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ABSTRACT

In this dissertation I discuss Hilbert's thesis, the thesis
that all acceptable mathematical arguments can be formalized using no
logic stronger than first-order logic. In the first chapter, I present
and criticize an argum~nt for Hilbert's thesis that is often found in
the literature. The argument concludes that Hilbert's thesis is true
since all mathematics is reducible to set theory and set theory is a
first-order theory. I argue that the reduction mentioned is not enough
to establish Hilbert's thesis unless we presuppose that Hilbert's thesis
is true.

In the second chapter I abstractly characterize logics and proof
procedures. I then state Lindstrom's theorem (the theorem that, roughly,
first-order logic is the only logic for which the completeness and
Skolem-Lowenheim theorems are true) u5ing these characterizations of
logics and proof procedur~s.

In the third chapter, I look at some common philosophical reasons
for thinking that any logic used to formalize a mathematical theory should
satisfy the completeness theorem. Then I examine the Frege-Hilbert
correspondence and show how Frege's position in that correspondence
entails that the logic used to formalize Euclidean geometry should not
be complete. I end by using Frege's position to criticize again the
argument for Hilbert's thesis discussed in chapter one.

In the fourth chapter, I reconstruct Hilbert's philosophy of
mathematics using notions from contemporary mathematical logic. I
then use this version of Hilbert's philosophy and Lindstrom's theorem
to argue that Hilbert's thesis is true. Then I examine this argument in
light of (i) the use of non-deductive methods in mathematics and (ii) the
standard refutation of Hilbert's program.

In the fifth chapter, I offer some speculative conclusions. I
make a distinction between two uses of a formal logic and show how the
argument for Hilbert's thesis described in chapter four can be used in
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light of this distinction.
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If you ask what constitutes the value of mathematical
knowledge the answer must be: not so much \~hat is known
as how it is known.

--G. Frege
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INTRODUCTION

Although this essay is about what has been called "Hilbert's thesis",

it is with Frege that we should begin. Frege attempted to formalize

mathematics: he invented a formal language and then tried to express

truths of mathematics by using formulas of this language and to prove

theorems of mathematics by constructing sequences of formulas of his

artificial language. In this way he hoped to express the truths of

mathematics precisely and to prove ~he theorems of mathematics rigorously.

Russell noticed l that "a great deal of the [mathematical]

argwnentation [he] had been told to accept was obviously fallacious."

Frege held a sinlilar view. In part, Frege hoped to clean up mathematics.

Natural languag~,he thought, are not suited for scientific discourse;

they induce mathematical error. Frege, therefore, tried to constr~ct

a language, in which we can do mathematics, that does not share the

vaguenesses and ambiguities of ordinary languages. In such a language,

he hoped, mathematical results could be formulated more precisely,

although perhaps less concisely. In this way, he thought, error could

be removed from mathematics.

Unfortunately, Frege's formaliza~i0n did not result in a mathematics

without error. Some of the sentences of his formal language that he

thought express truths in fact express falsehoods. Thus, not only did

mathematic~ _,ave to be clean .ed up by means of a fonnalization using

Frege's formal language, but there were errors in the resulting formalization

that also had to be removed. The removal of these errors led to the

construction of new sorts of formal systems: type theories and set
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theories. The proper formalization of mathematics, it is now claimed,

is not by means of a Fregean fonnal system~ but by means of a set theory

3or a type theory~

Contemporary interest in Frege's work has t\~O sides. First, there

is a technical and :1istorical inte"rest in Frege' 5 fonnal language (s) .

The language Frege described in the Bcgriffschrift
2

is one of the first

examples of a formal language. Furthennore, Frege presented one of the

first systems of quantification theory as we know it. Second, there

is interest in Frege's programmatic attempt to express and to prove

mathematical truths using a fornlal l,\nguage. Frege was the first to

construct a formal language in which ,a significant portion of mat.hematics

can be expressed and proved.

In this dissertation, I shall begin examining a principle that is

endorsed by Frege and by his critic51 who prefer either a set theoretic

or a type theoretic formalization of mathematics. All hold that

mathematical results are expressed and proved in an imprecise language

and that theorems of mathematics might be expressed more precisely

and proved more exactly if a formal l,anguage is used. They then go on

to conclude that there is one formal 1.anguage adequate for this task.

According to Frege, this formal language is a version of the concept

script; according to his critics, it i:; the language of set theory (or

a version of type theory). I shall be interested primarily in a view

associated with Frege's set theorist critics. It is the view that

the informal and imprecise notion of proof, &s used in mathematics,

is fonnally and precisely represented by the technical notion of

first-order proof. This view is called by M. Davis "Hilbert's thesis".
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My dissertation divides naturally into four parts. In the first

part I formulate Hilbert's thesis and present several examples of state

m~nt5 that cannot be expres5ed using only formulas of first-order logic.

I argue, however, that first-order logic's limited power of expression

is not enough to refute Hilbert's thesis. I then examine an argument

for Hilbert's thesis that is often found in the literature. The

argument concludes that Hilbert's thesis is true using the claim that

all mathematics is reducible to set theory. I point out a circu13rity

in this argument by showing that the sort of reduction mentioned is

not enough to establish Hilbert's thesis unless we presuppose that

Hilbert's thesis is true.

The second part is a technical discussion of several notions

involved in the formalization of a mathematical theory. I carefvlly

formulate an abstract characterization of logics and define what can be

called "Lindstrom logics". Then, after presenting an abstract

characterization of proof procedures, I state Lindstrom's theorem, the

theorem that, roughly, first-order logic is the only logic for ~Ihich

the completeness and Lowenheim-Skolem theorems are true. The3e technical

details are important, since they are used in the third and fou~rth

parts of this dissertation. The reader who is impatient with l'Dgic

is, however, acivised to move on to the third and fourth parts of this

essay, referring back to this technical part as needed.

In the third part, I look closely at some philosophical reasons

for thinking that any logic used to formalize mathematics should be

complete. I conclude that the more common reasons are not entirely

compelling. Then I examine the Frege-Hilbert controversy about the

possibility of proving the independence of the parallel axiom from the
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other axioms for Euclidean geometry. I show how Frege's position in

this debate presupposes a conception of logic according to which the logic

used when formalizing Euclidean geometry is not complete. I ~onclude

by pointing out the consequences of Frege's view as it relates to the

disc~ssion of Hilbert's thesis in chapter one.

Finally, in the fourth part of this dissertation, it is seen that

Hilbert's thesis has the right name. I construct an argument for

Hilbert's thesis using principles of a version of Hilbert's philosophy

of mathematics and Lind;.:trom's theorem. I conclude with an examination

of the status of this argument in light of (1) the use of non-deductive

methods of argumentation in mathematics and (II) the standard refutation

of Hilbert's program.

A word about methodology: in this dissertation I talk unhesitantly

of numbers, sets, structures, standard models, Euclidean points and a

host of other abstract objects. This may trouble those readers with

nominalistic scruples. But that is all right. I am not doing ontology

and thus feel free to quantify over all abstract objects matter-of-

factly discussed by mnthematicians.

Footnotes:

1. Bertrand Russell, Autobiography.

2. G. Frege, Begriffsschrift, eine der arithmeticshen nachgebildete
Formelsprache des reinen Denkens, 1879.

3. Although the attempt to formalize mathematics using type theories may
seem archaic to some readers, I mention them in light of the work of
S. Feferman. See "Theories of Finite Type Related to Mathematical
Practice" in the Handbook of Mathematical Logic as well as the
promised Explicit Content of Actual Mathematical Analysis.
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Chapter 1

MATI-fEMA'rICS ~ SETS AND PROOFS

(i)

A good way to begin our discussion is to consider an argument

accepted by mathematicians as establishing that

(Propositional) For every ring there is exactly one unital
morphism

is true. A unital morphism, ~, is a morphism from the integers into a

ring, R, such that

(1) u(a) + ~(b) = ~(a+bJ

(2) ~ (a) • lJ (b) = lJ (a -b)

(3) lJ(l) is the unit element of R.

The argument is due to MacLane and Birkhoffl and is as follows:

We have just sho~~ that the only possible choice for
~ is u(n) = n 1', where l' is the unit for R. The
function lJ so defined is clearly a morphism of
addition and of units. To show it a morphism of
multiplication, we need only show

(m l')-(n 1') = (m-n) l' m,nEZ (7)

If m is non-negative, this may be proved by induction.
Indeed, (7) is immediate for m=Q, so make the
induction assumption that (7) holds for some m>O
and all n. Then

((m+l) I'-(n 1') = (mI'+l')-(nl')
= (mII)-(nl') + nIl
= (m-n)I' + nl'
= (m-n+n)l' = ((m+l)-n)l'
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This is (7) for (m+l), so the induction is complete.
Finally if m is negative, (7) follows from the case
when m is positive by Rule 3 above.

[Ru 1e 3 is: For a 11 a, bin R, (-a) •b= - (a· b) ]

Why is this argument a good mathematical argument? Why is it that after

studying MacLane's and Birkhoff's argument, anyone familiar with rudimentary

algebra would accept proposition I? Why does MacLane's and Birkhoff's

argument establish that proposition 1 is true? The answer to all these

questions is, of course, that their argument is a proof. MacLane and

Birkhoff have proved that for every ring there is exactly one unital

morphism. This accords ~ith the quite plausible view that a mathematical

argument is a good arg'Jrnent only if it is a proof. As Putnam has put

. 2
It :

It does seem at first blush as if the sole method that
mathematicianS-do use or can use is the method of
mathematical proof ...

Putnam, as we shall see, goes on to disavow this view about the

mathematician's methods, and in chapter 4 I shall discuss his argument

in some detail. Nevertheless, he does note that there is a (seemingly)

plausible view according to which all good mathematical arguments

(whatever it may mean to call an argument 'good') are proofs and

according to which when we try to solve mathematical problems, we look

for proofs. If we Woolt to know whether a mathematical statement, ~,

is true, according to this view, we see whether we can prove it. If

we come up with a proof of ~, we know that it is true. If we come

up with a proof of the negation of ~J we know that ~ is false. If we

find neither a proof of ~ nor a proof of the negation of ~, we withhold
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judgment. But just what is involved when a mathematical statement is

proved? What is a proof?

Putnam continues3 his description with

... and as if that method consists simply in deriving conclusions
from axioms which have been fiyed once and for all by rules
of derivation which have been fixed once and for all.

This leads directly to a view About proofs that has become standard,

according to which proofs are sorts of sequences of sentences. In

particular this standard view has it that

(5VP) A proof is a sequence of sentences every member
of which is either an axiom or follows from
earlier members of the sequence by a rule of
inference.

is true. According to the standard view of proofs, then, two conditions

must be met by all proofs. They must, first, be sequences of sentences

of some correct kind of language using the (or some) correct rules of

inference. Proofs must also only mention the (or some) correct axioms.

There is an obvious pr0blem with (SVP) that should be mentioned now.

The standard view of proofs apparently violates our ordinary use of

'proof'. I called MacLane's and Birkhoff's argument a proof unashamedly.

I said that their argument is a good argument because it is a proof.

However, it is, I think, clear that MacLane's and Birkhoff's argument

is not a sequence of sentences every member of which is either an

axiom or follows from earlier members by means of a rule of inference.

In the first place, MacLane's and Birkhoff's argument is not a sequence

of sentences; rather, it is a paragraph of English augmented with a few

technical symbols. Sequences, we know, are a sort of set, and every
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sequence of l~ngth greater than one contains some set or other. Paragraphs,

however, do not contain sets; they contain sentences organized according

to, among other things, stylistic considerations. So MacLane's and

Birkhoff's argument is not a sequence; hence, by (SVP) , their argument is

4not a proof. So (SVP) and our ordinary use of 'proof' conflict.

'~ere is, of course. an obvious thing that can be said in defense

of (SVP) and in response to the above objection. The fact that MacLane's

and Birkhoff's argument is a paragraph of English augmented with a few

technical symbols is (merely) a matter of presentation, of the way in

which their proof is displayed. In fact, if necessary, we can present

the argument so that it is a sequence, not a paragraph. '\'e can take

MacLane's and Birkhoff's argument to be the sequence whose first member

is the first sentence occurring in the paragraph displayed above, whose

second member is the second sentence occurring in the paragraph displayed

above, and so on. Thus, we can correctly and in consonance with (SVP)

call MacLane's and Birkhoff's argument a proof. We can say that.

strictly speaking, their argument is a sequence, although for reasons

of style it is presented as a p2ragraph of English.

If we accept the response of the last paragraph -- and, I think, it

is reasonable to do so -- we still have problems with the views that

MacLane's and Birkhoff's argument is a proof and that (SVP) is true.

Consider

(i) If m is non-negative, this may be proved by induction,

the fourth component of the sequence obtained above. It is not an axiom,

nor does it follow from the first, second and third components of that
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sequence by means of a rule of inference. Rather the function of (i) is

to make clear to the reader what sort of argument is needed to establish

what MacLane and Birkhoff call (7). The next three sentences describe

in some, but not all, detail how this argument looks. Thus even if we

present MacLane's and Birkhoff's argulnent as a sequence -- the suggestion

made in the previous paragraph -- according to (SVP), their argument is

not a proof. \Vhat are we to say, then, about ~1acLane's and Birkhoff's

argument?

! think we should say exactly what we thought should be said about

MacLane's and Birkhoff's argument. Their argument is a proof, even

though it is not a sequence of sentences every component of which is

either an axiom or follows from earlier components by a rule of inference.

What this means, of course, is that the standard view of proofs is just

plain wrong. What might attract so~eone to the standard view of proofs,

despite the fact that it conflicts with our usual use of 'proof', is

the conviction that every proof can be rewritten rigorously and precisely

as a sequence of sentences each component of which is either an axiom

or follows from earlier components by means of a rule of inference. It

is, I think, the beliefs that mathematics is a rigorous science and that

every (acceptable) argument of (informal) mathematics can be formalized

or made more precise -- that lead to the identification of proofs with

sequences of a certain sort. We b61ieve that the arguments and theorems

of mathematics are such that "there is a fairly simple axiom system

from which it is possible to derive almost all mathematical theorems

and truths mechanically.IIS So, if we formalize MacLane's and Birkhoff's

argument, it can be claimed, we will obtain an argument that is a proof

in the sense given by (SVP). It is the conviction that (acceptable)
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mathematical arguments can be formalized that is behind the standard

view of proofs.

It is also the conviction that mathematical arguments can be formalized

that leads to the belief that not only can acceptable mathematical

arguments be presented as the right sort of sequences of sentences, but

that acceptable mathematical arguments can be presented as the right sort

of sequences of sentences of the right sort of language. After all, if

mathematics is truly a rigorous science, then not only should it be

possible to recast the arguments of mathematics so that they are sequences

generated in the correct way from axioms and rules of inference, but it

should also be possible to express the statements of mathematics in a

language in which there are no ambiguities and for which there can be no

doubt when a given rule of inference applies. An extended quotation from

Wang makes clear this sentiment:

Language is employed for expression and communication of
thoughts. Failure in communication may either be caused
by inadequate mastery of the language, or by internal
deficiencies of the language ... Language is also sometimes
used for talking nonsense. Here again certain languages
just seem to offer stronger temptations for doing so.
And sometimes the language user is not careful enough,
or he merely parrots others. In such cases he does not
have thoughts ... to express, and there is, of course, no
question of correct communIcation. A less serious disease
is confused thinking, often involving internal inconsistency.
This again is sometimes the fault of the language, such
as the ambiguity of words and a misleading grammar. 6

Wang then goes on to claim that

the creation of an ideal language would yield a solution
of these difficulties once and for all. Such a language
should be so rich, clear, and exact as to be sufficient
both for expressing all thoughts ... with unmisunderstandable
clarity, and for precluding nonsense. 7
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Thus, the belief that mathematical arguments can be reformulated so that

they are rigorous and precise leads directly to the view that, in addition

to being sequences of sentences every component of which is either an

axiom or the result of applying a rule of inference to earlier components,

formalized mathematical arguments have as components sentences of some

ideal, formal (or 3rt~ficial) language.

Let me call such sequences ~erivation~. Then the view that should

replace (SVP) is that all acceptable arguments of (informal) mathematics

are proofs and that proofs can be formalized as derivations. I shall

call this view Leibniz's thesis. It is stated again for future reference:

(Lei bni z IS

thesis)

(i) Every acceptable argument of (informal)
mathematics is a proof;

and
(ii) Every proof can be formalized as a derivation.

Leibniz's thesis is, I think, generally accepted -- both by the mathematical

community and, with some notable exceptions8 • by the philosophical

community. Claim (ii) of Leibniz's thesis is endorsed by writers like

. h · 9 hSteiner J W 0 claIms t at

proof is formal proof. Arbitrarily we pick a system -- Church's
"appl ied fi rs t -order funct i anal ca leu1us. " l'hen, proof is
proof from premises ... in Church's sense. Usual usage is looser ...
because informal arguments are universally described as
proofs ... [T]he mathematical community ... has been persuaded
that no proof is rigorous if not "formalizable" ... [It is
agreed that] nothing is a proof if not formalizable.

Steiner goes on to claim that derivations are "the Platonic ideal in

virtue of which the informal argument is valid." (It should perhaps

be noted that although we have seen Steiner endorsing claim (ii) of

Leibniz's thesis, he does not, in fact, endorse claim (i). As will
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become clearer in chapter four, Steiner holds that there are acceptable

arguments in informal mathematics that are not proofs. These are arguments

that have the same structure as the ordinary inductive arguments found

in empirical sciences.)

According to Leibniz's thesis, although the actual arguments made

by mathematicians are not derivations, they might be. If we wanted to,

we could construct from, say, MacLane's and Birkhoff's remarks, a sequence

of sentences of a formal language every component of which is either an

axiom or follows from earlier members of the sequence by a rule of

inference. lO The ar~Jments n.athematicians ordinarily use playa dual

role; not only do they convince us that a given theorem is true, they

also indicate how to construct a derivation of (a formalization of)

that theorem.

Now Leibniz's thesis tells us nothing about which rules of inference

and which formal languages are to be used when formalizing the arguments

of informal mathematics. In fact, consistent with Leibniz's thesis

is the claim that there is more than one formal language that can be

used to formalize given arguments of informal mathematics, and ~hat,

similarly, there may be more than one set of rules of inference. All

that Leibniz's thesis entails is that for any given argument of informal

mathematics there is a formal language and a set of rules of inference

that can be used to formalize that argument. If we add to Leibniz's

thesis the claim that only one formal language and only one set of

rules of inference are needed to formalize adequatelyll all mathematical

arguments. we have
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Leibniz's thesis is true

There is a formal language and a set of rules of
inference that can be used to formalize adequately
all proofs.

I shall be especially interested in one version of Frege's thesis called

Hilbert's thesis. It is, roughly, the view that all arguments of informal

mathematics can be formalized adequately using only the first-order

predicate calculus. As Barwise l2 described it. Hilbert's thesis is the

view that

... there is no logic beyond first-order logic in the sense
that when one is forced to make all one's mathematical
(extra-logical) assumptions explicit, these axioms are
always expressible in first-order logic, and that the
informal notion of provable used in mathematics is
made precise by the formal notion provable in first-
~der.logic. '

Three warnings should be given, perhaps unnecessarily. Leibniz's

thesis was not explicitly endorsed by Leibniz, and Frege's thesis was

not explicitly endorsed by Frege. Nor was Hilbert's thesis explicitly

endorsed by Hilbert. However, as we shall see, reasons for endorsing

Hilbert's thesis can be extracted from Hilbert's philosophy of

mathematics.

Also, I have formulated Leibniz's thesis, Frege's thesis and

Hilbert's thesis so that we may see the steps of presuppositions behind

Hilbert's thesis, and so that, in the future, we may see what arguments

for and against Hilbert's thesis are supporting or attacking. After

the next chapter we shall be able to formulate more technical versions

of these theses. The reader will have to wait until then to resolve

any questions that may seem to derive from the vague form in which these
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theses have been stated.

(ii)

There are plausible reasons for denying Hilbert's thesis. The

limitations of a first-order language's powers of expression" have often

been pointed out. In addition, the most natural formalizations of

statements of elementary mathematics frequently are not first-order.

If we try formalizing MacLane's and Birkhoff's argument, for instance,

we soon find that using only first-order notation, although possible,

is unnatural and tricky. Expressions like "all morphisms" and "all

integers" suggest non-first-order formalizations, and MacLane and

Birkhoff, in the course of thei.r argument. seem to be quantifying over

morphisms and integers unhesitantly. Even proposition 1 seems to be

of a form that often defies first-order formalization. It looks as if

the form of proposition 1 is

(A) For every A. there is exactly one B,

and it is not difficult to see that (A) is a form with no first-order

13analog. For example, consider

(B) For every natural number, there is exactly one real
number.

(B) apparently is of the form (A); so if (A) had a first-order analog,

we should be able to formalize (B) using a formula. ~(N,R), of first-

order logic, containing only two non-logical constants. Now. (B) is

true if and only if there is a one to one correspondence between the

real numbers and the natural numbers. So (B) is true if and only if
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the cardinality of the set of natural numbers is at least as great as

the cardinality of the set of real numbers. Let ~ be a standard model

of the theory of real numbers. Then ~I= -~(NJR)J since in a standard

model of the real numbers there are uncountably many reals hut only

countably many naturals, and we have supposed that ~(N,R) is a

foramlization of (8). However, by a strong form of the downward

LOwenheim-Skolem theorem, there is a countable submodel,~', containing

any countable subset of ~J e.g., N, and for every first-order sentence,

I, if ~I= ~, then 6.' F "I. So Df.1= -'¥(N,R). But this is impossible as

there are countably many reals and countably many naturals in ~'. ~(N,R),

h f b f " d 14t ere ore, cannot e ITst-or ere So, it seems. no construction of

first-order logic is a formal analog of (A).

We cannot, however, conclude from this argument that proposition 1

is of a form with no formal analog among the formulas of first-order logic.

Proposition 1 can be understood so that it says the same thing as

(8') For every ring," there is exactly one unital morphism
of that ring.

(B') is not subject to the sort of argument that led us to conclude that

(B) is of a form with no formal analog among the formulas of first-order

logic. The fact that a particular unital morphism is a morphism ~f a

particular ring is crucial. We cannot define a unital morphism without

reference to a ring. So, propositionl, as it turns out, is of a form

that has a first-order analog. But what reason do we have for thinking

that every statement of ordinary mathematics that is expressed by a

sentence (apparently) having form (A) can be further analyzed so that it
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is expressed by a sentence of, for instance, form

(A') ror every A, there is exactly one B of that AJ

or of some other form represented by a first-order construction? No

obvious reason, I think, other than something like Hilbert's thesis;

although, as we shall soon see, there may be convincing, but unobvious,

reasons fur concluding that all admissible formalizations are first-order

formulas, and that, therefore J every statenlent of ordinary mathemat ics

can be expressed by a sentence having a form with an analog among the

formulas of first-order logic.

We do not have these sorts of worries, of course, if we are willing

to give up Hilbert's thesis. (A) has a formal analog among the formulas

of second-order logic. There is a second-order formula true in all and

only those structures, containing A's and B's, in which for every A

there is exact ly one B. Reading "Ax" and "Bx" for "x is an A" and "x is

a Brt respectively,

(C) 3 ~ [ (Vx) (Ax.....B~ (x)) & (V x ) (V y) ( lJ (x ) = lJ (Y) ..,.x=y)

& (Bx-+(;jZ £A ) (lJ(z) =x))]

will do. Thus, all statements expressed by sentenc~s having form (A) can

be expressed by formulas of second-order logic.

I should mention that (A) is not alone in this regard. There are

many constructions that we seem ordinarily to use, but that have no

first-order analogs. IS Perhaps the most famous is Frege's definition of

'ancestor'. An individual, x, is the ancestor of an individual, y,

just in case x is the parent of a parent of a parent of ... af a parent

of y. So, it seems, we should be able to define the relation ~s an
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ancestor of in terms only of the relation is ~ parent of. No such

definition is possible, however, using exclusively first-order notation.

But if we use second-order class variables, we can define is an ancestor

in terms of is a parent of without using any other non-logical constants.

We can say that x is an ancestor of y if and only if (i) x is not identical

with yand (ii) x is a member of every class, a, and z' is a parent of z,

then z' is a member of a. Thus, using second-order notation we can define

is an ancestor of in terms of is a parent of, in a (relatively) natural

way, even though no such construction is possible using only first-order

notation.

Similar remarks apply to the relation is identical with. Identity

has an odd status for logicians who accept Hilbert's thesis. On the

one hand, they want to count the identity sign as a logical constant, on

the same footing as 'and' and 'or'. On the other hand, since they endorse

Hilbert's thesis, they are unahle to define identity in terms of

obviously logical operations. Thus, they are forced to introduce

identity as a primitive logical operator.
16

No such problems face the

logician who denies Hilbert's thesis because identity can be defined using

second-order notation. we can say that an object, x, is identical with

an object, y, if and only if for all classes, a, x is a member of a if

and only if y is a member of Q. Thus, using second-order notation we

can see straightforwardly that identity is a logical relation.

Finally, it should be pointed out that general cardinality claims

cannot be made in a straightforward fashion using only notation belonging

to first-order logic.
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(C') There are just as many cats as dogs,

for example, is naturally fonnalized by, first, defining the relation

has as many members as (there are several standard ways to do this in

second-order logic)~ and, then, saying that ee') is true if and only if

the class of cats has as many members as the class of dogs. We can do

this straightforwardly using second-order logic, although there is no

obvious way to proceed using notation that is exclusively first-order.

I think that it is fair to conclude, in light of these sorts of

examples, that many natural constructions cannot be carried out in a

straightforward manner using exclusively first-order notation, although

they can be carried out using formulas from second-order logic.

In addition, the proof of proposition 1 also seems to resist

first-order formalization. We seem to need weak second-order logic or

w··logic, in order to formalize MacLane's and Birkhoff's argument

adequately. Consider its first sentence. The first sentence has

approximately the same meaning as "every function that is a unital

morphism takes n to the result of multiplying l' by itself n times".

This sentence seems most naturally formalized as

(D) (V~) (F~"'" (\ill) ().l(n)=nl')),

a sentence with not only functional quantifiers, but with quantifiers

ranging over natural numbers as well~ Furthermore, in order to make

sense of the notation "nI" , we must presuppose that there are natural

numbers distinct from the other elements in our universe of discourse,

for "nl'" is supposed to denote the result of interating multiplication

of l' by l' n- times, that is, nl' is
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1'·1'·1'· ... ·1'

n-times

and so the !lotation in question only makes sense if "n" refers to a

natural number. Thus, in order to understand the proof of proposition

1, we must suppose that the notion of a natural number is under-

stood; Maclane's and Birkhoff's argument presupposes facts about

the natural numbers. One might, therefore, expect the derivation

formalizing MacLane's and Birkhoff's proof to reflect this fact. To

do this, it is reasonable to suppose, weak second-order logic must

be used. The most natural formalization of MacLane's and Birkhoff's

proof, then, is a sequence of non-first-order formulas. 17

The sort of conside~ations raised so far suggest that

Hilbert's thesis is false. We have seen, for example, that no

formula of first-order logic can be construed as an analog of (A).

Since (B) appears to have the form (A), we might conclude that

(8) cannot be formalized into a formula of first-order logic.

This, in turn, suggests that Hilbert's thesis is false. since

(B) certainly looks like. the sort of sentence a mathematician

would use. This conclusion, however, is too hasty.
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What the argument following (B) shows is that if (B) must

be formalized by a formal analog of (A), then (B) cannot be

formalized using a formula of first-order logic. That argument

does not, however, show that the statement (B) expresses can be

expressed by no first-order formula. For example, we might

express that statement using the sentence letter 'p' by

insisting that 'pI is true in a model if and only if (B) is. 18

'p', however, is an admittedly poor formalization of (B),

and I do not think we would take the fact that we can express

the statement expressed by (B) using 'p' as good evidence for Hilbert's

thesis, or even for the claim that (B) can be formalized into a

formula of first-order logic. At least two sorts of

· d . · fl h· f fl· · 19conSl eratlons In uence our C Olce 0 orma lzatlons.



26

First, I think it is obvious that if $ is an adequate formalization of an

arbitrary sentence, V, then ~ must have the same truth conditions as V.

But this is not enough to justify the claim that" can be adequately

formalized a3~. Not only must ~ and V have the same truth conditions,

but if W is an adequate formalization of V, then we think,' must be

structurally related to V in a natural way. It is the latter sort of

consideration that leads to the claim, in light of the argument following

(B), that (8) has no adequate first-order formalization. On the face

of it, (B) contains only two non-logical constants -- 'natural number'

and 'real number'. So, we expect (B) to be formalized using a formula,

~(N,R)J containing only two non-logical constants. But we can find no

such item, as we have seen, among the formulas of first-order logic, that

has the same truth conditions as (8). (It can, of course, be claimed

that if we fix the interpretation of N and ~, then we can find such an

item among the formulas of first-order logic. More about this sort of

consideration will be discussed as we go along. For the moment let us

adopt the view that Nand R do not have fixed interpretations.) It is

for this reason that we conclude (B) has no first-order formalization.

What it means to say that an adequate formalization of a sentence

must be related to that sentence in some natural way is unclear. The

issues raised by such a claim are notoriously complex, and I do not

intend to pursue them here. I will suppose that we have a rough idea

of what it is for a formalization to be structurally related to a sentence

in a natural way we will not need anything but a rough idea, and

we will probably not even need that. But now let us ask, in light of

what has been said, why would anybody think that Hilbert's thesis is
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true? Given that the natural formalizations of such statements as (8),

apparently, are not first-order, what sorts of reasons can be given for

Hilbert's thesis?

Naturalness is not always a virtue. Philosophical considerations may

favor one formalization over another, even though the latter is a more

natural formalization than the former. We may have good reasons for

not formalizing a sentence in the most natural way. A good example of

philosophical considerations overriding considerations of naturalness

can be found in the work of Nelson Goodman. 20 Goodman, a nominalist,

is troubled by the use of class quantifiers. Nevertheless, he wants to

be able to formalize (e') (see above). So, Goodman proposes that instead

of the second-order formalization of (e'), we formalize (C') by first

noticing that it is true if and only if

(e") Everything of which every cat and dog is a part has
as wany cat parts as dog parts

is true. If we then introduce new relation symbols, 'H' and 'pi J inter-

preted as "has as many dog parts as cat parts" and "is a part of",

respectively, we can easily formalize (e") without using class

quantifiers. By similarly introducing new relation symbols, Goodman

claims, we can formalize every cl1.im making general cardinality

comparisons without using class quantifiers. The fact that these

formalizations of general cardinality claims are not as natural as their

second-order counterparts does not trouble Goodman; nominalistic

considerations, he thinks, outweigh considerations of naturalness. In

a similar fashion, it can be hoped, there may be philosophical reasons

for preferring, in general, first-order formalizations to more natural
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second-order formalizations, thus vindicating Hilbtrt's thesis.

It is often noted that we can dispense with non-first-order notation,

perhaps at the cost of naturalness, by using a first-order language with

one binary relation symbol, 'E'. For instance, something like '(3F)(F3)'

becomes '(3x)(3£x). Statements naturally formalized u:ing functional

quantifiers, like those occurring in (C) and (D) require a bit more

attention. For an example, consider

(E) There is a function that maps 0 to 1.

(E), I have suggested, would naturally be formalized as

( F) (3 ~ ) (IJ (0) =1) ,

a sentence with a second-order functional quantifier. We can, however,

using well-known techniques, formalize (E) as a first-order sentence.

First, as is usual, define the ordered-pair consisting of x and y, <x,Y>,

(in that order) as {{xl, {x,y}}. Next, define a function to be a set of

ordered pairs, a, such that whenever <x,Y>, <X,Z>Ea, y=z. Keeping this in

mind, we formalize (E) as

(F') (3x) (x is a function & < O,l>£x).

(F') is an abbreviation for a formula in the (first-order) language of

set theory. If we could find convincing reasons, then, for preferring

set theoretic to second-order formalizations, we would have the beginnings

of (one kind of) a defense of Hilbert's thesis.

We should conclude this section by noting that although not every

sentence ordinarily used by mathematicians has a natural first-order
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formalization, we can dispense with a large number of non-first-order

notations if we use the language of set theory, and since this language

is first-order, there is a sense in which sentences naturally formalized

using second-order quantifiers can be formalized without them. An

important thing to note about this point, though, is that 'E' must be

interpreted set theoretically.

(iii)

That there is a sense in which the use of non-first-order formulas

can be eliminated and statements expressed by non-first-order sentences

pa~aphrased by using first-order formulas of the language of set theory

is often cited as a point in favor of Hilbert's thesis. It is often

claimed that all of mathematics is reducible to set theory and that

since set theory is a theory in a first-order language whose only non-

logical constant is £, anything provable in mathematics is first-order

provable. This argument can be

foum in philosophical literature as well as in mathematical literature.

21Morley writes:

Another way to reduce mathematics to first-order logic is
to observe that:

(i) all mathematics can be reduced to set theory

and

(ii) the intuitive content of set theory is expressible in
a set of first-order axioms about the binary relation £.

I shall call this line of reasoning "Morley's argument", although I do

not mean to credit (or discredit) him as its originator. Others make

22
similar claims. Monk , for instance, asserts that first order proof
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... is our rigorous formulation of the intuitive notion of
a proof. In fact ... we consider mathematics itself to be
formalized on the basis of set theory .... Mathematical
language can be identified with a certain definitional
expansion of the language of set theory ... The axioms r
of mathematics are just the usual axioms of set theory
together with all the defined symbols ... lt is our
conviction that any mathematical proof can be expanded
somewhat routinely to eventually reach the form of a
formal [first-order] proof from r.

He then adds:

Of course this conviction is another instance ... of a
judgement of applied mathematics that is not subject
to a rigorous proof.

This dissertation will examine reasons for and against this judgement.

To evaluate Morley's argument we must look closely at the claim that

all mathematics is reducible to set theory. We have already seen that

there is a function mapping 0 to 1, in a sense, can be expressed in the

language of set theory. But the task of a reduction of mathematics to

set theory is not only to show how statements of mathematics can be

expressed in the language of set theory. Its task is also to show how

ordinary proofs of theorems of mathematics can be presented as -- or,

in ~1onk's words, "expanded ... to eventually reach the form of" -- a formal

derivation from the axioms of set theory. Quine
23

distinguishes betweeu

doctrinal and conceptual aspects of reductions. Showing how to reduce

the concepts of a scientific discipline to epistemologically sound

concepts is the conceptual aspect of a reduction. For example, if we

could show how to express statements about physical objects using only

terms referring to sense data, we would have reduced physical concepts

to phenomenal ones, and would have accomplished the conceptual aspect
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of a reduction. On the other hand, when we show how the truths discovered

by a group of scientists can be derived in an obvious manner from a set

of obviously true statements, we have reduced the doctrines of that science

to simpler ones and have accomplished the doctrinal aspect of a reduction.

Showing, for example, how to derive the truths of (Euclidean) geometry

from (Euclid's) axioms is the doctrinal aspect of a reduction.

It is worth our while to think carefully about these matters as they

reflect on claim (i) of Morley's argument, the claim that ordinary

mathematics can be reduced to set theory. On the one hand, we have the

ordinary statements and argumentation of mathematics. On the other

hand, we have a formal system, set theory, consisting of an infinite

set of axioms and rules of inference permitting the derivation of theorems

from those axioms. What would justify the claim that the former is

reducible to the latter? A little thought shows that three things are

needed. First, we need a set of reductive definitions. These would be

definitions of concepts of ordinary mathematics (like point, real ~umber

and group) in terms of concepts of set theory, that is, concepts that

can be defined using only £. (We might, of course, despair of ever

explicitly making these definitions; however, a sketch of how to go about

forming reductive definitions would, in most cases, do.) Second, we

need a set of instructions showing how to replace arguments of ordinary

mathematics with derivations in the language of set theory. (Again, a

sketch of these instructions might be enough.) Finally, we need some

sort of argument showing that, using the reductive definitions and the

instructions showing how to form derivations in the language of set

theory from ordinary arguments of mathematics, we can derive (set theoretic



32

statements expressing the) theorems of mathematics from the axioms of

set theory. We can call each of these three aspects of a reduction "the

conceptual aspect" J "the dialect ical aspect" J and "the doct rinal aspect",

respectively.

It must be stressed that conceptual, dialectical and doctrinal

aspects of reductions cannot be performed independently of one another. 24

Often OUT only reasons for thinking we have accomplished the conceptual

aspect of a reduction are the successes of the dialectical and doctrinal

aspects of that reduction. We might, for example, amend an apparently

good conceptual aspect of a reduction in order to make better the

dialectical and doctrinal aspects. Performed in a vacuum the conceptual

aspect of a reduction (and similarly for doctrinal and dialectical aspects)

may have no interest. This is not meant to deny that sometimes the

conceptual aspect of a reduction may be what we are mainly interested in;

however, the evidence for the adequacy of the conceptual aspect of that

reduction, in part, depends on the dialectical and doctrinal aspects.

Now, a reduction of mathematics to set theory, if it is to be used

as evidence for Hilbert's thesis, must not only show how the concepts of

set theory can be used to define the concepts of mathematics, it must

also show how the arguments of ordinary mathematics can be replaced by

first-order derivations from the axioms of set theory. For some purposes

only the conceptual aspect of a reduction of mathematics to set theory

is important; we can sometimes leave the dialectical and doctrinal aspects

of that reduction unclear. For example, if we want to provide mathematical

language with a formal semantics, we might be able to ignore the issues

raised by the doctrinal and dialectical aspects of a reduction of
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mathematics to set theory. We might only be concerned with giving set

theoretic truth conditions for given statements of mathematics. We saw

how to do this for statements about ordered pairs and functions. But

Hilbert's thesis is not only a claim about what sort of language must be

used in order to express statements of mathematics. It is a claim about

mathematical proofs. It, in part, is the claim that the informal notion

provable is formalized adequately by the notion ,first-order provable.

dfining mathematical concepts using sets and expressing mathematical

statements using the language of set theory are only the first steps

towards showing that ordinary arguments of mathematics can be presented

as formal derivations from the axioms of set theory; and it is this last

claim that justifies the conclusion that Hilbert's thesis is true given

claims (i) and (ii) of Morley's argument. The conceptual aspect of a

reduction of mathematics to set theory is only going to be evidence for

Hilbert's thesis if there is reason to believe that something like

(G) If~, an ordinary statement of mathematics, can be
expressed by If, a sentence' in the language of set
theory, then ~ is provable only if ~ is first-order
derivable from the axioms of set theory.

is true; and evidence for (G) can only be obtained through the dialectical

and doctrinal aspects of a reduction. Not 0nly must we show how to

construe functions as sets of ordered pairs and how to express statements

abou', functions using the language of set theory J if we are to j usti fy

Hilbert's thesis using Morley's argument, we must also show that

arguments that certain functions exist can be presented as first-order

derivations that certain sets of ordered pairs exist.

This last point is important, especially in light of Cohpn's
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and others' contributions. We know that some statements of mathematics

cannot be expressed ty sentences of the language of set theory that have

first-order derivations from the most obvious axiomatization of set theory,

ZF (or even ZF+Choice). If, for example. ZF is consistent (in the sense

that there is no derivation of some sentence from the axioms of ZF), then

there is no derivation from the axioms of ZF of (the sentence expressing)

the statement that there is a dense linearly ordered set such that each

collection of disjoint open inteI~als is at most countable, and there is

no derivation of the negation of this statement. This is known as

Suslin's probjem. In 1920 Suslin asked whether every linearly ordered

set that is dense and unbounded (that is. for every a, b, if a<b there

is a c such that a<c<b and there is no greatest and no least element),

complete (that is every Cauchy sequence has a limit) and satisfying the

countable chain condition (that is, every collection of disjoint open

intervals is at most countable) is isomorphic to the real line. If we

express an affirmative answer to Suslin's problem in the language of set

theory. we will have a sentence, ~, such that there is no first-order

derivation from the axioms of ZF+Choice of ~ and there is no first··order

derivation from the axioms of ZF+Choice of~. Then if (G) is true,

there is no way to prove whether or not Suslin's problem has an

affirmative answer. And so, if we believe that the I'sole method that

mathematicians do use •.. is the method of mathematical proof", we have

to conclude that Suslin's problem has no answer.

This is a very disturbing conclusion to have to make. Suslin's

problem is the sort of problem a topologist naturally would address.

Topologists i.nterested in characterizing the real line would be interested
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in resolving Suslin's problem. However, if the power of mathematical

proof does not outrun the power of set theoretic proof, there is no

proof resolving Suslin's problem. The same is true, as is well-known,

of the Contiuum hypothesis. So accepting Morley's argument as reason

for Hilbert's thesis, apparently entails that there are no proofs

25yielding answers to questions mathematicians normally would ask. Given

this disconcerting conclusion, why would we want to reduce mathematical

proof to set theoretic proof? \fuat reasons can be adduced in favor of

claim (i) of r-torley's argument?

Zermelo
26

once described set theory as

that branch of mathematics whose task is to investigate
the fundamental notions "number", "order" J and "fWlction",
taking them in their pristine form, and to develop thereby
the logical foundations of all arithmetic and analysis.

Zermelo' 5 belief can be traced to the successes of Derekind, Cantor and

others, who, using only simple set theoretic operations, were able to

construct the rational numbers, the real numbers and even the complex

numbers, starting only with the natural numbers. Their methods are

well-known and the story of their successes is exciting. I will not

repeat all of it here. What we should recall is that given the natural

numbers, rational numbers can be construed as equivalence classes of

ordered pairs of integers. Then (depending on our tastes) we can

construe the real numbers either as equivalence classes of CaucilY sequence~

or as Dedkind cuts. It is an insight of ' some importanc~ that·thes~

constructions can all De oased on a simpl~ albeit infinite set of axioms,

&1aI'Jely the axioms of ZFot in ZF we'are~able to construct isomorphic copies

of the natural numbers. Then, using the axioms of 2F,
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we are able to isolate an isomorphic copy of the rational numbers by taking

equivalence classes of ordered pairs of elements of one of the isomorphic

copies of the natural numbers. We can then show that Dedekind cuts of

these equivalence classes exist, using only the axioms of ZF. Thus, in

ZF, we can show that any class of mathematical objects ordinarily needed

for the purposes of arithmetic and analysis exist. This is what (to a

large extent) first motivated -- and still motivates -- the study of set

theory, and it is this fact that is behind Zermelo's claim as well as

claim (i) of Morley's argument.

However, carrying out the Cantor-Dedekind constructions using only the

axioms of ZF does not show that mathematical proof is no stronger than

formal set theoretic proof. Only the conceptual aspect of a reduction

of mathematics to set theory has so far been accomplished. The Cantor

Dedekind constructions provide a set of reductive definitions of the main

concepts of ordinary mathematics in terms of sets. They also provide part

of the dialectical and doctrinal aspects of the reduction. They show us

how to present a good many proofs of theorems of mathematics as

derivations from the axioms of ZF. But, I think it is fair to say, their

reduction leaves open the question whether only arguments that can be

handled by means of the Cantor-Dedekind constructions are available to

the working mathematician. We have not yet seen any reason for thinking

that .~~ the arguments of ordinary mathematics can be presented as

derivations from the axioms of ZF. We do have enough of the doctrinal

and dialectical aspects of a reduction of mathematics to set theory to

conclude that the conceptual aspect of the reduction is sound. But

we, as yet, do not have enough of the doctrinal and dialectical aspects

to conclude that everything mathematically provable can be presented as
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a formula having a (non-trivial) first-order derivation. So, it seems,

we do not yet have enough evidence to conclude from ~1orley's argument that

Hilbert's thesis is true.

In "Epistemology Naturalizedll27 • Quine gives reasons for thinking that

once we have the conceptual aspect of a reduction its doctrinal aspect

is not far behind.

The two ideals are linked. For, if you define all the concepts
by use of some favored set of them, you thereby show how to
translate theorems into these favored terms. The clearer these
terms are, the likelier it is that truths couched in them
will be obviously true, or derivable from obvious truths.
If in particular, the concepts of mathematics were all reducible
to the clear terms of logic, then all the truths of mathematics
would go over into truths of logic; and surely the truths of
logic are obvious or at least potentially obvious, i.e.,
derivable from obvious truths by individually obvious steps.

Quine, of course, despairs of reducing the truths of mathematics to

truths of logic, recognizing that the most that can be hoped for is a

reduction of mathematics to set theory. Nevertheless. the idea is the

same, namely, that the concept of a ?et is clearer than the concepts of

mathematics in general, and that since it is easier to know whether

something readily understood is true than whether something complex is

true, what we know about sets cannot be less than what we know about

mathematics in general. That is, the power or ordinary mathematical

proof does not outstrip the power of set theoretic proof.

Quine's argument seems plausible. However, there are good reasons

for rejecting it. I already hinted at some before; but there are others.

The most obvious and convincing is that although the truths of mathematics

may be reduced to set theoretic truths, they are by no means reduced

to simple set theoretic truths. If we sit down and try to write out in
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the language of set theory a simple truth about the real numbers, we

soon find that writing out the most common assertions about the real

numbers in a first-order language whose only non-logical constant is E

is an enormously difficult task. It might even be impossible to survey

the sentence we obtain so that it can, in any sense, be said to be

understood. Furthermore J I think it doubt ful whether the set the\,ret ic

truths needed to deduce truths about the real numbers are in any sense

epistemologically preferable to truths about the real numbers. The

reason, I think, it so often is said that truths about sets are so

clear and understandable is that only very small, finite sets are considered.

Yes, we can easily understand what it is to take the power set of a

three membered set. \ve can imagine partitioning the set into its subsets.

However, when we start to consider the very large finite sets such

visualization becomes impossible. And when the sorts of operations

needed in order to construct the real numbers are considered, the claim that

set theoretic truths are more obvious than ordinary mathematical statements

is hard to defend. Finally, it should be remarked that certain truths

about the real numbers can be proved anI)' if we make assumptions that

very large cardinals exist. These so-called "large cardinal axioms"

are by no means obviously true. Thus, although it is possible to reduce

portions of mathematics to set theory, it is by no means clear that the

truths so obtained are in any sense more obviously true than the ordinary

mathematical truths with which we started. A Quinean argument, then,

that the conceptual aspect of a reduction of mathematics to set theory

yields the doctrinal aspect is not as cogent as it first appears.

My criticism of Morley's argument can be summed up as follows. In
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order to use claims (i) and (ii) to conclude that Hilbert's thesis is

true, we need not only the conceptual aspect of a reduction of mathematics

to set theory, but the dialectical and doctrinal aspects as well. However,

these asp~cts of the reduction are not yet completed enough to warrant

our concluding that Hilbert's thesis is true. Numbers, for example, might

be reducible to sets without it being the case that every truth of number

theory has a first-order derivation from the axioms of ZF. My criticism

of Morley's argument, then, is very w~ak. Morley's argument, I have

suggested, rests on the hope that the dIalectical and doctrinal aspects

of a reduction of mathematics to set theory can be completed. All that

I have claimed is that as yet we have no evidence that this is so. It

looks, then, as if all we can conclude is that Morley's argument for

Hilbert's thesis might not work; I have not ruled out the possibility

of the dialectical and doctrinal aspects of a reduction of mathematics

to set theory being eventually completed. If they should be completed,

it might be claimed, then Morley's argument can be used to establish

Hilbert's thesis. It might be a tenet of the mathematician's faith that

these aspects of the reduction can be completed, and so Morley's argument

demonstrates that it is a tenet of the (consistent) mathematician's

faith that Hilbert's thesis is true.

There are, however, what I think are good reasons for denying that

Morley's argument can ever give us the sort of evidence we need for

Hilbert's thesis. There are compelling reasons for believing that the

doctrinal and dialectical aspects of a reduction of mathematics to set

theory can never be completed. The method of mathematical proof is open

ended; it evolves. The history of mathematics is replete with examples
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of portions of mathematics changing radically not because of a new proof,

but because of a new ~ethod of proof. The introduction of forcing by Cohen

is a recent, but by no means isolated, example. This open ended character

of the method of mathematical proof suggests that the dialectical and

doctrinal aspects of the reduction of mathematics to set theory will always

be incomplete; we will always have to leave room for altering them, and

we can never be sure that a new method of proof might not be introduced,

a method which forces us to give up our hope of completing the doctrinal

and dialectical aspects of the reduction of mathematics to set theory.

28
This point can be nicely illustrated by some recent work of Nelson's .

He presents a fornal system, called "Internal Set Theory", that can be used

to formalize Robinson's non-standard analysis. Robinson developed a

new method of proof, which greatly simplifies many ex~sting results in

analysis, and internal set theory is a theory that formalizes these

methods. Nelson's proposal is that ZF be extended as follows. First,

the language of set theory is expanded so that it contains a new unary

relation sign, S. Then Nelson adds to the axioms fa ZF three new axiom

h . I· h d· S 29sc eroata lnvo vlng t e pre lcate, . Now, if we believe that Internal

Set Theory formalizes the arguments of non-standard analysis, we have to

conclude that the dialectical and doctrinal aspects of the re1uction of

mathematics to set theory cannot be completed. There are some arguments,

namely, those of non-standard analysis, that are fonnalized as sequences

of sentences containing the new predicate S and that, therefore, cannot

be formalized as derivations from the axioms of ZF. This is not to

claim that the conceptual aspect of the reduction of mathematics to set

theory cannot be completed. We may, for example, have good reasons for
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thinking that every theorem of mathematics can be formalized without llsing

S, and Nelson proves that if such a sentence is a theorem of Internal Set

Theory, it is a theorem of ZF+Choice~ However, we have seen that if

Internal Set Theory formalizes the methods of non-standard analysis, the

dialectical and doctrinal aspects of the reduction cannot be completed.

This example by no means shows that Hilbert's thesis is false -- only

that Morley's argument for Hilbert's thesis is not conclusive. It can

be claimed, however, that a new argument, similar to Morley's, can be

constructed for Hilbert's thesis. 30 One might argue as follows: (1)

Mathematics can be reduced to ZF and Internal Set theory; and (2) Both

ZF and Internal Set Theory are first-order theories; therefore (3) Hilbert's

thesis is true. The same cricism, mutatis .mutandis, I levelled against

~~rley's argument can. however, be levelled against this new one. The

open ended character of the method of mathematical proof suggests that

the dialectical and doctrinal aspects of a reduction of mathematics to

ZF and Internal Set Theory must be left incomplete. We will always be

left with the following question: will the next new method of mathematical

proof be formalizable using a first-order theory? To claim that the

answer to this auestion is always yes, is, 1 think, equivalent to

claiming that Hilbert's thesis is true. It looks, then, as if Morley's

argument cannot be used to establish Hilbert's thesis unless we suppose

that Hilbert's thesis is ttue.

There is another sort of problem with Morley's argument for Hilbert's

thesis that can be illustrated by means of the following story. Imagine

a mathematician being confronted with sets for the first time. Somehow

or other, someone or other explains to him what sorts of items sets are
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supposed to be. This mathematician then retires to his study, occasionally

contemplating these newly confronted objects. Perhaps after a while he

begins to think of sets as being precisely the sorts of collections on

which (some sort of) mathematical induction can be performed. He accepts,

in other words, a version of the axiom of choice and is willing to

assent to

(a) Every set can be well ordered.

(Such a mathematician is not too hard to imagine. After all, at first (and

still) many set theorists thought that (a) is obviously true.) So far,

our mathematician friend has thought only in terms of pure set theory;

he never has thought in terms of sets of some sort of thing. He realizes,

however, that some use could be made of sets in mathematics if he were to

think in terms of sets of integers, sets of real numbers, sets of sets

of real numbers, ... Imagine further that this mathematician throughout

his ca'reer has worked extensively with the real numbers, using facts

about the continuum constantly. He has, in the course of his work, come

to the conclusion that

(b) Every collection of real numbers is Lebesgue measurable

is true, although he has never thought 0f trying to prove that (b) is true.

His new interest in applying set theory leads him to reformulate (b) as

(b l
) Every set of real numbers is Lebesgue measurable.

So the situation is this: we have a mathematician thinking about pure

set theory coming to believe that (a) is true; however, when he applies
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set theory to areas of mathematics with which he is intimately familiar,

he is led to believe that (hI) is true.

The problem, of course, is that (a) and (b ' ) are inconsistent. We

can prove, using the axioms of ZF, that if every set is well-ordered, there

is a non-Lebesgue measurable set of real numbers. Our mathematician,

then, seems to have two alternatives: (1) deny that (a) is true; or (2)

deny that (b) is true. But, in fact, if we look closer at the reasoning

of our imagined mathematician there is another alternative open to him.

He can deny that (b) is expressed correctly by (b l
). He might conclude

that although his thoughts concerning pure sets and his thoughts concerning

the real numbers are in toto correct, his application of pure set theory

to the real numbers is ill advised.

The mathenlatician believing (b) might, furthermore, be led to deny

that the collection of real numbers is a set. (b), after all, is in

conflict with (a). His beliefs about the real numbers and his beliefs

about sets might lead him directly to the belief that, in fact, a set

theoretic reduction of real number theory is impossible. In light of

(a) and (b) he might deny that any set can II ientified with the

collection of all real numbers. Thus, he would deny that (claim i) is

31
true.

Now, it might be claimed that this mathematician has misunderstood

what set theory is all about. Set theory, it can be claimed, is not a

theory about things in the way that, say, biology is. Set theory only

has import insofar as it forms the fJ:anlework of a foundat ion of

mathematics. We do not, it can be continued, contemplate and study pure

sets, discover truths about such sets, and then apply those truths to

portions of ordinary mathematics. Rather, the order is reversed. We
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want to reduce ordinary mathematics to as simple a theory as possible.

Experience suggests that such a theory is to be found by looking at

theories about sets, and so we reach the conclusion that a reduction of

mathematics to a theory about sets is worth having. What truths we

accept about sets, then, is a function of what we need to facilitate this

reduction. Thus, we accept, for example, large cardinal axioms because

they allow us to prove believable things about the real numbers, and not

because they are, in some sense, obvious truths about sets. This is,

I think, the correct position to adopt regarding set theory. If, in

other words, set theoretic truths have any evidence and justification

and, therefore, any content -- it is only to be found in ordinary

mathematics.

This is where our imagined mathematician has gone wrong. He tried

to investigate sets (whatever that may mean); independently of the reduction

of mathematics to a theory about sets. But it is also, I think, where

Morley's argument goes wrong. If it is true that "the intuitive content

of set theory is expressible in a set of first-order axioms", then evidence

that this is so can only be found in ordinary mathematics. What axioms

we accept about sets is determined by what we need in order to reduce

mathematics to a theory about sets. But now it begins to look as if the

justification for claim (ii) of Morley's argument is that Hilbert's

thesis is true; our reason for thinking that mathematics can be reduced

to a set theory whose "intuitive content is expressible in a set of

first-order axioms" is the belief that Hilbert's thesis is true. Rather

than establishing Hilbert's thesis, the premises of Morley's argument

presuppose that Hilbert's thesis is true.
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(iv)

I want to conclude this chapter with a final argument against

Morley's claim (i) that, I believe, can be answered but only in a way

that begs the question whether Hilbert's thesis is true. So far all the

evidence adduced in favor of the reduction of mathematics to set theory

has been from arithmetic and analysis. We have shown how to reconstrue

statements about the real numbers as statements about sets. But mathematics

is more than analysis and arithmetic. One often reads proofs in, for

instance, Category theory that begin with the phrase "Take the category

of all sets," or "consider the category of all ordinals." None of these

phrases, "category of all sets" or "category of all ordinals" refers to

a set, for, as we know, there is no set of all sets and there is no set

of all ordinals. This suggests that there is no straightforward manner

category theory can be reduced to set theory; the ontology of category

theory quickly outruns the size of any set. Category theory is not

alone among mathematical disciplines in this respect. Model theorists,

who use their techniques to obtain interesting results in algebra,

topology and other areas, posit objects whose existence cannot be proved

using only the axioms of ZF. Some of the most interesting objects

studied by the model theorist are models of ZF itself. If ZF were

powerful enough to demonstrate that these objects exist, then, by Godel's

results, ZF would be inconsistent. Thus, ironically, either ZF is

inconsistent, or not every object posited by mathematicians and used to

obtain interesting and fruitful results can be proved to exist using

only the axioms of ZF.

This sort of consideration leaves claim (i) of Morley's argument



46

seeming unattractive. The constructions of Dedekind, Cantor and others

provided most of the reasons for asserting claim (i). However, constructions

of that sort cannot be generalized so that the objects used in other

areas of mathematics can be shown to exist using only the methods of ZF.

Thus Morley's argument seems to loose alot of its appeal. We need

additional, and sometimes implausible, axioms to handle the methods of

model theorists set theoretically. Therefore, one might conclude, set

theoretic proof is not a good formalization of informal mathematical

proof.

This objection, however, is too fast. Take any fragment of mathematics.

A minimal condition that fragment must meet is that it is consistent in

the sense that we cannot prove every sentence using just the methods of

that fragment. So it can be argued, by completeness, that fragment has

a set theoretic model. 32 In other words, it is possible to make all the

truths of that fragment true in a universe consisting only of sets. That

is to say, (borrowing a phrase from Quine) any fragment of mathematics

is only ontically committed to sets. No ~onsistent ~athematical theory

need~ ~,universe larger than any set. In this sense, Morley's argument's

claim (i) is vindicated.

However, since we are interested in Hilbert's thesis, this vindication

of Morley's argument is unsatisfactory. To salvage claim (i) against

the objection that some portions of mathematics seem to posit objects

larger than any set, we supposed that the proper formalization of the

notion mathematically provable was such that the logic used in mathematics

is complete. But what evidence do we have for supposing that the (or a)

logic appropriate for formalizing mathematics is complete? Perhaps we
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should be willing to accept a logic and a notion of proof for which the

completeness theorem does not hold. Thus, if Morley's argument is to

justify Hilbert's thesis, we must show why the logic we accept as

appropriate for mathematics is complete.

In the next chapter I shall look closely at some of the technical

notions behind completeness and formal logics. In chapter three I shall

look closer at the property of completeness, trying to see why it might

be considered a virtue of a logic that it is complete.

Let us conclude this chapter by noting two things. First, in order

to establish Hilbert's thesis the conceptual aspect of a reduction of

mathematics to a first-order theory is not enough -- we neeci the dialectical

mid doctrinal aspects as well. Second, it looks as if evidence that

these aspects of the reduction of mathematics to a first-order theory

can be completed is only to be found by carefully scrutinizing the

methods mathematicians ordinarily employ, and not by analyzing the objects

mathematicians posit.
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Chapter 2

SOME FORMALITIES

In chapter 1 I discussed, informally and roughly, Hilbert's thesis

and reasons for thinking it true or false. In this chapter, I want to

provide a technical framework in which some issues raised in chapter one

might be made more precise. I shall outline some rudimentary notions

needed to talk rigorously about formalizations of portions of ordinary

mathematics.

Logical truths and, correspondingly, logical implications can be

characterized informally in two ways. Sometimes it is said that a

statement, ~, is a logical truth if and only if ~ is true ~nder all

logically possible circumstances. (The apparent circularity need not

trouble us now.) This idea is also put as follows: logical truths are

true in virtue of tile logical terms occurring in them, although what it

is for a truth to be true in virtue of logical terms is often left

obscure. This sort of claim is a semantic characterization of logical

truth. Sometimes logical truths are characterized differently. It is

often noted that logical truths have logical proofs; and so logical

truths are characterized as truths that can be proved logically. (Again,

the apparent circularity need not concern us.) 1Benacerraf recently

has stressed that the latter characterization of logical truths was

presupposed by Frege when he criticized Kant, while Kant himself

presupposed the former characterization. The historical roots, however,

of these two sorts of characterizations of logical truths need not

concern us. It is the subject of another thesis. In this chapter, I

shall begin making these two characterizations of logical truths more
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precise. Let me state them here informally in terms of logical implication

for future reference:

(01) A set of statements, r. logically implies a statement,
~, if and only if it is logically impossible for all
members of r to be true while ~ is false.

~d

(D2) A set of statements, f, logically implies a statement,
~J if and only if there is a logical proof of Vthat
uses only elements of r as premises.

(Again, we may ignore what appears to be a circularity.)

(i)

In this section, I shall review a minimal charact~rization of logic

(or logics). My treatment relies heavily on work by J. Barwise
2

and

2a
Monk . Their work, in turn is an extension and generalization of some

results of P. Lindstrom3 . The ideas are simple and ultimately derive

from Tarski's4 definition of 'truth'. A quoteS from Barwise's article

sums up what will be accomplished:

A logic is ... an operation which assigns to each set L of
symbols a syntax and a semantics such that:

(1) elementary syntactical operations (like
relativizing and renaming symbols) are
performable,

(2) isomorphic structures satisfy the same sentences.

From now on let us assume that we have fixed a countable set of

symbols tL tl can be presented as the union of three pairwise disjoint

sets (of symbols),~ J f and 6l, which, in turn, can be described as
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follows. ,r, called the set ~f variables, is a countable union of

pair~ise disjoint sets, called kinds. Each kind contains countably

many elements, called variables. Thus,

'Y = KO U KI U K2 U • • • ,

where each K is a kind and contains countably many symbols. We alson

suppose that we have fixed an enumeration of each K
i

. Thus, Ki = {V~.v~,v~ .. }

The set P, on the other hand, is finite. It has only eight members.

They are: -', the negation sign; v, the disjunction sign; &, the conjunction

si.gn; V, the universal quantification sign: 3, the existential quantification

sign; = the identity sign; (, the left parenthesis; and ), the right

parenthesis. Finally,R can be described as a countable union of pairwise

disjoint sets, R , called degrees. Each degree, in turn, contains
n .

countably many symbols, called !elatio~ signs. I assume that, as usual,

if P is a relation sign in R , then P has n argument pla~es. Thus,n

where for each i, R. contains a countable infinity of relation signs with
1

i argument places.

In addition, let us suppose that u.. can be godel numbered. More

precisely, let us suppose that there is an effective 1:1 function, g,

from U into the set of natural numbers and that g llYD and grr~TI are

recursive sets. Notice that since ~ is a finite set, g[lLll is,

therefore, recursive as well. Furthermore, for reasons that will become

clear below, let us suppose that the complement of the range of g (that

iS J w-grr~n ) contains an infinite recursive set. There are many such
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godel ~umberings that we might use. Let us suppose that one has been fixed.

With these assumptions uehind us, we are now ready to make the

following definition:

DEFINITION I: A language, L, is a subset of 6{u{P such that
(Pc:L and g[ LIl is recursive.

Before continuing I should make some remarks about definition 1.

First) in this chapter, and the remainder of this dissertaion, when I

use 'language' I shall be using it in the sense of definition 1, unless

the context makes perfectly clear either (i) how definition 1 should be

amended, or (ii) that I am talking about a natural language, like Italian.

Second, all languages, in the sense of definition I are subsets of ~

and so no language has more than a countable infinity of symbols. In

fact, we do not have available in all the languages, in the sense of

definition 1, more than w symbols. This will, for our purposes, surely

be enough. However, for some purposes it is not enough. For example,

model theorists use and need names for every real number. TI.is brings

us to a third point about definition!. No language contains any operation

signs or constant signs. This is an unusual stipulation to make; however,

it will make the formal results I want to report in this chapter easier

to state. In addition, as shall be seen, in light of further assumptions

and definitions, requiring that languages contain no operation and

constant symbols does not involve a genuine loss of generality. Finally,

according to definition 1, every relation sign in a language is of

fixed degree. It has recently been proposed that logic be extended so

that relation signs with varying degrees may be used.· Although this
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proposal is cert:~inly deserving of serious attention, I shall not attend

to it here. So far many interesting portions of mathematics have been

formalized using only relation signs of fixed degrees, and since these

sorts of relation signs are standard, I shall insist that only such

relation signs are members of languages.

DEFINJ1'ION 2: A J~.'gjcal language, L, is the union of a language
....,:... fini tely many kinds (see above) such that if
K eLand n<m, then K C L.m n

We shall say that a logical language, L, is ,of .~ind m, where m is a

natural number, provided that m is the greatest number for which K C L.
m

Notice what a logical language, in the sense of definition 2, is: a

logical language is a countable set of relation signs along with the

eight (special) symbols in P and a countably infinite ~·f0Ck of variables

of fj.nitely many different kinds. If the notion is not clear, it will,

I think, become so after we consider some examples. But first, we need

another definition.

DEFINITION 3: A logical syntax, ., is an operation on logical
languages of some fixed kind, m, such that,
where L is a logical language of kind Pl, L* i.s
a set of sequences of members of L CL· is the
set of wffs whose non-logical symbols are ~ambers

of L) and such that:

(i) If ~ is a member of L*, there is a
logical language, L(~), of kind m containing
only finitely many Ielation signs, and
for every logical language, K, of kind m3

c(J E K* if and only if L('P)cK;

(ii) If Land K are logical languages of
kind m,:and LCK, then L*cK*;

(iii) If K is a logical language of kind m,
x is a variable in K, and ~, ~ are
members of K*, then
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(a) (-. If)
(b) (Cfv.tJ,I)
(c) (Cf &tlJ)
(d) eVx) (Cf)
(e) (3x) (~)

and all members of K*;

(iv) For every logical language, K, of
kind m there is a function, g+K, from K*
into the natural numbers that is an
extension of g and tha t is such that g+K IT K* n
is a recursive set Sa ;

(v) For every logical language, K, of kind
fi, there is a recursive function, compK, from
g+K IT K*ll into g+K [l K*)] such that for all cf
in K*, comp+K (g~K ('P)) =g+~.,qJ»;

(vi) There is a binary recursive function,
unK, for every lanauage, K, of kind m, such
that unK(~+K(f), g+K(~))=g+K(f~~), for all
cp, lP in K*.

Definitions 2 and 3 capture some of (what we think are) the essential

features of (almost all) formal languages, in the sense in \tJhich we talk

of a formal language that corresponds to the predicate calculu~, or the

sense in which we call Frege's concept-script a formal language. Almost

all such formal languages that have been used successfully to formalize

portions of mathematics can be presented so that they are the result of

applying a logical syntax to a logical language. The exceptions all,

I think, violate clause (i) of definition 3. That clause requires that

each wff contains only finitely many non-logical constants (although

it does not require that each wff contains only finitely many occurrences

of non-logical constants J nor does it require that each wff contains

only finitely many logical constants). There are some versions of formal

languages p~rmitting the formation of infinite conjunctions and
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disiunctions that allow wffs to contain infinitely many non-logical

constants; these formal languages are often of interest, even though

they violate clause (i). However, for ovr purposes, such formal

languages can be ignored; the formal languages that can be presented so

that they are generated by applying a logical syntax to a logical

language are rich and diverse enough (as the examples we will consider

show) to justify including clause (i) in definition 3. Clauses (iv)-(vi)

of definition 3 insure that every formal language generated by the

application of a logical syntax to a logical language has a godel

numbering. Since Godel's work, it has become nearly impossible to imagine

a formal language that cannot be godel numbered. Proof theoretic studies

of logic constantly appeal to godel numberings, and the richness of

these studies justifies clauses (iv)-(vi). The best way, however, to

understand the motivation for definitions 2 and 3 is to look at an

example.

THE LOGICAL SYNTAX FOR FIRST-ORDER LOGIC, *fo' is an operation

on the set of all logical languages of kind O. Given a logical

language, L, of kind 0, the result of applying * to L (calledfo

Lfo ) 1·5 the smallest · f ·set satls YIng:

(i) If R is an n-place relation sign in L, and vo' vI-.· ,vn
are in KO (that is, they are variables of kind 0), then
the result of concatenating RJ vo' vl ... and vn in that
order is in Lfo, and (vO=vI) is in Lfo;

(ii) If Q is in Lfo, then (-.Q) is in Lfo;

(iii) If Q is in Lf~ and x is in KO' then (3x)(Q) and
(~) (Q) are in Lfo;

(iv) If Q and t are in Lfc, then (Qv1) and (Q&l) are
in Lfo
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There are many ways to extend g so that we have a godel numbering of

the formulas of first-order logic satisfying clauses (vi)-(vi) of

definition 3 (see page ~~). So that things can be said more ~oncisely,

I shall make two conventions. First, where * is a logical syntax, I

shall let "kd(*)" denote the kind of the logical languages in the

Thus, kd(*fo) is O. Also, if L is a language (not a

logical language) and * is a syntax, I shall write "L*" to denote the

result of applying * to the smallest logical language, K, of kd(*) such

that K:) L.

The definition that follows is standard and known to all students

of logic.

DEFINITION 4: Let L be a language. An L-structure,2l, is a
partial function on L such that V (written
instead of 'f4V)') is a non-empty set, called
the universt: of 2.., and such that for every
n-place relation sign, P, in L, p~ is a set
of n-tuples of members of the universe of a.

For convenience, when K is a logical language, I shall use 'K-structure'

to mean the same as 'L-structure, where L is the largest langu3ge

contained in K'.

A 1:1 fWlction, f, from a language, L, onto another language, L',

is called .an inte~at ion of L ,in L' J if for every relation 5 ign, P,

in L, rep) is a relation sign in L' with the same number of argument

places as P, and if f is the identity function on the set P. If f

is an interpretation of L in K and if Clis an L-structure, then ~ is

the K-structure such that (i) the universe of ~ is the same as the

universe of a, and (ii) for every re lation symbol, p. in K, pdt = (f-1p)a.

Notice that if f is an interpretation of L in K, there is a natural
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extension of f into a function f+ from L U L* onto K U K*, where * is a

logical syntax. If '" is in L*, I will write ''ff, to denote f+(~). 'ff

is, roughly, the result of substituting feR) in~, for each relation sign

R occurring in~. Thus if ~ is (Vx)(Rx+Fxy) and feR) is F while f(F)

is W, then cf is (Vx) (Gx~xy). We are now ready for the fi rst in a

series leading to the main definition of this chapter.

DEFINITION 5: A Barwise logic is an ordered pair, <*, F>,
where * is a logical syntax and F is a
relation between structures and sentences such
that

(i) For all languages, L, if~ is in L* and
ais an L-structure withaf=~, then ifl\ is an
L-structure that is isomorphic to a, ~Fc.f;

(ii)(a) Let L and K be languages. Let f be
an interpretat ion of L in K" Then {d Ic:f= Cf}
is the same as {al a~F crfl

(b) For all languages, L, i:f='P, where lP
is in L*, if and only if arL(cr) f=~;

(e) Let L be a language, and let 'SL' denote
t~e class of all L-structures. An L, <*, ~ >
-e.c. is a subset of SL' A, such that for
some'P in L*, a is in A if and only if elF Cf'.
Then if K is a language and A is a K, <*,r ~
-e.c., then if K' ~ K, {aESK' IatK is inA} is
a K', <*,t=> -e.e.;

(iii) Let L be a language. Then for every q in
L* J {alaF q} is the same as SL- {alaF~.,};

(iv) For all languages, L, if qand ware in L*,

{alaF cp} f' {alat= tJ.r} is {aliF ,¥&tlJ}, and

{ulaJ= 'P } u {ala~ tP} is {«(elF ,,"tlJ}.

Let <*,F > be a Barwise logic. Then to simplify our talk, "Mod * L. C'P)"
L,< J r >

will denote the class of L-structures,a, for which aF Cf'. Usually

mention of L will be suppressed. A <*, F>-sentence is a sentence, 'f',



60

for which there is a language L, such that cP is in L*. The example that

motivates the definition of a Barwise logic, as we shall soon see, is

the first-order predicate calculus. Before discussion that example,

however, let us look at two more definitions.

DEFINITION 6: Let <*, ~ >be a Barwise logic, and let L be
a logical language of kd(*). Then a sentence,
~, of L* is L,<*, F>-valid if for all L-structures,
c:, a~ c.p.

DEFINITION 7: Let <*, F> be a Barwise logic and let L be a
logical language of kd (*). Also, let r be a
subset of L* and let ~ be a member of L*. Then
r L,<*, F>-implies ~ if for all L-structures,CL.
ifaF'1, for every tin r, thenaFer.

Usually when using the notions defined in 6 and 7 I shall suppress mention

of L and talk about, say, <*, F>-valid sentences. The context will make

clear what language is involved, and when it does not, we can suppose,

using clause (i) of definition 3, that the language in question is the

smallest language from which the sentence(s) mentioned can be generated.

Definitions 6 and 7 make clear the motivation behind clause (ii)(a)-(c)

of our definition of a Barwise logic. It is usual to suppose that logical

implication and logical validity are determined by the logical structure(s)

of the sentence(s) in question. Clause (ii) guarantees that the

implications and validities determined by a Barwise logic depend only

on logical structure, and not on the relation signs involved. We can

uniformly replace relation signs, by clause (ii) of definition 5, without

making a valid sentence invalid (or vice versa) and without altering

relations of implication. It is this, I think, that motivates clause

(ii). Clause (i) of definition S, I think, needs no motivation. It is

hard to imagine wanting isomorphic structures not to satisfy the same
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sentences. I shall soon discuss the motivations for clauses (iii)

and (iv). For now, we can conclude that defintion 7 is the formal

analog of (01).

The best way to understand defintion 5 is, of course, to look

at an example.

FIRST-ORDER LOGIC. £fo' can be presented as a Barwise

logic whose first component is *fo' and whose second

component is a relation. Ffo' defined as follows: Let

L be a logical language of kind 0, and let d be an L-

structure. Then inductively define a three place

re lation, 11-, between a, members of L* and elements

of (~)w (the set of w-tuples on V~) using the

following clauses:

(i) all-(vi=Vj) [xl iff the i-th component ,(x). ,
of x is the same as the j -th ~ (x). J component of l x;

]

(ii) If R is an n-place relation sign of L, then
all-(Rvil ... vi ([x] iff ((x)il' ... , (x)i ) is in
Ra; n n

(iii) If ~ and ~ are in L*, then

d. It {«P&tlJ) [xl iffd!r q[x] and d-1I-tJJ [xl; and
al'-(~wlJJ)[x] iff~I~"[x] or all-~[x];

(iv) If C9 is in L*, then

ct II-"cp [x] iff not: a 11- q:» [x] ;

all- (VV i) (cp) [x] iff for all y that resul t from x by
replacing the i-th component of x with an element of
Va, a 11- cp [y] ;

(The existential quantifier can be handled si~ilarly.)

Then for lip in L* J say d~ fa' if and only if all- CP [xl
for all x in lv')~
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8
>-

fo

The reader probably has noticed that every Barwise logic

validates the law of excluded middle. That is to say

Proposition: Let £ be a Barwise logic and t9 a sentence

generated using the syntax of £ Then cP is £ -valid

is true. The proposition follows easily from clauses (iii) and (iv)

of definition 5 and from clause (iii)(a) and (b) of definition 3. It

might be objected, then, that the definition of a Barwise logic

ignores the intuitionists' objections to the law of excluded middle.

Intuitionistic Precicate Calculus, as it turns out, is not a Barwise

logic. Since this dissertation ultimately is an investigation of

some issues concerning the question which formal logic is appropriately

used when formalizing mathematics, the defini.tiun of a Barwise logic

seems ~exclusive. We are unable to say that a Barwise logic can

be used to formalize adequately mathematics without ignoring the

intuitionists' objections.

In defense of definition 5 it can only be said that in this

dissertation I am not interested in examining the intuitionists'

objections to classical logic, nor am I interested in examining

any objections to Hilbert's thesis based on the claim that first-order

logic is too strong and that many arguments that seem formalizable

as derivations of first-order logic are not valid. I am only,

at least in this work, concerned with objections to Hilbert's thesis

from above, that is, objections to Hilbert's thesis based on the

claim that a logic stronger than classical first-order logic is
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needed in order to formalize adequately some portion of mathematics.

Now, I adr.li t that this excludes from consideration a vast amount of

philosophical work that is both interesting and important. We should

notice, however, that Hilbert's thesis claims that first-order logic

can be used to formalize adequately mathematical argumentation. Now,

it might turn out to be the case that only a proper part of first-

order logic is needed to carry out such a task. If this does turn out

to be the case we cannot (necessarily) argue that Hilbert's thesis

is false; it might be that Hilbert's thesis is not wrong, just not

strong enough. A more interesting claim about what logic is appropriately

used to formalize mathematical argumentation might be true, even

though Hilbert's thesis is not false.

The following question can, therefore, be asked9 ; why not just

consider logics that contain first-order logic? This question motivate5

the following definitIons.

DEFINITION 8: Let £ and £' be two Barwise logics. £ is
included in £1 (£C£') provided every £-e.c.
is an £'-e.c.; £ and £1 are equivalent (£::::£')
provided £c5J and £'c.£.

DEFINI1'ION 9: A Lindstrom logic is a Barwise logic, <* J f= >,
for which the following hold:

(i) £ fF<* , F> j

(ii) If h is the function associated with
* (see definition 3 clause (iv)), then there
is a unary recursive function, T, such that
for any language, L, and any L, f.o.-sentence,
"f, there is a L,<*, 1= >-sentence, Q, such th~t
T(gf~('f))=h+L(Q) and Modfo(Ci)= Mod <* t F>(Q).
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Clause (i) of definition 9 is motivated by the question mentioned above.

Since in this work only objections to Hilbert's thesis from above will

be considered, why not build first-order logic into our notion of a

formal logic? This will make the formal result to be described in this

chapter easier to state. The second clause of definition 9 may seem

a little restrictive. It guarantees that for any Lindstrom logic we

have an effective way to find, for given first-order sentences, a

formula in that Lindstrom logic with the same formal truth-conditions.

This requirement is not so strong as it seems, however. For almost

all the Lindstrom logics we consider, T will be the identity function.

Definition 9 is the most important definition of this chapter. From

now on, whenever I talk about foramlizations of' logic, I shall be

talking about Lindstrom logics.

Taking Lindstrom logics to be formalizations of logic has an

important benefit. I already noted that definition I seems vverly

restrictive; it entails that languages contain no operation or constant

signs. This involves no loss of generality, however, if we consider

only Lindstrom logics. There are well-known ways that first-order

1 · b d 1-· · d . 10OglC can e use to e lmlnate operatIon an constant sIgns

Sin~e every Lindstrom logic contains first-order logic, these methods

can always be used. Thus, weakening definition I so that languages

may contain constant and operation signs, in the context with which

we are concerned, does not have any (important) consequences. There

are, of course, some (interesting) Barwise logics that do not contain

first-order logic and that therefore are not Lindstrom logics; we

shall look at one in chapter 4. We shall, however, take Lindstrom
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logic~ to be our candidates for formalizations of logic. As the

examples that follow show, this is not a very restrictive step; a

good many formal logics can be presented as Lindstrom logics.

WEAK SECOND-ORDER LOGIC, <* L >:£- is a LindstromWS' r- ws -'"Wi '

logic whose first component is an operation defined on

logical languages of kind 1. *Ws agrees with *ro on

that part of a language of kind I that is of kind O.

In addition, where L is a language of kind 1, *WS must

satisfy:

o and f=l or 0;

1 1
(3v.)(Q), (Vv.)(Q) and (-,Q) are

1 1

. . lWS
IS In ~ ;

v~ £ v~ is in L
WS

for all v~ in KO and v; in Kl ; and

e f -v. = v., for e = lor
1 J

o 0
( 3v . ) (Q), ( Vv . ) (Q) J

1 1

in LWS whenever g

(i)

(ii)

(ii i) (Q&.,) and (Q "'9) are in LWS. whenever Q and fare in

LWS .

~ WS is defined very similarly to Ffo. Let L be a logical

language of kind I and let a be an L-structure. Then

inductively define a four-place relation, If, between d,

members of LWS , element.s of (Va.)w, and elements of (Vll.)w,

using the following clauses:

(i) c IF (v~=v~) [x] [y] iff ei ther
1 J

(a) ~~c;O and (x). is the same as (x) .;
1 J

(b) ~=c=l and (y). is the same as (Y)j;
1

or

or

(e) ~~O and c~l and (x). is the same as (Y)j; or
1

(d) ~;l and c=o and (x) . is the same as (Y)i;J

(ii) a I~
o I

iff (x), is a member of (Y)j;(v. EV. )[x] [Y]
1 J 1
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(iii) alF Rv? ... v? [x] [y] iff «x)., ... , (x). > is in Ra;
1 1 1 1

( .) If d . L'~S hIV ~ an $ are In , t en

a.1t={et&tP) [x][y] iff G.11=CP[x][y] and l~tlJ[x][y]; and

aJl=Ccr wlP ) [x] [y] iff alf=.,[x] [y] or all=ttJ [xl [Y];

(v) If Q is in LWS , then

a II= ...Q [x] [y] iff not: aII=Q[x] [Y];

ClIF(VV~)(Q)[x] [y] iff for all z that result from x by replacing

i-th component of x with an element of V , alF Q [z] [Y];

aIF(3V?)(Q) [x] [y] iff for some z that results from x by replacing
1

the i-th component of x with an element ofV ,aB:: S[z] [y];

dIF(VV~)(Q) [x][y] iff for all z that result from y by replacing
1

the i-th component of y with a finite element of rvt (where PX

is the set of subsets of X), ~IFQ[X] [z]; and

GtIF(3V~)(Q) [x] [y] iff for some z that results from y by replacing
1

the i-th component of y with a finite element of PV , d.IFQ [xl [z].

Then, for 't in L
WS

, say that ar- WS" iff diF. [x] [y] for all x

in (~)w and y in (~)w.

I have presented weak second-order logic in such excruciating detail

so that we might have two worked out versions of Lindstrom logics, and

so that definition 9 might look more plausible, palatable and natural.

In the future most of the details will be suppressed. Notice that

£WS meets the conditions of definition 9. £fo certainly is contained

in iws' and we can take T to be the identity function. The reader,

no doubt, has noticed that variables of kind 1 are not permitted in

the argument places of relation signs (Note: £, strictly speaking is

not a relation sign; rather it is a logical constant on equal footing
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Thus, strings like

1 001 1
(:rv.)(VV.)(v.£v. & PV.)

1 ] J 1 1

are not sentences of 1ws. At first, this seems disturbing, since (1)

~s the sort of string we might have thought formalizes

(2) There is a finite set that contains everything and
it is big,

a sentence that should be formalizable using weak second-order logic.

Judicious manipulation of the identity sign, however, allows us to

overcome this and any similar problem.

( 3)

can be used in all places where we might want to use (1). (Notice:

the last conjW1ct in the matrix of (3) is really an abbreviation for

a formula of lS; it can be expanded in the usual way.)

SECOND-ORDER LOGIC, £ is a Lindstrom logic whose firstSO'

component, * is the same as ·WS and whose second componentSO'

is defined just as Fws was defined except that the two

occurrences of 'finite' are deleted from clause (v) .

~-LOGIC, £~ where li is a cardinal is defined just as

second-order logic was defined except that the last

two clauses of clause (v) are replaced by

al~ (W~) (9) [x] [y] iff for all z that result from y by
1

replacing the i-th component of y with an element of ~

whose cardinality is ~,aIFQ[X] [z],

and
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dlF (3V~)(g)[X][Y] iff for some z that results from y by replacing

the i-th component of y witr

lS, alr=Q [xl [z].

ent of V~ whose cardinal i ty is

INFINITARY LOGIC. £1' is a Line.... L .•n logic. <*1' ~ I>' where *1 is

defined as * except that this time if r is an infinite set of
fo

f.a.-sentences for which there is a finite language, L, such that

fa £r is a subset of L thenAr andVr are I-sentences. The definition

of FI is similar to that of ~ fo J but in addition we also have:

a~ r"ir iff for some tin r. aF f~; and

a~ I'r iff for all1in r.aF f~'

Many of the logics standardly proposed as (more powerful) alter-

natives to first-order logic are Lindstrom logic~. As already noted,

though, not every logic is a Lindstrom logic. Type theories, for example,

cannot be presented as Lindstrom logics; the definition of a structure

has to be amended in order to handle type theories. Modal logics, also,

are not Lindstrom logics. These two sorts of logics play so important

a role in the philosophy of logic that excluding them from consideration

seems to be an egregious omission. Perhaps it is. We have to start

somewherp, though; and since so many logics standardly proposed as exten-

sions of first-order logic are Lindstrom logics, I shall assume that

mathematics can be adequately formalized using a Lindstrom logic. In

light of the wide range of logics that are Lindstrom logics, this does

not seem like such a dangerous supposition.

In chapter one I spoke alat about formalizations or portions of

mathematics. In light of the above remarks, I can now make more

precise what I mean by a formalization of a portion of mathematics.
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TraAitionallYJ mathematical theories are thought of as determined by

a set of axioms along with a logic telling us when a set of sentences

logically implies another sentence. Thus, Euclidean geometry can be

thought of as the collection of truths that logically follow from

five specified axioms. Similarly, set theory is taken to be determined

by first-order logic and a set of axioms. As Morley put it: the

intuitive content of set theory is expressible in a set of first-order

axioms (see chapter one, section three). In light of this tradition

and the remarks in the preceeding paragraph J the following definition

suggests itself:

DEFINITION 10: A formalization of a portion of mathematics
is an ordered triple, <LJf t,>, where L is a
logical language, )I- is, a Lindstrom log; c
whose syntax is on languages of the same kind
as L, and r is a set of L,~-sentences.

Thus J for example, a formalization of set theory is an ordered triple

the first-component of which is Pu{£}oK (note: this £ is not the
. 0

same symbol used in the definition of £WS' £50 and £.,), the second

component of which is the set of axioms for ZF, and the third component

of which is £fo. If <L,r,~ is a formalizatio~ of a portion of

mathematics and. is an L,~-sentence, then we will say that t is

<L,rJ~>-valid (VAL L r (t)J if and only if r p-implies t.
< J ,,,.>

(ii)

Definition 7 is our rigorous version of (01); in this section I

shall formulate a rigorous version of (02). In an introductory logic

class, when students are shown how to prove that a first-order sentence
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is valid, one of two sorts of methods is learned. The first, deduction,

involves learning how to derive valid sentences from a specified set

of sentences, called "logical axioms". The second involves learning

how to apply operations to sentences and to recognize which outcomes

are the result of applying operations to valid sentences. A standard

example of the second sort of method is the Smullyan-Beth tree

construction. The reader unfamiliar with it is referred to Smullyan's

· d . 11First-Or er Logle . The general account of logical proof I shall

present in this section covers both sorts of methods; however, when

formulating that account it is useful to think in terms of the

Smullyan-Beth tree construction.

What are the characteristics of the Smul1yan-Beth tree construction

that any such method of logical proof has? First, there is a set of

operations, n, and a set of outcomes, TI, such that for every first-

order valid sentence, ~J there are operations in n such that the

result of applying those operations to Wis in TI. The following

definition is, I think, suggested.

DEFINITION 11: A proof-procedure is an ordered triple,
<*,n,n>~ where * is a logical syntax
and

(i) Q is a set of (codes for) partial
recursive functions; and

(ii) Q and n are recursively enumerable
sets.

Clause (i) of definition 11 can be motivated as follows. The elements

of Q are supposed to be (codes for) the operations that we apply to
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(codes for) *-sentences. We would like these to be operations that

anyone can perform by simply following instructions (not necessarily by

following simple instructions), and we want these operations to be

repeatable and detenninistic without any appeal to luck. In short,

the operations applied to (codes for) *-sentences ShOU1J be effective.

By Church's thesis 12 • then, we have clause (i). Clause (ii) also

is motivated, in part, by Church's thesis. We want there to be an

effective method for recognizing the operations that Inay be applied

to *-sentences, and we want an effective method for recognizing when

an outcome demonstrates that a *-sentence is valid. The comments

above definition 11 along with Church's thesis thereby motivate clause

(ii) .

When <*,f2,Tl> is a proof-procedure, I shall write lIo[~']"-for

*-sentences, ~, and 0 in n -- to denote the result of applying the

function whose code is 0 to the godel number of ~, that is o[~] is

{oj (g+L(~)(~)). where g+L(~) is as in definition 3 clause (v) and

{oJ is the function whose code is o. Also, I shall say that a

*-sentence, ~, is <*,n,rr> -provable if and only if the is an 0 in

n such that o[~] is in IT.

DEFINITION 12: Let<*,Q,IT> be a proof-procedure. Suppose
that r is a set of *-sentences. Then a
f, <*,Q,IT>-validating conditional of ~ is
a <*,n,JI>-provable conditional, Jl~ 12-t-·· .~t.-t--tlJ

with 1lJ as consequent and each1. Q.' n
member of r. 1

DEFINITION 13: Let <*,Q,TI> be a proof-procedure. Then
a set of *-sentences, f, <*,n,IT>-implies
a *-sentence, ~, if and only if there is
a r, <*,n,IT>-validating conditional of ~.



72

Definition 13 is our rigorous version of (D2).

Proof.procedures and Lindstrom logics need not correspond to one

another. The following two definitions, however, cover the cases when

(happily) they do.

DEFINITION 14: A Lindstrom logic <*,~> is <*,n,n>-complete
if and only if for every logical language,
L o~ t<d(*), every sentence, 1JJ in L* and
every r that is a subset of L*, r <*, F>-

implies ~ only if r <*,n,TI> -implies ~.

DEFINITION 15: A proof-procedure, <*,n,n>, is is <*, F>

sound, where <*, F> is a Lindstrom logic,
if and only if for every logical language
of kd(*)J every sentence, ~, in L* and
every subset, r, of L*, r <*,Q,IT>-implies
1JJ on 1y if r <* , 1= >- imp 1i e 5 ifJ_

Definitions 14 and 15 are generalizations of well-known logical

properties. So is the definition that follows:

DEFINITION 16: A Lindstrom logic,£ , has the Lowenheim
p~operty if and only if every £ -e. c. contains
a countable structure. (see definition 5
clause (ii)b)

We can now state Lindstrom's characterization of £fo'

Theorem (Lindstrom): £ fo is the on ly Lindstrom logic, £,

(up to equivalence) that has the Lowenheim property and

for which there is a proof-procedure, p, such that £ is

f-complete.

A f f L· d t ' th b f d 1-0 Monk's Mathematl-cal LOgl·c 13proo 0 In s rom s eorem can e oun

It should be noted that Lindstrom's theorem cannot be weakened. Every

£ws- e . c . contains a countable structure; but ws is p-complete for
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mproof-procedure, p. (One consequence of a Lindstrom logic's

being p-complete is that the (godel numbers of) £-valid sentences

are recursively enumerable. It is well-known that £WS-valid sentences

are not recursively enumerable. l4 ) On the other hand, consider the

Lindstrom logic, ~, whose definition can be obtained from the

definition of £ by substituting 'uncountable' for 'finite' in theWs
last two conditions in clause (v). £Q obviously does not have the

Lowenheim property. Nevertheless, there is a proof-procedure~p,

15
such that £ is p-complete

Q

There are two more definitions, whose motivations are clear,

that will be useful to us in the future.

DEFINITION 17: A proof system for a portion of mathematics
is an ordered triple, <L,r,r>, where L is
a language, p is a proof-procedure whose
syntax is* ,L is of kd(*), t' is a subset of
L* and the godel numbers of members of r
are recursively enumerable.

DEFINITION 18: Let <L,r JP> be a proof system for a
portion of mathematics. A <L,r ,p>-derivation
of a sentence, ~, is a finite sequence

<<11, ... ,1m>, where ~m is ~ and for all n=m,
either

(i) "'i is in r; orIn

(ii) there is a Uklk<n},p -validating
conditional of 1 ·

n

If $ has a <L,r ,p>-derivation we say that it is <L,r,p>-provable, and

write:PR L r (~).
< , 'f>

Before concluding this chapter, I want to note that (as should

be expected), where p is a proof procedure whose syntax is * and where

ris a set of *~sentences, I shall call r p-consistent if and only if
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for some *-sentence J $J r does not p-imply ~.

·rhere is one fina 1 comment that shou Id be made.. I noted that

given the definition of a Lindstrom logic, definition 1 causes no real

loss of generality. If ~ is a sentence (in a general sense) containing

operation and constant signs J we can al\tJays find [... sentence, T(IJI') ,

(in our more restricted sense) with the same formal truth conditions

as W.. Sometimes during the discussion that follows, the reader will

have to extend a little charity.. I shall talk about ~J a sentence

containing operation and constants symbols; the reader will have to

realize that my remarks can be re-expressed as remarks about T($).
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Chapter 3

PROOFS J TRUTHS AND CO~1PLETENESS

In this chapter, I shall begin looking at completeness. I shall

do primarily two things. In the first section J examine critically an

argument purportedly establishing that only complete logics should be

used when formalizing portions of mathematics; in the second section I

look at another argument that apparently entails that sometimes

incomplete logics must be used to formalize pOTLions of mathematics.

Examining these two (very different) arguments will help us begin

to understand the philosophical issues behind completeness. In

chapter four the issues raised here will be scrutinized carefully.

A word (or two) about completeness is needed. In chapter two

we said that a logic is complete if and only if its valid sentences

can all be proved using one. proof procedure. This, in turn, entails

that there is an effective method for generating all the valid

sentences of that logic. Now, in light of definition 10 we can say

that a portion of mathematics is formalized when we specify a set of

axioms and characterize a formal logic so that we have an account

of what it is for a sentence to follow from those axioms. If the

axioms specified form an effective set, and if the formal logic

characterized is complete, then we can effectively generate all the

truths of that portion of mathematics. Clearly such a state of

affairs is always desirable. We would like to be able to generate

effectively the truths of every portion of mathematics. So, clearly,

it would be nice if every portion of mathematics could be formalized

using a complete logic. Unfortunately) Godel shattered the hope of
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ever effectively, generating the truths of arithmetic; the set of

arithmetic truths cannot be effectively generated. So we seem to have

three choices: (1) claim that arithmetic is not formalizable; (2) claim

that arithmetic is formalizable, but not using an effectively generated

set of axioms; or (3) claim that arithmetic is formalizable, but not

using a complete logic.

Alternative (2), I think, should be rejected. Sets of axioms

should be as simple as possible. One virtue of axioms is that they

allow us to see what truths are "basic" to the field being investigated.

Requiring that the set of axioms can be effectively generated is a

plausible and natural way to avoid trivializing the enterprise of

formalizing mathematics. After all, what other condition eliminates

the possibility of taking all arithmetic truths as axioms, thus

formalizing arithmetic without any need of a non-trivial logic. (\~e

can call a logic, p , "trivial" provided r r -impl ies " if and on ly if

1 is in f.) For these sorts of reason, in this work, I shall ignore

alternative (2).1

If we reject alternative (2), we have only alternatives (1) and

(3). So either not every portion of mathematics can be formalized

or some portions require the use of incomplete logics. Both horns

of the dilemma are, admittedly, bad. The question motivating this

chapter, then, is: given the alternatives, should we insist that every

formal logic used to formalize mathematics be complete?
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(i)

In practice complete Lindstrom logics are preferred to incomplete

Lindstrom logics. The fact that the Lindstrom logic, L
Q

, with the

quanti fier "there exi sts uncountably many x such that" is complete (\v i. th

respect to some proof procedure) gives that logic a higher status

even among the staunchest proponents of Hilbert's thesis -- than, say,

the Lindstrom logic with the quantifier "there exist infinitely many

x such that". Barwisela , for example, says that "sometimes, late at

night, one can almost imagine some other world where ... axioms [forL
Q

]

are considered laws of logic in the same way that we accept the laws of

first-order logic." The admission is significant. coming, as it does,

in the context of a defense of Hilbert's thesis. But why? Why

should the fact that LQ is complete tell in its favor?

One reason (maybe the main philosophical reason) is that

mathematics is thought to derive its special character from its

deductive nature. Mathematicians are believed to know things by

proving them. Recall the passage from Putnam that was quoted in chapter

one. That "mathematicians have as their sole method the method of

mathematical proof" is a not uncommon view. We have, for example.

Hilbert's claim1b
that non-axiomatic statements of a mathematical

theory '~ave validity only if one can derive them from those axioms

by a finite number of logical inferences." Such a view suggests that

any logic used to formalize a portion of mathematics should be complete.

For, say that ~ is valid if and only if every model satisfying r, a

set of axioms, satisfies~. Then, if ~, a non-axiom, is valid only

if ~ can be derived frem r by a finite number of logical steps, then
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~ is valid only if .~ has what in chapter two W3S called a Iff-validating

conditional"; and this last claim suggests that the logic in question

is complete. In light of this argument we can take Hilbert to be

claiming that

(He) The logic that is part of any adequate
formalization of a portion of mathematics
should be complete.

Later I shall discuss an argument, implicit in work by Steiner,

against Hilbert's reasons for (He). Now, however, we should note

that there is a tremendous amount of sentiment in favor of (He). We

already saw that it is implicit in Barwise's late night imaginings.

It is also behind Quine's glib rejection of Henkin's branching

quantifiers. Quine simply rejects them because the logic that results

2
by adding branching quantifiers to first-order logic is not complete .

TIle classical logic of quantification has a complete
proof procedure for validity and a complete proof
procedure for inconsistency ... Classical ... quantificational
theory is on this score maximal; it is as far out as
you can go and still have complete validity and
inconsistency by the Skolem proof procedure.

It is (He), I think, that makes Quine's remarks tell against Henkin's

branching quantifiers.

Unfortunately, (He) is argued for infrequently, and arguments

that might be construed as supporting (He) are not very convincing.

Quine, for example, sometimes argues that (He) is true because first-

order logic is complete and first-order logic is the prototype of

what (a) logic is. Quine claims that even if first-order logic does

not formalize all logic, it does capture what is intrinsic to any
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formalization of logic, and that since first-order logic is complete,

any formalization of logic must be complete. But Quine's argument

is not at all cogent. Why believe that first-order logic is the

prototype of what (a) logic is? Why not take, for example, the

propositional calculus as the prototype of logic?3 Quantification

theory, after all, is a very recent invention (or discovery), due

primarily to Frege. If the propositional calculus is the prototype

of what (a) logic is, capturing all that is intrinsic to any formalization

of logic, then why not argue, mimicing Quine, that since the propositional

calculus is decidable all formalizations of logic must be decidable

and that therefore first-order logic is not an adequate formalization

of logic. The point is that although first-order logic is a very

neat formal system and does capture much we believe ought to be

captured by a formalization of logic we do not have any reason for

thinking that all first-order logic's properties should be had by

any adequate formalization of logic. More, much more, needs to be

said before we can conclude that since first-order logic is complete,

every formalization of logic should be complete. (Of course, in this

context it would be inappropriate to argue that since Hilbert's

thesis is true, all formalizations of logic should be complete, since

first-order logic is complete.) Quine's argument raises too many

questions to be a convincing reason for endorsing (He).

In his Theory of KnoWled~4J Chisholm revives an old argument

that call he construed as an argument for (He), if we are willing to

make some assumptions. O1isholm claims that "ordinary empi rical

procedures yield no knowledge of necessary truths." If we then accept
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-(A) For any formalization of a mathematical theory
(see definition 10 in chapter two), ~, and
any sentence, ~, $ is d-valid only if ~ expresses
a necessary· truth,

we can conclude that, where ~ is a valid sentence of a formalization

of a mathematical theory, ordinary empirical procedures yield no

knowledge of 'lJ. So either there are valid sentences of a formalization

of a mathematical theory that express unknowable truths, or else (He)

is true. For, it seems, if ordinary enlp~rical methods cannot be used

to establish that a statement is true, then we only have recourse to

proofs; that is, if we cannot establish ~ using ordinary empirical

procedures, then the only way to establish ~ is by deducing it from

the axioms of the formalization in question. If we now deny that

there are valid statements of a mathematical theory that are in

5principle unknowable, we have an argument that (He) is true. I

think that something like this argument is behind many claims that

(He) is true: Mathematical truths are necessary truths; we can only

know necessary truths by proofs; therefore, the logic of any portion

of mathematics must be complete. It is, therefore, worthwhile to

look a little closer at this argument for (He), and to pay especial

attention to Chisholm's argument that "ordinary empirical procedures

yield no knowledge of necessary truths." (I shall call this argument

for (He) "Chisholm's argument", although, in fairness to Chisholm,

it should be noted that he nowhere makes it and only explicitly argues

that ordinary empirical procedures yield no knowledge of necessary

truths. )

In addition to (A) something like the following premises are

used.
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(8) A valid statement of mathematical theory is known
either by using ordinary empirical procedures, or bl
proving it;

ee) Ordinary empirical procedures yield no knowledge of
necessary truths;

and

(D) All valid statements of a mathamatical theory can be
known.

Using (A)-(D) we can argue as follows. By (A) and (C). ordinary

empirical procedures yield no knowledge of valid statements of a

mathematical theory. So by (8) a valid statement of a mathematical

theory can only be known by proving it (notice the similarity between

this claim and the claim Putnam ci tes that "the sale method

mathematician,,; ... can use is the method of mathematical proof").

So by (D) every valid statement of a mathematical theory has a proof.

If every valid statement of a mathematical theory has a proof, our

formalization of mathematical theories should reflect this fact.

That is, we do not want :it to turn out to be the case that there is a

sentence ~ such that, where r is the set of axioms of a formalization

of a portion of mathematics, $ is true in every structure satisfying

all the members of r, but there is no proof of ~ from r. One natural

way to eliminate this possibility is to insist that the logic of

our formalization be complete. So, we can conclude, the logic of

every formalization of a portion of mathematics should be complete,

that is, (He) is true.

I shall call this argument "Chisholm's argument". It has two

parts. The first part purports to establish roughly that every

mathematical truth has a proof; the second part concludes, in light
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of this claim, that the logic of every formalization should be complete.

I shall only look at the first part of this argument now, leaving my

~peculations about the second part for (much) later.

(D) is a version of Hilbert's non ignorabimus, and although it

is controversial, I shall not call it into question. Many find it

reasonable to suppose that no truth of mathematics is in principle

unknowable. Whether their intuitions are correct in this regard will

not concern us now. (B), T think, is a version of a dichotomy endorsed

by many epistemologists. Methods of justifying beliefs are often

divided into two mutually exclusive, mutually exhaustive classes.

In its modern form the distinction is between inductive and deductive

arguments. I shall not discuss (B) at all. (A), too, is a statement

often endorsed, although its content is left unclear. 1~e main

statement of Chisholm's argument with which we shall concern ourselves

is (C).

Chi5h~)m argues thaj~ ee) is true as follows. He clainlS that no

induction can be used to justify our believing that a statement of

the form rNecessarily p~ is true. To see why he thinks this, let us

use an example, say,

(1) Necessarily, Every number not identical with zero is
the successor of some number.

Chisholm asks us to consider how an inductive argument establishing (1)

would go. First, he claims, we would collect some instance3 of (1),

verifying that particular numbers not equal to zero are successors.

For example, \lIe might verify that
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(2) 1#0 &1 is the successor of 0

(3) 13#0 &13 is the successor of 12

(4) 5#0 & 5 is the successor of 4.

But, Chisholm argues, although a collection of instances along the

lines of 2-4 might justify our concluding that

(5) Every number not identical with zero is the
successor of some number

is true, no collection of instances like (2)-(4) can justify our

concluding that (1) is true. Chisholm then concludes that no induction

can verify that (1) is true and that, in general, no induction can

establish a necessary trut~.

I think every reader will agree that Chisholm's argument as

it stands is not very good. First, it does not establish that (e) is

true, that "ordinary empirical procedures yield no knowledge of

necessary truths." At most Chisholm's argument establishes that

ordinary empirical procedures yield no knowledge that given truths

are necessary. For Chisholm would, I think, admit that (5) is a

necessary truth, and he does not seem loath to admit that (5) can be

established by an ordinary empirical procedure. So, it seems, ordinary

empirical methods do (or might) yield knowledge of at least some

neressary truths. In particular, (5), a necessary truth, is

established by collecting inferences along the lines of (2)-(4).

There is only one thing that can be said by Chisholm in response

to this point. If he wants to conclude from his argument that (C)

is true, he must maintain that (5) cannot he known unless it is
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known to be necessarily true. That is, Chisholm must maintain that if

an individual knows (5), he (or she) must also know (1). Thus, ordinary

empirical procedures cannot yield knowledge of (5) because they cannot

yield knowledge of (1), and there is no knowledge of (5) without

knowledge of (1). Thus, by asserting

en) If a person, M, knows that ~ is true and ~ is a
mathematical statement, then M knows that ~ is
necessarily true,

Chisholm appears able to save his argument from the objection raised

in the last paragraph.

Although maintaining (n) appears to be the only way Chisholm

has of saving his argument, I do not think that it works. Firs4 (n)

just is not a very plausible principle. A person can know biological

facts without knowing that they are necessarily true, why should it

be that mathematical facts cannot be known unless they are known to

be necessarily true? Clearly, a defense of (0) must come to grips

with this question, and it must do so without appealling to any claims

to the effect that mathematical statements can only be known by

non-empirical procedures, for that is precisely what is at stake.

But even if we resolve all our doubts about (n), I do not think that

it is adequate for the task set it. Notice that we may know that

(5) is true by virtue of the sort of inductive argument outlined

above, and then we may conclude that (1) is true because we know

that (5) is a mathematical statement and we know that all mathematical

truths are necessary, that is, we know that CAl. We may infer that

(1) is true from (5) and the (purported) fact that every mathematical

statement if true, is necessarily true. Thus, (n) would be satisfied,
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and 50 (1) can be known on the grounds of an ordinary induction after

all. Second and, from our point of view, more interesting is the fact

that there ~s an ordinary ioduction that appears to establish that (1)

is true, although it is not the induction that Chisholm mentions, the

one that is conducted by collecting instances along the lines of

(2)-(4). Instead, we might collect instances along the lines of

(2') I is such that necessarily it is not 0 and is a successor

(3') 13 is such that necessarily it is not 0 and is a successor

(4') 5 is such that necessarily it is not 0 and is a successor

Collection of instances along the lines of (2')-(4') might, unlike

collection of instances along the lines of (2)-(4), justify our

concluding that something strictly stronger than (s) is true. In

fact, these instances seem to establish that

(5') For every natural number, necessarily, if that
number is not identical with zero. then it is
a successor.

It can be claimed that if (5') is true. then (1) is true, and that,

therefore, the induction using instances along the lines of (2')-(4')

to verify (5') verifies (I) -- contrary to Chisholm's claim that no
r ,

induction can be used to justify a statement of the form Necessarily P .

There are, however, several points that can be made against this

objection to Chisholm's argument; but they reveal that very strong

assumptions about the philosophy of mathematics must be made in order

to preserve Chisholm's argument.
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(1) usually is formally represented by a sentence of the form

where '0' is a modal operator corresponding to the English 'necessarily'.

Similarly, (5') is represented as

(5' ) Vx [] tP (x) .

Thus, the claim that if (5') is true, (1) is true -- used in the

previous paragraph -- would be represented by something like

(6) (VxOflJ(x))~(cvxtJl(x)).

(6), however) is a form of the controversial Barcan Formula. So the

above objection of Chisholm's argument presupposes that the Barcan

formula is valid (at least when we are dealing with the necessity of

arithmetic sentences.)

It sometimes seems, however, that there are good reasons for

denying that the Barcan Formula is valid when dealing with arithmetic

sentences. In defense of Chisholm's argument one could point to

the work accomplished by interpreting sentences of the form

(7) Op

as

where 'Bew( )' is the provability predicate GOdel showed how to

8construct. A natural extension of this work is to interpret quantified

modal sentences like (5") as
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(8) Vx~w(sub(r~(x)' ,x))

where 'Sub(n,rn)' is a (p.r.) term that gives the Godel number of the

result of substituting the mth numeral for the variable 'x' in the

formula with godel nwnber n. Thus, (6) would be interpreted as

(6') VXBew(Sub( rljJ(x)' ,x))-+BewCrVxtP(x)"),

and (6'), as we know from Godel's first theorem, is not generally

9true. Thus, if (1) and (5') are properly formalized as (1') and

(5"), and if (1'), (5") and (6) are correctly interpreted along

the lines of (7'), (8) and (6'), respectively, then there is a reply

to the objection to Chisholm's argument made two paragraphs back.

(6) in that case, is not valid, and so the induction using premises

along the lines of (2')-(4') cannot be used to establish (I).

There is, however, a very serious problem with this sort of

reply. IVhat reason do we have for thinking that (7') is the (or a)

correct interpretation of (7), given that' 0' is supposed to be a

modal operator corresponding to the English 'necessarily' as used in

(I)? Similarly, why think that (8) is the (or a) correct interpretation

of (5")? The only reason for thinking so is the belief that an

arithmetic statement, ~', is necessary just in case it is first-order

provable from a specified set of axioms -- in this case the axioms of

Peano Arithmetic. But this makes Chisholm's argument superfluous,

for we already supposed that CA) several pages back is true, that

is, that all truths of arithmetic are necessary. So, it would follow

that all truths of arithmetic are provable from the axioms of Peano

Arithmetic. But this implies that (He) is true (and in a sense that
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is easily refuted; but more of that later). The response made in the

last paragraph, then, already presupposes that (He) as applied to

arithmetic is true.

There are other sorts of responses that can be made in defense

of Chisholm's argument. We need not appeal to a particular inter

pretation of the box, as it occurs in (7) and (8), in order to object

to (6). We might appeal directly to the existence of (so-called)

non-standard models of arithmetic. We could claim, for instance,

that if an arithmetic statement is necessary, then it is true in all

models of arithmetic. Then, since there are sentences, ~(x), such

that for each standard n J ~(~) is true in every model of arithmetic,

but such that VK~(x) is false in some model of arithmetic, we appear

to have reason for denying that (6) is true. This defense of

Chisholm's argument, however, already presupposes a good deal about

what logic is appropriately used for formalizing arithmetic. The

non-standard models of ~rithmetic that make (6) seem dubious cannot

be shown to exist no matter what logic is used to formalize arithmetic.

To make use of the notion of a model of arithmetic in the defense

of Chisholm's argument presupposes that such models can be

characterized independently of the logic used when formalizing

arithmetic. This presupposition, ho\~ever, is illegitimate. What

models we count as of arithmetic depends upon what logic we use to

formalize arithmetic, and if this is so, an appeal to non-standard

models of arithmetic cannot be used to defend Chisholm's argument.

Consider: the reason we appealed to the existence of non-standard

models of arithmetic was to give reasons for thinking that the Barcan
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formula is false was then used as reason for thinking that the logic

used for formalizing (at least) arithmetic is complete. So ultimately

the appeal to non-standard models is supposed to give reasons for

thinking that one logic rather than another is more adequately used

when formalizing arithmetic. But we cannot show that there are non

standard models for every logic, since what models we count as of

arithmetic depends on what logic is used to formalize arithmetic.

For instance, if weak second-order logic is used and we suppose that,

in addition to the Peano axioms, every model of arithmetic satisfies

a sentence stating that the set of predecessors of every number is

finite, then we cannot prove the existence of non-standard models of

the sort that allowed us to conclude above that (6), the Barcan

formula, is false. So our reason for thinking that (6) is false has,

in turn, for its support the claim that only a specific sort of logic

can be used to formalize arithmetic, a logic that allows there to be

non-standard models of the relevant kind. It looks, then, as if the

3bove defense of Chisholm's argument begs the question, namely, what

sort of formal logic should be used when formalizing arithmetic?

I think it is fair to conclude that Chisholm's argument does

not establish that (He) is true. As pointed out above this is not as

parochial a conclusion as might be thought. I think something like

Chisholm's argument is very often put forward in defense of (HC).

In this section, I concentrated on criticizing claim (c), the claim

that non-empirical methods yield no knowledge of necessary truths.

We have seen no good reasons for thinking that this claim is true.

On the other hand, we have seen no good reasons for thinking that it

is false. On the face of it, the induction on page 87 just does
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not seem to establish that (5') is true. But imagine that we have no

other reason for thinking that (5') is true, that we have used (5')

successfully repeatedly in OUT scientific theories and that we have

collected millions and millions of instances along the lines of (2')

(4'), all of which confirm (5'). Would (5') be any less established

than any contingent truth sv~ported by (similar) empirical procedures?

I do not know. We will, however, return to related issues later in

chapter four. There are, at any rate, other examples of (seemingly)

empirical procedures yielding knowledge of necessary truths. For example:

you are in a room and you know that only couples are in the room; you

count the people in the room and conclude that the number counted is

even. Another example: you decide to make a rectangular jigsaw

puzzle of the standard sort; you cut up a piece of plywood, count the

pieces and conclude that the number counted is composite. 9a There do

seem to be ordinary empirical procedures that yield knowledge of

necessary truths. I shall save further discussion of this issue,

however, for chapter four. 1n the next section, I will continue

examining (He) and shall look at one set of philosophical reasons for

thinking that sometimes the logic used to formalize a portion of

mathematics should not be complete and that, therefore, Hilbert's

thesis and (He) are false.

(ii)

Although no conclusive reasons have been given yet for thinking

that only complete logics should be used when formalizing mathematics,

as al~eady noted, in practice complete Lindstrom logics are preferred



to incomplete ones.

93

10
There are, as M. Dumrnett has stressed ,

technical reasons for wanting complete and sound formalizations of

logic. He points out that soundness and completeness proofs show that

" f h" l"d d 11 hI" "certaIn proo -tec nlques are va 1 , an notes t at some oglclans

seem wont to say that

the whole interest of the soundness and completeness proofs
for classical sentential logic lies in the effective
method they provide for determining whether or not a
formula is derivable from some finite set of formulas.

This technical interest in soundness and completeness proofs can be

used to argue for (He), the claim that only complete Lindstrom logics

should be used when formalizing portions of mathematics. There are

a class of techniques, it can be argued, ordinarily used by mathematicians,

that are "provided" by sOWldness and completeness proofs. Since these

techniques are employed by mathematicians, our formalizations of

mathematics should preserve and justify those techniques. Therefore,

it can be concluded, we should only use complete Lindstrom logics

when for~alizing portions of mathematics; that is, (He) is true.

Th:s argument helps explain why in practice complete Lindstrom

logics are preferred to others -- why, for instance, the logic with

the quantifier "there exist uncountably many x such that" might be

preferred to £ws. defined in chapter two. Complete formalizations make

12
the mathematician's job easier. But, as Dummett goes on to note ,

the technical interest that soundness and completeness proof have for

the working mathematician is not enough to guarantee philosophic

interest in those proofs. To get any philosophic mileage out of the
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technical interest of soundness and completeness proofs, we must first

(philosophically) justify those very techniques soundness and completeness

proofs provide. The philosopher's task is not to make the mathematician's

job easier. It is, in part, to examine the techniques mathematicians

ordinarily use, seeing whether they can be (philosopucal~r) justified

and systematized. Mathematicians may want complete formalizations of

logic because they allow certain tools to be employed; however, this

alone is not enough to justify the philosopher's concluding that the

Lindstrom logic of formalizations of mathematics should be complete.

There might be philosophical reasons for rejecting, in some cases, the

very methods provided by completeness and soundness proofs. Thus,

we might be able to adduce philosophical reasons for denying that

only complete Lindstrom logics should be part of our formalizations of

mathematics.

In this section, I shall look closer at this claim. I shall

look at a sort of independence proof that is justified by soundness

and completeness proofs and shall examine, in some detail, Frege's

reasons for rejecting that sort of proof. It will follow that Frege's

reasons can be used to refute (He), the claim that only complete

logics should be part of our formalizations of mathematics, since if

(He) is true, the sort of independence proof in question is valid.

Let r be a set of axioms and ~ a sentence. Then, informally,

we say that ~ is independent of r provided ~ does not follow from r.

Given the definitions of the last chapter, we might p~t this as
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(IND) 1lJ is independent of r=df there is structure
satisfying every member
of r and also satisfying

-tlJ.

It is worth pausing to notice that, if logic should be formalized

using a Lindstrom logic, then any acceptable proof procedure (see

definition 11 in chapter two) must be sound (see definition 15). Suppose

we think that logic should be formalized using a Lindstrom logic, jUJ

and that we think a proof procedure, p, captures an infonnal notion

of Illogical proof". Then if p is not p-sound. there is a finite set of

axioms, r, such that r p-implies 1JJ but r does not r-imply '1'. That is,

there is a structure satisfying every member of r and also satisfying

-$. But, then, it seems (speaking informally now) that \~e can prove tlJ

from r, even though tlJ is not true in every structure satisfying all

members of r. So, by (IND) 1JJ is independent of r J (~ven though we can

prove 'lJ from r. This conclusion sufficiently conflicts with our

presystemmatic notions o~ "proof" and "independence" to warrant our

concluding that, if logics should be formalized using a Lindstrom

logic, any accpetable proof procedure is sound.

The argument in the last paragraph is not meant to establish

that acceptable proof procedures should be sound -- only that someone

accepting that the logic of a portion of mathematics should be

formalized using a Lindstrom logic seems committed to the claim that

all acceptable proof procedures are sound. Any other claim would

conflict with presystemrnatic intuitions. It is by no means true, however,

that every view about formalizations of mathematics is committed to the

claim that all acceptable proof procedures are sound. Intuitionists,

as already noticed, do not believe that the correct way to formalize
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logic is by means of a Lindstrom logic. We saw that every Lindstrom

logic satisfies ~he law of excluded middle, and this law is not

intuitianistically valid. It is nat surprising, then, that intuitionists

are not interested in (classical) soundness and completeness proofs,

and are not committed to the claim that every acceptable proof procedure

is sound. 13a

In light of the definition of 'independence' ((IND)) it can be

seen that whenever our logic is complete, there are (at least) two

methods of showing that a sentence, ~, is independent of a set of

sentences, r. We can either (i) construct (exhibit, point out, or

something similar) a model of r in which ~~ is true of (ii) show that

no contradiction can be proved from ru{~~} and then appeal to completeness

to infer that ~ is independent of f. We shall see that, at least so

far as geometry is concerned (and probably arithmetic as well) Frege

ruled out the second method and that, therefore, on Frege's view,

geometry cannot be formalized using a complete logic.

One often hears that the parallel axiom is false, while the other

axioms of Euclidean geometry are true. It would therefore be of grave

logical consequence should it turn out that the parallel axiom is not

independent of the other axioms of Euclidean geometry. (In the future,

I shall simply refer to the other axioms of Euclidean geometry as the

geometric axioms.) Yet this is precisely what Frege maintained 14 :

If you [Hilbert] are concerned to demonstrate the mutual
independence of axioms, you will have to show that th~

non-satisfaction of one of these axioms does not contradict
the satisfaction of the others •.• But it will be impossible
to give such an example in the domain of elementary
geometry because all the axioms are true in this domain.
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Frege believed th~t in order to show the parallel axioms independent

of the geometric axioms we must find an example in the domain of elementary

geometry in which the "non-satisfaction" of the parallel axiom does not

contradict the "satisfaction" of the geometric axioms. For Frege, J

think, this meant we must find an example of a space consisting of

points, lines and distances in which the geometric axioms are all true,

but in which the parallel axiom is false. The axioms of Euclidean

geometry, the geometric axioms and the parallel axiom, are about points,

lines and distances; we use them to say things about points lines and

distances. Therefore, Frege concluded, in order to show that the

parallel axiom is independent of the geometric axioms, we must show that

what the geometric axioms say about points, !ines and distances can be

true ~~ points J lines and distances, even though what the parallel

axiom ,says about points, lines and di stances is .fa lse of point 5 J 1ines

and distances. As Frege put it:

You want to prove Lhe mutual independence and lack of
contradiction of certain premises (axioms), as well
as the unprovability of propositions from certain
premises (axioms) •.. What means have we of demonstrating
that certain properties, requirements (or whatever else
one wants to call them) do not contradict one another?
The only means I know is this: to point to an object
that has all those properties, to give a case where
all those requirements are satisfied.

In light of these statements and considerations, I think we have to

conclude that Frege could not have maintained (consistently) that geometry

is formalizable using a complete logic. ~ccording to Frege, the only

way to prove the independence of the parallel axiom is to construct a

model satisfying the geometric axioms in which the negation of the

parallel axium is true. We cannot first demonstrate the consistency of
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the negation of the parallel axiom with the geometric axioms, and then

appeal to completeness; the logic, then, used to formalize geometry cannot,

on Frege's view, be complete. But Frege goes even further. Not only

does "he claim that we cannot demonstrate the independence of the parallel

axiom by means of a consistency proof, he claims that we simply cannot

demonstrate that it is independent. According to Frege, there is no

model satisfying the geometric axioms in which the negation of the parallel

axiom is true.

Typically the parallel axiom is shown independent of the geometric

axioms by means of substitutions. New terms are uniformly substituted

for each of the geometric terms occurring in the Euclidean axioms. We

obtain new axioms by substituting, for example. 'point inside a fixed

Euclidean cicle' for 'point' and 'open chord of a fixed Euclidean circle'

for'straightline'. The axioms so obtained can then be seen to have a

natural model in whichrthe translations of the geometric axioms are all

true, while the translation of the parallel axiom is false. It is then

usual to infer that the Euclidean axioms themselves have a similar model,

a model in which the geometric axioms are true, but in which the

parallel axiom is false. Indeed, this last inference is justified by

clause (iia) of definition 5 (see chapter two). Frege was aware of such

proofs. Nevertheless, he denied that the parallel axiom is independent.

Should we then conclude that in addition to denying that geometry can

be formalized using a complete logic, Frege also denied that it is

formalizable using a logic satisfying clause (iia) of definition 5?

and that, therefore, Frege denied geometry is formalizable using a

Lindstrom logic? Although I think the answer to the second question is
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'yes', the answer to the first question, as we shall see, is 'no'.

The only way to demonstrate that the parallel axiom is independent,

we have seen Frege claim, is to construct (or exhibit) a structure satisfying

the parallel axiom. There is, however, according to Frege, no such

structure in the domain of elementary geometry "because all the axioms

are true in this domain." If Frege is right, every structure exhibited

that satisfies the geometric axioms will satisfy the parallel axiom because

(i) only structures "in the domain of elementary geometry" satisfy the

geometric axioms and (ii) every structure in the domain of elementary

geometry satisfies the parallel axiom. Thus, ac~ording to Frege, there

is no way to demonstrate that the parallel axiom is independent.

To a certain extent, Frege seems correct about this matter. If

'point' as it occurs in the Euclidean axioms refers to Euclidean points,

and if 'line' refers to Euclidean lines, then it is impossible for the

parallel axiom to be false. Given any Euclidean point and any -Euclidean

line it just always is the case that there is one and only one Euclidean

line parallel to the given line and through the given point. Thus, i~

say, adequate formalizations of the Euclidean axioms must capture what

Frege called the "senses" of the terms occurring in those axioms, then

it will be impossible to demonstrate the independence of the (formalization

of) the parallel axiom.

We should at this point perhaps recall why Frege started forJnalizing

mathematics in the first place. Frege thought that mathematical practice

during his time was confused. It is not unfair to say that Frege

though his contemporary mathematicians literally did not know what they

were talking about. He noted that they were-unable to define the most



100

elementary concepts of their science and that when they tried to formulate

such definitions the results were often far-fetched and contradictory.

It looked to Frege as if mathematicians were not paying enough attention

to the senses expressed by the words and symbols they used, and this,

he thought,was inexcusable. "The sentence is of value to us," he said 16 ,

"because of the sense that we grasp in it ... "

If you ask what constitutes the value of mathematical
knowledge the answer must be: not so much what is known
as how it is kno~m, not so much its subject matter as
the degree to which it is intellectually perspicuous
and affords insight into its logical interrelations.
And it is just this which is lacking. Authors explain
the commonest expressions ... in totally different ways
and these discrepancies are not just trivial but
concern the very heart of the matter. I7

In order to avoid such confusions, Frege invented the concept-script.

a formal logic in which the statements of ordinary mathematics, he hoped,

could be expressed clearly and proved convincingly. The sense of a

sentence of ordinary mathematics formalized as a formula of the concept-

script, Frege thought, could be read and grasped without confusion.

This was, for Frege, the primary goal of formalizing mathematics: to

express the sense of ordinary mathematical sentences in as unconfused

a manner as possible. "The effect," he said
lB

, "of the logical

analysis ... will then be precisely this -- to articulate the sense clearly.'~

Formalizations, then, of ordinary sentences of mathematics must,

according to Frege, express the senses of those sentences.

Frege's view is, I think, reminiscent of the so-called Skolem

paradox. Frege supposed that 'is a point' has a sense that is independent

of any structure in which formalizations of the Euclidean axioms are
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interpreted. He thought that formalizations of the axioms of Euclidean

geometry must, therefore, in order to be adequate, capture this sense.

Similarly, the Skolem paradox seems to presuppose that 'uncountable'

has a sense that is independent of any structure in which formalizations

of sentences containing that word are interpreted. Recall, for a moment,

how the Skolem paradox goes. It is argued that

(1) There is an uncountable set

has no first-order formalization because any first-order formalization

of (1) is true in a countable model even though what (1) says is that

there is an uncountable set. Similarly, we saw Frege argue that the

parallel axiom can never be false in a structure satisfying the geometric

axioms because what the parallel axiom says about points is always true.

One way the Skolem paradox is often resolved is by claiming that

there is no sense had by 'uncountable' that is independent of the structures

in which formalizations ~f (1) are interpreted. We can avoid the Skolem

paradox if, when formalizing (1), we eliminate the word 'uncountable'

· f f . 1 h·· bI I· 19In avor 0 termlno ogy t at lS lnterpreta e re atlve to structures.

In a similar manner we might hope to remove the sting of Frege's comments.

We might say that the axioms of Euclidean geometry have no sense that

is independent of the structures in which formalizations of those axioms

are interpreted. We might try eliminating 'is a point' in favor of

terminology that is interpretable relative to structures, Our

conclusion would be that sentences or geometry only have sense relative

to structures and that, therefore, Frege's criticism of Hilbert's

independence proof was misguided. We are not limited to structures "in
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the domain of elementary geometry" when we try to demonstrate that the

parallel axiom is independent. We can, for example, substitute 'point

inside a fixed Euclidean circler for 'point' show the independence of

the parallel axiom in the standard way described on page 98.

The problem with this sort of reply is that it begs the question.

Frege would simply deny that the axioms of Euclidean geometry can be

phrased using terminology that is interpretable relative to structures.

The issLe over which Frege and Hilbert differ just is whether. say, the

parallel axiom has a sense that is independent of structures. According

to Frege, it does; according to Hilbert, as we shall see in the next

chapter, it does not. Frege could (and would) respond to the preceding

paragraph by reiterating his claim that 'is a point' has a sense that

is independent of structures in which formalizations of sentences using

that phrase are interpreted.

In a similar manner, of course, it can be denied that (I) (see

page lOD can be rephra~ed using terminology that is interpreted only

relative to structures. For example, it can be claimed that 'uncountable'

has a sense that is independent of structures and that formalizations of

(1) should exhibit this fac~. Some not uninteresting mathematical work

has proceeded along these lines. (1), it might be claimed, should be

formalized using the quantifier "there exists uncountably many x such

that". Thus, when formalizing (1) we do not eliminate 'uncountable'

in favor of terminology that is interpreted only relative to structures,

rather we eliminate 'uncountable' in favor of logical terminology, in

favor of Keisler's quantifier. I shall soon suggest that Frege had

something along these lines in mind. He seemed to want to say that 'is
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a point' cannot be eliminated in favor of non-logical terminology. On

Frege's view, it is a primitive expression on a par with the logical

constants.

Frege, we have seen. thought that (at least some) mathematical

sentences have sense independent of structures~ He also, I argued, thought

that formalizations of such sentences should express this sense. As

h · 20e put It :

The natural way in which one arrives at a symbolism
seems to me to be this: in conducting an investigation
in words, one feels the broad imperspicuous and
imprecise character of word language to be an obstacle,
and to remedy this, one creates a sign language in
which the investigation can be conducted in a more
perspicuous way with more precision.

Formalizations, according to Frege, are ways of expressing the senses

of ordinary mathematical sentences more precisely. Thus, if a formal-

ization of an ordinary mathematical sentence can be interpreted in ways

contrary to the sense of that ordinary sentence, the formalization in

question, according to Frege, is inadequate. It is this, I think, that

led Frege to reject formalizations, like Hilbert's, that permit the

sort of independence proof described above.

Frege's claims can, I think, be made more forceful, if we look

at them in the following light20a . In a number of piaces
20b

Quine

suggests that a sentence is logically true if it stays true under all

substitutions. Frege, I think, had a similar criterion in mind. Now,

Quine's criterion, as it stands, needs amending~ For instance, we do

not want it to turn out that
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(2) x=y &y=z, ~ .x=z

is not counted as a logical truth because

(3) x;y &y;z. + .x;z

is false and results from (2) by a substitution. What Quine's criterion

must be amended to is: a sentence is logically true if it stays true

under all substitutions for its non-logical constants. When we use

Q '" .. .. 20c k"" d h .. hU1ne s crIterIon ,we must eep In mIn t at certaIn terms -- t e

logical constants -- remain fixed. Frege's criticisna of Hilbert turned,

I think, on his accepting Quine's criterion of logical truth and insisting

that 'is a point' as it occurs in the Euclidean axioms is on a par with

'and' and 'is identical with'. We are, I think, justified in attributing

to Frege the view that when formalizing the Euclidean axioms, 'is a

point' should be treated as a logical predicate on a par with the

identity sign. This interpretation of Frege is supported by the following

statement of Dummett's:

In the 1903 article on the foundations of geometry ...
[Frege] says that Hilbert's proof of the independence
of his axioms for Euclidean geometry is a proof of
the independence only of psuedo-axioms, obtained~

by varying the interpretations of the primitive
expressions. In the actual axioms of Euclidean
geometry, however, the primitive expressions have
a fixed, determinate sense, and one cannot conclude
from the independence of the psuedo-axioms to the
independence of the genuine axioms.

There are, of course, alot of objections that can (and should)

be raised against Frege's position. We should ask, for instance,

whether it is the case that an ordinary mathematical sentence and a
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formalization of it have sense independent of any structures. Recently,

H. Putnam has asked just this question and argued that, in fact,

several results in model theory and mathematical logic suggest that

sentences of mathematics and their formalizations do not have sense

independent of structures 21

22
Skolem . Frege, however, as we have seen, is committed to the view

that formalizations of mathematical sentences do have sense independent

of structures, and it is precisely on this claim that his criticism

of Hilbert's independence proof rested. But these are issues that I

shall for the moment leav~ aside, touching on them only a bit in the

next chapter.

Frege's criticism of the standard proof (and of Hilbert's proof)

that the parallel axiom is independent, we have seen, centered around

two claims:

(I) Ordinary mathematical sentences have sense,

and

(II) A formalization of an ordinary mathematical
sentence has the same sense as that sentence.

Formalizations of the Euclidean axioms that allow the independence of

the parallel axiom to be proved, according to Frege, are inadequate

insofar as they violate (II). I suggested that, on Frege's view, the

Euclidean axioms must be formalized using a logic containing a logical

d - ,- - ,22a d· I·constant correspon Ing to IS a pOInt ; an , In genera , It seems

clear that one logic is more suited than another for expressing
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specified senses. For example, a logic with the Keisler quantifier,

"there exist '.Dlcountable many x such that", it can be argued, is more

suited for expressing the senses of sentences, like (1), in which

'uncountat_!e' occurs; and, according to Frege, a logic with a logical

expression corresponding to 'is a point' is more suited for expressing

the senses of the Euclidean axioms. So, it seems that Frege's position

conditions (1) and (II) -- conflicts with what, in chapter one, I called

"Frege's thesis." (Frege's thesis, recall, is the position that there

is one and only one formal logic in which the proofs of ordinary

mathematics can be formalized.) Conditions (1) and (II) suggest that

what formal logic is used is a function of what portion of mathematics

is to be formalized.

This is not a view without proponents ~n the mathematical

commWli ty. Flum am Zi~gler claim that

The formal language in the study of topological structures
is Lt. This is a,fragment of the (monadic second order
language ... obtained by allowing quantification of set
variables of the form 3X(t-X & 1P) •••

The reasons for the distinguished role that Lt playJ in
topological model theory are twofold. On the one hand,
many topological notions are expressible in Lt ... ~l the 26
other hand, the expressive power of Lt is not too strong ...

Thus mathematicians sometimes adduce reasons for using formal logics

other than first-order logic that depend upon the portion of mathematics

that is to be formalized. According to Flum and Ziegler, for example,

topology is illuminatingly formalized using the languageL
t

. According

to Frege, Euclidean geometry is formalized using a logic containing

a logical expression corresponding to 'is a point'. Frege's criticism
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of Hilbert, then, is not without analog in current mathematical practice.

Before ending this chapter we should ask: what do Frege's claims

have to do with our general discussion of Hilbert's thesis? First,

there is the obvious point that first-order logic is complete, and

Frege's c~iticism of Hilbert, as we saw, entails that the logic used to

formalize Euclidean geometry is not complete. Thus, what Dumrnett

22bcalls "Fregets Platonism" can be used as reason for denying that

Hilbert's thesis is true. It might be thought, of course, that Frege's

Platonism is more difficult to defend than the claim that logic is

complete. This may well be so. Nevertheless, Frege's claims are an

important example of philosophical reason~ for denying Hilbert's thesis.

But illustrative reasons are not the only reasons I had for discussing

Frege's criticism of Hilbert. His criticism also sheds important

light on a common confusion. In chapter 1, I discussed what was

called "Morley's argument". Recall that Morley's argument is, roughly,

that Hilbert's thesis is true because mathematics is reducible to

set thear)' ((claim (i)) and set theory is a first-order theory (claim (ii)1.

We saw that the main source of evidence for claim (i) of Morley's

argument (the claim that mathematics can be reduced to set theory)

was the fact that a good many of the notions ordinarily used in

mathematics can be defined using only the language of set theory. This

last claim, however, is only a fact because E is interpreted set

theoretically (compare page 29 ). If the language of the set

theory to which mathematics is reduced is first-order -- that is, if

claim (ii) of Morley·s argument is true -- the LOwenheim-Skolem theorem

guarantees that if that set theory had a model, it has an arithmetical

model; that is, there is an arithmetical relation, a, such that when E
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is interpreted as OJ every truth of set theory becomes a truth of

arithmetic. However, we do not -- and rightly so -- take this as showing

that every mathematical notion is definable using only the language of

arithmetic, even though, where ~ is a set theoretic definition of a

mathematical notion we can obtain an arithmetical definition of that

notion by substituting a term interpreteJ as a for every occurrence of

£ in ~.22c In some ways, when we talk about reducing mathematics to

set theory we treat E as if it were a logical constant, just as Frege

treated 'is a point' as if it were a logical constant when he discussed

geometry. Thus, in light of Frege's criticism of Hilbert we might want

to say that the evidence for claim (i) of Morley's argument undermines

the evidence for claim (ii).

I mention these points to stress that Frege's criticism of Hilbert

is indeed relevant to our discussion of Hilbert's thesis. It provides us

with an important example of a philosophical position that conflicts with

Hilbert's thesis and suggests that the logic that should be used when

formalizing mathematics is not complete, hence not first-order. In

the next chapter I shall look in much detail at a contrary position,

a position entailing that logic is complete and apparently entailing

that Hilbert's thesis is true.
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Chapter 4

HILBERT ANn HIS THESIS

In chapter three I did two things. First, I examined critically

an argument that only complete logics should be used when formalizing

mathematics. I looked especially closely at premise (C) of that

argument, the claim that ordinary empirical procedures yield no knowledge

of necessary truths. Second, I looked at a position Frege endorsed

when he criticized Hilbert's formalization of and independence

proof for the parallel axiom. In this chapter, I shall continue,"

investigating these themes. First, I shall look at how Hilbert replied

to Frege and shall reconstruct, using concepts ordinarily employed

today, a perhaps anachronistic version of Hilbert's philosophy of

mathematics. Using this philosophy I shall then construct an argument

for Hilbert's thesis, the claim that only first-order logic should be

used when formalizing mathematics. I shall conclude this chapter by

looking at the ~tatus of'this argument in the light of a (fairly

standard) refutation of Hilbert's philosophy of mathematics.

(i)

According to Hilbert, one of the major differences between

himself and Frege is their di.fferent opinions about the importance

of consistency proofs and the relation of those proofs to conclusions

about th~ ~ruth-values of axioms. In a letter to Frege. Hilbert saysl

I was very much interested in your sentence: 'from the
truth of the axioms it follows that they do not
contradict one another', because for as long as I have
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been thinking about these things, I have been saying the
exact reverse: If the arbitrarily given axioms do not
contradict one another, then they are true, and the things
defined by the axioms exist.

Frege believed that consistency proofs (at least in geometry) are

superfluous because if a set of axioms contains only truths, then that

set is consistent and the axioms of (Euclidean) geometry, Frege thought,

can be seen to be truths by inspecting our "spatial" intuitions.

Hilbert, however, held that in all areas of mathematics consistency

proofs are essential. According to Hilbert's point of view, confronted

with "arbitrarily given axioms," we can only see that those axioms are

trlJths by demonstrating that they do not "contradict each other." If.

according to Hilbert, a set of axioms is consistent, then it contains

only truths; so the way to determine that the axioms we accept are truths,

according to Hilbert, is not by inspecting intuitions, but by

demonstrating that those axioms form a consistent set.

Hilbert and Frege, therefore had very different views about how

we know mathematical truths. Hilbert thought, as shall be seen, that

a mathematical truth is known only if we have shown how to deduce it

from a demonstrably consistent set of axioms. So, in particular, on

Hilbert's view, we know that a set of axioms contains only truths only

if we have demonstrated that that set is consistent. Frege, on the

other hand, was committed to no such claim. "It cannot be required,"

he said2 , "that we should prove everything, because that is impossible."

In particular, according to Frege, we may know that a set of axioms

contains only truths even if we have not demonstrated that that set is

consistent. Rather, we can know that axioms are true independently
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of any deductions and proofs. For example, as I mentioned, Frege thought

that we could know that the axioms of Euclidean geometry are true without

any consistency proof, merely by inspecting our spatial intuitions.

Furthermore, unlike Hilbert, Frege thought that axioms are ~ot "arbitraLily

given." He thought that axioms are truths upon which a sYstem of

mathematics rests, and which we can know to be true without consistency

proofs. Thus, Frege and Hilbert had very different views about how we

know mathematical truths. As I shall soon argue, Hilbert's view is

co~nitted to (He), the claim that only complete logics should be used

when formalizing mathematics; as I argued in the previous chapter,

Frege's view is committed to no such claim.

At first, the view that I have associated with Hilbert seems wrong.

Two sets of sentences can both be consistent even though they are

jointly inconsistent. For example, A may contain ~ and B may contain

the negation of ~ even though A is consistent and 8 is consistent.

But then, on Hilbert's view, it looks as if A contains only truths and

B contains only truths. So ~ is a truth and the negation of ~ is a

truth. But then ~&-~ is a truth, and this, we know, is impossible.

This argument, however, is based on a confusion about the nature

of Hilbert's position. According to Hilbert, sentences are purely

syntactic items. To speak of a sentence being true or false, then,

only makes sense if we have in mind a particular interpretation of that

sentence. The argument made in the last paragraph misses this (important)

point, as becomes clear if we examine it a little closer. That

argument went as follows:
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(1) There are two consistent sets, A and B, such that
~ is in A while -~ is in B.

Since, according to Hilbert, if a set of axioms is consistent, then it

contains only truths, it follows that A contains only truths and B

contains only truths. So

(2) ~ is a truth and -~ is a truth.

But it is plausible to hold that

(3) For any sentences, I and 0, if • is a truth and
o is a truth, then 1&0 is a truth.

It follows from (3) and (2) that ~&-~ is a truth. This, however, is

impossible. But this conclusion, I think, should not be interpreted so

that it shows Hilbert's position false; rather, I think, it should be

interpreted so that it shows (3) is wrong.

Strictly speaking, W is not an English sentence, but a

formalization of a sentence of mathematical English; that is, both

~ and -~ are sentences of a formal logic. They are purely syntactic

items and for all we know about them, they could be strings of numbers

or sets of sets. It makes no sense to speak of such items being true

or false without first giving them an interpretation. One way this can

be done is relative to a structure or a class of structures. We can

interprete the variables of, say, ~ to range over the universes of

structures of a certain sort, and we can interprete the relation symbols

of ~ using structures of that sort. If we agree that this is the way

to go about interpreting ~, a reasonable way to understand the statement
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that $ is a truth is as the claim that there is a mathematically

interesting class of structure in which we can interprete ~ and ~ is

true in every member of that class. It is, of course, problemmatic

what mathematically interesting classes of structures are; however, for

our purposes, we can say that a class of structures is mathematically

interesting if it is the class of models of some demonstrably consistent

set of axioms. Now notice that, given this rough ~derstanding. we

can rewrite (2) as

(2') For some mathematically interesting class of structures.
A, if1t\ is in A, thenlJ=tlJ and for some mathematically
interesting class of structures, B, if ~ is in B. then
1\F -tlJ·

(2') seems all right. However, if we similarly rewrite (3) as

(3') For any sentences, rand 0, if for some mathematically
interesting class of structures, A, and some
mathematically interesting class of structures, B,

and
(i) if m is in A, 1tIF t

(ii) if.1\ is in B, 111= 0,

then for some mathematically interesting class of
structures, C, if ~ is in C, 11= 1&<5 t

we obtain a false principle. Thus, if we accept Hilbert's view of

mathematical truth (or at least my, perhaps anachronistic, reconstruction

of it) we must reject (3), and so what seemed a refutation of Hilbert's

position is not a refutation at all.

I should, however, mention that the view of mathematical truth

presented above is foreign to Frege's views about mathematics and

logic. Formal sentences, according to Frege, have sense independent of

any structures in which they are interpreted. Indeed, according to
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Frege which structures a formal sentence is interpreted in depends on its

sense. This point should be clear after chapter three. Non-anomalous

formal sentences (that is, formal sentences without what Frege would

call "non-referring expressions") have truth-values independent of any

structure in which they are interpreted. This is quite different from

the view that motivated the rewriting of (2) as (2') and (3) as (3').

Indeed, I think, given what was said in chapter three about Frege's

position, it is clear that Frege would have endorsed (3) and denied

(2); exactly the opposite of what (my re-constructed version of) Hilbert

would do. As we shall see in more detail, Frege and Hilbert had

very different views about the nature of formal symbolisms. "The use

of symbols," Frege said3, "cannot be equated with a thoughtless

mechanical procedure." Yet, as shall be seen, this is precisely what

Hilbert, in some contexts, tried to do.

Let us end this section with the following (perhaps anachronistic)

description of Hilbert's.views. Hilbert thought that formal sentences

had truth only relative to a (specified) sort of structure. A

(formalization of a) mathematical theory, then, is a study of a sort of

structure, namely, the sort of structure relative to which all the theorems

of that theory are truths. So, all that is needed to show that a

(formalization of a) mathematical theory is true is a demonstration

that there are structures it studies. There are, as is well-known, at

least two ways this can be done. We can either (1) show directly that

some sentence, say '0=1' J is not a theorem of the theory in question and

then appeal to the completeness of its logic concluding that there are

models of the theory; or we can (2) use a relative consistency proof,



117

that is, we can translate the theorems of the theory into theorems of

another theory that we already know has models and then conclude (using,

by the way, clause (iia) of definition 5 in chapter two) that the former

theory has models. These two methods, as shall be seen, playa central

role in (my reconstruction of) Hilbert's philosophy of mathematics. In

the next two sections, I shall take a detailed look at (this version of)

Hilbert's philosophy of mathematics, to be followed in section four by

an argument that goes from principles affinned by it to the position

that first-order logic is the only logic that should be used to formalize

mathematics.

(ii)

Intuition is traditionally held to be the source of mathematical

knowledge. Frege, for example, in order to explain how we are able

to grasp geometric concepts, like point and .line, and to use them to

fonnulate truths appeale~ to what he called "spatial intuition." It

is, perhaps naively, thought that when a mathematician proves something

he is appealing to intuitions that we all have. The mathematician who

demonstrates that there is no largest prime is, on this view, examining

concepts that we are all able to grasp - - like .i s devisible by and is

the successor of and deriving facts using those concepts. This view

has it that anyone, by appealing to properly trained intuitions, can

"see" that any mathematical result is true. I shall call this rudimentary

position "the naive view."

My characterization of the naive view is rather vague and

imprecise. Nevertheless, I think, dressed up in different ways, the
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naive view represents the philosophy of mathematics of the nineteenth

century. One reason the set theoretic paradoxes seemed so intellectually

upsetting is that they demonstrated that methods that seem intuitively

correct, in fact, lead to inconsistent results. The concept of a set

that we intuitively arrive at, and the methods of inference consequently

used to reason about sets, turn out to yield contradictory results.

Hilbert's philosophy of mathematics, I think, is best seen as a reaction

to this interpretation of the set theoretic paradoxes.

It should, however, be pointed out before we look at Hilbert's

philosophy of mathematics that this interpretation of the set theoretic

paradoxes i·s not uncontroversial. Kr~isel argues that, as a matter of

fact, the set theoretic paradoxes is not uncontroversial. Kreisel argues

that, as a matter of fact, the set theoretic paradoxes confirmed the

intuitions of working mathematicians, and that, therefore, the discovery

of the set theoretic paradoxes vind~.cated the naive view. Although I

think that Kreisel is wrong on this matter, it is worth outlining the

reasons he gives for his view4. Kreisel suggests that mathematicians

were bewildered by early research in set theory. Many thought that the

theory of sets was not worth p·ursuing. Thus, when it turned out that

that theory was inconsistent, Kreisel claims, the intuitions of working

mathematicians turned out to be correct; the theory of sets, as it then

stood, was inconsistent and not worth pursuing. Kreisel's view is,

however, non-standard, and I shall not accept it here -- not because

it is non-standard, but because it is easier to see the motivation for

Hilbert's philosophy of mathematics if we keep in mind the more standard

account of the set theoretic paradoxes.
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In the beginning stages of set theoretic research, it seemed

plausible that (as we might put it today) for every open sentence, $(x),

there is a set, E, such that = contains all and only those objects that

satisfy ~(x). The intuitions of early set theorists, then, suggested

that every instance of

is a truth. Bertrand Russell and Zermelo, as is well-known, showed this

to be untenable. S There are many instances of (1) that are false.

is perhaps the most famous. Thus, appea.ls to intuitions, even well-

trained ones, contrary to the naive view lead to contradictions.

Faced with the set theoretic paradoxes, philosophers of mathematics

have a dilemma: either (1) deny that mathematicians uncover truths we

know with certainty. while accepting the basic substance of the naive

view; or (2) replace the naive view with something else, a position

able to justify the view that the resul ts a mathelTaat ician uncovers

are certainly true, while at the same time explaining (away) the set

theoretic paradoxes. Hilbert's philosophy of mathematics is one

result. of following the second strategy_

Hilbert hoped to establish the certitude of mathematical methods

once and for all. "If mathematical thinking is defective," he plaintively

6asked • "where are we to find truth and certitude?" Hilbert accepted

what was then the standard view of the set theoretic paradoxes, namely,

that the set theoretic paradoxes resulted because transfinite methods
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7were used in an illegitimate way ~ In particular, Hilbert believed,

early set theorists mistakenly generalized facts about bounded

quantification to draw conclusions about unbounded quantification J

although he probably would not have put the matter in this fashion.

This is not an unnatural position to be led to. Paradoxes do not

result if we limit our attention to bounded formulas, that is, formulas

in which no unbounded quantifiers occur. All instances of

(1') (3xe:A) (WEb) [YEX~(Y)]

are not truths, but our intuitions do not suggest that they are. What

our intuitions do suggest is true is that for every set, B, and open

sentence, ~(Y)J we can find a set, A, such that the relevant instance

of (I') is a truth; and it is not legitimate to infer that every instance

of (1) is true from this fact about instances of (1,)7~ Hilbert (on

one interpretation) thought that by examining closely just what we can

say using bounded quantifiers and investigating how far we can extend

our use of bounded quantifers to a use of unbounded quantifiers without

engendering contradiction, we might eliminate paradoxes and begin to

establish the certitude of mathematical methods.

Hilbert's philosophy of mathematics, as I understand it, is a

h h . d 7b d· b d hresponse to t e set t eoretlc para axes an IS ase on tree core

ideas. First, Hilbert stressed that there are finitary reasonings

that lead to conclusions we know are certainly true. As I understand

Hilbert (and as I shali argue below), he thought that all finitary

reasoning is a part of arithmetic. So this first idea of Hilbert's can

be put as: there is a set of rules of inference in arithmetic (the
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rules of finitary inference) that lead to conclusions we know are certainly

true. Such rules allow us to show that two plus two is four, or that

15077 is a prime number, The principles of finitary reasoning are

simple arithmetic computations, involving only a finite set of integers,

yielding a result after finitely many steps.

It should be mentioned, before going any further, that a good

deal of controversy surrounds the question what exactly Hilbert tnought

finitary reasoning isS. In the next section. I shall give what appears

to be a definition of finitary reasoning. However, it should be stressed

now (it will be stressed again) and remembered when reading that section

that the characterization of finitary reasoning there given is not

meant to be definitive. I do not pretend to be able to give a definitive

characterization of what Hilbert thought finitary reasoning is, nor

do I want in this work to become embroiled in that controver5y. All

characterizations of finitary reasoning I put forward are very tentative

speculations. How finitary reasoning is characterized does not, I

think, affect the main arguments or this chapter (although it must be

the case that finitary reasoning is a part of arithmetic. This, however,

is not very contrc·versial.)

The second core idea on whicll Hi Ibert I s philosophy of mathemat ics

is based is the claim that transfinite notions and methods are

creations. We make them up. There is a sense, according to Hilbert,

in which there are no infinite totalities. He claims that statements

like

For every natural number, 0, there is a prime number, ro,
such that m>n,
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which seems to imply that there is an infinite totality of prime numbers,

are really ideal statements without sense or meaning that are only used

in order to "tidy up" our theories. Hilbert says8a that "in general [a

statement involving transfinite notions] has meaning only as a ~rtial

proposition J that iS J as part of a proposition that is more precisely

determined but whose exact content is unessential for many applications."

The third core idea of Hilbert's philosophy of mathematics iS J

perhaps, the most well-known. According to Hilbert J the only criterion

that must be met by the ideal statements (such as the one displayed in

the preceding paragraph) is that they are consistent with the set of

true real statements (those we can show true using finitary reasoning).

It is this last idea that has led to much of the discussio~ of Hilbert's

philosophy. Hilbert claimed9 that

we must establish throughout mathematics the same certitude
for our deductions as exist in ordinary number theorYJ which
no one doubts J and where contradictions and paradoxes arise
only through our own carelessness.

According to Hilbert, then, there is a core of arithmetic J "ordinary

number theory" that contains truths we can know with certainty. He

hoped to base all mathematics on arithmetic (as I shall soon argue) and

to show that all arithmetic can be known with certainty by demonstrating

that all arithmetic -- that is, ordinary number theory cum transfinite

methods -- is consistent with that part of arithmetic "which no one

doubts." Furthermore, he hoped todt:monstrate this consistency using

only principles ''which no one doubts" -- that is, he wanted his consistency

proof to be a part of ordinary nwnber theory; thus establishing "throughout
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mathematics the same certitude ... as exist[s] in ordinary number theory."

It is well-known how Godel demonstrated that this last part of

Hilbert's philosophy is, unfortunately, a pipe dream. The consistency

of number theory cannot be established using only number theory; hence,

it surely cannot be established using what Hilbert called "ordinary

number theory" -- or so GOdel's results have been interpreted.

In the next section, I shall present a more rigorous treatment of

Hilbert's philosophy, so that some of these issues can be discussed more

clearly. In section four, I shall then present an argument that goes

from principles of Hilbert's philosophy of mathematics to the conclusion

that Hilbert's thesis is true.

(iii)

9aLet us start by considering a very simple language J N, called

"the language of arithmetic." N consists of 0, a constant symbol, s( ),

a one-place function sym~ol, ( )+( ) and ( )-( ), two place function

symbols, and <, a binary relation symbol. I am interested in generating

a certain class of sentences from N, called "the ordinary sentences of

arithmetic." To do this, take #I to be the minimal syntax (in an

obvious sense of minimal), *, such that where

(1) All variables of kind 0 are terms, and the constant 0
is a tenn

and

(2) If a and B are terms, then sea), (a)+(aJ and (a)-Ca)
are terms
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the following h01d:

(3)

(4)

(5)

If a and a are terms, then a=a and a<B are members of
N*lO

If J and ~ are in N*. then 1& 6, 1~O, 1~o,t~o and
-1 are members of N*

If ~ is in N*, x is a variable of kind 0 and a is a
term, then (3x<a)~ and (Vx<a)~ are in N*.

It should be obvious that there are syntaxes satisfying (1)-(5) and

that # is, therefore, well· .. defined.

The members of N" have their usual interpretations. So let f

be the relation between structures and ordinary sentences of arithmetic

that works out as we would expect. For instance,1np (3x<aJr if and only

if '-to fo (3X) (x<a&t), where ~ fo is as in chapter two. (As it turns

out <#, P > is not a Barwise logic (see definition 5, chapter two), but

this need not concern us.) We can now construct a formalization of a

portion of mathematics 10a , =0' whose first component is N whose second

component is a set of ordinary sentences of arithmetic and whose third

component is <#, F >IOb such that if ~ is a member of N#, then ~ is

true in the standard model of arithmetic only if ~ is EO-valid.

For the purposes of exposition, not ~ ~ definiti~~ ~haracterization,

I shall take Eo to formalize finitary arithmetic, that part of mathematics

that, according to Hilbert, "no 0ne doubts and where contradictions and

paradoxes arise only through our own carelessness." 1.. 5 would be

expected of a formalization of this fragment of arithmetic, there is

a proof-system, 0' such that if ~ is EO-valid, then ~ is a-provable.

According to my interpretation of Hilbert, EO' is a formalization
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of the contentful part of arithmetic (and hence, as shall be seen, of

mathematics). A sentence of arithmetic has meaning. according to Hilbert,

only if it can be formalized as a member of N#. These sentences are

what Hilbert called "the real sentences of mathematics." Undoubtedly

this was based on a particular view about what a theory of meaning for

mathematical sentences should be like. It is not unusual to suppose

that a theory of the meaning of mathematical sentences is a theory of

computation, and this is what, I think, Hilbert had in mind. On this

view, we describe the meaning of a mathematical sentence if we describe

a type of computation that would show that sentence true or false. It

is the existence of such a theory for the real sentences of mathematics

#
(the sentences of N ) that~ I think, makes it plausible to call those

sentences the contentful part of arithmetic. However, according to

Hilbert, =0 does not formalize adequately all arithmetic. =0 does not

formalize those portions of arithmetic that use transfinite methods.

There are many sentences ordinarily accepted by mathematicians that

cannot be adequately formalized as ordinary sentences of arithmetic,

and Hilbert therefore proposed that we extend =0 so that a larger

portion of mathematics can be formalized. IDe

Hilbert gave essentially two reasons for extending =0. It is

not hard to see that

CA) O<x~[O<x+s(O)]

is EO-valid; it is an ordinary sentence of arithmetic and it is true in

all standard models of arithmetic. Thus if a structure does not satisfy
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(A) it is not a standard model of arithmetic. That is to say: if a

structure satisfies the negation of (A), it is not a standard model of

arithmetic. But what sentence is the negation of CAl? In other words,

what sentence is true in all and only those structures that do not satisfy

CAl? It is not hard to see that there is no ordinary sentence of

arithmetic that can be taken as the negation of (A). We know that CA) is

satisfied in a structure, a, if and on iy if no matter what element of

the universe of 'lis assigned to x, (A) -- so interpreted -- is true in d.

That is,Gl satisfies (A) if and only if

(A") all- (O<x-+[O<x+s(O)]) [0]

(in the sense defined on page 61 ) for all sequences, 0, over

the universe of a. But there is no sentence. ""t. in N# such that iJ.~ 't

if and only if there is a sequence, ~, over the universe of d for which

(A") is false. There is, then, no way of fannal izing the negation of

(A) using =0; and so the~e is no way of capturing the classical rules

of inference using only the logic <#, ~ >.

Hilbert therefore proposed that =0 be extended to a new system,

=1' in which there is a negation of (A). This new system will consist

of the language of arithmetic, a set of axioms extending the axioms of

=0' and a new logic extending <#, ~ >. So long as every ordinary sentence

of arithmetic that is =l-valid is =O-valid, that is, so long as =1 is

a conservative extension of =0' there is, according to Hilbert, nothing

objectionable about introducing a negation of (A) in this manner.

will be a tidier system than EO' although EO is the "real" theory of
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arithmetic, while =1 contains ideal sentences that have no genuine

content.

(The choice of (A), of course, was completely arbitrary; any

#
open sentence in N could have been used to obtain a reason for introducing

ideal sentences, like the negation of (A), into our formalization of

arithmetic.)

There is another kind of reason Hilbert gives for extending

"ordinary number theory, which no one doubts," that is, I think, more

interesting. As I interprete Hilbert it is based on the idea that if

we can recognize that all the members of a certain subset of N# are

true, then, in some cases, there should be a sentence that is true in all

and only those structures in which all the members of this subset of N#

are true. Hilbert thought that the introduction of such a sentence

gives us no new information and therefore should not be objectionable.

In order to illustrate this second reason for introducing ideal

sentences, Hilbert used the following example. Let p be the greatest

known prime number. Using only finitist methods, Hilbert claimed,

we can show both that (i) p is a prime and that (ii) p is the greatest

known prime since at any time there will be only finitely many

known primes. However, also using finitist methods, we can show that

there is a number greater than p that is also a prime number. If we

multiply together all non-zero numbers less than or equal to p and then

add one to this product, we obtain a number that we can show, using

finitist methods, to be greater than p and prime. Letting nf have

its usual meaning, we therefore have it that no matter what the value

of p may be:
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<
If P is a prime, then there is an x pl+l 3nd x
is a prime greater than £

can be formalized as a =O-valid sentence. (Here, as usual n is the

numeral for n.) So it looks as if no matter what prime is the greatest

known prime, we can show that it is not the greatest prime -- and we can

do so using methods that can be formalized using =0. It looks, then, as

if we have established, using finitary methods, that there are infinitely

many primes. Care, however, is necessary.

Although every instance of (6) can be formalized as a true,

ordinary sentence of arithmetic, (6) itself cannot be so formalized.

Although for any particular number, n, we have a method in finitary

arithmetic for going from n to its factorial, n!, we do not have a

method in finitary arithmetic of going from any number to its factorial lOd .

Thus, strictly speaking, (6) should be interpreted as a schema whose

instances are formed by a rule -- not expressible in =0 -- \~ith the

peculiar property that all instances of (6) formed in accordance with

that rule are formalizable as =O-valid sentences. So every (properly

formed) instance of (6) is a true, ordinary sentence of arithmetic, that

is, every instance of (6) is true in every standard model of arithmetic lOd'

There is, however, no ordinary sentence of arithmetic that is true in

all and only those structures in which every (properly formed) instance

of (6) is true. Hilbert proposed that =0 be extended, as before, so that

there is such a sentence. As before, according to Hilbert, the only

condition that our extension of =0 must satisfy is that it be

conservative, for, then, Hilbert thought, no genuine content is added

to arithmetic so that the content of arithmetic might be presented (and

studied) using a tidier theory.
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We might characterize Hilbert's thoughts on these matters as

follows. We start with a formaiization of a portion of mathematics,

=0' which formal izes the "real" sent(~\lces 0'£ arithmetic, those that have

what Hilbert thought was cont~nt. ror the sorts of reasons described above,

=0 should be extended to another formalization, =1. By continuing in

this manner we obtain a sequence of formalizations: -0' =1' -2'.·· ·

The limit of this sequence is the (or a) correct formalization of

arithmetic -- and, hence, as shall be seen, according to Hilbert can

be used to formalize adequately all of mathematics.

It should be noticed that the particular system with which I

started is irrelevant. There may be good reason for denying that -0

is an adequate formalizati.on of finitist arithmetic. If that is the

case, then we can simply replace =0 with an adequate formalization of

finitist arithmetic without affecting the main arguments of this

chapter.

(iv)

In this section I shall use the above (perhaps anachronistic)

characterization of Hilbert's philosophy of mathematics to construct a

plausible (but by no means conclusive) argument for Hilbert's thesis.

The reader should consult chapter two, especially definition 16 and

Lindstrom's theorem on page 72. What I shall suggest is that Hilbert's

philosophy of mathematics is committed to the view that any logic used

when formalizing mathematics contains first-order logic (and is a

Lindstrom logic), is complete and satsifies the LOwenheim property.

Hence, using Lindstrom's theorem, it can be deduced that first-order logic
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is the logic that should be used when formalizing mathematics. So, what

I have to do in this section is show three things: (I) that Hilbert

thought (or can be construed to have thought) that a Lindstrom logic

should be used when formalizing mathematics; (II) that Hilbert thought

(or can be construed to have thought) that any logic used when

formalizing mathematics should be complete; and (III) that Hilbert thought

(or can be construed to have thought) that any logic used when formalizing

mathematics should have the LOwenheim property. (I)-(II!) will show,

by Lindstrom's theorem, that Hilbert was committed to Hilbert's thesis;

that is, 'Hilbert's thesis' is not a misnomer.

It should be noticed that this is not an unsurprising result.

Nothing that Hilbert says about mathematics, nor anything I said above

when characterizing his philosophy of mathematics suggests that ~e

thought that Hilbert's thesis is true. Indeed, on the fact of it, there

is no reason why we should not expect that included among the ideal

sentences of arithmetic is a sentence stating that every number has

finitely many predecessors. Indeed, for each number, n, we can write

a sentence that seems to state that n has only finitely many predecessors,

for example:

x < n ~ [x=o ~ x=l v ••• ~ x=n-l].

So why should we not expect that a sentence stating that every number

is finite should not be a part of our formalization of arithmetic?

Using infinite disjunctions, for example, we can suitably generalize

the above sentence so that a sentence stating that every number is finite

can be formed. Why can't we add on such a sentence as an ideal element?
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Nothing in Hilbert's philosophy of mathematics ~~rectly says that we

cannot. In fact, Hilbert himself seems to have thought that infinite

conjunctions and disjW1ctions could be introduced as id·eal elements.

In "On Infinity" Hilbert 11 seems to have wanted to interprete 3xtPCx) as

(7) 1lJ(O)~",(1)"1lJ(2)y•..

He suggests that just as 3x~n~(x) is equivalent to ~(O)~~(l)v ...v$(n),

so 3x~(x) is equivalent to (7). Thus, Hilbert's thesis is not an

obvious consequence of Hilbert's philosophy of mathematics.

We already saw that Hilbert appeared to be committed to the claim

that every logic used to formalize mathematics should be complete. We

saw in chapter three that he claimed that statements of a mathematical

theory "have validity only if one can derive them from ... axioms by a

finite number of logical inferences." If we agree, as in chapter two

(page 7~, that logical rules of inference can be effectively generated,

we can interpret Hilbert here as straightforwardly endorsing (He),

the claim that only complete logics should be used when formalizing

mathematics. But there are more profound reasons why, I think, Hilbert

was committed to (He).

On Hilbert's view, mathematics rests on arithmetic in a very

important sense. The only part of mathematics that has "content" is a

portion of arithmetic; the "real sentences" of mathematics are all

sentences of finitist arithmetic. It is only this fragment of mathematics,

according to Hilbert, that we know is certainly true independently of

any consistency proofs. By then appealing to consistency proofs,

Hilbert believed that all arithmetic (and all mathematics) could be
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secured as steadfastly as finitist arithmetic. By showing a mathematical

theory consistent, Hilbert thought, we show that its theorems are truths.

But what connection is there between the consistency of a theory and the
-5,

truth of a theory's theorems? On pages114 I argued that, according to

Hilbert, a mathematical theory is true just in case it has models.

Thus, if we can show that a theory has models, we can show that its

theorems are truths. The gap between the consistency of a theory and

the truth of its theorems is bridged by t~e completeness of that theory's

logic. For if a theory's logic is complete, then the theory is consistent

only if it has models. It seems natural to conclude, then, in light

of the above consid~rations, that Hilbert would endorse (He), the claim

that only complete logics should be used to formalize mathematics.

Hilbert (or, at least, my reconstruction of him) was, then,

committed to (He). But what about the claim that every logic used when

form~izing mathematics should satisfy the LOwenheim property? Might

not it turn out, for instance, that one of the ideal sentences added

onto arithmetic states that nothing has uncountably many predecessors,

a statement most naturally made u~~ng Keisler's quantifier, "there exist

uncountably many, x, such that"? The resulting logic would, as already

noted b"e complete, but would not have the Lowenheim property. Why

would Hilbert object to using such a logic when formalizing mathematics?

We can answer this question by noting, first, that, on Hilbert's

view, there is no reason not to take 'something has uncountably many

predecessors' as an axiom of some non-arithmetic mathematical theory, if

'nothing has uncopuntably many predecessors' is an axiom of arithmetic.

According to Hilbert (see page 112) , "if the .arbit~ar~!I. given axioms

do not contradict one another, then they are true." [emphasis added]

So any axioms can be used -- so long as they



133

do not contradict one another -- to construct a mathematical theory.

But, according to Hilbert, as I understand him, only arithmetic can be

proved to have a model by using consistency proofs. Other mathematical

theories are shown to have models by reducing them to arithmetic, by

translating their theorems into the language of arithmetic and showing

that the translated theorems are consistent with the sentences of

finitist arithmetic. The content of all mathematics is found in finitist

arithmetic. S~, on Hilbert's view, the way to show t~,at any theory

other than arithmetic has a model is to construct an arithmetic

model (as described) for it. Thus, according to Hilbert, every non-

arithmetic mathematical theory has an arithmetic -- hence denumerable

model. The Keisler quantifier, then, as I interpret Hilbert, should not

be used when formalizing a mathematical theory. According to (my version

of Hilbert), every logic used when formalizing mathematics should satisfy

the Lowenheim property.

This is brought out in the following passage from "On Infinity,,12

... [T]he problem of proving consistency arises wherever
the axiomatic method is used. After all, in selecting,
interpreting, and manipulating the axioms and rules
we do not want to have to rely on good faith and pure
confidence alone. In geometry and the physical theories
the consistency proof is successfully carried out by means
of a reduction to the consistency of the arithmetic
axioms. This method obviously fails in the case of
arithmetic itself ... [O]ur proof theory forms the necessary
keystone in the edifice of the axiomatic theory.

It is natural to interpret Hilbert's claims here, as I have done, so

that Hilbert is committed to the view that non-arithmetic theories are

shown consistent by showing them to have denumerable models. We can

conclude then that (one natural interpretation of) Hilbert's philosophy
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is committed to the view that every mathematical theory has an arithmetic

model; and hence that the logic used when formalizing mathenlatics should

have the Lowenheim property.

It should be mentioned before continuing that Hilbert sometimes

12aused 'arithmetic axioms' to mean the axioms for the real number system.

Thus, the above quotation from "On Infinity" might be interpreted to mean

that every (acceptable) mathematical theory has a model in the real

numbers. However, I do not think, given what has been said above, that

this is the correct interpretation of the quoted passage. As I described

it above, Hilbert's philosophy of mathematics does not seem able to

accord the theory of real numbers so special a status. Hilbert's philosophy

of mathematics was motivated by the desire to establish the certitude

of mathematical methods. He tried to do this by shewing, first, that

there is a portion of mathematics (finitist arithmetic) that cannot be

doubted, and, second, that methods of mathematics that are not a part

of finitist arithmetic are "ideal creations" that can be shown consistent

with the methods of finitist arithmetic. Under this description, there

is no reason to accord real number theory a special position in Hilbert's

philosophy of mathematics. Indeed, the methods of real number theory

clearly outstrip the methods of finitist arithmetic. For instance,

presumably using real number theory we can prove that there are uncountably

many real numbers, and, thus, that there are uncountably many number

theoretic functions (that is, functions whose arguments are natural

12bnumbers and whose values are natural numbers) . But, on any inter-

pretation of Hilbert, the set of finitist number theoretic functions

(that is, number theoretic functions whose existence can be proved using



135

finitist arithmetic) is countable. For example. in a recent article l2c ,

Tait argues that the finitist number functions are just the primitive

recursive functions. As we know, the set of all primitive recursive

f ·· hI S·· 1 1 · f K · 1· · h 12d d hunctIons 15 counta e. Iml ar y, 1 relse IS rIg t , an t e

finitist number theoretic functions are those that are first-order

definable, then there are only countably many finitist number theoretic

functions. Thus, the methods of real number theory are "ideal creations"

in need of justification, like the methods of most other portions of

mathematics. According it a special status (as we would have to do if

'arithmetic axioms' refers to the axioms for the real numbers as used

in the above quote from "On Infinity") is, therefore, unjustified,

given my description of Hilbert's philosophy of mathematics. l3

So far it has been seen that (my reconstruction of) Hilbert's

philosophy of mathematics is committed to the claims that logics used

when formalizing mathematical theories should be complete and that they

should have the LOwenheirn property_ So, two-thirds of what I set out

to do in this sectioH has been completed; (II) and (III) (on page

130 ), I think, have been established. What is needed now is an

argument for (I), an argument that (my reconstruction of) Hilbert's

philosophy of mathematics is committed to the claim that a Lindstrom

logic should be used when formalizing mathematics. For, then, we can

appeal to Lindstrom's theorem to conclude that (my reconstruction of)

Hilbert's philosophy is committed tothe claim that nothing stronger

than first-order logic should be used when formalizing mathematics.

Inspecting definition nine (page 63 ) shows that at least two

things must be established if we are to conclude that (my reconstruction
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of) Hilbert's philosophy is committed to the claim that a Lindstrom

logic should be used whpn formalizing mathematics. It must be shown,

first, that a Barwise logic (see definition five) should be used, according

to (my version of) Hilbert's views; and, second, it must be shown that

logics used to formalize mathematics should contain first-order logic.

Now, it should be clear that the question whether Hilbert thought only

Barwise logics should be used when formalizing mathematics is moot. It

was beyond Hilbert's means to formulate the notion of a Barwise logic;

at the time he wrote. model theory (if it can be said to have existed

then) did not have rich enough notions to characerize a Barwise logic.

Nevertheless, I think it is reasonable to look at Hilbert's work as if

he thought that a Barwise logic should be used when formalizing

mathematics. Indeed, (on page 117) I parenthetically noted that one

way Hilbert thought we could prove the consistency of a mathematical

theory depends on something like clause (iia) of the definition of

a Barwise logic (page :E,). So, without much argument, I shall read

Hilbert as if he thought that Barwise logics should be used when

formalizing mathematics.

It should be stressed, however, that this reading is not

uncontroversial. It might be claimed that Hilbert thought of logic

in'· a purely syntactical way and that, since a Barwise logic is

characterized using model theoretic notions, it is a gross distortion

of Hilbert's views to read them as if he thought only Barwise logics

should be used when formalizing mathematics. There may be something

to be said for this view; I shall, however, disregard it for two reasons.

The first is idiosyncratic. I said in chapter two that I was going to
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assume throughout this essay that only Lindstrom logics, and, hence,

only Barwise logics, should be used when formalizing mathematics. The

second reason is not so rooted in the assumptions made in this work.

In fact, I do not think it distorts Hilbert's views to read them as if

he used model theoretic notions. First, if, as argued above, Hilbert

was committed to logic's completeness, then he did not have a purely

syntactical view of logic. Completeness involves the notion of validity,

and validity is a model theoretic notion. Also, if my arguments in

the first section of this chapter are correct, then mathematical truth,

as Hilbert thought of it, is a model theoretic notion. The use of

model theoretic notions, when interpreting Hilbert, is not (necessarily)

to distort his views. I shall. therefore. read Hilbert as if he thought

that only Barwise logics should be used when formalizing mathematics.

This is not yet to claim that Hilbert thought only Lindstrom

logics should be used when formalizing mathematics. We still must

see whether we can read Hilbert as if he thought that first-order logic

should be contained in logics used when formalizing mathematics. This

question cannot be handled as easily as the question whether Hilbert

can be read as if he thought only Barwise logics should be used.

14Detlefsen claim~. for instance, that the quantifiers of the logic

Hilbert proposed we use when formalizing arithmetic are different from

the first-order ones. In particular, Detlefsen claims, Hi_bert was

committed to an w-rule. being valid, and this, as we now know, is

impossible, if the quantifiers used are standard. So, it looks as

if to read Hilbert as if he thought first-order logic should be a part

of the logic used when formalizing arithmetic is to distort Hilbert's
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views about what sorts of rules the quantifiers satisfy.

Detlefsen's point seems well taken. I noted above (page 131 )

that Hilbert seems to have wanted to interpret 3x~(x) as an infinite

disj unction; so VX1lJ(x) would be an infinite conj Wlction J and the w-rille

would be satisfied. Thus, it seems that a good case can be made against

reading Hi Ibert' 5 existential (and Wliversal) qllanti fiers as if they

were quantifiers of first-order logic. Nevertheless, I shall do so

for several reasons. One is the internal re~son that doing so allows

me to use Hilbert's philosophy of mathematics without violating the

presuppositions of this essay, in particular the presupposition that

only Lindstrom logics should be used when formalizing mathematics. But

there is another reason as well. Hilbert, we s~w, hoped to preserve

the laws of classical logic and he thought that logic is complete.

But logic cannot be complete and the laws of classical logic preserved

if the quantifiers (used in arithmetic) satisfy an w-rule (unless we

think that an w-rule is a rule of inference, a belief I shall not

entertain). Something must be rejected. As I shall read Hilbert, it

is the belief that the quantifiers satisfying an w-rule. Thus especially

in light of the presupposition of this essay, it is reasonable to

read Hilbert as if he thought first-order logic is a part of any logic

used when formalizing mathematics. We can conclude then that (my

reconstruction of) Hilbert's philosophy of mathematics is committed to

the claim that only Lindstrom logics should be used when formalizing

mathematics.

It is thus possible to construct, using Lindstrom's theorem, an

Hilbertian argument for Hilbert's thesis. We have seen in this section
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that (my reconstruction of) Hilbert's philosophy of mathematics is

committed to the claims that (I) only Lindstrom logics should be used

when formalizing mathematics, (II) only complete logics should be used

when formalizing mathematics, and (III) only logics having the Lowenheim

property should be used when formalizing mathematics. Given these

three claims Lindstrom's theorem entails that only first-order logic

h Id b d h f 1"· h · ISs ou e use w en orma lZlng mat ematlCS.

(v)

The Hilbertian argument for Hilbert's thesis described in the

last section makes use of two premises. First, in order to conclude that

any logic used when formalizing mathematics should have the Lowenheim

property, I attributed the following principle to Hilbert:

(Arithmetic's
Priority)

It is possible to construct an
arithmetic model for any
mathematical theory.

I

I

I also attributed to Hilbert the belief that (He) is true, that is that

every logic used when formalizing mathematics should be complete.

These two premises are not unrelated. One reason I gave for attributing

(He) to Hilbert is that he thought a demonstration of the consistency

of a set of axioms showed that those axioms have a model, and, hence,

(see section one) are true. Furthermore, Hilbert thought that arithmetic

can be used to demonstrate i~. own consistency, hence, by (He), that

it has a model. So, Hilbert thought that arithmetic could be used to

demonstrate that it is true (again, this follows from the discussion

in section one). Hilbert also hoped to base mathematics on arithmetic
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by constructing arithmetic models for each (acceptable) mathematical

--theory; this is the reason I attributed (arithmetic's priority) tci

him. In this way, Hilbert hoped to establish the truth of all

mathematics.

In the final sections of this chapter, I shall look once more

at (He). I shall look closely' at t\IJO (fairly) standard objections to

Hilbert's philosophy of mathematics, seeing now (He) fares in their

light. Both objections I consider are directed against (He); however,

as we shall see they have implications regarding (arithmetic's

priority) as well.

Steiner and others (notably Putnam) have suggested that Euler's

argument that the infinite sum of all numbers of the form l/n 2 is

1T
2/6 an example of a good, sound and acceptable argument of mathematics

on equal footing with proofs -- that is not a proof and that is,

therefore, not formalizable as a derivation (see chapter one for a

discussion of the difference between proofs and derivations)16.

Indeed, they claim that Euler's argument establishes that the value of

the infinite sum in question is 1T
2 /6. and tl.at Euler, therefore, knew

that its value is 1T
2/6, even though not one mathematician at the time

Euler made his argument was able to give \ proof of this fact. Thus,

if we were to formalize mathematics at the time of Euler, it can be

continued, we would have to formalize a statement,

n=oo

Ca) ~=r
2 2[lin ] = 1T /6,

as a valid statement of mathematics, even though it has no derivation.

Thus, our formalization of the theory of infinite summation at the
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time of Euler would violate (He); not every valid sentence of that

formalization would have a derivation. Let me quote Putnam extensively

so that we may see the purported significance of Euler's argument.

The use of quasi-empirical methods [that is arguments
that are not proofs] in w~thematics is not by any means
confined to the testing of new axioms ... Although it is
rare that eithar mathematic~nsor philosophers discuss
it in public, quasi-empirical methods are constantl)'
used to discover truths or putative truths that one then
tries to prove rigorously. Moreover, some of the quasi
empirical 3rguments by which one discovers a mathematical
proposition to be true in the first place are totally
convincing to mathematicians. Consider, for example,
how Euler discovered that the sum of the series l/n 2 is
n 2/6 ... Euler, of course, was perfectly aware that this
was not a proof. But by the time he had calculated
1/n2 to thirty or so decimal places and it agreed with
n2/6, no mathematician doubted that the sum of 1/02 was
n2/6, even though it was another twenty years before
Euler had a proof. 17

[Quasi-empirical] methods are the source ... of new theorems,
that we often know to be true uefore we succeed in
finding a new proof. 17a

According to Putnam, then, quasi-empirical method~ are part of the

heart and soul of mathematics. They are used not only to discover

new truths of mathematics, but (and this is important) to establish

truths. It is a small step from this claim to the conclusion

that (He) is false. If proofs do not exhaust our methods of

mathematical argumentation, formalizations should reflect this fact;

one way to insure that they do, is to insist that (sometimes) the

logic used when formalizing a fragment of mathematics not be

complete.

It should be noted, however, that the use of quasi-empirical

methods by mathematicians to establish truths is not enough to lead

to the conclusion that (He) is false, that logics used to formalize
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mathematics should not always be complete. We might hold, for instance.

that Euler's argument establishes (a) ~nd that every logic used to

formalize mathematics should be complete ((He)). There is a difference

between being unable to prove (a) because we have not yet discovered

a proof and being unable to prove en) because (a) does not have a proof.

If we think that quasi-empirical methods can be used to establish (0)

before we are able to prove (n) (even though (n) does have a proof).

then there does not seem to be any reason to deny (He). However. if

we think that quasi-empirical methods can be used to establish (a) and

that (a) cannot be proved not becaus~ its proof has not yet been

discovered, but because it does not have a proof, then it is possible

to construct an argument against (He). In the latter case, we might

want Ca) to be formalized as a valid sentence of Euler's theory of

infinite summation, but we would not want (a) to be formalized as a

sentence with a derivation (since, we agreed, it has no proof in that

theory). But, then, in' light of the definitions in chapter two, it

is natural to suppose that the logic used when formalizing Euler's

theory of infinite sun~ation cannot be complete, that is, (He) is

false.

It should be noted that Putnaml7b does not claim that Euler was

unable to prove (a) because Ca) had no proof. Putnam claims that

Euler's ~rgument does establish (a), but he does not claim that (0) has

no proof. On the other hand, Steiner does seem willing to make the

stronger claim. He suggests that Euler did not know a proof of (a),

although he knew an argument for (a), because
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had Euler attempted to set down all the premises of his
argument in mathematical detail and precision, he would
undoubtedly have written falsehoods -- for the analogy 17c
between the finite and the infinite often breaks down ...

Thus, according to Steiner, in Euler's theory of infinite summation

there was no deduction of (a) from true axioms; hence there was no

proof of (a) in Euler's theory. So Steiner, unlike Putnam, does seem

wont to claim that (n) had no proof in Euler's theory of infinite

summation; not merely that Euler was unable, at the time he made his

17dargument, to prove (a). Steiner, then, makes claims that can

be used as above to argue that (He) is false.

There is also IDlother way Euler's argument can be used to argue

against (He), the claim that all logics used in formalizations of

mathematics should be complete. It is not only relevant that Euler's

argument establishes (a), even though it is not a proof of Cal; it

is also relevant that (a) is a sentence of a certain sort. Since en)

can be spelled out so that it says that the limit of a certain sequence

is ~2/6. (a) is equivalent to a sentence of the form

(*) For every m, there is an n such that ~(m,n).

We know that when a complete logic is used in a formalization of

mathematics, there will be a sentence, ~(m,n)J such that the relevant

instance of (*) is not valid, even though for every m

(t) There is an n such that ,(~,n)

is valid. We will see below that much of the evidence Euler used to
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establish Ca) involved sho\~ing that for all values less than a large

value of nl, the relevant version of (¢) holds. If such methods are

in general applicable, then it seems to follow that if (¢) holds for

every m, (*) will hold. This, in turn, entails that the logics used

in some acceptable formalizations of mathematics are not complete,

that is~ that (He) is false.

What I shall call "Steiner's argument", then, contains six

claims.

(1) Euler's argument establishes (a).

Therefore,

(2) Euler knew that Ca) is true, and his contemporaries
who were familiar with his argument knew that
(a) is true.

But

(3) Neither Euler nor one of his contemporaries (for
a while) could prove (a).

Therefore,

(4) It is possible to know (a) without there being a
proof of Ca).

Also,

(5) Formalizations of mathematical theories should
reflect this fact (especially formalizations
of Euler's and his contemporaries theory of
infinite summation).

So,
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(6) Some mathematical theories should be formalized
using a logic that is not complete, that is,
(He) is false.

The details of why Steiner thinks that (4) fvIlows from (3) were

hinted at above and will be discussed in more detail below. Also,

in all fairness to Steiner, it must be emphasized that he does not

conclude (6), nor does he formulate (5). I have included (5) and (6)

under the title "Steiner's argument" so that we may see how Steiner's

claims are relevant to the subject of this essay.

Before looking closer at Steiner's argument, it will be helpful

to examine Euler's argument for (a) in a little detail. Euler was

able to prove that if an equation is of the form

2 4 n 2n
(a) bo - b

i
x +b2 x - ... +(-1) bn x = 0,

where the b'l are real numbers J and if that equation has 2n different

... , r ,
n

-r
n J then

(A)
2

l/r ).
n

(The details of this proof are irrelevant.) Furthermore, Euler was

able to prove that if sin (x) = 0, then

(B)
3 5 7 o.x - x + x x + =

3T Sf 7T

Euler then divided both sides of (8) by x, obtaining

(c) 1
2 4 6 o.- x + x x ~ ... =

3T Sf 7T
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Since it was assumed that sin (x) = 0, Euler knew that (8) has the

roo t 5: 0, 1f, -1f, 2Tr, - 21T , ..., n 11' J - n TT, •••• So, 5 ince (C) re 5 u I ted

from (B) by dividing both sides of (B) by x, Euler was able to conclude

that (C) has the roots: TT, -TT, 2TT, -2n, ... , nn, -n1f. ... . But now

Euler noticed that if we let bO = 1, b
I

- 1/31, b2 = 1/5!, ... , (C)

can be seen as an infinite version of (8). So since ca) leads to CA),

and (C) is an infinite version of (B), Euler concluded that (C), by

analogy, leads to an infinite version of (A), namely,

Multiplying both sides of (D) by 2
TT , we have

(E) n2 = I + 1/4 + 1/9 + ..• + 1/n2
+

6
... ,

that is, (a).

Euler had other means of verifying (a). He had ways of estimating

2the value of 1f, and therefore the value of n /6. He also had ways

of estimating the value of ~1/n2. As his estimations got more and

more precise, the two values, he noticed, converged. There was also

other convincing evidence that (a) held. IS Steiner and Putnam claim

that in light of the above argument and evidence, Euler knew (a) (that

is, (E)). In fact, they go further and claim that anyone who understands

this argument knows that Ca) is true. However, at the time Euler made

this argument, neither he nor any of his contemporaries were able to

prove (a); and Steiner, we have seen, goes even further, suggesting

that there was no proof of (a) in Euler's theory of infinite summations.
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Thus, it is claimed it is possible to know a statement of mathematics

without there being a proof of that statement, and so it is possible

for a mathematical statement to be true even though it ha5 no proof.

Steiner's argument seems to rely heavily on two important claims.

First there is the claim that Euler's argument establishes that (a) is

true, even though it is not a proof. Second, there is the claim that

mathematics at Euler's time is not essentially different from

mathematics as it is now insofar as there are still arguments made

today that establish statements as truths without being proofs and

therefore without being presentable as derivations. (cf. p.17) The

second claim is important; it allows us to conclude that at every stage

of mathematical development there will be ~nown truths without proofs,

and that therefore formalizations of portions of mathematics should

not always satisfy (He). It might be argued, for example, that at

Euler's time mathematics was in a state of ill repair in part because

arguments like Euler's were taken as establishing tl~ths, while today

mathematics has entered the "age of rigor" in part because arguments

like Euler's are no longer taken as establishing truths. Euler's

argument, it might be ar~Jed, is a mere historical anomaly. Thus, it

might be hoped, Steiner's argument can be explained away. However,

if the second point is correct, Steiner's argument is not so easily

dismissed. Euler's argument is not an historical anomaly, but an example

of a method of argumentation that was in Euler's time, as it is now,

an accepted and justified part of mathematical practice. According

to Putnam and Steiner arguments that are not proofs are important parts

of mathematics.



148

But why is Euler's argument not a proof? After all, if it is so

convincing that "no mathematician doubted that the sum of 1/n2 was

2n /6," and if it establishes (a), why is it not formalizable as a proof?

An argument, it is thought, is a proof only if it has a special sort

of form. To be a proof an argument must be of a form such that any

argument of that form with true premises has a true conclusion. Euler's

argument is not of such a form. The inference from (C) to (D) is an

inference based on analogy, not an inference based on form. Arguments

of the same form as Euler's can (Ie constructed that have true premises

but a false conclusion. Thus, Euler's argument is not a proof, but

an argument by analogy.

An interesting question to ask, but one which I shall not pursue,

is whether the above argument that Euler's argument is not a proof

works. It is true that Euler settled on the inference from (C) to

(D) by analogy, that is, he infered (D) from (e) because he saw a

similarity between (e) and (a) and (A) and (D). But granting that he

settled on the particular inference he used by analogy, why can we

not still hold that that inference is an inference justified by the

forms of the statements in question, and thus that Euler's argument

is, in fact, a proof. I think this question can be rephrased as:

why pick one form IJver another when formalizing an argument? Why

not formalize Euler's argument so that any argument of that form with

true premises must have a true conclusion? Despite these (interesting)

questions, I shall accept Steiner's and Putnam's claim that Euler's

argument is not a proof. The questions raised in this paragraph call

into question the entire project of formalizing mathematics and cannot
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be addressed in this essay. (See above, pages 25ff ~ for a discussion

of related issues.) Furthermore, it does seem ~orrect to suppose that

Euler's argument is not a proof.

Even if we deny that Euler's argument is a proof, however, we are

not committed to denying, as seen above, that there is a proof of (n)

in Euler's theory of infinite summation; and it is this latter claim,

as we have seen, that is needed to make what I called "Steiner's

argument" against (He). We need it to infer (4) from (3) (see page 144).

Steiner gives some reasons for denying that in Euler's theory of

infinite summation there is a proof of (n). He claims that Euler and

all working mathematicians at that time did not know much about

infinite summations. They had no consistent method of manipulating

equations involving infinite sums. In fact, Steiner notes, actual

mathematical practice at that time was so confused about equations

involving infinite sums that illconsistent results were commonplaces.

If the "rules" accepted,by Euler and his contemporaries for manipulating

equations involving infinite sums were formalized so that we had a

IBa
proof system for their theory of infinite summation, Steiner suggests ,

that system would be inconsistent. He claims that there is no

consistent way to formalize the methods of proof Euler and his

contemporaries used when dealing with infinite sums. Steiner therefore

concludes that Euler's argument cannot be understood as a proof, and

that there was no pro~f of (a) in Euler'S theory about infinite sums.

Steiner's claims, I think, exploit a confusion we have about

Euler's argument and Euler's knowledge at the time he made his argument.

If we look closely at Euler's and his contemporaries concept of
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infinite summation, it is not hard to see why they were unable to

manipulate consistently equations involving infinite sums and why they

were therefore unable to demonstrate that (n) is true. Mathematicians,

including Euler, at that time did not know what an infinite sum was.

They thought that infinite sums are essentially the same sort of items

as are finite sums -- only longer. It was not until later that a

consistent notion of an infinite sum was available. We now know that

(a) is true if and only if

(F)

is true.

".... 2 2
lim (~l/n ) : n /6

m-+ao 47'

According to what we now know, infinite sums are limits of

sequences of finite sums; they are not. as Euler thought along ~~th his

contemporaries, very long sums -- sums that are too long to be finite.

Thus, Euler, at the time he made his argument, had a very different

conception of infinite sums from the one we now have -- a conception

of infinite StDllS that, as it turns out, is inconsistent. It is this

fact, I think, that makes us ready to assent to Steiner'S claim (3),

the claim that Euler and his contemporaries were unable to prove (n).

How could they prove Ca) if they did not know that (a) is true if and

only if (F) is true?

On the other hand, in the light of what ~e know about infinite

sums, Euler's argument and the supporting inductive evidence provide

good, convincing evidence for believing that (a) is true. Given what

we know about infinite sums and how to manipulate equations that

involve infinite sums, the reasons Euler gave overwhelmingly establish
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that (n) is true. But it is important to realize that part of what we

know about infinite sums is that (n) is true if and only if (F) is true,

and it is this fact in particular that leads to the belief that the

convergence of Euler's increasingly precise estimations of the two

sides of (a) is good reason for believing that (a) is true. The belief

that Euler's argument is good reason for believing (a), that in light

of the evidence given by Euler one can be said to know that (a) is

true, is motivated by what we know about infinite sums, not by what

Euler and his contemporaries knew about infinite sums; and, as it turns

out, part of what we know about infinite sums is how to prove that (a)

is true.

Try to imagine what we would think of Euler's argument if we

did not have a proof that (a) is true. Would we believe that (a) has

been established, that we know that (a) is true? Suppose we had a proof

showing that (a) is independent of everything we can prove about infinite

sums. Would we simply accept (a) without further ado? I do not think

so. We would, I think, try to find a new axiom about infinite sums

from which we could derive (a) and other similarly established equations.

We would only be satisfied that we know that (a) is true, I believe, if

we could find such an axiom. But once we have such an axiom, we have

the means for proving that Ca) is true. This suggests, I think, that

we only take Euler's argument as good reason for believing Ca) because

we are able to prove (a). We only think that Euler's argument establishes

(a) because we have a proof of (0).

Steiner says that Euler and his contemporaries had no proof of (n)
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because they ci u.l not understand enough about infini te summations to

prove (a). They thought that infinite sums were just very, very long

finite sums, and they treated infinite Slms as such, obtaining inconsist~nt

results. We, on the other hand, now know that infinite sums are very

different sorts of interns from finite sums. Infinite sums are limits

of sequences of finite 19sums. Since Euler and his contemporaries did

not know what i~- :'lnlte swns are they had no proof of (ex). But if they

did not know what infinite sums are, how did they know that (a) is

true? If they were so confused about infinite sums that they often

obtained inconsistent results by manipulating equations involving

infini te sums J why think that they kne\l enough about infini te sums to

know that (a) is true? In fact, given the incredible difference

between our understanding of infinite sums and the understanding had

by Euler and his contemporaries, why even think that when they used
co

the expression 'n~11/n2, they were referring to the same item we refer

to when we use that expression? What evidence do we have beside

typographic accidents that our use and their use of that expression

are at all similar? Taking these thoughts one step further, we have

the question~ why think that, despite his argument, Euler knew that Ca)

is true? Our reasons for thinking that Euler could not prove (a) appear

strong enough to warrant the claim that Euler did not understand (n).

And it is a very small step from this claim to the claim that Euler

did not that (a) is true. So it looks like we might want to deny that

Steiner has provided an example of a known truth without a proof after

all.

We C~~ now see clearly the confusion I earlier claimed Steiner's
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argument exploits. On the one hand, Euler had what we consider over

whelming evidence that (a) is true. His argument and his approximations,

we would say, are good reasons for believing that (a) is true, On the

other hand, Euler could not prove (a) because, at the time he made his

argument, Euler was confused about what infinite sums are. Indeed, he

and his contemporaries were so confused about what infinite sums are

that, we might easily say, he did not understand (a), and hence he did

not know that (n) is true. It seems that Steiner's (and Putnam's)

conclusion is based on confusing what we would say about the evidence

provided by Euler's argument with what Euler and his contemporaries

would (and should) say about that evidence.

It is important to distinguish between what we would take as

overwhelminr evidence and what Euler would take as overwhelming

evidence. The distinction is important because what is taken as over

whelming evidence is a function of what is known, and what we know about

infinite sums is very d~fferent from what Euler and his contemporaries

knew about them. If this distinction and my argument is acc~ptedJ

then we have good reason for denying that Steiner has given an example

of a known truth of mathematics without a proof.

It begins to look as if Euler's argument cannot be taken as

establishing (a). This becomes even more plausible if we think about

arguments similar to Euler's but whose conclusion has been refuted.

n(x) is the number of primes less than x. For large values of x,

n(x) is approximately
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rx

o
dt

J log(t)

Hardly claimed that an extremely natural conjecture is

(Con) 1T(X) <
dt

log (t)

•

and he pointed out that "Gauss and other mathematicians commented on

the high probability of this conjecture. II20

The conjecture is not only plausible but it is supported
by all the evidence of the facts. The primes are
known up to 10,000,000 and their number at intervals up
to 1,000,000,000, and [(Con)] is true for every value
'for which data exists.

Thus, there is extremely compelling evidence for (Can), evidence that

seems to establish (Con) just as stronglyas Euler's argument establishes

(a). But (Can), unlike (a), is false. It can be shown that for some

x less than

10
34

10 .
10

the inequality in (Con) is reversed. (HardY' claimed that this number

is the largest to have "ever served any definite purpose in mathematics.")

Such examples as this suggest, I think, that arguments like Euler's do

not establish their conclusion.

What then of the claim that quasi -empirical ,methods are used

commonly in w4thematics? Are Steiner and Putnam wrong? No. It is

true that quasi-empirical methods are used in mathematics; however, the

proper interpretation of their role is, I think, different from that



155

given them by Steiner. As already mentioned. it is possible to endorse

the view that quasi-empirical methods play an important part in mathematical

research without denying that their conclusions have no proofs. Indeed,

I believe the correct view is along such lines.

What Euler's argument shows is not that Ca) is true) but that

there is reason to believe

(G) (n) has a proof.

Euler's argument, I think, confirms the claim that there is a way to
m

use expressions like I E [1/n2], consistently so that they behave, in
n=O

certain respects like expressions designating finite sums and so that

(a) is true. At most, then, after seeing Euler's argument we believe

(a) because that argument suggests that (G) is true. But this is by

no means to claim that a mathematical statement can be known to be true

even though it does not have a proof. For it is still imperative

that we find a proof of, (a) before we can be said to know it.

I think it is fair to say, then, that Steiner's argument cannot

be used to refute (He). So far, then, the Hilbertian argument for

Hilbert's thesis seems to work; we have not yet undermined its premises.

In the next section, however, I shall look at a standard criticism of

Hilbert's philosophy of mathematics, and we shall see that criticism

undermine the Hilbertian argument for Hilbert's thesis.

(v)

In the thirties and forties a series of results were obtained

showing that if T is any reasonably strong recursively enumerable set

r
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of true sentences of arithmetic, and if the predicate ' is-provable-

in-T' can be formalized as a rl-forrnula, then a (maybe, the only)

reasonable formalization of the claim that T is consistent cannot be

proved in T. These results seem to demolish the motivation we had for

thinking that every logic used to formalize mathematics should be

complete and should have the ~wenheim property. two essential premises

of the Hilbertian argument for Hilbert's thesis. Hilbert, recall, was

led to claim that every logic used to formalize mathematics should

have the LOwenheim property for (basically) two reasons. Since he

thought that a mathematical theory is true if it is consistent (see

section one). he believed that in order to show that a mathematical

theory is true all we have to do is show that it is consistent. He

also believed that finitistically acceptable arithmetic was certainly

true and could be used to demonstrate the consistency of arithmetic.

Thus, according to Hilbert, arithmetic contains a certainly true

subtheory that can be used to demonstrate that arithmetic itself is

consistent, and hence, according to Hilbert, true. Arithmetic, he

thought, therefore, in a sense, secures itself. By then accepting

that every logic used to formalize arithmetic has the Lowenheim

property, Hilbert thought any part of mathematics could be shown

consistent by constructing for it an arithmetic model. In sections

three and four we saw how, in order for this view to begin to work,

it must be supposed that logic used to formalize mathematics be

complete. But then it follows from our definitions in chapter two

and the supposition at the beginning of chapter three that every set

of axioms be effectively generated that '. -is-provable-in-arithmetic'
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is formalizable as a Ll-formula. So by the results of the thirties

and forties, arithmetic cannot prove its own consistency; and so surely

finitistically acceptable arithmetic cannot prove the consistency of

arithmetic. It looks as if the Hilbertian argument for Hilbert's thesis,

therefore, fails for the same reasons that Hilbert's philosophy of

mathematics does. However, in the final, concluding chapter of this

essay, we shall see that there is a way of looking at the role of logic

so that the Hilbertian argument, despite the refutation of Hilbert's

philosophy of mathematics, does establish that, for some purposes, no

logic stronger than first-order logic should be used when formalizing

mathematics.
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Footnotes for chapter four:

1. McGuinness (ed.), Gottlob Frege, The Philos~hical and Mathe~~~ic~

Correspondence, Ope ~it., page 42.

2. P. Geach and M. Black (eds.l, Translations from the Philos~h~~~

Writings of Gottlob Frege 3rd EditIon, Rowman &Littlefield) Totowa,
New Jersey (1980), page 117.

3. McGuinness Ced.), Ope cit., page 33.

4. See George Kreisel, "Informal Rigor and Completeness Proofs" in
Lakatos (ed.) Philos~of Mathematics,

5. See Russell's communication to Frege in McGuinness, ~. cit.

6. D. Hilbert, "On Infinity" in van Heijenoor, Ope ,cit.

7. G. Boo10s pointed out to me the following, plausible reason why
Hilbert (and others) thought that the set theoretic paradoxes
were the result of using transfinite notions and techniques
illegitimately. Inspection of, say, Russell's paradox shows that
no (genuinely) transfinite notions are involved. The axiom of
infinity, for example, is not needed to derive Russell's contradiction.
It, therefore, seems puzzling why Hilbert et. ale blamed the set
theoretic paradoxes on the transfinite. BooloS-suggests that
they were still suffering from the paradoxes of analysis
surrounding infinite series and summations and that they, there-
fore, concluded that the set theoretic parado~sJ similarly,
resulted from an illegitimate use of transfinite methods.

7a. Note that this inference would be legitimate if there were a
set containing every set. In that case we might let B be
that universal set: Then VYEB can be rewritten as Vy. So
we know that for every ~, we can find a set, A, such that

(3xe:A) (Vy) [ye:x+-t-tP(y)]

8 It then every instance of (1) is a truth.

7b. And the paradoxes of analysis; see note 7a.

8. See W.W. Tait, "Finitism", Journ~~;.l of ,Philosoph>'., (1981).

8a. See Hilbert's "On Infinity", ~. cit., page 378.

9. Ibid.

9a. In a suitably generalized sense; i.e., unlike in Chapter 2,
languages may contain operation symbols.
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10. As in chapters one and two J I am supposing that = is a logical
constant.

lOa. In a sense suitably generalizing definition 10 of chapter two.

lOb. For purposes of definitiveness we might take Rohit Parikh's
system PB (see "Existence and Feasibility in Arithmetic" Journal
of Symbolic Logic (1971)). PB is the subsystem of PA with the
following axioms:

(1) O~s(x)

(2) 5 (x) =- 5 (y) -+ x=y
(3) x=O v (3Y) (x-s(y))
(4) x + 0 = x
(5) x + s(y) = s(x+y)
(6) x· 0 = 0
(7) x· 5 (y) = (x • y) + x
( ~n ) A(0) & ( Vx ) (A ( x) -+A (5 (x) )) ~ (VX) A( x )

where A(x) contains only bounded quantifiers.

Of course, PB is not quite the system discussed in the text,
since (8n) and (3) are not ordinary sentences of arithmetic.

IOe. But this leads to the following question~ if the =o-valid
sentences are the real sentences of arithmetic, if they
capture the contentful part of arithmetic, what reason can
there be for going beyond the =o-va lid sentences? \'1hy not
simply reject those statements ordinarily accepted by
mathematicians that are not expressible as =o-sentences?
This is, in a sense, the line taken by the intuitionists,
although they deny that the =o-valid sentences are all
the true contentful sentences of arithmetic.

lOde Parikh proves that exponentiation cannot be represented in
PB. He takes a non-standard model, N*, of Peano arithmetic,
lets a be an infinite integer in the universe of N* and
then considers the submodel, 5, of N* whose universe is

A= {x in the university of N* I there is a standard k}
such that x<ak

S is a model of PS, but a
Q

is not in A, so exponentiation
is not represented in PB. Similarly, if we notice that
for each standard k, there is a standard r such that for all
a>r,ak~a!, we can see that the factorial function cannot
be represented in PB. (cf. note lOb)

IOd'. G. 800105 pointed out to me the analogy between this sort of
treatment of non-finitist methods in finitary arithmetic
and the set theorist's treatment of classes.
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11. D. Hilbert "On Infinity" ~. cit., page 378.

12. D. Hilbert "On Infinity", ~. ~it., page 383.

12a. Ibid.

12b. That Hilbert knew this and accepted it can be seen by examining
"On Infinity" pages 384-5.

12c. W.W. Tait, ~. cit.

12d. George Kreisel, "Informal Concepts of Proof" in Proce-edings of
the Internation Congressof Mathematic~~ns (1958)-.-------------

13. Of course this is not a definitive arglDTlent. My inpterpretati.on
of Hilbert's philosophy of mathematics may be incorrect.
Indeed, as noted above, it is a bit anachronistic. However,
for our purposes in this essay, we can ignore the subtleties
of Hilbert exegesis.

14. Michael Detlefsen, "The Significance of Godel's Theorem", ,Notre
~ame Journal of Formal Logic.

15. See Leslie H. Tharp, "Which Logic is the Right Logic" in ,Synthese,
XXXI (1975), pages 1-21 for a very similar argument that
Hilbert's thesis is true.

16. See Steiner .Mathematical Knowled~J .~. ci t. and Putnam, "What
is Mathematical Truth?" in Mathematics. _tiatter ~nd _Method.

17. Putnam, ~. cit."page 68.

17a. Ibid. , page 76.

17b. Ibid.

17c. Steiner, ~. cit. , page 106.

17d. Steiner does not go on to conclude that the logic used to formalize
Euler's theory of infinite summation should therefore not be
complete. He does not consider tllis issue. Thus. I am tak ing
certain liberties with the phrase 'Steiner's argument'.

18a. Steiner, .~. cit., page 106.

19. Of course, using non-standard analysis, we might claim, infinite
sums can (consistently) be looked at as very, very long finite
sums; thus vindicating Euler's vIew. I shall, however, side-step
this issue by ignoring it; not because it is uninteresting or
false, but because I do not have th~ ror~ to discuss it.
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20. See G.H. Hardy, Ramanujan, Chelsea Publishing Company, New York
(1940), pages 17££. All references to Hardy are from this
book. I should mention that G. Boo105 called my attention to
this example.
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Chapter 5

CONCLUSION

The results of this essay seem negative. I have scrutinized

several arguments purportine to show that formalizations of logic must

meet specified conditions, and I have, for the most part, rejected

those arguments as inconclusive. It is, however, traditional to try

to end a work on a positive note, and that is what I shall try to do

in this final (short) chapter. In the course of criticizing the

arguments of ChiJholm, Morley, Steiner. Hilbert and Dummett, several

themes have emerged -- themes that can be used as the beginning of

an account of the conditions formal logics used when formalizing

mathematics must meet. In this last chapter, I shall present these

positive themes, although, I should stress, the arguments I make and

the conclusions I draw must not be treated as if they are conclusive.

When I discussed the Frege-Hilbert controversy (see the end of

chapter three and the first two sections of chapter four), I noted

that Freg~sand Hilbert's disagreement resulted from their different

opinions about whether all formal sentences have (or can have) sense

independent of structures in which they are interpreted. Frege, I

noted. was committed to the claim that all formal sente~ces used to

formalize ordinary mathematical sentences and arguments have sense

independent of the structures in which they are interpreted. In fact,

it seems that, according to Frege. which structures are used to

interprete a given formal sentence depends on the sense of that formal

sentence. Recall that Frege criticized Hilbert's proof of the

independence of the parallel axiom because it presupposed that the
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parallel axiom can be interpreted in a structure in which there are no

Euclidean points, and such an interpretation, Frege thought, is contrary

to the sense of the parallel axiom.) Hilbert, on the other hand, denied

that all formal sentences used to formalize ordinary mathematical

sentences have 5ense independent of the structures in which they are

interpreted. I ar~ed that (a reconstruction of) Hilbert denied that

some quantified formal sentences have any sense independent of the

structures in which they are interpreted.

Hilbert's and Frege's view on this matter can be contrasted by

comparing the following two quotations. IOne is from Frege

The sentence is of value to us because of the sense that
we grasp in it.

2The other is from Claude Cheval ley

... [O]bjectivity is attained only in a pure symbolism,
in emptying symbols completely of all meaning.

According to Frege, I think it is fair to say, mathematical knowledge is

possible only if we are able to grasp the senses of relevant sentences.

The more clearly we express these senses, the less chance there is of

error and the more sure we can be of our results. For Frege, we can

say metaphorically, the sources of objectivity in mathematics are the

senses of the sentences oi mathematics. For Hilbert, however, the

sources of objectivity are not the senses expressed, but the symbcls

used to express those senses. Hilbert's approach to formalizations, .,

as we have seen, therefore, stressed the syntactic aspects of a

formalization, while Frege was more concerned with semantical issues.

Hilbert tried to show how ideal sentences -- senseless sentences --
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could be added on to what he thought was the contentful part of

mathematics -- finitistically acceptable number theory -- without it

being possi.ble (syntactically) to derive a contradiction. Frege, on

the other hand, tried to construct formal systems that exhibit clearly,

precisely and unambiguously the senses of ordinary sentences of

mathematics. Both hoped ultimately to show that mathematical truths

can be knO\in with certainty; but for Freg~ this involved expressing

senses as precisely as possible, while for Hilbert it involved studying

syntactic items with no regard to their senses.

These two different approaches towards formalizing ma~hematics,

I have argued, lead to different conclusions regarding Hilbert's thesis.

In section two of chapter three I interpreted Frege to be denying

that first-order logic should be used to formalize geometry. Expressions

like 'is a point', I interpreted Frege to claim, should have a

counterpart among the constants of the logic used to formalize geometry.

In a similar way, if we thought that the pUl~ose of a formalization

is to express specified senses clearly and unambiguously, we might

deny that first-order logic should be used when formalizing other

portions of mathematics. In chapter one we saw several examples of

sentences and expressions used ordinarily by mathematicians --

whose senses cannot be captured by formulas of first-order logic.

Thus. a Fregean view of formali:cations. a view that formal sentences

express senses, seems committed to the view that Hilbert's thesis is

false.

This point can be made more strongly as follows. According to

3Frege , the sense of a sentence is that part of its meaning that we
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grasp that allows us to calculate it~

of formalizing, say, arithmetic i

·,th-value. So J if the purpose

"ess the senses of the sentences

of arithmetic as clearly as possib~ n formalizations of arithmetic

should display as clearly as possible a method (understood in a very

loose way) for calculating the truth-value of arithme~ic sentences.

An axiom system is one way of doing this. If we specify a set of

axioms and a logic and say that an arithmetic sentence is true if and

only if it follows, using that logic, from those axioms, we have given

the outlines of a method for calculating the truth-values of the

sentences of arithmetic. There may be reasons for thinking that some

logics used in this way cannot be complete (although, as stressed at

the beginning of chapter three, we have every reason for hoping that

the logic used will be complete). For instance, it might be argued

that when formalizing arithmetic, when giving the outlines of a method

for calculating the truth-values of the sentences of arithmetic, the

logic used must be able to formalize the notion of finiteness; such

a logic, we know, is not complete. A Fregean view of formalizations,

then, can lead to the denial of Hilbert's thesis. The senses of

ordinary mathematical sentences cannot always be expressed using

first-order logic; to express those senses, then, a logic stronger

than first-order logic must be used.

Despite the fact that the senses of ordinary mathematical

sentences cannot always be expressed using first-or(~r formulas,

first-order logic retains a unique status. Even though Frege

counted 'is a point' among the primitive expressions of geometric

discourse and treated it on a par with logical constants, like the
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cor~unction and identity signs, he did not believe that 'is a point'

is a logical constant~ We saw that, on one interpretation, Frege

believed that when geometric proofs are formalized, are presented as

sequences of sentences of a formal logic, the logic used should contain

a constant corresponding to 'is a point'; however, Frege did not

believe that geometric proofs are logical proofs nor did he believe that

theorems of geometry can be logically proved. On the cuntrary,

according to Frege, a major difference between geometry and arithmetic

is that the latter can be reduced to logic, while the former cannot

be. Thus, on Frege's view, geometry should be formalized using a

formal logic containing a constant corresponding to 'is a point'; but

this formal logic is not a formalization of logic, for 'is a point' is

not a logical constant.

In a similar vein we might say that some statements about

uncountable sets cannot be expressed using only first-order logic (in

light of the ~kolem-LOwenheim theorem)3a, and that when formalizing

some sentences of mathematics Keisler's quantifier should therefore,

be u~~d, although Keisler's quantifier is not a logical constant. We

might also say that some arguments of arithmetic can only be formalized

using weak second-order logic, even though some constants of weak

second-order logic are not logical constants~ If we find this

view at all plausible, we cannot help but ask the following question:

which, if any, formal logic formali zes logic? That is, whicll, if

any, formal logic contains only logical constants as its primitives?

To pose this q,uestion is not, I think, to make mere ly a termino

logical query. There are two distinct u~es to which formal logics are
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put. On the one hand, we use them to express clearly the arguments

and statements made in ordinary mathematics. This is the Fregean view

of formalizations. However, there is another use to which formal logics

are put. Sometimes we use formal logics to analyze the arguments and

statements made in ordinary mathematics. If the question "what, if

any, formal logic formalizes logic?" is used to ask what if any formal

logic can be used to express all and only logical notions, I think it

is a terminological query. It is a matter of terminology whether or

not we call 'is a point' a logical expression when we are only concerned

with constructing a formal logic capable of expressing geometric

statements. However, if the question is used to ask which formal logic

is best used to analyze the arguments and statements of ordinary

mathematics, it is no longer about a terminological point. Rather, it

is a methodological query. It is a question about how fine we want

the details of an analysis of ordinary mathematical notions to be.

Let me call the first use of logic discussed above "logic's

expressive use" and the second use "logic's analytic use." Frege, I

think, was primarily concerned with the expressive use of furmal logics.

When \r.:e are concerned with. the expressive USe of a formal logic,' it is'.an

"i~portant criticism to point to a statement (ordinarily expre,ssed in mathe

matics) that cannot be formalized using only formulas of that logic.

~oweverJ' when we are concerned with the analytic use of a log~c, it is not

always a criticism to point to a statement (ordinarily expressed in

mathematics) that cannot be formalized using only formulas of th'at logic.

It might turn out'that the best way +0 study and analyze a notion is by

n~a~sof a formal logic that does not have the machinery needed

to ~·ormalize that notion. For ~xample,
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first-order logic, as is well-known and as has been mentioned

repeatedly in this essay, contains no sentence true in all and only

the finite models of arithmetic. This, I have said, might be used as

a reason for denying that the arguments arithmeticians ordinarily

employ can always be formalized as sequences of senten~'es of first

order logic. And so, if we are concerned with the expressive use of

first-order logic, we wight deny that it should be used when formalizing

arithmetic. However, the fact that first-order logic contains no

sentence true in all and only the finite models of arithmetic is not a

reason for denying that first-order logic is the correct fiO~rmal

logic .to use when analyzing the notion .finit~integer. A study of

first-order consequences of statements made using the notion .finit~

~nteger might be precisely what sheds the most light on that notion.

The first-order Peano axioms figure centrally in the analysis of

arithmetic notions, I think, for precisely this reason. We learn more

about our notion of a finite integer by studying what can and cannot be

derived from the first-order Peano axioms than we do by studying what

does and does not follow from the second-order Peano axioms. Furthermore,

that the Godel consistency sentence does not follow from (using first

order logic) the first-order Peano axioms tells us more about the

strength of the notion finite intege~ than that the Godel consistency

sentence does follow from (using weak second-order logic) those axioms

along with a sentence stating' that the set of predecessors of every

integer is finite4i and this suggests that when analyzing the notion

of a finite integer, first-order logic should be used. However, it

does not suggest that when using the notion of a finite integer, that
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is, when doing arithmetic, first-order logic is the strongest logic

that should be employed.

When analyzing notions, there may be reasons for excluding those

notions from the logic used; when employing those notions, there is no

reason for such measures. This distinction, I think, is often overlooked.

Often it is thought that because the former is true, the latter is as

well -- that because it is expedient to exclude a notion from logic

for purposes of analysis, the notion should be excluded from logi~ when

it is employed. Thus, for example, Hilbert (correctly) stud~ed and

analyzed transfinite methods using only finitary methods, but he (in-

correctly) thoughtcthat the content of all mathematics -- including those

parts using transfinit~ methods --~is found in that part of mathematics

that employs only finitary methods. However, there is no reason to

conclude that because (otie of) the best way(s) to study transfinite

methods is to use only finitary methods, transfinite methods are only an

"ideal" part of out logical machinery.
If we distinguish the two uses to \mich formal logics can be

put -- if we distinguish between the analytic and the expressive use

of logics -- we can hold that although one formal logic may be adequate

for one task, it is inadequate for the other. A plausible claim, I

think, is that first-order logic is the most suited for analyzing

and scrutinizing the statements of ordinary mathematics, although it

is not always suited for expressing clearly and presenting precisely

the statements and arguments of ordinary mathematics. Indeed, I

think the Hilbertian argumerat for Hilbert's thesis shows that no

logic stronger than first-order logic should be used to analyze the
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statements of mathematics.

Two premises figured prominently in the Hilbertian argument for

Hilbert's thesis: the claim that every logic used to formalize a portion

of mathematics should be complete ((He)), and the claim that every

formalization of a mathematical theory should have an arithmetic model

((Arithmetic's Priority)). As stressed in the beginning of chapter

three, completeness of a logic is always desirable; every thing being

equal, we would like to be able to generate effectively the valid

sentences of a logic. This is especially true if we are primarily

interested in the analytic use of a logic; the only reasons given above

for denying (He) were motivated, I think, by concentrating on the

expressive use of logic. Frege, we saw, would deny that logics used to

formalize mathematics should always be complete because some notions

cannot be expressed using a complete logic, not because some notions

cannot be analyzed using complete logics. Steiner's argument against

(He) also turned on an emphasis of the expressive use of logics. That

argument, recall, was that (He) is false because there are truths

with no proofs, and if we use a complete logic to formalize a mathematical

theory, every valid sentence of that theory will have a derivation.

But if we emphasize the analytic use of a logic, there is no reason

why we should think that every truth must be expressible as a valid

sentence of the formalization in question, and so, in this light,

Steiner's argument seems superfluous. If we emphasize the analytic

use of formal logics, there is no reason for denying (He); and since

it is always desirable to use complete logics -- for any purpose --

if possible, all logics used to analyze mathematical notions should bE~
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complete.

Emphasizing the analytic use of formal logics also makes

(Arithmetic's Priority) seem plausible. When analyzing notions, it

can be argued, the objects presupposed should be as clearly understood

as possible. The natural numbers are without doubt the most clearly

understood mathematical objects. S It seems reasonable to insist, then.

that formalizations of mathematical theories, for ~he pur~~ of

a~alysis, should have arithmetic models. 6 Thus, if we emphasize the

analytic use of formal logics, the Hilbertian argument for Hilbert's

thesis is cogent.

~erhaps a good way to conclude this essay is by claiming that

\~hether we accept Hilbert's thesis or not depends on the use to which

we intend to put a formal logic. If we are interested in an analytic

use, no logic stronger than first-order logic should be used; if we

are interested in expressive uses, logics stronger than first-order

logic may (and, if Frege is right, should) be used. Such a conclusion

is supported by the following considerations.

There is no more doubt that the Godel consistency sentence is

true than that the first-order Peano axioms are true. Yet the former,

as is well-known, does not follow from the latter (using first-order

logic). There is a tendency to conclude that what we have to do is

add the Godel sentence to the first-order Peano axioms to obtain a

better formalization of arithmetic. 7 But this, I think, is the wrong

way to look at the situation. Our reasons for believing that the Godel

sentence is true are not independent of our reasons for thinking that
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the first-order Peano axioms are all true. Rather, the grounds for

one are the grounds for the other. We know that the Godel sentence is

true, because the first-order Peano axioms are truths and from truths

only truths can be derived (using first-order logic).8 Once we accept

the first-order Peano axioms, we must accept the Godel consistency

sentence (although, as it turns out, not on pain of (first-order)

inconsistency). Our grounds for believing the Godel consistency sentence

just are our grounds for believing the first-order Peano axioms, namely,

our notion of a finite integer and our techniques for using that notion

to obtain truths. The fact that those grounds yield, on the one hand,

the first-order Peano axioms and, on the other hand, the Godel consistency

sentence ~~d that using first-order logic we cannot derive the one

from the other tells us something interesting and important about our

notion of a finite integer; it shows us just how strong that notion is.

But it does not call into question the coherence of our notion of a

natural number, nor does it cast doubt over our techniques for using

that notion to obtain truths.

The conclusion of this ~ssay can be painted in broad strokes and

points the way for further research. The Hilbertian argument for

Hilbert's thesis. I think, shows that first-order logic is the maximal

logic that should be used when analyzing. mathematical notions, but it

does not show that first-order logic is the maximal logic that should

be used when expressing statements of mathematics. On the other hand,

the Fregean considerations of chapter three suggest that first-order

logic should not always be used when expressing mathematical statements,

but they do not show that a logic stronger than first-order logic
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should be used for analyzing those statements. In this way, I think,

a niche can be found for Hilbert's thesis in the philosophy of

mathematics.
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Footnotes for chapter five:

1. See above in chapter three.

2. Claude ChevalIey, On Iferbrand' s Thought in W. Goldfarb (ed.)
Herbrand's Logical Writings.

3. See Dumrnett's Frege: Philosophy of Language for an excellent
discussion.

3a. Here I am using 'express' in a very strong sense so that for
example, a sentence expresses that statement that every number
is finite if and only if it is true in all arithmetic models
whose universes contain no infinite integers.

4. G. 800105 put the matter this way.

s. This is not to say that there are not problems with understanding
what the natural numbers are, only that they are the best
understood of the objects of mathematics. See L. Wetzel's
forthcoming dissertation.

6. In fact, this accords with much mathematical practice. The
rationals are often analyzed as ordered pairs of naturals,
and the reals are analyzed using rational approximations.

7. I know there is this tendency because I exhibit it.

8. Compare Frege's criticism of Hilbert discussed above in section
two of chapter three. Also see J. ~tyhi11, "Remarks on the
Notion of Proof" Journal of Philos~hy, July 7, 1960.
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