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Abstract

In the last three decades, with rapid advancements in the hardware and software industry, a large
number of commercial and free open source languages and software have evolved. Many of
these are Very High Level Languages (VHLLs) which can be easily used for scientific
computing purposes such as algorithm testing and engineering computations. However, this vast
pool of resources has not been utilized to its full potential. In this analysis, we will be looking at
various simple and complex problems and how they can be approached in various languages. All
the results will be uploaded on a website in the form of a wiki intended to be accessible to
everyone. By analyzing standard problems encountered frequently in scientific computing, this
wiki provides the users a performance based report which they can use to choose the best option
for their particular applications. Simultaneously, a lexicon of standard codes will help them in
learning those options which they want to use so that fear is not a barrier. The analysis also
addresses some incompatibility issues within languages and their impact.

This work is a preliminary investigation as part of Professor Alan Edelman's participation in the
Numerical Mathematics Consortium. We expect the scientific computing community to benefit
from this research as a whole, as this analysis will give them better alternatives for their
computational needs.

Thesis Supervisor: Prof. Alan Edelman
Title: Professor of Applied Mathematics
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Chapter 1: Introduction

1.1 Motivation

The demographics of technical computing are undergoing a revolutionary shift. There is an
explosion in the number of users fueled in no small way by the ease of use of Very High Level
Languages (VHLLs), the ubiquity of computers and the modem ability to use computations
effectively in so many new ways.

Not so long ago, FORTRAN held a virtual monopoly in the scientific computing world.
Technical computing meant performance! That means a low level language. As the hardware
started improving rapidly and high speed computers came right in front of us on our desks, the
high level languages are not looking that bad anymore. Moreover, in the trade off between
computer time vs. human time, the latter weighs heavily.

In the past two decades, a large number of high-level languages started pouring in, both
commercial and open source. The community using high-level languages for computational
purposes is largely dominated by a small set of available options. An important reason for this
indifference towards a new language or software is that learning a new language from scratch by
reading bulky manuals appears to be a huge demotivating factor. So people generally have a
tendency to stick to the languages they already know. Therefore there is not much room for new
emerging languages as the already existing ones are already dominating the high-level scientific
computing world.

We are also addressing here some incompatibility issues we encounter in the languages. Each
language has its own choice for addressing issues which are not defined completely anywhere in
the literature, for example sorting of complex numbers or the matrix returned after a Cholesky
Decomposition. Sometimes we even see differences in approach of these cases within the same
software. These kinds of discrepancies may lead to confusion among users and an attempt should
be made to standardize everything without restricting innovation and competition.

So, there is a need to analyze these issues and make a consumer report which can benefit the
scientific computing community. There is a vast pool of resources which has not been used
properly until now. We hope to make it available to the users in a much better way, in the form
of a website open to all. Users can give their inputs on the languages they know and get
information on others which they want to learn.

1.2 Prior Work

There has been some prior work addressing these issues. Many of the previous comparisons
actually provide a very good performance report. However, very rarely someone has talked about
the numerical standards and compatibility issues between different languages.

Consider the Wikipedia articles on "Comparison of Programming Languages" [3] and
"Comparison of programming languages (basic instructions)" [4]. The first article mostly talks



about the structural part of various languages. The second article is indeed helpful for someone
who wants to learn a new language, but it is still in its infancy and requires a lot to be added.

We can find another significant analysis "Comparison of Mathematical Programs for Data
Analysis" [1] on Stefan Steinhaus's webpage. This analysis provides a lot of important
performance oriented information on more than half a dozen languages. It also rates languages
on various criteria and spans a large number of examples for speed testing.

"Rosetta Stone" [2] is another notable work, originally written by Michael Wester and modified
by Timothy Daly and Alexander Hulpke. "Rosetta Stone" provides a collection of synonyms for
various mathematical operations in about 17 Languages.

In an optimum analysis, we need the simplicity of presentation and the depth of information. So,
we need to combine the good features of whatever work has already been done and expand it
further.

1.3 Approach

The most important point of this analysis is to provide the information in an easy and simple
way. It should not turn out to be another bulky tutorial. So, maximum possible information has
been included while maintaining the simplicity of the report. The major issues addressed here
are:

1.3.1 Raw performance: On a fixed machine, how different languages perform in terms of
time taken to get to the solution. This is a major concern of the users for computationally
expensive problems.

1.3.2 Elegance of code: While beauty lies in the eyes of beholder, some languages are
certainly more painful to learn and use. Users can sort the available alternatives on the
basis of how much they are willing to sacrifice (both time and effort) for the sake of
moving to a better alternative.

1.3.3 Language Compatibility: Differing answers can create portability problems and
confusion in the mind of a user using more than one language. We wish to address these
cases and give an explanation of them wherever possible.

1.3.4 Database of Codes: Ultimately we hope to provide a lexicon and methodology that will
allow the users to shift among languages easily. Most of the existing comparisons just
compare the languages, but the absence of basic relevant codes makes it somewhat hard
for the users to actually use that information.

Whenever possible, the computations are done on the same machine (Workstation A). Otherwise
the specifications are listed with the results.



All this information will be posted on a website/wiki where people can freely edit the
information to provide inputs based on their experiences with various languages.

1.4 Specifications

1.4.1 Workstation A

System
Lenovo
Intel Core 2 CPU
T7200 @ 2.00GHz
1.00GB of RAM
Hard Disk Speed: 7200 RPM

Operating System
Microsoft Windows XP
Home Edition
Version 2002
Service Pack 2

1.4.2 Languages/Software

a) C on Visual C++ 2005 Express Edition

b) Java on Eclipse 3.2

c) LabVIEW 8.2

d) Maple 11 on MIT Athena Machine

e) Mathematica 5.2

f) Matlab 7.2 (R2006a)

g) Octave 2.1.72

h) Python 2.4

i) R 2.4.1

j) Scilab 4.1.2

Unless stated otherwise, the above mentioned versions of Languages/Software are used on
Workstation A.



1.5 An Overview of the Languages/Software used in this Analysis

Language Appeared In Developed by
C 1972 Denis Ritchie and Bell Labs
Java 1995 James Gosling and Sun Microsystems
LabView 1986 National Instruments
Maple 1980 Waterloo Maple Inc
Mathematica 1988 Wolfram Research

Late 1970s
Matlab a i Cleve Moler and Mathworks

Commercialized in 1984
Octave 1994 John W. Eaton

Guido van Rossum and Python Software
Python 1990 FFoundation
R 1996 R. Ihaka and R. Gentleman

INRIA and Ecole nationale des ponts et
Scilab 1994 chaussees (ENPC)

Table 1 Programming Languages/Software used in this analysis



Chapter 2: Linear Algebra

A large number of scientific computing tasks require Linear Algebra methods. Very High Level
Languages have made it very easy to use most of the standard Linear Algebra functions such as
Cholesky Factorization, Eigenvalue computations and LU decomposition. This chapter shows
how various languages deal with the methods of Linear Algebra.

2.1 Matrices and Arrays

Matrices and Arrays are the starting point for any Linear Algebraic calculation. Very High Level
Languages provide us with specific functions to construct various matrices. Though they are
slower than compiled languages, the ease of use makes them very attractive to the users. Most of
the compiled languages would require creating a matrix element-by-element.

Let us first try comparing element wise construction of matrices across languages. Many
computational methods like the Finite Difference method require repetitive modification of each
element of a matrix. This will reflect the joint performance of working with matrices, loops and
simple calculations of various languages. Consider constructing a Hilbert Matrix of size
1000x1000 in each language element wise (some of the VHLLs do provide a specific function
for constructing a Hilbert Matrix).

Language Time(sec)
C 0.03
Java 0.03
Labview 0.07
Maple 13.44*
Mathematica 8.59
Matlab 0.04
Octave 108.26
Python 1.17
R 11.07
Scilab 24.28

Table 2 Time taken by Hilbert Matrix

* Maple programs were executed on an MIT Athena Machine. Using new Linear Algebra
constructs may increase the performance significantly

C and Java, as expected, perform better than the VHLLs. Matlab and LabView come next and all
the others take a significant amount of time more than these.

Now consider constructing a special matrix, for example a 15 x 10 Zero Matrix. In VHLLs, we
now don't need to construct the matrix element wise. Using specific functions in VHLLs, we can
construct this as shown in Table 3.



Language Code
Maple A := matrix(100,100,0);

Mathematica Needs ["LinearAlgebra" MatrixManipulation"'"]
A = ZeroMatrix[15,10];

Matlab A = zeros(15,10);
Octave A = zeros(15,10);

Python From numpy import *
A = zeros((15,10))

R A = matrix(0,15,10)
Scilab A = zeros(15,10);

Table 3 Zero Matrix in VHHLs

But a similar result in C or Java requires considerable human effort.

Zero Matrix in C

#include <stdio.h> //import package
main()
{
int n=1000; //size of matrix
double **A = (double **)malloc(n * sizeof(double *)); //dynamic memory allocation
int ij;
for(i = 0; i < n; i-H-) A[i] = (double *)malloc(n * sizeof(double));
for(i=O;i<n;i++)

for(j=O;j<n;j++)
A[i][j]=0; //assigning values to matrix

Zero Matrix in Java

public class zeroM {
static int n=1000;
public static double A[][]=new double[n][n];
public static void main(String[] args){

for(int i=l ;i<=n;i++) {
for(int j= 1 ;j<=n;j++) {

A[i-1][j-1]=O;

//size of matrix
//defining matrix

//assigning values to matrix

So, there is trade-off between machine time and human effort. Large programs in C, Java or
similar languages will be even messier. Debugging these languages is also a difficult task as
most of them provide low level access to memory and therefore errors are very complex too.



However, the time saved during simulations would be considerable too.

Some other useful and easily constructible vectors/matrices in VHLLs:

Row Vector

Languages Code
a := array([1,2,3]);

Maple a <13>;a := <11213>;
Mathematica a = 1,2,3}
Matlab/Octave a= [1,2,3]
Python a= [1,2,3]
R a = c(1,2,3)
Scilab a= [12 3]

Table 4 Row vector

2-D Array/Matrix

Languages Code
Maple A := matrix([[ 1,2],[3,4]]);

A := <<1 2>,<3 4>>;
Mathematica A = { {1,2},{3,4} }
Matlab/Octave A = [1 2;3 4]

A = matrix([[1,2],[3,4]])*
Python A= [[1,2],[3,4]]**
R A = matrix(c(1,3,2,4),2,2)
Scilab A= [1 2;3 4]

Table 5 2D Array/Matrix

* Requires numpy
** A = [[1,2],[3,4]] is actually a list and does not require numpy. But it is not exactly a matrix
and does not work with all matrix operations. For example, Inverse and Determinant
(linalg.inv(A) and linalg.det(A)) work fine with a list but other functions like Eigenvalues and
CholeskyDecomposition (linalg.eigvalsh(A) and linalg.cholesky(A)) return Attribute error.

Identity matrix

Languages Code
with(LinearAlgebra);

Maple A := IdentityMatrix(5);
B := IdentityMatrix(5,3);

Mathematica A = IdentityMatrix[5]

Matlab/Octave A eye(5)
B = eye(5,3)



Table 6 Identity Matrix

Empty Arrays

Language Code Result
Maple matrix(5,0,0); []
Mathematica Needs["LinearAlgebra'MatrixManipulation'"] { {}, {}, {}, {}, {} }

ZeroMatrix[5, 0]
Matlab zeros(5,0) Empty matrix: 5-by-0
Octave zeros(5,0) [](5x0)
Python z=zeros((5,0)) array([], shape=(5, 0),

dtype=float64)
z = array(0, c(5,0)) [1,]

[2,]
R [3,]

[4,]
[5,]

Scilab zeros(5,0) []

Table 7 Empty Arrays

2.2 Eigenvalues

Eigenvalue computation is a computationally expensive process and is required extensively in
numerous algorithms.

Mathematically, a scalar X is an eigenvalue of an nxn matrix A if it satisfies:
Ax = Xx
where x is an eigenvector corresponding to the eigenvalue X

Suppose A is an nxn square matrix. Then the functions in Table 8 will return an nx 1 vector
containing the eigenvalues of A.

Language Function
with(linalg);

Maple eigenvalues(A);



Mathematica Eigenvalues[A]
Matlab eig(A)
Octave eig(A)

From numpy import *
Python linalg.eigvalsh(A)
R eigen(A)$values
Scilab spec(A)

Table 8 Eigenvalue Function

In LabVIEW, the block diagram would be:

El Edit !!.w Erolect Q~at Ioos widow b*e• In

[ýJm iý*Fjjjrfoj FO-a &ffuXf I 13pt Font

F~:Lai Llid MF~~·~~r~;C~I~EI:~~~I~

Figure 1 LabVIEW Eigenvalue solving Block Diagram

The dices in the above figure represent a random number generator. Executing it in nested loop
returns an nxn matrix (say A). A symmetric matrix S is created from A:
S = (A + AT)/2
S is then fed into Eigenvalues VI which returns the eigenvalue vector. Five blocks in the block
diagram represent the sequence in which these VIs should be executed.

Performance

Language/Software Time in seconds
n=500 n=1000 n=2000

Labview 0.29 1.96 14.48
Mathematica 0.42 2.0 12.1
Matlab 0.18 1.13 8.85
Octave 0.2 1.0 7.35
Python 0.24 1.9 19.3



R 0.52 2.91 23.06
Scilab 4.83 5.09 41.12

Table 9 Eigenvalue solver Performance

* All of these functions can utilize symmetry, either by defining or by themselves. So, for
most of the cases, we can see that the time taken increases 8 times when the size of the
matrix is doubled.

* Matlab and Octave lead others in performance in eigenvalue solving.

2.3 Wigner's Semicircle

When the histogram of the distribution of eigenvalues of a symmetric normalized random matrix
is plotted, we get Wigner's semicircle. So, apart from Linear Algebraic functions, here we will
be looking at histogram and plot functions as well.

From the next page onwards, we will be looking at the steps required for this exercise and the
results we get in each language.



LabView

Figure 2 Block Diagram for Wigner's Semicircle

Figure 3 Wigner's Semicircle in Labview

Time Taken:

Eigenvalue Solving: 20.21 s
Total: 20.74 s

~-- 111`--- `- --------~~------- ~ ~ -



Maple

> with(linalg):
> n:= 1000:
> A:=matrix(n, n, [stats[random, normald](n*n)]):
> S:= (A+transpose(A))/(sqrt(8*n)):
> eig:=eigenvals(S):
> with(plots,display):
> plot 1:=plot(2*n*0.1 *(sqrt(1-x*x))/(Pi), x=-1.. 1):
> plot2:=stats['statplots','histogram'](map(Re@evalf,[eig]),area=count,numbars=20):
> display(plotl ,plot2);

-1 -0.5 01 0.5 1
---- 1

Figure 4 Wigner's Semicircle in Maple

Time Taken*:

Eigenvalue Solving: 545.58 s
Total: 1037.27 s

* Maple programs were executed on MIT Athena Machine. Using new Linear Algebra constructs
may increase the performance significantly

r- r-



Mathematica

<<Statistics'NormalDistribution'
<<Graphics' Graphics' (*import packages*)

n=1000;
A=RandomArray[NormalDistribution[], {n,n} ];
S = (A+Transpose[A])/((8*n)^0.5);

eig=Eigenvalues[S];

(*random normal matrix*)
(*symmetric matrix*)

(*calculating eigenvalues*)

hist = Histogram[eig, HistogramCategories->20,HistogramScale-> 1];
theory = Plot[(2/Pi)*(1-x*x)^0.5, {x,-1,1 }] (*plot histogram and graph*)

0.6

0.5

0.4

-0.s 0 0.5

Figure 5 Wigner's semicircle in Mathematica

Time Taken:

Eigenvalue Solving: 4.03 s
Total: 4.78 s



% dimension of matrix

A = randn(n);
S = (A+A')/(sqrt(8*n));

e=eig(S);

hold off;
[N,x]=hist(e,- 1:. 1:1);
bar(x,N/(n*. 1));
hold on;

b=-l:. 1:1;
y=(2/(pi))*sqrt(1-b.*b);

plot(b,y);
hold off;

% generate a normally distributed random matrix
% a symmetric normally distributed matrix

% vector of the eigenvalues of matrix S

remove the hold on any previous graph
defines the characteristics of the histogram
plots the histogram
holds the graph so that next plot comes on same graph

bound of theoretical Wigner Circle
defines the theoretical Wigner Circle

plots the theoretical Wigner Circle on same graph
takes the hold off from current graph

Wigner Semicircle
0.7

0.6

0.5

S0.4

u- 0.3

0.2

0.1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Eigenvalues

Figure 6 Wigner's semicircle in Matlab

Time Taken:

Eigenvalue Solving: 2.41 s
Total: 3.25 s

Matlab

n= 1000;



Octave

n=1000;
A=randn(n,n);
S=(A+A')/(2*(n^0.5));
eigen = eig(S);

[N,x]=hist(eigen,2 1);
bar(x,N/(n*(x(2)-x(1))));
hold on;
b=-l:. 1:1;
y=(2*/(pi))*sqrt(l 1-b.*b);
plot(b,y);

Comments: Similar to Matlab

Figure 7 Wigner's semicircle in Octave

Time Taken:

Eigenvalue Solving: 2.12 s
Total: 3.94 s



Python

from numpy import *
from matplotlib import pylab
from pylab import *

n= 1000
ra = random
A = ra.standardnormal((n,n))
S = (A + transpose(A))/(sqrt(8*n))

eig = linalg.eigvalsh(S)

subplot(121)
hist(eig, 20, normed =1)
grid(True)
ylabel('Frequency')
xlabel('Eigenvalues')

x = linspace(-1, 1, 21)
y = (2/(pi))*sqrt(1 - x*x)
pylab.plot(x, y, 'k-')
show()

# import the packages from
# which functions are used

# dimension of matrix

# generates a normally dist. random matrix
# symmetric random normal matrix

# vector of the eigenvalues of matrix S

# a histogram is created

# theoretical Wigner circle

Figure 8 Wigner's semicircle in Python

Time Taken:

Eigenvalue Solving: 4.88 s
Total: 6.05 s



R

N<-500;
X<-morm(N*N);
Y<-matrix(X,nrow=N);
S (Y+t(Y))/(sqrt(8*N)); #

eigenvalues<-eigen(S)$values; #

hist(eigenvalues,2 1, freq=F, ylim =c(0, 0.7));

curve((2/(pi))*sqrt(1-x*x), -1,1, add=TRUE)

Symmetric random normal matrix

calculating eigenvalues

#Plot histogram

#Plot semicircle

Histogram of elgenvalues

-1 0 -0.5 0.0 0.5

eigenvalues

Figure 9 Wigner's semicircle in R

Time Taken:

Eigenvalue Solving: 8.48 s
Total: 9.29 s



Scilab

n=1000;

rand('normal');
A=rand(n,n);
S=(A + A')/(8*n)^0.5;

eigen = spec(S);
histplot(20,eigen);

b=-l:. 1:1;
y=(2/%pi)*sqrt(1-b.*b);
plot(b,y);

Comments: Similar to Matlab

Figure 10 Wigner's semicircle in Scilab

Time Taken:

Eigenvalue Solving: 6.03 s
Total: 6.37 s

In most of the cases, most of the time taken is consumed in eigenvalues computation. All other
processes are computationally very cheap compared to eigenvalue solving.



Comments

* Since Labview is a graphical language, it is very expressive and easy to code as well. As
seen in Figure 2, the wires represent the flow of variables and blocks (known as Virtual
Instruments or VIs) represent the Mathematical operations executed on them. By turning
ON the context help, one can see the function of these blocks by placing the mouse curser
over them. Its detailed help also provides a very helpful search option to look for VIs.

* Maple requires importing some packages before using certain functions. Linalg package
was imported (with(linalg):) to use the functions 'transpose()' and 'eigenvals(' and
'display()' function required importing with(plot,display). It is fairly easy to learn and
use. It has a good help to search for functions.

* Mathematica, like Maple, also requires importing packages to use certain functions, as
seen in the first two lines. Mathematica is very expressive as we can see its functions
such as 'RandomArray', 'NormalDistribution', 'HistogramCategories' clearly represent
the operation they are performing. Best sources to get help are online documentations and
mailing lists.

* Matlab's strongest point is its syntax which is extremely easy to learn and use. Its
functions are short like eye() or randn(. Mathematica's names (merged capitalized words
like NormalDistribution[], RandomArray[] and IdentityMatrix[]) are long but extremely
consistent and self-expressive. It is hard to say whether the expressiveness of these long
command names is to be preferred over shorter names. For some functions (like fmincon
in Chapter 4), Matlab requires installing additional packages, but after installing it can
directly use those functions. It does not require importing packages like Maple or
Mathematica.

* Octave is almost exactly like Matlab. Its main package is also very easy to learn and use
as its syntax is similar to Matlab. But additional packages of Octave can be sometimes
difficult to use.

* Python also requires installing and importing some packages to use certain functions as
seen in first few lines. Most of the computational tasks require 'numpy' atleast. Python is
not as easy to learn as Matlab. However, after gaining some experience, it is easy to code
like Matlab.

R is somewhat like Python in the level of difficulty to learn and use. It provides a decent
search option in help for simple operations. For advanced help, one needs to use
www.rseek.org as it is not easy to find help for R on general internet search engines.

* Scilab, like Octave, has a syntax very close to Matlab. Just like Matlab, it is also very
easy to learn and use.



2.4 GigaFLOPS

FLOPS or Floating Point Operations per Second is a measure of computer's performance. For
Multiplication of two random matrices, GigaFLOPS can be defined as:

GF = 2n3/(t x 109)
where nxn is the size of the matrices and t is the time taken for multiplication.

GigaFLOPS
Language n=1000 n=1500 n=2000 n=2500

LabView 0.93 0.94 0.94 0.94
Mathematica 0.96 0.94 0.96 0.96
Matlab 0.94 0.94 0.94 0.94
Octave 0.60 0.64 0.64 0.55
Python 0.96 0.95 0.95 0.96
R 0.60 0.61 0.60 0.55
Scilab 2.20 2.22 2.44 2.41

Table 10 Performance of Languages through Matrix Multiplication



Chapter 3: Optimization

Most of the languages and software provide some or full support for Optimization Problems.
Unlike other mathematical operations, these differ a lot in their approach and results because of
the very nature of complexity of optimization problems. Numerous algorithms are available for
specific types of problems but none of them can deal with any type of optimization problem
efficiently. Therefore there does not exist a single solver which can perform very well for all
kinds of problems

In this section, we will discuss various Optimization tools provided by scientific computing
languages and also some packages developed solely for the purpose of Optimization.

3.1 Linear Programming
Since solving Linear Programming problems is not as complex as Non-Linear Programming,
almost all of the packages mostly give us the correct answer. But packages do differ significantly
in the amount of time taken to solve the problem.

Optimization Solvers
Solvers taken into consideration here are Linear Programming functions of Labview, Maple,
Mathematica, Matlab, Scilab and IMSL(C).

IMSL Numerical Libraries, developed by Visual Numerics, contain numerous Mathematical and
Statistical algorithms written in C, C#, Java and Fortran.

R's basic package does not give too many options for Optimization. ConstrOptim function can
perform Constrained Linear Programming but requires the initial point to be strictly inside the
feasible region. The problem considered here contains equality constraints, so we get an
infeasibility error with constrOptim. There are additional packages for R which contain linear
programming solvers.

Example

The Linear Programming problem taken into consideration here is:

Min
3 Ti + 3 T2 + 3 T3 + 3 T4 + 3 T5 + 3 T6 + 3 T7 + 3 T8 + 3 T9 + 3 Tio +
3 T11 + 2 T 12 + 3 TI3 + 3 T 14 + 2 T 15 + 3 T16 + 3 T17 + 3 T18 + 3 T19 +
2 T20 + 3 T21 + 3 T22 + 3 T23 + 2 T 24 + 2 T25 + 3 T26 + 2 T27 + 2 T28 +
3 T29 + 3 T30 + 3 T31 + 3 T32 + 3 T33 + 3 T34 + 3 T35 + 3 T36 + 3 T37

such that:
T1 + T, + T 16 + T25 + T26 + T29 + T34 = 1
T2 + T12 + T 1 3 + T1 9 + T27 + T28 + T30 + T 33 + T35 = 1
T 3 + T 14 + T5 + T29 + T30=

T4 + T16 + T20 + T 22 + T 25 + T 27 + T 29 + T3 1 + T34 + T36 = 1



T5 + T17 + T1 8 + T31 + T32 = 1
T6 + T12 + T17 + T33 = 1
T7 + T 5 +TI9+T 21 +T 23 +T 26 + T28 + T30 + T32 + T33 +T 35 +T 37 = I
T8 + T13 + T 18 + T20 + T21 + T27 + T28 + T31 + T32 + T 34 = I
T9 + T11 + T22 + T 23 + T24 + T 25 + T 26 + T35 + T36 + T 37 = 1
Tlo + T 24 + T36 + T37 = 1
where all Ti's >=0

Table 11 shows the time taken by various packages to solve the above problem:

Language/Software Time(ms)
IMSL(C) 0.1
LabView 15
Maple 5.0*
Mathematica 0.8
Matlab 20
Scilab 1.8

Table 11 Performance of Linear Programming Solvers

* Maple programs were executed on an Athena Machine.

All of these converge to the optimum value fopt = 10, but since
solutions, they converge to one of these two points:

xopt = [0, 0, 0,0, 0,0, 0, 0, 0, 0, 0.5449,0, 0, 0, 0, 0.4551, 0, 0
0.4551, 1.0, 0, 0, 0.5449, 0, 0, 0, 0, 0]

the problem has multiple

, 0,0,0,0, 1.0, 0, 0, 0,

or,
xopt = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

3.2 Non Linear Programming

A Non Linear Programming problem requires minimization (or maximization) of an objective
function under some constraints where atleast one of the constraints or the objective function is
non-linear. Most of the scientific computing environments support some simple forms of Non
Linear Programming but not all have functions to solve general Non Linear Programming
problems.

Optimization Solvers
The solvers taken into consideration are:

* Mathematica 5.2:

o NelderMead



o SimulatedAnnealing

o RandomSearch

* Matlab 7.2:

o fmincon

* OPT++ 2.4(on Linux):

o OptQNIPS

* Python 2.4:

o Scipy-Cobyla from OpenOpt package

OPT++ is an Object Oriented Nonlinear Optimization library developed by Patty Hough and
Pam Williams of Sandia National Laboratories, Juan Meza of Lawrence Berkeley National
Laboratory and Ricardo Oliva, Sabio Labs, Inc. The libraries are written in C++.

OpenOpt is an Optimization package developed by SciPy community, initially for
Matlab/Octave in 2006. It was later rewritten and can be used for Python with Numpy. The
solver taken into consideration is Scipy Cobyla. OpenOpt is also compatible with ALGENCAN
solver which is considered better than Scipy Cobyla. ALGENCAN has not been taken into
consideration here.

3.2.1 Convex Programming

Convex programming is relatively easy when compared to Non-Convex Programming as we
have only one optimum in convex programming unlike several local minima in non-convex
programming. Still, Non-Linear Optimization is a complex problem and we can see differences
in various solvers when solving convex programming problems.

Problem
Mathematically, the problem solved here is:
Min xl + X1

2 + 2X22 + 3X3
2

such that:
xi - 2x 2 - 3x3 ? 1 ......... (1)
2 + X3 < 4 ......... (2)
XIX3 > 4 ..................... (3)
where,
-20 < xl < 10
-10 5 X2 _ 10

0 < x 3
< 10



Solution
The optimum for above problem is achieved at Xopt = {3.10, -0.885, 1.29} and the minimum
function value at Xopt is 19.273

Mathematica
All three, Nelder Mead, Simulated Annealing and Random Search of Mathematica perform very
well for convex problems. They converge to the same solution irrespective of whether the
starting point is feasible or not.

Matlab
Matlab's fmincon converges to the correct solution if the starting point is strictly inside the
feasible set. But it may fail to converge if the starting point is outside or on the boundary of
feasible set. For the current problem, the algorithm converges if the starting point satisfies the
following conditions: x3 > 0 or, x3 = 0 & xl > 0 The main problem arises because of the 3rd
constraint. When both xl & x3 are negative in the initial point, 3rd constraint is satisfied, but the
upper and lower bounds on the variables are not satisfied. If the algorithm satisfies the bounds of
x3, 3rd constraint is violated. This might be stopping the algorithm to get to the feasible region
and therefore algorithm fails to converge in this case.

Python
Python's Scipy Cobyla also converges to the optimum if the starting is point is strictly inside the
feasible set. Otherwise, it may end up terminating algorithm by saying 'No Feasible Solution.'
For the current problem, Scipy Cobyla algorithm converges if the starting point satisfies xl > 0 or
x3 > 0, which is almost similar to fmincon's condition.

OPT++
OptQNIPS solver is again very similar to Matlab's fmincon in terms of giving solution. If the
starting is point is strictly inside the feasible set, the algorithm converges. Otherwise it may or
may not converge. For the current problem, OptQNIPS will always converge if the starting point
satisfies: x3 > 0 or, x3 = 0 & x1 > 0, which is again very similar to fmincon's condition.

3.2.2 Non Convex Programming

Unlike convex programming, non convex programming has multiple solutions, which makes the
search of the global optimum very difficult. Local optimums are not very difficult to find, but
getting to the Global Optimum requires a search of almost the entire feasible region. So, there is
a trade-off between the time taken by the algorithm and the accuracy of the solution.

Problem
The problem used for comparison is a quadratically-constrained problem which is: Given a 4x4
real matrix A, find an orthonormal matrix Q which minimizes the trace (A*Q). To summarize:
Given a 4x4 matrix A Min: trace (A*Q) where, Q is an orthonormal matrix

For this analysis, the given matrix A is taken as:

A = M + c*I



Where M is an arbitrary fixed matrix
M=[1457

6730
3732
386 8]

I is a 4X4 identity matrix and c is an integer varying from -10 to 10. So each value of c actually
corresponds to a different objective function. The starting point taken for each solver is Q =
Identity Matrix which is a feasible (but not optimum) solution for this problem.

Solution

Table 12 given below gives the optimum values achieved by various solvers:

Nelder Random Simulated Scipy
fmincon OPT++Mead Search Annealing Cobyla

-10 -39.94 -39.94 -39.94 -31.36 - -31.36
-9 -38.12 -38.12 -38.12 -30.07 - -30.07
-8 -36.34 -36.34 -36.34 -29.18 - -
-7 -34.61 -34.61 -34.61 -28.56 -
-6 -32.96 -32.96 -32.96 -28.14 -
-5 -31.43 -31.43 -27.85 -27.85 - -27.85
-4 -30.04 -30.04 -30.04 -27.66 - -27.66
-3 -27.57 -28.89 -28.89 -27.56 - -27.56
-2 -28.06 -28.06 -27.58 -27.58 - -27.58
-1 -27.81 -27.81 -27.66 -27.81 - -27.81
0 -28.55 -28.55 -28.55 19 -28.54 -28.55
1 -28.34 -30.22 -28.34 -30.22 -28.34 -30.22
2 -32.74 -32.74 -32.74 -32.74 -29.62 -32.74
3 -31.46 -35.75 -31.46 -35.75 -31.46 -
4 -33.38 -39.05 -33.38 -39.05 -33.38 -
5 -35.32 -42.53 -35.32 -42.53 -35.32 -
6 -46.13 -46.13 -46.13 -46.13 -46.13 -
7 -49.81 -49.81 -49.81 -49.81 -49.81 -
8 -53.55 -53.55 -53.55 -53.55 -53.55
9 -57.34 -57.34 -57.34 -57.34 -57.34
10 -61.16 -61.16 -61.16 -61.16 -61.16

Table 12 Accuracy of Optimization Solvers



Fig. 11 gives a comparison of the optimum values achieved by various solvers. Since this is a
minimization problem, the solver whose graph remains lowest is the best.

Accuracy of Optimization Solvers

E

E

E

0

Value of c (each integer value represents a different problem)

Figure 11 Accuracy of Optimization Solvers

Next graph (Fig. 12) gives a comparison of the time taken by various solvers. RandomSearch
takes time of the order of 25-35 seconds, so it is not included in this graph. Also, OPT++ is a
Linux software, so its time is also not compared since all others were executed on a Windows
machine.



F-

I-

Performance of Optimization Solvers

Value of c (each integer value represents a different problem)

Figure 12 Time taken by Optimization Solvers

Comments

a) Random Search from Mathematica performs the best in terms of the accuracy of solution.
It always gets the best optimum solution. But it is slower than the others by an order of
approximately 10 times.

b) fmincon from the Optimization Toolbox of Matlab is the fastest in reaching the solution,
and quite reasonable in terms of an accurate answer. But it is not as accurate as the
Random Search. It might return a local optimum instead of the global optimum. Global
optimum can be achieved by varying the starting point over the feasible region. But that
would require a lot of time as the feasible region and number of variables increase.

c) Nelder Mead from Mathematica performs somewhat like fmincon of Matlab. It is a little
slower than fmincon, but sometimes returns a more accurate solution. But in some cases
it also returns a local optimum instead of a global one.

d) Simulated Annealing from Mathematica has almost similar performance as Nelder Mead
in terms of accuracy of solution. But it is considerably slower (approx. 2-3 times) in
achieving the answer.

e) Scipy-Cobyla from OpenOpt package of Python is also not perfect with giving optimum
solution. It closely follows Nelder Mead method from Mathematica. But it has got
serious problems with tolerances. Constraint tolerance needs to be adjusted frequently to
get a feasible solution. Even if the initial point is feasible, the user can get a 'No Feasible
Solution' message (The blank spaces in the graph and table represent this case). It is



mostly as fast as Nelder Mead method, but sometimes takes exceptionally high time to
solve.

f) OptQNIPS from OPT++ almost traces the characteristics of the results of fmincon. But it
does not give a solution at all for a wide range of starting points (The blank spaces in the
graph and table represent these cases where an optimal solution was not achieved and the
algorithm terminated in between). In these cases, the algorithm reaches the limit of
'Maximum number of allowable backtrack iterations' and increasing this limit also does
not helps in getting an answer. We cannot compare time for OPT++ since this is LINUX
based software while all the others are executed on Windows. OPT++ is also difficult to
install and program as compared to other VHHLs given here.



Chapter 4: Miscellaneous

4.1 Ordinary Differential Equations

Most of the ODE solvers considered in this analysis are included in the main software and does
not require installing additional packages. Here we have used numerical solvers, but some
software can also perform symbolic computations.

For Python, we have used FiPy 1.2 which is a Finite Volume based PDE solver. It was primarily
developed in the Metallurgy Division and Center for Theoretical and Computational Materials
Science (CTCMS), in the Materials Science and Engineering Laboratory (MSEL) at the National
Institute of Standards and Technology (NIST).

Problem
Consider the following Boundary Value Problem:

y"(x) + y(x) =0
Given:

y(x = 0) = 3
y(x = t/2) = 3

Table 13 shows the results we get by solving the above problem.

Language

Maple

Mathematica

Time(sec)

0.026*

0.016

Granhical Solution
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Matlab 0.026

Python 0.093

Scilab 0.078

Table 13 Ordinary Differential Equation Solvers

* On MIT Athena Machine

Comments
* Maple, Mathematica and Matlab are fairly easy to use for solving ODEs. All three of

them can also find symbolic solutions for ODEs.
* Scilab is also easy to use, but requires a few more lines of codes than above three. It

cannot solve ODEs symbolically.
* FiPy is harder to use than all others. There is also lack of documentation and online

support as it does not have too many users yet.

4.2 Memory Management

Each Language has its own way of storing data, and therefore we can see differences in memory
related issues. Here we consider creating the largest nxn random matrix in each Language and



compare their performance. All these simulations were done under identical circumstances to
ensure that each software had access to equal amount of memory. Results are displayed below in
Table 14.

Largest Possible Matrix not Error Message
Matrix Allowed

LabView 103 x10 104x104  LabView: Memory is Full

Mathematica 103 103 104x 104  No more memory available.
Mathematica Kernel has shut down.

Matlab 104X 104 105 x 105 Maximum variable size allowed by the
program is exceeded

Octave 104 104  105 x10 Memory Exhausted - trying to return to
prompt

Python 104x 04 105x 10 ValueError: dimensions too large

R 10  4 105x 10 Error in matrix(0, le5, le5): too many
elements specified

Scilab 10 x103 104x10 4  Stack size exceeded!

Table 14 Memory utilization across Languages

Comments

* Mathematica's Kernel shuts down as soon as memory is exhausted and it is not possible
to do any further computation. So, any results obtained previously cannot be stored and
the information is lost. All other Languages keep working and it is possible to retrieve
previously calculated information. One can check the memory already exhausted by
using MemoryInUse[], before performing any memory exhausting exercise.

* In Matlab, feature('memstats') gives a nice break-up of the available memory.

* In R, memory.sizeo returns the memory in use and memory.limit() returns the total
memory available for use. After using the command listed in Table 15 to free the
memory, memory.sizeo still shows the memory used by deleted variables. To make the
memory, which is not associated with any variable anymore, available to the system,
perform garbage collection using gc).

* stacksizeo in Scilab returns the memory available and memory in use. stacksize(100000)
will increase/decrease the available memory to 100000.

To free space and clear all the defined variables, use the functions given in Table 15

Language Function to Free Memory
LabView Edit -* Reinitialize values to default

Mathematica ClearAll["Global' *"];
Remove["Global'*"];



Maple restart;
Matlab clear
Octave clear
Python* del x
R rm(list=lso)
Scilab clear

Table 15 Free Memory
* only deletes the variable x

4.3 Activity Index

The popularity of a language can be estimated by how quickly you get help whenever you are in
trouble. Higher number of users implies faster you are going to get responses for your problem.
Most common places to ask questions on Languages are Usenet groups and mailing lists. Table
16 presents the activity on one of the most active communities for these languages.

Approx. emails per dayLanguage Usenet Group/Mailing List Approx. eails per day
New Topics Total

LabView comp.lang.labview 35 115
Maple comp.soft-sys.math.maple 2 10
Mathematica comp.soft-sys.math.mathematica 10 45
Matlab comp.soft-sys.math.matlab 55 175
Octave help-octave@octave.org 2 15
Python python-list@python.org 25 150
R R-help@r-project.org 25 105
Scilab comp.soft-sys.math.scilab 4 15

Table 16 Activity Index

Python's numpy mailing list also has a very high activity as most of the
work in Python is not possible without numpy.

scientific computing



Chapter 5: Incompatibility Issues

In mathematics, we usually have one correct answer for a problem. But there exists differences
in numerical answers within languages. Then, we have some cases where more than one correct
answer does exist, and in the absence of a Standard for Mathematical Results, we see differences
in the solutions returned by languages. In Spanish, the verb "embarazar" does not mean "to
embarrass", which itself makes an embarrassing point. Similarly, when numerical languages give
differing answers, the language suffers an embarrassing demerit in the minds of users.

Here, we will be discussing some cases where languages fail to agree with each other. These
results will help in setting up a standard for numerical computations, absence of which often
results in confusions in the mind of users.

5.1 Undefined Cases

Mathematically, zero to the power zero is undefined. But in many cases during scientific
computation, it is better to avoid getting an expression like "undefined". So, many languages
define it as 1. Table 17 shows the results obtained in various languages.

Language Result
LabVIEW 1
Maple 00=1

00.0=Float(undefined)
Mathematica Indeterminate
Matlab 1
Octave 1
Python 1
R 1
Scilab 1

Table 17 Ambiguity in Zero raised to power Zero

5.2 Sorting of Eigenvalues

As seen in chapter 3, the performances of eigenvalue solvers differ significantly across
languages. But we also observe differences in the result we get. The array of eigenvalues
obtained is not consistent. Table 18 shows the sorting of the array we obtain from eigenvalue
solvers of different languages.

Language/Software Sorting
LabVIEW Descending order of the absolute

value of eigenvalues
Maple Ascending



Mathematica Descending order of the absolute
value of eigenvalues

Matlab Ascending
Octave Ascending
Python Ascending
R Descending
Scilab Ascending

Table 18 Sorting of Eigenvalues

5.3 Cholesky Decomposition

Cholesky Decomposition factorizes a Symmetric Positive Definite matrix into a Left and a Right
triangular matrix which are transpose of each other. But again, there are no standards which
determine whether the solution returned from Cholesky Decomposition should be the Lower
triangular matrix or the Upper triangular.

Suppose we have a symmetric positive-definite matrix A. In the absence of a defined standard
output, there could be 4 different representations:
A =

L'L
LL'
R'R
RR'

and the returned matrix could be one of these four. The table below shows the kind of
representations used by various languages.

Language Returns (Lower or Upper) Representation
Maple L A=LL'
Mathematica R A=R'R
Matlab R A=R'R
Octave R A=R'R
Python L A=LL'
R R A=R'R
Scilab R A=R'R

Table 19 Cholesky Decomposition

5.4 Matlab vs Octave

Octave is highly compatible with Matlab and both are expected to return same answers for same
operations. But the same commands in both may yield different results.



QR Factorization

Consider the following matrix:

>> A=ones(4)

In Matlab, we get:
>> qr(A)

ans =

-2.0000
0.3333
0.3333
0.3333

-2.0000
-0.0000
0.3660
0.3660

-2.0000
-0.0000

0
0

-2.0000
-0.0000
0
0

While in Octave:
octave:30> qr(A)
ans =

-2.0000e+00
5.0000e-01
5.0000e-01 I
5.0000e-01

-2.0000e+00
-9.6148e-17
5.7735e-01
5.7735e-01

-2.0000e+00
-9.6148e-17
-5.0643e-33
7.0711 e-01

-2.0000e+00
-9.6148e-17
-5.0643e-33
-1.1493e-49

Numerical Inconsistency

Consider following operation:
log2(2^n) - n

For powers of 2, Matlab returns the exact answer while Octave may not.
For n = 1000

In Matlab:
>> log2(2^n)-n
ans =

0



In Octave:
octave:32> log2(2^n)-n
ans= 1.1369e-13

5.5 Sine Function

For large input arguments, the sine function sometimes returns incorrect answers. Table 20
shows the results we get for an input of x = 264

Language Sin(2 64)
Google Calculator 0.312821315
Maple 0.0235985099044395581

0.023598509904439558634
Mathematica 0.312821
Matlab 0.02359850990444
Octave 0.0235985099044396

0.247260646309
Python 0.312821315

0.023598509904
R 0.24726064630941769
Scilab 0.0235985099044395581214

Table 20 Sine value for large input argument

Correct answer = 0.0235985099044395586343659....

We not only see inconsistency across languages, but also within a language based on operating
system and processor architecture. As shown in Table 20, we get different values in same
language while working on different platforms. Mathematica and Python have been observed to
give the correct answer on some 64-bit Linux machines.

5.6 Growing Arrays

Execute the following commands in Matlab.

>> x=[]
X --x]

>> x(2,:)= I
X-=

0
1



Which is not acceptable as the first column dimension was never touched. Matlab gives the
correct result if the above operation is executed as:

>> x=[]
X =

>> x(2,1:end)=1
X =

Empty matrix: 2-by-0

We get similar results in Octave too. But in Octave we also get:
octave: 1> v=[]
v = [](OxO)

octave:2> v(:)=l
v= 1

which is again a flaw, but we do not observe this in Matlab.
>> v=[]
V =

>> v(:)=l
v=





Chapter 6: Conclusion

An analysis of several scientific computing environments has been presented here. We Covered
issues such as ease of learning/using and Language Compatibility. The results and codes
presented here will be uploaded on a website along with some more results covering other
mathematical applications.

We expect software to improve with every release, and that vendors and developers may
disagree with our initial impressions. We invite such alternative viewpoints and will certainly
correct errors as they reach our attention.

6.1 About the website

Presently, the website is in the form of a password protected wiki. The Main Page has been
divided into several sections based mainly on Mathematical areas. There exists an individual
page for each topic and each topic is listed on the Main Page under the area of Mathematics it
deals with. This structure should help the users to browse through the pages of a particular area
that they mostly work in.
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Figure 13 A screenshot of the website



The search option of the wiki software helps in finding the exact function or topic one is
interested in. Since the wiki is focused only on Languages and Software, the search is expected
to return almost exactly what user wants which is not the case in Wikipedia or Google search.
Apart from this, a page contains syntactical keywords from each language. So, someone
proficient in one language and looking for an equivalent in another language can easily search
for the keyword from the language he already knows.

Most of the information, such as performance represented by time taken and syntax by putting
exact functions, has been presented in tabular form. Simplicity is the key for effective
communication. An attempt has been made to keep the pages and tables presenting data as clean
and short as possible. Verbosity prevents the user from going ahead with anything and therefore,
obvious points are avoided wherever possible.

Direct links are also provided for downloading files of the Languages and Software, making it
easier for the users to start executing their first codes very early in their learning process. Few
initial codes working and printing results on the screen act as a moral booster to go ahead with
the process.

6.2 Future Work

The wiki has an option of editing pages which is intended to be open to public after some time.
People with experience in any scientific computing language or software are expected to
contribute.

Apart from the issues discussed in this analysis, we also hope to put a rating system based on
ease of usability and performance of a language. We hope this to develop into a complete
package containing information regarding a large number of Languages and Software. It should
be like an encyclopedia of languages where any user having trouble with scientific trouble can
get his or her answers.

Since new versions of languages and high speed computers keep appearing in the market, the
website should also be updated frequently. With the arrival of higher speed computers, the
weightage given to ease of use should be increased as compared to the performance of a
particular language. Therefore, there is a need to keep updating the site to match the
developments in the software and hardware industry. This should be taken care of by the
community involved in using this website just like we see in the case of Wikipedia.
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