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Abstract

Creating agents that behave rationally in the real-world is one goal of Artificial Intelligence.
A rational agent is one that takes, at each point in time, the optimal action such that its
expected utility is maximized. However, to determine the optimal action the agent may
need to engage in lengthy deliberations or computations. The effect of computation is
generally not explicitly considered when performing deliberations. In reality, spending too
much time in deliberation may yield high quality plans that do not satisfy the natural timing
constraints of a problem, making them effectively useless. Enforcing shortened deliberation
times may yield timely plans, but these may be of diminished utility. These two cases
suggest the possibility of optimizing an agent's deliberation process. This thesis proposes a
framework for generating metalevel controllers that select computational actions to perform
by optimally trading off their benefit against their costs.

The metalevel optimization problem is posed within a Markov Decision Process frame-
work and is solved off-line to determine a policy for carrying out computations. Once the
optimal policy is determined, it serves efficiently as an online metalevel controller that se-
lects computational actions conditioned upon the current state of computation. Solving for
the exact policy of the metalevel optimization problem becomes computationally intractable
with problem size. A learning approach that takes advantage of the problem structure is
proposed to generate approximate policies that are shown to perform relatively well in
comparison to optimal policies.

Metalevel policies are generated for two types of problem scenarios, distinguished by
the representation of the cost of computation. In the first case, the cost of computation is
explicitly defined as part of the problem description. In the second case, it is implicit in
the timing constraints of problem. Results are presented to validate the beneficial effects of
metalevel planning over traditional methods when the cost of computation has a significant
effect on the utility of a plan.
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Chapter 1

Introduction

Agents interacting in the real world are subject to limited resources. This thesis focuses on

the problem of limited computational resources which agents must use to generate a plan and

the impact of those limited computational resources on the time it takes to generate a plan.

Ideally, with unlimited computational resources, an agent would be able to instantaneously

generate the best plan at each point in time based on the most up to date state information

available. The main effect of limited computation is that it can make generating an optimal

plan a suboptimal course of action. In particular, consider, for example, a planning agent

that must generate and execute a plan under time-critical situations. Spending the required

time to compute the absolute best plan may ultimately result in reduced performance when

it comes time to execute the plan. One reason for reduced performance may be that

opportunities that were available at the start of the planning process have expired by the

time the optimal plan is available for execution. To deal with this "cost of time" problem

during plan computation, one might consider limiting the amount of computational effort

to expend prior to execution. This ad hoc approach enables plans to be executed more

rapidly, but with a lack of understanding of how the quality of such plans may suffer as a

consequence. Inherent in these two extremes, of expending much effort in computing the

best plan or expending little effort to compute an inferior plan, is the problem of optimizing

the computations taken by the planning agent to generate the best plan possible within

the computational capabilities of the agent. These plans are not optimal in the sense

of being equivalent to the absolute best plans that would be generated under unlimited

computational resources, but instead are optimal because they are the best that can be



achieved considering the costs involved in computing them.

The goal of this thesis is to develop a general framework for creating a mechanism

to optimally control the course of computation under limited rationality [43] or limited

computational resources. This mechanism, embodied as what is referred to here as the

metalevel controller, is used to select computational actions to perform. Although the

optimal metalevel controller for any particular problem domain is problem-specific, the

framework for building them is generic. The metalevel planning problem of generating a

metalevel controller is first formulated as a sequential decision making problem and modeled

as a Markov decision process (MDP). But because of the curse of dimensionality, the

model grows large very quickly making the generation of exact solutions computationally

intractable. A study of the optimal solutions generated exactly for small problems by the

MDP approach leads to the development of a heuristic learning algorithm, which takes

advantage of problem structure to reduce the search space of much larger problems and

serves as the main framework for generating metalevel controllers. The result of applying

this framework for a specific planning domain yields an optimal metalevel controller that

allows the agent to achieve bounded optimality [40]. Simply stated, a bounded optimal agent

performs as well as possible in a given problem domain with its computational resources.

1.1 The Basic Problem

This section describes the basic metalevel planning problem that is addressed in this thesis.

1.1.1 Example Problem

A representative example that motivates the need for an optimal metalevel controller is

time-critical targeting, wherein missions must be generated for aircraft to strike possibly

mobile targets distributed over some geographic region. Each struck target yields some

amount of value toward achieving battlefield objectives. Assume that each target is known

to have a window of opportunity specifying the time interval over which it can be visited.

Aircraft arriving prior to the time window must wait for the target to appear, and arriving

past the time window results in zero value. The objective of the problem is to determine

missions for a set of aircraft resources to execute such that the total target value collected

is maximized. Under these circumstances it is often undesirable to compute the absolute
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Figure 1-1: A time-critical targeting problem where missions must be generated for
aircraft to prosecute targets that appear within a limited time window. In such a
situation, it is imperative to account for how the time taken to compute a plan will
affect the value of the final mission. Each of the four missions is distinguished by a
different line style, where the targets are shown as dots.

best solution. Due to the sheer amount of time required to do so, the resulting set of

missions may not be successfully executed because targets appearing in these missions may

have expired. On the other hand, using rules of thumb to generate missions may yield fast

response times, but may not make full use of the planning agent's computational potential.

Because the agent is limited in its computation power, computations require time to be

completed. It is therefore important to make optimal use of the computational actions the

agent takes when there is a cost, either implicit of explicit, of time. Intuitively, this is

accomplished by weighing the utility gained from computational actions against the cost of

taking them.

Figure 1-1 depicts the time-critical targeting problem for four aircraft stationed at a

single base location. In the figure, a set of missions has been determined, where each

aircraft is shown to be carrying out its assigned mission, indicated by the line segments.

Each mission starts at the base and includes the set of targets to be visited by each aircraft

and the order in which to visit them, indicated in the figure by dots. A mission concludes

when the aircraft returns to the base. Line segments for individual missions in the figure

are shown to crisscross to notionally indicate that windows of opportunity (not shown in

figure) for targets may induce additional complexity in the problem.



Figure 1-2: A variety of approaches for addressing the problem of limited rationality.

The time-critical targeting problem shares many properties with the problem domains

considered in this thesis and will be used in this chapter to illustrate some salient points of

the problems addressed and the approaches taken to address them.

1.2 General Approaches to Metalevel Planning

This section serves to establish how the work in this thesis fits into the field of established

research in limited rationality or limited computational resources, to describe a representa-

tive set of metalevel problem formulations, and to discuss how they relate to one another

and to the work in found in this thesis.

Figure 1-2 presents various algorithmic approaches that have been developed to deal

with systems under limited rationality. There are two main axes of division which dis-

tinguish these approaches. These distinctions are based upon the type of control actions

available at the metalevel and are labeled "Control of Computation Time" and "Control of

Computational Actions" in Figure 1-2.

The baseline case of "Traditional Computation" is shown at the bottom left of the figure.

The Traditional Computation category does not represent an approach to limited rationality,

but is included to capture the traditional notion of rational agents. Agents falling in this

category do eventually calculate the optimal solution to a problem. In a timeless world this

would be ideal, however in the real world the optimal solution may turn out to have no



operational significance during execution. Since they do not explicitly consider the effects

of deliberation (e.g., the time and associated costs of performing calculations), Traditional

Computation is inappropriate for acting in time-critical situations. For example, solving

the time-critical targeting problem to optimality is combinatorially difficult and unlikely to

yield useful real-world plans as discussed earlier.

Moving along the x-axis of Figure 1-2 leads to the category labeled "Anytime Algo-

rithms" ([24], [51]).

DEFINITION: anytime algorithm: an algorithm that generates a series of

successive solutions of increasing quality as a function of planning time, so that

a reasonable decision is ready whenever it is interrupted.

The sole job of the metalevel controller for anytime algorithms is to decide how long

to run the anytime algorithm. There is typically an optimal stopping time where more

planning leads to a worse overall performance because the cost of additional planning time

outweighs it benefits. The use of anytime algorithms for metalevel planning assumes that

the plan performance is monotonically non-decreasing with planning time (i.e. the solutions

produced by the anytime algorithm do not get worse with time). This property can be

satisfied in most cases by storing the current best plan, only replacing it when a better

one is found. The problem in combining generic anytime algorithms with metaplanning

problems with hard temporal constraints is that the guarantee of monotonicity may be

difficult to maintain. When temporal constraints are violated by the planning process

itself, the quality of the current best plan may decrease.

Along the y-axis of Figure 1-2, the control parameter is "what to compute" instead of

"how long to compute". This offers an additional degree of control in comparison to anytime

algorithms. Rather than treating the algorithm as a black box, the metalevel controller is

allowed to dictate which computations to make. The oval labeled "Optimal Satisficing" is

the most basic category for the control of computational actions.

DEFINITION: optimal satisficing problem: a problem whose objective is to

minimize the cost of generating a feasible solution.

Optimal satisficing may sound like an oxymoron, but it is not since the optimization is

solely concerned with minimizing the computational effort involved in finding a satisficing



solution [44]. For the time-critical targeting problem, optimal satisficing may find a feasible

solution quickly, but its quality might be very low.

Moving along the x-axis leads to approaches that attempt to generate individual compu-

tational actions to "optimize" rather than satisfice ([17], [18], [42]). For optimal satisficing,

all feasible solutions are assumed to have equal utility, and the only concern is to minimize

the effort of finding one of them. Recognizing that not all solutions are of the same quality

or utility, the approaches labeled "Optimal Sequencing" balances the utility of computation

against its cost. The objective function for these approaches accounts for both the utility

of the base-level solution and the cost it took to compute it.

There are two sub-categories that fit into this group. The first sub-category ([17],

[18]) consists of approaches, that seek to optimally sequence a fixed set of methods, or

complete decision procedures, each with a probability of success for solving the problem,

an expected utility and an expected running time. For the time-critical targeting problem,

this approach might correspond to having various methods for solving the problem. For

instance, a heuristic search method may be the fastest algorithm but may seldom yield

solutions of high quality. On the other hand, exhaustive enumeration is guaranteed to yield

high quality solutions, but may take a long time to terminate. The metalevel planning

problem for this case is to optimally sequence the order of running each of these methods

that is appropriate for the degree of time-criticality.

DEFINITION: complete decision procedure: a sequence of computations that

completely solves the base-level planning problem.

The second sub-category consists of heuristic search control approaches [42]. The met-

alevel controller for these approaches is to control the search effort. This is accomplished by

using heuristics both to determine the planning time and the computational actions to take.

Since they are, by definition heuristics, these methods are unable to guarantee the optimal

use of computational resources. They also rely on some amount of metalevel computation

during run-time in order to estimate the utility of additional computation, continuing when

it is non-negative and stopping otherwise.

The work in this thesis falls to the right of these approaches in the category of "Bounded

Optimal Algorithms" and focuses on generating "algorithms" or programs to optimally

govern the computational behavior of an agent. Like the optimal sequencing approaches,



these algorithms also control discrete computational actions. Rather than having to perform

a heuristic search for each problem instance encountered, as above, a closed-loop controller

is trained to determine the computational actions to take over all problem instances, given

feedback from prior computations.

The work of this thesis aims to generate metalevel controllers that allow the agent to

behave optimally given its computational resource constraints. Optimal agent behavior

consists of achieving the best average-case performance among all possible agent designs

that have the same computational resource constraints acting over the same set of problem

distributions. That is, there may be other metalevel control designs that perform better on

particular problem instances, but as a whole perform worse on average than the optimal

design.

For the time-critical targeting problem, the optimal metalevel controller would select

the highest utility sub-problem (accounting for the expected utility of future computations)

to solve, solve it, and, based on the outcome of the solution, appropriately select the next

sub-problem to solve. At some point, the utility of solving sub-problems will be outweighed

by its cost, in which case, the optimal metalevel controller will signal that the current best

plan be executed.

1.3 Thesis Statement

The general problem of solving for exact bounded optimal controllers is, in general, com-

putationally intractable due to the combinatorial explosion from the exponential number

of possible computation sequences that exist. This thesis proposes that many problem do-

mains exhibit some form of problem structure that can be exploited, so that a metalevel

policy can be learned rather than solved exactly. It will be shown that exploiting problem

structure to learn the metalevel policy, rather than solving for it exactly, can prune a vast

amount the search space. The result is that, by solving a significantly smaller optimization

problem, performance gains similar to that generated by the exact metalevel policy can be

achieved.



1.3.1 Thesis Contributions

The first contribution of this thesis is a specific model of the metalevel planning problem

as an MDP for generating bounded optimal controllers. The resulting metalevel controllers

use feedback from prior computations to select among atomic computational actions. This

form of metalevel control is a generalization of previous work, which assumes that there is

an a priori set of complete decision procedures from which to choose. Using the framework

to create a metalevel controller is equivalent to constructing the best possible complete

decision procedure. This obviates the need to have a predefined, and potentially limiting,

set of decision procedures. One limitation of this framework is that it relies heavily on

the assumption of the availability of a good a priori problem decomposition. That is,

the policies that are generated are the best that can be constructed using the given set of

computational actions (sub-problems). The issue of problem decomposition is an important

one, but is not specifically addressed in this thesis and assumed to be provided externally.

Another drawback of using this exact MDP framework is that it does not scale well to larger

problems.

The specific MDP formulation of the metalevel planning problem, lends itself to a learn-

ing approach for generating metalevel control policies. The second contribution is a heuris-

tic learning algorithm called Decision Tree Metaplanning (DTMP) for generating metalevel

controllers based on decision tree learning and approximate MDP approaches. DTMP re-

duces the size of the relevant metalevel state space by learning to identify the important

aspects of the problem. This thereby reduces the size of the optimization problem that

must be solved to generate metalevel controllers for approximating bounded optimality.

This heuristic algorithm addresses the scaling problem and allows for metalevel controllers

to be generated for problems that are much larger than an exact approach can realistically

handle. It sacrifices optimality, but still yields good performance.

Experimental results are generated for both the exact and heuristic approaches to

demonstrate that the metalevel controllers generated are better than that of simple open-

loop complete decision procedures as well as that of metalevel planning using anytime

algorithms. In particular, it is also shown, that DTMP generated metalevel controllers

perform comparably with the exact MDP policies.

Although a majority of this thesis is devoted to generating metalevel controllers for



the case where the costs of computation and value of sub-problems are explicitly known

and stationary. The final result of this thesis is to show that the DTMP algorithm, with

some modifications, also yields good results in the more difficult case where the costs and

sub-problem rewards are non-stationary. It will be shown that the DTMP algorithm can

be adapted to handle non-stationary costs due to hard temporal constraints with little

additional computational overhead.

1.4 Thesis Approach

The approach taken in this thesis, for generating optimal metalevel controllers, is to solve

a metalevel planning problem, a large-scale optimization problem, off-line. This metalevel

planning problem is modeled as a sequential decision making problem [32], where the deci-

sion being made at each point in time is which sub-problem to solve and whether to execute

the current best plan. The sequential decision making problem can be formulated as a

Markov Decision Process (MDP) [32] and solved, to produce a policy. The policy serves

directly as the agent's metalevel controller. A policy is also known as a universal plan

[32], which conditionally dictates the next action to take based on the current state. In

the metalevel planning problem, the state represents the current condition of computation.

The policy (metalevel controller) dictates the next sub-problem to solve given the current

state of computation in the form of a learned lookup table, allowing for an efficient online

implementation of the metalevel controller.

The advantage of this approach is that a metalevel planning problem does not need to

be solved during run-time when the agent is acting in the environment. Computing the

optimal metalevel controller is a difficult optimization problem that, in general, surpasses

the difficulty of solving the base-level planning problem. By solving for a policy off-line, the

agent need not perform additional computations online with the exception of negligible table

lookups to determine the next sub-problem to solve. Another advantage of this approach

is the availability of well-established and efficient methods for generating optimal policies.

Although the planning problems considered in this thesis have a finite number of metalevel

policies, brute-force enumeration is computationally intractable. Last of all, this approach

allows the generation of provably optimal metalevel policies that guarantee that the agent

is making the best use of its computational resources.



The MDP approach taken in this thesis for generating bounded optimal algorithms

achieves what heuristic search control approaches attempt to achieve, which is to optimally

select computational actions. This approach can also be modified to accommodate optimal

satisficing as well. The advantage that it has over selecting from a fixed set of complete

decision procedures is that it actually constructs the optimal complete decision procedure

from atomic computational actions, rather than having to rely on the designer to provide

a good set of starting decision procedures. This is similar to the advantage of having raw

materials (atomic computational actions) to construct a building rather than prefabricated

parts (complete decision procedures). Using raw materials allows for additional flexibility

since they can be shaped and combined in a variety of ways to appropriately accommodate

a wide range of designs that may not otherwise be crafted using prefabricated parts.

The same can be said when this approach is thought of in the context of anytime

algorithms. While there may be many anytime algorithms appropriate for a given problem,

the metalevel planning problem to be solved assumes that the anytime algorithm is given

a priori. The metalevel controllers generated in this thesis do not possess the anytime

property, but can be thought of as selecting the best possible anytime algorithm for the

job along with an appropriate optimal stopping time. Although not explored in this thesis,

there is the possibility to modify the framework to produce anytime metalevel controllers.

One of the main limitations faced by this approach is that MDPs suffer from the curse

of dimensionality [5], which is the problem of exponential state space explosion. This

prevents the exact approach, as described above, from being scaled to larger more realistic

problems. Careful examination of the optimal policies generated by the exact approach

leads to the development of a heuristic learning approach based on decision trees. The

central idea behind the heuristic approach is that the exact MDP model can be compactly

represented by inducing a conditional ordering constraint on solving sub-problems. By doing

so, the metalevel planning problem becomes much simpler to solve for two reasons. The

first reason is that the state space of the metalevel MDP is reduced by eliminating many

of the possible orderings over sequences of sub-problems. The second reason is that the

action space of the MDP, which originally consisted of selecting among all sub-problems, is

reduced to two actions, either to plan an additional sub-problem in the order suggested by

the induced ordering or to stop and execute the current best plan. It will be shown that this

conditional ordering can be represented as a tree and that the trees are in fact isomorphic to
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Figure 1-3: Closed-loop metalevel control of a decomposed base-level planning prob-
lem.

metalevel policies. In many instances, the performance of the metalevel policies generated

heuristically are comparable to solving the original metalevel MDP. By generating these

policy trees directly, metalevel planning policies can be generated efficiently to approximate

bounded optimality.

1.4.1 Solution Architecture

This thesis aims to solve the problem of generating metalevel controllers to optimally control

the computational actions of an agent. In order to formally specify the solution, it is

necessary to identify: (1) what constitutes a computational action, and (2) the measures by

which to determine they are being controlled optimally. The former question is answered

in this subsection, while the latter is addressed superficially here, but in more depth in

Chapters 2 and 3.

An agent's computational capability is measured in this thesis by the speed at which

it can carry out its computational actions. An important factor to consider in generating

metalevel controllers is how computational actions are defined, since they constitute the

set of possible control actions. In this thesis, the computational actions considered for

control do not extend down to the level of detail of individual cpu instructions, but rather

at a higher level of abstraction. In fact, the metalevel controllers are designed here with

a specific class of planning problems in mind. That is the class of problems that can be



hierarchically decomposed into a two level hierarchy. This class of problems naturally yields

a set of computational actions for metalevel control, because solving sub-problems at the

lower level can be interpreted as the set of possible computational actions that can be taken.

Figure 1-3 illustrates the general properties of the types of planning problems considered in

this thesis.

As stated above, foremost of these properties is that the planning problem be hier-

archically decomposable into a two level architecture consisting of a master level and a

sub-problem level. Hierarchical decomposition is a typical method for addressing problem

complexity [33]. The sub-problem level consists of a (possibly large) set of small planning

problems representing aspects of the original base-level problem'. Solving these smaller

sub-problems yields plan fragments. These plan fragments are optimally combined by the

master level to produce a complete solution to the original base-level planning problem.

Figure 1-3 shows a hierarchical decomposition of a base-level planning problem into

master and sub-problem levels. The quality of the final solution produced by the master

level depends entirely on the available pool of plan fragments generated by the sub-problem

level. Ideally, when every sub-problem is solved optimally, the master level has access to

the full pool of plan fragments and can combine them to produce the same optimal solution

had the problem not been decomposed.

For instance, the base-level planning problem in the case of the time-critical targeting

problem of Figure 1-1 is to generate a plan to maximize the total target value achieved

over all executed missions. This problem might be hierarchically decomposed into a master

and sub-problem level by defining a sub-problem to be an individual aircraft mission. An

individual mission might be defined as determining a plan for sending a particular aircraft

after a particular subset of targets. The set of all missions is the set of all possible com-

binations that can be generated with a given set of targets and aircraft resources. After

all possible missions have been generated, the master level performs the role of a mission

selector and selects, among all missions, the best combination to produce the complete final

plan for execution. Solving a single sub-problem may take a small amount of computation

time. However, assuming that sub-problems are solved sequentially (no parallel computa-

tion), solving every single one may result in a significant amount of computation time and

'The base-level planning problem is the actual real-world problem to be solved and is distin-
guished from the metalevel planning problem to be discussed later.



causes delays in plan execution. Indeed, in problems with hard temporal constraints, it

becomes quite impractical to solve all sub-problems. That is, it can become infeasible to

meet some time constraints if too much time is spent computing a solution. Instead, the

agent must be smart about which sub-problems it chooses to solve. The role of selecting

which sub-problems to solve is filled by the metalevel controller.

DEFINITION: computational action: a single computational action in this

thesis is defined as solving a single sub-problem within a problem decomposi-

tion.

At this point it should be clear that problems that are hierarchically decomposable

motivates the definition of computational actions as the solution of sub-problems. The

control of computation for the class of problems considered is equivalent to the control of

which sub-problems to solve. The metalevel controller serves both to direct computational

actions (i.e., determine which sub-problems to solve), and eventually to determine when

to act (i.e., when to execute the current best plan). The metalevel controller is shown in

Figure 1-3 and interacts with base-level problem solving in the form of a feedback loop. The

metalevel controller receives, as input, the current state of computation (e.g., the results

of sub-problems solved thus far), and in turn produces a metalevel control command that

either dictates that another sub-problem be solved (as well as which one), or that the current

best plan be executed.

1.4.2 Learning the Metalevel Controller

Metalevel controllers in this thesis are generated as a result of learning. In particular,

metalevel controllers learn to optimize their control schemes given information about the

expected set of problems instances that must be faced by the agent, as well as the agent's

computational ability. Learning occurs through observing the interactions between the

agent's master and sub-problem level and the utility of the plans that result from these

interactions. What must be learned from these observations is the distribution of run-

times and the distribution of outcomes for solving individual sub-problems. In addition,

the way the master level selects from the set of sub-problem outcomes to generate plans

must also be learned. Combining this knowledge together with observing the utilities of

the resulting plans allows the metalevel controller to learn to sequentially select the most



appropriate sub-problem to solve. In addition, learning may result in discovering that sub-

problem outcomes might be coupled in some fashion, where the solution to one may yield

information as to whether another should be computed. The advantage of the closed-loop

nature of the metalevel controller allows for it to condition its next computational action

on the most recent sub-problem outcomes, yielding a tightly controlled system.

As an example of the learning involved in metalevel control, consider once again the

time-critical targeting problem of Figure 1-1. The metalevel controller is trained through

observing the solution of many problem instances. It must pay attention to the computation

times (i.e., the time needed to generate missions), which vary across problem instances.

It must also learn how the outcomes that result from generating individual missions vary

depending on problem instance. In addition, the way in which missions can interact with one

another must also be learned. For instance, successfully generating a high quality mission

that uses many aircraft resources may obviate the need to generate other missions that

use the same set of resources but are known to be of lower quality. When this situation is

encountered in real-time, a metalevel controller which has learned this concept can dispense

with computing those lower quality missions. The learning algorithms in this thesis take

into account each of these elements to create high quality metalevel controllers.

The goal of learning is to generate a metalevel controller which optimizes an agent's

average performance over the distribution of problem instances it is expected to face within

a particular problem domain. An agent is said to be bounded optimal when it acts in a way

that achieves the highest expected utility over a set of problem instances when compared

against all other agents with the same set of computational restrictions.

The ideal class of applications for the learned metalevel controllers developed in this

thesis would be in episodic planning problems, where variations in the problem instances

across planning episodes prevent the use of pre-planned sub-problems. Indeed, if there were

no variation in the planning problem, the agent need only solve the problem once and use

the same solution forever. Instead, it is assumed that the agent must face similar situations

on a periodic basis where there is enough variability so that sub-problem solutions cannot

be exhaustively stored. In these situations, sub-problems must be solved at run-time. The

time-critical targeting problem satisfies these conditions, since missions might need to be

planned daily or hourly to prosecute targets that may be randomly dispersed over the same

geographical region. Each of these problem variations constitutes a problem instance and



will have slight variations that will require missions to be solved and combined in real-time.

1.5 Thesis Outline

This section presents a layout for the remainder of this thesis. Chapter 2 presents related

work in the literature of bounded optimality. Chapter 3 introduces an MDP formulation

of the metalevel planning problem. Some of the issues encountered in the exact MDP im-

plementations of metalevel planning problems are also presented, along with a discussion

of ways to alleviate them. Chapter 4 describes the Decision Tree Metaplanning (DTMP)

approximation scheme which involves the use of decision trees to solve the metaplanning

problem in lieu of the exact MDP approach. The theoretical properties of this approach

are analyzed. Chapter 5 presents and analyzes the experiments for both the exact MDP

formulation and DTMP for a variety of problem domains. Chapter 6 discusses how DTMP

might be adapted to deal with time-critical targeting problems with hard temporal con-

straints, given by time windows on the targets, which differs significantly from the other

problems discussed in this thesis. Experimental results are also presented for this problem.

Chapter 7 concludes this thesis and provides a discussion for the possible extensions of this

work towards a more complete framework for bounded optimality.
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Chapter 2

Related Work

The work in this thesis draws from many interrelated branches of research in the Artificial

Intelligence (AI) community. This chapter provides the context necessary to understand

the significance of the problem formulated in this thesis, as well as to highlight the main

differences between the approaches taken here and those of previously established work in

the field of metalevel planning. Section 2.1 motivates the need for an alternative way for

judging rational behavior under the conditions of limited computational resources and in-

troduces the notion of Bounded Optimality. The exact metalevel controllers developed in

this thesis are generated explicitly to satisfy the requirements of Bounded Optimal agent

behavior. The key areas of influence on this thesis, the value of information and metarea-

soning, are introduced in Sections 2.2 and 2.3 to provide necessary background information.

Section 2.4 discusses how the metalevel controllers generated by the framework proposed in

this thesis compare to the previous work in metalevel planning.

2.1 Categories of Rationality

Perfect rationality as defined by decision theory, developed by von Neumann and Mor-

genstern [50], has been recognized as a reasonable goal of agent design. Decision theory

combines probability theory and the axioms of utility to help people take actions under

uncertainty. According to decision theory, perfectly rational behavior is defined as acting

in such a way as to maximize one's own expected utility.

DEFINITION: utility function: a mapping of a state to a real number, which



represents a measure of usefulness for being in the state.

For instance, taking an action in gambling, such as placing a particular bet, may yield

uncertain results. The uncertainties are represented by a probability distribution over pos-

sible state outcomes. The possible outcomes in this case are that the bet is won or it is

lost. Each of these states will have a corresponding utility value. In this case, the utility

may simply be +X/-X dollars for having won/lost. The expected utility for the bet is the

average of the utility values over all outcomes. In this case, the expected utility is given by

E[Ub] = PwX - pLX,

where E[U] is the expected utility of the bet, b, and Pw and PL are the probabilities of

winning and losing. Supposing that there are several bets to choose among, a perfectly

rational agent will always choose the one which maximizes expected utility. The maximum

expected utility, MEU, over the set of all bets, B, is given by

MEU = max E[U].
bELB

However, as shown in the literature, perfect rationality is an unreasonable benchmark for

real-world agent design when the decision maker is subject to limitations on computation

([15], [24], [42], [43], [51]). This is because decisions are ultimately determined through per-

forming computations. Computations take time to complete. Under real-world conditions,

time does not stand still, resulting in natural constraints on the agent. These, in turn,

may force it to curtail its computations in order to take action in a timely manner, thereby

preventing the agent from computing and taking the same action under the conditions of

perfect rationality. Even in this simple betting example, it is necessary to spend some

amount of time in deliberation to determine which bet has the maximum expected utility.

In the real-world, there may be time pressure for placing bets, preventing the agent from

having enough time to evaluate each one before selecting one. Under these circumstances,

expecting the agent to achieve perfect rationality (i.e., always selecting the bet with highest

expected utility) is unrealistic. If perfect rationality is an inappropriate measure for de-

scribing rational decision making under limited computational resources, what alternatives

are available? Russell and Subramanian [40] present a categorization of the various forms



of rational behavior and conclude, as does this thesis, that Bounded Optimality is the most

appealing alternative. Their categories of rationality include:

" Perfect rationality refers to the classical notion of rationality in economics and

philosophy [50], where the action with maximum expected utility is always taken.

The mechanism (computations) by which the best action is determined is not con-

sidered. Russell and Subramanian argue that this is not a realistic goal in the design

of situated agents since acting optimally requires computation, which takes time, ul-

timately affecting the utility of the action. Perfect rationality, as defined, requires

instantaneous decision making so that the best action is always available to the agent.

" Calculative rationality refers to the ability of an agent to "eventually" compute the

optimal action to what would have been the perfectly rational choice at the beginning

of its deliberation. This type of rationality explicitly relaxes the effect of time on the

utility of a decision. Consider the domain of tournament chess where players have a

limited time to make a move. A chess program that is able to eventually evaluate

and make the optimal move exhibits calculative rationality since it is able determine

the best action for the initial situation. However, in order to do so, it may take a

very long time. The effect is that the calculated "best action", is no longer best when

the move is finally determined due the passage of time (e.g., the per move time limit

is violated). A large number of traditional algorithms, aimed at generating optimal

solutions regardless of the amount of time it takes, fall in this category. Again, this

definition is generally inappropriate for systems with limited computational resources

that must act in real-time situations that demand timely responses.

" Metalevel rationality is a direct response to the problems of calculative rationality.

Since the best decision is a result of performing computation, metalevel rationality

refers to the ability of the agent to perform "exactly" the "right" computations to

arrive at the best solution, while accounting for the cost of taking those computations.

Optimality under metalevel rationality is a function of both the utility of the final

decision and the cost of performing the computational actions to generate the final

decision. It has been argued that full metalevel rationality is difficult to achieve since

metalevel computations needed to determine the best sequence of computations also

take time. However, approximations to metalevel rationality can be useful and a large



body of work has been devoted to the subject.

* Bounded optimality focuses on an agent performing as well as possible given its

computational resources on an expected set of problems. Bounded optimality refers

to the optimality of "programs" implemented to control the agent's computations and

actions rather than on the actions or computations themselves. This notion is different

from that of generating optimal actions, as defined by perfect rationality, or optimal

computation sequences, as defined by metalevel rationality. Since agent programs

create computation sequences, which ultimately determine the actions performed by

the agent, they should be the focus of optimization. Bounded optimality refers to

the optimality of an agent's expected performance. That is, a bounded optimal agent

program performs, on average for a given distribution of problems, better than all

other agents with the same computational resources on the same set of problems. For

this reason, bounded optimality relies on having prior experiences (real or simulated)

with the problem domain. This prior experience allows the agent to judge the utility

of computational actions for the problem domain. Similar definitions of bounded

optimality have been reached by others ([91, [24], [29], [51]). The metalevel controllers

developed in this thesis are instances of bounded optimal agent programs.

To summarize, perfect rationality, calculative rationality and metalevel rationality are

unrealistic goals for evaluating the quality of real-time agent design. Bounded optimality

offers the most reasonable alternative. Perfect rationality for the betting problem implies

that the agent can always miraculously place the best bet. Calculative rationality is achieved

so long as the agent can guarantee that its computations will eventually lead to the same

bet as that placed by the perfectly rational agent, regardless of how long it takes. Metalevel

rationality is a statement about optimal computation sequences. While the definition of

perfect rationality only defines an agent's selected action, a metalevel rational agent must

optimize the sequence of computations it performs in order to select the best action. Due

to time pressure, the best bet selected by a metalevel rational agent may not be the same

as that of the perfectly rational agent.

For the sake of illustration, suppose that time pressure takes the form of a deadline

and the agent is not allowed to place a bet unless the expected utility of the bet has been

computed. An agent is said to be metalevel rational only if, among the entire set of bets



whose expected utilities can be computed prior to the deadline, it chooses to compute the

expected utility of the bet with the highest expected utility. This is clearly an unrealistic

criterion for agent design.

Bounded optimality is achievable because it is a statement about the expected perfor-

mance of an agent over a distribution of problems, which can be written as a constrained

optimization problem. Unlike the ill-posed notion of metalevel rationality, which forces the

agent to perform the perfect sequence of computations, this definition allows for the agent

to make "mistakes". A bounded optimal agent may not perform well when judged on the

basis of a single problem instance, but its expected performance, averaged over problem

instances, is the best that can be achieved by all agents with the same set of computational

resources, all else being equal.

This is a realistic optimization problem that can be framed and solved. For the betting

problem. a bounded optimal agent, might have estimates, based on previous betting expe-

riences, of the expected utility of each bet. Notionally, a bounded optimal agent program

might proceed in a round of betting by computing the actual expected utility of each bet in

the order of highest estimated utility (based on past experience) first. Computation would

continue until the deadline and the agent would place the bet calculated to have maximal

expected utility. The bounded optimality of such a program could be verified by compar-

ing its expected performance to all possible programs with the same set of computational

resources

Developing a framework for guaranteed bounded optimal agent design is a goal of this

thesis. Although sensible, bounded optimality can be computationally difficult to achieve.

2.2 Value of Information

The concept of value of information pervades this work. Value of information reflects the

utility of obtaining an additional piece of information, where the utility is ultimately de-

termined by how the information affects the final decision. Of real interest to this thesis

'Again, this thesis does not aim to maximize an agent's use of computational resources at the
level of cpu commands. Indeed there are many unstated assumptions about computer architectures,
programming languages and problem decompositions that are in the metalevel design problem.
Instead these are abstracted away, and assumed to be the same for all agents. This leaves the
definition of a bounded optimal agent as one which outperforms in expectation all other agents that
have access to the same set of computational actions, all else being equal.



is the value of computation, which differs in a slight but important manner from the value

of information. Namely, the value of information is never negative (colloquially known

as "information never hurts"), while the value of computation can be, since resources are

expended during computation. Part of the solution to the Markov decision process formula-

tion of the metalevel problem found in Chapter 3 is to determine the value of computation

for individual sub-problems. Understanding the approaches taken in determining the value

of information can help in developing approaches for determining the value of computation.

Before introducing the formal definitions of the value of information, a discussion of how it

arises is presented.

Many approaches to metalevel planning can be viewed in terms of applying decision-

theoretic approaches at the metalevel ([10], [42], [51]).

DEFINITION: decision theory: a basis for making rational decisions formal-

ized by the combination of probability and utility theory [39] (pgs. 465-466).

The metalevel decision problem is expressed in this thesis as a problem of planning under

uncertainty, where probability theory is used to quantify this uncertainty. In addition, utility

theory is used to quantify the agent's preferences over planning outcomes. Together they

can be used to help the agent make decisions that maximize its expected utility, which is the

utility averaged over all of the possible outcomes of the decision. The metalevel controller

in this thesis is designed using decision-theory to maximize the agent's expected utility for

solving sub-problems by enabling the weighing of the consequences of taking computational

actions. An example of the application of decision theory at the metalevel is to consider

the utility of running an anytime algorithm for an additional time step versus executing the

current plan.

Howard's seminal paper [26] in 1966 on applying decision theory to analyze the value

of information for a bidding problem, is summarized here. The value of information can be

described in terms of expected utility in the following manner. Suppose that the current

best decision is labeled a and E is the background information, used to encapsulate the

current state of knowledge of the agent. The expected utility of performing action a is

the average over the outcomes resulting from this action given the background information.

This can be expressed as

EU(a E) = p(ola, E)U(o), (2.1)
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where 0,, is the set of possible outcomes for action a, U(o) is the utility assigned to outcome

o, p(ola, e) is the probability of outcome o occurring given that decision a is made with

information e, and EU(ae) is the expected utility of making decision a based on information

e. Suppose that an additional piece of information ej is available, such that the expected

utility of the decision given this new information is expressed as

EU(ae,|e, ej) = E p(olae, e, ej)U(o), (2.2)
oEOa.

where the set O, represents the outcomes that can result from the new action ae,, which

is potentially a revised action in light of the new information, and p(ola,,, e, ej) is the prob-

ability of outcome o occurring given decision ae, and the new information. The expected

value of information (EVOI) is the difference in the expected utilities of the decisions and

is expressed as

EVOI(e,) = EU(a je, ej) - EU(ale). (2.3)

Note that the expected value of information EVOI is always non-negative. If the informa-

tion is beneficial, it will result in a higher utility decision, thereby making the EVOI(e3 )

positive. If the information is not beneficial, then the final decision will remain the same

as that without the information, and EVOI(ej) is zero. As described above, the value of

information corresponds to the case where the information provided is perfect. However, in

the case where the information is provided indirectly, perhaps through some measurement.

In this case, the information may contain errors, and the determination of the value of

information will need to explicitly account for the probability of false measurements.

Having knowledge of the value of information (VOI) would allow for the trivial determi-

nation of the next action to take (either solve another sub-problem or execute the current

best plan). Russell and Wefald [41] discuss an ideal metalevel control algorithm for decision

making as simply:

1. Keep performing the available computation with highest expected net utility, until

none have positive expected net utility.

2. Commit to the action a that is preferred according to the internal state resulting

form step 1.



However, the determination of the VOI can become intractable in the face of real-world

problems [21]. Many heuristic approaches have been used in the estimation of the VOI,

where a typical assumption is that only one additional observation/computation/test will

be performed. That is, the agent is given one chance to gather additional information prior

to making its final decision. This is referred to as a myopic analysis, in that it may require

a sequence of observations/computations/tests rather than a single one to result in a net

positive utility. A myopic analysis will not be able to identify such a situation and could

lead to sub-optimal decisions.

Heckerman et al. [21] discuss an approximate nonmyopic computation for determining

the value of information by exploiting the statistical properties of large samples. The work

presented in this thesis also attempts to determine the value of computation in a nonmyopic

fashion. Heckerman's analysis of the problem involves determining the probability of a set of

mutually exclusive and exhaustive hypotheses based on collected evidence, in order to apply

the correct decision procedure. These hypotheses could represent illnesses that a patient

might have. This approach relies on the simplifying assumptions that there are binary

hypotheses (e.g., illness 1 or illness 2), binary decision procedures (e.g., treatment 1 or

treatment 2) and binary and conditionally independent evidence variables (e.g. independent

test results). Finally there is a utility value associated with each hypothesis-decision pair.

Taking an observation incurs a fixed cost. The example problems explored in this thesis

violate each of these assumptions, and thus this approach may not be readily applied. Most

notably, the authors claim that it is difficult to generalize the analysis to a multiple-valued

hypothesis, which the planning domains considered in this thesis possess.

The next section presents a discussion of various metalevel planning approaches which

rely on the concept of the value of computation.

2.3 Metaplanning

Metaplanning can be a catch-all term for evaluating one's own reasoning processes [42].

Research in this area surfaced as a result of realizing that the theory of rationality and

rational behavior as classically presented was an inappropriate measure for agents with

limited computational resources. To that end, there was a surge of research in the late 1980s

through the early 1990s which attempted to tackle many of the fundamental questions of



metaplanning. Among the first to question the validity of the role of the classical rationality

in decision making was Herbert Simon [43], starting in the 1950s.

In surveying the metaplanning literature, one major distinction that can be made, to

distinguish the many different metaplanning problem formulations from one another, is

the nature of the metalevel actions available to the agent. On one side, computational

actions are modeled as discrete actions which consist of either atomic computations or the

computation of complete decision procedures. On the other, the computational actions

are considered to be continuous, and the metalevel controller is responsible for scheduling

computation time for these continuous procedures. Different solution methods follow from

the various modeling approaches. The work in this thesis more closely resembles the former

treatment, where the computations are considered as discrete computational steps.

2.3.1 Discrete Control of Computation

The treatment of computation as discrete operations is a natural representation for the

types of actions performed by digital computers. However, discrete metalevel control does

not refer to manipulating the operations performed at the computer processor level, but

at a slightly higher level of abstraction. A metalevel control action manipulates a basic

computational step as defined by the scope of the metalevel problem being solved.

2.3.1.1 Optimal Satisficing

One approach to dealing with the problem of limited rationality is to satisfice rather than

optimize, where the main premise is that satisficing will result in a solution more quickly

than optimizing. One of the earliest works in minimizing search effort for satisficing was

by Simon and Kadane in 1975. Though not specifically presented in the terminology of

metalevel control, their work nevertheless exhibits concepts related to such an application.

Simon and Kadane [44] present the notion of optimal satisficing search2 where the aim is

to reach any of the set of designated goal states with minimal search effort, as opposed to

best-value search (an example of calculative rationality), which searches for the solution

with the highest value.

2The term optimal satisficing may at first appear to be an oxymoron. In this case the modifier
"optimal" is in reference to minimizing cost involved in finding a satisficing solution as opposed
to maximizing the value of the final solution.



The basic problem is presented in the context of hunting for buried treasure, where an

unknown number of treasure chests have been buried at n sites. Given are the probabilities

of treasure being located at each site, pi, i E 1...n, the cost of excavating site i, q(i), along

with the condition that the hunt is terminated as soon as a treasure is uncovered. This

is entirely isomorphic to a goal-directed problem where there are multiple algorithms or

decision procedures (e.g., digging) that can be applied to solve the base-level planning

problem. Each decision procedure has an a priori probability of success, such that each

call to an algorithm results in the agent incurring a known cost of computation. Simon

and Kadane arrive at the solution through an interchange argument [5] (pg. 182) which

yields necessary and sufficient conditions for optimality in terms of minimal effort search.

The optimal policy consists of selecting excavation sites based on decreasing #(i) = pi/qi.

Intuitively this makes sense since this policy dictates selecting sites whose ratio of the

probability of success to the cost of excavation is highest. Their analysis is extended to

the case where ordering constraints exist at each site, and finally to the case of tree search.

The tree search analysis relies on the identification of maximal indivisible blocs [sic], which

are combined sequences of actions or computations whose separation would yield inferior

results. Identification of these blocs can be considered analogous to the specification of a

good sub-problems decomposition for the metalevel problem formulation. Once these blocs

are identified, their p's and q's can be determined, and the optimal policy is again to select

indivisible blocs in monotonically decreasing order of #.

Simon and Kadane make several simplifying assumptions. First, their problem deals

entirely with the binary outcomes (i.e., failure or success). That is, they want to reach any

single goal, after which, the search will terminate. Their action set consists of methods that

have a known probability of success for solving the entire planning problem (i.e., complete

decision procedures). In addition, the methods are assumed to be independent of one

another. That is, the probability of success for one method does not depend on the outcome

of another. The problem formulated in this thesis differs from the formulation of Simon

and Kadane in that rather than merely minimizing the search effort towards a satisficing

solution, the metalevel must trade off a potential improvement in plan value against the

cost incurred with further search effort. Rather than selecting among complete solution

methods, the computational actions in the metaplanning problem select among individual

atomic computations which reveal information about aspects of the problem. The problem



in this thesis subsumes the optimal satisficing problem of Simon and Kadane. A metalevel

controller can be generated by the formulation in this thesis to optimally satisfice by simply

giving all possible goal states the same value.

Smith [45] addresses a similar problem in the context of first-order predicate calculus. He

presents a methodology for efficient inference similar in nature to the metaplanning problem

formulated in this thesis, where a sequence of inference actions is selected to maximize the

total expected utility. Based on the approach in Simon and Kadane [44], Smith presents an

algorithm that clusters actions into "indivisible" blocks and uses utility information of each

block to determine their order. Once the utility or "worth" information about inference

steps has been calculated, he proves that the optimal strategy is to be greedy with respect

to worth. Independence of the inference steps is assumed. However, for the problems

considered in this thesis, the independence assumption is not always valid because many of

the problems considered here contain what Smith refers to as "redundancy" and "caching".

Redundancy occurs when a portion of a search space of one inference action appears in

another inference action's search space. Caching occurs when the results on one inference

action can aid another. Both of these destroy the independence assumption and can make

the algorithm produce sub-optimal results. On the other hand, the MDP formulation for

metaplanning presented in Chapter 3 handles both of these issues inherently through the

problem formulation. In addition, Smith's problem, like Simon and Kadane [44], deals only

with finding a satisficing solution with minimal effort, where the utility function is binary

(i.e., either success or failure). This thesis trades off the utility of a solution with the cost

of finding it allowing for the explicit tradeoff between solution quality and computational

cost, an ability that is inherently missing from satisficing methods. It may be possible

to rephrase this optimization problem to fit within the context of Smith's approach [45],

where the question becomes searching for the minimal effort strategy to find a solution of

a specific utility level. Such a strategy may or may not be found, fitting the requirement of

binary outcomes. Strategies could be generated for all possible utility levels and the best

one, accounting for search effort, computed, though this appears to be computationally

intractable.



2.3.1.2 Sequencing of Computations for Optimization

This section continues the discussion of metalevel problems whose action sets are discrete

in nature. The difference from the previous subsection is that the objective of the metalevel

planning problem is no longer just to minimize search effort, but to also account for solutions

of varying utility, since some solutions are better than others. Etzioni [18] attempts to

alleviate some of the assumptions of Simon and Kadane [44] by allowing for the possibility

of a non-binary utility function over the final states of the world. Etzioni first considers

a problem similar to that of Simon and Kadane, where there is a single goal and multiple

methods (i.e., complete decision procedures), each with an expected computation cost and

probability of satisfying the goal. Rather than having the same utility value for all methods,

he allows for differing utility values among methods. Etzioni arrives at a conclusion similar

to Simon and Kadane under this more generalized formulation. The optimal ordering is

to sort the methods by greatest expected gain3 over probability of success, E(m), where

G(m) and P(m) are the gain and probability of success of method m, respectively.

Etzioni formulates a related problem consisting of a single deadline, multiple goal states,

and a single method for which there is guaranteed success of achieving each goal state. In

addition, the time cost and utility for calling the method are given. The objective of

Etzioni's problem is to select a sequence of methods that maximize the expected utility

of the agent's actions while respecting the deadline. This is also very similar to the work

of Einav and Fehling [17] where complete decision procedures are applied in a non-myopic

manner in order to minimize the total cost of deliberation prior to taking action. Again,

these complete decision procedures are each guaranteed to solve the problem, but with

different resulting solution utilities. The formulation of the metaplanning problem in this

thesis is similarly defined to the problems above, in that the objective is to find the best

solution that minimizes the expected total cost due to both planning and execution.

As opposed to the approach in this thesis, each computational action in [17] and [18] is

again modeled to be statistically independent complete decision procedures. This assump-

tion is difficult to uphold, since many of the computational actions that are taken within

each complete decision procedure may coincide. Because of this, partial computations of

one decision procedure may yield information about how another might perform, making

3The gain of a method is its expected utility subtracted by its expected computation cost.



them interdependent.

This thesis assumes that individual computational actions do not constitute complete

decision procedures, but are atomic computational parts that can be combined to form

a complete decision procedure. Doing so allows for the metalevel controller to learn the

best complete decision procedure from atomic parts rather than relying on an a priori

set of computational procedures to be provided. In addition, the final metalevel control

mechanism in [18] cannot be dynamically modified during run-time. Once an optimal

sequence of complete decision procedures is determined, each is computed to completion

in the specified order. If a decision procedure performs poorly, there is no mechanism

for dynamically swapping the next decision procedure to compute. This differs from the

metalevel controllers in this thesis, which, like Einav and Fehling [17], use feedback from

previous computations to determine the next computational action to take.

Russell and Wefald ([41], [42]) give a discrete metalevel problem formulation similar to

the work in this thesis. They present a general approach for the decision-theoretic control

of reasoning in which computation is treated as discrete "chunks" that must be allocated

as separate decisions. They develop a heuristic search algorithm called decision-theoretic

A* (DTA*), which uses online metalevel planning to estimate the value of computation

to prune the search space. The search continues for an additional step when the value of

computation is found to be non-negative and halts, with the agent taking the best action

computed thus far, otherwise.

Russell and Wefald make simplifying assumptions in the development of DTA*. The

first is the meta-greedy assumption, which selects the computational action with highest

immediate benefit. If the estimated benefit is accurate this assumption yields the optimal

computational action. However, since the immediate benefit is estimated, the effect of this

assumption is that it potentially ignores how these estimates might change with addition

computation. They also make the single-step assumption, where the agent is assumed to be

able to take only one additional computational action before executing. This assumption

allows for the evaluation of the value of a single computational action as equivalent to

a complete decision computation allowing for the metalevel controller to forgo having to

consider the possibility of being able to take additional computational actions in the future.

When these two assumptions hold, they allow the agent to easily evaluate the expected

value of computation, EVOC, exactly. That is, the meta-greedy assumption selects com-



putations based on the immediate estimated benefit of a computational action, and the

single-step assumption states that the immediate estimate of the benefit of a computational

action is exact. In general, however, this is a myopic evaluation. Finally Russell and We-

fald assume that a computational action will change the expected utility for exactly one

base-level action, known as the subtree-independence assumption. This assumption does

not hold for the problem domains considered in this thesis, since many of them are in the

form of a graph. Under these circumstances, performing a computation can possibly affect

the utility of many base-level actions.

The DTA* algorithm can be seen as an approximation to metalevel rationality, but

does not guarantee bounded optimality. Russell and Wefald do present a clear theoretical

discussion on the value of computation and how it differs from the value of information

presented in Howard [26]. The main difference being that computation can negatively

affect the utility of an action.

In their discussion, Russell and Wefald assume that the agent has a set of base-level

actions A that can be executed in the environment and that there is a default action a E A

corresponding to the action which is currently perceived to be best. At each step, the agent

also has a set of computational actions {Si} which can cause the agent to revise its current

best action. The agent selects among the set of available options {a, Si}. The net value of

computation for a complete computational action (i.e., a complete decision procedure) can

be represented as the difference between the utility of the state resulting from an inference

step and the utility of executing the current best action a, or

V(Si) = U([Si) - U(a) (2.4)

where V is the net value of computation, U is the utility of a state, and [Si] represents the

new state that results from having applied computational action Si in the previous state.

At the end of a complete computation, the agent immediately performs the best computed

action. If the computational action results in a revised assessment of the current best

action, then U([Sj]) = U([aj, S]) where [ai, Si] is the state outcome achieved by executing

the revised action ai after having performed computation Si.

In the case of partial computations, where Si does not provide an immediate revision

of the best action, but subsequent computations might, the utility of Si can be represented



U(SO) = E P(T)U([aT, [Si.T]]) (2.5)
T

where T represents the sequence of subsequent computations following Si, Si.T is the compu-

tation Si immediately followed by T, and P(T) is the probability of executing the sequence

T.

In general, the agent does not know the exact utilities and probabilities, which must be

estimated at the cost of computation. Let QS represent the estimated value of a quantity

Q following a computation S. In this case, the estimated utility of S.Sj is

s.s ) pS.Si (T) S.Si([aT, [Si.T]]), (2.6)
T

where the estimated utility of computing T and taking the revised best action, aT, after T

is

UJ-Si([aT, [Si.T]]) = max Jssi ([Aj, [Si.T]]), (2.7)

and A3 is the set of all base level actions in A. Superscripting on utility estimates indicates

that those values are the results of performing the indicated computations, rather than the

true utility values. This, in effect, captures the essence of computation under computational

resource limitations, where subsequent computations must rely on the estimates computed

through partial computations of previous steps.

The estimates of utility are a result of computation, and the agent must choose the next

best action based on these estimates. Based on this, the net value of computation is

9s.Si(S ) - US.S([S]) - S.si([a]). (2.8)

Since the exact results of the computation of Si is not known before it is performed, 9 is a

random variable whose expectation is used to determine the best action

E[gSsi(Sj)] = E[US'Si([Si])] - E[#S-Si([a])]. (2.9)

Recall Equation 2.3 from Howard's Information Value Theory [26]. The expected value

of information of knowing ej is the difference in the expected utility of knowing and not

knowing e1 . Russell and Wefald show that this calculation is invalidated in the case of



limited rationality when utility estimates are a function of the computation performed thus

far. Translating Howard's (EVOI) equation into the present terminology yields

E[V/(Sj)] = E[UJS.Si([ass, [Si]])] - E[ 5s([a])], (2.10)

where the expected value of the information gained from performing computation, Si, is

the difference between the expected utility of taking the revised best action, as.s,, and the

previous best action, a. The equations 2.9, and 2.10 will only be equal when in the new

state,

E[USS ([a])] = E[Us([a])], (2.11)

which Russell and Wefald refer to as the coherence condition [41]. That is, the expected

utility of the old action, a, is unchanged after computation Si has been performed. For

a perfectly rational agent, this will be true since the utility of a in state S will have

been properly reflected by Us. For an agent with limited computational resources, the

utility of a can possibly be revised with Si, which may result from a variety of reasons

(e.g., additional computation yields information about a which reduces its utility, or the

opportunity to execute a has passed). Russell and Wefald mention an additional difference

in their notational representation of the value of computation that differs from the value

of information presented by Howard. Consider the case where the result of a computation

yields as, = a (i.e., the current best action has not changed). In this case V(Sj) may

actually be negative since all it did was to induce a time delay for taking the same base-

level action, whereas in the calculation of the VOI, information gathering always results in

non-negative value.

Thus far, the utility function has been employed to inherently capture the complexity

of the combined effects of computational and base-level actions. In order to simplify this,

Russell and Wefald make several assumptions. First, they assume the existence of intrinsic

utility, which is the utility of a base-level action independent of time. That is, taking a

physical action always has the same value. In addition, the time cost of computational

actions is assumed to be independent of time, such that the utility of a state is represented

as the difference in intrinsic utility and the time cost for the computation such that

U([Aj, Si]) = U([Ay]) - TC(ISi1), (2.12)



where U( [A3]) is the intrinsic utility of action Aj, TC is the time cost for computation, Si,

and U([Aj, S]) is the estimated utility of taking action A3 after performing the computation

Si. Since not of the terms depend on the actual time, this property is referred to as time-

separability. This implies that the expected value of computation can be simplified, and

determined as the difference between the estimated benefit of computation A(Si) and the

cost of performing the computation:

f'S.i(S) = A(Si) - TC(1Sil). (2.13)

The estimated benefit of computation, A(Si, is the difference in utility of taking the revised

action, asi, and the default action, a:

A(Si)= US-Si([asi, [Sil)) - $ ( (2.14)

One of the difficulties with this assumption is that depending on the problem, the appro-

priate time cost function can be difficult to determine [10). The modeling of hard temporal

constraints, such as deadlines, is particularly challenging.

The formulation for developing metalevel controllers in this thesis are for problem do-

mains where time cost separability holds, but it can be extended to the case where the

utility of actions are time dependent. In addition, the solution of the metalevel MDP in

this thesis allows for the utility of partial computations, as given in Equation 2.5, to be

determined exactly, making the assumptions used by Russell and Wefald unnecessary.

2.3.2 Anytime Algorithms

This subsection presents an alternative method of metalevel control, where the focus is

on allocating computation time to complete decision procedures possessing the anytime

property. The terms "anytime" or "flexible" algorithm, attributed to Dean and Boddy

[15] and Horvitz [23], respectively, describe algorithms that have the property of iteratively

improving the planner's current solution as a function of the time allocated to computa-

tion. Although the work in this thesis does not employ anytime algorithms, they offer an

alternative and not completely separate view of achieving bounded optimality. The main

benefit of working with anytime algorithms under time pressure is that, unlike traditional



Perfectly Rational

Figure 2-1: Effect of the cost of computation on an anytime algorithm.

run-to-completion algorithms, they are able to supply solutions of intermediate quality so

4that a feasible solution is available for execution at any point in time

Figure 2-1 shows various curves, known as performance profiles. A performance profile

summarizes the expected utility of executing the best action or plan recommended by an

algorithm as a function of time. As in Russell and Wefald, time cost separability is typically

assumed. In the figure, the y-axis measures the performance of each algorithm in terms

of expected utility. This allows for the utility of an algorithm to be compared against the

utility loss due to the cost of computation.

The performance profile of an anytime algorithm plots what Dean [14] refers to as object-

level utility 5 as a function of time. Object-level utility corresponds to the inherent utility for

taking physical actions (i.e. the utility of the plan independent of time). This is similar to

Equation 2.12 when the time cost is zero. A notional plot of the expected utility of the plans

generated by an anytime algorithm is given by the curve labeled "Anytime Algorithm" in

Figure 2-1. Since an anytime algorithm iteratively improves over time, the plot shows that

additional time spent on computation always results in a non-negative effect on object-level

utility.

The maximum expected utility is achieved by running the anytime algorithm to comple-

tion. The introduction of a non-zero cost of computation function can result in a negative

41n general, when a solution must be generated from scratch there will be an initial period of
time where no solution will be available.

5 This is equivalent to Russell and Wefald's notion of intrinsic utility



effect on the utility of computation. This, in turn, affects the utility of running the any-

time algorithm for differing amounts of time. Assuming that the cost of computation is

additive, the agent's net or comprehensive utility function (equivalent to the first term in

Equation 2.12) is labeled "Anytime + Cost of Computation". The comprehensive utility

is the objective function to be optimized by metalevel planning, while traditionally the

optimization is over object-level utility. As shown in Figure 2-1, the cost of computation

can have a significant effect on the utility of the generated plans. Accounting for the cost

of time, the maximum expected utility of the anytime algorithm is no longer achieved by

running to completion. In Figure 2-1, the maximum expected utility accounting for the cost

of computation is achieved at time t*. Stopping prior to or planning for additional time

steps beyond this point results in diminished comprehensive utility.

Also shown in Figure 2-1 are the performance profiles for a perfectly rational agent and

a calculative rational agent. The generation of the best plan of the perfectly rational agent

is achieved instantaneously at time t = 0. The calculative rational agent's performance is

given by the curve labeled "Run-to-Completion".

DEFINITION: run-to-completion algorithm: an algorithm which generates

the optimal base-level solution upon termination with no intermediate results.

The difference between anytime algorithms and run-to-completion algorithms is that

run-to-completion algorithms never produce intermediate results. In this case, the advan-

tage that the anytime algorithm has over the run-to-completion algorithm is that the com-

prehensive utility of the run-to-completion algorithm (not shown) is actually negative over

the range of computation times. At no point during computation will the run-to-completion

algorithm yield any positive net utility. However, when there is no cost of computation an

anytime algorithm does not yield any appreciable benefit over the run-to-completion algo-

rithm.

As opposed to the allocation of discrete computational actions, metaplanning problems

using anytime algorithms focus on the allocation of computational effort, in the form of

computation time, to a single algorithm or a system of anytime algorithms. While the

allocation of discrete computation focuses on the details of what to compute, the anytime

representation of computational actions abstracts away these details. That is, the specific

computational actions taken by an anytime algorithm are not directly under the control of



the metalevel controller, who use it as a blackbox. Anytime algorithms are also considered

complete decision procedures since they solve the entire base-level problem. Allowing for

anytime algorithms to replace non-anytime decision procedures in some of the previous

approaches mentioned for the discrete allocation of computation [17], [18] and [44], may

offer additional flexibility for making the tradeoff between computation effort and solution

quality.

Horvitz ([23], [25]) concentrates on the theoretical problems involved in determining the

amount of deliberation for a single task, such as identifying t* in Figure 2-1 (also known

as the stopping problem). He explores the effects of different representations of the cost of

time on the optimal choice of stopping time for flexible decision procedures. Although he

focuses on the allocation of time, he mentions that the resource allocation problem defined

in metaplanning is not restricted to computation time, but can be expanded to include

memory, design time, investments in knowledge acquisition, and hardware capabilities of

the system. Horvitz lists two classes of desiderata that are useful for reasoning under scarce

resources, flexibility and bounded optimality (similar in concept to the discussion in Section

2.1). Horvitz describes flexibility in terms of several attributes:

" Value continuity refers to the property that the object-level utility of a problem

solving strategy is a continuous function of the amount of resource allocated.

* Value monotonicity refers to the property such that object-level utility of a problem

solving strategy is a monotonically increasing function of the amount of resource

allocated.

" Convergence refers to the property that a strategy demonstrate convergence to the

optimal object-level value at some level of resource expenditure

" Value dominance refers to strategies that contain value dominant intervals, ranges of

resource fraction where the gain in comprehensive value of computation is a mono-

tonically increasing function of resource allocation.

These desiderata act to limit the nature of the algorithms over which bounded optimal-

ity with anytime algorithms is to be achieved. They are interesting from the perspective

of metalevel problem formulation in this thesis and serve to highlight some differences be-

tween approaches. The first attribute, value continuity, is irrelevant to this discussion since



computational actions are modeled as discrete actions in this thesis. Value dominance, how-

ever, is certainly desirable since it is hoped that the expenditure of computational resources

results in a net gain in comprehensive value. Value monotonicity is also desirable, but de-

termining the overall utility of the plan given a set of solved sub-problems is a tricky value

assignment problem. Selecting the order of sub-problems to solve such that sub-problem

value monotonicity is maintained is an objective for metaplanning in this thesis.

The attribute of convergence is the most in contention. Since convergence of the plan to

the optimal object-level utility may not always be an appropriate condition. Convergence is

a reasonable goal in cases where the cost of computation or inference-related costs are zero.

In cases where the cost of computation is high, however the best strategy may be one that

does not ever converge to the optimal object-level value. Even if the algorithm were able

to converge to the optimal solution, the comprehensive value may no longer be positive at

the convergence point, rendering the computations useless.

Boddy and Dean [10] also present an algorithm for determining the allocation of compu-

tation time to anytime decision procedures. As with Horvitz, they base their approach upon

decision-theoretic principles, and refer to metalevel planning as deliberation scheduling, since

they deal with scheduling computation times. Deliberation scheduling "involves the explicit

allocation of computation resource based on the expected effect of those allocations on the

systems's behavior." They describe, similar to Russell and Wefald [42] and Horvitz [24],

the distinction between inferential actions and physical actions. Inferential actions (i.e.,

computational actions involved in running decision procedures) have no effect on the world

external to the agent and only affect the agent's internal state. Physical actions actually

change the state of the external world. Inferential actions are of interest since they consume

computational resources that might be spent otherwise and revise the agent's estimations of

how to act. They argue that an agent that is capable of reasoning about its "computational

capabilities must have expectations about the potential value of its computations and how

long those computations are likely to take." As with other adopters of anytime algorithms,

this information is summarized by performance profiles. Boddy and Dean consider the de-

liberation scheduling problem for several classes of performance profiles, starting with those

that are suitably approximated by piecewise linear monotonically increasing functions.

In order to guarantee the optimality of their scheduling algorithm, called deliberation

scheduler (DS), they impose the additional constraint that the slopes of the consecutive
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Figure 2-2: Performance profiles plotting the expected utility of the decision as a
function of computation time for two algorithms. Algorithm 1 shown in a) exhibits
diminishing returns while Algorithm 2 in b) does not.

line segments be decreasing, such that they exhibit diminishing returns. Figure 2-2 shows

an example of two performance profiles, one of which exhibits diminishing returns. The

useful property of diminishing returns is shared by many iterative algorithms, but not by

all. Boddy and Dean [10] give the example of an algorithm which determines the 10-digit

combination of a safe, where the probability of correctly determining the remaining digits is

a function of the known digits. In this example, the expected utility gain in the first step is

9e- 9 u and the expected utility gain in the last step is 0.9u, where u is the expected utility

for opening the safe. Here the gain of the last step far exceeds that of the first.

Another metalevel planning problem involving anytime algorithms is the allocation of

a fixed amount of computation time across a set of anytime algorithms that are connected

to one another. Zilberstein [51] presents a technique for the efficient scheduling of run

times for a system consisting of individual anytime components. He discusses several ways

of composing anytime components, which under some restricted conditions result in an

optimal allocation. A variety of programming architectures are examined. Sub-problems

in this thesis can be thought of as equivalent to the components of a system. The work of

Zilberstein in the compilation of anytime algorithms differs from the work in this thesis in

that the configuration of components that are activated during execution is not fixed, but

conditioned on the results of the computations that have occurred during run time. In terms

of the problem formulation of this thesis, Zilberstein assumes that the set of sub-problems

over which computation time must be allocated is part of the problem input, whereas the

metalevel controllers of this thesis use run-time feedback from computation to select the



next sub--problem.

2.3.3 Another Categorization of Metaplanning Problems

Although the division between metaplanning approaches presented above was based mostly

on the nature of metalevel actions, it is certainly possible to make the division in another

fashion. Conitzer and Sandholm [13] choose to categorize metalevel planning problems into

3 categories and relate their corresponding complexity results.

1. The first problem in their categorization is that of allocating computation time across

anytime algorithms with nondecreasing performance profiles given N deliberation

steps and a target value of K. It is shown to be NP-complete by polynomial reduction

to the KNAPSACK problem. If the performance profile of the algorithm is piece-

wise linear and concave, the metareasoning problem is solvable in polynomial time

according to the DS algorithm by Boddy and Dean [10].

2. The second problem described in Conitzer and Sandholm [13] is related to discrete

allocation of computation similar to the problem formulated by Russell and Wefald

[42]. The agent must decide on an observation action at each stage, and eventually

act. This is shown to be NP-hard by reducing an arbitrary KNAPSACK problem to

it.

3. The last problem discussed in Conitzer and Sandholm [13] is the state-disambiguation

problem, similar to the problems found in this thesis, where the agent is initially

unsure of the state of the world, and must make queries to disambiguate its true

state. In general a query may have multiple answers that are consistent with the true

state of the world. In these instances, it is assumed that the answers are uniformly

and independently chosen from the possible answers. For the case where queries have

only one consistent answer, they show that the problem is NP-hard by reducing SET-

COVER to it. In the general case, the state-disambiguation problem is shown to

be PSPACE-hard by reducing the STOCHASTIC-SAT(SSAT) to it, where SSAT is

PSPACE-complete.

Conitzer and Sandholm state that these results are not an argument against metarea-

soning, but direct the focus of research towards other interesting avenues. These include:



"1) investigating the complexity of metareasoning when deliberation (and information gath-

ering) is costly rather than limited, 2) developing optimal metareasoning algorithms that

usually run fast, 3) developing fast optimal metareasoning algorithms for special cases, 4)

developing approximately optimal metareasoning algorithms that are always fast, and 5)

developing meta-metareasoning algorithms to control the meta-reasoning [process]...".

2.4 Metaplanning Discussion

In light of this prior work in the field of metalevel planning, the research focus of this

thesis is most theoretically aligned with the general value of information based approach of

Russell and Wefald. However, Russell and Wefald's objective was to create an algorithm

for achieving metalevel rationality. As described in Section 2.1, this is not realistically

attainable. Their DTA* algorithm approximates metalevel rational behavior while relying

on simplifying assumptions. Rather than a fully generic heuristic algorithm like DTA*,

which can be applied to arbitrary problems, the metalevel controllers in this thesis are

created to achieve or approximate bounded optimality. For this reason, the metalevel

controllers are specific for, and limited to, the distribution of problems for which they are

generated. This maps to point number three in Conitzer and Sandholm's discussion. The

goal of this thesis, in their terms, is to generate metareasoning algorithms for restricted

classes of problems.

Many of the approaches to metalevel planning, both discrete and anytime, presented

above ([10], [24], [17], [18], [44], [51]) relied on using complete decision procedures. The

metalevel controllers developed in this thesis use atomic computational actions, which must

be combined together to produce a complete decision procedure. This gives an extra de-

gree of freedom for directing computational effort. In fact, the ability to select from in-

dividual atomic computations makes supplying a variety of complete decision procedures

unnecessary, since the best one can be determined and synthesized directly from atomic

computations.

When given a set of fixed complete decision procedures, the agent is at the mercy of

the computations performed by the particular algorithm being used. For instance, a fixed

anytime algorithm has a specific performance profile which the metalevel controller cannot

affect. However, the flexibility afforded by combining individual computation actions can
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Figure 2-3: Examples of performance profiles for a variety of algorithms. Algorithm 1
is highly sub-optimal but responsive. Algorithm 2 is less responsive, achieves a better
but non-optimal level of performance. Algorithm 3 is slow but generates the optimal
solution.

result in the generation of metalevel controllers of varying forms. Consider Figure 2-3, which

shows the performance of three algorithms or metalevel controllers labeled Algorithm 1,2

and 3 as a function of computation time. The goal of metaplanning in this thesis is to design

a metalevel controller to generate behaviors that are optimized for the situations that are

expected to be faced by the agent. For example, Algorithm 1 achieves a low utility solution

quickly but does not reach optimality and may be useful in situations that warrant a quick

response. Algorithm 3 solves the problem to optimality but takes a long time, and Algorithm

2 is somewhere in between. Being able to select individual computational actions allows the

flexibility of generating computational behavior that can range over all possible algorithms

that can be generated using the atomic computational actions available, an ability that is

not present when using a set of fixed complete decision procedures or anytime algorithms.

This is indeed a useful property considering the fact that bounded optimality refers to

determining the best program, or algorithm, for a class of problems.

2.5 Chapter Summary

Perfect rationality as prescribed by classical decision theory is an unrealistic goal for the

design of agents with limited computational resources. An alternative and more realistic



goal of bounded optimality was proposed. Bounded optimality is a specification over agent

programs acting over a distribution of problem environments, rather than over individual

computational sequences as in metalevel rationality. Though metalevel rational systems

are difficult to realize, the concept brought to the surface various approaches to account

for the cost of computation involved in determining the best action. These approaches

to metalevel planning can be categorized by the nature of the metalevel actions available.

Some approaches employ the abstraction of anytime algorithms focussing the metalevel

decisions on the optimal allocation of computation time. Approaches which employ discrete

computations at the metalevel have an additional level of control that anytime algorithms

do not have, namely what to compute. The formulation of the metalevel problem in this

thesis is an instance of the latter. What makes it different from previous approaches is

that the computational actions are atomic in nature as opposed to being complete decision

procedures. When combined with information about the problem domain and the cost of

time, an optimal policy or algorithm can be determined in order to control the computational

behavior of an agent in a bounded optimal manner. The mechanisms involved in making

these decisions are discussed next in Chapter 3.



Chapter 3

Metalevel Planning Problem

Formulation

This chapter presents the details of formulating the metalevel planning problem as a Markov

Decision process (MDP), and will show how the MDP formulation is suitable for metalevel

planning problems that have a natural sub-problem decomposition. The result of solving

the MDP is a metalevel policy which is then applied online to dictate which sub-problems

to solve. This policy can be viewed as a closed-loop controller that conditions the next

computational action on the outcomes of previous computations. When the sub-problem

outcomes of the metalevel environment are finite and discrete, the MDP formulation de-

veloped in this chapter is an exact formulation of the problem and results in an optimal

policy. This optimal policy is the metalevel controller that result in bounded optimal agent

behavior, the best expected performance that can be achieve by any agent under the same

circumstances. When the sub-problem outcomes fall within a bounded but continuous

range, a discretization is applied to retain a discrete representation of the problem.

3.1 Hierarchical Decomposition

This thesis assumes the existence of a hierarchical decomposition of the base-level planning

problem into a two-level hierarchy composed of a master level and a sub-problem level.

Hierarchical problem decomposition is an approach for solving many large-scale planning

problems and refers to restructuring the original problem into a hierarchy with smaller,



easier to solve sub-problems, whose solutions are combined to retain the constraints and

objectives of the original problem [33]. In this thesis, hierarchical decomposition of the

base-level problem enables a natural formulation the metalevel planning problem.

DEFINITION: base-level planning problem: the underlying planning prob-

lem to be solved (e.g., determining the sequence of physical actions to take).

DEFINITION: metalevel planning problem: the problem of planning the

computational actions used in solving the base-level planning problem.

The metalevel controllers in this thesis are designed to output control actions that con-

sist of discrete atomic computational actions. The availability of a hierarchical problem

decomposition lends itself to defining a single atomic computational action as generating

a solution to an individual sub-problem. Therefore, the control actions of the metalevel

controller are defined as solving individual sub-problems. Bounded optimal behavior is

achieved by generating the best metalevel controller whose computational actions are se-

lected in such a way that the master level is able to achieve the highest expected utility for

a given distribution of problem instances, net the cost of computation.

DEFINITION: master level: the top level of the two-level hierarchy of the

base-level problem. It takes individual sub-problem solutions and uses them to

generate complete base-level solutions. Assumed to have negligible computa-

tional costs.

DEFINITION: sub-problem level: the lower level of the two-level hierarchy

of the base-level problem. Sub-problem solutions are building blocks (plan frag-

ments) passed up to the master level to generate a solution to the base-level

problem. A sub-problem is defined relative to a specific problem decomposi-

tion and can take the form of atomic-level computations or can themselves be

planning problems.

DEFINITION: atomic-level computation: the smallest quantity of computa-

tion that can be performed by the agent. In this thesis, solving a sub-problem

is defined as an atomic-level computation.



The metalevel planning problem with sub-problems as computational actions explicitly

assumes that the cost of computation is incurred only through the solution of sub-problems

and not though their combination in the master level to generate the final base-level plan.

It is not an unreasonable assumption given a "good" problem decomposition, where a good

decomposition for metalevel planning will consist of a master level problem that can be

solved with ease once it is presented with a set of sub-problem solutions. The issue of

generating a problem decomposition is domain dependent and is not addressed in detail

in this thesis. Instead, it is assumed that metalevel planning is performed given a specific

problem decomposition provided externally by a domain expert. For some problem domains,

a problem decomposition may naturally be present.

3.1.1 Roles of the Hierarchy

Functionally, the master level combines the sub-problem solutions to generate a complete

solution to the base-level problem. Sub-problem solutions can be thought of as plan frag-

ments which the master level pieces together while respecting the global constraints and

objectives of the original planning problem to form a complete base-level plan. Because of

this, the quality of the plans generated by the master level depends entirely on the pool of

available sub-problems from which it can select. For instance, sub-problems in the time-

critical targeting problem from Chapter 1 might consist of generating missions for specific

subregions over the map.

The master level problem would be to choose a combination of generated missions in

order to maximize the value of the global solution. The master level would also need to

consider potential resource conflicts in making its selection of missions when multiple mis-

sions utilize overlapping resources. Ideally, if all possible sub-problems are solved and their

outcomes provided to the master level, the "optimal" base-level solution can be determined

instantaneously'. However, under the conditions of limited rationality, generating the solu-

tions to all sub-problems can be very costly, or even impossible, when there are deadlines.

As mentioned above, it is assumed that the main expenditure of computation is devoted

to solving sub-problems. The sub-problems are assumed to be defined as part of the base-

'Under the assumption that master level computations take a negligible amount of time, the
optimal base-level solution is obtained nearly instantaneously when provided the outcomes of all of
the sub-problems a priori.



level problem decomposition. They can be as simple as node expansion in a search tree,

or as complicated as being a hierarchical optimization problems themselves. In this thesis,

the abstraction is made such that solving a single sub-problem constitutes a single atomic

level computation. The manner in which sub-problems are solved are also assumed to be

specified as part of the problem description. There is no restriction on how they are solved.

The metalevel planning process needs only to know the expected computation time for

solving each sub-problem in order to account for its cost in the optimization problem to be

solved.

The problem architecture, as presented in Figure 1-3, is similar to that found in the

composite variable formulations for integer programming problems [2]. The composite vari-

able approach also depends on a problem decomposition that allows for the generation of

a pool of "options" (i.e., sub-problem solutions) that are combined to form the complete

solution. An important difference is that computational costs of generating "options" is

typically not considered in the composite variable approach, as it is mostly concerned with

the problem of maximizing object-level utility. This is equivalent to having the "options"

generated a priori and stored for later use. For the problem domains considered in this

thesis, it is assumed that there are enough variations that occur in sub-problem instances

to prevent them from being solved ahead of time and stored. For example, generating a

single mission for a subregion in the time-critical targeting problem and expecting to be

able to use it in all circumstances is not realistic. From one problem instance to another,

targets may have shifted or moved out of the subregion, necessitating that the sub-problem

be solved in real-time.

Having established that the metalevel planning problem for hierarchically decomposed

problems will consist of selecting sub-problems to solve, and that solving all sub-problems

is likely not "the rational thing to do" under limited computational resources, the goal in

this thesis is to generate a metalevel controller that will suggest "useful" sub-problems to

solve. It is assumed that prior to solving a sub-problem there is uncertainty in regard to its

outcome. Solving the metalevel planning problem identifies these "useful" sub-problems,

accounting for their outcome uncertainty, and incorporates them into an optimal policy.

The usefulness of a sub-problem will vary depending on the problem decomposition, the

current state of computation, as well as the cost of time and will be captured by the policy.

The metalevel policy is also responsible for determining when to stop computing in order



to execute the current best plan.

The metalevel controller cannot be expected to suggest useful sub-problems to solve

under arbitrary circumstances. It would be difficult for a metalevel controller to do much

better than random guessing when given a problem domain that it has not previously

encountered. Instead, the metalevel policies that are generated in this thesis are aimed

toward maximizing the expected utility of the agent's behavior over a collection of base-level

problem instances over which they are trained. That is, the performance of the metalevel

policy is optimized such that it achieves the best average performance over all problem

instances the agent might encounter, coinciding with the condition of bounded optimality.

It is assumed that the base-level problem instances are drawn probabilistically from a

fixed set of similarly defined problems. The probability distribution over the fixed set of

problems instances will give rise to a probability distribution over sub-problem outcomes

for a given problem decomposition of the base-level problem. The probabilities will be

used in formulating the metalevel planning problem as an MDP to determine the utilities

of sub-problems so that a policy for performing computations can be generated. These

probabilities will either be given as part of the problem description or learned through

off-line simulation.

The metalevel planning environment is the domain over which metalevel planning oc-

curs. It describes the probability distribution over the set of base-level problem instances

expected to be faced by the agent. This distribution of problem instances naturally produces

a distribution over sub-problem outcomes.

DEFINITION: metalevel environment: the distribution of the set of all pos-

sible problem instances to be faced by the agent. This also yields a distribution

over the set of sub-problem outcomes for a given problem decomposition.

3.2 A Canonical Metalevel Planning Problem

A canonical example of the general class of metalevel planning problems targeted in this

thesis is presented by the graph in Figure 3-1. The graph simply consists of a set of nodes,

N, and a set of arcs, A, connecting the nodes, and is referred to as a graph configuration.

The goal is to find a minimum cost path from S to G by computing the utility (cost) of each

arc. For this example, it is assumed that the utility of each arc is unknown but constrained
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Figure 3-1: The canonical 4 arc metalevel planning problem.

to be within a finite set. This graph corresponds to a base-level problem in the form of a

shortest path planning problem and naturally yields itself to a sub-problem decomposition

where each arc represents a sub-problem. Notice that each arc in Figure 3-1 is labeled with

a set of arc costs, {0, 2}. These represent the set of possible outcomes that can result as a

consequence of solving the sub-problems. Recall that the metalevel controllers in this thesis

are designed to act in a bounded optimal manner for a particular metalevel environment,

where the metalevel environment is the distribution of the set of problem instantiations

expected to be faced by the agent.

For any particular instantiation, the problem is simply a shortest path problem from S

to G. Figure 3-1 with the given binary outcomes results in 24 possible problem instantiations

shown in Figure 3-2. Each graph in the figure is an instantiation of a possible set of arc

cost outcomes that can be realized in the canonical example. The metalevel environment

is characterized by a probability distribution over these base-level problem instantiations.

It is assumed that due to the variability in problem instances, the agent initially has no

knowledge of which instantiation over which it must plan2 . The metalevel must optimize

the agent's computational behavior (e.g., computing the utility of arc or equivalently solving

sub-problems) over the distribution of problem instances. This graph will be used through-

out this chapter to demonstrate a variety of salient points regarding the MDP metaplanning

formulation.

When the problem given in Figure 3-1 is viewed as a graph, the computations required to

2If the agent did know, the problem instantiation, it could potentially store the optimal solution
and look it up. It is assumed in this thesis, that the problem instantiation is eventually revealed
through the solution of enough sub-problems.

{0,2}
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Figure 3-2: Problem instantiations of the 4 arc problem with binary outcomes in

{0, 2}.

"solve" a sub-problem merely consist of something as simple as expanding a node to compute

the corresponding arc cost. However, abstractly, the graph can be used to represent a variety

of arbitrarily complex planning problems. Consider, for example, a military operation

where daily (or hourly) flights must be planned to monitor certain geographical regions

for activities of interest. In this case, a sub-problem (arc) might consist of performing the

computations necessary to generate a flight plan over a specific region. The optimal flight

plan could be arbitrarily complex to compute due to a variety of factors such as the number

and types of aircraft to send, routing to avoid threats, air traffic constraints, etc.

In addition, the graph configuration itself may be used to represent precedence con-

straints of a problem, which in this case corresponds to the legs of a particular flight plan.

Suppose that certain geographic regions cannot be reached without flying over others. In

terms of Figure 3-1, the sub-problem represented by arc AG cannot be reached without

flying through the region represented by arc SA (the same applies to SB and BG).

Without computing the actual utilities of the sub-problems, the preferred path, either

SAG or SBG is not known. Since this is a daily operation, the agent can rely on past

experience to estimate the relative distributions of problem scenarios and sub-problem util-

ities. However, since there is variability between problem instances, the true sub-problem

utilities for the current scenario will not be known with certainty without performing fresh

computations. Solving a sub-problem will inform the agent of the utility of incorporating its

solution into the final plan. The metalevel controller for this problem must determine which

arc to compute, compute it, and based on its outcome, determine the next sub-problem to



solve. All the while, it must also account for the cost of time incurred by computation.

Here, the time costs may involve the costs due to having personnel wait for the completion

of planning, the reservation of aircraft resources that might be used elsewhere, etc.

3.3 Basic Problem Solving Strategies

The focus of this thesis is to develop bounded optimal strategies for directing the computa-

tion for solving base-level problems. Recall that bounded optimality refers to maximizing

the expected utility of plans generated over a distribution of problem instances while ac-

counting for the costs of generating the plans. This section presents a variety of strategies,

which will be referred to as fixed-computational strategies, or open-loop plans whose per-

formances will be used to gauge the benefits of bounded optimal agents. The modifier

"fixed" refers to the aspect of the algorithm where base-level computations are not under

the closed-loop feedback control of the metalevel controller. These can also be considered

instantiations of complete decision procedures as discussed in Chapter 2. Some possibilities

are listed below:

" COMMIT: select a single feasibly executable path to the goal.

" RANDOM-DIRECTED: randomly select sub-problems to solve in a depth-first manner

until the goal is reached.

" PLAN ALL: solve all sub-problems and report the best plan.

* OMNISCIENT: this is not an example of a viable open-loop plan, but included in this

list to show a lower bound on any possible strategy.

In order to compare the strategies, assume that the cost of computation for each sub-

problem is fixed and denoted by e, and that the possible utility (cost) values for each

sub-problem take binary values in {0, 2} with equal probability. The value of epsilon can

be thought of in terms of a marginal cost of computation, such that the (disutility) cost of

solving a sub-problem is given by e times the expected computation time to solve the sub-

problem. In the canonical 4 arc example, it is assumed that each sub-problem is computed

in unit time so that they each incur a computation cost of e. Referring to Figure 3-1, let arcs



SA and AG be relabeled as sub-problems 1 and 3, and SB, BG be relabeled as sub-problems

2 and 4.

The simplest strategy and least costly in terms of computation, is to commit to one

"path" and solve the corresponding sub-problems. Note that it is assumed that enough

sub-problems still need to be solved to generate a complete and feasible plan for execution.

That is, solving sub-problems, 1 and 2 is not enough to generate an executable plan to

the goal. Here, "solving" sub-problems simply consists of observing an arc and learning its

cost. For the flight plan example described earlier in this chapter, it might involve gathering

intelligence, allocating resources and generating a flight plan for a specific geographical

region. In any case, performing a computation incurs a cost of e, assumed to be additive,

and returns the cost of executing the arc/sub-problem plan. The expected cost of the

COMMIT strategy on the canonical 4 arc problem is given by

E[COMMIT] = E[SPI + SP3] + 2e

= 1+1+2e

= 2+2c.

Assume that COMMIT consists of the arcs SA and AG. Then SP and SP3 are the random

variables representing the outcomes of the solutions to sub-problems 1 and 3. The expected

cost of the strategy is a linear function of the cost of computation since the cost of computa-

tion is additive. Thus the expected cost can be described by two separate components, that

of the base-level problem, and that of the computation involved in solving the base-level

problem.

A more generic version of COMMIT is called RANDOM-DIRECTED, which solves at random

one of the outgoing arcs (sub-problems) of the current node and continues doing so in a

depth-first manner until the goal state is reached. Since the arcs are assumed to be directed,

it is guaranteed that the goal state will be reached, and a feasibly executable path generated

in the process.

E[RANDOM-DIRECTED] = pE[top] + (1 - p)E[bottom] + 2e

= 2p+2(1 -p)+2e

= 2+ 2e,



where p is the probability of selecting the top path. In this case, since both the top and

the bottom paths are symmetric, the expected cost for RANDOM-DIRECTED is the same as

for COMMIT. Neither the RANDOM-DIRECTED nor the COMMIT strategies guarantee an optimal

base-level or object-level solution, but they are strategies that guarantee the least amount of

computational cost to generate a feasibly executable path. This can be considered equivalent

to optimal satisficing.

The manner in which the COMMIT strategy chooses a complete plan (and the corre-

sponding sub-problems) can vary. In the above case the upper path SAG was selected at

random. Another possibility is to invoke the principle of certainty equivalence [5], in which

the expected values of each sub-problem are used. The problem then degenerates into an

ordinary deterministic shortest path problem. In this case, each solution (top or bottom)

has an expected cost equal to 2 so neither path appears to be better than the other.

The PLAN ALL strategy is analyzed next. This strategy involves solving all sub-problems

in order to obtain the calculative rational solution, as described in Chapter 2. The expected

cost of this strategy can be determined by considering the 16 possible problem instantiations

that can occur, computing the optimal solution for each of them and weighting them by

the probability of occurrence, while also accounting for the fact that all four sub-problems

are solved.

E[PLAN ALL] = E[min(SP1 + SP3, SP2 + SP4)] + 4e
1

= (2 + 2+2+2 +[2+2+2+2+4)+4e
16

= 1.25-+4E.

This strategy is guaranteed to generate the optimal object-level cost, but in comparison to

the COMMIT strategy incurs twice the amount of computation cost, with 4e instead of 2e.

Last of all, is the OMNISCIENT strategy, which requires advanced knowledge of sub-

problems to solve in order to obtain the best feasibly executable plan including the com-

putation costs. For this problem, the OMNISCIENT strategy looks exactly like the COMMIT

strategy, where the commitment for every single problem instance is different, but always
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Figure 3-3: Performance of strategies as a function of e, the cost of computation. e*

is the optimal switching point for the switch strategy.

corresponds to the optimal path.

E[OMN ISC IENT] = E[min(SP1 +i SP3, SP2 + SP4)] + 2e
1

= -(2+2+2+22+2+2+2+2+4)+2e
16

= 1.25+2e.

In this case, OMNISCIENT, which can be interpreted as obtaining the benefits of the PLAN

ALL strategy, with an expected object-level cost of 1.25, at the computational cost of the

COMMIT strategy, with a computational cost of 2 e. The OMNISCIENT strategy serves as a

lower bound on the expected cost for any metalevel strategy, including the closed-loop

policy presented in the next section. In terms of the categories of rationality explained

in Chapter 2, OMNISCIENT can be thought of as the embodiment of metalevel rationality,

since it always performs the "right" sequence of computations. Figure 3-3 compares the

performance of the individual strategies as a function of the cost of computation, e.

Each of these strategies, except for OMNISC IENT, can be considered a particular open-loop

metalevel algorithm, in the sense that PLAN ALL dictates that all sub-problems be solved

before generating the final plan, and RANDOM-DIRECTED limits the number of sub-problems

to solve. Each of these algorithms has its usefulness for extreme values of e. For instance,

when the cost of computation is zero, it is easy to see that PLAN ALL is rational and achieves

-. 0



the minimum expected cost. When the cost of computation is high, RANDOM-DIRECTED is

rational since it is the policy that achieves the minimum expected cost. In Figure 3-3, there

is a transition point labeled e*, which indicates the change in dominance of the PLAN ALL

strategy (lower cost is better) to that of the RANDOM-DIRECTED strategy. For this particular

case, the switching point, the intersection of PLAN ALL and RANDOM-DIRECTED, occurs at

E* = 0.375. This suggests that one possible way of selecting strategies is to select PLAN ALL

when computation costs are below E* and to select RANDOM-DIRECTED otherwise.

The following section discusses the formulation of the metalevel planning problem as

an MDP and establishes the existence of metalevel policies that perform better than the e*

switching policy suggested here. When the MDP is solved exactly, it automatically generates

the best policy or algorithm at selecting computations such that bounded optimal behavior

is achieved for each value of e.

3.4 Metalevel Planning as a Sequential Decision

Making Problem

The approach taken in this thesis for solving the metalevel planning problem is, in essence, to

treat it as a sequential decision problem [32] in the space of partial plans and planning time.

Sequential decision making refers to the act of making a sequence of decisions to determine

the actions to take in the environment. The goal is to determine the "best" course of

action, where "best" usually refers to maximizing the utility of taking each action. The

decision making is described as sequential since actions taken at any step can influence the

environment, the agent's internal state, and the possible choices of action in the next step.

Figure 3-4 shows an example of the metalevel planning problem for the problem in Figure

3-1 as a sequential decision making problem. At each stage, the metalevel needs to make a

decision as to which sub-problem to solve. Solving the corresponding sub-problem yields an

outcome, which reveals new information. This process is repeated in the subsequent stages.

In Figure 3-4, s denotes the initial computational state. The diamonds labeled spi

represent the set of possible actions that can be taken at each state. Suppose that action

sp1 is selected. This results in a stochastic outcome yielding state s' with probability p

and state s" with probability 1 - p. This process continues until, the Exe action is chosen,



Outcomes

Figure 3-4: The 4 arc problem metaplanning problem as a sequential decision making
problem.

allowing for the transition into a terminal state, sterm. Though the figure shows only one

trajectory through the decision space, the dotted lines represent the other possibilities.

A desirable output for an automated sequential decision making system is a policy for

making decisions. As discussed in [32], a plan is the simplest type of policy, where the

agent executes the same actions regardless of information it receives, like the open-loop

strategies of the previous section. Ideally a policy would condition the next action upon

the current state of the agent. In the context of control systems, this difference is akin

to open-loop versus closed-loop control. The sequencing of a list of decision procedures to

run, as in Etzioni [18] is an example of an open-loop plan, whereas the metalevel policies

generated in this thesis are closed-loop policies. These closed-loop policies can be thought

of as algorithms that prescribe the computational actions an agent should take.

Sequential decision making problems may, in general, be placed into two categories,

planning and reinforcement learning. Planning occurs when a complete model of the en-

vironment is given in advance and the optimal policy is derived from this information. In

reinforcement learning, the model of the environment may not be known in advance or

difficult to work with directly. Here, the policy is learned by the agent while it is actively

exploring the environment. Under the circumstances of limited rationality, generating a

policy in real-time while having to learn about the environment may not be viable due

to the cost of learning during planning. For this thesis, it is assumed that the metalevel



environment is known to the agent as part of the problem specification. In cases where

the environment is unknown, additional effort is expended off-line to learn an appropriate

model. Models that are to be learned or given should accurately reflect the utilities and

probabilities that can result through the computation of sequences of sub-problems. The

following section discusses this point in more detail.

3.5 Planning as a Markov Process

This section introduces the notion of how planning can be modeled as a stochastic process

and, in particular, as a Markov process. A stochastic process X = {X(t), t c T} is a collec-

tion of random variables such that for each t in the set T, X(t) is a random variable. If T is

a countable set, then the process is called a discrete-time stochastic process [38]. A Markov

process or Markov chain is defined as a stochastic process where the conditional distribution

of a future state is dependent only on a finite history of past states. Mathematically, an

nth-order Markov chain is defined as

P(Xt+1|Xo:t) = P(Xt+IXt-(n--1):t), Vt, (3.1)

where Xt+1 is the random variable representing the next state and XO:t is the complete

history of states up to t. The simplest version is the first-order Markov process, where the

conditional distribution of a future state depends only upon the current state,

P(Xt+1|Xo:t) = P(Xt+1|Xt), Vt. (3.2)

The outcome of a complete plan as well as the outcome of a single sub-problem can be

considered a random variable. Even though for any particular problem instance and any

deterministic planning algorithm the outcome is deterministic, by virtue of the fact that

the problem instances are drawn probabilistically from the distribution provided by the

metalevel environment, the outcomes are random. Therefore, even though the problem is

solved by a deterministic algorithm, the outcome is uncertain until the problem is solved.

Finding the metalevel policy involves selecting which sub-problems to solve, thereby making

it a "decision process". Once a policy is determined, the policy itself is a Markov process,

where state transitions are only dependent on the previous state. The Markovian nature



of the decision problem is highly dependent upon the manner in which the states of the

problem are defined. The states of the metalevel MDP are defined in terms of partial plans,

represented as a tuple of the utilities (costs) for solved sub-problems (see Section 3.6).

In this thesis, the first-order Markov assumption is used exclusively, such that the evo-

lution of the partial plan state is only a function of the previous state. The next section

presents the theory of Markov decision processes.

3.5.1 Markov Decision Processes

This section presents the basic definitions and concepts underlying Markov decision pro-

cesses (MDPs). A Markov decision process is a Markov process with the addition of actions

and rewards. An MDP consists of a 5-tuple, {S, A, T, R, y}, where

" S: is the set of states.

" A: is the set of actions that can be taken, which may be state dependent.

" T: is the set of state transition functions describing how the state evolves. The tran-

sition function is typically a conditional probability distribution that can be written

as T(s, a, s'). This is meant to convey the probability of making a state transition

into state s' if the current state is s and action a is selected (i.e., P(s' | s, a)). This

is a direct consequence of the Markov assumption.

" R: is a reward function for describing the value of taking actions. The prevailing

effect of taking a computational action results in a cost. So, the reward function is

replaced by a cost function, C (i.e., a negative reward). In general the cost can be a

function of both the state and action, c(s, a).

-y: is a discount factor, that is often used for infinite horizon problems. Most of

the metalevel planning problems discussed in this thesis fall under the finite-horizon

variety so that y is not necessary and is set to 1.

The solution to an MDP is called a policy, ir, which is simply a mapping from states

to actions for all states in the MDP.

7r : S -+ A. (3.3)



A policy is a closed-loop control law which dictates, at each state, the action to take to

maximize reward (minimize cost). The policy acts as a closed loop controller for stochastic

problem domains by correcting for uncertainties in the problem. A common objective

function, assuming that costs are additive, is to minimize expected cost over a sequence of

decisions. The expected cost of a state, s, is given as V(s). Under the optimal policy, the

optimal value function, V*(s), is given by the Bellman equation [39],

V*(s) = min(c(s, a) + -y [ T(s, a, s') V* (s')), Vs E S. (3.4)
s'ES

A policy that satisfies Equation 3.4 is called an optimal policy, denoted 7r*. For the

optimal policy, Equation 3.4 must be satisfied for all states, and not just a particular state

since the value at state s depends on the value of the states s', which in turn depend on

the value of the subsequent states that can be reached. This defines a recursive relationship

between stages of the decision making problem. For shortest path MDPs, there is at least

one terminal state, whose value V(sterm) is known. Then according to the principle of

optimality [5], this value can be used to backup the values of the previous stages. The

principle of optimality simply states that the optimal policy for the remaining stages is

independent of that of the previous stages and is a consequence of the Markov assumption,

which is a useful realization that allows for the backwards stage-wise solutions of MDPs.

Bellman's equation is not a single equation, but really a system of equations (one for

each state). There are a variety of.ways to solve for optimal policies, two of which are

presented in the following subsection.

3.5.2 MDP Solution Methods

Two iterative approaches commonly used to solve for the optimal policies in MDPs are value

iteration and policy iteration [39]. Value iteration consists of solving the Bellman equation

locally for each state s for V(s) such that each local solution is called a Bellman update,

or a back-up. This process is repeated until convergence. While the metalevel MDPs in

this thesis mainly fall in the category of finite-horizon problems and will converge finitely,

in general, the convergence to optimality of value iteration is guaranteed in the limit of

Bellman updates being applied infinitely often.

For discounted problems, value iteration has the property [39] such that if the max-norm



of the value function of the current iteration and the last iteration is no more than '(1-'Y)

then the difference between the current value and the optimal value is no more than epsilon.

In this case, using the current value function to determine the policy will result in a value

loss of no more than . The value iteration algorithm is given in Algorithm 1.

Algorithm 1: Value Iteration

input : {S, A, R, T, 'y}, the MDP. c, an error tolerance for the value function.
local : V,V' vectors of value functions. 6 the maximum difference in values

over all states.
output: r the resulting policy. V the resulting value function.
begin

V +- 0;

repeat
V' +- V;
for s E S do

V(s) <- mina(c(s, a) + 7 Ess T(s, a, s')V(s'));
end
6 +- max(6,| V - V' Imx);

until 6 <
end

While value iteration focuses on using the value function to obtain the optimal policy,

policy iteration can be seen as a way to work with the policy directly. Policy iteration

assumes an initial policy, 7r from which a value function, V", based on the policy can be

determined. The first stage of policy iteration is called policy evaluation, since it evaluates

the value function for a given policy. Policy evaluation occurs by solving the system of n

linear equations with n unknowns given by the Bellman equation (one for each state). Exact

policy evaluation occurs in 0(n 3) time. For large state spaces this may be prohibitive and

the policy evaluation step can be implemented as a simplified version of value iteration,

shown in Algorithm 2. The next stage is called policy improvement, whereby the current

policy is updated per equation (one for each state) according to the current state of the

value function. As opposed to value iteration, policy iteration is guaranteed to terminate

finitely since each step guarantees an improvement and there are only a finite number of

policies, |AlISI. Each step of the value iteration algorithm can be seen as taking one sweep

of policy evaluation followed by policy improvement.

These are by no means the only methods for solving MDPs, as they are the subject of

ongoing research. Other approaches involve both exact and approximate methods. Value



Algorithm 2: Policy Iteration
input :{S, A, R, T, 7y}, the MDP. c, an error tolerance for the value function.
local V,V' vectors of value functions. 6 the maximum difference in values

over all states.
output: -r the resulting policy
V <- 0;

T +- A:
repeat

begin Policy Evaluation
repeat

V' <-- V ;
for s E S do

V(s) +- mina(c(s, a) + 7 Es'Es T(s, a, s)V(s));
end
6 +- max(6, V - V' |max);

until 6 < ;

end
begin Policy Improvement

policy-stable <- true;
b <- r;
for s C S do

r(s) <- arg mina(c(s, a) +- 7 E,,S T(s, a, s')V(s'));
if b # -r(s) then policy-stable +- false;

end
end

until policy-stable



iteration is primarily used for solving the MDP formulations found in this thesis. In Chapter

4, a heuristic approach to solving the metalevel MDP will be an approximate form of

policy iteration [8]. In Section 3.6, the specific details involving the formulation of the

metaplanning problem as an MDP are presented.

3.6 MDP Formulation of the Basic Metalevel Plan-

ning Problem

This section presents a description of the metalevel problem in terms of Markov decision

processes presented in the previous section. Recall that the objective of formulating the

metalevel planning problem as an MDP is to generate a policy to act as a closed-loop feed-

back controller for computational actions (solving sub-problems). The next computational

action selected is conditioned on the current state of computation. As will be shown shortly,

the state of computation will be represented as an unordered history of solved sub-problem

outcomes. The following assumptions regarding the properties of the metalevel planning

problem are made in order to take advantage of the available machinery for solving MDPs:

e First-order Markov property and sub-problem independence: is the property that the

sub-problem outcomes are statistically independent of one another. This indepen-

dence allows for the first-order Markov assumption to hold given the state description

of the metalevel MDP. Though there may be problems where the first-order assump-

tion is violated, it can potentially be recovered with the inclusion of additional state

variables.

9 Time cost separability: is the property that the cost of time can be considered in-

dependent of sub-problem outcomes and is additive. This property allows for the

reward (cost) function of the MDP to be defined.

e Discrete and static sub-problem outcomes: is the property that solving a sub-problem

can possibly result in a finite set of discrete outcomes. Once a sub-problem outcome

has been determined, it is assumed that it remains fixed for the remainder of the

pla;nning episode. This is an important property that serves as a stepping stone for

the heuristic solution method developed in Chapter 4.



* Feasibly Executable: is the property that ensures that a complete plan to the goal

can be generated from the set of solved sub-problems. Prior to the availability of a

complete plan, plan execution cannot take place. That is, partial plans that do not

reach the goal state cannot be executed by the agent. Planning must be completed

prior to plan execution, and no additional planning takes place during execution. In

Figure 3-1, having solved the sub-problems for arcs SA and AG makes the resulting

plan feasibly executable. Though the agent could conceivably execute the partial plan

as a result of having computed just SA, this is not allowed.

The following subsections detail all of the required elements (states, actions, costs, and

transitions) for specifying the metalevel decision problem as an MDP.

3.6.1 Information States

The state, s, of the metalevel MDP consists of a vector representing all that is known about

the current problem, effectively summarizing the current state of computation. The state

will be represented by an information state vector, which encodes the state of computation

as an |SPI-tuple, where |SPI is the number of sub-problems in the base-level problem. Each

element of the information state vector encodes whether a sub-problem has been solved and,

if so, the cost of the outcome, such that

s = Is I s C- RISPI}, (3.5)

where s is a tuple of real-valued elements of length equal to the number of sub-problems, S

is the set of all such tuples, and si is used to indicate the information regarding sub-problem

i within a specific tuple. Although sub-problem outcomes (costs) can in general be continu-

ous, as indicated in Equation 3.5, this thesis will deal only with the discrete representation

of sub-problem costs. Continuous sub-problem costs can be suitably discretized into a finite

number of bins to meet this constraint. Each element of the information state vector holds

the outcome values of solved sub-problems. When a sub-problem has not yet been solved,

a place holder symbol, ?, is used as an indicator.

For discrete MDPs where sub-problem costs can take on m discrete values, such as in



the 4-arc problem, the information state is also given as a tuple, but with discrete elements,

S = {s I s C- {?, bi,..., bm}|SP|, (3.6)

where the {?, bi, .. ., bm} is used to indicate the set of m discrete outcomes of a sub-problem,

bis are the particular outcome values, and the exponent is used to indicate that the state s

consists of the cross-product of |SPI sub-problem outcomes. For example, the information

state for the 4-arc problem is composed of the cross-product of what is known about the four

sub-problems. For each sub-problem there are three possible values of knowledge {0, 2, ?}.

Either the sub-problem cost is known, in which case the sub-problem is represented as a 0

or a 2 accordingly, or the sub-problem has not been solved, and is represented by a ?. The

set of all information states for the 4-arc problem is given in this notation by

S = {0, 2, ?}4 representing {{0, 2, ?} x {0, 2, ?} x {0, 2, ?} x {0, 2, ?}}. (3.7)

The specific information state, s, of having solved sub-problem 1 in Figure 3-1 and obtained

an outcome of 0 with no knowledge of the other outcomes is represented as,

s = {0, ?, ?, ?}, (3.8)

where the 0 in the first element indicates that sub-problem 1 currently is known to have

value 0, and nothing is known about the remaining sub-problems. While the information

states represent states of computations, a special terminal state, Sterm is added to the set

of information states to represent the state of having solved for and executed a plan. A

transition to the terminal state is only allowed when a feasibly executable plan can be

generated with the set of sub-problems solved thus far. The set of information states where

plan execution may occur is referred to as the feasibly executable set FE, where FE C S.

For the problem in Figure 3-1,

FE C {{0, 2} x {0, 2, ?} x {0, 2} x {0, 2, ?}} U {{0, 2, ?} x {0, 2} x {0, 2, ?} x {0, 2}},

where the first set of terms is the set of information states where the top path, SAG, is

feasibly executable, while the second set represents states where the bottom path, SBG, is



feasibly executable. The feasibly executable set of states is given by the union of these two

sets.

3.6.2 Action Set

The set of actions allowed in the metalevel MDP are either to compute a particular unsolved

sub-problem, or to execute the current best plan when it is feasibly executable. The set

of computational actions is given by Acomp and the set of execution actions (there is only

one) is given by Aexe. Let a3 be the computational action which solves sub-problem j and

aexe be the physical action which executes the best path found thus far. Then the set of

possible actions at each state s is given by

A(s) = Acomp Vs E S (3.9)
aexe Vs E FE

In general problem domains, the value of sub-problems outcomes may change with time.

For example, the time-critical targeting problem of Chapter 1 has missions that can expire

with a deadline, forcing the value of the mission to zero once the deadline is exceeded. This

effect is generally not considered in this thesis, where the assumption is that information

is static but unknown a priori. The consequence of static information is that once a sub-

problem has been solved, the solution and corresponding cost stays fixed for the duration

of the problem3 . This eliminates the need to ever compute a sub-problem more than once,

such that

A(s) = aj VsE Sandj E SPandsj =? (3.10)
aexe Vs E FE

indicating that a sub-problem j is to be computed only when its cost is currently unknown.

3.6.3 Cost Function

The overall metalevel MDP cost function consists of two components. The first component

is the cost of solving sub-problems, ca. The second component is the cost of executing the

final plan (referred to as the path cost below), determined from the minimum cost plan

3However, as will be shown in Chapter 6, the MDP formulation can be extended to include hard
temporal constraints.



that can be generated from solved the set of sub-problem outcomes as given by state s. The

metalevel MDP cost function is specified as

Cs a)= Ca Vs E S, a E Acomp (3.11)
PC (s) Vs E FE, a E A,_,e

where ca is the constant cost of solving a sub-problem, and PC(s) is the minimum path

cost that can be generated by the master level given the current information state. For the

4 arc problem, the information state represented by {0, 2,0, 2} yields a minimum path cost

of 0. Both the top and bottom paths are feasibly executable, but the master level is able

to use the set of sub-problems to select the best one, which in this case happens to be the

top path.

For the basic metalevel MDP, where the additive time cost separability assumption

holds, the cost of computation for computing sub-problem a, ca, can be determined for a

general time cost function TC(t) as the difference between the time cost function evaluated

at the current time t and at a later time, t + E[tc]. It is assumed that E[tc] is the expected

time for solving sub-problem a.

ca = TC(t + E[te]) - TC(t). (3.12)

Typically the time cost function, TC(t), used in this thesis is given as a linear function

of time with a y-intercept of zero and is therefore defined entirely by its slope, E. This

representation allows the cost of time to be interpreted as a marginal cost of computation.

The units of E are given by utility (cost) per unit time. In this case, the cost of computation

of Equation 3.12 can be written as:

ca = TC(t + E[tc]) - TC(t) (3.13)

= e(t + E[tc]) - E(t) (3.14)

= eE[tc]. (3.15)

Although the formal cost of time function is eE[tc], E will be referred to informally as

the cost of computation when the expected computation time for each sub-problem is the



same.

Assuming that the cost of time is of this form, e is an input to the metalevel MDP, and

is a measure of the relative urgency of obtaining a solution. When e is 0, computation is

free, and the metalevel controller should take as much time as necessary to determine the

optimal solution, since there is no utility loss with planning. The higher the value of e, the

more cost is associated with the time spent solving sub-problems. For high e, the metalevel

controller should restrict it computations to find a solution as quickly as possible.

3.6.4 Transition Function

The transition function represents the probabilistic effects of taking computational actions

and describes the probability of the next information state given the selected action. The

goal of the metalevel policy is to achieve bounded optimality over a set of problem instances

determined by the metalevel environment. Recall that the metalevel environment is a prob-

ability distribution over the set of possible base-level problem instances. An example of the

metalevel environment for the 4 arc example is shown in Figure 3-2, where each problem

instance occurs with equal probability. This distribution determines the relative frequencies

of the occurrences of sub-problem outcomes. The transition function of the metalevel MDP

is used to represent the probability distribution over the outcomes of a solved sub-problem.

The transition from any information state in FE to sterm is assumed to occur with certainty.

That is, the aexe is guaranteed to take the agent to the goal state.

P(Sterm I s, a) = Vs E FE, a E Aexe (3.16)
0 otherwise

The result of a computational action may in general affect the information of several sub-

problems if they are defined in a way that does not make them statistically independent.

For instance, if solving a sub-problem yields information that changes the outcome prob-

abilities of another sub-problem, then they are not statistically independent. In general,

this does not pose a significant theoretical problem to this formulation, since the transi-

tion function is state dependent. So long as the probability of the next information can

be described as conditionally dependent only on the current information state (first-order

Markov assumption), this model can still be applied.



However, if the sub-problems are assumed to be statistically independent of one another,

as they are here, then the effect of a computational action will only affect the information

corresponding to the sub-problem being computed, making the transition function signifi-

cantly simpler. That is,

P(s' I s, a) = P(sj), (3.17)

where P(sj) is the a priori probability distribution over the range of cost outcomes for sub-

problem j. This can be determined directly from the model of the metalevel environment.

The metalevel environment of the 4 arc problem, shown in Figure 3-2, indicates that for

each sub-problem, there is equal probability of obtaining either of the two binary outcomes.

That is P(s,) = 0.5 for all j.

3.6.5 Policy

The optimal metalevel policy, 7r* (i.e., the metalevel controller), for the discrete problem

formulation is determined either through Algorithm 1 or Algorithm 2 and will provide a

mapping of the current information state to the optimal action. The resulting policy is

largely influenced by the marginal cost of computation E. Intuitively, for an e of zero, the

optimal metalevel planning policy should be expected to be the same as the PLAN ALL

strategy, where information for all sub-problems is gathered, resulting in a final solution

that is optimal at the object-level. When computational costs far exceed individual sub-

problem costs, the best policy may be to do nothing. However the constraint of feasible

execution forces some amount of computation so that enough sub-problems are solved to

generate a feasible plan for execution. It should be apparent that an optimal satisficing

approach is bounded optimal under the conditions of high computational costs.

3.6.5.1 Bounded Optimal Policies

This subsection shows that the exact solution of the metalevel planning MDP produces op-

timal policies that are a function of the metalevel environment and the cost of computation.

For a given metalevel environment, the optimal metalevel policies generated by the MDP

formulation are functions of the cost of computation, E. The results of metalevel planning

for the 4 arc problem is used to illustrate that the metalevel MDP formulation generates

bounded optimal policies.



An agent program p is bounded optimal, when it achieves the highest expected perfor-

mance over the metalevel environment, E, given a particular agent architecture, A:

p* = arg max U(p, E, A), (3.18)
pEP

where P is the set of all agent programs that can be generated within a given agent archi-

tecture, and p* is the bounded optimal agent program. In the MDP model, agent programs

take the form of policies and agent architectures correspond to the hierarchical problem

decompositions. In direct analogy to Equation 3.18, the optimal policy, 7*, is the one

which achieves the best expected performance for a given metalevel environment, of all the

possible policies in II, the set of policies that can be generated within a given problem

decomposition:

*= arg max U(7, E, A, e). (3.19)

The solution to the metalevel MDP for a specific value of e will result in the generation

of the bounded optimal metalevel policy, 7r*, for that particular value of E as indicated in

Equation 3.19. For the problems considered in this thesis, the value of E is assumed to be

part of the specification of the metalevel environment.

Plotting the expected cost of the bounded optimal metalevel policy over the continuous

range of E, yields a piecewise linear, concave curve composed of the dominant (minimum

cost) policies over the range of E. Concavity is ensured since the minimum function applied

over a set of piecewise linear curves, representing the performance curves of the set of

bounded optimal metalevel policies, is a concave function [7] (pgs. 16-17). This can be seen

in the Figure 3-5 which plots the expected performance of four metalevel planning policies

over the range of E. Three of them achieve bounded optimal performance over specific

ranges of e, while the fourth, labeled INTERMEDIATE 2, is a sub-optimal policy dominated

by the others. For this problem, it has no use, but is shown to illustrate that aside from

the three dominating policies there exist other inferior policies. The existence of other

complete policies also illustrates the danger with the approaches in Chapter 2 that assume

the availability of an a priori set of decision procedures. The onus is on the designer to

explicitly identify and include the best set of decision procedures. If INTERMEDIATE 2 were

included but INTERMEDIATE 1 were somehow not identified as potential decision procedure,

then the performance of the resulting system suffers. By allowing the computational actions
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Figure 3-5: The performance of four different policies for the 4 arc planning problem
as a function of E. PLAN ALL, the dashed line is the best policy for E = 0 and
RANDOM-DIRECTED is best when E > 0.75. The remaining lines represent other policies.
The thicker line, indicated by INTERMEDIATE 1 is the performance of the optimal
metalevel policy generated by solving the metalevel MDP for 0 < c < 0.75. The
thinner line INTERMEDIATE 2 is the performance of a sub-optimal policy dominated
across the whole range of c by the others.

to consist of individual sub-problems, the solution to the metalevel MDP automatically

yields the dominating policies.

The optimal metalevel policy is clearly acting rationally in the extreme cases of zero and

high computational costs. As confirmed by intuition, the PLAN ALL is the best policy for

zero computational costs, and RANDOM-DIRECTED is the best policy for high computational

costs. Recall that in Section 3.3, it was noted that one way of determining the strategy

for intermediate values of E was according to a simple switching policy which selects PLAN

ALL or RANDOM-DIRECTED depending on which side of e* the true cost of computation lies.

For intermediate values of E, the optimal metalevel policy differs from both PLAN ALL and

RANDOM-DIRECTED, and is shown in Figure 3-5 as INTERMEDIATE 1. This policy is generated

automatically as a result of solving the metalevel MDP exactly. This made possible the

discovery of a new closed-loop feedback controller that is optimal for the range of 0 <

E < 0.75. This new policy results in a performance improvement over the simple switching

policy.

The improvement can be viewed from the perspective of the number of sub-problem

computations saved. Let A = min{VPLAN ALL, VrandOm} - V* be the difference between



the minimum achieved by the PLAN ALL and RANDOM-DIRECTED strategies and the opti-

mal metaplanning policy. When the cost of computing sub-problems is given by e, then

average number of sub-problems saved is given by $. For example, the average number of

sub-problems saved by INTERMEDIATE 1 over the switching policy at E* is exactly 1.

The three separate linear regions, representing the 3 separate dominating policies in

Figure 3-5 are partitioned by E' and E". For this simple problem, the regions are easy

to delineate, since the first and last regions consist of the lines representing PLAN ALL

and RANDOM-DIRECTED respectively. The boundaries for the middle region are given by

0 < E < 0.75.

The expected cost function of an entire policy is given by the expected cost function

of the initial "unknown-information" state, {?, ?, ?, ?}. By determining these functions for

each policy, the boundaries can be found by identifying the intersections of these curves.

In this particular case the expected cost function of the optimal policy in the range of

0 < e < 0.75 is given by

E[INTERMEDIATE 1] = 3E + 1.25. (3.20)

The outer boundary value for epsilon is determined by the finding the intersection of lines

representing the performance E[INTERMEDIATE 1] and E[RANDOM-DIRECTED], which hap-

pens to be 0.75. In fact, INTERMEDIATE 1 is optimal in the case where c = 0 as well.

3.6.5.2 Properties of Bounded Optimal Metalevel Policies

The two main properties of bounded optimal metalevel policies for the MDP formulation

are given below.

" Tree-structured: The optimal metalevel policy is in the form of a tree of bounded

degree since it has been assumed that there are a bounded number of outcomes that

result from each computational action.

" Bounded depth: The optimal metalevel policy tree is of finite depth, bounded by the

number of sub-problems.

These properties prove useful in the development of the heuristic approach in Chapter

4. Typically, MDP policies can be stored in the form of a lookup table, where for each state

entry, there is a corresponding entry for the best action to be taken. While, in general, MDP



policies are not tree-structured (because states can potentially be revisited), the optimal

policies of the metalevel MDP are. The main reason for a tree structured policy is that

each state can be visited at most once by any policy. Recall Figure 3-4, which notionally

shows the entire metalevel MDP, consisting of all states and all actions. Also recall that

a policy maps each state of the MDP to a single action. The figure shows four possible

computational actions, {sp1 , sp2, sp3 , sp4}, at the root node, s, which represents the initial

information state of having no knowledge of the problem instance being solved. Solving the

MDP yields a policy that maps the best action to state s. Assume that the best action at

s is to solve the first sub-problem, spi. Taking action spi can yield two possible outcomes

represented by s' and s". Each of these states represents a distinct state of computation

(e.g., the outcome of spi is 0 or 2). Combined with the fact that sub-problem outcomes are

assumed to be fixed once they have been solved, neither state s' nor s" will ever need to be

revisited by the remainder of the policy. This continues by induction and is true of every

state in the policy. Because each state visited by the policy can only be visited once, the

policy is a graph that contains no simple cycles [371 and is, by definition, a tree. The policy

tree is of bounded degree since it is assumed that there are a finite number of outcomes

for each sub-problem. The policy tree, the tree representing the metalevel MDP policy, for

the problem represented in Figure 3-4, consists of a tree of degree two, since there are two

possible outcomes for solving each sub-problem.

Finally, the policy tree is bounded in depth by the number of sub-problems. This is due

the fact that each sub-problem need only be computed once, implying that each branch of

the tree can, at most, consist of a computation sequence which solves every sub-problem.

3.6.6 Worst Case Time and Memory Analysis

Although policy iteration has the worst case running time of O(jS|3), which is polynomial

in the size of the state space, as with most MDP problems the curse of dimensionality [5] is

hard to avoid. The curse of dimensionality states simply that the size of the state space is

exponential in the number of state features. For the discrete form of the metalevel planning

problem the state features correspond exactly to the number of sub-problems, ISPI, such

that the number of states is

|SI = O(MISPI), (3.21)



where M is the largest number of possible discrete outcomes for the set of sub-problems,

including ?, the unsolved sub-problem indicator.

The worst case storage requirements for the transition matrix in terms of a table of

transition probabilities, is O(IS2), which is also exponential in the size of the number of

sub-problems. It is this limit that tends to be more restrictive. Even for sub-problems with

binary outcomes where ISPI = 16 there are over 43 million states, easily exceeding the

available memory on desktop PCs. Chapter 4 introduces a method that takes advantage of

the tree-based structure of the metalevel planning polices to allow for the solution of larger

problems that would be computationally intractable when solved as exact MDPs.

3.7 Discussion

The approach of framing the metalevel problem as a Markov decision process is applicable

to many of the other problem formulations mentioned in Chapter 2. Einav and Fehling

[17] presented a model that is very similar in nature to the one here, but differs in that

they assume the existence of a set of individual uninterruptible solution procedures for

every problem instance which will return a complete solution if one exists. In contrast,

this model assumes that a sequence of sub-problem solutions must be combined to form a

complete solution. Barnett [3], who also uses complete methods, discusses the importance of

determining the conditions under which resources are spent on "method selection", where

a method is a complete decision procedure. Considering the effects of method selection

and execution can result in appreciable savings in cost. He presents some simple examples

involving two independent methods which satisfy the same goal with different probabilities

of success and expected costs. If a method is tried and is successful, then the other is not

executed. He analyzes the utility of several strategies. One result of this analysis is that

the order in which the methods are applied will affect the utility of the outcome just as

the selection of sub-problems to solve will affect the utility of the final plan. He examines

several cases which mirror those discussed in Subsection 3.3.

1. Expected cost of an ordering. (Equivalent to COMMIT, open-loop)

2. Coin flip. (Equivalent to RANDOM-DIRECTED strategy)

3. Best-Order Criterion (Equivalent to PLAN ALL and is the best order to activate the



methods when all information is known a priori. This is the same result as in [44]).

From this calculation, the expected value of knowing the information a priori can be

calculated and compared against the previous strategies.

4. Situation dependency. (Metalevel control policy) metaplanning)

Barnett's conclusion, just as that of this thesis, is that the "cleverness in selecting the

taxonomy" is an important factor for efficiently selecting the control mechanism. That

is, having situation-dependent data (e.g., feedback from sub-problem outcomes) gives an

advantage over just knowledge of expectations. He states that being able to identify the

current situation, just as the metalevel policy does, will aid in the decision as to which

method to attempt, if the methods have different probabilities of success under different

situations.

The identification of the specific problem instance is accomplished by the metalevel

controller through being able to select computations at the sub-problem level and use it to

determine the next action, an ability that is not available to complete decision procedure

approaches. In order for the complete decision procedure approaches to be equivalent to this

approach, they would need to specify a priori all of the possible algorithms expressible by

the class of policies of the MDP formulation. This is clearly impractical since, the number

of policies is exponential in the number of information states. One other infeasible approach

would be to exhaustively store the optimal solution to every possible problem instantiation

such that the "right" solution is invoked when that problem instance is encountered. One

objection to doing so is the shear amount of computational effort required to solve every

problem instance a priori.

Another objection is based on the informational assumptions for the metaplanning prob-

lem, which states that the agent does not know which problem instance it is given. There-

fore, even given the set of optimal solutions, the agent still must solve the problem of

efficiently identifying the current problem instance in order to apply the correct one.

The advantage of the MDP formulation is its ability to automatically discover and

determine the appropriate policy to use for the situation. This was demonstrated by the

set policies generated in Figure 3-5 showing that the generated metalevel controller behaves

as the PLAN ALL strategy does when computational costs are zero, and converges to the

RANDOM-DIRECTED strategy when computation costs are high. At intermediate costs, the



generated policy performs better than both of them.

3.8 Chapter Summary

This chapter discussed the formulation of the metalevel planning problem as a sequential

decision problem, where the objective is to determine a policy for rational decision making

under limited computational resources. The metalevel planner generates a policy that is a

function of the explicit outcomes of solving sub-problems, the problem decomposition, and

the cost of time. These policies are equivalent to specially developed algorithms for a given

distribution over a set of problem instances and cost of time function. The exact solution of

the metalevel MDP is hindered by the problem of size of the state space explosion limiting

the size of solvable problems. However, the benefit of the MDP framework is that once

an optimal policy has been generated it can be repeatedly applied to the distribution of

problem instances for which it was generated and will continue to be optimal. In practice, a

domain expert will be needed to select the correct policy to execute by accurately identifying

the cost of time for the situation at hand. As discussed previously, the optimal metalevel

policy for a given distribution of problems is a function of the cost of time, when it can

be represented explicitly under the separability assumption. The next chapter shows that

the MDP formulation the metalevel planning problem of this chapter lends itself to an

approximation algorithm using decision trees. Decision tree learning is used to reduce the

state space of the metalevel planning problem, allowing for the solution of larger problems

without sacrificing much in terms of metalevel controller performance.



Chapter 4

Decision Trees and Approximate

Policy Iteration

In Chapter 3, the basic metalevel problem was presented and formulated as a discrete

Markov Decision Process. As explained, the main deterrent to implementing the exact

formulation is the size of the state space, which is an exponential function of the number of

sub-problems. This exponential explosion is due to representing the state of computation of

the metalevel MDP by the information state, which captures the known information about

solved sub-problem outcomes. This representation allows for the metalevel controller to

tightly control the next computational action given the results of previous computations.

In this chapter, the same representation of the state is maintained, but the number of

states considered in generating metalevel policies is drastically reduced through heuristic

means via what is referred to as decision tree learning. Decision tree learning is embedded

within approximate policy iteration to learn approximate metalevel policies that perform

well without solving the metalevel MDP exactly. Thus, metalevel problems, whose exact

solutions are computationally intractable, can be solved using the approach of approximate

policy iteration with decision trees outlined in this chapter. This approach offers a variety

of advantages over the exact MDP method, as well as some new challenges.



4.1 Policies as Decision Trees

In Chapter 3, it was shown that metalevel planning policies can be represented as trees that

are finite with a depth no greater than the number of sub-problems. The value iteration ap-

proach to solving the metalevel MDP described in Chapter 3 amounts to searching through

the set of all possible policies representable by the MDP formulation and selecting the one

that results in minimum expected cost. In this chapter, rather than searching through the

entire space of possible policies (difficult due to the sheer size of the search space) and

generating a single optimal policy, a metaplanning policy is generated and improved upon

over subsequent iterations. This process is similar in nature to policy iteration and can be

thought of as a form of approximate policy iteration (API) [6]. Approximate policy itera-

tion consists of a policy evaluation step, which learns a functional approximation to the true

value function based on sampling trajectories for a "representative" set of states, generally

determined through a combination of heuristics and simulation. This approximate policy

is then improved upon in the policy improvement step. In this chapter, decision trees are

the principle structures to be used both to represent the policy as well as to approximate

the value function. The next subsection introduces decision trees and shows how they are

generated.

4.1.1 Decision Tree Learning

Trees are natural structures that arise in a variety of AI applications. A tree is defined

as an undirected graph with no simple cycles [37]. It is considered binary when there are

two child nodes for every internal node. A decision tree is a tree structure, used either

for classification or regression that is trained to learn how to classify, or predict, outputs

given a set of input features. There are a variety of decision tree learning algorithms (see

[36] for a survey). The algorithm used here follows closely from Breiman's Classification

and Regression Trees (CART) algorithm [11]. In this thesis, decision trees are used for

the purposes of regression over the value function, of the metalevel MDP given the set of

feature values, which correspond to the costs of individual sub-problems. Decision trees

will be used to learn which sub-problems are the best predictors of the total expected cost

(including computation costs) of plans for a specific problem domain. Identifying these sub-

problems for a particular metalevel environment will help to focus the search to generate



good metalevel control policies without having to examine every state as in Chapter 3. The

associated decision tree is referred to as a regression tree.

The following discussion of decision trees is based on [20] and presents the CART al-

gorithm as used for regression. In regression trees, the feature values and response values

are numerical values rather than categorical. Consider the case where one wants to learn to

predict the output of a system given a set of input feature values. This is accomplished by

training a decision tree on pairs of data consisting of observed features and the correspond-

ing output of the system. Suppose that the training data consists of N entries, where each

data entry consists of a pair (x,y). The vector x consists of a vector of instantiated feature

values of length p, and y corresponds to the value of the response of the system given x as

the input. That is, for each i C 1...N the vector xi = (i 1, ...,xj, zip), where each xij is

the value for feature j in instance i.

For example, assume that in the system of interest, there is one feature, p = 1, which

corresponds to the ambient temperature. Suppose the error in the weight reported by a

certain scale is known to be sensitive to temperature and biased towards over-reporting the

true weight. Also suppose that many weighings have been performed in the past with the

same scale along with an accurate accounting of the error of the reported weight and the

ambient temperature. The index i of the input feature xi corresponds to the data point

of the ith weighing, where x is the recorded temperature and yj is the weighing error.

Figure 4-1 shows an example of a collection of past data points in the form of input/output

(temperature/weighing error) pairs.

Given the data, CART recursively makes binary splits in the feature space to partition

the input into regions of similar values. Specifically, the decision tree splits the data into

M regions R1 ... RM, where the response value in each region is modeled as a constant cm.

Letting I(x E Rj) be an indicator function that input vector x falls into Ri, the response

function f of the decision tree can be expressed as:

M

f(x) = 1 cmI(x c Rm)
m=1

This yields the value of the response when x belongs to region Rm. The evaluation criterion

of the best response is typically to minimize the sum of squares over the resulting split

regions, such that E(yi - f(xi))2 is minimized over the region i. The best choice of the



Cm's for this criterion is the average over all response values corresponding to an individual

region such that

i:xiECRm

What remains is to determine the partitions, Ri's, themselves.

The optimal binary partition in terms of minimizing the sum of squares is computation-

ally infeasible in general [20], and most algorithms resort to a greedy partitioning scheme.

The entire input space is initially assumed to be a single region. The algorithm then it-

eratively creates new regions by selecting an existing region and splitting it in two along

a single dimension, that is, along one specific feature. The selected feature is called the

splitting variable and the value on which to split is called the splitting point. Suppose that

the splitting variable is selected to be feature j along with a split point s. As a result the

data is split into two regions where:

Ri(j,s) = {X I X3 <; s} and R 2(j, s) = {X | X > s} (4.1)

All data entries where the value of feature j is less than or equal to the split point are

clustered into region R 1 and similarly for R 2. In order to choose the splitting variable and

splitting point, the objective becomes:

min[min (y -ci)2 + min (yi - c2) 2]. (4.2)
xiER1(j,s) C XiER 2 (j,)

The inner minimizations, given a splitting variable and split point, are the average responses

over the respective regions. The outer minimization is performed by iterating over all

possible splitting variables and split points and selecting the best one. Once the data is

split into two parts, this procedure is repeated for each individual region. Figure 4-1 shows

an example of a split created over the feature, x, representing the ambient temperature.

The output values, y, are clearly distinguished, depending on where each x falls with respect

to the splitting point. For this example, the decision tree for predicting y given x consists

of a single splitting node at the root with the splitting condition of x < 0.5 and two leaf

nodes corresponding to the prediction values of 1, when x < 0.5, and 3, when x > 0.5. That

is, if the ambient temperature is less than fifty degrees, the expected weighing error is +1

pound, and if the temperature is greater than fifty degrees the predicted weighing error is
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Figure 4-1: Example of a split in a decision tree, where S indicates the splitting
point. The training data shows the weighing error for a variety of temperatures. The
horizontal bars indicate the predicted weighing error on each side of the splitting
point.

off by +3 pounds, assuming that the temperature scale ranges from zero to one hundred

degrees. Any other splitting point in this case would lead to a larger sum of squares and

poorer predictions. For instance, if the split occurred at x = 0.25, assuming that the

ambient temperature is uniformly distributed over the interval of [0, 1] for each weighing,

the prediction would lose much of its accuracy for x > 0.25, since it includes a wider range

of weighing errors than the best split.

For this simple example, a new data point x' would have its corresponding weighing error

predicted by "dropping" it through the decision tree (i.e. evaluating all splitting conditions

until a leaf node is reached). If weight of the object was recorded when the temperature

was less than fifty degrees, the error is +1 pound and +3 pounds otherwise. Although

this example includes only a single split, this same procedure applies in the natural way

for larger decision trees. The decision tree learning algorithm, called treeGenO, is given in

Algorithm 3.

The input to Algorithm 3 is a set of training data as in the temperature/weighing

error pairs of the previous example and a parameter, splitmin, to indicate the number of

training samples that must be at a decision tree node to warrant further splitting. The

decision tree, given as T, is initialized as a single node and assigned a node index 1 for

identification. This node is set to be the current node, represented by the variable ID. This



Algorithm 3: The decision tree learning algorithm treeGeno
input x, a vector of instantiated feature values. y, a vector of corresponding

observed responses. splitmin, the minimum number of observations
needed for a split.

local numNodes is the number of nodes in the decision tree. ID is the
index of a node in the decision tree. XID, YID corresponds to the data
set at a given node index. Initially, this data set is comprised of the
full input. sizeO is a function that returns the number of elements in
a vector. findBestSplit(), finds the splitting value resulting in the
minimum sum of squares given a particular feature. splitVar,
splitVal, and splitErr represent temporary splitting variables and
values along with their resulting sum squared error. A "*" indicates
the best of these values. lChild and rChild indicate the left and right
child nodes of a split. createChildo creates a new node with an new
index, and assigns to it an appropriate (according the to the best
split) subset of the current data.

output: T, a decision tree consisting of a list of nodes. Each node has a
corresponding splitting variable, splitting value, child pointers and a
predicted output value.

begin
1 -

Y1 -
numNodes <- 2;
ID <- 1;

while ID < numNodes do
x- XID;

y YID-
prediction <- E[y'
if size(y') > splitmin then

splitErr* +- oo;
foreach splitVar do

[splitVal, splitErr] +- findBestSplit(splitVar, x', y');
if splitErr < splitErr* then

splitErr* <- splitErr;

splitVal* <- splitVal;

splitVar* splitVar;
end

end
iChild <- createChild((x'(i), y'(i)), i : x'(i, bestVar) < splitVal*);
rChild <-createChild((x'(i), y'(i)), i : x'(i, bestVar) ;> splitVal*);
T(ID) <- [splitVal*, splitVar*, iChild, rChild, prediction];
numNodes +- numNodes + 2;

end
ID <- ID + 1;

end
end



initial node holds the entire set of training data, since splits have not yet been performed.

If the number of training samples within the current node exceeds splitmin, potential splits

are considered. For the current node, each possible splitting variable is considered and the

function findBestSplit( is called to perform the calculations described in Equation 4.2 to

find the best splitting variable and value, splitVar* and splitVal* respectively. The data

in the current node is split accordingly, by partitioning it based on the splitting variable

and value, and passed on to each of its two child nodes. The child nodes, representing the

results of the split, are added to the queue of tree nodes to be considered. The current node

index is updated to the next unexpanded node, and the process is repeated until all nodes

have been considered for splitting.

The art of building decision trees involves, among other things, determining the size of

the tree, since a small tree will not capture the structural relationships that may be inherent

in the data, but a large tree will not generalize well. The most common procedure is to grow

the tree out to a large size. This allows the tree to take advantage of the potential utility

of a combination of splits, when a single split may not appear to be useful on its own. This

large tree is pruned according to a procedure known as cost-complexity pruning, (see [11]).

Cost-complexity pruning proceeds by performing a tradeoff in the size of the decision tree

against its predictive power. The original decision tree is sequentially pruned according to a

parameter a, representing the reduction of prediction error per leaf, to produce a sequence

of sub-trees. The performance of each sub-tree is determined on a test set or through cross-

validation, and the best sub-tree is selected as the final decision tree. It will be shown

that cost-complexity pruning is not used here, rather an MDP is formulated to prune the

decision tree.

From the above discussion, it is clear that the decision tree algorithm is greedy in the

sense of choosing a single variable and splitting point at each iteration to minimize imme-

diate squared-error of splits. Global tree optimization for classification has been addressed

by Bennett [4] but requires the user to specify the initial tree structure. It will be shown

that the structure of the decision tree is part of optimization problem that must be solved

since the structure determines the expected cost of computation for a metalevel policy.

Thus far, the discussion of decision trees has dealt with regression. Limited rationality

has also been recognized in the case of classification problems. The goal of classification is

typically to generate decision trees that minimize the cost of predictive error, but does so



without considering the costs of performing the tests' involved in classification. In contrast,

Ling et al. [31] consider the case where the objective function involves minimizing the sum

of the test costs and the misclassification costs. A parallel to Ling's work can be drawn to

the work in this thesis, namely, the test costs correspond to the costs involved in solving

sub-problems for the metaplanning problem.

Turney [47] has developed a genetic algorithm based approach to generate decision trees

for cost-sensitive classification. The cost of performing tests is, according to Turney [48],

strikingly overlooked in machine learning literature. He concludes that tests should not be

performed if their costs exceed the misclassification error costs.

Greiner et al. [19] also consider cost-sensitive "active classifiers". A passive classifier

does not consider the possibility of performing additional tests to obtain missing information

and active classifiers do. They present a probably-approximately-correct (PAC) algorithm

that can make such decisions efficiently when the number of additional tests is limited.

Zubek and Dietterich [52] also consider the case of cost-sensitive learning problems and

state that it "is interesting to note that the problem of learning good diagnostic policies

is difficult only when the cost of testing is comparable to the cost of misclassification. If

the tests are very cheap, compared to misclassification errors, then it pays to measure all

of the attributes. If the tests are very expensive, then it pays to classify directly without

measuring any attributes." This is echoed in the results for the example problems found in

this thesis: when computational costs are low, there is virtually no penalty for performing

additional computations, but when they are high, a greedy strategy (equivalent to directly

classifying without testing) for planning will dominate. Zubek and Dietterich also employ

an MDP approach to determine a testing policy, which is similar to the MDP approach

discussed in Chapter 3.

The aspect of the metaplanning problem that does not appear in cost-sensitive classifi-

cation problems (besides regression) is that of generating a feasible plan. That is, once the

classification problem is solved, the decision tree halts. This is not viable in the case where

the decision tree is used for planning, due to the constraint that plans must be feasibly

executable. For instance, when test costs are expensive in the cost-sensitive classification

domain, the best action is to "classify without testing". In metalevel planning, this is not

1Test costs refer to the costs involved in determining the outcome of a splitting variable. For
instance, if a split involved the outcome of an x-ray scan, the test cost would be the cost of performing
the x-ray.
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Figure 4-2: An optimal policy tree for the 4 arc problem represented as a policy tree.

an option, since the act of classifying is equivalent to executing a plan. However, without

solving any sub-problems, a plan cannot be generated at all. As will be seen, one of the

shortcomings of using decision trees for metalevel planning is that they may not always

yield feasibly executable plans. A methodology for plan completion is proposed later to

handle this issue.

4.2 Decision Trees For Metaplanning

Figure 4-2 shows a tree representation of the optimal policy labeled INTERMEDIATE 1 for

the 4 arc planning problem presented in Chapter 3. Recall that a policy is a mapping of

states to actions. The bracketed sets (tree nodes) are the states of the metalevel MDP.

For instance the root node of the tree consist of a set of all ?'s, representing the initial

state where the agent has no knowledge of the problem instance, that is, no knowledge of

the sub-problem solution outcomes. The computational action prescribed by the metalevel

controller (i.e., which sub-problem to solve) is given under each node. Each computational

action results in a transition from the current information state represented by a ? to

another information state according to the state transition function. The first action of the

policy at the root node is to solve sub-problem 1. Going from the root node to the next

level, there is a change in the first element of the bracketed set. The act of solving sub-

problem 1 results either in the state where the outcome (cost) is a 0 or a 2 as indicated by



{0,?, ?, ?} and {2, ?, ?, ?} respectively. This tree-based policy consists of 18 states including

the terminal state indicated by in the figure by T. Recall that the terminal state sterm is

used to represent the state of having solved for and executed a feasibly executable plan.

For the 4 arc planning problem each sub-problem outcome can take on 3 possible values,

{0, 2, ?}, yielding a total of 82 possible states including the terminal state. The methods in

Chapter 3 returned an optimal action for every state, many of which are not encountered

when executing the given policy. In contrast, as shown in Figure 4-2 only 18 of the 82 states

are ever visited. The tree based representation of the optimal policy is clearly economical

in terms of memory, and will be shown to allow for a much more efficient generation of the

approximate metalevel MDP policy.

4.2.1 Learning the Decision Tree Policy

The exact solution methods of Chapter 3 are abandoned here in favor of approximate

methods, in particular approximate policy iteration. The decision tree representation allows

for the metalevel policy to be generated through decision tree learning, thereby bypassing

the exact computation of the optimal action for every state. As seen in Figure 4-2, the

optimal metalevel policy does not necessarily visit all states. The decision tree algorithm

discussed in the previous section is embedded in approximate policy iteration to learn the

important states for a problem domain and serves two purposes. Decision trees are generated

and used as approximations to the value function of the metalevel MDP and to serve as a

basis for the creation of a metalevel control policy. Approximate policy iteration consists

of three main steps:

1. Initial policy generation.

2. Policy evaluation.

3. Policy improvement.

In initial policy generation, the initial policy, ir, is typically guessed or set randomly.

Here, the decision tree generating algorithm, treeGen(), is used in the first step of approxi-

mate policy iteration to generate a decision tree that is subsequently pruned to serve as the

initial metalevel control policy. The treeGenO algorithm is used subsequently in the pol-

icy improvement step to generate new policies as well. The advantage of using treeGeno,



rather than guessing or setting the policy randomly, is that the resulting decision tree will

help to identify important information states of the metaplanning MDP, thus pruning away

large portions of the search space. The decision tree algorithm uses the expected cost of

the optimal base-level solution to create an initial decision tree which clusters together

information states whose plans yield similar costs when executed.

Using decision trees to generate policies can partly be seen as a form of value function

approximation in the terminology used in approximate policy iteration. In approximate

policy iteration, a function approximation of the current value function is computed from

a set of basis functions, #i. For instance, in a linear approximation architecture [8], the

estimate of the value function, in approximate policy iteration, is computed as a weighted

sum of these basis functions,
K

V(s, r) = ZrOk(s), (4.3)
i=O

where V(s, r) is the approximation to the value function of the current policy at state s, and

rk is the weighting factor for the kth basis function #k. The values of rk can be determined

by solving a least-squares minimization problem to fit the weights using sampled data given

by:
M(s)

min (A(s, r) - v(s, j)) 2 , (4.4)
SEC§ j=1

where S corresponds to the set of sampled states, where each state, s is sampled M(s)

times, and the j sample of the value function of state s is given by v(s, j). From Equation

4.4, the optimal r can be determined.

The approximate value function using decision trees can be seen as employing basis

functions that consist of constant functions over specific regions of the state space. There

is no direct analogy to the weighting parameters, r, in decision tree learning. Instead, the

splitting variable and splitting criteria are used to define regions to be approximated by

each constant function. The duty of finding the optimal r values of Equation 4.4 for linear

value function approximation is replaced by splits determined by Equation 4.2 for decision

tree based value function approximation.

The training data for the decision tree version of approximate policy iteration consists of

samples of problem instances drawn from the metalevel environment. That is, many prob-

lem instances are drawn according to the appropriate probability distribution and solved



Figure 4-3: Decision tree generated for the 4 arc problem.

optimally assuming that there is no computational cost. For each instance of the training

sample, the training features are the tuple of sub-problem outcomes (costs) and the obser-

vation is the accompanying optimal base-level plan cost. The optimal cost of each sample

is effectively the "label" in the language of supervised learning. From the samples, the

decision tree is trained to accurately predict the cost of the optimal solution.

Recall, from Subsection 4.1.1, that in order to determine the prediction for a particular

problem instance, the instance must be "dropped" through the decision tree (by performing

the tests recommended by the decision tree until a leaf node is reached). In the context of

metaplanning, the evaluation of a splitting condition has special meaning and is equivalent

to performing a computational action. Essentially, a split in a decision tree is equivalent to

the branching in the policy tree in Figure 4-2, where at each level a sub-problem is solved

(a computational action) so that its outcome can be used to determine which branch of the

policy tree to follow next.

A decision tree can be directly interpreted as a policy tree. A policy tree consists of

a set of nodes representing the information state, a computational action for each state,

and branches representing the possible set of outcomes that can result from performing the

computational action. A decision tree, consists of nodes, corresponding to splits in the data,

and branches corresponding to the results of a splitting action. Each split in the decision

tree can be interpreted as solving a sub-problem in the policy tree, where the splitting

variable corresponds to the sub-problem to solve, and the splitting criterion corresponds to

100



a condition on the outcome of solving a sub-problem.

Figure 4-3 is a decision tree generated from data for the 4 arc planning problem. Each

node in the decision tree contains a splitting condition. The variable over which to split

is given by xi, where i corresponds to the sub-problem index. If the splitting criterion is

true after solving a sub-problem, then the left branch is taken, otherwise the right branch

is taken.

There is slight difference in branching syntax found in decision trees, as opposed to

policy trees, which allow for them to deal with continuous data. That is, in the MDP policy,

solving a sub-problem results in a probabilistic but discrete state transition (e.g., solving

spi results either in an information state where the cost of sp1 is a 0 or a 2). In the decision

tree, a split is expressed as a continuous interval defined by an inequality. However, the

decision tree can easily accommodate discrete outcomes. An equivalent split for outcomes of

0 or 2 for spi in Figure 4-2 is represented by xi < 1 in Figure 4-3. Considering the binary

outcomes possible for spi in the 4 arc problem, the split indicates that the left branch

corresponds to states where sp1 has a cost less than 1 (i.e., the information state where spi

has an outcome of 0) and the right branch corresponds to spi having a cost greater than 1

(i.e., the information state where sp1 has an outcome of 2).

The corresponding MDP information state for each node in the decision tree can easily

be determined by tracing it up to the root node while keeping track of how each split was

evaluated. For instance, in Figure 4-3, the root node corresponds to the initial information

state of {?, ?, ?, ?}, while the leaf node furthest to the right corresponds to the conditions

where (x1 > 1)A(X 2 > 1)A(X 3 > 1)A(X 4 > 1) (for this problem it represents the information

state given by {2, 2, 2, 2}). The leaf nodes of the decision tree give the predicted outputs (in

this case the prediction of the cost of the optimal plan) given the evaluation of the splitting

conditions. The decision tree in Figure 4-3 is isomorphic to the optimal policy tree for

INTERMEDIATE 1 given in Figure 4-2.

Thus far, no mention has been made of the cost of computation in this process. The

initial decision tree is generated assuming that computational costs are zero. As in Chapter

3, it is assumed that additive time cost separability holds. This allows the cost of compu-

tation can be added into the decision tree as shown in Figure 4-4. The composite decision

tree is the sum of the trees representing the expected computation cost for each node, and

the expected base-level execution costs. In Figure 4-4, it is assumed that each branch can
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a b c
Figure 4-4: Time cost separability allows for the expected cost of decision tree poli-
cies to be expressed as the sum of base-level action costs and computational costs.
a) Shows the composite tree, which is the result of summing b) the tree represent-
ing expected execution costs with c) the tree representing the computational costs
involved.

occur with equal probability and that each computational action incurs a cost of E. The

squares for Figures 4-4b and 4-4c represent the terminal execution and computation costs

respectively. The value shown in each node is the expected cost-to-go of the corresponding

information state (i.e., the expected cost of following the policy to completion starting at

the node). The value shown at the root node of Figure 4-4a is the expected cost for the

entire metalevel control policy represented by the decision tree. The initial decision tree is

called the zero computational cost tree since it is trained with data gathered by setting e to

zero. In terms of approximate policy iteration, the zero computational cost tree accurately

approximates the value function of the optimal metalevel policy when the true cost of com-

putation is zero. When true computation costs are non-zero, they are added to the zero

computational cost tree followed potentially by a pruning step to yield a metalevel planning

policy that does account for the cost of computation.

As discussed in Chapter 3, the policies for high computational costs versus low compu-

tational cost will differ greatly. It is expected that the decision tree for the case of high

computational costs will result in the solution of far fewer sub-problems as compared to

the case of the tree for low computational costs. As with CART, an initial decision tree

is generated to full depth, and pruned to account for the cost of computation (longer tree

branches incur higher computational costs). The pruning step proceeds by treating the

state space spanned by the decision tree as an MDP. A branch is pruned when the expected

benefit of further computation recommended by the branch outweighs its cost. The pruned
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tree constitutes an approximate policy. For instance, suppose that the full decision tree

when e = 0 is given by Figure 4-4a. When the cost of computation rises high enough, the

pruning step might eliminate the sub-tree of the right branch resulting in a shorter tree

which solves less sub-problems.

The second step of approximate policy iteration is policy evaluation. The evaluation

of the performance of the approximate policy is determined through simulation to obtain

samples, v(s, i), for Equation 4.4. From this r can be determined so that the approximate

value function, V can be determined from Equation 4.3.

The last step of the approximate policy iteration cycle, policy improvement, is gener-

ically performed for each state [8], to improve upon the current policy based on its approxi-

mate value function, V. That is, given the approximate value function determined from the

previous step, each state is examined to determine whether it is possible to improve upon

its currently selected action. If so, the best action is updated for the corresponding state.

This is accomplished by solving the Bellman equation for each state,

'=(s) = arg min(c(s, a) + -y T(s, a, s')f(s')), (4.5)
aEA sES

where r'(s) is the best action of the improved policy for state s and V is the approximate

value function of the current policy ir, determined from Equation 4.3. Evaluating and

updating all state actions results in a new and hopefully improved policy. In the decision

tree approach, rather than improving the policy on a per state basis, an entirely new decision

tree policy is learned based on data collected from Monte Carlo simulations of executing

the current decision tree policy. As in the generation of the initial policy, the decision tree

uses the expected value (cost) of the current policy to guide it in the generation of the next

policy. The complete Decision Tree Metaplanning (DTMP) algorithm is presented next.

4.3 DTMP

The Decision Tree Metaplanning (DTMP) algorithm consists of the three main steps of

approximate policy iteration as discussed above and is summarized in Algorithm 4.

1. Initial policy generation is performed in three steps in Algorithm 4. The first step

is to generate an initial decision tree from training data by calling the treeGeno
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algorithm as described by Algorithm 3. The decision tree is augmented with the

cost of computation and, when necessary, with supplemental actions. The resulting

decision tree is treated as a restricted version of the exact metaplanning MDP. The 5

elements, {S, A, R, T, -y}, of the restricted MDP, mdp, are determined by getStats().

This MDP is solved for an optimal policy, -r, to serve as the initial metalevel policy.

2. The policy evaluation step consists of simulating the performance of the current policy,

fr, and recording its expected total cost for each sample problem instance. Data from

the simulation is gathered in terms of input/output pairs, (x', y'), for the next step.

3. Policy improvement, the last step of approximate policy iteration, proceeds similarly

to the process of generating the initial policy. The only difference is that the cost of

computation and the performance of the current policy is properly reflected in the

training data. In this step, a new decision tree is generated based on the performance

of the current policy, fr, on the set of samples gathered during policy evaluation. The

resulting decision tree leads to the generation of the next policy in the same manner

as the initial decision tree.

Inputs to the DTMP consist of the training data, (x, y), and the cost of computation e,

where x is a matrix of the instantiated costs of the sub-problems and y is the accompanying

optimal base-level solution which does not yet account for computation costs. DTMP begins

by generating the initial decision tree, treeInit, by the calling the treeGen() algorithm of

Section 4.1.1. Recall that the algorithm is initialized with data collected from having solved

many problem instances to completion. The treeGen() algorithm is the main mechanism

for state space reduction in DTMP, which relies on it to generate decision trees from which

metalevel controllers are constructed.

The treeGen() algorithm can be seen to induce a conditional ordering constraint on

computational actions which prunes away large portions of the state space. This pruning

effect can be understood by viewing the treeGen() algorithm as a heuristic search algorithm

like A*, where the heuristic function, in this case, is the value function of the current policy.

The value function is used to guide the search through the state space of the metalevel

MDP. In additive time-separable problems, when computational costs are zero, the optimal

policy is known to be PLAN ALL (i.e., find the optimal base-level plan). Therefore, the

initial policy in DTMP is generated using this knowledge, which is why the initial input
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Algorithm 4: Decision Tree Metaplanner
input x, a matrix of instantiated sub-problem outcomes. y, a vector where

each row is the optimal solution cost for the corresponding row in x.
E, the cost of computation. N, number of iterations to run the
algorithm.

local : V, the expected value of the current metaplanning policy, -r. V*,the
expected value of the best policy. iter, an index variable.

output: -r* the best metaplanning policy found thus far.
V* <- oo;

Generate Initial Decision Tree;
treeInit +- treeGen(x, y);
mdp +- getStats(treeInit);

for iter < N do
Use Decision and MDP Pruning to Generate Policy;
,r <-- valuelteration(mdp, c);
Evaluate Decision Tree Policy;
[V, x', y'] <- simulatePolicy(r);
if V < V* then

,r* <-r;
V7* <-V;

end
Generate New Decision Tree to Improve Policy;
tree <- treeGen(x', y
mdp <- getStats(tree);

end
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to treeGen() is said to consist of the optimal cost for each problem instance. Using the

optimal cost of the solution to each problem instance can be viewed as using an optimal

heuristic function to guide the search. The heuristic is optimal since it accurately reflects

the cost-to-go function for each state when computational costs are zero.

When computational costs are non-zero, the optimal metalevel planning costs are not

available, and the performance of an approximate policy is used instead. The approximate

policy for non-zero computational costs is built upon the zero computational cost policy,

and is always an overestimate of the true metalevel planning cost. Although the heuristic

estimate determined in this fashion is no longer optimal, it can nevertheless lead to good

metalevel control policies.

The splits performed by the treeGen() algorithm can be seen in the terminology of

heuristic search as being greedy with respect to the heuristic function. Referring to Algo-

rithm 3, the treeGen() algorithm essentially examines all possible actions out of the initial

state and selects the best one. This is similar to the A* algorithm selecting which node to

expand. The best action (split) in this case, is the computational action which leads to the

greatest distinction in the estimated value function. In other words, the best split is, among

all sub-problems that can be solved, the one that yields the best prediction of the cost of

metaplanning given its outcome (e.g., knowing the outcome of a certain sub-problem reveals

a lot about the problem instance). In structured problem domains, certain sub-problem will

have higher utility than others. The decision tree learns from data to identify and exploit

this structure in the problem domain by identifying the important sub-problems. These

highly predictive sub-problems become even more useful when they are in problem domains

where the plan fragments they produce are also integral parts of the plans to be executed.

Each time a split occurs in the decision tree, it effectively focuses the search of the

metalevel control policy to the corresponding subset of the state space consistent with the

split. The result is that large portions of the original metaplanning MDP which do not

satisfy these constraints are pruned away, leaving a significantly reduced state space2 . The

treeGen() algorithm is also used in the plan improvement step of DTMP.

2For instance, the original MDP state space for the 4 arc problem consists of 4 subtrees (one for
each possible computational action) extending from the root node. The decision tree selects the best
action, solve spi, and prunes away the subtrees corresponding to the other actions, yielding the tree
shown in Figure 4-3.
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The remainder of the DTMP algorithm deals with iteratively improving the decision tree

when non-zero computational costs must be incorporated into the tree generation process.

The zero computational cost tree, treeInit, in Algorithm 4, represents a restricted portion

of the complete plan space of the metaplanning MDP known here as the induced-MDP.

After the initial decision tree, treeInit, is learned, the next step consists of calling a

function called, getStatso, whose purpose is to add an alternative action to each state of

the decision tree and determine the rewards for those actions. Disregarding the getStatso

function for the moment, the induced-MDP is equivalent to treeInit. The induced-MDP is

an approximate representation of important aspects of the full MDP found in Chapter 3,

with a massive reduction in the size of the state and action space, which is now expressed

compactly by the decision tree. The state space is reduced due to the decision tree recog-

nizing important sub-problems and the structural relationships among them. The action

space is reduced since the metalevel planning problem no longer needs to select among all

possible sub-problems to solve at each information state. Due to the decision tree, only two

possibilities remain: compute the sub-problem suggested by the decision tree, or execute

the current plan if it is feasibly executable.

The induced-MDP is solved by incorporating the cost of computation, denoted by e,

via the function valuelterationo. The function valueIteration() uses value iteration, from

Chapter 3, to determine an initial policy, -r, for the induced-MDP. Introducing the cost of

computation acts to prune treelnit, such that a branch is pruned when the expected benefit

of further planning is outweighed by the expected cost of computation. For each state in

treeInit, the policy, fr, dictates whether the metaplanner should continue planning or stop.

Next, the policy evaluation step is performed by calling the function simulatePolicy() to

determine the performance of fr by evaluating its performance though simulation. The

expected performance of the policy is given by V, along with a new set of data (x', y') as

a result of simulating fr. The performance of the current policy is compared against that

of the current best policy, -r*. If it is better, the best performance, 9*, and best policy,

r*, are updated. Since the objective is to find the minimum cost policy, the value of V* is

initialized to positive infinity.

This is followed by the policy improvement step, the goal of which is to use the new

set of data, (x', y'), to generate an improved policy. The new set of data accumulated as

a result of testing the current policy on simulated problem instances has the advantage of
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Figure 4-5: DTMP flowchart. The initial training data, (x, y), is fed into treeGen),
producing a decision tree, T. The cost of computation, c, and greedy comple-
tion actions are added to each node of the tree in getStats(, which produces the

induced-MDP, MDP. The induced-MDP is solved for an approximate policy -r us-
ing value iteration. The performance, V, of the approximate policy is evaluated in
simulatePolicyo, producing new data, (x', y'), with labels which include the cost of
computation. The best policy r and its value V* are stored. The new data is fed
back into treeGenO to generate improved policies.

having the cost of computation for the policy, fr, explicitly incorporated into the y' vector.

Rather than solving the Bellman equation, Equation 4.5, for each state, the treeGen()

algorithm is invoked on the new set of data, which now properly reflects the performance

of the current policy, including the cost of computation. This new data is equivalent to the

approximate value function of the current policy, V, of Equation 4.5. As per approximate

policy iteration, the value function of the current policy is used to determine a new policy.

Again, as in the generation of the initial policy, trecGen() uses the approximate value

function as a heuristic to generate splits in the data to create a new decision tree policy for

the next iteration of DTMP.

Once the new decision tree is generated, the entire process is repeated for a predefined

number of steps, where the best policy is reported. A flowchart of the DTMP algorithm is

shown in Figure 4-5. DTMP, unlike exact policy iteration, does not have guaranteed finite

convergence, since both the policy and the value function are greedily approximated. More

about this is found in Section 4.4.

108



Figure 4-6: A plot of the expected performance of a sequence of oscillatory policies
generated by DTMP. The number of iterations of DTMP are given by the x-axis,
while the expected cost of the policy is given by the y-axis. The minimum cost policy
is achieved at iteration 15 indicated by the arrow. Subsequent iterations lead to
periodic oscillations which achieve a local minimum.

4.4 DTMP Issues

Repeated application of DTMP can result in oscillatory behavior of the policies. Policy

oscillation and divergence are well known problems with approximate policy iteration [8].

Figure 4-6 shows an example of the oscillatory nature of DTMP algorithm, where the

x-axis indicates the number of iterations the algorithm was repeated, and the y-axis is

the total expected cost including that of computation for each policy. It should be noted

that oscillatory behavior does not occur in all problems. Within a particular metalevel

environment, oscillations can occur with some values of e while not with others. Figure 4-6

also shows that iterating does have utility, since the minimum cost policy is not achieved

until iteration 15, though the improvement in cost is slight. For the experimental results

presented in Chapter 5, the number of iterations was artificially limited to 10, storing the

policy with the best result.

The getStatso function, mentioned briefly, adds an additional action to each state of

the current decision tree that attempts to complete the plan in a greedy manner. This is

necessary, due to situations where the decision tree does not identify enough sub-problems

to solve in order to generate a feasibly executable plan. That is, there are situations

where a problem instance drops down to a leaf node which has not solved enough sub-
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problems for the master level to generate a complete solution. Under these circumstances,

a heuristic plan completion algorithm that attempts to form a feasibly executable plan

as quickly as possible is called, possibly reducing the performance of DTMP. Subsection

4.4.1, discusses some reasons for this phenomenon and presents an alternative way of using

decision trees to potentially guarantee that the metalevel policy solves enough sub-problems

to generate feasibly executable plans. The getStats() function gathers the information

necessary (transitions and rewards) for these plan completing actions to be included in the

description of the induced-MDP through simulation.

In this thesis, the main form of the plan completion algorithm is a greedy planner. For

instance, the RANDOM-DIRECTED strategy can be used since it is computationally inexpensive

and, in most cases, can find feasibly executable plans. The path completion algorithm for

the 4 arc problem of Chapter 3 consists of running the RANDOM-DIRECTED planner from the

start location to generate a complete path to the goal. Sub-problems on this path that

have not been solved are solved, and the path executed. However, doing so might lead

to paths that do not take advantage of the sub-problems that have already been solved

while executing the decision tree policy. In the worst case, the RANDOM-DIRECTED planner

might select a path consisting entirely of unsolved sub-problems, effectively disregarding

the efforts of the metalevel. There are ways of modifying the planner to bias it towards

paths that contain sub-problems that have already been solved.

Another strategy for plan completion is to store a list of candidate plans, learned from

the data, at the leaf nodes. Once a leaf node is reached, the metalevel might search through

the list of candidate plans to select the best one to complete the plan. This is a simplified

version of the suggestion found later to use two types of decision trees, one to globally classify

the problem instance, and another to generate the remainder of the plan. Since the set of

candidate plans collected at the leaves are learned from data during the execution of the

metalevel controller on real problems, there may be situations where none of the candidate

plans learned thus far can be appropriately applied. In these instances, the only alternative

is to run a plan completion algorithm to generate an entirely new feasibly executable plan.

However, once generated, this new plan can be added to the set of candidate plans for future

use.

110



X1 X2 X3 Y

1 1 0 2

1 0 1 4

a
x2 < 0.5

X1

x2 x3

2 4
b c

Figure 4-7: Example of an insufficient number of sub-problems for generating a fea-
sibly executable plan. The data for generating the decision tree is given by a) and
consists of three features x1, x2 and x3 corresponding to the arc of the graph problem
shown in b). The cost of x1 is known to be 1 while the cost of the other arcs can
vary. The resulting decision tree is given in c) and exhibits the problem of insufficient
depth.

4.4.1 Insufficient Tree Depth

The goal of the decision tree metaplanning algorithm is to generate the optimal metalevel

policy directly from data, thereby avoiding the costly state space enumeration needed for

exact MDP solution methods. As stated previously, decision trees are intended to be em-

ployed as classifiers and predictors. However, since the goal is to use a decision tree directly

as a metalevel controller, which supplies sub-problem solutions to the master level in order

to generate high quality plans, their naive use can lead to decision trees that can accurately

predict the costs of metalevel planning, without actually generating the plan.

As has been previously discussed, one problem with the decision tree method is that

often the tree depth is insufficient in generating feasibly executable plans. The decision tree

uses sub-problem outcomes to predict the cost of the optimal plan, but does not necessarily

provide enough sub-problems to form the plan itself.

This behavior can be seen in Figure 4-7. The underlying graph structure is composed

of three sub-problems, each capable of taking on binary values. Suppose that the decision

tree algorithm is asked to generate a decision tree for metalevel planning given the data

in the table in Figure 4-7a. Sub-problem x1 should belong to the set of sub-problems
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to be solved, since it must be solved in order to generate any feasibly executable plan.

However, since the decision tree tries to predict output based on data, it is sufficient to

choose either sub-problem x2 or X3 as the splitting variable (in this case X2) to perfectly

predict the outcome. Although x1 is an important sub-problem, its predictive utility is

low and therefore disregarded by the decision tree algorithm. It is desirable to somehow

emphasize the utility of sub-problem xi to the decision tree algorithm so that it is included

in the decision tree.

4.4.2 Augmenting Sample Data

The decision tree algorithm can be made to include sub-problems that have weak predictive

powers, but are important for generating feasibly executable plans. This is accomplished

through augmenting the data used to generate the decision tree such that the sub-problem

in question appears to have predictive power. The easiest way to do this is to generate a

duplicate data set of the original, where the output column Y is set to some insignificant

value (in this case 0), and the features are modified such that all subsets of the significant

features are generated.

This is more easily seen through an example. Consider the problem corresponding to

Figure 4-7. Suppose that for the first line of data, where sub-problems xi and X2 are the

sub-problems forming the plan with optimal cost equal to 2, two additional lines of data are

introduced. The first includes the true value of x1 and the alternate value of X2 (assuming

binary sub-problem outcomes) along with a predicted cost of zero. This signifies that when

sub-problem xi takes on a significant value but X2 does not, the result is insignificant. The

second additional line attests to just the opposite, where X2 is significant but xi is not.

Both of these together are examples indicating that neither sub-problem alone is enough

to produce a significant result. They must both be solved and placed in the decision tree.

The same is repeated for the second line of the original data set for sub-problems x1 and

£3. The augmented data and the resulting decision tree, which now includes sub-problem

x1, are shown in Figure 4-8

The augmented decision tree, can be seen as a list of feasible paths. For instance, in the

example in Figure 4-8, the two optimal paths consist of sub-problems x1 and X2 or x1 and

X3. Rather than storing these paths in a list, the sub-problems which constitute each path
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Figure 4-8: The original data in Figure 4-7a) is augmented resulting in a new decision
tree which generates feasibly executable plans.

are organized in the form of a decision tree, where each branch corresponds to a feasible

path.

Considering only binary outcomes, it is easy to see that the amount of data augmentation

is exponential in the plan length for each line of data in the original data set. That is, if

the optimal plan consists of three sub-problems, then the maximum number of augmented

data samples that need to be added will be 23. When outcomes are not binary, then the

number of augmented data lines is still exponential, but the base of the exponential is no

longer 2.

One can easily imagine carrying this to the logical conclusion, where each line of the

original data set is augmented. In this case, the problem of overfitting can become a concern.

One possible way to avoid overfitting the augmented data tree is to apply it to a subset of

the data rather than the entire set. The job now becomes one of identifying the subsets to

which this process should be applied. This is accomplished in a two-step process, where the

regression tree is first generated as usual. As discussed above, the original decision tree is a

suitable candidate for clustering together like problem instances. The sample instances are

then "dropped" down through the decision tree until they are "classified" at a leaf.

For the set of samples at each leaf, a miniature augmented decision tree (mini-tree)

is generated. By doing so, the regression tree serves to funnel cases with similar optimal

solutions to the same leaf node, and the mini-trees are used to complete the generation of
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sub-problems for the master level to form feasibly executable paths.

The joining of regression and mini-trees allows for an added level of control as to the

amount of "classification" to perform before trying to identify sub-problems for feasible path

generation. If the depth of the regression tree is zero, then the algorithm focuses entirely on

feasible plan generation, perhaps leading to sub-optimal plans due the excessive splitting

that may occur. On the other hand, if the regression tree is full depth, then the algorithm

focuses entirely on predicting plan costs, risking the generation of incomplete plans. From

this point of view, there is a balance that must be struck between predictive sub-problems,

and plan completing sub-problems that should be a subject for future research.

4.5 Automatic State Abstraction with DTMP

In Chapter 3, the MDP formulation of the metalevel planning problem was stated to be

exact when sub-problems outcomes were restricted to a finite set of discrete values. One

suggestion for dealing with the case of continuous sub-problem outcomes was to discretize

the range of outcomes into a finite set of bins. The question then becomes how to perform

the discretization. A natural suggestion is to try a uniform discretization with bins of equal

size. A discretization that is too coarse may lead to many states being lumped together,

while too fine a discretization may lead to unnecessarily many states. Though not examined

in this thesis, the key idea is to generate a state abstraction in an adaptive manner, making

distinctions in state outcomes when they lead to improvements in the resulting policies.

Consider Figure 4-10, which corresponds to the decision tree given in Figure 4-9. The

Xi-X 2 plane, represents a continuous region in which a uniform discretization of the state

space may not be the best form of discretization. The decision tree learning algorithm may

be able to provide a state abstraction capturing the important aspects of the environment

in a compact manner. The abstract states represent all problem instances that satisfy the

conjunction of the splitting conditions. For instance, the leaf node corresponding to v 2 in

Figure 4-9 contains all problem instances that satisfy the condition, (xi > si) A(x2 > S2).

This aspect potentially allows for DTMP to be extended to the case of continuous sub-

problem outcomes.

Dynamic state abstraction is reminiscent of the G-algorithm by Kaelbling and Chapman

[12] and the U Tree algorithm by McCallum [34]. Uther and Veloso [49] extend both
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Figure 4-9: Decision tree value function and state abstraction.
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Figure 4-10: State abstraction for continuous state spaces according to the decision
tree.
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of these, and describe the Continuous U Tree algorithm, which is an iterative version of

generating decision trees for continuous state space reinforcement learning. The decision

tree acts as an automatic variable resolution state abstraction mechanism [35] uses data

to determine state distinctions. The Continuous U Tree algorithm is very similar to the

decision tree learning algorithm, but instead of using squared-error as a splitting criterion,

the Kolmogorov-Smirnov statistical test is also applied. The K-S test is a non-parametric

test used to detect whether two datasets of a given split differ significantly. If so, a split

is added to the tree. Since their application area is reinforcement learning, the tree is

incrementally built based on sampled experience. Only the leaves of the decision tree

generated by the Continuous U Tree algorithm represent the states over which to plan.

The main difference in DTMP is that the information states include both the leaves

and the internal nodes of the decision tree. In DTMP, the splitting variables and splitting

points are part of the policy rather than a means to aggregate base-level states into a

corresponding abstract state as in Continuous U Tree. Continuous U Tree also has no

mechanism to account for the cost of computation involved in generating state distinctions

(i.e., splits) while DTMP does.

4.6 Chapter Summary

This chapter presented an approximate policy iteration algorithm for solving the metalevel

control problem based the use of decision trees. In many instances computing the exact

solution of large-scale MDPs, considering every possible state in the state space, is com-

putationally intractable and unnecessary when a good policy can be determined by only

considering a subset of the states. The advantage of the DTMP algorithm is that decision

tree learning algorithms can be used to identify the states in this subset in order to generate

compact representations of the parts of the state space that matter. Once a decision tree

is generated, the metalevel decision problem simply consists of selecting one of two actions.

The metaplanner must decide whether to compute the next sub-problem dictated by the

decision tree or stop computing and execute the current plan. As will be shown in Chapter

5, the performance of DTMP is comparable to exact solution methods and can be used to

solve large, complex problem with limited computational resources.
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Chapter 5

Experimental Results for

Time-Separable Computation

Costs

This chapter presents the results of both the exact MDP metaplanning solutions and the

heuristic DTMP solutions for a variety of problem domains. In general, problem domains

with stationary and additive computation costs are studied. Recall that in this case, the

value function of a plan is independent of time. This property is referred to as time-

separability. Results for a simplified version of the time-critical targeting problem are

presented. These assumption are repeated here for convenience:

1. A prior decomposition of master and sub-problem levels exists.

2. Sub-problems consume the majority of computational resources.

3. The time costs are separable and additive.

4. A computational action involves solving sub-problems which yields a discrete set of

possible values. The outcome is static once it has been determined.

5. Problem instances are drawn probabilistically from a set of base-level problem in-

stances.

6. Execution can only occur when a feasibly executable plan has been generated.
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The metalevel controllers generated through the methods discussed in Chapters 3 and

4 help the agent achieve bounded optimal behavior for each problem domain. Bounded

optimality is guaranteed when the metalevel MDP can be solved exactly for the optimal

policy. DTMP policies are shown to achieve a similar level of performance in problems where

the exact solution is available for comparison, though bounded optimality is not guaranteed.

The performance of these controllers is compared to other algorithms and heuristics, that

are commonly applied to such problems, and shown to lead to performance improvements

over those other algorithms. All of the problems in this chapter can be formulated as

planning problems where the agent must generate a plan to reach some goal state from a

start state with a minimum cost objective.

5.1 Time-Separable Goal-Directed Navigation Prob-

lems

This chapter presents the results of metalevel planning for a set of goal-directed navigation

problems similar in nature to the graph problem discussed in Chapter 3. The notion of

"goal-directed navigation" problems in this thesis involves generating a sequence of actions

that will take the agent from an initial state to a goal state with minimum cost. More

specifically, the focus will be to generate plans for discrete deterministic shortest path

problems.

Shortest path problems have been well studied in the literature and serve as an abstrac-

tion for a variety of network flow problems [1]. For instance, the shortest path problem

appears whenever some quantity of material (goods, computer data packets, vehicles, etc.)

must travel between two points. Of particular interest is that fact that the shortest path

problem, typically represented as a network of nodes and arcs, has a natural problem decom-

position, suitable for the methods discussed in Chapters 3 and 4. Following the discussion

in Chapter 3, the master level solves a shortest path problem with the arcs in the network

representing the sub-problems. As discussed previously, the arcs can act as surrogates for

arbitrarily complex sub-problems, while the manner in which the graph is configured can

be thought of as constraints on the relationship between sub-problems.
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5.1.1 Master and Sub-problem Level Formulation of the Short-

est Path Planning Problem

The master level problem is formulated as a shortest path problem, represented in Equations

(5.1-5.5) in terms of flows along arcs in a network.

min cijxj (5.1)
iENODESjENODES

xi = 1 (5.2)
iENODES

xig = 1 (5.3)
iENODES

xij - xji = 0,Vj E NODES. (5.4)
iENODES iENODES

xij E {0, 1} (5.5)

The xj 's are binary flow variables representing the flows along arcs starting at node i and

ending at node j. Equations 5.2-5.4 represent the flow balance constraints which state that

the outflow from source node, s, sums to one, the inflow to goal node, g, sums to one, and

the net flow for each of the remaining nodes sums to zero.

A sub-problem consists of determining the cost, cij, of moving along the corresponding

arc. Given complete knowledge of the problem instance, all of the cij's are known in advance.

The metalevel control problem is to select sub-problems to solve in order to supply the cij's

to the master level. That is the costs, cij, are not known until the sub-problem associated

with that arc has been solved. The MDP formulation for this problem has been presented

in Chapter 3.

5.1.2 Shortest Path Planning Algorithms

This subsection describes the planning algorithms that have been developed to solve the

shortest path planning problems in this thesis. There are a variety of ways to solve the

shortest path problem (see [1] and [5] for a detailed discussion). Here, the focus will be

on dynamic programming and label correcting methods. Dynamic programming, presented

in Chapter 3 as a solution methodology for MDPs, applies the principle of optimality to

efficiently generate optimal solutions. However, the difficulty with using dynamic program-
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ming to solve the shortest path problems addressed in this thesis is that DP requires full

use of information. In order to generate the optimal solution, each node must be backed up,

implying that the cost of each arc be known. This makes dynamic programming expensive

when considering the cost of computation involved in solving a large number sub-problems.

Another set of shortest path algorithms, known as label correcting methods [51, tend to

be more efficient than dynamic programming because they require fewer sub-problems to

be solved. The key to the success of label correcting methods is the availability of a good

heuristic evaluation function, which in effect serves as a primitive metalevel controller for

suggesting the next sub-problem to solve. Label correcting methods all work on the same

principle of progressively discovering shorter paths from the origin to every other node,

keeping track of the node's "label" (i.e., the length of the shortest path from the origin

to that node). A list of potential nodal expansionsi called OPEN is maintained, where

subsequent nodes are added to OPEN after an expansion. Label correcting methods differ

mainly in the manner in which nodes (i.e., sub-problems) are selected. For instance, a

breadth-first search expands nodes in a first-in/first-out manner while depth-first search

expands nodes in a last-in/first-out manner. Dijkstra's algorithm [5] is one type of label

correcting method called a best-first algorithm, where the node to expand is the one with

the minimum label.

Derivatives of Dijkstra's algorithm have had great success in solving shortest path prob-

lems. Chief among these is A* [39] (pg. 97), a generalization of Dijkstra's algorithm

combined with a heuristic function that provides a lower bound on the cost from each node

to the goal. The A* algorithm reduces to Dijkstra's algorithm when the heuristic evalua-

tor is set to zero. In general, A* with a good heuristic estimator will optimally solve the

shortest path problems more efficiently than Dijkstra's algorithm.

The heuristic evaluation function is the key to the effectiveness of A*. Typically, the

heuristic function is expressed in a per node basis and provides a lower bound to the true

cost from the node to the goal. It can either be a fixed function, or determined through

some other means such as the simulation of trajectories, but is typically represented as a

function, h(n), where n is a node in the graph. A heuristic function is said to be admissible,

if it provides a lower bound on the true cost to the goal. The A* algorithm is guaranteed to

'Expanding a node in the context of label correcting methods involves incorporating the cost of
moving from one node to an adjacent one, essentially equivalent to solving a sub-problem.

120



terminate with the optimal solution assuming that it is provided with an admissible heuristic

function. As such, the A* algorithm is an example of a run-to-completion algorithm.

However, encoding the lower bound of the cost of computation in a useful manner is

difficult since the heuristic estimate is only a property of individual nodes in the graph, while

a lower bound for the cost of computation is really a function of the state of information.

Naively, one may try to account for the cost of computation on a per node basis by using the

estimate of the minimum number of additional sub-problems needed to generate a feasibly

executable path. By using such a heuristic, a node will have the same estimate regardless of

the information gathered during the course of planning, effectively negating its usefulness2 .

Recent work in the literature has modified the A* algorithm to exhibit anytime behavior,

where a sequence of improving solutions is generated with increasing computation time.

Likhachev et al. have developed the ARA* (Anytime Repairing A*) algorithm [30] which

causes the A* algorithm to produce a sequence of improving solutions. This is accomplished

by initially using an inadmissible heuristic with the A* algorithm, producing a sub-optimal

path quickly. The inadmissible heuristic causes the A* algorithm to behave similar to greed

depth-first search (potentially leading to the discovery of a feasible solution quickly). ARA*

iteratively refines the heuristic function toward admissibility while generating intermediate

solutions in the process. The final solution, assuming sufficient time to iterate, is the globally

optimal shortest path. In Section 5.3, ARA* is applied to maze navigation problems. The

results for the graph planning problems are presented.

5.2 Graph Planning

Both exact and heuristic metalevel controllers have been developed for progressively larger

planning problems, as shown in Figures 5-1 through 5-3 for graph problems with 8, 16

and 24 arcs. The performance of the following four algorithms have been determined and

compared:

1. PLAN ALL (full-state dynamic programming)
2What is really needed is a heuristic estimate for the cost of the plan given as a function of

the current state of information. This is exactly what is provided by the value function V* of
the metalevel MDP. The value function can really be seen as the optimal heuristic function h*(s)
of the MDP where s is the information state. The heuristic function, h*(s), does incorporate the
information regarding the cost of computation, the graph structure and the set of solved sub-problem
outcomes in the estimate, while h(n) does not.
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2. RANDOM-DIRECTED (greedy)

3. Metalevel MDP

4. DTMP

Both PLAN ALL and RANDOM-DIRECTED strategies represent the optimal metalevel policies

for the extreme points on the time cost spectrum under the conditions of separable and

additive time costs (PLAN ALL for zero computational costs and RANDOM-DIRECTED for very

high costs). The results presented in each case assume that the cost of computation per

sub-problem is fixed and given by c, the marginal cost of computation. Binary sub-problem

outcomes of {0, 2} were assumed.

These conditions resemble those of the 4 arc graph problem in Chapter 3, where the

bounded optimal policy was confirmed to be equivalent to PLAN ALL when the marginal

cost of computation is zero (since solving sub-problems is free), and similarly the bounded

optimal policy should be equivalent to RANDOM-DIRECTED when the cost of computation is

high (since computations are expensive a solution should be found as soon as possible).

The exact solution of the metaplanning MDP was possible for both the 8 and 16 arc

graphs, but not for the 24 arc graph. For 24 arcs, there are approximately 324 (280 billion)

information states, making an exact solution impractical. In this case, only the DTMP

solution is presented.

Plotted in each chart (see Figures 5-4 through 5-6) is the performance of the different

strategies in terms of the total expected cost, given as a function of the cost of computa-

tion, c. The y-axis represents the performance of the algorithm in terms of expected total

cost, which includes both the expected cost of the base-level plan along with the costs of

computation. The x-axis represents the marginal cost of computation, E, which is the utility

cost per unit of computation. It is assumed that solving each sub-problem takes one unit

of computation. The marginal cost of computation allows both the execution and planning

costs to be expressed in units of utility. As the ratio of planning cost to execution cost

increases, the cost of solving sub-problems becomes more expensive. In the subsequent

charts, each data point corresponding to a particular value of c is the average of the costs

of each strategy on multiple problem instances.
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Figure 5-1: The graph for the 8 arc metaplanning problem.

Figure 5-2: The graph for the 16 arc planning problem.

Figure 5-3: The graph for the 24 arc planning problem.
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Figure 5-4: Results for the 8 arc graph problem with binary {0, 2} arc cost distribu-
tions.

5.2.1 Graph Planning Results

Figure 5-4 shows the results for the 8 arc graph problem with binary {0, 2} arc costs with

equal probability. As compared to the PLAN ALL and RANDOM-DIRECTED strategies, the

optimal metalevel planning policy, labeled MDP, exhibits bounded optimality across the

range of r. This plot has many notable characteristics that are common to the remaining

graph problems. Those notable characteristics are highlighted here.

For this small problem, the exact metalevel MDP policy could be solved exactly using

value iteration, and its performance is given by the curve labeled "MDP". As observed,

from the plot in Figure 5-4, the optimal metalevel policy is PLAN ALL, when the cost of

computation is zero, and switches to a policy equivalent to RANDOM-DIRECTED when the

cost of computation, c, is greater than 1. Notice that the value of the cost of computation

where metaplanning results in the greatest gain is around the point where PLAN ALL and

RANDOM-DIRECTED intersect, E = 0.3.

For this problem, the SPUDD algorithm [22], an alternative algorithm for optimally

solving MDPs, was also used to solve the metalevel MDP planning problem. As seen

in the plot, its performance is identical to the optimal policy. For this problem, neither

sampling nor path completion was a major deterrent to the DTMP heuristic. Though its

performance curve does not coincide exactly with the optimal policies, the differences are
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Figure 5-5: Results for the 16 arc graph problem with binary {0, 2} arc cost distri-
butions.

virtually indistinguishable, with a maximum difference for any data point being less than

one percent. Error bars are zero for each data point, since all 256 problem instances were

used to evaluate the performance of each policy.

Figure 5-5 shows the results for the case of the 16 arc graph with binary arc costs. In

this problem, the probabilities for sub-problem outcomes were not equal so that each sub-

problem had its own probability distribution. Again, the results of the PLAN ALL strategy

are reported. The RANDOM-DIRECTED strategy is replaced by a COMMIT strategy, which

commits to solving an a priori determined set of sub-problems, selected via solving the

shortest path planning problem using expected arc costs. The performance of the optimal

metalevel MDP policy, solved exactly, is also plotted.

The DTMP results include two cases, one where the decision tree policy was iteratively

generated without the MDP pruning step and the other with the pruning step. This shows

that the decision tree alone is unable to generate the best policy on its own. Notice that

without MDP pruning, DTMP is unable to adapt to the cases with high computational costs.

In the case where there is pruning, the performance of the DTMP metaplanning policy is

comparable to the performance of the true optimal policy and exhibits performance that

is near bounded optimal across the range of E. Error bars were not plotted in the figure

because they are too small to be seen. For both DTMP with and without the MDP pruning
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Figure 5-6: Results for the 24 arc graph problem with binary {0, 2} arc cost distri-
butions.

step, the standard error of the mean, was less than 0.038 for each data point, where each

one is an average 5000 sample problems. This problem was too large to solve with SPUDD.

Figure 5-6 shows the result of the DTMP algorithm for the graph with 24 arcs with

binary arc costs of equal probability. Though bounded optimality is not achieved, as with

the previous examples, the metaplanning policies generated by the algorithm lead to im-

provements over the switching policy of choosing the best strategy between PLAN ALL and

RANDOM DIRECTED for intermediate values of c. In this case, the optimal metalevel policy

was too large to be solved exactly as a full MDP or with SPUDD, making DTMP an attrac-

tive alternative that is able to yield performance gains over the other two strategies. Each

data point is the average performance of the individual strategies over 1000 sample problem

instances. The standard error of PLAN ALL, RANDOM DIRECTED and DTMP was no larger

than 0.1 and thus not plotted. WhenE = 0, the DTMP policy clearly does not achieve the

same cost as the PLAN ALL strategy. This is mostly due to the more complicated planning

domain making the plan completion problem more difficult.
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5.3 Maze Planning

The second type of goal-directed navigation problem addressed here takes the form of nav-

igating through a maze. The maze planning domain is posed in the form of a shortest path

planning problem, where a sub-problem decomposition is naturally defined by the individ-

ual path segments that form the maze. This problem is a parallel to the graph planning

examples where the arc links correspond to a set of unspecified sub-problems. Instead, the

sub-problems in the maze domain are themselves shortest path planning problems over path

segments of the maze.

Each path segment is defined by the links connecting individual maze intersections, or

junctions (equivalent to nodes in the graph problems). In order to keep with the directed

acyclic arc convention used in the graph planning examples, it is assumed that each path

segment of the maze is directed, so that no directed cycle exists. Figure 5-7, shows the

layout of the maze used in the experiments. A path segment in the maze consists of a set

of grid cells.

As was the case for the graph planning problems, the metalevel planner must solve a se-

ries of sub-problems to generate a least-cost, feasibly executable plan. One additional detail

is the presence of a fixed number of obstacles on the path segments, which must be dis-

covered in the process of solving sub-problems. The obstacles are assumed to be uniformly

distributed over the maze, and their presence on a path segment makes it impassible. It is

assumed that the maze configuration is known to the agent a priori, but a path segment

cannot be used as part of the path to the goal until it has been confirmed to be clear of

obstacles.

The maze problem is separated into two cases based on the level of detail of the sub-

problem solution process. These two cases will be denoted as the plain-maze and the

decomposed-maze.

In the plain-maze, solving a sub-problem is posed simply as examining the individual

grid cells of a path segment for obstacles, starting from the head and ending at the tail

(see Figure 5-8). It is assumed that examining or executing a single grid cell takes unit

time. The cost of computation of any path segment is computed as the marginal cost of

computation multiplied by the number of grid cells examined. The cost of execution is the

number of grid cells that must be traversed to move across a path segment.
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Figure 5-7: Plain-maze problem with obstacles.

In the decomposed-maze, each grid cell of the maze, is decomposed into a set of higher

resolution grid cells. These higher resolution grid cells have varying execution costs, gener-

ated randomly. Figure 5-8 shows an example of the decomposition of a path segment. The

sub-problems in this case consist of generating least-cost paths at high resolution through

path segments of the maze. While the execution costs per arc in the plain-maze tend to be

binary (either occupied or unoccupied), the arc execution costs in the decomposed-maze can

take a range of values and are determined by solving the corresponding shortest path prob-

lem. Obstacles preventing the traversal of an arc are also present in the decomposed-maze

and need to be discovered by the sub-problem planner.

In both cases, the maze itself is fixed and known to the agent while the sub-problems

take the form of path planning from one junction of the maze to another. There are 64

junctions and 83 maze segments for the given maze. Figure 5-8 shows an example path

planning problem for a path segment of the decomposed-maze consisting of four grid cells.

The grid cells of that particular maze segment are magnified in the figure to reveal a finer

grained, 3x3 grid cell decomposition for each of the original grid cells. This fine-grained

representation is indicative of the path planning sub-problems in the decomposed-maze

problem. A sub-problem consists of generating a shortest path from the grid cell labeled,

h, for the head, to the grid cell labeled, t, for the tail of the path segment. The ARA*

algorithm was used to solve the path planning sub-problems.

The cost function to be minimized for this particular example is expressed as an expo-

nential in terms of the weighted sum of computation and execution costs 3 , (i.e., the total

3This form of the cost function was chosen specifically to emphasize the importance of reaching

128

MMMMMMMMMMMM MMMMMMMMMMMMM M M ri
I M I
MMM MM Mmlmsv_ MMMUM WME

a Z C S I M



Figure 5-8: Shortest path sub-problem for the decomposed-maze domain. Each grid
cell in the original domain consist of a finer grained grid. The head and tail of the
path segment is indicated with h and t, and a path is given by the dashed line. The
greyed cells indicate impassible regions.

time elapsed before reaching the goal location) and is given by

K exp CcT) (5.6)

where K is a constant set to 100, and N, and N, are constants representing normalizing

factors on computation and execution times respectively. These numbers were set to be

proportional to the minimal times achievable for computation and execution when the maze

is cleared of obstacles. The variables tc and te represent the number of time steps that were

used by the agent to compute and execute the plan. It is assumed that the traversal of

a single grid cell during execution or an expansion of a single grid cell during planning

constitutes one time step.

In the decomposed-maze, where the original grid cells are decomposed into smaller grid

cells, the expansion of one small grid cell will still count for one time step, but the number

of time steps needed for a single execution action will depend on the random cost assigned

to the grid cell being traversed. The cost of execution of a small grid cell is at least 1 time

the goal quickly. Excessive exploration of the maze is even more expensive compared to the graph
problems of the previous section. In this case, the time cost separability assumption still holds, but
is no longer additive.
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step plus a randomly generated additive factor.

In the maze domain, the weighting factor we plays the role of E and is the ratio of

the cost of execution to that of computation. When the value of we is zero, the cost of

reaching the goal is a function of the execution costs only. When we is high, the cost

of computation dominates the cost function, and slightly longer paths that can be found

quickly are preferred.

5.3.1 Comments on Maze Results

The ARA* algorithm was used to implement strategies similar in nature to the PLAN ALL

and RANDOM-DIRECTED strategies in the maze domain. ARA*'s anytime nature has the

property that it is able to generate a range of solutions. This is controlled by two param-

eters, a weighting factor, Wh, to control the amount of heuristic overestimation of the true

cost-to-go, and a decrement factor, 6 h, to control the amount to decrease the weighting

factor per iteration of ARA*. The weighting factor is multiplied by the heuristic estimate

to generate an inadmissible heuristic function. ARA* uses the Manhattan distance as the

default heuristic estimate in the maze experiments. For the experiments, Wh is set to 10

and oh is set to 0.5, so that after 18 iterations, the weighting factor becomes 1 (making

the heuristic admissible). A high weighting factor for the ARA* algorithm generates be-

havior similar in nature to a RANDOM-DIRECTED strategy (not random but greedy), while a

low weighting factor effectively makes ARA* behave similar to A* search, resulting in the

generation of an optimal path.

There is a choice in the reporting of the ARA* results. Since ARA* is an anytime

algorithm it is possible to determine an optimal stopping time, run the algorithm for the

prescribed time, and report the results. Here, a more favorable reporting for ARA* was

chosen. Instead of iteratively running the ARA* algorithm for a sequence of decreasing

weighting factors, only the results for running ARA* on the best weighting factors were

used. This is favorable for ARA* because the computations that are performed under

intermediate weighting factor values may not be the same set of computational actions for

the best weighting factor had it been used as the initial value. Reporting the results for

iteratively running ARA* would yield higher cost plans due to accumulating computation
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costs from generating intermediate solutions in previous iterations4 . The best weighting

factor is chosen by evaluating ARA* with each weighting factor individually over a set of

problem instances. The result that yields the lowest expected cost for over all values of we

is reported.

The directed nature of sub-problems, which makes each path segment of the maze a

directed arc, allows for the possibility of randomly generated obstacle placements to prevent

the metalevel controller from generating any feasibly executable path. In some of these

cases, A:RA*, not being restricted in direction, is still able to find a path. In other cases

neither the metalevel controller nor ARA* could find one. Both of these cases problematic

problem instances are detectable and not included in the reporting of the maze results.

Finally, to deal with the path completion problem, each leaf node of the decision tree

is associated with a set of feasibly executable paths learned from data. When a leaf node

is reached, a candidate plan is selected from the list in the order of expected plan length,

with shorter plans being preferred. The remaining steps were either to solve the unsolved

sub-problems until a feasibly executable plan was obtained or select another candidate plan

when the current plan was deemed infeasible.

5.3.2 Maze Results

For the maze problems, the exact solution of the metalevel MDP is computationally in-

tractable so that only DTMP results are given. Figure 5-9 shows the results of DTMP and

ARA* for a range of computational weighting factors for the plain-maze world consisting

of simple grid cells. When the weight of computational effort is zero, DTMP and ARA*

perform similarly, expending effort to search the maze for the shortest possible path. As

the cost of computation is increased, ARA* continues performing its default search behav-

ior, while DTMP learns to direct the search effort to the relevant parts of the maze in

order to generate good solutions quickly. As stated above, the ARA* results are given for

the heuristic weighting factor, Wh, yielding the lowest expected cost for each we. As we

is increased, the best heuristic weighting factor tends to increase, while the best heuristic

weighting factor is 1 when we is zero. This is understandable since a higher heuristic weight-

4The ability for anytime algorithms to produce intermediate solutions, in general, results in some
computational overhead. By setting the weighing factor to a specific value, the computational cost
due to having to generate intermediate results is bypassed.
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Figure 5-9: Plain-maze world results with exponential costs.

ing factor results in greedy planning behavior. While both the DTMP and ARA* curves

are exponential with the cost of computation, DTMP produces plans that tend to better

balance the effects of computation on the objective function and the resulting plans. The

main benefit of the metalevel controller in this situation is its explicit control over which

computations to perform. In comparison, the computational actions taken by ARA* are

not subject to control. The algorithm only allows for explicit control of computation time.

Figure 5-10 shows the results of DTMP and ARA* on the decomposed-maze domain.

Again, DTMP and ARA* perform comparably when the cost of computation is zero. ARA*

performs slightly better since it can generate optimal paths, while DTMP, due to issues with

path completion does not guarantee optimality. Again, as more weight is put on the cost of

computation, the advantage of DTMP becomes apparent. The ARA* algorithm does not

explicitly account for the cost of computational actions, while DTMP does. As is typical

with most anytime algorithms, the optimization of the amount of computation to allocate

is performed externally of the algorithm, and an agent is asked to make the best use of

the solutions provided by the anytime algorithm. However, for the maze domain, ARA*

often generates expensive (long execution time) paths with very little computational effort

while less expensive (short execution time) paths take much more computational effort to

discover. Although the results of DTMP could not be compared against the exact metalevel

MDP solutions, the DTMP algorithm appears to be generating metalevel controllers with

a semblance of bounded optimality. The fact that it outperforms ARA*, which can claim
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Figure 5-10: Decomposed-maze results with exponential costs.

to be bounded optimal when then optimal stopping time is used, is evidence that supports

this hypothesis.

5.4 Chapter Summary

This chapter has demonstrated the utility of metalevel planning with feedback from sub-

problem outcomes, and in particular the controllers generated by DTMP, on a variety of

problem domains. The first set of problems fell into the category of deterministic shortest

path planning problems. These problems were chosen because they are flexible abstractions

that can be made to represent many other interesting planning problems. The metalevel

MDP formulation of these problems assumed a separable cost of time.

While there are many efficient algorithms for solving shortest path problems, they are,

in general, unable to account for the computation costs (expressed either explicitly or im-

plicitly) involved in plan generation. One alternative was to use available anytime shortest

path planning algorithms, such as ARA*, to account for the cost of time. While anytime

algorithms offer additional flexibility in terms of a solution quality versus computation cost

tradeoff, the sequence of computations performed by the algorithm is not under the control

of the agent. In anytime shortest path algorithms, the only control over the algorithm is

the length of computation time. The DTMP algorithm, by comparison, offers even more

flexibility since it can be used to generate a specific algorithm to suit the situation. This
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gives the metalevel controller the ability to direct computational effort towards high utility

sub-problems while also controlling computation time. For the graph problems, the DTMP-

generated metalevel policies were shown to perform favorably in comparison to traditional

PLAN ALL and reactive RANDOM-DIRECTED strategies (as well as the simple switching policy)

across a range of computational costs. More importantly, it was possible to confirm that

the metalevel policies led the agent to perform in a bounded optimal manner. In the maze

domain, the DTMP metalevel policies also outperformed plans generated using anytime

algorithms.

It has been shown that bounded optimality is achievable for small problem domains

by solving the metalevel MDP exactly with the approaches developed in Chapters 3. For

larger problems, where exact solution methods are intractable, DTMP has been shown to

be a viable substitute. This accomplishment is mainly due to the ability of the metalevel

controller to learn to exploit structure in the problem domain and to actively use feedback

to select high utility computations. Both the MDP and decision tree approaches infer the

utility of solving sub-problems by accounting for the current state of computation in terms

of known sub-problem outcomes, the distribution of problems instances for a particular

problem domain, and effect of the cost of computation on the overall cost.

In the next chapter, DTMP is adapted to problems that are not time-separable. For

these problems, the cost of computation cannot be explicitly represented as they were in

this chapter, but is implicitly defined by the nature of the base-level problem.
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Chapter 6

Vehicle Routing with Time

Windows

Metalevel planning for problems with deadlines and hard temporal constraints presents a

special challenge not found in the set of problem domains discussed in Chapter 5. In those

prior planning domains, the value of a sub-problem, once solved, remained constant for the

remainder of the planning episode. For time-critical problems, however, a sub-problem can

lose value or become invalidated with the passage of time. The ramification for metalevel

planning is that the cost of computation is no longer stationary or time-separable, but

implicitly defined by the dynamics of the problem definition. The time-critical targeting

problem presented in Chapter 1 is representative of the types of problems that fall into

this category. In this chapter, the targeting problem is formally introduced in terms of the

vehicle routing problem with time windows (VRPTW).

The vehicle routing problem (VRP) and its variants are well-known problems in the

Operations Research community. The basic vehicle routing problem is a generalization

of the traveling salesman problem (TSP), which can be stated simply as the problem of

determining the least cost tour for a set of cities. A tour is a Hamiltonian cycle [37]

through the set of cities, where each city is visited once by the salesman and must end with

the salesman returning to the starting city.

This is a combinatorial optimization problem that is known to be NP-complete [1]. The

VRP is a generalization of the TSP to multiple salesmen or vehicles. In this case, a set of

exactly K circuits which cover the customer demands must be found, where K corresponds
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to the number of vehicles.

In its most basic form, the VRP is known as the Capacitated VRP (CVRP) and consists

of a set of customers that have demands for goods which must be delivered by a fleet of

identical vehicles based at single supply depot. The demands are known in advance and may

not be split. Each vehicle has a maximum capacity for carrying goods and the objective is

to minimize the total travel cost to satisfy all customers [46].

While there are many variants of the VRP, the one considered in this thesis is one

with the time-criticality property, namely the vehicle routing problem with time windows

(VRPTW). The constraints are similar to the vehicle routing problem, where tours must be

generated to satisfy customer demands with minimum cost. Additionally each customer has

an associated start and end time corresponding to the time interval over which a customer

can be feasibly visited. This problem is known to be NP-hard [46]. It can be viewed as

analogous to the time-critical targeting problem by replacing customers with targets. The

time windows now represent windows of opportunity for striking targets, where they appear

at the start time and disappear after the end time. A single tour in the VRP will be called a

mission in the context of time-critical targeting. The deadlines, or end times, are what cause

missions to become invalid over time. A mission consisting of a set of targets whose deadlines

have all expired will have no value. While the metalevel control problem, in principle, is still

to balance the cost of computation with the benefit of generating feasibly executable plans,

the metalevel control problem has become more difficult due to the possibility that the

completed plans generated by the metalevel controller are no longer guaranteed to remain

executable throughout the planning episode. It will be shown that the DTMP algorithm

can be adapted to this case and perform well with little additional overhead.

6.1 Exact MDP Formulation of a Vehicle Routing

Problem

The vehicle routing problem with time windows (VRPTW) cannot be addressed by the

original metalevel MDP formulation in Chapter 3. The main difficulty is the presence of

time windows. Time windows are presented as a tuple {t,, te}, which represents the time

interval of availability of each target. That is, arriving at the target prior to the start of
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availability, t3, or after the end of availability, te, results in no value accumulation.

The metalevel MDP formulation can be modified to accommodate the effect of time

windows through the addition of time in the description of the information state. Recall

that in the time-separable case, it was sufficient to represent the state as a tuple of sub-

problem costs. In this case, the state description consists of a tuple of pairs, where each pair

contains the cost of a sub-problem along with the latest time to execute the plan associated

with it. It is assumed that the plan generated for each sub-problem has accounted for target

start times. Additionally, there is a state variable added to indicate the current time, so

that the information state is

S {< sp1, 1s1 >;...;< SPn, 1s >; tn}

where spi is value of executing sub-problem i, lsi is the latest start time the plan for a sub-

problem i can be feasibly executed, and to, is the time elapsed since the start of planning.

The latest start time for a plan can be determined by taking, for each target in the plan, the

planned arrival time, assuming that tarr is given in terms of absolute time, and subtracting

it from its end of availability time. This difference is referred to as the slack in the plan,

slack(j) = ti - t'a,

where the superscript j indicates the corresponding target, and the latest start time for

each sub-problem plan is the minimum slack time over all targets,

is = min slack(j) + to,.
jETARGS

The latest start time provides information on feasible execution, where a sub-problem plan

is not executable once Isi > tO. Assuming that the set of sub-problem outcomes, planning

times and time windows each takes on a finite number of integer values, the state transitions

are similar to those of the separable time cost metalevel MDP with a few differences. First,

every compute action results not only in a state transition for the sub-problem outcome, but

also for the latest start time of the resulting plan. In addition, a compute action increments

the value of ts.. Another possible effect of a compute action may be the invalidation of

previously feasible sub-problem plans.
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Outcomes

Figure 6-1: The VRPTW as a sequential decision problem.

Figure 6-1 shows the sequential decision problem for the VRPTW. The circles represent

the information state just as before, except the ti's indicate the value of t, and the si's

consist of the both the plan costs and their latest start times.

The size of this state space is exponential in the number of possible sub-problem out-

comes times the number of possible latest start times, such that

|S| O((|M|T |)ISP| T)

where |MI is the size of the set of discrete sub-problem outcomes and T1 is the size of the

set of discrete time values. Compared to the complexity of the MDP formulation of Chapter

3, this problem is much larger due the appearance of T, the representation of time, at the

base of the exponential. Clearly this problem can become computationally intractable very

quickly. Solving the problem exactly is generally not practical. In the following section,

a modified version of the DTMP algorithm, described in Chapter 4, that overcomes those

computational issues at the cost of a loss of optimality, is introduced.

138



6.2 Master and Sub-problem Level Formulation of

VRPTW

The master and sub-problems for the vehicle routing problem with time windows can be

addressed via a composite variable formulation. Composite variables, (see Armacost [2]

for details) are sub-problems typically employed in integer programming and network flow

problems, where the master level problem can by expressed as a set covering problem

(e.g., selecting enough sub-problems so that all targets are covered). This fits exactly with

the assumption of the existence of a hierarchical problem decomposition. The composite

variable formulation of the VRPTW in this thesis consists of sub-problems, each of which

solve a traveling salesman problem with time windows (TSPTW), along with a master level

integer programming problem for handling the high level constraints of the VRPTW, such

as not selecting mission combinations where a single target is visited more than once or

assigning the same vehicle to two different missions simultaneously.

The TSPTW sub-problem consists of determining a traveling salesman tour (mission)

for a given subset of targets along with their time windows, the vehicle assigned to the

mission, and the current location of the vehicle. A feasible solution to a sub-problem is a

mission consisting of the optimal (minimal cost) order to visit each target in the assigned

subset, the arrival times at each target, and the value of the mission. The value of the

mission is determined by the sum of the target values in the mission minus the travel costs.

A feasible mission consists of a plan which visits each of the targets assigned to the sub-

problem once, while respecting the target time windows, and the return-to-base constraint.

Missions are not guaranteed to be feasible. An infeasible mission might be the result

of having too many targets assigned to one vehicle such that it cannot feasibly meet all

deadlines.

6.2.1 Master Level Formulation

The master level acts as a high level plan coordinator that generates the final plan through

the selection of a combination of sub-problem solutions (missions). The master level selects

the sub-problems to solve in a manner that ensures that the constraints of the original

VRPTW are satisfied. In its simplest form, the master level problem formulation for the
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VRPTW consists of choosing a set of missions which ensure that targets are not visited by

more than a single vehicle while maximizing the combined value of the selected missions.

The time window constraints are handled by the sub-problems and do not appear in the

master level. In addition, typical capacity constraints in terms of fuel and the number of

weapons carried that would also be addressed by the sub-problem solver are not considered

in this thesis in order to reduce the time-critical problem to its bare essentials. The master

level integer program can be written as follows

max Z E VikXik (6.1)
kEVEH iEMISSk

E S m ijkxik < 1,Vj E TARG (6.2)
kEVEH iEMISSk

E Xik < 1,Vk E VEH (6.3)
iEMISSk

Xik C {o, 1}. (6.4)

where MISS, VEH, and TARGS are sets representing the available missions (available

sub-problem solutions), vehicles and targets over which the master level has to plan, re-

spectively. The missions are individually indexed per vehicle, such that MISSk is the set of

missions developed by the sub-problem solvers for vehicle k. The value of executing the ith

mission of vehicle k is represented by Vik. The mission selector variables (the "composite

variables") are represented by Xik and, as indicated in Equation 6.4, are binary, taking on

the value of 1 when mission i for vehicle k is selected and a zero otherwise.

There are two major constraints represented by Equations 6.2 and 6.3. The first states

that a target should not be visited more than once by any vehicle. The mission detail vector,

mijk, is binary, with a 1 indicating that target j is to be visited by the ith mission of vehicle

k. In a typical vehicle routing problem, Equation 6.2 would be an equality, constraining

the solution such that each target must be visited exactly once. In a time-critical situation,

however, the best set of missions to execute may not cover all targets. In fact, the time it

takes to compute a set of missions that completely covers all targets may lead to a solution

that is significantly inferior to a solution that only covers a subset of targets. Relaxing

this constraint allows for the possibility for missions to be executed sooner. It also has the

implication that some vehicles might not be assigned to a mission.

The second constraint, Equation 6.3, states that vehicles are only allowed to execute at
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most a single mission. This is a typical constraint to represent the possibility that a vehicle

might need to be refueled or reloaded with ordinance after executing its mission. As in the

previous problems, it is assumed that all missions are simultaneously executed only after a

complete plan has been computed.

6.2.2 Sub-problem Formulation

A sub-problem consists of finding the lowest cost route for a specific mission, that is, a single

vehicle mission associated with a subset of targets. When each vehicle is assumed to have

equal capability and to start from the same base, missions generated for one vehicle are also

feasible for all other vehicles. A problem instance is assumed to consist of a fixed number

of targets over a given geographical region. In general, it is assumed that problem instances

are generated according to some distribution over target locations and time windows. The

manner of defining sub-problems (i.e., mission generation) is dependent on target indexing

(more below). Targets for each problem instance are assigned an integer index or target

identification (targetID) number. Based on the targetID, the complete set of sub-problems

consists of missions that can be potentially generated from the power set, P(TARGS), or

the set of all subsets of target indices, ranging from sub-problems consisting of single targets

to sub-problems consisting of the complete set of targets'.

Each sub-problem is a TSPTW and is solved through a dynamic programming algorithm

with pruning, developed by Dumas et al. [16]. The algorithm either finds an optimal tour,

visiting each target in the mission once, while respecting the time window constraints or

returns that the specified mission is infeasible. A mission is infeasible when a tour cannot

be generated to visit all of the targets satisfying their time window constraints. Infeasible

missions are not added to the pool of missions, MISS, for the master level to select. The

output of solving a sub-problem is an optimal tour, the target arrival times, and the cost of

executing the traveling salesman tour. Each of the targets has an associated target value,

and the value of mission i for vehicle k, Vik, is computed as the difference between the total

iThe mission consisting of the complete set of targets is equivalent to solving the entire VRPTW,
and is not feasible. In practice, the set of feasible sub-problems consisted of missions with far fewer
targets. This fact was used to reduce the set of sub-problems considered during training.

141



target value of the mission and the cost of the traveling salesman tour,

Vik = j - M1C (i) (6.5)
jETARGi

where TARGi is the set of targetID's pertaining to mission i, and TVj is the target value

of target j. The mission cost, MC(i), or cost of executing the tour is part of the outcome

of solving the TSPTW sub-problem. In this thesis, the travel distance of each mission

was used as the mission cost, although, in general, other measures such as travel time and

mission risk may be incorporated.

£11

£21
Missions

£31
1 0 0 1 1 0 1

Targets £41 Missions for vehicle 1. (6.6)
0 1 0 1 0 1 1

051
0 0 1 0 1 1 1

£61

£71

The sub-problems take care of generating feasible missions for each vehicle, which can be

seen in the expression given by 6.6. It shows all seven possible missions for three targets

generated for vehicle 1. Each ijth element in the matrix corresponds to an entry of the

mission details miji in Equation 6.2. Each row of the matrix corresponds to a target, and

each column corresponds to a mission. The targets assigned to a mission are indicated with

a 1 in the corresponding row of mi1 so that the first column corresponds to a mission which

prosecutes the first target only and the last column is a mission for all three targets.

This problem is conceptually similar to the graph planning and shortest path planning

problems discussed previously. The major challenge is in addressing the problem of changing

constraints, which is different from previous cases where the feasibility and time cost of

each sub-problem was stationary. For the VRPTW, the cost of time cannot be explicitly

represented and is a function of the problem dynamics, that is, target values change as a

function of time. The cost of time manifests itself in this domain as the loss of opportunity to

execute missions. The metalevel planner must weigh the consequences of solving additional

sub-problems with the risk that the currently valid missions corresponding to the current
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best plan may become invalid with additional computational delay.

In order to generate the metalevel plan, sub-problems are assumed to take some char-

acteristic planning time, learned through simulation. In addition, each mission has an

associated latest start time, indicating the latest time at which the mission can be ex-

ecuted. The determination of latest start times was discussed in Section 6.1. As more

sub-problems are computed, previously generated missions may "expire" due to the current

time exceeding their latest start times. This effect is taken into account when generating

the metalevel control policy, with training data that reflects the possibility that additional

planning invalidates previous missions.

6.2.3 Consistent Target Indexing

The assumption in this thesis is that the sub-problems, given by the hierarchical decom-

position, are defined externally as part of the problem description, and the best metalevel

controller is learned for the given decomposition. In the case of the vehicle routing problem,

since sub-problems are defined as subsets of targets, the manner in which the targets are

indexed plays an important role in the definition of sub-problems. As a consequence, poor

or inconsistent target indexing will affect the decision tree learning process.

In the graph and maze problems of Chapter 5, sub-problems naturally correspond to

the arcs in a graph or segments in a maze. These sub-problems are consistently defined

over every problem instance, such that, referring to Figure 3-1, the arc SA, corresponding to

sub-problem 1, is always known to be followed by the arc AG, corresponding to sub-problem

3. With consistent indexing, the learning algorithm is able to derive a relationship between

these two sub-problems.

However, in the case of the vehicle routing problem, each sub-problem is defined in

terms of a subset of targets. These subsets are, in turn, determined by the set of target

indices. One drawback to defining sub-problems in such a manner is that the actual targets

in a given subset will be highly dependent on the way in which the targets are indexed. A

simple example where inconsistent indexing leads to problems is dialing a phone number

on a telephone where the keys are unlabeled and scrambled (inconsistently indexed) after

each phone call. When scrambling occurs, it may be impossible to ever successfully dial the

right number. However, if the keys are unscrambled (consistently indexed), even if the keys
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are unlabeled, one might eventually learn the digit corresponding to each key. Consistent

indexing in this case involves mapping each key to the correct digit.

In the same vein, a haphazard target indexing scheme will make it difficult, if not

impossible for the learning algorithm to learn relationships between sub-problems. As

another example, inconsistent target indexing is akin to randomly assigning a sub-problem

index to each arc in the 4 arc problem for each problem instance. If arc SA is denoted

as sub-problem 1 in some problems instances, while arc SB is denoted as sub-problem 1

in other instances, the learning algorithm will have a difficult time learning the true effect

solving the individual arcs. Since the learning algorithm only knows about sub-problems

and not arcs, the learned consequence of solving sub-problem 1 will be averaged over the

consequences of solving arcs SA and SB, respectively.

It is especially desirable to avoid this issue in the vehicle routing problem, since target

indexing can exacerbate the issue of learning relationships among sub-problems. Given any

instantiation of target locations over the same geographical area, the indexing of targets can

occur in any number of ways. A consistent way of indexing the targets is sought. Note that,

in addition to problems associated with learning a metalevel control policy, the problem of

consistent target indexing also affects the execution of the metalevel control policy. Suppose

that during training, a particular indexing scheme is used for the set of training instances.

In the field, the same indexing scheme must be used. The results of using the metalevel

controller with a set of sub-problems generated under a completely different indexing scheme

may be unpredictable and/or perform very poorly.

Figure 6-2 shows the difference between "consistent" versus "inconsistent" target in-

dexing for a simple example. Here, "consistent" notionally means that targets are indexed

across problem instances in such a way that the sub-problems (missions) that are defined ac-

cording to this indexing will enable the learning of significant relationships among missions.

On the other hand, "inconsistent" target indexing hinders the learning process.

Figure 6-2a shows one target indexing scheme for one instantiation of the problem.

Suppose that it is known that the targets labeled 1 and 2 in Figure 6-2a tend to appear

together in the same geographic area such that "good" missions will have targets 1 and

2 constitute one mission and target 3 be another mission. Figures 6-2b and 6-2c show

examples of consistent target indexing on another problem instantiation (targets are in

different locations), allowing a metalevel controller to learn that targets 1 and 2 belong

144



1 2
2

1

3 3

b

1 2

2 3

31

c d

Figure 6-2: Consistent target indexing is a key to learn relationships between sub-
problems. a) Original target indexing. b) and c) Two ways of target indexing for a
new problem instantiation that are consistent with a. d) Target indexing that is not
consistent with a. Target 1 in d is not in the same quadrant as target 2 as in a, b or
c. This inconsistent indexing will make learning very difficult.

together. Figure 6-2d gives an example where the targets are indexed in some other fashion,

so that a mission with targets 1 and 2 would not be a "good" mission. Thus, if one were

trying to learn which sets of targets were likely to constitute "good" missions the labeling

in Figure 6-2d would hinder the learning of high utility missions by this inconsistent target

indexing. Decision tree learning will have difficulty in conceptualizing between good and

bad missions (in this case, it is assumed that "good" missions consist of targets that are

clustered together).

In an effort to enforce more consistent target indexing, one could imagine enforcing

an order on targets by overlaying a grid over the geographic region, as shown in Figure

6-3. This can help induce an ordering on the target locations based on grid numbering.

Targets falling within the first quadrant are labeled first, followed by targets in the next

quadrant and so on. If there are few targets appearing within a quadrant, the order of

labeling might be assigned randomly. For instance, swapping the indices for targets 1 and

2 in the lower left quadrant of Figure 6-3 may be acceptable. One can consider having

finer grained grids to accommodate more complex problems with higher target densities.

This method for enforcing consistency is employed for the experiments in Section 6.4. An

alternative indexing/labeling possibility is to apply a minimum spanning tree algorithm [1]
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Figure 6-3: Partitioning a geographical region in order to enforce consistent target
indexing.

(pg. 510-542) which can be used to index targets according to the order in which they are

added to the minimum spanning tree. The ideal method for performing target indexing to

generate meaningful sub-problems has not been fully explored but should be a subject for

future research. Next, another way of defining sub-problems, which avoids the problem of

target indexing is discussed.

A spatio-temporal based approach for defining sub-problems can be explained by refer-

ring to Figure 6-4, which shows a spatio-temporal view of the vehicle routing problem with

time windows. The x-y plane shows the base and target locations, the curved dotted lines

represents a spatial tour, and the t-axis represents time. Each location has a straight line

running upwards with horizontal bars on these lines representing the target time windows.

The arrows connecting the time windows represent the state of the vehicle in both time

and space during tour execution. From this perspective, one can develop another way of

decomposing the problem into a set of sub-problems.

Rather than indexing sub-problems based on target indices, which has foreseeable prob-

lems with consistent indexing, it may be possible to generate sub-problems by clustering

on a spatio-temporal basis. For instance, sub-problems can be clustered according to el-

lipsoids of fixed volume and labeled according to their distances from the base. The logic

behind this is that targets which are in physical proximity of one another and whose time

windows are close in proximity should be clustered together. This bypasses the problem
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Figure 6-4: A spatio-temporal view of the VRPTW.

with consistent target indexing because sub-problems are generated independently of target

indexing for each scenario, but does introduce the problem of having to perform additional

computations to identify sub-problems for each problem instance. Although the effective-

ness of this method for defining sub-problems has not been empirically evaluated, it should

perform well, since, intuitively, "good" missions should correspond to a cluster of spatially

and temporally "close" targets.

6.3 Adapting DTMP for the VRPTW

As stated above, solving the exact MDP formulation of the VRPTW quickly becomes

computationally intractable as the number of sub-problems increases. For this reason,

DTMP is used, as before, to learn a policy for conditionally selecting computations to

perform. Under the condition that the variability of sub-problem computation times is

low (i.e., it takes approximately the same amount of time to solve a specific sub-problem

regardless of the problem instance), the time it takes to solve any subset of sub-problems

can be determined explicitly by the particular set of sub-problems solved. That is, if solving

sub-problem spi takes tj seconds and solving spj takes t) seconds, then it is implicit that

the information state of having solved for spi and spj results in a total elapsed time of

approximately t1 + tj. Essentially, the depth of the decision tree can be used to determine

how much time has elapsed, obviating the need to explicitly represent time as a feature.
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Figure 6-5: The DTMP algorithm modified for the VRPTW. The main modifications
are the addition of a preprocessing step, mini-tree generation, and a change to the
way the induced-MDP is created.

However, in the case where there is a wide variation in computation times, the infor-

mation state of having solved spi and spj in a short amount of time differs significantly

from having taken a long amount of time. In the former case, there may be sufficient time

to perform additional computations, whereas, in the latter case, the best action may be

to execute. Without accounting for time, both information states are treated as the same

state and assigned an "averaged" action, perhaps leading to reduced performance. In the

remainder of the discussion, it is assumed, and can be empirically verified, that the vari-

ability of sub-problem computation times is low, so that time is implicitly defined by the

information state.

There are three main modifications to DTMP that have been developed to help it deal

with the additional complexity posed by the VRPTW. The remaining steps of the DTMP

algorithm remain unchanged.

* The first modification is the addition of a preprocessing step to filter the initial train-

ing data.

o The second modification makes use of the mini-trees discussed in Chapter 4.

e The third modification is a change to the structure of the induced-MDP and its

subsequent pruning.
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Figure 6-5 (cf. Figure 4-5) shows the DTMP algorithm modified for the VRPTW.

The preProcesso function takes as input, (x, tc), where x is the set of sub-problem costs

for each problem instance and te is the vector of expected computation times for solving

each sub-problem. Preprocessing produces training data in the familiar form of (x, y),

where y is the vector of labels for the training instances. This data used in training to

generate a decision tree, T, which is referred to hereafter as the main regression tree in

order to distinguish it from the mini-trees. Recall that the mini-trees were introduced as

an approach to generating feasibly executable plans to deal with the issue of insufficient

tree depth. In particular, mini-trees are used to replace the greedy path completing action

that is typically added by getStats() to each state of the induced-MDP. The mini-trees

are generated by "classifying" the training data such that each data instance is associated

with a leaf of the main regression tree. The data instances in each leaf are augmented as

described in Chapter 4 and trained to generate a mini-tree. The composite decision tree

that is generated as a result of appending each mini-tree to the corresponding leaf node of

the main regression tree is denoted as T+ in Figure 6-5. As an alternative, a mini-tree can

be generated for all nodes (information states) of the main regression tree as well. How

the MDP pruning step is performed depends on whether mini-trees are generated for each

information state of the main regression tree, T, or only for the leaf nodes. In the latter

case, pruning only affects the main regression tree, while pruning in the former will consider

the entire composite tree, T+.

6.3.1 Preprocessing

The purpose of the preprocessing step is to ensure that the decision tree learns to select

mission combinations that yield high value, but can also be feasibly executed. There are

two reasons for preprocessing the training data. The first is to reduce the number of sub-

problems used for training the decision tree, and the second is to ensure that the set of

missions used for training yields feasibly executable plans. The set of sub-problems used

to train the metalevel controller for time-critical targeting problems is filtered such that

missions that take an excessive amount of time to solve are not included as features in

the set of training samples. Here "excessive" refers to the condition where the expected

computation time, t, in Figure 6-5, of a mission is greater than its latest start time, ls.
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When this is true, the mission cannot be successfully executed because it will have violated

at least one target's time deadline, te. For instance, the sub-problem which consists of

the entire set of targets is typically caught and filtered in the preprocessing step because

many targets may have their deadlines exceeded by the time planning for the mission has

completed. The remaining set of missions, which are feasible missions on their own, are

subjected to an additional round of filtering, wherein all combinations of missions (which

satisfy global constraints) are examined for each training data instance. Since the global

mission consists of a combination of missions, where each mission is generated sequentially,

the total computation time of generating every mission within a combination is compared to

the latest start time of each mission within the combination. Again, if the total computation

time violates any of the latest start times of the individual missions, that combination is

filtered. This process is repeated for each instance of the training data.

If a combination allows for feasible execution, the value of executing this combination

and the corresponding missions are stored in memory. After examining all combinations

of missions, the total mission value of the winning combination (i.e., the one resulting in

the highest total mission value, while remaining feasibly executable) is added as the label

for that training data instance. This is performed for each instance of the training data,

such that sub-problems that are part of the winning combination for any data instance are

included in the list of eligible sub-problems over which to train the decision tree. At the end

of preprocessing, each instance of training data for the decision tree consists of a "label"

determined by the total mission value for the winning combination and a feature vector

which contains sub-problem costs for only the set of sub-problems found on the eligibility

list.

Sub-problems that are found on the eligibility list are already known to be feasibly

executable when combined with other sub-problems. This will help to reduce the probability

of the decision tree learning to select a set of infeasible mission combinations. Without this

step, however, the decision tree might erroneously learn to only select high valued mission

combinations leading to missions that cannot be feasibly executed after accounting for

computation time. Preprocessing was the main mechanism used to generate the results for

the experiments in Section 6.5.
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6.3.2 Mini-trees

Recall from Chapter 4, learning a decision tree for planning can yield a tree that produces

good predictions of the expected cost of the best plan without actually having solved enough

sub-problems to generate a feasibly executable plan. To address this problem of insufficient

tree depth, it was noted that training data, classified at each of the leaf nodes, could be

used to generate small decision trees, mini-trees, to complete the plan. Rather than taking

the entire row of sub-problem features in the data for training, as is done for training

the main regression tree, a restricted set of sub-problems is used, essentially consisting of

the one's that produced the best plan for each training instance. These sub-problems are

identified, for each training instance of a leaf node of the main regression tree, by isolating

the set of sub-problems used to produce the label (plan cost or value) for that training

instance. This set of sub-problems is compiled, and, along with the original label for each

data instance, is used as training data for the mini-trees. Each leaf node must have its

mini-tree individually generated, since the data being used is unique to that node. The

details of mini-tree generation may be found in Section 4.4.

6.3.3 Pruning the Induced-MDP for VRPTW

Although the cost of computation is not explicitly known as in Chapter 3, the MDP pruning

step of the main regression tree remains relatively unchanged from that described in Section

4.3. Recall that the pruning step takes the learned decision tree and uses value iteration to

determine when execution should occur in each branch of the tree by weighing the benefit

of further computation against the cost of doing so. Even though the cost of computation

is not explicitly represented, the benefit of additional computation can still be inferred

from the reward the agent receives from taking the execute action. For instance, the agent

might learn that performing the first five computational actions yields high global mission

value, but taking the sixth action yields a much lower value, perhaps because many targets

in the best global plan become unavailable after the sixth computation. In this example,

the pruning step would remove the sixth and all subsequent computational actions from

that branch of tree. However, it may be the case that the seventh computational action

may somehow yield an extremely high value plan. This, in turn, would be reflected up the

decision tree so that the sixth computational action will have value and therefore will not
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Figure 6-6: Composite decision tree with mini-trees at each node. Mini-trees are
generated for each node of the main regression tree. The actions available at each
node of the main regression tree are either to continue following the regression tree,
to follow the attached mini-tree, or to execute the current plan. The actions available
at each mini-tree node are to either continue following the mini-tree, or execute the
current plan.

be pruned.

Pruning can occur in two ways depending on the manner in which the mini-trees are

appended to the main regression tree. By default, mini-trees are assumed to only be at-

tached to the leaf nodes. In this case, pruning should primarily focus on the main regression

tree, since the mini-trees might completely be pruned away if pruning were performed in a

bottom-up manner as described in Chapter 4.

The first approach to pruning involves a coarse adjustment of a tuning parameter in the

decision tree learning algorithm that adjusts its size. Recall that in Chapter 4, the variable,

splitmin, in the treeGen() algorithm, specifies the number of training samples needed at a

node to warrant a split. This variable can used to control the size of the main regression

tree learned from data. Large values of splitmin yield more compact decision trees, since

each node of the decision tree must contain many more data points in order for a split to

occur. A search over values of splitmin can be performed to generate a main regression

tree and its associated mini-trees. The best sized tree can be determined through trial and

error by evaluating each one's performance and storing the best.

The second, more principled, way to perform pruning is exactly the same as that de-
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scribed in Chapter 4, except that it considers the entire composite decision tree for pruning

and each node of the main regression tree has an associated mini-tree. Figure 6-6 shows

such a composite decision tree. The main regression tree is generated to full depth and a

mini-tree is trained for each node, treating it as though it is a leaf node. The induced-MDP

created by the composite tree can be solved using value iteration, where at each node in

the main regression tree the choice of action is either to continue down the main regression

tree, divert to the corresponding mini-tree, or execute the current best plan. The choice of

action for each mini-tree node is to continue down the mini-tree or execute the current best

plan. In this case, bottom-up pruning is acceptable since the plan-completing mini-trees

are available at each node rather than being restricted only to leaf nodes. The solution to

the MDP will naturally prune away the set of sub-trees (portions of the composite tree)

that do not yield value. This method of pruning is more expensive than adjusting splitmin,

since is requires dealing with a much larger composite decision tree. Its advantage is that

it offers a finer grained control over which branches of the composite tree to prune.

For the experiments of Section 6.5, a two-level composite decision tree was used, where

mini-trees were only appended to the leaf nodes. Initially, a shallow main regression tree

is generated, using preprocessed data as discussed above. The training data is then "clas-

sified", such that leaf nodes of the main regression tree are associated with each problem

instance in the training sample. The set of training samples in each leaf node of the main

regression tree is augmented and used to train plan-completing mini-trees as described in

Subsection 4.4.2. The bottom-up MDP pruning step was not used to prune the composite

tree, as splitmin was already set to a large value, resulting in a compact main regression

tree. Preprocessing limited the number of sub-problems used in training, resulting in very

shallow mini-trees as well. Without pruning, the metalevel policies simply consisted of per-

forming the computations suggested by the composite decision tree until a leaf node was

encountered. The best mission combinations were then generated using the set of solved

sub-problems. In addition, the metalevel policy was generated using only a single pass of

DTMP and was not iterated. Referring to Figure 6-5, the results of Section 6.5 were gen-

erated using only a restricted portion of the modified version of DTMP. DTMP was halted

as soon as T+ was obtained, and used directly as the metalevel policy. At present, both

the effect of iterating on this modified version of DTMP as well as the effect of generating

mini-trees for each node of the main regression tree have not been fully explored. Additional
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experiments will need to be performed in the future to test their properties.

6.4 Multiple Traveling Salesmen Results

Before to presenting the VRPTW results, the results for a vehicle routing problem with no

time windows are given. The reason for doing so is to show that DTMP can be applied

without modification for the version of the problem where there are no hard temporal

constraints and performs well. This is in contrast to the additional steps, discussed in

Section 6.3, needed by DTMP for the version with temporal constraints. This problem is

simply a variant of the standard traveling salesman problem, where the goal is to assign

a fixed number of homogeneous salesmen to cover all cities. The base-level objective is to

maximize the total value gathered by all salesmen minus their travel costs. The constraints

are that each salesman starts at the same location, is limited to a maximum travel distance

(e.g., limited due to fuel), and must complete a Hamiltonian tour [37]. In addition, no

location can be visited by more than a single salesman. The absence of time windows keeps

the costs stationary, similar to time-separable problems of Chapter 5. The cost of time is

assumed to be additive.

This problem can be separated, as before, into sub-problems, where sub-problems are

described as standard TSPs with no time windows. A sub-problem consists of a specific

assignment of a subset of locations to a particular salesman and the solution 2 is a standard

TSP tour over those locations. An optimal planner, which solves all 21L, sub-problems,

where ILI is the number of locations, and generates the final plan using an integer program

(IP) to select the optimal combination of tours respecting the visit-once constraint, was

chosen to serve as a baseline for comparison.

The greedy planner, used for comparison was implemented by alternately assigning the

salesmen to the nearest unassigned location while ensuring that each salesman respected the

travel-distance constraint and was not optimized in any way. Note that the nature of the

greedy algorithm in this case refers to being greedy with respect to the distance to the next

target added to a vehicle's mission and not with respect to computation time. This can be

contrasted with the graph problems of Chapter 5, where a greedy (least computation cost)

plan was generated by producing a directed path to the goal for high costs of computation.

2Not all assignments result in feasible sub-problems due to the travel distance constraint.
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e OPTIMAL DTMP GREEDY

0.0 53.9704 53.2449 0.763 46.948
1.0 38.451 52.197 ± 0.777 46.948
9.0 -85.697 52.195 ± 0.777 46.945
1E2 -1.5E3 52.095 i 0.775 46.905
1E4 -1.6E5 50.005 ± 0.794 42.611
1E5 -1.6E6 43.330 ± 0.895 3.569
1E6 -1.6E7 8.272 ± 1.166 -3.9E2

Table 6.1: Results for the multiple traveling salesman problem.

This particular greedy algorithm was selected over another, which minimizes the time to

compute a solution, since it seems to more reasonably resemble a "fast heuristic" that might

be implemented by a human to solve the multiple TSP problem.

The problem scenario consists of 4 salesmen and 8 locations. The locations were sepa-

rated into groups of two, such that each group was assigned to one of the four quadrants

over a square region delineated by lower left coordinates (0,0) and upper right coordinates

(2,2). The home base was centered at (1,1). The travel-distance constraint was set to 2 for

each salesman using the Euclidean measure of distance. Problem instances consisted of in-

dependently sampling locations uniformly over their respective quadrants. The illustration

in Figure 6-3 shows the setup for this problem. Table 6.1 gives the results for this problem.

From Table 6.1, it is clear that DTMP is competitive with the optimal strategy when

computation costs are zero as in previous results for shortest path planning. Note that

for this problem, wall-clock time was used in calculating the cost of computation rather

than counting the number of discrete operations as in previous examples. However, the

computational cost multiplier c is still employed in reporting results, where the objective

of the metalevel problem is to maximize the expected value of the executed missions minus

E times the time elapsed from solving sub-problems. The computational cost multiplier is

included to represent the cost of per unit time of the resources that are consumed during

the planning process.

Each target is assumed to be worth 10 utility points, and the value of a mission is

computed as the total target value of the mission subtracted by the travel costs involved

in executing the mission. Atypical for this example is the fact that increasing values of E

did not result in DTMP converging to a the greedy solution. This is due both to the plan

completion algorithm, which selected computationally inexpensive sub-problems to generate

the remainder of the plan and to the fact that the greedy algorithm presented here is not
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greedy with respect to computation time as explained in above. As a result, the greedy

strategy performs well, but still incurs a very small computation time which is compounded

by the cost of computation multiplier. As the value of e increases, the computation cost

begins to have more effect on the total cost. This is the reason that the value of the greedy

algorithm eventually becomes negative.

6.5 VRPTW Results

This section presents the results of the VRPTW for a problem scenario with two vehicles and

nine targets. Although this is a relatively simple problem scenario, it serves to illustrate the

value of the DTMP algorithm in the case of hard temporal constraints because it possesses

all of the problem features of a more complicated problem, but, due to its size, allows for

the resulting DTMP missions to be easily interpreted in order to determine whether the

algorithm is performing reasonably. Each target has an associated time window that is

assumed to be fixed across problem instances. Eight of the nine targets are assumed to

be of equal value, fixed in location across problem instances, and known a priori to the

planner. It is also assumed that there are pre-planned initial missions that are executed by

each vehicle at the beginning of each planning episode. Individual problem instances are

generated by varying the location of the ninth target (pop-up target). This ninth target is

known as the emergent target as its location is not known a priori. It emerges randomly

over a given region partway through plan execution. This problem may, at first, appear to

be different from the development of the basic VRPTW problem in Section 6.2. However,

the difference is minor, since, after the emergent target appears, the basic VRPTW problem

with nonhomogeneous vehicles is recovered with the exception of a side constraint which

forces to global plan to include a mission which prosecutes the emergent target before its

deadline.

The initial scenario is presented in Figure 6-7, which shows the vehicles as triangles, the

known targets as circles, and the emergent target (shown here only for illustration purposes,

as it is not initially known where it will appear) as a square. Note that in Figure 6-7, only

eight of the targets are labeled 3 . At the start of the scenario, each vehicle is assumed to

3For this problem, the emergent target is assumed to always appear at a fixed time, but at random
locations within the dashed region. In general, a policy can be learned for random emergence times.
The first four targets in vehicle V2's default plan will have been prosecuted by the time the emergent
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be executing its pre-planned initial plan, indicated by lines in the figure, which completes

a Hamiltonian circuit. The direction of travel of each vehicle is indicated by an arrow. The

dashed region is the area in which the emergent target will appear. The emergent target is

used to represent a target of high importance, and the planner is constrained to formulate

a plan to prosecute it in a timely manner before it disappears. It is assumed that one of

the two vehicles must be reassigned to include the emergent target in its new plan. This

implies that some of the targets that were originally in a vehicle's initial plan may need

to be discarded to satisfy this constraint. The only change to the master level problem

formulation is the additional constraint, given by Equation 6.7, that the emergent target

be must be included in a single mission,

E E miETkXik = 1, (6.7)
kEVEH iEMISSk

where the index ET indicates the target index of the emergent target.

Prior to the appearance of the target, the vehicles are executing their initial plans. The

mission generation problem begins immediately after the emergent target appears. The

objective is to efficiently generate a plan (a mission for each vehicle) such that the emergent

target is prosecuted while covering as many of the remaining targets as possible by both

vehicles. As before, a balance must be struck between the utility of planning against its

cost (in the form of exceeding deadlines).

Only a DTMP metalevel policy has been generated for this scenario. The solution of

the metalevel MDP formulation is computationally intractable as it is even more compu-

tationally difficult than the metalevel MDP formulation in the case of the shortest path

problem. Figure 6-8 shows the results of the new plans generated by DTMP. The figure

depicts a snapshot of the current scenario at the point in time when the emergent target

appears. Some time has elapsed since the start of execution of the initial plan. By this time

vehicle V2 has prosecuted the first four targets, indicated by stars, in its initial plan, and

vehicle V1 is loitering above target 3, waiting for it to become available. The new missions

that are generated to account for the emergent target are shown in the diagram by the new

line segments. Again, it is assumed that planning must be completed prior to execution.

During planning, each vehicle is assumed to be loitering over its current position. At the
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Figure 6-7: The initial nine-target VRPTW scenario. Targets are indicated by circles
and eight of the ones that will remain after the emergent target appears are numbered.
The two vehicles, labeled V1 and V2, are indicated by triangles, and the directions in
which they are traveling are indicated by arrows. The base is indicated by the cross
(center). The line segments connecting the targets represent the current plan being
executed by each vehicle. The square is used to indicate an emergent target, which
is shown here for illustration purposes only, as the location at which it will appear is
not known initially. The dashed region represents the bounded region where it can
appear.

aS 10 Mi E

Figure 6-8: The new plans generated by the DTMP metaplanning policy as a result
of the appearance of the emergent target. Some targets cannot be covered under the
constraint that the emergent target must be prosecuted by one of the vehicles. The
targets that have already been prosecuted by vehicle V2 are indicated by stars.
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end of planning, for this scenario, vehicle V1 has been reassigned to targets 3 and 4, while

vehicle V2 has been reassigned to target 9, the emergent target, and targets 5, 8, 7 and 6. In

this case, targets 1 and 2, originally part of vehicle V2's initial plan, are abandoned because

their time window deadlines cannot be satisfied under the constraint that the emergent

target be prosecuted by one of the two vehicles.

For this problem realization, it appears that sending vehicle V2 only to the emergent

target and allowing vehicle V1 to continue with its default plan is the most sensible course of

action. However, it should be noted that, in this implementation, all missions are generated

from scratch when the emergent target appears, so that prior plans are always "discarded"

and must be regenerated if they are to be used. For this example, it is likely that the total

computation time involved in generating a six-target mission, containing targets 3, 4, 5, 6, 7

and 8, along with a single-target mission, for target 9, consumes more time than generating

a two-target mission, for targets 3 and 4, and a five-target mission, containing targets 9,

5, 8, 7, and 6. In the former case, excessive computation time might have prevented the

set of missions from being feasibly executed, while in the latter case, planning time was

sufficiently fast to allow for feasible execution. Also note that Figure 6-8 shows but a single

realization of the appearance of the emergent target. For other realizations, it is possible

that vehicle V1 is reassigned to cover the emergent target.

Along with DTMP results, the results of an anytime algorithm developed for the VRP,

called ANYTIME VRP, are also reported as a baseline for comparison. This algorithm is simple

and works by randomly selecting a fixed number of sub-problems, which are then solved

and given to a master level IP to generate a complete plan. It is iterative in nature, where,

during each iteration, additional sub-problems are randomly chosen to be solved and added

to the pool of missions available to the master level. The master level generates a new

plan considering the entire pool of missions, resulting in plan improvement. Figure 6-9a

shows a set of instantiated performance profiles for this algorithm along with its expected

performance profile shown in Figure 6-9b. The performance profiles plot the object-level

utility of the algorithm on the y-axis against the time spent in computation, in seconds, on

the x-axis. Recall that object-level utility only accounts for the utility of a plan without

regard to the effect of computation time. Targets are each worth 10 utility points, and

traveling between targets incurs a travel cost proportional to the distance traveled.

As in ARA*, ANYTIME VRP can generate a range of solutions as a function of computation
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Figure 6-9: Performance profiles of ANYTIME VRP, where total plan value-is plotted
against computation time. A sample of performance profiles over 100 problem instan-
tiations is shown in a, while b shows the average or expected performance profile.

time. DTMP is compared against ANYTIME VRP for short, medium and long computation

times. These computation times correspond to stopping after the first feasible solution

is found, stopping at an intermediate time where the rate of improvement "flattens out"

and stopping after fully computing all sub-problems, respectively. From the performance

profiles, it can be seen that twelve seconds is all that it takes to run ANYTIME VRP to

completion. This time scale for computations is not commensurate with the time scale of

the time windows in the scenario, which is given in terms of minutes. This implies that

computation time for this problem does not have real-world consequences, primarily due

to the reduced complexity of solving sub-problems for so few targets. For this reason, a

multiplication factor on the amount of time spent is introduced, and acts similarly to e.

This factor, in effect, makes sub-problems appear to be more computationally difficult.

The results of ANYTIME VRP and DTMP for multiplication factors of 1, 10 and 60 are

given in Table 6.2. When the multiplication factor is 1X, then the dynamics of solving

sub-problems are unchanged from the original, and complete planning should perform best.

The expected value of DTMP is competitive with the LONG computations, which is the

objective of bounded optimality. However, for particular problem instances is it possible

for the ANYTIME VRP to do much better, as evidenced by the performance profiles in Figure

6-9.

As the act of solving sub-problems becomes more difficult, the complete planner, LONG,

begins to lag behind the other strategies. This is because the amount of time spent com-
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E LONG MEDIUM SHORT DTMP
IX 64.465 i 1.243 59.785 ± 0.909 37.665 ± 1.228 64.9654 ± 0.944
1oX 4.372 ± 4.637 52.114 ± 1.100 35.527 ± 1.135 64.7324 ± 1.177
60X 1.9345 ± 2.097 42.302 ± 1.682 37.276 ± 1.067 63.533 ± 1.359

Table 6.2: Results for the vehicle routing with time windows problem, where LONG,
MEDIUM and SHORT represent the results of ANYTIME VRP under long, medium and

short computation times.

puting sub-problems starts to near the time scale of minutes. This results in real-world

consequences, as many of the targets are no longer available after deliberation. Under the

1oX condition, the MEDIUM computation time case (stopped computation after 0.5 seconds)

is the only one that is competitive with DTMP.

From. the results, it appears that the SHORT computation time case is invariant to in-

creases in sub-problem difficulty. This is because it outputs a solution as soon as one is

available, regardless of quality. When sub-problems take a long time to solve, represented

at the 60X condition, then both the long and medium computation strategies feel the effect,

resulting in reduced performance. DTMP maintains its competitive advantage because it

has learned to quickly select the high utility sub-problems to solve.

The VRPTW is a challenging problem on its own. Solving for the optimal metalevel

controller in this domain is an even more difficult problem, but the results presented here

illustrate of the viability of using DTMP to learn good metalevel policies.

6.6 Chapter Summary

This chapter discussed how DTMP might be adapted to handle planning problems with

hard temporal constraints. These problems differ significantly from the set of problems

presented in Chapter 5 due to the fact the time constraints make it difficult to express

the cost of computation as a stationary function. Instead, the cost of computation and

the value of sub-problems is function of the planning time. In order for the metalevel

controller to perform well, the metaplanning problem to be solved must reason about the

possibility of losing the value associated with being able to execute a currently planned

mission against the benefit that might be gained by spending additional time to plan new

missions. To do so, a feature representing the current time should ideally be added to
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the set of features for decision tree training. However, under conditions where sub-problem

computation times have low variability, the elapsed time due to computation can be inferred

from the current information state, making the explicit representation of time as a training

feature unnecessary.

The results that have been presented are the outcomes of preliminary experiments on a

restricted version of the modified DTMP algorithm whose full characteristics remain to be

analyzed. The modified version of DTMP includes a preprocessing step and an adjustment

to pruning the induced-MDP. The preprocessing step is necessary to limit the number

of sub-problems to be considered during decision tree training as well as to improve the

chances for the decision tree to generate feasibly executable policies. Two methods were

discussed for performing the MDP pruning step. The first involves directly controlling the

size of the decision tree at the training stage, and the second involves performing value

iteration on a much larger decision tree. The results generated for the VRPTW heavily

relies on the preprocessing step to restrict the set of eligible sub-problems for training.

However, the preprocessing step may be too conservative in the sense that the set of sub-

problems considered for training is severely restricted. Allowing DTMP to be trained on a

less restricted set of sub-problems may be beneficial, but more investigation will be needed

to determine how to do so.

While the results presented for the VRPTW metalevel planning problem exclusively

addresses only time window constraints, additional side constraints typical of vehicle routing

problems, such as capacity constraints, service times, and nonhomogeneous vehicles can also

be tackled given a good enough problem decomposition. The success of the results is highly

dependent on the problem decomposition (definition of sub-problems), and some ways for

bolstering the problem decomposition chosen for this problem were also discussed.

The modifications to DTMP should allow it to address a more general form of the

VRPTW than presented in this chapter, where the randomness is attributed only to the

probabilistic appearance of the emergent target. A more general metalevel control problem

might consist of a metalevel environment where the targets are probabilistically distributed

in space, while their corresponding time windows are probabilistically distributed as well.

Under these conditions, DTMP, along with a good way of defining sub-problems, should

be able to learn the expected costs and benefits of computing sub-problems. The key to

learning a good metalevel policy is, as always, to weigh the cost of computation against its
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benefit.

The next chapter concludes this thesis with a summary of thesis contributions along

with suggestions for future work.
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Chapter 7

Conclusion

This chapter summarizes the contributions of this thesis and discusses avenues for future

research. The focus of the work in this thesis has been to examine the problem of decision

making under limited computational resources. It has been shown that bounded optimal

decision making can be accomplished through the direct metalevel control of computational

actions. The availability of a closed-loop metalevel controller with atomic computational ac-

tions offers advantages over previously established complete decision procedure approaches.

This thesis began by formally defining the metalevel control problem as an MDP. Al-

though there are algorithms for solving the metalevel exactly MDP, the size of the state

space grows exponentially with the number of computational actions or sub-problems, mak-

ing them computationally intractable. DTMP, an alternative solution based on approximate

policy iteration combined with decision tree learning was developed to learn metalevel con-

trollers for substantially larger problems. This heuristic solution takes advantage of problem

structure to effectively prune the state space resulting in a much smaller MDP model.

Experimental results were generated to demonstrate the bounded optimality of the met-

alevel controllers developed through exact means, and used to show that DTMP-generated

controllers result in comparable (though not bounded optimal) performance. When prob-

lems were too large to be solved exactly, DTMP is shown to perform better than alternative

approaches. In the next section, each of these will be discussed in more detail
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7.1 Summary of Thesis Contributions

The thesis contributions towards developing agents that exhibit bounded optimal behavior

are as follows

" The model of the discrete metalevel control problem in terms of Markov decision

processes for both time-separable and non-separable problems.

" The DTMP approximation algorithm for heuristically generating metalevel control

policies.

* Experimental results verifying the bounded optimal behavior of the metalevel con-

trollers developed in this thesis for a variety of problem domains. Bounded optimality

is automatically achieved by the optimal policies generated from solving the metalevel

MDP formulation exactly. DTMP policies are shown to perform comparably to op-

timally generated policies when direct comparisons are possible. DTMP allows for

metalevel policies to be generated for much larger problems, and these policies per-

form favorably in comparison other competitive strategies.

The first contribution is the modeling of the metalevel planning problem as a sequential

decision making problem in information space. This formulation was able to accommodate

three important problem aspects: 1) the manner in which the master level utilizes the infor-

mation provided by the sub-problems, 2) the functional relationship between sub-problems

(problem decomposition), and 3) the cost of time. The MDP formulation of the metalevel

problem, as discussed in Chapter 3, is given for the time-separable case. In Chapter 6, time

was added to the set of state variables to handle problems that are not time-separable.

The discrete MDP formulation of the metalevel problem, where the cost of computation

is separable and additive, encompasses the work of Russell and Wefald [42]. In addition,

the MDP formulation can also be used to obtain the optimal satisficing results of Simon

and Kadane [44] as well as the results of Etzioni [18].

The utility of the metalevel controllers is especially significant in situations with the

occurrence of similar episodic planning instances that have enough variability such that

each must be solved in real-time. The solutions to these problems are compiled policies that

serve to orient the plan generation process towards the efficient selection of computational
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actions. These metalevel policies are important when the cost of computation plays a major

part of the agent's objective function.

The second contribution, as discussed in Chapter 4, is the DTMP algorithm, a heuristic

approach for learning good metalevel controllers. One of the main benefits of DTMP is the

generation of good policies while maintaining an economic representation of the relevant

state space. Although it is possible for the size of a decision tree to be exponential in the

number of information states, this is not often experienced, unless no inherent problem

structure can be learned by the decision tree. Learning to exploit problem structure leads

to vastly reduced state spaces for solving the metalevel planning problem with little effect

on the empirical performance of the resulting policy. As discussed previously, decision trees

have been used for state abstraction in the literature.

The most interesting aspect of their use in this thesis is that, in addition to state space

abstraction, they also serve as the structure upon which the metalevel policy is built. As

such, their added benefit, apart from state space reduction, is the reduction of the action

space. Rather than selecting from n +1 actions per state, as in the exact MDP formulation,

where n is the number of sub-problems, the number of actions is resulted to just two actions

per state, compute or execute.

The last contribution is the set of experimental results, which includes a simplified

version of a real-world example for time-critical mission planning formulated as a vehicle

routing problem with time windows. Experiments show that in cases where the planning

problems are small enough in size and the planning costs are separable and additive, it

is possible to generate metalevel controllers that are bounded optimal. This is a direct

consequence of the equivalence of an optimal MDP policy and a bounded optimal program.

The approximate policies generated by the DTMP approximation algorithm are also shown

to be comparable to the exact solutions. For larger problems, the computation of exact

policies is not possible. In these cases, only DTMP results are generated, which compared

favorably with the results of other competitive algorithms.

7.2 Future Work

There are many directions to pursue to further extend and generalize the work in this

thesis. This section discusses several desirable problem features not directly addressed by
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the metalevel planning formulation and is left for future work.

7.2.1 Incorporating Anytime Algorithms Into Sub-problem

Solutions

The computation times for sub-problems in this thesis have been assumed to take fixed

values (based on their expected computation times), such that they behave like run-to-

completion algorithms. It would be useful however to add the flexibility of using anytime

algorithms to solve sub-problems. With the addition of anytime sub-problems, the metalevel

policy would consist of actions that would not only dictate which sub-problems to solve,

but how much time to spend computing their solutions. Considering anytime computation

at the sub-problem level may offer computational opportunities not available with run-to-

completion algorithms. One opportunity may be the ability to curtail the solution of a sub-

problem during mid-computation if the rate of improvement is not performing as expected

and reallocate computational effort to a different sub-problem. As another example, the

metalevel controller may discover that the rate of improvement for a particular sub-problem

is higher than expected and decide to allocate additional computation effort to it. One

attempt towards accomplishing this may be to combine the work of Zilberstein [51] on

anytime compilation with the process of generating metaplanning policies in this thesis.

7.2.2 Interleaving Planning and Execution

One of the limiting aspects of the metalevel problem formulation is that planning must

be completed prior to plan execution. An appropriate extension of the metalevel planning

problem would be to allow planning and execution actions to be interleaved. Interleaving

planning and execution gives the agent the ability to enact behavior of the form of compute-

move-compute-move etc., rather than a single episode of compute-move as found in this

thesis. This allows the agent to initiate execution prior to the generation of a complete

plan. This should allow for more system flexibility and faster response time. The danger

with executing prior to the completion of a plan would be the potential need for physically

backtracking or, in the worst case, to cause the agent to move to a perilous state from

which it could not escape. Currently, there are approaches for real-time planning such as

Korf's Real-Time A* (RTA*) [281 and Koenig's Min-Max Learning Real-Time A* (Min-
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Max LRTA*) [27] which accomplish the interleaving of planning and execution actions, but

do not explicitly consider of the cost of computation. It may be fruitful to adapt the work

in this thesis to develop a metalevel controller for these algorithms. Even more interesting

would be to develop a metalevel control scheme for continuous planning and execution

actions that can occur concurrently.

7.2.3 Dynamic Environment

The formulation of the metalevel planning problem is most applicable to environments that

are either static or change slowly enough to not have an appreciable effect on planning. In

this thesis, sub-problems plans, once solved, are assumed to hold constant for the remainder

of the planning episode. In dynamic environments, this assumption no longer holds.

For example, in the case of the maze domain in Chapter 5, if the obstacles were allowed

to roam the maze, the static plan generated as a result of the current metalevel controller

will have severely reduced utility. Accounting for problem dynamics is an important feature

to add to the current metalevel formulation. A typical approach for dealing with a change

in information is to incorporate it by replanning.

Supposing that the effect of a dynamic environment on metalevel planning to change

the outcome of a sub-problem. The corresponding sub-problem needs to be replanned to

reflect the current changes in information so that the master level can account for them

in the generation of a complete plan. Replanning often might incur a significant amount

of computational overhead, reducing the overall effectiveness of the agent. One of the

problems that will be faced by the metalevel controller will be to determine when replanning

is beneficial. If the information update is insignificant, a replan may not be warranted and

can be ignored with little penalty.

Designing the metalevel controller to accommodate a dynamic environment will be inti-

mately related to incorporating the interleaving of planning and execution actions. This is

because whether the agent decides to execute a portion of the plan will depend on whether

it has changed significantly enough to warrant a replan prior to execution. On the other

hand, since executing a portion of the plan may result only in local consequences, it may be

possible to only consider incorporating local information updates of the environment. As

with most problems, the exact details will be problem dependent.
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7.3 Concluding Remarks

This thesis has addressed the problem of generating bounded optimal agents through the

closed-loop control of their computational actions. Under the restrictions of the particular

formulation of the metalevel planning problem, bounded optimality has been shown to be

achieved through the generation of optimal metalevel policies. Under time-critical circum-

stances or in cases where computations are costly, the approaches discussed in this thesis

generate economical policies which balance the utility of generating good plans against the

cost of generating them. The work of this thesis addresses a small part of the overall prob-

lem of bounded optimality. While full bounded optimality in the strict sense is difficult to

achieve, it is assured that continued research in this general area will yield further knowl-

edge for developing more advanced algorithms to allow for agents to make more effective

use of their system resources.
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