
 
Reasonable Computing for Architectural Fabrication 

 
 

by 
 

 
Rachelle B. Villalon 

 
 

B.Arch 
Woodbury University, 2006 

 
 

Submitted to the Department of Architecture in partial  
fulfillment of the requirements for the degree of 

 
Master of Science in Architecture Studies 

 
at the 

 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

 
June 2008 

 
© 2008 Rachelle Villalon. All rights reserved. 

 
The author hereby grants to MIT permission to reproduce 

and to distribute publicly paper and electronic copies of this  
thesis document in whole or in part in any medium 

 now known or hereafter created 
 
 
 

Signature of Author: ____________________________________________________________________ 
Rachelle Villalon 

Department of Architecture, Computation 
May 19, 2008 

 
Certified by: __________________________________________________________________________ 

Lawrence Sass 
Assistant Professor of Computation and Design 

Thesis Supervisor 
 

 
Accepted by: _________________________________________________________________________ 

Julian Beinart 
Professor of Architecture 

Chair of the Department Committee on Graduate Students 
 



 2 

THESIS COMMITTEE 
________________________________________________________ 

 
 

Dr. Lawrence Sass 
Assistant Professor of Computation and Design 

Thesis Supervisor 
 

 
 

 Dr. Terry Knight 
Professor of Design and Computation 

Thesis Reader 
 
 
 

Dr. Henry Lieberman 
Research Scientist 

Software Agents Group, MIT Media Lab 
Thesis Reader 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3 

Reasonable Computing for Architectural Fabrication 

by 

Rachelle Villalon 

Submitted to the Department of Architecture 
on May 26, 2008 in Partial Fulfillment of the 

requirements for the Degree of Master of Science in  
Architecture Studies  

 

 

ABSTRACT 

  
The use of digital fabrication tools in the architecture industry serve a particular group of individuals 
whose familiarity of the tools are by trade skill. Machines lack the understanding of people in its ability to 
objectify common knowledge. This thesis describes the Adeon system, a software agent for 
implementation at the initial design stages whereupon the designer conceptualizes about a particular 
building component while the Adeon system serves to bridge the gap between design and construction 
knowledge, fusing the two regions to ultimately inform the designer about particular construction, design, 
and cost analysis constraints and opportunities upon the design proposal. The system adapts to different 
design situations and delivers pertinent information lending to its capacity to understand design moves 
and translate it to machine readable instructions for direct digital fabrication.  
 
 
 
 

 

 

 

 

 

 

 

 

 

Thesis Supervisor: Lawrence Sass 
Title: Assistant Professor of Computation and Design 



 4 

Acknowledgments 
 
 
When I asked Associate Professor Larry Sass to serve as the thesis supervisor for this project, I knew 
what a good deal I was getting, especially with a similar area of research interest. Larry enthusiastically 
joined in, offering helpful comments and strategies on overseeing a thesis. His vision, patience, and 
support for what this research has become, has been very inspiring, often provoking a new rush of 
enthusiasm to delve deeper into the work, reformulate my thoughts, and ultimately stand back and see the 
great joy in work worth doing.  Larry, I can’t thank you enough. You have taught me invaluable 
techniques for not only structuring my work and evaluating the details, but had more importantly left me 
with the vision to see the future of architecture and the development of the physical construction process. 
 
After exploring an academic course under Professor Henry Lieberman of the Software Agents Group at 
the MIT Media Lab, I was given the opportunity to learn about common sense reasoning and A.I. 
techniques for building remarkable applications using the group’s technology. I had decided to follow 
through with Henry once the course had ended, under the realization that what I was learning from Henry 
and the Software Agents Group would prove tremendously helpful in the architecture field, as well as to 
tackle and find solutions to the architectural problems I care about, especially the issues encountered 
when using machines for architecture and design. Despite his demanding schedule, Henry would always 
invite me to discuss the progress of my work at a drop-in basis. Henry, I am grateful for your support, 
guidance, interest, stark vision, and other tremendous contributions to the development of this research.  
Most importantly, you have taught me to see and approach architectural problems from an array of 
perspectives. Your support and inspiration continues to give me the creative impulse to keep working and 
further develop this research for the future.  
 
I would like to thank Professor Terry Knight, my thesis reader and academic advisor, for her helpful 
comments during the process of formulating my thesis, as well as for her exceptional guidance throughout 
my experience at MIT. Your encouragement to pursue this research has proven invaluable.  
 
I am indebted to Associate Professor, Martin Bechthold of Harvard University, for presenting an 
outstanding and progressive outlook on construction automation. His dedication to this area of study 
continually captures my fascination with fusing advanced automated technology and architecture. I would 
also like to thank the staff in the machine shop at Harvard University for appointing their time and 
equipment available for this research.  
 
I would like to particularly acknowledge Si Li, Lu Yi, and Raphael Rush in contributing and collaborating 
greatly on the development of the system application for this research. Their patience, resource 
recommendations, and the time taken to explore strategies and concepts with me had opened doors for a 
wonderful learning experience.  
 
Thank you to all of my friends and SMArchS Computation colleagues, they have contributed greatly to 
my educational and student life experience with their unending curiosity about the world, sense of humor, 
and similar attitudes toward research and exploration for all things that catch the eye.  
 
Lastly, to my family, my grandparents Donato and Avelina Bentajado, and Flordelis Villalon, for their 
sacrifices and courage to voyage across the world in the 1970s and begin a newfound life in America, 
paving the way for their children and future progeny to mine the opportunities that this country has to 
offer. I extend my earnest appreciation to my parents Olivier and Marie Jane Villalon for their unending 
support, optimism, and affection throughout my life. Mom and Dad, your generous dedication and hard 
work never go unnoticed by me. Thank you from the bottom of my heart. 



 5 

 
CONTENTS 

 
 
 

ABSTRACT……………………………………………………………………………………....3 
 

ACKNOWLEDGMENTS……………………………………………………………………….4 
 

PART I  RESEARCH PERSPECTIVE AND ORIGINS……………………………......8 
 

  Chapter 1 Introduction………………………………………………………8 

    1.1 TROUBLE WITH THE MACHINE   9 

    1.2 MACHINES THAT KNOW YOU   10 

    1.3 USING ADEON: A VISION TOWARD  
          DIGITAL DESIGN FABRICATION PROCESS  10 
 
    1.4 RESEARCH APPROACH  11 
     
    1.5 METHOD OF INVESTIGATION  13 
      

1.5.1. CASE STUDIES ON MATERIALS AND METHODS  14 
 
     1.5.2 CASE STUDY EXTRACTION   15 

     1.5.3 CORE TECHNOLOGY   15 

  Chapter 2 Architectural Design and Computing……………………...….17 

    2.1 DESIGN, DESIGNER, AND THE DESIGNED 17 

    2.2 COMPUTING MACHINES    20 

  Chapter 3 Characteristics of Digital Design Fabrication……………...…22 

    3.1 USES OF MACHINE TOOLS   22 

    3.2 AUTOMATED BUILDING CONSTRUCTION 26 

 

 

 



 6 

 
PART II AN EXPLORATION IN CORE TECHNOLOGY……………………….….28 

 
  Chapter 4 Commonsense Computing……………………………………..29 
  

4.1 OPEN MIND COMMON SENSE  28 
 
4.2 CONCEPNET  35 

   
  Chapter 5 Robot IRB-140………………………………………………….38 

 
5.1 USING THE ROBOT  38 
 
5.2 A LOOK INTO TASKS AND CODE  39 

 
 
PART III A LOOK INTO ARCHITECTURAL CASE STUDIES: 
  DESIGN, MACHINE, AND ROBOT KNOWELDGE……………………....42 
 
  Chapter 6  Extraction of Case Studies………………………………….42 

 
6.1 COLLECTING SPECIALIZED COMMON SENSE  43 
  

 
 

 
PART IV ADEON: SYSTEM AND DESIGN CONTEXT……………………………...48 
 

Chapter 7 ADEON……………………………………………………….....49 

7.1 THE SYSTEM ARCHITECTURE OF ADEON  49 

7.2 DESIGN SCENARIO 1: VERTICAL BRICK WALL 50   

7.3 DESIGN SCENARIO 2: CURVED BRICK WALL  53 

7.4 PROGRAM STRUCTURE     54 

7.5 ADEON AND IRB-140 IN OPERATION   55 

 

 

 

 



 7 

 

 

PART IV A REFLECTION ON STRATEGIES……………………………………….59 
 

Chapter 8 Design Consulting Redefined, 
ADEON in Fifty Years……………………………………...…..60 
 

8.1 ADEON REVISITED  60 

8.2 FUTURE RECOMMENDATIONS  61  

8.3 THE MACHINES AMONG ARCHITECTS  62 

BIBLIOGRAPHY……………………………………………………………...63 

APPENDIX A…………………………………………………………………..65 

 TABLE OF FIGURES 

APPENDIX B…………………………………………………………………..66 

CASE STUDY ANALYSIS NOTES: BASIC BRICK MASONRY SKILLS    

APPENDIX C…………………………………………………………………..72 

 CASE STUDY ANALYSIS FOR OMCS EXTRACTION 

APPENDIX D…………………………………………………………………..77 

CASE STUDY ANALYSIS NOTES ON ELADIO DIESTE’S ATLANTIDA 

APPENDIX E…………………………………………………………………..79 

NOTES ON LOUIS KAHN’S PHILLIPS EXETER ACADEMY LIBRARY 

APPENDIX F………………………………………………………………...…81 

NOTES EIGHTEEN RELATIONS FOR THE OMCS DATABASE 

APPENDIX G…………………………………………………………………...83 

RAPID SOURCE CODE 

APPENDIX H……………………………………………………………….…..89 

SYSTEM SOURCE CODE 



 8 

 

 

 

 

 

 

 

 

 

 

 

 

PART I    RESEARCH PERSPECTIVE AND ORIGINS 
 
 
 
 
 

The first chapter in Part I contains an overview of the research exploration 

 and approach to the thesis, namely, by addressing what is the thesis and  

how is it important to design? The subsequent chapters present background 

 topics, tracing related work of researchers and individuals who  

contribute and place this thesis work into a larger perspective. 

 
 
 
 

 
 
 



 9 

 
RESEARCH PERSPECTIVE AND ORIGINS 
 
1 Introduction 

 

Once upon a time, when it was still of some use to wish for what one wanted…there lived a King and 
Queen who had  daughter who was lovely to behold, but who never laughed. 
Or perhaps: 
…there lived an old fisherman by the side of a sea that had hardly any fishes in it… 
If you are like me, you’re already hooked. You are ready to abandon all talk of computers and electronic 
technology and professorships, and settle in to hear a fairy story. Their attraction reaches almost all of 
us…fairy stories seem to me to have a close connection to technology. 
 
 –-Allen Newell in Fairy Stories, Talks on Computer Science. 

 

 

1.1 Trouble with the Machine 

Machines break down. Computers tend to crash. Cellular phones ring in the middle of a class lecture, 

shouldn’t devices know better? The machine ought to quietly fix itself. The computer ought to recognize 

and save valuable data before it decides to crash, and the cellular phone should know not to ring during 

class. People tend to adapt themselves to the devices they use instead of the device adapting itself to the 

user. The situation is no different in a disciplinary field such as architecture. Most design firms rely on 

computers to render professional services to clients with accuracy and time efficiency. With the recent 

availability of desktop fabrication, particularly CNC devices and more recently robotic devices used for 

design and construction, new design vocabularies and processes emerge thus allowing a proliferation of 

exploratory design aesthetics and methods. Design tools such as CAD/CAM technology, however, is a 

multi-stepped and often cyclical process where in most cases the technology presents difficult user 

handling instead of a simplified one. How then, can designers teach their tools to think like them? What 

are some of the ways design tools can exhibit common sense? Or exhibit common knowledge shared by 

designers? How can design tools contain some understanding about the design of an architectural artifact 

and communicate relevant information about that artifact? 

 



 10

 
RESEARCH PERSPECTIVE AND ORIGINS      Introduction 

 
 

The existence of today’s tools (i.e. manufacturing) used by designers usually have the designer 

having to learn a great deal about the machine in order to conclude with a satisfactory end-product. This  

process typically entails confronting different user interfaces and machine behavior. The lengthy process 

it takes to finally arrive at the end-product is one of trial and error, or sometimes luck. If the machines 

could think with the user’s design intent and increase its knowledge about the designer over time, then the 

designer can experiment with prototypes seamlessly.  This is also important in the context of enabling 

non-expert users the full independence to fabricate their own objects without error-prone interfaces.   

 

1.2  Machines That Know You 

Design applications and other tools will become more intelligent by learning from the user’s physical 

design moves such as the process of building an architectural model, drawing on paper, drawing on the 

computer using design software, and a digital fabrication machine will learn and observe the design and 

assembly of an artifact so that it too can participate constructively. If design applications had “common 

sense,” or rather, shared knowledge amongst a group of designers, then designing with machines would 

cut down on production time, costs, increase efficiency, and enable a different dialogue with machines. 

The machine is no longer the routine servant of commands, but can also form a critical and constructive 

role. 

 

1.3  Using Adeon: A Vision toward Digital Design Fabrication Processes 

In this thesis, we present ADEON, a brick wall design editing application that interfaces with a 

pick and place robot articulating arm, the IRB-140. The global objective of ADEON looks at bridging the 

gap between design and construction knowledge by creating and using a repository of an architectural 

knowledgebase which can be useful towards making an ‘intelligent’ design application.  



 11

 
 

 
 

The goals of ADEON include: 

a) A simple to use graphical user interface. 

b) Display design, construction, and machine information relevant to the design being made on 

the draw editor. 

c) Provide cost estimates of the design drawn onto the editor and maintain the sum of brick 

material usage in the design. 

d) Translate user drawn information on the design editor for direct output to machine readable 

code for the digital fabrication machine.   

 

The machine explored in this thesis is a five axis robotic articulating arm, the IRB-140, used 

primarily for cutting and assembling blocks of material. In this research, the robotic arm picks and stacks 

blocks for a brick wall assembly.  Software design tools do not exhibit knowledge of the design situation 

at hand.  If a user is confronted with designing a wall system in a two-dimensional CAD environment for 

example, CAD does not know that the design intention is perhaps a wall of linear dimensionality, placed 

in the context of a residence or maybe a museum.  The proposed system reduces the ineffective process 

by assisting the user to design based on live textual and graphical feedback about the feasibility of 

construction and machine fabrication technique. The system bridges the gap between design and 

construction knowledge.  

 

1.4 Research Approach 

The thesis investigation is structured upon the goal of creating and implementing a two-dimensional 

graphical software design tool used in accompaniment with an industrial machine, or a digital fabrication 

instrument (Figure 1). 



 12

 
RESEARCH PERSPECTIVE AND ORIGINS      Introduction 

 
 

 

Figure 1. Thesis structure tree. 

 

Atop the thesis structure tree is the ‘Designer’, where s/he serves as the user of the proposed system. 

Directly below the ‘Designer’ is the system called, Adeon, taken from the Latin root word to go, or move 

forward (Casselman). Adeon is a graphical user interface that enables a user to draw and design a brick 

wall system in elevation while receiving updated information on constructability, cost effectiveness, and 

material usage based on real world architectural knowledge. Adeon serves as a system that contains 

architectural knowledge in natural language, capable of describing design knowledge such as, “architect 

Louis Kahn exhibits rectilinear wall design in the example of the Library at Phillips Exeter Academy” to 

construction knowledge such as, “the cross-section of a wall is the depth of the brick”, and lastly, to 

machine knowledge such as, “to place the next brick on a brick wall, I line up the new brick with the 

bricks already there”. The systems storage of design, construction, and machine knowledge brings forth a  



 13

 
 

 
 

design tool capable of informing and suggesting design alternatives for the user in the design process as 

well as provide price estimates of the undergoing design. Ultimately, the system exhibits inferred 

knowledge about design and the design situation at hand.  

 

1.5 Method of Investigation 

Below the proposed system, Adeon, in the thesis structure tree (in Figure 1) is the branching of two 

separate regions that continue to stem further into other investigations staying within context of the thesis’ 

objective.  To the right of the tree stems a physical, digital design experiment using an industrial robotic 

arm (Figure 2) whose application directly relates to the processes to the left of the tree.  

 

Figure 2. Use of a digital fabrication machine (IRB-140) in the thesis process. 

It is the hardware explored and queried in the thesis. The left portion of the tree describe an investigative 

process into design and construction knowledge whereupon the extraction of such knowledge serve as the  



 14

 
RESEARCH PERSPECTIVE AND ORIGINS      Introduction 

 
 

key component for creating an intelligent system containing and inferring the design of an architectural 

product, such as a wall system.   The furtherance of stemming along the thesis structure tree describe 

areas of a physical process of data gathering and input for the creation of Adeon, the proposed system. 

The following descriptions below describe and traverse the thesis structure tree to briefly introduce what 

each region incurs upon the thesis investigation.  

 
1.5.1 Case Studies on Materials and Methods: Traditional and Non-traditional Uses of Brick  
 
This thesis also examines the use of brick as a building and assembly material to construct traditional and 

non-traditional surface geometrical forms. The use of blocks serves as an integral component to the 

fabrication machinery used in this research, the robot articulating arm, IRB-140. Three works of 

architecture in traditional and non-traditional uses of brick serve the purpose for the case study analysis in 

extracting the terms used to describe the building in design knowledge to construction knowledge in  

natural language. The two domains of knowledge are an extremity of one another, but are in constant flux 

when designing a building since knowledge of the two domains are what bring forth a physical building 

on site. The three case studies analysis include a) The Library at Philips Exeter Academy by Louis Kahn, 

b) Atlantida Church by Eladio Dieste, and c) Gantenbein Winery by Gramazio and Kohler (Figure 3).   

 

   

     (A)                        (B)                                                (C) 

Figure 3. a) Library at Philips Exeter Academy by Louis Kahn, b) Atlantida Church by Eladio Dieste, c) Gantenbein 
Winery by Gramazio and Kohler.  



 15

 
 
 
 

1.5.2 Case Study Extraction of Design and Construction Knowledge  

The analysis of the three architectural buildings serves in creating and exhaustively articulating design, 

construction, and machine knowledge in natural language text. The use of words in architecture creates a 

vocabulary essential to describing design intentions for crafting the visual form of a building as well as to 

articulate building construction methods and terminology. Expressing architectural form and building 

information in natural language serve as supplementary dialogues to graphical images and physical model 

representations for visual communication. Verbal and visual communication remains complementary in 

architecture.   

 

1.5.3 Core Technology 

The project deliverable explores the creation of an intelligent software agent for use and in conjunction 

with a digital fabrication machine, the IRB-140 pick and place robotic arm.  The software system 

proposes the implementation of The Open Mind Common Sense knowledge database and the use of 

ConceptNet, the natural language processing toolkit necessary to create intelligent applications developed 

by the Software Agents Group of the MIT Media Lab. 

 

 

OPEN MIND COMMON SENSE  

The Open Mind Common Sense (OMCS) Project is a web-based interface that allows contributors over 

the web to input common sense, or shared knowledge amongst individuals, into a database to teach 

machines what people would normally accept as common knowledge. To date, there had been over 

13,000 people contributing to OMCS generating numerous common sense concepts since September 

2000 (MIT Common Sense Computing Group 2008)  



 16

 
RESEARCH PERSPECTIVE AND ORIGINS      Introduction 

 
 

CONCEPTNET 

ConceptNet is a natural language processing toolkit (MIT Common Sense Computing Group 2008) that 

“encompasses the spatial, physical, social, temporal, and psychological aspects of everyday life through 

its knowledge base of a semantic network that contain 1.6 million assertions” (Liu and Singh 2004).  

ConceptNet captures commonsense concepts that are automatically produced in the Open Mind Common 

Sense database and is a resource for creating intelligent computer programs. 

 

IRB-140: ROBOTIC ARTICULATING ARM  

Used primarily in the automotive industry for welding and assembling manufactured parts, the IRB-140 is 

an articulated robot arm with five axis range of motion.  The robot is designed for use with a hand held  

pendant controller where the operator can upload, edit, and observe coded automated tasks while under 

operation.  

 

 

 

Chapter One Recap 

This chapter presents an overview of the thesis research, question, and strategies for analysis. It defines a 

problem found in digital design fabrication and presents the thesis approach, design context and scenario, 

and as well as to briefly explore the various types of technologies that serve to supplement and contribute 

to the research.  

 

 

 



 17

 
RESEARCH PERSPECTIVE AND ORIGINS       
 
2  Architectural Design Processes and Computing 

 

Not only was the machine unfamiliar to the person involved but also somewhat awesome in size and 
expense.  
 
 –-Ivan Sutherland in Structure in Drawings and the Hidden-Surface Problem 
 
 
2.1 Design, Designer, and the Designed 

Before delving into background information relative to the relevance of this thesis, it is important to 

clarify the term ‘designer’ as used generously to describe the roles of the designer in the thesis 

exploration.  The role of ‘designer’ and the process of ‘design’ for which tools can exhibit ‘common 

sense’ contain multifaceted interpretations. An artist sculpting a block of clay and an engineer calculating 

vector forces of a conceived bridge are understood as participants in the act of designing. The role of 

designer is approached as one who participates in the role of exploration to solve a particular design 

problem towards well developed technical and aesthetic solutions. In Bryan Lawson’s, How Designers 

Think he points out, however, that the spectrum for design definitions derive from a variety of disciplines. 

“The definition of design [ought to be refocused toward distinguishing]… the variety and complexity of 

the designer’s role” (Lawson 1980). In other words, Lawson acknowledges that there are attempts to 

define design, but would rather redirect the effort into defining the designer’s role in varied situations. 

The situations can originate from the fields of art, engineering, architecture, or any other field, such that 

the design process share similar characteristics as described in the RIBA handbook:  

 Phase I assimilation 

The accumulation and ordering of general information and information specifically 

related to the problem in hand. 

 Phase II general study 

  The investigation of the nature of the problem. 



 18

  
 

 

 
 

The investigation of possible solutions or means of solution. 

Phase III development 

  The development and refinement of one or more of the tentative solutions isolated  

  during phase 2. 

 Phase IV communication 

  The communication of one or more solutions to people inside or outside the  

  design team (Lawson 24). 

From this, a map of the design process explains the specifications involved. It is important to note that the 

map above demonstrates a situation that must precede a design problem. Each phase directs itself towards 

the problem at hand in which a solution is the typical result of such exploration. The four phases appear to 

present clear steps along the processes of design. In Educating the Reflective Practitioner, Donald Schon 

however, would perhaps add that in any of the four phases as described by Lawson, a “reflection-in-

action” is likely to be engaged by the designer in the problems set forth as part of the underlying process. 

 The reflection-in-action involves a designer to form a conversation and apprehension of the 

problem where s/he can “evaluate [their]…moves in threefold way: in terms of the desirability of their 

consequences judged in the categories drawn from the normative design domains, in terms of their 

conformity to or violation of implications set up by earlier motives, and in terms of…appreciation…of the 

new problems or potentials they have created” (Schon 63). Schon realizes that professional knowledge 

(derived from a professional education) does not meet “real world” problems where such answers to a 

problem can be found in textbook knowledge (he notes “professional” as lawyers, engineers, doctors, 

architects, and so forth).  In other words, the assumption that academic research is professional 

knowledge, is false, “university-based schools of the professions are becoming increasingly aware of  



 19

 
RESEARCH PERSPECTIVE AND ORIGINS       

 
 

troubles in certain foundational assumptions on which they have traditionally depended for there 

credibility and legitimacy”  (Schon 9). These “troubles” become apparent when students enter real-world 

practice which in turn compels Schon to question if professional education can ever produce a curriculum 

adequate to the “complex, unstable, uncertain, and conflictual worlds of practice” (Schon 12) that cannot 

be found in prevailing professional education. 

His solution to the problem involves looking to the ways in which artists and architects learn in a 

design studio, “we ought, then, to study the experience of learning by doing and the artistry of good 

coaching…and we ought to search for examples wherever we can find them…[such as within] the 

apprenticeships and practicums…[in the] deviant traditions of studio and conservatory” (Schon 17). 

Learning by doing demonstrates a process in which the architecture student, for instance, solves problems 

by not only engaging in analysis and inquiry, but does so with the instructor (or coach) who oversees the 

student’s process and is able to offer solutions based upon a repertoire of professional experience in the 

field.  

 This view of design differs from Herbert Simon in the Sciences of the Artificial, where Simon 

saw design as a process optimization, where a human being or computer, could create solutions based on 

a series of alternatives (that fit a design criteria, in this case, for the architect), “a series of generators may 

generate one or more possible outlines and schemes of fenestration for a building…” (Simon 129). Such a 

view would thus generate optimal solutions to a problem, but Schon is not convinced that process 

optimization can contribute to real-world problem solving faced by prevailing graduates from a 

professional education since designing contains situations of uncertainty, uniqueness, and conflict where 

instrumental problem solving—occupy a secondary place.” Designing, to Schon, is a learn-by-doing 

process, or a reflection in action.   

 



 20

 
 
 

 

The reflection-in-action involves a designer to form a conversation and apprehension of the 

problem where s/he can “evaluate [their]…moves in threefold way: in terms of the desirability of their 

consequences judged in the categories drawn from the normative design domains, in terms of their  

conformity to or violation of implications set up by earlier movies, and in terms of…appreciation…of the 

new problems or potentials they have created” (Schon 63).  

 

2.2 Computing Machines 

 

 The notion of tools exhibiting common knowledge shared by designers presumes the form of 

artificial intelligence to take place. The idea of bringing life or some life form that exhibits human 

intelligence to inanimate objects dates back to the time before substantial groundwork in the field of 

artificial intelligence was established. In the Iliad, Homer tells us that the golden female attendants 

walked with tripod legs as conjured by the blacksmith Hephaestus. The literary automaton creatures were 

most likely inspired by actual engineers in the Greek city of Alexandria, where automatic devices were 

made for amusement (Crevier 1993).  The impression of machines with cognitive ability has piqued the 

interest of many individuals since the ancient times of civilization and has progressed into formal 

scientific reasoning and research.  

Foundational contributions to the field of artificial intelligence took place in the 1950s with John 

McCarthy, Marvin Minksy, Allen Newell, and Herbert Simon (Poole 1998). Their demonstration of a 

computer program that solves algebraic word problems and recognizes the English language gave rise to 

purport that “machines will be capable [of]…doing any work…a [human] can do” (Simon 1965). 

Although Simon’s assertion does not clearly define what type of work a machine could correspond to  

 



 21

 
 
 
 

human activity, the affirmation raises the possibility to discover and develop machine intelligence 

applicable to other fields like architecture and design for example.  

Computer programs excel at solving 'hard problems' in mathematical logic (such as computer 

chess programs that are capable of beating a human being), or a computer program that can solve calculus 

problems. Yet it was not until the 1970s that programmable robots were able to visually assemble a stack 

of children's blocks (Minsky 1986). A computer program that performs child-like physical activities 

present more complicated programming than computer programs that solve college level math.  Marvin 

Minsky attributes the former such that "to be considered an 'expert' one needs a large amount of 

knowledge of only a relatively few varieties. In contrast, an ordinary person's 'common sense' involves a 

much larger variety of different types of knowledge -- and this requires more complicated management 

systems" (Minsky 1986). 

 

 

 

 

Chapter Two Recap 

The two sections described in this chapter address the role and definition of the designer in a context 

where “learning by doing,” ubiquitously presents itself in the act of designing. Moreover, the section asks, 

how do designers resolve design problems? The chapter looks to different fields of thought and presents 

their views relevant to design as process, along with the use of computing machines. 

 

 

 



 22

 

 
RESEARCH PERSPECTIVE AND ORIGINS 
 
3  Characteristics of Digital Design Fabrication  
 

3.1 Uses of Machine Tools 

Engaging with digital fabrication machinery requires knowledge and experience to gain expertise since 

several factors contribute to a successful end product. “The shaping of the design process and product by 

the design tools is a hallmark of contemporary architectural design practice.  Contemporary CAD/CAM 

technology requires the ‘operator’ to be versed in the processes and procedures necessary to operate each 

particular tool (both software and hardware). This immediately introduces a new role in the design 

process whereby the designer, who would typically be responsible for creating the design documentation, 

must now do so through the intermediary of the operator” (Lobel and Villalon 2007). Take for instance, 

fabricating an architectural artifact using a Computer Numerical Controlled (CNC) machine (Figure 4). 

 

 

Figure 4. A three-axis Computer Numerical Control (CNC) machine in operation. 

 

 

 

 



 23

 
 
 

 
Twenty-seven steps approximately represent the routines necessary to fabricate an artifact as follows:   

In CAD software environment 
1. Flatten 3D object to 2D, save to .dwg file (confirm that origin of drawing [0,0] is set to 

reflect origin of the CNC machine. 
2. Open .dwg file in EZ-CAM, create Tool Path (must make sure geometry is closed and 

dwg is in imperial units).  
3. Material physical limitation 4x8x2” max. constrained by machine’s physical milling  area. 
 
In EZ-CAM (propriety CAM software environment) 
4. Import .dwg 
5. Create New Curves 
6. Select drawing extreme endpoint to endpoint 
7. Setup workstep data 
8. Select tool, load tool #5, 1/8” dia.  
9. If Pocket, select Mill Left/If Mill, select Mill Right 
10. Workstep data > Post (G-code) 
 
CNC Machine Preparation 
11. Drop oil lubricant in compressor tube 
12. (control box)Switch speed controller ON 
13. (control box)Switch compressor ON 
14. Switch pressure valve ON 
15. OPEN/CLOSE essential suction valves for material 
16. Flip speed controller on pc box ON 
17. Flip compressor on pc box ON 
 
In TECHNO CNC (software interface to physically control the machine) 
Home ALL – reset tool to its home origin (0,0,0) 
18. Send machine to pick up tool – Tool Change = 5 (equivalent to 1/8” router drill bit) 
19. Optional (often mandatory) – Physical simulation, set tool head Z-axis above material 

and trace milling path. 
20. Control axis of CNC machine to user origin using arrow keys. 
21. Set drill bit head on stock material using +/- keys. 
22. On Techno Interface – set user origin, Zero>ALL 
23. Open G-Code file > Preprocess 
24. Hit Start 3 times.  
25. End milling process (Did product mill correctly? i.e. Did it mill according to desired 

outcome? If not, proceed from Step 1.) 
26. Send machine to put back tool in carriage –Tool Change = 0. 
27. Send machine to origin –Home>ALL 

 



 24

 
RESEARCH PERSPECTIVE AND ORIGINS 

 
 

A linear manufacturing process would prove as an ideal design workflow, where all approximately 

twenty-seven routine actions perform smoothly.  In a digital design fabrication experiment in 

Materializing Design: Contemporary Issues in the Use of CAD/CAM Technology in the Architectural 

Design and Fabrication Process1, a linear manufacturing process does not appear close to actual practice 

where several machine and software factors lend to variable and often unstable product results.  The 

unpredictability in using digital design fabrication tools are attributed to the variability in stock materials, 

maintenance of machining tools, as well as humidity and temperature of the work environment.  The 

inconsistency in the end product can either prove positive or detrimental depending on the working 

environment.   

Instead of a linear manufacturing process, designers find themselves in a cyclical fabrication 

process, often revisiting previous routines in order to resolve certain production issues as seen in Figure 5.  

 

Figure 5. (Top) An ideal design workflow. (Bottom) A recursive approach to digital design fabrication processes. 

                                                
1 ASCAAD Conference Proceedings, Nov. 2007, by Josh Lobel and Rachelle Villalon 



 25

 
 
 
 

The description of the digital fabrication experiment in Materializing Design: Contemporary Issues in the 

Use of CAD/CAM Technology in the Architectural Design and Fabrication Process relate the following 

results when attempting to create aluminum press-fit assemblies (Figure 6): 

 

Figure 6. Waterjet cut aluminum mullion. 

 

Empirical testing reveals that press-fit assemblies rely on specific material properties and precise 

fabrication tolerances in order to sustain a rigid connection between elements (Cardoso and 

Michaud, 2006). However, different materials displayed varying behavior at different scales, 

making it difficult if not impossible to predict possible changes in material behavior at different 

model scales and what that would mean in terms of model assembly and the efficacy of the 

friction joints. Ideal scenarios were achieved with cellulose-based materials (plywood and 

masonite) that allowed for slight material deformation during assembly. Attempts at similar 

assemblies with aluminum proved less successful due to the inelasticity of the material. The most 

successful press-fit joints that were achieved in aluminum were “slot” connections which 

provided an equal amount of supporting material on each of the mating pieces (Lobel and 

Villalon 2006). 

 



 26

 
RESEARCH PERSPECTIVE AND ORIGINS 

 
 

The description above inform us that dissimilar materials at different scales makes it “difficult if not 

impossible to predict possible changes” in the model of assembly and friction joints. With the variability 

in material, recursive steps contribute a long and arduous process to conclude with a satisfactory product. 

The steps required to reduce this process is not mentioned, but a need for closing the distances between 

the designer and machines are of necessity. The next section briefly discusses the use of robotic 

applications for architectural design and building construction, offering a glimpse of an alternate 

manufacturing technique at a large scale.  

 

3.2 Automated Building Construction  

The use of robotic technologies for building construction has gained prominent use in Japan. The use of 

robots in construction presents a not so distant future of automation and the potential advancement of 

robotic “common sense reasoning” approaches to the design and building construction process. The 

SMART System by Shimzu Co. located in Japan, uses advanced computer automation at a grand scale in 

the construction processes, unifying underground work, steel erection, finishing, and equipment work to 

erect multi-story buildings. The SMART system utilizes prefabrication, computer, and robotic 

technologies:  

The SMART system uses an automated erection system, which provides shelter for the work 

environment, to construct individual floors. The erection system uses overhead gantry cranes to 

install steel columns and beams on a floor, and then uses hydraulic jacks to move up to the next 

floor. The erection system grips previously installed columns in order to lift itself to the next floor. 

Shimizu expects the SMART system will decrease labor dependence and shorten construction 

duration (M.J. Skibniewski, S.C. Wooldridge 1992).  

 



 27

 
 
 
 

The theatrical description of robots completing the construction of a building at a massive scale not only 

demonstrates an alternative construction automation process, but exemplifies how traditional on-site 

construction methods can be potentially outperformed by the advances in robotic automated technologies 

(Hoang 2005). The development of ‘common sense reasoning’ for robots serve as an essential component 

for the creation and improvement of intelligent robots in context based reasoning.   

 

 

 

 

 

 

Chapter Three Recap 

This chapter demonstrates the uses of a digital design fabrication machine and presents the issues and 

concerns when engaging with such technology, particularly the amount of time and steps necessary to 

operate the machine for design production. The chapter looks at system idiosyncrasies, processes for 

resolution, and provides an example of a design scenario. A brief example was also shown to demonstrate 

how robotics in construction is not a novel implementation.  Instead they are already being used in the 

building construction industry in some parts of the world where robots facilitate the construction process 

at a large scale.   

 

 

 
 
 



 28

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

PART II    AN EXPLORATION IN CORE TECHNOLOGY  
 
 
 
 
 
 

 
The following chapters present the technology under investigation for this research,  

The first chapter introduces the Open Mind Common Sense Project and its  

impact on creating intelligent software applications. The second chapter illustrates 

 the use of the IRB-140, the robot arm used in this thesis for  

digital design fabrication. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 29

 
 

AN EXPLORATION IN CORE TECHNOLOGY 
 
4  Commonsense Computing 
 
 
4.1 Open Mind Common Sense 

Computers ought to contain shared knowledge that people already know, for example, objects fall down 

and not up due to the earth’s gravitational pull. Common sense, however, is a term that infers that the 

something “common” belongs to a shared set of understanding of the world, and “sense” belongs to a 

cognitive understanding of that shared set. Marvin Minsky, however, asserts that common sense can 

prove challenging to define: 

Common sense is not a simple thing. Instead, it is an immense society of hard-earned practical 

ideas—of multitudes of life-learned rules and exceptions, dispositions and tendencies, balances 

and checks. If common sense is so diverse and intricate, what makes it seem so obvious and 

natural? This illusion of simplicity comes from losing touch with what happened during infancy, 

when we formed our first abilities (Minsky 1988). 

Common sense according to Minsky, shows that common sense is indeed not so common after all. 

Common sense’s obvious and naturalness comes from being ingrained in common concepts since 

‘infancy’ and that which is natural tends to become overlooked.  To build intelligent software that can 

understand some aspect the roles designers take and use in their repository of design knowledge during 

the design process, then “we require tools that can give machines the capacity to learn and reason” (Singh, 

Barry, et all 2004) about design. In an article titled, “Teaching Machines about Everyday Life” by MIT 

Software Agents Group researchers at the MIT Media Lab, they are convinced that in order to build 

intelligent software, an attempt at documenting “common” knowledge of everyday life proves necessary 

to move into that direction:  

Can we build a new breed of software with enough ‘commonsense’ to reason in useful ways 

about ordinary human life? Imagine if your cell-phone were smart enough to switch to silent  



 30

 
 
 

 

mode when you entered a movie theatre but alerted you during the film if a relative were to call 

from the hospital, but not when your friend called from the pub…Such abilities are beyond  

today’s machines largely because they lack even the most rudimentary understanding of people 

and structure of ordinary human life. They do not know any about, for example:  

the kinds of things we typically do, 

the objects we interact with and why, 

the consequences of actions in different situations,  

the things we like and things we do not like, 

the places we find familiar and the things we do there… 

Instead, our machines today are mindless tools that possess no understanding of why a typical 

person would need to use them.  As a result they are inflexible, unfriendly, and often 

unnecessarily complicated – they have no ability to adapt to new circumstances, understand the 

context of their use, or make good guesses at what we wish for them to do, regardless of how 

obvious it may seem to us (Singh, Barry, et all 2004).  

As described earlier in the previous chapter, The Common Sense Computing Group (Software Agents 

Group), are responsible for creating the Open Mind Common Sense (OMCS) database, a web user 

interface that allows anybody with internet access to teach machines about what people generally know. 

OMCS launched in September 2000 and gained 14,000 registered users who contributed nearly 700,000 

items of knowledge (Singh, Barry, et all 2004). A typical knowledge browser appears as in Figure 7. 

 

 

 

 



 31

 
AN EXPLORATION IN CORE TECHNOLOGY 

 
 

 

Figure 7. Web user interface of the Open Mind Common Sense Project. 

  

A web user “teaches” commonsense to a machine in the form of simple English statements that builds 

into a commonsense knowledge base.  Semi-structured sentences are provided to extract knowledge given 

by simple templates such as “flashlights can be used to…” or “the effect of drinking coffee is…” (Singh, 

Barry, et all 2004) as in Figure 8. The OMCS corpus “showed that 90% of the contributed statements 

were rated 3 or higher...and about 85% of the statements were rated as things anyone with a high school 

education or more would expected to know” (Singh, Barry, et all 230).  

 

 

 

 



 32

 
 

 
 

 

   

Figure 8. Fill-in-the-blank forms to create semi-structured OMCS sentences. 

Presently, if a user were to search concepts about an “architect”, OMCS returns its current state of 

knowledge such as “An architect designs buildings”, “architects can plan buildings”, “Gaudi was an 

architect”, and so forth. The database does not know what type of buildings an architect can construct or 

how it is made.  Efforts to create a specialized common sense knowledge database useful for a  



 33

 
AN EXPLORATION IN CORE TECHNOLOGY 

 
 

professional field like architecture would mark a new avenue of professional resource using OMCS and 

ConceptNet. Below is a sample of the information collected from a consensus of architectural knowledge 

that the computer (for use with a digital fabrication machine) would need to know about the physical 

world. The sample begins with a base concept on a physical material such as plywood:  

 

 Plywood is manufactured primarily of softwoods. 

 Softwoods include Douglas Fir. 

 Douglas Fir is a type of tree. 

 Plywood is an engineered panel of wood. 

 Plywood is made up of a continuous veneer of wood. 

 Plywood is several layers of wood veneer. 

 Plywood is bonded with glue. 

 Plywood is sold in standard sheets almost always 4 feet by 8 feet. 

 Plywood is subject to dimensional changes due to changes in temperature. 

 Plywood undergoes preservative treatment to prevent rot. 

 Plywood prevents air leaks and drafts when used as a wall. 

 ¾” plywood is not easy to split with nails. 

 Plywood is flat 

 Plywood warps 

 Plywood is laminated 

 

 



 34

 
 

 
 

With the sample information above entered into Open Mind Common Sense (OMCS), extracting 

information from the natural language processing toolkit using extraction rules in an XML-RPC interface, 

the results are as follows: 

stem id of "plywood" is 1126595 

Top 5 forward relations: 

HasProperty: an engineered panel of wood 

HasProperty: bonded with glue 

IsA: wood veneer 

ReceivesAction: bonded with glue 

ReceivesAction: used for paneling 

Top 5 reverse PartOf relations: 

all forms of stem 1126595: 

['Plywood', 'plywood', 'Plywood '] 

The term “plywood” is designated a stem id which is the stem object that corresponds to the natural 

language and necessary for linking and weighing the verity of the word. The forward relations, 

“HasProperty”, “IsA”, “ReceivesAction” are binary relations the user selects to structure a concept, or 

word, like plywood, in order to create associations to that word. There are twenty-two other binary 

relationships such as MadeOf (what is it made of?), CapableOf(What can it do?), to HasPrerequisite(What 

do you first to accomplish it?). MadeOf, for example, would require the input from a user “x” is made of 

“y”, or “All matter is made of atoms”.  

Knowledge other than building materials like plywood is in the process of collection, such as 

necessary hardware (nails, screws, bolts, etc.) for construction.  Unlike other professional fields such as 

aerospace, medicine, or mechanical engineering, the building industry is notably slow to update its  



 35

 
AN EXPLORATION IN CORE TECHNOLOGY 

 
 

standard knowledge of architecture and construction. Discoveries of new construction techniques and 

methodologies takes long for approval due to liability and established building codes for each U.S. region. 

Since architectural construction knowledge and technology is slow to progress, collecting a wide array of 

common-sense building information would amount to being a valuable resource for architects and non-

experts in the long term.  

 

4.2 ConceptNet 

As mentioned earlier, ConceptNet is a natural language processing toolkit composed of a semantic 

network that contains 1.6 million assertions (Liu and Singh 2004). ConceptNet extracts sentences from 

the Open Mind Common Sense database into nodes containing four structures: nouns, verbs, adjectives, 

and prepositional phrases. The nodes create normalized assertions such as to correct grammatical errors, 

like spelling. The process further reduces the phrases towards lexical generalizations, vocabulary 

discrepancies, and to generate inference procedures.  ConceptNet exceeds at contextual reasoning and 

outputs concepts into components (Figure 9), the toolkit “represents a new direction for the development 

of commonsense Artificial Intelligence systems” (Liu and Singh 2004).  

 

 

 

 

 

 

 

 



 36

 

 

 

 
 
 
 

 

Figure 9. A semantic network of everyday concepts. Image from “ConceptNet: A Practical Commonsense 

Reasoning Toolkit” (Liu and Singh 2004).  

 

ConceptNet’s natural processing engine supports textual-reasoning tasks and provides advanced semantic 

relations in comparison to traditional semantic processing. The use of ConceptNet has brought upon a 

variety of novel applications without requiring specialized knowledge for input into a database. 

 



 37

 
AN EXPLORATION IN CORE TECHNOLOGY 

 
 

 

 

Chapter Four Recap 

This chapter addresses the uses and definition of common sense computing, briefly tracing its theoretical 

origins to thinkers like Marvin Minsky, and looks at how common sense reasoning has been recently 

applied as a software agent for building intelligent systems as demonstrated by the Open Mind Common 

Sense Project and the use of ConceptNet, the natural language processing engine. A walk through on how 

OMCS functions with a given term demonstrates how terms are given value and weight in the context of 

inserting data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38

 
AN EXPLORATION IN CORE TECHNOLOGY 
 
5  IRB-140  
 
 
 

 
Figure 10a. The IRB-140, lifting and stacking wooden blocks. 

 
5.1 Using the Robot 

Unlike two dimensional digital fabrication cutting machines such as the Computer Numerical Controlled 

(CNC) machine, where two axis of motion are its range, the IRB 140 can accommodate the cutting of 

parts in two and three dimensions, and to finalize with parts assembly (Figure 10a). This aspect of 

fabricating and assembling for one machine is not new, advanced technology in automated construction 

techniques such as contour crafting and three-dimensional printing, are some of the technologies that 

employ versatility in complex surface geometry creation.  

Using the IRB-140, on the other hand, provides greater flexibility in the process of fabrication 

due to its range of motions and static payload for lifting construction materials. The IRB-140 is a robot  



 39

 
 
 
 

with five degrees of freedom whose parameter values are changeable. The robot demonstrates a potential 

use on the construction site, capable of repetitive automated tasks and specific operation function.  

The IRB-140 recognizes objects and paths as vector data placed as target points in three-

dimensional space (Figure 10b). The IRB-140 can implement the use of vision-based processing to 

execute routine tasks. The IRB-140, however, used in this project does not implement that capability. 

Instead, the IRB-140 operates under a series of executable code, called Rapid Code. Like the 

CAD/CAM’s output of G-Code for digital fabrication, Rapid Code also contains target paths and target 

points. Without vision-based processing, the IRB-140 does not recognize whether an object has picked, 

grasped, and placed onto a specified location, nor does it recognize whether the blocks for picking and 

placing stack and accumulate in preferential order.  

 

 

Figure 10b. IRB-140 in initial execution. 
 

5.2 A Look into Tasks and Code 
 
The following information is a brief overview of IRB-140’s machine readable code:  
 
PERS tooldata RAD_AL2100:=[TRUE,[[0,0,121],[1,0,0,0]],[0.17,[0,0,1],[1,0,0,0],0,0,0]]; 
 
 



 40

 
AN EXPLORATION IN CORE TECHNOLOGY 

 
 
 
 CONST robtarget b0u:=[[-96.4,-550,80],[-8.65927457071935E-
17,0.707106781186548,0.707106781186547,8.71576399210524E-32],[-
1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 
 CONST robtarget b0 :=[[-96.4,-550,30],[4.32963728535968E-
17,0.707106781186547,0.707106781186548,4.32963728535968E-17],[-
1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 
 

 
Figure 11. The flex pendant used for operating the IRB-140, displaying Rapid Code on screen. 

 
 
The code above displays vector data of each object defined as a target point. For instance,  
 
CONST robtarget b0u:=[[-96.4,-550,80],[-8.65927457071935E-
17,0.707106781186548,0.707106781186547,8.71576399210524E-32],[-
1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 
 
describes the initial target point of a block located at -96, -550, 80 on a Cartesian grid as a constant 

routine. The set of numerical values subsequent to the first describe the path at which the robot will 

follow en suite until the next ‘robtarget’ value is encountered.  Figure 11 demonstrates the use of the code 

within the flex pendant, a hand device requirement when operating the robot. The pendant device offer 

direct rapid code line manipulation/editing, file upload, and manual control of the robots range of arm and 

wrist motion. 



 41

 
 
 
 

 

 

Chapter Five Recap 

This chapter presents an overview of the digital fabrication machine used as a test-bed for the thesis 

exploration. The IRB-140 functions according to a set of routine instructions written in Rapid Code, 

direct for upload by USB device to the main controller and also requires a pendant device for use while 

under operation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 42

 
 
 
 
 
 
 
 
 
 
 
 
 

 
PART III     A LOOK INTO ARCHITECTURAL CASE STUDIES: EXTRACTING 

DESIGN, MACHINE, AND ROBOT KNOWLEDGE  
 
 
 
 
 
 
 
 

 
The chapters contained herein investigate the processes  

required for architectural knowledge extraction for input  

into an intelligent system application. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 43

 
A LOOK INTO ARCHITECTURAL CASE STUDIES…   
 
6    Extraction of Case Studies 
 
 

“If you talk to a brick and ask it what it likes, it’ll say it likes an arch. And you say to it, look arches are 

expensive and you can always use a concrete lintel to take the place of an arch. And the brick says, I know it’s 

expensive and I’m afraid it probably cannot be built these days, but if you ask me what I like it’s still an arch.” 

--Kahn, Louis “An Architect Speaks his Mind” House and Garden 142, no. 4. October 1972 

 

Taken in the light of architect, Louis Kahn’s words, he describes a building and his design for them as a 

matter of intention towards high level design concepts. In his own words on the design of the Library at 

Phillips Exeter Academy, “I see a library as a place where the libraries can lay out the books, open 

especially to selected pages to seduce the readers. There should be a place with great tables on which the 

librarian can put the books, and the readers should be able to take the books and go to the light” (Wiggins 

11). Kahn describes his approach in designing the library from a perspective that examines the functional 

and conceptual qualities of an architectural space as in to “seduce the readers” or “take the books and go 

to the light.” The use of language as a means to describe the purpose of a built environment is an essential 

aspect of communication in the design process. For that particular reason, the words used for describing 

design are an integral component to Adeon, the intelligent design system.  

6.1 Collecting Specialized Common Sense 

    OMCS currently does not contain specialized common sense knowledge such as information that 

architects and experienced digital fabrication machine users may know.  The integration of architectural 

begins by gathering a corpus of architectural “common sense” that a computer would need to know about 

designing, constructing, and assembling objects with the IRB-140.  An attempt to do so begins by 

analyzing the three case studies of traditional and non-traditional uses of brick in architecture. The 

buildings that serve as case studies are 1) Louis Kahn’s Philips Exeter Library, 2) Atlantida by Eladio 

Dieste, and 3) Gramazio and Kohler’s Gantebein Winery. Table 1 illustrates the process of analysis for  



 44

 
 
 
 

Philips Exeter Library.  Table 1 illustrates the process of analysis and comparison of design and 

construction knowledge for the Phillips Exeter Library. The table illustrates a phase where the case study 

observation undergoes a reformulation to befit the Open Mind Commons form. The initial case study 

observation records can be seen in Appendix D. exist 

TABLE 1. LIBRARY AT PHILLIPS EXETER ACADEMY    
  ARCHITECT: LOUIS KAHN 

TRADITIONAL BRICK ARCHITECTURE 
 

Design Knowledge           Construction Knowledge  
   

 
Louis Kahn can design brick walls. 
(CapableOf) 
 
Brick is a type of load-bearing material. 
(IsA) 
 
Philips Exeter Library is designed in brick to 
keep with the traditional New England 
campus. (HasProperty) 
 
Philips Exeter Library is a brick building 
designed to keep with the traditional New 
England campus. (IsA) 
 
The Philips Exeter Library is the building 
designed by architect, Louis Kahn. 
(DefinedAs) 
 
Philips Exeter Library’s brick piers are 
wider nearer to the ground where their loads 
are greater. (HasProperty) 
 
The brick wall is interspersed with apertures 
for windows. (HasProperty) 
 
You would put openings in a brick walls 
because you want a door or window.  

 
An exterior brick wall wants to be designed for 
stopping water ingress from melted snow, rain, 
and ice. (Desires) 
  
Something you need to do before you lay 
bricks is to mix mortar.  (HasPrerequisite) 
 
Hand mixing mortar requires masonry cement, 
sand, clean water, mortar box, mortar hoe, 
square point shovel, and a bucket. 
(HasPrerequisite) 
 
Mortar is created by mixing masonry cement, 
sand, and clean water. (CreatedBy) 
 
The first thing you do when you prepare 
mortar is place the bag of mortar inside a mortar 
box.  (HasFirstSubevent) 
 
One of the things you do when you have 
mortar in a mortar box is to divide the mix in 
half. (HasSubevent) 
 
One of the things you do when you divide 
mortar mix in half is spread sand on top of the 
mortar cement. (HasSubevent) 
 



 45

 
A LOOK INTO ARCHITECTURAL CASE STUDIES… 

 
 

As mentioned before, the table demonstrates the use of the eighteen OMCS relations, highlighted in bold, 

necessary to form sentence structures for the OMCS database. For example, “Brick IsA type of material” 

which falls under the relation “Is A”; the eighteen relations function as a textual form for web users to 

formulate concepts to teach the computer. In essence, the extraction of design, construction, and machine 

knowledge are broken down into initial base descriptions. Figure 12 illustrates the filtering process of 

architectural knowledge for the Gantenbein Winery by Gramazio and Kohler.  The sentences undergo 

restructuring to befit the eighteen relations necessary for input into the Open Mind Common Sense 

Project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 46

 
 
 
 

An example break down of Case Study 3: Gantenbein Winery

Figure 12. Distinguishing between Design, Construction, and Machine Knowledge for the Gantenbein Winery case 

study. 

 

The three types of knowledge, once inserted into the Open Mind Commons database, form a semantic 

network from which ConceptNet, the natural language text processing engine, can extract the assertions 

for creating adaptations toward intelligent applications. The semantic network (Figure 13) for Case Study 

Three, illustrates how concepts such as “curved walls” or “IRB-140” form nodes and connect to other 

nodes via OMCS relations (i.e. CapableOf, HasProperty, and so forth).  



 47

 
A LOOK INTO ARCHITECTURAL CASE STUDIES… 

 
 

IRB-140

Gramazio
& Kohler

curved 
walls

Capa
ble

Of

larger in cross

section

H
asProperty

Depth of 
brick

DefinedAs

C
ap

ab
le

O
f

42 inch arm 
length

HasProperty

A semantic network of  Case Study 3

 
 

Figure 13. A semantic network of the Gramazio & Kohler wall. 
 

 

 

Chapter Six Recap 

 
Chapter Six presents an overview of case studies for analysis and extracts specific information regarding 

design, construction, and machine knowledge in natural language text. Moreover, the data undergoes 

retranslation for input into the Open Mind Common Sense database to create a relational ontology of 

relevant architectural concepts. 

 

 



 48

 
 
 
 
 
 
 
 
 
 

PART IV     ADEON: SYSTEM AND DESIGN CONTEXT 
 
 
 
 
 
 
 

 
This section describes the system architecture of Adeon  

as an application in an architectural design context. An  

illustrated walkthrough of some design scenarios exemplify 

the advantages of using and adapting Adeon as part  

of the digital design process. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 49

 
ADEON: SYSTEM AND DESIGN CONTEXT 
 
7    ADEON 
 
7.1 The System Architecture of ADEON 

Adeon is designed to operate with a digital fabrication device. This research explores the IRB-140, a 

robotic articulating arm to be used with Adeon. The IRB-140, as mentioned earlier, functions as a pick 

and place robot, picking and placing 4” x 6” blocks while situated in a stationary base. A user instantiates 

Adeon through a graphical user interface containing a draw editor for creating brick walls with the option 

of three different geometrical configurations: vertical, inclined, and curved walls.  The three geometric 

wall selections serve as initial test options for the user to engage with, leaving an opportunity for further 

types of wall creations containing complex geometry into future versions of Adeon. While the user is 

drawing/designing a brick wall, the system Adeon, recognizes the type of wall configuration and displays 

relevant design, construction, machine and cost information pertinent to the type of wall drawn onto the 

editor and in turn, transforms that design into readable machine code for digital fabrication. Figure 14 

displays the interaction between the designer and the system. 

User Interface

User

IRB-140 
Robot

Draw editor and design control functions

User Interaction Module

Actions

Design 

Knowledge 

Database

draw 
actions

returned

concepts

Robot Code 
Translation

 

Figure 14. Adeon’s system architecture, an interaction between user, application, and digital fabrication device. 



 50

 
 
 
 

Currently, Adeon interprets user drawing sketches upon the draw window and returns design, 

construction, and machine data in natural language text.  

7.2  Design Scenario I: Vertical Brick Wall 

For example, suppose the designer would like to design a vertical brick wall using the IRB-140 (Figure 

15). 

 

A Design Scenario

 

Figure 15. Creating a brick wall with a digital fabrication device. 

 

The user instantiates Adeon and selects the vertical wall design tool available on the Graphical User 

Interface (Figure 16). As the user is drawing a vertical wall, the system updates itself to reflect the current 

costs of total units per brick used in the design, total brick count, and lastly design, construction, and 

robot knowledge. 

 

 



 51

 
ADEON: SYSTEM AND DESIGN CONTEXT 
 
 

(A)                                                  (B)

 

Figure 16. Adeon’s GUI . A) The user draws a vertical wall in the brick design window by, B) selecting the vertical 

wall tool. 

Upon completion of the vertical brick wall within the editor, Adeon reflects an estimated total cost of 

units per brick as well as total bricks used in the design. The cost suggests the use of a modular brick unit  

at the rate of $0.39 per block. Three text windows also display three types of knowledge relevant to the 

current design (Figure 17).  

 

 

Figure 17. Display of relevant knowledge modes for current design drawn in editor. 



 52

 
 
 

 

The “Design Knowledge” window informs the user in the vertical wall design example: You 

would want to use brick as a building material because you want the aesthetic of having the forces of 

gravity and weight to be evident in the construction.  The Design Knowledge window outputs a sentence 

that articulates design at a level of aesthetic reasoning, where “forces of gravity and weight” are meant to 

imply brick as a visually heavily weighted object. Design knowledge at this level of abstraction describes 

a relationship between a visual representational figure and a rhetorical one. In T. Knight and G. Stiny’s 

Classical and Non-Classical Computation, verbal representation “is the kind…we use all the time to 

communicate to each other…and to conduct most of the affairs of the day” (Knight and Stiny 356). 

Despite the division between the verbal and visual representation, both representations form an 

interconnected relationship (Knight and Stiny 355) dependent upon one another.  

 Adjacent to the “Design Knowledge” window on the graphical user interface is the “Construction 

Knowledge” window. In the vertical wall design example, the output under construction knowledge reads: 

Loadbearing walls should be aligned consistently from floor to floor and should be continuous from the 

roof to the building foundation.  This particular knowledge reflects a design intention for the creation of a  

loadbearing wall system, and directly indicates valuable information for designing in the situation that the 

designer may otherwise overlook. If the walls were not aligned from floor to floor and from roof to 

building foundation, then the resulting configuration becomes a partition wall without shear dependency. 

The functional requirements of a brick wall is given by Adeon’s “knowledge” repository and access to the 

basic information for understanding building construction, this allows the user to make informed design 

choices based upon Adeon’s output consultation.  

 The remaining window, “Robot (IRB-140) Knowledge” also displays pertinent textual 

information regarding the design of a vertical brick wall relative to the digital fabrication machine itself. 

The “Robot Knowledge” window box displays, IRB-140 can accommodate the design within 50 to -230  



 53

 
ADEON: SYSTEM AND DESIGN CONTEXT 
 
 

 

degrees range of movement. That is, Adeon contains knowledge that informs the user whether the current 

vertical wall design accommodates the machine constraints and requirements for successful product 

fabrication.  

 

7.3  Design Scenario II: Curved Brick Wall 

Should the designer decide to switch from designing a vertical to a curved wall instead (Figure 18), the 

system recognizes the switch in tasks and is capable of relating pertinent information to the new design 

scenario.  

 

Figure 18.  Drawing the curved wall upon selection on the Graphical User Interface. 

 

 



 54

 
 
 
 

Figure 19. Adeon’s display of updated knowledge based on new curve wall design. 

 

Upon the new curved wall design (Figure 19), the Design Knowledge label box now reads, A curved wall 

presents fluidity in the landscape. An example of this is Atlantida by Eladio Dieste where walls are 

generated by straight line segments whose ends were translated along a sinusoidal path. The 

Construction Knowledge labelbox, also updated, now advises: In some instances, a fiber-reinforced (FRP) 

rebar is used for highly specialized brick work because of its high tensile strength and light weight, 

corrosion resistance and dielelectric (nonconductive) properties. Lastly, the Robot (IRB-140) Knowledge 

box reads, The IRB-140 can accommodate the design with a supplementary load at 32 inches reach of the 

5th axis. Along with this, total costs of bricks per unit and bricks used for the design also display updated 

information. 

 

7.4 Program Structure  

The software framework is divided into Graphic Components, Graphic Data, and Maps, as well as the 

necessary Form Control to instantiate key behaviors. The Graphic Component contains the graphic styles 

for the bricks shown as default on Adeon’s start up interface, containing an array of Bricks based on 

location and size. Each set of geometry, or Graphic Data drawn by the user stores itself as data onto a list.  



 55

 
ADEON: SYSTEM AND DESIGN CONTEXT 
 
 

That geometry data, or user input drawn information, is recognized by each brick as a cell containing a 

point, size, and location index that serve as a component to the array of bricks as a Map (see Appendix G). 

The term, Map, refers to a given location that acknowledges the user’s drawn input into the drawing 

window and can thereby determine which brick cell the user physically draws on based on ‘x’ and ‘y’ 

Cartesian coordinates, the amount of brick cells the user has drawn across, convert user mouse input to 

location, as well as to convert a two-dimensional array index to a linear array index for each brick cell. 

     The Form Control links the user’s input on the graphical user interface to specified behaviors or tasks, 

as well as initialize the Map function. Within the Form Control are the three list boxes containing Design, 

Construction, and Robot Knowledge. Upon listening, or instantiating either the vertical, curved, or 

inclined wall option on the graphical user interface, the draw function automatically follows suit.   

 

7.5 ADEON and IRB -140 in Operation 

Upon completion of a satisfactory design on the draw editor as well as the reflection of relevant 

information, the user can now convert the drawn data into machine readable code for the IRB-140 to 

recognize and perform the design operation as in Figure 20.  

 

 

 

 

 

 

 

 



 56

 
 

 
 

                ADEON    MACHINE CODE                               ROBOT COMPLETION 

Figure 20.  Adeon outputs machine readable code for robot operation tasks. 

 

The following images (Figure 21 and Figure 22) display the curved wall design made with ADEON and 

now under handling operation by the IRB-140.  

 

Figure  21. Curved wall, conversion from Adeon to physical creation by the IRB-140. 

 

 



 57

 
ADEON: SYSTEM AND DESIGN CONTEXT 
 

 

 

 

Figure 22. Vertical Wall configuration 

Some of the problems encountered while using the IRB-140 is in its inability to detect whether or not a 

4”x6” block has been stacked correctly on top of one another. The IRB-140, at its current state, does not 

recognize the design configuration, or how the weight of material interplays in the successful stacking of 

blocks. The IRB-140 used in this project performs routine tasks set by machine instructions. The next 

chapter will reflect on some of the issues and how to resolve some of the issues encountered during the 

experiment. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 58

 
 

 
 
 
 
 
 
 
 
 

Chapter Seven Recap 

Chapter Seven presents the thesis deliverable, the Adeon system, and demonstrates its use in a design 

scenario: the making of a curved and vertical wall using the IRB-140 robot. The chapter details how 

Adeon’s graphical user interface functions as a tool for bridging the gap between design, construction, 

and machine knowledge.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 59

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
PART V   A REFLECTION ON STRATEGIES 

 
 
 
 
 
 
 
 
 
 

 
This final chapter reflects on the research and the strategies implemented 

into this thesis as well as to suggest implications of how Adeon can 

impact the way designers consult experts in the field, and how machines  

will change designers.   

 
 
 
 
 
 
 
 
 
 



 60

 
A REFLECTION ON STRATEGIES 
 
8   Design Consulting Redefined, Adeon in the Future 
 
8.1  Adeon Revisited 

This thesis began as an exploration in finding ways for which design tools can exhibit common 

knowledge that only a designer can understand from work and education experience. Adeon, at the 

present, suggests the possibility for implementing an architectural knowledgebase that would facilitate 

designers to make design choices based on the alternatives suggested by Adeon as an intelligent system. 

So far, Adeon can relate three areas of knowledge: Design, Construction, and Machine information. With 

the use of the Open Mind Common Sense database, users of Adeon can continually update relevant 

design information to reflect and associate with different design possibilities.  

 The future development of Adeon, will be that the system becomes the consultant that architects and 

designers refer and work with in design projects (Figure 23). Placed on a central server, designers can tap 

into resourceful information associated with the current context of their designs for production. The  

ADEON:

-Data Feedback and Filtering

-Updated Knowledgebase via Open Mind Common Sense 

 

Figure 23. Adeon, a design consultant accessed by designers on a central server.  

Forthcoming features of Adeon will see the implementation of additional data feedback and filtering of 

information at the user’s discretion. S/he will be able to select the type of architectural knowledge to be  



 61

 
 
 
 

shown and can input new knowledge into the Open Mind Common Sense database by directly interacting 

within Adeon’s environment.  

8.2 Future Recommendations 

The use of the IRB-140 together with Adeon, currently demonstrates a one-way relationship where the 

IRB-140 interacts with Adeon after a design has been drawn onto the editor for machine readable 

interpretation. A future implementation is to let Adeon and the IRB-140 to demonstrate a two-way 

relationship instead, where the IRB-140 interacts with three dimensional spatial design and can 

reflect/output its understanding of assembly and the particular idiosyncrasies that can occur during 

production (Figure 24). A two-way relationship between Adeon and the IRB-140 can be brought possible 

by implementing robot vision-based processing, where the IRB-140 can scan its environment during 

production assembly and recognize anomalous qualities about the artifact.  

       ADEON      MACHINE CODE ROBOT  COMPLETION   

LIVE INFORMATION FEEDBACK  

Figure 24. With vision-cam, the robot can deliver live information feedback to Adeon. 



 62

 
A REFLECTION ON STRATEGIES 

 
 

8.3 The Machines among Architects  

The challenges designers face when using machines occur when tasks are not properly understood by the 

machine, or when a machine misinterprets a designer’s intentions. Currently, the means for remedying 

this type of encounter demands the user to do any of the following: summon technical support, resort to 

technical manuals and/or online support forums, or in some cases, hire a consultant.  Whether or not this 

proves as a barrier to the progression and development of a project, machines require the capability to 

integrate and adapt itself into understanding common design practices; to collaborate as an active agent in 

various field processes. This thesis looks to make that possible, offering a contribution on how architects 

can relate differently with machines and extend to the initial formations for a collaborative approach.  Our 

machines, as Rodney Brooks puts it, present themselves as an external reflection of the biological (Brooks  

2002). If this is true, then our machines as design tools are an extension and expression of that biological 

nature in ultimate creativity.  

 

 

 

 

 

 

 

 

 

 

 



 63

 
 
Bibliography 
 
 
Acocella, Alfonso 2006, Stone Architecture: Ancient and Modern Construction Skills, 1st edn, Rizzoli, 
New York. 
 
Anderson, S (ed.) 2004, Eladio Dieste: Innovation in Structural Art. Princeton Architectural Press, New 
York. 
 
Basic Brick Masonry Skills (videorecording) 1995, Milton Y, Haynes L, and Hull S, MWM Productions. 
 
Brooks, R. 2002, Flesh and Machines. New York: Pantheon. 
 
Casselman, Bill. Latin Dictionary, University of Washington.  
http://www.math.ubc.ca/~cass/frivs/latin/latin-dict-full.html. Viewed April 2008. 
 
Computer Science: Reflections on the Field, Reflections from the Field. 2004. National Research Council 
of the National Academies. National Academies Press: Washington, D.C. 
 
Gramazio, F and Kohler M 2008, Architecture and Digital Fabrication. www.dfab.arch.ethz.ch. Viewed 
on May 2008. 
 
Crevier, D, 1993, AI: The Tumultuous History of the Search for Artificial Intelligence, BasicBooks, New 
York. 
 
Grouting Masonry (videorecording) 1989, Wright W, Travis, L, Merrigan M, U.S.C. Teleproductions. 
 
Hoang, Han 2005, Automated Construction Technologies: Analyses and Future Development Strategies, 
MIT, Cambridge. 
 
Knight, T. and Stiny, G. 2001, Classical and Non-Classical Computation. Arq, 5, 369.  
 
Lawson, Bryan 1980, How Designers Think, Architectural Press, Westfield. 
 
Lobell, John 1979, Between Silence and Light: Spirit in the Architecuture of Louis I. Kahn. Shambhala, 
Boulder. 
 
Minsky, Marvin 1988, The Society of Mind. Simon and Schuster, New York.  
 
MIT Common Sense Computing Group. 2008. Open Mind Commons. 
http://commons.media.mit.edu:3000/. Viewed on February 2008. 
 
MIT Common Sense Computing Group. ConceptNet 
http://web.media.mit.edu/~hugo/conceptnet/. Viewed on February 2008 
 
Lieberman, H Liu, P Singh, B Barry. 2004, Beating common sense into interactive applications, AI 
Magazine 25(4): 63-76. AAAI Press. 
 



 64

 
 
 
 
 
Liu, H. and Singh, P. “ConceptNet: A Practical Commonsense Reasoning Toolkit”, BT Technology 
Journal 22(4). 2004. Kluwer Academic Publishers.  
 
Mueller Erik T 2006, Common Sense Reasoning. Morgan: New York, 2006.  
 
Poole, D, Boerlaye, B, Crowley, M, “On the Use of Possibilistic Bases for Local Computations in 
Product-Based Possibilites Networks”, Conference proceedings Advances in Artificial Intelligence: 20th 
Century Conference of the Canadian Society for Computational Studies of Intelligence 2007. Proceedings 
May 28-30 2007. 
 
Rosenbloom, P, Laird, J, & Newell, A. 1993, The Soar Papers: Research on Integrated Intelligence. MIT 
Press, Cambridge. 
 
Schon, Donald 1987, Educating the Reflective Practitioner, Josey-Bass, San Francisco.  
 
Skibniewski, M and Woolridge, 1992, “Robotic Materials handling for Automated Building Construction 
Technology” in Automation in Construction, Elsevier Science Publishers, 1, pp. 251-266. 
 
Simon, H. A. 1965, The Shape of Automation, Harper & Row, New York.  
 
Sutherland, I 1975, “Structure in Drawings and the Hidden-Surface Problem”, in 
Reflections on Computer Aids to Design and Architecture, N. Negroponte, (ed.) New York 
 
Schodek, D, Bechthold M, Griggs, K, Kao K, Steinberg M 2005, Digital Design and Manufacturing: 
CAD/CAM Applications in Architecture and Design, Wiley, Hoboken.  
 
Villalon, R. and Lobel, J. 2007, Materializing Design: Contemporary Issues in the Use of CAD/CAM 
Technology in the Architectural Design and Fabrication Process. ASCAAD International Conference on 
Nov. 28-30.  Alexandria, Egypt. 
 
Wiggins, Glen 1997, Louis I. Kahn: The Library at Phillips Exeter Academy. Von Nostrand Reinhold, 
New York.  
 
 
 
 
 
 
 
 
 
 
 



 65

 
APPENDIX A: TABLE OF FIGURES 
 
 
(All images are properties of their rightful owners and subject to copyright) 
 

Figure 1 – Thesis structure tree 1…………………………………………………………………………12 

Figure 2 – Thesis structure tree 2.……………………………………………………………………..….13 

Figure 3 – A) Library at Phillips Exeter, B) Atlantida Church, C) Gantenbein Winery  
Image A) Wiggins, Glen 1997 /Image B) Anderson, S (ed.) 2004/ 
Image C)Gramazio, F and Kohler, M 2008……………………………………………………………….14 

 
Figure 4 – CNC Machine in operation……………………………………………………………………22 

Figure 5 – Design workflow chart……………………………………………………………………......24 

Figure 6 – Waterjet cut aluminum mullion………………………………………………………………25 

Figure 7 – Open Mind Common Sense web user interface, MIT Software Agents Group………………31 

Figure 8 – Open Mind Common Sense relations form, MIT Software Agents Group…………………...32 

Figure 9 – A semantic network of everyday concepts, Lui and Singh 2004……………………………..36 

Figure 10a – Robot arm lifting and stacking……………………………………………………………..38 

Figure 10b – Robot arm at initial execution……………………………………………………………...39 

Figure 11 – Robot flex pendant device controller…………………………………………………..…….40 

Figure 12 – Case Study 3 sample of design, construction, machine knowledge analysis………………..46 

Figure 13 – Semantic network diagram of Case Study 3…………………………………………………47 

Figure 14 – Adeon’s system architecture diagram……………………………………………………......49 

Figure 15 – Brick wall design and robot scenario…………………………………...……………………50 

Figure 16 – Adeon and the Vertical Wall design scenario selection…………………………………..…51 

Figure 17 – Vertical Wall design scenario display of relevant knowledge label box…………………….51 

Figure 18 – Adeon and the Curved Wall design scenario sselection……………………………………..53 

Figure 19 – Curved wall design scenario display of relevant knowledge label box………………...……54 

Figure 20 – Adeon’s processing of machine code for robot….…………………………………………..56 

Figure 21 – Robot performing physical creation of curved wall design………………………………….56 

Figure 22 – Robot performing physical creation of vertical wall configuration………………………….57 

Figure 23 – The future of Adeon accessed through a central server………………………………..…….60 

Figure 24 –The future of Adeon and interactions with the digital fabrication machine……………….…61 

 
 
 



 66

 
APPENDIX B 
 
CASE STUDY ANALYSIS NOTES: BASIC BRICK MASONRY SKILLS 
 
 
NOTES from: Basic Brick Masonry Skills (videorecording) 1995, Milton Y, Haynes L, and Hull S, MWM 
Productions. 
 
The BIA, Brick Institute of America 
 
 
Terms, Tools and Techniques of the brick mason 

Basic Language of the Brick Mason: 

Aggregate: refers to the mineral materials sand and gravel to make mortar and concrete 

Bat: brick piece, half a piece or smaller in size 

Bed Joint 

Bond: mortar and masonry adhesion 

Burning the Joint: tooling the joint after it has set 

Buttering: put mortar on brick  

Closer Brick: Last brick laid on the course 

Course: a continuous row of horizontal masonry units 

Crowding the line: laying of bricks next to line 

Dry Bonding, lining brick without mortar 

Fat Mortar: sticky adhesive mortar 

Furrowing: shallow indentions cut mortar 

Head Joint, vertical mortar joint 

Lead, a guide in leaning a mortar 

Lean Mortar: not sticky mortar 

Line: string stretched from lead to lead on top edge of the brick course 

Mud: common name of mortar 



 67

 
APPENDIX B 
 
 

Ranging the Corner: alighning to corners 

Rowlock: msu set on its side 

Slack to the line: far from the line 

Soldier: face side facing out 

Tempering: adding water and mixing mortar to proper consistency 

Tooling: act of compressing, shaping, or finishing mortar joitns with special tool 

Trig: Device used to support a line at the center of the wall 

Wythe: a vertical wall one unit thick 

 

The Brick Mason’s Trowel 

Types and Uses of Trowels: 

The narrow London 

The wide London 

The Philadelphia 

 

Most commonly used is Narrow London 

Wide London and Philadelphia used in concrete block work 

Mixing Mortar: mix mortar at the job site, know how to mix by hand and machine. Gas powered or 

electric mortar mixer. 

 

 

 

 



 68

 
APPENDIX B 
 
 

Hand Mixing Mortar: 

Assemble mixing tools – masonry cement 

-sand 

-clean water 

-mortar box  

mortar hoe 

square point shovel 

bucket or container 

-box 1x1x1 to measure one cubic foot of sand 

-Type ‘N’ Mortar – 1 cu. Ft. cement per 3 cu. Ft. sand 

-7 shovelsful sand = 1 cu. Ft. 

 

Place bag of mortar in mortar box, divide in half, take other out, spread ½ bag of mortar mix over sand, 

spread other sand on top of mortar cement, take second half of mortar and spread over layer of sand 

With mortar hoe, thoroughly mix dry ingredients 

Pull ingredients to center of mortar box and make depression at center of mixture 

Pour water into the depression 

Using the hoe, mix ingredients 

Let mixture stand for 5 minutes. Then mix again with hoe 

Clean tools 

 

 

 



 69

 
APPENDIX B 
 
 

 

Picking up Mortar 

Cupping method, used with mortar board, cutting from main pile, and shaping it to long tapered form 

approx. length of the trowel blade 

Clock method 

Stringing Motar: unload trowel evenly. Length of three bricks, 2 feet long. Cut any excess mortar, don’t 

put back on board 

Furrowing brick: pull trowel across mortar  

Use excess mortar to fill gaps  

 

Stringing mortar over a line 

1. load trowel with mortar 

2. use sweeping motion to put mortar length of 3 bricks 

3. cut off excess mortar to fill gaps 

4. furrow motar and use excess to end of string 

practice placing brick to the line 

5. leave 1/16” space between the line and the brick 

6. cut excess mortar from the wall and make sure aligned to brick below it 

7. butter the next brick 

 
 
 
 
 
 
 



 70

 
APPENDIX B 
 
 
 
Grouting Brick Masonry 
 
NOTES from: Grouting Masonry (videorecording) 1989, Wright W, Travis, L, Merrigan M, U.S.C. 
Teleproductions. 
 
 
Brick Institute of Masonry 
Masonry institute of America 
National Concrete Masonry Association 
 

-Masonry, endured by time. Monumental structures used in the past. 

-Unreinforced masonry need damping properties, ductility, lateral strength 

-Reinforced masonry came because of seismic, wind, and earth pressures and heavy loads 

-Includes steel reinforcement and grout  

-Reinforced masonry allow for thinner walls to be constructed, longer spans, and taller and stronger walls. 

-Grout excellence in resistance to sound transmission 

-Grout increases fire resistance rating, a solid grouted wall 6-8 inches thick has a 4 hour fire rating. 

-Grout is not mortar or not concrete. It’s a cementious masonry unique to reinforce masonry. 

-Sand, Portland cement, water, and pea gravel are the basic ingredients of grout 

 

2 types of grout used in masonry construction: 

-Fine Grout – 1 part Portland Cement, 2 ¼ to 4 parts sand and water 

-Coarse Grout – 1 part Portland cement, 2 ¼ to 3 parts sand and water, 1 to 2 parts pea gravel. 

-Fine grout is used in small and congested areas because of steel reinforcement. 

-Coarse grout is used to the width of the grout space or where less congested. 

-Slump test, 8-10 inches 

 



 71

 
APPENDIX B 
 
 

-Masonry may be fully grouted once masonry and steel reinforcement are put in place. Compeletely filled 

with grout inside. 

-Hollow unit masonry walls can be partially grouted 

-High Lift grouting, when walls exceed 5 feet. Need clean out spaces to blow excess dry mortar 

-Low Lift grouting, without clean out spaces 

-Grout bonds creates a homogenous system, consolidated 

-Building code, cold weather construction 

-Both Fine and Coarse grout must have a minimum of 2000 psi compressive strength to ensure bounding 

of grout to reinforced steel. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 72

 
APPENDIX C: CASE STUDY ANALYSIS PHILIPS EXETER LIBRARY, 

EXTRACTION FOR THE OMCS DATABASE 
 
 
 

LIBRARY AT PHILIPS EXETER ACADEMY    
  ARCHITECT: LOUIS KAHN 

TRADITIONAL BRICK ARCHITECTURE 
 

Design Knowledge   Construction Knowledge   
 IRB-140 Knowledge 

 
Louis Kahn can design brick walls. 
(CapableOf) 
 
Brick is a type of load-bearing material. 
(IsA) 
 
Philips Exeter Library is designed in brick to 
keep with the traditional New England 
campus. (HasProperty) 
 
Philips Exeter Library is a brick building 
designed to keep with the traditional New 
England campus. (IsA) 
 
The Philips Exeter Library is the building 
designed by architect, Louis Kahn. 
(DefinedAs) 
 
Philips Exeter Library’s brick piers are 
wider nearer to the ground where their loads 
are greater. (HasProperty) 
 
The brick wall is interspersed with apertures 
for windows. (HasProperty) 
 
You would put openings in a brick walls 
because you want a door or window. 
(MotivatedByGoal)  
 
 
 
 
 

 
An exterior brick wall wants to be designed for 
stopping water ingress from melted snow, rain, 
and ice. (Desires) 
  
Something you need to do before you lay 
bricks is to mix mortar.  (HasPrerequisite) 
 
Hand mixing mortar requires masonry cement, 
sand, clean water, mortar box, mortar hoe, 
square point shovel, and a bucket. 
(HasPrerequisite) 
 
Mortar is created by mixing masonry cement, 
sand, and clean water. (CreatedBy) 
 
The first thing you do when you prepare 
mortar is place the bag of mortar inside a mortar 
box.  (HasFirstSubevent) 
 
One of the things you do when you have 
mortar in a mortar box is to divide the mix in 
half. (HasSubevent) 
 
One of the things you do when you divide 
mortar mix in half is spread sand on top of the 
mortar cement. (HasSubevent) 
 

 



 73

 
 

 
Design Knowledge   Construction Knowledge   

  
 
A window’s width and height is the 
maximum distance of brick piers. 
(DefinedAs) 
 
The effect of placing a window in a brick 
wall is that the width and height are 
determined by the maximum distance of the 
brick piers. (Causes) 
 
The brick wall at Philips Exeter Library is 
used for load-bearing. (UsedFor) 
 
Brick walls can be used for as a veneer 
instead of as a load-bearing material. 
(UsedFor) 
 
Brick walls can be used for as a skeletal 
structure instead of as a load-bearing 
material. (UsedFor) 
 
You would use brick as a veneer because 
you want to create an aesthetic effect. 
(MotivatedByGoal) 
 
You would want to use brick as a building 
material because you want the aesthetic of 
having the forces of gravity and weight to be 
evident in the construction. 
(MotivatedByGoal) 
 

 
One of the things you do when you mix dry 
mortar is place a depression at the center. 
(HasSubevent) 
 
One of the things you do when you mix dry 
mortar is pour water. (HasSubevent) 
 
One of the things you do when done mixing 
mortar is let mixture stand for five minutes. 
(HasSubevent) 
 
The first thing you do when you lay brick is 
load the trowel with mortar. (HasFirstSubevent) 
 
One of the things you do when you lay mortar 
on a brick wall is to place mortar three brick 
lengths long. (HasSubevent) 
 
One of the things you do when you place 
mortar three brick lengths long is cut off excess 
mortar to fill brick gaps. (HasSubevent) 
 
One of the things you do when you cut off 
excess mortar to fill brick gaps is to furrow the 
mortar and use as excess to end of brick string. 
(HasSubevent)  
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 74

 
 

Design Knowledge   Construction Knowledge   
 IRB-140 Knowledge 

 
The brick piers of Philips Exeter Library are 
used for accommodating the building’s 
load.  (UsedFor) 
 
The brick piers of Philips Exeter Library are 
progressively narrower at the base. 
(DefinedAs) 
 
You would extend a brick exterior wall of 
Philips Exeter Library because you want 
to increase its sense of being a screen. 
(MotivatedByGoal) 
 
You would design Philips Exeter Library 
with warm tones and rich texture because 
you want an inviting quality provided by the 
natural light. (MotivatedByGoal) 
 
 
 
 
 
 

 
One of the things you do when you place brick 
to the line is leave 1/16” space between the line 
and the brick. (HasSubevent) 
 
One of the things you do when you leave 1/16” 
space between the line and brick is cut excess 
mortar from the wall and make sure the brick is 
aligned to the other brick below it. 
(HasSubevent) 
 
One of the things you do when you align brick 
to the wall is to butter the next brick. 
(HasSubevent) 
 
An exterior brick wall wants to be designed for 
accommodating differential movement. 
(Desires) 
 
Brick walls are the modular building blocks 
bonded together with mortar to form walls that 
are durable, fire-resistant, and structurally 
efficient in compression. 
(DefinedAs) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 75

 
 

   Construction Knowledge  
    

 
Masonry is the building with units of various natural or manufactured products, such as brick, 
stone, or concrete block, usually with the use of mortar as a bonding agent. (DefinedAs) 
 
A bat is the half piece of brick. (DefinedAs) 
 
A bond is the mortar and masonry adhesion (DefinedAs) 
 
Burning the Joint is the tooling of the joint 
after it has set. (DefinedAs) 
 
A Line is the string stretched from lead to lead on top edge of the brick course. (DefinedAs) 
 
Mud is the common name for mortar. (DefinedAs) 
 
Ranging the Corner is the aligning of brick to corners. (DefinedAs) 
 
Tempering is the adding of water and mixing of mortar to proper consistency. (DefinedAs) 
 
Tooling is the act of compressing, shaping, or finishing mortar joints with a special tool. 
(DefinedAs) 
 
A Trig is the device used to support a line at the center of a brick wall. (DefinedAs) 
 
A Wythe is the vertical wall one unit thick. (DefinedAs) 
 
 
Buttering is the placing of mortar on brick. (DefinedAs) 
 
Closer Brick is the last brick laid on the course. (DefinedAs) 
 
A course is the continuous row of horizontal masonry units. (DefinedAs) 
 
Crowding the Line is the laying of bricks next to a line. (DefinedAs) 
 
Dry Bonding is the lining of brick without mortar. (DefinedAs) 
 
Fat Mortar is the sticky adhesive mortar. (DefinedAs) 
 
 
 
 



 76

 
 

 
   Construction Knowledge  
    

 
Furrowing is the shallow indentations cut into mortar. (DefinedAs)  
 
A Head Joint is a vertical mortar joint. (DefinedAs) 
 
A lead is a guide in leaning mortar. (DefinedAs) 
 
Lean Mortar is the term to describe non-sticky mortar. (DefinedAs) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 77

 
APPENDIX D: CASE STUDY ANALYSIS NOTES ON ATLANTIDA 
 
 
 
Untraditional Curved walls described:  
Case Study #1: Eladio Dieste’s Atlantida (1958-50) 

 

-Atlantida has sinusoidal walls and roof, before end walls were added. 

-Atlantida is a sinusoidal wall. 

-Atlantida is made up of cylindrical barrel shells. 

-In their curved direction, these act in compression, whereas in their longitudinal axes, they act as beams.  

-The shape of Atlantida’s walls are generated by straight line segments whose ends were translated along 

sinusoidal paths.  

-“The wall is a seamless whole, not separating the mechanical to the philosophical” (Anderson 2004). 

-The vault is uniformly loaded in horizontal projection, therefore the funicular shape is a parabola.  

-A funicular is a shape subjected to a given pattern of loads and its inversion assumes the same pattern of 

loads assumed by a flexible string or cable. 

-Atlantida’s masonry structure is subject to bending. 

-There are non-loadbearing elements added or needed to sculpt the interior space.  

-The wall is dancing. 

-The wall presents fluidity in the landscape. 

-The wall is fluid. 

-A dynamic partition 

-The surface as barrier. 

-A non-static wall 

-The bricks are dance in sync with the landscape. 

-The bricks flow smoothly as an exterior shell. 



 78

 
APPENDIX D 
 
 
 

Consequences to Construction: 

-Reinforced brick work 

-Reinforced brick work consists of steel-reinforcement . 

-Steel reinforcement bars are manufactured by hot-roll process as round rods with lugs, or deformations 

which inhibit longitudinal movement of the bar in the surrounding “concrete”.  

-Steel reinforcement are in sizes #3 - #8, the numbers are the number of eights of an inch in the nominal 

diameter of bars. 

 

-In some instances, a fiber-reinforced plastic (FRP) rebar is used for highly specialized concrete 

reinforcement because of its high tensile strength and light weight, corrosion resistance, and dielectric 

(nonconductive) properties.  

-FRP rebars are manufactured in the same sizes as steel rebars and also have deformations on the surface. 

 

 

 

 

 

 

 

 

 

 
 



 79

 
APPENDIX E: NOTES ON LOUIS KAHN’S PHILLIPS EXETER ACADEMY LIBRARY 
 
 

Traditional Brick Wall Enclosure 

-The brick piers between the windows become wider nearer to the ground where their loads are greater.  

-The brick wall is interspersed with apertures for windows.  

-The windows width and height are determined by the maximum distance of the brick piers. 

-The brick is treated as a load-bearing material not as a veneer or skeletal structure 

-The forces of gravity and weight of the masonry is evident in the construction. 

-The brick piers are wider at the base than near the roof to accommodate load.  

-The brick piers are progressively narrower towards the base. 

-The exterior wall extends “to increase its sense of being a screen.” 

-The walls have warm tones and rich texture which add an inviting quality provided by the natural light. 

-The walls do not bring each side to a traditional ninety-degree corner. 

-The wall adds a screen-like quality to the façade. 

 

Kahn: “If you talk to a brick and ask it what it likes, it’ll say it likes an arch. And you say to it, look 

arches are expensive and you can always use a concrete lintel to take the place of an arch. And the brick 

says, I know it’s expensive and I’m afraid it probably cannot be built these days, but if you ask me what I 

like its still an arch.”  

(Kahn, Louis. “An Architect Speaks his Mind.” House and Garden 142, no. 4 (October 1972). 

-Kahn “masonry was ‘dancing like an angel’ at the top and ‘grunting’ below”. 

-Kahn refers to the ‘grunting below’ quality as the  weight of the building at the  typical grade-level 

corner is almost palpable.  

 

 



 80

 
APPENDIX E 
 
 

Consequences to Construction 

-The masonry walls consist of modular building blocks bonded together with mortar to form walls that 

are durable, fire-resistant, and structurally efficient in compression. 

-Load-bearing brick construction 

 

Typical Solutions for Constructing with brick: 

-Constructing a concrete or steel frame and facing that frame with individual bricks. 

-Build large brick panels off site or on the ground and then raise them on the structural frame. 

 

Construction for Masonry Bearing Walls 

Foundation – concrete –formwork, type of concrete, concrete needs rebar, type of rebar, set time, slump 

test, rebar steel ties, set.  

 

 

 

 

 

 

 

 

 

 

 



 81

 
APPENDIX F: EIGHTEEN RELATIONS FOR OMCS DATABASE 
 
 
1. CausesDesire – What does it make you want to do? 
____ would make you want to _____.  
 
2. MadeOf – What is it made of? 
____ is made of _____. 
 
3. IsA – What kind of thing is it? 
___ is a kind of _____. 
___ is a type of _____. 
___ are a kind of ____. 
 
4. UsedFor – What do you use it for? 
___ is used for ____. 
___ can be used for ____. 
___ is for ___. 
 
5. CapableOf – What can it do? 
___ can ____. 
 
6. Part of – What is it part of? 
___ is part of ____.  
 
7. DefinedAs – How do you define it? 
____ is the _____. 
 
8. CreatedBy – How do you bring it into existence? 
____ is created by _____. 
 
9. HasFirstSubevent – What do you do first to accomplish it? 
The first thing you do when you ____ is ____. 
 
10. HasLastSubevent – What do you do last to accomplish it? 
The last thing you do when you ____ is _____. 
 
11. HasPrerequisite – What do you need to do first? 
Something you need to do before you ____ is _____. 
____ requires _____. 
If you want to _____ then you should _____. 
 
12.  AtLocation – Where would you find it? 
You are likely to find ____ in ______. 
You are likely to find ____ on _____. 



 82

 
APPENDIX F 
 
 
You are likely to find ____ near ____. 
You are likely to find ____ around ____. 
 
13. MotivatedByGoal – Why would you do it? 
You would ____ because you want ____. 
 
14. Desires – What does it want? 
_____ wants to ______. 
An _____ wants to _____. 
A ____ wants to _____. 
 
 
15. Causes – What does it make happen? 
The effect of _____ is ______. 
The effect of _____ is that _____. 
 
16. HasSubevent – What do you do to accomplish it? 
One of the things you do when you ____ is _____. 
Something that might happen when you ____ is ____. 
Something that might happen while ____ is ____. 
 
17. HasProperty – What properties does it have? 
___ is generally ____. 
___ are ___. 
___ is ___. 
 
18. ReceivesAction – What can you do to it? 
___ can be ___. 
___ is ____. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 83

 
APPENDIX G: RAPID SOURCE CODE 
 
 
 
MODULE Module1 

!150 is the apex 

 CONST robtarget Target_80_1up:=[[3.6,-550,150],[-5.88784672006415E-

16,0.707106781186547,0.707106781186548,-5.88784672006416E-16],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 PERS tooldata RAD_AL2100:=[TRUE,[[0,0,121],[1,0,0,0]],[0.17,[0,0,1],[1,0,0,0],0,0,0]]; 

!target10 = grab block  

!target_set describes location of block, dropped.  

 CONST robtarget Target_10_block1:=[[3.6,-550,30],[4.32963728535968E-

17,0.707106781186547,0.707106781186548,4.32963728535968E-17],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_80_apex:=[[500,0,200],[-3.74915180455534E-33,-

6.12303176911189E-17,1,-6.12303176911188E-17],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_80_1set:=[[480,15,30],[3.74915180455535E-33,-

6.12303176911189E-17,1,6.12303176911189E-17],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_80_2up:=[[103.6,-550,150],[-5.88784672006415E-

16,0.707106781186547,0.707106781186548,-5.88784672006416E-16],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_10_block2:=[[103.6,-550,30],[8.71576399210524E-

33,0.707106781186547,0.707106781186548,8.65927457071935E-17],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_90_2set:=[[500,-15,30],[3.74915180455535E-33,-

6.12303176911189E-17,1,6.12303176911189E-17],[-1,0,-1,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_90_3up:=[[203.6,-550,150],[-5.88784672006415E-

16,0.707106781186547,0.707106781186548,-5.88784672006416E-16],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 

 



 84

 
APPENDIX G 
 
 
 

 CONST robtarget Target_10_block3:=[[203.6,-550,30],[8.71576399210524E-

33,0.707106781186547,0.707106781186548,8.65927457071935E-17],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_80_3set:=[[480,15,60],[3.74915180455535E-33,-

6.12303176911189E-17,1,6.12303176911189E-17],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_100_4up:=[[303.6,-550,150],[-5.88784672006415E-

16,0.707106781186547,0.707106781186548,-5.88784672006416E-16],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_10_block4:=[[303.6,-550,30],[-4.32963728535968E-

17,0.707106781186547,0.707106781186548,-4.32963728535968E-17],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_90_4set:=[[500,-15,60],[3.74915180455535E-33,-

6.12303176911189E-17,1,6.12303176911189E-17],[-1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_110_5up:=[[403.6,-550,150],[-5.88784672006415E-

16,0.707106781186547,0.707106781186548,-5.88784672006416E-16],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_20_block5:=[[403.6,-550,30],[-4.32963728535968E-

17,0.707106781186547,0.707106781186548,-4.32963728535968E-17],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_80_5set:=[[480,15,90],[3.74915180455535E-33,-

6.12303176911189E-17,1,6.12303176911189E-17],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_120_6up:=[[3.6,-707,150],[-5.88784672006415E-

16,0.707106781186547,0.707106781186548,-5.88784672006416E-16],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_30_block6:=[[3.6,-707,30],[-4.32963728535968E-

17,0.707106781186547,0.707106781186548,-4.32963728535968E-17],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 



 85

 
APPENDIX G 
 
 
 

 CONST robtarget Target_90_6set:=[[500,-15,90],[3.74915180455535E-33,-

6.12303176911189E-17,1,6.12303176911189E-17],[-1,0,-1,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_130_7up:=[[103.6,-707,150],[-5.88784672006415E-

16,0.707106781186547,0.707106781186548,-5.88784672006416E-16],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_40_block7:=[[103.6,-707,30],[-4.32963728535968E-

17,0.707106781186547,0.707106781186548,-4.32963728535968E-17],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_80_7set:=[[480,15,120],[3.74915180455535E-33,-

6.12303176911189E-17,1,6.12303176911189E-17],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_140_8up:=[[203.6,-707,150],[-5.88784672006415E-

16,0.707106781186547,0.707106781186548,-5.88784672006416E-16],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_50_block8:=[[203.6,-707,30],[-4.32963728535968E-

17,0.707106781186547,0.707106781186548,-4.32963728535968E-17],[-

1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

 CONST robtarget Target_80_8set:=[[500,-15,120],[3.74915180455535E-33,-

6.12303176911189E-17,1,6.12303176911189E-17],[-1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]; 

PROC main() 

Path_10; 

ENDPROC 

 

  

PROC Path_10() 

!SetDO, open gripper 

 SetDO DO10_1,1; 

 MoveJ Target_80_1up,v100,z100,RAD_AL2100\WObj:=wobj0; 



 86

 
APPENDIX G 
 
 
 

 MoveL Target_10_block1,v100,fine,RAD_AL2100\WObj:=wobj0; 

!Reset, close gripper 

 Reset DO10_1; 

 MoveJ Target_80_1up,v50,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_1set,v100,z100,RAD_AL2100\WObj:=wobj0; 

 WaitTime 2; 

 SetDO DO10_1,1; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_2up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_10_block2,v100,z100,RAD_AL2100\WObj:=wobj0; 

 !PickBlock; 

 WaitTime 2; 

 Reset DO10_1; 

 MoveJ Target_80_2up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_90_2set,v100,z100,RAD_AL2100\WObj:=wobj0; 

 WaitTime 1; 

 SetDO DO10_1,1; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_90_3up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_10_block3,v100,z100,RAD_AL2100\WObj:=wobj0; 

 WaitTime 2; 

 Reset DO10_1; 

 MoveJ Target_90_3up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_3set,v100,z100,RAD_AL2100\WObj:=wobj0; 



 87

 
APPENDIX G 
 
 
 

 WaitTime 2; 

 SetDO DO10_1,1; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_100_4up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_10_block4,v100,z100,RAD_AL2100\WObj:=wobj0; 

 WaitTime 2; 

 Reset DO10_1; 

 MoveJ Target_100_4up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_90_4set,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_110_5up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_20_block5,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_110_5up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_5set,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_120_6up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_30_block6,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_120_6up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_90_6set,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_130_7up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_40_block7,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_130_7up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 



 88

 
APPENDIX G 
 
 
 

 MoveJ Target_80_7set,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_140_8up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_50_block8,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_140_8up,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_8set,v100,z100,RAD_AL2100\WObj:=wobj0; 

 MoveJ Target_80_apex,v100,z100,RAD_AL2100\WObj:=wobj0; 

ENDPROC 

PROC Path_20() 

ENDPROC 

 

ENDMODULE 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 89

 
 

APPENDIX H: System Source Code 
 
 
//Map Source Code 
 
// © 2008 Rachelle Villalon. All rights reserved.  
 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Drawing; 
using Study10.GraphicComponents; 
 
namespace Study10.Maps 
{ 
    public class Map: GraphicComponents.Idraw 
    { 
        //members 
        List<Cell> _cells = new List<Cell>(); 
        List<bool> _flags = new List<bool>(); 
 
        //map info 
        //geometry data 
        Point _location; 
        Size _size; 
        Size _cellSize; 
        double _offset = 0.5; 
 
        public double OFFSET 
        { 
            get { return _offset; } 
            set { _offset = value; } 
        } 
        public Size SIZE 
        { 
            get { return _size; } 
            set  
            { 
                
                _size = value;  
             
            } 
        } 
        public Point LOCATION 
        { 
            get 
            { 
                return _location; 
            } 
            set 
            { 
                _location = value; 



 90

 
APPENDIX H 
 
 
                
            } 
        } 
 
 
 
        public Size CELL_SIZE 
        { 
            get { return _cellSize; } 
            set  
            {  
                _cellSize = value; 
                foreach (Cell c in _cells) 
                { 
                    c.SIZE = value; 
                } 
            } 
        } 
 
        public Map() 
        { 
            LOCATION = new Point(); 
            SIZE = new Size(10, 10); 
            CELL_SIZE = new Size(4, 2); 
            init(); 
        } 
 
        public void init() 
        { 
            int length = SIZE.Height * SIZE.Width; 
            for (int i = 0; i < length; i++) 
            { 
                _cells.Add(new Cell()); 
            } 
            for (int i = 0; i < SIZE.Width; i++) 
            { 
                for (int j = 0; j < SIZE.Height; j++) 
                { 
                    set(new Cell(), new Point(i, j)); 
                } 
            } 
             
        } 
 
        public void set(Cell cell, Point index) 
        { 
            int lIndex = convertIndex(index); 
             
            // chekc if index out of bound 
            if (lIndex >= _cells.Count)return; 
 
            cell.INDEX = index; 



 91

 
APPENDIX H 
 
 
 
            double cellX = (double)(LOCATION.X + (_cellSize.Width * index.X)); 
            double cellY = (double)( LOCATION.Y + (_cellSize.Height * 
index.Y)); 
             
            //offset the even rows 
            if ((index.Y % 2) == 0) 
            { 
                Console.WriteLine("cellY=" + cellY); 
                cellX += (_cellSize.Width * _offset); 
            } 
             
            cell.LOCATION = new Point((int)cellX, (int)cellY); 
            cell.SIZE = _cellSize; 
            _cells[lIndex] = cell; 
 
        } 
 
        public void add(Cell cell) 
        { 
            
            _cells.Add(cell); 
             
        } 
        public int getBrickCount() 
        { 
            int count = 0; 
            foreach (Cell c in _cells) 
            { 
                if (c is Brick) count++; 
            } 
            return count; 
        } 
 
        //convert 2D array index to linear array index 
        private int convertIndex(Point p) 
        { 
            return p.X + (_size.Width * p.Y); 
        } 
 
        public void draw(Graphics g) 
        { 
            foreach (Cell c in _cells) 
            { 
                c.draw(g); 
            } 
        } 
        public static Point convertMouseInputToLoc(int x, int y, Map map) 
        { 
            int nx = (x * map.CELL_SIZE.Width) + map.LOCATION.X; 
            int ny = (y * map.CELL_SIZE.Height) + map.LOCATION.Y; 
            return new Point(nx, ny); 



 92

 
APPENDIX H 
 
 
 
        } 
    } 
} 
 
 
//FORM SOURCE CODE 
 
// © 2008 Rachelle Villalon. All rights reserved.  
using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Windows.Forms; 
using Study10.Maps; 
using Study10.GraphicsData; 
using Study10.GraphicComponents; 
using System.Runtime.InteropServices; 
using System.IO; 
 
namespace Study10 
{ 
    public partial class Form1 : Form 
    { 
        Map _map; 
 
        //added for code to show within label 
        Label labl; 
   
        //mouse flags 
        bool _LBD = false; //left button down 
 
        public Form1() 
        { 
            InitializeComponent(); 
            initializeMap(); 
            this.DoubleBuffered = true; 
        } 
 
 
        public void initializeMap() 
        { 
            _map = new Map(); 
            _map.SIZE = new Size(50, 50);           //was size (50, 10) 
            _map.CELL_SIZE = new Size(8, 4);         
            _map.LOCATION = new Point(10,10); 
            _map.init(); 
            listBox1.Items.Add("total brick"); 



 93

 
APPENDIX H 
 
 
 
            listBox2.Items.Add("."); 
            listBox3.Items.Add("Design Knowledge"); //added  
            listBox4.Items.Add("test"); //added 5/15 
            listBox5.Items.Add("."); 
            Data.add(_map); 
        } 
 
        public Map getMap() 
        { 
            return _map; 
        } 
 
        protected override void OnPaint(PaintEventArgs e) 
        { 
            base.OnPaint(e); 
            Graphics g = e.Graphics; 
            Data.draw(e.Graphics); 
            update(); 
             
            this.Invalidate(); 
        } 
 
 
        public void update() 
        { 
            decimal cost = 0.39M; 
            decimal totalcost; 
            listBox1.Items[0]=("total brick=" + _map.getBrickCount()); 
            listBox1.Invalidate(); 
 
            //listbox5 = ROBOT KNOWLEDGE 
            //listbox4 = CONSTRUCTION KNOWLEDGE 
            //listbox2 = DESIGN KNOWLEDGE 
            //listbox3 = COST 
 
            if (_map.getBrickCount() < 1000) 
            {    
                //COST 
                //listBox3.Items[0]=("$0.39 per brick unit"); 
                totalcost = _map.getBrickCount() * cost; 
                listBox3.Items[0]=("total cost in units per brick= $" + 
totalcost); 
            } 
            //CONSTRUCTION KNOWLEDGE 
            if (_map.getBrickCount() < 100) 
            { 
                listBox4.Items[0] = ("."); 
            } 
 
            else if (_map.getBrickCount() > 130) //FOR CURVED WALL IN 
TRANSLATION 



 94

 
APPENDIX H 
 
 
 
            { 
                listBox4.Items[0] = ("In some instances, a fiber-reinforced 
(FRP) rebar is used for highly specialized brick work because of its high 
tensile strength and light weight, corrosion resistance, and dielectric 
(nonconductive) properties");  
            } 
            else 
            { 
                listBox4.Items[0] = ("Loadbearing walls should be aligned 
consistently from floor to floor and should be continuous from the roof to 
the building foundation."); 
            } 
             
 
 
 
 
            //DESIGN KNOWLEDGE 
            if (_map.getBrickCount() < 100) 
            { 
                listBox2.Items[0] = ("."); 
            } 
            else if (_map.getBrickCount() > 130) //Curved wall translated 
            { 
                listBox2.Items[0] = ("A curved wall presents fluidity in the 
landscape. An example of this is Atlantida by Eladio Dieste, where walls are 
generated by straight line segments whose ends were translated along 
sinusoidal paths."); 
            } 
            else 
            { 
                listBox2.Items[0] = ("You would want to use brick as a 
building material because you want the aesthetic of having the forces of 
gravity and weight to be evident in the construction"); 
            } 
 
            //ROBOT KNOWLEDGE 
            if (_map.getBrickCount() < 100) 
            { 
                listBox5.Items[0] = ("."); 
            } 
            else if (_map.getBrickCount() > 130) 
            { 
                listBox5.Items[0] = ("IRB 140 can accomodate the design with 
supplementary load at 32 inches reach of the 5th axis." ); 
            } 
 
            else 
            { 
                listBox5.Items[0] = ("IRB 140 can accomodate the design 
within 50 to -230 degrees range of movement."); 



 95

 
APPENDIX H 
 
 
 
            } 
 
            return; 
 
            
 
        } 
 
        private void Form1_MouseDown(object sender, MouseEventArgs e) 
        { 
            _LBD = true; 
 
            //Console.Out.WriteLine(" button pressed "); 
        } 
 
        private void Form1_MouseUp(object sender, MouseEventArgs e) 
        { 
            _LBD = false; 
        } 
 
        private void Form1_MouseMove(object sender, MouseEventArgs e) 
        { 
            if (_LBD) 
            { 
 
                int x = (int)((double)(e.X - _map.LOCATION.X) / 
_map.CELL_SIZE.Width); 
                int y = (int)((double)(e.Y - _map.LOCATION.Y) / 
_map.CELL_SIZE.Height)-1; 
                Point loc=new Point(x,y); 
                Console.Out.WriteLine( loc.ToString()); 
                _map.set(new Brick(), loc); 
                Console.Out.WriteLine(" dragging "); 
            } 
            //Console.Out.WriteLine(" moving"); 
        } 
 
         
        private void Form1_KeyDown(object sender, KeyEventArgs e) 
        { 
            
        } 
 
        private void listBox2_SelectedIndexChanged(object sender, EventArgs e) 
        { 
 
        } 
 
        private void label2_Click(object sender, EventArgs e) 
        { 
 



 96

 
APPENDIX H 
 
 
 
        } 
 
         
        private void RobConvertCode_Click(object sender, EventArgs e) 
        { 
             
 
            for (int i = progressBar1.Minimum; i <= progressBar1.Maximum; i++) 
            { 
                progressBar1.PerformStep(); 
 
            } 
 
            OpenFileDialog fdlg = new OpenFileDialog(); 
            TextBox textBox1 = new TextBox(); 
 
            fdlg.Title = "IRB-140 RAPID CODE"; 
            fdlg.InitialDirectory = @"c:\Robot\"; 
            fdlg.Filter = "All files(*.*) |*.*|All files (*.*)|*.*"; 
            fdlg.FilterIndex = 2; 
            fdlg.RestoreDirectory = true; 
            if (fdlg.ShowDialog() == DialogResult.OK) 
            { 
 
                textBox1.Text = fdlg.FileName; 
            } 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 97

 
APPENDIX H 
 
 
 
//DATA SOURCE CODE 
 

// © 2008 Rachelle Villalon. All rights reserved.  
 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using Study10.GraphicComponents; 
using System.Drawing; 
 
namespace Study10.GraphicsData 
{ 
    public class Data 
    { 
        public static List<Idraw> _drawables = new List<Idraw>(); 
 
        public static void add(Idraw d) 
        { 
            _drawables.Add(d); 
        } 
 
        public static void remove(Idraw d) 
        { 
            _drawables.Remove(d); 
        } 
 
        public static void draw(Graphics g) 
        { 
            foreach(Idraw d in _drawables) 
            { 
                d.draw(g); 
            } 
        } 
    } 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 



 98

 
APPENDIX H 
 
 
//CELL SOURCE CODE 
 
// © 2008 Rachelle Villalon. All rights reserved.  
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Drawing; 
using Study10.GraphicComponents; 
 
namespace Study10.Maps 
{ 
    public class Cell : Idraw 
    { 
        //geometry data 
        Point _location; 
        Size _size; 
        Point _index; 
 
        public Point INDEX 
        { 
            get 
            { 
                return _index; 
            } 
            set 
            { 
                _index = value; 
            } 
        } 
        public Size SIZE 
        { 
            get { return _size; } 
            set { _size = value; } 
        } 
        public Point LOCATION 
        { 
            get 
            { 
                return _location; 
            } 
            set 
            { 
                _location = value; 
            } 
        } 
 
        public virtual void draw(Graphics g) 
        { 
 
 



 99

 
APPENDIX H 
 
 
 
            g.DrawRectangle(Pens.Blue, new Rectangle(LOCATION, SIZE)); 
        } 
 
     

} 
} 
 
//DRAW SOURCE CODE 
 
// © 2008 Rachelle Villalon. All rights reserved.  
 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Drawing; 
 
namespace Study10.GraphicComponents 
{ 
    public interface Idraw 
    { 
        void draw(Graphics g); 
 
    } 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 100 

 
APPENDIX H 
 
 
 
//BRICK SOURCE CODE 
 

// © 2008 Rachelle Villalon. All rights reserved.  
 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Drawing; 
using Study10.Maps; 
 
namespace Study10.GraphicComponents 
{ 
    public class Brick: Cell 
    { 
         
 
        //graphics styles 
        Pen _pen = Pens.Red; 
 
        public Brick() 
        { 
            LOCATION = new Point(); 
            SIZE = new Size(2, 1); 
        } 
        public Brick(Point loc, Size size) 
        { 
            LOCATION = loc; 
            SIZE = size; 
        } 
 
       public override void  draw(Graphics g) 
       { 
         base.draw(g); 
           g.DrawRectangle(_pen, new Rectangle(LOCATION, SIZE)); 
            
       } 
         
         
    } 
} 
 
 
 
 
 
 
 
 



 101 

 
APPENDIX H 
 
 
//MAIN( ) PROGRAM SOURCE CODE 
 
// © 2008 Rachelle Villalon. All rights reserved.  
 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Windows.Forms; 
 
namespace Study10 
{ 
    static class Program 
    { 
        /// <summary> 
        /// The main entry point for the application. 
        /// </summary> 
        [STAThread] 
        static void Main() 
        { 
            Application.EnableVisualStyles(); 
            Application.SetCompatibleTextRenderingDefault(false); 
            Application.Run(new Form1()); 
        } 
    } 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 102 

 
APPENDIX H 
 
 
//RESOURCES CODE 
 
 
namespace Study10.Properties { 
    using System; 
     
     
    /// <summary> 
    ///   A strongly-typed resource class, for looking up localized strings, 
etc. 
    /// </summary> 
     
    
[global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Resources.Too
ls.StronglyTypedResourceBuilder", "2.0.0.0")] 
    [global::System.Diagnostics.DebuggerNonUserCodeAttribute()] 
    [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()] 
    internal class Resources { 
         
        private static global::System.Resources.ResourceManager resourceMan; 
         
        private static global::System.Globalization.CultureInfo 
resourceCulture; 
         
        
[global::System.Diagnostics.CodeAnalysis.SuppressMessageAttribute("Microsoft.
Performance", "CA1811:AvoidUncalledPrivateCode")] 
        internal Resources() { 
        } 
         
        /// <summary> 
        ///   Returns the cached ResourceManager instance used by this class. 
        /// </summary> 
        
[global::System.ComponentModel.EditorBrowsableAttribute(global::System.Compon
entModel.EditorBrowsableState.Advanced)] 
        internal static global::System.Resources.ResourceManager 
ResourceManager { 
            get { 
                if (object.ReferenceEquals(resourceMan, null)) { 
                    global::System.Resources.ResourceManager temp = new 
global::System.Resources.ResourceManager("Study10.Properties.Resources", 
typeof(Resources).Assembly); 
                    resourceMan = temp; 
                } 
                return resourceMan; 
     
 
 
 
 
        } 



 103 

 
APPENDIX H 
 
 
               
  } 
         
        /// <summary> 
 
 
///   Overrides the current thread's CurrentUICulture property for  
 
 
        ///   resource lookups using this strongly typed resource class. 
        /// </summary> 
        
[global::System.ComponentModel.EditorBrowsableAttribute(global::System.Compon
entModel.EditorBrowsableState.Advanced)] 
        internal static global::System.Globalization.CultureInfo Culture { 
            get { 
                return resourceCulture; 
            } 
            set { 
                resourceCulture = value; 
            } 
        } 
         
        internal static System.Drawing.Bitmap curvewall { 
            get { 
                object obj = ResourceManager.GetObject("curvewall", 
resourceCulture); 
                return ((System.Drawing.Bitmap)(obj)); 
            } 
        } 
         
        internal static System.Drawing.Bitmap slantedwall { 
            get { 
                object obj = ResourceManager.GetObject("slantedwall", 
resourceCulture); 
                return ((System.Drawing.Bitmap)(obj)); 
            } 
        } 
         
        internal static System.Drawing.Bitmap straightwall { 
            get { 
                object obj = ResourceManager.GetObject("straightwall", 
resourceCulture); 
                return ((System.Drawing.Bitmap)(obj)); 
            } 
        } 
    } 
} 
 
 
 
 



 104 

 
APPENDIX H 
 
 
//GENERATED CONTROLS, FORM CODE 
 
// © 2008 Rachelle Villalon. All rights reserved.  
 
namespace Study10 
{ 
    partial class Form1 
    { 
        /// <summary> 
        /// Required designer variable. 
        /// </summary> 
        private System.ComponentModel.IContainer components = null; 
 
        /// <summary> 
        /// Clean up any resources being used. 
        /// </summary> 
        /// <param name="disposing">true if managed resources should be 
disposed; otherwise, false.</param> 
        protected override void Dispose(bool disposing) 
        { 
            if (disposing && (components != null)) 
            { 
                components.Dispose(); 
            } 
            base.Dispose(disposing); 
        } 
 
        #region Windows Form Designer generated code 
 
 
        private void InitializeComponent() 
        { 
            this.listBox1 = new System.Windows.Forms.ListBox(); 
            this.listBox3 = new System.Windows.Forms.ListBox(); 
            this.button4 = new System.Windows.Forms.Button(); 
            this.label1 = new System.Windows.Forms.Label(); 
            this.dsgnconsultlabel = new System.Windows.Forms.Label(); 
            this.RobConvertCode = new System.Windows.Forms.Button(); 
            this.listBox4 = new System.Windows.Forms.ListBox(); 
            this.listBox5 = new System.Windows.Forms.ListBox(); 
            this.designknowlabel = new System.Windows.Forms.Label(); 
            this.constknowlabel = new System.Windows.Forms.Label(); 
            this.robotknowlabel = new System.Windows.Forms.Label(); 
            this.listBox2 = new System.Windows.Forms.ListBox(); 
            this.label2 = new System.Windows.Forms.Label(); 
            this.button3 = new System.Windows.Forms.Button(); 
            this.button2 = new System.Windows.Forms.Button(); 
            this.button1 = new System.Windows.Forms.Button(); 
 
 
 



 105 

 
APPENDIX H 
 
 
 
            this.label3 = new System.Windows.Forms.Label(); 
            this.label4 = new System.Windows.Forms.Label(); 
            this.progressBar1 = new System.Windows.Forms.ProgressBar(); 
            this.SuspendLayout(); 
 
            //  
            // listBox1 
            //  
            this.listBox1.FormattingEnabled = true; 
            this.listBox1.Location = new System.Drawing.Point(676, 23); 
            this.listBox1.Name = "listBox1"; 
            this.listBox1.Size = new System.Drawing.Size(120, 290); 
            this.listBox1.TabIndex = 0; 
            //  
            // listBox3 
            //  
            this.listBox3.FormattingEnabled = true; 
            this.listBox3.HorizontalScrollbar = true; 
            this.listBox3.Location = new System.Drawing.Point(12, 385); 
            this.listBox3.Name = "listBox3"; 
            this.listBox3.Size = new System.Drawing.Size(658, 43); 
            this.listBox3.TabIndex = 2; 
            //  
            // button4 
            //  
            this.button4.Location = new System.Drawing.Point(676, 319); 
            this.button4.Name = "button4"; 
            this.button4.Size = new System.Drawing.Size(115, 37); 
            this.button4.TabIndex = 6; 
            this.button4.Text = "Design Update"; 
            this.button4.UseVisualStyleBackColor = true; 
            //  
            // label1 
            //  
            this.label1.AutoSize = true; 
            this.label1.Location = new System.Drawing.Point(12, 369); 
            this.label1.Name = "label1"; 
            this.label1.Size = new System.Drawing.Size(31, 13); 
            this.label1.TabIndex = 7; 
            this.label1.Text = "Cost:"; 
            //  
            // dsgnconsultlabel 
            //  
            this.dsgnconsultlabel.AutoSize = true; 
            this.dsgnconsultlabel.Location = new System.Drawing.Point(12, 
219); 
            this.dsgnconsultlabel.Name = "dsgnconsultlabel"; 
            this.dsgnconsultlabel.Size = new System.Drawing.Size(127, 13); 
            this.dsgnconsultlabel.TabIndex = 8; 
            this.dsgnconsultlabel.Text = "DESIGN CONSULTANT "; 
 



 106 

 
APPENDIX H 
 
 
                         
            // RobConvertCode 
            //  
            this.RobConvertCode.Location = new System.Drawing.Point(676, 378); 
            this.RobConvertCode.Name = "RobConvertCode"; 
            this.RobConvertCode.Size = new System.Drawing.Size(115, 35); 
this.RobConvertCode.TabIndex = 9; 
            this.RobConvertCode.Text = "Convert to Robot Code"; 
            this.RobConvertCode.UseVisualStyleBackColor = true; 
            this.RobConvertCode.Click += new 
System.EventHandler(this.RobConvertCode_Click); 
            //  
            // listBox4 
            //  
            this.listBox4.FormattingEnabled = true; 
            this.listBox4.HorizontalScrollbar = true; 
            this.listBox4.Location = new System.Drawing.Point(233, 261); 
            this.listBox4.Name = "listBox4"; 
            this.listBox4.Size = new System.Drawing.Size(216, 95); 
            this.listBox4.TabIndex = 10; 
            //  
            // listBox5 
            //  
            this.listBox5.FormattingEnabled = true; 
            this.listBox5.HorizontalScrollbar = true; 
            this.listBox5.Location = new System.Drawing.Point(455, 261); 
            this.listBox5.Name = "listBox5"; 
            this.listBox5.Size = new System.Drawing.Size(215, 95); 
            this.listBox5.TabIndex = 11; 
            //  
            // designknowlabel 
            //  
            this.designknowlabel.AutoSize = true; 
            this.designknowlabel.Location = new System.Drawing.Point(75, 245); 
            this.designknowlabel.Name = "designknowlabel"; 
            this.designknowlabel.Size = new System.Drawing.Size(99, 13); 
            this.designknowlabel.TabIndex = 12; 
            this.designknowlabel.Text = "Design Knowledge:"; 
            //  
            // constknowlabel 
            //  
            this.constknowlabel.AutoSize = true; 
            this.constknowlabel.Location = new System.Drawing.Point(282, 245); 
            this.constknowlabel.Name = "constknowlabel"; 
            this.constknowlabel.Size = new System.Drawing.Size(125, 13); 
            this.constknowlabel.TabIndex = 13; 
            this.constknowlabel.Text = "Construction Knowledge:"; 
            //  
            // robotknowlabel 
            //  
            this.robotknowlabel.AutoSize = true; 
            this.robotknowlabel.Location = new System.Drawing.Point(496, 245); 



 107 

 

 
APPENDIX H 
 
 
 
            this.robotknowlabel.Name = "robotknowlabel"; 
            this.robotknowlabel.Size = new System.Drawing.Size(143, 13); 
            this.robotknowlabel.TabIndex = 14; 
            this.robotknowlabel.Text = "Robot (IRB-140) Knowledge:\r\n"; 
            //  
            // listBox2 
             
            this.listBox2.FormattingEnabled = true; 
            this.listBox2.HorizontalScrollbar = true; 
            this.listBox2.Location = new System.Drawing.Point(12, 261); 
            this.listBox2.Name = "listBox2"; 
            this.listBox2.Size = new System.Drawing.Size(215, 95); 
            this.listBox2.TabIndex = 15; 
            this.listBox2.SelectedIndexChanged += new 
System.EventHandler(this.listBox2_SelectedIndexChanged); 
            //  
            // label2 
            //  
            this.label2.AutoSize = true; 
            this.label2.Location = new System.Drawing.Point(488, 42); 
            this.label2.Name = "label2"; 
            this.label2.Size = new System.Drawing.Size(67, 13); 
            this.label2.TabIndex = 16; 
            this.label2.Text = "Straight Wall"; 
            this.label2.Click += new System.EventHandler(this.label2_Click); 
            //  
            // button3 
            //  
            this.button3.Image = 
global::Study10.Properties.Resources.slantedwall; 
            this.button3.Location = new System.Drawing.Point(561, 170); 
            this.button3.Name = "button3"; 
            this.button3.Size = new System.Drawing.Size(45, 33); 
            this.button3.TabIndex = 5; 
            this.button3.UseVisualStyleBackColor = true; 
            //  
            // button2 
            //  
            this.button2.Image = 
global::Study10.Properties.Resources.curvewall; 
            this.button2.Location = new System.Drawing.Point(561, 96); 
            this.button2.Name = "button2"; 
            this.button2.Size = new System.Drawing.Size(45, 37); 
            this.button2.TabIndex = 4; 
            this.button2.UseVisualStyleBackColor = true; 
            //  
            // button1 
            //  
            this.button1.Image = 
global::Study10.Properties.Resources.straightwall; 



 108 

 
APPENDIX H 
 
 
 
            this.button1.Location = new System.Drawing.Point(561, 23); 
            this.button1.Name = "button1"; 
            this.button1.Size = new System.Drawing.Size(45, 36); 
            this.button1.TabIndex = 3; 
            this.button1.TextAlign = 
System.Drawing.ContentAlignment.BottomCenter; 
            this.button1.UseVisualStyleBackColor = true; 
 
 
            //  
            // label3 
            //  
            this.label3.AutoSize = true; 
            this.label3.Location = new System.Drawing.Point(490, 108); 
            this.label3.Name = "label3"; 
            this.label3.Size = new System.Drawing.Size(65, 13); 
            this.label3.TabIndex = 17; 
            this.label3.Text = "Curved Wall"; 
            //  
            // label4 
            //  
            this.label4.AutoSize = true; 
            this.label4.Location = new System.Drawing.Point(487, 170); 
            this.label4.Name = "label4"; 
            this.label4.Size = new System.Drawing.Size(68, 13); 
            this.label4.TabIndex = 18; 
            this.label4.Text = "Inclined Wall"; 
            //  
            // progressBar1 
            //  
            this.progressBar1.Location = new System.Drawing.Point(12, 434); 
            this.progressBar1.Name = "progressBar1"; 
            this.progressBar1.Size = new System.Drawing.Size(658, 23); 
            this.progressBar1.TabIndex = 19; 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 109 

 
APPENDIX H 
 
 
       //  
            // Form1 
            //  
            this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F); 
            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font; 
            this.ClientSize = new System.Drawing.Size(815, 471); 
            this.Controls.Add(this.progressBar1); 
            this.Controls.Add(this.label4); 
            this.Controls.Add(this.label3); 

this.Controls.Add(this.label2); 
            this.Controls.Add(this.listBox2); 
            this.Controls.Add(this.robotknowlabel); 
            this.Controls.Add(this.constknowlabel); 
            this.Controls.Add(this.designknowlabel); 
      
       this.Controls.Add(this.listBox5); 
 
 
      this.Controls.Add(this.listBox4); 
            this.Controls.Add(this.RobConvertCode); 

this.Controls.Add(this.dsgnconsultlabel); 
            this.Controls.Add(this.label1); 
            this.Controls.Add(this.button4); 
            this.Controls.Add(this.button3); 
            this.Controls.Add(this.button2); 
            this.Controls.Add(this.button1); 
            this.Controls.Add(this.listBox3); 
            this.Controls.Add(this.listBox1); 
            this.Name = "Form1"; 
            this.Text = "ADEON"; 
            this.MouseUp += new 
System.Windows.Forms.MouseEventHandler(this.Form1_MouseUp); 
            this.MouseDown += new 
System.Windows.Forms.MouseEventHandler(this.Form1_MouseDown); 
            this.MouseMove += new 
System.Windows.Forms.MouseEventHandler(this.Form1_MouseMove); 
            this.KeyDown += new 
System.Windows.Forms.KeyEventHandler(this.Form1_KeyDown); 
            this.ResumeLayout(false); 
            this.PerformLayout(); 
 
        } 
 
 
 
 
 
 
 
 
 
         



 110 

 
APPENDIX H 
 
 

   
 

        #endregion 
 
        private System.Windows.Forms.ListBox listBox1; 
        private System.Windows.Forms.ListBox listBox3; 
        private System.Windows.Forms.Button button1; 
        private System.Windows.Forms.Button button2; 
        private System.Windows.Forms.Button button3; 
        private System.Windows.Forms.Button button4; 
        private System.Windows.Forms.Label label1; 
        private System.Windows.Forms.Label dsgnconsultlabel; 

  private System.Windows.Forms.Button RobConvertCode; 
        private System.Windows.Forms.ListBox listBox4; 
        private System.Windows.Forms.ListBox listBox5; 
        private System.Windows.Forms.Label designknowlabel; 
        private System.Windows.Forms.Label constknowlabel; 
        private System.Windows.Forms.Label robotknowlabel; 
        private System.Windows.Forms.ListBox listBox2; 
        private System.Windows.Forms.Label label2; 
        private System.Windows.Forms.Label label3; 
        private System.Windows.Forms.Label label4; 
        private System.Windows.Forms.ProgressBar progressBar1; 
    } 
} 
 
 
 
 
 


