg/m 3 and 1 100kg/m 3

generating a set of 12 simulations. In each case the bead started from rest, in the trap, at

the position x = -5pm, y = Opm and z = -10tm. The simulations were terminated at

time 60s or when a bead escaped the trap and reached the boundary of the computational

domain.

Simulation results

The results for sweeping the bead density with a fixed flow rate are illustrated in Fig-

ure 6-11; the results for fixing the bead density and sweeping the flow rates are presented

in Figure 6-12. The trajectories for the lower flow rates are shorter because the simulations

were ran to the same end time. From both figures it is clear that, as expected, heavier beads

get captured more easily and that higher flow rate can release lighter beads. However, it

is also clear from the figures that the beads trajectories can be somewhat complicated and

that they depend strongly on the flow rate and on the bead density.

Figure 6-10: Trajectory of a spherical bead moving inside, and then escaping, a cylindrical mi-
crowell with a diameter of 30pm and a depth of 35pm. The bead and fluid density were set to
p = 1000kg/m3 and the fluid velocity on the boundaries of the fluid domain was set to the profile
of a fully developed rectangular channel flow for a 3mm wide and 200pm high channel with a flow
rate of 400pJls. The fluid viscosity was set to y = 8.9 x 10-4 Pa.s. In the figure the bead is drawn
at its initial position, inside the trap, and at its final position, outside the trap. The surface of the
microwell and the substrate, where the fluid velocity is zero due to the no-slip boundary condition,
is colored light yellow.

-20 -10 0 10 20 30
x Ism)

F = 100pUs

x pm)

F = 200pL/s

-20 -10 0 10 20 30
x [pm]

F = 400pL/s

Figure 6-11: Each figure illustrates the trajectory of the center of mass of a bead for a given flow
rate F and for a set of bead density values. The bead is moving inside a cylindrical microwell with
a diameter of 30,pm and a depth of 35pm (the side view of the trap walls is depicted in light gray).
The sphere of radius 5pm, in light yellow, started its motion from rest.

0U

5

0

-25

-10

-15
N

--35

-40, -J
-20 -10 0 10 20 30

x bam)

p = 1000kg/rm3

10.

5

0

-5

-10

1-15

-20

-25

-30

-35

-20 -10 0 10 20 30

p = 1050kg/m3

'
i

Figure 6-12: Each figure illustrates the trajectory of the center of mass of a bead for a given bead
density p and for a set of flow rates F. The bead is moving inside a cylindrical microwell with a
diameter of 30pm and a depth of 35pjm (the side view of the trap walls is depicted in light gray).
The sphere of radius 5p4m, in light yellow, started its motion from rest.

94

I -

-- I
= I** -- Ie

- 100
-.-..-..-. F.200pL"
- - - F-400p"s

j.I7-

--- P----.. F=100pLAG

- - - F=400p"s

10

5-

0

I-is e

-30-25-

-*F
- - - F-400p40

-20 -10 0 10 20 30
x bIsl

p = 1010kg/rm

5

0-

-5

-10*

NI

-20/
-25

-30-

-3 5- - F 0 0 p4 s

-40'9
-20 -10 0 10 20 30

x (pmi

p = 1100kg/rm3

Performance analysis and solver behavior

The 12 simulations were ran on an Intel Xeon 3GHz workstation with 2Gb of RAM and

took from 40 minutes to 3 hours to run, depending on the trajectory followed by the bead

and the number of collisions that occurred. For each simulation, the precorrected FFT

solver used a 48 by 48 by 48 FFT grid and a maximum of 227Mb of memory.

The median time for setting up the precorrected FFT solver was 9.6s. The maximum time

for setting up the precorrect FFT solver was 67.2s, corresponding to the first iteration, when

the interactions and precorrection terms between the nearby fixed panels are calculated. A

histogram with the distribution of setup times for generating the step candidates is presented

in Figure 6-13 clearly illustrating the performance benefits due to the selective update of

the precorrected FFT data structures. Figure 6-13 also presents a histogram for the GMRES

solve times. The median time for solving (6.25) using GMRES was 22.3s; a smaller value

might have been obtained by using a coarser FFT grid, at the cost of a larger number of

nearby interactions. The median time for generating a step candidate was 33.49s.

150

400

Only updated At
350 and rhs after

rejected step
candidate.

3000
7~ 100

S250 Setup median time,

200 -

Recalculation for
1 interactions with 50

150 movable objects E
after accepted step. Initial setup

100 movable update)

50u

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60

Setup time [s] GMRES time [s]

Figure 6-13: Histogram for the precorrected FFT setup time, on the left, and for the GMRES solve

time, on the right, for each step candidate. The figures illustrate compounded results from 1951 step

candidates, produced by the 12 simulations that were performed for the bead density and flow rate

sweep for the microwell.

It was observed that, as expected, the step rejection rate and the median step size taken

by the time integration algorithm were greatly influenced by the presence or absence of

collisions. In the presence of collisions a much larger number of step rejections occurred

due to excessive penetration or to excessive integration error. Moreover, as illustrated in

Figure 6-14, in the presence of collisions and step rejections, the median step size for the

simulations decreases substantially.

0 10 20 30 -40
step candidates with collisions [%]

1.2

1

-a 0.8

0.6

E

50 60 0 10 20 30 40
step candidates with collisions [%]

Figure 6-14: Effect of collisions on step candidate rejection rate, on the left, and on the time inte-
gration step size, on the right. The figures illustrate compounded results from 1951 step candidates,
produced by the 12 simulations that were performed for the bead density and flow rate sweep for
the microwell.

A larger number of step candidate rejections and the use of smaller step sizes leads to larger

run times for the simulations as illustrated in Figure 6-15.

0 10 20 30 40 50 60
step candidates with collisions [%]

Figure 6-15: Effect of collisions on the simulation run time. The results in this figure correspond to
the 12 simulations that were performed for the bead density and flow rate sweep for the microwell.

40

35
'0

ci)
'U30

25

C20
S20

0

SCP
0

0

0
0

0

0 0
0 0

0

50 60

0
0

0

0

0
0

AV

5- 5-

0- 0-

-5- -5 -

-10- -10-

-15 - -15 - x.X

-20- -20-

-25- -25

-30- -30-

-35 bead 1 - -35- bead 1
x'-bead 2 -x--bead 2

-40 -40
-20 -10 0 10 20 30 -20 -10 0 10 20 30

x IPm] x[pm]

a) p = 1010Kg/m 3, F = 400pL/s b) p = 1025Kg/m 3 , F = 400pLJs

Figure 6-16: Trajectory of a pair of spherical beads moving inside a cylindrical microwell with a
diameter of 30pm and a depth of 35pm. The fluid density was set to p=OOOKg/m 3 and the fluid
viscosity was set to p = 8.9 x 10-3. Each bead has a diameter of 1Opm and was at rest in the
beginning of the simulation. The surface of the microwell and the substrate, where the fluid velocity
is zero due to the no-slip boundary condition, are depicted in light gray.

Pair of beads in a microwell

Simulating the trapping of two of more beads is no more complicated than simulating

the trapping of a single bead. However, the presence of more than one bead in the trap

can lead to a larger number of collisions that will result in smaller time steps and longer

simulation run times. The simulation of the pair of beads with p = 1010kg/m 3, illustrated

in Figure 6-16, took 4.4 hours to run and used 263.8Mb of memory on an Intel Xeon 3GHz

workstation with 2Gb of RAM. In this simulation the beads initially collide, one of the

beads rotates around in the trap, collides with the trap wall and is released. The simulation

of the pair of beads with p = 1050kg/m 3 took 4.6 hours to run until it reached a state where

the pair of beads was trapped, lying on the bottom of the hole at the simulation time of

60s, as illustrated in Figure 6-16. However, after this state was reached, the simulation

continued on with smaller time steps and many collisions; at the simulation time of 90s

the simulation had ran for roughly 11 hours taking very small time steps as the two beads

collided with each other and with the bottom and side of the trap.

The small time step issues associated with dealing collisions and contacts seem to suggest

that it would be useful to find a more efficient way to deal with persistent contacts, such

In-

as those that occur when a bead is trapped. However, delving more deeply into the simu-

lation of contacts, collisions and friction is not the focus of this thesis and finding a freely

available implementation of the collision detection algorithms or the rigid body dynamics

library that is more robust than the ODE package [27] has proved to be quite hard.

6.7.2 Pachinko trap

In this section we present simulation results for protruding cell trap geometries such as

those described in [21] using the boundary integral formulation presented in Section 6.1.2.

This formulation uses the Stokes substrate Green's function which has the advantage that

it only requires discretizing the structures above the substrate as illustrated in Figure 6-17.

In the following we present results obtained by using four different trap geometries and

different settings for the background flow velocity and for the bead density. The four trap

geometries are illustrated in Figure 6-18 where it can be observed that the shape of the

trapping region itself was kept constant while the shape of the trap support was changed.

A triangular mesh for each trap model was generated using Comsol 3.2: trap model I is

represented by 2810 panels; trap model 2 by 1820 panels; trap model 3 by 2400 panels;

and trap model 4 is represented by 2736 panels. All the traps models are 20pm high. The

simulations were ran with a bead represented by an icosphere with 1280 triangular panels.

The simulations were terminated when the simulation time reached 15s.

The following observations were made. In the absence of an effective gravitational force,

i.e. when the bead density was set to the same value as the fluid density, changing the

flow rate does not change the trajectory of the beads. This result is illustrated in Fig-

ure 6-19a) and is expected because, in the absence of gravity, due to the linearity of the

Stokes equations, multiplying the flow rate by a given factor changes the drag forces and

the accelerations by the same factor and hence the objects follow the same trajectory except

they do so at a velocity that is multiplied by that same factor. If the bead density is set to a

value different than that of the fluid density, the gravity has an effect on the trajectory and,

given the initial position of the bead, the relation between the bead density and the flow

rate greatly influences if the bead will be captured or if it will escape. The effect of the

Figure 6-17: Trajectory of a bead released near a pachinko type trap. On the the trap model is
1 and the bead density was 1050kg/m3 ; on the right the trap model is 2 and the bead density was
1050kg/m 3. Note that the edges on the corners on the structures are just an artifact of the algorithm
used to render the figures.

trap 1 trap 2

0 20 40 60 0 20 40 60
x Im] x [Pm]
trap 3 trap 4

0 20 40 60 0 20 40
x ImJ xlpm]

Figure 6-18: Top view of the 4 pachinko type cell traps used to
simulator: Each trap protrudes 20pm above the substrate.

demonstrate the time domain

flow rate on the trapping behavior is illustrated in Figure 6-19b) where a bead with density

p = 1050kg/m3 is captured with a flow rate of I 00pIJs while it escapes for a flow rate of

200pL/s.

Another interesting observation that was made from our numerical experiments was that

changing the trap model by changing the shape of the trap support while keeping the actual

trapping region the same does not significantly change the trajectory of the bead. This is

20-

N N

15 -

10-

.- p=1000kg/m3 F=100pUs
10 -- pO0kg/m3 F=400pUs 5- - p=1050kg/m3 F-200pUs

p=1000kg/m
3 F=200pUs -- p=1050kg/m 3 F-10pIms

5 1C
-10 0 10 20 30 40 50 -10 0 10 20 30 40 50

x [pml x [Pm]

a) perfectly buoyant bead b) slightly heavier bead

Figure 6-19: Trajectory of the center of mass of a bead released near a model I pachinko trap. The
figures in the background of the plots represent the edges of the trap seen fmm the top and from the
side.

clearly illustrated in Figure 6-20 for a bead with density p = 1050kg/m3 and for a flow rate

of 100pUs and a flow rate of 200pUs. For the lower flow rate, the bead is capture by all

of the traps; for the higher flow rate, the bead escapes all of the traps. For either flow rate

the trajectory that the bead follows is very similar. This result seems suggests that, at least

for beads starting near the trapping area, and aligned with the center of the trapping region

y = 0, the Stokes drag force on the bead is not greatly influenced by the shape of the trap's

support.

Running each of the simulations took from 20 minutes to about 2 hours and used a max-

imum of 400Mb of memory on an Intel Xeon 3GHz workstation with 2Gb of RAM. The

simulation time was influenced by the number of collisions but also by the size of the FFT

grid. For cases where the bead escaped the trap, the FFT grid had to be enlarged; enlarging

the FFT grid requires recalculating the kernel transforms and makes the GMRES iterations

become more expensive. The median time for generating a step candidate was 56.31 s; the

median time for setting up the precorrected FFT operator was 20.33s; the median time for

solving (6.25) using GMRES was 37.9s.

100

15-

6 --

- trap 1 10- tra
5 -------- trap 2 -------- tra

- - - trap 3 -- -tra
-- trap4 -- tra

4' 5
-6 -4 -2 0 2 4 6 8 10 12 -5 0 5 10 15 20 25

x [pm] x [pm]

a) Flow rate of lOOpL/s. b) Flow rate of 200pL/s.

Figure 6-20: Trajectory of the center of mass of a bead with a diameter of 10pm and density
p = 1050kg/M3 released at x = -51pm, y = 0pm and z = 7pm. The background flow was set to
that of a 3mm by 200pm channel.

Trapping region

To further compare the trapping efficiency of the trap models and to demonstrate the use of

our solver, we setup a set of simulations where a bead was released starting at x = - 0pm

and z = 61 for several values of y. The density of the bead was set to p = 1000kg/m 3 and

p = 1050kg/m 3 and the flow rate was set to F = 10OpL/s, F = 150pL/s and F = 200pL/s.

In this example only trap models I and 4 were considered. The simulations were terminated

when the simulation time reached 30s or when the bead position exceeded 25pm along the

x direction. The sweep consisted of 60 simulations which ran from 15 minutes to about 1.5

hours (the average run time was 45 minutes) and used a maximum of 288Mb of memory on

an Intel Xeon 3GHz workstation. The sweep generated 3632 step candidates. The median

time for setting up the precorrected FFT operator was 18.5s; the median time for solving

(6.25) using GMRES was 29s.

The more interesting simulation results are illustrated in Figure 6-21 where it is clear that,

even though the trajectory for y = 0 is similar for trap model I and trap model 4, there

are some differences between the trapping behavior for "off-center" beads since, for F =

200pL/s, trap model I was able to capture some beads that trap model 4 was not able to

catch.

101

25

p = 1050kg/m
3

25p = 1050kg/m3
20 - F = 100~pUs - 5 F =1MM/S

20-
15-

15-

10 - -
10-

-5

-10-
-15-

-20-

-20- -25 -

-10 0 10 20 30 40 -10 0 10 20 30 40 50 60
x [pm] x [pm]

25
3 2p = 1050kg/m

3

20 p= kg/m 25- F = 15
F = 150pUs 20

15-
15-

10
10

5 -5

0- - 0

-5- -- -5

-10
-10- -

-15-
-15--

-20-

-20- - -25 -

-25
-10 0 10 20 30 40 -10 0 10 20 30 40 50 60

x [pm] x [pm]

20- p = 1050kg/1050kg/m3
F =200pUs 25- F =Qg,/_

15- 20-

10- 15-

10-

55

,5.

-5 - 5-

-10-
-10 --

-1 --15-

-15 -20

-20- -25

-10 -5 0 5 10 15 20 25 30 35 40 -10 0 10 20 30 40 50 60
x [pm] x [pm]

Figure 6-21: Characterization of the trapping region for pachinko trap model 1, on the left, and
pachinko trap model 4, on the right. The curves in red, with the dot marker, represent situations
where the bead was trapped; the curves in blue, with the cross marker represent situations where
the bead was not captured.

102

45 1
0 captured 0 captured

x x released 0.9- 0 O x released -

40-
- x xx x x 0.8- 0

35 -xXXX x X x 0.7 0

x
0 O 0.6- -

V)x x 0 O OL
a30- x 0.5

x x 0
0 a

0 -
0

.
4

-

C 25- E
X 0.3-

2000

20- 0 0.-x X x
0.1 x x x x x -

70 x
M

X X Xx x x x x~ X x

10 20 30 40 50 60 70 10 20 30 40 50 60 70
step candidates with collisions [%] step candidates with collisions [%]

Figure 6-22: Effect of collisions on step candidate rejection rate, on the left, and on the time inte-

gration step size, on the right. The figures illustrate compounded results from 3632 step candidates,

produced by the 60 simulations that were performed for bead initial position, density and flow rate
for the pachinko trap models I and 4.

To illustrate the relation between the number of collisions and the step rejection ration and

the step size, the percentage of the step candidates that were rejected and the step size as a

function of the percentage of step candidates with collisions are illustrated in Figure 6-22.

In Figure 6-22 it can be observed that for all the simulations a large percentage of the steps

had collisions. It can also be observed that simulations associated with the bead being

captured (and staying in a region with slower moving fluid), had less rejections and larger

step sizes. The median run time for the simulations that lead to a captured bead was 1536s

while the median run time for the simulations where the bead was released was 3134s.

6.8 Conclusions and future work

A stable velocity implicit time stepping scheme coupling the precorrected FFT solver pre-

sented in Chapter 4 with rigid body dynamics was introduced and demonstrated. The ODE

library [27] was integrated with the solver to enable the simulation of situations involving

collisions, contacts and friction. Several techniques for speeding up the calculation of each

time step were presented and tested. The time integration algorithm was found to produce

reasonable results.

103

However, it was found that some work still needs to be done to improve the robustness of

the support for collisions and contacts of moving objects described by arbitrary meshes.

It was also found that, for the application examples, the distribution of panels is not very

homogeneous and that, in this context, using the precorrected FFT may not be an optimal

solution and that other acceleration schemes may be more advantageous. Nevertheless, the

current version of the solver was still found to produce reasonable results in a reasonable

amount of time and, more importantly, the velocity implicit time stepping scheme can easily

be used with any other boundary element method for calculating the Stokes flow drag.

In the future, it would be worthwhile to use the updatable solver implementation to enable

running parametric sweeps efficiently and to support shape optimization.

In the future it would be interesting to couple membrane models such as those described

in [47], [26] and [1] with the velocity-implicit scheme and the pFFT accelerated Stokes

boundary element solver.

It would be very interesting to extend this work to support slip flow boundary conditions

for low Knudsen numbers (see [26]).

Appendix A - rate of energy dissipation in the fluid volume

Let Sb represent the surface of a body in an infinite quiescent fluid. Let V represent the

fluid volume, bounded by the surface of the body and a surface S at an "infinite" distance

104

from the object where the fluid is at rest,

u+gaa S ~ + j nld S = u + JkdV =
-+ + 6ik P DU-iikSi +p -|- + -6 ip dV

x x xi Xk \xk DxiJ 19P a 829U u ai al

Dik +p)+p -P +pj + dV =Ixk 8xvXk xi (X x kx9
11DD _x _

=0 from Stokes equation =0 =0

Duv Du Duk dV = 2p eikeikdV = vdV
IV 1xk D9xk aiDx / VJ

2eik i
(6.26)

Since n is the normal pointing into the body and away from the fluid, f = -o-n is the force

applied to the object and the work done on the object by the Stokes drag force is

b uT fdS = - j UagjinkdS = -2p j eikeikdV = -p j DdV (6.27)

which is the negative of the power dissipated in the fluid volume. In other words, the work

that the body does on the fluid is dissipated in the volume.

If the body is rigid, then the velocity on Sb is given by u(x) = Vb + Wb x (x - Xb) and

/ uT fdS= v - fdS + W b - (x - xb) x fdS= vb -f + W -T = -p j dV
Sb f Sb sb V

holds, which basically states that the drag force and torque on the object oppose its motion.

This statement also implies that, according to the Stokes flow model, the fluid does not

accumulate kinetic energy. In the Stokes flow model, the energy that a body transmits to

the fluid either dissipates due to viscosity or is transmitted to other bodies in the fluid.

105

Chapter 7

Implementation details

In this chapter some details regarding the implementation of the precorrected FFT boundary

element solver are presented.

7.1 Projection and interpolation

The projection and interpolation steps in the precorrected FFT algorithm were reviewed in

Section 4.1 .1. In this section we present how to actually calculate the coefficients of the

projection and interpolation matrices P and I.

Recall that PA, = fs, L,,,(x,)dS and that It,i = L,i(xt), for collocation testing, and It,, =

fst L,i (xt)dS, for Galerkin testing. Where L,,, is an interpolating Lagrangian polynomial

on the projection stencil associated with the source panel S, and Lti is an interpolating

Lagrangian polynomial on the interpolation stencil associated with the test panel St.

For practical reasons Pt,, = Lt,i(xt) is calculated in two steps. In the first step, a set of

monomials of the xt minus the center of the interpolation stencil associated with the test

panel t are calculated. In the second step, the values of the monomials are combined to

produce Lt,i(xt). Note that the monomial coefficients for the interpolating polynomials,

which are used to combine the monomials into Lt,i(xt), do not depend on xt and are a

function of only the interpolation stencil and the grid spacing. If the same type of inter-

106

polation stencil is used for all the targets, these coefficients can be computed once and

then reused for the calculation of all the Lt,i(xt) entries. If Galerkin testing is being used,

Pti = f Lt,i(xt)dS and, in the second step, rather than combining monomial function

values, the algorithm uses the same method to combine the appropriate moments over St

(note that these moments are centered on the interpolation stencil associated with the test

panel t). The same process is used to calculate Pp..

The monomial coefficients c*,i for the interpolating polynomial L, can be calculated by

solving, in the least squares sense, a linear system Ac*,i = e', where

Aj,k = (xj - XO)mk(yj - yo)"k (zj - zo)Pk (7.1)

where xj is the jth stencil point and xo is the stencil center; and e = 6i,. Since (7.1)

is a Vandermonde-like matrix its condition number will deteriorate rapidly with m, n and

p. Moreover, if the entries in A are not rescaled, solving the linear system (7.1), even

using SVD based methods, will not yield accurate values for c*,i and will instead produce

a low order approximating polynomial that will significantly compromise the accuracy of

the pFFT algorithm. Because it does not lead to an immediate catastrophic failure of the

pFFT algorithm, the loss of accuracy due to failing to rescale A, can be a very hard to find

bug.

A version of our implementation of the projection/interpolation algorithm is included in

Listing 7.1 and Listing 7.2.

Listing 7.1: Functor used for projection and interpolation using monomial basis functions and

panel moments.
template <class Grid, class operation tag>
struct projectongridjfunctorjimpl

typedef geometricelement::moment-container momentcontainer

template <class Stencil>
project-on-grid-functor_impl (Grid const & grid, Stencil const & stencil)

_grid(grid), _moments (new moment-container ()

position center-point = grid.position-fromgrid-coordinates (stencil.center ()
vector<position> stamp-point-positions ;
for (typename Stencil::stamp-iterator stamp_it = stencil.stamp_begin()

stamp-it != stencil.stamp-end() ++stamp-it)

vector<int> stamp-coordinates = *stamp-it
for (unsigned dim = 0 ; dim != 3 ; ++dim)

107

stamp-coordinates[dim] += -stencil.bounds()[dim].first ;

stamp_point-positions .push-back(
grid.position_fromgridcoordinates(stampcoordinates) - center-point)

}

// Calculate monomial values on the stencil points
// establishing a basis_values-on-stencil matrix.
f_monomials interpolating_function(
stencil.spano[0), stencil.spano[1, stencil.span()[2])

ublas::matrix<double, ublas::column-major> basisvaluesonstencil =

detail::evaluateinterpolation-functions_on_stencil(
stamp-pointpositions, interpolating_function) ;

// SCALE the rows of the basis-valueson stencil matrix
vector<double> scaling(basis_values_onstencil.sizel(), 0)
for (unsigned row = 0 ; row != basisvalues_onstencil.sizel() ; ++row)

// Determine the maximum value on the column
for (unsigned col = 0 ; col != basis_values_onstencil.size2() ; ++col)

scaling[row] = max(fabs(basis-valuesonstencil(row, col)),
scaling[row]) ;

// Scale the columns in this row
for (unsigned col = 0 ; col != basisvaluesonstencil.size2() ; ++col)
basisvaluesonstencil(row, col) /= scaling[row;

// Calculate the pseudo inverse of the scaled matrix
interpolating-polynomial-coefficientsm =
pseudo_inverse(basis-valuesonstencil)

// Scale the columns of the pseudo inverse
for (unsigned col = 0 ; col != interpolatingpolynomial coefficients_m.size2() ; ++col)
for (unsigned row = 0 ; row interpolating_polynomial-coefficients-m.sizel() ; ++row)
interpolating-polynomial coefficients m(row, col) /= scaling[col]

// Resize the storage for interpolatingpolynomial_coefficients

// Reorganize the the interpolating-polynomial coefficients
// to facilitate the computation of the projection and interpolation
// coefficients.
moment-orders = interpolating-function.termorders()
unsigned n-functions = interpolating_function.size()
for (unsigned fi = 0 fi != n-functions ; ++fi)

unsigned const ix {moment-orders[fi][0)
unsigned const iy = _moment_orders[fi][0] ;
unsigned const iz = _moment-orders[fi][1] ;

for (unsigned pi = 0 ; pi != stencil.size() ++pi)
interpolatingpolynomialcoefficients[pi][ix][iy][iz] =

interpolatingpolynomial-coefficients-m(pi, fi)

// Determine the maximum order of the moments that will be required
// to project the sources onto the projection grid using the stencil.
maxmomentorder = 0 ;
for (unsigned io = 0 io != _moment-orders.size() ++io)

_max momentorder = max (_max moment-order,
_moment-orders[io][0) + _momentorders[io][1) + _moment orders[io][2))

// Determine the minimum and maximum positions for the stencil
// centers (in grid coordinates).
for (unsigned dim = 0 ; dim != 3 ; ++dim)

_mingrid-coordinates.push-back(-stencil.bounds()[dim].first)

108

rmax-grid-coordinates.push-back((int(_grid.num_points()[dim]) - 1)
- stencil.boundso[dim].second)

// Calculate the projection or interpolation coefficients for
// a given source or target.
// The function input is a tuple taking
// (geometric_element const * source/target,
// grid-coordinate const & nearest-grid-coordinate,
// projectioncoefficient & output).
template <class Tuple>
void operator() (Tuple const & t) const

// Extract the tuple components.
geometricelement const * e = boost::get<0>(t)
using namespace boost::tuples ;

typedef typename element<l,Tuple>::type grid-coordinate_ref
gridcoordinate-ref nearest-grid-coordinates = boost::get<l>(t)

typedef typename element<2,Tuple>::type projection-coefficients-ref
projectioncoefficients_ref projectioncoefficients = boost::get<2>(t)

// If the nearest grid point is too close to the grid border move it
// in such that the projection stencil points are contained in the grid.
position centroid = e->getcentroid() ;
grid.grid-coordinatesjfrom-position(centroid, nearestgridcoordinates.begin())
for (unsigned dim = 0 ; dim != 3 ++dim)
nearest-grid-coordinates[dim] = bound-value(

_min-grid-coordinates[dim], max grid-coordinates[dim],
nearest-grid-coordinates[dim]) ;

// Determine the location of the projection center grid point in world coordinates.
position projectioncenter = grid.positionfromgrid-coordinates(
nearest-grid-coordinates)

// Make sure the moment result container has enough space for the moments we need
// for this source or target type.
typedef typename boost::removereference<projection-coefficientsref>::type
projection-coefficient-container ;

typedef typename projection-coefficient_container::value-type
projection-coefficienttype ;

unsigned const extramomentorder =

combine_momentsandstenciljinterpolationcoefficients<
projection-coefficient-type>::extra-requiredmomentorder

resize-panel momentcontainer(extramomentorder) ;

// Use the position of the nearest projection grid point as the center for
// calculating the moments of the source.
e->getmoments(_max momentorder + extra moment-order, projection-center, *_moments)

// Fill in the projection coefficients
for (unsigned pi = 0 ; pi != interpolatingpolynomial coefficients.size() ++Pi)
combinemoments-and-stencil_interpolation-coefficients<
projectioncoefficient_type>::apply(

momentorders, interpolating-polynomial-coefficients[pi],
e, centroid, *_moments, projection-center, projectioncoefficients[pi])

} ;

109

Listing 7.2: Function that combines the coefficients for the stencil interpolation polynomials with
the moments evaluated for a given source or target panel to calculate the projection or interpolation
coefficients.
template <>
struct combine_moments_andstencilinterpolation-coefficients<

... ::projectionmcoefficienttype>

enum { extrarequiredmomentorder = 1 }

template < ... >

inline static void apply(
MomentOrders const & moment-orders,
StencilInterpolationCoefficients const & stencil-interpolation_coefficients,
GeometricElement const * element,
Centroid const & centroid,
Moments const & moments,
ProjectionCenter const & projection-center,
Coefficient & result)

result.clear()

// The extra zt or zs moment order term is in absolute
// coordinates so we need to add the base term to the
// local z^(p+l) term i.e.
// x-m*y-n*z-p*(Z + z) <-- x^m*y-n*z^(p+l) + Z*x^m*y-n*z^p.
for (unsigned io = 0 io != moment orders.size() ++io)

unsigned const ox {momentordersio][0;
unsigned const oy = moment-orders[io] [1] ;
unsigned const oz = moment-orders[io][2 ;
result[O] += stencilinterpolationcoefficients [ox] [oy] [oz]

* moments[ox][oy][oz) ;
result[l] += stencil_interpolationcoefficients[ox][oy][oz]

* (momentsfox][oy][oz + 1) + moments[ox][oy)[oz) * projection-center[2])

};

7.2 Exploiting kernel symmetries to reduce memory usage

The Stokes flow Green's functions, as well as many other Green's functions for physical

problems, have symmetries. If the Green's function has symmetries and is evaluated on

a regular grid properly aligned with its axis and center of symmetry, its discrete Fourier

transform (DFT) also has the same symmetries and the storage for the DFT can be com-

pressed accordingly. Moreover, if the Green's function is real and it is either symmetric or

antisymmetric along each axis, its transform is either purely real or purely imaginary and

its DFT can be stored using a collection of real values rather than a collection of complex

values.

The precorrected FFT algorithm computes the DFT of the Green's functions to accelerate

110

the calculation of the convolution of the Green's function and the projected forces on a

regular grid. If the Green's function or the projected forces are real, conjugate symmetry

can also be used to reduce storage. In our implementation the storage for the DFT of real

signals is compressed by truncating the DFT such that it has [N/2] + 1 entries along the

"last" dimension, which we assume to be the z direction for a 3D grid (the truncation could

have been performed along any other axis direction but we use FFTW's [54] r2c transforms

and thus follow their convention).

The velocities on the regular grid are computed by zero padding the projected forces, cal-

culating the DFT of the zero padded forces on the grid; calculating the pointwise multipli-

cation between the DFT of the zero padded forces on the grid and the DFT of the Green's

function; and then inverse transforming the result of the pointwise multiplication and re-

moving the padding.

The complicated part of the FFT accelerated convolution is the calculation of the pointwise

multiplication between the compressed DFT of the Green's function and the compressed

DFT of the projected forces, where it is assumed that the projected forces do not have any

symmetries that can be exploited. For that purpose, we present an algorithm in Listing 7.3

that can compute the pointwise multiplication of the DFT of an input signal with the DFT of

a Green's function with any combination of odd symmetry, even symmetry or asymmetry

along any of the axis function and that works for any number of dimensions.

Listing 7.3: Function that calculates the pointwise product of a kernel, with symmetries, and a
signal and accumulates the result onto a second signal.
#include "util/getnegatedjfunctor.hpp"

/ / nd-multiply-accumulate-transformwith-symmetries
template <
class a-it-type,
class asize_it_type,
class astrideit-type,
class a symmetry-it-type,
class bittype,
class b-size-ittype,
class b_stride_it-type,
class out-ittype,
class out-size-it-type,
class out-stride_it_type,
class F>

inline void nd-multiply-accumulate-transformwithsymmetries_impl(
size t rank,
a-it-type a_it,
a_sizeit_type asize-it,
a_stride_it-type a_stride it,

111

a-symmetry-it-type

b it-type
b_size_it type
b-stride-it-type
bool
outit_type

outsize-it type
outstrideit-type
F const & f)

a-symmetry_it,

b-it,
b_size_it,

b_stride it,
signalisreal,
outit,

outsize-it,

out_strideit,

a_it_type const a begin = a_it ;
ignoreunused variable warning(abegin)

sizet const a-stride = *astride-it ;
size-t const b_stride = *b-stride-it ;
sizet const out-stride = *outstride_it

size t const
sizet const

sizet const

a-size =
b size =
outsize

*a_size it ;
*b_sizeit ;
= *outsizeit

if (rank != 1 && *a-symmetry_it =
if (rank != 1 && *a-symmetryit =
assert(out_size == bsize) ;

odd) assert(a-size (b size - 1)/2)
even) assert(asize == b-size / 2 + 1)

a_it-type const a-end = ait + asize * astride ;
b_it-type const bend = b_it + b-size * bstride ;
out_it_type const out end = out-it + outsize * outstride
ignore unused variable warning(out-end) ;

// If the kernel is odd it does not store the first value,
// which is zero.

if (*a symmetry-it = odd)
b it += b-stride

outit += out-stride

if (rank > 1)

while (a it a_end)
nd multiplyaccumulatetransform_withsymmetries-impl(

rank - 1,

a-it, a-sizeit + 1, a-stride_it + 1, a-symmetryit + 1,
b it, bsizeit + 1, bstrideit + 1, signal is real,
out-it, out-size-it + 1, out strideit + 1,

f) ;

a-it += a-stride ;

b_it += bstride ;
out-it += out-stride

// Get a-it back in the data range
a it - a stride ;

if (bsize % 2 == 0) {
// If using symmetry and signal size is even, point a to
// the second to last entry.
if (*a-symmetry it == even)

// signal is A B C D E F

// kernel is a b c d c b

// processing E next so must point kernel to c
a it -= a stride

}
else if (*a symmetryit == odd)

// signal is A B C D E F
// kernel is 0 b c 0 -c -b
// precessing D now so just skip to E
b-it += b-stride ;

112

outit += out-stride
}

}
else

// Nothing to do because:

// if kernel is even:
// signal is A B C D E
// kernel is a b c c b
// b_it should point to D and ait to c already

// if kernel is odd:
// signal is A B C D E
// kernel is a b c -c -b
// b_it should point to D and ait to c already

// is kernel is asymmetric:
// signal is A B C D E
// kernel is a b c d e
// bit should be bend

if (b_it == bend)
return ;

if (*asymmetry-it == even)
// Now go back with the same f
while (b-it != b-end) {

nd-multiply-accumulatetransform with-symmetries_impl(
rank - 1,

a-it, a-sizeit + 1, a-strideit + 1, asymmetry_it + 1,
b_it, b-sizeit + 1, b-strideit + 1, signal_is_real,
outit, outsize_it + 1, out strideit + 1,
f) ;

a-it -= a-stride ;
b_it += bstride ;
out-it += out-stride

}
}
else if (*a_symmetryit == odd)

typename get-negatedfunctorimpl<F>::type neg_f(
get-negatedjfunctor(f)) ;

// Now go back with a negated f
while (bit != b-end) {

ndnmultiply-accumulatetransform with-symmetriesimpl(
rank - 1,

a_it, a-sizeit + 1, astrideit + 1, a-symmetryit + 1,
b-it, b sizeit + 1, b-strideit + 1, signalisreal,
out-it, out sizeit + 1, out strideit + 1,
negf)

a-it -= a-stride ;
b_it += bstride ;
out-it += outstride

}

else // rank == 1

// This branch has the same structure as the branch for rank > 1
// except that instead of recursively calling this function
// the code calls the functor f or neg-f instead.
while (a-it != a-end) {

f(*out-it, *a-it, *b-it)
a_it += astride ;
b_it += b-stride ;

113

outit += out-stride

// Get ait back in the data range
a_it -= a-stride ;

if (signal_isreal || (b.size % 2 == 0)) {
// If using synnetry and signal size is even, point a to
// the second to last entry.
if (*asymmetryit == even) {

// signal is A B C D E F
// kernel is a b c d c b
// processing E next so must point kernel to c
a_it -= astride

else if (*asymmetry-it == odd) {
// signal is A B C D E F
// kernel is 0 b c 0 -c -b
// precessing D now so just skip to E
b_it += bstride ;
outit += out-stride

else {
// Nothing to do for same reasons as in corresponding
// case in the rank > 1 branch above.

if (b_it == bend)
return ;

if (*a-symmetryit == even) {
while (b-it != b-end) {

f(*out-it, *a-it, *b-it)
a_it -= a_stride ;
b_it += bstride ;
out-it += outstride

else if (*a-symmetryit == odd) {
typename get-negatedjfunctorimpl<F>::type neg-f(
getnegatedjfunctor(f)) ;

// Now go back with a flipped f
while (bit != b-end) {
neg_f(*outit, *a-it, *b-it)
a_it -= a_stride ;
b_it += bstride ;
outit += outstride

Note that the algorithm presented in Listing 7.3 takes a functor f. The functor f is used, to-

gether with getnegatedjfunctor to enable the flexible and efficient configuration of the

function to be performed. For example, the functor f can be a multiply_accumulate func-

tor, coupled to a multiply-subtract functor by get-negatedfunctor. Using functors

to represent the fundamental multiply accumulate operation does not incur in any perfor-

mance penalty whereas using a factor of 1 or -1 to multiply the Green's function would

114

be less general and would introduce an unnecessary multiplication. It would have been

possible to avoid using functors and to use expression templates [28, 29] instead to rep-

resent the multiply accumulate and multiply subtract as *outit += *ait **bit and

*out-it -= *a it * *bit without incurring in performance loss but we opted for using

functors and get-negatedjfunctor because it was simpler.

To illustrate the use of ndmultiplyaccumulatetransf ormwithsymmetries_impl,

a driver routine is presented in Listing 7.4 where the appropriate instance of the function

is called depending on the symmetries of the Green's function and on the signal being

real or not. When the Green's function is symmetric or antisymmetric along all the direc-

tions and it is stored as a set of real values, depending on the number of directions where

the function is anti-symmetric, the transform values will be multiplied by -1 and/or by i.

The multiplication by -1 is achieved at no cost by using multiplysubtract instead of

multiplyaccumulate. The multiplication by i is achieved at no cost by adapting the

iterator over the transform data such that a special type is returned when the iterator is

dereferenced. Specializations of the multiplication operator for the purely imaginary type

are defined and inlined such that using the imaginary_iteratoradaptor does not result

in a performance penalty.

Listing 7.4: Function that calculates the pointwise product of a kernel, with symmetries, and a

signal and accumulates the result on a second signal

// Driver routine for pointwise kernel signal multiply accumulate
// operation.
template <

class output-scalartype,
class kernelscalar-type,
class input-scalar-type,
class F>

inline void ndnmultiply-accumulate transform with-symmetries(
nd-signaltransform<outputscalar-type> & accumulator,
ndkerneltransform<kernel-scalar-type> const & kernel,
nd-signal-transform<input-scalartype> const & signal,
F const & f)

complex<int> symmetryfactor(l, 0)

vector<functionsymmetry-type> const & kernelsymmetry = kernel.symmetry()
size-t const n-dims = kernelsymmetry.size()

for (size-t dim = 0 dim n-dims ; ++dim)
if (kernelsymmetry[dim] == odd)
symmetry-factor *= complex<int>(0, -1)

bool const negate = (symmetry_factor.real() == -1)

1 (symmetry-factor.imag() == -1) ;

115

bool const use_imaginaryjiteratoradaptor = kernel.transformdatais-real()
&& (symmetryfactor.real() == 0)

if (kernel.transformdatais-real() {
if (negate) {

if (useimaginary-iterator-adaptor) {
nd-multiply-accumulate-transformwith-symmetries(

imaginary-iterator_adaptor(kernel.transformdataas-real()),
begin (kernel .transform-size o),
begin(kernel.transform-stride()),
begin(kernel.symmetry(),
signal.transformdataascomplex(),
begin(signal.transform-size()),
begin(signal.transform-stride()),
nd-signal-transform<input-scalar-type>::signalis-real,
accumulator.transform_data_as_complexo,
begin(accumulator.transform size()),
begin(accumulator.transform stride)),
getnegated_functor(f))

else {
ndnmultiply_accumulate transform with-symmetries(

kernel. transform_dataas-real (),
... // Commented out repeated parameters
getnegatedjfunctor(f))

else {
if (use_imaginary-iterator-adaptor) {
ndjmultiply-accumulate_transform-with-symmetries(

imaginary-iteratoradaptor (kernel .transformdata_asreal ()),
... // Commented out repeated parameters
f)

else
nd-multiply-accumulate-transformwith-symmetries(
kernel .transformdata as real (),
... // Commented out repeated parameters
f)

else
if (negate)
nd-multiplyaccumulatetransformnwith-symmetries(

kernel .transform-data-as-complex),
... // Commented out repeated parameters
getjnegatedfunctor (f))

else
ndmultiplyaccumulate transform with-symmetries(

kernel . transformdataas-complex),
... // Commented out repeated parameters
f)

Please note that, if the input signal is real and the kernel is complex, or vice versa, then the

output signal will be complex and the pointwise multiplication algorithm will only work if

the uncompressed transform for the input signal is provided. It is likely that this restriction

can be lifted but it was decided to leave that improvement as future work.

116

In our implementation, compressing the DFT for the Green's function is left to FFTW's r2c

or r2r routines depending on the Green's function symmetries. Using the r2r transforms

has the advantage that the Green's functions only need to be evaluated on a quadrant of the

domain. However, the r2r transforms are only applicable when the function is symmetric

or antisymmetric along all the directions and will not work for the image Green's functions

because they are not sampled around their center of symmetry. It would have been pos-

sible, and more general, to just use FFTW's r2c or c2c transforms and to compress the

resulting DFT afterwards. In hindsight, doing so, or using a r2r first along the symmetric

directions and then using r2c along the non-symmetric directions would have been better

than just relying on r2r to compress storage. Nevertheless, modifying the implementation

is trivial and it is not the focus of this section. Moreover, for planar topologies, the layered

transforms, presented in Section 7.3 do exploit all possible symmetries for both image and

non-image Green's functions.

7.3 Specializations for planar topologies

Especially for surface micromachined devices, the problem dimensions along the z direc-

tion, normal to the substrate, are usually much smaller than the dimensions along the x and

y directions, parallel to the substrate. For these problems, the number of. FFT grid points

along the vertical direction N2 is much smaller than the number of grid points along the

x and y directions. It turns out that, for small enough Nz, it is faster and more memory

efficient to compute the grid convolution by layers along the z direction and using 2D ac-

celerated convolution for each interacting layer pair, than using a full 3D FFT accelerated

convolution.

In the layered convolution method the input signal and the Green's function on the grid

are Fourier transformed along the x and y direction but not along the z direction. This has

the immediate advantage that it removes the need for padding the input and output signals

along the z direction. On the other hand the layered convolution requires N layer to layer

2D convolutions, as can be observed in Listing 7.5.

117

A major advantage for the layered convolution method when applied to problems involving

image Green's functions is that, the symmetry along the x and y axis can be fully exploited

and the transform data can be stored a real vector rather than a vector of complex values.

Meanwhile, for the 3D FFT convolution method the image Green's functions are evaluated

in a way that symmetry along the z direction cannot be used and so the transform data

cannot be stored as a real vector or computed directly using FFTW's r2r routines.

Another advantage of the layered convolution method is that calculating the transform of

the projected image panel source panel distribution on the grid from the transform of the

projected source panel distribution on the grid only requires a simple re-indexing operation.

Listing 7.5: Layered convolution.
template <class scalar-type>
void layered-kernel-transform<scalar-type>: :convolveaccumulate(

inputsignal<scalar-type> const & from,
outputsignal<scalartype> & accumulator,
scalar-type const & factor) const

if (factor == scalartype(O)) return

layered signal-transform<scalartype> const * fromp =
boost::polymorphic_downcast<layered-signaltransform<scalartype> const *>(&from)

layered-signal-transform<scalartype> * top =
boost::polymorphic-downcast<layered-signal-transform<scalartype>*>(&accumulator)

// Explicitly perform an N^2 convolution along the layering direction
int const minfromlayer = fromp->min_layer_index() ;
int const maxfromlayer = from_p->maxjlayer_index() ;
int const minto_layer = top->min-layer-index() ;
int const maxto_layer = top->max-layer_index() ;

for (int from-layer = min_fromlayer ; from-layer <= maxfromlayer ; ++fromjlayer)
for (int to_layer = min_to_layer ; to_layer <= max-tojlayer ; ++to-layer)
layer(to_layer - fromjlayer) .convolve-accumulate(

fromp->layer(from-layer), top->layer(tolayer), factor)

Note that the convolution interface provides a virtual mechanism to perform the convolu-

tion which hides the actual implementation. In other words, the user of the convolution

classes does not need to be aware of whether a layered convolution or a full 3D FFT accel-

erated convolution is being used. The convolution interface also takes care of any necessary

padding and unpadding.

118

7.4 Precorrection

The precorrection algorithm is responsible for subtracting the grid based interactions be-

tween nearby source-target pairs. However, a naive implementation of the precorrection

algorithm can be very inefficient. In this section the techniques used in our implementation

of the precorrection algorithm are presented. To facilitate the discussion we first introduce

some of the variables and types that will appear below:

" interactionvalues is a sparse matrix with entries of type interactionvalue-

_type. This matrix has numsources columns and numtargets rows.

* interactionlist is a collection of numsources collections of target indices and
is basically a representation of the sparse structure of interactionvalues.

* proj ectioncoefficients represent the projection weights that map the source
forces to forces and force moments on the grid. This is a collection of collections of
projectioncoefficient-type

* proj ectiongrid coordinates represent grid coordinates used to map the source
forces to forces and force moments on the grid.

* interpolationcoef f icients represents the interpolation weights used to map the
grid velocities and velocity moments to velocities on the target evaluation points, if
collocation testing is being used, or integrals of the velocity over the target panels, if
Galerkin testing is being used. This variable is a collection of collections of elements
of type interpolationcoef f icient-type.

" interpolation-gridcoordinates represent the grid coordinates used to map the
grid velocities and velocity moments to velocities on the target.

* greens_function (t, s) is a function that takes a target point t and a source point s
and returns the value of the Green's function of type kernelvalue-type.

* projectedkernelvalue-type is the result of the product between a projection
coefficient and a kernel value.

* multiply-accumulate (pg, p, g) multiplies p of type proj ectioncoef f icient-

type and g of type kernel_valuetype and accumulates the result onto an element
of the type proj ectedkernelvalue-type.

* multiplysubtract (iv, i, pg) multiplies i of type interpolationcoef f icient-

_type by pg of type proj ectedkernelvalue-type and subtracts the result from

iv of type interactionvaluetype.

119

A straightforward, but inefficient, implementation of the precorrection algorithm is pre-

sented in Listing 7.6 where, for convenience, it is assumed that the * operator works in a

manner that is consistent with the multiply-accumulate operation between elements of

proj ectioncoef f icient_type and of kernelvalue-type.

Listing 7.6: Basic precorrection algorithm.
for si = 1 : numsources,

for ti = interaction-list{si}
for pci = 1 length(projectioncoefficients(:,si)),

for ici = 1 : length(interpolation-coefficients(:,ti)),
multiply-subtract (interaction-values (ti, si),

interpolation-coefficients(ici, ti),
projection coefficients(pci, si) *

greensfunction(...
position(interpolationgrid_coordinates (: , ici, ti)),...
position (projectiongrid-coordinates (: ,si, ti)))

end
end

end
end

There are several sources of inefficiency in this implementation. The more important de-

ficiency of the algorithm is that the work done to calculate the kernel projected at a given

point is repeated for multiple panels in interactionjist (si).

The first source of inefficiency can be addressed by separating the precorrection for each

source into a scatter phase and a gather phase. In the scatter phase, the list of the in-

terpolation points associated with the targets in the source's interaction list is computed.

Then the sum of the projected kernel values due to the source's projection grid points is

calculated at the interpolation points in the list above. The contributions from all the pro-

jection points at each interpolation point are accumulated and stored in elements of the

type projectedkernelvalue-type. In the gather phase, for each target in the source's

interaction list, the projected kernel values corresponding to the interpolation points as-

sociated with that target are multiplied by the corresponding interpolation coefficients

and subtracted from the appropriate entry in interactionvalues using the operation

multiplysubtract.

Another source of inefficiency is that greens._function (t, s) is evaluated multiple times

for the same (t, s) pair and that the positions t and s are also being repeatedly recalculated.

Dealing with this issue is important if the cost of evaluating greensfunction and comput-

120

ing positions from grid coordinates is high. Unfortunately, caching greens_function (t, s)

as a function of both t and s would either require a large amount of memory or would

would use some sort of associative container with a non-trivial access time. However, if

greensjfunction (t, s) is translation invariant i.e. if greens_function (t, s) is the same

as greens_function (t-s, 0) the values of greens_function can be reused and accessed

as a function of t-s without requiring an excessive amounts of storage.

In our implementation, presented in Listing 7.7 the following approach for caching and

accessing the values of the Green's function was used: First, the maximum grid-based

distance between a projection grid coordinate of a source and an interpolation grid coor-

dinate of an interacting target was calculated. Calculating the maximum grid-based in-

teraction range benefits significantly from first computing a grid-aligned bounding box

for the projection grid coordinates of each source and for the interpolation grid coordi-

nates of each target. Once the maximum interaction range is computed the values of

greens_function (t-s, 0) in that range are calculated and stored in and array kernel-

_values of kernelvalue_type elements. Let Rmin,k and Rmar,k represent the minimum

and maximum values of t - s along direction k, the span of the interactions along that

direction is Sk = Rmax,k - Rmin~k + 1. Let Tk be the stride for kernelvalues, defined in

a manner consistent with Sk. For a source grid coordinate s and a target grid coordinate t,

the linear index into kernelvalues is given by

cachedkernelindex = (tk - sk - Rin,k)Tk. (7.2)
k

Instead of computing (7.2) for each access to kernel_values, linear indices projection-

_greenof f set = Ek(sk+Rmin,k)Tk, for each projection point, and interpolationgreen-

_of f set = Ek tkTk, for each interpolation point, are computed and saved once. The dif-

ference between the two linear indices is then used to access the cached kernel values.

Listing 7.7: Precorrection algorithm.
// project-on-grid performs the scatter operation for each
// source. See subtractgridbased-interactions below for
// usage details.
template <...>

void proj ect-ongrid(
targetgridit-type target-gridjit,

121

target-gridit_type
targetgreenittype
projection-green-offset_ittype
projection-green-offsetittype
projectioncoefficientsittype
kernelcontainer-type const &
projectedkernelcontainertype

targetgridit-end,
targetgreenit,
projectiongreen_offsets_begin,
projection-greenoffsetsend,
projection-coefficientsbegin,
kernel-values,

& projected_kernelvalues)

projectedkernelvaluetype v ;

// Calculate the projection of the source onto each target point.
while (targetgrid.it != targetgridit-end)
{
size_t const target-grid-offset = *target-grid it
int const target-greenoffset = *targetgreenit

// Zero out accumulator.
clear(v) ;

projectiongreen-offset-it_type projection greenoffsetit
= projectiongreenoffsetsbegin ;

projection-coefficients-it_type projection_coefficientsit
= projectioncoefficientsbegin ;

while (projectiongreen-offset.it != projectiongreen-offsets-end)

int const cached kernel index = targetgreen-offset
- *projectiongreen offset it ;

multiply-accumulate(
v, kernelvalues[cachedkernel_index],
*projectioncoefficients_it) ;

++projectioncoefficientsit ;
++projectiongreen-offset-it ;

projectedkernel-values(targetgrid-offset] = v ;

++target-grid it
++targetgreen it

template <
class kernel-value-type,
class projected-kernelivaluetype,
class interaction-value-type,

void subtract-gridbasedinteractions(
KernelEvaluationFunctor const & kernelevaluation functor,
InteractionList const & interaction-list,
ProjectionGridCoordinates const & projectiongridcoordinates,
ProjectionOffsets const & projection_offsets,
ProjectionCoefficients const & projectioncoefficients,
InterpolationGridCoordinates const & interpolation-gridcoordinates,
InterpolationOffsets const & interpolation_offsets,
InterpolationCoefficients const & interpolationcoefficients,
InteractionValuesIterator const & interactionvalues)

// Determine the maximum interaction range.
vector<pair<int, int> > interaction-range =
calculatemaximumgrid-basedinteraction-range(
interaction-list,
projection-grid coordinates,
interpolation-grid coordinates)

// Setup a mini-grid from the interaction range. */
size-t const ndims = interaction-range.size() ;

122

vector<vector<int> > kernel_gridjindices ;
vector<int> green_mincoordinates, green-max coordinates
size-t num-greengridpoints = 1 ;
for (size-t dim = 0 ; dim != n dims ; ++dim)
kernel_gridIindices.push-back(

linspace(interaction-range[dim].first,
1, interaction-range[dim].second)) ;

green_mincoordinates.pushjback(interaction_range~dim].first)
greenmaxcoordinates.push-back(interaction_range[dim].second)
nungreen-gridpoints *= kernel-gridindices.backo.size()

}

// Calculate kernel values
vector<kernel_value-type> kernelvalues(numgreen-grid-points)
vector<sizet> green_stride = kernelevaluationfunctor(
kernelgridindices, kernelvalues.begino) ;

int green-originoffset = -linear-indexfromstrideandmultijindex(
green-stride, greenmin-coordinates) ;

size-t const nsources = interaction list.size()
vector<int> interpolationgreenoffsets
vector<int> projection-greenoffsets ;

// Allocate workspace to contain the projected kernel values.
using max ;
size-t const ntargets = boost::size(interpolationoffsets)
size-t maxjinterpolation-offset = 0 ;
for (sizet ti = 0 ti != n-targets ; ++ti)

for (sizet poi = 0 ; poi != interpolation-offsets[ti].size() ; ++poi)
max_interpolationoffset = max(

interpolation-offsets[ti][poi], maxjinterpolation-offset) ;

size-t maxprojectionoffset = 0 ;
for (size-t si = 0 si != nsources ; ++si)

for (sizet poi = 0 ; poi != projectionoffsets[si].size() ++poi)
maxprojectionoffset = max(
projection-offsets[si][poil, max-projection_offset)

vector<projectedkernelvalue-type> projected-kernelvalues(
max(maxjinterpolation-offset, maxprojection-offset) + 1);

// Map grid offsets into (aliased) offsets into the kernel mini-grid.
vector<int> green offset_from-grid-offset(maxinterpolationoffset + 1, 0)

for (sizet ti = 0 ti != n-targets ; ++ti)
for (size-t ioi = 0 ; ioi != interpolation-offsets[ti].size() ++ioi)

if (green offset from_gridoffset[interpolationoffsets[ti][ioi]] 0)
greenoffsetfrom_gridoffset[interpolationoffsets[ti][ioi]] =

linearindexfromstrideandmulti_index(
green-stride, interpolation-grid-coordinates[ti][ioi])

vector<int> targetgreen-offset ;
vector<sizet> target-grid-offset

// Subtract the nearby grid based interactions for each source.
for (size-t si = 0 ; si != nsources ; ++si) {
sizet const n interactions = interactionlist[si].size()
sizet const nprojectionpoints = projectioncoefficients[si].size()

// Map the projection stencil grid offsets to offsets on the mini grid
/I where the kernel values where cached.
// psi -- projection stencil index
projection green-offsets.resize(n_projection-points)
for (size-t psi = 0 ; psi != n_projectionpoints ; ++psi)
projectiongreenoffsets[psi) =

linearindex-from stride and-multi-index(
green-stride,

123

projectiongrid coordinates[si][psi]) - greenorigin offset ;

// Determine the projected kernel values that need to be calculated.
targetgrid-offset.resize(O)
targetgrid-offset.reserve(
n_interactions * ((ninteractions != 0) ?
interpolation-offsets[interactionlist[si][0]].size() 0))

// ii -- interaction index
for (sizet ii = 0 ii != ninteractions ; ++ii) {

size-t const ti interactionlist[si][ii] ;
copy(interpolationoffsets[ti].begino, interpolationoffsets[ti].end(,
backinserter(target-grid offset))

sort(target-gridoffset.begin), targetgrid-offset.end()
vector<sizet>::iterator new-target-grid offsetend = unique(

target-grid offset.begino, target-grid-offset.endo)

// Convert grid offsets to green offsets
sizet numuniqueprojectionpoints = new-targetgrid offsetend

- targetgrid offset.begin() ;
target-green-offset.resize(num uniqueprojectionpoints)
vector<sizet>::iterator grid-offsetit = targetgrid offset.begin()
vector<int>::iterator greenoffsetit = target-green-offset.begin()
while (gridoffset_it != newtargetgrid offset-end)
*greenoffsetit++ = green-offsetfrom_grid offset[*grid offsetit++]

// Scatter
project-ongrid(
target-grid-offset.begin(),
new~target-grid_offset_end,
targetgreen offset.begin(),
projectiongreenoffsets.begin(,
projectiongreen_offsets.end(,
projection-coefficients[si].begin(,
kernelvalues,
projectedkernelvalues)

// Gather
// For each interacting target interpolate the projected kernel values.
// ii -- interaction index
for (size-t ii = 0 ; ii != n-interactions ++ii) {

// ti -- target index
size-t const ti = interaction list[si][ii]
interaction value-type & accumulator = interaction_values[si](ii]

// isi -- interpolation stencil index
size-t const njinterpolationpoints = interpolationoffsets[ti].size()
for (size-t isi = 0 ; isi != n_interpolationpoints ; ++isi)
multiply-subtract(
accumulator,
projected kernelvalues[interpolationoffsets[ti][isi]],
interpolation coefficients[ti][isi])

It is possible that further performance improvements may be achieved by zeroing out parts

of the Green's function that are likely to have to be precorrected later.

124

Precorrection with image sources

If translational invariance is used to cache the Green's function values, the precorrection

for image panels and image Green's functions must be considered separately from precor-

rection for "direct" source kernels. If the precorrection for the image terms and the direct

terms is performed separately, it might be worthwhile to setup a separate nearby interaction

lists for the direct panels and for the image panels. Separating the nearby interaction lists

would very significantly reduce the cost of precorrection for the image sources but it would

require having two precorrection matrices or a method to combine the entries of the image

precorrection matrix with the entries of the direct precorrection matrix. Note that, regard-

less of the position of the source panel and the test point (or test panel), the image panel is

always further away from the test point (or test panel) than the original source. Therefore,

the precorrection matrix for the image panels will always have a sparse structure that is

a subset of the structure for the precorrection matrix for the direct panels. If the nonzero

structure of the image precorrection matrix is a subset of the nonzero structure of direct

precorrection matrix it is very likely that subtractgrid-basedinteractions can be

modified, or passed in a set of adequate iterators, such that combining the two matrices can

be done efficiently and seamlessly. Developing this split precorrection approach is left as

future work.

7.5 Calculating the image transform from a signal trans-

form

When applying the precorrected FFT algorithm to problems involving image sources, such

as the Stokes substrate Green's function or the Green's function for electrostatics in the

presence of a ground plane, the projection of the source panels on to the FFT grid and the

projection of the image panels on the FFT grid as well as their DFTs must be computed.

In this section, a method for computing the image projection and its transform from their

"direct" counterparts, without requiring an extra FFT, is presented.

125

Assuming that the plane of symmetry for defining image sources is the z = 0 plane and

that the projection coefficients for the sources are Cm,n,,, the projection coefficients of the

image sources are given by dm,n,p = Cm,nmod(Nz-p,Nz)' Similarly, if the DFT of c is C

then Dm,n,p = Cm,n,mod(Nz -p,Nz). However, if c is real its DFT C can be compressed using

conjugate symmetry, i.e. it may be truncated such that it only has [N2/2] + 1 entries along

the z direction. The Matlab code below illustrates how to produce a compressed D from a

compressed C for 2D and for 3D.

Listing 7.8: Compressed image transform from compressed signal transform in 2D.

c = rand(M, N)
C = fftn(c) ;

C = C(:, 1:floor(N/2)+l)

D_fromC = C ;
D_fromC(2:end,2:end) = D-fromC(end:-1:2,2:end)
D_fromC(:, 2:end) = conj(D-fromC(:, 2:end)) ;

% D is the compressed image transform that we want, we can compare it to
$ DfromC to validate the procedure.
d = c(:, [1 end:-1:2])
D = fftn(d) ;
D D(:, 1:floor(N/2)+l)

Listing 7.9: Compressed image transform from compressed signal transform in 3D.

P =6 ; M = 6 ; N =6
c = rand(P, M, N)
C fftn(c) ;
C C(:, : :floor(N/2)+l)

D_fromC C ;
D_fromC(2:end,:,2:end) = D_fromC(end:-1:2,:,2:end)
DfromC(:,2:end,2:end) = D-fromC(:,end:-1:2,2:end)
% Note that the two steps above are not equivalent to
% D_ fromC(2:end,2:end,2:end) = D-fromC(end:-1:2,end:-1:2,2:end)
D_fromC(:, :,2:end) = conj(DfromC(:, :,2:end)) ;

% D is the compressed image transform that we want, we can compare it to
$ DfromC to validate the procedure.
d = c(:, :, [1 end:-1:2])
D = fftn(d) ;
D D(:, :, 1:floor(N/2)+1)

126

7.6 Preconditioning

To improve convergence of the iterative solver for (2.23) the block preconditioner from

[55] was adapted to work with the Stokes flow Green's functions. The maximum block

size is a user controllable parameter that can be used to trade setup time and memory for

improved convergence.

127

Chapter 8

Conclusions and future work

In this chapter, the conclusions that were drawn in previous chapters are summarized and

directions for future work are proposed.

Conclusions

A precorrected FFT accelerated algorithm for solving Stokes flow problems in the presence

of a substrate was developed and demonstrated. Techniques to extend the applicability of

the pFFT algorithm to certain types of non-translation invariant Green's functions were

developed. The modified pFFT algorithm was validated against known theoretical, ex-

perimental and computational results and its performance was compared with previously

published results.

Using the implicit substrate representation was shown to produce more accurate results with

less memory and significantly less time than explicitly representing the substrate. Using the

implicit substrate representation produces more accurate results because it accounts for the

presence of the substrate exactly.

Surprisingly, a disappointing outcome of this study was that out-of-plane motion excites

equation modes that reveal the need to refine the structure discretization as the distance

to the substrate decreases. Simulation of out-of-plane motion also revealed that, when

using an explicit substrate, the substrate discretization must be refined faster than than

128

structure discretization for results to match the results obtained using implicit substrate

discretization. So the implicit substrate representation has benefits but does not entirely

decouple structure discretization from distance to the substrate.

An analytical panel integration algorithm for polynomial force distributions over odd pow-

ers of the distance between points on a flat panel and an evaluation point was developed

extending previous results in the area.

Most of the blocks of the precorrected FFT algorithm where implemented using C++ tem-

plate metaprogramming techniques that will facilitate the future development of accelerated

boundary element solvers.

A stable velocity implicit time stepping scheme coupling the precorrected FFT solver with

rigid body dynamics was introduced and demonstrated. The ODE library [27] was inte-

grated with the solver to enable the simulation of systems with collisions, contacts and

friction. Several techniques for speeding up the calculation of each time step were pre-

sented and tested. The time integration algorithm was found to produce reasonable results.

However, it was found that some work still needs to be done to improve the robustness of

the support for collisions and contacts of moving objects described by arbitrary meshes.

Directions for future work

In the future it would be interesting to couple membrane models such as those described in

[47], [26] and [1] with the velocity-implicit integration scheme and the pFFT accelerated

Stokes boundary element solver.

Since, for the microfluidic application examples, the panel distribution is not very homo-

geneous, coupling the velocity implicit stepping scheme with a fast solver that can better

deal with non-homogeneous problems, such as the multipole method [33][20], could prove

useful. Another alternative would be to develop a multi-resolution pFFT algorithm.

It would be very useful to integrate the solver with a scripting language such as Matlab,

Python or Lua. Although this integration cannot be considered as research work it would

greatly enhance the usability and the flexibility of the solver.

129

Another possibility for improvement would be supporting higher order panel force distri-

butions to reduce the number of panels and improve convergence. Again this would not be

considered to be very interesting research as the techniques for doing this are already de-

veloped. However, supporting higher order panels and force distributions would be useful

for simulating smooth structures and would also facilitate the integration of the boundary

element solver with a finite element solver for structural mechanics where high order shape

and force distributions are commonly used.

Finally it would be both interesting and useful to further explore the techniques used for

dealing with contacts, collisions and friction in order to provide better handling of compli-

cated collision situations and to enable the time domain simulation using large time steps

in the presence of multiple ongoing contacts. Still in this context, it would be worthwhile

to try using multi-rate simulation techniques to speed up the simulation of systems where

there are multiple moving objects, possibly undergoing collisions.

130

Bibliography

[1] C. Pozrikidis. Boundary integral and singularity methods for linearized viscous flow.

Cambridge texts in applied mathematics. Cambridge University Press, 1992.

[2] William M. Deen. Analysis of transport phenomena. Topics in chemical engineering.

Oxford University Press, 1998.

[3] Stephen D. Senturia. Microsystem design. Kluwer Academic Publishers, Norwell,

MA, USA, 2001.

[4] Y. H. Cho, A. P. Pisano, and R. T. Howe. Viscous damping model for laterally os-

cillating microstructures. Journal of Microelectromechanical Systems, 3:81-87, June

1994.

[5] Kwok P. Y., Weinberg M. S., and Breuer K. S. Fluid effects in vibrating micro-

machined structures. Journal of Microelectromechanical Systems, 14(4):770-781,

August 2005.

[6] Ye Wenjing, Xin Wang, Werner Hemmert, Dennis Freeman, and Jacob White. Air

damping in laterally oscillating microresonators: A numerical and experimental study.

Journal of Microelectromechanical Systems, 12(5):557-566, October 2003.

[7] Lijie Li, G. Brown, and D. Uttamchandani. Air-damped microresonators with en-

hanced quality factor. Journal of Microelectromechanical Systems, 15:822 - 831,

August 2006.

131

[8] Dale A. Anderson, John C. Tannehill, and Richard H. Pletcher. Computational fluid

mechanics and heat transfer. Hemisphere Publishing Corporation, McGraw-Hill,

1984.

[9] Rajat Mittal and Gianluca Iccarino. Immersed Boundary Methods. Annual Review of

Fluid Mechanics, 37:239-261, January 2005.

[10] 0. C. Zienkiewicz, R. L. Taylor, and P. Nithiarasu. The Finite Element Method for

Fluid Dynamics. Butterworth-Heinemann, 2005.

[11] Ladyzhenskaya 0. A. The mathematical theory of viscous incompressible flow. Gor-

don & Breach, 1969.

[12] Happel J. and Brenner H. Low Reynolds number hydrodynamics. Mantinus Nijhoff,

1973.

[13] Greengard L. and Rokhlin V. A new version of the fast multipole method for the

Laplace equation in three dimensions. 6:229-270, 1997.

[14] Hackbusch W. and Nowak Z.P. On the fast Matrix multiplication in the boundary

element method by panel clustering. Numer Math., 54:463-491, 1989.

[15] J. Phillips and J. K. White. A Precorrected-FFT method for Electrostatic Analysis of

Complicated 3-D Structures. IEEE Trans. on Computer-Aided Design, 16(10):1059-

1072, October 1997.

[16] A. Frangi. A fast multipole implementation of the qualocation mixed-velocity-

traction approach for exterior stokes flows. Engineering Analysis with Boundary

Elements, 29:1039-1046, 2005.

[17] G. Biros, Ying L., and D. Zorin. A fast solver for the stokes equations with distributed

forces in complex geometries. J. Comput. Phys., 193(l):3170348, 2004.

[18] Xin Wang. FastStokes: A Fast 3-D Fluid Simulation Program for Micro-Electro-

Mechanical Systems. PhD thesis, MIT, June 2002.

132

[19] J. Tausch. Sparse BEM for potential theory and Stokes flow using variable order

wavelets. Computational Mechanics, 32(4-6):312-318, 2003.

[20] Ying Lexing. An Efficient and High-Order Accurate Boundary Integral Solver for the

Stokes Equations in Three Dimensional Complex Geometries. PhD thesis, New York

University, May 2004.

[21] Dino Di Carlo, Nima Aghdam, and Luke P. Lee. Single-cell enzyme concentrations,

kinetics, and inhibition analysis using high density hydrodynamic cell isolation ar-

rays. Analytical Chemistry, 78(14):4925-4930, 2006.

[22] Dino Di Carlo, Liz Y. Wu, and Luke P. Lee. Dynamic single cell culture array. Lab

Chip, 6:1445-1449, 2006.

[23] Dino Di Carlo and Luke P. Lee. Dynamic single-cell analysis for quantitative biology.

Analytical Chemistry, 78:7918-7925, 2006.

[24] J.R. Rettig and A. Folch. Large-scale single-cell trapping and imaging using microw-

ell arrays. Analytical Chemistry, 77:5628-5634, 2005.

[25] Anil. K. Vuppu, Sanjoy K. Saha Antonio A. Garcia, Patrick E. Phelan, Mark A.

Hayes, and Ronald Calhoun. Modeling microflow and stirring around a microrotor in

creeping flow using a quasi-steady-state analysis. Lab Chip, 4:201-208, 2004.

[26] A. Beskok G. Karniadakis and N. Aluru. Microflows and Nanoflows, Fundamentals

and Simulation, volume 29 of Interdisciplinary Applied Mathematics. Springer, 2005.

[27] Russell Smith. Open dynamics engine - user guide. www.ode.org, February 2006.

[28] David Abrahams and Aleksey Gurtovoy. C+ + Template Metaprograming - Concepts,

tools and techniques from Boost and beyond. Adison-Wesley, 2005.

[29] Andrei Alexandrescu. Modern C++ Design. Adison-Wesley, 2001.

[30] Frangi A. and Tausch J. A quallocation enhanced approach for stokes flow problems

with rigid-body boundary conditions. Engrg. Analysis Boundary Elements, 29:886-

893, 2005.

133

[31] J. N. Newman. Distribution of sources and normal dipoles over a quadrilateral panel.

Journal of Engineering Mathematics, 20:113-126, 1986.

[32] Y Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solv-

ing nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Comput-

ing, 7:856-869, 1986.

[33] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of

Computational Physics, 73:325-348, 1987.

[34] Stephen D. Senturia, Narayan Aluru, and Jacob White. Simulating the behavior of

MEMS devices: Computational methods and needs. IEEE Computational Science &

Engineering, 4(l):30-43, /1997.

[35] N.R. Aluru and J. White. A fast integral equation technique for analysis of microflow

sensors based on drag force calculations. In International Conference on Modeling

and Simulation of Microsystems, Semiconductors, Sensors and Actuators, pages 283-

286, Santa Clara, April 1998.

[36] Ronald Cools. An encyclopedia of cubature formulas. Journal of Complexity,

19(3):445-453, June.

[37] J. L. Hess and A. M. 0. Smith. Calculation of potential flow about arbitrary bodies.

Progress in Aeronautical Sciences, 8:1-138, 1967.

[38] S. M. Rao, A. W. Glisson, D. R. Wilton, and B. S. Vidula. A simple numerical

solution procedure for statics problems involving arbitrary-shaped surfaces. IEEE

Transactions on Antennas and Propagation, 27:604-608, 1979.

[39] D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, 0. M. Al-Bundak, and C. M.

Butler. Potential integrals for uniform and linear source distributions on polygonal and

polyhedral domains. IEEE Transactions on Antennas and Propagation, 32:276-281,

1984.

134

[40] L. Knockaert. A general gauss theorem for evaluating singular integrals over polyhe-

dral domains. Electromagnetics, 11:269-280, 1991.

[41] Charles F. Van Loan. Computational Frameworks for the Fast Fourier Transform.

SIAM Publications, 1992.

[42] M. E. O'Neill. A slow motion of viscous liquid caused by a slowly moving solid

sphere. Mathematika, 11:67-74, 1964.

[43] Howard Brenner. The slow motion of a sphere through a viscous fluid towards a plane

surface. Chem. Engrg. Sci., 16:242-251, 1961.

[44] Ye Wenjing, Joe Kanapka, and Jacob White. A fast 3d solver for unsteady stokes flow

with applications to micro-electro-mechanical systems. In Proceedings of the Second

International Conference on Modeling and Simulation of Microsystems, pages 518-

521, San Juan, April 1999.

[45] Carlos Pinto Coelho, Luis Miguel Silveira, and Jacob K. White. A precorrected fft

algorithm for stokes flow in the presence of a substrate. (submitted to) Journal of

Microelectromechanical Systems, 2007.

[46] Hairer E., Lubich C., and Wanner W. Geometric numerical integration: structure-

preserving algorithms for ordinary differential equations. Number 31 in Springer

series in computational mathematics. Springer, 2004.

[47] C. Pozrikidis, editor. Modeling and simulation of capsules and biological cells. CRC

Mathematical Biology and Medicine Series. Chapman & Hall, 2003.

[48] David Baraff. An introduction to physically based modeling: Rigid body simulation

I - unconstrained rigid body dynamics. Online Siggraph '97 Course notes, Carnegie

Mellon University - Robotics Institute.

[49] S. A. Sheynin and A. V. Tuzikov. Explicit formulae for polyhedra moments. Patter

Recognition Letters, 22:1103-1109, 2001.

135

[50] R. Barzel and A. Barr. A modeling system based on dynamic constraints. Computer

Graphics, 22(4), August 1988.

[51] David Baraff. An introduction to physically based modeling: Rigid body simulation

II - nonpenetration. Online Siggraph '97 Course notes, Carnegie Mellon University -

Robotics Institute.

[52] Andrew Witkin. An introduction to physically based modeling: Constrained dynam-

ics. Online Siggraph '97 Course notes, Carnegie Mellon University - Robotics Insti-

tute.

[53] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

Numerical Recipes in C: The Art of Scientific Computing. Cambridge University

Press, New York, NY, USA, 1992.

[54] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3.

Proceedings of the IEEE, 93(2):216-231, 2005. special issue on "Program Genera-

tion, Optimization, and Platform Adaptation".

[55] J. Tausch and J. White. Preconditioning first and second kind integral formulations of

the capacitance problem. In Proceedings of the 1996 Copper Mountain Conference

on Iterative Methods, April 1996.

136

