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Abstract: High-quality soils are an important resource affecting the quality of 
life of human societies, as well as terrestrial ecosystems in general. Thus, soil 
erosion and soil loss are a serious issue that should be managed, in order to 
conserve both artificial and natural ecosystems. Predicting soil erosion has 
been a challenge for many years. Traditional field measurements are accurate, 
but they cannot be applied to large areas easily because of their high cost in 
time and resources. The last decade, satellite remote sensing and predictive 
models have been widely used by scientists to predict soil erosion in large 
areas with cost-efficient methods and techniques. One of those techniques is 
the Revised Universal Soil Loss Equation (RUSLE). RUSLE uses satellite 
imagery, as well as precipitation and soil data from other sources to predict the 
soil erosion per hectare in tons, in a given instant of time. Data acquisition for 
these data-demanding methods has always been a problem, especially for 
scientists working with large and diverse datasets. Newly emerged online 
technologies like Google Earth Engine (GEE) have given access to petabytes 
of data on demand, alongside high processing power to process them. In this 
paper we investigated seasonal spatiotemporal changes of soil erosion with the 
use of RUSLE implemented within GEE, for Pindos mountain range in 
Greece. In addition, we estimated the correlation between the seasonal 
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components of RUSLE (precipitation and vegetation) and mean RUSLE 
values.  

Keywords: soil erosion prediction, RUSLE, Google Earth Engine, Pindos 
mountain range. 

INTRODUCTION  

Soil erosion is one of the many natural processes that take place 

in ecosystems; however, accelerated soil erosion has a negative impact 

on agriculture and silviculture, hydrological systems, land degradation, 

and loss of non-renewable soil resources (Lal, 1998; Morgan, 2009). In 

this scope, the estimation of soil erosion, as well as the temporal and 

spatial distribution of the process, is of great importance in order to 

prevent soil degradation and sustain high-quality soils. Estimating soil 

erosion, however, is a difficult task due the many impacting factors, 

such as climate, terrain, soil, vegetation, and land cover (Lu et al., 

2004).  

Traditional field measurements of soil erosion, despite being ac-

curate and reliable, are very expensive and time consuming (Castillo et 

al., 2012), thus many scientists turned to predictive models that use 

satellite data to calculate soil erosion (Wischmeier and Smith, 1978; 

Lane et al., 2003; Pandey et al., 2007; Rahman et al., 2009). One of 

these methods is the Universal Soil Loss Equation (USLE), and its de-

scendant, the Revised Universal Soil Loss Equation (RUSLE) (Renard 

et al., 1991). This equation has been widely used to predict soil erosion 

in many different ecosystems (Millward and Mersey, 1999; Angima et 

al., 2003; Fernandez et al., 2003). RUSLE uses multispectral satellite 

images, as well as satellite-acquire elevation models of the terrain, 

along with precipitation and soil data (Renard et al., 1997).  

Gathering and preprocessing these large amounts of data can of-

ten become difficult, and quite time consuming. Emerging and modern 

technologies offer now new possibilities regarding data processing. 

More specifically, cloud-based services are widely used by scientists to 

acquire, analyze and process satellite data on the fly. Such popular plat-

forms are AρρEEARS (Application for Extracting and Exploring Anal-

ysis Ready Samples), GFW (Global Forest Watch) and GEE (Google 

Earth Engine). GEE can be accessed either from its online integrated 

development environment (IDE), or using the Application Program 
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Interface (API) that is being provided. GEE grants access to high per-

formance processing power using cloud-based technologies, as well as; 

to very large amounts of data which are stored in cloud-based data-

bases. The data in GEE’s databases come from many different sources, 

including satellite images, geospatial datasets, meteorological data, 

land cover/land use maps, topographic data, and even social and eco-

nomic data (Gorelick et al. 2017).  

The main goal of this study was to predict soil erosion in the 

mountain range of Pindos during a full seasonal cycle. The specific 

objectives are:  

 To estimate the monthly soil erosion by employing the Revised 

Universal Soil Loss Equation (RUSLE) with the Google Earth 

Engine (GEE) cloud-based platform.  

 To assess the correlation between precipitation and soil erosion 

predictions. 

 To assess the correlation between vegetation (both type and den-

sity) and soil erosion predictions. 

MATERIALS AND METHODS 

The study area is located at the centermost part of Greece, along 

the mountain range of Pindus, extending from 38°49'51.16" to 

39°41'23.04" North and from 21°3'26.74" to 22°14'34.50" East (Fig. 1). 

The altitude ranges from sea level to 2300 meters, with slopes up to 45 

degrees, and the surface area is 12,431.25 km
2
. Concerning the climate 

of the study area, temperature varies with elevation, with mean month-

ly temperatures ranging from 0.9 °C to 21.4 °C, and annual rainfall 

from 1,000 to 1,800 mm. The vegetation consists of black pine (Pinus 

nigra) and common beech (Fagus sylvatica) in the middle altitudes 

(1,000 m – 1,600 m), with Balkan pines (Pinus heldreichii Christ.) 

covering the higher altitudes (> 1,600 m) (Touchan et al. 2012). 

Data. The satellite data that we used in this study were four im-

ages that were derived from the Sentinel-2 MultiSpectral Instrument 

(MSI), and were acquired in January 29, April 9, July 3, and October 

26, all during 2018. Sentinel-2 is a high-spatial resolution (10 m), mul-

ti-spectral constellation, used for monitoring of vegetation, soil and 

water cover.  
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Fig. 1. Study area; mountain range of Pindos, Greece. 

The data were level 1 products, which means that they were al-

ready geometrically and radiometrically corrected (Drusch et al., 

2012). The four images that were used represent the seasons in order to 

assess how soil erosion changes throughout the year. A map of broad-

leaf and coniferous trees was used as well, provided by the Copernicus 

Land service. The precipitation data that were used were in the form of 

R factor maps, acquired from European Soil Data Centre (ESDAC). 

The R factor, also known as Rainfall Erosivity factor, is the average (in 

the present case) monthly sum of the kinetic energy products of each 

storm (Renard et al., 1997a). The R factor maps were created using the 

best available datasets in Europe, namely the Rainfall Erosivity Data-

base on the European Scale (REDES). The R-factor values were nor-

malized to temporal resolutions of 30 minutes using linear regression 

(Panagos et al., 2015a; Ballabio et al., 2017). Similarly, LS factor maps 

where obtained from ESDAC. The LS factor, or the combined slope 

length and slope angle factor, has the greatest influence on soil erosion 

at the European scale and describes the effect of topography on soil 

erosion (Panagos et al., 2015b). The LS-calculation was performed us-

ing the original equation proposed by Desmet and Govers (1996) and 
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implemented using the System for Automated Geoscientific Analyses 

(SAGA), which incorporates a multiple flow algorithm and contributes 

to a precise estimation of flow accumulation (Desmet and Govers, 

1996). The DEM used to calculate the LS factor map is a new high-

resolution (25 m) DEM of the European Union (EU-DEM) which is a 

hybrid created from Shuttle Radar Topography Mission (SRTM) and 

Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) Global Digital Elevation Model (GDEM). The EU-DEM is a 

product of the Copernicus program, and it is statistically validated with 

an overall vertical accuracy of 2.9 m root mean square error. Pindos 

mountain range has one of the greatest LS factor values in Europe 

(Panagos et al., 2012). Finally, a K factor map was acquired from 

ESDAC as well. The K-factor expresses the susceptibility of a soil to 

erosion, and it is depended upon some specific parameters such as or-

ganic matter content, soil texture, soil structure and permeability 

(Renard et al., 1997b). The K factor map was created by field meas-

urements recorded during the Land Use/Cover Area frame Survey 

(LUCAS) soil survey in 2009. The equation used to create the K factor 

map includes five soil parameters (texture, organic matter, coarse 

fragments, structure, and permeability) (Wischmeier and Smith, 1978) 

and can be seen bellow: 

K = [(2.1 × 10
-4
 M

1.14
 (12 – OM) +3.25 (s – 2) + 2.5 (p – 3))/100] × 0.1317 (1). 

Where: 

M – Textural factor with M = (msilt + mvfs) · (100 – mc); 

mc (%) – Clay fraction content (< 0.002 mm); 

msilt (%) – Silt fraction content (0.002–0.05 mm); 

mvfs (%) – Very fine sand fraction content (0.05–0.1 mm); 

OM (%) – Organic matter content; 

s – Soil structure class (s = 1: very fine granular, s = 2: fine 

granular, s = 3, medium or coarse granular, s = 4: blocky, platy 

or massive); 

p – Permeability class (p = 1: very rapid, …, p = 6: very slow). 

Soil erosion modeling. In this paper the RUSLE equation was 

used to model soil erosion. RUSLE predicts soil erosion by using the 

following formula:  
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A = R × K × LS × C × P  (2). 

Where: 

A – Computed spatial and temporal average soil loss per unit ar-

ea, expressed in the time unit of R; 

R – Rainfall erosivity factor;  

K – Soil erodibility factor; 

LS – Combined effect of slope length (L) and slope steepness 

factor (S); 

C – Cover-management factor; 

P – Practice factor. 

The maps representing the R, K, and LS factors were uploaded 

as assets in Google Earth Engine. The R factor maps included four im-

ages, one for each of the months January, April, July, and October. The 

Sentinel-2 collection was filtered using GEE’s Integrated Development 

Environment (IDE) in JavaScript programming language, in order to 

acquire the least cloudy image for each month. The NDVI index was 

then calculated, and the C factor was computed using the following 

formula (Van der Knijff et al., 1999) (3): 

C = exp[−𝜶(
𝑵𝑫𝑽𝑰

𝜷 − 𝑵𝑫𝑽𝑰
)]               (3). 

Where α equals 2 and β equals 1, which are unitless parameters that 

determine the shape of the curve relating to NDVI and the C-factor 

(Mallinis et al., 2016). 

Since the R factor data had the lowest spatial resolution, all the 

other maps were scaled down to fit the 500 m resolution, along with the 

DEM that was later used to calculate slopes in the study area. The P 

factor represents the effects of practices, such as direction of tilling in 

fields, on the reduction of soil erosion. Since no such data are available 

and they cannot be derived from satellite imagery, the P factor was set 

to 1. The final erosion maps were downloaded from Google Earth En-

gine along with the slope map. The potential correlations between 

RUSLE variable and variables such as vegetation and precipitation 

were investigated using the Pearson’s correlation coefficient. Pearson's 
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correlation coefficient (r) is a measure of the linear association of two 

variables (Doyle 2011).  

 

Fig. 2: The curve that represents the relation between C factor and NDVI. 

RESULTS AND DISCUSSION 

It should be mentioned that the use of the GEE platform reduced 

by a lot the time required to access, download, and preprocess images. 

In case of data unavailability in GEE’s databases, uploading data in the 

cloud and combining them with already available data can be a very 

user-friendly and time-efficient process. Since GEE’s IDE allows the 

user to write their own programming scripts, automation of processes 

can be performed, thus reducing computation time and effort. 

Initially, the erosion maps that were produced had a pixel size of 

500 meters (0.25 km
2
), and in each of those pixels a value was assigned 

signifying the predicted erosion in that area in tons per hectare per 

month. The predicted erosion values were then classified into five clas-

ses and were represented in the table (Table 1) and corresponding the-
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matic maps (Fig. 3) for each of the four months. As shown in the re-

sults below, RUSLE appears to vary through the year. This can be ex-

pected since two of the factors (R and C factors) have a highly seasonal 

character (Fig. 2). It appears the months with the highest erosion pre-

dictions are October and January with corresponding mean erosions 

3.25 and 2.88 tons per hectare per month and total erosion of the study 

area 162,027 and 143,010 tons per hectare per month (Table 1,  

Fig. 3–5).  

Table 1. Mean RUSLE and the sum for each month  

RUSLE (ton/ha/month) 

 October January April July 

< 5 49,815 36,221 32,767 11,804 

5–15 60,876 45,213 19,942 3,992 

15–25 26,809 25,298 2,999 514 

25–35 10,852 16,449 820 82 

> 35 13,675 19,829 974 82 

Mean 3.25 2.88 1.16 0.33 

Sum 162,027 143,010 57,502 16,474 
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Fig. 3. Values of RUSLE for the months October and January classified in 5 

classes. 
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Fig. 4. Values of RUSLE for the months April and July classified in 5 classes. 
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Fig. 5. Sum of RUSLE at different seasons of the year. 

The correlation between the seasonal factors mentioned above 

(R and C factors) and the erosion predictions was investigated, and the 

following results were produced (Tables 2 and 3). 

Table 2. RUSLE values at different precipitation classes 

RUSLE (Mean) (ton/ha/ month) 

Precipitation 

(mm/month) 
Autumn Winter Spring Summer 

0 – 30 1.2699 0.1011 1.4913 0.3051 

30 – 80 1.7397 0.6785 1.2634 0.6801 

80 – 130 5.5519 5.7765 2.9181 1.8491 

130 – 180 4.9851 4.3097 6.2453 - 

> 200 10.0173 4.4805 - - 

Pearson’s correlation 

coefficient 
0.1981 0.2943 0.1993 0.2323 

It appears that the higher the precipitation, the higher the 

predicted erosion for that time, almost in a linear manner. Although, 

the Pearson’s correlation coefficient was calculated and found to be 

lower than expected (r: 0.1981–0.2943), which indicates a weak 

correlation between precipitation and the value of RUSLE.  
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Table 3. RUSLE values at different NDVI classes 

RUSLE (Mean) (ton/ha/month) 

NDVI Autumn Winter Spring Summer 

<0 10.1027 23.1567 6.6812 1.0206 

0 - 0.3 5.1609 12.4148 3.9266 1.7364 

0.3 - 0.6 4.1757 2.6822 1.5712 0.8577 

>0.6 1.1864 0.4635 0.4635 0.2032 

Pearson’s correlation 

coefficient 
-0.2229 -0.4816 -0.4565 -0.32984 

On the other hand, NDVI and RUSLE values seem to have a 

negative correlation, meaning the higher the NDVI values, the lower 

the RUSLE values. This finding agrees with other studies that have 

presented a negative correlation between vegetation and soil erosion 

exists (Mohammad and Adam 2010). The Pearson’s correlation coeffi-

cient ranges from -0.22 (weak correlation) to -0.48 (medium correla-

tion). There is a case to be made concerning the species of vegetation 

of the study area. As mentioned earlier, one of the dominant species of 

the lower altitude areas is the common beech, which is a deciduous 

tree. The NDVI index is calculated based on the spectral values of foli-

age and their property of reflecting near-infrared light while absorbing 

red light. Since part of the trees are deciduous, lower NDVI values are 

expected at the winter and autumn seasons. From the NDVI index the 

C factor map was produced, and it was supposed to represent the abil-

ity of an area to resist erosion based on “how much” healthy vegetation 

was present. The visual difference in NDVI values can be seen in fig-

ure 6 (Fig. 6). 
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Fig. 6. NDVI index in four seasons. 

As other studies have shown, the ability of trees to reduce ero-

sion risk is not due to their foliage only, but also due to their root sys-

tem and the leaf litter on the ground (Wilcox et al. 2003). That suggests 

that the decrease in NDVI values and therefore the decrease in C factor 

values are not proportionate to the decrease of erosion resistance in 

reality. To test the impact of deciduous trees on the predictions of soil 

erosion by RUSLE we investigated the mean soil erosion prediction on 

areas with broadleaf (Fagus sylvatica) and coniferous trees across the 

year (Table 4, Fig. 5). 

No significant differences in mean soil erosion predictions were 

observed according to what type of vegetation was present (broadleaf 

or coniferous). This in turn suggests that deciduous trees don’t cause 

RUSLE to overestimate. 
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Fig. 7. Broadleaved and Coniferous forests (provided from Copernicus Land 

Monitoring Service) on a Sentintel-2 NDVI image. 

 

Table 4. Mean RUSLE values at broadleaf and coniferous forest areas across 

the year 

Mean RUSLE/Species Broadleaved Coniferous 

October 3.21 3.48 

January 2.78 2.36 

April 1.57 1.27 

July 0.36 0.39 
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CONCLUSIONS 

The main goal of this study was to predict soil erosion in the 

mountain range of Pindos during a full seasonal cycle. Resources from 

GEE and ESDAC were used to produce the predicted soil erosion maps 

by calculating RUSLE for January, April, July, and October 2018. Af-

ter comparing the different results both by their sum and mean erosion 

per hectare per month, the seasonal factors of RUSLE were investigat-

ed. From the analysis the following can be concluded:  

 the employment of RUSLE in GEE results in the production of 

soil erosion prediction maps in a time-efficient manner within 

in a user-friendly environment,  

 the RUSLE model predicted higher erosion risk in October and 

January and lower in April and July, 

 erosion values have a low positive correlation with precipita-

tion and medium negative correlation with NDVI values, 

 the type of vegetation (deciduous or evergreen) did not cause 

mean RUSLE values to vary in different seasons. 

It would be interesting to investigate in future studies, the pre-

dicted erosion using RUSLE in full year cycles for many consecutive 

years, using GEE cloud-based platform and Landsat satellite imagery. 
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