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ABSTRACT

In this dissertation I discuss Hilbert's thesis, the thesis

that all acceptable mathematical arguments can be formalized using no
logic stronger than first-order logic. In the first chapter, I present
and criticize an argument for Hilbert's thesis that is often found in
the literature. The argument concludes that Hilbert's thesis is true
since all mathematics is reducible to set theory and set theory is a
first-order theory. I argue that the reduction mentioned is not enough
to establish Hilbert's thesis unless we presuppose that Hilbert's thesis
is true.

In the second chapter I abstractly characterize logics and proof
procedures. I then state Lindstrom's theorem (the theorem that, roughly,
first-order logic is the only logic for which the completeness and
Skolem-Lowenheim theorems are true) using these characterizations of
logics and proof procedures.

In the third chapter, I look at some common philosophical reasons
for thinking that any logic used to formalize a mathematical theory should
satisfy the completeness theorem. Then I examine the Frege-Hilbert
correspondence and show how Frege's position in that correspondence
entails that the logic used to formalize Euclidean geometry should not
be complete. 1 end by using Frege's position to criticize again the
argument for Hilbert's thesis discussed in chapter one.

In the fourth chapter, I reconstruct Hilbert's philosophy of
mathematics using notions from contemporary mathematical logic. I
then use this version of Hilbert's philosophy and Lindstrom's theorem
to argue that Hilbert's thesis is true. Then I examine this argument in
light of (i) the use of non-deductive methods in mathematics and (ii) the
standard refutation of Hilbert's program.

In the fifth chapter, I offer some speculative conclusions. I
make a distinction between two uses of a formal logic and show how the
argument for Hilbert's thesis described in chapter four can be used in



light of this distinction.
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If you ask what constitutes the value of mathematical
knowledge the answer must be: not so much what is known
as how it is known.

--G. Frege
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INTRODUCTION

Although this essay is about what has been called '"Hilbert's thesis",
it is with Frege that we should begin. Frege attempted to formalize
mathematics: he invented a formal language and then tried to express
truths of mathematics by using formulas of this language and to prove
theorems of mathematics by constructing sequences of formulas of his
artificial language. In this way he hoped to express the truths of
mathematics precisely and to prove the theorems of mathematics rigorously.

Russell noticed1 that '"a great deal of the [mathematical]
argumentation {he] had been told to accept was obviously fallacious."
Frege held a similar view. In part, Frege hoped to clean up mathematics.
Natural languages,he thought, are not suited for scientific discourse;
they induce mathematical error. Frege, therefore, tried to construct
a language, in which we can do mathematics, that does not share the
vaguenesses and ambiguities of ordinary languages. In such a language,
he hoped, mathematical results could be formulated more precisely,
although perhaps less concisely. In this way, he thought, error could
be removed from mathematics.

Unfortunately, Frege's formaliza’ion did not result in a mathematics
without error. Some of the sentences of his formal language that he
thought express truths in fact express falsehoods. Thus, not only did
mathematics .ave to be clean.ed up by means of a formalization using
Frege's formal language, but there were errors in the resulting formalization
that also had to be removed. The removal of these errors led to the

construction of new sorts of formal systems: type theories and set



theories. The proper formalization of mathematics, it is now claimed,
is not by means of a Fregean formal system, but by means of a set theory
3
or a type theory,
Contemporary interest in Frege's work has two sides. First, there
is a technical and historical interest in Frege's formal language(s).

The language Frege described in the Begriffschrift2 is one of the first

examples of a formal language. Furthermore, Frege presented one of the
first systems of quantification theory as we know it. Second, there

is interest in Frege's programmatic attempt to express and to prove
mathematical truths using a formal language. Frege was the first to
construct a formal language in which a significant portion of mathematics
can be expressed and proved.

In this dissertation, I shall begin examining a principle that is
endorsed by Frege and by his critics who prefer either a set theoretic
or a type theoretic formalization of mathematics. All hold that
mathematical results are expressed and proved in an imprecise language
and that theorems of mathématics might be expressed more precisely
and proved more exactly if a formal language is used. They then go on
to conclude that there is one formal language adequate for this task.
According to Frege, this formal language is a version of the concept-
script; according to his critics, it is the language of set theory (or
a version of type theory). I shall be interested primarily in a view
associated with Frege's set theorist critics. It is the view that
the informal and imprecise notion of proof, as used in mathematics,
is formally and precisely represented by the technical notion of

first-order proof. This view is called by M. DaviS "Hilbert's thesis'.




My dissertation divides naturally into four parts. In the first
part I formulate Hilbert's thesis and present several examples of state-
ments that cannot be expressed using only formulas of first-order logic.
I argue, however, that first-order logic's limited power of expression
is not enough to refute Hilbert's thesis. I then examine an argument
for Hilbert's thesis that is often found in the literature. The
argument concludes that Hilbert's thesis is true using the claim that
all mathematics is reducible to set theory. 1[I point out a circularity
in this argument by showing that the sort of reduction mentioned is
not enough to establish Hilbert's thesis unless we presuppose that
Hilbert's thesis is true.

The second part is a technical discussion of several notions
involved in the formalization of a mathematical theory. 1T carefully
formulate an abstract characterization of logics and define what can be
called "Lindstrom logics'. Then, after presenting an abstract
characterization of proof procedures, I state Lindstrom's theorem, the
theorem that, roughly, fifst-order logic is the only logic for which
the completeness and Lowenheim-Skolem theorems are true. These technical
details are important, since they are used in the third and fourth
parts of this dissertation. The reader who is impatient with logic
is, however, advised to move on to the third and fourth parts of this
essay, referring back to this technical part as needed.

In the third part, I look closely at some philosophical reasons
for thinking that any logic used to formalize mathematics should be
complete. I conclude that the more common reasons are not entirely
compelling. Then I examine the Frege-Hilbert controversy about the

possibility of proving the independence of the parallel axiom from the
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other axioms for Euclidean geometry. I show how Frege's position in

this debate presupposes a conception of logic according to which the logic
used when formalizing Euclidean geometry is not complete. I conclude

by pointing out the consequences of Frege's view as it relates to the
discussion of Hilbert's thesis in chapter one.

Finally, in the fourth part of this dissertation, it is seen that
Hilbert's thesis has the right name. I construct an argumert for
Hilbert's thesis using principles of a version of Hilbert's philosophy
of mathematics and Lind=trom's theorem. I conclude with an examination
of the status of this argument in light of (I) the use of non-deductive
methods of argumentation in mathematics and (II) the standard refutation
of Hilbert's program.

A word about methodology: in this dissertation I talk unhesitantly
of numbers, sets, structures, standard models, Euclidean points and a
host of other abstract objects. This may trouble those readers with
nominalistic scruples. But that is all right. I am not doing ontology
and thus feel free to quantify over all abstract objects matter-of-

factly discussed by mathematicians.

Footnotes:

1. Bertrand Russell, Autobiography.

2. G. Frege, Begriffsschrift, eine der arithmeticshen nachgebildete
Formelsprache des reinen Denkens, 1879,

3. Although the attempt to formalize mathematics using type theories may
seem archaic to some readers, I mention them in light of the work of
S. Feferman. See 'Theories of Finite Type Related to Mathematical
Practice" in the Handbook of Mathematical Logic as well as the
promised Explicit Content of Actual Mathematical Analysis.
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Chapter 1

MATHEMATICS, SETS AND PROOFS

(1)

A good way to begin our discussion is to consider an argument

accepted by mathematicians as establishing that

(Propositional) For every ring there is exactly one unital
morphism

is true. A unital morphism, p, is a morphism from the integers into a

ring, R, such that

(1) w(a) + u(d) = u(a+b;

(2) wu(a) - u(b)

u(a-bj

(3) u(l) is the unit element of R.
The argument is due to MacLane and Birkhoff1 and is as follows:

We have just shown that the only possible choice for
w is y(n) = n 1', where 1' is the unit for R. The
function u so defined is clearly a morphism of
addition and of units. To show it a morphism of
muitiplication, we need only show

(m1')+(n 1') = (men) 1' m,neZ (7)

If m is non-negative, this may be proved by induction.

indeed, (7) is immediate for m=0, so make the

induction assumption that (7) holds for some m>0

and all n. Then
((m+1) 1'+(n 1'") (ml'+1')-(nl")

(ml1')-(nl1') + nl'

(m-n)1' + nl'

(men+n)1' = ((m+1)-n)1’
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This is (7) for (m+l), so the induction is complete.
Finally if m is negative, (7) follows from the case
when m is positive by Rule 3 above.

[Rule 3 is: For all a,b in R, (-a)<b= -(a-b)]

Why is this argument a good mathematical argument? Why is it that after
studying MacLane's and Birkhoff's argument, anyone familiar with rudimentary
algebra would accept proposition 1? Why does MacLane's and Birkhoff's
argument establish that proposition 1 is true? The answer to all these
questions is, of course, that their argument is a proof. Maclane and
Birkhoff have proved that for every ring there is exactly one unital
morphism. This accords with the quite plausible view that a mathematical
argument is a good argument only if it is a proof. As Putnam has put
itzz

It does seem at first blush as if the sole method that

mathematicians do use or can use is the method of

mathematical proof...
Putnam, as we shall see, goes on to disavow this view about the
mathematician's methods, and in chapter 4 I shall discuss his argument
in some detail. Nevertheless, he does note that there is a (seemingly)
plausible view according to which all good mathematical arguments
(whatever it may mean to call an argument 'good') are proofs and
according to which when we try to solve mathematical problems, we look
for proofs. If we want to know whether a mathematical statement, V,
is true, according to this view, we see whether we can prove it. If
we come up with a proof of ¢, we know that it is true. If we come
up with a proof of the negation of ¢, we know that ¢ is false. If we

find neither a proof of ¢ nor a proof of the negation of Yy, we withhold
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judgment. But just what is involved when a mathematical statement is
proved? What is a proof?
Putnam continues3 his description with
...and as if that method consists simply in deriving conclusions
from axioms which have been fired once and for all by rules
of derivation which have been fixed once and for all.
This leads directly tc a view about proofs that has become standard,
according to which proofs are sorts of sequences of sentences. In
particular this standard view has it that
(SVP) A proof is a sequence of sentences every member
of which is either an axiom or follows from
earlier members of the sequence by a rule of
inference.
is true. According to the standard view of proofs, then, two conditions
must be met by all proofs. They must, first, be sequences of sentences
of some correct kind of language using the (or some) correct rules of
inference. Proofs must also only mention the (or some) correct axioms.
There is an obvious problem with (SVP) that should be mentioned now.
The standard view of proofs apparently violates our ordinary use of
‘proof'. I called MacLane's and Birkhoff's argument a proof unashamedly.
I said that their argument is a good argument because it is a proof.
However, it is, I think, clear that MacLane's and Birkhoff's argument
is not a sequence of sentences every member of which is either an
axiom or follows from earlier members by means of a rule of inference.
In the first place, MacLane's and Birkhoff's argument is not a sequence
of sentences; rather, it is a paragraph of English augmented with a few

technical symbols. Sequences, we know, are a sort of set, and every
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sequence of length greater than one contains some set or other., Paragraphs,
however, do not contain sets; they contain sentences organized according
to, among other things, stylistic considerations. So MaclLane's and
Birkhoff's argument is not a sequence; hence, by (SVP), their argument is
not a proof.4 So (SVP) and our ordinary use of 'proof' conflict.

There is, of course, an obvious thing that can be said in defense
of (SVP) and in response to the above objection. The fact that Maclane's
and Birkhoff's argument is a paragraph of English augmented with a few
technical symbols is {merely) a matter of presentation, of the way in
which their proof is displayed. In fact, if necessary, we can present
the argument so that it is a sequence, not a paragraph. We can take
Maclane's and Birkhoff's argument to be the sequence whose first member
is the first sentence occurring in the paragraph displayed above, whose
second member is the second sentence occurring in the paragraph displayed
above, and so on. Thus, we can correctly and in consonance with (SVP)
call Maclane's and Birkhoff's argument a proof. We can say that,
strictly speaking, their argument is a sequence, although for reasons
of style it is presented as a paragraph of English.

If we accept the response of the last paragraph -- and, I think, it
is reasonable to do so -- we still have problems with the views that
MacLane's and Birkhoff's argument is a proof and that (SVP) is true.

Consider
(i) If m is non-negative, this may be proved by induction,

the fourth component of the sequence obtained above. It is not an axiom,

nor does it follow from the first, second and third components of that
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sequence by means of a rule of inference. Rather the function of (i) is
to make clear to the reader what sort of argument is needed to establish
what MacLane and Birkhoff call (7). The next three sentences describe

in some, but not all, detail how this argument looks. Thus even if we
present Maclane's and Birkhoff's argument as a sequence -- the suggestion
made in the previous paragraph -- according to (SVP), their argument is
not a proof. What are we to say, then, about MacLane's and Birkhoff's
argument?

T think we should say exactly what we thought should be said about
MacLane's and Birkhoff's argument. Their argument is a proof, even
though it is not a sequence of sentences every component of which is
either an axiom or follows from earlier components by a rule of inference.
What this means, of course, is that the standard view of proofs is just
plain wrong. What might attract someone to the standard view of proofs,
despite the fact that it conflicts with our usual use of 'proof', is
the conviction that every proof can be rewritten rigorously and precisely
as a sequence of sentence§ each component of which is either an axiom
or follows from earlier components by means of a rule of inference. It
is, I think, the beliefs that mathematics is a rigorous science and that
every (acceptable) argument of (informal) mathematics can be formalized --
or made more precise -- that lead to the identification of proofs with
sequences of a certain sort. We believe that the arguments and theorems
of mathematics are such that 'there is a fairly simple axiom system
from which it is possible to derive almost all mathematical theorems
and truths mechanically."s So, if we formalize MacLane's and Birkhoff's
argument, it can be claimed, we will obtain an argument that is a proof

in the sense given by (SVP). It is the conviction that (acceptable)
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mathematical arguments can be formalized that is behind the standard
view of proofs.

It is also the conviction that mathematical arguments can be formalized
that leads to the belief that not only can acceptable mathematical
arguments be presented as the right sort of sequences of sentences, but
that acceptable mathematical arguments can be presented as the right sort
of sequences of sentences of the right sort of language. After all, if
mathematics is truly a rigorous science, then not only should it be
possible to recast the arguments of mathematics so that they are sequences
generated in the correct way from axioms and rules of inference, but it
should also be possible to express the statements of mathematics in a
language in which there are no ambiguities and for which there can be no
doubt when a given rule of inference applies. An extended quotation from
Wang makes clear this sentiment:

Language is employed for expression and communication of

thoughts., Failure in communication may either be caused

by inadequate mastery of the language, or by internal

deficiencies of the language...Language is also sometimes

used for talking nonsense. Here again certain languages

just seem to offer stronger temptations for doing so.

And sometimes the language user is not careful enough,

or he merely parrots others. In such cases he does not

have thoughts...to express, and there is, of course, no

question of correct communication. A less serious disease

is confused thinking, often involving internal inconsistency.

This again is sometimes the fault of the language, such
as the ambiguity of words and a misleading grammar.

Wang then goes on to claim that

the creation of an ideal language would yield a solution
of these difficulties once and for all. Such a language
should be so rich, clear, and exact as to be sufficient
both for expressing all thoughts...with unmisunderstandable
clarity, and for precluding nonsense. ’
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Thus, the belief that mathematical arguments can be reformulated so that
they are rigorous and precise leads directly to the view that, in addition
to being sequences of sentences every component of which is either an
axiom or the result of applying a rule of inference to earlier components,
formalized mathematical arguments have as components sentences of some
ideal, formal (or artificial) language.

Let me call such sequences derivations. Then the view that should

replace (SVP) is that all acceptable arguments of (informal) mathematics
are proofs and that proofs can be formalized as derivations. 1T shall

call this view Leibniz's thesis. It is stated again for future reference:

(i) Every acceptable argument of (informal)
(Leibniz's mathematics is a proof;

thesis) and

(ii) Every proof can be formalized as a derivation.

Leibniz's thesis is, I think, generally accepted -- both by the mathematical
community and, with some notable exceptionsB, by the philosophical
community. Claim (ii) of Leibniz's thesis is endorsed by writers like
Steiner, who claimsg that

proof is formal proof. Arbitrarily we pick a system -- Church's

"applied first-order functional calculus." Then, proof is

proof from premises...in Church's sense. Usual usage is looser...

because informal arguments are universally described as

proofs...[T}he mathematical community...has been persuaded

that no proof is rigorous if not '"formalizable"...[It is

agreed that] nothing is a proof if not formalizable.
Steiner goes on to claim that derivations are 'the Platonic ideal in
virtue of which the informal argument is valid.'" (It should perhaps

be noted that although we have seen Steiner endorsing claim (ii) of

Leibniz's thesis, he does not, in fact, endorse claim (i). As will
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become clearer in chapter four, Steiner holds that there are acceptable
arguments in informal mathematics that are not proofs. These are arguments
that have the same structure as the ordinary inductive arguments found

in empirical sciences.)

According to Leibniz's thesis, although the actual arguments made
by mathematicians are not derivations, they might be. If we wanted to,
we could construct from, say, MacLane's and Birkhoff's remarks, a sequence
of sentences of a formal language every component of which is either an
axiom or follows from earlier members of the sequence by a rule of
inference.10 The arguments rathematicians ordinarily use play a dual
role; not only do they convince us that a given theorem is true, they
also indicate how to construct a derivation of (a formalization of)
that theorem.

Now Leibniz's thesis tells us nothing about which rules of inference
and which formal languages are to be used when formalizing the arguments
of informal mathematics. In fact, consistent with Leibniz's thesis
is the claim that there ig more than one formal language that can be
used to formalize given arguments of informal mathematics, and :that,
similarly, there may be more than one set of rules of inference. All
that Leibniz's thesis entails is that for any given argument of informal
mathematics there is a formal language and a set of rules of inference
that can be used to formalize that argument. If we add to Leibniz's
thesis the claim that only one formal language and only one set of
rules of inference are needed to formalize adequatelyll all mathematical

arguments, we have
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(1) Leibniz's thesis is true

’ [}
(:;;§§s§ (ii) There is a formal language and a set of rules of
inference that can be used to formalize adequately
all proofs.

I shall be especially interested in one version of Frege's thesis called

Hilbert's thesis. It is, roughly, the view that all arguments of informal

mathematics can be formalized adequately using only the first-order
predicate calculus. As Barwise12 described it, Hilbert's thesis is the

view that

...there is no logic beyond first-order logic in the sense
that when one is forced to make all one's mathematical
(extra-logical) assumptions explicit, these axioms are
always expressible in first-order logic, and that the
informal notion of provable used in mathematics is

made precise by the formal notion provable in first-

order logic. ’ T

Three warnings should be given, perhaps unnecessarily. Leibniz's
thesis was not explicitly endorsed by Leibniz, and Frege's thesis was
not explicitly endorsed by Frege. Nor was Hilbert's thesis explicitly
endorsed by Hilbert. However, as we shall see, reasons for endorsing
Hilbert's thesis can be extracted from Hilbert's philosophy of
mathematics.

Also, I have formulated Leibniz's thesis, Frege's thesis and
Hilbert's thesis so that we may see the steps of presuppositions behind
Hilbert's thesis, and so that, in the future, we may see what arguments
for and against Hilbert's thesis are supporting or attacking. After
the next chapter we shall be able to formulate more technical versions
of these theses. The reader will have to wait until then to resolve

any questions that may seem to derive from the vague form in which these
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theses have been stated.
(ii)

There are plausible reasons for denying Hilbert's thesis. The
limitations of a first-order language's powers of expression- have often
been pointed out. In addition, the most natural formalizations of
statements of elementary mathematics frequently are not first-order.
If we try formalizing Maclane's and Birkhoff's argument, for instance,
we soon find that using only first-order notation, although possible,
is unnatural and tricky. Expressions like '"all morphisms' and '"all
integers' suggest non-first-order formalizations, and MacLane and
Birkhoff, in the course of their argument, seem to be quantifying over
morphisms and integers unhesitantly. Even proposition 1 seems to be
of a form that often defies first-order formalization. It looks as if

the form of proposition 1 is
(A) For every A, there is exactly one B,

and it is not difficult to see that (A) is a form with no first-order
analog.13 For example, consider
(B) For every natural number, there is exactly one real
number.
(B) apparently is of the form (A); so if (A) had a first-order analog,
we should be able to formalize (B) using a formula, ¥(N,R), of first-
order logic, containing only two non-logical constants. Now, (B) is

true if and only if there is a one to one correspondence between the

real numbers and the natural numbers. So (B) is true if and only if
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the cardinality of the set of natural numbers is at least as great as
the cardinality of the set of real numbers. Let R be a standard model
of the theory of real numbers. Then Q|= “¥(N,R), since in a standard
model of the real numbers there are uncountably many reals but only
countably many naturals, and we have supposed that Y(N,R) is a
foramlization of (B). However, by a strong form of the downward
Lowenheim-Skolem theorem, there is a countable submodel, }', containing
any countable subset of |, e.g., N, and for every first-order sentence,
§, if R %, then @' F¥. Sopg|= “¥(N,R). But this is impossible as
there are countably many reals and countably many naturals in Q'. ¥(N,R),
therefore, cannot be first-order.14 So, it seems, no construction of
first-order logic is a formal analog of (A).

We cannot, however, conclude from this argument that proposition 1
is of a form with no formal analog among the formulas of first-order logic.
Proposition 1 can be understood so that it says the same thing as

(B') For every ring, there is exactly one unital morphism

of that ring.
(B') is not subject to the sort of argument that led us to conclude that
(B) is of a form with no formal analog among the formulas of first-order
logic. The fact that a particular unital morphism is a morphism of a
particular ring is crucial. We cannot define a unital morphism without
reference to a ring. So, propositionl, as it turns out, is of a form
that has a first-order analog. But what reason do we have for thinking
that every statement of ordinary mathematics that is expressed by a

sentence (apparently) having form (A) can be further analyzed so that it
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is expressed by a sentence of, for instance, form
(A') For every A, there is exactly one B of that A,

or of some other form represented by a first-order construction? No
obvious reason, I think, other than something like Hilbert's thesis;
although, as we shall soon see, there may be convincing, but unobvious,
reasons for concluding that all admissible formalizations are first-order
formulas, and that, therefore, every statement of ordinary mathematics
can be expressed by a sentence having a form with an analog among the
formulas of first-order logic.

We do not have these sorts of worries, of course, if we are willing
to give up Hilbert's thesis. (A) has a formal analog among the formulas
of second-order logic. There is a second-order formula true in all and
only those structures, containing A's and B's, in which for every A
there is exactly one B. Reading "Ax" and '"Bx'" for 'x is an A" and '"x is

a B" respectively,

(C) Ful(vx)(Ax»Bu(x)) & (¥vx) (Vy) (u(x) = n(y)+x=y)
& (Bx+(3z €A ) (u(z)=x))]

will do. Thus, all statementsexpressed by sentences having form (A) can
be expressed by formulas of second-order logic.

I should mention that (A) is not alone in this regard. There are
many constructions that we seem ordinarily to use, but that have no
first-order analogs.15 Perhaps the most famous is Frege's definition of
‘ancestor'. An individual, x, is the ancestor of an individual, Yy,
just in case x is the parent of a parent of a parent of...of a parent

of y. So, it seems, we should be able to define the relation is an



ancestor of in terms only of the relation is a parent of. No such
definition is possible, however, using exclusively first-order notation.

But if we use second-order class variables, we can define is an ancestor

in terms of is a parent of without using any other non-logical constants.

We can say that x is an ancestor of y if and only if (i) x is not identical
with y and (1ii) x is a member of every class, a, and z' is a parent of z,
then z' is a member of a. Thus, using second-order notation we can define

is an ancestor of in terms of is a parent of, in a (relatively) natural

way, even though no such construction is possible using only first-order
notation.

Similar remarks apply to the relation is identical with. Identity

has an odd status for logicians who accept Hilbert's thesis. On the
one hand, they want to count the identity sign as a logical constant, on
the same footing as 'and' and 'or'. On the other hand, since they endorse
Hilbert's thesis, they are unable to define identity in terms of
obviously logical operatiqns. Thus, they are forced to introduce
identity as a primitive logical operator.16 No such problems face the
logician who denies Hilbert's thesis because identity can be defined using
second-order notation. We can say that an object, x, is identical with
an object, y, if and only if for all classes, a, x is a member of a if
and only if y is a member of a. Thus, using second-order notation we
can see straightforwardly that identity is a logical relation.

Finally, it should be pointed out that general cardinality claims
cannot be made in a straightforward fashion using only notation belonging

to first-order logic.
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(C') There are just as many cats as dogs,

for example, is naturally formalized by, first, defining the relation

has as many members as (there are several standard ways to do this in

second-order logic), and, then, saying that (C') is true if and only if
the class of cats has as many members as the class of dogs. We can do
this straightforwardly using second-order logic, although there is no
obvious way to proceed using notation that is exclusively first-order.

I think that it is fair to conclude, in light of these sorts of
examples, that many natural constructions cannot be carried out in a
straightforward manner using exclusively first-order notation, although
they can be carried out using formulas from second-order logic.

In addition, the proof of proposition 1 also seems to resist

first-order formalization. We seem to need weak second-order logic or
w-logic, in order to formalize MacLane's and Birkhoff's argument
adequately. Consider its first sentence. The first sentence has
approximately the same meaning as "every function that is a unital
morphism takes n to the result of multiplying 1' by itself n times".

This sentence seems most naturally formalized as

(D) (vu) (Fu> (yn) (u(n)=nl')),

a sentence with not only functional quantifiers, but with quantifiers
ranging over natural numbers as well. Furthermore, in order to make
sense of the notation '"nl'", we must presuppose that there are natural
numbers distinct from the other elements in our universe of discourse,
for "nl''" is supposed to denote the result of interating multiplication

of 1' by 1' n- times, that is, nl' is
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n-times

and so the notation in question only makes sense if '"n'" refers to a
natural number. Thus, in order to understand the proof of proposition
1, we must suppose that the notion of a natural number is under-
stood; Maclane's and Birkhoff's argument presupposes facts about
the natural numbers. One might, therefore, expect the derivation
formalizing Maclane's and Birkhoff's proof to reflect this fact. To
do this, it is reasonable to suppose, weak second-order logic must
be used. The most natural formalization of MaclLane's and Birkhoff's
proof, then, is a sequence of non-first-order formulas.17

The sort of considerations raised so far suggest that
Hilbert's thesis is false. We have seen, for example, that no
formula of first-order logic can be construed as an analog of (A).
Since (B) appears to have the form (A), we might conclude that
(B) cannot be formalized into a formula of first-order logic.
This, in turn, suggests that Hilbert's thesis is false, since
(B) certainly looks like the sort of sentence a mathematician

would use. This conclusion, however, is too hasty.
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What the argument following (B) shows is that if (B) must
be formalized by a formal analog of (A), then (B) cannot be
formalized using a formula of first-order logic. That argument
does not, however, show that the statement (B) expresses can be
expressed by no first-order formula. For example, we might
express that statement using the sentence letter 'p' by
insisting that 'p' is true in a model if and only if (B) 15.18
'p', however, is an admittedly poor formalization of (B),
and 1 do not think we would take the fact that we can express
the statement expressed by (B) using 'p' as good evidence for Hilbert's
thesis, or even for the claim that (B) can be formalized into a

formula of first-order logic. At least two sorts of

. . . . . . 19
considerations influence our choice of formalizations.
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First, I think it is obvious that if y is an adequate formalization of an
arbitrary sentence, V, then ¢ must have the same truth conditions as V.
But this is not enough to justify the claim that V can be adequately
formalized as Y. Not only must ¢y and V have the same truth conditions,
but if y is an adequate formalization of V, then we think, ¥ must be
structurally related to V in a natural way. It is the latter sort of
consideration that leads to the claim, in light of the argument following
(B), that (B) has no adequate first-order formalization. On the face
of it, (B) contains only two non-logical constants -- 'natural number'
and 'real number'. So, we expect (B) to be formalized using a formula,
¥(N,R), containing only two non-logical constants. But we can find no
such item, as we have seen, among the formulas of first-order logic, that
has the same truth conditions as (B). (It can, of course, be claimed
that if we fix the interpretation of N and R, then we can find such an
item among the formulas of first-order logic. More about this sort of
consideration will be discussed as we go along. For the moment let us
adopt the view that N and R do not have fixed interpretations.) It is
for this reason that we conclude (B) has no first-order formalization.
What it means to say that an adequate formalization of a sentence
must be related to that sentence in some natural way is unclear. The
issues raised by such a claim are notoriously complex, and I do not
intend to pursue them here. I will suppose that we have a rough idea
of what it is for a formalization to be structurally related to a sentence
in a natural way -- we will not need anything but a rough idea, and
we will probably not even need that. But now let us ask, in light of

what has been said, why would anybody think that Hilbert's thesis is
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true? Given that the natural formalizations of such statements as (B),
apparently, are not first-order, what sorts of reasons can be given for
Hilbert's thesis?

Naturalness is not always a virtue. Philosophical considerations may
favor one formalization over another, even though the latter is a more
natural formalization than the former. We may have good reasons for
not formalizing a sentence in the most natural way. A good example of
philosophical considerations overriding considerations of naturalness
can be found in the work of Nelson Goodman.20 Goodman, a nominalist,
is troubled by the use of class quantifiers. Nevertheless, he wants to
be able to formalize (C') (see above). So, Goodman proposes that instead
of the second-order formalization of (C'), we formalize (C') by first
noticing that it is true if and only if

(C") Everything of which every cat and dog is a part has

as many cat parts as dog parts
is true. If we then introduce new relation symbols, 'H' and 'P', inter-
preted as '"has as many dog parts as cat parts' and '"is a part of",
respectively, we can easily formalize (C') without using class
quantifiers. By similarly introducing new relation symbols, Goodman
claims, we can formalize every claim making general cardinality
comparisons without using class quantifiers. The fact that these
formalizations of general cardinality claims are not as natural as their
second-order counterparts does not trouble Goodman; nominalistic
considerations, he thinks, outweigh considerations of naturalness. In
a similar fashion, it can be hoped, there may be philosophical reasons

for preferring, in general, first-order formalizations to more natural
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second-order formalizations, thus vindicating Hilbert's thesis.

It is often noted that we can dispense with non-first-order notation,
perhaps at the cost of naturalness, by using a first-order language with
one binary relation symbol, 'e'. For instance, something like '(3F) (F3)'
becomes '(dx)(3ex). Statements naturally formalized ucing functional
quantifiers, like those occurring in (C) and (D) require a bit more

attention. For an example, consider
(E) There is a function that maps 0 to 1.

(E), T have suggested, would naturally be formalized as

(F) @w) (u(0)=1),

a sentence with a second-order functional quantifier. We can, however,
using well-known techniques, formalize (E) as a first-order sentence.
First, as is usual, define the ordered-pair consisting of x and y, <x,y>,
(in that order) as {{x}, {x,y}}. Next, define a function to be a set of
ordered pairs, a, such thét whenever <x,y>, <x,2z>ea, y=z. Keeping this in

mind, we formalize (E) as
(F') (3x) (x is a function § <0,1>ex).

(F') is an abbreviation for a formula in the (first-order) language of
set theory. If we could find convincing reasons, then, for preferring
set theoretic to second-order formalizations, we would have the beginnings
of (one kind of) a defense of Hilbert's thesis.
We should conclude this section by noting that although not every

sentence ordinarily used by mathematicians has a natural first-order
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formalization, we can dispense with a large number of non-first-order
notations if we use the language of set theory, and since this language
is first-order, there is a sense in which sentences naturally formalized
using second-order quantifiers can be formalized without them. An
important thing to note about this point, though, is that 'e' must be

interpreted set theoretically.
(ii1)

That there is a sense in which the use of non-first-order formulas
can be eliminated and statements expressed by non-first-order sentences
paraphrased by using first-order formulas of the¢ language of set theory
is often cited as a point in favor of Hilbert's thesis. It is often
claimed that all of mathematics is reducible to set theory and that
since set theory is a theory in a first-order language whose only non-
logical constant is e, anything provable in mathematics is first-order
provable, : This argument can be
fourd in philosophical literature as well as in mathematical literature.
Morley21 writes:

Another way to reduce mathematics to first-order logic is
to observe that:

(i) all mathematics can be reduced to set theory
and

(ii) the intuitive content of set theory is expressible in
a set of first-order axioms about the binary relation €.

I shall call this line of reasoning ''"Morley's argument', although I do
not mean to credit (or discredit) him as its originator. Others make

- . 22 . .
similar claims. Monk ~, for instance, asserts that first order proof
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...is our rigorous formulation of the intuitive notion of
a proof. In fact...we consider mathematics itself to be
formalized on the basis of set theory....Mathematical
language can be identified with a certain definitional
expansion of the language of set theory...The axioms T

of mathematics are just the usual axioms of set theory
together with all the defined symbols...It is our
conviction that any mathematical proof can be expanded
somewhat routinely to eventually reach the form of a
formal [first-order] proof from T.

He then adds:

Of course this conviction is another instance...of a

judgement of applied mathematics that is not subject

to a rigorous proof.

This dissertation will examine reasons for and against this judgement.

To evaluate Morley's argument we must look closely at the claim that
all mathematics is reducible to set theory. We have already seen that
there is a function mapping O to 1, in a sense, can be expressed in the
language of set theory. But the task of a reduction of mathematics to
set theory is not only to show how statements of mathematics can be
expressed in the language of set theory. Its task is also to show how
ordinary proofs of theorems of mathematics can be presented as -- or,
in Monk's words, '"expanded...to eventually reach the form of" -- a formal
derivation from the axioms of set theory. Quine23 distinguishes between
doctrinal and conceptual aspects of reductions. Showing how to reduce
the concepts of a scientific discipline to epistemologically sound
concepts is the conceptual aspect of a reduction. For example, if we
could show how to express statements about physical objecis using only
terms referring to sense data, we would have reduced physical concepts

to phenomenal ones, and would have accomplished the conceptual aspect
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of a reduction. On the other hand, when we show how the rruths discovered
by a group of scientists can be derived in an obvious manner from a set

of obviously true statements, we have reduced the doctrines of that science
to simpler ones and have accomplished the doctrinal aspect of a reduction.
Showing, for example, how to derive the truths of (Euclidean) geometry
from (Euclid's) axioms is the doctrinal aspect of a reduction.

It is worth our while to think carefully about these matters as they
reflect on claim (i) of Morley's argument, the claim that ordinary
mathematics can be reduced to set theory. On the one hand, we have the
ordinary statements and argumentation of mathematics. On the other
hand, we have a formal system, set theory, consisting of an infinite
set of axioms and rules of inference permitting the derivation of theorems
from those axioms. What would justify the claim that the former is
reducible to the latter? A little thought shows that three things are
needed. First,we need a set of reductive definitions. These would be

definitions of concepts of ordinary mathematics (like point, real number

and group) in terms of concepts of set theory, that is, concepts that

can be defined using only €. (We might, of course, despair of ever
explicitly making these definitions; however, a sketch of how to go about
forming reductive definitions would, in most cases, do.) Second, we
need a set of instructions showing how to replace arguments of ordinary
mathematics with derivations in the language of set theory. (Again, a
sketch of these instructions might be enough.) Finally, we need some
sort of argument showing that, using the reductive definitions and the
instructions showing how to fprm derivations in the language of set

theory from ordinary arguments cf mathematics, we can derive (set theoretic
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statements expressing the) theorems of mathematics from the axioms of
set theory. We can call each of these three aspects of a reduction ''the
conceptual aspect'", '"the dialectical aspect'", and '"the doctrinal aspect",
respectively.

It must be stressed that conceptual, dialectical and doctrinal
aspects of reductions cannot be performed independently of one another.24
Often our only reasons for thinking we have accomplished the conceptual
aspect of a reduction are the successes of the dialectical and doctrinal
aspects of that reduction. We might, for example, amend an apparently
good conceptual aspect of a reduction in order to make better the
dialectical and doctrinal aspects. Performed in a vacuum the conceptual
aspect of a reduction (and similarly for doctrinal and dialectical aspects)
may have no interest. This is not meant to deny that sometimes the
conceptual aspect of a reduction may be what we are mainly interested in;
however, the evidence for the adequacy of the conceptual aspect of that
reduction, in part, depends on the dialectical and doctrinal aspects.

Now, a reduction of ﬁathematics to set theory, if it is to be used
as evidence for Hilbert's thesis, must not only show how the concepts of
set theory can be used to define the concepts of mathematics, it must
also show how the arguments of ordinary mathematics can be replaced by
first-order derivations from the axioms of set theory. For some purposes
only the conceptual aspect of a reduction of mathematics to set theory
is important; we can sometimes leave the dialectical and doctrinal aspects
of that reduction unclear. For example, if we want to provide mathematical
language with a formal semantics, we might be able to ignore the issues

raised by the doctrinal and dialectical aspects of a reduction of
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mathematics to set theory. We might only be concerned with giving set
theoretic truth conditions for given statements of mathematics. We saw
how to do this for statements about ordered pairs and functions. But
Hilbert's thesis is not only a claim about what sort of language must be
used in order to express statements of mathematics. It is a claim about
mathematical proofs. It, in part, is the claim that the informal notion

provable is formalized adequately by the notion first-order provable.

d&fining mathematical concepts using sets and expressing mathematical
statements using the language of set theory are only the first steps
towards showing that ordinary arguments of mathematics can be presented
as formal derivations from the axioms of set theory; and it is this last
claim that justifies the conclusion that Hilbert's thesis is true given
claims (i) and (ii) of Morley's argument. The conceptual aspect of a
reduction of mathematics to set theory is only going to be evidence for
Hilbert's thesis if there is reason to believe that something like
(G) If v, an ordinary statement of mathematics, can be

expressed by ¢, a sentence in the language of set

theory, then ¥ is provable only if ¥ is first-order

derivable from the axioms of set theory.
is true; and evidence for (G) can only be obtained through the dialectical
and doctrinal aspects of a reduction. Not only must we show how to
construe functions as sets of ordered pairs and how to express statements
about functions using the language of set theory, if we are to justify
Hilbert's thesis using Morley's argument, we must also show that
arguments that certain functions exist can be presented as first-order
derivations that certain sets of ordered pairs exist.

This last point is important, especially in light of Cohen's
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and others' contributions. We know that some statements of mathematics
cannot be expressed by sentences of the language of set theory that have
first-order derivations from the most obvious axiomatization of set theory,
ZF (or even ZF+Choice). 1If, for example, ZF is consistent (in the sense
that there is no derivation of some sentence from the axioms of ZF), then
there is no derivation from the axioms of ZF of (the sentence expressing)
the statement that there is a dense linearly ordered set such that each
collection of disjoint open intervals is at most countable, and there is
no derivation of the negation of this statement. This is known as
Suslin's problem. In 1920 Suslin asked whether every linearly ordered
set that is dense and unbounded (that is, for every a, b, if a<b there
is a ¢ such that a<c<b and there is no greatest and no least element),
complete (that is every Cauchy sequence has a limit) and satisfying the
countable chain condition (that is, every collection of disjoint open
intervals is at most countable) is isomorphic to the real line. If we
express an affirmative answer to Suslin's problem in the language of set
theory, we will have a sentence, y, such that there is no first-order
derivation from the axioms of ZF+Choice of ¢ and there is no first.order
derivation from the axioms of ZF+Choice of y. Then if (G) is true,
there is no way to prove whether or not Suslin's problem has an
affirmative answer. And so, if we believe that the 'sole method that
mathematicians do use...is the method of mathematical proof'", we have
to conclude that Suslin's problem has no answer.

This is a very disturbing conclusion to have to make. Suslin's
problem is the sort of problem a topologist naturally would address.

Topologists interested in characterizing the real line would be interested



in resolving Suslin's problem. However, if the power of mathematical
proof does not outrun the power of set theoretic proof, there is no
proof resolving Suslin's problem. The same is true, as is well-known,
of the Contiuum hypothesis. So accepting Morley's argument as reason
for Hilbert's thesis, apparently entails that there are no proofs
yielding answers to questions mathematicians normally would ask.25 Given
this disconcerting conclusion, why would we want to reduce mathematical
proof to set theoretic proof? What reasons can be adduced in favor of
claim (i) of Morley's argument?

Zermelo26 once described set theory as

that branch of mathematics whose task is to investigate

the fundamental notions '"number', '"order', and '"function",

taking them in their pristine form, and to develop thereby

the logical foundations of all arithmetic and analysis.
Zermelo's belief can be traced to the successes of Dedkind, Cantor and
others, who, using only simple set theoretic operations, were able to
construct the rational numbers, the real numbers and even the complex
numbers, starting only with the natural numbers. Their methods are
well-known and the story of their successes is exciting. I will not
repeat all of it here. What we should recall is that given the natural
numbers, rational numbers can be construed as equivalence classes of
ordered pairs of integers. Then (depending on our tastes) we can
construe the real numbers either as equivalence classes of Caucnhy sequences
or as Dedkind cuts. It is an insight of some importancé that’ these
constructions can all oe based on a simple albeit infinite set of axioms,
aanely the axioms of ZF. in ZF we are-able to construct isomorphic conies

of the natural numbers. Then, using the axioms of ZF,
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we are able to isolate an isomorphic copy of the rational numbers by taking
equivalence classes of ordered pairs of elements of one of the isomorphic
copies of the natural numbers. We can then show that Dedekind cuts of
these equivalence classes exist, using only the axioms of ZF. Thus, in

ZF, we can show that any class of mathematical objects ordinarily needed
for the purposes of arithmetic and analysis exist. This is what (to a
large extent) first motivated -- and still motivates -- the study of set
theory, and it is this fact that is behind Zermelo's claim as well as

claim (i) of Morley's argument.

However, carrying out the Cantor-Dedekind constructions using only the
axioms of ZF does not show that mathematical proof is no stronger than
formal set theoretic proof. Only the conceptual aspect of a reduction
of mathematics to set theory has so far been accomplished. The Cantor-
Dedekind constructions provide a set of reductive definitions of the main
concepts of ordinary mathematics in terms of sets. They also provide part
of the dialectical and doctrinal aspects of the reduction. They show us
how to present a good many proofs of theorems of mathematics as
derivations from the axioms of ZF. But, I think it is fair to say, their
reduction leaves open the question whether only arguments that can be
handled by means of the Cantor-Dedekind constructions are available to
the working mathematician. We have not yet seen any reason for thinking
that all the arguments of ordinary mathematics can be presented as
derivations from the axioms of ZF. We do have enough of the doctrinal
and dialectical aspects of a reduction of mathematics to set theory to
conclude that the conceptual aspect of the reduction is sound. But
we, as yet, do not have enough of the doctrinal and dialectical aspects

to conclude that everything mathematically provable can be presented as
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a formula having a (non-trivial) first-order derivation. So, it seems,
we do not yet have enough evidence to conclude from Morley's argument that
Hilbert's thesis is true.
. . 27 . . <

In "Epistemology Naturalized'" ', Quine gives reasons for thinking that
once we have the conceptual aspect of a reduction its doctrinal aspect
is not far behind.

The two ideals are linked. For, if you define all the concepts

by use of some favored set of them, you thereby show how to

translate theorems into these favored terms. The clearer these

terms are, the likelier it is that truths couched in them

will be obviously true, or derivable from obvious truths.

If in particular, the concepts of mathematics were all reducible

to the clear terms of logic, then all the truths of mathematics

would go over into truths of logic; and surely the truths of

logic are obvious or at least potentially obvious, i.e.,

derivable from obvious truths by individually obvious steps.
Quine, of course, despairs of reducing the truths of mathematics to
truths of logic, recognizing that the most that can be hoped for is a
reduction of mathematics to set theory. Nevertheless, the idea is the
same, namely, that the concept of a set is clearer than the concepts of
mathematics in general, and that since it is easier to know whether
something readily understood is true than whether something complex is
true, what we know about sets cannot be less than what we know about
mathematics in general. That is, the power or ordinary mathematical
proof does not outstrip the power of set theoretic proof.

Quine's argument seems plausible. However, there are good reasons
for rejecting it. 1 already hinted at some before; but there are others.
The most obvious and convincing is that although the truths of mathematics

may be reduced to set theoretic truths, they are by no means reduced

to simple set theoretic truths. If we sit down and try to write out in
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the language of set theory a simple truth about the real numbers, we

soon find that writing out the most common assertions about the real
numbers in a first-order language whose only non-logical constant is €

is an enormously difficult task. It might even be impossible to survey

the sentence we obtain so that it can, in any sense, be said to be
understood. Furthermore, I think it doubtful whether the set thenretic
truths needed to deduce truths about the real numbers are in any sense
epistemologically preferable to truths about the real numbers. The

reason, I think, it so often is said that truths about sets are so

clear and understandable is that only very small, finite sets are considered.
Yes, we can easily understand what it is to take the power set of a

three membered set. We can imagine partitioning the set into its subsets.
However, when we start to consider the very large finite sets such
visualization becomes impossible. And when the sorts of operations

needed in order to construct the real numbers are considered, the claim that
set theoretic truths are more obvious than ordinary mathematical statements
is hard to defend. Finally, it should be remarked that certain truths
about the real numbers can be proved only if we make assumptions that

very large cardinals exist. These so-called 'large cardinal axioms"

are by no means obviously true. Thus, although it is possible to reduce
portions of mathematics to set theory, it is by no means clear that the
truths so obtained are in any sense more obviously true than the ordinary
mathematical truths with which we started. A Quinean argument, then,

that the conceptual aspect of a reduction of mathematics to set theory
yields the doctrinal aspect is not as cogent as it first appears.

My criticism of Morley's argument can be summed up as follows. In
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order to use claims (i) and (ii) to conclude that Hilbert's thesis is
true, we need not only the conceptual aspect of a reduction of mathematics
to set theory, but the dialectical and doctrinal aspects as well. However,
these aspects of the reduction are not yet completed enough to warrant

our concluding that Hilbert's thesis is true. Numbers, for example, might
be reducible to sets without it being the case that every truth of number
theory has a first-order derivation from the axioms of ZF. My criticism
of Morley's argument, then, is very weak. Morley's argument, I have
suggested, rests on the hope that the dialectical and doctrinal aspects

of a reduction of mathematics to set theory can be completed. All that

I have claimed is that as yet we have no evidence that this is so. It
looks, then, as if all we can conclude is that Morley's argument for
Hilbert's thesis might not work; I have not ruled out the possibility

of the dialectical and doctrinal aspects of a reduction of mathematics

to set theory being eventually completed. If they should be completed,

it might be claimed, then Morley's argument can be used to establish
Hilbert's thesis. It migﬁt be a tenet of the mathematician's faith that
these aspects of the reduction can be completed, and so Morley's argument
demonstrates that it is a tenet of the (consistent) mathematician's

faith that Hilbert's thesis is true.

There are, however, what I think are good reasons for denying that
Morley's argument can ever give us the sort of evidence we need for
Hilbert's thesis. There are compelling reasons for believing that the
doctrinal and dialectical aspects of a reduction of mathematics to set
theory can never be completed. The method of mathematical proof is open

ended; it evolves. The history of mathematics is replete with examples
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of portions of mathematics changing radically not because of a new proof,
but because of a new method of proof. The introduction of forcing by Cohen
is a recent, but by no means isolated, example. This open ended character
of the method of mathematical proof suggests that the dialectical and
doctrinal aspects of the reduction of mathematics to set theory will always
be incomplete; we will always have to leave room for altering them, and
we can never be sure that a new method of proof might not be introduced,
a method which forces us to give up our hope of completing the doctrinal
and dialectical aspects of the reduction of mathematics to set theory.

This point can be nicely illustrated by some recent work of Nelson's28
He presents a formal system, called '"Internal Set Theory', that can be used
to formalize Robinson's non-standard analysis. Robinson developed a
new method of proof, which greatly simplifies many exi:sting results in
analysis, and internal set theory is a theory that formalizes these
methods. Nelson's proposal is that ZF be extended as follows. First,
the language of set theory is expanded so that it contains a new unary
relation sign, S. Then Nelson adds to the axioms fo ZF three new axiom
schemata involving the predicate, 5.29 Now, if we believe that Internal
Set Theory formalizes the arguments of non-standard analysis, we have to
conclude that the dialectical and doctrinal aspects of the reduction of
mathematics to set theory cannot be completed. There are some arguments,
namely, those of non-standard analysis, that are formalized as sequences
of sentences containing the new predicate S and that, therefore, cannot
be formalized as derivations from the axioms of ZF. This is not to

claim that the conceptual aspect of the reduction of mathematics to set

theory cannot be completed. We may, for example, have good reasons for
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thinking that every theorem of mathematics can be formalized without using
S, and Nelson proves that if such a sentence is a theorem of Internal Set
Theory, it is a theorem of ZF+Choice. However, we have seen that if
Internal Set Theory formalizes the methods of non-standard analysis, the
dialectical and doctrinal aspects of the reduction cannot be completed.
This example by no means shows that Hilbert's thesis is false -- only
that Morley's argument for Hilbert's thesis is not conclusive. It can
be claimed, however, that a new argument, similar to Morley's, can be
constructed for Hilbert's thesis.30 One might argue as follows: (1)
Mathematics can be reduced t ZF and Internal Set theory; and (2) Both
ZF and Internal Set Theory are first-order theories; therefore (3) Hilbert's

thesis is true. The same cricism, mutatis mutandis, I levelled against

Morley's argument can, however, be levelled against this new one. The
open ended character of the method of mathematical proof suggests that
the dialectical and doctrinal aspects of a reduction of mathematics to
ZF and Internal Set Theory must be left incomplete. We will always be
left with the following question: will the next new method of mathematical
proof be formalizable using a first-order theory? To claim that the
answer to this auestion is always yes, is, I think, equivalent to
claiming that Hilbert's thesis is true. It looks, then, as if Morley's
argument cannot be used to establish Hilbert's thesis unless we suppose
that Hilbert's thesis is true.

There is another sort of problem with Morley's argument for Hilbert's
thesis that can be illustrated by means of the following story. Imagine
a mathematician being confronted with sets for the first time. Somehow

or other, someone or other explains to him what sorts of items sets are
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supposed to be. This mathematician then retires to his study, occasionally
contemplating these newly confronted objects. Perhaps after a while he
begins to think of sets as being precisely the sorts of collections on
which (some sort of) mathematical induction can be performed. He accepts,
in other words, a version of the axiom of choice and is willing to

assent to
(a) Every set can be well ordered.

(Such a mathematician is not too hard to imagine. After all, at first (and
still) many set theorists thought that (a) is obviously true.) So far,

our mathematician friend has thought only in terms of pure set theory;

he never has thought in terms of sets of some sort of thing. He realizes,
however, that some use could be made of sets in mathematics if he were to
think in terms of sets of integers, sets of real numbers, sets of sets

of real numbers,...Imagine further that this mathematician throughout

his career has worked extensively with the real numbers, using facts

about the continuum constantly. He has, in the course of his work, come

to the conclusion that
(b) Every collection of real numbers is Lebesgue measurable

is true, although he has never thought of trying to prove that (b) is true.

His new interest in applying set theory leads him to reformulate (b) as
(b') Every set of real numbers is Lebesgue measurable.

So the situation is this: we have a mathematician thinking about pure

set theory coming to believe that (a) is true; however, when he applies
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set theory to areas of mathematics with which he is intimately familiar,
he is led to believe that (b') is true.

The problem, of course, is that (a) and (b') are inconsistent. We
can prove, using the axioms of ZF, that if every set is well-ordered, there
is a non-Lebesgue measurable set of real numbers. Our mathematician,
then, seems to have two alternatives: (1) deny that (a) is true; or (2)
deny that (b) is true. But, in fact, if we look closer at the reasoning
of our imagined mathematician there is ancther alternative open to him.
He can deny that (b) is expressed correctly by (b'). He might conclude
that although his thoughts concerning pure sets and his thoughts concerning
the real numbers are in toto correct, his application of pure set theory
to the real numbers is ill advised.

The mathematician believing (b) might, furthermore, be led to deny
that the collection of real numbers is a set. (b), after all, is in
conflict with (a). His beliefs about the real numbers and his beliefs
about sets might lead himldirectly to the belief that, in fact, a set
theoretic reduction of real number theory is impossible. In light of
(a) and (b) he might deny that any set can t. lentified with the
collection of all real numbers. Thus, he would deny that (claim i) is
true.31

Now, it might be claimed that this mathematician has misunderstood
what set theory is all about. Set theory, it can be claimed, is not a
theory about things in the way that, say, biology is. Set theory only
has import insofar as it forms the framework of a foundation of
mathematics. We do not, it can be continued, contemplate and study pure
sets, discover truths about such sets, and then apply those truths to

portions of ordinary mathematics. Rather, the order is reversed. We
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want to reduce ordinary mathematics to as simple a theory as possible.
Experience suggests that such a theory is to be found by looking at
theories about sets, and so we reach the conclusion that a reduction of
mathematics to a theory about sets is worth having. What truths we
accept about sets, then, is a function of what we need to facilitate this
reduction. Thus, we accept, for example, large cardinal axioms because
they allow us to prove believable things about the real numbers, and not
because they are, in some sense, obvious truths about sets. This is,

I think, the correct position to adopt regarding set theory. If, in
other words, set theoretic truths have any evidence and justification --
and, therefore, any content -- it is only to be found in ordinary
mathematics.

This is where our imagined mathematician has gone wrong. He tried
to investigate sets (whatever that may mean): independently of the reduction
of mathematics to a theory about sets. But it is also, I think, where
Morley's argument goes wrong. If it is true that 'the intuitive content
of set theory is expressible in a set of first-order axioms', then evidence
that this is so can only be found in ordinary mathematics. What axioms
we accept about sets is determined by what we need in order to reduce
mathematics to a theory about sets. But now it begins to look as if the
justification for claim (ii) of Morley's argument is that Hilbert's
thesis is true; our reason for thinking that mathematics can be reduced
to a set theory whose "intuitive content is expressible in a set of
first-order axioms'" is the belief that Hilbert's thesis is true. Rather
than establishing Hilbert's thesis, the premises of Morley's argument

presuppose that Hilbert's thesis is true.
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(iv)

I want to conclude this chapter with a final argument against
Morley's claim (i) that, I believe, can be answered but only in a way
that begs the question whether Hilbert's thesis is true. So far all the
evidence adduced in favor of the reduction of mathematics to set theory
has been from arithmetic and analysis. We have shown how to reconstrue
statements about the real numbers as statements about sets. But mathematics
is more than analysis and arithmetic. One often reads proofs in, for
instance, Category theory that begin with the phrase '"Take the category
of all sets,'" or '"consider the category of all ordinals.' None of these
phrases, ''category of all sets" or 'category of all ordinals' refers to
a set, for, as we know, there is no set of all sets and there is no set
of all ordinals. This suggests that there is no straightforward manner
category theory can be reduced to set theory; the ontology of category
theory quickly outruns the size of any set. Category theory is not
alone among mathematical disciplines in this respect. Model theorists,
who use their techniques to obtain interesting results in algebra,
topology and other areas, posit objects whose existence cannot be proved
using only the axioms of ZF. Some of the most interesting objects
studied by the model theorist are models of ZF itself. If ZF were
powerful enough to demonstrate that these objects exist, then, by Godel's
results, ZF would be inconsistent. Thus, ironically, either ZF is
inconsistent, or not every object posited by mathematicians and used to
obtain interesting and fruitful results can be proved to exist using
only the axioms of ZF.

This sort of consideration leaves claim (i) of Morley's argument
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seeming unattractive. The constructions of Dedekind, Cantor and others
provided most of the reasons for asserting claim (i). However, constructions
of that sort cannot be generalized so that the objects used in other
areas of mathematics can be shown to exist using only the methods of ZF.
Thus Morley's argument seems to loose alot of its appeal. We need
additional, and sometimes implausible, axioms to handle the methods of
model theorists set theoretically. Therefore, one might conclude, set
theoretic proof is not a good formalization of informal mathematical
proof.

This objection, however, is too fast. Take any fragment of mathematics.
A minimal condition that fragment must meet is that it is consistent in
the sense that we cannot prove every sentence using just the methods of
that fragment. So it can be argued, by completeness, that fragment has
a set theoretic model.32 In other words, it is possible to make all the
truths of that fragment true in a universe consisting only of sets. That
is to say, (borrowing a phrase from Quine) any fragment of mathematics

is only ontically committed to sets. No consistent mathematical theory

needs a universe larger than any set. In this sense, Morley's argument's

claim (i) is vindicated.

However, since we are interested in Hilbert's thesis, this vindication
of Morley's argument is unsatisfactory. To salvage claim (i) against
the objection that some portions of mathematics seem to posit objects
larger than any set, we supposed that the proper formalization of the

notion mathematically provable was such that the logic used in mathematics

is complete. But what evidence do we have for supposing that the (or a)

logic appropriate for formalizing mathematics is complete? Perhaps we
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should be willing to accept a logic and a notion of proof for which the
completeness theorem does not hold. Thus, if Morley's argument is to
justify Hilbert's thesis, we must show why the logic we accept as
appropriate for mathematics is complete.

In the next chapter I shall look closely at some of the technical
notions behind completeness and formal logics. In chapter three I shall
look closer at the property of completeness, trying to see why it might
be considered a virtue of a logic that it is complete.

Let us conclude this chapter by noting two things. First, in order
to establish Hilbert's thesis the conceptual aspect of a reduction of
mathematics to a first-order theory is not enough -- we need the dialectical
arid doctrinal aspects as well. Second, it looks as if evidence that
these aspects of the reduction of mathematics to a first-order theory
can be completed is only to be found by carefully scrutinizing the
methods mathematicians ordinarily employ, and not by analyzing the objects

mathematicians posit.
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Chapter 2

SOME FORMALITIES

In chapter 1 I discussed, informally and roughly, Hilbert's thesis
and reasons for thinking it true or false. In this chapter, I want to
provide a technical framework in which some issues raised in chapter one
might be made more precise. I shall outline some rudimentary notions
needed to talk rigorously about formalizations of portions of ordinary
mathematics.

Logical truths and, correspondingly, logical implications can be
characterized informally in two ways. Sometimes it is said that a
statement, ¢, is a logical truth if and only if y is true under all
logically possible circumstances. (The apparent circularity need not
trouble us now.) This idea is also put as follows: logical truths are
true in virtue of tne logical terms occurring in them, although what it
is for a truth to be true in virtue of logical terms is often left
obscure. This sort of claim is a semantic characterization of logical
truth. Sometimes logical truths are characterized differently. It is
often noted that logical truths have logical proofs; and so logical
truths are characterized as truths that can be proved logically. (Again,
the apparent circularity need not concern us.) Benacerraf 1 recently
has stressed that the latter characterization of logical truths was
presupposed by Frege when he criticized Kant, while Kant himself
presupposed the former characterization. The historical roots, however,
of these two sorts of characterizations of logical truths need not
concern us. It is the subject of another thesis. In this chapter, I

shall begin making these two characterizations of logical truths more
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precise. Let me state them here informally in terms of logical implication
for future reference:
(D1) A set of statements, I', logically implies a statement,

v, if and only if it is logically impossible for all
members of T' to be true while ¥ is false.

and

(D2) A set of statements, T', logically implies a statement,
¢, if and only if there is a logical proof of V¥ that
uses only elements of ' as premises.

(Again, we may ignore what appears to be a circularity.)
(i)

In this section, I shall review a minimal characterization of logic
(or logics). My treatment relies heavily on work by J. Barwise2 and
Monkza. Their work, in turn is an extension and generalization of some
results of P. Lindstroms. The ideas are simple and ultimately derive
from Tarski's4 definition 6f 'truth'. A quote5 from Barwise's article
sums up what will be accomplished:

A logic is...an operation which assigns to each set L of

symbols a syntax and a semantics such that:

(1) elementary syntactical operations (like
relativizing and renaming symbols) are

performable,

(2) 1isomorphic structures satisfy the same sentences.

From now on let us assume that we have fixed a countable set of
symbols1L W can be presented as the union of three pairwise disjoint

sets (of symbols),Y, P and Gl, which, in turn, can be described as
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follows. ?(, called the set of variables, is a countable union of

pairwise disjoint sets, called kinds. Each kind contains countably

many elements, called variables. Thus,

')’=KUK1UK

0 u...,

2

where each Kn is a kind and contains countably many symbols. We also

suppose that we have fixed an enumeration of each Ki' Thus, Ki = {vé,vi,v;..}
The set 5% on the other hand, is finite. It has only eight members.

They are: -y, the negation sign; v, the disjunction sign; §, the conjunction
sign; V, the universal quantification sign: 3, the existential quantification
sign; =, the identity sign; (, the left parenthesis; and ), the right
parenthesis. Finally,ﬂ.can be described as a countable union of pairwise

disjoint sets, R , called degrees. Each degree, in turn, contains
n bt LAl

countably many symbols, called relation signs. I assume that, as usual,

if P is a relation sign in Rn’ then P has n argument places. Thus,

61=R1U R,U RyU...,.

where for each i, Ri contains a countable infinity of relation signs with
i argument places.

In addition, let us suppose that U can be godel numbered. More
precisely, let us suppose that there is an effective 1:1 function, g,
from WU into the set of natural numbers and that g[[¥]] and g[[®R]] are
recursive sets. Notice that since ® is a finite set, gllw]] is,
therefore, recursive as well. Furthermore, for reasons that will become
clear below, let us suppose that the complement of the range of g (that

is, w-gllull ) contains an infinite recursive set. There are many such
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godel aumberings that we might use. Let us suppose that one has been fixed.

With these assumptions behind us, we are now ready to make the
following definition:

DEFINITION 1: A language, L, is a subset of Qu® such that

PcL and g[[ L] is recursive.

Before continuing I should make some remarks about definition 1.
First, in this chapter, and the remainder of this dissertaion, when I
use 'language' I shall be using it in the sense of definition 1, unless
the context makes perfectly clear either (i) how definition 1 should be
amended, or (ii) that I am talking about a natural language, like Italian.
Second, all languages, in the sense of definition 1 are subsets of U,
and so no language has more than a countable infinity of symbols. In
fact, we do not have available in all the languages, in the sense of
definition 1, more than w symbols. This will, for our purposes, surely
be enough. However, for some purposes it is not enough. For example,
model theorists use and need names for every real number. T.is brings
us to a third point about definition 1. No language contains any operation
signs or constant signs. This is an unusual stipulation to make; however,
it will make the formal results I want to report in this chapter easier
to state. In addition, as shall be seen, in light of further assumptions
and definitions, requiring that languages contain no operation and
constant symbols does not involve a genuine loss of generality. Finally,
according to definition 1, every relation sign in a language is of
fixed degree. It has recently been proposed that logic be extended so

.

that relation signs with varying degrees may be used.  Although this
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proposal is cert:inly deserving of serious attention, I shall not attend
to it here. So far many interesting portions of mathematics have been
formalized using only relation signs of fixed degrees, and since these
sorts of relation signs are standard, I shall insist that only such
relation signs are members of languages.
DEFIMITION 2: A lIwgical language, L, is the union of a language
at. . finitely many kinds (see above) such that if
K €L and n<m, then K € L.
m n
We shall say that a logical language, L, is of kind m, where m is a
natural number, provided that m is the greatest number for which KmC L.
Notice what a logical language, in the sense of definition 2, is: a
logical language is a countable set of relation signs along with the
eight (special) symbols in P and a countably infinite stock of variables
of finitely many different kinds. If the notion is not clear, it will,
I think, become so after we consider some examples. But first, we need
another definition.
DEFINITION 3: A logical syntax, *, is an operation on logical
languages of some fixed kind, m, such that,
where L is a logical language of kind m, L* is
a set of sequences of members of L (L* is the
set of wffs whose non-logical symbols are wmambers
of L) and such that:
(i) If ® is a member of L*, there is a
logical language, L(®), of kind m containing
only finitely many relation signs, and
for every logical language, K, of kind m,

®e K* if and only if L(®)eK;

(ii) If L and K are logical languages of
kind m,:and LeK, then L*€K*;

(iii) If K is a logical language of kind m,
x is a variable in K, and @, y are
members of K*, then
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(a) (9
(b) (avy)
(c) (46v)

(d) (vx) (%)
(e) @Ex)(®

and all members of K*;

(iv) For every logical language, K, of

kind m there is a function, g*K, from K*

into the natural numbers that is an

extension of g and that is such that g*K[[K*]
is a recursive setd>a;

(v) For every logical language, K, of kind
m, there is a recursive function, compK, from

g*KI k*] into g*K[[ K*]] such that for all ¥
in K*, comp*K(g*X(9))=g*NA9);

(vi) There is a binary recursive function,
unK, for every lanouage, K, of kind m, such
that unK(g*K(e), g*K(y))=g*N(ewp), for all
¢, ¢ in K*.

Definitions 2 and 3 capture some of (what we think are) the essential
features of (almost all) formal languages, in the sense in which we talk
of a formal language that corresponds to the predicate calculus, or the
sense in which we call Frgge's concept-script a formal language. Almost
all such formal languages that have been used successfully to formalize
portions of mathematics can be presented so that they are the result of
applying a logical syntax to a logical language. The exceptions all,

I think, violate clause (i) of definition 3. That clause requires that
each wff contains only finitely many non-logical constants (although

it does not require that each wff contains only finitely many occurrences
of non-logical constants, nor does it require that each wff contains

only finitely many logical constants). There are some versions of formal

languages permitting the formation of infinite conjunctions and
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dislunctions that allow wffs to contain infinitely many non-logical
constants; these formal languages are often of interest, even though

they violate clause (i). However, for ouvr purposes, such formal
languages can be ignored; the formal languages that can be presented so
that they are generated by applying a logical syntax to a logical
language are rich and diverse enough (as the examples we will consider
show) to justify including clause (i) in definition 3. Clauses (iv)-(vi)
of definition 3 insure that every formal language generated by the
application of a logical syntax to a logical language has a godel
numbering. Since Godel's work, it has become nearly impossible to imagine
a formal language that cannot be godel numbered. Proof theoretic studies
of logic constantly appeal to godel numberings, and the richness of

these studies justifies clauses (iv)-(vi). The best way, however, to
understand the motivation for definitions 2 and 3 is to look at an

example.

THE LOGICAL SYNTAX FOR FIRST-ORDER LOGIC, *fo’ is an operation
on the set of all logical languages of kind 0. Given a logical
language, L, of kind 0, the result of applying *fo to L (called
Lfo) is the smallest set satisfying:

(i) If R is an n-place relation sign in L, and vy, vy...,vq

are in Ko (that is, they are variables of kind 0), then

the result of concatenating R, vg, v%...and v in that

order is in LfO, and (vp=vy) is in L%O;

(ii) If @ is in LfO, then (@) is in Lfo;

(iii) If @ is in Lf% and x is in Kg, then (%) (0) and
(wx) (@) are in Lfo;

(iv) If @ and € are in Lfo, then (6vY) and (0§¥) are
in LYO,
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There are many ways to extend g so that we have a godel numbering of
the formulas of first-order logic satisfying clauses (vi)-(vi) of
definition 3 (see page S%). So that things can be said more concisely,
I shall make two conventions. First, where * is a logical syntax, I
shall let "kd(*)" denote the kind of the logical languages in the
domain of *. Thus, kd(*fo) is 0. Also, if L is a language (not a
logical language) and * is a syntax, I shall write "L*" to denote the
result of applying * to the smallest logical language, K, of kd(*) such
that K23L.
The definition that follows is standard and known to all students
of logic.
DEFINITION 4: Let L be a language. An L-structure,C., is a

partial function on L such that V (written

instead of '&(V)') is a non-empty set, called

the universe¢ of &, and such that for every

n-place relation sign, P, in L, P& is a set

of n-tuples of members of the universe of &.
For convenience, when K is a logical language, I shall use 'K-structure'
to mean the same as 'L-structure, where L is the largest language
contained in K'.

A 1:1 function, f, from a language, L, onto another language, L',

is called an interpretation of L in L', if for every relation sign, P,

in L, f(P) is a relation sign in L' with the same number of argument

places as P, and if f is the identity function on the set . If f

is an interpretation of L in K and if @& is an L-structure, then af is

the K-structure such that (i) the universe of af is the same as the
ar

1. &
universe of ¢, and (ii) for every relation symbol, P, in K, P =~ = (f 1P) .

Notice that if f is an interpretation of L in K, there is a natural
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. . . + .
extension of f into a function f from LUL* onto KVUK*, where * is a
f

logical syntax. If <9 is in L*, T will write "?f’ to denote f+(¢). ¢
is, roughly, the result of substituting f(R) in 4, for each relation sign
R occurring in ¢, Thus if & is (Vx) (Rx*Fxy) and f(R) is F while f(F)

is W, then C?f is (¥x) (Gx»Wxy). We are now ready for the first in a

series leading to the main definition of this chapter.

DEFINITION 5: A Barwise logic is an ordered pair, <*, k>,
where * is a logical syntax and fF is a
relation between structures and sentences such

that

(i) For all languages, L, if € is in L* and
2is an L-structure with @F<®, then if B is an
L-structure that is isomorphic to @, RF<%;

(ii)(a) Let L and K be languages. Let f be
an interpretation of L in K. Then {&|gfF %}
is the same as {&|a;|= ot} ;

(b) For all languages, L, CFCP, where %

is in L*, if and only if a[L(®) F¢;

(c) Let L be a language, and let 'S;' denote
the class of all L-structures. An L,<* f>
-e.c. is a subset of Sy, A, such that for
some ¢ in L*, & is in A if and only if &QF ®.
Then if K is a language and A is a K, <*,
-e.c., then if K'2K, {&ESK'IQFK isinA} is

a k', <*,)F> -e.c.;

(iii) Let L be a language. Then for every 9 in
L*, {2|&F <%} is the same as S;-{2|af ~+};

(iv) For all languages, L, if @ and ¢ are in L*,
@laF @} n {2|aF v} is {2|qF «&}, and
{|ak @} v {2|2F v} is {2|@F ¢vyl}.

Let <*,f= > be a Barwise logic. Then to simplify our talk, "ModL o+ |‘=>(‘P)"
will denote the class of L-structures,@ , for which a.|= ®. Usually

mention of L will be suppressed. A <*, [F >-sentence is a sentence, ¢,
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for which there is a language L, such that®is in L*. The example that
motivates the definition of a Barwise logic, as we shall soon see, is
the first-order predicate calculus. Before discussion that example,
however, let us look at two more definitions.

DEFINITION 6: Let <*, k >be a Barwise logic, and let L be

a logical language of kd(*). Then a sentence,
¢, of L* is L,<*,F >-valid if for all L-structures,

&, aF «.
DEFINITION 7: Let <*,fF > be a Barwise logic and let L be a

logical language of kd (*). Also, let T be a

subset of L* and let ¥ be a member of L*. Then

r L,<*,F >-implies ¢ if for all L-structures,é&.,

if @k ¥, for every ¥ in T, then2F ¢ .
Usually when using the notions defined in 6 and 7 I shall suppress mention
of L and talk about, say, <*,F >-valid sentences. The context will make
clear what language is involved, and when it does not, we can suppose,
using clause (i) of definition 3, that the language in question is the
smallest language from which the sentence(s) mentioned can be generated.
Definitions 6 and 7 make clear the motivation behind clause (ii)(a)-(c)
of our definition of a Barwise logic. It is usual to suppose that logical
implication and logical validity are determined by the logical structure(s)
of the sentence(s) in question. Clause (ii) guarantees that the
implications and validities determined by a Barwise logic depend only
on logical structure, and not on the relation signs involved. We can
uniformly replace relation signs, by clause (ii) of definition 5, without
making a valid sentence invalid (or vice versa) and without altering
relations of implication. It is this, I think, that motivates clause

(ii). Clause (i) of definition S5, I think, needs no motivation. It is

hard to imagine wanting isomorphic structures not to satisfy the same



61

sentences. I shall soon discuss the motivations for clauses (iii)
and (iv). For now, we can conclude that defintion 7 is the formal
analog of (D1).

The best way to understand defintion 5 is, of course, to look

at an example.

FIRST-ORDER LOGIC, £fo' can be presented as a Barwise

logic whose first component is *fo' and whose second

component is a relation, |=f0, defined as follows: Let
L be a logical language of kind 0, and let & be an L-
structure. Then inductively define a three place
relation, |-, between &, members of L* and elements
of (W) (the set of w-tuples on V%) using the
following clauses:

(1) a,” (v —vJ) [x] iff the i-th component ,(x) ,
of x is the same as the j-th (x) , component of'x;

(ii) If R is an n-place relation sign of L, then
?JIIZ(Rvil ...vin([X] iff (()ig, --., (x)in) is in
(iii) If < and ¢ are in L*, then

& I (wgy) [x] iffellF #[x] and &Illv[x]; and

el (@vy) [x] iffa-Plx] or g&ll-v[x];

(iv) If ¢ is in L*, then

& ||-ep[x] iff not: &l ¢[x];

all- (vw;) () [x] iff for all y that result from x by
replac1ng the i-th component of x with an element of

(The existential quantifier can be handled siailarly.)

Then for ® in L*, say QF fo¥ if and only if 2l « [x]
for all x in(W¥)?
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8

- —ck
Therefore, we have £e7< fo’F PR
The reader probably has noticed that every Barwise logic
validates the law of excluded middle. That is to say

Proposition: Let £ be a Barwise logic and @ a sentence

generated using the syntax of €. Then ¢ is £-valid

is true. The proposition follows easily from clauses (iii) and (iv)
of definition 5 and from clause (iii)(a) and (b) of definition 3. It
might be objected, then, that the definition of a Barwise logic
ignores the intuitionists' objections to the law of excluded middle.
Intuitionistic Precicate Calculus, as it turns out, is not a Barwise
logic. Since this dissertation ultimately is an investigation of
some issues concerning the question which formal logic is appropriately
used when formalizing mathematics, the definition of a Barwise logic
seems tooexclusive. We are unable to say that a Barwise logic can

be used to formalize adequately mathematics without ignoring the
intuitionists' objectiohs.

In defense of definition 5 it can only be said that in this
dissertation I am not interested in examining the intuitionists'
objections to classical logic, nor am I interested in examining
any objections to Hilbert's thesis based on the claim that first-order
logic is too strong and that many arguments that seem formalizable
as derivations of first-order logic are not valid. I am only,
at least in this work, concerned with objections to Hilbert's thesis
from above, that is, objections to Hilbert's thesis based on the

claim that a logic stronger than classical first-order logic is
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needed in order to formalize adequately some portion of mathematics.
Now, I adnit that this excludes from consideration a vast amount of
philosophical work that is both interesting and important. We should
notice, however, that Hilbert's thesis claims that first-order logic
can be used to formalize adequately mathematical argumentation. Now,
it might turn out to be the case that only a proper part of first-
order logic is needed to carry out such a task. If this does turn out
to be the case we cannot (necessarily) argue that Hilbert's thesis

is false; it might be that Hilbert's thesis is not wrong, just not
strong enough. A more interesting claim about what logic is appropriately
used to formalize mathematical argumentation might be true, even
though Hilbert's thesis is not false.

The following question can, therefore, be askedgz why not just
consider logics that contain first-order logic? This question motivates
the following definitions.

DEFINITION 8: Let £ and £' be two Barwise logics. & is

included in £' E<£') provided every £-e.c.

is an £'-e.c.; &£ and £' are equivalent (£z£')
provided £cf and £'ck.

DEFINITION 9: A Lindstrom logic is a Barwise logic, <*,f >,
for which the following hold:

(i) £f0C<*,|= >

(ii) If h is the function associated with

* (see definition 3 clause (iv)), then there
is a unary recursive function, T, such that
for any language, L, and any L, f.o.-sentence,
<, there is a L,<*, | >-sentence, 0, such that
T(ghL(#))=h*L(8) and Modgy ()= Mod <*, | >(8).
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Clause (i) of definition 9 is motivated by the question mentioned above.
Since in this work only objections to Hilbert's thesis from above will
be considered, why not build first-order logic into our notion of a
formal logic? This will make the formal result to be described in this
chapter easier to state. The second clause of definition 9 may seem

a little restrictive. It guarantees that for any Lindstrom logic we
have an effective way to find, for given first-order sentences, a
formula in that Lindstrom logic with the same formal truth-conditions.
This requirement is not so strong as it seems, however. For almost

all the Lindstrom logics we consider, T will be the identity function.
Definition 9 is the most important definition of this chapter. From
now on, whenever I talk about foramlizations of logic, I shall be
talking about Lindstrom logics.

Taking Lindstrom logics to be formalizations of logic has an
important benefit. I already noted that definition 1 seems coverly
restrictive; it entails that languages contain no operation or constant
signs. This involves no loss of generality, however, if we consider
only Lindstrom logics. There are well-known ways that first-order
logic can be used to eliminate operation and constant signs
Since every Lindstrom logic contains first-order logic, these methods
can always be used. Thus, weakening definition 1 so that languages
may contain constant and operation signs, in the context with which
we are concerned, does not have any (important) consequences. There
are, of course, some (interesting) Barwise logics that do not contain
first-order logic and that therefore are not Lindstrom logics; we

shall look at one in chapter 4. We shall, however, take Lindstrom
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logics to be our candidates for formalizations of logic. As the
examples that follow show, this is not a very restrictive step; a

good many formal logics can be presented as Lindstrom logics.

) . = . .
WEAK SECOND-ORDER LOGIC, < WS’F ws> %ﬁ , 1s a Lindstrom
logic whose first component is an operation defined on

. . . . .
logical languages of kind 1. ws agrees with £o OM

that part of a language of kind 1 that is of kind O.

In addition, where L is a language of kind 1, * _ must

WS
satisfy:
. .. 0 . .
(i) vq € v% is in st for allv. in K, and v! in K,; and
i j i 0 j 1
vi = va, for e = 1 or 0O and f=1 or 0;

(1) (3))(0), (W])(8), (3v})(8), (W;)(®) and (<0) are

in st whenever 8 is in st;

(iii) (8&¥) and (Ov¥) are in st, whenever 0 and fare in

st.

E yg is defined very similarly to E fo- Let L be a logical
language of kind 1 and let & be an L-structure. Then
inductively define a four-place relation, |k, between Q,

members of st

, elements of v&)¥, and elements of &)Y,

using the following clauses:

(i) alk(vj=v§) [x][y] iff either

(a) é=c=0 and (x); is the same as (x)J.; or

(b) é=c=1 and (y)i is the same as (y)j; or

(c) 620 and c=1 and (x); is the same as (y)j; or

(d) é%1 and c=0 and (x)j is the same as (y);;

(i1) 2 |k (v(i)ev; )x][y] iff (x); is a member of (y);
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(ii1) @k Rv; ...v) [x1ly] iff <(x),, ..., (x),> is in R%;

(iv) If ¥ and y are in LWS, then
alF &y [x1 [yl iff @QF@x][y] and [F¥[x][y]; and
alF@v¥) [x][y] iff @lFelx][y] or &lF¥[x](y];

(v) If @ is in st, then
Q|F~0[x][y] iff not: &[F6(x][y];
GJF(VV?)(O)[x][y] iff for all z that result from x by replacing
i-th component of x with an element ofy, &|F 0 [z][y];
ajk(avg)(e)[x][y] iff for some z that results from x by replacing
the i-th component of x with an element of v ,glF 6[z]1([y];
Ci”=(vvi)(9)[x][y] iff for all z that result from y by replacing
the i-th component of y with a finite element of PVQ (where PX
is the set of subsets of X), @|F0[x][z]; and
CHF{av;)(O)[x][y] iff for some z that results from y by replacing
the i-th component of y with a finite element of PV , &|F0([x][z].
Then, for ¥ in st, say that a}=wsl iff Q|F¥[x][y] for all x

in (v)" and y in (Py®)".

I have presented weak second-order logic in such excruciating detail
so that we might have two worked out versions of Lindstrom logics, and
so that definition 9 might look more plausible, palatable and natural.
In the future most of the details will be suppressed. Notice that
£WS meets the conditions of definition 9. slfo certainly is contained
in 5“8' and we can take T to be the identity function. The reader,

no doubt, has noticed that variables of kind 1 are not permitted in

the argument places of relation signs (Note: e, strictly speaking is

not a relation sign; rather it is a logical constant on equal footing
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with =). Thus, strings like

(1) (v (w)) (vievy & Pv)

are not sentences of EWS. At first, this seems disturbing, since (1)
s the sort of string we might have thought formalizes
(2) There is a finite set that contains everything and
it is big,
a sentence that should be formalizable using weak second-order logic.

Judicious manipulation of the identity sign, however, allows us to

overcome this and any similar problem.

(3) (Hv;)(VV?)(v?evi & (va)(v2=vi+Pvg))

can be used in all places where we might want to use (1). (Notice:
the last conjunct in the matrix of (3) is really an abbreviation for

a formula of %S; it can be expanded in the usual way.)

SECOND-ORDER LOGIC,£ , is a Lindstrom logic whose first

SO

component, *SO’ is the same as *

is defined just as F ws “as defined except that the two

WS and whose second component

occurrences of 'finite' are deleted from clause (v).

\-LOGIC, £39 where W is a cardinal is defined just as
second-order logic was defined except that the last

two clauses of clause (v) are replaced by

&I}:(W;) () [x] [y] iff for all z that result from y by
replacing the i-th component of y with an element of vd
whose cardinality is %, & |F6[x][z];

and
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QlE (Hvi) (8) [x][y] iff for some z that results from y by replacing
the i-th component of y with ent of Va'whose cardinality is
X, alFelx](z].

INFINITARY LOGIC, 5&, is a Linc.c. w logic, <*I,F e where *I is

defined as *fo except that this time if TI' is an infinite set of

f.o.-sentences for which there is a finite language, L, such that
' is a subset of Lfo thenAl' andVr aref&—sentences. The definition
of F ; is similar to that of E o+ but in addition we also have:
ak (VT iff for somedin r,ak 3 and
Qk /N iff for alltin r.éF ¥
Many of the logics standardly proposed as (more powerful) alter-
natives to first-order logic are Lindstrom logics. As already noted,
though, not every logic is a Lindstrom logic. Type theories, for example,
cannot be presented as Lindstrom logics; the definition of a structure
has to be amended in order to handle type theories. Modal logics, also,
are not Lindstrom logics. These two sorts of logics play so important
a role in the philosophy of logic that excluding them from consideration
seems to be an egregious omission. Perhaps it is. We have to start
somewhere, though; and since so many logics standardly proposed as exten-
sions of first-order logic are Lindstrom logics, I shall assume that
mathematics can be adequately formalized using a Lindstrom logic. In
light of the wide range of logics that are Lindstrom logics, this does
not seem like such a dangerous supposition.
In chapter one I spoke alot about formalizations or portions of

mathematics. In light of the above remarks, I can noy make more

precise what I mean by a formalization of a portion of mathematics.
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Traditionally, mathematical theories are thought of as determined by
a set of axioms along with a logic telling us when a set of sentences
logically implies another sentence. Thus, Euclidean geometry can be
thought of as the collection of truths that logically follow from
five specified axioms. Similarly, set theory is taken to be determined
by first-order logic and a set of axioms. As Morley put it: the
intuitive content of set theory is expressible in a set of first-order
axioms (see chapter one, section three). In light of this tradition
and the remarks in the preceeding paragraph, the following definition
suggests itself:
DEFINITION 10: A formalization of a portion of mathematics

is an ordered triple, <L,T,p>, where L is a

logical language, a4 is a Lindstrom logic

whose syntax is on languages of the same kind

as L, and T is a set of L,s-sentences.
Thus, for example, a formalization of set theory is an ordered triple
the first-component of which is Pu{c}uKo (note: this € is not the
same symbol used in the definition of SWS’ £SO and £,), the second
component of which is the set of axioms for ZF, and the third component
of which is 5%0. If <L,T,w> is a formalization of a portion of

mathematics and ¥ is an L,pu-sentence, then we will say that ¢ is

<L,T,w>-valid (VAL (¢)) if and only if T m-implies ¥.

<L,T,p>
(ii)
Definition 7 is our rigorous version of {Dl); in this section I

shall formulate a rigorous version of (D2). In an introductory logic

class, when students are shown how to prove that a first-order sentence
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is valid, one of two sorts of methods is learned. The first, deduction,
involves learning how to derive valid sentences from a specified set

of sentences, called '"logical axioms'. The second involves learning
how to apply operations to sentences and to recognize which outcomes

are the result of applying operations to valid sentences. A standard
example of the second sort of method is the Smullyan-Beth tree
construction. The reader unfamiliar with it is referred to Smullyan's

First-Order Logicll. The general account of logical proof I shall

present in this section covers both sorts of methods; however, when
formulating that account it is useful to think in terms of the
Smullyan-Beth tree construction.

What are the characteristics of the Smullyan-Beth tree construction
that any such method of logical proof has? First, there is a set of
operations, Q, and a set of outcomes, I, such that for every first-
order valid sentence, y, there are operations in Q@ such that the
result of applying thos¢ operations to ¢ is in M. The following
definition is, I think, suggested.

DEFINITION 11: A proof-procedure is an ordered triple,

<*,Q,l>, where * is a logical syntax
and

(1) Q@ is a set of (codes for) partial
recursive functions; and

(ii) Q@ and T are recursively enumerable
sets.
Clause (i) of definition 11 can be motivated as follows. The elements

of Q@ are supposed to be (codes for) the operations that we apply to
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(codes for) *-sentences. We would like these to be operations that
anyone can perform by simply following instructions (not necessarily by
following simple instructions), and we want these operations to be
1repeatable and deterministic without any appeal to luck. In short,
the operations applied to (codes for) *-sentences shouil be effective.
By Church's thesislz, then, we have clause (i). Clause (ii) also

is motivated, in part, by Church's thesis. We want there to be an
effective method for recognizing the operations that may bc applied

to *-sentences, and we want an effective method for recognizing when
an outcome demonstrates that a *-sentence is valid. The comments
above definition 11 along with Church's thesis thereby motivate clause
(ii).

When <*,Q,N> is a proof-procedure, I shall write '"o[¥]'"-for
*-sentences, ¥, and o in Q -- to denote the result of applying the
function whose code is o to the godel number of ¥, that is o[V] is
{o} (g+L(¢)(¢)), where g+L(w) is as in definition 3 clause (v) and
{o} is the function whoge code is o. Also, I shall say that a
*-sentence, Y, is <*,Q,M> -provable if and only if the is an o in
Q such that o[¥] is in T.

DEFINITION 12: Let<*,Q,l> be a proof-procedure. Suppose

that T is a set of *-sentences. Then a
r, <*,Q,l>-validating conditional of y is
a <*,Q,N>-provable conditional, [&-* ) P .—>{n—>w

with ¥ as consequent and eachy, & 2
i
member of T.

DEFINITION 13: Let <*,Q,lI> be a proof-procedure. Then
a set of *-sentences, T, <*,Q,M>-implies
a *-sentence, ¥, if and only if there is
arl, <*Q,l>-validating conditional of V.
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Definition 13 is our rigorous version of (D2).
Proof-procedures and Lindstrom logics need not correspond to one
another. The following two definitions, however, cover the cases when

(happily) they do.

DEFINITION 14: A Lindstrom logic <*,k> is <*, Q,l>-complete
if ard only if for every logical language,
L of kd(*), every sentence, ¥ in L* and
every I' that is a subset of L*, T <*,F >-
implies ponly if T <*,Q,N> -implies V.

DEFINITION 15: A proof-procedure, <*,Q,l>, is is <*,F >-
sound, where <*, F > is a Lindstrom logic,
if and only if for every logical language
of kd(*), every sentence, ¥, in L* and
every subset, T', of L*, T <*,Q,lI>-implies
¥ oonly if T' <*, F >-implies .

Definitions 14 and 15 are generalizations of well-known logical
properties. So is the definition that follows:
DEFINITION 16: A Lindstrom logic, £ , has the Lowenheim
property if and only if every £ -e.c. contains

a countable structure. (see definition 5
clause (ii)b)

We can now state Lindstrom's characterization of Sfo'

Theorem (Lindstrom): & is the only Lindstrom logic, £,

fo
(up to equivalence) that has the Lowenheim property and
for which there is a proof—procedure,,:, such that £ is

p-complete.

A proof of Lindstrom's theorem can be found in Monk's Mathematical Logic13

It should be noted that Lindstrom's theorem cannot be weakened. Every

£ -e.c. contains a countable structure; but

WS is p-complete for

WS
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mo proof-procedure, p. (One consequence of a Lindstrom logic's
being p-complete is that the (gddel numbers of) £-valid sentences

are recursively enumerable. It is well-known that £ws—valid sentences

are not recursively enumerable.14) On the other hand, consider the

Lindstrom logic, ib, whose definition can be obtained from the

definition of i@ by substituting 'uncountable' for 'finite' in the

last two conditions in clause (v). £ . obviously does not have the

Q

Lowenheim property. Nevertheless, there is a proof-procedure,p,

. 15
such that £ 1is p-complete

Q

There are two more definitions, whose motivations are clear,

that will be useful to us in the future.

DEFINITION 17: A proof system for a portion of mathematics
is an ordered triple, <L,I',p>, where L is
a language, p is a proof-procedure whose
syntax is*,L is of kd(*), fis a subset of
L* and the godel numbers of members of T
are recursively enumerable.

DEFINITION 18: Let <L,T ,p> be a proof system for a
portion of mathematics. A <L,T' ,p>-derivation
of a sentence, Y, is a finite sequence
<¥1,...,¥y>, where ¥ is ¥ and for all nsm,
either

(1) 1, is in T; or

|k<n}, P -validating

(ii) there is a {!k

conditional of {n.
If ¥ has a <L,TI' ,p>-derivation we say that it is <L,I',p>-provable, and
wrlte:PR<L’r’f>(¢).
Before concluding this chapter, I want to note that (as should

be expected), where P is a proof procedure whose syntax is * and where

'is a set of *-sentences, I shall call T p-consistent if and only if
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for some *-sentence, Y, T does not p-imply V.

There is one final comment that should be made. I noted that
given the definition of a Lindstrom logic, definition 1 causes no real
loss of generality. If ¢ is a sentence (in a general sense) containing
operation and constant signs, we can always find . sentence, T(¥),

(in our more restricted sense) with the same formal truth conditions
as ¢. Sometimes during the discussion that follows, the reader will
have to extend a little charity. I shall talk about y, a sentence

containing operation and constants symbols; the reader will have to

realize that my remarks can be re-expressed as remarks about T(V).
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Chapter 3

PROOFS, TRUTHS AND COMPLETENESS

In this chapter, I shall begin looking at completeness. I shall
do primarily two things. In the first section I examine critically an
argument purportedly establishing that only complete logics should be
used when formalizing portions of mathematics; in the second section 1
look at another argument that apparently entails that sometimes
incomplete logics must be used to formalize portions of mathematics.
Examining these two (very different) arguments will help us begin
to understand the philosophical issues behind completeness. In
chapter four the issues raised here will be scrutinized carefully.

A word (or two) about completeness is needed. In chapter two
we said that a logic is complete if and only if its valid sentences
can all be proved using one. proof procedure. This, in turn, entails
that there is an effective method for generating all the valid
sentences of that logic; Now, in light of definition 10 we can say
that a portion of mathematics is formalized when we specify a set of
axioms and characterize a formal logic so that we have an account
of what it is for a sentence to follow from those axioms. If the
axioms specified form an effective set, and if the formal logic
characterized is complete, then we can effectively generate all the
truths of that portion of mathematics. Clearly such a state of
affairs is always desirable. We would like to be able to generate
effectively the truths of every portion of mathematics. So, clearly,
it would be nice if every portion of mathematics could be formalized

using a complete logic. Unfortunately, Godel shattered the hope of
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ever effectively generating the truths of arithmetic; the set of
arithmetic truths cannot be effectively generated. So we seem to have
three choices: (1) claim that arithmetic is not formalizable; (2) claim
that arithmetic is formalizable, but not using an effectively generated
set of axioms; or (3) claim that arithmetic is formalizable, but not
using a complete logic.

Alternative (2), I think, should be rejected. Sets of axioms
should be as simple as possible. One virtue of axioms is that they
allow us to see what truths are ''basic" to the field being investigated.
Requiring that the set of axioms can be effectively generated is a
plausible and natural way to avoid trivializing the enterprise of
formalizing mathematics. After all, what other condition eliminates
the possibility of taking all arithmetic truths as axioms, thus
formalizing arithmetic without any need of a non-trivial logic. (We
can call a logic, m, "trivial" provided F‘r—implies t if and only if

{ is in T.) For these sorts of reason, in this york, I shall ignore
alternative (2).1

If we reject alternative (2), we have only alternatives (1) and
(3). So either not every portion of mathematics can be formalized
or some portions require the use of incomplete logics. Both horns
of the dilemma are, admittedly, bad. The question motivating this
chapter, then, is: given the alternatives, should we insist that every

formal logic used to formalize mathematics be complete?
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(1)

In practice complete Lindstrom logics are preferred to incomplete
Lindstrom logics. The fact that the Lindstrom logic, LQ' with the
quantifier 'there exists uncountably many x such that'" is complete (with
respect to some proof procedure) gives that logic a higher status --
even among the staunchest proponents of Hilbert's thesis -- than, say,
the Lindstrom logic with the quantifier ''there exist infinitely many
x such that". Barwisela, for example, says that "sometimes, late at
night, one can almost imagine some other world where...axioms [forLQ]
are considered laws of logic in the same way that we accept the laws of
first-order logic." The admission is significant, coming, as it does,
in the context of a defense of Hilbert's thesis. But why? Why
should the fact that LQ is complete tell in its favor?

One reason (maybe the main philosophical reason) is that
mathematics is thought to derive its special character from its
deductive nature. Mathematicians are believed to know things by

proving them. Recall the passage from Putnam that was quoted in chapter

one. That "mathematicians have as their sole method the method of

mathematical proof'" is a not uncommon view. We have, for example,
Hilbert's claimlb that non-axiomatic statements of a mathematical
theory '"have validity only if one can derive them from those axioms

by a finite number of logical inferences.'" Such a view suggests that
any logic used to formalize a portion of mathematics should be complete.
For, say that ¢ is valid if and only if every model satisfying I', a

set of axioms, satisfies y. Then, if ¢, a non-axiom, is valid only

if ¢y can be derived frem ' by a finite number of logical steps, then
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¢ is valid only if ¢ has what in chapter two was called a 'I'-validating
conditional'; and this last claim suggests that the logic in question
is complete. In light of this argument we can take Hilbert to be
claiming that

(HC) The logic that is part of any adequate

formalization of a portion of mathematics
should be complete.

Later I shall discuss an argument, implicit in work by Steiner,
against Hilbert's reasons for (HC). Now, however, we should note
that there is a tremendous amount of sentiment in favor of (HC). We
already saw that it is implicit in Barwise's late night imaginings.

It is also behind Quine's glib rejection of Henkin's branching
quantifiers. Quine simply rejects them because the logic that results
by adding branching quantifiers to first-order logic is not completez.

The classical logic of quantification has a complete

proof procedure for validity and a complete proof

procedure for inconsistency...Classical...quantificational

theory is on this score maximal; it is as far out as

you can go and still have complete validity and

inconsistency by the Skolem proof procedure.

It is (HC), I think, that makes Quine's remarks tell against Henkin's
branching quantifiers.

Unfortunately, (HC) is argued for infrequently, and arguments
that might be construed as supporting (HC) are not very convincing.
Quine, for example, sometimes argues that (HC) is true because first-
order logic is complete and first-order logic is the prototype of
what (a) logic is. Quine claims that even if first-order logic does

not formalize all logic, it does capture what is intrinsic to any
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formalization of logic, and that since first-order logic is complete,
any formalization of logic must be complete. But Quine's argument

is not at all cogent. Why believe that first-order logic is the
prototype of what (a) logic is? Why not take, for example, the
propositional calculus as the prototype of logic?3 Quantification
theory, after all, is a very recent invention (or discovery), due
primarily to Frege. If the propositional calculus is the prototype
of what (a) logic is, capturing all that is intrinsic to any formalization
of logic, then why not argue, mimicing Quine, that since the propositional
calculus is decidable all formalizations of logic must be decidable
and that therefore first-order logic is not an adequate formalization
of logic. The point is that although first-order logic is a very
neat formal system and does capture much we believe ought to be
captured by a formalization of logic we do not have any reason for
thinking that all first-order logic's properties should be had by

any adequate formalization of logic. More, much more, needs to be
said before we can conclude that since first-order logic is complete,
every formalization of logic should be complete. (Of course, in this
context it would be inappropriate to argue that since Hilbert's
thesis is true, all formalizations of logic should be complete, since
first-order logic is complete.) Quine's argument raises too many
questions to be a convincing reason for endorsing (HC).

In his Theory of Knowledgp4, Chisholm revives an old argument

that car h»e construed as an argument for (HC), if we are willing to
make some assumptions. Chisholm claims that "ordinary empirical

procedures yield no knowledge of necessary truths." If we then accept
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*(A) For any formalization of a mathematical theory

(see definition 10 in chapter two), 9, and

any sentence, Y, ¢ is J-valid only if y expresses

a necessary truth,
we can conclude that, where  is a valid sentence of a formalization
of a mathematical theory, ordinary empirical procedures yield no
knowledge of ¢§. So either there are valid sentences of a formalization
of a mathematical theory that express unknowable truths, or else (HC)
is true. For, it seems, if ordinary empjirical methods cannot be used
to establish that a statement is true, then we only have recourse to
proofs; that is, if we cannot establish y using ordinary empirical
procedures, then the only way to establish ¢y is by deducing it from
the axioms of the formalization in question. If we now deny that
there are valid statements of a mathematical theory that are in
principle unknowable, we have an argument that (HC) is trues. I
think that something like this argument is behind many claims that
(HC) is true: Mathematical truths are necessary truths; we can only
know necessary truths by proofs; therefore, the logic of any portion
of mathematics must be complete. It is, therefore, worthwhile to
look a little closer at this argument for (HC), and to pay especial
attention to Chisholm's argument that '"ordinary empirical procedures
yield no knowledge of necessary truths.'" (I shall call this argument
for (HC) "Chisholm's argument', although, in fairness to Chisholm,
it should be noted that he nowhere makes it and only explicitly argues
that ordinary empirical procedures yield no knowledge of necessary
truths.)

In addition to (A) something like the following premises are

used.
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(B) A valid statement of mathematical theory is known
either by using ordinary empirical procedures, or by
proving it;

(C) Ordinary empirical procedures yield no knowledge of
necessary truths;

and

(D) A1l valid statements of a mathematical theory can be
known.

Using (A)-(D) we can argue as follows. By (A) and (C), ordinary
empirical procedures yield no knowledge of valid statements of a
mathematical theory. So by (B) a valid statement of a mathematical
theory can only be known by proving it (notice the similarity between
this claim and the claim Putnam cites that 'the sole method
mathematicians...can use is the method of mathematical proof').
So by (D) every valid statement of a mathematical theory has a proof.
If every valid statement of a mathematical theory has a proof, our
formalization of mathematical theories should reflect this fact.
That is, we do not want it to turn out to be the case that there is a
sentence ¥ such that, where I' is the set of axioms of a formalization
of a portion of mathematics, ¥ is true in every structure satisfying
all the members of I', but there is no proof of ¢ from I'. One natural
way to eliminate this possibility is to insist that the logic of
our formalization be complete. So, we can conclude, the logic of
every formalization of a portion of mathematics should be complete,
that is, (HC) is true.

I shall call this argument "Chisholm's argument''. It has two
parts. The first part purports to establish roughly that every

mathematical truth has a proof; the second part concludes, in light
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of this claim, that the logic of every formalization should be complete.
I shall only look at the first part of this argument now, leaving my

speculations about the second part for (much) later.

(D) is a version of Hilbert's non ignorabimus, and although it
is controversial, I shall not call it into question. Many find it
reasonable to suppose that no truth of mathematics is in principle
unknowable. Whether their intuitions are correct in this regard will
not concern us now. (B), T think, is a version of a dichotomy endorsed
by many epistemologists. Methods of justifying beliefs are often
divided into two mutually exclusive, mutually exhaustive classes.

In its modern form the distinction is between inductive and deductive
arguments. I shall not discuss (B) at all. (A), too, is a statement
often endorsed, although its content is left unclear. The main
statement of Chisholm's argument with which we shall concern ourselves
is (C).

Chishclm argues tha: (C) is true as follows. He claims that no
induction can be used té justify our believing that a statement of
the form 'Necessarily P is true. To see why he thinks this, let us
use an example, say,

(1) Necessarily, every number not identical with zero is

the successor of some number.
Chisholm asks us to consider how an inductive argument establishing (1)
would go. First, he claims, we would collect some instances of (1),
verifying that particular numbers not equal to zero are successors.

For example, we might verify that
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(2) 1#0 & 1 is the successor of 0
(3) 13#0 § 13 is the successor of 12

(4) 5#0 § 5 is the successor of 4.

But, Chisholm argues, although a collection of instances along the
lines of 2-4 might justify our concluding that

(5) Every number not identical with zero is the

successor of some number

is true, no collection of instances like (2)-(4) can justify our
concluding that (1) is true. Chisholm then concludes that no induction
can verify that (1) is true and that, in general, no induction can
establish a necessary truth.

I think every reader will agree that Chisholm's argument as
it stands is not very good. First, it does not establish that (C) is
true, that '"ordinary empirical procedures yield no knowledge of
necessary truths.'" At most Chisholm's argument establishes that
ordinary empirical procedures yield no knowledge that given truths
are necessary. For Chisholm would, I think, admit that (5) is a
necessary truth, and he does not seem loath to admit that (5) can be
established by an ordinary empirical procedure. So, it seems, ordinary
empirical methods do (or might) yield knowledge of at least some
necessary truths. In particular, (5), a necessary truth, is
established by collecting inferences along the lines of (2)-(4).

There is only one thing that can be said by Chisholm in response
to this point. If he wants to conclude from his argument that (C)

is true, he must maintain that (5) cannot be known unless it is
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known to be necessarily true. That is, Chisholm must maintain that if
an individual knows (5), he (or she) must also know (1). Thus, ordinary
empirical procedures cannot yield knowledge of (5) because they cannot
yield knowledge of (1), and there is no knowledge of (5) without
knowledge of (1). Thus, by asserting

(o) If a person, M, knows that ¢ is true and ¢ is a

mathematical statement, then M knows that ¢ is
necessarily true,

Chisholm appears able to save his argument from the objection raised
in the last paragraph.

Although maintaining (a) appears to be the only way Chisholm
has of saving his argument, I do not think that it works. First, (a)
just is not a very plausible principle. A person can know biological
facts without knowing that they are necessarily true, why should it
be that mathematical facts cannot be known unless they are known to
be necessarily true? Clearly, a defense of (a) must come to grips
with this question, and'it must do so without appealling to any claims
to the effect that mathematical statements can only be known by
non-empirical procedures, for that is precisely what is at stake.
But even if we resolve all our doubts about (a), I do not think that
it is adequate for the task set it. Notice that we may know that
(5) is true by virtue of the sort of inductive argument outlined
above, and then we may conclude that (1) is true because we know
that (5) is a mathematical statement and we know that all mathematical
truths are necessary, that is, we know that (A). We may infer that
(1) is true from (5) and the (purported) fact that every mathematical

statement if true, is necessarily true. Thus, (a) would be satisfied,
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and so (1) can be known on the grounds of an ordinary induction after
all. Second and, from our point of view, more interesting is the fact
that there is an ordinary induction that appears to establish that (1)
is true, although it is not the induction that Chisholm mentions, the
one that is conducted by collecting instances along the lines of

(2)-(4). Instead, we might collect instances along the lines of

(2') 1 is such that necessarily it is not 0 and is a successor
(3') 13 is such that necessarily it is not 0 and is a successor

(4') 5 is such that necessarily it is not 0 and is a successor

Collection of instances along the lines of (2')-(4') might, unlike
collection of instances along the lines of (2)-(4), justify our
concluding that something strictly stronger than (5) is true. In
fact, these instances seem to establish that
(5') For every natural number, necessarily, if that

number is not identical with zero, then it is

a successor.
It can be claimed that if (5') is true, then (1) is true, and that,
therefore, the induction using instances along the lines of (2')-(4"')
to verify (5') verifies (1) -- contrary to Chisholm's claim that no
induction can be used to justify a statement of the form 'Necessarily P
There are, however, several points that can be made against this
objection to Chisholm's argument; but they reveal that very strong
assumptions about the philosophy of mathematics must be made in order

to preserve Chisholm's argument.
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(1) usually is formally represented by a sentence of the form

(1) evxy¢(x),

where '@ ' is a modal operator corresponding to the English 'necessarily'.

Similarly, (5') is represented as
(5') VxOy(x).

Thus, the claim that if (5') is true, (1) is true -- used in the

previous paragraph -- would be represented by something like

(6) (vxBu(x))>(ovxy(x)).

(6), however, is a form of the controversial Barcan Formula. So the
above objection of Chisholm's argument presupposes that the Barcan
formula is valid (at least when we are dealing with the necessity of
arithmetic sentences.)

It sometimes seems, however, that there are good reasons for
denying that the Barcan Formula is valid when dealing with arithmetic
sentences. In defense of Chisholm's argument one could point to

the work accomplished by interpreting sentences of the form
(7Y op

as
(7') Bew(p'),

where 'Bew( )' is the provability predicate Godel showed how to
construct.8 A natural extension of this work is to interpret quantified

modal sentences like (5') as
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(8) Vx®ew(Sub("y(x)?,x))

where 'Sub(n,m)' is a (p.r.) term that gives the Godel number of the
result of substituting the mth numeral for the variable 'x' in the

formula with godel number n. Thus, (6) would be interpreted as
(6') vxBew(Sub(p(x)",x))+Bew(Vxy(x)'),

and (6'), as we know from Godel's first theorem, is not generally
trueg. Thus, if (1) and (5') are properly formalized as (1') and
(5'), and if (1'), (5") and (6) are correctly interpreted along

the lines of (7'), (8) and (6'), respectively, then there is a reply
to the objection to Chisholm's argument made two paragraphs back.
(6) in that case, is not valid, and so the induction using premises
along the lines of (2')-(4') cannot be used to establish (1).

There is, however, a very serious problem with this sort of
reply. What reason do we have for thinking that (7') is the (or a)
correct interpretation of (7), given that '[}' is supposed to be a
modal operator corresponding to the English 'necessarily' as used in
(1)? Similarly, why think that (8) is the (or a) correct interpretation
of (5")? The only reason for thinking so is the belief that an
arithmetic statement, ¥, is necessary just in case it is first-order
provable from a specified set of axioms -- in this case the axioms of
Peano Arithmetic. But this makes Chisholm's argument superfluous,
for we already supposed that (A) several pages back is true, that
is, that all truths of arithmetic are necessary. So, it would follow
that all truths of arithmetic are provable from the axioms of Peano

Arithmetic. But this implies that (HC) is true (and in a sense that
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is easily refuted; but more of that later). The response made in the
last paragraph, then, already presupposes that (HC) as applied to
arithmetic is true.

There are other sorts of responses that can be made in defense
of Chisholm's argument. We need not appeal to a particular inter-
pretation of the box, as it occurs in (7) and (8), in order to object
to (6). We might appeal directly to the existence of (so-called)
non-standard models of arithmetic. We could claim, for instance,
that if an arithmetic statement is necessary, then it is true in all
models of arithmetic. Then, since there are sentences, y(x), such
that for each standard n, y(n) is true in every model of arithmetic,
but such that Yxy(x) is false in some model of arithmetic, we appear
to have reason for denying that (6) is true. This defense of
Chisholm's argument, however, already presupposes a good deal about
what logic is appropriately used for formalizing arithmetic. The
non-standard models of arithmetic that make (6) seem dubious cannot
be shown to exist no matter what logic is used to formalize arithmetic.
To make use of the notion of a model of arithmetic in the defense
of Chisholm's argument presupposes that such models can be
characterized independently of the logic used when formalizing
arithmetic. This presupposition, however, is illegitimate. What
models we count as of arithmetic depends upon what logic we use to
formalize arithmetic, and if this is so, an appeal to non-standard
models of arithmetic cannot be used to defend Chisholm's argument.
Consider: the reason we appealed to the existence of non-standard

models of arithmetic was to give reasons for thinking that the Barcan
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formula is false was then used as reason for thinking that the logic
used for formalizing (at least) arithmetic is complete. So ultimately
the appeal to non-standard models is supposed to give reasons for
thinking that one logic rather than another is more adequately used
when formalizing arithmetic. But we cannot show that there are non-
standard models for every logic, since what models we count as of
arithmetic depends on what logic is used to formalize arithmetic.

For instance, if weak second-order logic is used and we suppose that,
in addition to the Peano axioms, every model of arithmetic satisfies
a sentence stating that the set of predecessors of every number is
finite, then we cannot prove the existence of non-standard models of
the sort that allowed us to conclude above that (6), the Barcan
formula, is false. So our reason for thinking that (6) is false has,
in turn, for its support the claim that only a specific sort of logic
can be used to formalize arithmetic, a logic that allows there to be
non-standard models of the relevant kind. It looks, then, as if the
above defense of Chisholm's argument begs the question, namely, what
sort of formal logic should be used when formalizing arithmetic?

I think it is fair to conclude that Chisholm's argument does
not establish that (HC) is true. As pointed out above this is not as
parochial a conclusion as might be thought. I think something like
Chisholm's argument is very often put forward in defense of (HC).

In this section, I concentrated on criticizing claim (c¢), the claim
that non-empirical methods yield no knowledge of necessary truths,
We have seen no good reasons for thinking that this claim is true.
On the other hand, we have seen no good reasons for thinking that it

is false. On the face of it, the induction on page 87 just does
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not seem to establish that (5') is true. But imagine that we have no
other reason for thinking that (5') is true, that we have used (5')
successfully repeatedly in our scientific theories and that we have
collected millions and millions of instances along the lines of (2')-
(4'), all of which confirm (5'). Would (5') be any less established
than any contingent truth sv—-ported by (similar) empirical procedures?
I do not know. We will, however, return to related issues later in
chapter four. There are, at any rate, other examples of (seemingly)
empirical procedures yielding knowledge of necessary truths. For example:
you are in a room and you know that only couples are in the room; you
count the people in the room and conclude that the number counted is
even. Another example: you decide to make a rectangular jigsaw

puzzle of the standard sort; you cut up a piece of plywood, count the
pieces and conclude that the number counted is composite.9a There do
seem to be ordinary empirical procedures that yield knowledge of
necessary truths. I shall save further discussion of this issue,
however, for chapter fou*. 1n the next section, I will continue
examining (HC) and shall look at one set of philosophical reasons for
thinking that sometimes the logic used to formalize a portion of
mathematics should not be complete and that, therefore, Hilbert's

thesis and (HC) are false.
(ii)

Although no conclusive reasons have been given yet for thinking
that only complete logics should be used when formalizing mathematics,

as already noted, in practice complete Lindstrom logics are preferred
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to incomplete ones. There are, as M. Dummett has stressedlo,
technical reasons for wanting complete and sound formalizations of
logic. He points out that soundness and completeness proofs show that
certain proof-techniques are valid, and notes11 that some logicians
seem wont to say that

the whole interest of the soundness and completeness proofs

for classical sentential logic lies in the effective

method they provide for determining whether or not a

formula is derivable from some finite set of formulas.
This technical interest in soundness and completeness proofs can be
used to argue for (HC), the claim that only complete Lindstrom logics
should be used when formalizing portions of mathematics. There are
a class of techniques, it can be argued, ordinarily used by mathematicians,
that are '"provided'" by soundness and completeness proofs. Since these
techniques are employed by mathematicians, our formalizations of
mathematics should preserve and justify those techniques. Therefore,
it can be concluded, we should only use complete Lindstrom logics
when formalizing portions of mathematics; that is, (HC) is true.

This argument helps explain why in practice complete Lindstrom
logics are preferred to others -- why, for instance, the logic with
the quantifier ''there exist uncountably many x such that" might be

preferred to £ defined in chapter two. Complete formalizations make

WS’
. . . 12

the mathematician's job easier. But, as Dummett goes on to note ,

the technical interest that soundness and completeness proof have for

the working mathematician is not enough to guarantee philosophic

interest in those proofs. To get any philosophic mileage out of the



94

technical interest of soundness and completeness proofs, we must first
(philosophically) justify those very techniques soundness and completeness
proofs provide. The philosopher's task is not to make the mathematician's
job easier. It is, in part, to examine the techniques mathematicians
ordinarily use, seeing whether they can be (philosophically) justified

and systematized. Mathematicians may want complete formalizations of
logic because they allow certain tools to be employed; however, this

alone is not enough to justify the philosopher's concluding that the
Lindstrom logic of formalizations of mathematics should be complete.

There might be philosophical reasons for rejecting, in some cases, the
very methods provided by completeness and soundness proofs. Thus,

we might be able to adduce philosophical reasons fo; denying that

only complete Lindstrom logics should be part of our formalizations of
mathematics.

In this section, I shall look closer at this claim. 1 shall
look at a sort of independence proof that is justified by soundness
and completeness proofs and shall examine, in some detail, Frege's
reasons for rejecting that sort of proof. It will follow that Frege's
reasons can be used to refute (HC), the claim that only complete
logics should be part of our formalizations of mathematics, since if
(HC) is true, the sort of independence proof in question is valid.

Let T be a set of axioms and ¢y a sentence. Then, informally,
we say that ¢ is independent of T provided y does not follow from T.

Given the definitions of the last chapter, we might put this as
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(IND) ¢ is independent of T=df there is structure
satisfying every member
of T and also satisfying

v.

It is worth pausing to notice that, if logic should be formalized
using a Lindstrom logic, then any acceptable proof procedure (see
definition 11 in chapter two) must be sound (see definition 15). Suppose
we think that logic should be formalized using a Lindstrom logic,/‘,
and that we think a proof procedure,‘P, captures an informal notion
of '"logical proof'". Then if P is not}‘-sound, there is a finite set of
axioms, T, such that F,,-implies ¢ but T' does not s-imply ¥. That is,
there is a structure satisfying every member of I' and also satisfying
“y. But, then, it seems (speaking informally now) that we can prove Y
from T', even though y is not true in every structure satisfying all
members of I'. So, by (IND) y is independent of T', even though we can
prove ¢ from I'. This conclusion sufficiently conflicts with our
presystemmatic notions of 'proof'" and 'independence'' to warrant our
concluding that, if logics should be formalized using a Lindstrom
logic, any accpetable proof procedure is sound.

The argument in the last paragraph is not meant to establish
that acceptable proof procedures should be sound -- only that someone
accepting that the logic of a portion of mathematics should be
formalized using a Lindstrom logic seems committed to the claim that
all acceptable proof procedures are sound. Any other claim would
conflict with presystemmatic intuitions. It is by no means true, however,
that every view about formalizations of mathematics is committed to the
claim that all acceptable proof procedures are sound. Intuitionists,

as already noticed, do not believe that the correct way to formalize
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logic is by means of a Lindstrom logic. We saw that every Lindstrom
logic satisfies the law of excluded middle, and this law is not
intuitionistically valid. It is not surprising, then, that intuitionists
are not interested in (classical) soundness and completeness proofs,

and are not committed to the claim that every acceptable proof procedure
is sound.133

In light of the definition of 'independence' ((IND)) it can be
seen that whenever our logic is complete, there are (at least) two
methods of showing that a sentence, ¢, is independent of a set of
sentences, I'. We can either (i) construct (exhibit, point out, or
something similar) a model of T in which ~y is true of (ii) show that
no contradiction can be proved from Tuv{~y} and then appeal to completeness
to infer that ¢y is independent of I'. We shall see that, at least so
far as geometry is concerned (and probably arithmetic as well) Frege
ruled out the second method and that, therefore, on Frege's view,
geometry cannot be forma}ized using a complete logic.

One often hears that the parailel axiom is false, while the other
axioms of Euclidean geometry are true. It would therefore be of grave
logical consequence should it turn out that the parallel axiom is not
independent of the other axioms of Euclidean geometry. (In the future,

I shall simply refer to the other axioms of Euclidean geometry as the
geometric axioms.) Yet this is precisely what Frege maintained14:

If you [Hilbert] are concerned to demonstrate the mutual

independence of axioms, you will have to show that th-

non-satisfaction of one of these axioms does not contradict

the satisfaction of the others...But it will be impossible

to give such an example in the domain of elementary
geometry because all the axioms are true in this domain.
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Frege believed th~t in order to show the parallel axioms independent
of the geometric axioms we must find an example in the domain of elementary
geometry in which the '"mon-satisfaction'" of the parallel axiom does not
contradict the "satisfaction'" of the geometric axioms. For Frege, I
think, this meant we must find an example of a space consisting of
points, lines and distances in which the geometric axioms are all true,
but in which the parallel axiom is false. The axioms of Euclidean
geometry, the geometric axioms and the parallel axiom, are about points,
lines and distances; we use them to say things about points lines and
distances. Therefore, Frege concluded, in order to show that the
parallel]l axiom is independent of the geometric axioms, we must show that
what the geometric axioms say about points, lines and distances can be
true of points , lines and distances, even though what the parallel
axiom says about points, lines and distances is false of points, lines
and distances. As Frege put it:

You want to prove the mutual independence and lack of

contradiction of certain premises (axioms), as well

as the unprovability of propositions from certain

premises (axioms)...What means have we of demonstrating

that certain properties, requirements (or whatever else

one wants to call them) do not contradict one another?

The only means I know is this: to point to an object

that has all those properties, to give a case where

all those requirements are satisfied.

In light of these statements and considerations, I think we have to
conclude that Frege could not have maintained (consistently) that geometry
is formalizable using a complete logic. According to Frege, the only
way to prove the independence of the parallel axiom is to construct a

model satisfying the geometric axioms in which the negation of the

parallel axiom is true. We cannot first demonstrate the consistency of
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the negation of the parallel axiom with the geometric axioms, and then
appeal to completeness; the logic, then, used to formalize geometry cannot,
on Frege's view, be complete. But Frege goes even further. Not only

does he claim that we cannot demonstrate the independence of the parallel
axiom by means of a consistency proof, he claims that we simply cannot
demonstrate that it is independent. According to Frege, there is no

model satisfying the geometric axioms in which the negation of the parallel
axiom is true.

Typically the parallel axiom is shown independent of the geometric
axioms by means of substitutions. New terms are uniformly substituted
for each of the geometric terms occurring in the Euclidean axioms. We
obtain new axioms by substituting, for example, 'point inside a fixed
Euclidean cicle' for 'point' and 'open chord of a fixed Euclidean circle'
for 'straightline'. The axioms so obtained can then be seen to have a
natural model in which:the translations of the geometric axioms are all
true, while the translation of the parallel axiom is false. It is then
usual to infer that the Euclidean axioms themselves have a similar model,
a model in which the geometric axioms are true, but in which the
parallel axiom is false. Indeed, this last inference is justified by
clause (iia) of definition 5 (see chapter two). Frege was aware of such
proofs. Nevertheless, he denied that the parallel axiom is independent.
Should we then conclude that in addition to denying that geometry can
be formalized using a complete logic, Frege also denied that it is
formalizable using a logic satisfying clause (iia) of definition 57
and that, therefore, Frege denied geometry is formalizable using a

Lindstrom logic? Although I think the answer to the second question is
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'yes', the answer to the first question, as we shall see, is 'no'.

The only way to demonstrate that the parallel axiom is independent,
we have seen Frege claim, is to construct (or exhibit) a structure satisfying
the parallel axiom. There is, however, according to Frege, no such
structure in the domain of elementary geometry 'because all the axioms
are true in this domain." If Frege is right, every structure exhibited
that satisfies the geometric axioms will satisfy the parallel axiom because
(1) only structures "in the domain of elementary geometry' satisfy the
geometric axioms and (ii) every structure in the domain of elementary
geometry satisfies the parallel axiom. Thus, ac:ording to Frege, there
is no way to demonstrate that the parallel axiom is independent.

To a certain extent, Frege seems correct about this matter. If
'point' as it occurs in the Euclidean axioms refers to Euclidean points,
and if 'line' refers to Euclidean lines, then it is impossible for the
parallel axiom to be false. Given any Euclidean point and any Euclidean
line it just always is the case that there is one and only one EEElEQEEE
line parallel to the given line and through the given point. Thus, if,
say, adequate formalizations of the Euclidean axioms must capture what
Frege called the '"senses'" of the terms occurring in those axioms, then
it will be impossible to demonstrate the independence of the (formalization
of) the parallel axiom.

We should at this point perhaps recall why Frege started formalizing
mathematics in the first place. Frege thought that mathematical practice
during his time was confused. It is not unfair to say that Frege
though his contemporary mathematicians literally did not know what they

were talking about. He noted that they were unable to define the most
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elementary concepts of their science and that when they tried to formulate
such definitions the results were often far-fetched and contradictory.
It looked to Frege as if mathematicians were not paying enough attention
to the senses expressed by the words and symbols they used, and this,
he thought, was inexcusable. "The sentence is of value to us," he saidlﬁ,
"because of the sense that we grasp in it..."

If you ask what constitutes the value of mathematical

knowledge the answer must be: not so much what is known

as how it is known, not so much its subject matter as

the degree to which it is intellectually perspicuous

and affords insight into its logical interrelations.

And it is just this which is lacking. Authors explain

the commonest expressions...in totally different ways

and these discrepancies are not just trivial but

concern the very heart of the matter.l7

In order to avoid such confusions, Frege invented the concept-script,
a formal logic in which the statements of ordinary mathematics, he hoped,
could be expressed clearly and proved convincingly. The sense of a
sentence of ordinary mathematics formalized as a formula of the concept-
script, Frege thought, could be read and grasped without confusion.
This was, for Frege, the primary goal of formalizing mathematics: to
express the sense of ordinary mathematical sentences in as unconfused

. . .18 .

a manner as possible. "The effect,'" he said ~, "of the logical
analysis...will then be precisely this -- to articulate the sense clearly."
Formalizations, then, of ordinary sentences of mathematics must,
according to Frege, express the senses of those sentences.

Frege's view is, I think, reminiscent of the so-called Skolem

paradox. Frege supposed that 'is a point' has a sense that is independent

of any structure in which formalizations of the Euclidean axioms are
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interpreted. He thought that formalizations of the axioms of Euclidean
geometry must, therefore, in order to be adequate, capture this sense.
Similarly, the Skolem paradox seems to presuppose that 'uncountable'

has a sense that is independent of any structure in which formalizations
of sentences containing that word are interpreted. Recall, for a moment,

how the Skolem paradox goes. It is argued that
(1) There is an uncountable set

has no first-order formalization because any first-order formalization

of (1) is true in a countable model even though what (1) says is that

there is an uncountable set. Similarly, we saw Frege argue that the

parallel axiom can never be false in a structure satisfying the gecmetric

axioms because what the parallel axiom says about points is always true.
One way the Skolem paradox is often resolved is by claiming that

there is no sense had by 'uncountable' that is independent of the structures

in which formalizations of (1) are interpreted. We can avoid the Skolem

paradox if, when formalizing (1), we eliminate the word 'uncountable'

in favor of terminology that is interpretable relative to structures.19

In a similar manner we might hope to remove the sting of Frege's comments.

We might say that the axioms of Euclidean geometry have no sense that

is independent of the structures in which formalizations of those axioms

are interpreted. We might try eliminating 'is a point' in favor of

terminology that is interpretable relative to structures, Our

conclusion would be that sentences of geometry only have sense relative

to structures and that, therefore, Frege's criticism of Hilbert's

independence proof was misguided. We are not limited to structures "in
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the domain of elementary geometry' when we try to demonstrate that the
parallel axiom is independent. We can, for example, substitute 'point
inside a fixed Euclidean circle' for 'point' show the independence of
the parallel axiom in the standard way described on page 98.

The problem with this sort of reply is that it begs the question.
Frege would simply deny that the axioms of Euclidean geometry can be
phrased using terminology that is interpretable relative to structures.
The issue over which Frege and Hilbert differ just is whether, say, the
parallel axiom has a sense that is independent of structures. According
to Frege, it does; according to Hilbert, as we shall see in the next
chapter, it does not. Frege could (and would) respond to the preceding
paragraph by reiterating his claim that 'is a point' has a sense that
is independent of structures in which formalizations of sentences using
that phrase are interpreted.

In a similar manner, of course, it can be denied that (1) (see
page 101) can be rephrased using terminology that is interpreted only
relative to structures. For example, it can be claimed that 'uncountable'
has a sense that is independent of structures and that formalizations of
(1) should exhibit this fact. Some not uninteresting mathematical work
has proceeded along these lines. (1), it might be claimed, should be
formalized using the quantifier 'there exists uncountably many x such
that'". Thus, when formalizing (1) we do not eliminate 'uncountable'
in favor of terminology that is interpreted only relative to structures,
rather we eliminate 'uncountable' in favor of logical terminology, in
favor of Keisler's quantifier. I shall soon suggest that Frege had

something along these lines in mind. He seemed to want to say that 'is
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a point' cannot be eliminated in favor of non-logical terminology. On
Frege's view, it is a primitive expression on a par with the logical
constants.

Frege, we have seen, thought that (at least some) mathematical
sentences have sense independent of structures. He also, I arguved, thought
that formalizations of such sentences should express this sense. As

.. 20
he put it" :

The natural way in which one arrives at a symbolism

seems to me to be this: in conducting an investigation

in words, one feels the broad imperspicuous and

imprecise character of word language to be an obstacle,

and to remedy this, one creates a sign language in

which the investigation can be conducted in a more

perspicuous way with more precision.

Formalizations, according to Frege, are ways of expressing the senses
of ordinary mathematical sentences more precisely. Thus, if a formal-
ization of an ordinary mathematical sentence can be interpreted in ways
contrary to the sense of that ordinary sentence, the formalization in
question, according to Frege, is inadequate. It is this, I think, that
led Frege to reject formalizations, like Hilbert's, that permit the
sort of independence proof described above.

Frege's claims can, I think, be made more forceful, if we look

Oa In a number of placeSZOb Quine

. . . 2
at them in the following light
suggests that a sentence is logically true if it stays true under all
substitutions. Frege, I think, had a similar criterion in mind. Now,

Quine's criterion, as it stands, needs amending. For instance, we do

not want it to turn out that
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(2) x=y & y=z, + .x=2
is not counted as a logical truth because
(3) x#y & yfz. » .xfz

is false and results from (2) by a substitution. What Quine's criterion
must be amended to is: a sentence is logically true if it stays true
under all substitutions for its non-logical constants. When we use
. . . 20 . . .

Quine's criterion c, we must keep in mind that certain terms -- the
logical constants -- remain fixed. Frege's criticism of Hilbert turned,
I think, on his accepting Quine's criterion of logical truth and insisting
that 'is a point' as it occurs in the Euclidean axioms is on a par with
'and' and 'is identical with'. We are, I think, justified in attributing
to Frege the view that when formalizing the Euclidean axioms, 'is a
point' should be treated as a logical predicate on a par with the
identity sign. This interpretation of Frege is supported by the following
statement of Dummett's:

In the 1903 article on the foundations of geometry...

[Frege] says that Hilbert's proof of the independence

of his axioms for Euclidean geometry is a proof of

the independence only of psuedo-axioms, obtained:

by varying the interpretations of the primitive

expressions. In the actual axioms of Euclidean

geometry, however, the primitive expressions have

a fixed, determinate sense, and one cannot conclude

from the independence of the psuedo-axioms to the

independence of the genuine axioms.

There are, of course, alot of objections that can (and should)

be raised against Frege's position. We should ask, for instance,

whether it is the case that an ordinary mathematical sentence and a
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formalization of it have sense independent of any structures. Recently,
H. Putnam has asked just this question and argued that, in fact,
several results in model theory and mathematical logic suggest that
sentences of mathematics and their formalizations do not have sense
independent of structure521. This is a position first defended by
Skolemzz. Frege, however, as we have seen, is committed to the view
that formalizations of mathematical sentences do have sense independent
of structures, and it is precisely on this claim that his criticism
of Hilbert's independence proof rested. But these are issues that I
shall for the moment leave aside, touching on them only a bit in the
next chapter.

Frege's criticism of the standard proof (and of Hilbert's proof)

that the parallel axiom is independent, we have seen, centered around

two claims:
(I) Ordinary mathematical sentences have sense,

and

(II) A formalization of an ordinary mathematical
sentence has the same sense as that sentence.
Formalizations of the Euclidean axioms that allow the independence of
the parallel axiom to be proved, according to Frege, are inadequate
insofar as they violate (II). I suggested that, on Frege's view, the
Euclidean axioms must be formalized using a logic containing a logical
. 'e . . ,22a . .
constant corresponding to 'is a point ; and, in general, it seems

clear that one logic is more suited than another for expressing
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specified senses. For example, a logic with the Keisler quantifier,
""there exist »mcountable many x such that', it can be argued, is more
suited for expressing the senses of sentences, like (1), in which
'uncountahle' occurs; and, according to Frege, a logic with a logical
expression corresponding to 'is a point' is more suited for expressing
the senses of the Euclidean axioms. So, it seems that Frege's position --
conditions (I) and (II) -- conflicts with what, in chapter one, I called
"Frege's thesis.'" (Frege's thesis, recall, is the position that there
is one and only one formal logic in which the proofs of ordinary
mathematics can be formalized.) Conditions (I) and (II) suggest that
what formal logic is used is a function of what portion of mathematics
is to be formalized.

This is not a view without proponents n the mathematical
community. Flum and Ziegler claim that

The formal language in the study of topological structures

is Lt. This is a fragment of the (monadic second order

language...obtained by allowing quantification of set

variables of the form IX(t-X§vy)...

The reasons for the distinguished role that Lt plays in

topological model theory are twofold. On the one hand,

many topological notions are expressibl? in Lt...On the 2

other hand, the expressive power of Lt is not too strong...
Thus mathematicians sometimes adduce reasons for using formal logics
other than first-order logic that depend upon the portion of mathematics
that is to be formalized. According to Flum and Ziegler, for example,
topology is illuminatingly formalized using the languageLt. According

to Frege, Euclidean geometry is formalized using a logic containing

a logical expression corresponding to 'is a point'. Frege's criticism
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of Hilbert, then, is not without analog in current mathematical practice.
Before ending this chapter we should ask: what do Frege's claims
have to do with our general discussion of Hilbert's thesis? First,
there is the obvious point that first-order logic is complete, and
Frege's criticism of Hilbert, as we saw, entails that the logic used to
formalize Euclidean geometry is not complete. Thus, what Dummett
c311522b "Frege's Platonism'" can be used as reason for denying that
Hilbert's thesis is true. It might be thought, of course, that Frege's
Platonism is more difficult to defend than the claim that logic is
complete. This may well be so, Nevertheless, Frege's claims are an
important example of philosophical reason: for denying Hilbert's thesis.
But illustrative reasons are not the only reasons I had for discussing
Frege's criticism of Hilbert. His criticism also sheds important
light on a common confusion. In chapter 1, I discussed what was
called "Morley's argument'. Recall that Morley's argument is, roughly,
that Hilbert's thesis is true because mathematics is reducible to
set theor; ((claim (i)) and set theory is a first-order theory (claim (ii)l.
We saw that the main source of evidence for claim (i) of Morley's
argument (the claim that mathematics can be reduced to set theory)
was the fact that a good many of the notions ordinarily used in
mathematics can be defined using only the language of set theory. This
last claim, however, is only a fact because ¢ is interpreted set
theoretically (compare page 2% ). If the language of the set
theory to which mathematics is reduced is first-order -- that is, if
claim (ii) of Morley's argument is true -- the Lowenheim-Skolem theorem
guarantees that if that set theory had a model, it has an arithmetical

model; that is, there is an arithmetical relation, a, such that when ¢
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is interpreted as a, every truth of set theory becomes a truth of
arithmetic. However, we do not -- and rightly so -- take this as showing
that every mathematical notion is definable using only the language of
arithmetic, even though, where ¢ is a set theoretic definition of a
mathematical notion we can obtain an arithmetical definition of that
notion by substituting a term interpreted as a for every occurrence of

22 . .
€ In some ways, when we talk about reducing mathematics to

€ in .
set theory we treat € as if it were a logical constant, just as Frege
treated 'is a point' as if it were a logical constant when he discussed
geometry. Thus, in light of Frege's criticism of Hilbert we might want
to say that the evidence for claim (i) of Morley's argument undermines
the evidence for claim (ii).

I mention these points to stress that Frege's criticism of Hilbert
is indeed relevant to our discussion of Hilbert's thesis. It provides us
with an important example of a philosophical position that conflicts with
Hilbert's thesis and suggests that the logic that should be used when
formalizing mathematics is not complete, hence not first-order. In
the next chapter I shall look in much detail at a contrary position,

a position entailing that logic is complete and apparently entailing

that Hilbert's thesis is true.
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Chapter 4

HILBERT AND HIS THESIS

In chapter three I did two things., First, I examined critically
an argument that only complete logics should be used when formalizing
mathematics. I looked especially closely at premise (C) of that
argument, the claim that ordinary empirical procedures yield no knowledge
of necessary truths. Second, I looked at a position Frege endorsed
when he criticized Hilbert's formalization of and independence
proof for the parallel axiom. In this chapter, I shall continue’
investigating these themes. First, I shall look at how Hilbert replied
to Frege and shall reconstruct, using concepts ordinarily employed
today, a perhaps anachronistic version of Hilbert's philosophy of
mathematics. Using this philosophy I shall then construct an argument
for Hilbert's thesis, the claim that only first-order logic should be
used when formalizing mathematics. I shall conclude this chapter by
looking at the status of this argument in the light of a (fairly

st andard) refutation of Hilbert's philosophy of mathematics.
(1)

According to Hilbert, one of the major differences between
himself and Frege is their different opinions about the importance
of consistency proofs and the relation of those proofs to conclusions
about th: w.ruth-values of axioms. In a letter to Frege, Hilbert saysl
I was very much interested in your sentence: 'from the

truth of the axioms it follows that they do not
contradict one another', because for as long as I have
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been thinking about these things, I have been saying the

exact reverse: If the arbitrarily given axioms do not

contradict one another, then they are true, and the things

defined by the axioms exist.
Frege believed that consistency proofs (at least in geometry) are
superfluous because if a set of axioms contains only truths, then that
set is consistent and the axioms of (Euclidean) geometry, Frege thought,
can be seen to be truths by inspecting our "spatial" intuitions.
Hilbert, however, held that in all areas of mathematics consistency
proofs are essential. According to Hilbert's point of view, confronted
with "arbitrarily given axioms,'" we can only see that those axioms are
truths by demonstrating that they do not '"contradict each other.'" If,
according to Hilbert, a set of axioms is consistent, then it contains
only truths; so the way to determine that the axioms we accept are truths,
according to Hilbert, is not by inspecting intuitions, but by
demonstrating that those axioms form a consistent set.

Hilbert and Frege, therefore had very different views about how
we know mathematical truths. Hilbert thought, as shall be seen, that
a mathematical truth is known only if we have shown how to deduce it
from a demonstrably consistent set of axioms. So, in particular, on
Hilbert's view, we know that a set of axioms contains only truths only
if we have demonstrated that that set is consistent. Frege, on the
other hand, was committed to no such claim. '"It cannot be required,"
he saidz, "that we should prove everything, because that is impossible."
In particular, according to Frege, we may know that a set of axioms
contains only truths even if we have not demonstrated that that set is

consistent. Rather, we can know that axioms are true independently
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of any deductions and proofs. For example, as I mentioned, Frege thought
that we could know that the axioms of Euclidean geometry are true without
any consistency proof, merely by inspecting our spatial intuitions.
Furthermore, unlike Hilbert, Frege thought that axioms are not "arbitrarily
given." He thought that axioms are truths upon which a system of
mathematics rests, and which we can know to be true without consistency
proofs. Thus, Frege and Hilbert had very different views about how we
know mathematical truths. As I shall soon argue, Hilbert's view is
comnitted to (HC), the claim that only complete logics should be used
when formalizing mathematics; as I argued in the previous chapter,
Frege's view is committed to no such claim.

At first, the view that I have associated with Hilbert seems wrong.
Two sets of sentences can both be consistent even though they are
jointly inconsistent. For example, A may contain y and B may contain
the negation of y even though A is consistent and B is consistent.

But then, on Hilbert's view, it looks as if A contains only truths and
B contains only truths, So ¢ is a truth and the negation of ¢y is a
truth. But then y&~y is a truth, and this, we know,is impossible.

This argument, however, is based on a confusion about the nature
of Hilbert's position. According to Hilbert, sentences are purely
syntactic items. To speak of a sentence being true or false, then,
only makes sense if we have in mind a particular interpretation of that
sentence. The argument made in the last paragraph misses this (important)
point, as becomes clear if we examine it a little closer. That

argument went as follows:
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(1) There are two consistent sets, A and B, such that
Y is in A while “¢y is in B.
Since, according to Hilbert, if a set of axioms is consistent, then it
contains only truths, it follows that A contains only truths and B

contains only truths. So
(2) ¢ is a truth and ~y is a truth.
But it is plausible to hold that

(3) For any sentences, 8 and 6, if ¥ is a truth and
§ is a truth, then ¥§6 is a truth,

It follows from (3) and (2) that y&~¢ is a truth. This, however, is
impossible. But this conclusion, I think, should not be interpreted so
that it shows Hilbert's position false; rather, I think, it should be
interpreted so that it shows (3) is wrong.

Strictly speaking, ¢ is not an English sentence, but a
formalization of a sentence of mathematical English; that is, both
v and ~y are sentences of a formal logic. They are purely syntactic
items and for all we know about them, they could be strings of numbers
or sets of sets. It makes no sense to speak of such items being true
or false without first giving them an interpretation. One way this can
be done is relative to a structure or a class of structures. We can
interprete the variables of, say, y to range over the universes of
structures of a certain sort, and we can interprete the relation symbols
of y using structures of that sort. If we agree that this is the way

to go about interpreting ¢, a reasonable way to understand the statement
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that ¢ is a truth is as the claim that there is a mathematically
interesting class of structure in which we can interprete y and y is
true in every member of that class. It is, of course, problemmatic
what mathematically interesting classes of structures are; however, for
our purposes, we can say that a class of structures is mathematically
interesting if it is the class of models of some demonstrably consistent
set of axioms. Now notice that, given this rough understanding, we
can reasrite (2) as

(2') For some mathematically interesting class of structures,

A, ifM is in A, thenak ¢y and for some mathematically

interesting class of structures, B, if M is in B, then

NE “w.
(2') seems all right. However, if we similarly rewrite (3) as

(3') For any sentences, ¥ and 6, if for some mathematically
interesting class of structures, A, and some
mathematically interesting class of structures, B,

(1) ifM is in A, MEY
and (ii) if Mis in B, 1{F 6,

then for some mathematically interesting class of

structures, C, if & is in C, &F ¥&s,
we obtain a false principle. Thus, if we accept Hilbert's view of
mathematical truth (or at least my, perhaps anachronistic, reconstruction
of it) we must reject (3), and so what seemed a refutation of Hilbert's
position is not a refutation at all.

I should, however, mention that the view of mathematical truth

presented above is foreign to Frege's views about mathematics and
logic. Formal sentences, according to Frege, have sense independent of

any structures in which they are interpreted. Indeed, according to
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Frege which structures a formal sentence is interpreted in depends on its
sense. This point should be clear after chapter three. Non-anomalous
formal sentences (that is, formal sentences without what Frege would
call "non-referring expressions') have truth-values independent of any
structure in which they are interpreted. This is quite different from
the view that motivated the rewriting of (2) as (2') and (3) as (3').
Indeed, I think, given what was said in chapter three about Frege's
position, it is clear that Frege would have endorsed (3) and denied

(2); exactly the opposite of what (my re-constructed version of) Hilbert
would do. As we shall see in more detail, Frege and Hilbert had

very different views about the nature of formal symbolisms. ''The use
of symbols," Frege saids, "cannot be equated with a thoughtless
mechanical procedure," Yet, as shall be seen, this is precisely what
Hilbert, in some contexts, tried to do.

Let us end this section with the following (perhaps anachronistic)
description of Hilbert's views. Hilbert thought that formal sentences
had truth only relative to a (specified) sort of structure. A
(formalization of a) mathematical theory, then, is a study of a sort of
structure, namely, the sort of structure relative to which all the theorems
of that theory are truths. So, all that is needed to show that a
(formalization of a) mathematical theory is true is a demonstration
that there are structures it studies. There are, as is well-known, at
least two ways this can be done. We can either (1) show directly that
some sentence, say '0=1', is not a theorem of the theory in question and
then appeal to the completeness of its logic concluding that there are

models of the theory; or we can (2) use a relative consistency proof,
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that is, we can translate the theorems of the theory into theorems of
another theory that we already know has models and then conclude (using,
by the way, clause (iia) of definition 5 in chapter two) that the former
theory has models. These two methods, as shall be seen, play a central
role in (my reconstruction of) Hilbert's philosophy of mathematics. In
the next two sections, I shall take a detailed look at (this version of)
Hilbert's philosophy of mathematics, to be followed in section four by

an argument that goes from principles affirmed by it to the position

that first-order logic is the only logic that should be used to formalize

mathematics.

(ii)

Intuition is traditionally held to be the source of mathematical
knowledge. Frege, for example, in order to explain how we are able

to grasp geometric concepts, like point and line, and to use them to

formulate truths appealed to what he called "spatial intuition." It
is, perhaps naively, thought that when a mathematician proves something
he is appealing to intuitions that we all have. The mathematician who
demonstrates that there is no largest prime is, on this view, examining
concepts that we are all able to grasp -- like is devisible by and is

the successor of -- and deriving facts using those concepts. This view

has it that anyone, by appealing to properly trained intuitions, can
"'see' that any mathematical result is true. I shall call this rudimentary
position "the naive view."

My characterization of the naive view is rather vague and

imprecise. Nevertheless, I think, dressed up in different ways, the
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naive view represents the philosophy of mathematics of the nineteenth
century. One reason the set theoretic paradoxes seemed so intellectually
upsetting is that they demonstrated that methods that seem intuitively
correct, in fact, lead to inconsistent results. The concept of a set
that we intuitively arrive at, and the methods of inference consequently
used to reason about sets, turn out to yield contradictory results.
Hilbert's philosophy of mathematics, I think, is best seen as a reaction
to this interpretation of the set theoretic paradoxes.

It should, however, be pointed out before we look at Hilbert's
philosophy of mathematics that this interpretation of the set theoretic
paradoxes is not uncontroversial. Kreisel argues that, as a matter of
fact, the set theoretic paradoxes is not uncontroversial. Kreisel argues
that, as a matter of fact, the set theoretic paradoxes confirmed the
intuitions of working mathematicians, and that, therefore, the discovery
of the set theoretic paradoxes vindicated the naive view. Although I
think that Kreisel is wrong on this matter, it is worth outlining the
reasons he gives for his view4. Kreisel suggests that mathematicians
were bewildered by early research in set theory. Many thought that the
theory of sets was not worth pursuing. Thus, when it turned out that
that theory was inconsistent, Kreisel claims, the intuitions of working
mathematicians turned out to be correct; the theory of sets, as it then
stood, was inconsistent and not worth pursuing. Kreisel's view is,
however, non-standard, and I shall not accept it here -- not because
it is non-standard, but because it is easier to see the motivation for
Hilbert's philosophy of mathematics if we keep in mind the more standard

account of the set theoretic paradoxes.
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In the beginning stages of set theoretic research, it seemed
plausible that (as we might put it today) for every open sentence, y(x),
there is a set, Z, such that = contains all and only those objects that

satisfy y(x). The intuitions of early set theorists, then, suggested

that every instance of

(1) @3x) (vy) [yexy(y)]

is a truth. Bertrand Russell and Zermelo, as is well-known, showed this

to be untenable.5 There are many instances of (1) that are false.

(2) (@Ex) (vy) [yexeytyl

is perhaps the.most famous. Thus, appeals to intuitions, even well-
trained ones, contrary to the naive view lead to contradictions.

Faced with the set theoretic paradoxes, philosophers of mathematics
have a dilemma: either (1) deny that mathematicians uncover truths we
know with certainty, while accepting the basic substance of the naive
view; or (2) replace the naive view with something else, a position
able to justify the view that the results a mathematician uncovers
are certainly true, while at the same time explaining (away) the set
theoretic paradoxes. Hilbert's philosophy of mathematics is one
result. of following the second strategy.

Hilbert hoped to establish the certitude of mathematical methods
once and for all. "If mathematical thinking is defective,'" he plaintively
asked6, "where are we to find truth and certitude?" Hilbert accepted
what was then the standard view of the set theoretic paradoxes, namely,

that the set theoretic paradoxes resulted because transfinite methods
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were used in an illegitimate way7. In particular, Hilbert believed,
early set theorists mistakenly generalized facts about bounded
quantification to draw conclusions about unbounded quantification,
although he probably would not have put the matter in this fashion.

This is not an unnatural position to be led to. Paradoxes do not
result if we limit our attention to bounded formulas, that is, formulas

in which no unbounded quantifiers occur. All instances of

(1') (3xeA) (vyeb) [yex—y(y)]

are not truths, but our intuitions do not suggest that they are. What
our intuitions do suggest is true is that for every set, B, and open
sentence, yY(y), we can find a set, A, such that the relevant instance

of (1') is a truth; and it is not legitimate to infer that every instance
of (1) is true from this fact about instances of (1')7§ Hilbert (on

one interpretation) thought that by examining closely just what we can
say using bounded quantifiers and investigating how far we can extend
our use of bounded auantifers to a use of unbounded quantifiers without
engendering contradiction, we might eliminate paradoxes and begin to
establish the certitude of mathematical methods.

Hilbert's philosophy of mathematics, as I understand it, is a
response to the set theoretic paradoxes7b and is based on three core
ideas. First, Hilbert stressed that there are finitary reasonings
that lead to conclusions we know are certainly true. As I understand
Hilbert (and as I shali argue below), he thought that all finitary

reasoning is a part of arithmetic. So this first idea of Hilbert's can

be put as: there is a set of rules of inference in arithmetic (the
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rules of finitary inference) that lead to conclusions we know are certainly
true. Such rules allow us to show that two plus two is four, or that
15077 is a prime number, The principles of finitary reasoning are
simple arithmetic computations, involving only a finite set of integers,
yielding a result after finitely many steps.

It should be mentioned, before going any further, that a good
deal of controversy surrounds the question what exactly Hilbert thought
finitary reasoning iss. In the next section, I shall give what appears
to be a definition of finitary reasoning. However, it Should be stressed
now (it will be stressed again) and remembered when reading that section
that the characterization of finitary reasoning there given is not
meant to be definitive. I do not pretend to be able to give a definitive
characterization of what Hilbert thought finitary reasoning is, nor
do I want in this work to become embroiled in that controversy. All
characterizations of finitary reasoning I put forward are very tentative
speculations. How finitary reasoning is characterized does not, I
think, affect the main arguments otr this chapter (although it must be
the case that finitary reasoning is a part of arithmetic. This, however,
is not very contrcversial.)

The second core idea on which Hilbert's philosophy of mathematics
is based is the claim that transfinite notions and methods are
creations. We make them up. There is a sense, according to Hilbert,
in which there are no infinite totalities. He claims that statements
like

For every natural number, n, there is a prime number, m,
such that m>n,
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which seems to imply that there is an infinite totality of prime numbers,
are really ideal statements without sense or meaning that are only used
in order to '"tidy up'" our theories. Hilbert says8a that "in general [a
statement involving transfinite notions] has meaning only as a partial
proposition, that is, as part of a proposition that is more precisely
determined but whose exact content is unessential for many applications."

The third core idea of Hilbert's philosophy of mathematics is,
perhaps, the most well-known. According to Hilbert, the only criterion
that must be met by the ideal statements (such as the one displayed in
the preceding paragraph) is that they are consistent with the set of
true real statements (those we can show true using finitary reasoning).
It is this last idea that has led to much of the discussion of Hilbert's
philosophy. Hilbert claimed® that

we must establish throughout mathematics the same certitude

for our deductions as exist in ordinary number theory, which

no one doubts, and where contradictions and paradoxes arise

only through our own carelessness.
According to Hilbert, then, there is a core of arithmetic, "ordinary
number theory'" that contains truths we can know with certainty. He
hoped to base all mathematics on arithmetic (as I shall soon argue) and
to show that all arithmetic can be known with certainty by demonstrating
that all arithmetic -- that is, ordinary number theory cum transfinite
methods -- is consistent with that part of arithmetic '"which no one
doubts." Furthermore, he hoped todemonstrate this consistency using

only principles 'which no one doubts" -- that is, he wanted his consistency

proof to be a part of ordinary number theory; thus establishing "throughout
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mathematics the same certitude...as exist[s] in ordinary number theory."

It is well-known how Godel demonstrated that this last part of
Hilbert's philosophy is, unfortunately, a pipe dream. The consistency
of number theory cannot be established using only number theory; hence,
it surely cannot be established using what Hilbert called "ordinary
number theory'" -- or so Godel's results have been interpreted.

In the next section, I shall present a more rigorous treatment of
Hilbert's philosophy, so that some of these issues can be discussed more
clearly. 1In section four, I shall then present an argument that goes
from principles of Hilbert's philosophy of mathematics to the conclusion

that Hilbert's thesis is true.
(iil1)

Let us start by considering a very simple languagega, N, called
"the language of arithmetic.” N consists of 0, a constant symbol, s( ),
a one-place function symbol, ( )+( ) and ( )+( ), two place function
symbols, and <, a binary relation symbol. I am interested in generating
a certain class of sentences from N, called '"the ordinary sentences of
arithmetic." To do this, take # to be the minimal syntax (in an
obvious sense of minimal), *, such that where

(1) All variables of kind 0 are terms, and the constant 0
is a term

and

(2) If a and B are terms, then s(a), (a)+(B) and (a)+(B)
are terms
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the following held:

(35 Iflg and B are terms, then o=B and a<B are members of
N*

(4) If 38 and 6§ are in N*, then & §, ¥v8, ¥468,+—8 and
~¥ are members of N*

(5) If ¥ is in N*, x is a variable of kind 0 and o« is a
term, then (gx<a)¥ and (Vx<a)¥ are in N*.
It should be obvious that there are syntaxes satisfying (1)-(5) and
that # is, therefore, well-defined.

The members of N# have their usual interpretations. So let £
be the relation between structures and ordinary sentences of arithmetic
that works out as we would expect. For instance,M /£ (dx<a)y if and only
if NF fo () (x<ab¥), where k . is as in chapter two. (As it turns
out <#, £ > is not a Barwise logic (see definition 5, chapter two), but
this need not concern us.) We can now construct a formalization of a
portion of mathematicsloa, Y whose first component is N whose second
component is a set of ordinary sentences of arithmetic and whose third
component is <#, £ >10b such that if y is a member of N#, then ¢ is
true in the standard model of arithmetic only if ¢ is Eo-valid.

For the purposes of exposition, noi as a definitive characterization,

-

I shall take £p to formalize finitary arithmetic, that part of mathematics
that, according to Hilbert, '"no rne doubts and where contradictions and
paradoxes arise only through our own carelessness.'" As would be

expected of a formalization of this fragment of arithmetic, there is

a proof-system, 0’ such that if ¢ is Eo-valid, then ¢ is O-provable.

According to my interpretation of Hilbert, Y is a formalization
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of the contentful part of arithmetic (and hence, as shall be seen, of
mathematics). A sentence of arithmetic has meaning, according to Hilbert,
only if it can be formalized as a member of N#. These sentences are
what Hilbert called 'the real sentences of mathematics.' Undoubtedly
this was based on a particular view about what a theory of meaning for
mathematical sentences should be like. It is not unusual to suppose
that a theory of the meaning of mathematical sentences is a theory of
computation, and this is what, I think, Hilbert had in mind. On this
view, we describe the meaning of a mathematical sentence if we describe
a type of computation that would show that sentence true or false. It
is the existence of such a theory for the real sentences of mathematics
(the sentences of N#) that, I think, makes it plausible to call those
sentences the contentful part of arithmetic. However, according to

Hilbert, =, does not formalize adequately all arithmetic. EO does not

0
formalize those portions of arithmetic that use transfinite methods.
There are many sentences ordinarily accepted by mathematicians that
cannot be adequately formalized as ordinary sentences of arithmetic,
and Hilbert therefore proposed that we extend EO so that a larger
. . . 10c

portion of mathematics can be formalized.

Hilbert gave essentially two reasons for extending EO. It is

not hard to see that

(A) O0<x~+[0<x+s(0)]

is :0—valid; it is an ordinary sentence of arithmetic and it is true in

all standard models of arithmetic. Thus if a structure does not satisfy
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(A) it is not a standard model of arithmetic. That is to say: if a
structure satisfies the negation of (A), it is not a standard model of
arithmetic. But what sentence is the negation of (A)})? In other words,
what sentence is true in all and only those structures that do not satisfy
(A)? It is not hard to see that there is no ordinary sentence of
arithmetic that can be taken as the negation of (A). We know that (A) is
satisfied in a structure,&, if and only if no matter what element of

the universe of & is assigned to x, (A) -- so interpreted -- is true in Q.

That is, @& satisfies (A) if and only if

(A") all- (0<x>[0<x+s(0)]) [o]

(in the sense defined on page 61 = ) for all sequences, o, over
the universe of @. But there is no sentence, ¥, in N# such that Q£ Y
if and only if there is a sequence, ¢, over the universe of & for which
(A'") is false. There is, then, no way of formalizing the negation of
(A) using EO; and so there is no way of capturing the classical rules
of inference using only the logic <#, £ >.

Hilbert therefore proposed that EO be extended to a new system,
El, in which there is a negation of (A). This new system will consist
of the language of arithmetic, a set of axioms extending the axioms of
30’ and a new logic extending <#, £ >. So long as every ordinary sentence
of arithmetic that is El-valid is Eo—valid, that is, so long as El is

a conservative extension of =, there is, according to Hilbert, nothing

Z°
objectionable about introducing a negation of (A) in this manner. El‘

will be a tidier system than EO' although EO is the 'real'" theory of
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arithmetic, while contains ideal sentences that have no genuine

S|
content.

(The choice of (A), of course, was completely arbitrary; any
open sentence in N# could have been used to obtain a reason for introducing
ideal sentences, like the negation of (A), into our formalization of
arithmetic.)

There is another kind of reason Hilbert gives for extending
"ordinary number theory, which no one doubts,'" that is, I think, more
interesting. As I interprete Hilbert it is based on the idea that if
we can recognize that all the members of a certain subset of N# are
true, then, in some cases, there should be a sentence that is true in all
and only those structures in which all the members of this subset of N#
are true, Hilbert thought that the introduction of such a sentence
gives us no new information and therefore should not be objectionable.

In order to illustrate this second reason for introducing ideal
sentences, Hilbert used the following example. Let p be the greatest
known prime number. Using only finitist methods, Hilbert claimed,
we can show both that (i) p is a prime and that (ii) p is the greatest
known prime -- since at any time there will be only finitely many
known primes. However, also using finitist methods, we can show that
there is a number greater than p that is also a prime number. If we
multiply together all non-zero numbers less than or equal to p and then
add one to this product, we obtain a number that we can show, using
finitist methods, to be greater than p and prime. Letting n! have

its usual meaning, we therefore have it that no matter what the value

of p may be:
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(6) If p is a prime, then there is an x z I+]1 and x
P P pitl
is a prime greater than p

can be formalized as a Eo-valid sentence. (Here, as usual n is the

numeral for n.) So it looks as if no matter what prime is the greatest
known prime, we can show that it is not the greatest prime -- and we can

do so using methods that can be formalized using 20 It looks, then, as
if we have established, using finitary methods, that there are infinitely
many primes. Care, however, is necessary.

Although every instance of (6) can be formalized as a true,
ordinary sentence of arithmetic, (6) itself cannot be so formalized.
Although for any particular number, n, we have a method in finitary
arithmetic for going from n to its factorial , n!, we do not have a
method in finitary arithmetic of going from any number to its factoriallOd.
Thus, strictly speaking, (6) should be interpreted as a schema whose
instances are formed by a rule -- not expressible in Z  -- with the
peculiar property that a}l instances of (6) formed in accordance with
that rule are formalizable as Z,-valid sentences. So every (properly
formed) instance of (6) is a true, ordinary sentence of arithmetic, that
is, every instance of (6) is true in every standard model of arithmeticlOd'.
There is, however, no ordinary sentence of arithmetic that is true in
all and only those structures in which every (properly formed) instance
of (6) is true. Hilbert proposed that Z. be extended, as before, so that
there is such a sentence. As before, according to Hilbert, the only
condition that our extension of 50

conservative, for, then, Hilbert thought, no genuine content is added

must satisfy is that it be

to arithmetic so that the content of arithmetic might be presented (and

studied) using a tidier theory.
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We might characterize Hilbert's thoughts on these matters as
follows. We start with a formaiization of a portion of mathematics,
EO’ which formalizes the 'real' senteinces of arithmetic, those that have
what Hilbert thought was contont. ror the sorts of reasons described above,
EO should be extended to another formalization, El. By continuing in
this manner we obtain a sequence of formalizations: EO, El, 52,.
The limit of this sequence is the (or a) correct formalization of
arithmetic -- and, hence, as shall be seen, according to Hilbert can
be used to formalize adequately all of mathematics.

It should be noticed that the particular system with which I
started is irrelevant. There may be good reason for denying that EO
is an adequate formalization of finitist arithmetic. 1If that is the
case, then we can simply replace EO with an adequate formalization of
finitist arithmetic without affecting the main arguments of this

chapter.
(iv)

In this section I shall use the above (perhaps anachronistic)
characterization of Hilbert's philosophy of mathematics to construct a
plausible (but by no means conclusive) argument for Hilbert's thesis.
The reader should consult chapter two, especially definition 16 and
Lindstrom's theorem on page 72. What I shall suggest is that Hilbert's
philosophy of mathematics is committed to the view that any logic used
when formalizing mathematics contains first-order logic (and is a
Lindstrom logic), is complete and satsifies the Lowenheim property.

Hence, using Lindstrom's theorem, it can be deduced that first-order logic
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is the logic that should be used when formalizing mathematics. So, what

I have to do in this section is show three things: (I) that Hilbert
thought (or can be construed to have thought) that a Lindstrom logic
should be used when formalizing mathematics; (II) that Hilbert thought

(or can be construed to have thought) that any liogic used when

formalizing mathematics should be complete; and (III) that Hilbert thought
(or can be construed to have thought) that any logic used when formalizing
mathematics should have the Lowenheim property. (I)-(III) will show,

by Lindstrom's theorem, that Hilbert was committed to Hilbert's thesis;
that is, 'Hilbert's thesis' is not a misnomer.

It should be noticed that this is not an unsurprising result.
Nothing that Hilbert says about mathematics, nor anything I said above
when characterizing his philosophy of mathematics suggests that he
thought that Hilbert's thesis is true. Indeed, on the fact of it, there
is no reason why we should not expect that included among the ideal
sentences of arithmetic is a sentence stating that every number has
finitely many predecessors. Indeed, for each number, n, we can write
a sentence that seems to state that n has only finitely many predecessors,

for example:
x <n -+ [x=o v x=1 v ... v x=n-1].

So why should we not expect that a sentence stating that every number

is finite should not be a part of our formalization of arithmetic?

Using infinite disjunctions, for example, we can suitably generalize

the above sentence so that a sentence stating that every number is finite

can be formed. Why can't we add on such a sentence as an ideal element?
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Nothing in Hilbert's philosophy of mathematics directly says that we
cannot. In fact, Hilbert himself seems to have thought that infinite
conjunctions and disjunctions could be introduced as ideal elements.

In "On Infinity" Hilbert11 seems to have wanted to interprete dxy(x) as

(7)) v(O)vy (Vv (2)v. ..

He suggests that just as gx“ny(x) is equivalent to ¢(0)vy(l)v ...vy(n),
so dxy(x) is equivalent to (7). Thus, Hilbert's thesis is not an
obvious consequence of Hilbert's philosophy of mathematics.

We already saw that Hilbert appeared to be committed to the claim
that every logic used to formalize mathematics should be complete. We
saw in chapter three that he claimed that statements of a mathematical
theory '"have validity only if one can derive them from...axioms by a
finite number of logical inferences.'" If we agree, as in chapter two
(page 71), that logical rules of inference can be effectively generated,
we can interpret Hilbert‘here as straightforwardly endorsing (HC),
the claim that only complete logics should be used when formalizing
mathematics. But there are more profound reasons why, I think, Hilbert
was committed to (HC).

On Hilbert's view, mathematics rests on arithmetic in a very
important sense. The only part of mathematics that has ''content' is a
portion of arithmetic; the ''real sentences' of mathematics are all
sentences of finitist arithmetic. It is only this fragment of mathematics,
according to Hilbert, that we know is certainly true independently of
any consistency proofs. By then appealing to consistency proofs,

Hilbert believed that all arithmetic (and all mathematics) could be
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secured as steadfastly as finitist arithmetic. By showing a mathematical

theory consistent, Hilbert thought, we show that its theorems are truths.

But what connection is there between the consistency of a theory and the

truth of a theory's theorems? On pageﬂié—%,argued that, according to

Hilbert, a mathematical theory is true just in case it has models.

Thus, if we can show that a theory has models, we can show that its

theorems are truths. The gap between the consistency of a theory and

the truth of its theorems is bridged by the completeness of that theory's

logic. For if a theory's logic is compiete, then the theory is consistent

only if it has models. It seems natural to conclude, then, in light

of the above considerations, that Hilbert would endorse (HC), the claim

that only complete logics should be used to formalize mathematics.
Hilbert (or, at least, my reconstruction of him) was, then,

committed to (HC). But what about the claim that every logic used when

formalizing mathematics should satisfy the Lowenheim property? Might

not it turn out, for instance, that one of the ideal sentences added

onto arithmetic states that nothing has uncountably many predecessors,

a statement most naturally made ucing Keisler's quantifier, ''there exist

uncountably many, x, such that"? The resulting logic would, as already

noted be complete, but would not have the Lowenheim property. Why

would Hilbert object to using such a logic when formalizing mathematics?
We can answer this question by noting, first, that, on Hilbert's

view, there is no reason not to take 'something has uncountably many

predecessors' as an axiom of some non-arithmetic mathematical theory, if

'nothing has uncopuntably many predecessors' is an axiom of arithmetic.

do not contradict one another, then they are true." [emphasis added]

So any axioms can be used -- so long as they
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do not contradict one another -- to construct a mathematical theory.
But, according to Hilbert, as I understand him, only arithmetic can be
proved to have a model by using consistency proofs. Other mathematical
theories are shown to have models by reducing them to arithmetic, by
translating their theorems into the language of arithmetic and showing
that the transliated theorems are consistent with the sentences of
finitist arithmetic. The content of all mathematics is found in finitist
arithmetic. So, on Hilbert's view, the way to show t'.at any theory
other than arithmetic has a model is to construct an arithmetic
model (as described) for it. Thus, according to Hilbert, every non-
arithmetic mathematical theory has an arithmetic -- hence denumerable --
model. The Keisler quantifier, then, as I interpret Hilbert, should not
be used when formalizing a mathematical theory. According to (my version
of Hilbert), every logic used when formalizing mathematics should satisfy
the Lowenheim property.
.. . . - 12

This is brought out in the following passage from '"On Infinity"

...[T)he problem of proving consistency arises wherever

the axiomatic method is used. After all, in selecting,

interpreting, and manipulating the axioms and rules

we do not want to have to rely on good faith and pure

confidence alone. In geometry and the physical theories

the consistency proof is successfully carried out by means

of a reduction to the consistency of the arithmetic

axioms. This method obviously fails in the case of

arithmetic itself...[O]ur proof theory forms the necessary

keystone in the edifice of the axiomatic theory.
It is natural to interpret Hilbert's claims here, as I have done, so
that Hilbert is committed to the view that non-arithmetic theories are

shown consistent by showing them to have denumerable models. We can

conclude then that (one natural interpretation of) Hilbert's philosophy
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is committed to the view that every mathematical theory has an arithmetic
model; and hence that the logic used when formalizing mathematics should
have the Lowenheim property.

It should be mentioned before continuing that Hilbert sometimes
used 'arithmetic axioms' to mean the axioms for the real number system.128
Thus, the above quotation from '""On Infinity'" might be interpreted to mean
that every (acceptable) mathematical theory has a model in the real
numbers. However, I do not think, given what has been said above, that
this is the correct interpretation of the quoted passage. As I described
it above, Hilbert's philosophy of mathematics does not seem able to
accord the theory of real numbers so special a status. Hilbert's philosophy
of mathematics was motivated by the desire to establish the certitude
of mathematical methods. He tried to do this by shcwing, first, that
there is a portion of mathematics (finitist arithmetic) that cannot be
doubted, and, second, that methods of mathematics that are not a part
of finitist arithmetic are '"ideal creations'" that can be shown consistent
with the methods of finitist arithmetic. Under this description, there
is no reason to accord real number theory a special position in Hilbert's
philosophy of mathematics. Indeed, the methods of real number theory
clearly outstrip the methods of finitist arithmetic. For instance,
presumably using real number theory we can prove that there are uncountably
many real numbers, and, thus, that there are uncountably many number
theoretic functions (that is, functions whose arguments are natural
numbers and whose values are natural numbers)IZb. But, on any inter-

pretation of Hilbert, the set of finitist number theoretic functions

(that is, number theoretic functions whose existence can be proved using
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finitist arithmetic) is countable. For example, in a recent articlelzc,
Tait argues that the finitist number functions are just the primitive
recursive functions. As we know, the set of all primitive recursive
functions is countable. Similarly, if Kreisel is rightlZd, and the
finitist number theoretic functions are those that are first-order
definable, then there are only countably many finitist number theoretic
functions. Thus, the methods of real number theory are '"ideal creations"
in need of justification, like the methods of most other portions of
mathematics. According it a special status (as we would have to do if
'arithmetic axioms' refers to the axioms for the real numbers as used
in the above quote from '"On Infinity") is, therefore, unjustified,
given my description of Hilbert's philosophy of mathematics.13

So far it has been seen that (my reconstruction of) Hilbert's
philosophy of mathematics is committed to the claims that logics used
when formalizing mathematical theories should be complete and that they
should have the Lowenheim property. So, two-thirds of what I set out
to do in this section has been completed; (II) and (III) (on page
170 ), I think, have been established. What is needed now is an
argument for (I), an argument that (my reconstruction of) Hilbert's
philosophy of mathematics is committed to the claim that a Lindstrom
logic should be used when formalizing mathematics. For, then, we can
appeal to Lindstrom's theorem to conclude that (my reconstruction of)
Hilbert's philosophy is committed tothe claim that nothing stronger
than first-order logic should be used when formalizing mathematics.

Inspecting definition nine (page 63 ) shows that at least two

things must be established if we are to conclude that (my reconstruction
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of) Hilbert's philosophy is committed to the claim that a Lindstrom
logic should be used when formalizing mathematics. It must be shown,
first, that a Barwise logic (see definition five) should be used, according
to (my version of) Hilbert's views; and, second, it must be shown that
logics used to formalize mathematics should contain first-order logic.
Now, it should be clear that the question whether Hilbert thought only
Barwise logics should be used when formalizing mathematics is moot. It
was beyond Hilbert's means to formulate the notion of a Barwise logic;
at the time he wrote, model theory (if it can be said to have existed
then) did not have rich enough notions to characerize a Barwise logic.
Nevertheless, I think it is reasonable to look at Hilbert's work as if
he thought that a Barwise logic should be used when formalizing
mathematics. Indeed, (on page 117) I parenthetically noted that one
way Hilbert thought we could prove the consistency of a mathematical
theory depends on something like clause (iia) of the definition of

a Barwise logic (page 33). So, without much argument, I shall read
Hilbert as if he thought that Barwise logics should be used when
formalizing mathematics.

It should be stressed, however, that this reading is not
uncontroversial. It might be claimed that Hilbert thought of logic
in-a purely syntactical way and that, since a Barwise logic is
characterized using model theoretic notions, it is a gross distortion
of Hilbert's views to read them as if he thought only Barwise logics
should be used when formalizing mathematics. There may be something
to be said for this view; I shall, however, disregard it for two reasons.

The first is idiosyncratic. I said in chapter two that I was going to
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assume throughout this essay that only Lindstrom logics, and, hence,
only Barwise logics, should be used when formalizing mathematics. The
second reason is not so rooted in the assumptions made in this work.
In fact, I do not think it distorts Hilbert's views to read them as if
he used model theoretic notions. First, if, as argued above, Hilbert
was committed to logic's completeness, then he did not have a purely
syntactical view of logic. Completeness involves the notion of validity,
and validity is a model theoretic notion. Also, if my arguments in
the first section of this chapter are correct, then mathematical truth,
as Hilbert thought of it, is a model theoretic notion. The use of
model theoretic notions, when interpreting Hilbert, is not (necessarily)
to distort his views. I shall, therefore, read Hilbert as if he thought
that only Barwise logics should be used when formalizing mathematics.
This is not yet to claim that Hilbert thought only Lindstrom
logics should be used when formalizing mathematics. We still must
see whether we can read Hilbert as if he thought that first-order logic
should be contained in logics used when formalizing mathematics. This
question cannot be handled as easily as the question whether Hilbert
can be read as if he thought onlv Barwise logics should be used.
Detlefsen14 claims, for instance, that the quantifiers of the logic
Hilbert proposed we use when formalizing arithmetic are different from
the first-order ones. In particular, Detlefsen claims, Hi.bert was
committed to an w-rule. being valid, and this, as we now know, is
impossible, if the quantifiers used are standard. So, it looks as
if to read Hilbert as if he thought first-order logic should be a part

of the logic used when formalizing arithmetic is to distort Hilbert's



138

views about what sorts of rules the quantifiers satisfy.

‘Detlefsen's point seems well taken. I noted above (page 131)
that Hilbert seems to have wanted to interpret Axy(x) as an infinite
disjunction; so ¥xy(x) would be an infinite conjunction, and the w-rule
would be satisfied. Thus, it seems that a good case can be made against
reading Hilbert's existential (and universal) quantifiers as if they
were quantifiers of first-order logic. Nevertheless, I shall do so
for several reasons. One is the internal reason that doing so allows
me to use Hilbert's philosophy of mathematics without violating the
presuppositions of this essay, in particular the presupposition that
only Lindstrom logics should be used when formalizing mathematics. But
there is another reason as well. Hilbert, we saw, hoped to preserve
the laws of classical logic and he thought that logic is complete.

But logic cannot be complete and the laws of classical logic preserved
if the quantifiers (used in arithmetic) satisfy an w-rule (unless we
think that an w-rule is a rule of inference, a belief I shall not
entertain). Something must be rejected. As I shall read Hilbert, it
is the belief that the quantifiers satisfying an w-rule. Thus especially
in light of the presupposition of this essay, it is reasonable to

read Hilbert as if he thought first-order logic is a part of any logic
used when formalizing mathematics. We can conclude then that (my
reconstruction of) Hilbert's philosophy of mathematics is committed to
the claim that only Lindstrom logics should be used when formalizing
mathematics.

It is thus possible to construct, using {indstrom's theorem, an

Hilbertian argument for Hilbert's thesis. We have seen in this section
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that (my reconstruction of) Hilbert's philosophy of mathematics is
committed to the claims that (I) only Lindstrom logics should be used
when formalizing mathematics, (II) only complete logics should be used
when formalizing mathematics, and (III) only logics having the Lowenheim
property should be used when formalizing mathematics. Given these

three claims Lindstrom's theorem entails that only first-order logic

should be used when formalizing mathematics.15

(v)

The Hilbertian argument for Hilbert's thesis described in the
last section makes use of two premises. First, in order to conclude that
any logic used when formalizing mathematics should have the Lowenheim
property, I attributed the following principle to Hilbert:

(Arithmetic's It is possible to construct an

Priority) arithmetic model for any

mathematical theory.

I also attributed to Hilbert the belief that (HC) is true, that is that
every logic used when formalizing mathematics should be complete.
These two premises are not unrelated. One reason I gave for attributing
(HC) to Hilbert is that he thought a demonstration of the consistency
of a set of axioms showed that those axioms have a model, and, hence,
(see section one) are true. Furthermore, Hilbert thought that arithmetic
can be used to demonstrate its own consistency, hence, by (HC), that
it has a model. So, Hilbert thought that arithmetic could be used to
demonstrate that it is true (again, this follows from the discussion

in section one). Hilbert also hoped to base mathematics on arithmetic
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by constructing arithmetic models for each (acceptable) mathematical
“theory; this is the reason I attributed (arithmetic's priority) to
him. In this way, Hilbert hoped to establish the truth of all
mathematics.

In the final sections of this chapter, I shall look once more
at (HC). I shall look closely at two (fairly) standard objections to
Hilbert's philosophy of mathematics, seeing now (HC) fares in their
light. Both objections I consider are directed against (HC); however,
as we shall see they have implications regarding (arithmetic's
priority) as well.

Steiner and others (notably Putnam) have suggested that Euler's
argument that the infinite sum of all numbers of the form l/n2 is
n2/6 an example of a good, sound and acceptable argument of mathematics --
on equal footing with proofs -- that is not a proof and that is,
therefore, not formalizable as a derivation (see chapter one for a
discussion of the difference between proofs and derivations)lG.
Indeed, they claim that Euler's argument establishes that the value of
the infinite sum in question is n2/6, and that Euler, therefore, knew
that its value is n2/6, even though not one mathematician at the time
Euler made his argument was able to give 1 proof of this fact. Thus,

if we were to formalize mathematics at the time of Euler, it can be

continued, we would have to formalize a statement,

=00
2 2
(@) 2, [1/m"] =1x"/6,
n:
as a valid statement of mathematics, even though it has no derivation.

Thus, our formalization of the theory of infinite summation at the
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time of Euler would violate (HC); not every valid sentence of that
formalization would have a derivation. Let me quote Putnam extensively

so that we may see the purported significance of Euler's argument.

The use of quasi-empirical methods [that is arguments
that are not proofs] in mathematics is not by any means
confined to the testing of new axioms...Although it is
rare that either mathematicians or philosophers discuss
it in public, quasi-empirical methods are constantly
used to discover truths or putative truths that one then
tries to prove rigorously. Moreover, some of the quasi-
empirical arguments by which one discovers a mathematical
proposition to be true in the first place are totally
convincing to mathematicians. Consider, for example,
how Euler discovered that the sum of the series 1/n2 is
n2/6...Euler, of course, was perfectly aware that this
was not a proof. But by the time he had calculated

1/n2 to thirty or so decimal places and it agreed with
n2/6, no mathematician doubted that the sum of l/n2 was
72/6, even though it was another twenty years before
Euler had a proof.l7

[Quasi-empirical] methods are the source...of new theorems,

that we often know to be true vefore we succeed in

finding a new proof.172 -
According to Putnam, thgn, quasi-empirical methods are part of the
heart and soul of mathematics. They are used not only to discover
new truths of mathematics, but (and this is important) to establish
truths. It is a small step from this claim to the conclusion
that (HC) is false. If proofs do not exhaust our methods of
mathematical argumentation, formalizations should reflect this fact;
one way to insure that they do, is to insist that (sometimes) the
logic used when formalizing a fragment of mathematics not be
complete.

It should be noted, however, that the use of quasi-empirical
methods by mathematicians to establish truths is not enough to lead

to the conclusion that (HC) is false, that logics used to formalize
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mathematics should not always be complete. We might hold, for instance,
that Euler's argument establishes (a) and that every logic used to
formalize mathematics should be complete ((HC)). There is a difference
between being unable to prove (a) because we have not yet discovered

a proof and being unable to prove (a) because (a) does not have a proof.
If we think that quasi-empirical methods can be used to establish (a)
before we are able to prove (a) (even though (a) does have a proof),
then there does not seem to be any reason to deny (HC). However, if

we think that quasi-empirical methods can be used to establish (a) and
that (a) cannot be proved not because its proof has not yet been
discovered, but because it does not have a proof, then it is possible
to construct an argument against (HC). In the latter case, we might
want (a) to be formalized as a valid sentence of Euler's theory of
infinite summation, but we would not want (a) to be formalized as a
sentence with a derivation (since, we agreed, it has no proof in that
'theory). But, then, in' light of the definitions in chapter two, it

is natural to suppose that the logic used when formalizing Euler's
theory of infinite summation cannot be complete, that is, (HC) is

false.

It should be noted that Putnam17b does not claim that Euler was
unable to prove (a) because (a) had no proof. Putnam claims that
Euler's .rgument does establish (a), but he does not claim that (a) has
no proof. On the other hand, Steiner does seem willing to make the
stronger claim. He suggests that Euler did not know a proof of (a),

although he knew an argument for (a), because
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had Euler attempted to set down all the premises of his
argument in mathematical detail and precision, he would
undoubtedly have written falsehoods -- for the analogy

between the finite and the infinite often breaks down...17C

Thus, according to Steiner, in Euler's theory of infinite summation
there was no deduction of (a) from true axioms; hence there was no
proof of (a) in Euler's theory. So Steiner, unlike Putnam, does seem
wont to claim that (a) had no proof in Euler's theory of infinite
summation; not merely that Euler was unable, at the time he made his

M Steiner, then, makes claims that can

argument, to prove (a).1
be used as above to argue that (HC) is false.

There is also another way Euler's argument can be used to argue
against (HC), the claim that all logics used in formalizations of
mathematics should be complete. It is not only relevant that Euler's
argument establishes (a), even though it is not a proof of (a); it
is also relevant that (a) is a sentence of a certain sort. Since (a)

can be spelled out so that it says that the limit of a certain sequence

is n2/6, (a) is equivalent to a sentence of the form
(*) For every m, there is an n such that 9®(m,n).

We know that when a complete logic is used in a formalization of
mathematics, there will be a sentence, (m,n), such that the relevant

instance of (*) is not valid, even though for every m
(¢) There is an n such that 9(m,n)

is valid. We will see below that much of the evidence Euler used to
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establish (a) involved showing that for all values less than a large
value of m, the relevant version of (¢) holds. If such methods are
in general applicable, then it seems to follow that if (¢) holds for
every m, (*) will hold. This, in turn, entails that the logics used
in some acceptable formalizations of mathematics are not complete,
that is, that (HC) is false.

What I shall call "Steiner's argument', then, contains six

claims.

(1) Euler's argument establishes (a).

Therefore,

(2) Euler knew that (a) is true, and his contemporaries
who were familiar with his argument knew that
(a) is true.

But
(3) Neither Euler nor one of his contemporaries (for
a while) could prove (a).
Therefore,
(4) It is possible to know (a) without there being a
proof of (a).
Also,

(5) Formalizations of mathematical theories should
reflect this fact (especially formalizations
of Euler's and his contemporaries theory of
infinite summation).

So,
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(6) Some mathematical theories should be formalized
using a logic that is not complete, that is,
(HC) is false.
The details of why Steiner thinks that (4) follows from (3) were
hinted at above and will be discussed in more detail below. Also,
in all fairness to Steiner, it must be emphasized that he does not
conclude (6), nor does he formulate (5). I have included (5) and (6)
under the title '"'Steiner's argument' so that we may see how Steiner's
claims are relevant to the subject of this essay.
Before looking closer at Steiner's argument, it will be helpful
to examine Euler's argument for (a) in a little detail. Euler was

able to prove that if an equation is of the form

2 4 n 2n
(R) b0 - b1 X +b2 X - ... +(-1) bn x =0,

where the bj are real numbers, and if that equation has 2n different

roots, T -Tr r , -T_, then
n n

1) 'rln r2’ 2° ey

(A) b1 = b0 (l/ri + l/rg + ...+ 1/ri).

(The details of this proof are irrelevant.) Furthermore, Euler was

able to prove that if sin(x) = 0, then
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Since it was assumed that sin(x) = 0, Euler knew that (B) has the
roots: 0, w, -w, 2m, -27, ..., nm, -nm, ... . So, since (C) resulted
from (B) by dividing both sides of (B) by x, Euler was able to conclude
that (C) has the roots: w, -, 27, -2®, ..., nw, -nm, ... . But now
Euler noticed that if we let b0 =1, b1 - 1/31, b2 = 1/5¢, ..., (O

can be seen as an infinite version of (B). So since (B) leads to (A),

and (C) is an infinite version of (B), Euler concluded that (C), by

analogy, leads to an infinite version of (A), namely,

22

(D) = 1-(1/112 + 1/41r2 + 1/91t2 + ... % 1I/n"0 o+ L)),

1
31
Multiplying both sides of (D) by nz, we have

(E) n°=1+1/8+1/9+ ...+ 1/n% « ...,

6
that is, (a).
Euler had other means of verifying (a). He had ways of estimating
the value of w, and therefore the value of 12/6. He also had ways
of estimating the value of iﬂl/nz. As his estimations got more and
more precise, the two values, he noticed, converged. There was also

8 Steiner and Putnam claim

other convincing evidence that (a) held.1
that in light of the above argument and evidence, Euler knew (a) (that
is, (E)). 1In fact, they go further and claim that anyone who understands
this argument knows that (a) is true. However, at the time Euler made
this argument, neither he nor any of his contemporaries were able to

prove (a); and Steiner, we have seen, goes even further, suggesting

that there was no proof of (a) in Euler's theory of infinite summations.
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Thus, it is claimed it is possible to know a statement of mathematics

without there being a proof of that statement, and so it is possible
for a mathematical statement to be true even though it has no proof.
Steiner's argument seems to rely heavily on two important claims.
First there is the claim that Euler's argument establishes thdt (a) is
true, even though it is not a proof. Second, there is the claim that
mathematics at Euler's time is not essentially different from
mathematics as it is now insofar as there are still arguments made
today that establish statements as truths without being proofs and
therefore without being presentable as derivations. (cf. p.17) The
second claim is important; it allows us to conclude that at every stage

of mathematical development there will be known truths without proofs,

and that therefore formalizations of portions of mathematics should

not always satisfy (HC). It might be argued, for example, that at
Euler's time mathematics was in a state of ill repair in part because
arguments like Euler's were taken as establishing truths, while today
mathematics has entered the '"age of rigor'" in part because arguments
like Euler's are no longer taken as establishing truths. Euler's
argument, it might be argued, is a mere historical anomaly. Thus, it
might be hoped, Steiner's argument can be explained away. However,

if the second point is correct, Steiner's argument is not so easily
dismissed. Euler's argument is not an historical anomaly, but an example
of a method of argumentation that was in Euler's time, as it is now,

an accepted and justified part of mathematical practice. According

to Putnam and Steiner arguments that are not proofs are important parts

of mathematics.
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But why is Euler's argument not a proof? After all, if it is so
convincing that ''no mathematician doubted that the sum of l/n2 was
n2/6," and if it establishes (a), why is it not formalizable as a proof?
An argument, it is thought, is a proof only if it has a special sort
of form. To be a proof an argument must be of a form such that any
argument of that form with true premises has a true conclusion. Euler's
argument is not of such a form. The inference from (C) to (D) is an
inference based on analogy, not an inference based on form. Arguments
of the same form as Euler's can e constructed that have true premises
but a false conclusion. Thus, Euler's argument is not a proof, but
an argument by analogy.

An interesting question to ask, but one which I shall not pursue,
is whether the above argument that Euler's argument is not a proof
works. It is true that Euler settled on the inference from (C) to
(D) by analogy, that is, he infered (D) from (C) because he saw a
similarity between (C) and (a) and (A) and (D). But granting that he
settled on the particular inference he used by analogy, why can we
not still hold that that inference is an inference justified by the
forms of the statements in question, and thus that Euler's argument
is, in fact, a proof. I think this question can be rephrased as:
why pick one form over another when formalizing an argument? Why
not formalize Euler's argumenf so that any argument of that form with
true premises must have a true conclusion? Despite these (interesting)
questions, I shall accept Steiner's and Putnam's claim that Euler's
argument is not a proof. The questions raised in this paragraph call

into question the entire project of formalizing mathematics and cannot
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be addressed in this essay. (See above, pages 25ff , for a discussion
of related issues.) Furthermore, it does seem correct to suppose that
Euler's argument is not a proof.
Even if we deny that Euler's argument is a proof, however, we are
not committed to denying, as seen above, that there is a proof of (a)
in Euler's theory of infinite summation; and it is this latter claim,
as we have seen, that is needed to make what I called "Steiner's
argument'" against (HC). We need it to infer (4) from (3) (see page 144 ).
Steiner gives some reasons for denying that in Euler's theory of
infinite summation there is a proof of (a). He claims that Euler and
all working mathematicians at that time did not know much about
infinite summations. They had no consistent method of manipulating
equations involving infinite sums. In fact, Steiner notes, actual
mathematical practice at that time was so confused about equations
involving infinite sums that inconsistent results were commonplaces.
If the "rules'" accepted by Euler and his contemporaries for manipulating
equations involving infinite sums were formalized so that we had a
proof system for their theory of infinite summation, Steiner suggestslsa,
that system would be inconsistent. He claims that there is no
consistent way to formalize the methods of proof Euler and his
contemporaries used when dealing with infinite sums. Steiner therefore
concludes that Euler's argument cannot be understood as a proof, and
that there was no prouf of (a) in Euler's theory about infinite sums.
Steiner's claims, I think, exploit a confusion we have about
Euler's argument and Euler's knowledge at the time he made his argument.

If we look closely at Euler's and his contemporaries concept of
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infinite summation, it is not hard to see why they were unable to
manipulate consistently equations involving infinite sums and why they
were therefore unable to demonstrate that (a) is true. Mathematicians,

including Euler, at that time did not know what an infinite sum was.

They thought that infinite sums are essentially the same sort of items
as are finite sums -- only longer. It was not until later that a
consistent notion of an infinite sum was available. We now know that

(a) is true if and only if

() 1im (Z1/m%) - 7%/6
o

is true. According to what we now know, infinite sums are limits of
sequences of finite sums; they are not, as Euler thought along with his
contemporaries, very long sums -- sums that are too long to be finite.
Thus, Euler, at the time he made his argument, had a very different
conception of infinite sums from the one we now have -- a conception
of infinite sums that, ;s it turns out, is inconsistent. It is this
fact, I think, that makes us ready to assent to Steiner's claim (3),
the claim that Euler and his contemporaries were unable to prove (a).
How could they prove (a) if they did not know that (a) is true if and
only if (F) is true?

On the other hand, in the light of what we know about infinite
sums, Euler's argument and the supporting inductive evidence provide
good, convincing evidence for believing that (a) is true. Given what
we know about infinite sums and how to manipulate equations that

involve infinite sums, the reasons Euler gave overwhelmingly establish
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that (a) is true. But it is important to realize that part of what we
know about infinite sums is that (a) is true if and only if (F) is true,
and it is this fact in particular that leads to the belief that the
convergence of Euler's increasingly precise estimations of the two
sides of (a) is good reason for believing that (a) is true. The belief
that Euler's argument is good reason for believing (a), that in light
of the evidence given by Euler one can be said to know that (a) is
true, is motivated by what we know about infinite sums, not by what
Euler and his contemporaries knew about infinite sums; and, as it turns
out, part of what we know about infinite sums is how to prove that (a)
is true.

Try to imagine what we would think of Euler's argument if we
did not have a proof that (a) is true. Would we believe that (a) has
been established, that we know that (a) is true? Suppose we had a proof
showing that (a) is independent of everything we can prove about infinite
sums. Would we simply accept (a) without further ado? I do not think
so. We would, I think, try to find a new axiom about infinite sums
from which we could derive (a) and other similarly established equations.
We would only be satisfied that we know that (a) is true, I believe, if
we could find such an axiom. But once we have such an axiom, we have
the means for proving that (a) is true. This suggests, I think, that
we only take Euler's argument as good reason for believing (a) because
we are able to prove (a). We only think that Euler's argument establishes
(a) because we have a proof of (a).

Steiner says that Euler and his contemporaries had no proof of (a)
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because they d.] not understand enough about infinite summations to
prove (a). They thought that infinite sums were just very, very long
finite sums, and they treated infinite sums as such, obtaining inconsistent
results. We, on the other hand, now know that infinite sums are very
different sorts of intems from finite sums. Intinite sums are limits
of sequences of finite sums.19 Since Euler and his contemporaries did
not know what ir ‘inite sums are they had no proof of (a). But if they
did not know what infinite sums are, how did they know that (a) is
true? If they were so confused about infinite sums that they often
obtained inconsistent results by manipulating equations involving
infinite sums, why think that they knew enough about infinite sums to
know that (a) is true? In fact, given the incredible difference
between ocur understanding of infinite sums and the understanding had
by Euler and his contemporaries, why even think that when they used

the expression 'ngll/nz' they were referring to the same item we refer
to when we use that expression? What evidence do we have beside
typographic accidents that our use and their use of that expression

are at all similar? Taking these thoughts one step further, we have
the question: why think that, despite his argument, Euler knew that (a)
is true? Our reasons for thinking that Euler could not prove (a) appear
strong enough to warrant the claim that Euler did not uaderstand (a).
And it is a very small step from this claim to the claim that Euler
did not that (a) is true. So it looks like we might want to deny that
Steiner has provided an example of a known truth without a proof after
all.

We c2n now see clearly the confusion I earlier claimed Steiner's
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argument exploits. On the one hand, Euler had what we consider over-
whelming evidence that (a) is true. His argument and his approximations,
we would say, are good reasons for believing that (o) is true. On the
other hand, Euler could not prove (a) because, at the time he made his
argument, Euler was confused about what infinite sums are. Indeed, he
and his contemporaries were so confused about what infinite sums are
that, we might easily say, he did not understand (a), and hence he did
not know that (a) is true. It seems that Steiner's (and Putnam's)
conclusion is based on confusing what we would say about the evidence
provided by Euler's argument with what Euler and his contemporaries
would (and should) say about that evidence.

It is important to distinguish between what we would take as
overwhelming evidence and what Euler would take as overwhelming
evidence. The distinction is important because what is taken as over-
whelming evidence is a function of what is known, and what we know about
infinite sums is very different from what Euler and his contemporaries
knew about them. If this distinction and my argument is accepted,
then we have good reason for denying that Steiner has given an example
of a known truth of mathematics without a proof.

It begins to look as if Euler's argument cannot be taken as
establishing (a). This becomes even more plausible if we think about
arguments similar to Euler's but whose conclusion has been refuted.
m(x) is the number of primes less than x. For large values of x,

m(x) is approximately
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Sx dt
o log(t)
Hardly claimed that an extremely natural conjecture is

X
dt

(Con) m(x) < J log (t)
o]

and he pointed out that "Gauss and other mathematicians commented on
the high probability of this conjecture."20

The conjecture is not only plausible but it is supported

by all the evidence of the facts. The primes are

known up to 10,000,000 and their number at intervals up

‘to 1,000,000,000, and [(Con)] is true for every value

for which data exists.
Thus, there is extremely compelling evidence for (Con), evidence that
seems to establish (Con) just as stronglyas Euler's argument establishes

(a). But (Con), unlike (a), is false. It can be shown that for some

x less than

1034

10 -
10
the inequality in (Con) is reversed. (Hardy' claimed that this number
is the largest to have "ever served any definite purpose in mathematics.")
Such examples as this suggest, I think, that arguments like Euler's do
not establish their conclusion.
What then of the claim that quasi-empirical methods are used

commonly in mathematics? Are Steiner and Putnam wrong? No. It is

true that quasi-empirical methods are used in mathematics; however, the

proper interpretation of their role is, I think, different from that
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given them by Steiner. As already mentioned, it is possible to endorse
the view that quasi-empirical methods play an important part in mathematical
research without denying that their conclusions have no proofs. Indeed,
I believe the correct view is along such lines.
What Euler's argument shows is not that (a) is true, but that

there is reason to believe
(G) (a) has a proof.

Euler's argument, I think, confirms the claim that there is a way to

-]

use expressions like ' Eo [l/nz]' consistently so that they behave, in
n=

certain respects like expressions designating finite sums and so that

(a) is true. At most, then, after seeing Euler's argument we believe

(a) because that argument suggests that (G) is true. But this is by

no means to claim that a mathematical statement can be known to be true

even though it does not have a proof. For it is still imperative

that we find a proof of (a) before we can be said to know it.

I think it is fair to say, then, that Steiner's argument cannot
be used to refute (HC). So far, then, the Hilbertian argument for
Hilbert's thesis seems to work; we have not yet undermined its premises.
In the next section, however, I shall look at a standard criticism of

Hilbert's philosophy of mathematics, and we shall see that criticism

undermine the Hilbertian argument for Hilbert's thesis.

(v)

In the thirties and forties a series of results were obtained

showing that if T is any reasonably strong recursively enumerable set
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of true sentences of arithmetic, and if the predicate '  is-provable-
in-T' can be formalized as a Zl-formula, then a (maybe, the only)
reasonable formalization of the claim that T is consistent cannot be
proved in T. These results seem to demolish the motivation we had for
thinking that every logic used to formalize mathematics should be
complete and should have the Lowenheim property, two essential premises
of the Hilbertian argument for Hilbert's thesis. Hilbert, recall, was
led to claim that every logic used to formalize mathematics should
have the Lowenheim property for (basically) two reasons. Since he
thought that a mathematical theory is true if it is consistent (see
section one), he believed that in order to show that a mathematical
theory is true all we have to do is show that it is consistent. He
also believed that finitistically acceptable arithmetic was certainly
true and could be used to demonstrate the consistency of arithmetic.
Thus, according to Hilbert, arithmetic contains a certainly true
subtheory that can be used to demonstrate that arithmetic itself is
consistent, and hence, according to Hilbert, true. Arithmetic, he
thought, therefore, in a sense, secures itself. By then accepting
that every logic used to formalize arithmetic has the Lowenheim
property, Hilbert thought any part of mathematics could be shown
consistent by constructing for it an arithmetic model. 1In sections
three and four we saw how, in order for this view to begin to work,

it must be supposed that logic used to formalize mathematics be
complete. But then it follows from our definitions in chapter two
and the supposition at the beginning of chapter three that every set

of axioms be effectively generated that ' _ -is-provable-in-arithmetic'
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is formalizable as a Zl-formula. So by the results of the thirties

and forties, arithmetic cannot prove its own consistency; and so surely
finitistically acceptable arithmetic cannot prove the consistency of
arithmetic. It looks as if the Hilbertian argument for Hilbert's thesis,
therefore, fails for the same reasons that Hilbert's philosophy of
mathematics does. However, in the final, concluding chapter of this
essay, we shall see that there is a way of looking at the role of logic
so that the Hilbertian argument, despite the refutation of Hilbert's
philosophy of mathematics, does establish that, for some purposes, no

logic stronger than first-order logic should be used when formalizing

mathematics.
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Footnotes for chapter four:

1. McGuinness (ed.), Gottlob Frege, The Philosophical and Mathematical
Correspondence, op. cit., page 42.

2. P. Geach and M. Black (eds.), Trang{gtions f{gm the Philosophical
Writings of Gottlob Frege 3rd Edition, Rowman § Littlefield, Totowa,
New Jersey (1980), page 117.

3. McGuinness (ed.), op. cit., page 33.

4. See George Kreisel, "Informal Rigor and Completeness Proofs' in
Lakatos (ed.) Philosophy of Mathematics,

5. See Russell's communication to Frege in McGuinness, op. cit.
6. D. Hilbert, "On Infinity" in van Heijenoor, op. cit.

7. G. Boolos pointed out to me the following, plausible reason why
Hilbert (and others) thought that the set theoretic paradoxes
were the result of using transfinite notions and techniques
illegitimately. Inspection of, say, Russell's paradox shows that
no (genuinely) transfinite notions are involved. The axiom of
infinity, for example, is not needed to derive Russell's contradiction.
It, therefore, seems puzzling why Hilbert et. al. blamed the set
theoretic paradoxes on the transfinite. Boolos suggests that
they were still suffering from the paradoxes of analysis
surrounding infinite series and summations and that they, there-
fore, concluded that the set theoretic paradoxes, similarly,
resulted from an illegitimate use of transfinite methods.

7a. Note that this inference would be legitimate if there were a
set containing every set. In that case we might let B be

that universal set: Then YyeB can be rewritten as Vy. So
we know that for every y, we can find a set, A, such that

(dxeA) (Vy) [yex<y(y)]
But then every instance of (1) is a truth.
7b. And the paradoxes of analysis; see note 7a.

8. See W.W. Tait, "Finitism'", Journ:! of Philosophy (1981).

8a. See Hilbert's '"On Intfinity'", op. cit., page 378.

9. Ibid.

9a. In a suitably generalized sense; i.e., unlike in Chapter 2,
languages may contain operation symbols.
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10. As in chapters one and two, I am supposing that = is a logical
constant.

10a. In a sense suitably generalizing definition 10 of chapter two.

10b. For purposes of definitiveness we might take Rohit Parikh's
system PB (see "Existence and Feasibility in Arithmetic'" Journal
of Symbolic Logic (1971)). PB is the subsystem of PA with the
following axioms:

(1) 0#s(x)
(2) s(x) = s(y) + x=y
(3) x=0 v (3y) (x=s(y))

(4) x+0=x

(5) x + s(y) = s(x+y)
(6) x+0=0

(7) +s(y) =(x - y)+ x

(én) A(OJ & (Vx) (A(x)*A(s(x))) ~ (¥x) A(x)
where A(x) contains only bounded quantifiers.

Of course, PB is not quite the system discussed in the text,
since (8n) and (3) are not ordinary sentences of arithmetic.

10c. But this leads to the following question®' if the Z,-valid
sentences are the real sentences of arithmetic, if they
capture the contentful part of arithmetic, what reason can
there be for going beyond the Zp-valid sentences? Why not
simply reject those statements ordinarily accepted by
mathematicians that are not expressible as Z,-sentences?
This is, in a sense, the line taken by the intuitionists,
although they deny that the Zp-valid sentences are all
the true contentful sentences of arithmetic.

10d. Parikh proves that exponentiation cannot be represented in
PB. He takes a non-standard model, N*, of Peano arithmetic,
lets a be an infinite integer in the universe of N* and
then considers the submodel, S, of N* whose universe is

A= {x in the university of N* | there is a standard k}
such that x<ak

S is a model of PB, but o is not in A, so exponentiation

is not represented in PB. Similarly, if we notice that

for each standard k, there is a standard r such that for all
a>r,ak=a!. we can see that the factorial function cannot

be represented in PB. (cf. note 10b)

10d'. G. Boolos pointed out to me the analogy between this sort of
treatment of non-finitist methods in finitary arithmetic
and the set theorist's treatment of classes.
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11. D. Hilbert "On Infinity" op. cit., page 378.
12. D. Hilbert "On Infinity'", op. cit., page 383.

12a. Ibid.

12b. That Hilbert knew this and accepted it can be seen by examining
"On Infinity" pages 384-5.

12c. W.W. Tait, op. cit.

12d. George Kreisel, "Informal Concepts of Proof" in Proceedings of
the Internation Congressof Mathematicians (1958).

13. Of course this is not a definitive argument. My inpterpretation
of Hilbert's philosophy of mathematics may be incorrect.
Indeed, as noted above, it is a bit anachronistic. However,
for our purposes in this essay, we can ignore the subtleties
of Hilbert exegesis.

14. Michael Detlefsen, "The Significance of Godel's Theorem", Notre
Dame Journal of Formal Logic.

15. See Leslie H. Tharp, '"Which Logic is the Right Logic'" in Synthese,
XXXI (1975), pages 1-21 for a very similar argument that
Hilbert's thesis is true.

16. See Steiner Mathematical Knowledge, op. cit. and Putnam, "What
is Mathematical Truth?'" in Mathematics, Matter and Method.

17. Putnam, op. cit.,- page 68.
17a. Ibid., page 76.

17b. Ibid.

17c. Steiner, op. cit., page 106.

17d. Steiner does not go on to conclude that the logic used to formalize
Euler's theory of infinite summation should therefore not be
complete. He does not consider this issue. Thus, I am taking
certain liberties with the phrase 'Steiner's argument'.

18a. Steiner, op. cit., page 106.

19. Of course, using non-standard analvsis, we might claim, infinite
sums can (consistently) be looked at as very, very long finite
sums; thus vindicating Euler's view. I shall, however, side-step
this issue by ignoring it; not because it is uninteresting or
false, but because I do not have the rorm to discuss it.
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20. See G.H. Hardy, Ramanujan, Chelsea Publishing Company, New York
(1940), pages 17ff. All references to Hardy are from this
book. I should mention that G. Boolos called my attention to

this example.
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Chapter 5

CONCLUSION

The results of this essay seem negative. I have scrutinized
several arguments purporting to show that formalizations of logic must
meet specified conditions, and I have, for the most part, rejected
those arguments as inconclusive. It is, however, traditional to try
to end a work on a positive note, and that is what I shall try to do
in this final (short) chapter. In the course of criticizing the
arguments of Chi_holm, Morley, Steiner, Hilbert and Dummett, several
themes have emerged -- themes that can be used as the beginning of
an account of the conditions formal logics used when formalizing
mathematics must meet. In this last chapter, I shall present these
positive themes, although, I should stress, the arguments I make and
the conclusions I draw must not be treated as if they are conclusive.

When I discussed the Frege-Hilbert controversy (see the end of
chapter three and the first two sections of chapter four), I noted
that Frege'sand Hilbert's disagreement resulted from their different
opinions about whether all formal sentences have (or can have) sense
independent of structures in which they are interpreted. Frege, I
noted, was commnitted to the claim that all formal sentences used to
formalize ordinary mathematical sentences and arguments have sense
independent of the structures in which they are interpreted. In fact,
it seems that, according to Frege, which structures are used to
interprete a given formal sentence depends on the sense of that formal
sentence. Recall that Frege criticized Hilbert's proof of the

independence of the parallel axiom because it presupposed that the
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parallel axiom can be interpreted in a structure in which there are no
Euclidean points, and such an interpretation, Frege thought, is contrary
to the sense of the parallel axiom.) Hilbert, on the other hand, denied
that all formal sentences used to formalize ordinary mathematical
senfences have sense independent of the structures in which they are
interpreted. I argied that (a reconstruction of) Hilbert denied that
some quantified formal sentences have any sense independent of the
structures in which they are interpreted.

Hilbert's and Frege's view on this matter can be contrasted by
comparing the following two quotations. One is from Fregel

The sentence is of value to us because of the sense that
we grasp in it.

The other is from Claude Chevalleyzz

... [0O]bjectivity is attained only in a pure symbolism,

in emptying symbols completely of all meaning.
According to Frege, I think it is fair to say, mathematical knowledge is
possible only if we are able to grasp the senses of relevant sentences.
The more clearly we express these senses, the less chance there is of
error and the more sure we can be of our results. For Frege, we can
say metaphorically, the sources of objectivity in mathematics are the
senses of the sentences of mathematics. For Hilbert, however, the
sources of objectivity are not the senses expressed, but the symbcls
used to express those senses. Hilbert's approach to formalizations,
as we have seen, therefore, stressed the syntactic aspects of a
formalization, while Frege was more concerned with semantical issues.

Hilbert tried to show how ideal sentences -- senseless sentences --



164

could be added on to what he thought was the contentful part of
mathematics -- finitistically acceptable number theory -- without it
being possible (syntactically) to derive a contradiction. Frege, on
the other hand, tried to construct formal systems that exhibit clearly,
precisely and unambiguously the senses of ordinary sentences of
mathematics. Both hoped ultimately to show that mathematical truths
can be known with certainty; but for Frege this involved expressing
senses as precisely as possible, while for Hilbert it involved studying
syntactic items with no regard to their senses.

These two different approaches towards formalizing mathematics,
I have argued, lead to different conclusions regarding Hilbert's thesis.
In section two of chapter three I interpreted Frege to be denying
that first-order logic should be used to formalize geometry. Expressions
like 'is a point', I interpreted Frege to claim, should have a
counterpart among the constants of the logic used to formalize geometry.
In a similar way, if we thought that the purpose of a formalization
is to express specified senses clearly and unambiguously, we might
deny that first-order logic should be used when formalizing other
portions of mathematics. In chapter one we saw several examples of
sentences and expressions -- used ordinarily by mathematicians --
whose senses cannot be captured by formulas of first-order logic.
Thus, a Fregean view of formalizations, a view that formal sentences
express senses, seems committed to the view that Hilbert's thesis is
false.

This peint can be made more strongly as follows. According to

Freges, the sense of a sentence is that part of its meaning that we
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grasp that allows us to calculate its  -th-value. So, if the purpose
of formalizing, say, arithmetic i ess the senses of the sentences
of arithmetic as clearly as possib. n formalizations of arithmetic

should display as clearly as possible a method (understood in a very
loose way) for calculating the truth-value of arithmetic sentences.

An axiom system is one way of doing this. If we specify a set of
axioms and a logic and say that an arithmetic sentence is true if and
only if it follows, using that logic, from those axioms, we have given
the outlines of a method for calculating the truth-values of the
sentences of arithmetic. There may be reasons for thinking that some
logics used in this way cannot be complete (although, as stressed at
the beginning of chapter three, we have every reason for hoping that
the logic used will be complete). For instance, it might be argued
that when formalizing arithmetic, when giving the outlines of a method
for calculating the truth-values of the sentences of arithmetic, the
logic used must be able to formalize the notion of finiteness; such

a logic, we know, is not complete. A Fregean view of formalizations,
then, can lead to the denial of Hilbert's thesis. The senses of
ordinary mathematical sentences cannot always be expressed using
first-order logic; to express those senses, then, a logic stronger
than first-order logic must be used.

Despite the fact that the senses of ordinary mathematical
sentences cannot always be expressed using first-orc:r formulas,
first-order logic retains a unique status. Even thougnh Frege
counted 'is a point' among the primitive expressions of geometric

discourse and treated it on a par with logical constants, like the
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coriunction and identity signs, he did not believe that 'is a point’

is a logical constant. We saw that, on one interpretation, Frege
believed that when geometric proofs are formalized, are presented as
sequences of sentences of a formal logic, the logic used should contain
a constant corresponding to 'is a point'; however, Frege did not
believe that geometric proofs are logical proofs nor did he believe that
theorems of geometry can be logically proved. On the contrary,
according to Frege, a major difference between geometry and arithmetic
is that the latter can be reduced to logic, while the former cannot

be. Thus, on Frege's view, geometry should be formalized using a
formal logic containing a constant corresponding to 'is a pcint'; but
this formal logic is not a formalization of logic, for 'is a point' is
not a logical constant.

In a similar vein we might say that some statements about
uncountable sets cannot be expressed using only first-order logic (in
light of the 5kolem- Lowenheim theorem)za, and that when formalizing
some sentences of mathematics Keisler's quantifier should therefore,
be used, although Keisler's quantifier is not a logical constant. We
might also say that some arguments of arithmetic can only be formalized
using weak second-order logic, even though some constants of weak
second-order logic are not logical constants. If we find this
view at all plausible, we cannot help but ask the following question:
which, if any, formal logic formalizes logic? That is, which, if
any, formal logic contains only logical constants as its primitives?

To pose this question is not, I think, to make merely a termino-

logical query. There are two distinct uses to which formal logics are
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put. On the one hand, we use them to express clearly the arguments

and statements made in ordinary mathematics. This is the Fregean view
of formalizations. However, there is another use to which formal logics
are put. Sometimes we use formal logics to analyze the arguments and
statements made in ordinary mathematics. If the question ''what, if

any, formal logic formalizes logic?'" is used to ask what if any formal
logic can be used to express all and only logical notions, I think it

is a terminological query. It is a matter of terminology whether or

not we call 'is a point' a logical expression when we are only concerned
with constructing a formal logic capable of expressing geometric
statements. However, if the question is used to ask which formal logic
is best used to analyze the arguments and statements of ordinary
mathematics, it is no longer about a terminological point. Rather, it
is a methodological query. It is a question about how fine we want

the details of an analysis of ordinary mathematical notions to be.

Let me call the first use of logic discussed above 'logic's
expressive use'" and the second use ''logic's analytic use.'" Frege, I
think, was primarily concerned with the expressive use of furmal logics.
When we are concerned with. the expressive use of a formal logic, it is-.an
.dmportant criticism to point to a statement (ordinarily expressed in mathe-
matics) that cannot be formalized using only formulas of that logic.
tiowever, when we are concerned with the analytic use of a logic, it is not
always a criticism to point to a statement (ordinarily expressed in
mathematics) that cannot be formalized using only formulas of that logic.
It might turn out that the best way *o study and analyze a notion is by
mears of a formal logic that does not have the machinery needed

to iormalize that notion. For example,
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first-order logic, as is well-known and as has been mentioned

repeatedly in this essay, contains no sentence true in all and only

the finite models of arithmetic. This, I have said, might be used as

a reason for denying that the arguments arithmeticians ordinarily

employ can always be formalized as sequences of sentences of first-
order logic. And so, if we are concerned with the expressive use of
first-order logic, we might deny that it should be used when formalizing
arithmetic. However, the fact that first-order logic contains no
sentence true in all and only the finite models of arithmetic is not a
reason for denying that first-order logic is the correct fosrmal

logic to use when analyzing the notion finite integer. A study of

first-order consequences of statements made using the notion finite
integer might be precisely what sheds the most light on that notion.

The first-order Peano axioms figure centrally in the analysis of
arithmetic notions, I think, for precisely this reason. We learn more
about our notion of a finite jinteger by studying what can and cannot be
derived from the first-order Peano axioms than we do by studying what
does and does not follow from the second-order Peano axioms. Furthermore,
that the Godel consistency sentence does not follow from (using first-
order logic) the first-order Peano axioms tells us more about the

strength of the notion finite integer than that the Godel consistency

sentence does follow from (using weak second-order logic) those axioms
along with a sentence stating that the set of predecessors of every
integer is finite4; and this suggests that when analyzing the notion
of a finite integer, first-order logic should be used. However, it

does not suggest that when using the notion of a finite integer, that
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is, when doing arithmetic, first-order logic is the strongest logic
that should be employed.

When analyzing notions, there may be reasons for excluding those
notions from the logic used; when employing those notions, there is no
reason for such measures. This distinction, I think, is often overlooked.
Often it is thought that because the former is true, the latter is as
well -- that because it is expedient to exclude a notion from logic
for purposes of analysis, the notion should be excluded from logiec when
it is employed. Thus, for example, Hilbert (correctly) studied and
analyzed transfinite methods using only finitary methods, but he (in-
correctly) thoughtcthat the content of all mathematics -- including those
parts using transfinite methods --.is found in that part of mathematics
that employs only finitary methods. However, there is no reason to
conclude that because (one of) the best way(s) to study transfinite

methods is to use only finitary methods, transfinite methods are only an

"ideal" part of out 10g1cal machinery.
If we distinguish the two uses to which formal 1og1cs can be
put -- if we distinguish between the analytic and the expressive use

of logics -- we can hold that although one formal logic may be adequate
for one task, it is inadequate for the other. A plausible claim, I
think, is that first-order logic is the most suited for analyzing

and scrutinizing the statements of ordinary mathematics, although it

is not always suited for expressing clearly and presenting precisely
the statements and arguments of ordinary mathematics. Indeed, I

think the Hilbertian argument for Hilbert's thesis shows that no

logic stronger than first-order logic should be used to analyze the
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statements of mathematics.

Two premises figured prominently in the Hilbertian argument for
Hilbert's thesis: the claim that every logic used to formalize a portion
of mathematics should be complete ((HC)), and the claim that every
formalization of a mathematical theory should have an arithmetic model
((Arithmetic's Priority)). As stressed in the beginning of chapter
three, completeness of a logic is always desirable; every thing being
equal, we would like to be able to generate effectively the valid
sentences of a logic. This is especially true if we are primarily
interested in the analytic use of a logic; the only reasons given above
for denying (HC) were motivated, I think, by concentrating on the
expressive use of logic. Frege, we saw, would deny that logics used to
formalize mathematics should always be complete because some notions
cannot be expressed using a complete logic, not because some notions
cannot be analyzed using complete logics. Steiner's argument against
(HC) also turned on an emphasis of the expressive use of logics. That
argument, recall, was that (HC) is false because there are truths
with no proofs, and if we use a complete logic to formalize a mathematical
theory, every valid sentence of that theory will have a derivation.

But if we emphasize the analytic use of a logic, there is no reason
why we should think that every truth must be expressible as a valid
sentence of the formalization in question, and so, in this light,

Steiner's argument seems superfluous. If we emphasize the analytic
use of formal logics, there is no reason for denying (HC); and since
it is always desirable to use complete logics -- for any purpose --

if possible, all logics used to analyze mathematical notions should be
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complete.

Emphasizing the analytic use of formal logics also makes
(Arithmetic's Priority) seem plausible. When analyzing notions, it
can be argued, the objects presupposed should be as clearly understood
as possible. The natural numbers are without doubt the most clearly
understood mathematical objects.5 It seems reasonable to insist, then,

that formalizations of mathematical theories, for the purposes of

analysis, should have arithmetic models.6 Thus, if we emphasize the
analytic use of formal logics, the Hilbertian argument for Hilbert's
thesis is cogent.

Perhaps a good way to conclude this essay is by claiming that
whether we accept Hilbert's thesis or not depends on the use to which
we intend to put a formal logic. If we are interested in an analytic
use, no logic stronger than first-order logic should be used; if we
are interested in expressive uses, logics stronger than first-order
logic may (and, if Frege is right, should) be used. Such a conclusion
is supported by the following considerations.

There is no more doubt that the Godel consistency sentence is
true than that the first-order Peano axioms are true. Yet the former,
as is well-known, does not follow from the latter (using first-order
logic). There is a tendency to conclude that what we have to do is
add the Godel sentence to the first-order Peano axioms to obtain a
better formalization of arithmetic.7 But this, I think, is the wrong
way to look at the situation. Our reasons for believing that the Godel

sentence is true are not independent of our reasons for thinking that
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the first-order Peano axioms are all true. Rather, the grounds for

one are the grounds for the other. We know that the Godel sentence is
true, because the first-order Peano axioms are truths and from truths
only truths can be derived (using first-order logic).8 Once we accept
the first-order Peano axioms, we must accept the Godel consistency
sentence (although, as it turns out, not on pain of (first-order)
inconsistency). Our grounds for believing the Godel consistency sentence
just are our grounds for believing the first-order Peano axioms, namely,
our notion of a finite integer and our techniques for using that notion
to obtain truths. The fact that those grounds yield, on the one hand,
the first-order Peano axioms and, on the other hand, the Godel consistency
sentence and that using first-order logic we cannot derive the one

from the other tells us something interesting and important about our
notion of a finite integer; it shows us just how strong that notion is.
But it does not call into question the coherence of our notion of a
natural number, nor does it cast doubt over our techniques for using

that notion to obtain truths.

The conclusion of this essay can be painted in broad strokes and
points the way for further research. The Hilbertian argument for
Hilbert's thesis, I think, shows that first-order logic is the maximal
logic that should be used when analyzing mathematical notions, but it
does not show that first-order logic is the maximal logic that should
be used when expressing statements of mathematics. On the other hand,
the Fregean considerations of chapter three suggest that first-order
logic should not always be used when expressing mathematical statements,

but they do not show that a logic stronger than first-order logic
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should be used for analyzing those statements. In this way, I think,
a niche can be found for Hilbert's thesis in the philosophy of

mathematics.



174

Footnotes for chapter five:

3a.

See above in chapter three.

Claude Chevalley, On Herbrand's Thought in W. Goldfarb (ed.)
Herbrand's Logical Writings.

See Dummett's Frege: Philosophy of Language for an excellent
discussion.

Here I am using 'express' in a very strong sense so that for
example, a sentence expresses that statement that every number
is finite if and only if it is true in all arithmetic models
whose universes contain no infinite integers.

G. Boolos put the matter this way.

This is not to say that there are not problems with understanding
what the natural numbers are, only that they are the best
understood of the objects of mathematics. See L. Wetzel's
forthcoming dissertation.

In fact, this accords with much mathematical practice. The
rationals are often analyzed as ordered pairs of naturals,
and the reals are analyzed using rational approximations.

I know there is this tendency because I exhibit it.
Compare Frege's criticism of Hilbert discussed above in section

two of chapter three. Also see J. Myhill, "Remarks on the
Notion of Proof'" Journal of Philosophy, July 7, 1960.
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