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Abstract

"Ontology and the Foundations of Mathematics" consists of three papers concerned with
ontological issues in the foundations of mathematics. Chapter 1, "Numbers and Persons,"
confronts the problem of the inscrutability of numerical reference and argues that, even if
inscrutable, the reference of the numerals, as we ordinarily use them, is determined much
more, precisely than up to isomorphism. We argue that the truth conditions of a variety
of numerical modal and counterfactual sentences (whose acceptance plays a crucial role in
applications) place serious constraints on the sorts of items to which numerals, as we ordi-
narily use them, can be taken to refer: Numerals cannot be taken to refer to objects that
exist contingently such as people, mountains, or rivers, but rather must be taken to refer
to objects that exist necessarily such as abstracta.

Chapter 2, "Modern Set Theory and Replacement," takes up a challenge to explain the
reasons one should accept the axiom of replacement of Zermelo-Fraenkel set theory, when
its applications within ordinary mathematics and the rest of science are often described
as rare and recondite. We argue that this is not a question one should be interested in;
replacement is required to ensure that the element-set relation is well-founded as well as
to ensure that the cumulation of sets described by set theory reaches and proceeds beyond
the level w of the cumulative hierarchy. A more interesting question is whether we should
accept instances of replacement on uncountable sets, for these are indeed rarely used outside
higher set theory. We argue that the best case for (uncountable) replacement comes not
from direct, intuitive considerations, but from the role replacement plays in the formulation
of transfinite recursion and the theory of ordinals, and from the fact that it permits us
to express and assert the (first-order) content of the modern cumulative view of the set-
theoretic universe as arrayed in a cumulative hierarchy of levels.

Chapter 3, "A No-Class Theory of Classes," makes use of the apparatus of plural quan-
tification to construe talk of classes as plural talk about sets, and thus provide an inter-
pretation of both one- and two-sorted versions of first-order Morse-Kelley set theory, an
impredicative theory of classes. We argue that the plural interpretation of impredicative
theories of classes has a number of advantages over more traditional interpretations of the
language of classes as involving singular reference to gigantic set-like entities, only too
encompassing to be sets, the most important of these being perhaps that it makes the ma-
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chinery of classes available for the formalization of much recent and very interesting work
in set theory without threatening the universality of the theory as the most comprehensive
theory of collections, when these are understood as objects.

Thesis Supervisor: Vann McGee
Title: Professor of Philosophy
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Chapter 1

Numbers and Persons

1.1 Introduction: The Problem

As reference is ordinarily conceived, in order for a term to refer, there must be some combi-

nation of intentions, central features of usage, and relevant non-linguistic facts that connect

specific uses of the term with its referent. Provided that numerals refer, then, there must be

some combination of intentions and central features of use of the numerals either in theory

or in applications, which, in conjunction with relevant non-linguistic facts, such as the facts

of arithmetic, connect specific uses of the numerals with their referents, the numbers.

A very simple permutation argument establishes, it seems to me, that, provided again

that numerals refer, this is hopeless as a picture of numerical reference. If n is a permu-

tation of the natural numbers, then a reinterpretation of the arithmetical vocabulary that

takes the usual numeral for each number n to refer not to n itself but to ir(n) and makes

compensatory changes in the interpretation of each arithmetical predicate will be indis-

tinguishable from the original interpretation with respect to the truth values they assign

to each numerical sentence. Tob illustrate this point, notice that one could exchange the

referents of the numerals '4' and '5', provided only that obvious compensatory changes are

made in the interpretation of each arithmetical predicate. For example, a predicate such

as "is a successor of" would be reinterpreted to refer to a relation which is like the suc-

cessor relation except for the fact that 5 bears that relation to 4 but not the reverse, and

a functional expression such as "the cardinal number of" would be reinterpreted to refer

7



CHAPTER 1. NUMBERS AND PERSONS

to a function that assigns the number 5 to sets which contain exactly 4 members and the

number 4 to sets which contain exactly 5 members.

Perhaps it will be replied that it is our intention to use the numeral '4' to refer to the

number 4, and not to the number 5, that excludes the possibility of a perverse reinter-

pretation of the numerals of the sort we have jusL envisaged. But all the reply does is to

postpone the problem; in order for us to intend the number 4, and not the number 5, to

be the referent of a numeral, there must be some combination of mental factors and other

relevant facts, such as the facts of arithmetic, that permit us to discern one from the other.

But, unless mental states are individuated in terms of their objects, a minor variation on the

permutation argument just given would seem to suggest that the mental states of someone

with an intention to refer to the number 4 would be qualitatively indistinguishable in all

the relevant respects from the mental states of someone with an intention to refer to the

number onto which the number 4 is permuted, the number 5.

I think we should admit that the moral of the permutation argument is that, provided

that numerals refer, there is no combination of intentions, central features of usage, and

non-linguistic facts that may be used to discern one interpretation of the numerals from a

variety of alternative interpretations that differ from it in the natural numbers they assign

to some numerals. There are reasons to be concerned. A paradox immediately confronts us:

For, even after we realize that the reference of the numeral '4' is inscrutable, what could be

more evident that, provided that the number 4 exists, the numeral '4' refers in the language

we actually speak to the number 4 and to nothing else? A solution to the paradox might be

to treat reference disquotationally, regarding sentences such as "If 4 exists, then '4' refers

in the language we actually speak to 4 and to nothing else" as analytic. Such a solution

would perhaps help us to salvage the intuition that, provided that the number 4 exists, the

numeral '4' refers in the language we actually speak to the number 4 and to nothing else,

but it would certainly sever the tie between reference and the activities of speakers.' Be

that as it may, it is not my intention in this chapter to confront this paradox, but rather to

discuss another question that emerges with the inscrutability of numerical reference.

' The disquotational line of response to the inscrutability of mathematical reference is briefly discussed
by Vann McGee in (McGee, 1993), 103-109.

8



CHAPTER 1. NUMBERS AND PERSONS

Another, perhaps more serious difficulty that emerges with the inscrutability of numer-

ical reference is due to the fact that the standard Tarskian semantics explains the truth

conditions of complete sentences in terms of reference and satisfaction. Now: if numerals do

not refer, then it surely will not be possible to explain the truth of va sentence like "4 < 5"

in terms of reference and satisfaction.

This need not be an insurmountable problem, but it requires the development of an

alternative explanation of the truth conditions of numerical sentences in terms other than

reference and satisfaction. To develop a perfectly general alternative to the Tarskian account

would, no doubt, be a task of staggering difficulty, but, fortunately, the numerical case

is considerably simpler than the general case. Thus, when attention is restricted to the

numerical case, it is not difficult to develop an alternative, attractive account of truth that

explains the truth conditions of arithmetical, and other numerical sentences, without appeal

to determinate reference. Provided that some combination of intentions, central, non-

negotiable features of utsage, and relevant, non-linguistic facts selects a class of candidate

reference relations for the entire class of numerals given by isomorphic copies of the natural

number system, we can take the entire sequence of numerals to co-vary over all the candidate

referents, and count a numerical sentence true just in case the sentence is true on all the

candidate interpretations. 2

What are the candidate referents for the numerals? To settle this question is to discern

the limits of the inscrutability of numerical reference, and that is precisely the aim of this

chapter. Perhaps there is no combination of intentions, features of use of the numerals either

in theory or in applications, and other relevant facts that connect them uniquely with their

referents, but the question remains whether they are able to at least exclude certain items as

candidates to be the referents of the numerals. After all, for all the permutation argument

implies, the scope of the inscrutability of numerical reference may well be restricted to the

domain of natural numbers.

Or is it? Are items of an ostensibly different sort from numbers candidates to be the

2This is no trivial assumption, but it is nonetheless one that I will take for granted for present purposes;
I will assume, in particular, that we manage to select a class of models, given by isomorphic copies of the
natural number system, candidate reference relations for the entire class of numerals.

9



CHAPTER 1. NUMBERS AND PERSONS

referents of the numerals? Are sets candidate referents for the numerals, as ordinarily used

in theory and in applications? Is the unit set of the number 3 a candidate referent for

the numeral '4'? Are symbols candidate referents for the numerals as used in theory and

applications? Is the Arabic numeral '4' a candidate referent for the numeral '4'?

Or are ordinary objects candidate referents for the numerals? Is, to vary an example

from Richard Cartwright, 3 Mo Vaughn, the man who used to play first base for the 1998

Boston Red Sox, a candidate referent for the numeral '4', as ordinarily used in theory and

in applications? Presumably not, for, if the numeral '4' referred to Mo Vaughn, then, by

semantic descent, we could infer that the number 4 is identical with Mo Vaughn, and that

is a rather extravagant claim to make.

There is a deservedly famous argument due to Paul Benacerraf that is often taken to

broaden the scope of the inscrutability to a wide range of items other than natural numbers.4

Benacerraf called attention to a problem that emerges in the context of ontological reduc-

tion. It is ordinarily assumed that mathematics, and, in particular, number theory reduces

to set theory. This reduction proceeds via the identification of the natural numbers with

specific sets, but, as Benacerraf reminded us, several methods can be used to that end.

What are perhaps the two most common methods for reducing number theory to set theory

are due to Ernst Zermelo, who identified each natural number with the singleton of its

predecessor, and to John von Neumann, who identified each natural number with the set

of its predecessors. Now: Benacerraf's crucial observation is that both plans seem to serve

the purpose of the reduction equally well: no amount of reflection on our central uses of

the arithmetical vocabulary either in theory or in applications or on the facts of arithmetic

would seem to settle the question of whether numerals refer to finite Zermelo ordinals rather

than with to Neumann's finite ordinals.

Benacerraf observed further that, in general, no amount of reflection on central uses

of the arithmetical vocabulary in theory and in applications or on the facts of arithmetic

appears to settle the question whether numerals refer to the members of one rather than

3In the Addenda to "Propositions" in (Cartwright, 1987, 52).

4Cf. (Benacerraf, 1965).
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CHAPTER 1. NUMBERS AND PERSONS

another isomorphic copy of the natural number system, regardless of their sort.5 The

conclusion suggests itself that the reference of the numerals is determined no more precisely

than up to isomorphism.

This conclusion - that the reference of the numerals is determined no more precisely

than up to isomorphism - may have been one Benacerraf's line of argument warranted, but

it was certainly not the conclusion he extracted. Benacerraf never presented his argument

as an argument for the inscrutability of numerical reference. Nor did he even subscribe to

the thesis that the reference of the numerals is determined no more precisely than up to

isomorphism; in 1965, he insisted that only isomorphic copies of the natural number system

in which the relation "is less than" is recursive are candidates to play the role of the natural

number system.6 Instead, he concluded that, if numerals do not refer, then "if the truth be

known, there are no such things as numbers; which is not to say that there are not at least

two prime numbers between 15 and 17."

Whatever Benacerraf's conclusion may have been, a variety of authors have extracted the

conclusion that numerical reference is determined no more precisely than up to isomorphism,

and the interest of this thesis is that, when combined with the alternative account of truth

conditions outlined before, it provides us with a quite attractive explanation of the truth

conditions of numerical sentences: a sentence of arithmetic, for example, is true if and only

if it is true in every isomorphic copy of the natural number system, or, equivalently, if and

only if it is true in some isomorphic copy of the natural number system.

Of course it is an immediate consequence of the thesis that the reference of the numerals

is determined no more precisely than up to isomorphism that Mo Vaughn is a perfectly

suitable candidate to be the interpretation of the numeral '4'. For there are, after all,

isomorphic copies of the natural number system in which the numeral '4' refers to Mo

Vaughn. This fact, in combination with the account of truth conditions just now given,

would seem to commit us, for example, with the rather extravagant claim that a sentence

such as "The number 4 has recently moved to California" is not false.

"An isomorphic copy of the natural number system is an infinite sequence of objects each one of which

has only finitely many predecessors.

"He has recently recanted in (Benacerraf, 1996).

11



CHAPTER 1. NUMBERS AND PERSONS

What I would like to do in this chapter is to argue that the conclusion that Mo Vaughn

is a candidate to be the referent of the numeral '4' is not only extravagant, it is false,

too. There are central features of use of the numerical terms in applications that constrain

the sorts of items to which we may take the numerals to refer; these features exclude,

in particular, ordinary objects like people, mountains, or rivers as candidates to be the

referents of the numerals. Therefore, though hopelessly inscrutable, the reference of the

numerical terms is, I want to argue, certainly determined much more precisely than up to

isomorphism.

There are at least two important reasons this thesis is of interest.

The first reason is peculiar to the philosophy of mathematics. One way to avoid the

unsavory consequences of Platonism is to adopt a stance of Aristotelian realism, according

to which mathematical objects are ordinary objects considered from an abstract point of

view.' For Aristotle, geometrical objects were ordinary objects examined from an abstract

point of view that ignored all aspects of them other than their size, shape and position. As

attractive as the Aristotelian view may seem for elementary geometry, it must be admitted

that it is not a tenable view to entertain with respect to contemporary mathematics. For

one reason, it would seem thoroughly unreasonable to expect us to encounter in physical

experience the bewildering variety of structures studied by contemporary set theory. This,

however, is no reason to reject the Aristotelian stance with respect to arithmetic, according

to which numbers are best viewed as ordinary objects considered from an abstract point of

view, a point of view that ignores all aspects of them other than their position in a certain

structure, the natural number system. But if there are limits on the inscrutability of

numerical reference and ordinary objects turn out not to be candidates to be the referents

of the numerals and other numerical terms, then the Aristotelian view with respect to

arithmetic will no longer be tenable.

The second reason is much more general and concerns the theory of reference. There

are a variety of arguments in the literature designed to establish that the inscrutability of

reference is a perfectly general phenomenon, and not one restricted to the numerical case.

7Cf. Metaphysics, M.
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CHAPTER 1. NUMBERS AND PERSONS

The issue remains highly controversial, but Hilary Putnam has advanced a permutation

argument, which, if correct, would even seem to establish that, whatever the subject mat-

ter, reference is never determined more precisely than up to isomorphism. 8 The point of

Putnam's permutation argument is to establish that the truth conditions of complete sen-

tences determine the reference of the terms and predicates of the language no more precisely

than up to isomorphism. Since, for some philosophers, truth conditions are all there is to

determine reference, they conclude that, in the end, reference is never determined more

precisely than up to isomorphism. The thesis that, whatever the subject matter, reference

is determined no more precisely than up to isomorphism remains highly controversial. For

it is at least arguable that, in the case of ordinary reference, there are factors other than

usage or truth conditions of complete sentences that constrain the reference of most of the

tcrms we use; there are for example demonstrative identifications and causal connections

that may constrain the reference of our terms and predicates.

The interest of the numerical case is that it is arguable that there are no factors -

causal, demonstrative, or otherwise - other than truth conditions of complete sentences

that can be cited to mitigate the extent of the inscrutability, and it would seem to present

us with an unadorned case of a subject matter for which reference is determined no more

precisely than up to isomorphism.

What I would like to suggest is that reflection on the considerably simpler case of

numerical reference may throw light upon the general case, too. For, after all, if - and

this is what we shall try to establish - numerical reference is determined more precisely

than up to isomorphism, this will certainly be not due to the existence of demonstrative

identifications or other causal factors which happen to help connect the numerals uniquely

with their referents. Thus, it is at least conceivable that whatever constrains the reach of

the inscrutability of numerical reference may well place constraints on the scope of ordinary

reference, if there is such a perfectly general phenomenon, too.

8Cf. (Putnam, 1981). Davidson makes use of a similar permutation argument in (Davidson, 1979).
Another example is Quine's argument from proxy functions. To the best of my knowledge, the first use of
a permutation argument to draw a perfectly general point about reference is due to Richard Jeffrey who
exchanged people with their social security numbers in (Jeffrey, 1964). I am grateful to Vann McGee for
telling me of this reference.

13



CHAPTER 1. NUMBERS AND PERSONS

1.2 The scope of the inscrutability of numerical reference

In the end, the suggestion I will want to make is that there are features of our use of the

numerals in applications in modal and counterfactual contexts that exclude interpretations

that assign to the numerals objects that exist contingently, such as Mo Vaughn.

To see this clearly, however, we need to review first what is nowadays a familiar distin;-

tion. Compare the two different uses of the numeral '4' in the sentences:

(1) Jupiter has exactly 4 major moons,

and

(2) T' number of Jupiter's major moons is 4.9

In (1), the numeral '4' acts as an adjective, not as a substantive, and, given the usual

recursive definition of the numerical quantifiers,' 0 (1) is often paraphrased into the language

of first-order logic with identity as:

(1.a) 34X (x is a major moon of Jupiter),

which can be unpacked as:

(1.b) 3x13223x33x4( A zx $ xjA Vy(y is a major moon of Jupiter + V y = xi))
1<i<j<4 I<i<4

In contrast with its occurrence in (1), the occurrence of the numeral '4' in (2) is referential;

it refers to an object, the number 4. The truth value of (2) depends both on the existence

of a particular number, the number 4, and on whether 4 is indeed the number of Jupiter's

major moons.

9 This is one of Frege's examples in (Frege, 1884), section 55. Frege held that numbers are objects and
that "statements of number" like (1) had to be analyzed in terms of (2).

'oThe definition of the numerically definite quantifiers 'There is exactly 1', 'There is exactly 2', and the
like is:

3ox Fz - Vzr-Fz,
3.+1z Fz t+ By(Fy A 3B (Fz A X $ y)).

14



CHAPTER i. NUMBERS AND PERSONS

In a recent paper, Neil Tennant, (Tennant, 1997), calls attention to the distinction

just now drawn with a view to establishing the necessary existence of numbers. Tennant

contends that the connection between (1) and (2) is that of analytic equivalence. Then of

course, the analyticity of certain instances of:

(3) The number of F's = 0 ++ Vx -Fx

(4) The number of F's = 1 + 3xVy (Fy ++ x = y)

(5) The number of F's = 2 + +32 132 (x 1  x2 A Vy (FyI -+ 51 = V X2 = ))

would seem to provide us with straightforward enough arguments for the (necessary) exis-

tence of the numbers 0, 1, and 2. To establish the existence of the number 0, one needs

only note that Vx --(x x). For this, coupled with the relevant instance of (3), implies

that the number of things that are not self-identical is 0. In like manner, one obtains the

existence of the number en F is instantiated with the predicate (x = 0) in (4), and

the existence of the nuni , when F is instantiated with (x = 0 V x = 1) in (5). It should

now be straightforward how to extend this line of argument to establish the existence of all

the rest of natural numbers.11

It might appear that the line of argument just now outlined supplies us with an argument

for the thesis that, as they are ordinarily used in applications, numerals cannot be taken to

refer to persons and other contingent existents. If numbers are necessary existents, then,

by semantic ascent, numerals cannot be taken to refer to contingent existents, which is the

conclusion we wanted. Unfortunately, there are reasons to be dissatisfied.

Two difficulties deserve special mention.

First, it is doubtful that all biconditionals of the form of (3), (4), and (5) are analytic.

The first point to be noticed is that, unless suitable restrictions are placed on the sorts of

predicates with which F can be instantiated, it will be possible to produce biconditionals of

the form of (5), for example, which are not only not analytic, but plainly false. For example,

"If the argument appears familiar, it is. The argument is modeled after Frege's proof in the Foundations
that the number 0 exists and that every number has a successor. I should notice, however, that, as Tennant
outlines his argument in (Tennant, 1997), it relies only on (3) and on two other principles concerning the
existence of successors.
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CHAPTER 1. NUMBERS AND PERSONS

to employ a Fregean example, suppose we instantiate F in the relevant biconditional with

the predicate 'drew the king's carriage':

(6) The number of horses that drew the king's carriage = 4 ++
3x1 3x23x 32: 4 ( A xi : xj A Vy(y is a horse that drew the king's carriage ++

1<<•j<4
v v= Xi))

1<i<4

On the face of it, (6) is ambiguous between a distributive and a perhaps more salient,

collective reading of the predicate "drew the king's carriage". Now, contrary to what Frege

himself may have intimated in the Foundations, it may be true, for example, that the

number of horses that drew the king's carriage is 4, but nevertheless true of no horse that it

drew the king's carriage.12 If so, then, on a collective interpretation of the predicate "drew

the king's cer-riage," the conditional from left-to-right of (6) is not just not analytic, it is

outright false.

But even if suitable restrictions are placed on the sorts of predicates with which F can

be instantiated, one may still seriously doubt, for example, that the conditional from right-

to-left of (3), which states that if there are no F's then there is such an object as the number

0, is analytic. And the reason is that, like many others, one may subscribe to the traditional

picture of analytic truths as truths that lack content and make no substantive claims or

commitments about the way the world is; and, in particular, as truths that don't entail

the existence of particular objects. Indeed, not only do the relevant conditionals entail the

existence of objects, by Frege's argument in the Foundations, they deliver the existence

of an infinite number of objects as a consequence, which an added source of concern for

someone who subscribes to the traditional picture of analyticity.

It will perhaps be replied that the Frege-Tennant strategy can be sustained in the

presence of a weaker assumption, such as, for example, the assumption that biconditionals

of the form of (3), (4) and (5) are necessary truths (just not analytic.) Perhaps so, but

I, for one, know of no direct argument for the necessity of those biconditionals. And thus

deriving the necessary existence of numbers from the necessity of biconditionals of the form

12(Cf. Frege, 1884, section 46). I am grateful to Richard Cartwright for calling this reference to my
attention.
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CHAPTER I. NUMBERS AND PERSONS

of (3), (4) and (5) would be no better than deriving the necessary existence of numbers

directly from the necessity of the Peano postulates. For, after all, what warrant we have

for confidence that the axioms of arithmetic are necessary truths? Presumably, if there

is a possible world in which there are no numbers, then the axioms of arithmetic are not

necessary truths.

The second reason to be dissatisfied with Tennant's line of argument concerns the scope

of the conclusion it warrants. It seems to me that Tennant's argument establishes its

conclusion on the assumption that numerals are to be viewed as rigid designators, as terms

which cannot be taken to refer to different objects in different possible worlds. But notice

that the possibility that '4' refers to different objects in different possible worlds is not

completely outrageous. As Russell conceived of the number 4, it consisted of the class of all

sets containing exactly 4 members. If, as it is commonly assumed, a set can exist only in

those possible worlds in which their members exist, then, on the Frege-Russell account of

number, the numeral '4' refers to different classes in different possible worlds. Whereas, in

the actual world, the class of 4-membered sets contains sets containing Mo Vaughn as an

element, in other possible worlds in which Mo Vaughn doesn't exist, the class of 4-membered

sets doesn't contain any set containing Mo Vaughn as a member.

Therefore, unless it is assumed that numerals are indeed genuine names, and hence rigid

designators, the argument given by Tennant doesn't by itself establish that numbers are

objects that exist necessarily, and hence that they are different from persons and other

ordinary physical objects.

No matter, I think that there is another perfectly general line of argument for the

conclusion that numerals cannot be taken to refer to contingent existents. The argument

proceeds from the observation that it is an important, non-negotiable feature of our use

of the numerals in elementary cardinal applications that, in general, when we count, it is

enough for us to be entitled to assertion that the (cardinal) number of F's is n that there

be exactly n F's. For example, when we count Jupiter's major moons, we assert that the

number of Jupiter's major moons is 4 merely on the grounds that there are exactly 4 major

moons in Jupiter's orbit.

It is not just that we incline - for whatever accident of psychology - to make the
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inference from "There are exactly n F's" to "The number of F's is n," but rather that this

pattern of inference plays a crucial role in certain contexts of application. One reason for

this concerns the expressive gains substantival uses of the numerals - as exemplified in (2)

- provides to us. For example, it is the use of the numerals as substantives that permit us

to represent the fact that the ratio of F's to C's is 4 in finite compass. The adjectival use of

the numerals as adjectives provides us, at most, with the resources necessary to express that

fact as an infinite disjunction of sentences like: "There is exactly 1 F and 4 G's," "There

are exactly 2 F's and 8 G's," and the like, but certainly not those necessary to represent

the fact that the ratio of F's to G's is 4 in finite compass.

The other reason it is important to us to be able to pass from instances of "There are

exactly n F's" to instances of "The number of F's is n" is that it is this pattern of inference

that makes the facts of arithmetic relevant for deductive purposes. It is such an inference

that allows us to make use of the fact that 4 times 4 is 16 to conclude that the ratio of F's

to G's is 4 in the case in which there are exactly 4 F's and 16 G's.

A word of caution is in order. I think it is important to distinguish the observation that,

in general, we make the inference from "There are exactly n F's" to "The number of F's is

n" from the claim that biconditionals of the form of (3), (4), and (5) are necessary truths,

which would allow us to use a Frege-Tennant style of argument to conclude the necessary

existence of numbers. The observation just made concerns a central trait of our practices

in the use of the numerals in elementary cardinal applications, but remains neutral as to

whether, for example, all instances of (3), (4), and (5) are, in fact, true. Admittedly, we are

all inclined to think they are true, but, by itself, our disposition to assent to them doesn't

quite make them true.

Nor is the observation under discussion supposed to refute the viability of nominalist

projects aimed to encode much of what we achieve with the help of substantival uses of

the numerals in more metaphysically benign terms; it is not my business here to refute the

possibility that such a project can ever succeed to accomplish its aim. To repeat, the aim

of this chapter is not to argue that ordinary usage can, in the end, be sustained, or perhaps

recast in more metaphysically benign terms, but rather to discern what it takes for our

central practices in the use of the numerals to be sustained. And, in particular, what are
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the constraints these central uses of the numerals place on the sorts of items to which we

may take the numerals to refer.

To continue, then, numerals are used substantivally not only to describe actual circum-

stances, but to describe counterfactual circumstances, too; just as the sentence "The number

of Jupiter's moons is 4" is used to describe the actual circumstance in which Jupiter has

exactly 4 major moons, we can use a similar sentence to describe a counterfactual circum-

stance in which Jupiter has exactly 3 major major moons. In particular, we can describe a

counterfactual circumstance in which Jupiter has exactly 3 major moons as a circumstance

in which the number of Jupiter's major moons would have been 3. And, in general, a

counterfactual circumstance in which there are exactly n F's as a circumstance in which

the number of F's would have been n.

It is important to note that this is again not a dispensable feature of our use of the

numerals in applications; again, it is not just that we are inclined to conceive of two different

ways of describing certain counterfactual circumstances as interchangeable. Quite often, it

is precisely the ability to pass from instances of "There are n F's" to instances of "The

number of F's is n" in counterfactual contexts that allows us to reason about what would

be the case in some counterfactual circumstance or another.

Now: on the assumption that numerals are rigid designators in that they do not refer to

different objects in different possible worlds, it is not difficult to realize that a large number

of inferences from "There are exactly n F's" to "The number of F's is n" in counterfactual

contexts could not be sustained if they referred to objects that existed contingently.

Let me explain this point carefully. Unlike Jupiter, the planet Uranus has exactly 5

major moons: Ariel, Miranda, Oberon, Titania, and Umbriel. Since we could certainly

use the numeral '4' to describe a counterfactual circumstance in which there are exactly 4

major moons of Uranus as a circumstance in which the number of Uranus' major moons is

4, there are serious constraints on the sorts of objects to which we may take the numeral '4'

to refer. For example, the numeral '4' cannot refer to Ariel, one of Uranus' major moons.

The reason is that if Ariel had not existed, Uranus would have had exactly 4 major moons,

and thus our practices in ascriptions of number in counterfactual circumstances sanctions

the assertion:
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(7) If Ariel had not existed, the number of Uranus' major moons would have been 4.

But, from (7), we can infer:

(8) The number 4 would have existed, even if Ariel had not existed.

Therefore,

(9) 0 (4 $ Ariel),

which, coupled with the principle of necessity of identity:

(NI) VxVy (x = y O(x = y)),

modulo the assumption that the numeral '4' is rigid, delivers:

(10) 4 $ Ariel.

which is of course the conclusion that we wanted.

Thus far this is no better than Tennant's argument, for it, too, rests upon the assumption

that numerals cannot be interpreted to refer to different objects in different possible worlds.

The difference, however, is that there is a variation on the argument from (7) to (10) that

dispenses with the assumption that the numerals are rigid in that they cannot be taken

to refer to different objects in different possible worlds. For notice that it is not just that

the inference from "Jupiter has 4 major moons, and it would have still had 4 major moons

even if Mo Vaughn had not existed" to: "The number of Jupiter's major moons is 4, and

4 would have been the number of Jupiter's moons even if Mo Vaughn had not existed" is

important to us, in general, we regard ourselves as entitled to the claim that, whatever the

number of Jupiter's moons, it would have numbered Jupiter's moons even if Mo Vaughn

had not existed. But now, from the premise:

(11) There is a number that is the number of Jupiter's major moons and which would
have been the number of Jupiter's moons even if Mo Vaughn had not existed,

we can infer:

20



CHAPTER 1. NUMBERS AND PERSONS

(12) There is a number that is the number of Jupiter's major moons and which would
have existed even if Mo Vaughn had not existed.

Therefore,

(13) There is a number that is the number of Jupiter's major moons and which might
have been different from Mo Vaughn,

which, again, coupled with the necessity of identity, (NI), yields:

(14) There is a number that is the number of Jupiter's major moons and which is
different from Mo Vaughn.

The crucial observation now is that the truth of both (14) and the sentence "The nmimber

of Jupiter's moons is 4" are jointly incompatible with the assumption that the numeral '4'

refers to Mo Vaughn, which, once again, is the conclusion we wanted.

It should now be evident that parallel arguments establish that the numeral 4 doesn't

refer to other contingent existents such as Jupiter's moon Europa or to the river Charles.

Indeed, if no contingent existent is the referent of the numeral '4', then the numeral '4'

must refer to a necessary existent. And there is nothing special about the numeral '4': it is

not difficult to come up with analogous arguments for the conclusion that the numeral '3'

doesn't refer to objects that exist contingently such as Mo Vaughn, Europa, or King Juan

Carlos. And if we can show that no contingent existent is the referent of the numeral '3',

then the numeral '3' must refer to a necessary existent, too. And it should now be obvious

how to extend these considerations to apply to the rest of numerals.

There is, then, some reason to think that in order for an item to be a candidate to be

the referent of a numeral, it must itself be a necessary existent. Some reason, but perhaps

not every reason. For some philosophers will perhaps be disturbed by the very idea of a

necessary existent, perhaps because they believe that all there is are ordinary objects such

as persons, mountains and rivers, perhaps because they believe that necessary existents are

mysterious objects, and that we had better forego them. Whatever the reason, it is plain

that the claim that numbers are objects that exist necessarily is a pretty strong claim by
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the lights of those who believe that no object exists as a matter of metaphysical necessity,

so strong, they may say, that it calls into question the arguments of this section.

These philosophers will of course be utterly unimpressed by arguments like that from

(7) to (10) on the grounds that numerals are better viewed as non-rigid terms that may

be taken to refer to different objects in different possible worlds. And they will similarly

object to arguments like that from (11) to (14) by proclaiming that, despite appearances,

sentence (11) is either plainly false or true, but not for the reasons we have assumed.

There are two main lines such a philosopher may take in order to resist arguments like

that from (11) to (14).

One strategy is to proclaim that, despite appearances to the contrary, (11) is false.

Doubtless, it will not be open to them to deny that we do assent to (11). Nor will they be

able to deny that we invariably infer (11) from: whatever the number of Jupiter's moons is,

it would have remained the number of Jupiter's moons even if Mo Vaughn hadn't existed.

Nevertheless, they might still question the need to take the fact that we assent to (11) at

face value, and propose instead to encode a sentence like (11) as:

(15) There is a number that is the number of Jupiter's major moons, and if Mo Vaughn
had not existed, there would have been a number which would have been the same
number as the actual number of Jupiter's major moons is and would have numbered
Jupiter's major moons.

where the relation "the same number as" is of course not to be confused with the identity

relation, but is rather construed as a transworld relation that holds between referents of

the numerals in different possible worlds. Thus for example, if '4' refers to Mo Vaughn

in the actual world, but to Nomar Garciaparra in another possible world, w, which is as

much like the actual world as possible except for the fact that Mo Vaughn doesn't exist

in w, then 4, i.e., Mo Vaughn, is the number of Jupiter's major moons and, in w, where

Mo Vaughn doesn't exist, the same number, 4, i.e., Nomar Garciaparra, is the number of

Jupiter's moons.

This strategy has the advantage that it would seem to encode much of ordinary usage

in metaphysically benign terms that do not require numbers to be necessary existents. All

I can do in the face of this is to repeat that we do make the inference from: "whatever the
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number of Jupiter's moons is, it would have remained the number of Jupiter's moons, even

if Mo Vaughn had not existed" to (11), that we hold (11) true, and that to recast (11) in

terms of (15) would be to distort an important feature of our use of the numerals and other

number words in modal and counterfactual contexts. Therefore, if one takes our use of the

numerals and other numerical terms at face value, then she has to conclude that they refer

to necessary existents. Moreover, since I am inclined to think that there may well be objects

that could not have failed to exist, and I know of no independent reasons to refuse to take

our use of number words at face value, I stand by my claim that the arguments presented

here are evidence for the non-identity of numbers with objects that exist contingently such

as people, mountains, and rivers.

The other line of response to the argument from (11) to (16) I would like us to consider

is to admit that (11) is true, but to deny that it is true for the reasons one would normally

assume.13 (11) is true, the reply continues, not because the number of Jupiter's moons

exists in possible worlds in which Mo Vaughn doesn't exist, but rather because "is the

number of" is (or can be) a transworld relation. Thus it may be claimed that (11) might

be read as:

(16) The actual number of Jupiter's major moons is such that, in the actual world, it
would have numbered Jupiter's major moons even in a circumstance in which Mo
Vaughn had not existed.

More can be said: unless the number 4 is identical with one of Jupiter's major moons, it is

true that, in the actual world, the number 4 would have numbered Jupiter's major moons

even in a circumstance in which the number 4 itself had not existed.

This alternative interpretation may perhaps be motivated with the help of an analogy.

For consider what (17) says:

(17) Jupiter is brighter than whatever planet would have been closest to Saturn had
Jupiter not existed.

'SThanks are due here to Stephen Yablo.
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It may be argued that the claim made by (17) is not of course the non-sensical claim that

Jupiter, in a possible world as much like the actual as possible in which Jupiter doesn't

exist, is brighter than whatever planet happens to be closest to Saturn. Rather, (17) may

be taken to make a transworld comparison: Jupiter in the actual world is brighter than

whatever planet is closest to Saturn in a possible world in which Jupiter doesn't exist.

Likewise, then, the claim made by (16) may be taken to involve a transworld relation

between a number, which may or may not be Mo Vaughn, and Jupiter's major moons as

they exist in a possible circumstance in which Mo Vaughn doesn't exist. The move may be

resisted by denying, in general, that sentences like (16) and (17) can be read to involve a

transworld relation. Or, more modestly, by denying that a sentence like (16) can be read in

the way just now suggested. Though I am inclined to entertain doubts about the availability

of such an interpretation, I think that it would be somewhat unsatisfying to rest a rejoinder

on such reservations.

Fortunately, I think there is a different line of response. This alternative line proceeds

from the observation that the line of argument of this section extends to arguments based

on counterfactuals, which, first, don't involve the relation "is the same number as," and,

second, cannot be read in the manner suggested by the objection. An example of common

such counterfactuals can be drawn from public key cryptography, which nowadays makes

network communications secure.14 A public key is a number a message recipient sends to

a sender to allow the latter to encrypt the message to be sent. This number is generally

the product of two very large primes, and therefore it is extremely difficult to factor. Now:

once the sender receives the public key, she uses some mathematical function to scramble

the message, and proceeds to send the result to the message recipient. At this point, the

message can only be decrypted by someone who knows the original primes; in this case, the

message recipient. This is a relatively straightforward arithmetical application, but observe

that we are indeed committed to the truth of a counterfactual such as:

(18) There are two primes which would decrypt the message, that is, would generate
a certain value as arguments of a certain mathematical function, even if Jupiter's

14 A similar example was suggested to me by Michael Glanzberg.
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moon Europa ceased to exist on Thursday, July 29 at 4 pm.

This conterfactual provides us with a guarantee that the message would be decrypted

by the two large primes in questions even in a circumstance in which Jupiter's moon Europa

ceased to exist on Thursday, July 29 at 4 pm. Otherwise, public key cryptography would

be useless for practical purposes; as a message recipient, I would need to check a variety of

facts concerning which objects exist in which circumstances in order to make sure that I

would still be able to decode the message in each circumstance.

The important point to be noticed is that, from (18), a few steps will lead us to an

argument whose conclusion is incompatible with the assumption that Europa is the referent

of one of the numerals for the two primes in question. Yet, (18) cannot be read to make a

claim about a transworld relation that connects two very large primes in the actual world

with the value of a certain mathematical function in some other possible world.

This is not to deny that (18) could be recast in the manner suggested by the line of

objection we considered before as:

(19) There are two prime numbers that decrypt the message, and if Jupiter's moon
Europa ceased to exist on Thursday, July 29 at 4 pm., there would be two numbers
which would be the same numbers as the two prime numbers that decrypt the
message and which would decrypt the message.

However, the comments made before in response to that general line apply to this particular

case, too.

I think we should conclude that the arguments of this section provide us with some reason

for the conclusion that numerals cannot be taken to refer to objects that exist contingently.

As I have stated it, this conclusion excludes ordinary objects as the sort of items to which

numerals may not be taken to refer, but it also extends to a variety of objects commonly

labeled "abstract." For example, consider the singleton of Mo Vaughn. If one assumes that

Mo Vaughn's singleton can only exist in possible worlds in which Mo Vaughn does, then

the argument that results from replacing the occurrences of the term 'Mo Vaughn' by the

term '{Mo Vaughn}' in (11), (12), (13), and (14) establishes the non-identity of the number

4 with Mo Vaughn's singleton. Similar considerations apply to other abstract objects that
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exist contingently, such as the Red Sox or the American League.

The arguments presented thus far were aimed to establish that, provided that numerals

refer, they refer to necessary existents. Yet, there are a variety of features people often

ascribe to numbers other than necessary existence; numbers are often labeled "abstract,"

claimed to lack specific spatio-te. I, oral location, and some discussions even suggest that

numbers, and other mathematical objects, have little by way of intrinsic structure. I would

like to end this section with the observation that the analogy between temporality and

modality suggests that the general line of argument presented here can be extended to

exclude the possibility that numerical terms refer to objects that exist at a time, but not at

another. The analogy, in particular, suggests a temporal counterpart of the argument from

(11) to (14):

(11') There is a number that is the number of Jupiter's major moons and which was
the number of Jupiter's moons even in 1944, when Mo Vaughn did n't yet exist,

we can infer:

(12') There is a number that is the number of Jupiter's major moons and which existed
even in 1944, when Mo Vaughn did not yet exist.

Therefore,

(13') There is a number that is the number of Jupiter's major moons and which, in
1944, was different from Mo Vaughn,

which, again, coupled with a principle that gives partial expression to what may be called

the eternity of identity:

(EI) VVy (P(x = y) -,+ x = y),

where P is the temporal operator "It has been the case that," 5 delivers:

1sThe other principle that gives expression to the eternity of identity is: VzVy (F(x = y) -- z = y), where
F is the operator: "It will be the case that."
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(14') ere is a number that is the number of Jupiter's major moons and which is
differ from Mo Vaughn.

The important point to noticed now is that the truth of both (14') and the sentence

"The number of Jupiter's moons is 4" are jointly incompatible with the assumption that

the numeral '4' refers to Mo Vaughn, which, once again, is the conclusion we wanted.

It is an interesting question whether a similar line of argument could be used to that

numbers are not the sorts of objects that exist at a place but not at another, but note that

such an argument would be importantly different from other, more traditional arguments

from the premise that numbers are necessary existents to the conclusion that they lack

specific spatio-temporal location. Here is an example of a different argument to the effect

that if an individual has a certain spatio-temporal location, then it is not a necessary

existent: if an individual, x, has a certain spatio-temporal location in the actual world,

then we can surely imagine a possible world, w, as much as possible like the actual world

with the difference that, in w, nothing occupies the location of x in the actual world. It

seems right to say that x doesn't exist in w, and therefore that there is a possible world

in which x doesn't exist. Therefore, if an individual x is spatio-temporally located, then

x is not a necessary existent. But then, since numbers are necessary existents, then, by

the preceding argument, they must lack a spatio-temporal location. What is the force

of this argument is, however, a question which I shall not address here; suffice it to say

that suspiciously similar considerations are sometimes employed to cast doubt upon the

assumption that there are objects that exist necessarily: it would seem that one can always

imagine an object away; to conceive of a circumstance in which the object doesn't exist.

But then, if that circumstance constitutes a genuine possibility, it would seem that it is a

possible world in which the object under consideration does not exist.

1.3 Three remarks on the general line of argument

I have claimed that there are central features of our use of the numerals that place serious

constraints on the sorts of objects to which we may take the numerals to refer. In particular,

I have argued that it is not open to us to interpret the numerals to refer to objects that
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exist contingently, such as people, mountains, or rivers. For, otherwise, our practices in

the use of the numerals to describe counterfactual circumstances could not be sustained;

sentences (8) and (13) are cases in point. This, I claim, is what the former line of argument

establishes. It is now time to comment on what it is not aimed to - and, I think, does not

- establish.

Two remarks on what the former line of reasoning is not aimed to accomplish:

First, it might be thought that the connection between sentences of the form "There are

n F's" and sentences oi the form "The number of F's is n" provides us with a priori grounds

for believing in the (necessary) existence of numbers. For example, it might be suggested

that the connection between the sentence "There are no objects that are not self-identical"

and the sentence "The number of objects that are not self-identical is 0" provides us with

a priori grounds for believing that the number 0 exists. After all, we know a priori that

there are no objects that are not self-identical, and we all seem disposed to assert that the

number of objects that are not self-identical is 0 simply on the grounds that there are no

such objects.

Should we conclude that we know a priori that the number 0 exists?

If we do, then we can make use of the line of argument outlined by Tennant to infer the

(necessary) existence of the rest of numbers on a priori grounds, too.

Now, I want to stress that, whatever else it may achieve, the line of argument given

here doesn't provide us with a priori grounds for believing in the (necessary) existence of

numbers. For let us look more closely at the biconditional:

(20) The number of objects that are not self-identical = 0 if and only if Vx -Q(z $ x).

Admittedly, we know a priori that the right-hand-side of (20) is true. And if we could know

a priori that the biconditional, (20), is true, then we would certainly have a priori grounds

for the belief that the left-hand-side of (20) is true. And hence a priori grounds for the

belief that the number 0 exists. But now, do we know a priori that the biconditional (20)

is true? I think not, and hence I think that, even though we know a priori that there are

no objects that are not self-identical, we have no a priori grounds for the belief that the

number 0 exists.
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It is not, of course, that I seriously doubt (or think you should doubt) that the number 0

exists. Rather, the point I want to make is that, whatever else the source of our confidence

in the existence of the number 0 may be, it is not simply the fact that there are no objects

that are not self-identical.

But even if the line of argument given here doesn't provide us with a priori grounds for

the belief in the necessary existence of numbers, it might plausibly be thought to provide us

with a priori grounds for the next best claim to the necessary existence of numbers, namely,

that if there are numbers, then they are necessary existents:

(21) Numbers exist -+ O Numbers exist.

Notice that for all that (21) implies, it might still be the case that there are no numbers.

Matters, however, are more complicated. For a little reflection on an exceedingly familiar

argument will convince us that:

(22) O Numbers exist -+ Numbers exist.

Suppose there is a possible world w in which numbers exist. Then, by arguments like the

ones given in the preceding section, one might be able to establish that they are not identical

with objects which exist contingently, and hence that they are necessary existents. Since

they are necessary existents, they exist in every possible world, and, in particular, they

exist in the actual world. 16

This is, as I say, a familiar argument, as one may recognize in it the form of Anselhn's

argument from the possibility of existence of God to God's actual existence. One remarkable

consequence of this argument is that in order for one to reject the existence of the numbers,

one must be committed not only to the claim that there are no numbers, but also to the

further claim that their existence is impossible, which may seem to put the nominalist

in dialectical disadvantage. The argument, however, cuts both ways: in order for one to

coherently maintain that there are numbers, one is forced to deny not only that numbers

don't exist, but also that they could have failed to exist.

'eThe argument takes place in S5, but it is, I think, reasonable to suppose that what is metaphysically
necessary in one possible world is necessary in all possible worlds.
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The second remark I want to make is that the aim of the arguments I have presented

is to narrow down the range of candidates to be the referents of the numerals, but not to

challenge the inscrutability of numerical reference, the moral of the permutation argument

with which we started, that is, the conclusion that the reference of the numerals is hopelessly

inscrutable. For to admit that our use of the numerals in counterfactual contexts determines

that they refer to necessary existents is to advance little if at all in settling the question

to which, if one, of several necessary existents numerals refer: if we are uncertain whether

numbers are Zermelo, rather than, for example, von Neumann ordinals, then, if, as most

philosophers seem to suppose, pure sets are necessary existents, it will be of no help at all

to know that numbers are necessary existents. In other words, even after we have corrected

the thesis that the reference of the numerals is determined no more precisely than up

to isomorphism, the fundamental problem of the inscrutability of reference still confronts

us: no combination of intentions, central features of usage, and other non-linguistic facts

that will ever enable us to discern the referents of the numerals from among the members of

countless isomorphic copies of the natural number system consisting exclusively of abstracta.

I should like to conclude this section with a positive note. The moral of the permutation

argument with which we started is that it is possible to permute the referents of the numerals

without shift in the truth conditions of complete sentences. It may be of interest to notice

that modal and counterfactual considerations of the sort we have used can be utilized to

establish that it is not possible to permute the referents of the numerals with items other

than numbers, and to nevertheless preserve the truth conditions, indeed the truth values,

of all complete sentences of the language.

To the best of my knowledge, the first use of a permutation argument to draw a perfectly

general point about reference is due to Richard Jeffrey, who envisaged a permutation of the

domain of all individuals which exchanged each person with his or her social security num-

ber, but which permuted all the rest of individuals onto themselves. He then noticed that,

provided that all the necessary compensatory changes are made in the interpretation of the

rest of predicates of the language, such a permutation could be shown to preserve the truth

values of all complete sentences of the language. Putnam's twist on the permutation argu-

ment is well-known: not only can the truth values of complete sentences be preserved, even
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their truth conditions can be preserved. In particular, a permutation of the domain which

exchanges numbers with persons ought to preserve the truth conditions of all sentences of

the language.

What I would like to suggest is that, contrary to what Jeffrey's, and, more generally,

Putnam's permutation argument might have suggested, it cannot be done. Tob vary Jeffrey's

example, suppose that we want to devise a reinterpretation of the language that preserves

the truth conditions of complete sentences but exchanges the referent of the uniform num-

bers of the 1998 Red Sax with the members of the 1998 Red Sax. Putnam's general method

consists first in specifying a permutation of the domain of individuals that exchanges each

member of the 1998 Red SKx with his uniform number. For the sake of simplicity, consider

the permutation of the domain, r, which exchanges each member of the 1998 Red Sox with

his uniform number, but permutes all the rest of individuals onto themselves.

With ir in place, we are in a position to generate a systematic reinterpretation of the

language. First, reinterpret each term of the language to refer to the object onto which the

permutation takes the actual referent. Since the permutation takes the number 42 onto Mo

Vaughn, the numeral '42' is to be reinterpreted to refer to Mo Vaughn. Conversely, since

the permutation takes the number Mo Vaughn onto the number 42, the name 'Mo Vaughn'

is to be reinterpreted to refer to the number 42. The next step is to reinterpret each n-adic

predicate of the language to take as its new extension the set of n-tuples whose members are

the n-tuples onto which the permutation takes the n-tuples in its actual extension. Thus,

for example, reinterpret the predicate 'x is even' is to be reinterpreted as: '7r(x) is even',

which of course amounts to:

'z is even and is distinct from the number of a member of the 1998 Red Sox or is
a member of the 1998 Red Sox with an even uniform number'

And, likewise, a predicate like 'x used to play first base for the Red Sox in 1998' as:

'ir(z) used to play first base for the Red Sox in 1998', which again amounts to:

'z used to play first base for the Red Sox in 1998 and is distinct from Mo Vaughn
or is the number 42'.
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It is evident that such a reinterpretation will preserve the truth values of every exten-

sional eternal sentence of the language, but the scope of Putnam's argument is supposed to

be considerably wider than that. In the Appendix to (Putnam, 1981), Putnam proved that

such an uniform reinterpretation is bounded to preserve the truth values of a wide range of

modal and counterfactual sentences, too. For consider r', a permutation of the domain of

individuals in each possible world which coincides with r in the values it assigns to actual

individuals, and permutes individuals in other possible worlds onto themselves. A little

reflection shows that, since the switch preserves the truth values of each atomic sentence in

each possible world, it does not disturb the truth values assigned to compound sentences

by modal sentential logic or by the standard sentential logic of counterfactuals.

A permutation of the domain of individuals in each possible world that exchanges actual

individuals but permutes individuals in other possible worlds onto themselves will perhaps

do well with modal sentential logic and with the sentential logic of counterfactuals, but it

will fail to preserve the truth values of more complex modal and counterfactual sentences.

For example, consider a modal sentence like:

(23) There is a number which might have played first base for the 1999 Red Sox.

The difficulty is that, under the reinterpretation induced by 7', (23) is true in the actual

world. For, under the reinterpretation, Mo Vaughn is both an individual to which the

predicate 'is a number' applies in the actual world, and an individual to which the predicate

'plays first base for the 1999 Red Sox' applies in a possible world other than the actual world.

It transpires that Mo Vaughn is, under the reinterpretation, an individual to which the

modal predicate 'might have played for the 1999 Red Sox' applies in the actual world. But

(23) is then a sentence whose truth value is not preserved by the systematic reinterpretation

induced by r'.

It is not difficult to amend Putnam's method in order to deal with the difficulty just now

raised. Take a permutation of the domain of all individuals in the actual world, and let it

work across all possible worlds. That permutation will induce a systematic reinterpretation

of the language that falsifies sentence (23), since, under the reinterpretation, the predicate

'plays first base for the 1999 Red Sox' will now apply to Mo Vaughn in no possible world.

Yet, there remains a more persistent difficulty raised by modal and counterfactual sentences
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similar to the ones considered in former sections. For consider the sentence:

(24) There is a number which would have not existed if no one had survived WWII.' 7

For again, let wo a possible world as much like the actual world as possible in which no one

survives WWII. Mo Vaughn doesn't exist at w, and, since Mo Vaughn is both an individual

to which, under the reinterpretation, the predicate 'is a number' applies in the actual world

and an individual which wouldn't have existed if no one had survived WWII, under the

reinterpretation, sentence (24) is evaluated true in the actual world. Of course since we

all view (24) as false, we conclude that the reinterpretation fails to preserve the conditions

under which we assent to modal and counterfactual sentences of the language.

A perfectly general point can be extracted from the example. To guarantee that a

permutation preserves the truth-conditions for all modal and counterfactual sentences, we

need to make sure that that each number is permuted onto another individual which exists

necessarily, too. Otherwise, it will not be difficult to come up with counterfactuals of

the form of (24) whose truth values are not preserved by the permutation. This is not a

serious constraint, as it permits one to exchange the natural numbers with a wide variety

of necessary existents.

Of course, the example cuts both ways: not only does it suggest that no permutation

of the domain of all individuals can be used to devise an interpretation of the numerals

that takes them to refer to ordinary objects, it also suggests that no permutation of the

domain of all individuals induces a reinterpretation of the language that takes names of

ordinary objects to refer to numbers, or to other necessary existents. Indeed, it would seem

that in order to obtain a systematic reinterpretation of the language that does preserve the

truth values of all modal and counterfactual sentences, one needs to make sure that each

individual is exchanged with another individual which exists in exactly the same possible

worlds. For it is not difficult to see that if one tries to exchange Mo Vaughn with another

ordinary object which exists in different possible worlds than him, such as for example the

Eiffel Tower, one will not be able to preserve the truth value of counterfactuals such as:

"17This example is similar to one given by Vann McGee in "Does "Refers in the Language you Speak"
Refer in the Language you Speak?"
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(25) There is a person who would have never existed if Gustave Eiffel had never built
a tower in Paris.

This may not seem a serious constraint for necessary existents such as numbers, but it is

indeed a serious one for ordinary objects like Mo Vaughn; it allows us to exchange him with

his unit set, but not with objects that exist in possible worlds in which he doesn't exist.

These considerations suggest that the truth conditions of complete sentences would seem

to determine the reference of our terms and predicates much more determinately than up

to isomorphism. What is the force of these considerations is, however, a difficult question

I cannot hope to address here.

1.4 Conclusion

I have argued for the the thesis that the truth of a variety of numerical sentences whose

acceptance plays a crucial role in applications determines the reference of the numerals, as

we ordinarily use them, much more precisely than up to isomorphism. In particular, there

are a variety of modal and counterfactual sentences that play an important role in cardinal

applications whose truth is incompatible with the assumption that contingent existents are

candidates to be the referents of the numerals, as we ordinarily use them. An immediate

consequence of this thesis is that the Aristotelian view with respect to arithmetic is not

tenable. There are aspects of the natural numbers other than their position in the natural

number system that matter to us. In particular, they need to exhibit a variety of features

traditionally ascribed to abstracta in order for a variety of assertions made in contexts of

application to be sustained.

Apart from the constraint that numbers be abstract, there are no aspects of the natural

numbers that can be used to discern them from the members of another isomorphic copy

of the natural system consisting exclusively of abstracta. Thus, although the problem of

the inscrutability of numerical reference still confronts us, we can now venture an attractive

account of the truth conditions of numerical sentences: a sentence of arithmetic, for example,

is true if and only if it is true in every isomorphic copy of the natural number system

consisting exclusively of abstracta. Or, equivalently, if and only if it is true in some such

34



REFERENCES

isomorphic copy of the natural number system.

I should like to conclude with a somewhat speculative note. Though this is not the

place to discuss the question whether the inscrutability of reference is a perfectly general

phenomenon, and not one restricted to the numerical case, provided that, whatever the

subject matter, reference is inscrutable, a little reflection on the numerical case suggests

that the claim that reference is never determined more precisely than up to isomorphism

may, in the end, be much more difficult to sustain than some philosophers have advanced.

Fbr it is arguable that the numerical case provides the best possible scenario for that claim,

and that, since the truth conditions of modal and counterfactual sentences defeat the claim

that reference is determined no more precisely than up to isomorphism, the truth conditions

of modal and counterfactual sentences can likewise determine the reference of our terms

more precisely than up to isomorphism in the general case, too. This, however, is a topic

for another occasion.
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Chapter 2

Modern Set Theory and

Replacement

2.1 Introduction

In "Must we believe in set theory," an article in his recent collection Logic, Logic and Logic,'

George Boolos records the uncontroversial fact that it is a theorem of Zermelo-Fraenkel set

theory plus the axiom of choice (ZFC) that there is a cardinal n which is equal to H5 .

That cardinal is the limit of the sequence {Ro, N H, R o, ... }, i.e., U{f(i) : i E w}, where

f(0) = No and f(i + 1) = RA(.- Since, as usual, cardinals are ordinals and ordinals are

von Neumann ordinals, it is a consequence of standard set theory that there are at least

K sets in existence. Yet, Boolos regards the cardinal K as an unbelievably large number,

so large that it calls into question the truth of a theory according to which there are at

least n objects in existence. He thus intimates that it is perhaps more comfortable to refuse

to accept the conjunction of those axioms of ZFC which entail the existence of K than to

accept the existence of oc. 2

1(Boolos, 1998). The essay "Must we believe in set theory?" is on pp.120-132.
2For those concerned by the fact that it is consistent with first-order ZFC that 2no - +, it maYbe better

to pick a cardinal A which is equal to 3A. That cardinal is the limit of the sequence {1o, 3. Io, 3 "..I
and may seem unbelievably large even by the lights of someone who regards the existence of the set of
real numbers as uncontroversial. The cardinals . are defined as usual: f:o = No, .+li = 23a, and
23x = U{~:: "# < )
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What Boolos contemplates in "Must we believe in set theory?" is of course not the

rejection of set theory, but merely the rejection of that part of set theory that is far removed

from ordinary experience, the rest of physical science and ordinary mathematics. Now: it

is not obvious that Boolos' concern supplies us with a reason to refuse to accept a specific

axiom (or list of axioms) of ZFC, as opposed to the conjunction of those axioms that are used

in the derivation of the existence of n. A standard pattern of argument for the existence of

n is to define a map from w, whose existence is a consequence of the axiom of infinity, onto

the sets in the sequence No, Not, N o, ..., which, by an instance of replacement, form a

set, and, then, to appeal to the union axiom to derive the existence of UtNo, K Nx, KNXo, ".'),

which is just n. Perhaps it is unreasonable to think that the axioms of infinity and union

are particularly obvious, or self-evident, but they seem to be necessary for the development

of a reasonable amount of set theory. In contrast with them, the axiom of replacement has

been questioned by a number of authors, who have adduced independent reasons to doubt

that replacement has received adequate justification.

The axioms of replacement give partial expression to the principle that if x is a set

and R is a fu 1ctional relation which associates at most one object R1 to each element y

of X, then there is a set whose elements are the Ry's. A picture of the axiom is that if we

replace each element y of a set z by the object associated with y by R, then the result is a

set, too. This principle, independently proposed by Abraham Fraenkel and Thoralf Skolem

in the 1920's, is commonly thought to be dispensable for the development of a reasonable

amount of set theory, sufficiently reasonable to provide a foundation for mainstream core

mathematics.

A common complaint against the axioms of replacement to be distinguished from Boolos'

concern is that, though they are undoubtedly required for the development of higher set

theory, they are rarely used within ordinary mathematics. The axioms of Zermelo set theory

plus the axiom of choice (ZC), a theory whose axioms are all of the axioms of ZFC with

the exception of the axioms of replacement, are generally assumed to be sufficient for the

development of ordinary mathematics. In fact, there is not one discussion of replacement

that does not call attention to the remarkable fact that no single application of replacement

within ordinary mathematics could be isolated before 1971, when Harvey Friedman proved
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that an application of replacement on an uncountable set was required to establish that

every Borel game is determined, a result that Donald Martin would later prove in 1975.3

This fact is invariably supposed to illustrate how recondite the applications of replacement

within ordinary mathematics are.

There is yet another complaint sometimes raised against replacement. This is the obser-

vation that, whereas there is a single conception of set, the iterative conception, that can be

used to motivate all the axioms of ZC (with the possible exception of the axiom of choice),

there is no conception of set that can be used to show the axioms of ZFC, the theory that

results when replacement is added to the axioms of Zermelo set theory, to be more than an

ad hoc list of principles chosen for their apparent consistency and their ability to deliver

desired theorems of ordinary mathematics. The iterative conception is the view that sets

are formed in stages of a certain cumulative hierarchy; a condensed version of the concep-

tion consists of principles concerning stages and principles concerning sets and stages. The

principles concerning stages are aimed to ensure both that stages are well-ordered by a re-

lation, earlier than, and that there is at least one limit stage, a stage that is later than some

stage, but not immediately later than a stage earlier than it. The principles concerning sets

and stages are designed to make sure both that a set is formed at a stage if and only if its

elements are all formed at stages earlier than it and that, given some sets formed at stages

earlier than some stage, they are the members of some set.

One reason the iterative conception cannot be utilized to motivate all the axioms of ZFC

is that, as it has been persuasively argued, the axioms of replacement cannot be derived just

from the principles concerning sets and stages implicit in the presentation of the iterative

conception just now given.4 For it is consistent with that presentation that there be a set z

3(Martin, 1975) contains the first proof of Borel determinacy. (Friedman, 1971) showed that replacement
is required for the proof of Borel determinacy, and it contains a discussion of the claim, often made prior to
1975, that replacement plays no role within ordinary mathematics.

4The details of this characterization of the iterative conception and its relation with replacement are
presented in detail in (Boolos, 1989). Additional presentations of the iterative conception that omit re-
placement can be found in (van Aken, 1988) and (Potter, 1990). I should mention, though, that there are
both more expansive elaborations of the iterative conception on which replacement and much more can be
derived, such as Giidel's own elaboration of the iterative conception, and less expansive accounts of the
iterative conception on which not even the axiom schema of separation can be derived as a consequence,
such as Lavine's account in (Lavine, 1994).
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and a functional relation R such that the sets Ry, which the functional relation R associates

to the members y of z, occur at arbitrarily high stages of the cumulative hierarchy - this

would surely be the case, for example, if the cumulative hierarchy consisted of a countable

number of stages.

There is, to be sure, a different conception of set that can be used to motivate replace-

ment, the limitation of size conception of set. According to the limitation of size idea,

objects form a set if and only if there are not too many of them. But then, if z is a set,

then there are not too many members of z, and consequently, if R is a functional relation,

then there are not too many objects R, associated to the members y of x by R. Different

answers to the question how many are too many result in different versions of the limita-

tion view. What is perhaps the strongest limitation of size principle is due to John von

Neumann. According to von Neumann's version of the limitation of size doctrine, objects

form a set if and only if they are not in one-one correspondence with all the objects there

are. This yields replacement, too. If x is a set, then its members are not in one-one cor-

respondence with all the objects there are. Nor are the objects Ry, which the functional

relation associates to the members y of x, in one-one correspondence with all the objects

there are.5 Though limitation of size accounts for a large part of set theory, it also omits

much of importance; in particular, it lacks the resources to account for two axioms that

are crucial to any reasonable development of set theory, i.e., the axioms of power set and

infinity.6

There are other heuristic principles that can be utilized to motivate replacement. Most

set theorists, for example, regard it as plausible that, for each structural property of the

universe, there is a set-sized model, indeed one of the form (V1, E n(V, x Vs)), that exhibits

that property. The principle of reflection is a heuristic principle that can be used to motivate

replacement; indeed, it is a result due to Azriel Levy that, to the limited extent to which

reflection can be formalized in the language of first-order set theory, it is equivalent to the

"Modulo some form of choice, which is required to infer that the range of R on z is indeed in one-one
correspondence with z. Thanks are due here to Richard Cartwright.

8 A thorough discussion of the shortcomings of different versions of limitation of size as providing a
justification of both axioms can be found in (Hallett, 1984), especially chapters 4 and 8.
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combination of the axioms of infinity and replacement. 7 But the point still remains that

it would be a mistake to suppose that there is a set of persuasive intuitive considerations

in favor of the axioms of Zermelo set theory that can be used to motivate the axioms of

replacement as well.

In practice, set theorists have more argument for the adoption of replacement than the

intuitive plausibility arguments I have mentioned thus far. In the context of standard set

theory, the axiom of replacement is adopted because it is required for the development of

an attractive theory of ordinals, on which ordinals are transitive sets well-ordered by E, as

well as for a justification of the much used method of definition by transfinite recursion on

the ordinals. The method of transfinite recursion on the ordinals permits us to define an

important cumulative hierarchy of levels or stages:

Vo = 0; Va+1 = P(Va); VA = Up•,, for limit ordinals A,

where V = U. Va. The interest of this cumulative hierarchy is that it gives expression to

the modern, cumulative view of the set-theoretic universe, and can be utilized to motivate

the axioms of standard set theory as a description of the V,'s. Thus, a little reflection on

the axioms of Zermelo-Fraenkel set theory (ZFC) shows that V,, the first transfinite level of

the hierarchy, is a model of all the axioms of ZFC with the exception of the axiom of infinity.

And, in general, one finds that if K is a strongly inaccessible ordinal, then V, is a model of

all of the axioms of ZFC.5 (For all these models, we take E to be the standard element-set

relation restricted to the members of the domain). Now, similarly, if VA is an initial segment

of the cumulative hierarchy indexed by a limit ordinal A > w, then (VA, E n(VA x VA)) is a

model of Zermelo set theory plus choice.

One may be tempted to view the axioms of Zermelo set theory plus choice as an implicit

description of the initial segments of the cumulative hierarchy indexed by a limit ordinal

A > w and replacement as a mere closure postulate on the ordinal levels of the hierarchy,

7Cf. (Levy, 1960). Levy established that the principle:

is equivalent to the combination of infinity and replacement.

SAn ordinal n is strongly inaccessible if and only if a > w and a is regular and a strong limit, that is, if
A < n, then 2X < n.
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necessary to ensure that the cumulation of sets does not close off at V,+,, the second

limit level of the cumulative structure, but dispensable within the first w + w levels of

the hierarchy. Therefore, since V,+, contains isomorphic copies of the real and complex

numbers, subsets and functions on the real numbers, and the rest of objects studied in

classical mathematics, replacement would seem dispensable for set theory to provide a

foundation for mathematics. 9 Indeed, it is precisely this picture of replacement, combined

perhaps with the fact that it may be argued that it is independent from the iterative

conception of set, that has led a number of theorists to question the assumption that

there are compelling reasons to accept the axiom of replacement in the first place. Thus

for example, Michael Potter omits the axiom of replacement from his development of set

theory in (Potter, 1990) on the grounds that it is an "unnecessary assumption," one which

is "not needed in any but the most esoteric parts of mathematics: only one result outside

set theory - the assertion that every Borel game is determined -- has so far been shown

to require anything approaching the strength of replacement for its proof."'

What I would like to do in the first part of this chapter is to challenge this picture of

replacement as an axiom with no applications within the first V,+, stages of the cumulative

hierarchy. Thus, it will transpire that there are important, often neglected applications of a

restricted version of replacement that take place at remarkably low levels of the cumulative

hierarchy. Most of these applications will concern the special case of replacement according

to which if x is a countable set, and R is a functional relation, then the objects, Ry's, which

R associates to each element y of x, form a (countable) set.11 Though these applications of

countable replacement will not directly support the acceptance of the common, unrestricted

version of the axiom, they will certainly make it plain that it would be ill-advised to abandon

the axiom in the absence of another principle to replace it.

Even after the picture of replacement as an axiom far removed from the lower levels

9The introduction of (Friedman, 1971) outlines just this picture of replacement and its role in mathemat-
ical practice.

'oCf. (Potter, 1990), p. 64.

" Note that this restriction of replacement to countable sets coheres well with an unexceptionable and well-
established part of mathematical practice, since the formation of arbitrary countable sequences in routine
in modern analysis.
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of the cumulative hierarchy is corrected, the question remains of whether we must believe

in the unrestricted form of replacement that permits the formation of uncountable sets by

replacement on other initial uncountable sets, when it is a principle with very few rare and

exotic applications outside higher set theory. I shall suggest that there is no reason to think

that there are persuasive direct intuitive considerations in favor of replacement that justify

the axiom, and I shall then investigate the extent to which the internal needs of set theory

require the full exercise of replacement. The results of this inquiry may not, in the end,

decide the question of whether we must believe in replacement, but they may certainly be

of help to someone with revisionary inclinations to discern what is involved in the decision

to abandon replacement.

2.2 Basic set theory and replacement

I have explained that it is not uncommon for discussions of the axiom of replacement to focus

on the question of what is the motivation for accepting the axiom of replacement, when

replacement is a principle with such rare and exotic applications. The first point to be

noticed is that this is a pseudo-question. There are important, often neglected applications

of the axiom of replacement that are required within the first w + w levels of the cumulative

hierarchy, and are thus quite independent from the internal needs of higher set theory.

Most of these applications involve countable instances of replacement, or, more precisely,

instances of replacement on countable sets, and one may justifiably doubt that they provide

us with compelling reasons for accepting full replacement. What they do establish is that

instances of replacement on countable sets pervade set theory.

The theory that results when the axioms of replacement are omitted from the axioms

of standard set theory, Zermelo-Fraenkel set theory plus the axiom of choice, is Zermelo

set theory plus choice, a direct descendant of Zermelo's 1908 axiomatization of set theory.

Zermelo's 1908 axiom system consisted of seven axioms: axioms of extensionality (axiom

I); null set and pairs (axiom II); Aussonderungsaxioms, power set, and union (axioms III,

IV, and V); an axiom of choice (axiom VI); and an axiom of infinity (axiom VII). This last

axiom asserts the existence of Zo, the Zermelo number sequence, the C-least set obtained
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from the null set by repeated application of the unit set operation. 12

From the point of view of standard set theory, one serious omission from Zermelo's 1908

axiomatization is that it allows for the existence of non-well-founded sets.13 For example,

it is possible to construct a model of the Zermelo axioms in which there is a set whose sole

member is itself. To exclude this and related anomalies, we add the axiom of regularity or

foundation,

Reg Vx(3y(y E x) -+,3y(y E z A y ns = 0)),

to the rest of axioms of standard set theory. According to prevailing usage, Zermelo set

theory is a theory which consists of versions of all of the axioms of Zermelo's 1908 system

with the exception of choice and with the addition of the axiom of regularity, with the

proviso that the adoption of different versions of these axioms result in different variants of

Zermelo set theory.

We are going to see that what are perhaps the most common variants of Zermelo set

theory are subject to a number of serious drawbacks; it will transpire, for example, that

differing formulations of the axiom of infinity give rise to different versions of Zermelo set

theory which are not adequate to prove the existence of sets that are remarkably simple

both in terms of cardinality and in terms of their place in the cumulative hierarchy. Other

shortcomings of different versions of Zermelo set theory concern their inability to prove all

instances of the (first-order) principle of E-induction as well as to describe and assert the

first-order content of the cumulative picture. The results of this section will not depend

upon the presence or absence of the axiom choice, and, consequently, there will be no loss

of generality in following prevailing usage by not including choice as one of the axioms of

the different variants of Zermelo set theory we will consider.

Axioms of infinity for Zermelo set theory. There are a variety of alternative formu-

lations of the axiom of infinity, not all of them interderivable. The purpose of this section

is to review the relative strength of familiar versions of infinity, and establish the inability

12This development occurs in (Zermelo, 1908b).

'3 The other serious omission from the point of view of standard set theory is replacement.
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of some of these formulations, modulo the rest of the Zermelo axioms (Z-), to prove the

existence of HF, the set of all hereditarily finite sets, as a consequence.

Though our primary interest in this section is to discern what can and cannot be proved

from first-order variants of Zermelo set theory in the absence of replacement, most of the

constructions used in the proofs of the independence results of this and next sections sustain

a much more general conclusion to the effect that second-order variants of Zermelo set theory

can be satisfied in models in which certain first-order sentences are false. To attain further

generality, then, we will focus directly on second-order formulations of Zermelo set theory.

Zermelo's original axiom of infinity asserts the existence of a set which contains the null

set and which contains a unit set of any set it contains:

Infz 3y( E y A Vx(x E y -+ {z} e y)).

This axiom permits one to prove the existence of the set Zo = {0, {0}, {{0}}, ...}, Zer-

melo's number sequence, as an immediate consequence, and still occurs in some presenta-

tions of standard set theory. Z-+Infz is the version of Zermelo set theory whose axiom of

infinity is Infz.

A more standard formulation of the axiom of infinity is:

Inf 3y(O E yAV^Vx(x E y -+u {x}) E y)).

Inf delivers the existence of w, the first transfinite ordinal, and appears in most treatments

of set theory. In what follows, I will abbreviate Z-+Inf as Z, in accordance with the fact

that the name Zermelo set theory is most commonly used to refer to Z-+Inf

The following sentence is an ostensibly weaker axiom of infinity:

InfDed ByBf z(Fncf A x E y A f : y -(l-.1) p - {z}).

Not only does InfDed fail to imply either Inf or Infz (modulo the axioms of Z-, of

course), as we will see in a moment, it can even be showed that no infinite set is a member

of all the models of second-order Z-+InfDed.

InfDed is equivalent, modulo the axioms of Z-, to the assertion that there exists an

ordinary infinite set, a set y which cannot be put in one-one correspondence with any set of

45



CHAPTER 2. MODERN SET THEORY AND REPLACEMENT

natural numbers less than some natural number n. This result is due to Russell who proved

that the power set P(P(x)) of the power set P(x) of an infinite set x is Dedekind infinite. 14

It should be noted, however, that, absent choice, not only can it not be proved that no

infinite set is Dedekind finite, it cannot even be proved that there do not exist infinite sets

whose power set is Dedekind finite.15

The other, less common formulation of the axiom of infinity I want to consider is:

InfNew 3y( E yA VxVz(x E y A z E y -+ x U {z} E y)).

It is evident that this axiom of infinity implies the existence of V,, which coincides with

HF, the set of all hereditarily finite sets, as an immediate consequence, and even though it

is mentioned in the second edition of (Fraenkel-Levy, 1958) and figures as the official axiom

infinity in Azriel Levy's excellent text (Levy, 1973), it is seldom discussed in standard

treatments of set theory.

There are, to be sure, other variations on the axiom of infinity in the literature, but I

am not now concerned to present an exhaustive review. My aim rather is to point out the

existence of important, and often neglected, differences among what are perhaps the most

common versions of the axiom of infinity.16

The theories Z-+InfDed, Z-+Infz, Z, and Z-+InfNew having been set out, the time

has come to examine dependencies among them. It is evident that every theorem of second-

order Z-+InfDed, Z-+Infz and Z is a theorem of second-order Z-+InfNew, but one might

inquire whether it is the case that every theorem of second-order Z-+InfNew is a theorem

of the other variations on Zermelo set theory. There is a certain set-theoretic construction

41f z is infinite, it can be proved that for each natural number n, the set Sn of all subsets of x of cardinality
n is nonempty, and if m k n, Sm and Sn are distinct. But then, SO and the function that assigns S(n + 1)
to Sn and T itself to each subset T of P(z) not of the form Sn for some n bears witness to the fact that
P(P(x)) is Dedekind infinite. This result is sometimes erroneously attributed to Tarski, but see (Boolos,
1994) for a detailed account.

'5 Cf. (Felgner, 1971), Chapter 3.

"I have suggested that many theorists overlook important differences among common versions of the axiom

of infinity, but I would not want to suggest that this oversight is too pervasive. For, as I should emphasize, the
relative independence, modulo the axioms of Z-, of alternative axioms of infinity is mentioned in (Bernays,
1948), and in (Fraenkel-Bar-Hillel, 1958). And some of the drawbacks at which we shall look in the course
of the discussion have been noticed before in the literature. See for example (Drake, 1974), 110-111, and
(Moschovakis, 1994), Appendix B.
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that will permit us to answer this question in the negative.17 If x is a set, define the set

M,(zx) by the recursion:

Mo(s) = z, M,,+(z) = Mn,(z) U UMn,() U(Mn(a)).

Then, the basic closure of z, M(s), is the union

M(s) = U Mn(z)
nEw

If x is a (pure) transitive set, then it is routine to verify that Mn+z(x) is just P(Mn(x)),

that M(x) is a (pure) transitive which is closed under subsets, and closed under all the

Zermelo operations.18 Thus, M(0) is V,, or, equivalently, HF, the set of all hereditarily

finite sets, and, in general, M(x) is the domain of the C-least transitive model of Z- with

the standard element-set relation which is closed under subsets and contains the set x.

As a consequence, (M(Zo),E •n(M(Zo) x M(Zo))) and (M(w), E n(M(w) x M(w))) are,

respectively, the C-least transitive models of second-order Z-+Infz and second-order Z

with the standard element-set relation.

Lemma 1. M(w) n M(Zo) = HF

Proof. That HF C M(w) n M(Zo) is an immediate consequence of the fact that both M(w)

and M(Zo) contain the null set and are closed under the power set operation.

To verify the converse inclusion, note first that Mo(Zo) n Mo(w) = {0, {0} }, a member

of HF. Suppose now that Mn(Zo) n Mn(w) is an element of HF. Then M,+ (Zo) n

Mn+i(w) = P(Mn(Zo)) n P(Mn(w)) = P(Mn(Zo) n Mn(w)). And since Mn(Zo) n Mn(w) E

HF, P(Mn (Zo) n Mn(w)) E HF. O

As an immediate consequence of this lemma, we obtain:

"The construction appears for example in (Moschovakis, 1994), p. 175. I borrow the term basic closure
from Moschovakia.

'5 A set is closed under subsets if it contains every subset of each of its members. Proofs of all these basic
facts can be found in (Mschovakis, 1994).
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Theorem 1. There is no C-least transitive model of 2nd order Z-+InfDed with the stan-

dard element-set relation.

Hence we conclude that there is no infinite set whose existence is a logical consequence

of second-order Z-+InfDed. Two other immediate consequences of the lemma are:

Theorem 2. (M(Zo), E n(M(Zo) x M(Zo))) is not a model of 2nd order Z,

and

Theorem 3. (M(w), E n(M(w) x M(w))) is not a model of 2nd order Z- +Infz.

Proof of Theorems 2 and 3. Since M(ZonM(w) = HF and Zo 4 HF, Zo V M(w). Likewise,

since w 0 HF, w 0 M(Zo). O1

The dependencies established in this section may now be summarized in the following

diagram:

Z- +InfNew

Z -- Z-+ Infz

Z- + InfDed

In this diagram, "-+" abbreviates: "is strictly stronger than," that is, "Z-+InfNew -+ Z"

says that every theorem of Z-+InfNew is a theorem of Z, but that not every theorem of Z

is a theorem of Z-+InfNew. "Z +-7 Z-+Infz" indicates both that there are theorems of

Z that are not theorems of Z-+Infz and that there are theorems of Z-+Infz that are not

theorems of Z.

One moral to be extracted from these results is that neither of what are perhaps the

two most common second-order variants of Zermelo set theory has the resources necessary

to guarantee the existence of sets that appear at level w of the cumulative hierarchy, and

48



CHAPTER 2. MODE.RN SET THEORY AND REPLACEMENT

are thus quite low down in terms of their cumulative structure - some of these sets are in

fact obtainable as the range of a Ao formula with domain w, and hence minimal in terms

of complexity, too.

Interpreting Z-+InfNew in the theories Z-+ Infz and Z. There is, then, an important

sense in which Z-+InfNew is undoubtedly superior to the two more standard variants of

Zermelo set theory Z-+Infz and Z. However, there is another question one might raise in

investigating the relative strengths of Z-+InfNew and the more familiar Z-+Infz and Z:

one might inquire whether they can be interpreted, or at least relatively interpreted in each

other. If 0 is a formula of the language of set theory, let OME be the formula that results

when z E y is replaced by the formula E(x, y) and all quantifiers are relativized to M(x).

As usual, a relative interpretation of a version of Zermelo set theory, TI, in another, T2,

consists of two formulas M(x) and E(x,y) which allow one to prove for each axiom 0 of T1,

the sentence qM,E, the interpretation of 0, as a theorem of T2.

Part of the interest of establishing the interpretability of a theory T, in another theory T2

derives from the relative consistency result which immediately follows: If TI is interpretable

in T2 , then proofs of I in T, can be turned into proofs of I in T2, and thus the consistency of

T2 implies the consistency of T1. Yet, the question whether Z-+InfNew can be interpreted

in Z-+Infz and Z has an added source of interest. There is no doubt that Z-+InfNew

permits the development of a vast part of ordinary mathematics, but, since both Z-+Infz

and Z have revealed inadequate to to secure the existence of a vast array of subsets of V,,

one might be inquire whether they are still adequate to formalize mathematical practice.

To establish the (relative) interpretability of Z-+InfNew in Z-+Infz and Z will show that,

for the purposes of formalizing mathematical practice at least, Z-+InfNew is no better than

the more standard variants of Zermelo set theory Z-+Infz and Z.

We shall now see that Z-+InfNew, Z and Z-+Infz, i.e., they all can be (relatively) inter-

preted in each other. This is of course perfeccly compatible with the fact that Z-+InfNew is

strictly stronger than both Z and Z-+ Infz, and can be seen by reflecting on Ackermann's

familiar observation that there is a model for ZF minus infinity in the natural numbers:

m E n if and only if the coefficient of 2m in the binary representation of n is 1.
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Theorem 4. Z- +InfNew is relatively interpretable in Z.

Proof Sketch. To produce a relative interpretation of first- and second-order Z-+InfNew in

first- and second-order Z, define the sequence Mn where n e w by the recursion:

Mo = w, M +l = •P(Mn) - FIN(w),

with FIN(w) = {x C w : z is finite A xz w}. The proviso that x w is necessary

in order to preserve extensionality. Let "M(x)" abbreviate: "3n x E Mn," and construct

a formula "E(x, y)" of the language of Z that expresses the relation E(x, y): "either x

and y are members of w avt, the binary numeral for y contains a 1 at the 22's place, or

z E y otherwise." The trick is to notice that Ackermann's coding can be extended to an

isomorphism from (V,+,, E n(V+,, x V,+,)) onto (M, E). It is then routine to verify that

all the interpretations of axioms of Z-+InfNew are theorems of Z. 0

An immediate corollary of this result is that Z-+Infz can be interpreted in Z. And

a completely parallel construction establishes both that Z-+InfNew can be interpreted in

Z-+Infz, and that Z itself can be interpreted in Z-+Infz. Thus it can be concluded that

Z-+InfNew, Z-+Infz and Z are equi-interpretable.

This result provides a comforting response to the question whether Z, or Z -+Infz for

that matter, are still sufficient for the development of ordinary mathematics: They still are;

Z-+InfNew, a theory suited to describe an important fragment of the cumulative hierarchy,

can be interpreted in both Z-+Infz and Z.

Well-foundedness, cumulative structure, and replacement. One foreseeable reaction

to these results is to take, them merely to reveal a common oversight in standard formulations

of the axiom of infinity. After all, Z-+InfNew is a version of Zermelo set theory that proves

that there is a set which contains the null set and it is closed under adjunction, x U {y}.

The interest of Z-+InfNew is that it would seem to prove the existence of all sets of level

< +•w in the cumulative hierarchy, and thus the question immediately arises whether this

theory is sufficient, when cast in second-order terms, to characterize the initial segments of

the cumulative hierarchy indexed by a limit ordinal A > w.
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Of course a prerequisite for a (second-order) theory to characterize a class of initial

segments of the cumulative structure is that it be satisfiable exclusively in models in which

the element-set relation is well-founded. Since the second-order principle of set-theoretic

induction is a theorem of second-order ZF, we may rest assured that second-order ZF is a

candidate to characterize the initial segments of the cumulative hierarchy that are indexed

by some one (uncountable) inaccessible ordinal, as in fact it does. But can we, likewise, rest

assured that second-order Z-+InfNew can only be satisfied in models in which the element-

set relation is well-founded? We could, if we were in a position to derive the second-order

principle of set-theoretic induction as a theorem of second-order Z- + InfNew. Curiously,

however, the answer to our question is negative. Not only can the second-order principle of

set-theoretic induction not be derived from the axioms of second-order Z-+InfNew, one can

even make use of the Rieger-Bernays method' 9 for showing the independence of the axiom

of foundation to construct models of in which the element-set relation is not well-founded. 20

One may be surprised to hear that that there are non-well-founded models of second-

order versions of Zermelo set theory. For recall that these theories come equipped with the

axiom of regularity, which is designed precisely to prevent this situation. It is of course

well-known that in the context of first-order ZF, the axiom of regularity can only prevent

the existence of infinite descending E-chains that are first-order definable in the model. But

the fault for the failure of the axiom of regularity to prevent infinite descending E-chains

that are not definable in the model is often supposed to lie merely in the fact that the

first-order schema of replacement is ill-suited to capture the full content of this axiom.

Much less well-known is the fact that, in the absence of replacement, the axiom of

regularity fails to prevent the existence of infinite descending E-chains which are first-order

definable. And, similarly, one may be surprised to learn that regularity fails, even in the

presence of second-order separation, to prevent the existence of non-well-founded models of

several variants of Zermelo set theory.

Theorem 5. There are non-well-founded models of 2nd-order Z- +JInfNew.

'Cf. (Bernays, 1948) and (Rieger, 1957)
soI am grateful to Vann McGee for asking the question of whether there are non-well-founded models of

second-order variants of Zermelo set theory.
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Proof. To produce a non-well-founded model M of 2nd order Z-+InfNew, take the domain

of M to be V,+,, and let 7 be a permutation of the domain V,+, defined by:

ir(z) = {{z}}, if x E {Zo, {Zo}, {{Zo}}, ...},
r(Zo -x) = Zo - UU,if E Zo - {, {}},
r(Zo - {@}) = {Zo}, and

i(z) = x otherwise.

An informal, but more intuitive characterization of Ir is that it shifts each term forward two

steps in the sequence:

... , Zo - {{{0}}}, Zo - {{0}}, Zo - {0}, Zo, {Zo}, {{Zo}}, {{{Zo}}},....

The relation Enewg (V,+, x V,+,) by which the symbol E is to be interpreted in M may

then be defined by: x Enew if and only if x E Ir(y). It is then immediate that Enew is not

well-founded in M, as Zo, {Zo}, {{Zo}}, ... are the members of an an infinite descending

Enew-sequence in the model.

We must now see that M is a model of second-order Z-+InfNew. It is routine to verify

that the truth of the axioms of extensionality, null-set, pairing, infinity, and second-order

separation is unaffected by r. The axioms of union, power set, and foundation require more

attention and are discussed here:

Union: Let z be a member of V,+,, and note that it is a consequence of our definition

of a that Vz(z E V,+, -+ rank(x) 5 rank(I(sx)) < rank(z) + 2).2 ' Since ({r(y) : y E

Ir(x)} c VTank(x)+ 2 and Vrank(z)+2 is itself a member of V,{+,, {r(y) : y E r()} E V,+,.

Hence we can infer that U{ir(y) : y E r(x)} is a member of V,+, as well. Now, consider

the set I7r-(U{lr(y) : y E r(z)}) and observe that if z is a member of V,+,, then z Enew

7r-'(U{ir(y) : yE 7r(x)}) just in case z E Fr(y) for y a member of V,+, such that y E ir(x)

- just in case z EnCw y for y a member of V,•, such that y Enew x.

21As usual, rank(z), the mnAk of z, is the least ordinal a such that z V.a. I should emphasize that
this feature of r plays an important role in the proof, for, in general, it is not the case that a one-one
map of V,+ onto V,,+ induces a model of Z-+InfNewr. A permutation that assigns all the finite Zermelo
ordinals to their obvious counterparts in {Zo, {Zo}, {{Zo)},...)} will generate a model in which union fails
- consider tbh union of Zo in such a model. Compare with the Rieger-Bernays method for constructing
non-well-founded models of ZF minus foundation.
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Power. Suppose that x is a member of V,+,, and note that 7r(Z) and P(vr(x)) are members

of V,,,. Observe that if y E P(r(x)), then rank(7r-'(y)) < rank(y) < rank(P(vr(x))).

Therefore, since {r-'(y) : y E P(r(x))} is a member of V,+,, 7r-'({r-(y) : E P(ir(x))})

is a member of V,+, such that if z is a member Mf V,+,, z Enew Ir-1 ({r- 1(y) : y E P(r(x))})

just in case ir(z) C Ir(x) - just in case Vw(w Ene z -> w Enew x), as desired.

Regularity: Case 1. Suppose x E {Zo, {Zo}, {{Z)} },...}. Then, {x} is a Enew-minimal

element of x, since {x} Enew x, but { {x}} new X Case 2. Suppose x = Zo - y with y $ 0.

If y = {0}, then Zo itself is a Ene,-minimal member of x. Else, if y $ {0}, then 0 is a

Enew-minimal member of x. Case 3. Otherwise, Vy E V,+, (y Enew x + y E x). Let y

be a E-minimal element of x. If Ir(y) = y, then y is a Ene-minimal member of x. Else, if

ir(y) $ y, then we distinguish two subcases: (a) y E {Zo, {Zo}, {{Zo}},...}. If {y} zx, then

done. Otherwise, let z Ex l {Zo, {Zo}, {{Zo}}, ...} such that {z} 0 x - remember that

x E V,+,, and hence cannot contain all the elements of {Zo, { Zo }, { { Zo } }, ...} as members.

Then, z is a Enew-minimal element of x. (b) Else, we have that y = Zo - z for some z E Zo

with z $ 0. If z = {0}, then if Zo E x, proceed as in 1. Otherwise, 0 itself is a Enew-minimal

member of x. E

Thus we conclude that in the absence of replacement, the usual first-order version of

the axiom of regularity fails to insure that the axioms of second-order Z-+InfNew are

never satisfied in non-well-founded models.22 And this result carries over to the second-

order variants of Zermelo set theory discussed thus far as well. More can be said: The

construction of (V,+,, new, n(V+,, x V,,+)) provides us with a model of Z-+InfNew

which falsifies some instances of the usual first-order E-induction schema:

E-induction: 3xB(x) -+ 3x(z(x) A Vy(yQE x -+ --4(y))),

that is: Bx3z(x = {z}) - B x(Bz(x = {z}) AVy(y E x -+ -nBz(y = {z})). Hence we conclude

that, in the absence of replacement, the axiom of regularity cannot exclude the possibility

of there being definable infinite descending E-chains.

aReplacement is not the only axiom whose absence may distort the content of regularity. It is an old
result of Jon Barwise that ZF-Inf cannot insure the existence of the transitive closure of a set. Part of the
interest of Barwise's result is that it can readily be adapted to show that all the axioms of second-order
ZF-Inf can be verified in a model in which the extension of the element-set relation is not well-founded.
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Perhaps we should have anticipated these results by reflecting on the fact that the

Zermelo axioms are inadequate to prove that every set has a transitive closure, 23 and this

is one of the basic facts used in the standard proof that the axiom of regularity implies all

the instances of the principle of E-induction, modulo the rest of axioms of ZF.

One may now wonder whether Z-+InfNew can be amended to prove all instances of the

axiom schema of E-induction, and, when cast as a second-order theory, to ensure that the

universe is indeed well-founded. Two repairs suggest themselves. One repair that would

achieve the desired result is to adjoin a first-order sentence to the effect that every set

has a transitive closure to the rest of axioms of Z-+InfNew: it is evident that first-order

Z-+InfNew+ "Every set has a transitive closure" proves every instance of the E-schema,

and, in the presence of second-order separation, enforces well-foundedness. The other option

would be to adjoin a restriction of replacement to countable sets to the rest of the axioms of

Z-+InfNew. The result would be considerably stronger than common variants of Zermelo

set theory, and it would prove that prove that every set has a transitive closure as well as

all instances of the axiom schema of E-induction.

There is reason to be dissatisfied with both repairs, though. The axioms of set theory are

ordinarily motivated as a description of the cumulative hierarchy; the axioms of Zermelo-

Fraenkel set theory enable us to define the V.'s and to prove, as a theorem, that every set x

is included in some V,. In like manner, it would be highly desirable for a variant of Zermelo

set theory to be able to describe and assert the first-order content of the cumulative picture.

Unfortunately, neither Z-+InfNew+-"Every set has a transitive closure" nor the addition

of countable replacement to Z can achieve this.

To realize this, it is sufficient to observe that there are models of second-order versions

of these theories which are not isomorphic to initial segments of the cumulative hierarchy.

In particular, there is a well-known construction of models of set theory which can be used

to establish that there are models of second-order Z-+InfNew+ "Every set has a transitive

closure" which are not isomorphic to initial segments of the cumulative hierarchy: For K an

infinite cardinal, H(Q) is the collection of all sets z whose transitive closure has only sets

23In (Drake, 1974), p. 110-111, Frank Drake exhibits a model of (second-order) Z in which not every set
has a transitive closure.
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of cardinality < K. It is routine to verify that H(r), for an cardinal K > w, satisfies all the

axioms of (second-order) ZFC except possibly power set and replacement. For us, however,

the interest of this construction is that it provides us with a recipe to construct models

of Z-+InfNew that are not of the form (VA, E n(VA x VA)) for a limit ordinal A > w. In

particular, if K is a strong limit, then (H(K), E n(H(K) x H(Q)) is a model of (second-order)

Z-+InfNew+ "Every set has a transitive closure" that is not of the form (VA, E n(V, x VA))

for some limit ordinal A > w.

Other models of second-order versions of Zermelo set theory that are not of the form

(VA, E n(VA x VA)) for a limit ordinal A > w can be obtained merely by taking the basic

closure of a transitive superset of V,.24 Thus for example M(V, U w + w), the basic closure

of V, U w + w, is the domain of another model of second-order Z-+InfNew which contains

w + w, but not V,+, as a member. Now, to obtain a model of Zermelo set theory plus the

axiom of countable replacement that is not isomorphic to an initial segment of the hierarchy,

consider a model such as (H(~ ,), e n(H(f,) x H(l 1 ,)). The interest of this model is

that H(f~1 ) is closed under countable subsets, and thus is a model of Zermelo set theory

plus countable replacement.

The question remains whether there a variant of Zermelo set theory that is equipped

with the resources to describe and assert the first-order content of the cumulative picture.

The answer to this question is affirmative. There is a variation of second-order Zermelo

set theory one of whose axioms explicitely asserts that sets are formed in stages. The first

point to be noticed is that if we take the variables a, f, y, ... to range over von Neumann

ordinals, then the V,'s can be characterized thus:

x = Va * f (Fncf A Dom(f) = a + 1 A VP < a Vy [y E f(P) ++
3A < P (yg C f(A))] A f(a) = x).

This immediately suggests a formulation of the axiom of foundation which can be used to

enforce the modern cumulative view of the set-theoretic universe. This axiom reads:

24As defined in section 2.
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VxBa 3y (y = VA ArC y).

Now consider the theory that results from second-order Z when the axiom of regularity,

Reg, is replaced by the axiom: VxzBay(y = Va A x C y). Then, the distinctions among the

axioms of infinity discussed before collapse, and, the axioms of second order Z +Vx3aBy(y =

Va A z C y) do characterize the Vx's for limit ordinals A > w.

Note first that the (second-order) principle of set-theoretic induction, VX (BxXx -+

[B3xXx A Vy(y E x -+ -Xy)]), is a theorem of the system. (Suppose Xx. Then, Ba Bx(Xx A

x C_ Va), and, by induction on the ordinals, 3/p (3x(Xx A x C Vp) A VA < 3 -'Bx(Xx A x C

VA)). Pick such /3 and x. Then of course, Vy E cz -Xy, since, otherwise, there would be an

ordinal A < p such that Xy A y g VA.)

Theorem 6. M is a model of 2nd-order Z +VzBaBy(y = Vo Az xC y) if and only if M is

of the form (V>, E n(Vx x VA)) for A a limit ordinal greater than w.

Proof Sketch. Suppose M is a model of second-order Z +VxBaBy(y = Va A x C y). By

the (second-order) principle of set-theoretic induction and extensionality, the E-relation

of the model is well-founded and extensional, and, hence, by the Mostowski isomorphism

theorem, M is isomorphic to a transitive E-model. Without loss of generality, let us now

confine attention to transitive E-models of Z +VzBaBy(y = V Arx C y). Suppose M is such

a model, and let A be the least von Neumann ordinal not in the domain. A is a limit ordinal

greater than w, since the model satisfies the axiom of infinity and is closed under successor.

Show that every member of VA is a member of the domain. For every P < A, / is a member

of the domain, and, since VxzaBy(y = V0 A x C y), we have that Vp itself is a member

of the domain. Therefore, since the domain of M is transitive, and VA = U(Vf : / < A),

we conclude that every member of VA is a member of the domain of M. For the converse

inclusion, observe that if z is in the model, then Vrnk(r) is a subset of the domain. But

now, since A is not in the model, neither are the V,'s, for I y > A, subsets of the domain.

And thus, given that Vrank(z) is included in the domain for each z in it, we conclude that

no set of rank > A is in the model. O

One foreseeable source of discontent with second-order Z +VzBaBy(y = Va A x C y)

is that, unlike Zermelo-Fraenkel set theory, this theory enforces the cumulative hierarchy
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view by brute force, but it is not a natural extension of the Zermelo axioms. Doubtless,

some will suggest that the moral to be extracted is that replacement may very well be the

only natural principle about sets whose addition to the Zermelo axioms delivers a system of

axioms which contains an implicit description of a cumulative hierarchy of levels or stages.

What is the force of this consideration, however, is a question I shall not pursue here.

2.3 Must we accept (uncountable) replacement?

I think we should be admit that the results presented thus far establish very dramatically

that the presupposition that replacement is rarely used in basic set theory is mistaken.

This is not to deny that there remains an important question to be addressed. Since very

few (albeit significant) of the applications we have considered thus far requires instances

of replacement on uncountable sets (uncountable replacement), it is still legitimate to in-

quire what is the justification for the unrestricted version of replacement that allows for

replacement on uncountable sets, when uncountable replacement is a principle with such

recondite applications outside higher set theory. The remainder of this chapter is devoted

to the discussion of this delicate question.

How evident is the replacement axiom?. One common response to this question is

to remark that replacement, be it replacement on a countable set or on an uncountable

set, is an obvious principle of set construction, an intuitive principle whose self-evidence

outstrips the desirability of itb consequences. I have indicated that what is probably the

reason most theorists accept replacement is that it leads to an attractive theory of ordinals

and permits the incorporation of transfinite recursion into set theory. Some proponents of

this view would even deny that that is the primary reason the axiom is accepted; rather, set

theorists accept replacement because it is a self-evident principle of set construction. In fact,

it is sometimes argued that it is possible to gather some evidence for the self-evidence of

replacement from a careful examination of the history of replacement. For neither Fraenkel

nor Skolem, the first theorists to explicitly formulate the axiom in the context of axiomatic

set theory, seemed to expect replacement to yield all these desirable consequences that

now justify its adoption. And, as a consequence, one might be tempted to conceive of the
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history of the axiom as evidence in support of the view that, regardless of whether or not

replacement is derivable from the iterative conception, it is an obvious principle whose self-

evidence even outstrips the desirability of its consequences.2 5 Indeed, some authors have

in effect suggested that replacement emerged in the 1920s as a self-evident principle of set

construction. As Shaughan Lavine explains in (Lavine, 1994):

It did not take long for Thoralf Skolem and Abraham Fraenkel to note that
Zermelo's axioms while they served Zermelo's purpose of defending his theorem
were missing an important principle of Cantorian set theory - what is now
the Replacement Axiom. The universal agreement that followed is remarkable,
since the axiom wasn't good for anything. That is, at a time when Replacement
was not known to have any consequences about anything except the properties
of the higher reaches of the Cantorian infinite, it was nevertheless immediately
and universally accepted as a correct principle about Cantorian sets.26

The interesting implied suggestion is that the axiom of replacement might have emerged

as a principle of set construction that is evident on the pre-axiomatic concept of set that

underlay Cantor's theory of sets and transfinite numbers. Lavine's picture promotes the

impression that "even today, the self-evidence of replacement outstrips its applications.

We accept it because it is true of the combinatorial notion of set, that is, because it is

self-evident" 27 - an impression that informal expositions of the subject would seem to

reinforce when they suggest that all the axioms of standard set theory can be justified by

appeal to intuitive considerations alone.28

At the outset, let me acknowledge that I have no conclusive argument that will persuade

a defender of Lavine's picture to abandon the view that both Fraenkel and Skolem regarded

replacement as a self-evident principle of set construction. Nor do I intend to deny that

the axiom of replacement enjoys a measure of obviousness or evidence, as is suggested by

the fact that Cantor, Mirimanoff and Hartog had confidently used similar principles of set

25Two extremely useful histories of the axiom is given in (Hallett, 1984) and (Lavine, 1994).
2 (Lavine, 1994), p. 5.

"7Cf. (Lavine, 1994), p. 216.
2 5Lavine's remarks are motivated by the conviction that replacement is evident on a certain conception

of set, the combinatorial conception. Unfortunately, a discussion of Lavine's account of the combinatorial
conception of set is beyond the scope of this chapter.
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construction in proofs long before the axiom was ever explicitly formulated. All I shall offer

are some considerations that make it plausible to suppose that the inability of Zermelo's

1908 axiom system to sanction constructions of countable sets that seemed unobjectionable

from the point of view of pre-axiomatic set theorists may have played an important role in

both Fraenkel and Skolem's respective proposals of the replacement axiom. The ability to

sanction such constructions is, by itself, a significant application of the axiom of replacement

that is not restricted to "the higher reaches of the Cantorian infinite."

As Zermelo states the purpose of his axiomatization of set theory in (Zermelo, 1908), it

appears to have been:

to show how the entire theory created by Cantor and Dedekind can be reduced
to a few definitions and seven principles, or axioms, which appear to be mutually
independent. 2 9

Zermelo's 1908 axiom system, recall, consisted of axioms of extensionality; null set and

pairs; Aussonderungsaxioms, power and union; an axiom of choice; and an axiom of infinity

asserting the existence of Zo. One serious omission from Zermelo's axiomatization is that

Zermelo's axioms do not sanction certain constructions permitted in Cantor's theory of sets

and transfinite numbers. To use the standard example, Zermelo's 1908 are inadequate to

establish that

{Zo, P(Zo), P(P(Zo)), ...}

is a set - where Zo is Zermelo's number sequence and P denotes the power set operation. 30

It is the axiom of replacement that permits this construction in the context of standard set

theory.

However serious, the absence of this and other axioms from Zermelo's 1908 list is perhaps

understandable. One of the principal motives of Zermelo's axiomatization appears to have

2 9(Zermelo, 1908, p. 200).

SOThe results of the preceding section gives us ample evidence for this, and indicate that the inability to
collect {(Zo, P(Zo), P(P(Zo)), ...} is far from being the most dramatic instance of example of a construction
that cannot be carried out in the context of Zermelo's axiom system.
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been to clarify the set existence principles that are used in the course of his 1904 proof

that every set can be well-ordered. Not surprisingly, these are the axioms of separation,

elementary sets, power set, union, and, of course, the axiom of choice.31

Whatever the reason for Zermelo's 1908 omission of replacement, it might be argued

that, by Zermelo's own standards, the axiom fits well with the rest of axioms in Zermelo's

1908 list. One reason for this is that it is often remarked that, for Zermelo, a principle

that is an unexceptionable, well-established part of mathematical practice as it is practiced

elsewhere ought to be accepted in set theory as well. This is an important consideration

in support of the axiom of choice in (Zermelo, 1908a), and it is not difficult to imagine a

similar argument in favor of a restricted form of replacement: since countable sequences

pervade modern analysis and seem routine and benign, set theory, too, ought to sanction

the formation of arbitrary countable sequences. This consideration alone could be used

to motivate a restricted form of replacement according to which one could form arbitrary

countable sets of Zermelo sets.

Unfortunately, no similar consideration would seem sufficient to deliver the full strength

of replacement. 2 For no matter how routine or benign arbitrary countable sequences may

seem, arbitrary uncountable sequences are indeed a novelty and very few results within

ordinary mathematics seem to depend upon their availability, witness the fact that almost

50 years had to elapse since Fraenkel and Skolem first proposed the axiom in order for

a mathematician to isolate an application of replacement on an uncountable set within

ordinary mathematics.33

The other reason one might be tempted to suppose that replacement is in line with

the rest of Zermelo's axioms is that it is sometimes argued that Zermelo's axiomatization is

motivated by a doctrine of limitation of size, and replacement falls rather directly out of the

311t is then no wonder that, as Frank Drake parenthetically remarks in (Drake, 1974), p. 114, Zermelo
had been reported as saying that he forgot to add replacement to his 1908 axiom system; no principle like

replacement is used in the course of Zermelo's 1904 proof that every set can be well-ordered.
321t may be of interest to notice that a perfectly analogous situation would seem to obtain with respect to

the axiom of choice; all classical applications of choice in analysis can be justified on the basis of the much
weaker axiom of dependent choices, and most of them can be sustained with the help of the weaker principle
of countable choice.

SThis is Friedman and Donald Martin's result that replacement is required to establish that every Borel
game is determined. See note 3.
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limitation of size account. Michael Hallett, for example, has claimed that it is fairly clear

that Zermelo accepted the limitation of size hypothesis, and that separation gives partial

expression to that view. Perhaps so, but notice that the thought expressed by separation

is compatible with an interpretation of the limitation of size doctrine based on comprehen-

sion, but not on cardinality: One could identify, first, a collection of unobjectionable, safe

operations to generate new sets from initial sets, and then restrict attention to those sets

that can be "separated" from sets obtained by repeated application of these operations on

certain initial sets, such as the null set or Zo. Zermelo himself outlined a remarkably similar

picture in (Zermelo, 1908a) when he explained that:

if in set theory we confine ourselves to a number of established principles such
as those that constitute the basis of our proof [that every set is well-ordered] -
principles that enable us to form initial sets and to derive new sets from given
ones - then all such contradictions can be avoided.

If we now confine ourselves to sets which can be "separated" from sets obtained from initial

sets by repeated applications of the established principles to which Zermelo referred, then

we will not even be able to sanction the formation of arbitrary countable sequences, much

less uncountable ones. Indeed, as Hallett suggests, it is plausible to attribute this very

interpretation of the limitation of size doctrine to Fraenkel in the mid 20's. Thus I think it

is not clear that replacement falls out of Zermelo's 1908 picture of what sets are.

Nor did Zermelo explain what, exactly, the axioms in his 1908 list were axioms for. As

axioms are ordinarily conceived, they may be supposed to enjoy some preferred epistemo-

logical status deriving from their accordance to some pre-axiomatic concept. One might

have thought, in particular, that there is some pre-axiomatic concept of set that justifies

the adoption of Zermelo's 1908 axioms. Now: Zermelo did not conceive of his axioms as

axioms for the concept of set that underlay Cantor's theory of sets and transfinite num-

bers -in part because he attributed to Cantor the naive concept of set that fell prey to

Russell's paradox. Instead, Zermelo made no claim to have offered an account of what sets

are other than characterizing them as elements of an abstract domain structured by the

element-set relation. Accordingly, it is probably best to think of the Zermelo axioms as

closure conditions imposed on that abstract domain: The axioms of null set and infinity
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ensure that the domain of set theory contains both the null set and Z0 , the Zermelo number

sequence. Other axioms require the domain to be closed under the operations of pairing

{x, y}, union Uzx, and power P(x). Separation, for its part, guarantees that the domain

contains every subset of every set it contains. Even extensionality could be conceived as a

closure condition that requires the domain to contain a witness of every inequality between

two sets, an object that is a member of one but not to the other.

Although Zermelo didn't claim to have offered an intuitive account of the conception

of set he was assuming, he certainly wanted to claim for his axioms that they yield the

theorems of the Cantorian theory of transfinite numbers. This was, after all, one of the

stated aims of the axiomatization. Since, according to Zermelo, Cantor's naive conception

of set had proved bankrupt, Zermelo writes:

There is at this point nothing left for us to do but to proceed in the opposite
direction and, starting from set theory as it is historically given, to seek out
the principles required for establishing this mathematical discipline. (emphasis
added)3

What Abraham Fraenkel and Thoralf Skolem would soon question in the 1920s is that

Zermelo's 1908 axioms provided one with all the principles required to accomplish that end.

Abraham Fraenkel (Fraenkel, 1921, 1922) and Thoralf Skolem (Skolem, 1922) independently

observed in the 1920s that "Zermelo's axiom system is not sufficient to provide a foundation

for ordinary set theory."3 5 Fraenkel had already noticed in (Fraenkel, 1921) that Zermelo's

seven axioms were not sufficient to prove the existence of the set {Zo, P(Zo), P(P(Zo)), ...),

and concluded that Zermelo's axiom system could not prove the existence of sets of cardi-

nality N &,.36 Skolem, for his part, raised a more general concern in (Skolem, 1922):

If M is an arbitrary set, it cannot be proved [in Zermelo's system] that M, P M,
p2 M, ... and so forth ad infinitum form a set.37

34(Zermelo, 1908, p. 200).
3 5 (Fraenkel, 1921; 1922). The quote is from (Skolem, 1922, 292).
3 Fraenkel, it should be noticed, might have been assuming the truth of the Generalized Continuum

Hypothesis.
37(Skolem, 1922, p. 296).
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And he even sketched the construction of an inner model of the Zermelo axioms which

excludes the existence of the set {Zo, P(Zo), P(P(Zo)), ...), a set generated from the initial

parameter Zo by repeated application of the power set operation. Skolem's model is given

by:

{ •:3new U" = 0} U{:3nEw3y3mEw(U" =yAU'y = 0}

when the predicate symbol "E" is interpreted to denote the standard element-set relation,

i.e., (V,+,+, En(V,++• x V,+w)). 38

What is worth dwelling on in Skolem's complaint is that the pattern of set construction

to which he is referring is perfectly general and exceedingly simple, since it consists in

the formation of a countable sequence of sets from an initial parameter, Zo, by repeated

application of the power set operation. I have already noticed that the formation of arbitrary

countable sequences pervades ordinary mathematics, and not just the Cantorian theory of

sets and transfinite numbers, and hence the fact that Zermelo's 1908 axioms do not sanction

that construction ought to be regarded as a significant loss.

Other theorists had detected a similar difficulty by 1922. In the abstract of a lecture read

at a session of the 1922 meeting of the American Mathematical Society, (Lennes, 1922), Nels

Johann Lennes claimed that Zermelo's system could not prove "that an arbitrary collection

more than finite in number is a set." Though he published no details, he must have had

examples of countable collections whose existence could not be proved by the 1908 Zermelo

axioms. What this suggests is that Lennes must have called attention to the drawback of

Zermelo's axiomatization just now discussed, and not to a defect concerning the system's

inability to yield the existence of very large cardinals. Lennes proposed to modify Zermelo's

axiomatization "so as to identify as a set any collection of objects having the same cardinal

number as that of some Zermelo set," which is in effect to propose a version of replacement.

All these theorists might have believed that the set {Zo, P(Zo), P(P(Zo)), ...} provides

"the simplest instance of a set whose existence cannot be proved by means of the Zermelo

axioms,"3 9 but the drawbacks of Zermelo's axiomatization are much subtler. For, presum-

"And it is hence not identical with U{w, P(w), P(P(w)),...}, as it is sometimes erroneously said, cf.

(Wang, 1970). HF is a member of the former but not a member of the latter.

"3 The quote is from (Fraenkel and Bar-Hillel, 1958).
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ably unbeknownst to them, Zermelo's axiom system, and current versions of Zermelo set

theory for that matter, are ill-suited to sanction a variety of apparently unproblematic set-

theoretic constructions. Indeed, the results of the first part provide us with an impressive

catalogue of independence results for both first- and second-order Z+Infz, an immediate

descendant of Zermelo's 1908 axiom system.

I have depicted Zermelo's axiom system in the worst possible light, as a collection of

principles chosen for their apparent consistency and ability to sanction all the set existence

assumptions that underlie Zermelo's proof that every set can be well-ordered, but which

nevertheless fail to yield the existence of exceedingly simple sets, sets that occur at remark-

ably low levels of the cumulative hierarchy. Now: I don't wish to suggest that Fraenkel and

Skolem were aware of all these difficulties, I don't think they were. All I want to suggest

is that it is important to distinguish two different concerns in their respective complaints

that Zermelo's axiom system is insufficient "for the foundation of legitimate set theory."

Whereas Fraenkel's main source of concern, (Fraenkel 1921, 1922), appears to have cer-

tainly derived from the system's inability to secure the existence of specific large sets, sets

of power N,, in (3kolem, 1922), Skolem appears to have been worried about the system's

inability to sanction an apparently unproblematic construction of a denumerable set from

an initial parameter by repeated application of some one Zermelo operation. This fact may

perhaps be obscured by the fact that Skolem's only example involves a set whose union has

cardinality fL,, but, to insist that replacement had in the early 1920s no use other than to

secure the existence of relatively high cardinals is to belittle the fact that replacement was

motivated through the need for specific countable sets that seemed unobjectionable from

the point of view of pre-axiomatic set theorists.

When Fraenkel asserts that "Zermelo's seven axioms are not sufficient for the foundation

of legitimate set theory," he certainly seems to be assuming that a system that is sufficient

for that purpose must, at the very least, provide us with the resources necessary to prove the

existence of sets of power 2 K•. The reason is not difficult to ascertain: K, is a relatively

low cardinal by the lights of Cantor's theory of transfinite numbers, and hence an adequate

axiomatization of set theory ought to be able to reconstruct this aspect of Cantor's theory.40

4oFraenkel's presumption, it should be noticed, is seldom challenged. Most set theorists accept the exis-
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Fraenkel had noticed in (Fraenkel, 1921) that merely extending the axiom of infinity to

assert the existence of the set {Zo, P(Zo), P(P(Zo)), ...} would have rendered the resulting

system vulnerable to more general counterexamples. He concluded the need for a remedy

of a more general character. One year later he would propose the axiom of replacement:

Replacement axiom: If M is a set and if each element of M is replaced by "a
thing of the domain B" then M is transformed into a set.

Undoubtedly, Fraenkel's proposal depends, for it to be acceptable, upon a precise ex-

planation of his picture of replacing the members of a set by objects of the domain. But he

could have done so by making use of an adequate notion of function: If f is a "function"

and m is a set, then {(f() : x E m} (the range of f on m) is a set. Whether or not he was

in 1922 in a position to formulate an adequate version of the axiom is a question I shall

not pursue here, but I should mention that there is some evidence discussed both in Hallett

and Lavine's histories of the axiom to suspect that he was not in such a position.

As for Skolem, he began his attack to Zermelo's system with the observation that "Zer-

melo's axiom system is not sufficient to provide a complete foundation of the usual theory

of sets."41 And he quickly pointed out to the system's inability to sanction the construction

of a set from an initial parameter M by repeated application of the power set operation.

Perhaps unbeknownst to him, Skolem's point can be strengthened considerably: it can be

proved as a theorem of ZF that if M is an infinite set of level w in the cumulative hierarchy

such that M N Zo E HF, then M is not a member of Z, and thus its existence is not

provable in the context of Zermelo's axioms.4 2 w is a prominent example of such a set, but

tence of higher transfinite cardinals as a matter of course, and part of the reason is that their existence can

be proved in standard (Zermelo-Faenkel) set theory; indeed, that is often supposed to be one of the virtues

of the system. It is only recently, (Boolos, 1998), that someone has argued that it is a perfectly sensible

view to hold both to doubt the truth of theorems concerning the higher infinite that are provable in ZF and

to regard theorems concerning sufficiently low levels of the cumulative hierarchy as unquestionably true.

1'(Skolem, 1922). The emphasis is mine.

"2Thus: M obviously is a member of

M = U{M, P(M), P(P((M)),...},

but M n Z c HF. The latter fact is proved by a simple induction. By hypothesis, M n Zo E HF.
Suppose now that ;P(M) n P"(Zo) E HF. Then, since P~"+~'(M) n P"+'(Zo) = P(P"(M) n P"(Zo)) and
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notice that w is a set which can be obtained from the null set by repeated application of the

von Neumann successor operation, x U {x}. Likewise, it should be obvious how to use the

former observation to obtain further sets which can be constructed from an initial param-

eter by repeated operation of some Zermelo operation but whose existence is independent

from Zermelo's 1908 axiom system.

It would probably be a mistake to attribute too much generality to Skolem's remarks,

but the point remains that the pattern of set construction to which he calls attention is

both perfectly general and exceedingly simple. Thus, it can still be argued that he motivates

replacement as a repair to a serious shortcoming of Zermelo's 1908 axiomatization that is

not restricted to the higher reaches of the Cantorian infinite.

In contrast to Fraenkel's remedy, Skolem's repair to Zermelo's axiom system was quite

precise and much closer to the standard schematic version of the axiom:

In order to remove this deficiency of the axiom system we could introduce the
following axiom:
Let U be a definite proposition that holds for certain pairs (a,b) in the domain
B; assume, further, that for every a there exists at most one b such that U is
true. Then as a ranges over the elements of a set Ma, b ranges over all elements
of a set Mb.43

In the context of his paper, "a definite proposition that holds for certain pairs (a,b) in

the domain B" is just a well-formed formula of the language of set theory. Accordingly,

he offered a general procedure for obtainingK a formula sufficient to prove the existence of

{M, P(M), P(P(M)), ...} for an arbitrary Zermelo set M.

Neither Fraenkel nor Skolem advocated the addition of replacement to Zermelo's system,

neither commented on whether they conceived of replacement as a self-evident, or to a cer-

tain extent obvious principle, or even on whether they thought their remedies to systematize

prior practices. This much is certain. Skolem expressed some caution in the formulation

of his repair to Zermelo's axiomatization; he just claimed that "in order to remove this

P"(M) n P"(Zo) E HF, we have that 'P+'(M) P"+'(Zo) E HF, too. Compare with Lemma 1 above.

a (Skolem, 1922).
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deficiency of the axiom system we could introduce the following axiom."44 Such caution

suggests that their emendation to Zermelo'a axiomatization had a tentative character not

to be neglected. As for Fraenkel, he would soon refer to the axiom of replacement as:

an axiom proposed by me as a stopgap, an axiom which nevertheless would seem
to be too sweeping to be called upon without a painstaking investigation of its
necessity.45

Michael Hallett cites some evidence (albeit inconclusive) to suggest that Fraenkel even

regarded replacement as a suspicious principle. In 1926, he described the axiom as an

"unpleasant far reaching axiom," and he often referred to the "special" sets that the axiom

generated as "very comprehensive, sets."46 The interest of this denomination is that it

suggests that replacement may have conflicted with Fraenkel's own interpretation of the

limitation of size doctrine according to which only collections that are bounded by - or

subsets of - some Zermelo set can form sets.47

Whatever the source of Fraenkel's reluctance to accept the axiom of replacement, he did

not accept the necessity of the axiom for the purposes of general set theory, and, at least

up to 1958, he continued to regard the theory of ordinals and the theory of cardinals > N,,

as "special set theory." For example, in (Fraenkel, 1927), he writes:

... general set theory can be derived in its full extent from the axioms I-VII, the
Zermelo axioms."4

Curiously, however, (Fraenkel, 1927) contains a generalization of Zermelo's axiom of in-

finity which is provably equivalent to a restriction of replacement to countable sets. Roughly

speaking, Fraenkel's generalization of the axiom of infinity states that for every set x and

every function F, there is a set y which contains x and contains F(z) whenever it contains z.

4(Skolem, 1922). The emphasis is mine.

S(Fraenkel, 1925), p. 251. The emphasis is mine.

"(Fraenkel, 1926), p. 131.
47(Hallett, 1984).

"Cf. (Fraenkel, 1927). p. 139. The translation is Hallett's.
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The interest of this fact is that it suggests that Fraenkel may have regarded the formation

of arbitrary countable sets as part of general set theory, too.49

Lavine's interpretation of the early history of the axiom seems to rest on the presuppo-

sition that the mere addition of sets of cardinality > R,, rather exotic objects, would not

seem sufficient to explain the widespread acceptance of the axiom that followed Fraenkel

and Skolem's respective proposals. Thus, in (Lavine, 1994), he repeats:

Replacement received no historical justification as a systematization of prior
practice or the like: the fact that its applications are so recondite shows that it
had to do little with prior practice. The application of replacement came only
after its acceptance. Both Fraenkel and Skolem saw that replacement was a
self-evident principle concerning combinatorial collections before von Neumann
discovered that the axiom was good for something and even before they were
convinced of the utility of combinatorial collections."

And yet, motivating the axiom of replacement as a repair designed to sanction an appar-

ently unproblematic procedure for constructing new countable sets from an initial parameter

and a Zermelo operation is significant, and renders replacement a new generator in the Zer-

melian setting, and, in particular, as a remedy to an important drawback of Zermelo's

axiomatization that is not restricted to the "higher reaches of the Cantorian infinite."

Ordinals and replacement. I have suggested that both Fraenkel and Skolem had moti-

vated their respective proposals of replacement as a repair designed to generate countable

sets like {Zo, P(Zo), P(P(Zo)), ...}, whose existence seemed unobjectionable from the point

of view of pre-axiomatic set theory. However, it was only von Neumann's discovery of his

theory of ordinals and the formalization of transfinite recursion, let alone its proof, that

required the full exercise of the axiom of replacement. Neither Fraenkel nor Skolem seemed

to expect replacement to yield these desirable consequences, and some authors, Michael

4 9(Bernays, 1942) contains a discussion of Fraenkel's variant of the axiom of infinity and its relation to
the claim that every countable class is a set. An important part of Bernays' article is also devoted to show
that the result of adjoining the latter claim to the Zermelo axioms is sufficient for the development of a vast
part of modern analysis.

so(Lavine, 1994), p.2 1 6 .
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Hallett for example, have credited John von Neumann, and not Fraenkel or Skolem, with

the discovery of the axiom.51

John von Neumann published the details of his theory of ordinals in 1923, but, as a letter

to Zermelo of 15 August 1923 indicates, by then, he had already developed his own axiom-

atization of set theory, which contained a form of replacement. As von Neumann would

later comment on the system, "Fraenkel's replacement axiom is added. This (among other

things) is necessary for the setting up of the theory of ordinal numbers."5 2 Nevertheless, von

Neumann's treatment of ordinal numbers did not depend on the special characteristics of

his axiomatization, and could, according to him, be embedded in Zermelo's axiomatization

provided only that this is supplemented with the axiom of replacement.

As von Neumann indicates in (von Neumann, 1923a), his theory is intended to impose

a specific form on the set representatives of the ordinal numbers: "Every ordinal is the

set of the ordinals that precede it." To be quite specific, von Neumann defined for each

well-ordered set (X, <) a "numeration" of X to be a function f on x such that for all x in

X f(x) = {f(y) : y < x}. And he then identified the ordinal number of the well-ordered

set (X, <) with the range of the numeration f on X:

If X 1, 2, X3, and X4 are the 1st, 2nd, 3rd, and 4th elements of x, respectively,
then clearly for every numeration f(x) of X we have
f (x) = 0,
f( 2) =0 },
f(x4) = {0, {0}, {0, {0}}}
consequently, if X has 0, 1, 2, or 3 elements, its ordinal is, respectively,
(0),

{0, {0}}, or
{0, {0}, {0, {0}}}

One important respect in which von Neumann's theory requires the full strength of

replacement is that, without it, it cannot be proved that every well-ordered set has a

5"' (Hallett, 1984), ch. 8.

5 2(von Neumann, 1923b).
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numeration: in the absence of countable replacement, it is not even possible to prove the

existence of a numeration for (Zo, E), i. e. w; absent a more general form of replacement,

it is not even possible to prove the existence of a numeration for (1P(Zo), <) where < is a

well-ordering of P(Zo). Replacement is tailor-made for that purpose; with the aid of the

replacement axiom, von Neumann could establish the existence of a numeration for each

well-ordered set (X, <), and he then identified the ordinal number of a well-ordered set

(X, <) with the range of a numeration f on X. In addition, he established both the existence

of a unique ordinal for each well-ordered set, and the fact that isomorphic well-ordered sets

receive the same (von Neumann) ordinal number. The other important respect in which von

Neumann's theory of ordinals relies on the axiom of replacement is that it is replacement

that is required to justify definitions by transfinite recursion, and these seem indispensable

for the definition of operations of ordinal addition and multiplication in complete generality,

of which more shortly. Indeed, even though von Neumann never explicitly advocated the

incorporation of replacement into Zermelo's system, he nevertheless explained that "in fact,

I believe that no theory of ordinals is possible at all without this [replacement] axiom."53

There is no question that the von Neumann theory of ordinals requires the full exercise

of replacement, but this is yet a far cry from the claim that no theory of ordinals is possible

in the absence of replacement. Perhaps von Neumann assumed that in order for a theory

of ordinals to be satisfactory, it must be such that it assigns ordinals to well-ordered sets in

a process that depends on the set of previous assignments to the successive initial segments

of the set. But to be able to form the set of previous assignments invariably requires one

form of replacement or another. For example, as ordinals are assigned to well-ordered sets

in von Neumann's theory, the ordinal assigned to a well-ordered set coincides with the set

of previous assignments to initial segments of the set. This requires, of course, successive

availability of the set of previous assignments to the different initial segments of the well-

ordered set, which can only be guaranteed by a form of replacement.

Now: it may justifiably be doubted that the requirement to form the ordinal of a well-

ordered set in a process of the sort just outlined is a necessary condition for a theory of

53 (von Neumann, 1925).
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ordinals to be satisfactory. Instead, it is arguable that all is required for a theory of ordinals

to be adequate is that there be a definable functional relation, ord, that associates with

each well-ordered set (X, <) a set representative, ord((X, <)), but such that ord((X, <

)) = ord((Y, <)), whenever (X, <) and (Y, <) are isomorphic structures. Is replacement

necessary to ensure the existence of such a definable functional relation? It may be of

interest to note is that one cannot hope to prove the answer to be affirmative. To realize

this, it is enough to recall G6del's observation that (Lx•,, E n(Lm, x Lt,)) is a model of

Zermelo set theory plus the existence of a definable well-ordering of the universe. For then,

one can use the definable well-ordering of LM, to define a functional relation that associates

with each well-ordered set (X, <) in LH, the least structure that is isomorphic to it.54

Not only can it not be proved that replacement is required for the existence of an

adequate theory of ordinals, there is an attractive approach to the theory of ordinals due to

Dana Scott that need not rest upon the availability of replacement. Scott devised a general

method of definition that permitted him, for example, to rescue the Fregean treatment of

cardinal numbers for Zermelo-Fraenkel set theory; in particular, he showed how to define

the cardinal number of a set as the set of sets equinumerous with it of least rank. And,

similarly, he showed how to define the ordinal of a well-ordered set as the set of well-ordered

sets isomorphic to it of least rank.

However, Scott's technique depends upon set-theoretic facts which are ordinarily es-

tablished with the aid of the axiom of replacement. For example, one ordinarily uses the

replacement to justify the method of transfinite recursion on the ordinals, and then to define

the Va's, and to prove a theorem to the effect that every set is a subset of some Va. Once

this theorem is in place, it is possible to define the rank of a set, z, as the least ordinal a

such that x C_ V, and, more importantly, for the definition of the Scott ordinal of a well-

ordered set (X, <) as the set of all well-ordered sets (Y, <) of least rank that are isomorphic

to (X, <).
Despite appearances to the contrary, replacement is not strictly required to prove that

every set is formed at some level of a cumulative hierarchy (JU Va. For recall that the theory

"I am indebted to Vann McGee for this example. Other limit ordinals A > w would do as well.
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Z +Vz3aBy(y = V As z C y), where "y = Va" abbreviates:

3f(Fnc(f) A Dom(f) = a + 1 A Vfl < a Vy4y E ff(P) ++ 3A < P (y C f(A))] A f(a) = X).

Now, this theory may undoubtedly seem ad hoc or unnatural as a version of Zermelo set

theory, but it certainly provides us with a setting in which Scott's plan can be carried out

without incident.

A more natural presentation of set theory that would serve the same purpose is due to

Richard Montague and Dana Scott, who developed an axiomatization of set theory designed

to enforce the cumulative picture that dispenses with replacement entirely. Instead, they

started with the notion of "partial universe" as primitive and showed how a remarkably

simple set of axioms for sets and partial universes is sufficient to assert the first-order

content of the picture of the set-theoretic universe as a cumulative hierarchy of stages or

"partial universes." Scott, in particular, moved to a two-sorted language with variables

x, y, z... for sets, and variables V, V', ... for partial universes, and produced axioms

governing them. 55 The axioms of Scott's theory are those of extensionality and separation,

an accumulation axiom,

Accumulation: VVxz(a E V ++ VV'(V' E V A V' V x C V)),

which makes sure that the members of a level are the members and subsets of previous

levels (the levels are ordered by the element-set relation), and an axiom of restriction,

Restriction: Vx3V x C V,

which states that every set is included in some level. It can be shown that all the axioms

of Zermelo set theory except for choice and infinity follow from these axioms alone. From

our point of view, however, the principal interest of the Scott axioms is that they allow us

to formulate a variant of Zermelo set theory that captures the cumulative hierarchy view

of the set-theoretic universe. To obtain such a theory, it is enough to adjoin to the Scott

axioms a suitable axiom of infinity asserting the existence of a limit stage.

"sThe move to a two-sorted language is just a matter of convenience; (Potter, 1990) for example contains
a development of Scott's axiomatization in the standard one-sorted language of set theory.

72



CHAPTER 2. MODERN SET THEORY AND REPLACEMENT

The development of 3cott's theory of ordinals is now routine. Since Scott's axiom of

restriction permits one to prove that every set x is a subset of some level V, one can define

V(x) as the E-least level V such that x is a subset of V. And then we can define the Scott

ordinal of (X, <) as the set of well-ordered sets (Y, <) of E-least level. In addition, it is now

possible to define the usual operations of ordinal sum, multiplication, and exponentiation

without appeal to the general method of transfinite recursion. 56

To summarize, even though von Neumann's theory of ordinals and the development of

transfinite recursion undoubtedly supplies us with compelling reasons to accept replacement,

the beginnings of an alternative theory are available to someone who may still be reluctant

to accept the axiom.

Transfinite recursion. The other important development in modern set theory that re-

quires unrestricted replacement is the method of definition by transfinite recursion. Though

the method of transfinite recursion on a well-founded relation is perfectly general, it will

be enough for present purposes to consider the case of E, the element-set relation. One

formulation of transfinite recursion that uses first-order variables for classes states that,

given a class A, perhaps a proper class, that is, a class that is not a set, if G : A x V -+ V

is a functional relation, then there is a unique functional relation F : A -+ V such that for

each x in the class A:

F(x) = G(x, F[{y E A : y E ),

where Fr{y E M : y E x} = {F(y) : y E M A y E x}. When the transfinite recursion

theorem is reworded in the usual manner to avoid reference to classes in favor of reference to

formulas, we obtain a theorem schema of Zermelo-Fraenkel set theory, and a useful theorem

schema, too. The schema of transfinite recursion may be viewed as a schema for introducing

defined functions; given a functional term 'F(x, y)' implicitly defined by the recursion, the

transfinite recursion schema states that we can explicitly define it by constructing a formula

of the language of Zermelo-Fraenkel set theory that defines a functional relation that satisfies

the recursion clause.

"Michael Potter has developed the theory in detail in (Potter, 1990).
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Now, the interesting question is whether the general method of definition by transfinite

recursion can be sustained in the absence of replacement. Two potential difficulties present

themselves. One is the possible inability of different versions of Zermelo set theory to

ensure existence; what guarantee do the Zermelo axioms provide that, given a definition

by transfinite E-recursion, there is a functional relation that satisfies the recursion? The

other is their possible inability to ensure uniqueness; what guarantee do they provide that,

if there is a functional relation satisfying the recursion, then there is no other such relation?

One place in which one makes essential use of replacement is in the proof that, given

a transfinite definition of a functional relation on a class, there is a functional relation

satisfying the recursion which is defined on all of the members of the class. In view of the

results of the first part of the chapter, we can see that, quite often, the axioms of all the

different versions of Zermelo set theory will not be able to ensure that, given a definition

by transfinite recursion on a class, there is a functional relation defined on all the members

of the class, and which satisfies the recursion clause. To illustrate this situation, consider

the following definition by transfinite recursion on On, the class of all the ordinals:

Va = U{PVs : 3 < a},
and recall that none of the variants of Zermelo set theory we have considered have the

resources to justify the existence of a functional relation which both satisfies the recursion

and is defined for all the ordinals; some of them cannot prove the existence of V,, none

of them can prove that if a limit ordinal A exists, then so does V, exist. This situation is

not alleviated by the addition of what we have called countable replacement. To obtain

a model of Zermelo set theory plus countable replacement in which there is no functional

relation satisfying the recursion, consider the structure (H(:.,), E n(H(Z1,) x H(fl,)).

This structure is a model of Zermelo set theory plus countable replacement which contains

wl as a member, but which does not contain V,,, a set of cardinality 1,,.

It is an intriguing question whether the axioms of Zermelo set theory have the resources

to prevent more radical failures of existence, perhaps due to the existence of definable

infinite descending E-sequences. 5 7 The standard proof of the existence of a functional

57The fact that the infinite descending E-sequences we found in models of Zermelo set theory are definable
is crucial. The mere fact that there are non-well-founded models of (first-order) Zermelo-Fraenkel set is no
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relation introduced by transfinite recursion on a certain class constructs the functional

relation from approximations on initial (E-)segments of the class satisfying the recursion,

which can be shown to exist by appeal to the principle of E-foundation and replacement.

Now: given the fact that the principle of E-induction fails in certain models of Zermelo set

theory, the intriguing possibility emerges of a class none of whose members is in the domain

of a partial function satisfying the recursion. 58

What the existence of models of Zermelo set theory with definable infinite descending

E-sequences can be used to establish is that, given a definition by transfinite recursion,

the axioms of Zermelo set theory cannot guarantee the uniqueness of a functional relation

satisfying the recursion. To that purpose, we can simply use the construction (V,+w, Enew

n(v,,, x V,,+,)) of Theorem 5. For recall that this is a model in which the sets Zo, {Zo},

{ {Zo}}, ... form a (definable) infinite descending Ene,-sequence of members of V,+,. Now:

given the functional relation y = {x}, take a simple definition by transfinite recursion on

the members of the infinite descending Enew-sequence Zo, {Zo}, { {Zo } },...

F(x) = {F[{y E {Zo, {Zo}, {{Zo}}, ...} : y E x}},

This rveursion is supposed to define a functional relation on the class {Zo, {Zo},{ {Zo})},...}

which assigns to each member of the sequence the unit, according to Eew, of whatever it

assigned to its immediate E.,w-predecessor - observe that, again according to Enew, each

member of the sequence has a unique predecessor. The trouble is that little manipulation

ought to convince us that F1 and F2 are two different functional relations that satisfy the

recursion clause:

FI(x) = x. (Thas: Fi(Zo) = Zo, F-({Zo}) = {Zo}, F({{.Zo})) = {Zo,...

F2 (x) = Ux. (Thus: F2(Zo) = {Zo}, F2 ({Zo})= { {Zo}}, ). )

Surely if F1 is the identity function restricted to the members of the sequence Zo, {Zo},

{{Zo}}, ..., then it satisfies the recursion; it assigns to each member of the sequence the

unit set, according to Enew, of what it assigned to its immediate Enew-predecessor, that is,

obstacle for us to be able to use transfinite recursion, for all these models are models of all of the instances
of the pinciple of E-induction, too.

5s8 t is not obvious, for example, that, given a definable infinite E-descending sequence, one can show
that there is a functional relation, rk, defined on the members of the sequence which satisfies the recursion:
rk(z = U{rk(y)+ 1: y E .
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it assigns to it the unit set of its predecessor. But, similarly, if F2 is the functional relation

that assigns to each member of the sequence its Enew-immediate predecessor, then it also

assigns to each member of the sequence the unit set of what it assigned to its immediate

Ene,-predecessor, that is, it assigns 6o it the unit set of the immediate En,,,-predecessor of

its Enew-predecessor, which is no other than its immediate Ene,-predecessor.

The moral seems inescapable: as they stand, common versions of Zermelo set theory are

inadequate to sanction the general method of definition by transfinite recursion. Neverthe-

less, it is not difficult to think of possible repairs one could use to remedy this situation.

What is required for the usual proof of uniqueness to ensure that, given a definition by

transfinite recursion, if there is a functional relation satisfying the recursion, then it is

unique is the derivability of all instances of the principle of E-induction. But this could be

achieved by the adoption, for example, of an axiom asserting the existence of the transitive

closure of every set, or, perhaps less economically, by the adoption of countable replacement.

The full exercise of replacement would still be required to ensure that, given a definition

by transfinite recursion on a class, there is a functional relation which both satisfies the

recursion and is defined on all the members of the class, and this should be admitted as

further evidence in favor of the replacement axiom.

2.4 Conclusion

I have argued that it is a mistake to regard replacement as a mere closure postulate on the

ordinal levels of the cumulative structure with few or no applications within the first w + w

levels of the cumulative hierarchy. In contrast with this picture, a picture of replacement

has emerged as a principle of set construction which is required even to ensure that the cu-

mulation of sets described by the axioms of set theory reaches the stage w in the cumulative

hierarchy. And we have seen that there are other important, often neglected applications

of replacement are required at remarkably low levels of the cumulative hierarchy. Most of

these involve instances of replacement on a countable set, and may not seem to provide

us with compelling reasons to accept the full force of replacement. What they establish,

however, is that it would be ill-advised to abandon the axiom in the absence of a suitable
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replacement.

Even after the claim that the applications of replacement are rare and exotic has been

corrected, the question remains of why we should accept replacement in its unrestricted

form, that is, replacement be it replacement on a countable set ot on an uncountable set,

when its applications on uncountable sets still seem recondite. I have argued that the best

case for replacement comes not from intuitive considerations about the concept of set, but

rather from the fact that, in its absence, it is no longer possible to develop von Neumann's

theory of ordinals, and, more importantly perhaps, the fact that the general method of

transfinite recursion is no longer sustained. With transfinite recursion in place, one is in

a position to describe and assert the content of the modern cumulative view of the set-

theoretic universe, and, even though this can be indirectly be accomplished without appeal

to replacement, it is plausible to suppose that no other natural addition to the axioms of

Zermelo set theory achieves this. Though, in the end, these may not be conclusive reasons

to in favor of replacement, they certainly show that it cannot be abandoned without a

significant cost.
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Chapter 3

A No-Class Theory of Classes

In the present chapter we shall be concerned with the in the plural: the inhab-
itants of London, the sons of rich men, and so on. In other words, we shall be
concerned with classes.

Bertrand Russell, Introduction to Mathematical Philosophy, p. 181.

3.1 Introduction

George Boolos (Boolos, 1984, 1985) developed a plural interpretation of second-order set

theory. Boolos observed that plural quantification does not require a separate specification

of the range of plural variables once the range of individual variables has been specified, and

exploited this feature to argue that, if we identify second-order quantification with plural

quantification, then we can both let the first-order variables of the language of second-order

set theory range over all the sets there are and insist that there need not be a separate

domain of second-order entities over which the second-order variables of the language range.

In this chapter, we shall make use of the apparatus of plural quantification to interpret

both two- and one-sorted first-order impredicative theories of classes, much in the spirit

of a suggestion of Richard Cartwright in (Cartwright, 1998). We are going to see that a

plural interpretation of impredicative theories of classes has a number of advantages over
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other, more traditional accounts of the set-class distinction, and that it provides us with

the machinery necessary to carry out recent, important developments in contemporary set

theory.

Much very important and very interesting work in set theory in the last two decades

has been concerned with large cardinals that have been characterized in model-theoretic

terms that are not directly formalizable in the language of standard set theory, by which I

mean, as usual, Zermelo-Fraenkel set theory plus the axiom of choice (ZFC). Most of these

cardinals are supposed to be the least ordinal moved by a certain injective map other than

the trivial identity map of the universe of all sets, V, into some transitive E-model, M, of

ZFC with On C M (an inner model of ZFC) that preserves first-order formulas - x, ...,

x, satisfy the first-order formula (xl, ... , xn) if and only if their images j(x 1), ..., j(zn)

satisfy i(vl, ..., vn) in M. The stronger the closure conditions imposed on the inner model,

the stronger the corresponding large cardinal principle.

Now, one difficulty with large cardinal hypotheses asserting the existence of such cardi-

nals is that their direct formalizability both upon the formalizability of the relation of class

satisfaction for formulas of the language of ZFC, which is not quite formalizable in ZFC

on account of Tarski's result on the undefinability of truth, and the existential assertion

of a class that is not a set, a map j of V into some inner model of ZFC. To be sure, if

the principal impediment for the formalizability of such statements consisted merely in the

undefinability of the class satisfaction relation, then perhaps we could enrich the language

of ZFC with a new, implicitly defined satisfaction predicate, and then proceed to formalize

the necessary model-theoretic concepts in terms of that predicate. Surely we could, but

a more persistent problem would remain. For the enriched language would still lack the

resources necessary to assert the existence of class that is not set, such as a map j of the

universe V into some inner model of ZFC.

The move to an impredicative theory of classes like Morse-Kelley set theory (MK) sug-

gests itself. For MK provides us with the resources necessary to directly formalize the class

satisfaction relation for the formulas of ZFC and to make existential assertions of the desired

sort. This theory is often formulated in a two-sorted, first-order language, L, with lower-

case variables, z, y, z, ... for sets, and uppercase variables X, Y, Z, ... for classes. This
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language, C, contains a two-place predicate letter, "E," read: "is a member of."' There are

two axioms that are concerned with classes:

Class Extensionality: Vz(x E X * z E Y) -+ X = Y

Impredicative Comprehension: 3XVxz( E X E X)

where 4 is a formula in which the variable 'X' does not occur free. Two other axioms of

the Morse-Kelley system are:

Separation: VXVxzyVz(z E y +* z E z A z E X),

and

Replacement: VX(X is a function -+ Vz3yVz(z E y ++ 3w(w E x A (w, z) E X))).

The rest of the axioms of MK coincide with their counterparts in ZFC.

Now, MK is both a theory suited to formalize the relation of ciass satisfaction for formu-

las of ZFC and a theory with the resources necessary to assert the existence of impredicative

classes of the desired sort. Nevertheless, it should be noted that MK is a theory strictly

stronger than ZFC; not only does MK formalize the relation of class satisfaction for for-

mulas of ZFC, it even proves that there is such a class as the class of (Gbdel codes of)

true formulas of ZFC. Therefore, MK proves tho consistency of ZFC, and thus is not a

conservative extension of ZFC.

Before I comment on the difficulties involved in the interpretation of a theory like MK,

let me briefly mention that another set theory that encompasses sets and classes is Gbdel-

Bernays set theory (GB), the theory that results from MK when the axiom schema of

impredicative comprehension is weakened to:

Predicative Comprehension: 3XVz(x E X ++ 4)

1This is just a matter of convenience, since the theory could be formalized in a one-sorted language with
variables for classes just as well.
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where q is a formula in which no class variables are quantified. All of the theorenms of ZFC

are the Ims of GB, but in addition, GB is a conservative extension of ZFC: if q is a formula

of ZFC that is a theorem of GB, then 0 is a theorem of ZFC as well. For if M is a model

of ZFC that is a model of -- , then it is not difficult to expand it into a model GB that

is a model of -nq with exactly the same sets.

It is not uncommon for set theorists who make use of predicative classes to take comfort

in the fact that a predicative theory like GB is a conservative extension of ZFC. For, they

reason, even if classes are regarded as a valuable heuristic resource, the fact remains that

predicative classes are ultimately dispensable for purposes of establishing set-theoretic facts

that are formalizable in standard set theory. The problem with this view, however, is that

we are often interested in facts which are not directly formalizable in standard set theory.

For one example, most of the large cardinal hypotheses we have just mentioned involve the

existence of elementary embeddings which are not quite definable as the range of a formula

6(x, y) of the language of ZFC.

3.2 The trouble with classes

Both Morse-Kelley (MK) and Godel-Bernays (GB) set theories are first-order interpreted

theories; their lowercase, or set variables of the language are supposed to range over all

sets, and a formula "x E y" is taken to be true (relative to an assignment of values to the

variables) just in case the set assigned to the variable 'x' is a member of the set assigned

to the variable 'y'. The trouble is that, in order to complete the interpretation, we need to

specify both the range of the uppercase, or class variables of the language and the conditions

under which a formula "x E Y" is to be evaluated as true relative to an assignment of values

to the variables. This is the general problem we are going to discuss in this chapter.

The first point to be noticed is that the range of the uppercase, or class variables of the

language must be different from the range of the lowercase, or set variables of the language;

by predicative comprehension, the sets that are not members of themselves are the members

of a class, but they cannot be members of a set on pain of contradiction - we will use the

term "proper class" to refer to those classes that are not sets. In other words, set theories
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that encompass both sets and classes must distinguish certain classes, proper classes, from

sets.

This need not be a problem, provided that we interpret the lowercase, or set variables

of the language to range over the members of some set - perhaps even one of the form

V, for some suitable ordinal K. For then, we could just interpret the class variables of

the language to range over the power set of the set over which the set variables range -

V,,+, - V, in the case in which the set variables of the language are taken to range over

V,. The problem I would like us to confront in this chapter arises when we take the set

variables of the language to range over all the sets there are. For it is only then that we are

forced to confront the question of what are (proper) classes, if not sets.

A common picture of the set-class distinction is that, while sets are collections - where

the term "collection" is used in a generic fashion to refer to entities that may do duty for

sets and classes - that are formed combinatorially from their elements in the cumulative

hierarchy, proper classes are collections that are "too big" to form sets. Thus, it is often

remarked that the distinction between sets and proper classes is motivated by a distinction

between two different conceptions of collection. According to a "combinatorial" conception

of collection, collections are combinatorially formed from their elements.2 According to a

"logical" conception of collection, the characte istic mark of a collection is there is a logical

collection that corresponds to each partition of the universe into two categories depending

on whether objects are members of it or not. The combinatorial conception of a collection

is sometimes supposed to underlie the picture of sets as formed in levels or stages of the

cumulative hierarchy, and thus set theory is often viewed as the most comprehensive theory

of combinatorial collections. It is, for example, in terms of this contrast that it is often

explained that, while Frege and Russell were profoundly disturbed by the set-theoretic

antinomies, Cantor remained unmoved by them.

2This is admittedly vague, as different theorists use the label "combinatorial" differently. A number
theorists, most notably Penelope Maddy, use the term "combinatorial collection" to refer to sets formed
in the cumulative hierarchy, but other theorists are at pains to insist that the notion of "combinatorial
collection," which can presumably be traced to Cantor, is independent from the iterative conception of set,
which can be argued to have played no role in the development of set theory until the late 1940s. However,
even if this distinction is made, it is still plausible to suppose that the iterative conception presupposes the
notion of combinatorial collection, and thus to think of iterative sets as a species of combinatorial collections.
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There are important differences between the two conceptions of collection. For one, log-

ical collections are often supposed to be more enccmpassing than combinatorial collections:

no combinatorial collection contains all collections, but there certainly is a logical collection

of all collections. And yet, according to some accounts of the distinction, 3 there is another

respect in which combinatorial collections are more encompassing than logical collections.

For example, there are, on these accounts, more combinatorial collections of natural num-

bers than there are logical collections of them. And the reason for this is that, on these

accounts, a logical collection exists only as the extension of a predicate, and there are com-

binatorial collections - or sets - of natural numbers whose members are the extension of

no predicate.

Another difference is that, if objects, logical collections would seem eligible to be mem-

/bers of themselves. Thus, for example, since the logical collection of all infinite collections

is itself infinite, it must be a member of itself. And yet, since combinatorial collections are

combinatorially formed from their elements, which must be given in advance, no combina-

torial collection can contain itself as a member.

But what is perhaps the most important difference between combinatorial collections

and logical collections is that the assumption that logical collections are objects gives rise to

the set-theoretic antinomies. Russell's paradox arises from the assumption that there is such

an object as the logical collection of non-self-membered collections. Mirimanoff's paradox

arises from the assumption that there is a logical collection of well-founded collections, and

the Burali-Forti paradox arises from the assumption that there is a collection of all ordinals.

As a result, though the combinatorial conception of collection may be supposed to provide

us with a motivation to regard set theory as the most comprehensive theory of combinatorial

collections, the problem arises whether there is an intelligible and coherent account of the

notion of logical collection that may help us provide an account of the set-class distinction.

The problem is not all that urgent as far as predicative theories of classes are concerned;

in practice, since the axiom of comprehension of GB doesn't require the existence of classes

other than those which are determined by first-order formulas with quantifiers that range

'For example those in (Maddy, 1990) and in (Lavine, 1994).
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over sets, its classes are often treated via circumlocution in the metatheory. The situation

is entirely different in the case of impredicative theories of classes. In MK, for example,

there are classes that are dletermined by formulas with quantifiers that range over classes,

and thus we must deal with the question of what exactly the items class variables range

over are.

Before I comment on what is perhaps the most common solution to this problem, let

me stress that the difficulty under consideration arises exclusively on the, otherwise entirely

reasonable, assumption that we can quantify over all sets. For example, it is not a problem

for those who adopt the point of view, which Ernst Zermelo hinted at in (Zermelo, 1930) and

Charles Parsons subsequently developed in (Parsons, 1974), according to which the phrase

"all sets" is hopelessly ambiguous: whenever we use it, we quantify not over all the sets

there are but only over the members of a certain set - presumably a V., for a sufficiently

large K. The advantage of this view is that there remains a mitigated sense in which proper

classes can be reduced to sets. For there is, according to Parsons, a "higher" perspective

from which what we regard as proper classes are sets which happen to fall outside the scope

of our quantifiers from the original perspective. For present purposes, however, we will

simply assume that we manage to quantify over all sets there are, and hence that proper

classes cannot be reduced to sets even in the manner suggested by Parsons. 4

A much more common reaction to the difficulty that concerns us is to admit that we

can indeed quantify over all the sets there are, but to posit, in addition to the existence

of sets, the existence of additional gigantic set-like entities, only too encompassing to be

sets. Classes are then supposed to form an additional layer of the cumulative hierarchy:

For example, if V is V, for K an inaccessible, then some theorists conceive of the classes of

MK as indistinguishable from what would be an additional layer of sets, V,+1 - V,.

What is perhaps the most serious difficulty with this response is that, once we conceive

of proper classes as gigantic set-like objects, only too encompassing to be sets, then we have

to concede that not even the theory of classes can be the most comprehensive theory of

4(Parsons, 1977) combines a relativistic view of the set-theoretic quantifiers with the thought that the
distinction between sets and classes can be explained in terms of the different intensional principles they
satisfy. Unfotunately, a discussion of Parsons' account is beyond the scope of this chapter.
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collections. For just as the sets that are not members of themselves can be collected into

a class, there is no reason to suppose that the classes that are not members of themselves

cannot be collected into some other set-like entity, a super-class perhaps. Thus there must

be a theory of super-classes some of whose variables range over these new set-like entities.

But surely there is no reason to stop there: it must be possible to collect the super-classes

that do not belong to themselves into a new sort of set-like entity, a hyper-class, .... And

the result of course is an iteratively-generated hierarchy of class-theoretic universes at the

bottom of which lie the sets recognized by set theories like ZFC. Though perfectly coherent,

this is a view that strikes one as unstable, and certainly not preferable to a view of classes

that is compatible with the view that regards set theory as the most comprehensive theory

of set-like entities.

3.3 Plural quantification and classes

A crucial, but tacit assumption in the statement of the difficulty is that reference to classes

is to be construed either as singular reference to objects of one sort or another, or else

as illusory. According to this common assumption, set theorists who speak of the class of

all ordinals, On, or of the class of all sets, V, for that matter, must either be taken to

refer to gigantic set-like containers that are only too large to be sets or else such talk must

not be taken literally. Yet, as Richard Cartwright has recently suggested in (Cartwright,

1998), another, often neglected alternative is to construe reference to classes not as singular

reference to gigantic set-like entities other than sets, but as plural reference to sets. Thus,

set theorists who speak of the class of all ordinals, On, may be taken to refer not to

some gigantic ordinal-container, but rather to refer to the ordinals themselves in disguised

notation. The aim of this chapter is to exploit the resources of plural quantification and

plural reference to develop this suggestion in detail. Plural quantification, in the sense of

(Boolos, 1984), provides us with the resources necessary to simulate "logical collections,"

and to nevertheless maintain that set theory is the most comprehensive theory of set-like

entities, and not merely those lying at the bottom of a certain hierarchy of class-theoretic

universes. The proposal we shall consider consists in the interpretation of each first-order
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formula of a theory of classes with class variables in it as a plural assertion about sets. To

that purpose, we will need to resort to the apparatus of plural quantification. We shall need

plural pronouns (variables), a plural predicate to link singulars with plurals: "is one of,"

and a plural quantifier: "There are zero or more," as explained in (Boolos, 1984).

What I would like to do now is to argue that this apparatus supplies us with the resources

necessary to simulate "logical collections" and thus provide an attractive interpretation of

impredicative theories of classes in which set variables are taken to range over all sets there

are. To that purpose, I take my cue from recent comments on Cantor's explanation of the

concept of set by Richard Cartwright. In a recent paper (Cartwright, 1998), commenting on

Cantor's explanation of the concept of set, he suggests that we can make sense of Cantor's

concept of an inconsistent multiplicity (collection) by taking the truth of:

(1) There are some sets that are such that no one of them is a member of itself and
such that every set that is not a member of itself is one of them,

to be enough for there to be a collection of sets that are not members of themselves -

enough, that is, for the truth of the sentence:

(2) There is a collection of sets such that no one of them is a member of itself and
such that every set that is not a member of itself is one of them.

It is important to observe that the truth of (1) is all it is required for the use of the

plural description "The non-self-membered sets" to be legitimate. Then, the thought is that

perhaps we can take the use of the term "collection," in (2), to be merely a device to refer in

the singular to what is perhaps more usual to refer to in the plural: the non-self-membered

sets. This move will permit us to maintain that there are no set-like entities other than sets

and to nevertheless admit the truth of (2). In fact, unless we take the truth of (2) not to

require the existence of a set-like entity which encompasses all the non-self-membered sets,

we will be forced to conclude that (2) is false.

When the term "collection" is construed as a mere device to refer in the singular to what

can otherwise be referred in the plural, it would seem that, as Richard Cartwright has put

it, "a collection of so-and- sos, in Cantor's sense, : nothing over and above the so-and-sos
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it consists of."5 And this is the proposal I want to consider here: to conceive of classes, be

them proper or improper, as collections - or pluralities - of sets, which are nothing over

and above the sets they consist of.

I should note that the idea that we construe the term "collection" as a purely singu-

larizing device is not entirely new, as it is explicitly elaborated in (Cartwright, 1993) and

it certainly echoes Bertrand Russell's "classes as many," as contrasted with what he calls

"classes as one" in The Principles of Mathematics.6

An important consequence of Cartwright's proposal is that, in this purely singularizing

use of the term "collection," no collection is a set.7 This represents a departure from the

use of the term "collection" by virtually all theorists as a generic term used to refer to

entities that may do duty for sets and classes, but I, for one, know of no better account of

the distinction between logical and combinatorial collections.

Notice that, even on this singularizing use of the term "collection," we can still make

sense of the distinction between logical and combinatorial collections as a distinction that,

for example, classifies some sets as a logical collection just in case they are all and only

those sets that fall under one side of a certain partition of the universe. And, similarly, we

can still say that some sets form a combinatorial collection just in case there is a stage of

the cumulative hierarchy at which they all occur simultaneously.

The other important difference between sets and collections, in Cartwright's sense, is

that, while sets are obviously members of other sets, collections cannot enter into the

element-set relation, which is a relation which takes two unmistakably singular arguments:

the planets of the solar system are a collection, but, as there is more than one of them,

they cannot be a member of a set. And, likewise, no object can be a member of them -

even though, of course, an object may be one of them. No matter: even if sets are to be

5Cf. (Cartwright, 1998), p. 16.

"Helen Cartwright writes that "collection," in this use, "serves only to singularize a plural nominal."
Russell's distinction appears in (Russell, 1903), pp. 68-69. Of special interest for purposes of the present
discussion is Russell's suggestion that "it is correct to infer an ultimate distinction between a class as many
and a class as one, to hold that the many are only many, and are not also one" on p. 76.

7Modulo the concern that if x is a set, then (the collection which consists of) the sets that are identical
with z would seem to be indistinguishable from the set x itself - even though not, of course, from the
singleton of z.
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distinguished from collections, in Cartwright's sense, it is evident that every set bears an

intimate relation to the collection of its members; to use a phrase of Paul Bernays, every set

represents a collection -- in the sense that the members of the set are precisely the objects

each of which is one of the collection.

From the point of view we have espoused here, only "combinatorial" collections, that is,

collections that are coextensive with sets formed in the cumulative hierarchy, are represented

by a set. No other collection, such as for example the collection of all sets, is represented

by a set. And thus, there remains an important sense in which set theory is the most

comprehensive theory of "combinatorial collections." But now, an important part of the

interest of the point of view under consideration is that logical collections are no longer

problematic: it is a truism that, given a division of the set-theoretic universe into two

parts, there is a collection of all and only those sets on each part. Thus, what is perhaps

the most salient difference between logical and combinatorial collections is that, unlike

combinatorial collections, not every logical collection is represented by a set.8

The proposal I want to explore now is the suggestion that we conceive of "logical col-

lections," or classes, as collections, in Cartwright's sense, and that, when the range of the

set variables of the language of the theory of classes are taken to range over all sets, we

construe the class variables of the language as plural variables that range over collections,

in Richard Cartwright's sense, of sets. The principal advantage of this interpretation is that

it does not require a separate specification of the range of class variables after all - hence

the name "no-class theory of classes."

A plural interpretation of two-sorted Morse-Kelley set theory. The plan now is to

develop a plural interpretation of a two-sorted, first-order Morse-Kelley theory of classes.

This interpretation will treat the lowercase, or set variables of the language to range over

the domain of all sets, but will treat the uppercase, or class variables of the language as

plural variables that range over that domain. The class quantifier "3X" will be treated as a

5Logical collections are no longer problematic, but it may be protested that sets, objects allegedly rep-
resenting collections become somewhat mysterious. Perhaps so, but this is just a version of the traditional
metaphysical problem of understanding the relation a set bears to its members; what the distinction between
sets and collections, in Cartwright's sense, does is to highlight an existent problem, not to generate one.
Thanks are due here to Richard Cartwright.
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plural quantifier in the spirit of (Boolos, 1984); that is, if 4* is the result of substituting an

occurrence of "--x = x" for each occurrence of "x E X" in k, a formula of two-sorted MK,

then a formula of the form "3X#" of two-sorted MK is interpreted to be true if and only

if either there are some sets that are such that 4 or r*. To complete the interpretation,

we must now specify the conditions under which all the different atomic formulas of the

language ofi two-sorted MK are to be interpreted as true relative to a suitable assignment

of values to the variables that occur in them.

This problem reduces to the problem of specifying the conditions under which each

formula of the form "z E y" and "x E Y" is to be interpreted as true relative to a suitable

assignment of values to the variables that occur in them. For the two place predicate 'e',

is, in primitive notation, never flanked by another combination of set and class variables.

Formulas of the form "x E Y" and "X E Y" are later introduced to abbreviate, respectively,

the formula By(Vz(z E y ++ z E Y)Ay E x) and the formula 3x(Vz(z E x - z E X)Ax E Y).

The conditions under which formulas of the form "x E y" and "x E Y" are taken as

true relative to an assignment of values to its variables are given by two clauses:

(i) A formula "x E y" is true relative to an assignment of values to the variables if
and only if the set assigned to the variable 'x' is a member of the set assigned to
the variable 'y'.

(ii) A formula "x E Y" is true relative to an assignment of values to the variables if
and only if the set assigned to the variable 'x' is one of the sets assigned to the
plural variable 'Y'.

Abbreviate "3y(Vz(z E y ++ z E Y)" as "y represents Y," that is, a set, z, represents a

class, Y, just in case "z is the set of exactly those sets which are such that a set x is one of

them just in case x is one of the Ys." Or, a bit less verbosely, "Y consists of exactly those

sets that are members of z." Two immediate consequences of (i) and (ii) are:

(iii) A formula "Y E x" is true relative to an assignment of values to the variables just
in case the sets assigned to the plural variable 'Y' are represented by a member of
the set assigned to the variable 'z',

(iv) A formula "X e Y" is true relative to an assignment of values to the variables just
in case the sets assigned to the plural variable 'X' are represented by one of the
sets assigned to the plural variable 'Y'.
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One technical point deserves mention: on the plural interpretation just given, the symbol

"=" can no longer be taken to denote the identity relation when flanked by class variables.

Identity is a relation between individuals, i.e., the relation an individual bears to itself and

to no other individual. But if we construe talk of classes as plural talk of sets in disguised

notation, we should not expect classes, or collections in Cartwright's sense, to enter into the

identity relation. This is not much of a loss, since, on the plural interpretation just given,

we can still treat the axiom of class extensionality:

Class Extensionality: Vx(x E X + x E Y) ++ X = Y

as a definition of the symbol '=', which, in primitive notation, will disappear, except when

flanked by lowercase, or set variables. Now, the fact that we use the symbol '=' indicates

that we are committed to the usual requirements of reflexivity, symmetry, transitivity, and

substitutivity, by which I mean, as usual, the schema: X = Y -+ q(X) + qS(Y). In primitive

notation, however, all the atomic formulas in which class variables appear are of the form

"x E Y," and thus we can rest assured that all instances of substitutivity will be derivable

from class extensionality in combination with definitions of "X E y" and "X E Y."

The axiom of impredicative comprehension of the Morse-Kelley system:

Impredicative Comprehension: 3XVx(x E X 4 4(x)),

where 4 is a formula not containing X free, will now be true just in case: either there is

no set x such that O(x) or there are some sets Xs such that a set x is one of the Xs if and

only if O(x). This should strike as a logical truth; if false, it would be the case that there

is a set x such that O(x), but there would be no sets Xs such that a set x is one of the Xs

just in case q(x), and that just could not be.

As for the other two axioms of two-sorted MK with uppercase, or class variables, the

axiom of separation,

Separation: VXVx3yVz(z E y 4 z E x A z e X),

will, on the plural interpretation, be true just in case: given certain sets Xs, if x is a set,

then there is a set y whose members are exactly those members of ax which are one of the

Xs. And the axiom of replacement,
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Replacement: VX(X is a function -+ Vx3yVz(z E y ++ 3w(w E x A (w, z) E X))).

will now read: given certain ordered pairs Xs no two of which differ in their second compo-

nent but not in their first component, if z is a set, there is a set, y, of exactly those sets that

appear as a second component of one of the Xs with a member of x as a first component.

Thus, on the plural interpretation now developed, the strength of these axioms amounts to

that of their counterparts in second-order set theory.

The remaining axioms of Morse-Kelley set theory will of course retain their customary

reading. This completes the plural interpretation of the two-sorted version of the Morse-

Kelley system, an interpretation that takes the lowercase, or set variables of the language

to range over all sets there are, and takes the uppercase, or class variables of the language

to be plural variables that range ove'; the domain of all sets, too. We have interpreted the

two-place predicate "E" to denote a relation we have defined in terms of the element-set

relation and the relation "is one of," that is, the relation (i) a set bears to another just in

case it is a member of it, (ii) a set bears to certain sets just in case it is one of them, (iii)

certain sets bear to another set just in case they are represented by some member of the

set, and, finally, (iv) certain sets bear to certain other sets just in case the former sets are

represented by one of the latter sets.

Effective as it is when the domain is taken to encompass all the sets there are, it is

important to note that the plural interpretation of two-sorted MK is not forced upon us in

circumstances in which the domain of the interpretation constitutes a set. For example, if

the domain of the lowercase variables is V, for a suitable n, then it is open to us to take the

uppercase variables of the language to be individual variables that range over the members

of V,+1.

This set-thro retic interpretation is, in the appropriate sense, isomorphic to the plural

interpretation which takes the set variables of the language to range over the members of V,.

Both interpretations coincide in the range they assign to the set variables of the language

as well as in their interpretation of the symbol 'E' when flanked by set variables. Now, to

each z E V,+1, a set in the range of the class variables on the set-theoretic interpretation,

there corresponds a collection, in Cartwright's sense, of members of z, which is in the range

of the class variables on the plural interpretation. Finally, a value of a set variable on the
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set-theoretic interpretation bears the interpretation of the symbol 'E' to a value of a class

variable on the set-theoretic interpretation just in case the former is a member of the latter,

that is, just in case the value of that variable on the plural interpretation is one of the sets

which correspond to the latter on the plural interpretation. 9

Furthermore, it is important to realize that the mere fact that we have provided an

alternative interpretation of the formalism doesn't change the fact that the underlying logic

of two-sorted MK, as most theorists conceive of it, is the standard predicate calculus. That

is, the range of theorems delivered by the logic of MK will remain unchanged even after we

provide a solution to the problem of specifying an interpretation of the formalism that lets

us take the set variables of the system to range over all sets. The fact remains, in particular,

that the theory is satisfied in a variety of countable models of different sorts. None of these

models interpret the formulas of first-order MK in terms of plurals, but some of them bear

witness to important facts concerning the deductive resources of the theory, as they indicate

that a variety of class-theoretic statements are not provable from the axioms of MK in the

context of the standard first-order predicate calculus.

A plural interpretation of one-sorted Morse-Kelley set theory. Thus far we have

developed an interpretation of a version of the Morse-Kelley system in which there are

two different sorts of variables, variables for sets and variables for classes. This notation

is convenient, but it disguises the fact that the underlying logic of the theory is the first-

order predicate calculus. A more perspicuous notation uses only lowercase variables as class

variables, and distinguishes sets from classes by the fact that the former but not the latter

satisfy the formula "3y z E y." A prominent example is developed in the appendix of

Kelley's General Topology, a one-sorted, first-order theory whose variables are interpreted

to range over classes. I now want to suggest that we can provide a plural interpretation of

Kelley's presentation of the theory of classes.

To that purpose, it would have probably been enough to realize that each formula

BTo make this perfectly precise would require us to code a "function" from the range of the class variables
of the set-theoretic interpretation to the range of class variables of the plural interpretation as a relation
that correlates a set in the range of the class variables of the set-theoretic interpretation to exactly those
sets that the "function" is supposed to assign to them. The reason for this is that, presumably, no functions
may take collections, in Cartwright's sense, as arguments or values.

95



CHAPTER 3. A NO-CLASS THEORY OF CLASSES

of Kelley's one-sorted presentation of MK translates into an equivalent formula in of the

standard two-sorted version of MK. To each formula of Kelley's theory of the form "x E

y" there corresponds a formula of the form "A E Y" of two-sorted MK, which in turn

abbreviates: 3x(Vz(z E x + +z E X) A x E Y), another formula of two-sorteq MK. Thus, we

are in a position to make use of the plural interpretation of two-sorted MK to generate a

plural interpretation of Kelley's theory.

This plural interpretation would treat all the lowercase variables of the theory as plural

variables that range over the domain of all sets. The existential quantifier "9x" would

similarly be treated as a plural quantifier, read: "There are zero or more," and the symbol

"E" will be treated as a two-place predicate letter that denotes a relation certain sets bear

to certain other sets if and only if the former are represented by one of the latter sets. The

result of this interpretation would take a formula of Kelley's one-sorted version of MK as

true relative to an assignment of values to the plural variables of the formula if and only

if its counterpart in two-sorted MK is true relative to that assignment. Thus, a formula

"x E y" is true relative to an assignment of values to the variables if and only if the formula

"X E Y" of two-sorted MK, or, equivalently, the formula "3x(Vz(z E x z E X) Ax E Y)"

of two-sorted MK, is interpreted as true relative to that assignment to its plural variables.

Otherwise put, we have that:

A formula "x E y" is true relative to an assignment of values to the variables if
and only if the sets assigned to the plural variable 'x' are represented by one of
the sets assigned to the plural variable 'y'.

Then, just as Kelley introduces the predicate "is a set," we can introduce a new predi-

cate, "is represented," into the language of Kelley's theory by means of the explicit defini-

tion:

x is represented if and only if By E y.o10

This predicate is now used not to distinguish sets from classes but to distinguish classes

that are represented by sets in the domain from classes that are not so represented. After

'oThe departure from Kelley's terminology is due to the fact that, in general, classes must be distinguished
from sets, as we take talk of classes as plural talk about sets in disguised notation.
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this distinction is made, we are still able to rephrase all our assertions about sets as assertions

about classes that are represented by a set in the domain. Thus, on the plural interpretation

explored in this section, the theory of classes becomes a theory of representation.

One point to be noticed is that, on its plural interpretation, Kelley's axiom of class

extensionality, Vz(z E x z E y) ++ x = y, would need to be strengthened in order

for it to serve as a definition of the symbol "=." The reason we would like the axiom

of class extensionality to serve as a definition of that symbol is again that, on the plural

interpretation we have developed, "=" cannot be taken to denote the identity relation, which

is a relation between individuals, but not a relation between collections, in Cartwright's

sense. The trouble with treating Kelley's axiom of class extensionality as a definition,

however, is that it would not guarantee the derivability of all instances of substitutivity,

which is the schema: x = y -+ 4(x) ++ 0(y). What we can do instead is to strengthen

Kelley's axiom of class extensionality to:

Class Extensionality: Vz((z E x ++ z E y) A (x E z ++ y E z)) ++ x = y,

an axiom which can in fact be used to prove each instance of the substitutivity schema.

It may now seem far from evident that the rest of the axioms of Kelley's one-sorted

system are verified when interpreted in plural terms. For example, consider Kelley's axiom

of impredicative comprehension:

Impredicative Comprehension: 3xVy(y is represented -+ (y E x +S (y)')

where q is a formula which does not contain x. I think it should be admitted that it is

not obvious that, on its plural interpretation, this schema adequately expresses the content

of the axiom of impredicative comprehension. And, in fact, it may even be wondered

whether all instances of this schema are true. To convince oneself of the truth of the plural

interpretation of impredicative comprehension, one may start by considering the plural

interpretation of its counterp;art in two-sorted MK:

3XVY(3yVz(z E y + z E Y) -+ (3yVz(z E y 4 z e Y) A y •e X (Y))).

For consider what needs to be the case for it to be true: either there are no sets Ys which

both are represented and satisfy q or, otherwise, there are some sets Xs which are such
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that, given certain sets Ys if a set y represents the Ys, then y is one of the Xs if and only

if the Ys satisfy 4, that is, O(Y).

To return now to Kelley's one-sorted system, it will be useful for present purposes to

treat a class abstract of the form "{x : x is represented A q(x) }" as a plural term referring

to exactly those sets representing sets xs which are such that W(x). 11 With this stipulation

in place, we can rephrase the content of Kelley's axiom as: given a formula 4, there are some

sets xs such that a set is one of the xs just in case it is one of {y : yrepresented A 0(y)},

or there are no sets ys such that 4(y). Or, in the singular, given a formula 4, there is a

collection, in Cartwright's sense, {y : yrepresented A 0(y)}, which consists of exactly those

sets representing a collection y such that 0(y), or there is no collection y such that 0(y).

And this should strike as a logical truth, too: either there are no sets ys which are both

represented and such that 0(y), or there are some sets xs such that a set is one of the xs if

and only if it represents some sets ys, which are such that 0(y). 12

As for the rest of the axioms of the theory, Kelley's axiom of subsets:

Subsets: If x is represented, then there is a y such that it is represented and for each z,
if Vw(w E z -+ w E x), then z E y,13

is now interpreted: If the xs are represented, then there are some ys which are represented

by a set and such that a set is one of the ys just in case it represents some zs such that a

set is one of the zs just in case it is one of the xs. Or, in the singular, if x is a collection, in

Cartwright's sense, that is represented by a set then there is a collection y that is represented

by a set and such that every set representing a collection z which consists exclusively of

members of x is one of the sets y consists of.

"This stipulation is quite useful in the general case, but it is not entirely adequate. For consider a class
abstract of the form ({ : x is represented A I). This would correspond to the plural description: "The sets
representing sets xs such that I," which would not seem to refer. This should not be a source of major
concern, however, as class abstracts will disappear in primitive notation.

"2A curiosity: once one realizes that all the instances of comprehension strike as logical truths, one may
reflect that the second-order closure of the impredicative comprehension axiom schema strikes as a logical
truth, too, which would be fine except for the little detail that, on the plural interpretation we have advanced
here, it does not make sense.

13In set-theoretic terms, Kelley's axiom of subsets asserts the existence of a superset of the powerset of a
set.
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An immediate consequence of Kelley's axiom of subsets is a version of the axiom of

separation of set theory: if x is represented, and z is a subcollection of x, i.e., for each

w E z, w E x, then z is represented, too. The reason is that if x is represented, then, by the

axiom of subsets, there is a collection, y that is represented and such that z E y. Therefore,

z is represented, too.

Abbreviate: {y : y is represented A y = x} by: {x}. 14 Then, another consequence of

the axiom of subsets is that if x is represented, then {x} is represented, too. For if x is

represented, then {y : y is represented A Vz(z E y -+ z E x)} is represented and it is the

case that Vz(z E {x} -+ {y : y is represented A Vz(z E y -+ z E X)}).15

As for the rest of axioms of Kelley's presentation, they can now be formulated:

Union: If x is represented and y is represented, so is x U y

where "x U y" is taken to refer to the collection {z : z E x V z E y}, i.e., the collection

consisting of exactly those sets that represent a collection which is represented by a set

which is either one of the sets x consists of or one of the sets y consists of.

Substitution: If f is a function and the domain of f is represented, then the range of f
is represented.

Amalgamation If x is represented, then {z : 3w(z E w A w E z)} is represented, too.

Regularity: If x $ 0, then there is a class y such that y E z A Vz(z E y -+ --z E ).

Infinity: There is a class y which is represented and such that 0 E y and Vz(x E y -
xU { xE} y).

Even Kelley's axiom of global choice is verified on the plural interpretation we have

developed. Kelley's axiom of global choice:

"As defined by class extensionality, when flanked by plural variables, the symbol "=" doesn't refer to the
identity relation but to the relation certain members of the domain bear to certain other members of the
domain just in case a set is one of the former just in case it is one of the latter sets.

'5 One could abbreviate {z : x represented A z z} by: 0, and then attempt to prove from Kelley's axiom
of subsets that, if a class x is represented, then so is 0. However, the interpretation of this term presents
problems of its own, and it is better to formulate and prove this theorem in primitive notation, where no
class abstracts occur. Similar remarks apply to the rest of the axioms Kelley formulates with the help of
class abstracts.
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Global Choice: There is a choice function f whose domain is V - {0}

reads: there are some ordered pairs fs which are such that if x $ 0 and the xs are represented

by a set, then there are ys such that x E y - the ys are represented by one of the xs -

and (x, y) is one of the fs, and, given some zs such that x E y, (s, z) is one of the fs iff

y = z. And this, again, should strike one as true.

This should convince us that we are in a position to develop the theory of classes just as

Kelley does in the appendix of General Topology. What we have done is to argue that there

is a perfectly coherent and intelligible interpretation of the theory on which the domain of

(plural) quantification is taken to be the domain of all sets; all we have done is to take the

variables of the theory as plural variables that range over that domain, and to interpret the

predicate "E" to denote the relation (a collection of) certain sets bear to (a collection of)

certain other sets just in case the former sets are represented by one of the latter sets.

Alternatively, if we want to interpret the theory of classes with respect to a domain

that constitutes a set, then we can take the class variables of the theory to range over

subsets of the domain and we can interpret the predicate "E" to denote the standard

element-set relation and the predicate "is represented" to refer to all and only those subsets

of the domain that are members of the domain. Indeed, since the underlying logic of

Kelley's theory is still the standard first-order predicate calculus, we would expect there

to be countable and other set-sized models that bear witness to the fact that a variety of

statements are not theorems of.Kelley's system.

Plural quantification and first-order set theories. A pleasant feature of the plural

interpretation of the theory of classes is that it highlights a distinction to be made between

two different roles plural variables play in the plural interpretation of impredicative theories

of classes:

(i) Plural variables permit us to obtain an unexceptionable interpretation of the (un-
restricted) comprehension schema.

(ii) Plural variables permit us to obtain strengthened interpretations of the axioms
of separation and replacement of set theory that are immune to the expressive
limitations of their first-order counterparts.
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In the plural interpretation of second-order set theory, this distinction is obscured by

the fact that plural variables only occur in the formulation of the axioms of separation

and replacement. What I would like to do now is to suggest that this distinction is best

appreciated when we consider the theories of classes that result when both the axioms of

class extensionality and impredicative comprehension are adjoined to first-order theories

such as ZFC; on the plural interpretation of such theories, plural variables are used merely

to simulate "logical collections," but not to formulate strengthened versions of the axioms

of separation and replacement.

For example, suppose the axioms of class extensionality and impredicative comprehen-

sion is adjoined to the axioms of first-order ZFC, call the two-sorted theory that results

ZFCc. The advantage of the plural interpretation we have advanced is that it is imme-

diate to realize that ZFCc is a conservative extension of ZFC. Both theories agree on the

sentences in their common jurisdiction, and no set-theoretic fact that is not provable in

ZFC is provable in ZFCc. The reason for this is that, on the plural interpretation under

consideration, the axiom of impredicative comprehension is, again, a logical truth: either

there is no object x such that q(x) or else there are some objects such that an object x is

one of them just in case O(x). Therefore, if M is a model of ZFC, then M is obviously

a model of ZFCC, too. And, conversely, if M is a model of ZFCc, then M is trivially a

model of ZFC.

It may nevertheless be useful to consider such impredicative, conservative extensions

of first-order set theories just because they come equipped with the resources necessary to

formalize many assertions ordinarily assumed to require impredicative classes, such as for

example reflection principles, on which more later.

3.4 Substitutional quantification and predicative classes

Thus far we have advanced a plural interpretation of the Morse-Kelley system, an impred-

icative theory of classes. The question now immediately arises whether it is possible to

specify a plural interpretation of some variant of the weaker Gidel-Bernays system that

distinguishes it from Morse-Kelley set theory. Now, there is one respect in which a plural
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interpretation of the axioms of separation and replacement of GB would be unsatisfying.

For, on their plural interpretation, the axioms of separation and replacement of GB col-

lapse into the axioms of separation and replacement of MK, and thus, as they would be

satisfied in exactly the same models, the distinction between GB and MK would become a

distinction without a difference.

Fortunately, we are not necessarily required to regard the restricted quantifier of GB

as plural. An alternative interpretation of the class variables that appear in the axioms of

separation and replacement of GB treats them as substitutional variables that range over a

specific set of formulas of first-order ZFC. As a matter of fact, substitutional interpretations

of predicative theories of classes have been developed by W.V.O. Quine (Quine, 1974) and

by Charles Parsons (Parsons, 1975).

To obtain a substitutional interpretation of GB, we begin with the stipulation that

whenever O(x) is a formula of the language of first-order ZFC with exactly one free variable,

we rewrite 0(t) as: t E {xz: (x)}. We now take X, Y, ... to be variables that range over

expressions of the form {x : (sx)} for b(s) a formula of first-order ZFC, and define X = Y

as: Vx(x E X ~+ x E Y). And, finally, we introduce the substitutional quantifier FlX,

which ranges over formulas of the language of first-order ZFC with one free variable. Now,

on the substitutional interpretation a sentence of the form lXP(X) is true if and only if

all sentences gotten from the schema O(X) when "X" is substituted by an expression of

the form {x : q(x)}, for (4x) a formula of first-order ZFC with exactly one free variable,

are true.

Thus, for example, the axiom of separation of GB can now be written:

flXVxzyVz(z E y + z E zAz E X),

which will be true just in case all sentences obtained by substituting a term of the form

{z : •(x)}, where k(x) is a formula of first-order ZFC with exactly one free variable, for

"LX" in the formula VzB3yVz(z E y 4 z E x A z E X) are true.

It is evident that the strength of the substitutional versions of the axioms of separation

and replacement of GB approximates that of their schematic counterparts in first-order

ZFC, but, unfortunately, they don't quite match it. For, given our account of substitutional
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quantification, the only formulas of ZFC in the substitution class are formulas containing

exactly one free variable, but not formulas containing additioual free variables or parameters.

Charles Parsons (Parsons, 1971) devised a generalization of substitutional quantification

that can be used to accommodate these formulas too. The thought is that, given the usual

definition of satisfaction for the formulas of first-order ZFC, we can stipulate that a sequence

s satisfies a formula of the form [IXu(X) if and only if s satisfies every formula obtained

by substituting a term of the form {x : q(x, yl,...,yj)}, where q(x, yl,...,yn) is a formula

of first-order ZFC containing variables yl, ... , yn free, for "X" in 0/. This generalization of

substitutional quantification, which is discussed by Charles Parsons both in (Parsons, 1971)

and in (Parsons, 1974), gives us precisely what we wanted: an interpretation of GB that

sits well with the view that there are no set-like entities other than sets.

It may be of interest to mention that, since, on the substitutional interpretation, GB

is satisfied in every model of first-order ZFC, the contrast between the plural and the

substitutional interpretations of GB would seem to reflect the contrast between first- and

second-order ZFC.

Unfortunately, the substitutional interpretation of the class quantifiers is not available

for the purpose of interpreting impredicative theories of classes, such as, for example, the

Morse-Kelley theory. First off, it should be obvious that a substitutional interpretation of

the class quantifiers on which a class variable "X" is supposed to range over expressions

of the form {x : q(x)}, where O(x) is a formula of ZFC, will inevitably fail to verify all

the instances of the impredicative comprehension schema of the Morse-Kelley theory. The

reason is quite simple. For notice, for example, that the class of (G6del codes of) true

formulas of ZFC can be defined as the extension of a formula of the form "ZX S(X, x),"

where S(X, x) contains no class variables other than "X." But then, since:

EXVx(x E X ZEX S(X,x))

is an instance of impredicative comprehension, and, by Tarski's theorem on the undefin-

ability of truth, there is no class abstract of the form {x : q(z)}, where q(s) is a formula of

the language of ZFC, that is coextensive with ZX S(X, z), we have that the substitutional

interpretation just proposed cannot verify all the axioms of Morse-Kelley set theory.
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It will perhaps be suggested that we need only refine the interpretation by allowing sub-

stitutions of a class variable "X" by expressions of the form { : O(x)} in which 4(x) is not

necessarily a formula of ZFC, but perhaps a formula that contains itself the substitutional

quantifier [IX. But now, think what might happen. A sentence of the form fIX4(X) is

supposed to derive its truth conditions from the truth conditions of its instances, but the

substitution instances of that sentence need not be simpler than the sentence itself. And

thus its evaluation may lead us into circularities. 16

To illustrate this point, let us expand the language of two-sorted MK to contain class

abstracts of the form {x : O(x)), where O(x) is a formula of the larguage of MK, and take

the class quantifier of MK to be substitutional. Now consider a sentence like:

flX(3x(x E X) -+ 3x(x E X A Vy(y E x - y E X))).

Whether or not this sentence is true depends on whether all the substitution instances of

"3x(x e X) -+ 3x(x E X A Vy(y E x -+ -y E X))" are true. All the substitution instances

of this sentence are unproblematically true except perhaps for the ones that result when

"X" is substituted for a class abstract that contains the substitutional quantifier HX. For

let "A(x)" abbreviate: "-iIX(x E X -+ 3x(x E X - Vy(y E x -+ -y E X)))," and

consider:

3x(x E {x : A(x)}) -+ 3x(x E {x : A(x)} AVy(y Ex -+ -y E {y : A(y)})).

If we decide that "HX(3x(x e X) -+ 3x(x E X A Vy(y E z - -y e X)))" is true, then the

antecedent of this conditional will be false, and thus the conditional will be true.

But if we decide that "flX(3x(x E X) -+ 3x(x E X A Vy(y Ex -+ -y E X)))" is false,

then the antecedent of this conditional will be true and its consequent false. To clearly see

this, observe that if a E {x : -HX( E X 3x(x E X A Vy(y E x -+ -y E X))) and

{xz : 4b()} is a class abstract that can be substituted for "X" to obtain a true substitution

instance of "- fX(a E•X -+ 3x(x E X A Vy(y E r - -py E X)))," then, if b E a, the class

'6 This problem is by no means specific to the language of classes, but rather it is a perfectly general
difficulty: whatever one's language, if one expects to make unambiguous use of substitutional quantification,
one should not allow for the occurrence of substitutional quantifiers within the substituted terms.
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abstract {x : q(x) vx = b} can be substituted by "X" to obtain a true substitution instance

of - ' X(b E X - 3x(x E X A Vy(y E•x -+ -y E X))). We conclude that the conditional is

false, and hence that "llX(3x(x E X) -+ 3x(x E X A Vy(y e•x --+ -y E X)))" is itself false.

Not surprisingly, then, though perfectly suited for the interpretation of predicative the-

ories of classes such as GB, the substitutional interpretation of the class quantifiers is no

alternative to the plural interpretation of impredicative theories of classes such as MK that

we have developed here.

3.5 Proper classes and set-theoretical practice

We have seen that the plural interpretation of impredicative theories of classes presents

us with a principled explanation of the set-class distinction that is compatible with the

universality of set theory as the most comprehensive theory or combinatorial collections,

when these are taken to be objects. But not only are plural interpretations of theories

of classes satisfactory as a principled explanation of the set-class distinction, they provide

us with the machinery necessary to carry out important developments in set theory. This

section will focus on just a few examples from contemporary set theory.

I remarked in the introduction that contemporary set theory is permeated with classes;

a variety of large cardinal principles are formulated in model-theoretic terms that are not

directly formalizable in the language of ZFC. What is perhaps the most prominent example

of a model-theoretic concept used in the formulation of large cardinal principles that requires

the machinery of proper classes for its formulation is that of an elementary embedding for

class structures. An elementary embedding of a class structure, Mo, into another, MI1, is

an injective map, j, from the domain of Mo, a proper class, into the domain of M 1, another

proper class, such that:

whenever 4(vl, ..., v,) is a formula of ZFC. j is called non-trivial if it is not the identity

map, in which case j(6) > 6 for some ordinal 6, its critical point. One reason for the un-

formalizability of the concept of elementary embedding for class structures in the language

of ZFC is that, by the Gidel-Tarski undefinability of truth argument, we have that neither
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the satisfaction relation for formulas of ZFC, Sat(rq6, (xo, ..., xn)) if V [• 4, nor the sat-

isfaction relation for formulas of ZFC for proper classes, Sat(r l, (xo, ..., xn, M)), can be

defined within ZFC. This is also the source of the strict unformalizability of assertions such

as "M is an inner model of ZFC," when M is a class structure, but it is not the principal

reason one can use to motivate the move to an impredicative theory of classes. For, after

all, a more economical solution to this problem would be to supplement the language of

ZFC with the addition of a satisfaction predicate implicitly defined by the usual recursive

definition. What is the principal impediment for the formalizability of large cardinal hy-

potheses asserting the existence of an elementary embedding, j, of the universe into some

inner model of ZFC arises from the inability of ZFC to assert the existence of a proper class,

the map j, which need not be definable as the range of some formula, b(x, y) of ZFC.

Despite both the strict unformalizability of the model-theoretic concept of elementary

embedding for class structures and the inability of ZFC to formalize existential assertions

of a proper class, set theorists have studied an entire hierarchy of large cardinal principles

that assert the existence of an elementary embedding of the universe of all sets into inner

models that satisfy different closure conditions. The first large cardinal principle of this sort

states the existence of a non-trivial elementary embedding of the universe of all sets, V, into

some inner model, a principle that is equivalent to the existence of a measurable cardinal.

Other large cardinal principles are the result of the imposition of additional conditions on

the inner model M above. The stronger the closure conditions imposed on M, the stronger

the corresponding large cardinal principle. For example, a cardinal Kx is y-strong iff there

is a non-trivial elementary embedding j : V -+ M, rK is the least ordinal moved by j and

7 < j(K), and V,+., C M. A cardinal n is strong iff it is strong for every 7. But K is

superstrong if there is a non-trivial elementary embedding j : V -+ M with critical point K

such that Vj(s) C M.
These cardinals are only the first stages of a hierarchy that has been intensely studied in

recent times. In the later stages of the hierarchy are the compact, supercompact, and huge

cardinals. For example, a cardinal is 7-supercompact iff it is the least ordinal moved by a

non-trivial elementary embedding j : V -+ M such that j(K) > 7 and M is closed under

7-sequences; a cardinal K is supercompact iff it is 7-supercompact for all 7 < K. There is
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an upper limit on the hierarchy, whose formulation is due to William Reinhardt: K is a

Reinhardt cardinal iff K is the least ordinal moved by a non-trivial elementary embedding

j : V -+ V. In 1971, Kenneth Kunen proved that there is no non-trivial elementary

embedding of the universe of all sets into itself, and hence that there are no such cardinals as

Reinhardt cardinals. Ever since Kunen proved his result, an important number of theorists

have concentrated their efforts in the examination of cardinals that seem as large as possible

but are nevertheless immune to Kunen's argument.

It is not uncommon for set theorists to take comfort in the fact that most of the large

cardinal principles I have mentioned admit of alternative characterizations that are formal-

izable in ZFC. For example, the existence of a non-trivial elementary embedding, j, of the

universe into some inner model is equivalent to the existence of a witnessing ultrafilter on

K, the least ordinal moved by j, which is of course formalizable in ZFC. Similarly, there

are alternative characterizations of supercompactness in terms of ultrapowers that are like-

wise formalizable in ZFC. This reaction is not entirely satisfactory. Except perhaps for the

principle that asserts the existence of a measurable cardinal, the intelligibility of the large

cardinal principles formulated in terms of the existence of elementary embeddings derives

from their model-theoretic characterization, and not from the set-theoretic characterizations

set theorists obtain a posteriori, after the theory of these principles is thoroughly developed.

Not only does the use of class-theoretic characterizations taps a vital source of intuitions

about these large cardinals, quite often, it is required to render arguments intelligible. This

fact alone makes it desirable to be able to develop the theory of large cardinals in a setting

in which it is possible to formalize the class-theoretic characterizations we have mentioned.

Furthermore, it would be hopeless to suppose that all the cardinal principles set theo-

rists entertain will at some point reveal themselves to be equivalent to assertions that are

formalizable in ZFC. For one example, Vope~nka's principle, i.e., the principle that, given a

proper class of structures for a language, there is one that is elementary embeddable into

another, is not formalizable in ZFC. I think we should admit, as a consequence, that ZFC

is definitely not the best setting for the development of the study of the large cardinal

principles mentioned thus far.

In practice, with perhaps a few exceptions, set theorists tend to develop the study of
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large cardinals within an informal theory of classes, and, then, after theory is developed, to

consider possible, more roundabout formalizations of all these developments in the context

of ZFC. The main purpose of the plural interpretation we have developed is to provide the

resources necessary to sustain a well-entrenched practice, the use of the theory of classes

in the study of large cardinals. One problem with the use of a theory of classes is that

what is perhaps the most common interpretation of the theory involves commitment to

set-like entities that are not sets. And this commitment is in tension with the universality

of set theory as the most comprehensive theory of combinatorial collections, as objects, and

makes the policy of disallowing proper classes to be members of other classes artificial. The

plural interpretation we have developed gives us what we want: an interpretation of Morse-

Kelley set theory that is compatible with the assumption that sets are all the combinatorial

collections, as objects, there are, and which nevertheless accounts for the fact that proper

classes cannot belong to other classes.

This interpretation makes sense of all the different model-theoretic concepts we want to

formalize as well as of all the different large cardinal hypotheses we have considered thus

far. Thus, for example, an inner model M is, on the plural interpretation developed here,

given by certain ordered pairs - the interpretation of the two-place predicate letter "E"

- satisfying certain conditions: every ordinal occurs as a component of one of them, and

all the axioms of ZFC are satisfied when interpreted with respect to the sets that occur as

a component of one of the pairs, provided that a formula "x E y" is interpreted as true

relative to an assignment iff the set assigned to "x" appears as the first component of an

ordered pair whose second component is the set assigned to "y." Similarly, the existence of

an elementary embedding j of the universe of all sets into some inner model amounts, on

the plural interpretation presented here, to the existence of certain ordered pairs satisfying

the usual conditions.

Another context in which classes take center stage involves the use of certain reflection

principles. Most set theorists who have written on axioms of infinity and the structure

of the set-theoretic universe regard it as plausible to suppose that V, the universe of all

(pure) sets, is structurally undefinable, and thus that no structural property of V fails to

be reflected lower down in some level V/ of the cumulative hierarchy of sets. For example,
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since On is undoubtedly strongly inaccessible - if A is an ordinal, then 20 is an ordinal, and

the limit of arbitrary sequences of ordinals of length < On is certainly an ordinal, therefore

there must be a level of the cumulative hierarchy, V, with K strongly inaccessible. But then,

since On is strongly inaccessible but > K for a strong inaccessible K, there must be another

inaccessible, etc. Reflection is the main heuristic advanced for various large cardinals, but

it should be evident that it is not formalizable in the language of ZFC.' 7 Once again, the

interest of the plural interpretation of the theory of classes is that it permits us to take

such reflection arguments seriously, for, even if we admit that there are no such objects

as proper classes, the plural number provides us with an interpretation of the language of

classes on which it is perfectly coherent and intelligible to talk about structural properties

of On or V. Thus, the assertion that On is strongly inaccessible is just the assertion that

the ordinals enjoy certain closure properties: if A is an ordinal, 2A is an ordinal, too, and

the limit of sequences of ordinals that are isomorphic to some ordinal is itself an ordinal.

There is a different, but complementary approach "from below" to the study of the

structure of the cumulative hierarchy in which proper classes are supposed to play an

important role, too. This is an approach that is motivated by the view, that set theory can

be taken as a formal extension of known facts in finite set theory into the transfinite. Harvey

Friedman has partially developed this approach in "Transfer Principles in Set Theory."' 8 A

transfer principle is an assertion to the effect that a certain fact of finite set theory can be

generalized into the transfinite. In particular, Friedman has explored connections between

functions on w and functions on the entire class of ordinals, On to isolate plausible transfer

principles of the form:

If for all suitable functions fl., fp, from Nk - N, A(fl, ..., fp), then for all
suitable functions fi, ..., f, from Onk -+ On, A(f 1J, ..., fp),

for appropriate existential sentences A(fI, ..., fp).

"To the limited extent to which reflection is formalized in first-order ZFC as the principle:
Vao9 > arVzr,..., V,, e V (#(si, ..., 2,) a @v,(z a, ..., z,))

it is a theorem of ZFC.

'sCf. (Friedman, 1997).
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The first point to be noticed is that no instance of this schema can be formalized in the

language of ZFC, as its consequent states that a certain fact about arbitrary functions on

On obtains. The interest of these transfer principles is that they provide us with information

concerning both the width and the depth of the cumulative hierarchy, as some of them are

equivalent with large cardinal principles that contradict the axiom of constructibility, i.e.,

V = L. In particular, Friedman has proved that different transfer principles are equivalent

to different hypotheses concerning structural properties of On, such as the hypotheses that

On is weakly compact, or ineffable, or Ramsey.

For present purposes, however, the interest of this development is that, again, it would

seem to require for its intelligibility an adequate interpretation of the theory of classes, as

none of the class-theoretic hypothesis concerning On is provably equivalent to a purely set-

theoretic sentence. And I think that the plural interpretation of the Morse-Kelley theory

provides us with what we want.

3.6 Conclusion

To summarize, then, we have argued that plurals provide us with interpretations of several

theories that encompass sets and classes, which are not subject to the difficulties faced by

rival accounts of the set-class distinction. In particular, I have suggested that the identifica-

tion of classes with collections, in Richard Cartwright's sense, has a number of advantages

over other, more traditional accounts of the distinction. One important advantage of the

present account is that it draws a principled distinction between sets and classes, and not

one based merely on size or location in the cumulative hierarchy. Plural quantification

enables us to simulate "logical collections" as collections that divide the universe into two

categories depending on whether objects are one of them or not, and it does so in a way in

which the connection between sets and logical collections, or classes, is perfectly clear: set

theory is concerned with all the sets - indeed all the set-like entities there are, and classes

are simply collections of those entities.

Another advantage of the proposal is that it provides a rationale for the policy of dis-

allowing proper classes to bear the element-class relation to other classes. That classes, in

110



REFERENCES

general, cannot bear the element-set relation to other classes is clear, since the element-set

relation takes only singular arguments. But it should be equally clear that the first arglu-

ment of the element-class relation, "is one of," is unmistakably singular, and hence that it

can never be occupied by a class. We conclude that the requirement that classes don't bear

the element-class relation to other classes is a principled one, when one conceives of classes

as collections, in Richard Cartwright's sense. I should note, however, that this observation

leaves open the possibility that there be a relation of the form "are some of them" whose

last argument is doubly plural: it takes collections of collections of sets. Then, as Russell

once put it, "a class oi classes [would be] many many's; its constituents [would] each be

many, and [could] not therefore in any sense be single constituents." (Russell, 1903, p.

516). Whether this is so much as an intelligible view is, however, a question that I shall not

address here.

At all events, what is perhaps the most important advantage of the approach we have

advocated is that it permits us to embrace the theory of classes without commitment to

set-like entities other than sets, and hence without threatening the universality of set the-

ory. As a result, on the plural interpretation we have developed here, Morse-Kelley set

theory provides us with the machinery necessary to carry out important developments in

contemporary set theory.
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