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Abstract
We study new never-breaking weakly nonlinear solutions for the 1-D equations of Gas Dynamics in
a bounded domain with reflecting boundary conditions. Then the Euler equations can be reduced to
a Burgers equation with periodic boundary conditions and an added linear integral dispersive term.
The balance of nonlinearity and dispersion leads to the formation of time periodic or quasiperiodic
solutions.

In addition to (previously known) periodic traveling waves, we found a new family of solutions
by direct numerical simulation. These are attracting, never-breaking (they produce no shocks) and
quasiperiodic in time with two periods. Furthermore, we also discovered a large set of neutrally
stable quasiperiodic solutions with a similar doubly periodic in time structure. In the phase space
of Fourier coefficients these quasiperiodic solutions fill a 3-D volume bounded by a 2-D "surface"
formed by the attractors. At the "axis" of this volume are the periodic traveling waves.

We developed a semi-conservative numerical algorithm with shock tracking (as needed for the
long-time numerical integration of the model equation this work required). The scheme features
very good resolution of the singularities arising in the solutions (shocks and corners) and extremely
small production of numerical noise.

We found that the traveling waves are linearly neutrally stable to doubly periodic in time pertur-
bations. The linear stability analysis in this case can be formulated as an eigenvalue problem. The
spectrum can then be found by a combination of WKB and numerical techniques. It is natural to
expect that the linear neutrally stable modes will give rise to nearby solutions with an extra mode of
oscillation. We compared the Linear theory predictions with the neutrally stable solutions obtained
in the numerical experiments and found that only smallest frequency in the spectrum appears to
give rise to physically realizable solutions.
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Chapter 1

Introduction.

The problem of existence of non-breaking (no shocks formed) for all times solutions for the Euler

equations has long been an open question. New, analytical and numerical, results obtained recently

([5], [26]) for the full Gas Dynamics equations, show that the set of non-breaking solutions is

large and highly nontrivial. For example, Celentano [5] showed that there is a large class of periodic

standing waves bifurcating from the equilibrium solutions. Vaynblat [26] showed that there are many

other never breaking solutions for the full Gas Dynamics equations, with much more complicated

structure. It is the purpose of this thesis to show numerical and analytical evidence for the existence

of a large class of new never breaking solutions (valid in the weakly nonlinear regime) that appear to

be quasiperiodic in time. Furthermore, a special subset of this class seems to be globally attracting,

namely: the long time evolution asymptotes to members of this class. We study the structure of

these solutions, both individually and as a class.

The plan of this thesis is as follows. In Chapter 2 we make a brief survey of the main results

relevant to the weakly nonlinear regime and derive the model equation. In Section 2.1 we consider

the I-D Euler equations for a gas inside a rigid closed pipe, in the nonlinear acoustics (weakly

nonlinear) regime. We show that the problem can be reduced to the single leading order asymptotic

integro-differential equation

u(, t)+ u2(x,t) + K( - y)u(y,t) dy = O, (1.1)
0

where u(x, t) is the acoustic wave amplitude and the kernel K(x) in the integral convolution term is

the derivative of the entropy. It turns out that K(x) must be odd and 27r-periodic. Furthermore,

periodic boundary conditions in x for u(x, t) apply. Notice that K is independent of time: this



is because in the weakly nonlinear limit entropy is preserved up to third order1 - thus its time

dependence can safely be neglected in the framework of nonlinear acoustics.

This equation has been studied before by Gabov in [9]; Majda, Rosales and Schonbeck in [19] and

Pego in [20]. It presents two counteracting mechanisms, namely: nonlinear steepening and linear

dispersion (the latter by the integral term - as shown in Appendix B). The balance between them

can lead to the formation of stable never-breking structures. In particular, the traveling waves

for this equation are known 2 and form a one-parameter family of analytic solutions (see Section 2.2).

In addition to being periodic in space they are, obviously, also periodic in time. The traveling waves

exist only in a finite range of amplitudes (or, equivalently, energies). If the wave amplitude is chosen

as a parameter, then the solutions are bounded by the trivial (u = 0) solution from below and by a

maximum amplitude wave from above. This maximum amplitude solution is in fact not analytic, for

the wave profile has a corner in it. This phenomenon of corner formation at maximum amplitude is

very similar to the one observed for Stokes waves (see [27]). The boundedness of the solution set in

energy space is related to the weakness of the dispersion, with a strength that decays rapidly with

the wavenumber 3 . Dispersion, therefore, cannot compensate for the nonlinear steepening associated

with large amplitude waves.

Motivated by the existence of these traveling wave solutions and the results in the recent work

in [5] and [26], the aim of this thesis is to explore the general behavior of the solutions to equation

(1.1). In particular, some questions of interest are:

1. Are there other never-breaking solutions to the equation, in addition to the traveling waves?

2. If so, what is the structure of these solutions? Are they stable? What is their basin of

attraction?

3. What is the long time behavior of the solutions of (1.1) for general initial data?

The last question here is related to the two prior ones because it seems natural to expect that the

long time behavior of the solutions (after any shocks form and decay) should be given by solutions

in this never-breaking class. The argument here being as follows: we will show that the energy of

the solutions to equation (1.1) is monotone non-increasing - see Appendix C. Thus, as t -+ oo,

the energy must approach a limit. If this limit is nonzero, then it must correspond to nontrivial

behaviour that keeps the energy constant, i.e. a never-breaking solution.

A purely analytical study of these and related questions is very difficult, if not impossible.

Thus we resorted to numerical simulation, aiming to find never-breaking solutions (and study their

IEven if shocks occur.
2 For simple kernels K.
3 For the kernel in (1.2), for example, only one component in the Fourier expansion giving the dispersion relation

is nontrivial: see equation (B.2) in Appendix B.



properties) as a result of long-time integration. Obviously, in such a study it is crucial to develop a

numerical scheme with as little numerical dissipation as possible, else the numerical dissipation will

drive the energy of the solution to zero and any non-trivial behaviour will be missed. Furthermore,

the long time evolution calculations that we performed reveal rather subtle properties, which can be

completely destroyed by accumulated numerical errors.

Equation (1.1) is hyperbolic and can produce both strong (shocks) and weak (corners) singular-

ities, even when the initial conditions are smooth. Poor resolution of these singularities is the usual

largest source of error and numerical dissipation. An algorithm able to deal with such difficulties is

required. In Chapter 3 we describe a numerical scheme for the time integration of (1.1), which allows

us to resolve shocks and corner singularities with fairly high accuracy - and thus yields results with

very little numerical dissipation. The schemes best suited to deal with shocks and corners are the

upstream conservative shock capturing methods. These schemes, however, are designed to deal with

local equations only - thus, the nonlocal integral dispersive term in (1.1) would be very difficult

to implement with them. To resolve this problem, while preserving the nice properties of upstream

schemes near singularities at the same time, we resorted to a time splitting idea. We used an

upstream method for the local (inviscid Burgers) part of the equation (specifically, a second order

Godunov type scheme). For the convolution term we used an ordinary second order Runge-Kutta

scheme in time, calculating the integral with a trapezoidal rule.4

Upstream schemes are not only effective at "shock capturing", but are remarkably free of (spu-

rious) high-frequency oscillations near them. However, shocks still remain a significant source of

numerical errors (excessive for our purposes). These follow because the "numerical" shocks are

"spread" over several grid points, forming staircase-like structures. Such spreading is equivalent

to introducing extra numerical dissipation into the system, which is one thing we cannot afford in

our problem. Thus, to improve the resolution near shocks and avoid this problem, we used a shock

tracking technique (see Section 3.2.6) on a moving grid. We also selected a UNO type scheme for

the reconstruction step, because it had the best properties in terms of corner resolution.

In Chapter 4 we present a numerical study of equation (1.1), for the case of the single mode

integral operator kernel

K(x) = sin(x) . (1.2)

First, in Section 4.1, we introduce a form of the method of Poincar6 sections - of frequent use

in studies of dynamical systems - adequate for our purposes. For the system described by (1.1)

and (1.2), the Fourier coefficients of the solution turn out to be a useful and natural coordinate

4 For simple kernels like the one we used - see (1.2), the calculation of the convolution can be reduced to two
single integrals over u (first sine and cosine Fourier modes).



set in phase space. Poincar6 sections are especially effective with orbits in phase space lying on

two-dimensional surfaces - whose images become one-dimensional on a section and are thus easy

to visualize. The never-breaking solutions for (1.1) and (1.2) that we observe in our numerical

experiments appear to do just this, filling two-dimensional tori in (infinite-dimensional) phase space.

The traveling waves (only case where exact analytical expressions are known to us) are specially

simple, as their trajectories are one-dimensional curves that reduce to a discrete number of points on

a Poincard section. In particular we show that, with our implementation, they yield a single point.

Since in physical space many of the never-breaking solutions appear to be quite close in appearance

to a traveling wave, this gives us a reliable way to distinguish them.

Next, in Section 4.2, we the describe general properties of the solutions arising in the long-time5

simulations. It turns out that, besides traveling waves, equation (1.1) possesses a large class of other

never-breaking solutions. The solutions observable in the direct numerical simulations are global

attractors for the system in (1.1) - (1.2). That is, they appear as the limiting solutions for almost

all initial conditions we used. Surprisingly, none of the traveling waves found analytically before

- except for the one with maximum energy and a corner in its profile - are found among the

attractors. Using Poincard sections (and projections of the trajectory on lower dimensional spaces)

these solutions can be identified as quasiperiodic in time, with two frequencies. Another striking

property of these solutions is that they cyclically produce corner type singularities - which appear and

disappear on the wave shape - but without ever producing shocks. In fact, these solutions can be

thought of as: roughly traveling waves, but with an oscillating shape, where the shape cycle has a

period slower than the main period associated with the translation motion of the wave.

In addition to the attracting solutions, we discovered a large family of neutrally stable solutions

(presented in Section 4.3), which are also quasiperiodic in time with two periods (but are smooth,

with no corners). These cannot be obtained by direct numerical simulation, since they are not

attracting, so we had to develop a special continuation process that we briefly explain next (for

details see Section 4.3).

It is noteworthy that the attractors form a closed surface (easily visible as a football shaped

object 6 by doing projections of the Poincar6 sections) "enclosing" the set of all never-breaking

solutions - in particular, the traveling waves, that make the "central axis" of this surface. The

attractors thus make other never-breaking solutions generally unattainable, shielding the solution

trajectories from getting "inside" - at least as long as the evolution is exactly inviscid. In order to

"penetrate" the surface, we added a small amount of numerical viscosity. Then it turns out that,

after converging to the attracting surface, the solutions start drifting inside, making the other never-

SCarried past the point where all the shocks disappear
6 See Figure 4-17.



breaking solutions accessible. We call this slow drift process adiabatic transition. If allowed to

continue for a sufficiently long time, the second temporal frequency of oscillation (associated with

the shape oscillations the waves have) becomes degenerated (with zero amplitude) and periodic in

time traveling waves result. Thus, adiabatic transition gives a continuous path from the attracting

quasiperiodic solutions with corners to the traveling waves.

As explained above, both in physical space and in the Poincard sections, the solutions obtained

in the numerical simulations appear to have two temporal frequencies (quasiperiodicity). These

waves also appear to be, roughly, traveling waves with a superimposed "shape" oscillation. We

also can see (numerically) that the traveling waves are neutrally stable to small perturbations. All

this motivated us to perform linear stability analysis for the traveling waves, and then to see if the

"shape" oscillations can be associated with excitation of a linearized mode near a traveling wave.

This we do in Chapter 5. In particular, we look there for perturbations of the steady-state traveling

waves u = V, (x - st) of the form

u(x,t) = V,(x - st) + w(x - st,wt) , (1.3)

quasiperiodic with two frequencies in time. That is, here w(x - st,wt) is assumed small and 27r-

periodic in both its arguments, with w the shape oscillation wavefrequency. Since V is also 2'-

periodic, s is both the wave speed and the main wavefrequency.

In the moving frame search for periodic in time perturbations of a stationary function on a

periodic in space domain can be recast in the form of a linear eigenvalue problem 7. We show

in Section 5.2 that spectrum in this problem is discrete and purely imaginary, yielding neutral

stability of the corresponding perturbations. This result fully agrees with the numerical evidence.

Perturbations corresponding to the lowest frequency in the spectrum only are observable in the

experiments.

7 different for each value of "first" frequency s



Chapter 2

Asymptotic Equations and

Periodic Solutions.

2.1 Weakly Nonlinear Equations.

In this section we derive and motivate the main equation (1.1) that will be the object of study in this

thesis. Consider the problem of gas motion inside a rigid pipe with circular cross-section of constant

radius and closed ends. We consider situations where the motion is essentially one-dimensional and

inviscid everywhere inside the pipe (except for thin boundary layers at the walls and near the ends,

whose influence we neglect throughout this chapter.) For the bulk of the gas we use the Euler

equations of Gas Dynamics, which can be written in the following form (see [7], for example)

Pt + (pv)X = 0,

(Pv)t + (pv +p) = 0, (2.1)

(pe + pv2)t+(pev+ pv3 + pV) = 0,

where p is the density, v is the flow velocity, e = e(p,S) is the internal energy per unit mass,

p = p(p, S) is the pressure, T = T(p, S) is the absolute temperature and S is the entropy. Clearly

p > 0, p > 0 and T > 0. We assume standard constitutive relations for the gas, so that the

thermodynamic identity

TdS = de + pdp-1 (2.2)



must apply. That is

e, = p/p2  and es = T, (2.3)

which implies (in particular) ps = p2 Tp. Furthermore, we must have

c2 = pp > 0, (2.4)

where c = <v- > 0 is the speed of sound.

The boundary conditions at the closed ends of the tube are given by

vlx=0 = vIx=L = 0. (2.5)

We choose the length of the tube L and some "typical" values for the density p*, pressure p*

and temperature T* (to be specified further below in Remark 2.1.3) to nondimensionalize all the

variables as follows:

x - -x-, p -+ p*p, p - p*p, v - v*v,

(2.6)

t L-- t e - e*e, T - T*T, S S* S + So,

e = * -t ( -e*

where v* , e* = (v)2, S* = and So is chosen to be (roughly) the mean value of
E ; I T* P T*

S - see below, Remarks 2.1.1 and 2.1.3. One can easily check that all the prior equations ((2.1),

(2.2), (2.3) and (2.4)) take exactly the same form in these non dimensional variables, while in (2.5)

we need only replace the tube length L by 7r. From now on we work with these non dimensional

variables.

It is convenient to replace the above problem of gas motion inside a tube with closed ends by

an equivalent problem with periodic boundary conditions. Given a solution of the original problem

above, it is easy to see that it can be extended1 to a solution of the equations defined for all z,

periodic of period 27 (in dimensional variables period 2L), with v odd and with p and p (thus also

S, T and e) even. Conversely, given a solution with these properties, it is easy to see that it must

1This is done simply by appropriately "reflecting" the solution repeatedly across the boundaries.



satisfy the boundary conditions (2.5). Thus, we replace these conditions by the equivalent ones

v(x + 27r, t) = v(z, t) , v(, t) = -v(-, t) ,

p(x + 2r, t) = p(x,t), p(x,t) = p(-z,t),

p(x + 21, t) = p(, t), p(, t) = p(-x, t), (2.7)
e(x + 21, t) = e(x,t), e(x,t) = e(-z,t),
S(x+2r2, t) = S(x,t), S(x,t) = S(-, t) ,

for arbitrary x and t. Of course, any two of the last four rows here implies the other two.

Remark 2.1.1 It will turn out that, for the leading order approximation in the asymptotic expansion

below, only the r-periodic components of S will matter (see Remark 2.1.4).

Remark 2.1.2 The equilibrium state is given by p and S constant, with v =_ 0. In fact, we can

take p*, p', T* and So above so that p = 1 and S 0 at equilibrium, with both partial derivatives of

p = p(p, S) equal to unity. In particular, the sound speed c = 1.

Remark 2.1.3 We can now specify further the values used in the nondimensionalization above. It

is clear from the equations that the mean value of p must be constant. Thus we choose p* so that

the mean value of p is normalized to 1. Furthermore, we will consider only small perturbations of

the equilibrium state and in this case the mean of S changes only at third order2 , even when shocks

are present. Thus, we choose So so that the mean of S vanishes. Finally, we choose p* and T*

(equivalently p* and S*) so that, in the non-dimensional variables, p = 1 and S = 0 correspond to

a sound speed c = 1 and ps = 1.

We now focus on small perturbations of the equilibrium state. Then we can write an asymptotic

expansion for the solution (following Majda and Rosales, [18]) of the form

p = 1+ E[UI(X - t, r)+ 03 (z + t, ) + 2(X, 7)] +..., (2.8)

v = e[u1(z - t, r) - 03(X + t, r)] + ..., (2.9)

S = - eo2 (z, r) + ... , (2.10)

where 0 < e < 1 is the expansion parameter and r = et is the slow time over which nonlinear effects

operate in this regime. Here al is the right-moving acoustic wave amplitude, 02 is the entropy wave

amplitude and 0a is the left-moving acoustic wave amplitude.

2 That is, at 0(C 2 ), where e is the small amplitude parameter. In fact, the rate of change is only 0(C3 ), but we
will be following the time evolution over long times, of O(e- 1 ) - so that changes can built up to 0(e 2).



From (2.7) and Remark 2.1.3, the functions oi above are all 27-periodic in the appropriate

arguments (the phases z - t, z + t and x, respectively) and have vanishing means. That is

2r

i" =foi i(, r) d = 0 for i= 1,2, 3. (2.11)

0

In the linear approximation all three waves al, 0 2 and s3 are mutually independent. In the

weakly nonlinear case3 as above, however, they become coupled. Then they must satisfy certain

conditions in order for the approximation to be valid for times t of order O(e-1). These conditions

(as shown in [18]) take the form of the following equations4 for the Ori((, r)

2r

0i + OI1i +2 J (/ ) 0 3 (q, r) d = 0, (2.12)

0

d2 =0, (2.13)
27

0 -3 01 393'-J U (32)l2-,(,-T)dq =0, (2.14)
0

where 31 and /2 are positive constants that depend on the constitutive equations and the nondimen-

sionalization, primes denote differentiation with respect to the phases and dots stand for derivatives

with respect to the slow time r. These equations are to be solved within the class of the 27r-periodic

functions of the phases, with vanishing mean values, as pointed out earlier.

We emphasize here that 02 does not depend on r in this approximation. It is thus just given by

the initial perturbation to the constant entropy - as follows from (2.10).

So far we have only implemented the periodicity requirements in (2.7) for (2.8)-(2.10), but not

the symmetries (p must be even, etc.) It is easy to see that these are precisely equivalent to the

following identity relating al to as

lt (-C, r) = 0r3(C, r). (2.15)

In addition, we also need r2 to be an even function of x.

Introduce now the common function

U(Z,t) = 0Ol (z, t) = /01 3s(-X, t) , (2.16)

3 When e is small, but not infinitesimal.
4 We have used the fact that the mean values of the ai vanish, to simplify the equations in [18].



and the function

K(x) = z32 2( x) (2.17)

We note that K(x) is a 47r-periodic odd function of its argument, which is given by the initial

conditions and is thus "known". We also point out that here we have switched notation, using x

instead of ý to denote the phase arguments in the ai's and t instead of r. Since the original space

and time variables x and t of (2.1)-(2.10) will no longer be used in this work (except for Appendix

C), this should not cause any confusion.

Then, the whole system (2.12)-(2.14) collapses into the single equation

S27r

u(,t) + •2u(x,t)) + K(x - y)u(y,t)dy=O 0, (2.18)

0

which will be the main object of interest throughout this and the following chapters. The solution

u(z, t) must be taken 27r-periodic in x and of vanishing mean (for all times t). We note that the

equation is consistent with these requirements, as K has zero mean. This further justifies all the

manipulations and assumptions concerning means we did in the context of the nondimensionalization

of the equations. In particular, this allowed considerable simplification of the equations in [18] when

writing (2.12)-(2.14), by dropping all the terms associated with the vanishing mean values of the

5i)S.

Remark 2.1.4 Since K(z) is 4r-periodic and odd, it can be written as a Fourier series with general

term proportional to sin(nzx). On the other hand, since u(x,t) is only 2ir-periodic, it is clear that

only those terms for which n is even will contribute to the convolution in equation (2.18) for u above.

Thus, we might as well drop the component of K which is not 27r-periodic and assume that K in

(2.18) above is 2ir-periodic, with Fourier sine expansion

oo

K(x) = 1 Pk sin(kx). (2.19)
k=0

We will limit our consideration to the simplest possible kernel

K(x) = sin(x). (2.20)

Remark 2.1.5 Equation (2.18) above can also be used for solutions with shocks. It is already

written in the proper conservation form. In terms of the full Gas Dynamics problem, a shock in

(2.18) corresponds to a weak shock bouncing back and forth inside the tube.



In conclusion, we have reduced the full system of equations for the problem of one-dimensional

weakly nonlinear motion of an inviscid compressible gas inside a rigid tube with closed ends to the

single equation (2.18). The kernel K(x) of the integral term in (2.18) is an odd function and can be

expanded into a sine Fourier series, as above in (2.19).

2.2 Traveling wave solutions.

In this section we review the traveling wave solutions for equation (2.18) (which can be written in

explicit form) and point out some interesting features they possess. Gabov (in [9]) and Pego (in

[20]) showed that equation (2.18) - with the single-mode kernel (2.20) - possesses a one-parameter

(except for phase shifts) family of traveling wave solutions

u(x - st) = s + b V/1 - sin(x - st + o) . (2.21)

Here s = s(6) is the wave propagation speed, b = b(6) and 6 together determine the wave amplitude

and shape, and 0o is an arbitrary phase shift. The parameter 6 is, obviously, restricted to the range 5

0 < 161 < 1 and we have

b 27s(6) = 2 J f 'l +Scosydy,
07r

(2.22)
2 27r

b(6) = cos yV'1 + cos y dy.
0

The first equation here guarantees that u above has mean zero; then the second guarantees that

equation (2.18) is satisfied. It is easy to see that these formulas give b(S) > 0 and s < 0 for all 6.

The amplitude of the wave is given by

These parameters as functions of 6 are plotted in Figure 2-1.

Remark 2.2.1 The traveling waves in (2.21) range from the trivial solution u - 0 when 6 = 0

to a limiting maximum amplitude one for 6 = ±1. When 161 < 1 the traveling waves are smooth

(in fact analytic) functions of the argument ( = x - st + 1o. When 6 reaches the critical values

6 = ±1, the solution loses smoothness and forms a corner singularity (see Figure 2-1). Our numerical

calculations show that the presence of corners is typical for the solutions of (2.18), that is: after

a transient period dominated by shocks, the solutions evolve into a state without shocks, but with

5 A sign change in & is equivalent to a phase shift of r in the wave.
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Figure 2-1: The top figure shows two typical traveling wave profiles for J = 0.6 and 1. The first one is
smooth and the second corresponds to the 6 = 1 maximum amplitude wave with a corner. The two lower
figures show graphs of the wave velocity s and the wave amplitude A in terms of the wave parameter 6.
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corner singularities.

Remark 2.2.2 The traveling wave solutions above are also periodic in time, with period (27r/ls).

The solutions of the form (2.21) are the only traveling waves for equation (2.18) - with the kernel

(2.20) - and they simply do not exist beyond the range 16I < 1. It is interesting to note that our

numerical experiments suggest that these are also the only (stable) time periodic solutions of equation

(2.18).

It can be shown (see Appendix A) that equation (2.18) preserves the L 2 norm (same as the

acoustic energy, see Appendix C)

27r

E() = 2(x, t)dx, (2.23)
0

as long as the solution remains smooth. It can also be shown (see Appendix A, equation (A.10))

that E(t) decays if the solution develops shocks, with the decay rate proportional to the strength

of the discontinuities. This property allows us to interpret E(t) above as either the energy or as

a negative "generalized entropy" for the equation'. From now on we refer to E(t) as simply the

energy. It is clear that the traveling waves above in (2.21) span only a bounded interval of energy

values 0 < E < E,,,a. The maximum energy corresponds to S = ±1.

As mentioned above in Remark 2.2.1, the solutions of equation (2.18) can have corners (in fact,

they are typical), as illustrated by the corners in (2.21) for 6 = ±1. Furthermore, the solutions

will also have shocks - at least for some period of time after the initial data start evolving. These

features impose certain special requirements on any numerical scheme one may wish to use for the

for the simulation of (2.18). Such a scheme must be able to accurately handle singularities both of

the strong (shock) and weak (corner) type. The details of the numerical scheme we used will be

discussed in Chapter 3) of this thesis.

6 In fact, this second interpretation is also physically accurate: see equation (C.9) in Appendix C, showing that the
acoustic energy can be related to the physical entropy.



Chapter 3

Numerical Algorithm.

3.1 Choice of Numerical Scheme: Splitting Idea

Most results described in Chapter 4 of this thesis are obtained by performing the long-time numerical

integration of model equation

i9 u(xt) + t) + K(x - y)u(y, t) dy = . (3.1)
5t ax (2

0

derived in Chapter 2.

The purpose of this Chapter is to give a description of the algorithm we used in the experiments.

In our simulations we discovered that shocks and weak discontinuities alike are almost always present

during evolution of solutions for (3.1), even when solutions are initially smooth. Moreover, some of

the analytic solutions of (3.1) are not smooth, being such for all times (see Chapter 2).

Most numerical schemes need additional care near singularities. Truncation error estimates may

fail there, for they usually are based on the assumption, that higher order derivatives of the solution

are smooth. Also, characterstics play a very important role in hyperbolic equations such as (3.1),

defining local directions of propagation of information. If numerical scheme does not take these

directions into account, then information from physically irrelevant domains may be used by the

scheme, causing spurious oscillations and other instabilities in the neighborhood of singularities.

As we just mentioned, both strong and weak discontinuities are quite typical for solutions of

equation (3.1). The mechanism of formation of strong discontinuities is entirely similar to that for

the non-viscid Burgers equation

Ut + =o. (3.2)



Nonlinear steepening is caused by uu, term in equation (3.1) and leads to wave breaking. As opposed

to the Burgers equation, who does not support non-breaking solutions, (3.1) has linear convolution

term K * u with weakly dispersive nature (see Appendix B for details). It acts against wave breaking

caused by the nonlinear term. If these two forces "balance" each other, persistent never-breaking

solutions, often with weak (or, "corner", because of their shape) singularities may arise .

These observations motivated the choice of a numerical scheme as capable of dealing with both

strong and weak ("corner") singularities. Typical numerical experiments in the context of our prob-

lem involve long time integration of (2.18) with initial conditions of various "arbitrary" shape. In

these simulations characteristic time scales are generally observed to be of order of 102 - 103 acous-

tical periods.

Ordinary finite difference or spectral methods are very efficient on smooth solutions. However,

they typically break down when encountering singularities as described above. These methods pro-

duce high-frequency spurious oscillations near singularities which then diffuse into the interior of

the space domain and eventually contaminate the solution. Upon long integration time involved in

the experiments it often becomes virtually impossible to determine whether the observed numerical

solution is "physical" (what we would get, had the scheme been "exact") or it just reflects accumu-

lated numerical errors.

We have developed a numerical scheme which we believe provides a good resolution for both

strong and weak discontinuities. To begin with the construction, we split the spatial operator in

(2.18) into two parts:

ut = A[u] + B[u], (3.3)

where

A[u] = (u2), B[u] = -K * u. (3.4)

Next, we discretize the time variable t into equal time steps [tn-1, t,,] and approximate (3.3) by the

following semi-continuous equation

Un+
1 - U = A[u"] + B[u]. (3.5)
At

Here, un = fi(x, nAt) is the numerical approximation for a solution at the n-th time step and

uo = ii(x, 0) = u(x, 0) is the initial condition. This is an explicit scheme, since both spatial operators

on the right-hand side of (3.5) use function u evaluated only at the "previous" time step.

'For example, in the periodic "traveling wave" solution (2.21) when 8 = 1 (see Figure 2-1).



Now, we break each time step into three "intermediate" sub-steps (fractional step approach):

nAt
* =u +B [un] , (3.6)

u' n =u*n+A[u*n]At, (3.7)

u"+l= u'" + I3[u'"] . (3.8)
2

Here, A, and B are the discrete analogs of operators A and B in equation (3.3). To accommodate for

different behavior these two operators demonstrate we will use different discretization schemes for

A and B (see Sections 3.2 and 3.3 for detailed description of their construction). We will aim at the

construction of a second order scheme. Strang ([23, 22]) showed that second order of approximation

in both A and B is sufficient to achieve second order for the overall scheme.

Each "intermediate" equation in (3.6)-(3.8) involves only one spatial operator and therefore can

be treated with a separate algorithm.

It is worthwhile to mention, that the splitting idea in fact does not introduce any extra compu-

tational effort into the algorithm, since every two successive time steps can be combined by unifying

the last sub-step (3.8) of a "previous" step with the first sub-step (3.6) of a "next" time step in the

following fashion

u*("+l) = u"+l + B[u"+n ]- = u'" + B[u'"]At + O((At)3) . (3.9)

u (n + l) = u* (n+l) + A[u*(n+l)]At (3.10)

This operation introduces only higher-order errors to the method whom we neglect in our consid-

eration. This way, the overall scheme will effectively include only two sub-steps per time step. In

other words, only one evaluation of A and B is required at each time step2

3.2 Upstream Scheme Construction

The nonlinear operator A in (3.1), (3.3) can and often does cause the continuity breakdown. It

is appropriate therefore to handle it with the scheme specially built for treatment of discontinuous

solutions. A broad class of so-called upstream schemes is available for this purpose. Schemes of this

family are known for their excellent performance on strong discontinuities, with no generation of

spurious oscillations, typical for finite differences. In addition, an extra feature of shock tracking is

2 With the exception of initial and final time steps.



easily implementable for them. Shock tracking allows grid points to move along with shocks, which

greatly reduces the amount of "numerical viscosity" associated with a scheme. The algorithm we

will be using belongs to this class of upstream schemes.

One of the first upstream scheme was introduced by Godunov in [11]. Godunov's idea had been

developed later in the works by van Leer [24, 25] and also by Harten and Hyman [13]. All upstream

schemes are designed for differential equations written in the so-called "conservative" form

ut(x, t) + f(u(x, t)), = 0 . (3.11)

The "flux" function f(u) is determined by an equation and in our case is simply

U
2

f(u) = - (3.12)

To begin, let us for simplicity use fixed and homogeneous spatial stencils. The whole construction

will be adjusted to the case of moving (or inhomogeneous) stencil later in Section 3.2.6 without any

difficulties.

3.2.1 Some definitions

First, we introduce a mesh, namely, a set of computational nodes j+½. Line segment between

(j_ and + will be called the j-th computational cell. Instead of sampling at mesh points (as

usually done, for example, in finite difference methods) we will be using the cell averaged values,

assuming that these values are constant within each cell. In particular, we define the cell averages

u (t,) as

ij(t) u(x,t,)dx, (3.13)

with Az = j+ - I
Consider now an "elementary" region in the time-space domain, enclosed by the four straight

lines t = tn, t = t,+l, x = and x = j+. We can define the average flux across cell interface

as

f = J f (u((_.L,t))dt (3.14)



Upon integration over an elementary domain, we can rewrite (3.11) in the integral form

j(tn+l) = ij(tn) - A(fj+i - fj-_)., (3.15)

where the mesh ratio A is denoted by A.

The integral form of (3.15) translates into a numerical scheme if cell average values introduced

by u0 = fij(x, t,) replace the originally continuous function u in (3.15):

n+1uo =u - A(fj - f ) (3.16)

For each n set of uj's represents an approximation at the n-th time level. Equation (3.16)

expresses therefore transition from n-th to (n + 1)-st time level. Note that original fluxes get

replaced by numerical fluxes f j+ whose computation comprises the central part of upstream

scheme construction.

In his original paper [11] Godunov introduced a first-order conservative scheme for one-dimensional

Gas Dynamics equations based on piecewise-constant approximation idea such as described above.

He proposed to compute numerical fluxes fj_ 3 across cell boundaries using classical result known

as the solution of Riemann problem ([7], for example). Method based on this calculation received

the name Riemann solver. Godunov's method was later extended by van Leer [24, 25] who in-

troduced piecewise-polynomial approximations in place of piecewise-constant ones. van Leer's

modification made it possible to construct higher-order conservative schemes. In this Chapter, we

will restrict ourselves to second-order schemes, based on piecewise-linear approximations. Even

though characteristics are not parallel to each other, they still remain straight lines (at least, in the

case of a scalar equation), which makes the first-order method easily upgradable. More detailed

discussion of Riemann solver modifications will be given in Section 3.2.5.

We will give now a general description of second-order conservative scheme we used in our nu-

merical experiments. A piecewise-linear approximation used in this scheme can be characterized by

a set of cell average values and a set of slopes. As clearly follows from (3.13), slopes do not affect

cell averages and are only needed for the higher order of accuracy in flux calculation. Thus, we will

not carry the slopes along with cell averages but instead recalculate them on each time step. We

call this procedure the slope reconstruction and will discuss it later in Section 3.2.4.

In short, the upstream scheme can be put into the following "program".

3 We drop hats for numerical fluxes now and will omit them throughout the rest of this Chapter.



1. START with the set of cell averages.

2. SLOPE RECONSTRUCTION. Slopes are found by interpolating over cell averages.

3. FLUX COMPUTATION. Riemann's problem is solved on every cell interface with the second

order of accuracy.

4. SOLUTION UPDATE. Cell averages are recomputed for the next time step by (3.16).

As we show in Section 3.2.6, the extension of this algorithm for nonuniform or moving grids is

rather straightforward. Grid points are then allowed to move with shocks, subject to a few regularity

constraints. In fact, only one extra step will have to be added to the program sketched above.

Namely, before fluxes are computed, we need to track all the shocks by evaluating the velocities of

corresponding moving nodes. The flux computation procedure itself also has to be slightly changed.

These modifications will be discussed in detail in Section 3.2.6.

3.2.2 Riemann Problem

The classic Riemann problem was originally formulated for the Euler equations of Gas Dynamics

with single spatial coordinate. Two quiescent gases at different states are initially contained in a

pipe and separated by a thin membrane. The membrane is then quickly removed and the subsequent

motion of the gases is studied. It is well known (see [7], e.g.) that the resulting solution has self-

similar structure with only a few possible configurations of elements (such as rarefaction waves,

shocks and contacts) arising from the original discontinuity. We will be using a simplified version of

Riemann problem, applied to the scalar in-viscid Burgers equation

ut + - 0=o. (3.17)

The initial condition is represented by the following formulas:

u(, t = 0-) = 0, X < j+j, (3.18)
u(z,t = 0-) = uj+1 , z > j+ . (3.19)

In this "scalar" version, only two self-similar configurations are possible, namely, a single rarefaction

wave and a single shock. The entropy condition in this situation reduces to u > Ushock j+l1

therefore, a shock will form only when ujn > uj+. A single expansion fan solves this problem in the

opposite case.



t) if Z < 1(0uy + u,)t
u(X, t) j 2 - U+

u , if X > ((0 + n )tj+n if j+l

Ju if X < u't

u(x, t) = - if ut < x < t

n+1 if z > nt

when u' > u ,

when uj < uj+,

Shock speed s is computed according to standard jump condition for the Burgers equation.

-s[u]± +[] = 0, (3.22)

and can be expressed in terms of the "left" and "right" values of speed u

s ut = + u (3.23)
2

In this spirit, we compute solutions in the neighborhood of each cell interface and combine the pieces

into a "global" solution. One has, however, to impose a restriction on the time step. Self-similar

fragments of solution remain valid only as long as they do not intersect with each other. We will

require, therefore, that different elements originating from separate cell interfaces never "overlap"

with each other during every single time step, or, in other words, inside time strips tn < t < t" + 1.

This restriction is called the CFL condition (see, for example, [7, 17]) and can be expressed in

terms of the maximum value of lul and cell width Ax 4

At <
-lulmax

(3.24)

Solution to the Riemann problem in the form we just described is correct up to the first order of

accuracy inside whole strip tn < t < t n + 1 . In particular, we will be using this solution along every

cell interface. Clearly, numerical flux is determined by the solution on the interface and can also be

computed with the same order of accuracy. To achieve higher accuracy, we will use the generalized

version. It will be given a discussion in Section 3.2.6.

4For nonuniform grids we use the minimum value of Ax.

(3.20)

(3.21)



3.2.3 Flux Calculation

Calculation of numerical fluxes is the main part of upstream scheme construction. As an "output"

of the Riemann problem, an approximate solution inside time strip tn < t < t,+l is obtained.

Characteristics emanating from each cell -j_ < x < j+4, t = t, form sets of straight lines parallel

to each other. Because of the CFL condition only those characteristics emanating from two adjoining

to an interface cells can intersect the interface and influence solution along it. In all, there are only

three possibilities to consider:

* Characteristics in both adjoining cells are directed away from interface.

In this case no information is carried across cell interface and the corresponding flux is set

identically equal to zero.

* Characteristics in first set are directed towards interface, and in the second set away from it.

Only one value of u is carried across an interface, it completely determines the flux.

* Characteristics in both adjoining cells are directed towards an interface. Clearly, in this case

characteristics emanating from different cells cross forming a shock. Depending which side of

the interface a shock is passing, we choose which family of characteristics actually determines

flux across the interface. Obviously, these are those characteristics who cross an interface

before they entering the shock.

2

In the first-order schemes flux is constant along the whole interface and is equal to I- where u. is

the value (also constant) on the interface.

3.2.4 Slope Reconstruction

Piecewise-constant approximation are capable of supporting only first-order schemes. In order

to construct schemes of better accuracy, it is necessary to employ approximating functions of more

complicated form. In particular, for second-order upstream schemes, piecewise-linear functions have

to be used. As we argued in Section 3.2.1 we will be using the slope reconstruction procedure rather

than "transition" formulas similar to (3.16). Slopes will be computed in the regions where solution

is assumed to be reasonably smooth, so that interpolation formulas are valid. Cell averages are

assumed to be known prior to the beginning of the reconstruction. In our scheme, we implemented

two different slope reconstruction procedures proposed originally by van Leer in [24] and Harten

and Osher in [14]. We compared the performance of the two algorithms and present and discuss the

results of numerical experiments with both methods in Section 3.2.4.
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Figure 3-1: Adjustable mesh. • 's are the computational nodes. Intervals between them are

computational cells. x! are in the middle of cells. Underlying fixed grid (boxes) is not shown.

Reconstruction with van Leer limiters

To generate the slopes, we use the generalized (for the case of non-uniform meshes) centered differ-

ences. If one denotes the middle point of j-th cell on the n-th time step by xz (see Figure 3.2.4),

the slopes can then be computed according to the following formula

=W1/(XA - x!%i) + Wr/(X'+i - x') (3.25)
S= 1/(X" - X 1) + 1/(X +1 - "X)

where wt and w, stand for the left and right divided differences correspondingly:

ui - ui-1 ui+1 - ui
wt =r =w n (3.26)1 i--1 i+1 -

One can check that (3.25) approximates smooth functions with the second order of accuracy and

it degenerates into an ordinary centered difference scheme when mesh is homogeneous.

B. van Leer [24, 25] considered schemes with TVD ("Total Variation Diminishing") properties.

He proved that reconstructed slopes must satisfy certain monotonicity requirements in order to be

TVD. In particular TVD yields the absence of spurious oscillations. He called these restrictions the

slope limiters since in the essence they restrict the range of slopes. We implemented both weak

and strong slope limiters. In its weak form the monotonicity constraint requires that approximating

function in each cell takes values strictly within the range spanned by the averages of two neigh-

boring cells. Strong monotonicity prohibits an approximating function in each cell ( j_, j+) to

exceed the average of cell value uý and the larger of two neighboring values. It also does not allow

the slope to fall below the average of u? and the smaller of two neighboring values.

In the first sweep of the reconstruction procedure we determine the slopes according to (3.25).



In the second sweep we check the monotonicity constraints and correct the slopes. In the case of

weak monotonicity constraint van Leer limiters take the following form

min{lsi|, 2(uj+,,i)n(s) - ui) 2(ui - ui-ig(,,)) } sign(s),
di ' di

(si)weak = if sign (ui - ui-1) = sign (ui+l - ui) = sign si , (3.27)

0, otherwise.

Strong monotonicity takes the form of

min{si, ui+,ign(,) - ui ui - Ui-.ign(,) } * sign(si),
S di ' di

(si)strong = if sign (ui - ui-1) = sign (ui+l - ui) = sign si (3.28)

0, otherwise.

Strong monotonicity condition limits the slope range twice as strong as weak monotonicity, as easy

to see from (3.27) and (3.28). Both strong and weak van Leer's limiters imply zero slope when

u is simultaneously either greater or smaller than u! and U+ 1. In particular, they impose zero

slope at the local extremum points. Solutions of (2.18) often have weak (corner type) discontinuities

at the local extrema. Therefore, van Leer slope limiters lead to effective "shaving off" the corners

and production of extra numerical noise at these locations. The numerical experiments we need

to conduct require large computational times and uniformly high accuracy, including vicinities of

singularities. Thus, it may be profitable to sacrifice the TVD properties in order to achieve better

resolution near singularities.

Reconstruction with UNO algorithm

As an alternative approach to the van Leer's schemes we used the so-called UNO reconstruction

algorithm originally proposed by Collela and Woodward in [6] and Harten and Osher in [14].

Following Collela and Woodward, we start with piecewise-parabolic interpolant Q(z; W) approxi-

mating a piecewise-smooth function W(x) uniformly with the third order and its derivative with the

second order of accuracy:

Q(xt; W)= W(zt) = Wi,

Q(X; W) = W(X) + O((AX)3), (3.29)

dQ(X ± ±0; W) = d W() + O((Az)2) .TX- dx\~



The interpolant Q(x; W) is composed of quadratic polynomials pieced together at cell middle

points xz (see Figure 3.2.4)

(3.30)Q(x; W) = q,+I(x; W), x" < x < x: 1 .

An equation of parabola q i+(x; W) can be written in the following form

qi+ (x; W) =Wi + di+ W/Az -(x - x') +
1- D+ W -(x - x!')(x - xz+)/IAx 2

where

di+ W = Wi+l - Wi

and coefficient Dji+ W is related to the curvature of q(x; W)

(3.31)

(3.32)

(3.33)Di+ W = q1 (X; W)(Ax) 2 .

We select Dj+½ W from two possible values. It is feasible to construct a parabola through points

(X', Wi), (xn+1, Wi+i) using either of (xZl, Wi- 1 ) and (x•+2 , Wi+2). Parabola with the "least

oscillatory" behavior5 is then selected as an answer. This switch is accomplished by the min-mod

function:

Di+ W = m(Di W, Di+i W), (3.34)

where Dk W is the curvature of parabola through points n_ x , zn and z:X+. Function m(z, y) returns

the value with the least absolute value, when both arguments are of the same sign and zero otherwise.

m(x, y) = s-min(l, lyl)

0
if sign(x) =sign(y) = s

otherwise .

The UNO algorithm constructs the slopes in two steps. Firstly, a piecewise-parabolic inter-

5 That is, deviating the least from the straight line connecting points (x', Wi) and (xz+, Wi+l).

(3.35)



polant is build to approximate the piecewise-constant function un (x), composed of the cell averages

un (x) = u0, when i> , < x _< i+ ) (3.36)

in the way described above. Secondly, slope in each cell (i, ' ,Ei+) is computed as the slope for the

interpolant, applying the same min-mod switch (3.35) to two slopes of parabolas pieced together at

the cell middle point xz~

d d
Sj = Ax. m(z Q(x - 0, u' ),z Q(X + 0, u•)) . (3.37)

This completes the slope reconstruction process.

Comparison of Reconstruction Methods

Since we are tracking shocks no matter which reconstruction algorithm is used, dissipation at the

"corners" becomes the major source of numerical errors. We show the results of test runs on Figure

3-2. Standard hat function

S , ifO< < r

(z) = if (3.38)
27r-x, if7r<x<27r

was used as an initial condition and the in-viscid Burgers equation as a model to test reconstruction

algorithms. The exact solution is well-known. We placed it on Figure 3-2 for comparison. Clearly,

none of the reconstruction algorithms delivers perfect resolution of the corner type singularities for

the scalar Burgers equation. As expected, TVD (van Leer's type) scheme smears corners at the

extremum more significantly as compared with the UNO-type scheme. The latter smears a typical

corner singularity over only 2-3 points as compared to 5-7 offset points in the case of the weak van

Leer limiters and 10-12 points in the case of a strongly monotone scheme. Accordingly, we opted to

use the UNO algorithm for the slope reconstruction in all of our experiments.

3.2.5 Flux Correction

After the slopes are found, the next step is to compute the numerical fluxes. Since we need to

calculate fluxes with second order of accuracy rather than first, the Riemann solver in the form

described in Section 3.2.2 needs to be slightly modified.

Characteristics will not be piecewise parallel to each other when one replaces a piecewise-constant

approximation by a piecewise-linear one. They will remain, however straight lines when a scalar
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Figure 3-2: Performance of schemes with UNO and van Leer slope reconstruction. Non-viscid
Burgers equation. Evolution of a "hat" function.

conservation law (3.11) is considered. Slopes calculated in Section 3.2.4 determine where compression

or rarefaction waves or shocks will form inside time strip t, < t < t,+l. The new initial value

problems formulated at each cell interface are not in the form the classical Riemann problems any

longer. Fortunately, it is easy to extend the Riemann problem solution for this case. It is certainly

not true that flux across a cell boundary is constant in this case, but since we are interested only

in the second-order approximation to the flux rather than the exact answer, we can use an average

flux across interface in the "midpoint rule" manner. Errors introduced this way can be neglected in

our consideration

tn+ 1

t,2 
(3.39)

tt nt
f f(u((_ (tn + A ),tn + 2)At + O(At3).

We have introduced the node trajectory ,j_½ (t) as a function of time t on a moving grid.

To agree with notation already in use, Cj_ -(tn) = V_ ½. In order to compute fluxes we determine

only a single value of u at the middle point of an interface and use (3.39). We use the idea of

"tracking back" the characteristics in this calculation. Again, similarly to the case of characteristics

parallel to each other, we check only two neighboring cells for the influx of information. We search



for characteristics emanating from either of the adjacent cells and crossing interface precisely in the

middle point. Once these characteristics are found, the solution of Riemann problem of Section

3.2.2 is used for the values carried by these characteristics. This method provides second order of

accuracy to the scheme everywhere except locations of strong compression waves or shocks.

3.2.6 Adjustable Grid

Conservative schemes work very well when functions they approximate do not vary too much. How-

ever, they lose accuracy considerably if solutions vary by finite quantities inside a single cell.

Typically these variations occur when a shock or very strong compression wave moves through the

grid. When shock passes through a cell upstream method with fixed mesh can not distinguish be-

tween the two sides of a shock and takes an average across it. Because of this averaging scheme

becomes locally zeroth-order with shock spreading over several cells, forming a "staircase" structure.

In order to avoid such effects we use adjustable grid. The idea is to make grid points sensitive

to shocks and allow them to move when shocks pass. This way integration (or, in other words,

averaging) across shocks becomes completely eliminated.

Moving and Fixed Meshes

We will require certain additional notation and restrictions to work with moving grids. Following

Harten and Hyman [13] and also Vaynblat [26] we introduce two meshes in the space domain: an

underlying fixed mesh and a moving grid consisting of nodes j+½ as described in Section

3.2.1. Points yj on the fixed grid will be distributed uniformly on the interval [0, 27r] and placed at

0, N, N ... N 1 27r, where N is the overall grid resolution. We will call intervals between yj 's

the boxes. Nodes on a moving grid will be denoted by j+ as before, with an additional subscript

n reflecting the ability to change position from one time step to another. Intervals between them

will still be called the cells.

Integral Relation Modification

Conservation law in the integral form (3.16) easily generalizes for the case of moving grid. Rectan-

gular "elementary region"

tj_s < X < aj+p, tn < t < ts+h (3.40)

transforms into a trapezoidal region such as the one shown on Figure 3-3.



Figure 3-3: Elementary trapezoidal region for moving grid.

One can treat differential equation (3.11) as a divergence relation for vector field F = (u, f(u))

and use Gauss divergence theorem to obtain the modified version of (3.15) (see Figure 3-3)

V -F dA=
R

F -i ds.
ABCDA

Here ii is the outer normal unit vector. Integration over top and bottom parts of the contour gives

average values of u in jth cell computed at n-th and (n + 1)-st time levels

1
- 3+4 37-2

2

u(x,t,,) d,
j:n

cn+1
j+u

iij(tn+l) = (1n+1 _ 1: +(X, t, dx.
2 I 2z- J-

(3.42)

(3.43)

Special cases when trapezoid degenerates into a triangle require special attention and will be

addressed later in this Section.

Unit normal vector to AB and CD is computed according to

S(-k, 1)

v'-T--k' (3.44)

where k is the slope of either of AB and CD on z - t plane. Therefore, corrected flux across a

slanted boundary can be computed according to the following formula (analogous formula is valid

for the other side of the trapezoid, CD)

(3.45)S=J-ku(s) + f(u(s)) ds

A

(3.41)

* * *



where s is the parameter along the boundary. Total length of the boundary is, as easy to see, equal

to vi + kAt. To compute the integral in (3.45) we use the "midpoint" rule the same way we did

in the case of a fixed grid. Therefore, modified flux can be found approximately as

-ku(,)-+ f(u(gt))
-_ . k( v) + kf(U ()) (1 + k2 At) = (-ku(9) + f(u(1))) At, (3.46)

where we have denoted by st the middle point of AB (see Figure 3-3). Error, introduced by the

"midpoint" rule is O(At)3 . Analogously,

f -ku(r) + f(u(r)) (V/ + k2At) = (-ku(r) + f(u(-r)))At, (3.47)

where g, stands for the middle point of CD on Figure 3-3.

Now the modification of numerical scheme (3.16) for moving meshes is complete:

U___ 2 U! (3.48)

Regularity Conditions

As nodes qn+½ move on the computational grid, they may cross boundaries of their boxes and start

interacting with each other. It leads to the increase of concentration of moving grid points inside

some of the boxes, while other boxes contain no nodes at all. Under such circumstances resolution

of a scheme becomes nonuniform and overall accuracy decreases. Additional problems arise when

two moving towards each other shocks collide. Clearly, conflicts between two or more moving nodes

can occur. To resolve interaction conflicts and preserve the uniformity of a scheme, we will formulate

certain rules regulating motion of nodes on fixed grid, which we call the regularity conditions. They

must hold for all times:

1. At each time step scheme must remain conservative;

2. Each box may contain only one node;

3. Each moving node must remain in its own box;

4. Only nodes immediately adjacent to shocks are allowed to move;

5. Nodes not currently in motion must stay exactly in the middle of their boxes;

6. Speed of the moving nodes depends entirely on the speed of a corresponding shock.



Shock Tracking

Shock tracking is a very effective tool to reduce numerical viscosity at discontinuities. Since only

relatively large jumps in the solution must be treated as shocks, we should "teach" the scheme

to distinguish between shocks and ordinary points. Since tracking is computationally expensive,

we allow only a small fraction of nodes (roughly equal to the number of shocks in the domain) to

move. The selection is done by imposing a certain constant threshold, limiting maximum gradient

the scheme can handle without tracking the corresponding nodes. The choice of a threshold is

determined by the two main criteria. If a threshold is too large, the scheme will not see small

shocks and average across them, smearing discontinuity to several neighboring cells. Conversely, if

threshold is too small, the algorithm will track too many fake shocks thus making computations

unnecessarily complicated. As soon as shock has been captured, corresponding cell interface n , is

set to move in such a way that its trajectory should coincide with the trajectory of passing shock.

Shock position L(t) can be determined from the Rankine-Hugoniot jump condition (in the form of

a differential equation) (3.23)

dLi+1 1
Si+ (t) = d 1  2 (vt(t, L,+ (t)) + vr (t, Li, (t))), (3.49)

with the initial condition on the "base" t = tn

Li+(t, ) = i+1, (3.50)

where Li+ (t) is the shock position at time t, vl and v, are the values carried by the "left" and

"right" characteristics crossing the shock path at time t. Assuming that velocity profile is piecewise-

linear, with mean values uL and ur, slopes st and s, and cell size 2di and 2d, it is easy to find the

values of v and . Suppose that these values are values are carried by characteristics emanating from 4x and

zx correspondingly (see Figure 3-4)

vt (t) = ut + st (2x (t) + d) , (3.51)

vr(t) = ur + Sr (X(t) - dr). (3.52)

We made base points 4x and z. time dependent to reflect the property of corresponding character-

istics to intersect at time t.

At the same time calculation of distances covered by each of these characteristics in time t returns
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Figure 3-4: Moving node speed computation. Shock path is approximated by the parabola. Flux is
computed at the middle point of the nodal trajectory. Piecewise-linear approximation.

Li+½(t) - 4* = t .vi(t), (3.53)

L,+ (t) - ; = t v,.(t) . (3.54)

Substituting (3.51)-(3.52) into (3.53)-(3.54) we can solve for base points z4 and zx:

L,+ 1. - tui - tsd(

1 + sit

SLi+ 1 - tur + tsd,
1 + t (3.56)

0

I



and reduce (3.49) to a single ODE

dL+ 1  1 Li+ - tut + di Li+i - tu, - d,r
dt - • ut + st 1 + st + ,. + Sr + st (3.57)

Since we are interested in the solution to (3.49) for t, < t < tn+l only and second order of accuracy

suffices for our purposes, we expand (3.57) for small t - tn and solve it approximately. Shock path

can be fitted by a parabola (see Figure 3-4)

bt 2

Li+ (t ) = n t+ + at + T + O(t - tn)3 , (3.58)

where constants a and b can be found by expanding equation (3.57) near t = tn and retaining terms

proportional to (t - t,) and (t - tn)2 only:

a = 2(ui + U,. + sidt - sdr), (3.59)

b = -(sta + s,a - stut - Sru,) . (3.60)

These constants determine the final position of a shock at t = tn+1 up to the second order of ac-

curacy. The correct set of characteristics can then be chosen to find the correct flux across slanted

interface.

Note. Instead of explicitly using parabolic shock paths we replace them by straight lines connect-

ing initial and final shock positions (see Figure 3-4). Input for the corresponding Riemann problem is

taken from the values at the middle points of these straight lines rather than at the middle points of

parabolas themselves. Error introduced by this simplification is of order of (A() 2 locally6 . However,

according to Vaynblat ([26]), it is not possible to achieve higher accuracy near shocks on a moving

grid with piecewise-linear slope reconstruction anyway without better resolving near shocks 7 . So,

this error can be neglected.

Relaying Algorithm

To satisfy regularity requirements formulated in Section 3.2.6 we implement the relay-type algorithm.

Each moving node i+ is allowed to move inside its own (fixed) box yi < x < yi+1 without any

additional restrictions as long as no other nodes are present in the same box. The CFL condition

prohibits all the nodes from moving farther than to one of the two adjacent boxes during each time

step. Once node • +½ enters the neighboring box, the relay switch turns on and checks for other

nodes in this box. If more than one node are present in one box at t = tn+l, we call this situation

a conflict and let the algorithm resolve it. Regularization is performed box-wise. Below we consider

6 Global error is only of the first order.
7It is still considerably better than local zeroth order near shocks for fixed grids.



all possible conflicts on a moving grid.

Case 0. There is only one node in a box, it does not move during current time step and it is in the

middle of the box.

Do nothing. This is a regular node.

Case 1. Moving node enters a box containing no other nodes.

No adjustments are necessary. The node remains at its final position.

Case 2. Moving node enters a box with another fixed node in the middle.

A stationary node is removed, a moving node remains at its final position.

Case 3. One moving node enters a box with another one moving inside the box.

Here we clearly get two-shock interaction conflict. Two conflicting nodes are replaced by an

"averaged" one. The position of the average node L. is determined by the relative strengths

of the two interacting shocks LI(t,+l) and Lr(tn+i).

L. = L( ) + Lr(n+) - L(tn+) (3.61)
Dr + Dr

where D1 and Dr are the strengths of left and right shocks L1 and Lr correspondingly.

Case 4. Moving node enters a box with another node inside the box and third node entering this box

from the other side.

This is a three-node interaction conflict. This situation is treated much similarly to the previous

case. All three nodes get replaced by a single node with average position L. computed as

following

L, = Lt(tn+l)+
De(Lc(t,+) - L1(tn+l)) + Dr(Lr(tn+) - Le(tn+)) . (3.62)

Dr + De + Dr

Case 5. No nodes are found in a box at t = t,+,.

Moving node has just traveled to an adjacent box. New node must be created at the middle

of the box.

Case 6. There is only one node in a box, it does not move during current time step and it is placed not

in the middle of the box.

To keep mesh as uniform as possible this node get placed at the middle of the box.



Solution Update on a Moving Grid

As we mentioned before, "elementary" trapezoidal regions, such as, for example, shown on Figure

3-3 can degenerate into triangular regions or, conversely, may extend to include neighboring regions.

After the completion of regularization process discussed in the previous Section, exactly one node

is placed in each box. During regularization, we need also to keep track of line connectors between

nodes on the n-th and (n + 1)-st time levels. Using these connectors, we form elementary regions

in such a way that they include exactly one cell on the top (at the "next" time level t,+l). Then

we update the solution for the next time level. Again, we reduce the general problem to considering

only several possible cases.

Case 0. Two neighboring nodes remain in their corresponding boxes (see Figure 3-5). Even though

both nodes can be moving during current time step, they do not cross boundaries of the boxes

and do not create interaction conflicts. This is the regular case. The "elementary" region is a

trapezoidal or a rectangle (when neither node is moving).

Case 1. Two neighboring nodes travel to the right/left box simultaneously (see Figures 3-6 and 3-7).

Both nodes correspond to shocks moving in the same direction. Elementary region is a slanted

trapezoidal in this case.

Case 2. A node moves out of the box, a new node is generated in the middle of this box (see Figures

3-8 and 3-9). Two nodes on the (n + 1)-st time level have the same origin. Elementary region

transforms into a triangle.

Case 3. Two nodes merge at the (n+ 1)-st time level (see Figures 3-10 and 3-11). Since the top part

of elementary region degenerates into a point and does not contain any cells at the (n + 1)-st

time level, we will need to include an additional cell in order to create a valid elementary

regions .

Case 4. Three nodes merge into a single node (see Figure 3-12). Typical setup when such conflict

occurs is when two shocks moving in opposite direction collide with each other. One needs to

use three cells at the "previous" time level t, in order to create a valid elementary region.

8 Had we removed degenerate regions from the scheme we would have committed a "conservation crime" - violation
of conservation properties.
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3.3 Convolution Term Treatment

To complete the description of "splitting" algorithm discussed in Section 3.1 we need to implement

an algorithm for time integration of the following equation

2r

ut + K(x - y)u(y)dy = 0. (3.63)

0

In order to preserve second order of accuracy for the overall scheme, an algorithm for integrating

(3.63) must also be of the second order. We use a simple explicit scheme based on second-order

Runge-Kutta method (see [8, 211 for reference).

In the case of a "single mode" kernel (2.20) space integral in (3.63) becomes particularly simple.

2v

t = - sin(x - y)u(y)dy =

0 2r 27 (3.64)

-sin zJcos(y)u(y)dy + cos x sin(y)u(y)dy.

0 0

Integrals in the last expression can be easily computed using the rectangle rule.

Integration of (3.63) is done in two sweeps. In the first sweep we find auxiliary values of u at

t = t, + At/2:

At
uj = 0 + -(I, sin(x?) + 12 cos()), (3.65)

where

N

JI = - Zu cos(xM)((;-+ - 1_ ), (3.66)
j=1

N

12 = Eu sin(Zx)(j(+½ - .), (3.67)
j=1

n 1

(see Figure 3.2.4). In the second sweep we compute values of u on the (n + 1)-st time level

+1 = U + - (I, sin(x') + I cos(x?)), (3.69)



where I; and I, are computed as in (3.66) using u! in place of u0.

Remark 3.3.1 Spectral method could be another possible choice for integration of (3.63). In general,

with "multi-mode" kernel (2.19) it becomes superior to our scheme. In that case computation of the

space integral in (3.63) will require O(N2 ) operations where N is the number of grid points and

will become rather costly numerically. The spectral method, however, will need only O(N log(N))

operations. We do not use the spectral with "single sine" kernel since it

1) is restricted for N = 2m;

2) is nontrivial to implement on a moving grid;

3) provides low accuracy for discontinuous solutions.



Chapter 4

Long-Time Integration

Experiments.

4.1 Poincard Sections.

In this section we introduce some tools that will be useful in the analysis of the numerical calculations

results. Specifically: we introduce special versions of the Poincar6 map technique, adapted to our

infinite dimensional situation. In particular, in Remark 4.1.2 we point out a special property that

characterizes traveling waves.

4.1.1 Some definitions.

Equation (2.18) describes a time evolution in the space of 27r-periodic functions u(x, t). We can

use the Fourier components of the solution as a set of convenient coordinates

00

u(x,t) = •: Fk(t)e'kT, (4.1)
k=-oo

where F*k = Fk and Fo is absent', since u is real valued and has zero mean. Then the time evolution

of u can be represented by an infinite system of ordinary differential equations for the set of Fourier

modes Fk (t). The nonlinearity in (2.18) introduces mode coupling into the system while the linear

'The time evolution keeps Fo constant. It is thus consistent to take it identically zero.



integral term (with the kernel (2.20)) affects only the equations for the first modes k = ±1:

dFk(t) ik
d FkM = 2 Z Fm(t)F,(t) for k = ±2,±3,... , (4.2)

2m+n=k

dF(t) = i7rFi(t) - i Fm(t)Fn(t), (4.3)

d

-F 1(t) = -irrF_-(t)+ Z Fm(t)Fn(t). (4.4)
m+n=-1

Fourier space thus becomes a natural representation for the phase space of the system defined

by (2.18). The set of equations above gives another perspective on equation (2.18), from the

Dynamical Systems point of view, rather than the Nonlinear Waves one. We can formally con-

sider these equations as an infinite-dimensional nonlinear system with phase space coordinates

Fk(t), k = ±1, ±2,. . ., oo. In fact, equation (2.18) has a Hamiltonian structure - as long as its

solutions do not produce strong discontinuities (See Subsection A.2 in the Appendix, where we show

this.2)

Remark 4.1.1 We stress here that we do not use the form of the equations above in (4.1)-(4.4)

for our numerical calculations. This form is introduced for purely theoretical purposes in the

interpretation and analysis of the numerical results, as explained in this section.

One of the most useful techniques for analyzing low-dimensional trajectories (such as, for ex-

ample, periodic and two-frequency quasiperiodic orbits) in multi-dimensional spaces is the use of

Poincari sections. We will adapt this method to identify and analyze low-dimensional solutions of

(2.18) - equivalently, of (4.2)-(4.4) - obtained numerically.

By analogy with finite-dimensional dynamical systems (e.g., see [12]) we introduce the PoincarA

map induced by the kth Fourier mode. As in the finite-dimensional case, this Poincar6 map is

defined for each trajectory by its first return to the hyperplane Im(Fk) = 0. Since the trajectories may

cross this plane from the side of positive values of Im(Fk) to the side of negative ones, as well as the

reverse, we further restrict the intersections to those which correspond to the direction of increasing

Im(Fk). That is

Im(Fk) = 0 and Im ~Fk > 0. (4.5)

This corresponds to looking at the solution after the point Fk(t) has gone exactly once around the

origin in the complex plane.3

2 We also show there that the real and imaginary parts of the Fk's are a canonical conjugate set of variables: see
equation (A.6).

3 We note that, in the numerical calculations, the modes actually do "orbit" around the origin (in each of their
corresponding planes) and never get too close to it. Thus, this is a useful definition.



Continuing with the finite-dimensional case analogy, we also introduce the nth iterate of the

Poincar6 map as the nth return of the trajectory to the hyperplane defined by (4.5). Finally,

we define the Poincard section induced by the kth Fourier mode (or simply the Poincard

section) as the set of all the iterates of a point by the Poincard map. This way, each trajectory

corresponds to the infinite sequence of points in a Poincard section. Each point on the section

corresponds to a single return of the trajectory to the hyperplane, as in (4.5).

To facilitate the visualization of an (infinite dimensional) Poincard section, we introduce the set

of projections of a Poincard map. The mth projection is given by the image of the Poincard

section induced by the kth mode on the mth complex plane given by

Fm, = 0 for: my k. (4.6)

That is: the mth projection of a trajectory by the kth Poincard map, is the set of positions

Fm takes on its complex plane, recorded at the moments when Fk returns to the kth hyperplane, as

in (4.5).

4.1.2 Traveling waves on a Poincard Section.

In the previous subsection we introduced the Poincar6 map and Poincar6 section induced by a

Fourier mode, and the projections induced by the other modes. Here we illustrate these notions

with the example of a solution periodic in time. To be more specific: the traveling waves, 4

introduced in (2.21) of Section 2.2. We will choose Fi(t) as the base mode giving the Poincard map

(that is, F1 is the variable that sets the "clock", with k = 1 in (4.5)). This particular choice of the

base mode is the one we will use for most of the examples throughout the rest of this chapter.

Because of the traveling wave character of these solutions and the fact that u in equation (2.21)

is an even function of the variable x - st + Oo - 1, it is clear that their Fourier series (as in (4.1))

has the form

00

u(X, t) = h(ae-2i(to+ ) ek (47)
k=-oo

where the coefficients ak are real. Thus the Fourier modes Fk(t) = ake - ik(st - 00+3+) are "synchro-

nized". That is, the kth mode travels around the origin in its complex plane (tracing a circle) at a

constant velocity which is k times that of the first mode. Furthermore, when the first mode is real

valued,5 all the others are real too. Thus each traveling wave (2.21) is represented by a single point

4 Actually, the only examples of time periodic solutions of equation (2.18) known to us.
SThat is: st - €o + j is a multiple of 7r.



on the Poincar6 section induced by the first Fourier mode. Moreover, such a point lies on the real

axis in each projection plane of the Poincar6 section.

Remark 4.1.2 More generally, it is clear that the Poincar6 section (as induced by any of the Fourier

modes) of any time periodic solution will consist of a finite number of points.6 Furthermore, the

argument above shows that the Poincare section of any traveling wave solution (which is automatically

periodic in time) by the first mode must be a single point, whether or not the solution has any

additional symmetry (like being even). This last property makes it easy to detect small deviations from

the traveling wave structure, while just looking at graphs of the u(x, t) profiles can be confusing.

4.2 Numerical Experiments.

In this section we report some of the results of our numerical experiments. For our numerical

computations we used a second order fractional step approach (Strang splitting, [23]) described in

Chapter 3.

The existence of non-breaking solutions for equations like (2.18) - in the form of traveling waves

- has been established both numerically and analytically (see [9], [19] and [20]). However, this prior

work leaves open the question: Are the traveling waves the only possible never-breaking

solutions of (2.18), or are there others? The fact that equation (2.18) is (in some sense) a

Hamiltonian system - as explained in subsection A.2 of the Appendix - suggests that one should,

perhaps, be not too surprised if other such solutions exist.

We conducted extensive numerical experiments on (2.18). These calculations gave evidence for

the existence of other never-breaking solutions. As it turns out, these solutions are not merely stable,

but they appear to be attractors for "general" solutions arising from "arbitrary" initial data (in

the sense to be described below.) In all the experiments performed we started with 2wr-periodic

functions of various shapes, and used them as initial conditions for (2.18). The long term behavior

of the solutions generated by these initial conditions was then explored. Both the Poincar6 sections

techniques introduced in Section 4.1 and other visualization methods, to be explained below, were

used to investigate the solutions.

4.2.1 Evolution Stages for General Initial Conditions.

The numerical experiments we conducted for (2.18) with the kernel (2.20) demonstrate that, for

almost all initial conditions (see Remark 4.2.1 below) the solutions evolve according to the following

scenario:

6 Since the period must be a multiple of the time it takes the mode to go around the complex origin once.



1. TRANSIENT STAGE. SHOCKS PRESENT. ENERGY DECAYS.

Shortly after the evolution begins the wave profiles steepen and shocks appear, very much

in the same way as what happens for the solutions of the inviscid Burgers equation. These

shocks dissipate the energy (2.23) (as shown in Subsection A.3 of the Appendix) and become

weaker as time passes. After some period of time7 the shocks weaken so much that they can

be, effectively, ignored.8 An example of this type of evolution is shown in Figure 4-1.

2. LIMITING STAGE. CONSTANT ENERGY.

After the shocks disappear from the solution' the evolution becomes conservative (see Ap-

pendix A). All the experiments we have conducted suggest that no more shocks are formed at

this final stage - even though the solution remains highly nontrivial, so that pressure varia-

tions are still present. Thus the energy is preserved. We will call solutions obtained by this

"transition" mechanism the limiting solutions and will focus on analyzing their nature.

In other words, as t -+ oo the shocks vanish and a limiting solution without shocks is attained.

This limiting solution has, typically, highly nontrivial structure.

Remark 4.2.1 In fact, it appears that the only case when the initial conditions do not lead to

the formation of non-trivial, non-breaking (and therefore constant energy), limiting configurations

is when the initial conditions are non-resonant with the kernel of the integral operator in equation

(2.18). If this non-resonance occurs, then the integral term does not contribute to the evolution

and the energy of the solutions decays, asymptotically reaching zero in exactly the same way as the

solutions to the inviscid Burgers equation. This set is constituted by those initial conditions that do

not have any of the Fourier components in K, nor their sub-harmonics (since the nonlinear terms

will generate the harmonics of any component in the initial conditions). Thus, it is a rather thin

set. As an example, consider the following initial condition

u(x, 0) = sin(mx), for m > 1, (4.8)

for the case when (2.20) applies. Then, in the system (4.2)-(4.4), only the harmonics F, with

n = k - m will be excited. The first Fourier modes F±1 (necessary for the resonance to occur)

therefore never get excited and the solution simply "ignores" the integral term in (2.18).

4.2.2 Structure of the Attracting Solutions.

The numerical experiments show that different initial conditions in general converge to different

limiting solutions. These limiting solutions, however, share many common features and can be

7 Usually less than a hundred of iterates of Poincar6 map, see Appendix D for details.
8 In the numerical calculations the shocks become too weak and cannot be detected.
9 Technically, our code imposes a certain small threshold which determines the weakest detectable shock.



Solution u for t = 2.5

Figure 4-1: Evolution illustrating the transient states, starting from a typical initial condition u(z, 0) =
2sin x + 3cos(2x - 2). From left to right and top to bottom we have: the initial conditions and the
solution u(z,t) at the times t = 0.15, 0.35, 0.8, 2.5, 10, 25, 60, 100. The vertical and horizontal scales
are -5 < u < 5 and 0 < x < 27r, respectively. The shocks first form sometime for 0.15 < t < 0.35.
Initially they grow, as the nonlinearity continues to steepen the solution. But, by t = 0.8 they are
decaying in strength and by t = 10 they are quite weak. The shocks have essentially disappeared by
t = 60. From then on energy is conserved and no new shocks appear, even though the solution still has
a substantial acoustic wave amplitude. Note that a Poincare cycle is At - 0.05.
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treated as elements of one family.

When the energy (2.23) of the initial conditions is sufficiently large (see Remark 4.2.2), the

solutions converge to a maximum amplitude traveling wave ((2.21) with 6 = 1)

u = s(1) + b(1) V/1 - sin(x - s(1)t + 0) , (4.9)

for some phase shift 0o, with s and b given by (2.22).

When the energy of the initial conditions is not sufficiently large, we obtain an entirely different

class of limiting solutions - which almost look like traveling waves but not quite, as a perturbation

of oscillatory nature is superimposed on them. To be more specific, these limiting solutions all have

the following typical structure (illustrated in Figures 4-2 and 4-3)

* The gross structure of the solution can be described as being that of a smooth periodic traveling

wave, with a single oscillation per wavelength.1 o But the shape of the wave undergoes periodic

changes as it moves, described next.

* Each cycle starts with the development of a single corner on the front part of the wave, not too

far from the trough. The corner then moves along the wave profile to the back side, where it

disappears (at a position roughly symmetrical - relative to the minimum of the wave profile

- with the one where it appeared).

* A period of smooth behavior follows the corner "episode", and then the cycle starts again. See

Remark 4.2.3 for more details.

Notice that, unlike the case of the traveling waves (described in Section 2.2), which are either smooth

or have a corner singularity for all times, these new solutions (a typical representative of which is

shown on Figure 4-2) combine both behaviors, with sharp spikes during the time intervals when the

corner singularities appear and smooth behavior the rest of the time. It is noteworthy that, even

though these solutions are not smooth, they never break. Therefore they are exactly of the type we

are interested in.

One can clearly see a repetitive pattern (on Figure 4-2) in the behavior of these new limiting

solutions. As far as we can tell from our numerical experiments, the shape oscillations in the wave

are periodic in time. Because this shape oscillation period is combined with the period arising from

the translation of the overall wave shape, generally we see that these solutions will be quasiperiodic

in time - except, of course, if the two periods are rationally related."1

To summarize, the most important outcomes of our experiments are the following

1 0 Very similar to the traveling waves described in Section 2.2.
1 1 Unfortunately, this property is especially difficult to determine numerically. However, we can tell that, if rationally

related, the ratio is generally not simple.
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Figure 4-2: Typical attracting solution in physical space-time, plotted in the range 0 < x < 27r and
0 < t < 15. Notice the periodic shape changes - the spikes in the profile, produced by the corners
moving over the bottom of the wave (we have plotted the negative of the solution to make this more
evident).

" Only two different types of limiting solutions appear to exist and be attracting, namely:

- A maximum amplitude traveling wave (4.9), as shown on Figure 2-1;

- A family of quasiperiodic solutions, such as the one shown on Figure 4-2.

* The energy (2.23) of the quasiperiodic solutions (which is a constant in time, as they have no

shocks) is bounded by the energy of (4.9). It can take any value from this maximum to zero,

depending on the initial conditions generating the solutions.

* The smooth traveling waves ((2.21) for 16( < 1) are neutrally stable and do not attract solutions.

We will elaborate more on the last two points here in what follows. It is remarkable that all the
attracting solutions have corners.

Remark 4.2.2 It is difficult to give a precise characterization of which initial conditions lead to

which limiting wave. Clearly, the value of the initial energy is a crucial parameter, as the limiting

solution cannot have an energy that exceeds this one. However, it is obviously not the only important

parameter. The shape of the initial condition determines the strength of its resonance with the kernel
K, which controls the amount of dispersion the solution will experience. Without resonance and dis-
persion (as in the case of (4.8) the limiting solution is always trivial (u = 0). Therefore, the amount

2.5-
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Figure 4-3: Typical evolution of a quasiperiodic attractor, illustrating the formation of a corner on the
leading side of the trough of the wave, which then moves accros the bottom to the other side and
disappears. Time here advances from left to right and top to bottom. The overall translation of the
wave is from right to left, at a speed s , -3.3. This attractor followed from the initial conditions
u(x, 0) = 2 sin z - using a very fine mesh with 2000 points.

of energy left in the limiting solution will also depend (strongly) on the shape of the corresponding

initial condition. But, for a given frozen shape, the amplitude (equivalently, the energy) will control

the limit - and, if large enough, it will lead to the maximum amplitude traveling wave as the limit.

Our prior loose use of "large energy" referring to the initial conditions leading to the formation of

(4.9) and "small energy" to denote those leading to a quasiperiodic limit, was in this sense described

here.

Remark 4.2.3 As in the earlier discussion of the shocks vanishing from a solution during the tran-

sition phase of the evolution, it is difficult to tell numerically whether the corners actually

disappear during the "smooth" part of the cycle illustrated by Figure 4-3 or just become too small

to be detected by the numerical calculations. Thus, the attracting quasiperiodic solutions may not

actually be smooth at any time, even though the numerical calculations seem to suggests this happens

during some part of the cycle. We think this is, quite likely, the case.
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Figure 4-4: Real parts of the first three nonresonant Fourier modes for a typical attracting limiting
solution, as functions of time.

4.2.3 Limiting Solutions in Fourier Space.

The periodic appearance of the corners in the general limiting solutions to (2.18) can be easily

observed in physical space. Because of the periodicity with which this phenomenon occurs, we

concluded that these solutions must be quasiperiodic in time. The phenomenon manifests itself also

in Fourier space (and this gives us another way to look at the structure of the limiting solutions). The

dependence of the Fourier modes Fk on time, for a typical attracting solution, is shown on Figure

4-4. We see that we can, in essence, describe them as high-frequency oscillations with superimposed

low-frequency modulations in amplitude, of a much longer period. 12 Again we conclude that the

solutions must be quasiperiodic with two periods. In fact, we conjecture that they can be written

as 2ar-periodic functions of two phases, as follows:

u = U*(z - wit, w2t). (4.10)

12 Where the high-frequency is associated with the overall translational motion of the wave.



where w2 is substantially smaller than wL.

To say that these limiting solutions are two period quasiperiodic in time, is equivalent to stating

that: in phase space the trajectories of their time evolution must lie on two dimensional torus. Of

course, the phase space in this case is infinitely dimensional and a "numerical" graph of the solutions

in it is quite impossible. On the other hand, we can plot "arbitrary" three dimensional projections

of the trajectory. Then, if all of these give rise to two dimensional tori, then we can quite safely

conclude that the full trajectory is a two dimensional torus. In fact, this is exactly what we

observe!

As an illustration of the argument in the prior paragraph, we present here a few plots for an

example limiting solution, using Fourier coefficients to parametrize the phase space - as shown

in Appendix A, the Fourier coefficients provide a set of canonical coordinates. This solution was

obtained by numerical integration of equation (2.18) with the initial condition

u(z, 0) = 1.86 sin(x) . (4.11)

We generate 3-D projections by picking arbitrary combinations of three functions of time from the

real and imaginary parts of the Fourier coefficients of the solution.

n no

U.

E

0.08

V.L -0.08 -u.o
Im (F_2) Re (F_3)

Figure 4-5: Trajectory in Fourier Phase Space corresponding to an attracting limiting solution. Projection
on the three dimensional subspace (Im F2 , Re F3 , Im F3). Notice that the trajectory traces a 2-D torus
- the self-crossings are, of course, an artifact of the projection.



LL

E

0.3

" -0.3 -V.
Re (F_1) Re (F_2)

Figure 4-6: Trajectory in Fourier Phase Space corresponding to an attracting limiting solution. Projection
on the three dimensional subspace (Re F1 , Re F2 , Im F2 ) and the plane Re F2 = 0 cutting the trajectory.
The trajectory traces a 2-D torus.

The projections shown in Figure 4-5 and in Figure 4-6 are typical and clearly show two dimen-
sional tori drawn by the trajectory. The actual trajectory, of course, does not intersect itself in phase
space. The self-intersections of the tori in these figures are just an artifact of projecting an object
immersed in a large dimensional space onto a low dimensional space. Finally, to confirm that the
depth perception in these plots is not just an illusion, we show in Figure 4-7 the intersection of a
plane (taken from within the three dimensional space in Figure 4-6) with the solution. As expected
for the intersection of a torus with a plane, we find closed curves.

We point out that we explored many other three dimensional projections of various trajectories

(corresponding to different limiting solutions). It is remarkable that: in all the cases we found
results similar to the ones described above, with two dimensional tori. This allows us to argue
that not only the projections, but the trajectories themselves must lie on two dimensional manifolds
(in fact, tori). Indeed, it is extremely unlikely that an object visible as two dimensional on several
of its three dimensional projections has dimension larger than two.

Remark 4.2.4 The cross-sections considered above are almost equivalent to the projections of the
Poincare' map introduced at the end of Section 4.1.1. The only difference is that the points on the
Poincare' section induced by m-th mode must satisfy the condition Im (a Fm) > 0, whereas on the

cross-sections above both Im (Fmn) > 0 and Im (+aFm,) > 0 are allowed.
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Figure 4-7: Cross-section of the phase space trajectory by the Re F2 = 0 hyperplane and the projection
on (Re F1 , Im F2 ). This is the intersection of the plane shown in Figure 4-6 and the trajectory.

4.2.4 Poincar6 Sections for the Attracting Solutions.

In this section we will give a description of the family of functions arising as attracting limiting

solutions of (2.18) with (2.20), obtained via numerical simulation. These solutions appear as a

stationary (in terms of energy) time evolution. We represent such functions by trajectories in phase

space, parametrized by the Fourier modes Fk(t). The results described above suggest that all

the limiting solutions are at most two dimensional, so that the Poincarg sections technique should

be applicable to the situation. Since both the phase space and the Poincar6 sections are infinite

dimensional, we will use the projections technique described in Section 4.1.

Our experiments show that the limiting solutions to (2.18) fill a very low dimensional special

region in phase space. We first visualize this region by using the Poincar6 map induced by the first

Fourier mode F1 (t) and projecting to the complex planes of F2 , F3 and F4 . That is, we look at the

values of F2 , F3 and F4 at the points along the trajectories where

Im Fi(t) = 0 and Im -Fi(t) > 0. (4.12)

As pointed out in Remark 4.2.4, this approach is related to the one we used above in Section 4.2.3,

but it will give us the freedom to study the structure of the set of solutions - as opposed to that

of each single solution.

In Figures 4-8 through 4-14 we present Poincar6 map studies for a few attracting limit solutions

obtained as a result of the transition process described in Section 4.2.1. For these experiments we

I,

q



used initial data of fixed shape and varying amplitude, as follows

u(z, 0) = A -sin x, (4.13)

where A4 is a constant. We choose functions of this form for two main reasons: * it is relatively

easy to control the "place" where the limiting solution lands in phase space by slowly varying the

parameter A and * these functions exhibit maximum resonance with the kernel (2.20) in (2.18) and

therefore optimally excite the dispersive mechanism (see Appendix B) leading to the formation of

non-breaking structures. It is also worthwhile mentioning that in all the experiments 13 we conducted,

we always observed limiting solutions of exactly the same type as the ones produced by (4.13).

This leads us to believe that the simple subset of all the possible initial conditions given by (4.13),

is sufficient to produce all the limiting solutions possible for (2.18).

In the figures, limiting attracting solutions are shown on the second, third and fourth projections

of the Poincar6 section induced by F,(t). Each closed contour on the plots, filled by the Poincare

map iterates, corresponds to a separate solution with the different value for the energy. Despite

the very different patterns (see Remark 4.2.6) by which the Poincard map iterates fill the curves,

the most important features are the same for all of them.

In Figures 4-8 through 4-12 we present several examples of projections of the Poincarg sections

for limiting solutions corresponding to different values of the amplitude A in (4.13). In all cases,

clearly, the iterates fall on simple closed curves - reinforcing the conclusion that the solutions are

quadiperiodic with two periods. We point out that the Poincar6 sections induced by the higher

modes (as opposed to F, here) have the same property and only differ by the larger complexity of

the curves produced.

To illustrate the convergence to the limiting attracting solutions, in Figures 4-13 and 4-14 we

have included all the points in the Poincare6 sections (starting from the initial conditions) - instead

of only plotting once the limit attracting solution has been reached. Thus, these Figures include

points corresponding to the transient stage with shocks. It can be clearly seen from these plots, that

convergence occurs on a time scale of a few tens of iterates of the Poincar6 map. For a

more detailed discussion of the convergence rates see Appendix D.

In Figure 4-15 we present 14 several of the limiting solutions together on the second projection of

the Poincar6 section induced by F, (t). The energy of these limiting solutions varies here from zero

at the bottom of the picture (corresponding to the trivial solution, that yields just one point in the

graph) to its maximum value at the top of the picture (corresponding to the maximum amplitude

13 With shapes for the initial condition other than the simple one in (4.13).
"Warning: This is a two-dimensional plot, in spite of the strong suggestion of depth it gives!
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Figure 4-10: Second, third and fourth projections of the Poincare section induced by Fl(t). Limiting
solution for the initial condition: u(x, 0) = 2.25 sin z. 400 map iterates plotted.

0.01

0.005

-0.005

_n i0
-0.196
-0.196

I. I,. I I I
* -*. -~.* ..

I.
/

9·r

I I I I ~ · t ·. · ~ I

0.015

0.01

0.005

-0.005

-0.01

A Al 1

~C·· ~·~· ~·~·~· · ~···
· ~·· Yh.

C·'·2·
-C·

0.055

u.U15

0.01

0.005

-0.005

-0.01

0A 01

· S~·· in..

so 6 wes.00* 

-at.

a fme oo- o

9'

I
·/

I I I I

-0.0'

· · · ·

· · · ·

I

r-
-- 9. ."aft0 ago . -

F
F
45



-0.018 -0.016 -0.014
Re (F2)

-0.012
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-0.032 -0.03 -0.028 -0.026 -0.024
Re (F2)

-0.01 -0.008

(t). Limiting attracting solution

-0.022 -0.02 -0.018 -0.016

Figure 4-12: Second projection of the Poincard section induced by Fi(t).
for the initial condition: u(x, 0) = 0.8 sin z. 400 map iterates plotted.

Limiting attracting solution

x 10-

4

3

2

1

0E

-1

-2

-3

-4

_r,

*S

S' ,I

ra

9r
ra

a

a4 S

S S

a s *

r*

*
qr

r

I I I I

-0.02

0.008

0.006

0.004

0.002

-0.002

-0.004

-0.006

-0.008

-n n0

...
' ' '

o **""o *"" ""*** ... . "

*** ... *

****."..'***
%* 

*

,."r·" \4·

·

·· s·

t i

• ....-
%%%

34
| | |I I I I I

-

L
-0.0
-0.0



-0.07 -0.065 -0.06 -0.055
Re (F2)

-0.09 -0.08 -0.07 -0.06
Re (F2 )

Figure 4-13: Second projection of the Poincard section
u(z,O) = 1.15sinx. The top graph shows 400 map iter
graph shows the first 1000 map iterates, starting from t =

-0.05 -0.045 -0.04 -0.035

-0.05 -0.04 -0.03 -0.02

induced by Fi(t) for the initial condition:
ates for the limiting solution. The bottom
0.

I

r I

I

I

I
I

0.015

0.01

0.005

-0.005

-0.01

-0.075

0.04

0.03

-0.01

-0.02

-0.03

-0.04

A r05

-0.1

_

E

F

E

b

n i c I-

-

--. I

F
F

L-



-0.15 -0.145 -0.14 -0.135 -0.13
Re (F2)

-0.125 -0.12 -0.115 -0.11

Figure 4-14: Second projection of the Poincare section induced by Fi(t) for the initial condition:
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graph shows the first 1000 map iterates, starting from t = 0.
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traveling wave, which also yields just one point in the graph - as explained earlier). We thus use

the energy as a parameter for this (one-parameter) family of curves. Figure 4-16 shows the same

set of limiting solutions as Figure 4-15, but now the solutions are plotted in 3-D, with energy on

the vertical axis. Note that the "centers" of the contours are ordered with respect to the energies.

Those corresponding to solutions with larger energies are located to the left of those corresponding

to solutions with smaller energies. Thus, the leftmost contour (which degenerates into a single point)

represents the maximum energy limiting solution (4.9) and the rightmost contour (also collapsing

into a point) corresponds to the trivial (zero energy) solution. The hierarchy of limiting solutions

fills a peculiar sharp-ended bounded surface in the "projection" three dimensional space given by

the second Fourier mode and energy, depicted in Figure 4-17. The two endpoints of this figure are

related to the maximum energy solution (4.9) and the minimum energy trivial solution. If we add

to this picture the single points that correspond to each of the traveling wave solutions (with all the

possible amplitudes), they draw a curve running roughly at the center of the surface in Figure 4-17,

and joining the two sharp end points! We will see later that, in fact, the whole interior of this

surface can be filled by quasiperiodic in time solutions, with the ones "inside" being smooth and

non-attracting (though stable).

Remark 4.2.5 The trajectories of the limiting solutions we have been considering here have another

interesting property. If one chooses the first Fourier mode Fl(t) as a base mode to generate the

Poincare' section and considers its second projection, then the Poincard iterates of each limiting

solution fit an ellipse with remarkable accuracy - as illustrated by Figure 4-18. That is, the cross

sections of the surface in Figure 4-17 are very close to ellipses. Currently we have no explanation

for this phenomenon, but behavior of this simplicity should have a theoretically accessible explanation!

Remark 4.2.6 The pattern by which the Poincare map iterates fill the contours changes significantly

from one limiting solution to another. Sometimes the curves get covered nearly homogeneously while

for other solutions the points tend to clump and cover only a few discrete "islands", leaving large

spots uncovered. This difference is easily explained in terms of the ratio of the two wave frequencies

present in the limiting solutions, namely the ratio wl/w2 in (4.10). When this ratio is close to a

simple rational value, the "island" pattern arises; when not, a more homgeneous covering occurs.

4.2.5 Internal and Surface Solutions.

Up to this point we have seen and described only two distinct families of never-breaking solutions

to (2.18), namely:

* Traveling waves (2.21), with 6 varying from -1 to 1. This is a one-parameter family of solutions

(if we ignore the trivial phase 0o in (2.21), due to translational invariance of the equations)
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ellipse. The crosses are the Poincard map iterates and the smooth line is the ellipse. The fit is remarkably
accurate.

* The quasiperiodic limiting solutions with two time periods and sharp spikes due to corner

formation, discussed in Sections 4.2.2, 4.2.3 and 4.2.4.

Remark 4.2.7 It is not clear how many parameters control the quasiperiodic limiting solutions.

For a "full blown" two-phase quasiperiodic solution in a nonlinear dispersive system, one would

expect two amplitudes and two phase shifts.15 Eliminating the trivial parameter that arises because

of the translational invariance of the equations, this would leave three effective parameters.'6 But

if so, the set of solutions would be "equivalent" to a three dimensional volume, while our numerical

experiments (see Figure 4-17) seem to indicate a surface. There is thus a parameter "missing".

The clear candidate is an amplitude: in the same fashion that, for the traveling waves only the

maximum amplitude ones are attracting, the fact that here all these quasiperiodic attracting waves

have corner singularities, suggests that they are extreme cases of a larger class of solutions. We will

show evidence favoring this conclusion in what follows.

The two sets of solutions listed above share two particular elements: the traveling wave of

maximum amplitude with the corner (4.9) and the zero amplitude trivial solution. We know that

15 Because the space period is fixed to 27r, the wavefrequencies would be determined from the amplitudes.16 Say, the two amplitudes and the difference between the phase shifts

· · 1 i

I I I I I I



other traveling waves (2.21) with & - 1 exist, but are not attracting. 17 However one can check

(both numerically and by means of linear stability analysis - see Chapter 5 for details) that these

intermediate traveling waves are neutrally stable.

As we demonstrated in Section 4.1.2, the traveling waves (2.21) are represented by single points

on the real axis on each projection plane of a Poincar6 section. Hence, they lie at the "axis" of the

attracting surface (shown on Figure 4-17, projected on the second mode complex plane). In some

loose sense, we can now conjecture that the surface of attracting (limiting) solutions encloses some

special volume in phase space, made out of special non-breaking solutions (see Remark 4.2.7 above).

The family of traveling waves are then located inside this volume. Of course, this is very vague: the

phase space is infinitely dimensional and a surface in it does not "enclose" anything; to make these

notions more precise, we will need to find and define this "volume" in a better way - as it turns

out, viscosity provides an appropriate tool, which we will explore next in Section 4.3.

Taking, for the moment, as a given the existence of the "volume" postulated in the prior para-

graph, we can now divide the non-breaking solutions into two types: Internal solutions, which

are the ones that are not on the boundary surface and are thus not attracting and Attracting or

Surface solutions which are the ones we have been dealing with till now. The traveling waves for

181 < 1 are an example of an internal solution. Finally, we can talk of External solutions, which

are all the others, that break and form shocks.

For the surface solutions the balance between the steepening, singularity forming, nonlinearity

and the dispersive integral term in (2.18) is just critical. So, it is not surprising to find that these

solutions present weak (corner) singularities. For the internal solutions, on the other hand, dispersion

should dominate - thus we expect these solutions will be smooth.

Remark 4.2.8 Using these (loose) ideas, we can now "explain" why only the surface solutions

should be attracting: as a "general" external solution evolves, it develops shocks and its energy starts

decreasing. The solution then begins to approach the set of non-breaking solutions (either this or the

energy decreases all the way to zero and the trivial solution s1 is approached). It cannot, however, go

"inside": as soon as the evolution reaches the "surface", nonlinearity and dispersion balance - thus

no shocks are possible - and the energy becomes constant; then the "motion" ceases. That this idea

is not as improbable as it seems, will be shown in the next section, where we will use a small amount

of viscosity (which provides a way to decrease the energy without need of shocks) to "penetrate" the

surface of attractors and construct new, non-breaking, internal, smooth solutions.

The traveling waves are isolated from the surface of attractors (and are neutrally stable). In

order to have the volume of solutions postulated above, we need to fill the gap between the surface

17 None of these traveling waves ever arose as a limiting solution in our long-time transition experiments described
earlier. The attracting set is made out only of quasiperiodic solutions with two time periods.

18 Of course, the trivial solution is just one of the attracting solutions.



(attractors) and the axis (traveling waves) of the set of internal solutions shown in Figure 4-17. We

will address this matter in the next Section.

Remark 4.2.9 The projection of the attracting surface shown in Figure 4-17 is a bit deceiving.

In order for solution to be internal, all the Fourier modes must be located "inside" the surface of

attractors. Thus, a function with only a few Fourier modes initially inside the surface'9 will almost

certainly be an external solution and will generate shocks (that will produce a loss of acoustic energy

and an eventual evolution to a lower energy attracting surface solution). The fact is that, in the

infinite dimensional space of solutions, the "volume" ocuppied by the non-breaking solutions is a

very thin set. Thus the search for internal solutions other than traveling waves can be quite tricky.

4.3 The influence of Numerical Viscosity.

Virtually all numerical schemes for systems of conservation laws introduce some extra (or "artifi-

cial") dissipation into the original equations. The magnitude of this numerical viscosity (for a given

scheme) is controlled by the resolution and normally decays with increasing resolution (following

the the scheme's order of accuracy). Thus, at least in principle,2 0 one can have an arbitrarily small

viscosity simply by increasing the number of points in the calculation. In the numerical experiments

described so far in this Chapter 4, we used the algorithm described in Chapter 3. By a careful treat-

ment of the singularities (shocks and corners) along with shock tracking, this algorithm achieves

high resolution (with a very small amount of dissipation) at a moderate cost.

In this Section we propose to purposely add numerical viscosity to the calculations,

with the objective of generating new never-breaking solutions of (2.18). The approach is motivated

by the argument introduced earlier in Remark 4.2.8: the added viscosity dissipates energy without

shocks needed in the solutions. Since the amount of viscosity (thus energy dissipation) depends on

the resolution, we can control it rather effectively.2 1

4.3.1 Description of the Experiments.

We conducted a sequence of experiments, in which artificial viscosity was used as a "perturbing"

factor for the quasiperiodic attracting solutions of (2.18). Each of these experiments consisted of two

separate calculations on grids with different resolutions, performed one after the other and following

the same solution.

19 Such functions can easily be constructed by, for example, slightly perturbing an attracting solution20 In practice, the cost. goes up with the resolution!
21Our scheme is, basically, second order. Thus, the amount of dissipation should be O(N- 2 ), where N is the

number of points in the space grid.
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Figure 4-19: Snapshots of a quasiperiodic internal solution in physical space-time - obtained by adiabatic
transition. No corners or shocks form, so the solution is smooth. The solution is close but not equal
to a traveling wave and shape modulation can clearly be seen. The main period is - 2, corresponding
to a wave velocity s - -Tr. The time origin (t = 0) is arbitrary. The vertical and horizontal scales are
-3 < u < 2 and 0 < z < 27r, respectively.
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* In the first computation we used our numerical scheme (described in Chapter 3) on a coarse

grid (coarser that those used for the experiments reported earlier in this Chapter). We followed

the evolution in this grid until it (basically) reached the limiting attracting solution, and then

continued integrating the equation on this same coarse grid for a while longer: until some time

t
switch-

* At the time t = twitch we turned the numerical viscosity "off" (by a sudden and considerable

refinement of the grid) and resumed the calculation on the finer grid.2 2

We conducted, using this approach, a series of experiments. In each we used a fixed set of initial

conditions and varied the time tswitch.

4.3.2 Generation of New Never Breaking Solutions.

The numerical simulations described above in Section 4.3.1 exhibit the following behavior

Computation on a coarse grid.

* SHOCK TRANSITION STAGE. As in in Section 4.2.1, the solutions first steepen and form shocks

that decay. Eventually they settle down to a continuous regime without shocks.

* ADIABATIC TRANSITION. Because of the numerical viscosity, the limiting solutions we ob-

tained at the end of the shock transition stage can no longer hold their energy constant.

Therefore they slowly2 3 drift in phase space towards smaller energies. We call this process

adiabatic transition, since the energy dissipation rate is so slow that it does not prompt

a solution to generate shocks and thus move to the "exterior" (in the sense of the previous

Section) of the attracting surface. At the same time, over long enough time intervals, the

energy drops considerably. This yields new solutions, since the time evolution is always kept

very close to the "exact" one a fully inviscid system would produce.

Computation on a fine grid.

After the viscosity is turned off (at t = tswitch), the solution continues to evolve in a fashion that

never produces shocks - so that the energy is a constant - nor corners. In other words, a

never-breaking smooth solution is generated (thus an internal one, by our prior definition in Sec-

tion 4.2.5). Furthermore, the solutions produced by adiabatic transition from the attracting

surface are generally not traveling waves (see Figure 4-19) but in fact quasiperiodic solu-

tions of the same type we observed before (except that now the shape oscillations do not involve

2 2 Of course, the numerical viscosity is never really "off", but we decrease its magnitude considerably. Thus much
longer time scales are needed to see its effects.

2 3The grid is "coarse" by the standards of our earlier experiments only: the numerical viscosity is
still quite small!



corners). Thus these solutions fill the "gap" (mentioned right after Remark 4.2.8) between the trav-

eling waves and the attracting (surface of) quasiperiodic solutions.24 In effect, viscosity allows us to

introduce into the solutions the extra "missing" parameter that was discussed in Remark 4.2.7: as

discussed there, this "missing" parameter is quite likely an "amplitude". Thus, if we can change the

energy of a solution without leaving the set of non-breaking solutions, this parameter dependence

generally will be involved (except in the rather special cases when the "motion" happens along the

surface). The latter is exactly was the adiabatic transition does.

Actually, before we can really conclude that the "whole" volume bounded by the surface in Figure

4-17 has been filled by the solutions just discovered, we must show that we can move "continuously"

from the attracting solutions at the surface to the traveling waves (2.21) at the center. This we show

next.

4.3.3 Convergence to Pego's Traveling Waves.

The rate of energy dissipation depends entirely on the amount of artificial viscosity introduced

by the coarse grid. Still, for a relatively broad resolution range for the coarse grid the general

picture remains the same. After a short transition period with shocks and rapid energy drop, a

slow "adiabatic" drift in phase space takes over. By changing the moment in time when viscosity

is turned off (by the sudden increase in the grid resolution), we can control how far away from the

surface of attracting solutions is the resulting solution. At the start of the adiabatic transition,

viscous dissipation seems to affect (and damp) principally the "second" mode of oscillation (that

is, the one producing the shape modulations in the wave train - illustrated in Figures 4-3 and

4-19 - which is absent for traveling waves). The net effect of this is that, the longer the adiabatic

transition lasts, the closer the solution gets to a traveling wave. Thus, adiabatic transitions can be

used to "connect" the attracting surface solutions with the traveling waves, via a continuous range of

non-breaking quasiperiodic set of solutions. We note that, after the second mode disappears and the

solutions become indistinguishable from the traveling waves (see Figures 4-21 and 4-22), the effect

of viscosity is to drive the solution along the axis of traveling waves, in the direction of decreasing

energy towards the trivial solution.

We present now the results of one series of experiments, where we initiated the calculations

with the initial condition u(, 0) = 2 sin x on a "coarse" grid consisting of 200 points. Then, at

various times during the numerical integration (t = tswitch) we switched to a finer grid (to turn off

viscosity) with 2000 points. The behavior of the energy during these calculations is presented in

the time-energy plot of Figure 4-20. The course grid calculation yields the line starting with a very

2 4 Thus, we have found the volume of non-breaking solutions we postulated in Section 4.2.5. That is, the "inside"
of the surface depicted in Figure 4-17 - though we stress that we must be careful not to take these concepts
too literally, as pointed out in Remark 4.2.9.
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Figure 4-20: Influence of a small amount of artificial viscosity on the limiting solutions. Energy as a
function of time for various choices of t = t switch. Note the initial steep drop in the energy, during the
transient stage with shocks. The initial conditions are u(x, 0) = 2 sin x. The grids use 200 and 2000
points.

steep negative slope (transient stage with shocks in the solution) followed by a less steep and nearly

straight line with negative slope (adiabatic transition stage). The branching and nearly horizontal

straight lines correspond to integrations with the finer grid, for various times of branching.

Figure 4-21 shows projections (on F2 ) of the Poincar6 sections induced by F1 - plotted versus

the energy - for each of the solutions resulting from a branching in the same series of calculations

shown in Figure 4-20. Later switching times correspond to lower energies. Two things are obvious

from this Figure: First, the intermediate solutions are quasiperiodic with two periods - as their

sections are closed simple curves. Second, convergence to a traveling wave occurs - since the

Poincar6 sections are shrinking to a point.

Finally, Figure 4-22 compares a "traveling wave" as obtained by the adiabatic transition described

above, with an exact traveling wave - as given by equation (2.21). The fit is remarkably good.

Remark 4.3.1 We also conducted experiments with a pseudo spectral method with various filtering

algorithms (in the spirit of [4, 21]). Spectral methods are basically inadequate for the problem we are

looking at (largely because of the excessive numerical viscosity inherent to all filtering algorithms).

Hou.: ver, the main features of the results in this chapter can be - basically - reproduced, except that

one would miss the corners in the attractors. The reason is that such a method behaves, essentially,
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in the same fashion that our strategy of a coarse grid followed by a fine grid works. As long as the

solution has either shocks or corners, filtering will induce appreciable dissipation. However, as the

solution moves into the smooth internal solutions range, via adiabatic transition (and the corners

are smeared), dissipation by the method decreases precipitously - which is equivalent to our switches

to finer grids in this section. Thus, such a method will predict convergency to non-breaking smooth

quasiperiodic solutions for large times (missing the corners completely, unless an extremely large

number of points is used).



Chapter 5

Two-period Quasiperiodic

Perturbations of Traveling Waves.

Linear Theory.

5.1 Background.

The purpose of this Chapter is to give reinforcing arguments for the fact that the solutions obtained

by adiabatic transition from attracting solutions in Chapter 4, are indeed quasiperiodic with exactly

two temporal frequencies. Here we develop a linear stability theory for the periodic solutions (that

is, the traveling waves') and compare the predictions for perturbations wavefrequencies of this theory

with the numerical results. The idea here being that: the shape oscillations observed in the never

breaking waves can be associated with the excitation of a mode of vibration for the (neutrally stable)

traveling waves. In this sense then, the quasiperiodic solutions would arise as a bifurcation from the

traveling waves.

In Chapter 4 we introduced and investigated the quasiperiodic solutions (arising in the limit of

long time evolution for arbitrary initial conditions) of the equation

U(zt t) + u( ) + K( - y)u(y, t) dy = 0, (5.1)

0

1 The only periodic solutions we ever observed in our experiments.



with the "single mode" kernel

K(x) = sin(x), (5.2)

where 27r-periodic and mean zero solutions were required. These solutions were found to be attracting

and (numerically) stable. In addition to them, a large set of other, quasiperiodic and periodic,

solutions to equation (5.1) exists (see Sections 2.2 and 4.3). It turns out that a natural set of

coordinates (to investigate the periodicity properties of the limiting and the other never-breaking

solutions) are the Fourier modes. The results, obtained with the help of projection techniques and

Poincar6 sections (see Sections 4.1, 4.2.3 and 4.2.4), suggest that the solutions are quasiperiodic

in time with two periods (and, of course, periodic in space).

In this Chapter we investigate the linear stability of the traveling waves in (2.21) - (2.22), that

is

u = u(X - st) = s + b 1 - 6 sin(x - st + 0o) . (5.3)

Since the equations are translational invariant, we can do the analysis in the frame of reference of the

traveling wave. In this frame, the unperturbed solution above is time independent; thus the analysis

reduces to finding the normal modes of vibration2 of the linearized equations. Of course, these

exactly describe (in the linearized limit) possible shape oscillations for the traveling wave. If only a

single one is excited, then the perturbed solution will be periodic in time in the moving coordinate

frame of the traveling wave, and quasiperiodic with two periods in the fixed frame of reference. We

will compute the periods of these linearized modes of vibration and compare them with the ones

observed in the numerically computed quasiperiodic solutions. That is, we will take a quasiperiodic

solution (obtained by an adiabatic transition, see Section 4.3) with an almost degenerate shape

oscillation mode - so that it is very close to a traveling wave. Then we will compare its shape

oscillations with the linearized modes. It will turn out that the oscillations correspond (always) to

the lowest linear vibration mode.

This study is motivated by the results described in Section 4.3.3, where we showed that we

can continuously move around the set of never breaking solutions (using the technique of adiabatic

transition3 ) all the way from the attracting limiting solutions to the traveling waves4 . This shows,

in particular, that we should be able to find two period quasiperiodic solutions arbitrarily close to

any traveling wave solution.

2 Traveling waves turn out to be neutrally stable, so the linearized eigenvalues are all pure imaginary.
3 Deforming, adiabatically - i.e., very slowly - the solutions under the influence of artificial viscosity.
4Along an adiabatic path - that is, the curve in the set of solutions produced by an adiabatic transition -

the shape mode of vibration gets suppressed first, so that the solution converges to one of the traveling waves in
Section 2.2.



Remark 5.1.1 We expect that these special linearized solutions, consisting of a traveling wave plus a

szngle mode of vibration, will correspond to a branch of solutions bifurcating from the traveling waves

- with bifurcation parameter the amplitude of the shape oscillation, say. The resulting solutions

should then be the same as the quasiperiodic in time ones we computed and studied numerically in

Chapter 4. The numerical experiments in this chapter seem to support this view, though we do not

yet understand why it is only the lowest vibration mode that is excited.

We are currently studying this bifurcation process in detail, both numerically and analytically,

somewhat in the same spirit as the work by Celentano [5] (where he produced time periodic non-

breaking solutions for the fully nonlinear regime in Gas Dynamics by a bifurcation strategy from the

equilibrium solutions), see also Keller [16]. But this work is not yet advanced enough to be presented

in this thesis.

5.2 Linear stability equations.

To facilitate the linear stability analysis for the traveling waves (5.3) it is convenient to switch to a

frame moving with speed s, the same as the traveling wave. Thus, we introduce the coordinates

Zx = x - st and t' = t. (5.4)

For convenience we will drop the primes when referring to these new variables in what

follows, this should not cause any confusion. In this moving frame equation (5.1) takes the following

form:

ut - SUX + uu, + K * U = 0, (5.5)

where the asterisk is used to denote the integral convolution term. The traveling wave (5.3) becomes

then stationary

u = V,(x) = s + b V1 - 6 sin(z + 0o), (5.6)

with b = b(s) and 6 = 6(s). In this frame of reference, quasiperiodic waves with two periods - of the

type our numerical experiments in Chapter 4 showed - become just periodic, as only the shape

oscillations survive in the moving frame. 5

5Actually, for an arbitrary quasiperiodic solution in Chapter 4, the analogy with a traveling wave with a periodic
shape oscillation superimposed is not exact. When the shape oscillations are not very small, nonlinear interactions
with the "base" traveling wave make this only an approximate picture. But we are considering here very degenerate
waves, with the shape oscillations nearly non-existent.



We now consider solutions of (5.5) which are linearized perturbations of (5.6). Namely, let

u(x, t) = V,() + w(, t), (5.7)

where w is "infinitesimal." Clearly, V, (x) solves

- sV' + V,V'+ K * V, = 0. (5.8)

Substituting (5.7) into equation (5.5) and linearizing, we get the following equation:

Wt - sw.V + wV,' + Vw, + K * w = 0, (5.9)

where the solution w is required to be 27r-periodic in x with zero mean.

5.2.1 Eigenvalue Problem.

Equation (5.9) is linear homogeneous and can be solved by separation of variables. Thus we seek

solutions of the form

w(x,t) = W(x)eiwt, (5.10)

where w is a constant (real, it will turn out, so that the traveling waves are neutrally stable). Then

the equation reduces to the following eigenvalue problem (for the eigenvalue w and the eigenfunction

W)

(v,(x) - s) W'() + V,'(x)W(x) + K( ) * W(x) = -i W . (5.11)

Substituting now here the explicit form for V, in (5.6) and using (5.2), we obtain

(b 1 - 6sin(x + 0) W(x)) + ((sin z) * W) (x) = -iwW(z), (5.12)

where W must be 27r-periodic and have zero mean. Clearly, when w : 0, the zero mean condition

is automatic. When w = 0, one can see that the solutions to this equation (5.12) are W = F'

and W = OF/l8, where F is defined in (5.15). They correspond to the translational and Galileian

invariance of (5.1), respectively. However, only F' satisfies the zero mean condition.

In order to solve this problem, we will use the WKB technique6 (see [3]) for large values of

w I. On the other hand, small or moderate values can easily be calculated numerically - using, for

6 WKB yields exponentially accurate estimates for the eigenvalues. In practice, as we will show, "large" can
be as little as 10 or so!



example, a truncated form of the problem in the Fourier domain (see Section 5.2.3).

5.2.2 WKB Expansion for Large Eigenvalues.

In this Section we consider the case of large values for the frequency in (5.12), IwI > 1. Thus we

propose a standard WKB expansion for the solutions, namely

W(x) = A(x; w)exp(iwS(x)), (5.13)

where the function A(x; w) must be 2ff-periodic in x and is assumed to have a power series expansion

in inverse powers of w - actually, we will not need this last fact for the argument that follows. The

phase S(x) must satisfy, for some integer n,

S(x + 27r) = S(x) + -n . (5.14)

To simplify the notation, define now

F(x) = b 1 - sin(x + o0) = V, - s. (5.15)

Then, upon the substitution of the WKB form (5.13) into (5.12) we get:

27r

((FA)'+ iwS'FA) eis +/ sin(x - y)A(y; w)eiw(Y) dy = -iwAeis . (5.16)

0

At this point we observe that, in this last equation (5.16), we can integrate by parts the integral

convolution term repeatedly. Because A, its derivatives and the derivatives of S must be periodic -

see (5.14) - it is easy to see that, at each level, there will be no boundary contributions. We conclude

thus that: in an expansion of this type, the integral convolution term in (5.12) becomes

transcendentally small. As a result, a very good (transcendentally so) approximation for

the eigenvalues and eigenfunctions can be obtained from the "non-dispersive" version

of (5.12)! Namely, we can use the equation

(b1 - 6sin(x + 0o) W(x)) = -iwW(z), (5.17)

to calculate the eigenvalues and eigenfunctions when jIw is large. This last equation can be solved

exactly and so we get

W(x) T- exp -iw F () and w, = nw*, (5.18)
F(z) F(y)



where C is an arbitrary constant, n is a large integer and w* is given by the formula

S= 27r ( FF() (5.19)

We point out that, in some of our calculations we found this WKB result with Inj . 10 already

within the machine precision of the answer obtained numerically (see Section 5.2.4).

Remark 5.2.1 Notice that the argument below (5.16) (that leads to the nondispersive approximation

(5.17) to the linear stability problem) is not particularly dependent on the choice (5.2) for the kernel

in the convolution operator. Generally, for any smooth kernel, the nondispersive problem

will approximate the traveling wave eigenvalue stability problem for large frequencies

with accuracy better than any inverse power of the frequency. Of course, other kernels will

give rise to different formulas for the traveling waves, which will have to be used in (5.15) and (5.17).

In fact, even if the kernel is not smooth, the nondispersive approximation will still hold up to some order

- depending on the degree of non-smoothness. For example, if the kernel consists of series of delta

functions7 - just about the worse kind of singularity that can occur, then in the equivalent of (5.16)

the integral terms will give 0(1) contributions. These will then affect the shape of the eigenfunctions

at leading order, but not the phase so that the WKB eigenvalues will not be affected.

5.2.3 Numerical Approximation for Small Eigenvalues.

WKB theory works well when the eigenvalues are large (where large is not that large). To calculate

the smaller eigenvalues, we used a truncated form of (5.12). In Fourier space equation (5.12) can be

written as an infinite system of linear algebraic eigenvalue equations:

00

m=-oo

- E F-1-mAm + rA- 1  = -wA_1, (5.20)
m= -oo

E F1-mAm - rA1 = -wA1,

where the Fk's and Ak's are the Fourier coefficients of F(x) and W(z), respectively. That is

F(z) = Feeik" and W(x) = 1 WikekA*
k=-oo k=-oo

If 161 is not too close to 1, F(x) is very smooth and we expect W(x) to be smooth also. Thus,

their Fourier coefficients will decay rapidly as JIk -+ oo. We expect then that the eigenvalues of the

7 Corresponding to a piece-wise constant entropy, as the kernel is the derivative of the entropy.



system (5.20) above will be well approximated by those obtained by truncating the equations to form

a finite linear set." Thus, we truncate the system (5.20) above to include only the Fourier coefficients

of W in a range -p < k < p, for some ("large") positive integer p. Thus the eigenfunction W will

be approximated by

p

W(x) L Akeikl. (5.21)
k=-p

The reduced system can therefore be written as

/ ./ . \

Ap

A-p+1

(F, + Dp)

Ap-1

A j

Ap

A-P+1
= -w : , (5.22)

Ap-1

A,
\ P/ --

where FP and DP are the (2p + 1) x (2p + 1) matrices formed by the Fourier coefficients of F(x) as

follows

Fp =

-pFo -pF_ 1 ... -pF_2p

-(p - 1)F1  -(p - 1)Fo *.. -(p- 1)F-2p+l

(p - 1)F2p-1 (p - 1)F2p- 2 ... (p - 1)F.I

pF2, pF2• 1 ... pFo

(5.23)

and

(Dp)ij = ir(6i -16 -1 j - 6i 61) , (5.24)

where 6 j is the Kronecker delta.

We computed the spectrum of this reduced system for different values of the "cutoff" parameter p

and investigated the convergence of the eigenvalues as p - oo. As an example, we illustrate now the

convergence rates with the results of the case when the perturbed traveling wave (5.3) has 6 = 0.6.

Figure 5-1 shows the spectrum of the reduced system plotted against the size of the truncated system

p. It is quite clear that, as soon as the system gets to be large enough for a particular eigenvalue

to be "picked", convergence of this eigenvalue happens reasonably fast. In particular, the first few

8 At least for the first few eigenvalues. That is, if we truncate to obtain a system of size N (with N large), then we
should expect only the first M eigenvalues - with 1 < M < N to be good approximations.



eigenvalues can be obtained with great accuracy with not too large a p.

U,

C

0

Size of Truncated System

Figure 5-1: Convergence of the eigenvalues computed by truncating the Fourier series, as the size of the
truncated system increases. Case of the traveling wave with 6 = 0.6.

Remark 5.2.2 Linear equation

(wl)t - s(wi) + wV,' + Vs(w 1)., + K * wi = 0

comprises a Hamiltonian system with the Hamiltonian

27w

l[u] = (v(x) - s) u + u, *u) dx.
0

Here * represents the convolutions operator and II is defined as: II has mean zero and II'(x) = K (x).

In the moving frame, each stationary solution V, (x) is a fixed point of the system. Since this Hamil-

tonian system is also linear, the set of eigenvalues at each fixed point is restricted to either purely

real (saddle-type fixed points in corresponding subspaces) or purely imaginary. The latter come in

complex conjugate pairs (centers). No genuinely complex (corresponding to all kinds of dissipative

modes) eigenvalues are possible, due to the energy conservation, implied by the Hamiltonian struc-

(5.25)

(5.26)



ture.

In the eigenvalues computations described in Section 5.2.3 we found that all eigenvalues iSo of

(5.12) were purely imaginary, with the exception of one zero (corresponding obviously to the degener-

ate mode associated with the zero mean) and a pair of complex conjugate eigenvalues. In this pair,

the real part decreases fast with the increase of the size of a system. It brings us to the conclusion,

that for the full system this pair is also purely imaginary, yielding the overall neutral stability for all

traveling waves.

5.2.4 Spectrum of the Eigenvalue Problem and Physically Realizable So-

lutions

Figure 5-2 shows the discrepancy between values obtained by numerical calculation for truncated

at p = 100 system and estimates given by the WKB technique for the same traveling wave 6 = 0.6.

There is a region of extremely good agreement between the two, where the difference is comparable

to the machine precision. As expected, WKB does not work too well for small eigenvalues, who

can be very accurately computed by the truncation technique. On the other side, large eigenvalues

(where truncating of the Fourier series becomes inefficient) are very well approximated by the WKB

values. Therefore, the whole spectrum for perturbations of a traveling wave can be very accurately

found by combining the two techniques.

If doubly periodic in time non-breaking solutions do not differ too much from the periodic travel-

ing waves, then their behavior can be thought of as the slight shape modulation on the background

of moving with a constant speed wavetrain. The "average" speed of the wavetrain is clearly relevant

to the frequency of an "unperturbed" traveling wave. As a first approximation, for small deviations

from the stationary solution, the speed of the lowest point in a wavetrain can be used as a measure

of first frequency. At the same time, we estimate second frequency by looking at the fluctuations

of the lowest point in vertical direction. We present here results of several experiments, in each of

which we used integration on a coarse grid to generate artificial viscosity and then integration on a

fine grid to monitor the resulting solution.

EXAMPLE 1

Figures 5-3 and 5-4 show horizontal and vertical motion of the lowest point in the wavetrain obtained

from initial condition 2 sin x. This calculation was initiated on the grid consisting of 199 points and

then interpolated to the fine grid with 1791 points.

The average speed of the lowest point, according to Figure 5-3 equals to -3.305 which corresponds

to 6 ; 0.937. The second frequency of motion can be estimated by the frequency of vertical

fluctuations shown on Figure 5-4. It equals to 4.70. The relevant spectrum produced by the linear

theory for 6 = 0.937 predicts that numerical value is close to the smallest eigenvalue in the spectrum



Discrepancy between WKB predictions and numerical computation of eigenvalues, delta = 0.6.A2
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Figure 5-2: Agreement between WKB predictions and numerical calculations of the eigenvalues.
Region of good agreement is shown.

QOmin = 4.65.

To illustrate that solution examined in this example is doubly periodic in time, we also present its

trajectory on the projection in the phase space on Figure 5-5.

EXAMPLE 2

Figures 5-3 and 5-4 show horizontal and vertical motion of the lowest point in the wavetrain obtained

from initial condition 1.4sinx. This calculation was initiated on the grid consisting of 199 points

and then interpolated to the fine grid with 1791 points.

The average speed of the lowest point, according to Figure 5-3 equals to -3.231 which corresponds

to S m 0.795. The second frequency of motion can be estimated by the frequency of vertical

fluctuations shown on Figure 5-4. It equals to 5.58. The relevant spectrum produced by the linear

theory for & = 0.795 predicts that numerical value is close to the smallest eigenvalue in the spectrum

Good agreement
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Figure 5-3: Motion of the lowest point in a wavetrain. Horizontal direction. Example 1.

Time

Figure 5-4: Motion of the lowest point in a wavetrain. Vertical direction. Example 1.
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Figure 5-5: Trajectory in Fourier space. Example 1.

0omin = 5.49.

Both examples confirm the hypothesis made in Chapter 4 that quasiperiodic solutions have

two periods in time. They also suggest that only smallest nontrivial value in the spectrum of the

eigenvalue problem associated with linear stability analysis are physically realizable. Each traveling

wave (5.3) can be viewed as a fixed point with branches of never breaking solutions bifurcating at

different angles. For each frequency s and traveling wave V, (x - st) in (5.3) it is possible to construct

an adiabatic curve of quasiperiodic solutions with two time frequencies branching off from V , with

one of them equal exactly to s. To illustrate perturbations predicted by the linear theory we compute

an eigenfunction corresponding to the smallest eigenvalue for 8 = 0.6. Real-valued eigenfunctions

satisfying (5.12) are easy to construct due to the symmetries of this equation. If W(x) satisfies

equation (5.12) with eigenvalue Q0 , then its complex conjugate W(z) satisfies the same equation

with the opposite eigenvalue -2o. Therefore, function

wi(z, t) = Re T(t) - Re W(z) - Im T(t) - Im W(x) = cost - Re W(z) - sin t - Im W(z)

(5.27)

will be a real-valued solution for (5.12).

I
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Figure 5-6: Motion of the lowest point in a wavetrain. Horizontal direction. Example 2.
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Time

Figure 5-7: Motion of the lowest point in a wavetrain. Vertical direction. Example 2.
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Figure 5-8: Trajectory in Fourier space. Example 2.

Figure 5-9 shows typical real-valued perturbation w(z, (x, t) as in (5.27). On Figure 5-10 we present

a real-valued perturbation on top of the traveling wave in physical space-time.

Figure 5-10 bears a lot of resemblance with internal quasiperiodic solutions obtained by direct

numerical simulation and described in Chapter 4.
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Figure 5-9: Perturbation
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Figure 5-10: Perturbation on top of the traveling wave with & = 0.6.
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Appendix A

Conservation and Hamiltonian

Forms.

In this appendix we first exhibit the proper conservation form (for solutions with shocks) of the

asymptotic equation (2.18) for nonlinear acoustics used in this thesis. Next we show that the

equation can also be written as an infinite dimensional Hamiltonian system, as long as the evolution

is smooth (no shocks). The Hamiltonian evolution is "turned off" each time a shock forms, and this

gives rise to a curious mixture of dissipative and non dissipative behavior, which should be quite an

interesting object of study1 . Finally we derive a formula for the evolution of the acoustic energy, as

it is dissipated by the shocks.

It should be pointed out that the calculations in this appendix have an exact analog for the

more general set of asymptotic equations (2.12)-(2.14). In this thesis though, we concentrate on

the simpler equation (2.18) that arises in the specific context of in-viscid one dimensional nonlinear

acoustics in a tube with closed ends.

A.1 Asymptotic Equations in Conservation Form.

Equation (2.18) appears in the weakly nonlinear regime for the Euler equations (2.1). It is the

advective term2 in the equation that is responsible for the wave profile steepening and the formation

of discontinuities (shocks). On the other hand, the linear integral term in the equation has a

dispersive nature (as shown in Appendix B), which tends to smooth out any singularities in the

solution. Non-breaking solutions with nontrivial acoustic content will occur when these two effects

balance.

'In fact, the same behavior should arise in the context of the full system of Euler equations (2.1).2 1In the Burgers' "part" of the equation.



In order to deal with solutions with shocks, a conservation form is needed. It is clear that

equation (2.18) can be put into such a form:

ut + F(u), = 0, (A.1)

where

27r

F(u) = 2 + I(x -y)u(y, t)dy= 2 +H * . (A.2)
2 j 2

0

Here * is the convolution operator and H is defined by: H has mean zero and H'(x) = K(z). This

is the proper conservation form for shocks, since it guarantees the conservation of mass,

momentum and energy (as the Euler equations (2.1) require.) This follows easily from (2.8)-(2.10),

(2.15) and (2.16). A conservation form is also the best suited for numerical calculations involving

shocks, a well known fact in the theory of numerical methods for hyperbolic conservation laws (see

[17], for example.)

Since the integral term is lower order, it does not contribute at the shocks. It follows that the

Rankine-Hugoniot and Entropy conditions are:

s = (u_ + u+) and u_ > s > u+, (A.3)

where s is the shock speed, u+ is the value of u immediately ahead of the shock and u- is the value

immediately behind.

A.2 Hamiltonian Structure.

For continuous solutions u(x, t), equation (2.18) can be written in Hamiltonian form (see [2, 1] for

reference on canonical Hamiltonian representations). The Hamiltonian is given by

27r

W [u] = 5j u3 + u H*U dx , (A.4)
0

where H(z) is as in (A.2). It is easy to see then that equation (2.18) can be written in the generalized

(infinite dimensional) Hamiltonian form

Ut = (A.5)= TW6u



where S denotes the variational derivative (see for example [1, 15]). The Fourier coefficients of u

provide a set of canonical coordinates. Namely, if we write

u(x,t) = F {p,(t) cos(nx) + qn(t) sin(nx)} , (A.6)
1

then the p,'s and qn's form a canonical conjugate set of variables 3 . Similar expressions were obtained

in [10] for KdV equation. Fourier modes turn out to be a convenient set of variables and we used the

projection of the solution on the first few of them to analyze the results of numerical simulations.

However, the Hamiltonian behavior is valid only as long as the solution has no shocks. Should the

solution lose its continuity, the behavior immediately becomes dissipative, with the rate of energy

loss proportional to the shock strength (see the next subsection). This "semi"-Hamiltonian

structure makes these equations rather peculiar. For example, in none of our numerical calculations

did we observe chaotic or ergodic behaviors 4 . Furthermore, only relatively simple solutions with a

few dominant modes (see the discussion of the numerical experiments in Section 4.2) survive in

the course of time evolution. It is unlikely that this is due to any "simplicity" in the Hamiltonian

behavior. Even Complete Integrability would not prevent solutions with many periods (in time)

from existing, while we consistently observed just two periods in the limit behavior5. We conjecture

that it is the dissipative behavior induced by shock formation that is responsible for this simple

behavior. It appears that any possible ergodic behavior in the system triggers the dissipation (by

leading to the formation of shocks).

A related and interesting property of equation (2.18) is that it appears to have an attracting set to

which most solutions converge. This is a typical property of dissipative systems. The attracting set

fills in some region in the phase space of (A.5) and is made up of solutions that never develop shocks.

The energy range spanned by the attracting (or limiting) solutions is continuous and bounded. In

fact, our numerical calculations suggests that this set is a two dimensional surface, topologically

equivalent to a sphere!

A.3 Conservation of Energy.

It is interesting to note that the Hamiltonian 7i in (A.4) is not the energy in the system6 . In

Appendix C we derive a formula for the total acoustic energy in the flow, equation (C.8), which

turns out to be the same (except for a multiplicative factor) as the L2 norm for the solution of

3 Note that there is no zero mode, since u has vanishing mean.
4As normally expected for any Hamiltonian system of dimension greater than 2.
5 Just in case, we looked for conserved quantities, but were unable to find any more than the obvious ones: the

Hamiltonian itself and the Acoustic Energy, discussed in the next subsection. If there are any, it seems unlikely that
they would have a simple form.

6 In fact, we do not know what the physical meaning of W is.



(2.18), as given by E in equation (2.23) in Section 2.2. In this section we derive a formula for the

time evolution of the acoustic energy.

It is clear that equation (2.18) conserves the acoustic energy

E(t) = 27 u 2(, t) dx, (A.7)

as long as the solution remains smooth'. This follows easily upon multiplying equation (2.18) by

u(z, t), which yields (if u has no shocks) the equation

U2) + -(I U3 + u K * u = 0. (A.8)

Since the kernel K is odd, upon integrating this equation over a period in z, the last term gives

no contribution. Thus E is conserved.

When shocks occur this last equation must be modified, as the singular contributions

from the first two terms do not cancel. In fact, using equation (A.3), it is easy to calculate the

needed corrections. The equation must be replaced by

S+- u +uK* u = - [u]whock6Z --shock(t)), (A.9)
shocks

where [u] = (u_ - u+) > 0 denotes the jump at the shock, Zshock is the position of the shock and

J(.) is Dirac's delta function. It thus follows that the rate of energy change due to shocks is given

by

d 1 3
Et= 24 [U] shock .  (A.10)

shocks

Thus the acoustic energy is dissipated by the shocks, as [u] > 0 from the Entropy condition

in (A.3). This is the same result that applies for Burgers' equation (case K = 0.)

7 Therefore non-breaking solutions have constant energy.



Appendix B

Model Dispersive Equation.

Consider the linearization of equation (2.18) for the case of very small values of u. We will show

here that the resulting equation is dispersive, thus proving our claim that the linear integral term

in (2.18) is of a dispersive nature'. However, this dispersive behavior is "weak", in the sense that

as the wavelength goes to zero the "dispersiveness" becomes less important. This is the reason that

the dispersive term can "balance" the nonlinear term and prevent shock formation only in a limited

amplitude range: if the amplitude is large enough, then nonlinearity "wins" and shocks form.

The linearized equation can be written in the form

2r

u(,t) = - f K(x- y) u(y,t)dy

0 (B.1)
= - f K(z) u(x- z,t) dz.

0

This equation is not only linear but also translational invariant. Thus it can be solved by separation

of variables, with elementary solutions of the form

u = Aei(kx - wt)

The zero mean and 27r-periodicity requirements restrict the wavenumber to k = ±1, ±2, ±3 ...

Substituting into the equation it is easy to see that this is a solution provided w satisfies the

Dispersion Relation

21r

w = -if K(z) e- ik dz = -2ri K!(k), (B.2)
0

1Thus it tends to smooth out singularities in the solution.



where KI(k) is the kth Fourier coefficient of K. Because K is odd, w is real. Furthermore, w is not

a linear function of k, for K is a function (not a distribution.) Thus, the equation is dispersive.

Notice that as IkI -+ oo the wavenumber w vanishes. Thus, for short waves the convolution term

does not have a strong effect (this is what we meant at the beginning of this Appendix when we

said that the dispersion was "weak"). Basically, this means that the "power" of this dispersion to

smooth out the solution does not "grow" as the waves get steeper. Thus it will not always balance

the nonlinear term, as would be the case in a "strongly" dispersive equation like (for example) the

KdV equation

Ut + UUX - UXzX = 0.

Here w = k3 and the third term becomes dominant for short enough waves, no matter how strong

the nonlinearity.

Remark B.0.1 It is interesting to point out that the "slow time" r = et introduced in the multiple

scales expansion (2.8)-(2.10), has a natural physical interpretation2 . The nondimensionalization of

the time t is chosen so that an "acoustic" period". is 21r in terms of t. Thus t measures time in

terms of acoustic events. On the other hand, entropy variations introduce "weak" dispersion into

the system, as shown in this section. This dispersion has a natural set of frequencies (or periods)

and r is nondimensionalized so that these frequencies are 0(1) in terms of r. This is clear from

equation (B.2). Thus r measures time in units of dispersive events.

Finally, note that equation (B.2) and the definition of r imply that

DEper = 0( ) , (B.3)

where Es is the amplitude of the entropy variations present in the solution and Dper is a typical

dispersive time-scale.

2 Recall that the time over which equations (2.18) and (B.1) above evolve, is actually r.
3 The time it takes sound to travel back and forth across the tube.
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Appendix C

Acoustic Energy and Entropy.

In this appendix we derive a (leading order asymptotic) formula for the acoustic energy of the

weakly nonlinear waves in Section (2.1) and relate it to the total energy in the flow. Except for a

multiplicative constant factor, the acoustic energy is given by equation (2.23) in Section (2.2). We

show that changes in the acoustic energy occur only due to shocks, with the increase in the entropy

produced by the shocks being directly proportional to the decrease in the acoustic energy.

We note that in this Appendix we go back to the original notation for the independent variables,

rather than the usage introduced in equations (2.16)-(2.18) - that is: here x and t have the meaning

given to them in the Euler equations (2.1) and the nondimensionalization in (2.6).

The total energy ET is conserved by the Euler equations (2.1). In nondimensional variables it is

given by the formula

ET = p(e + 1v2')d = E d, (C.1)
0 0

where e = e(p, S) and £ is the total energy density per unit length. We chose the nondimensional

variables' in such a way that, for the equilibrium state p = 1 and S = 0, we have c = 1 and ps = 1.

It follows then from (2.2)-(2.4) that we also have

ep=po, es=To, e,,= 1-2po, eps=1 and ess= ico, (C.2)

where po, To and ro are the values at equilibrium of the pressure, temperature and Ts, respectively.

In the weakly nonlinear regime of Section (2.1): v, S and 6p = (p - 1) are small, of size O(c).
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Thus we can expand

&=p(e+ Lv2 ) = eo+(po+eo)6p+ToS+

(C.3)
A((6p) 2 + v2) + (1 + To)p S + LKoS 2 + 0(E3 ),

where eo is the value at equilibrium of the internal energy e.

Next we will use this expansion in the equation for the total energy ET above. Because mass is

conserved and we nondimensionalized so that the mean of p is 1, it follows that the integral of 6p

must vanish. On the other hand, we must be careful with the integral of S. At the leading orders

S is a conserved quantity 2 , but here we are doing a higher order calculation. Thus we write

ST = JpScd = Sdx+ I&pSdx, (C.4)

0 0 0

where ST is the total entropy. This quantity changes - only when shocks occur - at an O(E3 ) rate.

Given our nondimensionalization and the fact we are looking at the evolution over long O(C- 1) time

spans, it turns out that we can write3

ST = E2ST(7), (C.5)

where r = Et, as in Section 2.1.

Thus - using (C.3)-(C.5) and the fact that &p has vanishing mean - from (C.1) we obtain

ET = + J ((p)2 + v2 + 2 pS + S) d + 2 TOST + O(3). (C.6)

0

Finally, we substitute into this last equation the asymptotic expressions in equations (2.8)-(2.10).

We use the identity in (2.15) and the facts that (i) the ci's are 27r-periodic and (ii) fa2 is even, to

obtain

0 0 (C.7)

+o(a ),

where we have made explicit the fact that a2 is time independent.

The first term inside the brackets in (C.7) is the contribution to the total energy by the acoustic

2 A fact that was used in the nondimensionalization - see Remark (2.1.3).
3A fact that we finish justifying below.
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waves in the gas. That is

272
EA = 2 '1 (X, r))2 dz = 47r E,

0

(C.8)

where EA is the total acoustic energy and E is as4 in (2.23) of Section 2.2. Furthermore, since the

last term inside the brackets in (C.7) is a constant, it follows that

2r

( (X, r)) 2 dx + TOST = constant. (C.9)

This shows that the acoustic energy changes only when shocks (which are dissipative) occur. The

acoustic energy losses are directly proportional to the entropy produced by the shocks.

In Appendix A a direct calculation of the rate of acoustic energy loss by the shocks can be found

in equation (A.10). Thus, using (C.8) and (C.9), we obtain the formula

d ST 1 3
Sr = (u]hock

shocks

(C.10)

for the rate of entropy production by the shocks. Here [u] > 0 is the jump across each shock, as

defined in (A.9).

4Here we used (2.16) in Section 2.1 to relate al and u.
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Appendix D

On Rate of Convergence to

Limiting Solutions

In this appendix we illustrate the convergence properties of solutions for equation

2w

-u(2, • u t)+ Tt) + K( - y)u(y, t) dy = 0, (D.1)at
0

to attracting solutions. Energy dissipation rate can serve as a good measure of how far current

solution is from its attractor. Figures D-1, D-2 and D-3 illustrate the dissipation rate of acoustic

energy (expressed in terms of dimensionless parameters)

27rE(t) = 2 u2Xt) dx. (D.2)

As an example, we used the solution developing from initial condition u(z, 0) = 2 sin(x), which can

be considered typical. After a very short (invisible on Figure D-1) interval of time, when solution is

smooth, a single shock forms, which is reflected by a sharp drop in energy on Figure D-1. To set a

time scale, we use the period of the corresponding limiting solution, which in our example is roughly

equal to 31. Figure D-2 shows that during first 40 periods (roughly 40 iterates of a Poincar6 map)

energy decays algebraically, much the same way as for the in-viscid Burgers equation. This gives a

clear indication that main dissipation mechanism on this stage is via shocks. After the initial stage

with shocks, the convergence rate becomes exponential as clearly seen on Figure D-3. Exponential

rate of decay is more typical for viscous dissipation. Since the model has no natural viscosity, we

speculate that at this stage energy dissipates due totally to the numerical viscosity. This yields that

1 As pointed out in Remark B.0.1 of Appendix B time is nondimensionalized in terms of the amplitude of entropy
variations.
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solution essentially converges after roughly 30 - 50 cycles, with no shocks after that.

The last part of the graph on Figure D-3 (t > 800) can not be deemed credible, since the

measurement error becomes of the same order as the energy difference itself.

6.2

6.1

E-a,
cw

Convergence to Attracting Quasiperiodic Solution. Initial Condition: 2 sin(x)
I 1 I I I I I I I '

0 100 200 300 400 500
Time

600 700 800 900 1000

Figure D-1: Dissipation of energy in a typical experiment. Regular axes.
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Convergence Rates. Initial Condition: 2 sin(x)
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Figure D-2: Dissipation of energy in a typical experiment. Logarithmic axes.
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Figure D-3: Dissipation of energy in a typical experiment. Semi-logarithmic axes.
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