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Abstract

A multidimensional scaling function q(Y) E L2(Rn ) has two fundamental properties:
one, it is orthonormal to its translates by an n dimensional lattice r, and two, it
satisfies a dilation equation O(Y) = =Cr, cq(Mi -C) for some expanding matrix
M such that Mr C F. If Vj is the space spanned by {I(Mi' - -)}1Er, then the
functions 01, .. , c det MI-i are wavelets if they and their r translates form a basis for
Wo, the orthogonal complement of Vo in V1. In this thesis, I first describe the set of
ci's that determine non-zero compactly supported scaling functions and also how the
ac's determine the degree of smoothness of q. I then prove that for every compactly
supported multidimensional scaling function, there exist I det MI - 1 wavelets, and
that in certain special cases these wavelets can be chosen to be compactly supported
as well. Finally, I show how to construct, for every acceptable matrix M, a com-
pactly supported scaling function q with compactly supported wavelets 'i such that
f Oi(()x 1 di = 0 for all i = 1... I det M I - 1. The major tool in these constructions
is the wavelet system's polyphase matrix.
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Chapter 1

Introduction

1.1 What is a Multiresolution Analysis?

Multiresolution analysis (or multiresolution approximation) was invented by Mallat

and Meyer as a way of formalizing the properties of the first wavelets that allowed

them to describe functions at finer and finer scales of resolution.

A rank 2 multiresolution analysis of L2(R) is a sequence Vj, j E Z, of subspaces

of L2 (Rn) that satisfy the five conditions of

* Nesting: 1 ... V-2 C V-1 C Vo C V1 C V2 --. ,

* Density: The closure of UjEzVj is L 2 (R),

* Separation: njezVj = (0},

* Scaling: f(x) E Vj '-== f(2x) E Vj+1, and

* Orthonormality: There exists a scaling function 0 E Vo such that {((x -

7)},YEZ, the set of all the Z-translates of q, forms an orthonormal basis for Vo0.

The rank 2 part of the name comes from the Scaling property which insures that

Vj+1 is a better resolution approximation to L2(R) than Vj is. Similarly, one defines

1Be warned that there is no agreement yet as to "which way the Vj's go"-Daubechies, for
example, has Vj C Vj-1.



a rank m multiresolution analysis (with integer m > 1) by replacing the Scaling

condition with f(x) E Vj - f(mx) E Vj+,.

One example of an rank 2 multiresolution analysis of L2 (R) is the Haar basis, for

which Vo is the space of functions constant between integers. Vj is the space of func-

tions constant between values in 2-3 Z, and the scaling function 0 is the characteristic

function of the unit interval [0, 1]. The only nontrivial thing to prove is the Density

condition.

Of all the properties that can be derived from the definition of a multiresolution

analysis, two stand out as most important. First, it yields a basis for L2(R). Define

Wj to be the orthogonal complement of Vj in Vj+1, so that Vj+ 1 = Vj e Wj and thus

Vj+2 = Vj+ (D Wj+1 = Vj e Wj e Wj+i. By induction, Vj = Vo E Ei=0o Wk, and by the
Density property, the closure of Vo e $@'==0 Wk is L2(R). We have an orthonormal

basis for Vo; assume we have one for Wo as well. (This basis will later turn out to be

generated by the wavelets and their translates. In section 3.1, we will give a recipe for

getting wavelets from the scaling function.) But because the Wj spaces have the same

scaling property that the Vj spaces do-i.e., that f E Wj 4==* f(mx) E Wj+ 1-having

a basis for Wo makes it easy to get a basis for Wj: just compose all the functions in

the basis with mix and multiply the function by m(i /2) to preserve orthonormality.

An orthonormal basis for Vo together with orthonormal bases for the Wj means we

have an orthonormal basis for L2 (R).

Second, the scaling function satisfies the dilation equation:

O(x) = E c,(mx - -), c, E R.
-yEZ

PROOF: The combination of the scaling and orthonormality conditions guarantee

that {f(mim(mx - y)} forms an orthonormal basis for V1. But 0 E Vo C VI1 = E

V1. O

Because it (mostly) reduces the behavior of 0 to the behavior of a concrete set

of scalar values (the cý), the dilation equation is a powerful tool for the construction

and analysis of multiresolution approximations. For the rest of this thesis, we will



be concerned with these questions: for which c.'s is there a solution to the dilation

equation? For which c 7's is q orthogonal to its Z translates? What conditions can

be put on the cy's to make q smooth (where smoothness can be anything from being

continuous, to having many derivatives, to having many "vanishing moments")? And

finally, given that Wo C V, implies that any function V) in Wo also satisfies a dilation

equation

4i(x) = d7 $(mx - y),
7EZ

how can enough sets of d,'s be constructed to give a basis of Wo?

Let us now move to the question of multiresolution approximations of L2(R").

Our definition of a mulitresolution analysis over L2(R) really depended only in two

ways on the fact that we were working with functions over R. First, we translated

them by integers, and second, we composed them with multiplication by an integer

m > 1. Both of these are easily generalized: first, to translation by an arbitrary n-

dimensional lattice F, and second, to multiplication by an expanding (all eigenvalues

have magnitude greater than 1) matrix M such that MF C M. Such a matrix M is

called an acceptable dilation.

That said, a rank M multiresolution analysis of L2 (RW) is the same as a multires-

olution analysis of L2 (R), except with the two modified axioms of

* Scaling: f () E Vj 4•* f(MY) E Vj+l, and

* Orthonormality: There exists a scaling function € E Vo such that {¢(q( -

Y-)}ier, the F-translates of 0, form an orthonormal basis for Vo.

Multiresolution approximations of L2 (Rn) have most of the same properties as

multiresolution approximations of L2 (R). They yield a basis for L2 (Rn), and the

corresponding dilation equation is:

¢() = c wq(M - -).
YEr

Figures 1-1 through 1-5 show the graphs of the scaling functions associated with

selected multiresolution approximations of L2(R) and L2(R 2). Note that the mul-



0.8

() = 0(2Y) + 0(2+ ()) + 0(2F+ ()) + 0(2+ ())
Figure 1-1: The Haar Rank 21 Scaling Function q = X[o,1]2

tidimensional multiresolution analysis framework is more general than the normal

multiresolution analysis framework, even in the one dimensional case because it al-

lows lattices besides Z and it allows negative integers m < -1 as acceptable dilations.

Figures 1-3 and 1-4 show "rank -2" scaling functions; as discussed on pages 256 and

257 of [Daubechies 92a], these are always more symmetric than the associated rank

2 scaling functions.

Figures 1-1 and 1-5 show scaling functions that are the characteristic function of

self-affine tiles. As discussed in section 3.2, self-affine tiles are tiles of R" that satisfy

an equation of the form MT = UcEKgT + /k for some set K of digits. Such tiles can

always be made into (albeit not very smooth) scaling functions.

I
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Figure 1-4: "-D6": The Rank -2 Scaling Function with D6 Coefficients



i)=( 1-5 + K ( 1 1 i F )

Figure 1-5: Knuth Dragon Scaling Function



1.2 Overview

The remainder of this thesis is divided into two parts. The first part (Chapter 2)

describes how to verify whether a given set of c;7 values leads to a multiresolution

analysis. The requirements that 0 be a function in L2 (Rn), be orthonormal to its IF

translates, and generate a complete multiresolution analysis of L2 (Rn) are all trans-

lated into conditions on the c7, with the majority of attention going to the case

when 0 is compactly supported. Chapter 2 also discusses wavelets, and reduces their

properties to that of the polyphase matrix A(S). Finally, various measures of the

smoothness of a multiresolution analysis (such as its ability to reproduce polynomials

or differentiability of its scaling function) are considered, and rules given for their

determination.

The second part of this thesis (Chapter 3) describes various methods of construct-

ing multiresolution approximations. By factorizing the polyphase matrix, it is shown

how to construct, for every acceptable dilation matrix M, a compactly supported

scaling function 0 with compactly supported wavelets i4i such that f 4i(Y)xl d' = 0.

(This is the "degree e1 vanishing moment" condition, one of the measures of smooth-

ness discussed in Chapter 2.) In addition, the problem of how to construct wavelets

given a scaling function is considered, with special consideration paid to the problem

of retaining compact support.



Definition

a

lal
Re z

M*

F

Vi

Pif
Wi

L2(R")

<fg >

f=g

0i
M

m

K

V (i)

2;z(X

1.3 Notation

Symbol

complex conjugate of a

magnitude of a, Jal =

real part of z

Mt, conjugate transpose of matrix M

a vector, usually in Rn

an n dimensional lattice in R n

vectors in F

subspace of a multiresolution analysis,

= (IEEr aoq(Mi• - ay) i as E C, E'er la- 12 < oo)

the projection of f onto Vi

the orthogonal complement of Vj in Vj+1.

the set of measurable functions f : R n -+ C such that fR f( () 12 dJF < oo

the inner product in L2 (Rn), <f, g> = fR, f(x)g(9) d9

L 2 (R n ) equality: fRn If(jC) - g(i•) 2 dy = 0

a scaling function

a wavelet

a dilation matrix

I det MI

coefficients of the scaling function in the dilation equation,

= < €(A), ¢(M * - -0) >

coefficients of the i-th wavelet, di,l = < Oi(9), O(ME - ') >

the set of ' for which cj : 0

Dirac delta function, = 1 if i = j and 0 otherwise

i-th component of the vector V

i2 ... • +
il + i2 + -- + - in



Symbol

a <b

fo

fn

T

Yo,... ,Ym-1
Aý

A(Z)

k -k(M)
IK

XQ
[]

Definition
8)iI ...

ai < bi for all i

the starting function in the Cascade algorithm

= ElEr cf,_-1 (MX - -), n-th iterate of fo in the Cascade algorithm

= < fi g(X- -) >
matrix with (7, J) entry de e CM1+y -C_

a fixed ordering of the elements of P/MiF

matrix with (i, j)-th entry di,Mc+•v;

S- EEr A gik, the polyphase matrix

k1 = k + M'7 for some y7 F

cardinality of the set K

the characteristic function of the set Q

end of proof



Chapter 2

Verifying a Multiresolution

Analysis

This chapter concerns the following questions: Given a set of c7 's, do they define a

scaling function? Does this scaling function generate a multiresolution analysis? How

smooth is it?

We start by determining under what circumstances the c7 's define a non-zero

L2 (Rn) solution to the dilation equation.

2.1 The Cascade Algorithm

In this section, we discuss a simple procedure which under a wide variety of situations

allows us to explicitly construct a solution to a dilation equation. This procedure,

the Cascade Algorithm, starts by choosing a fo E L 2 (Rn), then iterates

n+1(£) = E cyfn(MF - 7).
qEr

If it is successful, then the solution f = limnoo f, will exist and solve the dilation

equation f (Y) = E c;f (MY - -).

Since we are working in a complete inner product space, the sequence fn converges

if and only if it is a Cauchy sequence. We will thus be very interested in < f,, f,i >



and similar expressions. Luckily, there is a simple recurrence relationship for these.

If we are given f, g E L2(Rn) then we may define the vector df,,( ) = < f, g(x-') >.

It follows that

= < >

= E ca'• < fn(MZ - 5), gn(ME - My' - -) >

aEr FPr

= ca~ fdtMI< f('- ), gn( ), - M( -M ) >

1
"-" E t CM-'c--de MI <jng, ( X -)>dEr kErdE odetMA -.dEr rEr

SEr gEIr

Thus, if we define the matrix T to have entry

1
T, - I det M I Z CM+-Cc-,

then afn+l gn+1 = Ta*f,gn = Tn+laf,g.

Notice that even if only a finite number of the cq's are nonzero, T is still technically

an infinite dimensional matrix. The following lemma justifies using truncated, finite

dimensional versions of T in this situation.

Lemma 2.1.1 Let K = {': c. y 0} be finite, and assume that s = maxX.E= I=1IMi

is less than one. [This will be true for some M-j.] Let B( , r) = {(I: "'-p'l < r}, the

n-dimensional ball of radius r centered at f, contain all the points {(I - M)-I ', -y E

K}, and let r' = r+. Then

* If lim f, converges to a compactly supported function f, then the support of f

is contained in the ball B(f, r'),

afn+,l,gn+l (Y)



* If the support of fn is contained in B(p, r'), then so is the support of fn+l, and

* If the support of fn is contained in B(A F), F > r', then the support of fn+l is

contained in B((, r' + s(f - r')).

PROOF: The support of fn+l is W(supportfn), where

W(X) = U M-'(x + y)
qEK

is an operator on the Hausdorff metric space H(Rn) of all compact subspaces of R".

W is a contractive operator, and its contractivity factor is s < 1. Because H(Rn) is

complete ([Barnsley 88]), W has an unique fixed point Aw, and this compact set will

be the support of f if f exists.

To show that Aw C B(p, r'), it suffices to show that W(B(3 r')) C B(z, r'). In

particular, it suffices to show that M-1(B(f, r') +; ) C B(', r') for each y E K. If we

let •y be the fixed point of the function Z -+ M-'(X + 'Y) and X be an arbitary point

in M-1(B(', r')+ +), then

d(f, ) Y) d(l , +d(Y;77 Y)

< r + s(r + r')
s(r + sr)

= r+sr+
1-s

r + sr

1-s

which proves that & e B(f, r'). [ d( , Y) < s(r + r') because d(' , z' < r + r' for

z E B(l, r').]
Finally, the statements on the support of fn+l follow from the contractivity of W.

For the rest of this section, we will assume that fo is compactly supported and

that only a finite number of the cy's are non-zero.

Theorem 2.1.2 (The Cascade Algorithm Theorem) The Cascade algorithm con-



verges to a compactly supported nonzero function in L 2 (Rn) if and only if the following

conditions hold.

* T has 1 as an eigenvalue.

* For every eigenvalue A # 1 of T with JA1 - 1,

t si-k

i=1 j=1

for allr > 0 and k = 0... max(si) - 1, where

1. there are t Jordan blocks with eigenvalue A in the Jordan form factorization

of T = SJS- 1,

2. the i-th Jordan block is si by si,

3. v'i,j is the column of S corresponding to j-th column of the i-th Jordan block

with eigenvalue A (Vi4, = 0 for j > si), and

4. Wi,j is the row of S - 1 corresponding to j-th row of the i-th Jordan block

with eigenvalue A (wi,j = 0 for j > si).

* For every eigenvalue A = 1 of T,

t si-k

Z 17 Vi,j(d))i,k+j ' aff0  = 0
i=1 j=1

for all r 2 0 and k = 1...max(s 2) - 1 and

t Si t Si

Re(E ~, j (6) )'j Ji, M 1 ) - ZE E , (6) JE( ijJ a $i 0
i=1j=1 i=1j=1

as r -+ oo00, with the same conventions as above.

PROOF: As previously noted, L 2 (R n ) is complete, so the Cascade algorithm con-

verges if and only if the sequence fn is Cauchy. We thus want to prove that the

uniform convergence of

IA - fm I = < f, n > - < , fm > - Ifm, IA > + < fm, fm > -+ O



as n, m -- oo is equivalent to our stated conditions.

Let's consider < f,, f, > first. We know that it is equal to f,f. (0) = (Tn"f0efo)(O).

If we decompose T into its Jordan factorization T = SJS- 1, then < fn, f, > =

(SJ"S-1ffojo)(6). If we think of this as a scalar sum, then the contribution of each

Jordan block to this is

A 1 0

A l1

0 A

1
W /o,Io)()

Ws

= (0) ... i(0)]

An nAn-1 ... ()_n-s+1

An00 A
w1 afo,fo

ws alojo

If IAI < 1, then the middle matrix goes to the zero matrix and the contribution is

0. Otherwise, the contribution is

i=l 0j=i -- o

Summing over all Jordan blocks with the same eigenvalue A gives

Ilk ,i n-j+ij dfojo
k=1 i=1 j=i

max(si)-1 t si-k

E (k An-k Z E E iij(6)i,k+j a fo,fo
k= i=1 k=1

As n -+ oo, the above sum is dominated by the k = max(si) - 1 term. For it to

converge, either () An-k must be 1 for all k (which is the A = 1 and k = 0 case), or

t si-k

i 70,,(6)i,k,+j ~o,fo = 0o.
i=1 j=1

([·i ...V]



But then the sum is dominated by the next lower k term, and we can repeat the

argument all the way down to k = 0.

Thus, if it exists,

t si

m < f, fn > = ,j(6),~v =1 o,joi= 1j=1

where ' ,j and wzi are associated

Now let's look at < f,, fm >.

and m = n + r. As before, < f ,

the above analysis of the Jordan

replaced with ifo,f,.

Thus, if it exists,

with Jordan blocks having eigenvalue A = 1.

Without loss of generality, we may assume m > n

fm > = (Tndfo,fm_.)(O) = (SJ"S-lfo,f7 )(O). All of

block contribution to this goes through with a/o,/o

t Si

rn < fA7 fn+ =r Z ZjWi a~fo,frn--o ()"

i=1 j=1

where v•j j and w5,j are associated with Jordan blocks having eigenvalue A = 1.

Convergence is uniform because each component of the vector adio,l is bounded:

S'fo," (9)1 = < fA,fr(~-) > 1
_ I ollI *( -- *)I

= Ifollfrl

We already proved that If, = J,/< f, fr > converges as r -+ oo; this implies that Ifr

and thus Iafo,fn-,I and I < fn, f,, > are bounded.

Finally, for

V< fn, fn >-< fn, fm >--< fm, fn >+< fm, fm >-4 0

as m, n -- oo, we need

Re(< fn, fm >) -4 < fn, fn >.



But the final condition in our theorem states just that.

So, just to wrap it all up, we've shown that Re(< fn, f,m >) - < fA, f, >, which

means that

<n, > - < nIm>-<fmIn>+ < mm> o

as m, n -+ 0. The convergence is uniform, so If, - fml -+ 0 and limn_,,, fn is in

L2 (R") as desired. O

The big problem with this theorem is that while we can easily compute T's Jordan

factorization and eigenvalues from the ci's, we have no a priori knowledge about foj,fr.

There are two general approaches to getting around this limitation: either assume

that ?i,k+j fO( - ) satisfies a rank M dilation equation, or assume that fo all by

itself does. The following corollaries illustrate both approaches.

Corollary 2.1.3 Assume that ~rer fo(' - T') is a constant. [The fundamental do-

main of F is a popular choice.] Then the Cascade algorithm converges to a compactly

supported non-zero function f in L 2 (Rn) if

* T has 1 as a simple eigenvalue,

* All other eigenvalues of T are less than one in absolute value,

* The eigenvector of T associated with the eigenvalue 1 does not have 0 as its 0

entry, and

* Ek'--(M) ck, = 1 (Condition 1) where k- kI(M) if kI = k +My' for some y E F.

PROOF: The idea is that Condition i guarantees that IT = i, and the assumption

on fo guarantees that -fo (I--) is a constant C. But the constant function C satisfies

a very simple rank M dilation equation: C(£) = C(Mi). So, 1 -*j o,fj = ai f,fo for

all r.



So first let's prove that Condition 1 guarantees that IT = i:

(fT)(1 ) = ZTY
qErI

1.Next, let'sdet MI that

1 afo a >=

/CEr 1 <+r 1fr

= <C7fr >1det M) ' c

=- 1.

Next, let's prove that -i.o,i• = f. a-'o,to = < 1, fo >:

l .ai<o, = <fo,fr ( M-k) >
cEr

= < fo( + ), fr >
= <C, f,>

= : cy < C, fr-1(ME - f) >

ker
= < C, fr_ >

and the result follows by induction.

Finally, notice that when T has 1 as a simple eigenvalue and all other eigenvalues

are smaller in absolute value, the conditions on our Cascade Algorithm theorem for

convergence simplify to just i(6) ~Efo,fr -- vi(O)w'ifo,:fo 0 where Vi is the eigenvector

and W the right eigenvector associated with the eigenvalue 1. But we have shown that

W = 1, . a-fo,f = 1. a-lfo,o, and we assumed that i(60) A 0. We are done. O]

Lemma 2.1.4 If E=,g(M) cp = 1 (Condition 1), then the Cascade algorithm con-

verges only if Eyr fo (Y - ) is a constant.



PROOF: Let P(f) = EvEr f(V - ') be the periodization of f. Condition i implies

that

P(fn+1) ()
jYEr

E= ZE cefn(MXf -M) - )
qEwr der

-E Z CM/fnr(MXMM(r/+/)
-FEr iEr 6Er/Mr

'er 6Er/Mr
fn (M - M"'- )

- Z fn(MX- ")

= P(f,)(MX).

Now, if the Cascade algorithm converges, limn,, P(fn) will also converge. But given

that P(f,+1 ) = P(fn)(MY), this is impossible unless P(f,) = P(fo) is constant. O

The following proposition proves that Condition 1 can be expected to hold under

a large variety of situations.

Proposition 2.1.5 If ECer 0(X - 7) is not identically zero, and if there exists a

self-M-affine r tile T, then condition 1 holds.

PROOF: Let D be T's digit set, and consider the function 0 = XT ElEr (x- ).

It satisfies the dilation equation

dE D !--d(M)
- d)



because

=Er

=- 7 XT c!,0(M - My - 9')
qrEr YEr

= XT EE c,,M+d(M  -- My - Ma - d
jer Er d*ED

- CMa+dXT(M2- MX M Ma- d)
djD aEr

= Z CM ,+d(M2- dX .
dED dEr

Let ag = (E;d(M) cl). We claim that

Z Cj2 = I det MI
dED

and

S- I det MI
dED

must hold. The first equation follows from the Cascade Algorithm Theorem's mandate

that ý's T matrix satisfies Te' = e'. The second equation - Condition 1 - holds if

f q(-) d 0 because

d* D I det MI
dED deD

But say that f (Y) d -= 0. Then fS b() d'- = - ... dS f (Y)d2- = 0 for any

subtile S = (M-1£+ M-1dil) ... (M-li+ M-dik,)T. But the collection of all unions

of subtiles is dense in T, so this would imply €(-) = 0, which we assumed was not

the case.

Finally, the only solution to the two equations >E-eD lad2 = I det M I and EeD a =

I det M I is when -= 1 for all d E D, because the minimum value of EED, 1;d~ 2 for 6F

lying on the hyperplane ED D & = det MI is when a- = 1. O



Note that ElEr ('- 1~) is very rarely identically zero; it can't be if f ¢(Y) dy # 0,

for example. It is widely believed but unproven that for every expanding matrix M

there exists a self-M-affine F tile; Lagarias and Wang [Lagarias 93] prove that this is

true for I det MI > n + 1 and for n < 4.

The other approach, as previously mentioned, is to assume that fo satisfies a rank

M dilation equation. For example, let's say that

fo(Y) = b,~fo(MY -k)
IcEr

for some set of bk. Then,

afo,f (y) = <of(- >

= ba < fo(MY, - d), fr-1 (M, - My' - ~ >
ader Er

I det MI < fo, fr-(

1

Idet MI bMZIdo, ()

If we define the matrix R to have entry

1

= det MI b -

then afo,f, = Rfo,f_ 1 = Rro,

Corollary 2.1.6 Say fo satisfies the dilation equation

fo(Y,) = E bkf (Mx-- Ic)
kEr

and that there are only a finite number of non-zero bk's and c 's. Then the Cascade

algorithm converges to a compactly supported nonzero function in L 2 (Rn) if and only



if the following conditions hold.

* Both T and R must have 1 as an eigenvalue.

* For every eigenvalue A

t si-k t'

i=1 j=1 i'=1

5 1 of T with JAI > 1 and eigenvalue A' A 1 of R with

sý-k'

Z i ,(6)(Uzi',k'+j' dfo,fo)( i,k+j 'ti j,) = 0
jt=1

for k = O...max(si) - 1 and k' = O...max(s') - 1, where

1. there are t Jordan blocks with eigenvalue A in the Jordan form factorization

of T = SJS- ' and t' Jordan blocks with eigenvalue A' in the Jordan form

factorization of R = QKQ-',

2. the i-th Jordan block of T is si by si and the i-th Jordan block of R is s'

by s(,

3. ,j is the column of S corresponding to j-th column of the i-th Jordan block

with eigenvalue A (,i4, = 0 for j > si),

4. t,j is the column of Q corresponding to j-th column of the i-th Jordan block

with eigenvalue A' (Ci, = 0 for j > sý),

5. w63'i is the row of S-1

with eigenvalue A (2,ij

corresponding to j-th row

= 0 for j > si), and

of the i-th Jordan block

6. u'i,j is the row of Q-1 corresponding to j-th row of the i-th Jordan block

with eigenvalue A' (ifi, = 0 for j > s').

* For every eigenvalue A = 1 of T and eigenvalue A' # 1 of R,

t si-k t' S i-k'

SX zj(3(i)(Uli',k'+•' of0 ,fo)(Gi,k+j. - ',) = o
i=1 j=1 i'=1 j =

for k = 1...max(s,)- 1 and k'= 0...max(s) )- 1.



* For every eigenvalue A 0 1 of T with IA I > 1 and eigenvalue A' = 1 of R,

t si-k t' s -k'Z Z Z •,iJ()(ii' ,k'+j' ·io)(I•, i+j ) = 0
i=1 j=1 i'=1 jf=1

for k = 0...max(s2) - 1 and k'= 1...max(s') - 1.

* For every eigenvalue A = 1 of T and eigenvalue A' = 1 of R,

t si t' si

Re(E E E E -v,
i=1 j=1 i'=1 j'=1

and

(6)(,,. afoo)( w,i
t si

l,,,)) = •,-u0)•, -
i=1 j=1

afo,f o - 0

t si-k t' si-k'

SE Z : 'i(, (i) 'i,',k+' *fofo)j(i,k+.j 't,f) = o
i=1 j=1 i'=1 j1=1

for k = 1...max(si) - 1 and k' = 1...max(s) - 1.

PROOF: Let R = QKQ- 1 be the Jordan form factorization of R. We know that

a-iof, = R'rfo,fo = QK'Q-~lfo,0 o . The contribution of each Jordan block of K to this

vector is
A

0

Ar rAr-1

1 0

A 1

A

Ul

Us/

.( -1 _ r-s'1+ 1

afofo)

ul afo,fo

uss' afo,f o

If IAI < 1, then the middle matrix goes to the zero matrix and the contribution is 6.

Otherwise, the contribution is

i'=

iV=1 I=%"/
afo,fo).

r

ts·

7

-iU'



Summing over all Jordan blocks with the same eigenvalue A gives

k P sil ,l

k'=1 i'1 3

max(s'i)-1

k'=O

(I

( ,)r-k'

r Arj'f+i' (,j'

t' s'i-k'z 4 J(Uif',kl'+

Of course, we aren't interested in aifo,f, as much as we are in the expression

t si-k i 0,) l•, ,+j dfo,fr.
i=1 j=1

The contribution of the A eigenvalue Jordan blocks of R to this expression is

max(s'1 )-1

kc'=O ( •rk t
i=1

si -k t' s'-k'

,j(ij=,k'+f - afolfo)0ik+j i'=1 ''=

and if this is to be 0 for all r, then we must either have A = 1 and k' = 0 or

t si-k t' s -k'

SZ ',,j(6)(( ',k+ fodo)i,k+j- tj = 0.
i=1 j=1 i'=1 j'=1

Thus, if it exists,

lim lim < fn,
T--4• n-'oo

t si t, si
fn+± >= E E -i,j afo "j -

i=1 j=1 il=l jl=1

where i,jy and wi,j are associated with Jordan blocks having eigenvalue A = 1 and

ti-,j, and uii,,j, are associated with Jordan blocks having eigenvalue A' = 1. O0

2.2 Cascade Algorithm Examples

1. M = 2, K = {0, 1, 2, 3}, fo = X[o,1].

afo,fo)

ýjl ,iofo)



The support of any solutions will be in [0, 3].

1
2

s-2 S-3 0 0 0

80 8-1 S-2 S-3 0

s2 s1 SO S-1 8-2

0 s3 s2 s1 SO

0 0 0 s3 s2

where sj = Ek Ck+jCk fo satisfies the dilation equation fo = fo(2x) + fo(2x- 1),

1
R = 2

+ c3 C3 0 0 0

+c cT1 +c2 c2+ c 0

0 co co + c c + c C2 +

0 0 0 co co +

o 0 0 0 0

Since aio,fo = eo, only the upper right 3 by 3 submatrix of R matters when

computing R a'fIof,o; call this submatrix R'. R' has the following eigenvalues:

co+c2+c, and +2-4(C1Cz-- The requirement that R' have 1

as an eigenvalue leads to two possibilities: either co + cl + c2 + c3 = 2, or

coc3 - Cl C2 + 2c1 + 2c2 = 2. For both these cases, the corresponding eigenvector

is (F(2-co-c5), (2-)(2-(2--)) and the corresponding left

eigenvector is (( + ) (2 - c2 - C•), (2 - F2 - T) (2 - cO- -c), (T+ ) (2- T- )).

In the first case, the limit q will satisfy f 0 dx = 1 if 0 exists. By Proposi-

tion 2.1.5, condition 1 must then hold, so we know that co + c2 = cl + c3 = 1.

2. M = 2, K = {0,1, 2, 3}, CO + c2 = cl + C3 = 1.

As proven in corollary 2.1.3, these conditions on the Ck'S guarantees that T has

1 as an eigenvalue and 1 as a left eigenvector. They also in this case imply that

T has 1/2 as an eigenvalue as well, with (cl + co - 5 - ;)1 + (2, 1, 0, -1, -2)

as the left eigenvector.

That leaves three other eigenvalues to worry about. They are solutions to the



following cubic:

Cl C1 Co CO C1X X CO C1 C• CO ZCO ZC1 J COC1 C1  C •)) Co C1CO C
+ + + + + +2

8 8 4 2 8 8 4 4 4 2 4

-2 - ~3 co ( c) c O co cJ l 2 2+ + C2 (Z ) -Cc

C13 (-)2 C1
2 (0)3 CO-+-

CO3 (1) 2 00
4

CO2 () 3 C1
4

-C (2 (w) 2  C12 ()C Co
4-

-C1 4C1 ()24
CO2 (1")3

4

C1
3 (,J)3 CO2 (-E)3 C1

4 2

2-- 2 3- 2
)2 C12C- C1 0 (C)2 CO (1) 2 C1

2  CO I1 ()
2 2 + 2

7 (c1) 2 CO C1  3 C02 C1co 3 C13 () 2  C1
3Co

+ - + +3
8 8 8 8

3C18 C

8
c2 ()2 2 2 (-3

8 8
co2 (c)2

8
5 C1

2 (1)2

8

(J)3 C 1
8

3 c1
2 (c) 3

+ 8
8

CO 3 2CO CO 1OC C, 2 C, 2Z -
Co ( )3  7 C1 2 CCo -O 3 co cci 1 c +o c--c c-co

+ + -+
8 8 4 8 8

3 c1 (c) • co 5 c13 OC ( )2 coco -+
c1 (co)3 C

8
c12 (-2

8

--COX
4

C12 (-) 2

8

Sco ()2
8

3c0() 2 C18o () c c
8

3 co2 (c)2 o
8

5 co ( C)3C 1  CO () 2C1 COcYco co2 (C1)2 C1  Xc cO 3 zc 1 c+ + + +
8 8 8 8 4 4

C1CO X C COZ ZCO C1 COX2 3 XZC1 Coclx 3 c0 2(o )2 3C12 () 2 x
4 4 4 2 4 4

cl (o)2 x CCo x 2  c X x2  3 c1 (i) 2 co X+ +
-2

+
2

CO COClX

4

(-1)2 x 3 xc (") 2 CO 3 xc 1
22COC XC C1 CO0+ +

2 2- 2 2
+3 co cOc"X CO c-oxCI C1  3 c,1 cc+ C1 CO c- CO (c) C (T1)

+ -- + +4-

C12C1  C1C 0  3 o- 3xzc 1 j 3 zxco 1c 3 xcl 1  3 xc (-) 2  X1;C CO
+ + + +C

4 4

-CO3 1
3 ()2 0 XC1

2 (0)2 ()2 C0
2 5 0

2 () 2 C1

O2 ( )2 C1
+ 4 + co

4

I

o J2-o i +

I

+ +x

I I

I I I

I I

I



3. M = 2, K= {0, 1,2,3}, ck E R.

When the coefficients are real, two simplifications occur. First, sj = sj. Sec-

ond, < f, f(x + j) > = < f, f(x - j) >, so when examining the behavior of

< f,, f,(x - j) > it suffices to consider the three by three matrix

so 2sl 2s2
T'I 1T'- 8 2 S1 + S3  SO

0 s3 s2

The requirement that 1 be an eigenvalue of T' is a quintic in co and c3, so may

be solved for at least one solution in these when the other four coefficients are

fixed.



2.3 Orthogonality of the Scaling Function

Proposition 2.3.1 If 0 is orthogonal to q(' - Y) for all y' E F, then

C cMq±-3 = 6,,l det MI
fer

for all ' rF.

PROOF: By hypothesis, we have that < 0, (' - ^)- > = g56,, for some g. On the

other hand,

< 0, ¢(X- -o) > = < E cao(M0 - -a), cp(MX" - MY - ') >
aer r Er

-•• ca•- < ¢(f), ¢(· - My' -U + a) >

1

I det MI coZ,' /g#Y, 6 fa

I det MI c gfEr

Setting this equal to g36,, gives the result. O

Corollary 2.3.2 If 0 is orthogonal to (g' - ') for all ' E r, then T has 1 as an

eigenvalue and ed as an associated eigenvector.

PROOF:
1

(Te6)()= T,-= detM
I det MI Cmy+#C# = 60,

Proposition 2.3.3 If T has 1 as a simple eigenvalue and e6 as the associated eigen-

vector, then 0 and €(' - --) are orthogonal for all ' E F.

PROOF: As noted in the previous section, T&d,¢ = a0,0. On the other hand, if T

has 1 as a simple eigenvalue and ed as the associated eigenvector, then ad,€ = Aed



for some constant A. This implies that 4,€() = < €, (£ - 0) > = 0 for 6, as

desired. O



2.4 Orthogonality of Wavelets

In this section, we show how to verify that a given set of wavelets are both mutually

orthonormal and orthogonal to a given scaling function. Recall that the purpose of

wavelets is to give a basis for Wo, the orthogonal complement of Vo in V1. (V =

Vo E Wo). In particular, Wo C V1, so a wavelet 4'i satisfies

=i • dio(M - )
'YjE

for some set of di,F because the O(M - --) are an orthogonal basis for V1.

The di,j's are similar to the cy's in that they give a constructive handle on the

wavelets. We will thus be concerned about imposing conditions on the di,q's that

ensure orthonormality, and later when we are trying to construct wavelets, we will

be interested in finding sets of di,q's that satisfy these conditions. Our analysis is

simplified if we adopt the convention that b0 = €, so that for example, d0,o = c1 .

A scaling function along with a complete set of wavelets is referred to as a wavelet

system.

Proposition 2.4.1 (Shifted Orthogonality Condition) If < bi, cj(- - k) >

gJU,k6i,j for all i, j E 0... I det M I - 1 and k E F, then

E di, +Mjdj,- = 6i,j6,F I det MI
Cdr

for all i,j E O... I detMI - 1 and y E r.



PROOF:

< ¢i, ¢(gX - ) > = C C diadj,-- < ¢(XM - X), Y(M - My - P) >
dEr fEr

1
[ det M] di,ad ,i < 0(i!), 0(·i + - My - i) >

- I det MI Z~ ddigyM+-
dr I det MI Er

9g
Idet MI dim+/dji

PEr

Setting this equal to g6i, 66,j gives the result. O

The above orthogonality condition can be rephrased more elegantly if, following

[Kautsky 95], we put it into matrix form. Define the matrix A4 by saying that

its (i, j)-th element is dij,Mg+ for some fixed ordering of the elements , of F/MF,

i = 0... I det M - 1.

Proposition 2.4.2 (Shifted Orthogonality Condition: Matrix Version) The

shifted orthogonality condition is equivalent to

Z AfrA = det M I6',I
rEr

for every k E F.

PROOF:

FEr rEr k

E ,Md+9k d j, ME+Mr k
rEr k

= di,;dj, ie+MO
iEr

On the other hand, the (i, j)-th entry of I det MlJ6,kI is I det MIJ,i6iEj. 0



Definition 2.4.3 A matrix valued function A(Z) is called paraunitary by rows if

A(9)A()* = I for X on the IdetMI dimensional torus T = { : xi = 1,i =

1,... , n}. If A(i)*A(g) = I for ' E T, then A(£) is called paraunitary by columns,

and if A(s) is paraunitary by both rows and columns, then it is simply called parau-

nitary.

Lemma 2.4.4 The polyphase power series matrix

1 k

AI det M( IEr

is paraunitary by rows if and only if the matrices Ak satisfy the shifted orthogonality

condition.

PROOF:

1
I detMI

1

I det MI
1

Idet MI
S 1

I det Mi

=I

(A A•k)(E A.
kcEr Er

(Z A k)(EA
kEr

Sik-i

iEr kEr

1zi det MIU6,l•
iEr

~-q)

Theorem 2.4.5 The set of wavelet systems satisfying the shifted orthogonality con-

dition and forming a basis of V1 is in one to one correspondence with the set of

paraunitary power series matrices.

PROOF: [ADAPTED FROM [STRICHARTZ 93].] By lemma 2.4.4, the set of wavelet

systems satisfying the shifted orthogonality condition is in one to one correspondence

I



with power series matrices that are paraunitary by rows. We will now show that

wavelet systems that form a complete basis of V1 are in one to one correspondence

with the set of power series matrices which are paraunitary by columns.

Let f be an arbitrary function in V1. Then

aEr

for some set of fa's because {¢(M~- F )}aEr is a basis for V1. We want to see under

what conditions
r

f = S 5gqik(x- ·)
i=0 FEr

for some set of gF,ji's. But, because of orthogonality,

= < ,¢•( ' - -) >
= >

dEr

= C fa di < ¢(M - 5), ¢(M - My - ) >

aEr rr
1

= fa d det M,+

I det •f M dM r.

So, we want to see when

Sf¢(M#- #)
6Er

r
= det M E E Z - fMq+#dj',di,(- - f )

i=0 jEr Ar

1 r
Idet MI 8 +dij E dc,,t(MF - M - 1')

i=O q;Er A•r -'Er

which is equivalent to

1 r
fMu+a = I det M I  f m +ýdjiidia-m

i=o Er FOr



and also to
Idet MI-1

ZE E didi,a -M = I det MI6,,,.
i=O TEr

On the other hand, the polyphase matrix A(Y) is paraunitary by columns when

1
I detMj((Z1kEr

1

I det MI
(AtA•)(,);Ez

Idet MI iEr

I det Mj!Er

At')(E A,-)) (E,p)

I det MI-1

• (A*)(,j)(A.+j)(j(,6)
j j=O

d ,Mk+g.di,M+Mk+g#

which is equivalent to the above expression. O

Corollary 2.4.6 If 0, ,1,... , /r and their translates form an orthonormal basis for

V1, then r = I det MI - 1.

PROOF: By the preceeding theorem, the r + 1 by I det MI polyphase matrix associ-

ated with €, ¢1,... , Vi, is paraunitary. But only a square matrix can be paraunitary,

so r =I detMI - 1. O

(A(Y)*A(Y))(a,a)

.-"



2.5 Putting it All Together

We are now ready to return full circle and show how good scaling functions and

wavelets give rise to multiresolution approximations. We use the abbreviation m =

I det MI throughout.

Lemma 2.5.1 If a scaling function ¢ and associated wavelets ¢i are orthonormnal

to each other and their r translates, then they along with the rescaled wavelets

mj/2i (Mjg) and their r translates are all orthonormal.

PROOF: First we show that the translate of any rescaled wavelet is orthogonal to

the scaling function; that is

< , mji/20i(Mijx- k) > = 0.

By hypothesis this is true for j = 0; we prove the general case by induction:

<, mj/2li(Mj - _ > = m 1j/2Z•cC < ¢(M-•- ,Oi(M -_k>

= mj l 2+  c, < 0(gI), ',(Mj-lu + Mj- 17- - k') >.

But since k - Mj-1' E r7, each inner product in the above sum is zero by induction.

Second we show that the rescaled wavelets and their translates are orthonormal.

By rescaling and translation, all we need to prove is that

< 4, mk/2 j(Mk ) > = i,j0,k,

We are given that this is true for k = 0, so we may assume k > 0. But then

< i, m/2(M k -) > = mk/ 2 Z d,,i < ¢(M _ - 7), j (Mk-

= mk/ 2+1  d,i < (),j(M-1 + k-1U- ) >

and every inner product in the above sum is zero by our first result. O[



Lemma 2.5.2 A compactly supported scaling function q orthonormal to its F trans-

lates generates a multiresolution analysis of L2 (R n ) if and only if

fJ 0( = vol(Rn/I).

PROOF: [INSPIRED BY A PROOF SKETCH IN [STRICHARTZ 94].] We want to show

that UiezVi = L2(Rn). If Pif is the projection of a function f into Vi, then what we

want is equivalent to limio Pif = f for all f E L2 (Rn). Since we are in L2 , this

in turn is the same as saying limi-oo (IPif - f 11 = 0 or even limi~.o IIPfl11p 11If11

since IJP fl12 + (Pif - f112 = (fI 112 by the Pythagorean theorem.

Now,

Pif = < f, I det Mx-/2 )(Mc  - ) >I det Mxi/2¢(Mi -

qEr

which implies

IIPifll= = <Pf,Pf >= < f, (Mi -') > 21 detMIi.
-YEr

Now let XB be the characteristic function of a n dimensional ball B with unspec-

ified radius and center. Linear combinations of such functions are dense in L2 (Rn),

so it suffices to prove that limio00 IIPiXBII = IIXB l 2. But

IIPiXBII2 = Idet MI I < XB, (M i - 7) > 12
;Er

= det M -i (ZiMO ( - f>) dgl 2

;yEr

Now, for large i, MiB will be a very large hyper-ellipsoid. The support of O(u'- -')

will either be entirely outside of this hyper-ellipsoid (in which case it contributes 0 to

the sum), partly inside the hyper-ellipsoid, or entirely inside the hyper-ellipsoid, in

which case its contribution will be I det MI-i( f €(£) df 2.



Specifically,
Sp ci cXBI2  _ I det M I-i vol(M iB) I f q(g) d912

vol (Rn/I')

< vol(Rn/) (Ri + R2) area(aM'B)) J (g) dX + (2R + 2R2)K

where

* The support of 0(£g) is contained by a ball of radius R1 ,

* Rn/F, the fundamental region of the lattice F, is contained by a ball of radius

R2,

* K is the maximum of I fx 0(g) dl|2 over all compact subsets X of R",

* 8MiB is the boundary of MiB, and

* vol(MiB) is the n-dimensional measure of MiB, while area(8MiB) is the n - 1-

dimensional measure of Mi'B.

The proof of this bound on I IPiXB i2 is simple. Let MiB-R 1 be the hyper-ellipsoid

obtained by removing a ball of radius R1 from all the boundary points of M'. The

number of 0(u' - -') whose support is entirely inside MiB will be less than or equal

to the number of lattice points ' inside MiB - R1. But this will be approximately
equal to vo(-R%'), with the absolute value of the error bounded by R2 reaM-R1)

Next, we need to consider the (U - -) which are only partially inside MiB. The

contribution of these to the sum will be at most I det MI-iK, by the definition of

K. To find the number of these functions, we need to count lattice points inside

the hyper-annulus consisting of those points within distance R 1 of 8M0B. But there

will certainly be less than (2R, + 2R 2) ea(Rr) of these. Combining this with the

previous bound (and a liberal application of the triangle inequality), gives the desired

bound.

Finally, note that vol(M'B) = I det MIi vol(B) = I det MJi IlxBII and that

area(Mi'B)lim det0.
i-oo Idet Mh-



Thus,

lim IPa, XBl•= IIxBI 112 2 (R) d/2
i-+oo vol(R"/r)

and the theorem is proven. O

Theorem 2.5.3 Given any compactly supported function q which is orthonormal to

its r translates and satisfies f 0(Z) di = vol(RT/r), then

Vj = f E a;(M j - 4) I a;F E
-TEr

C, E lal2 < oo
qEr

is a rank M multiresolution analysis of L2 (Rn).

PROOF: [ADOPTED FROM [STRICHARTZ 94].] The nesting, scaling, and orthonor-

mality conditions follow immediately from the definition of Vj, and completeness by

the preceding lemma. The only thing left to prove is separation. This follows from

the bound

feV3 ==> max If() 12 < C
I det M j < f, f >

because f E Vj for all j would imply (as j -+ -oo) max If() 12 = 0 and thus f (9) = 0.

To prove the bound, write

-= < f , I det MXj/2 (Mj'- ') > I det MXj/2 (Mj -

d)Er

I det M12j Z (M j- -i)Jf&b(Mii- -)dj
jEr

- Idet MI2j f(y-) I2dy'

2

2

Y iY'- 1,Y dy)f 
.Idet M(2 

2f,(

= detM12j < ff >

dir Er (M1 §00(7)(Mig- §) (Ier (Mi- fl')¢(MF -ver

Y -))(Yr ¢(M -



= I det M12 < f,f>

Z Z (/M - )m(MJ- /') f X(M0j - -)'(M)I
-  d)1d

IEr 9'E

= det Mij < f ff > C q(Mji - x)q(Mi~ - f')5,
YEr j Er

= ]det M j < f, f > E Jo(Mj - 9)12
!'Er

SIdetM12i < f,f>C

where the first inequality comes from the CBS inequality and the second from the

fact that 0 is compactly supported. OL

Theorem 2.5.4 The Cascade algorithm applied to a starting function ¢o converges to

a compactly supported function 0 which generates a rank M multiresolution analysis

of L2 (R n) if

SE;Er €0(o- -) = 1,

* fJ od9= /vol(Rn/r),

* Only a finite number of the c- 's are non-zero,

* T has 1 as a simple eigenvalue and e6 as the associated eigenvector,

* All other eigenvalues of T are less than one in absolute value, and

* Ep•k(M) cp = 1 (Condition J).

PROOF: By corollary 2.1.3, the Cascade algorithm converges under these conditions

to a non-zero compact function € with f 0 d9 = f 0o dx = /vol(Rn/F). By propo-

sition 2.3.3, T having 1 as a simple eigenvalue and e6 as the associated eigenvector

guarantees that € with be orthonormal to its F translates. But theorems 2.5.2 and

2.5.3 imply that a compactly supported function, orthonormal to its F translates, and

with /vol(Rn/F) as its integral, will generate a rank M multiresolution analysis of

L2(Rn). El



Theorem 2.5.5 Assume that

for some finite set of bý. Then the Cascade algorithm applied to a starting function
¢o converges to a compactly supported function 0 which generates a rank M multires-
olution analysis of L 2 (R n ) if and only if

* f O0 df = vol(Rn/r),

* Both T and R must have 1 as an eigenvalue.

* Only finite number of the cy 's are non-zero,

* T has 1 as an eigenvalue and ed as the associated eigenvector,

* Eer ci = I det MI (Condition 1),

* For every eigenvalue A - 1 of T with IAI Ž 1 and eigenvalue A' : 1 of R with
IA'/ >1,

t si-k t1

i=1 j=1 i'=1

s - k '

Svi,i j( 6)( i,k'+j, ako,00) ( i,k+j- i1,,j) = 0
j'=1

for k = 0...max(si) - I and k'= 0...max(s') - 1,

* For every eigenvalue A 0 1 of T with JAI 2 1 and eigenvalue A' = 1 of R,

t si-k t' s -k'

i',k'+' 00,100) k+j

for k = 0...max(si) - 1 and k'= 1...max(s') - 1, and

* For every eigenvalue A' = 1 of R,

tf ±:~j Z(-2, do doo

Sti',j) = 0



and
t' S-k'C (Ui',k,+fl , 0o,oo)•t,,,(6) = 0

i'=-1 jf=-1

for k' = 1 ... max(s) - 1.

PROOF: Same as the previous theorem, but using the conditions associated with

corollary 2.1.6 instead of corollary 2.1.3. O



2.6 Regularity

There are many different yet related ways to require that a multiresolution analysis be

"regular" to degree ' e Zn . Below are listed some of the more important or popular.

We use the notation that a'• b if a1 < bi for all i.

* [Derivatives] The '-th derivative aPl of the scaling function exists.

* [Polynomial Representation] For every compact set X and polynomial q(y)

of degree less than or equal to f, there is a function f E Vo which agrees with

q(i) on X.

* [Vanishing Moments] < I, Pi >= 0 for all 6 < S' < 'fand i = 1... I det MI -

1.

* [Strang-Fix] 0(g), the Fourier transform of 0, has a 0 of order 3 for all V =

27 O (r-0(:)= 0for OSg<5

* [Sum Rule I]

cýoe 2 'riii- = 0
qEr

for every i e F/M*T - 0 and 0 < S# < .•

* [Sum Rule II]

): c, 8 =Cg
I=ik'(M)

for every k' E - and 0 < " < p, where C, is a constant not dependent on k'.

(These are by no means the only measures of regularity possible. For examinations

of other measures of regularity [such as Sobolev smoothness or Holder continuity], see

[Cohen 96], [Karoui 94], and [Jia 97].)

Some of these criteria are obviously related. For example, Polynomial Represen-

tation implies Vanishing Moments, and they are equivalent if 0 generates a complete

multiresolution analysis of L2 (R). The following sections examine, explain, and

motivate each of these notions more closely.



2.6.1 Derivatives

In this section we investigate the L2 (Rn) existence of derivatives of the scaling func-

tion. It is clear that if a particular derivative exists for the scaling function 0 then

it exists for all the wavelets, since these are just linear combinations of translates of

€(M/).

By the repeated application of the chain rule to the dilation equation, we get

e= [ Z M[,] W )(M)(M - k-)

kEr IJI=I

where r = ll,

CM1. = Z Mkk k ... Mk k,,

and Mij is the (i,j)-th entry of M. The matrix M,[] was studied by Cabrelli, Heil,

and Molter in connection with vanishing moments; they prove the following result.

Lemma 2.6.1 [Cabrelli 96] Let X be the vector of eigenvalues of an arbitrary matrix

A. Then the eigenvalues of A[,] are X' for every vector q such that j[q = s.

PROOF: [Sketch] Choose a basis such that A is upper-triangular; this does not

change A[s]'s eigenvalues. In fact, there is an ordering of monomials of total degree s

such that A[,] will also be upper-triangular when A is. But then the values ýX appear

on A[,]'s diagonal, and we are done. O

Armed with this result, we return to the study of 8q5. To investigate the L2 (R n)

existence of these derivatives, it is natural to consider the vector

a-r (1, 3, =< cT 0 (X' - -'Y) >



where •I| = I = r and ' E P. We have the recurrence relation

a[r](j i, = 7 Z Z IdeMI 'r'A4ri&5[rIr(?j 1-1 - M )
F(j) r• r 1?1=, l I det MI i, jv,]•H(,, -

~Er lr'r Ij'I= Il=r

and if we define the matrix T[,] to have entry

z CMqy+r , c'

• r• I det MI .•];'•E][7p

we get the equation [] = T[r]a[r], which may be analyzed using the techniques of

section 2.1. Notice in particular that

T[r•,4.)A,,[,,,, = [7],.TqT , ,

which means that T[r] is a Kronecker (tensor) product: T7r] = M[71 ® M[r] 0 T.

Proposition 2.6.2 If 0(95 E L2(R') for all Il = r and if M has A as its vector of

eigenvalues, then T has a s--k asn eigenvalue, for some j and k such that II =

IkI = r.

PROOF: If 9q E L2 (R n ) for all 11 = r, then by the Cascade Algorithm theorem,

T[r] must have 1 as an eigenvector. Let i be the corresponding eigenvector. Without

loss of generality, we may assume V' = d ® b ® w', where a' and b are eigenvectors of

M[r] and zV is an eigenvector of T. Specifically, let M[r]d = ad, M[rfb = Ob and

T7 = Ar. Then T[r] = (MA[r] M[r ® T)(a-® b® 9 ) = (M/[rI]) ® (A4 [r) (T-) =

(ad) ® (Ib) 0 (AW9) = ap3A(a ® bo t) = 93A i'. Thus, A = •. But by lemma 2.6.1,

a, = and / = Ak for some I and k such that 1 = Ik| = r. ]

In the one dimensional case, M[r] = M r , and T must have M-2r as an eigenvalue

in order for 0 to have r derivatives. In higher dimensions, the situation becomes more1 -1
complicated. For example, M = has 1 ± i as eigenvalues, so T must have

i/2, 1/2, or -i/2 as an eigenvalue for • and 2 to both exist. For 8(9 to exist for

all i|i = r, T must have one of ±2 - r or ±2-'i as an eigenvalue.



2.6.2 Vanishing Moments

It is possible to calculate explicitly the moments of a given wavelet or scaling function.

This is because we can assume that f 0 d' is known and because

I det M I Z c J((M - ) - P) ( )) d )

where Pp,f(Y) is a polynomial of degree strictly less than j. If we assume that we

have already calculated f 00 (i) di for q < f, then we can calculate f P',y(g)q(it) dil

and call it C#,i. Thus,

J #1di I det M z ((M-f () + C).

Now consider the matrix M '- where s = Ipl. If we let Xp[](Y) be the vector,

indexed by vectors q such that Iq- = s, then [Cabrelli 96] shows that M-1 satisfies

the equation

X["](M-9) = M-1X[](().

Thus, we can write

X[] (g) d9 = C[,l + Ide MI c• M •X[,]() d

where C[,] is the vector with T entry

1

I det MI C

But then, assuming that Ec7 = I det MI (Condition 1), we can solve this equation



and get

X[•((S) d = (I--MA ')-Cs]

I - ~ is always invertible because all of M-1's eigenvalues, and hence all of M 1l's

eigenvalues as well, are less than one.



2.6.3 Fourier Analysis of Wavelets

The Fourier transform of a function f in L2 (R n ) is defined as

f(u7) = J f()e-' di.

The dilation equation allows us to deduce a beautiful form for q:

;yEr
= Ecý f (Mig- -)e- U-fd

4JRf(M i-' ')

-C' -)e-ti- u.#M-l

I det MI

where M-* is the adjoint (i.e., the conjugate transpose) of M-'. If N = M-* and-I det MI f ( d

S (~) = mI(N)(NU)

In particular,

(V) = O(NY') I m(N U)
j=1

= () I m(Nj3U)
j=1

since N is eventually contractive. Note that (0) = fR,• (i) di = /vol(R•/P) since

0 is assumed to be the scaling function of a complete multiresolution analysis of

L2 (Rn).



The zeros of € will play an important role in determining the regularity of q. The

following proposition tells us where they are.

Proposition 2.6.3 If 0 satisfies Condition 1, then 0(v) = 0 for ' E 2rrF -

PROOF: We saw above that 4(6) = m(NV) (NU), so the zeros of &(7) are either

zeros of m(NY) or N-j times such a zero. Now,

(2.1) m(NYU) = C e-i=.M-1

!Er Idet MI

(2.2) E 1 : I detM I
' EMr I det MI

(2.3) = e-i'M-l'

because e-i 'M -11 - 1 for i- E 27rr and ac E MF, and EdEMr + 1 by ConditionIdetM -M

1.

Now, -.! is a finite abelian group under addition and '7 -4 e-iM -1q' is a homo-

morphism from - to a multiplicative subgroup of the roots of unity, just as long

as ' E 2irJ. In other words, e-igM -1; ' is a character, and it is well known that the

sum of a nontrivial character over the elements of its group is zero. This proves that

m(NV) is zero whenever V e 27rr, iV' 21rM*F.

Finally, every v' E 2rrF - 0 is either not in 27rMF or is N-i times such a VT, so q

has zeros at all those places. O

Lemma 2.6.4 The scaling function coefficients satisfy the sum rule

Scoy e 2 7ri- = 0
'yEr

for all v' E rlM*r - 0 if and only if &'5m(w) = 0 for v- E Mr- 2-r.



PROOF: m(z) = Co-• ,de-', so

a m(w)

0.
- 0.

O

Theorem 2.6.5 The sum rule

C cyf'e2xiv~il = 0
'YEI"

for all 0 < W < _ and ' E P/M*P - 0 implies the Strang-Fix condition

( (= 0

for all 6 < ' < P' and i E 2irF - 6.

PROOF: Since 4(6) = m(Ng) (NU),

ag, : ~(N~l(NU).

Assume that v' 1 27rM*F. Then by lemma 2.6.4, iOm(NU) = 0 for 6 < i < p, so

8' (v) = 0. If on the other hand, j' e 2irM*P, then Nki ý 21rM*F for some k. Also,

O(NV) = 0 for ' E 2wM*r - 6, and by induction we may assume that a"q(NV) = 0

for 0 < ' < < and v E 27rM*F - 6. Thus,

k-1

8 5(') = m(N'U)afd(NU) = ipq(Nk k)m(Nk) fi m(N).
1=1

But then NKgg 2rM*F and m(NkJ) = 0 so •€(5 ) = 0. O

I det M i
C7  (i)l

I det M



2.6.4 Sum Rules

Proposition 2.6.6 Sum Rule I

Scq - , 2e2 ri-1 = 0

for Vi E l/M*? - 0 and the Sum Rule II

Z= c17-= .
q=_q'(M)

are equivalent.

PROOF:

E cife 2rig-F

jyEr
- Z CM ±+,(Mo+ +- 2)ie2r i(M +§)

= ~e cCMa+(M S + ) e2 "

OEr dEr

Now, if Sum Rule II holds, then E6Er CM a+,(M + I) = Ca0 and then er e2ri••C =

0. On the other hand, say CBE r cMd+1 e2i-,ar(M 3 +) = 0 for all 1! E

P/M*I - 0. We can write this in matrix form by letting F be the Fourier ma-

trix with (i', ) entry e2 i''- [[ E r /M*r,7 E r/Mr] and z be the vector with /

entry Eaer(M' + )-. Then F' = C'Fi for some constant C'. Since F is a Fourier

S detMthis is the same

as saying Eder(Ma + )" = C' for all .~ r/Mr, which is precisely Sum Rule II.

Notice that this proposition gives us an explicit formula for Cg:

1 1
C9e 2"i0. CM,+ 3(M~ + E '7 = det+ ZI - rdet MI e2i CM+ det M c

per der



Theorem 2.6.7 If the scaling function coefficients satisfy the sum rule

Z c,~k8=Cr
k----'(M)

for 0 < S < ' then 0 has f vanishing moments.

PROOF: By proposition 2.6.6 and theorem 2.6.5, this sum rule implies the Strang-

Fix condition. But by [Strang 73], the Strang-Fix condition implies the Polynomial

Representation property, which coupled with the fact that the wavelets are orthogonal

to the scaling function, implies the vanishing moments condition. O



Chapter 3

Constructing a Multiresolution

Analysis

3.1 Constructing Wavelets

The analysis in section 2.4 tells us that the problem of finding wavelets given a scaling

function is the same as the problem of given a paraunitary (by rows) power series

vector f, finding a paraunitary power series matrix A(£) with 'f as its first row.

For certain values of I det MI, this problem is not hard. For example, if I det MI =

2, then Ai() b( s paraunitary whenever -= (a(g), b(i)) is. There

are similar formulas for I det MI = 4 and I det MI = 8 [Meyer 92], but not for any other

value of I det MI. The obstruction is topological: if p(z) covers all of the 21 det MI - 1

dimensional sphere S (which it certainly can do if n is large enough), and if the rows of

A are given by a formula which only depends on P's values (i.e., if A is an "orthogonal

design" [Geramita 79]), then rows of A determine I det MI - 1 linearly independent

vector fields on the S. But by [Adams 62], this can only occur when 21 det MI - 1

equals 3, 7, or 15.

On the other hand, there is a solution to the problem if it is not required that the

rows of A(Y) follow a simple pattern.

Theorem 3.1.1 For every smooth paraunitary power series vector p, there is parau-



nitary power series matrix A(Z) with ' as its first row.

PROOF: First, find an invertible power series matrix B(Y) with Pf as its first row.

[Madych 94] shows how to do this when jff(5) is smooth; in section 3.1.3, we will show

how to do this when 0 is compact. Next, apply Gram-Schmidt to B. This preserves

the first row, and turns B into a paraunitary matrix. If we interpret all of the divisions

and square roots involved in the Gram-Schmidt process as their formal power series

analogues, the answer A(s) will be a paraunitary power series matrix. ]

The main problem with this construction is that A(Y) will not be polynomial

even when ' is. To put it another way, the wavelets it constructs will not be com-

pactly supported even when 0 is. The following three subsections solve this still open

problem in the following special cases: when 'f is one dimensional, when the number

of monomials in f is less than I det MI, and when a certain quadratic form can be

diagonalized.



3.1.1 The Method of Kautsky and Turcajovai

In [Kautsky 95], Kautsky and Turcajova give a method for obtaining compactly sup-

ported wavelets from a compactly supported scaling function in the one dimensional

case.1 This section describes their approach.

Lemma 3.1.2 Every paraunitary matrix A(g) of the form B + Cx is equal to (I -

P + Px)H with H unitary and P a symmetric projection matrix satisfying P* = P

and P2 = P.

PROOF: Let H = A(1) = B + C. Because A(Y) is paraunitary, H must be unitary.

The shifted orthogonality conditions imply that BB* + CC* = (H - C) (H* - C*) +

CC* = I - CH* - HC* + 2CC* = I and that BC* = (H - C)C* = HC* - CC* = 0.

Together, this means that HC* = CC* = CH*, which means that CH* must be a

symmetric projection matrix, and B + Cx = ((I - P) + Px)H for P = CH*.

Lemma 3.1.3 Every paraunitary polynomial matrix A(x) of one variable x in degree

d may be factored as

A(Y) = (I - Pi + Plx)(I - P2 + P2x)... (I - Pd+ Pdx)H

with H unitary and Pi a symmetric projection matrix.

PROOF: Let A(Y) = Ao + Aix + ... Anxd. By the shifted orthogonality conditions

we know that AoA* = 0. Let P be a symmetric projection matrix such that PAo = 0

and (I - P)Ad = 0. For example, let P project onto Ad's column space. Then

(Px - ' + (I - P))A(Y) = PAox - 1 + (PA1 + (I - P)A 1) +...

+(PAd + (I - P))xd- 1 + (I - P)An

= (PAl + (I - P)A 1) +... + (PAd + (I - P))d - 1.

'[Lawton 96] gives a different algorithm, also based on a factorization of A(Y), for solving this
problem.



But now we have a paraunitary polynomial matrix of degree d - 1; it is paraunitary

because the product of two paraunitary matrices is paraunitary. Applying the pro-

cedure iteratively until d = 1 we are left with degree 0 paraunitary matrix H which

must be unitary. Since then

H = (Pdax - + (I - Pd)) ... (Pix-1 + (I - Pi))A(,)

and since (I - Pd + Pdx)(Pdx-i + (I - Pd)) = I, we get

(I - P, + Pix) (I - P2 + P2x) ... (I - Pd + Pdx)H = A(£)

as desired. O

Corollary 3.1.4 For every paraunitary vector polynomial p(x) of one variable, there

is a paraunitary matrix polynomial A(x) with f(x) as its first row.

Let #(x) = -o + ix + ... + p•dx. Because p is paraunitary, fopi0 = 0. Thus we can

find a symmetric projection matrix P such that Pfo = 0 and (I - P)zd = 0. For

example, let P project onto 'fd. Then (Px - 1 + (I - P))pp(x) will be a paraunitary

vector polynomial of degree d - 1, and we may iterate. When we are done, we will

have a vector 1 such that |Iý = 1. Choose a unitary matrix H with p as its first row;

this can always be done. But then

(I - PI + PX) (I - P2 + P2 ) ... (I - Pd + Pdx)H

is a paraunitary matrix polynomial with Tf as its first row. O

Unfortunately, this construction does not extend to higher dimensions because

not every A(:) is factorizable in this way. For example, A + Bx + Cy + Dxy where

1 2+v -l- 1 2-.2-a 1-V -a

3+2A = - B = 3+2



1 1 -•, + -2-v-+a 1 1+v 2+ V= 3+2 2 ID= 1
6 V+a 2 - - a 6 1+V 2+ V

is paraunitary for all a but not a product of degree 0 and 1 paraunitary matrix

polynomials unless a = 0 or a = 1. This can be verified using the following lemma.

Lemma 3.1.5 (The Projection Lemma) If a wavelet system Ag satisfies the shifted

orthogonality condition, then so does BX, where

B 5= Ag

PROOF:

(Br tFE r
fEr L=R:I k+l=Rg=E E E AA=ZE E A
rEr r=R~c'k=RiV=R(9-i)

k=Rt rEr =Ri

= 6_ •6,,,-I
c=RtV

=•RkI



3.1.2 The Rotation Method

Consider the matrix which rotates e' onto ff(Y) and leaves everything orthogonal to

the plane containing these vectors unchanged. The transpose of this matrix will have

first row ' and will be paraunitary; it is thus a good candidate for A(9).

The matrix which performs a rotation of 0 from F to d while leaving everything

orthogonal to that plane unchanged is given by

I - (1 - cos 0)(c + &F) + sin 09(d& - Ed )

under the assumption that ' and dare orthonormal. To rotate e- onto f7(Y) (both of

which have unit length), set c = e', do= IP-<P-(,rA>El I cos 0 = <p (g), e >, and

sin 0 = |(I )- < ff(g), e > e i. The matrix becomes
- )( #- < P() • >  T)( (•)_ < ell(•) > e-)

+ (el•- < p•), >)e I)( )T  -< fp(g) > -11).

Notice that this expression contains no square roots, and the only division is by

13'(•)- < 7(), - > i112= 1 -< fl(g)-), > 12

Theorem 3.1.6 If f(g) contains fewer than I det MI monomials, then there exists a

paraunitary polynomial matrix with f(g) as its first row.

PROOF: Since f(g) contains fewer than I det MI monomials, there is some unit

vector V such that < ff(), > = 0. With out loss of generality, let & = e' and let R

be the matrix constructed above which rotates e~ onto i. Then Rt is a paraunitary

polynomial matrix with p* as its first row. Ol

Theorem 3.1.7 If 21 det MI > n + 1, then the rotation method produces I det MI - 1

wavelets from every compactly supported scaling function.

PROOF: Consider f(Y) as a mapping from the torus T = {E C : |X4l = 1, i -

1,... , n} to the sphere S = {fI E Cm : "-. y = 1}. Since 0 is compactly supported, fl



is polynomial and hence Lipschitz. T is n (real) dimensional and S is 21 det MI - 1

dimensional, so by Sard's theorem, the set f(T) is not dense in S. Thus we can find

a point CE S such that the distance between ' and i(T) is greater than some E > 0.

Without loss of generality, let ' = •i. Then I < f(Y), -' > 1 : - 62 < 1, and the

matrix which rotates el onto g(7) has rows which are bounded by c < C
D



3.1.3 The ABC Method

In this section, we show how to find compactly supported wavelets from a compactly

support scaling function, assuming a certain quadratic form can be diagonalized. The

proof relies on the following version of the famous Quillen-Suslin theorem.

Theorem 3.1.8 If A(Y) is an r by m (r < m) Laurent polynomial matrix which is

paraunitary by rows, then there exists an invertible Laurent polynomial matrix B(s')

with A(i) as its first r rows.

PROOF: [Rotman 79] Let P be the ring of Laurent polynomials C[xl, xi 1,... xn, xl].

Define f : P m - pr by f(ql,...qm) = [qi qm]A*. Since f(A) = I, we have the

exact sequence

0 - kerf -+ Pm + pr -_+ 0

Pr is projective, so the sequence splits and we have Pm = ker f < A,... , A, >

where A 1 ,..., Ar are the rows of A. Also, kerf is a finitely generated projective

P-module, so by the Quillen-Suslin theorem, it is free and has a basis Plr+,... , pm

Let B(Z) be the matrix with A(s) as its first r rows and Ai as its i-th row, i > r.

Then B is a basis for Pm, and thus invertible, and we are done. O

Fitchas and Galligo [Fitchas 89] and Logar and Sturmfels [Logar 92] give con-

structive proofs of the above theorem using Grobner bases. In particular, Fitchas

and Galligo's algorithm gives a bound of O((md)"2) on the degrees of the polynomi-

als in B when the polynomials in A have degree less than d.

We should note that finding an invertible Laurent polynomial matrix with a given

top row is equivalent to the problem of finding compactly supported biorthogonal

wavelets given a compactly supported scaling function; see [Karoui 94] or [Strang 95]

for more details about biorthogonal wavelets. Once biorthogonal wavelets are con-

structed, it is easy to make "pre-wavelets" [Riemenschneider 92], functions which

span Wo with their F translates, but aren't mutually orthogonal. The proof of our

next theorem starts with this construction, in fact.

Theorem 3.1.9 Each of the following statements are implied by the ones under it.



1. For every paraunitary Laurent polynomial vector f(:)), there is a paraunitary

Laurent polynomial matrix A(9) with 1f as its first row.

2. For every Laurent polynomial matrix B () such that B () B() * has determinant

1, there is a Laurent polynomial row vector '(') such that TB is paraunitary

(i.e., UBB*V* = 1).

3. For every Laurent polynomial matrix B(X) such that B() B(Y)* has determinant

1, there is an invertible Laurent polynomial C such that CBB*C* is diagonal.

PROOF: (2) ==* (1): Our strategy is to build A(9) one row at a time. We start

with s = 1 rows of a paraunitary by rows matrix A(9) already built.

By theorem 3.1.8, there is an invertible Laurent polynomial matrix B(s) with

A(£) as its first s rows. Let Bi be the i-th row of B, considered as a row vector. We

can assume that BiA* = Ut for i > r, otherwise just set B) = Bi - BiA*A. [Remember

that AA* = I.]

Since B(9) is invertible, BB* has determinant 1. If we let C(Y) be the s + 1

through m rows of B(£), then det(BB*) = det(AA*) det(CC*) = det(CC*) = 1.

Now apply part (2) to C to get a paraunitary Laurent polynomial vector i7C. This

vector is paraunitary, Laurent polynomial, and orthogonal to all the rows of A(:), so

we may add as the s + 1-th row of A(g), and begin again. Stop when s = m - 1,

because given a m - 1 by m paraunitary matrix A(Y), it may be easily extended to

a m by m matrix by letting the last row be the exterior product of the first m - 1.

(3) ==• (2): C is invertible, so its determinant must be a monomial. In particular,

the determinant of CBB*C* must be a positive real constant. But CBB*C* is a

diagonal matrix, so its determinant is the product of its diagonal entries. On the

other hand, the only way a product of Laurent polynomials can be a constant is if

each one is a monomial and hence invertible. Let a be the first entry of CBB*C*;

then CB*C *- -* = 1 and = CB is paraunitary. O

Now, consider the following algorithm

The ABC Algorithm



Input: A k by m Laurent polynomial matrix B(Y) such that det B(I)B(£)* = 1.

Output: A Laurent polynomial matrix B(s)'.

1. Set r to 1.

2. If r = k, then terminate with output B(s)' = B(').

3. If head IB,r 2 > head IBr+ 12, then switch B, and Br+i, set r equal to max(l, r -

1), and goto Step 3.

4. For s from 1 to k, s = r, and while head < Bs, Br > is divisible by head RB, 2,

replace B, with Bs - cBB where a = heaadBB,B,>

5. If head |BT 2 < head IBr+ 1 2 , then set r equal to r + 1.

6. Go to Step 2.

Theorem 3.1.10 The ABC algorithm always terminates in a finite number of steps,

and its output has the following properties:

1. There exists an invertible Laurent polynomial matrix C(Y) such that B' = CB.

2. detB(£)'(B(i)')* = 1, and

3. head IB'|2 does not divide head < B,, ~, > for all i,J = 1... k, where B' is the

i-th row of B'.

PROOF: First, note that the matrix B is only changed in steps 3 and 4, and that

both of these changes (switching two rows, or subtracting a multiple of a row from

another row) are easily inverted. Second, the existence of an invertible C such that

B' = BC implies det B(Y)'(B(X)')* = 1. Third, the only time the algorithm repeats

a step with the same r value is when one of the head IB i's is reduced, and since this

can only happen a finite number of times the algorithm must always terminate.

To prove the last claim, notice that at all steps of the algorithm, the following two

properties hold:

* head IBI 2 < head IB2
2 < ... < head lBr12, and



. head IBýI 2 does not divide head < B1, B1 >, for all i < r.

These properties are true initially, and the only possible place they could be broken

is at steps 3 or 4. Step 3 is safe because it only switches rows of B and decrements r

when it does. Step 4 doesn't break the first property because

head IBs  head < B >, Br >- head head < B 7, B, >
head a B,2 Br12 = head lB,2 - head < Bh, B, >head Br 12 head I B,12

head Br 12  head < B,, B > head |Br12  2

head < B+, B > - head IB, 2
head < Bs, Br > head IBr 12 head < B,, B, >

head B 2 - head < B,, B, >= head B,2 - , head < B,, B, >
head lBr12

which is less than or equal to head IB, 2 by Cauchy-Schwartz. It doesn't break the

second property because

head < B,, B, >head < Bk, B- head B, >
head IBr 12

head jB,(2
= head < Bk, B8 > - head < Bk, Br >

head < B,, B, >

and for k, s < r, this always is equal to head < Bk, B, > by a similar argument. O

Corollary 3.1.11 For every paraunitary Laurent polynomial vector f(x) of one vari-

able, there is a paraunitary Laurent polynomial matrix A(x) with 1f as its first row.

PROOF: Take any Laurent polynomial matrix B(x) such that det B(z)B(x)* = 1,

and run the ABC algorithm on it. Since the entries of the output B' will all be Laurent

polynomials of one variable, head IBj 2 does not divide head < Bj, Bj > implies that

(head < Bj, BJ >) < head IBjI2 in the monomial ordering. Now consider the equation

detB(x)'(B(x)')* = 1. Because detB(x)'(B(x)')* = IB12... IB[I2 + E(x), where E

is the sum of terms, each of which has head monomial less than head 1B112... 2 IB'12,

this implies that head Bi12 ... 2 B 12 = 1. But this implies that IB'12 .. B = 1,

which in turn implies that each IBJ12 is a constant. This further implies that B'(B')*

is a diagonal matrix, which by Theorem 3.1.9, implies the existence of A(x). O



3.1.4 Unitary Coordinates

In this section, we discuss a method of parameterizing wavelet systems satisfying the

shifted orthogonality condition.

Recall that wavelet systems satisfying the shifted orthogonality condition are in

an one-to-one correspondence with paraunitary matrices A(5). Our parameters, the

unitary coordinates, will essentially just be the discrete fourier transform of A(£).

Specifically, let

Si-1 s2-1 Sn-1

A()= ... Ail, z2,--,inXl X2 .. ""
i 1 =0 i2 =0 in=O

and let
-0 2ri 2ri 2i

(el , e 2 ... esn).

Then we define the unitary coordinate Uk to be A("). Ukl,k 2 ,...k. is unitary because

A(s) is paraunitary and I (k 1.

Conversely, given unitary coordinates, we can reconstruct the wavelet system with

the formula
1

= SU
8182 . .. S n -

where S = [0, si) x [0, s 2) x ... x [0, sn).

Unfortunately, the Uki,k2,...,kn are not independent. The shifted orthogonality con-

dition E AyA%+ = 66, I implies that

( jk U S+ kU1) =
jESj+1ES (kES (k'E S

UEU 5 k'+1k'-jk = |S12j
kESIES jEsJ+es

This equation can be simplified in two ways. First, if I = 0, the inner sum becomes

ElEs((k -E^) which equals |S|6p_k,d. Also, if kI = ki, UgU, = I and the inner sum

becomes Jes,j+i's k' = 0.



We are left with

kcES P'ZAES ;ES,;+ES

The set of unitary matrices satisfying this condition for all 1 is on a one-to-one corre-

spondence with the set of orthonormal wavelet systems.



3.2 Constructing Haar Tiles

This section investigates the simplest class of multidimensional wavelets, those gen-

erated by self-affine tilings. These are the natural generalizations of the Haar scaling

function X[o,i].

A F-tiling of R' is a closed subset T (called the tile) of R n such that

* US~r-+ j = Rn, and

* (int T + ) n (int 7T + ) = 0 for a,/ E F, -•d o

where int T is the interior of T.

A tile is said to be self-affine if there is an expanding matrix M such that MT =

UEEKT+ k. K is said to be T's digit set. The fact that vol(MT) = vol(UgEKTgk•) =

E• gK vol(T) implies that I|K = I det Mj.

Given a self-affine F-tiling of R n, it is easy to see how it generates a scaling

function. Just set ¢ = XT, the characteristic function of the tile T, then the self-

affineness of T implies that 0 satisfies the dilation equation O = E•EA 1k(M~ - ').

The fact that T creates a F-tiling guarantees that 0 is orthogonal to its F translates

and that the multiresolution analysis so generated is complete.

Conversely, given a multiresolution analysis where q = cXQ for some set Q,

then ECJr Icl2|Q xQ(Q - j) = 1 and Q U (Q + j) has measure 0. Also, XQ =

ZkEK XQ(M ' - k), so MQ = UkEKQ + k. Thus, Q is a self-affine F-tiling. Our

previous results on multiresolution approximations imply that vol(Q) = vol(R/Fr)

and c = (vol(R/r))-1/2.

Given this equivalence between self-affine tiles and multiresolution approximations

where the scaling function is the characteristic function of a set, we define a Haar

multiresolution approximation to be one arising from a self-affine tile. Every Haar

multiresolution approximation has degree 0 vanishing moments, and so satisfies the

degree 0 sum rule

Z c==C
k-k'(M)



Since ck is a constant not depending on k, this implies that each of the I E K comes

from a different coset of P/Mr. Since JKI = I det MI, K in fact forms a full set of

representatives of F/Mr.

Not every full set of cosets of P/MF generates a self-affine tile, however. In fact,

it is unknown whether for every expanding matrix M there is a set K such that K is

the digit set for a self-affine tile [Lagarias 93]. One way to check whether a particular

set K generates a self-affine tile is to use the Cascade algorithm.



3.3 Constructing Smooth Scaling Functions

In this section, we show how to construct compactly supported wavelet systems sat-

isfying the sum rule

Z cgiCP=Cf

where C, is a constant not dependent on k'. As shown in section 2.6.4, this sum rule

implies degree f vanishing moments.

Given a wavelet system's polyphase matrix A(z), we can write the sum rule as

e'o[A(£)Df(£)](0) = COf

where D1(£) = D-.,_~~i and Dg, is the I det MI by I det MI diagonal matrix with

(j, j) entry (Mi'+~-y) 1 for the same fixed ordering of coset representatives y,... , I det MI-1

of 7/MF used to define A(!). For example, Dd(i) = , I2. One advantage of trying

to solve the sum rules in this form is that it explicitly brings the wavelets into the

problem; as we saw in the last section, it is not currently known how to get compactly

supported wavelets from a compactly supported scaling function.

First we consider the case where A(Y) = B + C:i. By the results in section

3.1.1, we know that we may write A(Y) = H(I - P + P ) with H unitary and P a

symmetric projection matrix. The degree 0 sum rules imply that

e' [H(I - P + Pf) (I + Ii-rx)](6) = CJ

or

=oH = C6Y.

Because H is unitary, we see that C6 = and that H should be chosen to be

the wavelet system associated with a Haar tile.



The degree ei sum rules imply

eo[H(I- P + P? )(Dij + De ,)](0 ) = Ci1

1[(I-P)De' + PD ,6] = C6f1

rP(D -Dg) = f(Ce I - De).

The matrix D ee- D ,6 is diagonal with (k, k) entry (MW+ y k)6 - Yk _ Mj -iwhere

Mj is the j-th row of M. Thus,

(Mj ) P = (C -iD 4 ).

P is a projection matrix, so this equation is solvable if and only if (Ce 1 - 1D ,,) and

(C,' 1 -1D 4) - (Mj i-) are orthogonal. This implies

C'j .Cif- 2C1. rDg, + 1D fD, -(Mj. )(C'. 611+1D,. j r) = 0

I det MI(C-) 2 - 2 tr D ,gC'- - I det MI(Mj i)Ce + tr(D ,,)2 + (M- i) tr Dj,d = 0

which is a quadratic in C- F. It has a real solution when

4(tr D,6)2 + I det M j2(Mj -)2 - 41 det MI tr(D j,)2 > 0

which, assuming that Mj -i~ 0, can easily be satisfied by choosing i to be large. We

have thus proven

Theorem 3.3.1 The wavelet system A(£) = H(I - P + Pj9) can be made to have

degree 0 and ej vanishing moments whenever

4( Z yk) 2 +IdetM M  j.i2 22 >4 detMI Z yj.
:iker/Mr ykEr/Mr

3.3.1 Examples

1. n = 1, Yk = k, M > 1. Then Mi = M = IdetM), and to have degree 1
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Figure 3-1: A Rank 2 Scaling Function with One Vanishing Moment

vanishing moments i must satisfy

(M - 1) M i2
2

M(M - 1)(2M - 1)4M6
6

But this is the same as i2 >2 , which always holds for non-zero, integer i.

2. n = 1, M = 2, yo = 0, yl = 7. i must satisfy 4(49) + 4(2i)2 > 8(49), which

means that i|l Ž 4. Working out the case i = 4 gives C' =- and the

matrix P =

3. n = 2, M =

15 4- 1

1 1

-1 1

. Figure 3-1 shows the resulting scaling function.

(0,0), Yl = (1, 0). If we want degree (1, 0)

vanishing moments, then i = (il, i2) must satisfy 4 + 4(ii + i2)2 > 8 which is

true whenever il + i2 # 0. For degree (0, 1) vanishing moments, then i must

satisfy 4(-il + i2 )2 > 0 which is always true.

Note that under the these conditions, a wavelet system of the form B + CO2



can't have both degree (1, 0) and (0, 1) vanishing moments at the same time,

because that would imply 1P = - 2 (C1, C1 - 1) = 1  (C2 C 2 ) which is

impossible.

4. n = 2, M = Yo = (0, 0), y1 = (1, 0), Y2 = (0, 1), and Y3 = (1, 1). If we
0 2

want degree (1, 0) vanishing moments, then i must satisfy 16 + 16(2i1)2 > 32

or il # 0. Similarly for degree (0, 1) vanishing moments, we must have i2 # 0.

Again, it is impossible for both conditions to hold at once.
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