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by
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Abstract

Granular materials such as sand or gravel surround us everyday and yet remain poorly
understood. In this thesis, two models are developed for dense granular flow, each
capable of predicting flows with accuracy in multiple environments. The models are
based on differing perspectives of grain-level dynamics, with one deriving flow from
a stochastic mechanism and the other from a deterministic deformation law.

The Stochastic Flow Rule (SFR): This work models granular flow as a sequence of
localized collective grain displacements. As in the Spot Model for drainage (Bazant
2001), grain clusters move as dictated by “spots” which travel through the material
as biased random-walkers. The SFR derives spot motion directly from the material
stresses, thus generalizing and extending the Spot Model beyond drainage to any
quasi-2D geometry with a computable stress field. Limit-State Mohr-Coulomb Plas-
ticity is used to approximate the stress profile in a slow flowing granular assembly.
The SFR then describes quantitatively how to convert the slip-line field and stresses
into the necessary parameters to fully define a spot’s random trajectory through the
material and generate a steady flow profile. Results are compared to known flow data.

Nonlinear Granular Elasto-Plasticity : This work models granular deformation at the
meso-scale as a deterministic consequence of the local stresses and state parameters.
Recently proposed models for granular elasticity (Jiang and Liu 2003) and plastic flow
(Jop et al. 2006) are combined into one universal granular continuum law, capable of
predicting both flowing regions and stagnant zones simultaneously in any arbitrary
3D flow geometry. The unification is performed by first motivating physically, and
then implementing a Kröner-Lee elasto-plastic decomposition. The model is then
numerically solved in multiple geometries and results are compared to experiments
and discrete simulations.

Thesis Supervisor: Martin Z. Bazant
Title: Associate Professor
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Chapter 1

General introduction

At first it may seem confounding how it is that our civilization, with all its mod-

ern technological and scientific advances, still has trouble understanding one of the

most familiar and basic materials— sand. For years granular materials have resisted

theoretical development, demonstrating non-trivial behavior that may resemble solid,

liquid, or gas under different circumstances. The deceptively challenging mechanics

and dynamics of granular materials combined with the ubiquity of such materials in

day-to-day life have made this topic especially interesting to study.

The drive to understand granular physics is motivated not just by academic cu-

riosity, but also by a real need for a predictive model. Advancements in granular

materials science would have a direct effect on fields like geology and civil engineer-

ing, which could benefit from improved models for soil and gravel, as well as military

research, where codes for bunker design have not been updated in recent memory

and require enormous safety factors. In terms of energy production, better granular

models could help optimize the handling and processing of coal, as well as streamline

the engineering of pebble-bed nuclear reactors, in which billiard-size pebbles contain-

ing radioactive fuel are slowly drained through an apparatus. In industry, granular

materials are second only to water as the most handled raw material, so it is expected

that improved granular modeling could increase industrial efficiency dramatically.

This thesis develops two distinct models for granular media. It should be empha-

sized that these models attempt to describe different regimes of granular response and
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thus are not contradictive. Both are primarily concerned with steady, dense flows.

The Stochastic Flow Rule (SFR), developed in Chapter 2, is intended for slow flows.

Chapter 3 develops a continuum elasto-plastic model that attempts to describe the

liquid-like effects of faster flows while simultaneously describing statics. Each model

offers sufficient agreement with known flow data.

Though the models cover a combined range that spans almost the entire range

of dense flow behavior, individually, each model leaves out certain effects. At the

end of Chapter 2 an attempt is made to extend the SFR into the faster flow regime,

which appears to add some breadth. While the continuum model of Chapter 3 draws

clear lines as to which flow behaviors should be accounted for, it remains future

work to integrate a slow-flow theory. It would be ideal if the SFR could somehow

be combined with the continuum model, though it remains unclear if this is possible

given the different foundations of the models. Some speculation on a joint model is

given in the general conclusion, chapter 4.

The following two chapters can be read independently. There has been intention-

ally very little cross-referencing between chapters because the two models are based on

very different fundamental assumptions. The underlying theme among both models

is unification. The SFR unifies an older theory for 2D granular stresses, Limit-State

Mohr-Coulomb Plasticity [132], with more recent work on collective rearrangement

during flow, the Spot Model [15]. The continuum elasto-plastic model unifies a re-

cently proposed granular elasticity model, that of Jiang and Liu [68], with a newly

developed plastic flow rule, that of Jop and Pouliquen [71].

14



Chapter 2

The Stochastic Flow Rule

This chapter is based on [73], Stochastic flow rule for granular materials published in

Physical Review E, Copyright (2007). It is included here with permission from APS.

Please see http://pre.aps.org for more details.

2.1 Introduction

For centuries, engineers have described granular materials using continuum solid me-

chanics [101, 132, 60]. Dense granular materials behave like rigid solids at rest, and yet

are easily set into liquid-like, quasi-steady motion by gravity or moving boundaries,

so the classical theory is Mohr-Coulomb plasticity (MCP), which assumes a frictional

yield criterion. The simplest model is the two-dimensional “Ideal Coulomb Material”

at limit-state, where the maximum ratio of shear to normal stress is everywhere equal

to a constant (the internal friction coefficient), whether or not flow is occurring. This

model is believed to describe stresses well in static or flowing granular materials, but,

as we explain below, it fails to predict flow profiles, when combined with the usual

Coaxial Flow Rule of continuum plasticity. Indeed, it seems continuum mechanics

has not yet produced a simple and robust model for granular flow.

In recent years, the sense that there is new physics to be discovered has attracted

a growing community of physicists to the study of granular materials [64, 34, 72, 43,

58, 9]. Unlike the engineers, their interest is mostly at the discrete particle level, mo-
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tivated by the breakdown of classical statistical mechanics and hydrodynamics due

to strong dissipation and long-lasting, frictional contact networks. Dense granular

materials exhibit many interesting collective phenomena, such as force chains, slow

structural relaxation, and jamming. Similar non-equilibrium phenomena occur in

glasses, foams, and emulsions, as in granular materials, so it is hoped that a general

new statistical theory may emerge. Presumably from such a microscopic basis, con-

tinuum models of glassy relaxation and dense granular flow could be systematically

derived, just as dissipative hydrodynamics for granular gases can be derived from

kinetic theory with inelastic collisions [25].

This dream has not yet been achieved, but many empirical continuum models have

been proposed [64, 9, 13]. The difficulty in describing dense granular flow is evidenced

by the remarkable diversity of physical postulates, which include: coupled static and

rolling phases [21, 22, 24, 23], Bagnold rheology [12] based on “granular eddies” [44],

granular temperature-dependent viscosity [124], density-dependent viscosity [88, 19],

non-local stress propagation along arches [95], self-activated shear events due to non-

local stress fluctuations [111, 110], free-volume diffusion opposing gravity [85, 100,

102, 15, 120], “shear transformation zones” coupled to free-volume kinetics [83, 82],

and partial fluidization governed by a Landau-like order parameter [7, 8]. Each of

these theories can fit a subset of the experimental data [94], usually only for a specific

geometry for which it was designed, such as a flowing surface layer [21, 22, 24, 23, 7],

inclined plane [12, 44], Couette cell [88, 19], inclined chute [111, 110], or wide silo [85,

100, 102, 15, 120], and none seems to have very broad applicability. For example,

we are not aware of a single model, from physics or engineering, which can predict

velocity profiles in both draining silos and annular Couette cells, even qualitatively.

The theory of partial fluidization of Aranson and Tsimring has arguably had the

most success in describing multiple flows within a single theoretical framework [7,

8]. Although setting boundary conditions for the order parameter usually requires

additional ad hoc assertions, the model is nonetheless able to reproduce known flow

behavior in inclined chutes, avalanches, rotating drums, and simple shear cells without

many fitting parameters. It also describes some unsteady flows. However, the theory
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lacks any clear microscopic foundation and is not directly coupled to a constitutive

stress model for static materials. As such, it has only been applied to problems with

very simple solid stress fields, limiting its current applicability to flows that depend

on only one spatial variable.

In an attempt to describe arbitrary geometries, such as silos and Couette cells,

we take the view that the engineers may already have a reasonable continuum de-

scription of the mean stresses, so we start with Mohr-Coulomb plasticity. However,

discreteness and randomness clearly need to be taken into account in a granular mate-

rial. For static stresses, quenched randomness in material properties is known to lead

to statistical slip-line blurring in “stochastic plasticity” [104], but this says nothing

about how plastic yielding actually occurs.

To describe yielding dynamics, we propose a “stochastic flow rule” (SFR) where

local fluidization (stick-slip transition) propagates randomly along blurred slip-lines.

We build on the recently proposed Spot Model for random-packing dynamics [15] by

viewing “spots” of free volume as carriers of plasticity in granular materials, analogous

to dislocations in crystals. Multiscale spot simulations can reproduce quite realistic

flowing packings in silo drainage [120]; here, we introduce a mechanical basis for spot

motion from MCP, which leads to a theory of considerable generality for bulk granular

flows.

The paper is organized as follows. Since plasticity is unfamiliar to most physicists,

we begin by reviewing key concepts from MCP in section 2.2, both for stresses and

for dense flows. In section 2.3, we highlight various shortcomings of the classical

theory, many of which we attribute to the Coaxial Flow Rule. We then introduce the

general spot-based SFR and a specific simplification to be used for granular flow in

section 2.4. Next we apply the theory to four prototypical examples: silo, Couette,

heap, and plate-dragging flows in section 2.5. Then in section 2.6, we explain how the

last two examples indicate a smooth transition from the SFR to Bagnold rheology,

when slip-lines become admissible, and we present a simple composite theory, which

extends the applicability of the model to various shear flows. In section 2.7, we

conclude by further clarifying the range of applicability of the SFR and possible
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Figure 2-1: Stresses on a material element. All vectors are pointing in the positive
direction as per our sign convention.

extensions to other granular flows and different materials.

2.2 Concepts from continuum mechanics

2.2.1 Mohr-Coulomb plasticity: stresses

In the eighteenth century, it was Coulomb, as a military engineer designing earthen

fortresses, who introduced the classical model of a granular material, which persists

to the present day: a continuous medium with a frictional yield criterion. His ideas

were expressed in general continuum-mechanical terms by Mohr a century later, and

a modern mathematical formulation of “Mohr-Coulomb plasticity” (MCP), which

we also use below, is due to Sokolovskii[132]. Although other mechanical models

exist, such as Drucker-Prager plasticity [112], MCP is perhaps the simplest and most

widely used for granular materials in engineering [101]. As such, we choose to build

our model of dense granular flow on the MCP description of stresses, as a reasonable

and time-tested first approximation.

We begin in this section by reviewing relevant concepts from MCP, e.g. following

Nedderman [101]. The fundamental assumption is that a granular material can be

treated as an “Ideal Coulomb Material” (ICM), i.e. a rigid-plastic continuous media
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Figure 2-2: Force diagram for a wedge. Hypotenuse length assigned to unity.

which yields according to a Coulomb yield criterion

|τ/σ| = µ ≡ tanφ (2.1)

where τ is the shear stress, σ is the normal stress, and φ is the internal friction

angle, akin to a standard friction law with no cohesion. Throughout, we accept the

common tensorial conventions for stresses with the key exception that normal stresses

are deemed positive in compression. This is a standard modification in the study of

non-cohesive granular materials since granular assemblies cannot support tension. We

will also focus entirely on quasi-2D geometries.

Consider a small material element in static equilibrium and with no body forces

present (see Figure 2-1). The normal stresses σxx and σyy can differ and the shear

stresses τxy and τyx must be equal in order to balance moments. Likewise the variable

τyx is redundant and will not be used again in this paper. To determine the stresses

along any angle within this element, we place a new boundary within the material at

some desired angle θ and observe force balance on the wedge that remains (see Figure

2-2). After algebraic simplification, this gives

σθ =
1

2
(σxx + σyy) +

1

2
(σxx − σyy) cos 2θ − τxy sin 2θ

τθ =
1

2
(σxx − σyy) sin 2θ + τxy cos 2θ
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Now define

p =
1

2
(σxx + σyy)

tan 2ψ =
−2τxy

σxx − σyy

R =

√(
σxx − σyy

2

)2

+ τ 2
xy

which allows us to write

σθ = p+R cos(2θ − 2ψ) (2.2)

τθ = R sin(2θ − 2ψ) (2.3)

This implies that for all angles θ, the locus of traction stresses (σθ, τθ) is a circle

centered at (p, 0) with radius R. This circle is referred to as “Mohr’s Circle”.

We have just derived Mohr’s Circle without accounting for the possible effects of

body forces acting on the material element and gradients in the stress field. Adjusting

for these effects, however, would change the results only negligibly as the element gets

small in size. If we were to apply the same force-balancing analysis to a differentially

small material element with a body force and stress gradients, we would find that the

stress differences on the walls and the inclusion of the differentially small body force

within only add differentially small terms to the equations for σθ and τθ. Thus we

can always use Mohr’s Circle to obtain traction stresses along a desired angle.

To ultimately define a full stress state for the material element, we need one more

equation— we have 3 stress variables and only 2 force balance equations:

∂σxx
∂x

− ∂τxy
∂y

= F x
body (2.4)

∂σyy
∂y

− ∂τxy
∂x

= F y
body (2.5)

We say a material element is at incipient failure if the yield criterion is fulfilled along

some direction and |τ/σ| ≤ µ along all others. A material in which incipient failure
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occurs everywhere is said to be at a limit-state. In a limit-state, the Mohr’s Circle at

every point in the material must be tangent to the locus |τ/σ| = µ. As can be seen

by applying trigonometry in Figure 2-3, this requirement means that R = p sinφ,

enabling us to parameterize the stresses in terms of p and ψ only, thereby closing

the equations. For this reason, we restrain our analysis to limit-state materials and

refer to p and ψ as the stress parameters or Sokolovskii variables. (The limit-state

stress treatment described here is also known as “Slip-Line Theory”; to avoid possible

confusion, we specify this is not equivalent to Limit Analysis Plasticity concerned with

upper and lower collapse limits.)

Solving for the original stress variables in terms of the stress parameters gives:

σxx = p(1 + sinφ cos 2ψ) (2.6)

σyy = p(1− sinφ cos 2ψ) (2.7)

τxy = −p sinφ sin 2ψ (2.8)

Using these expressions, we re-write equations (2.4) and (2.5):

(1+ sinφ cos 2ψ)px − 2p sinφ sin 2ψ ψx + sinφ sin 2ψ py

+ 2p sinφ cos 2ψ ψy = F x
body

sinφ sin 2ψ px + 2p sinφ cos 2ψ ψx + (1− sinφ cos 2ψ)py

+ 2p sinφ sin 2ψ ψy = F y
body

These will be referred to as the “stress balance equations”. They form a hyperbolic

system and thus can be solved using the method of characteristics. The system

reduces to the following two characteristic equations:

dp∓ 2pµ dψ = F y
body(dy ∓ µ dx) + F x

body(dx± µ dy)

along curves fulfilling
dy

dx
= tan(ψ ∓ ε). (2.9)

To solve the stress balance equations, mesh the two families of characteristic curves
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Figure 2-3: Using Mohr’s circle jointly with the Coulomb internal yield locus (τ =
±µσ) to determine the traction stresses along any plane within a material element.

in the bulk, then march from the boundaries in, progressively applying the two differ-

ential relationships above to approximate the stress parameters at each intersection

point in the mesh. More on this can be found in [62]. Other ways to solve the stress

balance equations include the Two-Step Lax-Wendroff Method [105] and the Galerkin

Method [55].

We return now to Mohr’s Circle for a discussion of the stress properties within a

differential material element. Equations (2.2) and (2.3) show that Mohr’s Circle can

be used as a slide-rule to determine the stresses along any angle θ: One arrives at

the point (σθ, τθ) by starting at (σxx, τxy) and traveling anti-clockwise around Mohr’s

Circle for 2θ radians (see Figure 2-3). Also note on the diagram that the stresses

along the x and y directions lie along a diameter of Mohr’s Circle; any two material

directions differing by an angle of π/2 lie along a diameter of the corresponding

Mohr’s Circle diagram. Utilizing this property in reverse is perhaps the easiest way

to draw Mohr’s Circle in the first place; draw the unique circle for which (σxx, τxy)

and (σyy,−τxy) are endpoints of a diameter.

Let (σ1, 0) and (σ3, 0) be the points of intersection between Mohr’s Circle and the

σ-axis, where σ1 > σ3. These points correspond to the two lines within a material

element along which the shear stress vanishes and the normal stress is maximal or

minimal. σ1 (σ3) is called the major (minor) principal stress and the line on which it
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(a)
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(d)

Figure 2-4: Important lines intersecting each material point: (a) Major principal
plane / Minor principal stress direction; (b) Minor principal plane / Major principal
stress direction; (c)-(d) Slip-lines.

acts is called the major (minor) principal plane.

Mohr’s Circle shows that the major principal plane occurs at an angle ψ anti-

clockwise from the vertical (see Figure 2-3). Thus the major principal stress points

along an angle ψ anti-clockwise from the horizontal. This is the standard physical

interpretation of ψ. One might think of ψ as the angle from the horizontal along

which a force chain would be predicted to lie.

By right-triangle geometry, a line segment connecting the center of Mohr’s Circle

to a point of tangency with the internal yield locus would make an angle of π/2− φ

with the σ-axis. Each point of tangency represents a direction along which the yield

criterion is met, i.e. a slip-line. Mohr’s Circle indicates that the slip-lines are angled

(π/2 − φ)/2 up and down from the minor principal plane. But since the major and

minor principal planes are orthogonal, the major principal stress points along the

minor principal plane. Defining ε = π/4− φ/2, we deduce that slip-lines occur along

the angles ψ± ε measured anti-clockwise from the from the horizontal. Looking back

at the characteristic equations, we see that the slip-lines and the characteristic curves

coincide. This means that information from the boundary conditions propagates

along the slip-lines to form a full solution to the stress balance equations.

It is worth noting that the stress balance equations are written for static materials

and do not appear to account for dynamic behavior like dilatancy and convection
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stresses. The theory of critical state soil mechanics [127] was the first to rigorously

approach the issue of dilatancy (see appendix). It concludes that when material

attains a flow state in which the density field stops changing in time, all points in

the flow lie along a critical state line of the form |τ/σ| = δ for δ constant. Since this

exactly mirrors the Coulomb yield criterion, we can keep the stress balance equations

and utilize δ = µ (as in [66]). As for convection, adding the ρu·∇u term into the stress

equations couples the stresses to the velocity and makes the problem very difficult to

solve. The practice of ignoring convection is justified by our slow-flow requirement

and is commonly used and validated in basic solid mechanics literature [60, 132, 101].

So we conclude that dynamic effects in flowing materials do not preclude the use of

the stress balance equations in slow, steady flows.

2.2.2 Mohr-Coulomb plasticity: flow rules

To calculate flow, we assert incompressibility and a flow rule— the flow rule is a

constitutive law chosen to reflect the general behavior of the material at hand. The

continuous nature of the ICM assumption suggests that symmetry should be kept

with respect to the principal stress planes. Based on this, Jenike proposed adopting

the Coaxial Flow Rule. The principle of coaxiality claims that material should flow

by extending along the minor principal stress direction and contracting along the

major principal stress direction; the principal planes of stress are aligned with the

principal planes of strain-rate. The intuition for this constitutive rule is shown in

Figure 2-5. Mathematically, this means that in a reference frame where the minor

and major principal stress directions are the basis, the strain-rate tensor should have

no off-diagonal components, i.e.

RψĖRψ
T is diagonal, (2.10)

where Rψ rotates anti-clockwise by ψ and Ė is the strain-rate tensor

Ė =
1

2

(
∇u + (∇u)T

)
. (2.11)
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Figure 2-5: Sketch of the Coaxial Flow Rule.

where u = (u, v) is the velocity. Calculating the (1,2) component of the matrix in

equation (2.10) and setting it to zero gives the equation of coaxiality,

∂u

∂y
+
∂v

∂x
=

(
∂u

∂x
− ∂v

∂y

)
tan 2ψ. (2.12)

This flow rule has played a dominant role in the development of continuum plasticity

theory and will be closely analyzed in this work.

Coaxiality with incompressibility comprises another hyperbolic system of equa-

tions enabling the velocity field to be solved via characteristics:

du+ tan(ψ ∓ π/4) dv = 0

along curves fulfilling
dy

dx
= tan(ψ ∓ π/4). (2.13)

So, given ψ(x, y) from the stress balance equations, information about the flow travels

from the boundaries into the bulk along curves rotated π/4 off from the principal stress

planes— using Mohr’s Circle, we observe that these are the lines for which the shear

stress is maximal (and the normal stresses are equal).

Other flow rules have been suggested instead of coaxiality. Of specific note, A.J.M.

Spencer [133] has proposed the double-shearing flow rule. Unlike coaxiality which can

be understood as a simultaneous equal shearing along both slip-line families, double-

shearing allows the shearing motion to be unequally distributed between the two

families in such a way that the flow remains isochoric. For steady flows, the double-
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shearing flow rule is

sin 2ψ

(
∂u

∂x
− ∂v

∂y

)
− cos 2ψ

(
∂v

∂x
+
∂u

∂y

)
= sinφ

(
∂v

∂x
− ∂u

∂y
− 2u · ∇ψ

)
(2.14)

It can be seen that when the material neighboring a particle rotates in sync with

the rotation of the principal planes (i.e. as tracked by the rate of change of ψ),

the right side goes to zero and the rule matches coaxiality. Under double-shearing,

the characteristics of stress and velocity align, easing many aspects of the numerics.

Some recent implementations of granular plasticity have utilized principles of double-

shearing [3]. Though in this paper we deal primarily with the comparison of coaxiality

to our new theory, this equation will be mentioned again in a later section.

2.2.3 The rate-independence concept

We now more fully address the conceptual basis for the flow theory just introduced.

The theory is fundamentally different from traditional fluids where force-balance

(including convection and viscous stresses in the case of Newtonian fluids) can be

used alongside incompressibility to fully determine the fluid velocity and pressure

fields. Unlike a fluid, granular materials can support a static shear stress and thus

force-balance plus incompressibility alone is an underconstrained system. Rather, the

stress-strain relationship for granular material is presumed to be rate-independent in

the slow, quasi-static regime we study.

This concept is best understood tensorially. We can rewrite the equations of

coaxiality and incompressibility equivalently as:

Ė = λT0 (2.15)
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where

T = Stress tensor =

 −σxx τxy

τxy −σyy

 (2.16)

T0 = T− 1

2
(trT)I = Deviatoric stress tensor, (2.17)

and λ is a multiplier that can vary in space. Equation (2.12) is merely the ratio of

the (1,2) component and the difference of the (2,2) and (1,1) components of equation

(2.15), thus canceling λ, and incompressibility is automatic since we relate to the

deviatoric stress tensor. Equation (2.15) gives a simple and highly general form for

plastic material deformation applicable to a broad range of deformable materials and

so it is ideal for illustrating the role of rate-dependency. In MCP, we solve for T0 a

priori from the stress balance equations. λ adds the extra degree of freedom necessary

to make sure the strain-rate field is actually compatible with a real velocity field—

λ is not any specific function of the stress or strain-rate variables and it adjusts to

fit different velocity boundary conditions. Thus the stress alone does not imply the

strain-rate and vice versa.

Supposing on the other hand that we were dealing with a rate-dependent (i.e.

visco-plastic) material like Newtonian fluid, the above tensorial equation would still

apply but we cannot claim to know T0 in advance since material motion changes the

stresses. Instead we prescribe a functional form for λ, like λ = viscosity−1 = constant,

and write the force balance equations in terms of Ė. Thus Ė is computed very

differently for the two cases: in the rate-independent case, (2.15) is solved using a

known form for T0 and in the rate-dependent case, (2.15) is solved using a known

form for λ.

The physical intuition for rate-independent flow can be easily understood with an

example. Suppose we slide two frictional blocks against each other at two different

non-zero sliding rates. In most rudimentary dry friction laws, the shear stress required

to slide one block against another is proportional to the normal stress— there is no

mention whatsoever of the rate of sliding. Thus the two sliding rates are modeled
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to be attainable with the same shear stress and likewise the stress-strain relationship

is deemed rate-independent. For slow granular flows with long-lasting interparticle

contacts, comparisons with this example are especially instructive.

2.3 Shortcomings of Mohr-Coulomb plasticity

The use of the stress balance equations with incompressibility and the Coaxial Flow

Rule will be referred hitherto as Mohr-Coulomb Plasticity (MCP). The theory has

the benefit of being founded on mechanical principles, but does have some marked

drawbacks. We point out a few:

• The theory frequently predicts highly discontinuous velocity fields.

• The Coaxial Flow Rule is conceptually troubling in some simple geometries.

• The assumption of limit-state stresses is overreaching.

• MCP is a continuum theory and thus cannot model discreteness and random-

ness.

We will now discuss these four points in detail.

2.3.1 Discontinuous “shocks” in stress and velocity

The two stress PDEs and two flow PDEs are each fully hyperbolic systems meaning

that continuous solutions do not necessarily exist for arbitrary choices of the bound-

ary conditions. Instead, discontinuous solutions are constructed utilizing intuitive

jump conditions. For stresses, a jump in the stress parameters across a discontinuity

line is only allowable if such a jump places no net forces on a small control volume

surrounding the line thereby ensuring particle stability. This means the normal and

shear stresses along the direction of the discontinuity must be the same on both sides

of the discontinuity. However, the normal stress along the perpendicular direction

can have a jump upon crossing the discontinuity as this places no net force on the

control volume (see Figure 2-6).
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Side A

Side B

Stress Discontinuity

Line

Figure 2-6: Stresses on a control volume intersected by a discontinuity. Note how a
jump in σ⊥ places no net force on the control volume.

In terms of the stress parameters, this means that p and ψ can jump as long as

(1 + sinφ cos(2Θ− 2ψB))

(1 + sinφ cos(2Θ− 2ψA))
=

sin(2Θ− 2ψB)

sin(2Θ− 2ψA)
=
pA

pB
(2.18)

where Θ is the angle from the vertical along which the stress discontinuity lies.

As for velocity, incompressibility forces us to impose a simpler jump rule in that

the component tangent to the velocity discontinuity is the only one allowed to jump.

We note that whenever a stress shock exists, the jump in the stress parameters will

usually place a jump in the flow rule and may cause a velocity discontinuity to form

coincident with the stress shock. A velocity discontinuity can form even when the

stress field is smooth since the velocity PDEs are themselves hyperbolic. (It is worth

noting that when shocks are allowed in the solution, multiple solutions sometimes arise

to the same problem; introduction of the so-called “entropy condition” can be used

to choose the best of the possible solutions [38, 101].) Overall, the MCP equations

are mathematically very poorly behaved, and have also been shown to give violent

instabilities and finite-time singularities [106, 126].

Aside from its mathematical difficulties, MCP theory also does not match exper-

iments or our everyday experience of granular flows. In particular, MCP commonly

predicts complicated patterns of velocity discontinuities in situations where experi-

ments indicate smooth flow in steady-state. In Figure 2-7, the numerically determined

stress field for a wedge hopper with only slightly non-radial boundary conditions on
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Figure 2-7: Numerical solution to MCP in a wedge hopper with non-radial stresses
on the top boundary. Normal stress in the radial direction displayed.

the top surface exhibits a fan-like array of shocks 1. The associated velocity field (not

shown) will at best exhibit a similar pattern of discontinuities and at worse add even

more discontinuities. Such a broken velocity field is clearly unphysical. As the grain

size becomes very small (sands), discontinuous velocity fields with no relationship to

the stress field have been observed, but these are only temporary; the shocks com-

monly blur away immediately after the onset of flow, which has been attributed to

some instability mechanism [39]. Literature on the topic [101] is quick to concede

that infinitesimally sharp velocity jumps are physically nonsensical and should be

understood as being spread over at least a few particle widths. Below, we will see

that our model naturally provides a mechanism for the blurring of velocity shocks

even in the presence of a stress shock, with large velocity variations occurring only

at the scale of several particle diameters.

Typically, to avoid the task of having to track/capture shocks in the stress/velocity

field, approximations to MCP are invoked which give continuous solutions either by

altering the boundary conditions or simplifying the PDE’s. Smooth stress approxima-

tions are especially useful when attempting to solve for the velocity field— tracking

flow shocks coming from both a discontinuous stress field and hyperbolicity in the

1Figure reprinted from J. Comput. Phys., 166, P. A. Gremaud and J. V. Matthews, On the
Computation of Steady Hopper Flows, 63 - 83, Copyright (2001), with permission from Elsevier.
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velocity equations is an enormous job. To our knowledge, a full solution to MCP has

never been obtained either numerically or analytically in cases where the underlying

stress field has shocks. Instead, shock-free approximate solutions have mostly been

pursued.

Arguably, the two most successful and commonly used results of MCP are actually

approximations, not full solutions. The Jenike Radial Solution [66, 67] for wedge

hopper flow solves the MCP equations exactly, and with no discontinuities, but does

not allow for a traction free top surface. It is a similarity solution of the form

p = rf(θ) (2.19)

ψ = g(θ) (2.20)

v = −h(θ)
r
r̂ (2.21)

which reduces the entire system to 3 ODE’s with (r, θ) the position; r is the distance

from the hopper apex and θ is measured anticlockwise from the vertical. Though this

solution enables the material to obey a wall yield criterion along the hopper walls,

the stress parameters at the top surface have very little freedom. This is why most

claim the Radial Solution to only hold near the orifice, considerably away from the

actual top surface.

Another commonly used simplification is called the Method of Differential Slices,

although it only applies to stresses and not flow (our focus here). Originally proposed

by Janssen in 1895 and significantly enhanced since then, it is used to determine wall

stresses in bins and containers. The method makes some very far-reaching assump-

tions about the internal stresses: p is presumed to only depend on height and the

ψ field is assumed to be identically π/2 or 0. These assumptions reduce the stress

balance equations to one ODE and ultimately give the famous result that wall stresses

increase up to a certain depth and then saturate to a constant value. (This saturation

behavior is not a byproduct of the approximation; the discontinuous, full solution to

the stress balance equations in a bin also gives similar stress saturation behavior.)

While this effect has been verified extensively in experiment, the underlying assump-
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tions clearly cannot hold since, for example, the walls exert an upward shear stress

on the material which contradicts the assumption about ψ. [101].

In summary, the equations of MCP theory have very limited applicability to gran-

ular flows. There are very few, if any, solutions available (either numerical or analyt-

ical) for many important geometries such as planar or annular Couette cells, vertical

chutes, inclined places, etc. In the case of silos, MCP has been used extensively to de-

scribe stresses, although the equations are difficult to solve and poorly behaved from

a mathematical point of view, as noted above. There have also been some attempts

to use MCP to describe granular drainage from silos, in conjunction with the coaxial

flow rule, but this approach has met with little success, as we now elaborate.

2.3.2 Physical difficulties with limit-state coaxiality

It is instructive to review the existing picture of silo drainage in MCP theory, to

highlight what we will view as a major concern in the use of coaxiality for granular

flows. Suppose we have a flat-bottomed quasi-2D silo with smooth side-walls. Under

standard filling procedures, the walls provide only enough pressure to keep particles

from sliding farther out. These wall conditions, known as the “active case”, give

the following solution to the stress balance equations as found by marching down

characteristics starting from the flat, pressure free, top surface:

ψ(x, y) = π/2 (2.22)

p(x, y) =
fgy

1 + sinφ
(2.23)

where fg ≡ ρg is the weight density of the material and y is positive downward. Since

the ψ field is identically π/2 everywhere, the slip-lines are thus perfectly straight lines

angled at ±ε from the vertical.

Refer again to Figure 2-5. The material deforms based solely on principal plane

alignment. For a slow, dense flow in the silo geometry, coaxiality is troubling. Since

the major principal stress is everywhere vertical, coaxiality requires material to stretch

horizontally, thus making it geometrically impossible for it to converge and exit
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(a) (b)

Figure 2-8: Major principal stress chains in a quasi-2D silo for the (a) active case,
and (b) passive case.

through the silo orifice. This apparent paradox has traditionally been handled by

asserting a sudden change in wall stresses that occurs once the orifice opens, such

that the walls drive the flow, not gravity [101]. The silo is claimed to enter a “passive

state” where the walls are squeezing the material through the orifice. Even with this

questionable assumption, the solution predicted by equation (2.12) is unrealistic; it

predicts the only non-stagnant regions in the silo are two narrow, straight channels

which converge on the silo opening and are angled at ±45o from the vertical.

Coaxiality can also violate principles of thermodynamics. The equation itself

only ensures there is no shear strain-rate in the principal stress reference frame and

actually does not directly enforce that of the two principal strain-rate axes, the axis of

maximal compression (i.e. the major principal strain-rate direction) must align with

the major principal stress direction, as was the physical intuition shown in Figure 2-5.

Coaxiality just as easily admits solutions for which the minor principal stresses align

with the major principal strain-rate. When this happens, the plastic power dissipated

per unit volume can be written

P = T : Ė

=

 −σ1 0

0 −σ3

 :

 |γ̇| 0

0 −|γ̇|


= |γ̇|(σ3 − σ1)

< 0
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where A : B = ΣAijBij and ±|γ̇| are the principal strain-rate values. This type of

behavior violates the second law of thermodynamics as it implies that material de-

formation does work on the system and likewise is non-dissipative. In more advanced

plasticity theories, the thermodynamic inequality is upheld by requiring λ in equa-

tion (2.15) to be non-negative, but in the basic limit-state framework we discuss, this

constraint cannot be directly enforced.

We should briefly mention that in constructing the limit-state stress field for the

discharging silo, we have used as a boundary condition that flow ensues when the

pressure p above the hole drops differentially from the value it takes when the hole

is closed. This claim allows us to preserve the continuous stress field described in

equations (2.22) and (2.23) for slow, quasi-static flow.

2.3.3 Incipient yield everywhere

The fundamental assumption of a limit-state stress field at incipient yield everywhere

is also questionable. Granular flows can contain regions below the yield criterion

within which the plastic strain-rate must drop to zero. For example in drainage from

a wide silo with a small orifice, the lower regions far from the orifice are completely

stagnant [123, 28], and thus can hardly be considered to be at incipient yield. In fact,

discrete-element simulations show that grains in this region essentially do not move

from their initial, static packing [120]. Simulations also reveal that high above the

orifice, where the shear rate is reduced, the packing again becomes nearly rigid [121],

suggesting that the yield criterion is not met there either. As the silo example illus-

trates, a more general description of stresses coming from an elasto-plasticity theory

may be necessary to properly account for sub-yield material [60, 69].

Elasto-plasticity also alleviates another major concern with MCP which is that

it is only well-defined in two dimensions. Three-dimensional stress tensors have six

free variables, too many to be uniquely described by just force balance and incipient

failure (altogether only 4 equations). We mention in passing that extensions of MCP

to axisymmetric three-dimensional situations have been developed. For example, the

Har Von Karman hypothesis, which assumes that the intermediate principal stress
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σ2, where σ1 ≤ σ2 ≤ σ3, is identical to either σ1 or σ3, is frequently utilized in solv-

ing for conical hopper flow. However, elasto-plasticity can handle three dimensions

without this hypothesis, while also allowing for stress states below the yield criterion

in different regions.

2.3.4 Neglect of discreteness and randomness

Beyond its practical limitations and mathematical difficulties, the most basic short-

comings of MCP are in its assumptions. Above all, a granular material is not con-

tinuous. The microscopic grains composing it are usually visible to the naked eye,

and significant variations in the velocity often occur across a distance of only several

particle lengths, e.g. in shear bands and boundary layers. Of course, the general the-

ory of deterministic continuum mechanics is only expected to apply accurately when

the system can be broken into “Representative Volume Elements” (RVE’s) of size

L fulfilling d � L � Lmacro for d the microscale (particle size) and Lmacro the size

of the system [61], which is clearly violated in many granular flows. Therefore, the

discrete, random nature of the particle packing must play an important role in the

deformation process. To incorporate this notion coherently, it may be useful to seek

out a dominant meso-scale object as a substitute for the RVE, upon which mechanical

flow ideas apply, but in a non-deterministic, stochastic fashion (see Figure 2-9). This

concept is somewhat comparable to the “Stochastic Volume Element” in the theory

of plasticity of heterogeneous materials [104]. In that setting, it is known that (what

physicists would call “quenched”) randomness in material properties leads to blurring

of the slip-lines, but, to our knowledge, this effect has not been considered in MCP

for granular materials.

More importantly, however, since the meso-scale should only be a few grains in

width, there must also be randomness in the dynamics of yielding to an applied stress

or body force, since the theoretical concept of a continuous slip-line is incompatible

with the reality of a discrete, random packing. A stochastic response also seems

fundamentally more consistent with the assumption of incipient yield: If the material

is just barely in equilibrium, it must be very sensitive to small, random fluctuations,
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Figure 2-9: A meso-scale object containing a small number of randomly packed,
discrete grains, which controls the dynamics of dense granular flow, analogous to the
“representative volume element” in classical continuum mechanics.

causing localized yielding.

We conclude that the shortcomings of MCP may be related to the deterministic

Coaxial Flow Rule, so we now proceed to replace it with a more physically appropriate

Stochastic Flow Rule. The Mohr-Coulomb description of stresses is more clearly

grounded in principles of solid mechanics and is widely used in silo engineering, so

we will assume that it still holds, on average, in the presence of slow flows, as a first

approximation.

2.4 The Stochastic Flow Rule

2.4.1 Diffusing “spots” of plastic deformation

It has been noted in a variety of experiments that dense granular flows can have

velocity profiles which resemble solutions to a diffusion equation. By far the best ex-

ample is drainage from a wide silo, which has a well-known Gaussian profile near the

orifice, spreading vertically as the square root of the height (with parabolic stream-

lines) in a range of experiments [102, 140, 123, 92, 28]. Recently, experiments in the

split-bottom Couette geometry have demonstrated precise error-function profiles of

the velocity spreading upward from the shearing circle, albeit with more complicated

scaling [47]. Shear bands, when they exist, tend to be exponentially localized near

moving rough walls, but we note that these too can be viewed as solutions to a steady

drift-diffusion equation with drift directed toward the wall.
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It seems, therefore, that a successful flow rule for dense granular materials could be

based on a stochastic process of deformation, consistent with our general arguments

above based on discreteness and randomness. This begs the question: What is the

diffusing carrier of plastic deformation? In crystals, plasticity is carried by disloca-

tions, but it is not clear that any such defects might exist in an amorphous material.

The Gaussian velocity profile of granular drainage was first explained independently

by Litwiniszyn [85, 86] and Mullins [100] as being due to the diffusion of voids upward

from the orifice, exchanging with particles to cause downward motion. However, this

model cannot be taken literally, since granular flows have nearly uniform density with

essentially no voids and with far less cage-breaking than the model would predict.

Instead, the starting point for our theory lies in the work of Bazant [15], who

proposed a general model for the flow of amorphous materials (dense random pack-

ings) based on diffusing “spots” of cooperative relaxation, as illustrated in Figure

2-10. The basic idea is that each random spot displacement causes a small block-like

displacement of particles in the opposite direction. This flow mechanism takes into

account the tendency of each particle to move together with its cage of first neigh-

bors, so we would expect the size of a spot to lie in the range three to five particle

diameters, Ls ≈ 3− 5d, for simple cohesionless materials. This expectation has been

confirmed in dense silo drainage as the length scale for spatial velocity correlations in

the experiments of Choi et al. [29, 28] using glass beads (data shown in Figure 2-11) as

well as the discrete-element simulations of Rycroft et al. [120] using a variety of force

laws with monodisperse spheres. Although other material properties, such as grain

shape and contact friction, could increase velocity correlations as suggested in Ref.

[6], for purposes of illustration and comparison to a variety of experiments below, we

will view Ls = 3 − 5d as the typical range of spot sizes in this paper. In continuum

mechanics terminology, we are proposing the spot as an appropriate meso-scale re-

placement for the RVE, which reflects velocity correlations resulting from cooperative

displacements of the particles.

A major motivation for our work comes from the recent demonstration by Rycroft

et al. that the Spot Model can be used as a basis for realistic multiscale simulations of
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(a)

Correlations Reduce Diffusion

• Volume conservation (approx.)

Simplest example: A uniform spot affects N particles.

• Particle diffusion length

Experiment:  0.0025    DEM Simulation:  0.0024    (some spot

overlap)

(b)

8

FIG. 6: The Spot Hypothesis I: Localized spots free inter-
stitial volume, extending several particle diameters, diffuse
upward from the silo orifice as particles drain out, causing
the reverse reptation of thick chains of particles.

FIG. 7: The Spot Hypothesis II: Each spot displacement
causes a block of neighboring particles to make a smaller dis-
placement in the opposite direction, so as to roughly conserve
the local volume.

Under this dynamics, the packing of particles is largely
preserved because a pair of neighboring particles is usu-
ally affected by the same spot. Occasionally the pair finds
itself near the edge of a spot, which causes a tiny rela-
tive displacement. The accumulated effect of such events
gradually causes the particles to separate as they drain.
The cage breaking length, however, is much larger than
the particle size because relative displacements of neigh-
bors are both small and rare. In fact, the cage-breaking
length in the model (calculated below) can be compara-
ble to the system size, as in experiments and simulations

of dense drainage.
This microscopic picture is fundamentally different

from previous theories, which assume that particles un-
dergo independent random walks. According to Kinetic
Theory, a particle moves ballistically between instanta-
neous, randomizing collisions, and in the Void Model it
jumps from cage to cage. In both cases, the particle
loses a most of its neighbors in a single displacement,
and thorough mixing occurs at the scale of several parti-
cle diameters.

B. Correlations Reduce Diffusion

A back-of-the-envelope calculation suffices to show
that the spot hypothesis resolves the paradox of granular
diffusion. Suppose that a spot carries a total free volume,
Vs, and causes equal displacements, (∆xp, ∆zp), among
Np particles of volume, Vp. The particle displacement
can be related to the spot displacement, (∆xs, ∆zs), by
an approximate expression of total volume conservation,

Ns Vp (∆xp, ∆zp) = −Vs (∆xs, ∆zp), (10)

which ignores boundary effects at the edge of the spot.
From this relation, we can easily compute the particle
diffusion length,

bp =
Var(∆xp)

2dh|∆zp|
=

w2Var(∆xs)

2dhw∆zs
= w b (11)

which is smaller than the spot (or volume) diffusion
length by a factor,

w =
Vs

NpVp
, (12)

equal to the ratio of the spot’s free volume, Vs, to the
total affected particle volume, NpVp. The Void Model
corresponds to the unphysical limit where these volumes
are both equal to a single particle volume (Np = 1, Vs =
Vp, w = 1), but generally we expect spots to affect mul-
tiple particles and carry relatively little excess volume
(Np " 1, Vs < 1, w # 1). The nontrivial implication
of cooperative motion is then that particles diffuse much
more slowly than volume, bp # b, which resolves the
paradox described above. Below we will show that the
resolution is not just qualitative, but quantitative.

C. General Formulation of the Spot Model

The key mathematical concept in the Spot Model is
that of a diffusing “region of influence”, which causes cor-
related displacements among all particles within range.
There are many possible microscopic postulates for this
local cooperative motion, but the strong tendency to
preserve nearly jammed packings suggests it should be

(c)

Figure 2-10: Spots as carriers of plastic deformation in amorphous materials. (a)
Cartoon of basic spot motion. A spot of local fluidization, carrying some free volume,
moves to the upper right causing a cooperative displacement of particles, on average
to the lower left, opposing the spot displacement. (b) In silo drainage, spots are
injected at the orifice and perform random walks biased upward by gravity, causing
downward motion of particles. (c) In other situations, we conjecture that spots are
created during initial shear dilation and perform random walks biased by local stress
imbalances and body forces during steady flow.

dense granular drainage in a wide silo, assuming that spots perform upward random

walks, biased uniformly by gravity [120]. Using only five fitting parameters (the size,

volume, diffusivity, drift speed, and creation rate of spots), the spot simulations were

able to accurately reproduce the statistical dynamics of several hundred thousand

frictional, visco-elastic spheres in discrete-element simulations of drainage from a

wide silo. This suggests that a general understanding of dense granular flows may

come from a mechanical theory of spot dynamics.
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slow drainage from a quasi-two dimensional silo [37]. It
also suggests that spots occur at fairly high density, with
as many as Ns = 320/40 = 8 overlapping in a position
of high dilatency. In a position of low dilatency, where
∆φ/φ ≈ 0.001, it implies that spots typically do not over-
lap. Such a limited number of spot overlaps seems like a
reasonable definition of a “dense” flow, where the simple
picture in Eq. (7) could apply.

(Note that larger Péclet numbers in the range Pe ≈
1500 − 3000 have been reported for faster flows in long,
narrow silos with shear-inducing rough walls [36]. In this
case, the simple relation in Eq. (16) would imply a much
higher spot density, where positions of 100 overlapping
spots could be found. At such high spot densities (low
volume fraction), it seems the model would no longer
apply due to more independent particle displacements.
Indeed, since Pe depends weakly on the flow rate, those
experiments are not in the regime of slow drainage con-
sidered here. The data is also inconsistent with kinetic
theories of dilute granular flow [36], so it seems to cor-
respond to an intermediate regime of moderately dense
flow.)

B. Spatial Velocity Correlations

The quantitative resolution of the granular-diffusion
“paradox” provides some support for the Spot Model
does not directly validate its microscopic hypothesis.
How can we directly confirm or reject the existence of
spots? The calculation above suggests that it would be
impossible to observe the propagation of a single spot,
but only large numbers of spots, which expectation is
consistent with x-ray diffraction experiments showing
fairly smooth density patterns in draining sand [106].

Rather than trying to observe a single spot, therefore,
it makes more sense to seek statistical evidence of the
passage of many spots. A direct signature of the coop-
erative motion in Fig. 7 is found in the spatial correla-
tion function of velocity fluctuations (relative to a steady
mean flow). Two particles are likely to fluctuate in the
same direction when they are separated by less than a
spot diameter because most spots engulf them at the
same time. On the other hand, more distant particles
are always affected by different spots, which implies in-
dependent fluctuations.

The spatial velocity correlation function, C(r), for two
particles separated by r is easily calculated for uniform,
spherical spots of radius, R. The two instantaneous par-
ticle displacements are either identical (perfectly corre-
lated), if they are caused by the same spot, or indepen-
dent. Therefore, the correlation function, C(r), is simply
the scaled intersection volume, α(r; R), of two spheres of
radius, R, separated by a distance, r:

α(r; R) = 1 −
3

4

r

R
+

1

16

( r

R

)2
. (17)

This result appears in a recent study of random point
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FIG. 8: Direct experimental evidence for spots: Spatial ve-
locity correlations from the drainage experiments of Ref. [37].
Surface plot (top) and coordinate slices (bottom) of the cor-
relation coefficient for velocity fluctuations (about the local
mean flow) at horizontal separation, x, and vertical separa-
tion, z, in units of particle diameter, d. (Courtesy of Jaehyuk
Choi.)

distributions [107], where α(r; R) is plotted in Fig. 9
(and earlier in Ref. [108]). The key point is that C(r) =
α(r; R) decays to half its maximum value at a separation
slightly smaller than spot radius, R. Similar curves re-
sult from other quickly decaying spot influence functions,
such as exponentials or Gaussians (see below).

Motivated by this prediction, the experiments in
Ref. [37] were performed to look for spatial velocity cor-
relations in a real granular flow. Hundreds of glass beads
(d = 3mm) near the wall of a quasi-two-dimensional
draining silo were simultaneously tracked with 1ms res-
olution in time and d/100 in space in the region of non-
uniform flow near the orifice. The data clearly reveals
spatial velocity correlations, shown in Fig. 8, at the ex-
pected length scale of several particle diameters. It is
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Figure 2-11: Spatial velocity correlations in silo drainage experiments as in Refs. [29,
28] with glass beads (d = 3mm) obtained high-speed digital-video particle tracking.
The correlation coefficient of instantaneous displacements of a pair different particles
is plotted as a function of their separation, averaged over all pairs and all times in
the video. (Courtesy of the authors of Ref. [29].)

2.4.2 General form of the flow rule

In this work, we propose such a mechanical theory, based on the assumption that

MCP provides a reasonable description of the mean stresses in slow dense granular

flows. The key idea is to replace the Coaxial Flow Rule with a “Stochastic Flow

Rule” based on mechanically biased spot diffusion. In the continuum approximation,

the general form of the flow rule thus consists of two steps [15]: (i) a Fokker-Planck

(drift-diffusion) equation is solved for the probability density (or concentration) of

spots, ρs(r, t):
∂ρs
∂t

+
∂

∂xα
(Dα

1 ρs) =
∂

∂xα
∂

∂xβ

(
Dαβ

2 ρs

)
(2.24)

where {Dα
1 } is the drift vector and {Dαβ

2 } the diffusivity tensor of spots, determined

by the stress field (below); and (ii) the mean drift velocity of particles u = {uα} is

constructed to oppose the local flux of spots:

uα = −
∫
dr′w(r, r′) [Dα

1 (r′, t)ρs(r
′, t)

− ∂

∂xβ

(
Dαβ

2 (r′, t)ρs(r
′, t)
)]

(2.25)

where w(r, r′) is the (dimensionless) spot “influence function” specifying how much

a particle at r moves in response to a spot displacement at r′. Without making
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the continuum approximation, the same physical picture can also be the basis for

a multiscale model, alternating between macroscopic continuum stress computation

and discrete spot-driven random-packing dynamics [120].

The mean flow profile (2.25) is derived from a nonlocal stochastic partial differen-

tial equation for spot-driven particle dynamics, in the approximation that spots do not

interact with each other [15]. Here, we have assumed the centered Stratonovich defi-

nition of stochastic differentials [114], which means physically that the spot influence

is centered on its displacement. In contrast, Bazant used the one-sided reverse-̂Ito

definition, where the spot influence is centered on the end of its displacement, which

leads to an extra factor of two in the last term [15]. This choice is mathematically

unrestricted (the “stochastic dilemma” [114]), but we find the centered definition to

be a somewhat more reasonable physical hypothesis. Rycroft et al. have also found

that the centered definition produces more realistic flowing random packings in mul-

tiscale spot simulations of granular drainage, when compared to full discrete-element

simulations [120]. If we use the simple approximation w ≈ δ(|r− r′|) in the integral

for particle velocity, the Stratonovich interpretation has the benefit of automatically

upholding volume conservation.

Without even specifying how local stresses determine spot dynamics, the general

form of the flow rule (2.25) predicts continuous velocity fields, even when the mean

stresses are discontinuous. For example, shocks in the MCP stress field may lead to

discontinuities in the spot drift vector, D1, and thus the spot flux. However, due

to the nonlocal nature of the spot model, the particle flux is a convolution of the

spot flux with the spot influence function, thus preserving a continuous velocity field,

which varies at scales larger than the spot size, Ls. This is a direct consequence of the

geometry of dense random packings: The strong tendency for particles to move with

their nearest neighbors smears velocity changes over at least one correlation length.

In the simplest approximation, the spot influence is translationally invariant, w =

w(r− r′), so that spots everywhere in the system have the same size and shape. The

spot influence decays off for r > Ls, as a Gaussian among other possibilities.

In (2.25) we allow for the likelihood that the spot influence may not be transla-
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tionally and rotationally invariant, e.g. since the local stress state always breaks sym-

metry. This is actually clear in the experimental measurements of Figure 2-11, where

velocity correlations are more short-ranged, without roughly half the decay length

in the vertical direction (parallel to gravity) compared to the horizontal (transverse)

direction. This suggests that spots are generally non-spherical and may be more elon-

gated in the directions transverse to their drift (or the body force). If anisotropy in

the spot influence were taken into account, it would also be natural to allow for an

anisotropic spot diffusivity tensor, which depends on the local stress state. However,

such effects seem to be small in the granular flows we consider below, which are well

described by a much simpler model.

Another likely possibility is that spots come in a range of shapes and sizes. There

could be a statistical distribution of regions of local fluidization or plastic yield related

to the local packing and stress state. It is thus more reasonable to think of the spot

influence function w(r, r′) as averaging over this distribution, just as a spatial veloc-

ity correlation measurement averages over a large number of collective relaxations.

One advantage of taking the continuum limit of a Fokker-Planck equation (2.24) in

applying the SFR is that such details are buried in the coefficients, which could in

principle be derived systematically from any microscopic statistical model, or simply

viewed as a starting point for further physical hypotheses (as we do below).

Finally, we mention that there are also surely some nontrivial interactions be-

tween spots, which would make the SFR nonlinear and could lead to interesting new

phenomena, such as spontaneous pattern formation. For example, spots may have a

medium range attraction, since it is more difficult to propagate particle rearrange-

ments and plastic deformation into less dense, less mobile regions; there could also be

a short range repulsion if the spot density gets too high, since grains will collapse into

overly dilated regions. Such effects may be responsible for intermittent density waves

in draining hoppers with narrow orifices [14, 107], and perhaps even shear banding

in other amorphous materials, such as metallic glasses, with a different plastic yield

criterion. However, we will see that the hypothesis of non-interacting spots already

works rather well in cases of steady, dense granular flows.
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2.4.3 A simple model for steady flows

Due to efficient dissipation by friction, granular materials subjected to steady forcing

typically relax very quickly to a steady flowing state. For example, when a silo’s

orifice is opened, a wave of reduced density (spots) propagates upward, leaving in its

wake a nearly steady particle flow, which we associate with a steady flow of spots.

This initial density wave can be seen very clearly in discrete-element simulations

of various hopper-silo geometries [121]. For a narrow orifice, we have noted that

intermittent flows with density waves can be observed [14, 107], but typical drainage

flows are rather steady in time [29, 28]. Similarly, when a rough inner cylinder is set

into uniform rotation in a Couette cell, shear dilation propagates outward, raising

the level of the packing, until a steady flow profile is reached. We interpret this

initial dilation as signaling the creation of spots on the cylinder, which quickly reach

a steady distribution in the bulk.

Hereafter, we focus on describing steady flow profiles, with equilibrium spot den-

sities. For simplicity, let us assume isotropic spot diffusion, Dαβ = D2δαβ, since

fluctuations are dominated by the (largely isotropic) geometry of dense random pack-

ings. Using the spot size Ls as the natural length scale, we can express the spot drift

speed, |D1| = Ls/∆t1, and diffusivity, D2 = L2
s/2∆t2, in terms of the times, ∆t1 and

∆t2, for drift and diffusion to reach this length.

The flow profile of a draining silo, normalized by the outflow speed, is approx-

imately constant over a wide range of flow speeds, as has recently been verified to

great precision in the experiments of Choi et al. [29]. Not only is the mean velocity

profile independent of flow rate (over an order of magnitude in mean velocity), but

fluctuations about the mean, such as vertical and horizontal diffusion and measures

of “cage breaking”, also depend only on the distance dropped, and not explicitly on

time (or some measure of “granular temperature”). In statistical terms, changing the

flow rate is like watching the same movie at a different speed, so that the random

packing goes through a similar sequence of geometrical configurations regardless of

the velocity. Similar features have also been observed in shearing experiments in
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Couette cells [99] and numerical simulations of planar shear [87].

The experimental and simulational evidence, therefore, prompts the crucial ap-

proximation that ∆t1/∆t2 = constant so as to uphold statistical invariance of the

particle trajectories under changing the overall flow rate. This can be justified if

spots perform random walks with displacements selected from a fixed distribution,

set by the geometry of the random packing [15]. Here, we make the stronger assump-

tion that the characteristic length of these random walks is the spot size Ls, so that

∆t1 = ∆t2 ≡ ∆t. Our physical picture is that a spot represents a “cell” of localized

fluidization (or plastic yield) of typical size Ls, which triggers further fluidization

ahead of it and randomly propagates to a neighboring cell of similar extent. This

picture is also consistent with the interpretation of Ls as a velocity correlation length

above.

With these hypotheses, the Fokker-Planck equation (2.24) takes the simple time-

independent form,

∇ · (d̂s ρs) =
Ls
2
∇2ρs (2.26)

where d̂s(r) = D1/|D1| is the spot drift direction, determined by the mechanics of

plastic yielding (below). The flow field is then

u = −Ls
∆t

∫
dr′w(r, r′)

(
d̂s(r

′)ρs(r
′)− Ls

2
∇ρs(r′)

)
(2.27)

Equations (2.26) and (2.27) define a simplified Stochastic Flow Rule, with only one

parameter, Ls, which need not be fitted to any flow profile. Instead, it can be mea-

sured independently as the velocity correlation length, which may be viewed as a

dynamical material property.

2.4.4 A mechanical theory of spot drift

The main contribution of this paper is a simple theory connecting the spot drift

direction to the stresses in MCP. The basic idea is to view the displacement of a

spot as being due to a local event of material failure or fluidization. To make a
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quantitative prediction, we first define a cell of the material as the roughly diamond

shaped region encompassed by two intersecting pairs of slip-lines, separated by Ls.

When a spot passes through this cell, it fluidizes the material and thus locally changes

the friction coefficient from the static value µ to the kinetic value µk. This upsets the

force balance on the cell and may cause a perturbative net force to occur.

The force diagram for a material cell occupied by a spot can be broken into the

sum of two diagrams (Figure 2-12), one which is the static diagram multiplied by

µk/µ and one which contains only normal contact force contributions and a body

force term. MCP requires the static diagram to be balanced, thus the latter is the

only cause for a net force. A well-known corollary of the divergence theorem enables

us to express the surface integral of normal contact stresses in terms of a gradient of

p giving

Fnet =

(
1− µk

µ

)(
Fbody − cos2 φ∇p

)
(2.28)

as an effective force which pulls on a cell as it is fluidized by a passing spot, causing

the spot to preferentially drift in the opposite direction.

A spot cannot move in an arbitrary direction, however, since the material is at

incipient yield only along the two slip lines. Therefore, the net force is constrained

to pull the material cell along one of the slip-lines. The spot drift direction is then

obtained by projecting (minus) the force, −Fnet, onto the slip-lines and averaging

these two projection vectors with equal weight:

ξ(±) = −(Fnet · n̂ψ±ε)n̂ψ±ε (2.29)

d̂s =
ξ(+) + ξ(−)

|ξ(+) + ξ(−)|
(2.30)

where n̂θ = (cos θ, sin θ). With a formula for d̂s now determined, the SFR as stated

in equations (2.26) and (2.27) is now fully defined and ready for use.

This continuum mechanical theory of spot drift also helps us understand the

sources of spot diffusion. As noted above and sketched in Figure 2-9, a material

cell is a small fragment of a random packing, which is unlikely to be able to accom-
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(a)

Static: Mobile: (i.e. occupied by spot)

+

(b)

Static: Mobile: (i.e. occupied by spot)

+

(c)

Static: Mobile: (i.e. occupied by spot)

+

Figure 2-12: (a) Material cell in static equilibrium.(b) A spot enters the cell fluidizing
the material. In the force diagram, this means µ decreases to µk. (c) The force
diagram for the fluidized material cell is best analyzed by breaking it into the sum of
two diagrams.
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modate shear strain precisely along the slip-lines of the mean continuum stress field.

Instead, the instantaneous slip-lines are effectively blurred by the discrete random

packing. Still, we preserve the picture of spots moving along slip-lines in constructing

d̂s, but represent the additional blurriness in the slip-line field by enforcing isotropic

spot diffusivity.

2.4.5 Frame indifference

Finally, we must check that our flow rule satisfies frame indifference; solving for flow

in different rigidly moving reference frames cannot give different answers in a fixed

reference frame. Since the SFR is a 2D steady-state flow rule, the only flows we need

to check for indifference are those with rotational/translational symmetry. In these

cases, the particle velocity is a function of only one spatial variable and equation

(2.26) for ρs becomes a second-order ODE. In solving the boundary value problem,

we must ensure that grains along the walls have a velocity vector tangent to the walls.

This constrains one of the two degrees of freedom in the set of possible solutions for

ρs. Since (2.26) is homogeneous, the other degree of freedom must come out as a

multiplicative undetermined constant. Thus the velocity profile is unique up to a

multiplicative constant.

With only one constant, we cannot match boundary conditions for particle speed

along more than one wall in general. So to solve for a flow between two walls, we

must add rigid-body motions to the reference frame of the observer until we have the

unique frame for which a solution exists matching both boundary conditions. This is

an unexpected and welcome bonus of the SFR. Most flow rules in continuum mechan-

ics enforce material frame indifference directly, i.e. the flow rule itself is derived to be

automatically satisfied by any rigid-body motion, ensuring the same results indepen-

dent of reference frame. Coaxiality achieves this by relating stress information only

to strain-rate variables for instance. The SFR, however, upholds frame indifference

indirectly in that the solution does not exist unless the problem is solved in exactly

one “correct” frame of reference.

We have thus integrated the spot concept with the theory of plastic stresses treat-

46



ing spots as the “carriers of plasticity”. We note that up to our granular-specific de-

termination of the drift direction, the SFR principle can be applied to any amorphous

isotropic material with a small characteristic length scale (dominant randomness) and

a yield criterion.

2.5 Applications to granular flow

The Stochastic Flow Rule is quite general and in principle can be applied to any

limit-state plasticity model of stresses, with different choices of the yield function

to describe different materials. In this section, we apply the simplest SFR (2.26)–

(2.27) to granular materials with MCP stresses and compare its predictions to a wide

range of existing experimental data for steady dense flows. In calculating stresses, we

assume a typical friction angle of φ = 30o. It is known that for spherical grains, the

friction angle usually lies in a somewhat narrow range of about 20o − 30o and can be

as large as 50o for some anisotropic, highly angular materials [101]. In the examples

we consider, however, varying the φ value in this range has very little macroscopic

effect in our model.

The spot size Ls has a much larger effect, so we focus on its role in a variety of

dense flows. We emphasize that we do not fit Ls to any flow profile below. Instead,

we simply use the range Ls = 3 − 5d for dense flowing sphere packings inferred

independently from spatial velocity correlations in silo drainage experiments [29] and

simulations [120] (see Fig. 2-11). This is consistent with our view of the correlation

length, Ls, as a fundamental geometrical property of a flowing granular material.

Without any fitting parameters, we will apply the simple SFR to several pro-

totypical flows. Each has different forcing and symmetries and, to our knowledge,

they cannot be simultaneously described by any existing model. Our first example

is granular drainage to a small orifice in a wide flat-bottomed silo, driven entirely

by gravity. Our second example is shear flow in an annular Couette cell driven by

a moving rough inner cylinder, where gravity plays no role. Our third example is

the dragging of a loaded plate over a semi-infinite material at rest, which combines

47



gravitational forces and boundary forcing. Lastly we apply the SFR to a canonical

free-surface flow, the continuous avalanching of a granular heap. The transition to

a rapidly flowing surface shear layer on a heap will also lead us into a discussion of

how rate-dependent effects, such as Bagnold rheology, may naturally extend into our

model.

Throughout our treatment of the various examples, the first step will be to solve

(2.26) to obtain the “unconvolved” velocity field

u∗ = −Lsd̂sρs +
L2
s

2
∇ρs (2.31)

which corresponds to the SFR velocity (2.27) for a point-like influence function w =

δ(|r − r′|). For the most part, u∗ is the “skeleton” for the full solution u because

convolving u∗ with a general spot influence merely blurs out the sharper features of

u∗. In some situations with wide shear zones, such as silo flow, the convolution has

only a minor effect, but in others with narrow shear bands, at the scale of the spot

size, the convolution step is essential for self-consistency and accuracy.

2.5.1 Silos

The flow profile in a flat-bottom silo geometry is well-known for its striking similarity

to the fundamental solution of the diffusion equation. As noted above, early models

of silo flow explained this based on the upward diffusion of voids from the orifice [85,

86, 100]. Without reference to a specific microscopic mechanism, Nedderman and

Tüzun later derived the same equations based on a continuum constitutive law [102,

101]. They asserted that the horizontal velocity component u is proportional to the

horizontal gradient of the downward velocity component v,

u = b
∂v

∂x
(2.32)

since particles should drift from regions of slow, dense flow toward regions of faster,

less dense (more dilated) flow. Assuming small density fluctuations, mass conserva-
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Figure 2-13: The mean velocity profile in a wide quasi-2d silo of 3mm glass beads
from Ref. [28]. Horizontal slices of the downward velocity component near the orifice,
indicated in the complete flow profile on the left, are shown on the right, and compared
to the predictions of the Kinematic Model with two choices of the parameter b. The
Stochastic Flow Rule for MCP for a wide silo (without side walls) gives a similar
velocity field with b ≈ 1.5− 2.5d.

tion applied to the 2D velocity field, u = (u,−v) then yields the diffusion equation

for the downward velocity,
∂v

∂z
= b

∂2v

∂x2
(2.33)

where the vertical direction z acts like “time”. The diffusivity b is thus really a

“diffusion length”, to be determined empirically. An advantage of the continuum

formulation is that it avoids the paradox (resolved by the Spot Model [15]) that the

classical picture of void random walks requires b � d, while experiments invariably

show b > d.

Solving the Kinematic Model in the wide flat-bottomed silo geometry with a point

orifice gives the familiar Green function for the diffusion equation,

v(x, z) =
e−x

2/4bz

√
4πbz

. (2.34)

This gives an excellent match to experimental data close to the orifice (e.g. see
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Outflow

Figure 2-14: The flat-bottomed silo geometry. The intersecting black lines represent
the slip-line field as determined from solving the stress balance equations of MCP,
and the red vector field is the spot drift direction, as determined from the SFR. In this
highly symmetric geometry, the spot drift precisely opposes the gravitational body
force, d̂ = −ĝ.

Figure 2-13 2), although the fit gradually gets worse with increasing height, as the

flow becomes somewhat more plug-like. Nevertheless, Gaussian fits of experimental

data have provided similar estimates of b = 1.3d [29], 1.3− 2.3d [28], 2.3d [102], 3.5d

[123], and 2d− 4d [92] for a variety of granular materials composed of monodisperse

spheres.

We now apply our theory to this flow geometry and see how it connects to the

Kinematic Model. Applying equation (2.30) using the stress field described by equa-

tions (2.22) and (2.23) gives uniform upward spot drift; Fnet comes out as pointing

uniformly downward and the slip-lines are symmetric about the vertical (see Figure

2-14). The SFR (2.26) then reduces to

∂ρs
∂z

=
Ls
2

(
∂2ρs
∂x2

+
∂2ρs
∂z2

)
(2.35)

although we emphasize that this form applies only when the walls are smooth or

2Figure reprinted from J. Phys.: Condensed Matter, 17, J. Choi, A. Kudrolli, and M. Z. Bazant,
Velocity profile of granular flows inside silos and hoppers, S2533 - S2548, Copyright (2005), with
permission from IOP.
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equivalently when the silo width is large. The last term, which represents vertical

diffusion of spots (relative to the mean upward drift), makes this equation for the

spot density differ somewhat from the simple diffusion equation for the downward

velocity of the Kinematic Model. Consistent with our model, vertical diffusion, with

a similar (but not identical) diffusion length as horizontal diffusion, has been observed

in recent silo-drainage experiments [29, 28].

The general solution of (2.35) can be expressed as a Fourier integral,

ρs =
1

2π

∫ ∞

−∞
eikxA(k)e

z
Ls

(1−
√

1+L2
sk

2)dk (2.36)

where A(k) is the Fourier transform of the spot density at the bottom (z = 0).

The narrowest possible orifice allowing for flow is the case of a point source of spots,

ρs(x, 0) ∝ δ(x), A(k) ∝ 1 (which is also the Green function). Convolution with a spot

influence function of width Ls produces a downward velocity profile on the orifice of

width Ls. Unlike the Kinematic Model (or any other continuum model which does

not account for the finite grain size), our theory thus predicts that flow cannot occur

unless the orifice is at least as wide as one spot, Ls = 3− 5d.

The details of flow very close to the orifice, z = O(Ls), are controlled by the

choice of boundary condition, reflecting the dynamics of dilation, contact-breaking,

and acceleration at the orifice, which are not described by our bulk dense-flow model.

Rather than speculate on the form of this boundary condition, we focus on the bulk

region slightly farther from the orifice. For z � Ls (and Lsk � 1), the vertical

diffusion term becomes unimportant, and the Green function tends to a Gaussian

v(x, z) ∼ e−x
2/2σ2

v(z)√
2πσ2

v(z)
(2.37)

where the variance is

σ2
v(z) ∼ Lsz +O(L2

s). (2.38)

(The second term is an offset from convolution with the spot influence function, which

also depends on the choice of boundary conditions.)
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There has been no prior theoretical prediction of the kinematic parameter b, which

we interpret as the spot diffusion length [15]. Comparing (2.34) and (2.37), we obtain

b = Ls/2 = 1.5 − 2.5d without any fitting, beyond the independent determination

of Ls from velocity correlations. This prediction is in excellent agreement with the

experimental measurements listed above. However, the model does not predict the

apparent increase of b with height, as the flow becomes more plug like. This may be

due to the breakdown of the assumption of incipient yield higher in the silo, where

the shear is greatly reduced, and it may require modeling stresses more generally with

elasto-plasticity.

In any case, we are not aware of any other model of silo flow with a plausible basis

in mechanics. It is noteworthy that we assume active silo stresses (driven by gravity),

as typically assumed in a quasi-static silo. As a result, we do not require a sudden

switch to passive stresses (driven by the side walls) upon flow initiation, as in existing

plasticity theories based on the Coaxial Flow Rule [101]. Our use of the standard

MCP model for stresses in quasi-static silos also suggests that the SFR may predict

reasonable dependences on the geometry of the silo or hopper, wall roughness, and

other mechanical parameters. In contrast, the Kinematic Model fails to incorporate

any mechanics, and, not surprisingly, fails to describe flows in different silo/hopper

geometries in experiments [28]. Testing our model in the same way would be an

interesting direction for future work, since it has essentially no adjustable parameters.

2.5.2 Couette cells

The key benefit of our model is versatility; we will now take exactly the same model,

which is able to describe wide silo flows driven by gravity, and apply it to Taylor-

Couette shear flows in annular cells driven by a moving boundary. The granular

material is confined between vertical rough-walled concentric cylinders and set into

motion by rotating the inner cylinder. The flow field has been characterized exten-

sively in experiments and simulations, and several theories have been proposed for

this particular geometry [88, 19, 80, 94]. For example, a good fit of experimental data

for Couette cells can be obtained by postulating a density and temperature dependent
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Figure 2-15: (a) A plane view of the annular Couette cell geometry, where the
granular material is confined between concentric vertical cylinders. The rough wall
is rotated anti-clockwise while the outer wall is held fixed. The crossing black lines
within the material are the slip-lines as found from MCP, and the red vector field
is the spot drift as determined by the SFR. (b) Normalized SFR velocity from as a
function of distance from the inner wall with inner cylinder radius 15d, 25d, 50d, and
100d (from bottom to top curves, respectively). The friction angle is φ = 30◦, and
the spot size is Ls = 3d.

viscosity in a fluid mechanical theory [19], but it is not clear that the same model can

describe any other geometries, such as silos, hoppers, or other shear flows.

To solve for the MCP stresses in the annular Couette geometry, we first convert

the stress balance equations to polar coordinates (r, θ) and require that p and ψ obey

radial symmetry. This gives the following pair of ODEs:

∂ψ∗

∂r
= − sin 2ψ∗

r(cos 2ψ∗ + sinφ)
(2.39)

∂η

∂r
= − 2 sinφ

r(cos 2ψ∗ + sinφ)
(2.40)

where η = log p and ψ∗ = ψ+ π
2
− θ. Although ψ∗ has an implicit analytical solution,

η does not, so we solve these equations numerically using fully rough inner wall

boundary conditions ψ∗(rw) = π
2
− ε and any arbitrary value for η(rw). The resulting

slip-lines are shown in Figure 2-15(a).

In the Couette geometry, the average normal stress, p, decreases with radial dis-

tance, which implies that the fluidization force on material, Fnet, is everywhere di-
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rected outward. We then apply equation (2.30) to calculate the drift direction d̂s(r)

by projecting the vector Fnet onto slip-lines, and implement the SFR, exploiting sym-

metry which allows only a nonzero velocity in the θ̂ direction. This implies

u∗ · r̂ = 0 = −Ls(d̂s · r̂)ρs +
L2
s

2

∂ρs
∂r

(2.41)

which yields a solution for ρs up to a scalar factor. We then use ρs to calculate the θ

component of the (unconvolved) velocity once again using the SFR equation,

u∗ · θ̂ = −Ls(d̂s · θ̂)ρs. (2.42)

It turns out, as we may have expected, that u∗ has a shear band at the inner wall

with nearly exact exponential decay. The length scale of this decay is the spot size,

Ls, since this is the velocity correlation length, beyond which the inadmissible shear

at the inner cylinder can be effectively dissipated by the material.

The thinness of the shear band requires that, for consistency, we must take into

account the finite spot size in reconstructing the velocity field through the convolution

integral (2.27). For simplicity we will use a uniform spot influence function, i.e.

w(r) =
4

πL2
s

H

(
Ls
2
− |r|

)
(2.43)

where H(x) is the Heaviside step function. To evaluate the integral (2.27), we also

must make a hypothesis about how spots operate when they overlap one of the walls.

Random packing dynamics near walls is different than in the bulk and sensitive to

surface roughness, and further detailed analysis of experiments and simulations will

be required to elucidate the collective mechanism(s). Here, the precise shape of spots

near the wall has little effect, except to flatten out the spike in velocity that occurs

near the wall in the unconvolved velocity u∗. As a simple first approximation, used

hereafter in this paper, we will view the space beyond each boundary as containing

a bath of non-diffusive spots at uniform concentration whose flux is such that the

particle velocity invoked “inside” the boundaries directly mimics the rigid motion of
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Figure 2-16: Theory versus experiment for the normalized velocity in annular Couette
cells on (a) linear and (b) semilog plots. The dashed curve is the predicted SFR
velocity field with Ls = 3d, while the solid line is for Ls = 5d; both curves are for an
inner cylinder radius of rw = 80d and φ = 30◦. Experimental measurements (points)
for a wide range of inner and outer cylinder radii are shown from the compilation of
data shown in Figure 3c of [94]. (The experimental data is courtesy of GDR Midi
and originates from the work of [32], [19], [98], and [27].)

the walls. This effectively “folds” part of the spot influence back into the granular

material when it overlaps with the wall. The resulting velocity field is shown in Figure

2-15(b), where normalized velocity is shown versus distance from the inner cylinder

wall for Ls = 3d for a wide range of inner cylinder radii.

The predicted flow field – without any fitting – is in striking agreement with a large

set of data from experimental and discrete-element simulations for different cylinder

radii and grain sizes [88, 19, 80, 94]. As shown in Figure 2-16, the experimental data

compiled by GDR Midi [94] falls almost entirely within the predicted SFR velocity

profiles, by setting the spot size to the same typical range of correlation lengths,

Ls = 3 − 5d, measured independently in a quasi-2D silo (Figure 2-11). Viewing the

data on a semilog plot shows that the agreement extends all the way into the tail of

the velocity distribution. We emphasize that the same simple theory, with the same

range of Ls values, also accurately predicts silo flows above, as well as other situations

below. Unifying all of this data in a single simple theory without any empirical fitting

constitutes a stringent, quantitative test.
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It is interesting to note the behavior close to the wall, especially in thin Couette

cells. In experiments [94], annular flow profiles are known to have a Gaussian correc-

tion term when the thickness of the cell becomes non-negligible in terms of particle

size. This slight flattening near the wall is apparent in our model as well and is a

byproduct of convolving with the spot influence. We thus interpret this feature as an-

other sign of the strongly correlated motion of particles, primarily with the “cage” of

nearest neighbors, as approximately described by the spot mechanism. In this calcu-

lation, we used a uniform spot influence, but have noticed relatively little sensitivity

of the predicted flow profile, for different strongly localized influence functions, such

as a Gaussian, w ∝ e−2r2/L2
s . A detailed comparison of the model to experimental

data may provide fundamental insights into the spot influence, and thus the collective

dynamics of random packings, near a rough wall at the discrete particle level.

The experimental results shown in Figure 2-16 come from apparati with inner wall

radii ranging from 14d − 100d. The relatively small variations in the data sets over

such a large range of inner radii clearly indicates that the inner wall radius is not a

crucial length scale in the flow. The plotted theoretical prediction uses an inner radius

of ≈ 80d, but, as can be seen in Figure 2-15(b), our results depend only minimally

on the inner cylinder radius. Indeed, the meso-scale correlation length of Ls = 3− 5d

is the dominant length scale in our theory for this geometry.

To substantiate an earlier claim, we now consider how the friction angle φ affects

the flow properties (holding Ls fixed) according to our model. We can see this most

clearly by observing how the shear band half-width (i.e. the distance from the wall

to the location where velocity is half-maximum) varies over the φ range for usual

granular materials (≈ 20o− 50o). As shown in Figure 2-17 the half-width changes by

< 0.4d over the entire range and by < 0.1d for the range of laboratory-style spherical

grains. This very weak influence of internal friction agrees with simulations in the

Couette geometry by Schöllmann [128].
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Figure 2-17: Predicted variation in the width of the shear band with SFR over the
standard range of granular friction angles for the annular Couette geometry. (Ls = 3d,
rw = 80d)

2.5.3 Plate dragging

We now examine perhaps the simplest situation where gravity affects the shear band

caused by a moving rough wall. Consider slowly dragging a rough plate horizontally

across the upper surface of a deep (semi-infinite) granular material. The plate main-

tains full contact by pressing down on the surface with pressure p0 cos2 φ. The profile

of the shear band that forms below the plate depends on the relative loading pressure,

q0 = p0/fg, where fg is the weight (gravitational body force) density of the material.

The plate-dragging flow field can be found using a procedure analogous to the

annular Couette cell, but enforcing horizontal instead of radial symmetry. With y

measuring distance below the plate, the stress balance equations give

ψy =
− sin 2ψ

2q(cos 2ψ − sinφ)

qy =
cos 2ψ

cos 2ψ − sinφ

where q(y) = p(y)/fg is the average normal stress scaled to the weight density. The

fluidization force will push material downward and spots upward resulting in a flow

profile that decays close to exponentially near the moving wall.
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Figure 2-18: (a) The plate-dragging geometry. The top wall drags along the top
of a bed of granular material. The crossing black lines within the material are the
slip-lines as found from MCP, and the vector field is the spot drift as determined by
the SFR. (b) Theory against experiment for the plate dragging geometry. Theory:
L=3 (- - -), L=5 (—). Experiment (∗) courtesy of the authors of [137] .

Experiments [138, 129] and simulations [135, 141, 65] offer differing assessments of

the details of the flow profile away from the shear band, but the dominant exponential

decay behavior is clearly observed in all. The displayed SFR prediction (Figure 2-

18) uses loading parameters from Tsai and Gollub [137] in order to appropriately

compare with their results. Although the general properties of the flow appear to be

represented well by the model, we do notice that the predicted range of typical flows

is too small to fully encompass the experimental data. There could be a number of

reasons for this discrepancy, but it is worth pointing out that the quasi-2D plate-

dragging geometry is rather difficult to realize in experiments. For example, this

experiment was executed by rotating a loaded washer-type object on top of an annular

channel, and it was observed that the sidewalls pushing in the third dimension actually
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Figure 2-19: Plot of theoretical shear band half-width vs. relative loading pressure
q0 = p(y = 0)/fg of the top plate (where fg is the weight density). The calculation
assumes Ls = 5d

did play some role.

In Refs. [141] and [1], simulations of this environment indicate that the shear band

width increases with increasing loading of the top plate. As can be seen in Figure

2-19, our theory captures this general trend of increasing loading causing increasing

shear band width. However, the swing in band size predicted by our theory is not

large enough to match the range of band sizes in simulations [141] and [1] in which the

shear band half-width can be as large as several tens of particle diameters for large

enough q0 and diverges as q0 → ∞ (i.e. zero gravity). In cases such as these where

the value of q0 becomes very large, as we will discuss in more depth after the next

section, we believe a new phenomenon begins to dominate our meso-scale argument

and that this phenomenon may be attributed to a particular property of the slip-line

field.

2.5.4 Slow heap flows

We now examine a prototypical free surface flow. Very close to the repose angle, a

granular heap which is slowly but consistently re-fed grains undergoes a particular

type of motion characterized by avalanching at the top surface and a slower “creep-
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Figure 2-20: (a) The heap flow setup. (b) The dashed rectangle in (a) is enlarged;
the slip-line field from MCP is plotted along with the drift field from the SFR.

ing” motion beneath. This type of flow has been studied in experiments [84] and

simulations [131]. Though heap flows with faster top shear layers have also been

studied [76, 94] we will focus for now on the slower regime, which more closely resem-

bles a quasi-static flow where the SFR might apply.

This kind of flow is stable, but indeed quite “delicate” in the sense that relatively

small changes to the system parameters (i.e. flow rate, height of the flowing layer)

can invoke large changes to the qualitative flow profile especially in the top layers

[131]. We will describe and attempt to explain this effect more in the next section.

The heap geometry is depicted in Figure 2-20 along with the corresponding spot

drift field and slip-line field. Any gravity driven free surface flow problem for which the

stresses and flow are approximately invariant in the direction parallel to the surface

will have limit-state stresses that obey the following relations:

ψ = −ε (2.44)

p =
fgy

cosφ
(2.45)

where y is the depth measured orthogonally from the free surface. Note that in limit-

state theory, for self-consistency, the static angle of repose is identical to the internal

friction angle φ, which is a reasonable assertion but still debated in the community.

(By “static repose angle” we refer to the angle of inclination below which a flowing
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system jams; in simulations of flow down a rough inclined plane, it has been shown

that this angle does vary in a narrow range depending on the height of the flow

[131, 130].) Applying equation (2.30) to these equations gives a simple expression for

the spot drift vector:

d̂s =
(1 + sin2 φ, − sinφ cosφ)

|(1 + sin2 φ, − sinφ cosφ)|
(2.46)

We may then apply the SFR, which simplifies upon requiring that the flow run parallel

to the free surface (i.e. u∗ = (−u, 0)).

Since the drift field is uniform, we obtain an analytical solution for the unconvolved

velocity:

u = u(0) exp

(
−y sin 2φ

Ls

√
2

5− 3 cos 2φ

)
(2.47)

Thus our model predicts that the velocity decays exponentially off the free surface.

In cases like these, where the boundary of the flow makes no contact with a rigid

wall, it is less clear how the spots (and free volume) might behave near the flowing

free surface. To avoid addressing this issue in detail, we neglect convolution with the

spot influence function and simply assume u ≈ u∗.

In their experiments on slow heap flow, Lemieux and Durian [84] have shown

that the velocity profile in the flowing top layers is indeed well approximated by an

exponential decay. Furthermore, they found the flow in this regime to be continuous

and stable. The decay law they obtained is

u/u(0) ≈ exp(− y

4.5d
)

which is very close to our predicted solution for Ls = 3d:

u/u(0) = exp(− y

4.58d
)

Silbert et al. [131] report finding a similar decay profile at low flow rates in simula-

tions of flow down a rough inclined plane, although the avalanching at the surface

was intermittent. Komatsu et al [76] have conducted faster heap flow experiments

(discussed below in more detail) and found an exponentially decaying region of much
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smaller decay length, ≈ 1.4d, beneath the rapid flowing top layer (see Figure 2-23).

We note that this flow is qualitatively different than the slower heap flows we attempt

to describe here in which the decay behavior persists to the surface and is measured in

the top layers. In conclusion, we have demonstrated a fourth, qualitatively different

situation where the same simple MCP/SFR theory predicts the flow profile, without

adjusting any parameters.

2.6 Transition from the SFR to Bagnold rheology

2.6.1 Breakdown of the SFR

In the last two examples, plate dragging and slow heap flow, there are limits where the

SFR fails to predict the experimental flow profiles. In this section, we will explain why

the breakdown of the SFR is to be expected in these cases and others, whenever slip-

lines approach “admissibility” and coincide with shear planes. In this singular limit

of the SFR, we postulate a transition to Bagnold rheology. The stochastic spot-based

mechanism for plastic yielding is thus replaced by a different physical mechanism, the

free sliding along shear planes.

For example, consider the case of plate dragging above. At large relative loading,

the flow field resembles that of a zero-gravity horizontal shear cell (between shearing

flat plates), and it appears that the SFR breaks down: With body forces and ∇p

both going to 0, equation (2.30) gives Fnet = 0 implying that spots have no drift and

consequently the only SFR solution is u = 0.

Problems also occur with flow down a rough inclined plane: Slightly increasing the

flow rate (and consequently the flow height) or inclination angle causes the velocity vs.

depth relationship to exit the exponential decay regime detailed above and undergo

significant changes, passing first through a regime of linear dependence [5, 17] to a

regime resembling a 3/2 power-law of depth [108, 130, 113, 11] opposite in concavity

to the exponential decay regime.

Why does the velocity profile for inclined plane flow undergo many different qual-
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itative regimes depending delicately on system parameters, while others (e.g. si-

los, annular cells) appear to be only weakly affected and almost always exhibit the

same (normalized) velocity profile? Tall inclined plane flows and zero-gravity planar

shear flows have been successfully described in multiple experiments and simulations

[33, 87, 108, 113, 130] by the empirical scaling law of Bagnold [12]. In this section,

we suggest a means to reconcile and perhaps eventually combine these theories into

a coherent whole.

2.6.2 Bagnold rheology

Let us briefly review Bagnold’s classical theory of granular shear flow. In its original

form, “Bagnold scaling” expresses a particular rate-dependency for granular flow

whenever the solid fraction is uniform throughout:

τ ∝ γ̇2. (2.48)

where γ̇ is the rate of simple shear. To account as well for static stresses arising from

the internal friction, a related variant of this scaling law is commonly used [41]:

τ − µσ ∝ γ̇2. (2.49)

It is in some sense a law for how the yield criterion can be exceeded when non-

negligible strain-rates can absorb the extra shear stress. This constitutive law alone

is an incomplete flow theory since it provides no way of predicting whether or not the

solid fraction will be uniform during flow or how a non-uniform solid fraction affects

the above rheology. Bagnold originally explained the quadratic relationship between

stress and strain-rate in terms of binary collisions as the joint effect of both the par-

ticle collision rate and the momentum loss per collision being directly proportional to

the strain-rate [12]. Despite this collision-based argument, however, Bagnold scaling

has been observed to hold well into the dense regime, whenever the solid fraction is

approximately constant throughout the system. This seemingly contradictory obser-
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vation can be justified in the hard-sphere limit (without body forces) by a Newtonian

invariance argument [87], although it calls into question the underlying physical mech-

anism.

Zero-gravity planar shear flow and thick inclined plane flow both exhibit nearly

uniform density and thus have been employed as test cases for Bagnold scaling. In the

planar-shear environment, the shear and normal stresses acting on the shear planes

are spatially constant throughout the flow. Equation (3.4.1) therefore implies that

the strain-rate is uniform; as a result, the velocity varies linearly from one wall to the

other. This result is known as Uniform Shear Flow (USF) and is easily verified in

simulations of Lees-Edwards boundary conditions. For example, the rheology (3.4.1)

has been demonstrated in the simulations of [33].

Applying Bagnold scaling to the inclined plane geometry, slightly above static

repose, gives a shear stress excess which grows linearly with depth and thus a shearing

rate that grows as the square root of depth. This implies a velocity profile of the form

u ∝ h3/2 − y3/2 (2.50)

for y the depth variable and h the height of the flowing material (with no-slip bottom

boundary condition). In this way, Bagnold scaling successfully explains the 3/2 power

law dependence noted above.

2.6.3 Slip-line admissibility

The seemingly disparate flow mechanisms of the SFR and Bagnold rheology can be

reconciled very naturally by considering the geometry of the slip-lines. In plasticity

theory, all flows can be classified based on “slip-line admissibility”. For admissible

slip-lines, boundary conditions are such that the flow can, and presumably does, take

place by continuous shearing along only one family of slip-lines. In mathematical

terms, the slip-lines are admissible for a given flow, whenever the double-shearing

continuum flow-rule (2.14) allows multiple solutions to the boundary value problem.

Slip-line admissibility is the exception, not the rule, since it is highly unlikely that
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Figure 2-21: (a) Slip-line field for gravity-free planar shear flow, (b) Slip-line field
for inclined plane flow. Note that in both cases the shear planes will be aligned
completely with one slip-line family.

the prescribed velocity boundary conditions are fulfilled by a continuous shear on

either slip-line family. Be that as it may, it so happens that planar shear flow and

inclined plane flow are both slip-line admissible. This special property is shared by

no other flow geometry studied in this paper, or, to our knowledge, elsewhere in the

granular materials community. (Contrast the slip lines in Figure 2-21 with those in

Figures 2-14 and 2-15.)

There is also an interesting difference in the density distributions. For admissible

flows, the volume fraction is nearly uniform, and Bagnold rheology has a reasonable

physical justification. For the more common case of inadmissible flows, as in silos

and Couette cells, the volume fraction is typically highly nonuniform. In such cases,

the SFR seems to provide an excellent description of the flow, and Bagnold rheology

clearly does not apply.

These observations motivate us to think of admissibility as a criterion for two

very different microscopic mechanisms for granular flow: In admissible flows, material

motion is a viscous dragging of material “slabs” along one slip-line family (Bagnold

dominated), whereas in inadmissible flows there is no clear choice as to which slip-line

family should control the motion and thus material randomly chooses between both

slip-line families (SFR dominated). Perhaps admissibility in the slip-line field causes

the solid fraction to remain roughly uniform because the material in no sense has to

collide head-on into neighboring material for it to move. In flows where non-uniform

65



dilation does occur, experiments have shown the motion is nearly independent of any

local Bagnold rheology, encouraging our strong distinction between the dynamics of

flow problems of differing admissibility status [134, 19].

These considerations all lead us to the fundamental conjecture:

Slip-line admissibility is a geometrical and mechanical indicator as to

the relative importance of rate-dependency (Bagnold rheology) over rate-

independency (SFR) in a dense granular flow.

This means that a flow which has an admissible limit-state stress field will be domi-

nated by rate-dependent effects when the yield criterion is only slightly exceeded.

2.6.4 Redistribution of excess shear stress

A more rigorous physical justification of our conjecture can be made utilizing limit-

state stresses and observing the effect of pushing the system above yield. Bagnold

rheology is a statement connecting the shear stress excess (i.e. amount by which τ

exceeds µσ) along a shear plane to the rate of simple shear along the plane. We

must emphasize that shear planes and slip-lines are not equivalent terms; slip-lines

are defined by the quasi-static stresses as lines along which τ −µσ = 0, whereas shear

planes are defined entirely by the velocity profile. In an admissible system, the shear

planes coincide with one slip-line family. In inadmissible systems, the shear planes

almost everywhere do not coincide with slip-lines.

With admissible slip-lines, excess shear stress tends to be uniformly distributed

throughout the system, resulting in global Bagnold rheology. For example, consider

a zero-gravity planar shear cell. If we were to apply additional shear stress to the

body in a manner aligned with the admissible slip-line family, e.g. by increasing the

wall shear stress above yield by some amount ∆τ , that additional shear stress would

distribute itself within the material precisely along the slip-lines. Every horizontal

slip-line within the bulk would thus receive a boost in shear stress of size ∆τ . In limit-

state theory the slip-lines have the highest possible τ−µσ value a quasi-static material

element can take – zero. Adding ∆τ additional shear stress to the slip-lines means
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that τ will maximally exceed µσ precisely along the slip-lines, and, by admissibility,

every shearing plane. As a result, there will be a Bagnold contribution everywhere.

Similarly, if we took a limit-state inclined plane geometry and increased the tilt angle

some amount, an analogous boost in shear stress along the admissible slip-line family

would occur causing τ to exceed µσ precisely along all the shear planes.

In contrast, with inadmissible slip-lines, excess shear stress tends to remain local-

ized where it is applied, and the SFR dominates the rest of the flow. For example,

consider annular Couette flow. As can be seen in Figure 2-15, the slip-lines only

coincide with the shear planes (which in this case are concentric circles) along the

inner wall of the cell. If the inner wall were given an increase ∆τ in applied shear

stress, torque balancing requires the shear stress along any concentric circle within

the material to receive a boost of ∆τ · rw/r. Suppose the shear cell has inner wall

radius 40d and the boost in wall shear is significant, say ∆τ = τw/10. Solving for

τ − µσ along the shear planes in this situation gives a very different result than in

the previous case— here τ will only exceed µσ along the shear planes that are less

than 1.4d off the inner wall. So, regardless of whether the density is or is not uniform,

Bagnold scaling would at best only apply in an almost negligibly thin region near the

wall. If the wall friction were less than fully rough, this region would further decrease.

2.6.5 A simple composite theory

The preceding discussion indicates that, in general, one can use the admissibility

status of the system to choose whether or not the flow should obey the SFR or Bagnold

rheology, or perhaps some combination of the two. Indeed, it seems reasonable that

when slip-lines are approaching admissibility (e.g. plate-dragging with high q0) or

when an admissible system is only slightly pushed above yield (e.g. inclined plane flow

near static repose) we must account for contributions from both effects simultaneously.

It is beyond the scope of this paper to postulate the precise microscopic dynamics

(and derive corresponding continuum equations) for this regime, but we can at least

give a sense of how the more general theory might look.

In general, we envision a smooth transition from rate-independent SFR dynamics
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to rate-dependent Bagnold dynamics controlled by the distribution of shear stress ex-

cess. This implies the coexistence of (at least) two different microscopic mechanisms:

SFR and admissible shear. The SFR contribution would derive from the usual spot-

based, quasi-static stochastic dynamics; the Bagnold contribution would come from a

rate-dependent shearing motion along the appropriate slip-line family whenever there

is a small excess shear stress (beyond the limit state) applied on a boundary which

causes shear stress excess along the shear planes within.

The two mechanisms should have different statistical signatures. For shear defor-

mation along admissible slip-lines, we would expect anisotropic velocity correlations.

In the direction perpendicular to the shear plane, the correlation length should be

somewhat shorter than the typical spot size, since slip-line admissibility allows flow

to occur with less drastic local rearrangements, farther from jamming. In the direc-

tions parallel to the shear plane, however the correlation length could be longer, since

material slabs sliding along shear planes may develop more rigid, planar regions. It

would certainly be interesting to study velocity correlations in heap flows at different

inclinations and plate-dragging experiments under different loads to shed more light

on the microscopic mechanisms involved in the SFR to Bagnold transition.

For the remainder of this section, we make a first attempt at a composite model,

simply a linear superposition of SFR and Bagnold velocity fields:

u = αu
SFR

+ βu
Bag
. (2.51)

which could have its microscopic basis in a random competition between the two

mechanisms, when slip-lines are near admissibility. Here, u
SFR

is an SFR solution for

the flow, using the limit-state stress field everywhere, and u
Bag

is obtained from the

excess shear stress on a boundary by integrating the Bagnold strain rate γ̇ =
√
τ − µσ

over those shear planes for which τ −µσ has been boosted above zero. (Note that we

ignore the condition of uniform density for Bagnold rheology since we conjecture that

uniform density is actually a geometric consequence of slip-line admissibility and will

arise naturally whenever Bagnold rheology dominates the flow.)
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A reasonable first approximation is that the SFR and Bagnold solutions individu-

ally fulfill the necessary boundary conditions for the velocity profile since, under the

right circumstances, either can be made to dominate the other. The constant β is

the Bagnold proportionality constant which may depend on the density of the flow

among other parameters [33]. Since the SFR is a rate-independent flow model, u
SFR

can always be multiplied by a positive constant (observe that equation (2.26) is ho-

mogeneous in ρs), and thus we allow the scalar multiple α. Given some determinable

form for β, α is chosen such that u fits the velocity boundary conditions. This seems

reasonable for moving walls (as in plate dragging), but not for free surfaces, whose

boundary velocity should also be predicted by the theory. In such cases, where α is

not clearly defined in this simple model, one could use other empirical relations, such

as the Pouliquen Flow Rule for inclined plane flows [108], to deduce the free boundary

velocity, and thus α.

2.6.6 Some applications of the composite theory

Using our very simple composite theory, we will now revisit a few geometries that were

troublesome for the SFR alone. Extending the theory with a smooth transition to

Bagnold scaling controlled by slip-line admissibility seems to resolve the experimental

puzzles and capture the basic physics of granular shear flows. In the cases we consider

below, we do not change the value of α as we increase the shear stress excess; this

way the relative importance of Bagnold effects are easier to isolate.

Planar shear cell

In a zero-gravity planar shear cell, u
SFR

= 0, but the Bagnold solution for any amount

of shear stress excess is of the form u
Bag

= ky, and thus the composite solution,

regardless of the values α and β, is a homogeneous flow between the two rough

plates. The lack of a “background” SFR solution in this case may explain why

Bagnold rheology is almost exactly observed in simulations of this geometry over a

wide range of strain rates [87].
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Figure 2-22: Some predicted velocity profiles for flow down a rough inclined plane as
a function of depth. Note that all three known flow behaviors; exp decay, linear, 3/2
power law; appear in proper relationship to the inclination (see Ref. [131]). (Bot-
tom) Incline near static repose, fully SFR dominated (Ls = 4d); (Middle) Increased
inclination angle, Bagnold to SFR ratio of 3:1; (Top) Further increase to inclination;
fully Bagnold dominated.

Rough inclined plane

For flow down a rough inclined plane, the SFR solution is an exponential decay (2.47),

and the Bagnold solution is a 3/2 power law (2.50). When the material is only slightly

above static repose, a shear stress excess along the shear planes will exist but will be

very small; it goes as
√

∆θ for an incline ∆θ above static repose [41]. As a result, u
Bag

will be small in magnitude, and the SFR solution will show through as the “creeping

flow” with exponential decay. As ∆θ increases, the increased shear stress excess will

cause the Bagnold contribution to increase, and the flow will eventually morph into

the 3/2 power law dependence of pure Bagnold scaling. In between, where both

contributions are of similar magnitude, the superposition of the two flow fields gives

a predicted profile that appears approximately linear, since the SFR and Bagnold

solutions are of opposite concavity. Thus, the composite SFR-Bagnold formulation

appears to be able to explain the various flow regimes in inclined plane flow, which

have been observed in experiments and simulations (see Figure 2-22).

Recent experimental work of Pouliquen [109] seems to support this analysis; it is
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(a)

(b)

Figure 2-23: Standard heap flows enable one to see both the SFR and Bagnold
contributions separately in one flow geometry. (a) The surface region is dominated
by Bagnold scaling. (b) The creep-region beneath adheres to the SFR.

found that inclined plane flow occurring at lower inclination angles exhibits spatial

velocity correlations near the typical spot size (as the SFR would imply), but as

inclination increases, the correlation length appears to decrease, an effect we might

attribute to an increased dominance of Bagnold scaling (a phenomenon not governed

by a correlation length) over the SFR.

Rapid heap flows

The composite theory also seems consistent with rapid heap flows. When the flow

rate down the heap increases, the region near the surface resembles inclined plane flow

in any one of its various flow regimes, whereas the region beneath the surface flow

undergoes creep motion which decays close to exponentially [76, 94] (see Figure 2-23).

We can justify this in terms of slip-line admissibility: The slip-lines throughout the

system (see Figure 2-21) have the same form in both regions. In the surface region,

the slip-lines are admissible because there is nothing blocking the motion from being

a simple shearing along the slip-lines. In the creep region, however, the gate (or

the ground) prevents global shearing along the slip-lines and thus the slip-lines are

inadmissible and the SFR dominates.

We can equivalently explain heap flow in terms of shear stress excess. The excess

incurred by increasing the heap angle will distribute itself differently in the two re-
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Figure 2-24: Plate-dragging slip-lines approaching admissibility as q0 increases.

gions. In the surface region, the excess can only be absorbed along the shear planes by

inducing a strong Bagnold dependence. However, the gate at the bottom of the heap

will support any shear stress excess on the creep region. (Note that the slip-lines in

the creep region all hit the gate, or the ground.) Thus the full flow will be the sum of

an exponentially decaying SFR solution superposed with a significant Bagnold-type

solution which starts at the surface and cuts off at the interface with the creep zone.

Plate dragging under a heavy load

We will now explain the comment made at the end of the plate-dragging section.

The slip-lines of a plate-dragging geometry can be pushed drastically close to full

admissibility by simply increasing the relative loading of the top plate, q0, above a

certain non-excessive amount (see Figure 2-24). To see the effects of approaching

admissibility more carefully, say we take a limit-state plate-dragging setup and pull

the plate slightly harder, inducing a super-yield shear stress boost of ∆τ under the

plate. Bagnold effects should appear wherever, as a consequence of stress balancing,

a shear stress excess results along a shear plane. The shear planes are horizontal lines

in this case, and at limit-state, the stresses along any horizontal obey

τ − µσ = −µfgy = −µp0

q0
y. (2.52)
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When the extra shear stress is applied, a shear stress excess of ∆τ − µp0y/q0 will

form for 0 ≤ y ≤ ∆τ
µp0
q0. Accordingly the Bagnold flow contribution will have a shear

zone whose depth extends into the granular bed as an increasing linear function of q0

for a fixed shear stress boost ∆τ and fixed downward plate-pressure (i.e. we decrease

the material weight density to increase q0). Integrating the Bagnold shear rate gives

that the relative size of the Bagnold contribution should also increase with increasing

q0. With q0 large enough, therefore, the SFR contribution will be dwarfed by a

Bagnold term with a larger shear band. As q0 →∞ the slip-lines become completely

admissible and the shear band width diverges as we would expect.

The mismatch in shear band size between the data of Tsai and Gollub and the

SFR could be due, among other possible reasons, to the fact that q0 ≈ 380d was large

enough to make the Bagnold contribution sizeable. This could also explain the large

shear bands found in [141]. A detailed comparison of experiments and simulations

with different versions of a composite SFR/Bagnold theory would be an interested

direction for future work.

2.7 Conclusion

2.7.1 Highlights of the present work

We have proposed a stochastic flow rule (SFR) for granular materials, assuming limit-

state stresses from Mohr-Coulomb plasticity (MCP). In the usual case where slip-

lines are inadmissible (inconsistent with boundary conditions), we postulate that flow

occurs in response to diffusing “spots” of local fluidization, which perform random

walks along slip-lines, biased by stress imbalances. The spot-based SFR corrects many

shortcomings of classical MCP and allows some of the first reasonable flow profiles

to be derived from limit-state stresses, which engineers have used for centuries to

described the statics of granular materials.

Our theory notably differs from all prior continuum theories (cited in the intro-

duction) in that it is derived systematically from a microscopic statistical model [15].
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The Spot Model is already known to produce realistic flowing random packings [120],

and what we have done is to provide a general mechanical theory of spot dynam-

ics. Evidence for spots has been consistently found in spatial velocity correlations in

simulations [120] and experiments [29] (Fig. 2-11) on silo drainage.

Beyond its fundamental physical appeal, the SFR seems to have unprecedented

versatility in describing different granular flows. It has only two parameters, the

friction angle φ and correlation length (spot size) Ls, which are not fitted; they are

considered properties of the material which can be measured independently from flow

profiles. For monodisperse frictional spheres, the SFR can predict a variety of different

flows using the same spatial velocity correlation length, Ls ≈ 3 − 5d, measured in

experiments and simulations. This is perhaps the most compelling evidence in favor

of the spot mechanism which underlies the SFR.

We have shown that the SFR can describe a rather diverse set of experimental data

on granular flows. Some flows are driven by body forces (silo and heap flows); others

have body forces, but are driven by applied shear (plate-dragging); still others are

driven by applied shear without body forces (annular shear flow). Some geometries

have straight boundaries (silos, heaps, plate-dragging), and yet the theory works

equally well for highly curved boundaries (annular shear flow). Some of the flows

exhibit shear localization (annular shear flow, plate-dragging, heap flow), and yet the

theory correctly predicts wide shear zones in silo flow. It is noteworthy that the same,

simple model, correctly predicts and places shear bands in geometries where they arise

for very different reasons— gravity causes the shear band in plate-dragging, and yet

the geometry (through the ∇p term in the drift) causes the shear band in annular

Couette flow. We are not aware of any other theory (including classical MCP) which

can quantitatively describe more than one of these flows, let alone without empirically

fitting the velocity profiles.

2.7.2 Comparison with partial fluidization

It is interesting to compare our approach to the continuum theory of partial fluidiza-

tion of Aranson and Tsimring [7, 8]. Although it lacks any microscopic basis, their
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theory also introduces a diffusing scalar field to control the dynamics, as opposed to

a classical stress/strain-rate relation. The analog of our spot density is the “order pa-

rameter” ρ, which measures the degree of “fluidization” of the continuum by mixing

two different types of stresses, corresponding to distinct “liquid” (ρ = 0) and “solid”

(ρ = 1) phases. Given the stress tensor for the material in a static solid state, σ0
ij, the

stresses in a flowing granular material are modeled by adding some degree of viscous

stresses, as in a Newtonian liquid:

σij = (ρ+ (1− ρ)δij)σ
0
ij + ηĖij (2.53)

where η is the viscosity. The order parameter controlling the balance of these two

stress tensors is postulated to obey a reaction-diffusion equation,

(∆t)
∂ρ

∂t
= l2∇2ρ+ ρ(1− ρ)(ρ− δ) (2.54)

for collision time ∆t, grain length scale l, and a function δ of the stress state, which

is greater than 1 where the material is above the static yield criterion, less than 0

where below the dynamic yield criterion, and between 0 and 1 otherwise. One benefit

of this model is that it can be used for unsteady flows. In principle, the SFR may

also describe time-dependence through the spot Fokker-Planck equation (2.24), but

we have only developed and tested the theory so far for steady flows, starting from

(2.26).

For the sake of comparison, consider a steady flow modeled by partial fluidization

and the SFR. The difference is that the spot equation (2.26) couples diffusion to a

drift depending on frictional yielding, whereas the order parameter equation (2.54)

balances diffusion with a nonlinear source term, resembling a chemical reaction rate,

which indirectly mimics the effect of a Coulomb yield criterion. Interestingly, if the

SFR could be extended to an elasto-plastic model without making the incipient failure

assumption (see below), a similar non-linear source term may have to be added to the

spot equation to account for the need to destroy (and create) spots when they enter

zones below (or closer to) yield. More generally, a reaction term could describe the
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creation and destruction of spots, e.g. in response to plastic work as in the theory of

shear transformation zones [83].

As a higher-order yield effect, this term could also be chosen to reflect bistability in

granular materials, where solid-like and fluid-like local phases can both be dynamically

stable and coexist depending on the stress state. Equation (2.54) describes this

through the dependence of δ on both µ and µk and implies that stable flow can occur

beneath the static yield criterion as long as the nearby kinetic yield criterion is still

exceeded, as should be expected. Our current model describes the case where static

incipient failure and the transition µ→ µk are both valid assertions, so it is effectively

a flow theory more than a complete dynamic theory of both flow and solidification. To

increase the prominence of µk would not just modify our flow rule, but also necessitate

a more complicated stress model, given our physical hypotheses. Unsteady flows,

such as a traveling avalanche front, may require accounting for bistability, but for

fully developed steady flows as described above there is often some degree of motion,

even in nearly stagnant regions. In any case, solid-like regions do not seem to greatly

affect the flows we consider above. We should also point out that the SFR does allow

a global no-flow solution since ρs = 0 always solves the spot equation.

It is also notable that our argument for why a spot drifts, i.e. a localized stick-

slip type of shear stress decrease along the spot boundary, is reminiscent of equation

(2.53) wherein the shear stress goes down in the presence of fluidization. In this

sense, a higher spot concentration in our model is similar to a higher degree of partial

fluidization.

One difficulty with the partial fluidization approach is that it cannot easily de-

scribe rate-independent effects since the motion stems from a viscous form in the

stress tensor. Also in sharp contrast to our approach based on plasticity, partial flu-

idization does not provide a clear theory of the static solid stresses in the limit of no

flow, opting instead to deal with environments for which the open components of this

tensor are not needed (simple shear flows). This could perhaps be modified. These

considerations as well as selecting boundary conditions on the order parameter, seem

to be the primary limitations in testing partial fluidization in more general situations.
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Figure 2-25: The difference between 2D and 3D continuum cells which could be used
to construct the SFR.

2.7.3 Future directions

In spite of some successes, we still do not have a complete theory of dense granular

flow. There are at least three basic limitations of the SFR, about which we can only

offer some preliminary ideas to guide future work.

Slip-line inadmissibility

Although most slip-line fields are inadmissible, the SFR breaks down as slip-lines

approach admissibility. We have already begun to extend the model into this regime

by conjecturing that slip-line admissibility is associated with Bagnold rheology, as

excess shear stress (above the limit-state) drives a local shear rate along the most

admissible slip-lines. We have shown that a simple linear superposition of Bagnold

and SFR flow fields with appropriate boundary conditions can describe a variety of

composite flows, exhibiting both Bagnold and SFR behavior in different limits or

segregated into different regions. These include planar zero-gravity shear, various

inclined-plane and heap flows, and plate-dragging at large loading. However, more

work is needed to develop and test a composite SFR/Bagnold theory, both at the

continuum level and in terms of the two microscopic mechanisms.

2D symmetry

Through MCP, the SFR is currently used only in quasi-2D geometries. In efforts to

extend the theory to 3D, a good test case would be the split-bottom Couette cell,

which displays a wide, diffusive shear band [47], reminiscent of a draining silo. The

2D limitation may not be so difficult to overcome, although any plasticity theory
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is more complicated in three dimensions, than in two. As usual, constructing a 3D

limit-state stress field requires an additional hypothesis to close the stress equations.

In 3D, a general material point at incipient failure with distinct principal stresses

σ1 > σ2 > σ3 is intersected by a pair of slip planes angled 2ε apart. We cannot

therefore encase a 3D cell of material within slip planes as we are able to do to a 2D

cell with slip-lines. However, the principal plane on which σ2 acts, the intermediate

principal plane, can be used along with the slip-planes to encase a 3D material cell.

This is legitimate because, if such a cell underwent slip-plane fluidization, the net

material force would be guaranteed to point parallel to the intermediate principal

plane; since the intermediate principal plane offers no shear resistance, the material

can slide along this plane, while simultaneously sliding along a slip-plane.

To apply the SFR then, the drift vector should still be calculated from equations

(2.28) and (2.30), but all vectors must be projected first into the σ1σ3-plane since

the σ2 direction is not involved in slip-plane fluidization. The shape of a spot and

its diffusivity would likely be anisotropic, with different values in the intermediate

direction, since the main source of diffusion is slip-plane fluidization.

If ever the intermediate principal stress equals either the major or minor principal

stress, as in the Har Von Karman hypothesis, incipient failure is upheld on a cone

instead of intersecting slip-planes. When this degenerate case occurs, the material

cell can be encased several different ways depending on the surrounding stress states.

This must be determined before we can rigorously define how to apply fluidization

and the SFR.

Incipient yield everywhere

The SFR assumes stresses near a limit-state. While incipient yield is believed to

be a good hypothesis in many situations, even during dense flow (which should be

checked further in DEM simulations), it clearly breaks down in some cases, at least

in certain regions. This is perhaps the most difficult limitation to overcome, since the

limit-state assumption is needed to fully determine the stress tensor. Without it, the

material effectively enters a different state most likely governed by some non-linear
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elastic stress strain law which is far more difficult to apply.

We have already argued that such a transition away from incipient yield must

exist in some granular flows, due to the strong tendency of granular materials to

compactify into a rigid solid state when shaken (e.g. by nearby flowing regions) but

not sufficiently sheared. A good example is a tall narrow silo with smooth side walls,

where the SFR holds near the orifice, but breaks down in the upper region, resembling

a vertical chute. The broad shear band localizes on the side walls, as a rigid central

plug develops, which likely falls below incipient yield.

A more robust elasto-plastic theory for the stress state would relax our limit-

state constraints and allow for material to fall below the yield criterion where it is

described by elasticity. The SFR could then be applied only where the material is at

yield and everywhere else the material does not deform plastically. Elasto-plasticity

theory operates just as well in 3D as in 2D which is a key benefit over limit-state

plasticity. However, our model as we have already presented it is far simpler than

elasto-plasticity and yet still manages accurate results when applied to limit-state

stress fields.

As the SFR matures as a theory of granular flow, it would also be interesting

to apply it to other amorphous materials, such as metallic glasses, and to develop

new simulation methods. The basic idea is very general and applies to any mate-

rial with a yield criterion. It has already been suggested that the Spot Model could

have relevance for glassy relaxation [15], and the SFR provides a general means to

drive spot dynamics, based on solid mechanical principles. The Spot Model also pro-

vides a multiscale algorithm for random-packing dynamics, which works well for silo

drainage [120], so the SFR could enable a general framework for multiscale model-

ing of amorphous materials. The idea would be to cycle between continuum stress

calculations, meso-scale spot random walks, and microscopic particle dynamics.
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Chapter 3

Nonlinear Granular

Elasto-Plasticity

3.1 Transition from the SFR

Many new results have come out since the SFR was developed. Some offer a firm

challenge to physical hypotheses on which the SFR was built. We briefly summarize

the major results now, and delve into details shortly.

Discrete element simulations of Chris Rycroft [122] point out two important facts

about mesoscopic deformation within a bulk quasi-2D flow. For one, coaxiality is

approximately upheld in regions of significant plastic flow. Others have reached this

conclusion as well: Depken and coworkers [36, 35] find significant coaxiality in 3D

simulations of split-bottom shear flow, and 2D polydisperse disk simulations of [33,

87, 32, 130, 113, 136] show an adherence to coaxiality in steady flows within annular

shear, inclined plane, and planar shear geometries. Secondly, Rycroft’s results find the

limit-state assumption is markedly incorrect— the local friction state can take on a

range of values in both static and flowing regions. The assumption of a constant state

of incipient failure may have some validity in the very slow limit of flow, as observerd

in [33, 115]. However, Rycroft’s data suggests that the internal friction increases with

the flow-rate in faster flows, which is in broad agreement with the findings of other

researchers [33, 135, 97, 125, 26, 108]. Rycroft’s data also suggests that in solid-
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like zones, the stress state can take on values below incipient failure. This has been

observed as well in other discrete simulation studies both in 2D [135, 141] and 3D [35].

These results contradict the underlying assumptions that were used in developing the

SFR— the SFR inherits the limit-state assumption from Mohr-Coulomb Plasticity

and non-coaxiality from the Spot Model. While the predicted flows obtained from

the SFR look convincing, the fact that they come from a model based on incorrect

physical assumptions is reason for alarm.

One should be especially careful not to misjudge the merits of the SFR or the

notion of spots from this information alone. The SFR is intended only for very slow

flows where the stress state is independent of the flow rate. The discrete simulations

were unable to show whether or not coaxiality is upheld in slower flowing regions, only

that more rapid, liquid-like zones have the coaxial property. As shall be discussed

in depth during this chapter, it is still reasonable to believe that the SFR is a valid

principle in truly quasi-static flows where the stresses happen to be near the static

yield criterion. However, the presumption of a universal limit-state stress field is most

likely false.

In any case, it seems a different approach may be necessary capture these newest

observations. Since the local friction state is not necessarily constant in a static

material, elasticity may be a better model for static stresses. Since the flow appears

to be locally connected to the stress state, a formal plasticity law may be in order

so that the stresses determine the deformation rate. Combining these two notions

into one material model would imply an elasto-plastic treatment, where liquid-like

flow occurs whenever a yield criterion is met, but below yield the material acts as

an elastic solid. This type of model is in striking contrast to the stochastic dynamics

of the SFR. Basic elasto-plasticity is deterministic; given the local state parameters

and stresses, an element of an elasto-plastic material should undergo a predictable

deformation increment.

Elasto-plasticity is a well-established field of material mechanics. Unlike the SFR,

which attempts to describe a very new mechanism for material flow, by utilizing

elasto-plasticity one gains the benefits of years of theoretical development. Some
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issues that were problematic for the SFR are non-existent in elasto-plasticity. For

one, the SFR is frame-indifferent in steady-state but it is not clear if any way exists

to extend the SFR to transient behavior and still maintain frame-indifference. As

will be shown, elasto-plasticity applies as well to transient flows and is derived so

as to always ensure frame-indifference. There are also no issues with adding the

third dimension. And without hyperbolicity in the stress equations, elasto-plasticity

should not invoke stress shocks like those encountered in limit-state Mohr-Coulomb

plasticity.

This chapter shall construct and test a new elasto-plastic model for granular ma-

terials. More than just a mathematical model, the foundational principles are em-

phasized, showing piece-by-piece how and why such a model should be physically

appropriate. Starting out with arguments for a continuum treatment (section 3.2),

past continuum models for granular statics and flow are then discussed (section 3.3,

3.4). From these options, the Jiang–Liu elasticity relation [68] and the Jop–Pouliquen

flow rule [71] are selected. The precise method for joining these two behaviors will

then be physically motivated (section 3.5). The physical picture is then translated

into a complete set of mathematical relationships (section 3.6). The procedure for

solving these equations is then described in depth, including particular techniques

that are specific to our interests (section 3.7). Direct numerical results are then

compared against known data (section 3.8).

3.2 Granular matter as a continuum

Before all else, it is essential to lay out an argument for why it should be acceptable

to model granular matter as a continuum. At the outset, there appear to be a few

reasons why such a treatment may be objectionable.

Most obvious is the fact that the microconstituents of granular matter, the indi-

vidual grains, may not be small enough to warrant a continuum description. Typical

continuum laws are only expected to apply when there is a strong separation of scales

[59] between the micro-scale and the macro-scale size of the flow geometry. When
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the scales separate, the material response should be dictated by the dynamics of a

meso-length Representative Volume Element (RVE). A well-homogenized RVE under-

goes deterministic homogeneous deformation when loaded under a uniform boundary

stress state. While the separation of scales clearly holds for, say, a Newtonian fluid,

the situation is not so clear for granular matter.

Discrete Element Method (DEM) simulations have shed light recently on exactly

how “small” a meso-element of grains must be to capture the flow properties of an

RVE [122]. The DEM algorithm simulates 3D granular flow on a particle-by-particle

basis, tracking the individual motions of several hundred thousand grains on a parallel

computer. The particles are modeled as visco-elastic spheres (among other possible

shapes) allowing incremental grain motion to follow from contact dynamics. Since

interparticle contact forces are known throughout, DEM also enables one to construct

the space-averaged stress tensor over any localized collection of grains at any instant.

For d the particle diameter, monodisperse flow simulations were performed in

three “conventional” geometries, where the smallest macroscopic length was always

≥ 6d and flow was driven by gravity or some slow to moderate wall motion. Results

appear to indicate that a granular RVE need only be 5d wide. At this length, the

average stresses and deformation rate appear to vary smoothly between neighboring

volume elements. Within flowing elements, the eigenvectors of the Cauchy stress and

deformation rate approximately align, suggesting the possibility of a deterministic

connection between the two tensor fields. Other deterministic relationships can be

observed on this size scale such as the dependence of the packing fraction on the

pressure and shearing rate. It seems that a 5d wide element could be large enough to

represent a predictive rheology.

It should be emphasized that what matters most in these findings is not the

precise measurement 5d, but rather the more general observation that the size scale

for representative behavior is in the range of several particle widths. How small

this is may come as a surprise. We normally think of determinacy at the element

level as stemming from the combined effects of an approximately infinite number of

microconstituents. It is indeed a welcome and unexpected result that only a couple
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hundred grains replicates this phenomenon. Beyond monodisperse spheres, we would

speculate that other granular media possess a similar size scale for RVE behavior,

though certain features may affect the specifics such as bidispersity, anisotropy of the

grain shape, and grain contact roughness.

The ∼ 5d element width for dense flow is not entirely outlandish in light of the past

observations in Glasser and Goldhirsch (2001) [49] and Goldenberg et al. (2006) [52],

where in depth studies were performed to quantify the effects of spatial averaging on

granular stresses. They utilized a more ellaborate general form for space-averaging,

involving a spatial coarse-graining function φ(R), which is a positive semidefinite

normalized function containing a single maximum at R = 0. A complete, continuum

mechanically compatible expression for the Cauchy stress tensor field can be derived

in terms of φ. For a static assembly,

Tij(r) =
1

2

∑
a 6=b

fabirabj

∫ 1

0

φ(r− ra + srab)ds (3.1)

where i and j are cartesian coordinates, a and b are particle labels, fab is the contact

force of grain a on grain b, and rab = ra − rb. The spatial averaging conducted

by Rycroft [122] could be thought of as a simple case of the above, in which φ =

H(|x− 5d/2|)H(|y − 8d/2|)H(|x− 5d/2|)/Vbox for H the Heaviside function.

Using the above form for spatial stress averaging, Glasser and Goldhirsch found

that rapidly sheared granular gases do not undergo scale separation. That is, the

computed stress field has an irreconcilable order one dependence on the width of the

spatial coarse-graining function. On the other extreme, Goldenberg et al. finds that

scales do separate for static 2D material under a localized force. If in addition the

computed stress profiles are averaged over 40-50 realizations, the width of the coarse-

graining function necessary for an “objective”, or resolution-independent definition of

Cauchy stress can be less than one particle diameter. Given the shear-rates present

in Rycroft’s work, the fact that (qualitatively) resolution-invariant behavior appears

for coarse-graining widths ∼ 5d could fit appropriately into this trend of behaviors.

This speculation is bolstered in Glasser and Goldhirsch, where it was observed that
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by decreasing shear-rate, a granular gas can become resolution-independent, though

with a large coarse-graing width (& 15d).

Previous arguments against a granular continuum, particularly in the static phase

but also during flow, have focused on the presence of force chains in granular matter.

In 2D experiments and simulations of disk assemblies [16, 48], concentrated chains of

interparticle force have been shown to exist over many particle widths. It was argued

that if forces are not homogeneous at a meso-scale, continuum relations at this scale

cannot exist. However, in 3D simulations of flowing monodisperse sphere packings,

we observe that the force chains have a dramatically shorter length [122]. A possible

geometric explanation for this phenomenon is that a 3D granular assembly has a much

higher average coordination number, reducing the likelihood that only two contacts

maintain the majority of the force on one grain. These simulations also include inter-

particle contact friction, which may contribute to the smoothing out of force chains

as has been previously shown in 2D static disk assemblies [54]. Typically speaking,

whether flowing or static, we observe that a 5d granular volume element contains a

diffuse network of contact forces, enabling a sufficient degree homogenization of the

stresses at this scale.

The limits of any continuum approach can be drawn from basic statistics. In a

first-order constitutive model as we shall propose, where stress relates directly to the

homogeneous part of deformation, gradients in the fields must be sufficiently small

over the width of the RVE. Our previous use of the word “conventional” could in this

sense be thought of as a common limit on the size of such gradients. In the presence

of large gradients, the mean behavior within an element would vary significantly in

space, reducing the multiplicity of the state within and consequently reducing the

determinacy of the continuum relation. Other averaging schemes (ensemble average,

steady-state time average) may still hold relevance in the presence of large spatial

gradients, but our goal of accurately predicting a single realization of granular flow

would be lost.

To appropriately model dense granular media, the model must be able to encom-

pass both static and flowing granular behavior. Frequently, a granular material that
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has been set into motion will express both types of behavior, possessing regions of

fluid-like flow adjacent to essentially solid-like regions. Examples of such flows in-

clude wide draining silos [28, 123] and hoppers (so-called “core flow”) where a broad

column of material extending upward from the orifice flows like a fluid, while regions

closer to the side walls remain almost completely static. As will be discussed later,

perfectly clear solid/fluid interfaces are rarely observed in granular flow, which has

led some to believe that the solid-like zone is actually just a ‘highly viscous’ fluid re-

gion [124, 88, 19]. Solid-like material does undergo intermittent rearrangement events

when close to a zone of moderate flow-rate, but we find that the stresses in these re-

gions have essentially zero rate-dependence. For example, when a DEM simulation of

silo flow is suddenly arrested, say by shutting the orifice, the stresses in the solid-like

regions remain virtually unchanged, supporting static shear stress like a solid. It

appears that a mechanism disconnected from the flow-rate or any notion of viscosity

is responsible for maintaining the stress tensor in solid-like granular matter, even if

occasional failure events are occurring within.

3.3 Continuum statics

3.3.1 Stress-only laws vs. elasticity

This last argument suggests that a continuum description for granular material could

be formed by augmenting a statics law with a plastic flow law describing yield be-

havior. First, let us review past work on continuum granular statics. Static granular

matter can support shear stresses so force balance in 2D or 3D never provides enough

equations to determine, respectively, the 3 or 6 unique components of the stress ten-

sor. To close the equations, two basic approaches have been applied: stress-only laws

and elasticity.

Stress-only relationships constrain the stresses directly, by asserting that the stress

tensor must satisfy some a priori relationship. Examples include: Janssen’s law of

differential slices (originally proposed by Janssen in 1895) where vertical and hori-
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zontal stresses are set to be proportional, limit-state Mohr-Coulomb plasticity or the

“Incipient Failure Everywhere” (IFE) hypothesis [132] where a Mohr-Coulomb failure

line is required to exist at all locations, and “Oriented Stress Linearity” [20] where

stresses propagate in directions aligned with the presumptive microstructure of the

packing.

While stress-only relationships are convenient and have had some success, their

physical assumptions can be questionable. For example, static granular matter is

rarely in a limit-state of incipient failure [122] and wall shear is not compatible with a

Janssen-style stress tensor [101]. Most stress-only laws are defined only for 2D media,

which brings out issues of generality. They often predict a “hyperbolic” character to

the stress profile, where stress quantities propagate in certain directions from the

boundaries. The notion of force propagation was backed chiefly by the observation of

a double-peak pressure distribution beneath a bed of grains undergoing a point force

from the top. Work by Goldenberg and Goldhirsch [54] has shown, however, that

in the presence of interparticle friction and a large system size to particle size ratio

(as commonly found in engineering applications) the pressure distribution is indeed

a broad single peak beneath the point force, as one would expect for an elastic bulk

media.

This brings us to elasticity, which shall be our preferred method for granular

statics. It is a sensible approach seeing as the grains themselves are elastic bodies

presumably enabling generalization to an Effective Medium Theory (EMT) where

grain-level elasticity extends statistically to a continuum mean-field theory [40, 37,

142, 103]. Reversible (elastic) deformations have been observed in granular matter

for strains less than 10−4 [79]. This is negligibly small compared to the size of typical

plastic deformation. However, grains are commonly composed of stiff material (i.e.

glass has elastic moduli on the order of 10 GPa) indicating the important role that

small elastic strains may play in the development of the stress profile. One may

argue that the barely noticeable elastic strain of a static assembly is what impelled

scientists years ago to seek stress-only laws, believing that whatever determines the

stresses should do so under rigid-body assumptions. Rather, it seems there is no
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generally applicable stress-only constraint to accurately define a 3D stress tensor.

The elastic strains are small but non-ignorable, and bear essential importance to the

stress description.

Bulk elasticity for cohesionless grains is not likely to have a simple form since, for

example, the material is unable to support tension and thus the small strain response

cannot be linear. Nonlinear EMT has been derived from Hertz-Mindlin interparticle

contact mechanics [40, 96] and modified by others [45], offering reasonable albeit not

completely satisfactory agreement with experiments [79, 51]. A recently proposed

elasticity model encompassing many of the same features as EMT was proposed by

Jiang and Liu [68] in 2003. This state-of-the-art formulation has had multiple suc-

cesses and is well-suited to our end goal of combining with a plasticity model.

3.3.2 Effective Medium Theory for bulk granular elasticity

To start, let us review the basics of Hertzian contact laws. In the classical work

of Hertz, two perfectly elastic spheres that are pressed into contact will repel each

other with a contact force that depends on the radii of the spheres and the apparent

overlap. That is, we pretend for ease of computation that the spheres penetrate each

other. For two spheres of identical radius R located at x1 and x2, the normal force

contact law is

Fn(δ) =
2

3
knR

1/2δ3/2 (3.2)

where δ is the normal overlap (1/2) (2R− ||x2 − x1||). The parameter kn is an ef-

fective stiffness equal to 4Gg/(1 − νg) where Gg and νg are the shear modulus and

Poisson ration of the sphere material.

There is a rather basic way to extend the Hertzian normal force law into an EMT

for the bulk modulus of an isotropic collection of grains. A full derivation is difficult

to find in the literature, so we go about constructing our own. It is a quintessential

result that is worth understanding.

The Cauchy stress tensor T over a volume V that contains a static collection of
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N objects in contact can be expressed according to [30] as

T =
1

V

N∑
i<j

r(ij) ⊗ f (ij) (3.3)

where r(ij) is the vector that connects the centroid of particle j to the centroid of

particle i, and f (ij) is the force of particle i acting on particle j, which will be 0 unless

particle i and j are in contact. In the case of elastic spheres in Hertzian contact,

f (ij) · (r(ij)/2R) = −Fn(δ) for the function Fn as defined above.

In a gravity free environment, consider an unstressed container of N spheres that

are barely in contact. By this we mean the geometry of the contact network is

established, but no force is being exerted through any contact. Now suppose we

isotropically compress the container— that is, a particle that started at X is now

located at x = aX, for some a < 1. This is equivalent to a strain of

E = (1/2)

(
∂x

∂X
+
∂x

∂X

T)
− 1 = (a− 1)1

in the small-strain limit. The idea that isotropically compressing the boundaries

results in all particles displacing in an affine fashion comes with our mean field ap-

proximation, where an isotropic distribution of contacts is presumed. We concede that

any realization of a true random packing is likely to have some internal non-affine

shifting occur during compression, as micro-level equilibrium is not a guarantee. This

particular feature of granular relaxation has been studied in depth in [91, 53, 90].

Each particle contact is now accompanied by a normal force. Any two particles

in contact were originally separated by 2R and are now separated by 2Ra implying

δ = R(1− a). Thus,

T =
1

V

N∑
Contact pairs i<j

r(ij) ⊗
(
−Fn (R(1− a)) r(ij)/2R

)
and consequently the macroscopic pressure is
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p = −(1/3)trT =
1

3V

Fn (R(1− a))

2R

N∑
Contact pairs i<j

tr(r(ij) ⊗ r(ij))

→ p = 2RFn (R(1− a))
1

3V
× (number of contacts)

If the mean packing fraction in the container is Φ, then the container contains roughly

N = ΦV/Vg spheres each of volume Vg. If the average coordination number is Z, then

the mean number of contacts within the container should be NZ/2. In full, we have

the following mean field result:

p =
1

6π
ΦZkn(1− a)3/2

This implies, in the absence of any shear deformation, that the mean field bulk

modulus κ is a nonlinear function of the compressive strain:

κ =
1

18π
ΦZkn(−

1

3
trE)1/2

where the nonlinearity can be seen as arising directly from the nonlinearity of Hertz’s

contact law. The major point is that the bulk modulus scales with (compressive

strain)1/2, or equivalently as p1/3 under isotropic compression. This has been verified

directly in large-scale DEM simulations of compressed sphere packings both with and

without interparticle contact friction [90].

Supposing frictionless spheres, a mean-field shear modulus can also be derived in

a similar fashion. Instead of an isotropic compression, one could analyze the case

of an arbitrary affine deformation. The mathematics is a bit lengthier because the

average over orientations does not immediately collapse. In the end, one finds that

the bulk and shear moduli scale similarly to the above form for the bulk modulus in

pure compression:

κ ∝ G ∝ ΦZ(−trE)1/2 ∝ (ΦZ)2/3p1/3 (3.4)
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It so happens that the inclusion of shear strain renders EMT less accurate. The

moduli agree with the above scalings but only under low pressures (<10 MPa) [90].

Experiments verify that the dependence on p is characterized by a larger exponent

at higher pressures [51]. This could be because shearing under higher pressures tends

to make the affine displacement assumption less valid. Time-dependent relaxation

occurs, which significantly complicates a determination of the shear modulus.

Attempts to improve the theoretical elastic moduli during shear are not vastly

helped by accounting for tangential forces between particles. It was not until the

1950’s that Mindlin [96], determined a form for the tangential force between two

spheres that are not just pressed into contact, but also sheared with respect to each

other. During the displacement, the friction is such that rolling and slippage do not

occur. Then the resulting incremental tangential force is

∆Ft = kt(Rδ)
1/2∆s (3.5)

where the effective tangential stiffness kt is equal to 8Gg/(2 − νg). The quantity

∆s measures the lateral displacement increment of the contact region’s center with

respect to the center of one of the spheres. Note that the tangential force is path

dependent under this description:

Ft =

∫
Path in (δ,s) space

kt(Rδ)
1/2ds

In other words, compressing by δ and then shearing by s results in a different tangen-

tial force than if one were to compress by δ/2, shear by s, and then compress by δ/2.

This effect is due to the fact that the tangential force stems from microscopic trac-

tions within the circular contact region between spheres. The shear tractions within

an annular region of the contact zone depend on how far that region was sheared

from when it originally became part of the contact area.

EMT that utilizes Mindlin tangential forces (and some prescribed loading history)

produces a modified shear modulus and an unchanged bulk modulus. The new shear

modulus scales the same way as in the frictionless case, differing only by a constant
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prefactor in terms of kt. This is not enough to rescue EMT, as a more dramatic

difference would be necessary that somehow incorporates a greater importance of the

shear strain on the moduli.

3.3.3 The Jiang–Liu granular elasticity law

With the inability of EMT to provide a reliable theory of granular elasticity in the

presence of shear, Jiang and Liu proposed an alternate approach in 2003 [68]. Rather

than continue laboring on a microscopically derivable mean field theory, augment

the results from EMT that do work, with presumptive forms that capture known

macroscopic behavior.

Consider an elastic free energy density of the following form:

ψ(E) = B
√

∆

(
2

5
∆2 + γ2/ξ

)
(3.6)

B is a relative stiffness that can vary with packing fraction. The compressive strain

and shear strain are measured respectively by

∆ = −trE , γ = |E0|

where A0 ≡ A − (1/3)trA and |A| ≡
√∑

i,j A
2
ij. The dimensionless parameter ξ

will be discussed shortly. In classical small-displacement elasticity theory, the stress

tensor arises from the free energy function according to

T =
∂ψ

∂E
. (3.7)

Thus, we convert the elastic free energy directly into a form for the stress tensor:

T = 2
B
√

∆

ξ︸ ︷︷ ︸
G(∆)

E0 +B
√

∆

(
1 +

γ2

2ξ∆2

)
︸ ︷︷ ︸

κ(∆,γ)

(trE)1 (3.8)

Under isotropic compression, the pressure is proportional to ∆3/2, in agreement with
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the most successful result of EMT. The shear modulus scales with ∆1/2 as in EMT,

but the added nonlinearity in the full form of the bulk modulus allows for some

important properties not represented well by EMT. Consider an applied strain of

(∆, γ). Equation 3.8 implies the pressure obeys

p = (−1/3)trT = B∆3/2

(
1 +

γ2

2ξ∆2

)
.

The equivalent shear stress τ , obeys

τ = |T0|/
√

2 =
Bγ
√

2∆

ξ
.

The ratio of equivalent shear stress to pressure is called the Drucker-Prager µ and

represents a 3D friction state. From the above, we obtain the result

µ =

Bγ
√

2∆
ξ

B∆3/2
(
1 + γ2

2ξ∆2

) =

√
2

ξ
(
γ
∆

)−1
+ 1

2

(
γ
∆

)
.

Let r = γ/∆. Note that µ has a maximal value if the denominator of the above has a

minimum. To check for this, we set the derivative of the denominator to 0 and solve

for r:

−ξr−2 +
1

2
= 0 → r =

√
2ξ

Consequently, µ has a maximal value determined by ξ:

µmax =

√
2

ξ√
2ξ

+
√

2ξ
2

=
1√
ξ
.

Thus, the Jiang–Liu elasticity formulation comes with a powerful macroscopic prop-

erty: no elastic strain state can produce a stress state where µ exceeds 1/
√
ξ. Thus,

by selecting ξ accordingly, we can prevent certain states of friction from ever arising.

In the work of Jiang and Liu, a static yield criterion µs was declared and ξ was set

to µ−2
s so as to require that no purely elastic state can exist above µs. Their interest

was in the study of statics, so cutting off elasticity precisely at static yield is a sensible
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Figure 3-1: The shear stress vs. shear strain relation under Jiang–Liu elasticity
represented as a single dimensionless plot (left), and plotted equivalently as a family
of shear stress vs. shear strain curves in SI units using ξ = 4, B = 7 × 109 Pa, each
curve determined by the applied compressive pressure (right).

assumption. Our work shall attempt to integrate elasticity within a complete elasto-

plastic framework, so the basis for selecting ξ will be slightly different.

At the point where the elastic stress state reaches µmax, the relation loses convexity

and ceases to represent a valid elasticity law. More specifically, the Jiang–Liu model

is only physical for shear states fulfilling |E0| ≤
(
p

2B

)2/3√
2ξ. Beyond this point,

any additional strain cannot be purely elastic. Figure 3-1 elucidates the fashion by

which µ increases to its maximum under increasing shear strain. The plots are all

discontinued in regions where the relation is not convex.

More than just a model that connects with yield, the Jiang–Liu elasticity model

has had some convincing successes in representing granular statics:

1. The nonlinear form of T produces a stiffness tensor
∂Tij

∂Ukl
that agrees to a satis-

factory extent with the form of the stiffness tensor extracted from experimental

data [79].

2. The model predicts Janssen-type saturation of the wall stresses in a tall silo.

The ratio of vertical to horizontal compressive stresses in the silo is found to be

approximately constant when not close to the walls. This verifies the commonly

used notion of a “coefficient of redirection”, which has been verified in DEM
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simulations [122].

3. The model predicts that a granular material under simple shear stress responds

anisotropically to the addition of a point-load at a surface. Such anisotropy

under pre-stress is a well-known granular phenomenon that is captured appro-

priately in the nonlinearity of the Jiang–Liu model.

4. It has been observed that preparation history is largely responsible for the

stress dip that one often observes under the peak of a sand pile. This fact

is reproduced by the elasticity model when solved assuming an initial packing

fraction distribution that one might expect for a conical pile constructed from

grains flowing out of a nozzle.

The Jiang–Liu nonlinear elasticity model indeed comes with many perks. To the

theorist who wishes a micro-to-macro understanding of granular elasticity, the model

encompasses many successful results from EMT, like the p1/3 scaling of the bulk

modulus and the p1/6 dependence of the sound speed. The preparation history, which

is known to affect stress dependence, is included in the theory via the dependence

of B on the packing fraction. This feature is also borrowed from EMT, though the

Jiang–Liu model does not account for the effect of the average coordination number

like EMT. We note, however, that in disordered systems the packing fraction and

coordination number tend to be closely related.

At the same time, the Jiang–Liu model predicts several known macroscopic phe-

nomena as listed above, many of which cannot be explained by EMT. The model also

makes some account of γ in the definition of the elastic moduli, a welcome addition

whose lacking within EMT was problematic. It should be emphasized that while the

Jiang–Liu model is versatile, its qualitative capabilities still outweigh its quantitative

exactness at this stage. It appears to have the necessary form to describe many static

granular phenomena.
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3.4 Continuum flow

3.4.1 Bagnold scaling and relevant dimensionless quantities

Bagnold’s seminal work on granular flow followed from shear experiments on granu-

lar/fluid suspensions. In the “grain-inertia” regime where the effects of the interstitial

fluid are small, Bagnold found that both shear and normal stresses on the shearing

wall depend quadratically on the shear rate [12], a phenomenon that came to be

known as “Bagnold scaling”. Bagnold scaling has been verified for dry grains in both

the collisional and dense flow regimes [87, 130, 108, 113, 33]. An explicit form in the

case of simple shear of a dense configuration of dry grains can be expressed as the

following pair of dimensionless relations:

Φ = f(I) for I =
γ̇d√
P/ρs

(3.9)

µ = g(I) for µ =
τ

P
(3.10)

In the above, Φ is the packing fraction, P is the pressure on the shearing plate, τ

is the shear stress, and the steady shear rate is γ̇. The dimensionless number I is

commonly referred to as the inertial number or normalized flow rate, and µ is the

effective friction.

The simplest way to understand these equations is through dimensional analysis.

The major physical quantities involved in a gravity-free simple shearing between long

rough plates are the material parameters d and ρs, and the variable quantities Φ, τ ,

P , and γ̇. These are the only relevant quantities if we tacitly ignore the possibility of

any other length-scales playing a role and presume that collisions are fully dissipative

(pressure high enough to damp out restitution), two assumptions whose consequences

are important and will be discussed shortly. The particle-on-particle contact friction

µp is also ignored. Granted, µp does affect µ, but it has been found to merely translate

the µ vs. I relationship vertically [33].

Now, suppose the plates of the shear cell are pushed together with pressure P and
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Figure 3-2: (a) Illustration of the macroscopic time scale 1/γ̇ representing the time for
a particle to move one particle’s width under the action of the applied shear deforma-
tion rate, and (b) an illustration of the inertial time scale (1/d)

√
P/ρs representing

the time for a particle to move one particle’s width under the unbalanced action of
the applied pressure.

then one of the plates is moved with respect to the other to produce a shear rate of γ̇.

Then the effective friction and the packing fraction should arise uniquely from P and

γ̇ as a matter of cause and effect. Nondimensionalizing this argument tells us that

µ and Φ should depend only on I. Unlike a Newtonian fluid where a temperature

time-scale exists, the quadratic dependence of stress on shear rate can be seen to arise

from the fact that to scale γ̇, the only choice is to use the square root of one of the

stress quantities.

But dimensional arguments, while effective, sometimes leave the physics of the

situation unclear. A simple picture to understand the basic dynamics of a granular

material is difficult to come by since so many phenomena can happen at once (e.g.

frictional sliding, rolling, elastic compression, impact dissipation, packing evolution,

collisional restitution). We shall try our best, however, to gain a stronger physical

grasp with the help of a 2D toy example that simplifies planar shear:

Toy Model: Suppose two horizontal layers of disks are compressed against

each other and the top layer is sheared across the bottom layer at some

fixed shear rate γ̇ and some compressive pressure P . Within each layer,

the particle positions are fixed and equally spaced, and particles cannot

rotate, so each layer is essentially a “bumpy surface”. (See figure 3-2)

This toy model, which ellaborates upon a similar one introduced in [33], will
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be used as a tool for understanding throughout this work. With grain positions

fixed within each layer, dilation is constricted to the vertical direction. Collective

rearrangement phenomena is absent from the toy as well, as the two layers have

constrained horizontal degrees of freedom. The blocking out of rotations may be less

of a concern, since many interesting granular phenomena carry over for frictionless

particles. What the toy does provide, is a simple framework within which to attempt

to explain the rheological properties of granular media. Geometrically, it maintains

a basic picture of the dynamics of grains passing through a field of other grains.

I is a quantity that compares a macroscopic time-scale 1/γ̇ to an inertial time

(1/d)
√
P/ρs. To understand the meanings of these scales using the toy, observe the

process by which a particle in the upper layer traverses over a bottom-layer parti-

cle. The duration of the entire process is represented by the macro-time. Generally

speaking, once the upper particle has climbed past the crest of the lower particle, it

“snaps downward” under the applied pressure P (see figure 3-2b). The inertial-time

represents the duration of the snap-down, or more specifically, it is the time required

for the upper particle to be pushed downward a distance proportional to d under the

unbalanced action of the confining pressure.

3.4.2 Flow regimes

It is important to clarify the various conditions that underlie the validity of equa-

tions 3.9 and 3.10 for use in a general dense flow law. In our dimensional argument,

we presumed zero collisional restitution. The assumption is valid if the energy of a

collision is always dissipated on impact, presumably in the form of heat and sound.

Particles are in fact visco-elastic bodies, and while viscous dissipation is inconsequen-

tial for granular statics, it can be responsible for a significant amount of energy loss

during flow. Here again, the toy picture is instructive. Consider what happens at

the end of the inertial phase, as the upper particle is about to land on the next lower

particle (see figure 3-3a). If I is small enough, the applied pressure will be sufficiently

large compared to the shear rate to ensure the upper particle does not bounce to

any noticeable extent on impact. We could think of this as immediate collapse upon
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impact— The competition between applied compression and inter-particle repulsion

is “won” by the compression, resulting in a short-lived, sound-inducing oscillation

that immediately damps out the momentum in the normal direction.

Rate-sensitivity is a signature of this type of flow, as faster flows have both a

higher rate of contact formation and dissipate more energy per impact. Or in terms

of our dimensionless variables, I becomes one-to-one with µ, and γ̇ is immediately

determined by τ and P as in a non-Newtonian fluid. Therefore, as a general clas-

sification scheme, we say that a flow rate is “moderate” when I is large enough for

rate-dependence, but small enough for the flow to remain dense as per the collisional

collapse argument. Data of da Cruz et al. [33], would suggest this regime lies within

the band 10−3 < I < 10−1.

Moderate flows have the property of shearing dilation, where increasing the nor-

malized flow rate causes the steady-state packing fraction to decrease (i.e. f in

equation 3.9 becomes a decreasing function). This should not to be confused with

shear dilation, which refers to the drop in packing fraction as a function of total shear

that occurs to a dense assembly at the beginning stages of a shear deformation. Flows

too slow to be deemed moderate may still undergo shear dilation due to geoemtric

packing constraints, but rate effects like shearing dilation only set in for faster flows.

The toy offers a cute illustration of shearing dilation in moderate flows. Let us

observe the dynamics of the inertial phase by studying the trajectory of one upper

particle. Presume a basic situation where the upper particle loses contact upon

passing the crest, and is flung against the next particle beneath it (as pictured in

3-3a) resulting in impact dissipation. We may use kinematics to understand this

ballistic trajectory. With pressure and shear rate fixed, this is akin to a projectile

accelerating downward by a force proportional to P and moving laterally at a speed

proportional to γ̇. The parabolic trajectory and the height of the lift-off point is

determined by γ̇/
√
P ∝ I, with wider trajectories associated to higher values of I.

If I increases, the particle lands higher, implying that the mean separation between

layers increases. Consequently, we have a picture for why the time-average packing

fraction decreases in response to increasing I. In the limit as applied pressure goes to
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zero, this effect becomes even more obvious— shearing without any pressure induces

no compaction.

Of course, the toy is heavily oversimplified. It is exceedingly rare for a grain in a

3D flow to ever lose contact with all its neighbors, so ballistic trajectories are over-

reaching. But the general idea is that as the macro-time shrinks with respect to the

inertial time, particles have less and less ability to compactify under the confinement

stresses before being “tugged out” by macroscopic agencies.

Dilute or “collisional” flows occur in general for I > 10−1 and correspond to the

breakdown of the zero restitution assumption. When I becomes this large, particle

collisions are accompanied by some additional “bounce-back” akin to a gas (see 3-3c).

The collisions are chiefly binary, and particles rarely maintain long lasting contacts.

These flows require a temperature quantity to store fluctuational energy and are

well-described by dissipative Boltzmann kinetics.

On the other side of the spectrum, where I < 10−3, we enter the “quasi-static”

regime where intermittent motion is prevalent. The packing fraction in simple shear

does not vary noticeably with I in the (time-averaged) steady limit— the inertial

time is always small enough for the particles to find tight compaction (see 3-3b).

Without a significant contribution from collisional dissipation, rate-dependence sub-

sides, and more complicated dissipation mechanisms dominate like frictional sliding

and stick-slip dynamics. The stress/strain-rate relationship becomes singular; driving

the system with a range of quasi-static normalized shear rates all give the same time-

average value for µ. This is definitive rate-independence, in the sense that the size of

the strain rate variables cannot be deduced from the size of the stress variables. It

is akin to the rudimentary picture of a block sliding on a table, where as long as the

applied force equals µkN for normal force N , a moving block can be made to slide at

any speed.

Our discussion thus far has focused almost entirely on describing simple shear,

where stresses and time-average flow are spatially uniform. While the other regimes

display a strong local rheology, it has been observed that quasi-static flows are sen-

sitive to gradients in the fields as expressed through some non-local term with a new
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Figure 3-3: Extending the cartoon in Figure 3-2 to understand the various flow
regimes. (a) Moderate (∼ 10−3 < I < 10−1): Dissipation primarily rate-sensitive due
to energy loss during contact formation, yet packing remains dense. (b) Quasi-static
(∼ I < 10−3): Dissipation primarily frictional and rate-independent. Packing frac-
tion appears independent of I, and grain-level specifics are more important to flow
dynamics. (c) Collisional (∼ I > 10−1): Flow becomes dilute and gas-like. Dynamics
modeled best by dissipative Boltzmann kinetics.

Figure 3-4: Qualitative diagrams (primarily due to [33]) showing the variation of
dimensionless parameters through the various flow regimes under simple shearing. In
other geometries, the quasi-static regime of µ is not as clear to define in terms of I due
to meso-scale effects. The coefficient of restitution affects Φ vs. I in the collisional
regime. The moderate regime is relatively well-determined as a sole function of I.
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length-scale [94, 15, 73, 8]. For example, consider steady flow in an annular Couette

cell. Slow moving material far from the inner wall is observed to constantly creep

[94], even though the stress state should be below yield by all common local mea-

sures. Indeed, the motion appears to be caused by a non-local effect where faster flow

near the inner wall has effectively “bled out” into neighboring material. Grain-level

specifics such as roughness, grain shape, and configurational statistics (including wall

effects) should affect the non-local flow behavior through the new length-scale. The

size, dynamics, and general interpretation of the length-scale are object of debate,

though most agree its size should be on the order of several particle widths.

Observe figure 3-4 for a schematic view of how µ and Φ vary throughout the

flow regimes (in simple shear). The major take home points of this discussion are:

moderate flow is much simpler than quasi-static, and collisional flow is outside our

interest as it is not dense. Moderate flows should be characterized by a local rheology

relating I to both µ and Φ. The regime is definitively rate-dependent, so equation 3.10

inverts into a fluid-like law wherein the flow rate can be determined uniquely from the

stress state. As I decreases to the quasi-static limit, quantities we were previously

able to ignore become important. Grain motion is locally correlated at some length-

scale ushering in a greater role for grain-level properties. The flow does not permit

a fluid-like treatment as before, since dissipation is largely due to rate-independent

mechanisms. The motion is indeed hardly fluid-like, as it is intermittent, involving

small, rapid failure events separated by long periods of effectively no movement.

3.4.3 Review of past flow models

It is worthwhile to discuss past work on dense flow in terms of quasi-static and

moderate flow behavior. Quasi-static models are commonly applied in situations

of small-strain such as soil deformation and high pressure geophysical phenomena.

To obtain stresses during flow, a stress law must be included that determines stress

invariants based on behavior unrelated to the plastic flow rate. Elasticity is normally

employed, where the total deformation has a small elastic component that determines

the size of the stress. Since the elastic response is not the focus of these models,
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simple linear elasticity tends to be used, though as previously noted, this may be an

oversimplification that carries more consequences at lower stresses.

As a brief review, Critical State Theory [127], Rudnicki-Rice-type modeling [119],

and the recent model of Anand and Gu [3] each can be used for granular deformation

in this fashion. These models propose various forms for how the packing fraction

evolves with stress, how the yield parameters evolve with packing fraction (and what

the yield surface looks like in stress space), and how the directionality of the stresses at

yield determines the directionality of the plastic deformation. These approahces have

had some recent direct validation in small-strain discrete simulations [118]. Other

rate-independent models couple to the IFE stress formulation in 2D, such as pure

coaxiality [101] and the Stochastic Flow Rule [73].

While rate-independent models have had success, moderate flow rates require rate-

sensitivity. A non-hardening flow model that leaves out rate effects will predict that

stresses exceeding static yield induce a shear-rate that will continually increase with-

out bound. An analogy in the block-table friction picture would be to pull a moving

block with a force above µkN ; the block always feels a net force and thus consistently

accelerates unless the force is removed. Rate-independent models commonly use dis-

placement control to circumvent “runaway”. But in many flows of interest to us, trac-

tions or body forces (gravity) drive the motion, not kinematic boundary conditions,

and yet steady flows are still observed. Bagnold’s results among others previously

cited verify the existence of the moderate flow regime, where non-accelerative, dense,

steady flow occurs for stress states higher than those which initiate yield, consistent

with our picture of the moderate regime.

Beyond rate-sensitivity, it seems the bigger issue in representing quasi-static and

moderate behaviors in one model is the fact that local rheology dominates moder-

ate behavior (that is, equations 3.9 and 3.10) whereas a more complicated non-local

rheology emerges when the flow slows down. Some theories that may connect the

moderate and quasi-static regimes are based on new definitions of temperature. It is

plausible that non-locality could follow from the “heat equation” in which a Laplacian

is scaled by an imposed length. Flow models of this type include Shear Transforma-
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tion Zone (STZ) Theory [83, 46], which relies on an effective temperature governing

STZ creation, the dense flow theory of S. B. Savage [124], which defines a granular

temperature to measure strain-rate fluctuations, and Edwards statistics [42], which

utilizes a temperature-like ‘compactivity’ derived from an entropy per free volume.

These models provide interesting physical insight, but do not appear to be at the

point of development that simulating arbitrary flows would be possible— some are

restricted to 2D, the boundary conditions for the new temperature are rarely obvious,

and the equations may not be closed except in a few symmetric test cases. For our

purposes, complete closure under arbitrary 3D flow situations is desired.

The quasi-static flow regime, though important, appears at the moment to be too

difficult to account for appropriately within a simple continuum framework. Thus,

we shall neglect any further attempt at representing quasi-static behavior, and opt

instead to construct a model combining a statics law with moderate rheology. This

concession is not as harsh when viewed in light of our initial goal: We seek a for-

mulation to understand the first-order dependence of stress on the deformation of an

RVE. The effects of an imposed length-scale would be of second-order dependence,

most likely scaling a second spatial derivative of some sort. Besides temperature ap-

proaches, this could occur through the inclusion of a diffusing state parameter [73, 8]

or through a more general strain-gradient plasticity theory [56, 57]. It is hoped that

the model we are about to construct may serve as the backbone for a fuller model

that also incorporates the dependence of a length-scale on the slow dynamics. This

possibility shall be considered in more depth when we compare predictions of the

model directly to experimental/DEM data. But for now, we accept inaccuracy in de-

scribing quasi-static motion in exchange for a closed, general model capable of giving

worthwhile predictions over the full range of dense material behavior, accounting for

both statics and flow.

3.4.4 The Jop–Pouliquen granular plasticity law

A closed form law to predict moderate flow must now be selected. We start from

equation 3.10 for it states that there should be a function g that relates I directly to
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µ without knowing the packing fraction. Since the moderate flow regime is (mono-

tonically) rate-dependent, we have the bonus that g should be invertible. Recall that

increasing µ corresponds to increasing I. This may seem counterintuitive, since it

contradicts the notion that µ should decrease to a kinetic value as the rate of sliding

picks up. But recall, for moderate flow rates, the impact dissipation is the more

significant effect. In slower flows, shear weakening is indeed observed for “overcon-

solidated” material, and accounted for in various models via hardening parameters

[3, 127].

Following general results from numerical simulations of planar shear [33, 63], and

successful extensions to plane-strain inclined chute flows [94, 130], the experiments of

[70] were conducted to quantify g−1 for glass beads:

I = g−1(µ) = I0
µ− µs
µ2 − µ

for µ > µs. (3.11)

The values of the parameters were measured at I0 = 0.279, µs = tan 20.9◦, and

µ2 = tan 32.76◦. The relation states that the normalized shear rate I increases as

the material is sheared with higher µ. But µ must exceed some static yield value µs

before any plastic flow ensues. There is also some maximal µ value called µ2, and all

steady shear rates should be tenable for a value of µ less than µ2. If the material is

stressed with an applied µ that exceeds µ2, the shearing motion will be accelerative.

In other words, when µ > µ2, all typical dissipation mechanisms become overloaded

by the applied shear stress, causing a continual increase in the shear rate.

The inclined plane geometry in 2D is quite instructive here. The slope of the

incline gives a good approximation for µ. For slopes less than µs, no flow occurs.

Between µ2 and µs the material flows steadily down the incline. Above µ2, the

material accelerates down the incline under gravity’s pull.

After a long debate concerning the importance of side walls in experiments of

inclined plane flow, the rheology of equation 3.11 was accepted and attempts at

converting this simple shear law into a general 3D flow law were made. The first

attempt was met with high success. In Jop et al. [71], codirectionality was attempted,
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Figure 3-5: The plastic flow rheology in simple shear plotted as one dimensionless
relationship (left), and plotted equivalently as a family of shear-rate vs. shear stress
curves in SI units, each curve determined by the applied compressive pressure (right).

which presumes the deformation rate tensor

D = (1/2)
(
∇v + (∇v)T

)
is proportional to the deviatoric stress tensor

T0 = T− (1/3)(trT)1.

Written in full, Jop proposed the following generalization of equation 3.11:

D
d√
P/ρs

= I0
µ− µs
µ2 − µ

T0

τ
(3.12)

where now P = −(1/3)trT and µ = τ/P where τ = |T0|/
√

2 is the equivalent shear

stress. When µ < µs, we take D = 0 establishing a yield criterion. In particular,

this 3D extension of frictional yielding is the Drucker-Prager criterion. Since the flow

condition being used is codirectionality, the law is non-associative in the sence that D

is not directed normal to the yield criterion. The codirectionality hypothesis implies

that when flow occurs, its does so in a manner analogous to an incompressible fluid.

Since D is proportional to a deviatoric tensor, the flow rule asserts plastic incom-
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pressibility. We know that dilation in dense flow does occur, but it is typically on

the order of only a few percent and quickly reaches a steady value over large defor-

mations. We would still need to keep track of Φ as a state parameter were it not for

the fact that the (steady) shear rate can be uniquely expressed in terms of the stress.

This implies that the assertion of plastic incompressibility should have little effect on

the velocity field of a dense steady flow. However, it should be pointed out that the

evolution of the packing fraction to its steady value has not yet been quantified in

this context. Some quasi-static flow models attempt this [3, 127, 119] but rather than

try to modify one of these, we go along with the presumption of the Jop–Pouliquen

model and ignore plastic dilation. The bigger impact of this assertion is not on the

flow, but rather on the stresses in the static regions— If plastic flow transiently passes

through a region that becomes static in the steady-state, how much dilation occurred

there is important since the elastic moduli depend on the packing fraction.

Codirectionality is one of many possible ways of directing the stress with respect

to the deformation rate in 3D. Others have proposed double-shearing [3] based on

A.J.M. Spencer’s original formulation [133]. Unlike codirectionality which permits

deformation in all 3 dimensions when the Drucker-Prager failure criterion is met,

double-shearing constructs D when Mohr-Coulomb failure is met, by only allowing

plastic sliding (and possibly dilation) to occur on the two internal slip-systems that

satisfy Mohr-Coulomb yield (see appendix A for more details). The DEM results of

Depken et al. [35] show a strong agreement with the codirectionality hypothesis, but

less favorable agreement was observed in Rycroft et al. [122].

In non-Newtonian fluid mechanics, a fluid with stress-sensitive viscosity that, in

particular, remains rigid when below a yield criterion is known as a Bingham fluid [18].

Accordingly, equation 3.12 represents granular matter as a Bingham fluid obeying a

Drucker-Prager yield criterion. Inside rigid zones, Bingham fluids have undefined

stresses. However, even without knowing the rigid stresses, the velocity profile ev-

erywhere can be uniquely determined from equation 3.12 as the limitting solution

obtained by letting viscosity go to infinity in sub-yield regions. Algorithms that solve

for Bingham fluid flow are more complicated than Newtonian fluid algorithms since
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Figure 3-6: The geometry utilized by Jop et al. [71] to determine if codirectionality
appropriately extends Bagnold scaling to 3D.

the Navier-Stokes-type equations cannot be directly implemented in solid zones, where

infinite viscosity and a zero flow rate cause ∞× 0 to appear. Instead, the solution is

numerically approached using higher-level iteration and/or variational methods such

as those presented in [116, 50]. Some materials commonly described with Bingham

fluid models include mud [93, 144] and paste [89].

To test the law, Jop et al. solved for steady flow in a non-standard geometry: a

long inclined chute with rough bottom and rough sidewalls (see figure 3-6). This

geometry enables a flow that is symmetric in the down-incline direction, but spatially

non-trivial in the other two. The results were shown to match experiments to a high

degree (always within 15%) even while varying several parameters (e.g. inclination

angle, flow height and width). The model was heralded as a major breakthrough.

While the results are promising, there are several reasons why this Bingham fluid

treatment of granular matter is not enough:

1. There is no stress computation in the static regions. The Bingham approach

only gives the stresses in the flowing regions.

2. It is not compatible with arbitrary traction boundary conditions. If an applied

traction happens to be adjacent to a solid-like region of grains, the traction
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cannot be accounted for.

3. While codirectionality does well, we may not be able to test other flow conditions

under Bingham fluid assumptions. In the general case of double-shearing, for

instance, the intermediate principal stress is disconnected from the flow rate.

A Bingham fluid approach would be unable to determine this stress causing

ambiguities when balancing momentum.

4. Fluid approaches miss some distinctive granular behaviors such as stick-slip and

bistability.

5. Bingham fluid algorithms commonly have numerical issues near the fluid/solid

interface, where the viscosity undergoes a discontinuity.

Many if not all of these drawbacks will be resolved when the Bingham fluid ap-

proach is replaced with elasto-plasticity. But properly mixing an elasticity formulation

with a plastic flow law takes some theoretical development. We henceforth proceed to

determine the proper way to unite the Jop–Pouliquen plasticity law (equation 3.12)

with the Jiang–Liu elasticity law (equation 3.8).

3.5 Combining elasticity and plasticity: Physical

considerations

3.5.1 A simplified picture

At the outset, this problem would appear to be quite confusing. Over the course of

a complicated deformation path, how is one supposed to disentangle the elastic and

plastic pieces of the end deformation? We shall attempt to solve this problem using a

popular decomposition originally proposed by Kröner and Lee in the 1960’s [78, 81].

Let us motivate the decomposition with a cartoon. We model a granular element in

an admittedly over-idealized fashion as two elastic rectangles stacked one on top of

the other, with µ representing the surface friction between rectangles (see figure 3-7).
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Figure 3-7: (a) The blocks start in the “reference state”, which we imagine is the
original stress-free configuration. (b) The application of a yield stress makes one
block slide with respect to the other at some constant sliding rate. A snapshot of
this at some time is called the “deformed state”. (c) By removing the stresses that
act on the deformed configuration, the elastic part of the total deformation unloads,
revealing an underlying “relaxed state”.

As a boundary condition, we constrain the bottom surface of the bottom block

vertically, and pin the lower left corner of the bottom block. Let us consider a starting

state, the so-called “reference state”, where the blocks are unstressed and have not

undergone any sliding or elastic deformation. Stresses are then applied to the top

surface of the top block inciting motion. Any arbitrary motion may occur: the top

block may slide side-to-side, it may even lift off the surface of the lower block at some

point. Then, at some point in time later, we take a snapshot of the situation and

call it the “deformed state”. It represents some total deformation from the reference

state. As pictured in figure 3-7b, let us consider a case where the top block has

already slid some distance and is in the process of sliding when the snapshot is taken.
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Note, as indicated in the diagram, that while sliding, the blocks themselves maintain

an elastic deformation. The reason for this is simple; observing the stresses on each

block during sliding, it is clear that each block is still in a state of uniform stress and

elastic solids must deform under stress.

With everything that could have happened inbetween, how can one decompose

the deformed configuration into a unique elastic and plastic contribution? A good

way to do this is to simply release all the stresses from the deformed state. What

remains is a “relaxed state” in which no additional sliding has occurred, but the elastic

mechanism for supporting stress is relieved. Directly connecting the reference state

to the relaxed state defines a unique plastic deformation. Given the relaxed state,

one can bring the system back to the deformed state by reloading it exactly opposite

to how it was unloaded. Thus, however the deformed state may have actually been

achieved, the total deformation can be reconstructed in two successive steps: first let

the reference state be mapped to the relaxed state by a purely plastic deformation,

and then elastically load the relaxed state to the deformed.

This picture still applies, but in a less obvious sense, if the coefficient of friction is

rate sensitive. Suppose µ increases with the sliding rate and the deformed snapshot

has the top block in steady motion above static yield. The elastic deformation of the

blocks should still reflect the total stress, but the idea of a relaxed state is less clear—

One cannot go from a stress-free intermediate state to the deformed state without

invoking additional plastic sliding. That is, suppose the deformed state stresses are

released. Any loading path that brings the blocks back to the deformed state stresses

over a finite time period cannot be purely elastic, as the friction state must pass

through static yield during the process. We can understand the aforementioned elas-

tic/plastic decomposition in this situation under the added pretense that we “fix”

the plastic deformation while loading from the relaxed to the deformed configuration.

Or, an equivalent patch is to say that the elastic loading step happens very fast, so

that additional plasticity has no time to occur during loading.

This basic picture provides intuition for how we shall eventually decompose any

arbitrary 3D deformation of a granular element into elastic and plastic parts. Other
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approaches exist to handle elasto-plasticity, such as hypo-plasticity, which deals ex-

plicitly with Eulerian stress rates and strain rates instead of separating the elastic and

plastic parts of a total deformation. Hypo-plastic approaches have lost favor in the

continuum mechanics community over the last decade as thermodynamic effects are

difficult to model and elastic strains must be negligibly small. While hypo-plasticity

could conceivably be applied to a granular material, we opt instead for the more

rigorous hyper-plastic approach sketched above. As shall be seen, the clear separa-

tion of elastic and plastic parts makes the process of specifying connections to state

parameters and stresses much clearer and less arbitrary.

Several pieces of the puzzle are still missing though. Granular materials are def-

initely more complicated than the cartoon. Can the microscopic level of flow be

reconciled with the notion that elastic stresses always reflect the total stress? And

then there are mathematical details: Are rotations accounted for in the elastic or the

plastic part? In what sense is the relaxed state a globally obtainable configuration and

to what extent is it a useful albeit fictitious aid? We also must quantify precisely what

a deformation means mathematically before rigorously referring to related quantities

such as strain and deformation rate.

We answer these questions successively. First let us give some physical evidence

for representing the stresses in a flowing granular material within the elasticity of the

grain medium. Doing so shall require a small modification to the Jiang–Liu law. We

shall then proceed through a mathematical theory of 3D, incompressible, athermal,

finite-deformation elasto-plasticity.

3.5.2 Microscopic evidence for elasticity during flow

According to the basic picture shown in figure 3-7, the stress tensor can always be

well-described, even in flowing regions, in terms of how much the grains elastically

deform. Of course, in a static assembly it is obvious that no other possible stress

mechanisms exist. But during flow, a couple other agencies are available to reflect

additional stress. If we wish to use the elasto-plastic framework above, we need to

provide some evidence for why these other stress agencies are negligible.
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First of all, let us write out the complete form for the stress tensor within a

granular element in terms of the behavior occurring during a snapshot. As can be

obtained from a basic internal/external power argument, the stress formula is:

T =
1

V

(
N∑
i<j

r(ij) ⊗ f (ij) +
N∑
i=1

m(i)(v(i) − v̄)⊗ (v(i) − v̄)

)
(3.13)

The average velocity within an element is v̄ and v(i) is the velocity of the ith parti-

cle. The right-most term on the right-hand side is new (compare to the static-only

case, equation 3.3), and we shall refer to it as the “gas-like” contribution. We call

it gas-like because the stresses in an ideal gas are entirely of this form, where veloc-

ity fluctuations about the mean represent a time-average momentum transfer rate.

Physically speaking, the gas-like term accounts for any acceleration of the individ-

ual grains caused by boundary tractions as measured in the element’s center-of-mass

reference frame. The gas-like stress term is an important agency to consider when

assessing flow-related extra stress.

According to the data of Chris Rycroft, it so happens that the gas contribution

is remarkably small in DEM simulations of moderately flowing sphere packings. So

small, that it can be neglected from the stress computation with essentially no con-

sequences. This evidence verifies our picture of the moderate flow regime as one in

which the kinetic energy from new contact formation is quickly damped out by vis-

cous processes within the particles. Together with the denseness of the flow, particles

never have the chance to accelerate to any appreciable velocity with respect to the

element center. Thus, if the grains were at all reminiscent of a gas, the “temperature”

of the grains would be close to absolute zero.

What remains is a formula for the Cauchy stress in terms of the contact forces

f (ij) and their corresponding contact separations. Since the grains are visco-elastic,

each contact force can be decomposed additively into elastic and viscous parts, as in

a damper/spring system in parallel:

f (ij) = f (ij)
e + f (ij)

v

114



Perhaps it is not surprising given the previous zero temperature observation, but it

is also observed in DEM simulations that the viscous force contribution is incredibly

small compared to the elastic, implying

T ∼=
1

V

N∑
i<j

r(ij) ⊗ f (ij)
e

The DEM evidence indeed suggests that elastic stress contributions are all that is

necessary to represent the full Cauchy stress in a granular element. In other words,

just given the spring-like compressions and shears in every grain (that is, δ and s

as defined in section 3.3.2), Hertz-Mindlin elasticity is responsible for the full stress

tensor even during flow.

It is understandable if this point is somewhat non-intuitive. Unlike the picture

in figure 3-7, rate-dependent effective friction occurs in moderate flowing grains even

though grain-on-grain sliding friction is modeled as rate-independent. We shall at-

tempt to explain this particular detail with the help of the section 3.4.1 toy model.

But no toy model alone suffices to justify the rather important and unobvious fact

that the elastic agencies within the material provide all the stresses, even during flow.

For this, we must rely on the evidence from DEM simulations. We are left to believe

that the simple block-on-block cartoon for decomposing and handling elasticity with

plasticity is a plausible starting point for an elasto-plastic model for granular matter.

3.5.3 Modifying the Jiang–Liu elasticity law

As motivated in the last subsection, we need to modify the Jiang–Liu elasticity law

to permit elastic behavior during flow. Since flowing materials can have µ increase

above µs, the elasticity must reflect this. Hence, we propose the following important

modification to Jiang–Liu elasticity: Set ξ = µ−2
2 instead of ξ = µ−2

s .

The ξ parameter was engendered solely to capture the macroscopic repose angle

of a static granular assembly. Its value was not determined from any quantitative

microscopic requirements. So we have few qualms about this adjustment, as it only

improves the law’s ability to represent macroscopic phenomena.
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With ξ = µ−2
2 , there can never be an elastic stress state that has µ > µ2. Looking

back to equation 3.12, notice that the flow rule would completely break down if given

a stress state that exceeds µ2. Since the Jiang–Liu law admits a cap on the value of µ,

one may use this property to prevent elastic stress states from entering the forbidden

regime of the Jop–Pouliquen flow law. This feature is important when performing

explicit time integration, where stresses outputted from the elasticity relation are used

to compute the plastic flow rate the next time step. This is not an issue, however, for

implicit time integration methods. Analytically speaking, capping the elastic stresses

at µ2 is not necessary for a solution; an elasticity law permitting stresses above µ2

would also be acceptable, though the plastic response would always preclude such

states from arising. In this regard, capping the elasticity at µ2 is not a mathematical

necessity, but a choice. A larger cap could be used, but for the best carry-over from

Jiang and Liu’s original formulation, we cap at µ2 since it is closest to µs.

We already have DEM evidence indicating that elasticity describes the stresses

during flow. While this point is difficult to prove from basic physical arguments,

we may be able to explain a particular byproduct of this general fact. Let us try

to understand the elastic basis for why µ continues to increases as I increases in the

moderate flow regime. What complicates this question is the fact that the interparticle

contact friction actually plays only a small role in the development of the effective

friction µ. Most notably, grains flow at a steady rate with a non-zero effective friction

even when the coefficient of interparticle contact friction is zero.

Since contact forces dominate the calculation of the stresses, let us focus on how

the statistics of contact forces imply different effective frictions given different normal-

ized flow rates. In [33], simple shear simulations were performed on a 2D collection

of bidisperse disks with zero contact friction. The distribution of contact forces as

a function of angle from the horizontal was computed for many I values. With zero

contact friction, all forces on a particle are normal to the contact surface. The effec-

tive friction is the ratio of equivalent shear stress to pressure. The more anisotropic

the contact force distribution is, the higher the effective friction. For example, a

completely isotropic force distribution acting on a grain, as pictured in figure 3-8a,
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Figure 3-8: (a) Isotropic force distributions on the surface of a disk make for a stress
tensor with zero shear stress and likewise µ = 0. (b) As the distribution becomes
more anisotropic, the µ value associated to the corresponding stress tensor grows.

sums to a stress tensor that is purely compressive with zero equivalent shear stress,

and consequently µ = 0. If the contact force distribution skews in one direction, as

in figure 3-8b, the stresses gain a deviatoric part that is larger for larger amounts of

skew.

The data of [33] show unambiguously that flows with higher normalized shear rates

are accompanied by a contact force distribution that is more anisotropic (see figure

3-9 1). As I increases, contact forces appear to concentrate more and more heavily

in the range 90o(270o) < θ < 180o(360o) and less so in the other two quadrants.

Thus, even in the case of zero contact friction, the observed presence and variation

of contact force anisotropy provides a successful explanation for effective friction’s

dependence on I.

Once again, for intuition as to why this happens, we return to the toy model

(see figure 3-3a). Again, suppose a constant downward pressure P and shear rate γ̇,

which is equivalent to holding I constant during the flow. Consider the case of zero

interparticle friction. The contact force distribution on a lower particle as an upper

particle traverses it, gives a time-average stress state of

T =
1

V
〈f ⊗ (2Rn)〉 =

1

V tperiod

∫ tperiod

0

2RFn(δ)n⊗ n dt. (3.14)

1Figure reprinted from Phys. Rev. E, F. da Cruz et al., Rheophysics of dense granular materials:
Discrete simulation of plane shear flows, 72:021309, Copyright (2005) with permission from APS.
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Figure 3-9: Reproduction of a major result from da Cruz et al. [33]. (Left) Consider
the simple shearing of a collections of frictionless polydisperse disks and define θ
oriented as displayed. (Right) The corresponding contact force distribution for µp = 0
as a polar plot in terms of the angle of contact θ. I = 0.005 (2) and I = 0.13 (◦).

The volume V in the above is difficult to define for a two particle sample but is

inconsequential in our current analysis.

As previously discussed in reference to packing fraction, increasing I causes the

upper particle to leave the surface of the lower particle at a higher vertical position.

It also lands higher up on the face of the next particle. Compare this to the low I

extreme, where the upper particle practically never leaves the surface of the lower

during one period. It is evident that the former case must correspond to a higher µ

value, as the contact distribution on the lower grain extends over a smaller total angle

with contacts occurring primarily on the upper left quadrant of the disk surface, and

practically no contact with the back face.

The contact forces at the heart of this argument are all stemming from Hertzian

elasticity. Hence, this argument gives physical reasoning for why the grain-level elas-

ticity must be enabled to produce stress states that respect the I vs. µ interdepen-

dence during flow.

In fact, the toy model also gives physical reasoning for other bulk friction phenom-

ena. Let us bring back the “old” definition of effective friction µ, as the ratio of shear

stress to pressure on the shearing plate of a simple shear cell. This definition has µ
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increase for higher degrees of anisotropy with respect to the direction normal to the

shearing plane. Experience tells us that the µ required to initiate flow is higher than

the µ necessary for flow to continue. This can be seen in terms of contact anisotropy

in the toy example. Right before flow, static equilibrium implies the contacts are all

oriented 45◦ from the vertical (for µp = 0). The distribution during slow flow spreads

more uniformly over the surface of the disks thereby decreasing µ. But, in concert

with the previous argument, once flow has started, increasing the normalized flow rate

concentrates the contact distribution in such a fashion that µ increases. The effect

of contact mobilization on the force distribution is seen in this sense as a possible

explanation for the bistability phenomena observed in inclined plane and heap flows

at the onset of failure.

3.6 Combining elasticity and plasticity: Mathe-

matical specifics

With the physical motivation provided, we now go about providing a mathematically

rigorous framework for the model. The following derivation is based on previous

theories of amorphous continuum mechanics as found in [4, 2].

At the outset, we know that Newton’s equations of motion need to be upheld. In

the continuum parlance, force balance takes the form

∇ ·T + ρg = ρv̇. (3.15)

where ˙ represents the material time derivative. Torque balance is equivalent to the

requirement that

T = TT . (3.16)

These relationships comprise an underdetermined system. The equations are closed

via a constitutive process whereby we implement our assertions about the material’s

constitution. In our case, a joint elastic and plastic response must be inserted.
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3.6.1 Kröner–Lee decomposition

We now attempt to provide an appropriate extension of our basic picture, figure 3-7,

to arbitrary 3D continuum deformations.

At t = 0, let B define the body of material in its unstressed reference state. A

deformation process occurs to the body and, at the current time t, the body is in a

deformed configuration Bt. We, throughout, shall represent positions in the reference

body by X and positions in the deformed by x. Let us define the motion function

χt as a function that assigns every material point in the reference space to where it

currently resides in the deformed space:

x = χt(X).

The gradient of the motion function readily admits a way to describe local defor-

mation. Define the deformation gradient F as:

F(X, t) =
∂χt(X)

∂X
.

F is a tensor with the property that when it operates on a small oriented material

filament dX in the reference body, it outputs what that filament now looks like, dx,

in the deformed body. Hence dx = F dX.

The idea illustrated with the two blocks can now be stated clearly in this frame-

work. We want the deformation gradient to be represented as the composition of two

deformation gradients, one elastic and one plastic. Given the idea that elastic loading

is the final step in such a decomposition, we can write:

F = FeFp (3.17)

In this manner, a local neighborhood in the reference body deforms plastically ac-

cording to Fp, bringing it into some “intermediate” or “relaxed” space free of stresses.

Then the material elastically loads via Fe to the appropriate deformed state config-

uration at time t.
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Figure 3-10: An illustration of the various continuum terms. A reference body is
deformed into a deformed body. The material point X is located at x at time t and
the small material filament dX (not to scale) that extends from X is stretched and
rotated to dx.

Figure 3-11: The Kröner–Lee decomposition of the deformation gradient. Locally,
a material element is modeled as passing through an intermediate space where all
plastic deformation is accounted for before elastically loading to the deformed space.
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We do not expect that either Fp nor Fe correspond to the gradients of some global

elastic and plastic motion functions. There are simple cases, like the block-on-block

deformation, where elastic and plastic motions do exist and one completely relaxed

intermediate body is attainable. But for inhomogeneous F, one should expect that

the decomposition we are suggesting only applies within a local neighborhood of each

material point. That is, an arbitrarily deformed elasto-plastic body is unlikely to be

capable of completely relaxing everywhere, but any small material element within

should be able to if it were hypothetically removed from the surrounding material.

We reiterate though, that the product of Fe and Fp must be the gradient of the motion

χt.

In this regard, we accept that the intermediate state is somewhat fictitious. It

represents the idea that every local region should have the capability of unloading

elastically, and for this to happen, the deformation should be sequentially decompos-

able. But in the larger sense that just letting go of a deformed body should reveal

a relaxed body, it is a slightly false pretense. Regardless, we accept the Kröner–Lee

decomposition as a useful modeling tool.

3.6.2 Kinematic definitions

With our decomposition now stated, the next step is to define various kinematical

quantities in terms of this decomposition. To wit, any fluid-like law must relate to

a consistent notion of deformation rate and any elasticity law must have an equally

consistent definition of stretch and rotation.

First, let us start with the more basic question of how to determine these quantities

as they relate to a deformation gradient F, before attempting to specialize their

definitions to the elastic and plastic parts. Let us define the spatial velocity field

v(x, t), in terms of χt(X) ≡ χ(X, t):

v(x, t) =
∂χ(X, t)

∂t

∣∣∣∣
X=χ−1

t (x)

= χ̇(χ−1
t (x), t).

The material time derivative represented by the dot, is indeed the partial derivative
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of time holding the reference location X constant.

In fluid mechanics, the primitive quantity from which stresses are calculated is

the spatial velocity gradient L(x, t) ≡ ∂v
∂x

. Mathematically it follows that,

Ḟ(X, t) =
∂

∂t

(
∂χ(X, t)

∂x

)
=

∂

∂X
(χ̇(X, t)) =

∂

∂X
(v(χt(X), t))

= L(x, t)|x=χt(X)

∂χt(X)

∂X
= L(x, t)|x=χt(X) F(X, t).

where the transition from the first to the second line invokes the chain rule. Omitting

arguments, we may write out the important relationship that defines the spatial

velocity gradient in terms of the deformation gradient:

L = ḞF−1 (3.18)

It is known from Eulerian fluid mechanics, and basic mathematics, that the ve-

locity gradient has the property that when it operates on a small material filament,

it outputs the rate of change of that filament. The above expression clearly captures

this fact: A filament in the deformed body is taken to its pre-image in the reference

body by F−1, and then the result is acted upon by Ḟ, which outputs the rate of

change of the filament in the deformed body.

We shall now break up L into its symmetric and skew parts:

D ≡ sym(L) =
1

2
(L + LT )

W ≡ skw(L) =
1

2
(L− LT )

The deformation rate D is the part of the velocity gradient that corresponds to the

rate of stretching of the material element. The spin W indicates the rigid-body type

rotation rate of the element about some axial vector.

Now that we have discussed rates, let us delve into the meanings of total stretch

and total rotation in terms of F. The determinant of F, which we shall denote J ,
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represents the ratio of an element’s volume in the deformed space to the volume of its

preimage in the reference space. Thus for physical reasons, we can assert that J > 0

so as to ensure that an element can never “turn inside out”. Since J is positive, we

invoke a useful tensorial decomposition, the polar decomposition, which allows one

to take any tensor of positive determinant and write it as the product of a rotation

tensor and a symmetric positive definite tensor:

F = RU.

We refer to R as the rotation and U as the right stretch, as it appears to the right

of the rotation. Furthermore, since U is symmetric, we may express it in term of an

orthonormal principal basis:

U =
3∑
i=1

λir̂i ⊗ r̂i

The λi are the right principal stretches and the eigenvectors r̂i are the right principal

stretch directions.

To determine U, simply note that FTF = UTRTRU = UTU. Since U is sym-

metric, we see that given F, we may obtain U by

U =
√

FTF.

The square root is uniquely defined by constraining that the λi must all be positive

as per the symmetric positive definiteness of U. Once U is obtained, the rotation R

follows immediately by R = FU−1.

With these kinematical quantities all rigorously defined, we now generalize their

usages in terms of the elastic and plastic deformation gradients. The elastic and

plastic velocity gradients are defined as

Le = ḞeFe−1

Lp = ḞpFp−1
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which in turn enables definitions of the elastic and plastic deformation rate and the

elastic and plastic spin:

De = sym(Le) Dp = sym(Lp)

We = skw(Le) Wp = skw(Lp).

Using these definitions, we can write an expression for the full velocity gradient in

terms of the elastic and plastic pieces:

L = ḞF−1 =

(
∂

∂t
(FeFp)

)
Fp−1Fe−1 = Le + FeLpFe−1 (3.19)

In the same manner as before, performing the polar decomposition on Fe yields

Fe = ReUe

where Ue is the elastic right stretch and Re is the elastic rotation. The plastic-

ity model we wish to use is incompressible and as such we have Jp = detFp = 1.

Consequently, Je = detFe = J .

3.6.3 Intermediate space variables

Since we are dealing with three different spaces— reference, intermediate, and de-

formed —it behooves us when relating quantities that reside in different spaces to

create surrogate quantities that all reside in the same space. To be clear, we say a

tensor field A defined over X or x “resides” in a vector space S , when the tensor

is only meaningfully defined operating on vectors from S , and only outputs vectors

in S . Case in point, the Cauchy stress T resides in the deformed space. This is

because it gives the force per unit area at the current moment t given the orientation

of the plane of interest at time t. If the stress causes the plastic deformation rate, for

example, how is one to relate Cauchy stress to Lp when Lp is not defined in terms of

deformed space variables? To resolve this issue, we now rewrite the necessary phys-
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ical quantities in the intermediate space, as this space directly connects to both the

deformed and reference spaces.

As will be a common theme throughout this process, we now use the second law

of thermodynamics to our aid. For isothermal motions, the law is equivalent to the

following dissipation inequality

ρψ̇ −T : L ≤ 0 (3.20)

The quantity ψ is the Helmholtz free energy per unit mass and, for clarity, ρ is

the density in the deformed space. The leftmost term indicates the rate at which

energy being expended on the element by outside agencies is being converted into

stored internal energy. The other term represents the total power expenditure on the

element in the form of stress-work. Altogether, equation 3.20 is stating that no more

than the total energy being expended on an element can be stored.

Mass conservation implies the density of an element in the intermediate space is

ρI = ρJe. And likewise, the free energy per unit intermediate volume can be expressed

by ψI = ρIψ. Note that ψ̇I = ρIψ̇ since plastic incompressibility ensures ρI constant.

Multiplying both sides of equation 3.20 by Je and writing L as per equation 3.19

gives

ψ̇I − JeT : Le − JeT :
(
FeLpFe−1

)
≤ 0 (3.21)

Let us review some identities relating to the tensorial dot product:

1. For A symmetric, A : B = A : sym(B)

2. For A deviatoric (i.e. traceless), A : B = A : B0

3. A : (BC) = (BTA) : C = (ACT ) : B

In observing the center term on the left side of equation 3.21, identity (1) implies the

reduction

JeT : Le = JeT : De
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But we also know

De =
1

2

(
ḞeFe−1 + (ḞeFe−1)T

)
=

1

2

(
ḞeFe−1 + Fe−T ḞeT

)
=

1

2
Fe−T

(
FeT Ḟe + ḞeTFe

)
Fe−1

Defining Ce ≡ FeTFe = Ue2, note that the term in parenthesis in the last step is Ċe.

Hence we have

JeT : De = JeT :

(
1

2
Fe−T ĊeFe−1

)
=

1

2

(
JeFe−1TFe−T ) : Ċe

where identity (3) was invoked in the last equivalence. Let us provide a special

denotation for the term in parenthesis in the last expression:

Te ≡ Fe−1TFe−TJe

The stress quantity Te resides in the intermediate space. To make this point more

clear, note the following. The two last terms in the above, Fe−TJe, are an expression

known mathematically as the cofactor of Fe. Suppose a vector aI is normal to a

bounded plane of area |aI | in the intermediate space. The image of the bounded

plane in the deformed space is defined by the cofactor in the sense that the new area

vector is aD = (Fe−TJe)aI . Therefore, TeaI = Fe−1TaD. By the definition of Cauchy

stress, TaD is equal to the force fD that acts on the bounded plane corresponding

to the area vector aD. We may thus understand Te as a stress measure that inputs

an area vector aI in the intermediate space and outputs a force vector fI in the

intermediate space; the force that is exerted on the plane represented by the image of

aI in the deformed space, is the image of fI in the deformed space. The expression for

Te is closely related to a common stress measure known as the second Piola stress.

Moving on to the last expression on the left side of equation 3.21, identity (3) and
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some algebraic manipulation implies

JeT : (FeLpFe−1) = Je(FeTTFe−T ) : Lp = (FeTFe︸ ︷︷ ︸
=Ce

Fe−1TFe−TJe︸ ︷︷ ︸
=Te

) : Lp

The term in parenthesis deserves its own name. We shall refer to M = CeTe as

the “Mandel stress”. It can be shown in a manner similar to the above that M also

resides in the intermediate space, but has a slightly different physical interpretation.

Writing T in terms of the Mandel stress gives

T = Je−1FeMFeT (3.22)

The Cauchy stress is symmetric, but at this point we cannot say the same of the

Mandel stress. Since the plastic deformation is incompressible, Lp is traceless, and

likewise by identity (2) we see that M : Lp = M0 : Lp.

The dissipation inequality can now be stated completely in terms of the free energy

per unit intermediate space ψI and tensors that reside in the intermediate space:

ψ̇I −
1

2
Te : Ċe −M0 : Lp ≤ 0 (3.23)

The two last terms reflect the power expended per unit intermediate space. Hence

this version of the dissipation inequality states that the rate at which free energy is

stored per volume of intermediate space can be no greater than the power expended

per volume of intermediate space.

3.6.4 Constitutive dependences

Now, we seek to implement mathematically the physical properties we believe to be

true of the material at hand. We shall do so in the form of constitutive dependences,

where particular quantities in equation 3.23 are asserted to be functions of other

quantities. We choose from experience, but without loss of generality, that ψI , T
e, and

Lp compose the set of dependent variables, and that M and Ce are independent. Thus,
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every quantity that arises in equation 3.23 is an independent variable, dependent

variable, or the time derivative of one of these variables.

We believe, backed by our DEM simulations, that the stresses in a granular mate-

rial, flowing or static, are deducible solely from the elastic deformation through some

elasticity relationship. Since our goal is not to impose material behavior, but rather

suggest dependences and let the physics determine the specifics, we shall assert our

belief in the weakest way possible:

ψI = ψ̃I(C
e) , ψ̃I(1) = 0 (3.24)

Te = T̃e(Ce) , T̃e(1) = 0 (3.25)

The˜is used to represent constitutive functions, so as not to confuse the arguments

with the spaces over which the quantities are defined. Thus, the free energy in the

system is deemed to arise solely from the elastic deformation of the grains (no defect

energy). When Fe = 1 = Ce, no deformation has occurred, and consequentially we

require both the stress and the free energy to be zero.

As for the plastic motion, we assert our belief that that the stress determines the

plastic flow rate, in line with the results of Jop:

Lp = L̃p(M) , L̃p(0) = 0 , tr
(
L̃p(M)

)
= 0 (3.26)

The last two relations reflect the fact that an unstressed material cannot flow plasti-

cally, and that the material is being modeled as plastically incompressible.

One might ask: Why do we treat M as an independent variable when it is just the

product of Ce and Te? This is simply a matter of convenience. In fact, by equation

3.25, we could express the Mandel stress as a sole function of Ce. But as we shall

see in the subsections to come, it helps in terms of algebraic cleanliness to keep these

variables separate, if only by name.
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3.6.5 Frame indifference

What makes this continuum approach so appealing is that we claim very little about

the material behavior. As we shall see, basic physical requirements will narrow down

the appearance of the relationships significantly.

The first requirement we shall impose is that our relationships be frame indiffer-

ent or objective. Suppose two observers are viewing the same deformation process.

Suppose that one observer is rotating and translating with respect to the other. Since

they are observing the same deformation, the only differences perceived by the two

observers should stem from the fact that they observe from different rigid-body ref-

erence frames. Thus, the moving observer should report the same results except that

some of his fields appear to rotate and/or translate appropriately. Consistent with

our previous definition, we can imagine that at t = 0 the two reference frames align

so that the reference body is the same for both observers.

First, we clarify how each of the fields should appear to the moving observer, in

terms of what the stationary observer would measure. The moving observations will

be labeled by ∗. To formalize, we can define the motion as observed in the ∗ frame by

χ∗
t (X) = Q(t)(χt(X)− o) + y(t)

where at any time t, Q(t) is a rotation tensor, y(t) is a translation vector, and o

represents some fixed origin. Consequently,

F∗ =
∂χ∗

t (X)

∂X
= Q(t)

∂χt(X)

∂X
= Q(t)F

Suppose both observers were monitoring one oriented material plane at time t.

The traction acting on the plane and the orientation of the plane itself would both

appear in the ∗ frame to be rotated by Q(t) from the observations in the stationary

frame. Since both the input and output of the Cauchy stress tensor rotate by Q(t)

in the ∗ frame, we can state

T∗ = Q(t)TQ(t)T .
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The free energy ψ is a scalar field defined on a material element. Thus, regardless

of frame, two observers viewing the same material element should agree on the value

of ψ for all t. Hence

ψ∗ = ψ.

We have now determined, based on physical necessity, how the fields F, T, and

ψ should transform under frame-change. We shall now mathematically deduce the

consequences on the intermediate state variables. Since ρI is a constant for plastically

incompressible materials, we deduce

ψ∗I = ρ∗Iψ
∗ = ρIψ = ψI .

Since the deformation gradient has elastic and plastic parts, we can write

Fe∗Fp∗ = Q(t)FeFp.

We presume that the frame change only modifies the deformed space, leaving the

intermediate configuration the same for the two observers. This allows the simplifi-

cation

Fe∗ = Q(t)Fe , Fp∗ = Fp.

and indicates that extra rotation applied after deforming an object will be recorded

in the elastic part.

Therefore, we have

Ce∗ = FeT∗Fe∗ = FeTQ(t)TQ(t)Fe = FeTFe = Ce

Using what has been deduced thus far and the fact that J = Je is unaffected by frame

change, the stress Te must transform as

Te∗ = Je∗Fe∗−1T∗Fe∗ = Je
(
Fe−1Q(t)T

) (
Q(t)TQ(t)T

)
(Q(t)Fe) = JeFe−1TFe = Te
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Since Te and Ce are frame-invariant, consequently the Mandel stress M = CeTe

is frame-invariant: M∗ = M. And since Fp is frame invariant, the plastic velocity

gradient Lp = ḞpFp−1 must also be: Lp∗ = Lp.

Now, we go about checking that our constitutive dependences, equations 3.24,

3.25, and 3.26, uphold these rules. That is, both observers should be able to use the

constitutive dependences to relate the fields as they see them, and their results should

compare as determined above. First of all, utilizing equation 3.24, we can write

ψ∗I = ψ̃I(C
e∗) and ψI = ψ̃I(C

e)

But since Ce∗ = Ce the above guarantees ψ∗I = ψI as we desire. Thus, equation 3.24

respects frame indifference.

By equation 3.25, we can write

Te∗ = T̃e(Ce∗) and Te = T̃e(Ce)

And since Ce∗ = Ce, we are assured Te∗ = Te, implying that equation 3.25 obeys

frame indifference.

In a completely analogous manner, one can quickly show that equation 3.26 is

also frame indifferent, as it too relates two frame invariant fields. So, as written, we

have verified that all three constitutive dependences proposed thus far pass the frame

indifference test and need not be altered as yet.

This reflects our wisdom in choosing the dependences that we did. Commonly,

frame indifference tests reveal that changes need to be made. As a simple example,

suppose we believed that ψI should relate more generally to Fe than to Ce. Since

ψ∗I = ψI , then we would end up with the statement that a function operating on

Q(t)Fe gives the same answer for all possible Q(t). This cannot hold unless that

function always ignores the rotational part of its argument, Q(t)Re. Thus we would

deduce that ψI can only relate to the stretch Ue, or for simplicity to Ce = Ue2. So

we would have been led to equation 3.24 regardless of the specifics of our first guess.
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3.6.6 The Coleman–Noll procedure

The next physical requirement that our relationships must obey is that there must

never be any situation that allows a violation of the dissipation inequality 3.23. The

method by which we ensure this point is known as the “Coleman–Noll Procedure”

after its originators [31].

Observe the time derivative of ψI :

ψ̇I =
∂ψ̃I(C

e)

∂t
=
∂ψ̃I(C

e)

∂Ce
: Ċe

Accordingly, we can rewrite inequality 3.23 as(
∂ψ̃I(C

e)

∂Ce
− 1

2
T̃e(Ce)

)
︸ ︷︷ ︸

≡Ã(Ce)

: Ċe −M0 : L̃p(M)︸ ︷︷ ︸
≡B̃(M)

≤ 0 (3.27)

At some fixed time t0 and material point X0, observe that Ċe(X0, t0) can be chosen

independent of Ce(X0, t0). To make this point more clear, note that Ce is deemed

independent in terms of the constitutive relations, and thus we should consider it to

be a variable that can be changed at will. Thus, the value of Ce at some place and

time does not constrain its value one time-step later; we may choose that next value

as we please. Hence Ce and Ċe are both independent at any instant.

Next, take note of the following (basic) mathematical fact. Since the author is

not aware of a direct proof of this fact, we provide our own.

Theorem: For some vector-valued functions {fk} and scalar-valued functions

{gj}, suppose (∑
k

fk(ak) · bk

)
+

(∑
j

gj(cj)

)
≤ 0

for any sequences {ak}, {bk}, {cj} of real valued vectors. Then fk is the zero function

for all k.

Proof : We prove this quickly by contradiction. Suppose fK is not the zero function for
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some K in the index set. Then we may choose a sequence {ak} for which fK(ak′) 6= 0

for some k′ in the index set. Let us also choose the sequence {bk} so that the k′ entry

is

bk′ =
fK(ak′)

|fK(ak′)|2

(
1−

(∑
k 6=k′

fk(ak) · bk

)
−

(∑
j

gj(cj)

))

The left-hand side of the inequality in the theorem statement is now necessarily 1,

and consequently greater than 0. 2

In inequality 3.27, Ce, Ċe, and M can each be independently selected and, in

light of the theorem, can each be deemed sequences with only one term. Hence, the

theorem implies

Ã(Ce) = 0.

Consequently, we can write the important law

T̃e(Ce) = 2
∂ψ̃I(C

e)

∂Ce
. (3.28)

What remains is the reduced inequality

B̃(M) = −M0 : L̃p(M) ≤ 0. (3.29)

The Coleman–Noll procedure is quite powerful, as it has just enabled a derivation of

elasticity theory (equation 3.28) and greatly simplified the dissipation inequality.

3.6.7 Upholding symmetry: Reference body isotropy

For our current purposes, let us delete the meanings of Ã and B̃ from the last sub-

section. The Jiang–Liu elasticity law (equation 3.8) and the Jop–Pouliquen flow law

(equation 3.12) both take the general form

A = α1(IB)B0 + α2(IB)(trB)1
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where A and B are the stress and strain respectively in elasticity, or the deformation

rate and stress in the flow rule. The term IB represents a set of invariants for B.

Constitutive laws of this form have the feature of isotropy. A more general definition

of an isotropic tensorial function of a tensor is one in which

QT Ã(B)Q = Ã(QTBQ) for all rotations Q. (3.30)

Hence, a rotation of the input tensor will simply cause a rotation of the output. An

isotropic material, physically, has no underlying lattice or ordering scheme that would

make the material response depend on the local orientation.

A difficult question arises when trying to piece together a granular elasto-plasticity

law: Are granular materials isotropic? If so, we should attempt to properly insert

isotropy into the framework. If not, we have the more difficult task of determining

what the preferred directions are, how do they evolve during a deformation process,

and what is their symmetry group.

There are two ways to handle this issue. The simplest response, which is also a

valid one, is to reiterate that our work is primarily concerned with gluing together two

preexisting models for grains, one for statics and one for flow. Both models of concern

assert isotropy, and consequently, we should employ isotropy in constructing the joint

model. We could take this standpoint and immediately move on from symmetry

considerations.

But on the other hand, isotropy is a physically nontrivial assumption for a flowing

granular collection. Monodisperse spheres, for example, have several viable crystal

packing arrangements. The correctness of the isotropy assumption and how to ap-

propriately enforce it within the FeFp framework deserves further commentary.

Let us start with the reference space. Granular materials in general begin as

a completely random packing— they are formed via a thermalized process such as

pouring, and then rapidly quench to a static configuration. In the static state (below

yield, F = Fe), only elasticity applies. Since the random structure never changes

during elastic deformation it is indeed a sensible physical assertion to claim that
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purely elastic motions are isotropic.

Now suppose plastic flow occurs. Here, the reference and intermediate spaces

become disparate. The reference space should always have no preferred directions

as per the previous argument. Thus, our laws should always uphold invariance to

reference space rotations. In other words, given a spherical reference body and some

total deformation F, the resulting stress and free energy fields in the deformed body

should look no different than they would if someone were to have first rotated the

body by some Q and then applied F.

Letting ∗ represent the fields corresponding to a pre-rotated reference body, we

can write

F∗ = FQ

which motivates

Fp∗ = FpQ and Fe∗ = Fe.

By the previous physical argument, we wish to ensure

T∗ = T and ψ∗ = ψ

at all spatial points in the deformed body.

Just as in the frame indifference validation, we may construct intermediate space

quantities in the pre-rotated ∗ case from these above equivalences. One finds

Ce∗ = Ce , Lp∗ = Lp , Te∗ = Te , M∗ = M , ψ∗I = ψI

Since all the intermediate space fields are invariant to pre-rotation, we are guaranteed

that our constitutive dependences (equations 3.26 and 3.28) uphold these transforma-

tion rules. What we have just shown is that the constitutive dependences are written

in a form that permits an isotropic elasticity law for purely elastic deformations, and

in general, that our dependences enforce the necessary consequences of an isotropic

reference body.
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3.6.8 Upholding symmetry: Intermediate space isotropy

Now comes the more physically challenging question: Is the intermediate space

isotropic? That is, if the stresses that act on a flowing granular element are suddenly

removed, will what remains appear to have no internal ordering? The presumption in

the Jop–Pouliquen flow law is that the answer is yes. Their law as written is isotropic;

no outside anisotropy measure appears. But is this a physically justifiable fact?

Polydisperse granular media have relative difficulty achieving any sort of inter-

nal ordering in a static or flowing state. This fact is even more resounding in 3D

than in 2D. But with monodisperse materials, crystalline ordering may emerge in

flow environments that geometrically support a crystal packing. For example, in 2D

simulations of monodisperse disks undergoing planar shear, a hexagonal lattice com-

monly emerges after a few hundred percent strain. In 3D however, measurements by

Tsai et al. [139] of monodisperse spheres under shear, reveal that ordering properties

stay close to random packing for several orders of magnitude longer, commonly up to

105 − 106 percent strain. Experiments were performed in a periodic shear cell 800d

long, 30d wide, and 24d high, and it was observed that more than 3 hours of consistent

steady shearing by a rough top plate (12d/s) is necessary before any crystalline order-

ing can be measured for fluid-submerged grains, and the duration increases ten-fold

for dry grains.

The flows of interest to us occur over a time window on the order of several

minutes, not tens of hours. Periodic flow environments are useful to the scientist, but

uncommon in everyday life. Typically, the flow environment is not as amenable to

crystallization, locally or globally, as a shear cell. But even then, monodisperse flows

of spheres arrange into a crystal very, very slowly. It appears that the day-to-day

flows we wish to model do not pose an appreciable risk of flow-induced local ordering.

DEM simulations of Rycroft [122], seem to uphold this point as well. But be-

fore these results can be interpreted, a representation theorem for isotropic tensor

functions needs to be established.

Theorem: Let A and B be 3 × 3 tensors and let B be symmetric. Suppose
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A = Ã(B) is an isotropic tensor function (i.e. fulfills 3.30). Then the eigenvectors

of A align with those of B. This property is known as coaxiality.

In [143], it is proven that an isotropic function acting on a symmetric tensor

must always output a symmetric tensor. This fact can be seen as an immediate

consequence of the above theorem, since a tensor is symmetric if and only if it has

orthogonal eigenvectors. The author is unaware if the full theorem above has been

previously proven, and so a proof shall now be supplied.

Proof : Let {Bi} and {êBi } be the eigenvalues and corresponding orthonormal eigen-

vectors of B. For an integer j such that 1 ≤ j ≤ 3, define

Qj =
3∑
i=1

(2δij − 1)êBi ⊗ êBi

so that Qj is a rotation by π radians about the jth eigenvector of B. Observe that

QjBQT
j = Qj

(
3∑
i=1

Biê
B
i ⊗ êBi

)
QT
j

=
3∑
i=1

Bi(Qj ê
B
i )⊗ (Qj ê

B
i )

=
3∑
i=1

Bi((2δij − 1)êBi )⊗ ((2δij − 1)êBi )

=
3∑
i=1

(2δij − 1)2︸ ︷︷ ︸
=1 for all i,j

Bi(ê
B
i ⊗ êBi )

= B

By isotropy of Ã, this implies

QjAQT
j = QjÃ(B)QT

j = Ã(QjBQT
j ) = Ã(B) = A.

Consequently,

AêBj = (QjAQT
j )êBj = Qj(AêBj )
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implying that AêBj is an eigenvector of Qj with eigenvalue 1. But, referring back to

the definition of Qj, the only eigenvector of Qj with this eigenvalue is êBj . Thus AêBj

must align with êBj . Likewise êBj is an eigenvector of A. This must hold for all j, and

thus A and B have the same eigenvectors. 2

The tensor functions we typically care about act on symmetric tensors like the

Cauchy stress, deformation rate, strain, etc. Hence, coaxiality is a major signature of

an isotropic material response. Recent DEM simulations of Rycroft [122] have shown

that instantaneous coaxiality between Cauchy stress and deformation rate is strongly

upheld in several different flow environments, using volume-averaged quantities over

5d× 8d× 5d elements (see figure 3-12). Average deviation from perfect alignment is

roughly 12o, and that number shrinks by half when averaged over a time window of

20 frames. Others have found high levels of coaxiality in 3D flows over longer time

windows, such as Depken et al. [35] who used the notion of Shear Free Sheets to verify

principal vector alignment in split-bottom troughs.

There is evidence in 2D polydisperse disk flows that coaxiality takes some time

to develop [136]. The misalignment is transient and disappears by about 20% strain.

This notion resonates with some theories of deformation, particularly STZ theory

[46], in which the orientation of shear zones gradually align with the stresses and

flow as influenced by some effective disorder temperature. While interesting, it is

questionable how large this effect would be for 3D flows. A 3D sphere cluster can

rearrange under loading in far more ways than a 2D disk cluster, and the extra freedom

in contact geometry reduces the likelihood that a few directions are markedly weaker

than others. In general, the energy landscape is a smoother function of shear direction

in 3D than in 2D. While features like rupture zones and banding over a microscopic

width may occur in 2D, it is not clear if any of these effects appear in 3D [39].

It could be that 3D coaxiality happens almost instantaneously. Indeed, it would be

interesting future work to directly test whether a certain amount of shearing is needed

for coaxiality to emerge in 3D assemblies.

Taking all these points into account— the strong lack of ordering in 3D shear
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Figure 3-12: (Image c/o Chris Rycroft) Three flow environments, (left) gravity-driven
drainage from a narrow quasi-2D silo, (top) steady upward pushing of the left half of a
quasi-2D container under gravitational compression, (bottom) gravity-driven drainage
from a wide quasi-2D silo. In all three environments, the eigenvectors of Cauchy
stress and deformation rate are plotted with lengths corresponding to the square root
of the magnitude of the corresponding eigenvalues. The maximum principal stress
is colored purple with other principal stresses in blue. Where plastic deformation is
significant, the deformation rate eigenvectors are colored in orange. Note the globally
valid observation of alignment between stress and deformation rate eigenvectors.
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flows, the coaxial agreement in developed flows, and the argument against applying

2D results to 3D —it appears that isotropy would be a decent presumption for flowing

3D granular media. As a consequence in our constitutive development, intermediate

space isotropy ought to be enforced. That is, whatever structure exists in the relaxed

space should be invariant to rotations.

We can think of the intermediate space as mapping to both the reference space

(via Fp−1) and the deformed space (via Fe). Rotating the intermediate space by Q

and then applying these maps gives the following:

Fe∗ = FeQ , Fp∗−1 = Fp−1Q

By isotropy, the mechanical variables we observe must remain unchanged by this

rotation. Thus,

T∗ = T , ψ∗ = ψ.

Computing the other variables from these transformations gives

Ce∗ = QTCeQ , Lp∗ = QTLpQ , Te∗ = QTTeQ , M∗ = QTMQ , ψ∗I = ψI

As before, we apply the constitutive dependences under these transformation rules.

The results are

ψ̃I(C
e) = ψ̃I(Q

TCeQ) (3.31)

QT T̃e(Ce)Q = T̃e(QTTeQ) (3.32)

QT L̃p(M)Q = L̃p(QTMQ) (3.33)

Equation 3.31 implies that ψI can only depend on a set of invariants of Ce. Let the

eigenvalues of Ue =
√

Ce be {λei}. We may now rewrite the functional dependence

of ψ̃I as

ψI = ψ̃I(λ
e
1, λ

e
2, λ

e
3).
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Implementing equation 3.28 yields

Te = 2
3∑
i=1

∂ψ̃

∂λei

∂λei
∂Ce

The derivative
∂λe

i

∂Ce can be shown from tensor calculus to equal 1
2λe

i
r̂ei ⊗ r̂ei . As in the

previous notation, {r̂ei} are the eigenvectors of Ce, which are also the right principal

elastic stretch directions. Hence

Te =
3∑
i=1

1

λei

∂ψ̃I
∂λei

r̂ei ⊗ r̂ei (3.34)

and consequently

M = CeTe =
3∑
i=1

λei
∂ψ̃I
∂λei

r̂ei ⊗ r̂ei (3.35)

Define Ee
i = log(λei ) and define the Hencky elastic strain tensor as

Ee =
3∑
i=1

Ee
i r̂ei ⊗ r̂ei = log(Ue)

Then observe that,
∂ψ̃I
∂λei

=
∂ψ̃I
∂Ee

i

∂Ee
i

∂λi
=
∂ψ̃I
∂Ee

i

1

λi

so that

M =
3∑
i=1

∂ψ̃I
∂Ee

i

r̂ei ⊗ r̂ei =
∂ψ̃I
∂Ee

(3.36)

We take away from this development the following important points:

1. The tensors Te and Ce are no longer necessary, as we have a simpler expression

of the elasticity written in terms of M and Ee (equation 3.36).

2. In analogy with infinitesimal elasticity (equation 3.7), the Mandel stress takes

the role of the Cauchy stress, and the Hencky strain takes the role of the small

strain.

3. Since Ee and M are coaxial, then Ue and M are coaxial. Thus, the expression
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for the Cauchy stress in terms of M reduces to

T = Je−1ReMReT (3.37)

4. The Mandel stress has orthogonal eigenvectors and hence is symmetric.

Now, we determine how the plastic deformation is affected by these results. We

have just established that M is symmetric. By one of the aforementioned dot product

identities, the reduced dissipation inequality now reads

M0 : D̃p(M) ≥ 0 (3.38)

But the symmetry of M also means coaxiality applies in equation 3.33. With Lp

coaxial to M, the eigenvectors of Lp must resultantly be orthogonal and hence Lp is

symmetric. Let us restate this major result:

Dp = Lp , Wp = 0.

3.6.9 Inserting the elastic and plastic models

We are now in a position to close the model mathematically. We are left with only

two functions that need to be filled in: ψ̃I(E
e) and D̃p(M). These functions are lifted

directly from the elasticity and plasticity relations.

In the proper analogy with small strain elasto-statics, we write

ψI(E
e) = B

√
∆

(
2

5
∆2 + γ2/ξ

)
for ∆ = −trEe , γ =

√
E0 : E0 (3.39)

when ∆ > 0. Otherwise ψI = 0. This implies the stress/strain law via equation 3.36:

M = 2
B
√

∆

ξ
Ee

0 +B
√

∆

(
1 +

γ2

2ξ∆2

)
(trEe)1 (3.40)

Now for the flow. The Jop-Pouliquen flow law is written in Eulerian as a relation

between the Cauchy stress and the total deformation rate. We need to rewrite this
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as per the elasto-plastic framework. The elastic deformation in a steady flowing

assembly is extremely small compared to the plastic deformation. At steady flow, the

size of the elastic stretches at a spatial point should stop changing altogether, and

should be approximately constant in the Lagrangian frame. In light of equation 3.19,

it is reasonable to presume that D ∼= FeDpFe−1 ∼= ReDpReT for use in equation 3.12.

Since the grain medium is elastically very stiff, Fe ∼= 1 and Je ∼= 1. Applying this

in equation 3.37 implies T ∼= ReMReT . With these correspondences, we may rewrite

equation 3.12 in terms of Dp and M as

Dp =
I0
d

√
P

ρs

µ− µs
µ2 − µ

M0

τ
(3.41)

where now P = −(1/3)trM and µ = τ/P where τ = |M0|/
√

2. Still, no plastic flow

occurs for µ < µs. In light of the reduced inequality 3.38, observe that when Dp 6= 0,

or equivalently µ2 > µ > µs,

M0 : Dp = M0 :

(
I0
d

√
P

ρs

µ− µs
µ2 − µ

M0

τ

)
=
I0
d

√
P

ρs

µ− µs
µ2 − µ

2τ

which cannot be negative. Therefore, inequality 3.38 is guaranteeably upheld under

all circumstances.

3.6.10 Summary of the equations

1. Balance of linear momentum:

∂

∂x
·T + ρg = ρv̇

2. Balance of angular momentum:

T = TT
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3. Kröner-Lee decomposition:

F = FeFp

4. Polar decomposition of elastic deformation gradient:

Fe = ReUe

5. Definition of the elastic determinant, Mandel stress, Hencky elastic strain, and

plastic velocity gradient:

Je = detFe

M = JeFe−1TFe = JeReTTRe

Ee = log(Ue)

Lp = ḞpFp−1

6. Elasticity relation:

M = 2GEe
0 + κ (trEe)1

where κ = B
√

∆[1 + γ2/(2∆2ξ)] and G =
√

∆B/ξ, for ∆ = −trEe and γ =√
Ee

0 : Ee
0. If trEe > 0, both κ and G are 0.

7. Flow rule:

Lp = Dp =
I0
d

√
P

ρs

µ− µs
µ2 − µ

M0

τ

where P = −tr(M)/3, τ =
√

M0 : M0/2, and µ = τ/P . If µ < µs, then

Dp = 0.

8. Initial conditions:

Fp(t = 0) = 1

Lp(t = 0) = 0
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3.7 Numerical implementation

Solving the above equations in an arbitrary flow environment is itself highly nontrivial.

The implementation method we are about to describe is not only very robust, but

may also help the reader understand how the equations compose a closed system.

We shall employ ABAQUS/Explicit from the finite element software package

ABAQUS 6.5. The body of material is decomposed into a mesh of elements that

deform according to the above constitutive model. The algorithm propagates stresses

through the material over many time-steps in a fashion we outline below.

3.7.1 The material model

A key component in this process is to describe how an arbitrary element develops

stresses after an increment of deformation is applied to it. This is done in a Vectorized

User Material (VUMAT) subroutine. For an element at time t and material point X,

the algorithm must compute the following:

Given input: F(t,X),Fp(t,X),T(t,X), and F(t+ ∆t,X)

Compute output: Fp(t+ ∆t,X) and T(t+ ∆t,X)

For our constitutive equations, here is an example of a pseudocode algorithm that

leads from the input to the output:

1. Using the Kröner–Lee decomposition, calculate Fe(t,X) = F(t,X)Fp−1(t,X).

2. Using the definition of Mandel stress, calculate M(t,X) from Fe(t,X) and

T(t,X).

3. Using the flow rule, calculate Lp(t,X) from M(t,X).

4. Numerically integrate Ḟp(t,X) = Lp(t,X)Fp(t,X) one time-step to obtain

Fp(t+ ∆x,X).

5. Using the Kröner–Lee decomposition, calculate Fe(t+∆t,X) = F(t+∆t,X)Fp−1(t+

∆t,X).
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Figure 3-13: One element simple shearing tests using both the explicit and implicit
VUMAT files.

6. Perform the polar decomposition on Fe(t+∆t,X) and compute Ee(t+∆t,X) =

log Ue(t+ ∆t,X).

7. Using the elasticity law, compute M(t+ ∆t,X) from Ee(t+ ∆t,X).

8. Inverting the definition of the Mandel stress, compute T(t+∆t,X) from M(t+

∆t,X) and Fe(t+ ∆t,X).

The VUMAT file encodes this list of instructions and is provided in an appendix.

To improve the numerical stability of an ABAQUS/Explicit model, the integration

step is commonly carried out implicitly where the time derivatives during the step, in

particular the value of Lp, correspond to the values of the quantities at the end of the

step. This is opposed to the explicit technique outlined above. Implicit integration

requires a nonlinear equation solver, typically an iterative Newton-Raphson routine,

and is in general a more complicated algorithm than the rudimentary explicit inte-

gration procedure. An implicit VUMAT file for the material model is also included as

an appendix. To clear up any confusion, the name “ABAQUS/Explicit” refers to the

global solution process and indeed both implicit and explicit integration steps can be

encoded and solved using ABAQUS/Explicit.

To check the VUMAT files for accuracy, one element tests were performed. For

a list of material constants, see section 3.8. A cube-shaped element of width 5d
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(type C3D8R in ABAQUS), has its bottom four nodes fixed and its top four nodes

enslaved to displace together so that the top surface moves like a rigid body. First

a downward pressure of P = 1 Pa is applied to the top surface, and then various

shear tractions are applied to the top in order to induce steady simple shear flow.

The results are displayed in figure 3-13. It is clear that both VUMAT files perform

the correct integration. It should be noted however that the explicit routine is only

conditionally stable, and thus the time-step had to be significantly decreased in order

for numerical stability at the higher shear stress values. The implicit routine is always

stable numerically, but for higher shear stresses, the time step had to be reduced in

order to ensure convergence of the Newton-Raphson solver.

3.7.2 Explicit procedure for global deformation and stress

While the VUMAT provides the necessary information to compute the stresses within

an element given its deformation and state, how can we implement this globally to

obtain the stresses and nodal motion for a mesh of elements given some traction

or kinematic boundary conditions? The explicit dynamics method is well-illustrated

using a 1D example that can be found in the ABAQUS 6.5 Documentation. We should

quickly sketch this example as it admits a clear generalization to 3D deformations

under arbitrary constitutive laws.

Consider the deformation induced when a bar fixed at its right end is compressed

by some load P applied at its left end. Throughout, figure 3-14 should be used

to visualize the development of the solution. We model the bar with 3 elements

numbered 1 through 3, whose endpoints compose 4 nodes numbered 1 through 4.

The mass of the bar is distributed onto the nodes.

At the beginning, t = 0, the force P is introduced to the system. The explicit algo-

rithm is dynamic in nature, so the system as a whole does not immediately respond

to this force— there is some time increment tinc necessary for forces to propagate

through an element. So only node 1 feels P at t = 0, and all other nodes feel no force

during the time increment. Newton’s second law is then applied to all the nodes.

Since node 1 has a net force it undergoes an acceleration, but all other nodes stay
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Figure 3-14: Three time steps of a bar compression problem as would be solved using
the explicit algorithm.
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fixed.

At the beginning of the next time step t = tinc, element 1 has deformed. The

deformation of element 1 causes a stress within element 1 as per some constitutive

law. Hence, to compute this stress, the material model (VUMAT in our case) is called

and applied to element 1. The output stress is then converted to reaction forces at

the endpoint nodes, nodes 1 and 2. So now, nodes 1 and 2 are both experiencing

force: node 1 is still being pushed by the applied load P but now is also experiencing

a force fel 1 from the reaction of element 1, and node 2 feels the equal and opposite

reaction. Under these forces, Newton’s second law is applied again at all nodes for

one time increment.

At the beginning of the next time step t = 2tinc, elements 1 and 2 are deformed.

Once again, the material model is called to compute the appropriate reaction forces

that these elements exert on their endnodes. Newton’s second law then moves the

nodes yet again under one time increment. This process of moving nodes, computing

reaction forces, and then repeating the process continues until the desired total time

is reached.

ABAQUS/Explicit, unless instructed otherwise, automatically computes the time

increment tinc. Before the solution phase of the algorithm initiates, a data collection

routine is called. Several test strains are passed through the material and a numerical

estimate of the highest frequency eigenmode is calculated. A characteristic element

size Le, which is commonly the width of the smallest element, is divided by the com-

puted wave speed to yield tinc as an approximation to the true stable time increment.

Then the solution phase begins, as we previously described, and ABAQUS adjusts

tinc when deformations cause a change to the computed wave speed.

3.7.3 Artificial density reduction

By the time steady granular flow develops, a large total deformation has normally

already occurred. In a Lagrangian numerical solver such as ABAQUS, large mesh

distortions are accompanied by larger error. Since our interest is in steady flows

primarily, we need to make a compromise so that a steady solution can emerge without
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much mesh distortion.

ABAQUS 6.5 does have an “Arbitrary Lagrange-Eulerian” (ALE) procedure which

can be used in problems of large strain so as to ease the inaccuracies of mesh distortion.

Eulerian boundary conditions can be defined and nodal motion becomes independent

of material motion under a mesh-sweeping algorithm. Unfortunately, it was this

author’s experience that the numerical inaccuracy brought on by convecting variables

during a mesh sweep is unacceptably large, even under quadratic order convection.

Error was most noticeable near boundaries, perhaps because of the reduced sample

space for computation of a spatial gradient. This issue may have been improved in

the most recent version of ABAQUS.

We instead adopt a different remedy based on artificially decreasing the material

density in the simulation. To understand what effect this has, consider a system that

closely mirrors the FeFp elasto-plastic treatment— a spring and damper connected in

series with one end attached to a wall and the other to a point mass m. The granular

“spring” is very stiff so that the velocity of the point mass is roughly the extension

rate of the damper. Suppose a constant force F is applied to the mass. The mass

will ultimately reach the steady velocity F/c for damper viscosity c. Observe what

happens if m is decreased— less mass implies less impediment to acceleration means

the steady velocity can be more rapidly approached. Specifically, starting from rest,

the ODE solution admits v = f
(

(x−x0)c
m

, F
c

)
, which indicates that steady motion

occurs at smaller total displacement when m is decreased. This reasoning applies

to the granular material model in that decreasing nodal masses, or equivalently the

density, enables the system to find steady-state behavior before noticeable distortion

has occurred.

Note in our final set of equations (section 3.6.10) that the mass density only

appears in the equation of linear momentum balance. Except in the case where

system curvature is large relative to the flow speed, the acceleration v̇ should always

be ≈ 0 in a steady flow. Thus, in general, the convection ρv̇ should go to zero at

steady-state regardless of ρ. The gravitational body force, however, is still dependent

on the value of ρ even in steady state.
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From all this we make the following analytical deduction: Suppose the body force

is defined in terms of the true mass density but the inertial density is artificially

decreased. When solving equations 3.6.10, this change will have no effect on the

steady-state velocity and Cauchy stress fields under Eulerian boundary conditions.

However, the time it takes for the system to reach steady-state can be made to

decrease below the time necessary for large (Lagrangian) distortions to occur to the

body.

Throughout the numerical implementation, this technique shall be used to obtain

what appear to be Eulerian steady-state flows without having to use ALE. In fact, the

elements are deforming, but their deformation is hardly noticeable by the time steady-

state is reached. This comes with extra benefits but also with some compromises.

The universal stability of implicit integration usually makes it the preferred in-

tegration technique for user material models. However, the time increment goes as
√
ρ. By intensely shrinking ρ in the fashion just described, the time step becomes so

small that explicit integration is rarely unstable. This notion was tested by running

simulations of rough inclined chute flow and annular shear flow under both inte-

gration procedures. Nearly identical solutions for steady flow were found in both

cases, though the implicit routine took slightly longer due to the iterative solver. The

explicit procedure may even be the better for our purposes, since it cannot become

entrapped in an infinite iteration loop and also saves a small amount of computational

time.

The one element tests previously discussed all utilized some degree of artificial

density reduction. When the true density is used, even with the implicit VUMAT,

the integration loses accuracy giving an absurd end result. Density reduction factors

on the order of 102 may be necessary to regain accuracy, but for the nodes to remain

unnoticeably displaced as in an Eulerian problem, a reduction factor on the order of

104 − 105 can be required.

This topic of accuracy and its relationship to the density requires more discussion.

The elasticity model being used is stiff and nonlinear with elastic moduli going to zero

as Ee → 0. Note the sensitive dependence of M on Ee places an equivalent sensitivity

152



of Lp on Ee through L̃p(M̃(Ee)) ≡ L̂p(Ee), which is only enhanced by the fact that Lp

also diverges as µ approaches µ2. The plastic integration step in the explicit VUMAT

is

Fp
τ = exp(Lp

t tinc)F
p
t

where τ = t+tinc. Suppose for simplicity, that a single-element system has an applied

deformation gradient corresponding to a constant, pure stretching: F(t) = exp(At)

for symmetric A. Then the above reduces algebraically to the following integration

of Ee to first-order in tinc:

Ee
τ = Ee

t +
(
A− L̂p(Ee

t)
)
tinc.

The integration of Ee, and consequently the stress, will be inaccurate unless L̂p(Ee)

stays roughly constant over the time increment relative to the size of A. Given

the sensitivity of Lp on Ee, this can be a strong restriction. And though explicit

integration was used here, the point also applies to implicit integration since it too

presumes Lp roughly constant over an increment.

ABAQUS calculates tinc as the time necessary for the fastest wave to travel a

characteristic element width Lel. Since the fastest wave is commonly a dilation wave,

the time increment is thus delicately connected to the elastic bulk modulus κ(Ee), es-

pecially in a plastically incompressible model. One can approximate the requirement

for numerical accuracy as:

|L̂p(Ee
τ )− L̂p(Ee

t)| ≈
∣∣∣∣∂Lp

∂t

∣∣∣∣ tinc � |A|

Performing the chain rule and expanding the form for the time increment gives∣∣∣∣∣∂L̂p(Ee)

∂Ee

(
A− L̂p(Ee)

)∣∣∣∣∣Lel
√

ρ

κ(Ee)
� |A|

Since L̂p is stiff and nonlinear, the inequality is primarily threatened by the term in

absolute values. But, alas, this issue can be counteracted if ρ is selected to be small
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enough. Consequently the accuracy of the integration procedure is enhanced by

artificially reducing the density. Over N time increments, this refines the numerical

integration over a smaller total time period Ntinc. Since the steady-state emerges

proportionally quicker, the fact that the total time represented by N time steps

decreases is not a concern.

Since decreasing ρ speeds up the motion of waves, some particular physical fea-

tures would be skewed. For instance, if one were interested in acoustic properties

of the grains, this technique should not be used. How long a flowing system spends

going through transients would also be skewed as this property is too closely tied to

the wave-speed. But in general, for our purposes of obtaining the stresses and flow

primarily in steady-state, these physical issues are not our concern.

3.8 Results

The model is tested in three different 3D flow environments— rough-walled inclined

chute, annular Couette cell under gravity, and wide draining silo. Throughout, the

model’s six parameters are assigned the following values:

B = 7× 109 Pa I0 = 0.279

ρs = 2450 kg/m3 d = 0.003 m

µs = tan(20.9◦) µ2 = tan(32.76◦)

Recall that ξ is also a parameter, but its value is tied directly to the value µ2.

Except for d, these values were all lifted from Jiang and Liu [68] and Jop et al. [71].

As both groups considered spherical glass beads in their work, it is assumed that the

numbers should be representative of the same material. The particle diameter is set

to 3mm, as this is the common value used in the experiments and DEM simulations

of the MIT Dry Fluids Group, whose data this model will be compared against

particularly in the case of the wide silo. Though we shall also compare against data
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from other groups, the particle diameter is almost always scaled out in the non-

dimensionalization. The elements used, unless otherwise stated, are hexahedral of

type C3D8R in ABAQUS.

As a caveat, the following results are all rather new and may undergo some ad-

ditional refinement in the near future. This pertains chiefly to the description of

boundary conditions. The true interaction laws between a solid wall and a flowing

granular media are very complicated. For now, we settle for simplified wall conditions,

frequently utilizing fully-rough or kinematic constraints where acceptable.

ABAQUS/Explicit does not invoke a formal notion of “convergence”, so the results

are deemed to be correct based on evidence. When a solution appears valid, the mesh

is then refined by a factor of two. If this only causes negligible changes to the velocity

field, pressure field, and total kinetic energy, the refined mesh solution is accepted as

correct.

The simulations are run long enough for transient behavior to disappear. We

may refer to this as “steady” flow, but a more general meaning is implied, since

environments like silo drainage do not correspond to an Eulerian boundary value

problem (that is, the top surface always descends). The disappearance of transients

is most apparent in the total kinetic energy, which becomes flat (compared to the

kinetic energy transients) when steady-state has been reached. Basic inspection of

the solution also tends to make it clear when steady flow has been established.

3.8.1 Rough-walled inclined chute

Figure 3-15(a) reviews the geometry and boundary conditions of the rough inclined

chute problem originally solved by Jop et al. with a Bingham fluid treatment. The

elasto-plastic formulation has added many new relationships and a different kinemat-

ical perspective on deformation. However, the steady flow profile it predicts should

be inconceivably different from the Bingham fluid result of Jop et al., since elastic

stretching is negligible in a steady flow. Moreover, as finite elasto-plasticity is less

prevalent in fluids communities, the ability to duplicate this result is intended to give

credence to the method.
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The chute is long such that the flow can be deemed invariant in the z direction.

The bottom of the chute is at y = 60d and the chute is 142d wide. The angle of

incline of the chute with respect to the horizontal is 22.6◦.

The chute model uses 2600 box-shaped elements arranged in a grid 65 elements

wide in the x direction by 40 in the y. The assembly is only 1 element wide in the z

direction since that direction is constrained to be symmetric. That is, the nodes on

the back face of the xy slab are constrained to move with the exact displacements as

their front face counterparts. The simulation must start in a reference state with no

gravity. Gravity is then ramped up from 0 to its full value. Since the material must

be compressed before any shear stress can be supported, the components of gravity

are applied one at a time. The component in the y direction is first smoothly ramped

up over 1× 10−5s to its final value of fg cos(22.6◦), where fg is the correct body force

per unit volume ≈ 0.6gρs. After a 2 × 10−6s pause for any needed relaxation, the

component of gravity pointing down the chute, the one that initiates flow, is smoothly

ramped up to its final value of fg sin(22.6◦) over 2× 10−5s. The assembly is then left

to flow until a total time of 5× 10−4s has elapsed.

The inertial density was artificially decreased by a factor of several hundred thou-

sand to a value of ρ = 2× 10−3. At the free surface, theoretically, the stresses go to

zero causing the elastic moduli to vanish. This is dangerous for an explicit solution

procedure that is consistently sending waves through the material— any small per-

turbation could cause a node to accelerate out of control. Not to mention, the flow

rule is undefined for a zero stress state. Thus, to keep the free surface in tact, a few

Pascals of overpressure are applied.

While the flow is ultimately very steady looking to the eye, a more quantitative

measure may be desired. From t = 0 − 4 × 10−5s, the motion is markedly transient

due to the fact that gravity is being ramped up. The system then relaxes toward

the steady state, first rapidly but then quite slowly as steady state is approached.

Comparing the system’s rate of relative kinetic energy change in the fast relaxation

period to its value at the end of the run gives a rough criterion for how steady a flow

is. At the end of the run, the rate of decrease of the relative kinetic energy is over 500
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(a) (b)

(c) (d)

Figure 3-15: (a) The rough inclined chute setup. (b) The velocity as a function of x
at depths y/d = 0, 9.2, 18.4, 27.6. The dashed curves are the numerical results of Jop
et al. [71] via finite differences with a Stokes-type solver. The solid curves are from
the steady solution of the elasto-plastic model implemented on ABAQUS/Explicit.
(c) The full velocity field as solved on ABAQUS/Explicit and (d) the velocity field
from Jop et al..

times smaller than the value it takes during the initial relaxation, which indicates a

strong steady-state behavior.

Comparisons to the numerical results of Jop et al. are displayed in figure 3-15.

The agreement is quite good considering how disparate the solving methods are.

Jop utilized a fixed grid finite-difference scheme solving a non-Newtonian Navier-

Stokes-type problem, while the elasto-plastic results were obtained by a Lagrangian

explicit procedure on nodes that are constantly moving during steady-state. While

differences of numerical procedure can cause different sources of gain and loss, it seems

more likely that the discrepancies are stemming from the free surface condition. The

true deformation rate at the top corners is actually infinite. As this is numerically

impossible for either scheme, large but finite gradients occur there numerically as
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(a)

(b)

(c)

Figure 3-16: View of the xy plane with y downward. (a) Red is yielding material,
blue is static. The normalized pressure is P/ρgd in (b) and normalized shear stress
is τ/ρgd in (c).
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determined by the choice of the free surface treatment. This has a clear trickle-down

effect on the global velocity field and, in lieu of the particular fashion in which the

solutions differ, we suspect this effect causes much of the difference between the two

numerical data sets.

What distinguishes the elasto-plastic model, though, is its ability to calculate both

flow and stress everywhere. Figure 3-16 displays a plethora of different stress-based

quantities. Note that the stresses always vary smoothly through the transition from

yielding to static, as opposed to the interfacial stress issues that commonly occur

with Bingham fluid models. In particular, observe that the pressure field goes from

decreasing linearly in the flowing zone, to decreasing somewhat nonlinearly in the

static zone. In this geometry, compressive stresses in the x, y and z directions of

the steady flowing zone must all be identical under codirectionality. A hydrostatic

pressure profile is induced as a result. But upon descending below the flowing layer,

codirectionality no longer has this influence on the stresses and a somewhat more

complicated elasto-static form for the pressure field becomes apparent. Discrete sim-

ulation data for this environment would be helpful for checking the validity of the

stress profile in the static zone. Though, as previously admitted, the primitive fully-

rough boundary conditions used may not be the most accurate reflection of the true

conditions on the bottom and side walls.

3.8.2 Annular Couette cell

Since the elasto-plastic model is fully general, any well-posed boundary value problem

can be solved. The equations and solving algorithm are geometry independent. No

major changes are necessary to simulate flow in a non-chute type environment, thus

we easily move on to the annular Couette cell, in which no previously known solution

to the Jop–Pouliquen flow law exists.

The results shall be compared directly against the myriad of data on this environ-

ment compiled by G. D. R. Midi [94] and thus the geometric specifics and boundary

conditions were chosen so as to give a good representation of the conditions used in

these studies. Referring to figure 3-17a for general details on the environment, the
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following values were chosen: ωwall = 0.3rad/s≈ 0.1rev/s, the distance from inner to

outer wall is xout = 30d, the height is zbottom = 10d, and the inner wall radius is

40d. At the walls, the material motion must match the wall motion in the θ and x

directions, but material can slide without resistance up and down the walls.

Since flow and stress should be symmetric in the θ direction, the behavior as seen

in a downward cut through the annular trough should represent the global behavior.

A narrow sector of the annulus (total angle 0.1◦) was likewise simulated using peri-

odic boundary conditions on the front and back faces— nodal displacements on the

front face are constrained to be identical to those on the back face except rotated

appropriately by 0.1◦. The sector is modeled using 40 elements in the x direction,

15 in the z, and a thickness of one element in the θ direction, for a grand total of

600 elements. Almost all the motion is known to occur near the inner wall in this

environment. After preliminary tests of the elasto-plastic model produced the same

conclusion, a bias was utilized to crowd nodes closer to the inner wall and improve

precision. The bias resulted in half of the elements occurring within a distance of 6d

from the inner wall.

The inertial density was reduced by a factor of over one hundred thousand to a

value of ρ = 0.01. First, gravity is smoothly ramped up to its full value over t =

0− 1× 10−5s. During this time period, as before, a slight overpressure is also applied

to the free surface for numerical ease. The rotation of the inner wall then commences,

smoothly ramping up from a rotation rate of 0 to a final value of ωwall = 0.3rad/s over

t = 1−2×10−5s. The simulation is then left to flow until a total time of t = 1×10−3s

elapses.

After the wall has finished ramping up to ωwall, the flow soon after begins to relax

toward the steady state. At the beginning of the relaxation, the total kinetic energy

is changing by a multiplicative factor of roughly 6 × 104 per second. By the end of

the run, that number has dropped to 8.5 × 10−1 per second. Since the relative rate

of change of total kinetic energy at the end of the run is dramatically smaller than

during the material’s natural transient period post ramp-up, by a factor of almost a

hundred thousand, we deem the final flow state to be sufficiently steady.

160



(a) (b)

Figure 3-17: (a) The annular Couette setup. (b) The velocity profile normalized by
the wall speed as predicted by the elasto-plastic model at half-height (–) compared
against fifteen experimental and discrete element simulation data sets for this type
of flow as compiled in [94].

The simulation was continued longer than necessary for steady flow conditions

in order to check for an effect that will now be described. In this environment,

the element thickness being small is instrumental to the flow reaching a numerical

steady-state. Note that while a true annular flow can achieve steady-state, where

local volume changes stop, the elements in our simulation have straight edges making

this geometrically impossible. The cylindrical walls of the simulation are in truth not

cylinders but 3600-gon prisms. As with any pair of concentric n-gons, rotating the

inner one while holding the outer fixed is not an isochoric motion. Consequently, both

the pressure field and flow field will not appear steady during the time window unless

n is quite large, so that the walls very closely mimic cylinders. This was not an issue

for the rough inclined chute where geometrically speaking, box-shaped elements can

steadily flow without volume change. But for the annular Couette, even a 1◦ sector

is too thick— the velocity field never actually becomes steady, rather a very slight

rate of increase in the velocity can be observed until the end of the run. In general,

this phenomena may occur whenever the exact isochoric steady flow, if imposed on

the mesh, would cause inhomogeneous deformation within the elements.

Observing figures 3-17b and 3-18a, we notice a few major qualitative points. For
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(a)

(b)

(c)

Figure 3-18: In the above, the xz plane is shown with z downward. (a) The velocity
of the material normalized by the wall speed. (b) The normalized pressure is P/ρgd.
(c) The stress ratio µ = τ/P .
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one, the flow forms a clear band around the inner cylinder. The width of the band is

on the order of several particles diameters. The experiments and DEM simulations of

[94] verify the existence of a shear band on the order of this thickness surrounding the

inner wall. While the predicted thickness is smaller than the experimental, the fact

that it is on the same order is a major success for a model with no fitting parameters.

The authors of [71] expressed their belief that the flow rule would be incapable of

describing narrow shear bands. However, the above results show quite clearly that

a complete elasto-plastic model incorporating the same flow rule has no problem

resolving such features.

Another observation is that the velocity profile does not vary to any observable

extent in the z direction. This result has been verified in DEM simulations of this

environment [74], where it was found that almost no vertical fluctuation occurs in

the fast zone near the inner wall. Of course, the elasto-plastic velocity field dies

off much differently than experiment. Where the experimental data is shown to

be well-fit with an exponential decay that extends throughout the Couette cell, the

elasto-plastic solution predicts a sharp cutoff around 3d from the inner wall. This

result should come as no surprise, since the model does not account for quasi-static,

non-local behavior, of which slow exponential decay is a textbook case. The fact that

the predicted velocity profile changes sharply over a width of less than one RVE is

a strong indication that the model, which is only a first-order law for moderate flow

rates and statics, is not equipped to describe all the details of this environment. While

granular matter does not exhibit a sharp flow cutoff under annular shear, some related

materials do such as muds and suspensions, so the prediction is not outlandish.

Viewing figure 3-18c, it is clear that while the velocity appears invariant in the

z direction, other important stress-based quantities are not. Though µ has a non-

trivial z dependence, note that the pressure field in the flowing zone displays a similar

hydrostatic appearance as was observed in the rough inclined chute. Far from the

inner wall, the pressure again appears constant in x, though the rate of growth in the z

direction is slower. While the vertical compressive stresses should, and are observed to

be the same at both walls, the disparity is caused by the different conditions imposed
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on the other compressive stress components. In the flowing zone, codirectionality

requires that the compressive stress in each of the coordinate directions be identical

since the shear planes are closely aligned with the zθ surfaces. On the other hand,

near the outer wall, a situation closer to an “active state” elasto-static solution forms,

where the weight of the material causes compressive stress in the z direction to be

larger than in the other coordinate directions.

Experimental data on this flow environment indicate that the normalized velocity

profile does not change with flow rate over a common range of rates. However, it

has been shown that in a regime of larger shear rates, the shear band width does

get wider as flow rate increases [77]. It is likewise worthwhile to test how the elasto-

plastic model responds to changes in wall speed. One might imagine that increasing

the wall speed without changing gravity should cause the onset of yield to move

farther from the inner wall. To check this, the model was simulated again but with

the wall rotation rate reduced by a factor of 5. The resulting steady velocity field

had its flow cutoff three times close to the inner wall. Indeed, decreasing the flow

rate decreases the shear band width under the elasto-plastic model. In some sense

it is not surprising that the model agrees with the rapid shear flow result, as higher

shear rates bring more material into the moderate flow regime thereby increasing the

dominance of the local rheology over any non-local behavior.

3.8.3 Flat-bottomed silo

While the past two flow environments show the versatility of this model in predict-

ing flow, the stresses have yet to be directly checked. Experimentally, the stress

tensor is a difficult quantity to measure. The stresses in 2D disk assemblies can be

approximated using photoelastic grain material, however, there is not currently an

experimental method available to measure the stress tensor within an arbitrarily flow-

ing 3D granular material. For this measurement, the best option as yet is to utilize

DEM and compute the local stress tensor from the contact forces as per equation

3.13.

Chris Rycroft has performed DEM simulations of wide silo drainage [122]. His
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Figure 3-19: The flat-bottomed, quasi-2D silo setup.

computed stress and flow fields shall now be compared directly against the predictions

of the elasto-plasticity model. A schematic diagram of the flow geometry is pictured

in figure 3-19. In accordance with Rycroft’s simulation, we model the silo as having

an opening width of 6d, a height of 70d, and a full width of 150d. In Rycroft’s

simulations, the z direction has periodic boundary conditions so that the silo has an

apparent z thickness of 8d but has no wall-ordering effects. Since the flow should not

fluctuate in the z direction, we simply model the silo as a plane-strain environment.

Furthermore, the silo has left-right symmetry about the vertical center-line, which we

take advantage of by modeling only the right half of the silo.

The floor of the silo is modeled as having a frictional interaction with the material

characterized by a coefficient of friction µfloor = 0.2. This number was estimated

loosely from Rycroft’s simulation. While the surface of his particles had a friction

coefficient of 0.5 with the floor, this is not the number we should use. Rather, we

must input how an element containing many particles drags along the floor. To

account for the weaker frictional bonds induced by the effects of particle rolling and

rearrangement, the element/floor interaction was modeled with a 60% smaller friction

coefficient. Future study would be necessary to determine the complete and precise

form for such sliding interactions. While Rycroft’s simulation utilized side walls made
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of the same frictional material as the floor, for simplicity, the elasto-plastic simulation

employs the simpler condition of no x displacement at the side-walls. This could be

enhanced in the future, but in wide silos, the details of the side-walls have only a

small effect on the dominating behavior.

Ideally speaking, the boundary condition at the silo orifice should be zero stress

tractions. However, this is highly problematic numerically. In reality, silo flows de-

velop a “free-fall arch” directly above the orifice [101]. The arch is typically only a few

particles high and connects the edges of the opening. Once a particle passes through

this hypothetical arch, it enters free-fall and becomes gas-like. A granular material

element within the free-fall arch would realistically have a smaller packing fraction,

but still support compressive stresses through internal random particle collisions. The

elasto-plastic model, however, does not include gas-like effects. Such dilation would

be assigned to the elastic part, causing the elastic moduli to vanish.

Our interest is not in the details within the immediate vicinity of the orifice,

rather the bulk material behavior within the greater silo apparatus. But with a zero-

traction condition on the opening, the situation described above dooms the simula-

tion prematurely— once elements near the orifice undergo net dilation, they quickly

destabilize. While free surfaces are usually taken care of by adding a slight amount of

artificial compression, this remedy will not suffice at the opening because the applied

pressure has too much of an effect on the evolution of the outflow rate. We are left

with the alternative of using kinematic boundary conditions at the orifice. It would

be too overreaching to assign any particular velocity profile at the orifice. Instead,

we fix the total flux out the orifice and let the material response determine the shape

of the flow profile. To match the outflux in Rycroft’s simulation,

Qout/2 =

∫
Right half-opening

vy(x, y = 0)dx = 2.19× 10−3 m2

s

was instituted at the orifice, encoded as an equation constraint in ABAQUS.

Not far from the opening, large inhomogeneous deformation occurs at small length-

scales, necessitating many small elements to maintain accuracy. A grand total of
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9750 elements were used in modeling the half-silo. To minimize discretization error,

the orifice was modeled with a half-width of 15 elements. The adjacent silo floor was

modeled with a width of 60 elements. The silo height was modeled with 130 elements.

The element width was constant within the orifice, but bias was used along the other

boundaries to maintain smooth changes in element sizes throughout. Elements shrink

vertically as a sole function of distance from the silo bottom. The element width is

uniform at the top surface, but moving downwards, elements crowd the center more

and more so that the floor region has a smooth transition from wider elements near

the wall to narrower elements adjacent to the orifice.

Due to the high number of elements and small minimal element size to system

size ratio, this flow would take too long to compute on one processor. Instead, the

12-node Truesdell cluster of the MIT Solid Mechanics Group was employed to solve

the problem in parallel. Using domain-level parallelization, the cluster splits the

half-silo into 12 spatial regions. Each region is handled by one node and node-to-

node messaging is used to communicate between regions. The problem solved was as

follows: From t = 0−5×10−5s, gravity is gradually turned on while constraining the

nodes along the opening from moving in the y direction in order to model a closed

orifice. Then, from t = 0.55−5.00×10−4s, the orifice is gradually opened by smoothly

ramping up the outflow rate from zero to Qout/2. The simulation is then left to flow

until a total time of t = 10−3s has been reached.

This environment does not possess a steady-state since it is not an Eulerian

boundary-value problem at the free surface. Instead, patternistic behavior eventually

occurs, which signifies that transients have finished passing— starting at approxi-

mately t = 5× 10−4s, the velocity and dp fields appear to fluctuate regularly.

The first direct comparison that should be made is between the elasto-plastic

and DEM flow profiles. To represent fully-developed mean behavior, Rycroft’s flow

data was averaged over 100 frames, during a period of what appears to be transient-

free flow. Similarly, the elasto-plastic flow was also averaged over many frames of

fully-developed motion. To improve the validity of this average, the model was run

an extra 5 × 10−4s longer and the time average was performed over the range t =
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(a)

(b)

Figure 3-20: Comparison of elasto-plastic results (—) to DEM (- -). (a) The y velocity
component as a function of x at heights y = 5d, 10d, 30d. (b) Trajectories predicted by
the elasto-plastic model alongside the DEM trajectories. Container outline provided
for ease of viewing.

0.5−1.5×10−4s, comprising 127 frames. Figure 3-20 displays the comparison. Overall

the agreement is sufficient. The particular way in which the peak in the downward

velocity component broadens as height increases is well captured by the model. Once

again, as is now a common theme, the elasto-plastic downward velocity appears to

change more rapidly in space. Non-local effects such as diffusion could smooth out

these sharper variations and possibly improve the agreement. Observing figure 3-

20b, the DEM and elasto-plastic trajectories agree quite well below y ≈ 40d. The

elasto-plastic model and DEM both have the trajectories pealing outward higher up

in the silo, though the onset of this behavior occurs at different heights for the two
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models. The difference in the upper silo trajectories could stem partially from the fact

that the free surfaces no longer match— the DEM free surface has already undergone

a non-negligible downward displacement and is no longer flat during the pictured

flow calculation whereas, thanks to artificial density reduction, the free surface of the

elasto-plastic model still looks as it did in the beginning. It is also possible that the

model is less accurate in the upper part of the silo because the flow is much slower

there.

To compare instantaneous behavior, let us now observe snapshots of the shearing

rate profile. As pictured in figure 3-21, the fully-developed elasto-plastic behavior

involves two long “arms” of shearing that extend from the edges of the orifice to

the top surface. From those large arms, smaller shear bands drop down one-by-one

forming, at any instant, a criss-crossing field of shear bands within the two arms. The

plot is logarithmic, so the shear bands are actually quite small, but the log-scale is

helpful for accentuating small features that undergo patternistic events. The DEM

solution does look similar, with two dominant arms of shearing. Note as well the

similarities near the top of silo, with both plots showing the shear arms spreading

out approaching the free surface. The most obvious difference, as has been previously

noted, is that the elasto-plastic solution has sharp flow cutoffs whereas the shear rate

always gradually tails off in the DEM. To reiterate, the model lacks non-local terms

describing quasi-static behavior so flow cutoffs are to be expected. Even if shear

bands did exist in the DEM, the box-average being performed would most assuredly

obscure them.

Moving on to the stresses, we first check the principal stresses and directions during

fully-developed flow. As is evident in figure 3-22, the principal stress orientations

predicted by the elasto-plastic model closely match those of the DEM. Both show the

major principal stresses forming “arches” about the orifice and, moving away from

the opening, the principal stress chains transition to becoming more vertical.

In the DEM, it is apparent that the major principal stresses adjacent to the side

walls have an orientation that slightly tilts away from the walls, whereas those of

the elasto-plastic solution remain almost perfectly vertical. This is entirely due to
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(a)

(b)

Figure 3-21: The plastic shearing rate dp, expressed in units of
√
g/d, plotted in

logarithm form. (a) The elasto-plastic solution: Note the intricate pattern of shear
bands that fill the region between the two long shearing arms. The long-time behavior
has the bands fall down one-by-one from the larger shearing arms. (b) The DEM
solution: Similar to the elasto-plastic except blurred out by the box-averaging and
the effects of non-local “diffusion” that are ignored by first-order elasto-plasticity.
Both plots use the same color scale.
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(a)

(b)

Figure 3-22: The instantaneous deviatoric principal stress directions plotted as
crosshairs with lengths corresponding to the associated deviatoric stress eigenval-
ues. (a) The elasto-plastic solution: The thicker of the lines corresponds to the major
principal stress direction. (b) The DEM solution: Major principal stress in purple,
minor (and intermediate where visible) in blue.
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the chosen boundary conditions. The DEM utilized frictional sidewalls and the tilt

indicates the walls are exerting an upward shear on the material. This wall shear

can be traced back to the filling process, where pouring causes an “active wall state”

where walls respond to resist the downward motion of the grains. The side walls in

the elasto-plastic model had no friction and thus cannot exert shear on the material.

Consequently, vertical major principal stresses near the side walls come as no surprise.

In the future, a side wall friction may be included to better model this effect, but it

is truly a minor point.

The stress orientations flanking the orifice deserve some attention. In the DEM

solution, the minor principal stresses on the floor immediately adjacent to the orifice

are approximately parallel to the floor. This would seem to imply that the floor applies

little to no shear resistance on the material that is about to leave the silo. This result is

incompatible with the choice of boundary conditions used in the elasto-plastic model.

By selecting a friction coefficient µfloor to describe the floor/material interaction, any

motion along the floor must be resisted with a shear stress proportional to the normal

stress. This is evident in the tilted crosshairs next to the opening in the elasto-plastic

solution. What this points out is that the actual boundary condition may not be as

simple as a frictional interaction. Quantifying the interaction between flowing grains

and a rough surface would be important future work.

To better observe the relative size of the stress components, figure 3-23 displays

the stress ratio. Qualitatively, the two solutions show similar spatial changes. Both

solutions show a region of lower µ that swoops up from the lower side walls together

with scattered minima of µ in the upper-middle region of the silo. Quantitatively,

it appears the µ values in the flowing zone are lower for the elasto-plastic solution.

One possible explanation for this could be that grains in the DEM simulation had a

rougher surface than the glass beads of [70] from which our µs and µ2 were extracted.

Perhaps now is a good time to reemphasize that the material parameters used in

the elasto-plastic model are not necessarily those describing the beads in the DEM.

Rather, our parameters came from two different papers with the only commonality

being that both studies claimed to be using glass beads. Regardless, in [33] it was
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(a)

(b)

Figure 3-23: The instantaneous stress ratio µ during fully developed flow. (a) The
elasto-plastic solution. (b) The DEM solution. Both plots use the same color scale.
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demonstrated that increasing the surface roughness of grains causes µs to increase.

If the elasto-plastic model were implemented with a larger µs, the µ profile would

indeed increase in the flowing regions, as larger µ would be needed to invoke the

same plastic shear rate.

3.9 Conclusion and future directions

This work proposes a highly general, 3D granular continuum model that unifies the

most recent results in granular elasticity and plasticity. The unification follows a

rigorous FeFp decomposition and is guided by the most basic physical principles. The

model can be used to predict flows uniquely in any environment with mechanically

well-posed boundary conditions and/or body forces. The model was implemented as

a user-material in ABAQUS/Explicit and tested in three unrelated geometries. With

no fitting, it appears to give qualitative, and in some case quantitative, predictions

for both the stress and velocity field in arbitrary granular flow geometries. Even so,

there are a few clear avenues of future work with regard to improving the current

model.

3.9.1 Quasi-static non-locality

The most glaring effect absent from the model is that it cannot account for “blur-

ring” in the flow fields. As described in depth in sections 3.4.2 and 3.4.3, when the

normalized shear rate decreases low enough, the rheology is no longer determinable

from a simple relation of the form

I = g−1(µ).

The plasticity model being used is of this form, but in truth, one would speculate

a more complete form has higher order gradients in stress, flow rate, and/or state

parameters balanced by some additional grain-level length-scale. In regions of mod-

erate flow rate, these spatially second order effects should be dominated by the local
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rheology. This is clear from the above tests, which show the model does indeed per-

form better where the flow is faster. But equally clear is the fact that these terms

cannot be ignored when near static yield. Section 3.4.3 lists several possible theories

to describe non-local behavior, but how each candidate would fit theoretically within

the current model remains to be studied.

By skipping over quasi-static non-locality, the model is tacitly assuming that the

material is capable of forming clean solid-like/fluid-like interfaces. This is almost

always an idealization that is unrealized, as particles in a random packing rarely have

the geometric ability to assemble in a fashion that avoids overlap with the predicted

interface. A particle on the interface, being unable to both shear with the fluid and

remain static with the solid, instead transmits some of the shearing behavior from the

fluid-like zone into the solid zone, thereby explaining the gradual tails we see in actual

granular flow profiles. Under particular circumstances, however, granular flow can be

made to segregate clearly into flowing and completely static zones. Thompson and

Grest [135] have shown that a monodisperse 2D disk assembly undergoing horizontal

planar shear with downward gravity does indeed have a flow cutoff with zero flow

occurring beneath a shear band at the top. This behavior is a rarity brought on by

the fact that solid-like material in this geometry can and does form a hexagonal crystal

and the horizontal fluid/solid interface happens to align perfectly with a crystal plane.

3.9.2 Dilation

The present model avoids all plastic dilation. Though an argument for why this

is acceptable for our current purposes is presented in section 3.4.4, certain benefits

would come with properly accounting for the small amount of dilation that occurs in

dense flow.

To be clear, there are really two sources of dilation that can occur: plastic and gas-

like. Plastic dilation reflects the opening up of space that occurs whenever material is

sheared above yield. But even below yield, in particularly energetic surroundings, an

element of grains can become gas-like inducing a packing fraction well below random

close packing— for example, shaking a box of rubber balls produces dilute material
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within, though the box is not deforming plastically. Granted, gas-like dilation is

outside the dense flow regime we currently study. But even under circumstances of

predominantly dense flow, it is possible that a small region becomes gas-like and

consequently one should have some way of dealing with this type of behavior. Recall

this issue was crucial in the silo geometry, which is almost entirely dense except within

the small free-fall arch that encompasses the opening. Gas-like effects would likely

require a granular temperature and heat flux to express how energetic the granular

gas is and consequently how much pressure it supports.

Several mechanisms for plastic dilation have been proposed (see section 3.4.4), but

a direct 3D discrete element study would be ideal for quantifying the precise dilational

dependences. One might hypothesize, based on equation 3.9, that the plastic dilation

has a form
dη

dγp
=

η̇

d̃p(M)
= A(η)B(Φ(I)− 0.63e−η)

where η = log(detFp) measures plastic dilation, γp is a plastic shear strain, I =

d̃p(M)/1
d

√
P
ρs

is the inertial number, and the functions A and B are empirical, with

B = 1 when the magnitude of its argument is large and B → 0 as the input goes to

zero. The above states that a material originally at random close packing (Φ = 0.63)

obeys Bagnold type dependences at steady flow. While the flow is unsteady, it dilates

according to A and then ceases dilation as the Bagnold relationship is approached.

A relation of this form appears to agree with results of Rycroft et al. [122], and

collaborative efforts with Rycroft are underway to quantify this evolution law.

Once a form for the plastic dilation has been tested, it could be included in the

material model. It would serve to enhance the computation of elasto-statics, where the

moduli are known to vary with the packing fraction, as well as give meaningful packing

fraction data throughout. However, the technique of artificial density reduction may

no longer be valid, since the steady packing fraction, while only a few percent different

than at the start, may take more time to develop than is typically allotted in a

simulation run.
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3.9.3 Flow condition

While the plastic flow rule being utilized here upholds codirectionality, a direct test

of the flow condition still needs to be performed to verify whether this is the best

candidate. Such a test may be forthcoming with recent DEM data on large conical

hopper flow. Some models have had success utilizing double-shearing conditions [3],

and Rycroft’s silo flow data has shown only marginally codirectional flow. For the

purposes of simplicity though, codirectionality has fit the current needs and appears

to be sufficient to predict basic flow behavior. However, a fine-tuned flow condition

would be essential to model highly asymmetric 3D flows.
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Chapter 4

General conclusion

This thesis has presented two very distinct models for granular material flow. The

SFR, on the one hand, is able to capture some of the more complicated slow flow phe-

nomena of granular matter. On the other hand, moderate flow rheology and an im-

proved statics law are clearly represented in the nonlinear elasto-plastic model. What

remains is to configure a complete model that covers all three categorical regimes of

dense granular materials: statics, quasi-static flow, and moderate flow. If the SFR

and elasto-plastic model could somehow be combined, this goal would be achieved.

While the conclusion sections of the past two chapters deal directly with their respec-

tive flow models, we take some time now to comment directly on the prospect of a

joint SFR/elasto-plastic formulation.

Seeing as the limit-state hypothesis may not be reliable, it would probably be

more realistic to try to integrate SFR principles into the elasto-plastic model rather

than vice versa. Observing the elasto-plastic flow solutions of chapter 3, it is indeed

quite incidental that where the SFR would most be needed, is precisely where it was

derived to work best— at incipient failure. That is, elasto-plastic predictions are the

most incorrect in regions immediately surrounding the fluid/solid interface, where

material is close to the static yield criterion.

One might hypothesize that the predicted elasto-plastic fluid/solid interface is

where spots are generated. The rate of spot generation could grow proportional

to the strain-rate gradient at the predicted interface, so that spots are born, quite
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literally, to fight rapid spatial changes in the flow field. In this sense, spots would

modify the elasto-plastic solution in a fashion that ensures the flow does not vary on

a scale smaller than a spot width.

After being birthed at the elasto-plastic interface, spots could then wander through

the material, so that the final velocity field is the sum of the elasto-plastic solution and

the additional spot-related motion. Allowing spots to travel through regions deemed

‘static’ by the elasto-plastic model is precisely what is desired, since in truth, these

region should be undergoing intermittent failure events. The idea of spots moving

through solid-like material also resonates well with how the SFR was derived— spot

drift is driven by a static-to-kinetic drop in µ at the spot boundaries, which is sensible

for a spot moving through solid-like material. The drift formula for spots could remain

almost entirely the same, except modified for non-incipient stresses. Since sub-yield

material would not have slip-lines per se, the planes of weakest orientation could be

substituted, which are the internal planes along which the shear to normal stress

ratio is highest. It would make sense if, like in the SFR proper, spots do not have any

effect on the stress field that they move through, as they represent rate-independent

deformation.

By integrating the SFR into the elasto-plastic model as outlined above, certain

other benefits would follow. Originally, spots were considered free-volume carriers.

But under this notion, the Spot Model (and the SFR) would predict the packing

fraction to be lowest down the center of a draining silo, where the spot concentration

is highest. This is in contrast with discrete simulation results of [122] that show the

packing fraction is indeed lower off-center, where more rapid shearing occurs. When

this was observed, it was cause to remove a direct association of free-volume with

spots. However, by instituting a spot formulation within an elasto-plastic model as

outlined above, the spot concentration field is likely to align more closely with the

free volume profile. Thus, the physical interpretation of spots as free volume carriers

might make more sense under this joint approach.

Another benefit would be that spot motion could become universally frame-

indifferent. In the SFR formulation of chapter 2, the issue of frame-indifference arises
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because there is no way for a spot to know the motion of the “background”. For

example, in a silo flow, spots always move up. But the definition of “up” is frame

dependent— a silo experiment performed in a moving train would have upward spot

drift if viewed by an observer in the train, but should have slanted spot drift if viewed

by an outside observer. If the spot drift is determined solely by the stress tensor and

the body forces, this type of adjustment is not possible. The SFR dodges this issue by

constricting to the case of steady flows, where the frame of reference can be adjusted

post facto. However, a better fix for this problem may arise if the SFR were integrated

into the elasto-plastic model. Each static region in an arbitrary elasto-plastic flow has

a unique velocity and rigid-body spin, which can be extracted from the elasto-plastic

flow solution. A spot traveling through a static zone could thus be directed to drift

against this background motion. In other words, the spot motion occurring within

a sub-yield region could be defined uniquely in the frame of reference for which the

rigid-body elasto-plastic background motion appears stationary.

These ideas are still preliminary. There are a few non-ignorable problems with

splicing these models. How would boundary conditions for the spot concentration be

determined? In chapter 2, kinematic boundary conditions for the flow are translated

directly into boundary conditions for the spot flux. But in a combined approach,

where the velocity is the sum of elasto-plastic and spot-based velocity fields, the

answer is not obvious. Perhaps zero spot flux at boundaries would be a plausible

guess, so that the elasto-plastic solution carries the burden of fitting all the boundary

conditions. In order for the flow to remain smooth across the elasto-plastic interface,

spots may have to be allowed to wander into the above yield material. The details

of how this may take place are non-trivial, since we would not want spot motion to

interfere too much with the rapidly flowing zones, as these are well-represented by the

Jop–Pouliquen flow law. It is also not clear if SFR-type spot drift applied within an

elasto-plastic stress field will even give remotely correct flow behavior. While the SFR

flow predictions of chapter 2 may look valid, changing the stress field and origination

of spots as is being suggested here may have an unduly large effect on the outcome.

Of course, a 3D version of the SFR would have to be derived if 3D flow predictions
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were desired, though it would be understandable to test plane-strain flows at first.

Perhaps one of the ways discussed in the conclusion of chapter 2 could be used to

extend the SFR into 3D at some later point.

But beyond any of this speculation, the two models presented in this thesis already

appear to have a good degree of effectiveness and generality on their own. The kind

of versatility each has been shown to have herein is noteworthy especially in a field

like dense granular materials, where predictive flow models with general applicability

are quite rare. In spite of this, there is no shortage of observations and data in the

granular flow literature. It has been my goal from the very beginning to move beyond

the role of observer, and attempt to synthesize known results into general models.

While this has been no simple task by any stretch of the imagination, the process has

been exciting and worth the effort.
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Appendix A

Review and comparison of other

granular plasticity models

A.1 Critical state soil mechanics

A common precept in plasticity is the notion of normality or associatedness. Flows

that obey normality have a flow rule defined in terms of the yield function Y as

follows:

D = λ
∂Y

∂T
(A.1)

where λ is a positive multiplier (we presume D ≈ Dp for now). For a 3D flow,

this means that if the yield function were plotted in 6-space as a function of all 6

independent entries in the 3D stress tensor, the strain-rate matrix would be a ‘vector’

pointing normal to the yield surface oriented toward greater values of Y .

One of the first gripes about the use of friction-based yield criteria in describing

granular materials is that the principle of normality gives a flow rule that predicts

unstoppable dilatancy. Consider a rough extension of the Coulomb yield criterion into

3D, Y = µ(trT)/3 + |T0|/
√

2, which displays the basic property that yield occurs

when a certain multiple of the pressure equals the shear stress. Its associated flow

183
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Figure A-1: (left) Critical State Theory’s spade-shaped yield function for material
at some density ρs; (right) Deformations with non-zero volumetric strain will cause
the material to settle down on a new yield function.

rule is

D = λ

(
T0√
2|T0|

+
µ

3
I

)
.

The trace of this strain-rate tensor is λµ, implying that material undergoing plastic

flow will never stop dilating.

Roscoe and co-workers [117] present a different viewpoint on the issue. In what

became known as Critical State Soil Mechanics, explained in detail in [127], they

argue that normality does hold, but that in fact the Coulomb yield criterion is not

technically the correct yield function.

Backed by results from triaxial stress experiments on soil samples, Critical State

Theory claims that soils have a yield function that depends on the soil consolidation

as measured by the local density ρ. The yield curve for material at a particular den-

sity is defined in terms of two stress tensor invariants: the pressure p = −1
3
trT and

the equivalent shear stress q = |T0|/
√

2. Plotted in these variables, the principle of

normality is equivalent to the statement that the strain-rate vector (ε̇, γ̇) is normal

to the yield curve and pointing outward, where ε̇ = −trD is a volumetric strain-rate

which determines changes in density, and γ̇ =
√

2
3
|D0| is a shear strain-rate propor-

tional to the total shear deformation (volume-conserving part of the deformation).

Figure A-1 displays the theory’s picture of the yield function and how it changes

after material deformation. Any stress state underneath the yield curve corrresponds

to rigid material. Under normality, material at point 1 in the initial state will undergo

a deformation according to the vector (ε̇1, γ̇1). Since ε̇1 is negative, the material will
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dilate and settle down at point 1 on the right on a new yield curve corresponding to

ρ
A
< ρ. The material at stress state 2 will likewise undergo compaction and arrive at

point 2 on the yield curve corresponding to ρ
B
> ρ.

The critical state line is defined as the locus of points for which normality pre-

dicts no volumetric changes during deformation— note that wherever a yield curve

intersects the critical state line, the curve becomes parallel to the p axis and thus the

corresponding strain-rate vector has no volumetric component. The theory reasons

that the critical state line is indeed a straight line of the form

q = Mp.

As flow developes, the stress states throughout the material will continually move

toward the critical state line and once local volume changes finally stop, all flowing

material stress states should lie on the critical state line. Thus in a steady flow, the

critical state line might falsely appear to be the yield function when in fact it is only

a locus of states from a family of yield functions. So, it is argued then that the reason

normality previously failed to describe granular materials was because it was applied

mistakenly to the critical state line and not to the true family of yield functions.

A.2 The Anand-Gu model

We now cover a model presented by Anand and Gu [3] which simultaneously accounts

for a variety of granular characteristics. To summarize the equations, we begin by

defining an additive decomposition of the velocity gradient into elastic and plastic

parts

∇v = L = Le + Lp

and define corresponding deformation-rate and spin tensors

De,p = sym(Le,p) , We,p = skw(Le,p).
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The material stresses are dependent on the elastic strain and thus we write a hypo-

elastic stress-rate/strain-rate law utilizing the Jaumann-Zaremba objective stress-

rate:

T∇e = Ṫ−WeT + TWe = C [De].

We will delve more into the meaning and justification of this equation in a later

section. The term C is a fourth order tensor of elasticity moduli which may depend

on the stresses and the relative density η = ρ/ρs where ρs is the mass density of solid

grains.

The material is assumed to obey a Mohr-Coulomb yield function of the general

form

Y = τ − µσ − c ≤ 0

where σ = −n̂ ·Tn̂ is the compressive stress on a plane with outward normal n̂, and

for some direction n̂⊥ orthogonal to n̂, τ = |n̂⊥ · Tn̂| is the magnitude of the shear

stress in the direction n̂⊥. The parameter c represents cohesion and µ the friction

coefficient.

A.2.1 Double-Shearing Flow Rule

The flow rule employed in this model does not have the simple form of a Rudnicki-

Rice-type model [119] wherein the deviatoric plastic deformation rate tensor is a scalar

multiple of the deviatoric stress tensor

Dp
0 = |Dp

0 |
T0

|T0|
(A.2)

and

trDp =
√

2β|Dp
0 | (A.3)

for β a dilatancy parameter. These equations state that the eignvectors of Dp are

aligned with those of T (i.e. coaxiality), but furthermore they state that when yielding

occurs, the relative sizes of the deviatoric principal plastic strain increments dε0i are a
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simple multiple of the deviatoric principal stresses, i.e. in the principal stress frame:
dε01 0 0

0 dε02 0

0 0 dε03

 = λ


σ0

1 0 0

0 σ0
2 0

0 0 σ0
3

 . (A.4)

Or, if we temporarily set dilation to 0, this flow rule (now a Mises flow rule) can be

understood pictorally with ease:

Consider: Mises Flow Rule

Principal basis vectors:

This is a simple rule for a general deformation process, but we prefer a rule

which more closely upholds what we deem the physical basis of granular deformation:

internal slip. A Mohr’s Circle diagram for a material element at yield (Figure A-2) is

instructive in this cause. Each circle indicates the locus of traction stress states (σ, τ)

that are possible along some line in the specified plane.Where Do Slip-Planes Form?

Y=!-µ"-c#0Figure A-2: Mohr’s Circle diagram for the three principal planes in the case σ1 >
σ2 > σ3.

Consider the general case of σ1 > σ2 > σ3. Each Mohr’s Circle diameter must be

equal to the difference of that plane’s principal stresses and each circle must intersect

the σ axis at the principal stresses. Thus the ê1ê3 plane will have the largest Mohr’s

Circle and the other two circles must be fully enveloped by this one. Since no traction
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state can ever lie above the yield function, only the ê1ê3 principal plane can ever be

tangent to the yield function, and likewise slip-lines will only develope within the ê1ê3

plane. To determine how the slip-lines are oriented within this plane, we observe the

angle of the Mohr’s Circle arc measured anti-clockwise from the σ axis to the radius

ending at the yeilding traction state. By trigonometry this angle is π/2+φ = 2ξ and

thus by Mohr’s Circle conventions, slip-lines should appear within the material in the

ê1ê3 plane at angles of ±ξ off the ê1 direction.

To understand slipping in 3D, suppose we travel down the ê2 direction contin-

uously drawing slip-line pairs in the ê1ê3 plane. This family of slip-lines will then

form two slip-systems which locally appear as a pair of intersecting slip-planes. Ex-

cluding dilation, the Double-Shearing flow rule claims that deformations can only be

made by superposing two simultaneous shearing motions along these slip-systems.

The direction of each shear, as necessitated by the dissipation inequality, is aligned

with the shear stress. To add in dilational effects we claim that as material shears

an amount dγ along a slip-system, the material dilates in the direction normal to the

slip surface an amount βdγ. Looking back at the Mohr’s Circle diagram, we see that

there is only one point of tangency with the yield function implying identical shear

and compressive stresses on both slip-systems. Likewise there is no physical reason

why the shearing rates along the two slip-systems should differ. Thus we adopt the

hypothesis that the shearing rates along both slip-systems are equal and consequently

the dilation rates must also be equal. Since all plastic motion is now symmetric about

both the major and minor principal axes, we see that there can be no plastic spin:

Wp = 0.

Pictorally, we can visualize Double-Shearing (in this general case of all-differing

principal stresses) as in Figure A-3. The stress state determines the slip-systems upon

which we apply equal shearing and dilation.

One important result is that no deformation occurs in the ê2 direction. This is

markedly different than a Mises flow rule and places a significant restriction on the

space of allowable deformations. Our interpretation of Double-Shearing is actually

different than A.J.M. Spencer’s original 1964 development of the Double-Shearing
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Figure A-3: Cartoon of Double-Shearing in the general case.

flow rule [133]. Spencer applied the rule to 2D geometries in a limit-state stress field

and argued that the shearing rates on the two slip-lines need not be the same and in

fact should be determined from the condition that the flow remain isochoric. Contrary

to Spencer’s limit-state assumptions, the model at hand allows an elastic component

in the deformation and thus we may simply claim that all necessary spins come from

We and that the plastic shear-rate on both slip-systems is equal.

To determine the mathematical form of the flow rule, since the deformation is

planar, it is easiest to write the deformation as a superposition of two 2× 2 tensors,

each tensor representing a shearing/dilation on one of the slip-systems. With the

aid of Figure A-3 (for signs) we write a tensor for one slip-system by rotating the

coordinates an angle ξ or −ξ off the ê1, ê3 basis and then writing the deformation as

a simple two element tensor for horizontal shear plus vertical dilation. This gives

Dp =
1

2

R
 0 γ̇

0 βγ̇

RT + RT

 0 −γ̇

0 βγ̇

R


where

R =

 cos ξ − sin ξ

sin ξ cos ξ

 .

This simplifies to

Dp = γ̇[P + βN]

for

P =
1

2
sin(2ξ)[ê1 ⊗ ê1 − ê3 ⊗ ê3]
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and

N = sin2 ξê1 ⊗ ê1 + cos2 ξê3 ⊗ ê3.

We redefine γ̇ as the magnitude of the plastic deformation enabling us to write

Dp = γ̇
P + βN

‖P + βN‖
. (A.5)

In the degenerate case where σ1 = σ2 > σ3, −σ2 approaches −σ1 in the Mohr’s

Circle diagram and thus when yielding occurs, both the ê1ê3 and the ê2ê3 Mohr’s

Circles will be tangent to the yield function causing slip-lines to form in both planes.

Furthermore, since the stress tensor has repeated eigenvalue σ1 = σ2, the ê1 and

ê2 directions are not unique and any vector ê⊥3 orthogonal to ê3 is an eigenvector

corresponding to σ1 = σ2. Be that as it may, Mohr’s Circle indicates that all planes

ê⊥3 ê3 contain slip-lines and thus the slip-system is a cone symmetric about the ê3

axis.

To shear and dilate equally on this slip-system is less easy to intuitionalize, but if

we imagine the cone as being composed of many diagonal bars oriented symmetrically

about a vertical axis, we can see the deformation as the superposition of shears along

each bar, each shearing motion taking place in a vertical plane. To compare this

pictorally to the previous case observe Figure A-4. Ultimately, since the shears andCase !1=!2>!3

conical slip-surface triaxial deformation

Case !1>!2=!3 analagous.

Figure A-4: Cartoon of Double-Shearing in the σ1 = σ2 degenerate case.

dilations are all radially symmetric and equal, the superposition will give a triaxial

deformation contracting in the ê3 direction and expanding radially in the orthogonal

directions.
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Mathematically, this case takes the same form as the previous, but with

P =
1

2
[ê1 ⊗ ê1 − (1/2)(I− ê1 ⊗ ê1)]

and

N =
1

2
[sin2 ξê1 ⊗ ê1 + (1/2) cos2 ξ(I− ê1 ⊗ ê1)].

The other degenerate case, σ1 > σ2 = σ3, is entirely analagous. The motion is a

triaxial elongation about the ê1 axis. All that must be done to attain the mathemat-

ical form for this case is to replace all “3” subscripts in the previous case with “1”

and replace ξ with ξ + π/2.

An important point about Double-Shearing is that only two classes of deforma-

tion are ever allowed: planar and triaxial. This reduction in the space of possible

deformations tends to show itself in the form of shear-bands. For example in plane-

strain setups, if material ever approaches a degenerate stress state, it cannot undergo

plastic deformation— triaxial deformation is prohibited in plane-strain so γ̇ must go

to 0. Thus, non-degenerate zones of planar deforming material are seen to have sharp

boundaries where the stress state crosses into the realm of degeneracy.

A.2.2 Hardening/Softening and Dilation

We need a few more constitutive laws to describe the hardening/softening and di-

lational behaviors of granular matter. According to Critical State Theory, material

whoses friction coefficient is above a certain constant volume value µcv should expe-

rience dilation and below that value compaction. We may apply this notion to our

problem most simply by writing

β = hβ(µ− µcv). (A.6)

Thus as we expect, when µ = µcv the dilation is 0 and the material volume stops

changing.

The value of µ should always approach µcv as the plastic shear becomes large, but
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the general shape of the µ vs. γ curve can vary depending on the starting parameters.

Specifically, we wish to include the following phenomenological behavior: for some

critical relative density ηcr and initial friction µ(0) = 0, over-consolidated materials

(η0 > ηcr) hit a peak value for µ greater than µcv before asymptotically approaching

µcv whereas under-consolidated materials (η0 < ηcr) monotonically increase to µcv.

A general form for the hardening/softening that appears to capture these effects

is:

µ̇ = hγ̇

h = hµ

∣∣∣∣1− µ

µs

∣∣∣∣p sign

(
1− µ

µs

)
µs = µcv + b(η − ηcr)

q step(η − ηcr)

where step(x) is 1 if x is positive and otherwise 0.

To check this form more directly, we first need an expression for the evolution of

relative density which can then be related to β and likewise µ. We employ conservation

of mass to achieve this end:

η̇ = −η trDp. (A.7)

According to Equation A.5,

trDp =
γ̇β

g(β, ξ)

where g(β, ξ) = ‖P + βN‖ is easily determined given the stress case. Applying this

in the mass conservation equation and writing β and ξ in terms of µ gives:

η̇ = −η γ̇ hβ(µ− µcv)

g
(
hβ(µ− µcv),

π
4

+ (arctanµ)
2

)

=⇒ dη

dγ
=
η̇

γ̇
= −η hβ(µ− µcv)

g
(
hβ(µ− µcv),

π
4

+ (arctanµ)
2

) ≡ f1(µ, η). (A.8)
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The previous evolution law for µ gives

dµ

dγ
=
µ̇

γ̇
= h ≡ f2(µ, η). (A.9)

Equations A.8, A.9 make up a complete dynamical system for µ and η as they vary

over the course of plastic shearing γ. For the sake of concreteness let us focus on the

non-degenerate stress case for which

g(β, ξ) = (1/2)
√

1 + 3β2 + (β2 − 1) cos(4ξ)− 2β sin(4ξ).

Using the “ode45” function from MATLAB 7.1 we can plot a phase space diagram of

the µ, η system (see Figure A-5). The values of the parameters used match those found

in Anand and Gu [3]. Of importance to the diagram, ηcr = 0.54 and µcv = 0.613.

Note in the figure that if the material is over-consolidated and µ0 < µcv the friction

first increases above µcv and then asymptotes to µcv as we intended. In the under-

consolidated case the friction increases steadily to µcv. The diagram also indicates

that all over-consolidated initial material states will eventually have η → ηcr whereas

under-consolidated material states can be found that approach any desired value of

η < ηcr. This result can also be attained analytically by solving f1 = f2 = 0. Such a

qualitative difference between the long-term density behaviors of initially over- and

under-consolidated materials occurs because the step function used in the evolution

of µ places a discontinuity in h that separates the dynamics of the two regimes.

We can even express as an integral the final relative density ηf for an under-

consolidated material element initially at η0. First note that in Equation A.8, we can

write f1(µ, η) = η Φ(µ). Thus:

dη

dγ
= ηΦ(µ) =⇒ d(ln η)

dγ
= Φ(µ),

=⇒ ln

(
ηf
η0

)
=

∫
Φdγ =

∫
Φ
dγ

dµ
dµ =

∫ µcv

µ0

Φ

f2

dµ

where the final integral is well-posed since the integrand is a function of µ only (f2
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Figure A-5: Phase-space diagram for µ and η. Arrows point in the direction of
increasing γ.

has no η dependence in the under-consolidated case).

A.3 Comparison to Critical State Theory

It is interesting to compare this η, µ interdependence with that of a Critical State

model. The simplest one, the so-called “Granta-Gravel” model, uses a yield condition

of the following form:

Y = q +Mp

(
ln p− Γ− 1/η

λ
− 1

)
≤ 0

where Γ, λ, and M are material constants, η is the relative density, and p = −1
3
trT

and q = |T0|/
√

2 represent the stress state. The principal of normality is employed

for the flow rule, which simplifies in terms of p and q to

M

(
ln p− Γ− 1/η

λ

)
=
−trDp

√
2

3
|Dp|

=
η̇/η
√

2
3
γ̇

=
3

η
√

2

dη

dγ
.

The γ used here is the true plastic shear and so it is slightly different than the γ

used previously (Equation A.5) which has a volumetric contribution. Since we will

only be using the above equation for large-strain behavior, this difference is to no

avail. A major dissimilairty between this equation for dη/dγ and the equivalent for
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the Anand-Gu model (Equation A.8), is that the evolution of η with strain depends

explicity on the pressure p which can be varied at will over the course of the de-

formation via loading boundary conditions. If we enforce a fixed pressure p = p0

throughout the deformation, we may write,

dη

dγ
= −Aη +B

for positive constants A = −
√

2M
3

(ln p0 − Γ/λ) and B = M
√

2
3λ

. This yields,

η =
B − C0 exp(−Aγ)

A
for C0 such that η0 =

B − C0

A
.

We see that in the Granta-Gravel model with p = p0 fixed, η always approaches

ηf = B/A = (Γ− λ ln p0)
−1 regardless of the inital relative density η0. This is unlike

the Anand-Gu model in which ηf depends on η0 and does not depend on the stress

path. So while some ideas are the same among the two models (e.g. the general

dependence of dilation on µ, the characteristic shapes of the various µ vs. γ curves)

there are also some important qualitative differences.
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Appendix B

SFR in a hopper

This appendix shall present flow results from solving the SFR in the wedge hopper

geometry. The stress field in the hopper is non-trivial. First we solve for flow using

Jenike’s Radial Stress Field, which provides smooth stresses, but does not utilize a

pressure-free top boundary. Pierre Gremaud (University of North Carolina) used the

Discontinuous Galerkin method to solve for the incipient-failure stress field under

different top traction boundary conditions. The SFR is then solved again using his

discontinuous stress data.

The Radial Stress Field was solved in a hopper with apex half-angle 30◦, internal

friction angle 30◦, wall friction 26◦, and passive wall stresses. Applying coaxiality gives

the corresponding “Radial Velocity Field”, which necessarily has no θ component.

The SFR was solved using Ls = 0.1 units and zero θ velocity along all boundaries.

The results are pictured in figure B-1. The SFR flow field does have a small θ

component. Also the SFR solution predicts a narrower zone of flow down the center

of the hopper.

Pierre Gremaud’s p and ψ fields are plotted in figure B-2. The angle of wall

friction is assumed to be 15◦ for r > 1 and 10◦ for r < 1. The stress information is

assumed to travel down and thus the Radial Stress Field corresponding to the higher

angle of wall friction is taken as the “initial condition” at r = 1. The region from

r = 0.3686 to r = 1 is pictured. As before φ = 30◦ and passive wall stresses are used.

The SFR is then solved using zero (unconvolved) θ velocity at all boundaries and
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(a) (b)

(c) (d)

Figure B-1: Flow prediction using coaxiality upon the Radial Stress Field (a). Using
the same stresses, the SFR is applied yielding results (b), (c), (d).

L = 0.08. The resulting velocity field, thanks to convolution with the spot influence,

is necessarly smooth and fluctuates on a scale no smaller than Ls. From the velocity

components, it is clear that the trajectories are not straight, nor simple curves, but

rather wiggle slightly going from top to bottom of the pictured hopper.
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(a) (b)

(c) (d)

(e)

Figure B-2: (a) (b) Represents the discontinuous stress field generated by Pierre
Gremaud for a hopper with wall friction jump. The corresponding SFR fields are
displayed in (c) (d) and (e). Note the velocity field is smooth.
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Appendix C

Deciding the stochastic dilemma

In the original Spot Model derivation [15], the issue of the “phantom 2” was pointed

out as a matter of nontrivial mathematical value. In the process of deriving the

continuum limit of particle motion from a superposition of spot influences, an extra

2 shows up, which renders the resulting flow field compressible. This matter was

left unresolved for some time, likely because the institution of the Spot Model as a

monte-carlo method for producing real flows did not appear to be crippled by this

abstract consequence of stochastic differentials.

In fact the solution to this issue can be understood on both abstract and pic-

turesque levels. In the parlance of stochastic calculus, the lack of incompressibility

came from choosing a less optimal interpretation of the stochastic dilemma. Let

us clarify this point. Suppose the flow region is broken into n distinct volumes. In

Bazant’s original work, the displacement of a particle during a time-step is determined

by all the nearby spots that displace during that increment:

∆Rp(rp) = −
∑
n

∆N
(n)
s∑

j=1

w
(
rp, r

(n)
s + ∆R(j)

s (r(n)
s )
)
∆R(j)

s (rns ) (C.1)

The subscipt “p” indicates particle position and “s” indicates spot position. ∆Nn
s

represents the number of spots in the nth volume and w is the spot influence which

is non-zero whenever the particle and spot separations are within the spot width.
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To interpret the above, the displacement of a particle can be obtained by finding all

spots that displace during the time interval into a position that overlaps the particle,

and then superposing their reverse displacements weighted by the influence of the

displaced spots on the particle.

Note in this interpretation, that the spot influence at the end of the spots’ displace-

ments is used to produce particle displacement. The resulting stochastic differential

equation gives the following mean particle velocity:

up(rp, t) = −
∫
dVsw(rp, rs)[ρs(rs, t)us(rs, t)− 2Ds(rs, t) ·∇ρs(rs, t)] (C.2)

where us is the spot drift and Ds is the spot diffusion tensor. For the sake of simplicity,

consider the case where w = δ(|rs − rp|). Then the integral above is represented by

the term in brackets. Expressing up accordingly and taking the divergence gives

the surprising result that volume is not conserved. If it were not for that factor

of 2 in front of the spot diffusion tensor, the mean particle velocity field would be

incompressible as per the Fokker-Planck equation for the spot distribution.

To “fix” this problem, we observe the following change of stochatsic interpretation.

Consider a Stratonovich interpretation, in which the beginning and ending of the spot

displacement are equally weighted in determining a spot’s influence on a particle:

∆Rp(rp) = −
∑
n

∆N
(n)
s∑

j=1

w(rp, r
(n)
s ) + w(rp, r

(n)
s + ∆R

(j)
s (r

(n)
s ))

2
∆R(j)

s (rns ) (C.3)

The above can be rewritten (supressing arguments for brevity)

∆Rp =
1

2

−
∑
n

∆N
(n)
s∑

j=1

w(rp, r
(n)
s + ∆R(j,n)

s )∆R(j,n)
s︸ ︷︷ ︸

Bazant’s differential

+−
∑
n

∆N
(n)
s∑

j=1

w(rp, r
(n)
s )∆R(j,n)

s︸ ︷︷ ︸
New term


(C.4)
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Figure C-1: A simplified example showing the order one effect of changing stochastic
interpretation. (a) Spots are constrained to randomly move through a lattice. Steady-
state spot concentrations are shown. (b) The time average spot motion through the
centered control volume gives an analagous Stratonovich interpretation for motion at
the center lattice point. (c) A lowered control volume gives the analagous Bazant
interpretation for motion at the center lattice point.

The particle drift under this interpretation is thus one-half the contribution from the

Bazant interpretation (that of equation C.2) plus one-half the contribution from the

new term. The new term represents a drift of

unew
p (rp, t) = −

∫
dVsw(rp, rs)[ρs(rs, t)us(rs, t)] (C.5)

No gradients of ρ appear in the new term because it accounts solely for the beginning

of the spots’ displacements, whereas Bazant’s differential must account for the effect

of spots from somewhere else (with possibly different spot concetrations) coming in

and ending atop the particle. Putting the two contributions together, gives the new

mean particle velocity

up(rp, t) = −
∫
dVsw(rp, rs)[ρs(rs, t)us(rs, t)−Ds(rs, t) ·∇ρs(rs, t)] (C.6)

The 2 has vanished and the above form does indeed deliver incompressibility.

Is there a simpler explanation for how this result occurs? Consider an example

problem that mirrors the situation in silo flow: spots (of delta-function influence) that
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always drift upward an amount ∆y each time-step while moving either ∆x or −∆x

horizontally. For further simplicity, suppose the spots are constrained to a lattice

with these horizontal and vertical spacings (see figure C-1a). To obtain the particle

velocity field from the steady spot distribution, we must closely anayze the happenings

near one lattice point during one time interval ∆t. Our lattice point of interest is the

center point in figure C-1a. For clarity, we assume all spots in the system to begin

and end their movements at the beginning and ending of the time step ∆t and that

during the step, all spots move with the same constant speed

√
∆x2+∆y2

∆t
.

The question is, what is the average particle velocity at the center lattice point,

calculated over the time interval t to t+ ∆t, that results when the spots at all lattice

points perform a displacement? To answer this one must first choose how to orient a

control volume around the center lattice point. Figure C-1b displays the Stratonovich

interpretation, where the time-average spot motion is computed within a centered,

diamond-shaped control volume. During the first half of the time interval, all spots

originating at the lattice point of interest are in the process of travelling away but

have not yet left the control volume. Half-way through the time interval, those spots

have left the volume, but spots from the bottom two lattice points enter. During the

latter half of the interval, ρleft/2 spots from the lower-left lattice point and ρright/2

from the lower-right lattice point are moving through the control volume. We Taylor

approximate that

ρleft,right
∼= ρ+ (∓∆x,−∆y) · ∇ρ

and thus the time average velocity of spots moving through the control volume is

vspot ∝ ρ/2(−∆x,∆y) + ρ/2(∆x,∆y)

+ ρleft/2(∆x,∆y) + ρright/2(−∆x,∆y)

= (0, ρ∆y) + (
ρleft − ρright

2
∆x,

ρleft + ρright

2
∆y)

∼= (0, ρ∆y) + (−∆x2ρx, ρ∆y −∆y2ρy)

= 2(0, ρ∆y)− (∆x2ρx,∆y
2ρy)
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∝ usρ−Ds · ∇ρ.

Analagous to the stochastic calculus result above, no added 2 appears in front of the

diffusion term when using this, the Stratonovich interpretation.

On the other hand, suppose as in figure C-1c, that the control volume used to

compute averages is not centerd about the lattice point of interest, but rather is

dropped lower so that the point is barely within the volume. This picture corresponds

to the Bazant interpretation. Time averaging the spot motion during one interval

using this control volume will indeed yield that extra 2, since the effect of the spots

originating at the center lattice point will be neglected. Under this interpretation,

all of the motion attributed to a particle at the center lattice point is due to those

spots coming in from below. While neither interpretation is mathematically the more

“correct”, it does indeed appear that the Stratonovich interpretation is the more

valid physical hypothesis. This kind of dilemma, where order one changes to the

result can occur by microscopically moving a control volume, is a special byproduct

of stochatsic processes. The change in predicted mean behavior induced by switching

interpretations (i.e. control volume locations) is deemed “noise-induced”.
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Appendix D

Eulerian numerical method for

fluid/solid interaction

D.1 Past work on fluid/fluid interaction

The work of Kang, Fedkiw, and Liu [75] reveals a method for solving the incom-

pressible Navier-Stokes equations in the presence of a discontinuous viscosity and/or

density field. These discontinuities segregate the flow into two distinct, interacting

fluids which make contact along some interface. The method is fully Eulerian and

tracks the interface not by moving points that reside on it, but using a first order

scheme that determines where the interface lies between the grid points at each time

step.

As a quick review, the stress tensor T is symmetric and has a unique additive de-

composition into two parts: the deviatoric stress τ which is trace-free and describes

shear stresses, and the pressure tensor −p1. Once a functional form has been selected

for τ , a solution is found by solving for linear momentum balance and incompress-

ibility, that is:
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∂v

∂t
+
∂v

∂x
v +

1

ρ

∂p

∂x
=

1

ρ

(
∂

∂x
· τ
)

+ g (D.1)

∂

∂x
· v = 0 (D.2)

where, v = (u, v, w)T is the velocity vector and x = (x, y, z)T is the spatial location.

To avoid confusion later, we avoid use of ∇ instead specifying derivative operators in

general format— for example,

(
∂v

∂x

)
32

=
∂w

∂y
.

We claim as in the Navier-Stokes that the fluid obeys a linearly viscous law, which

imposes the following form on τ :

τ = µ

(
∂v

∂x
+

(
∂v

∂x

)T)
. (D.3)

In the simplest case, the projection method can be invoked to solve these equations.

However, the presence of the interface entails certain modifications to the numerics

that must take place before taking projections.

The parameters µ and ρ can change values across the interface. We treat the

interface as the 0 level set of some function φ. The standard advection law

φ̇ =
∂φ

∂t
+ v · ∂φ

∂x
= 0 (D.4)

is used to track the motion of the interface— that is, the values of the function φ

are forced to move with the flow so that the level set φ(x) = 0 always describes the

current configuration of the interface. It is important that
∣∣∂φ
∂x

∣∣ never becomes too

large or else our ability to accurately interpolate φ between grid points is jeopardized.

As such, we also invoke the reinitialization condition

∂φ

∂t
+ sign(φ)

(∣∣∣∣∂φ∂x
∣∣∣∣− 1

)
= 0 (D.5)
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each step to reshape φ without affecting its zero level set, given that φ begins as the

signed distance function with respect to the interface.

The velocity is continuous across the interface and discretization creates, effec-

tively, a continuous velocity gradient under central differencing. However, the second

derivative will be discontinuous and inaccurately represented by the usual discretiza-

tion thereby necessitating jump conditions. If there were two parallel, adjacent fluid

filaments on either side of the interface, both tangent to the inteface, then the rate

of deformation of one can be made arbitraily close to the rate of deformation of the

other by bringing the filaments closer and closer to the interface. If we define t1 and

t2 as orthognal unit vectors that are tangent to the interface and n the unit normal,

this fact implies:

[(
∂v

∂x

)
(t1, t2)

]
= 0 (D.6)

where [·] is the jump in the quantity · across the interface. The normal and tangent

vectors can be defined everywhere using the gradient of φ, though the meaning of

these vectors only applies at the interface. Applying the incompressibility condition

to this last result gives [
nT

∂v

∂x
n

]
= 0 (D.7)

Certain components of the stress tensor must remain continuous across the inter-

face (in the absence of any surface tension). The shear stress on the interface and the

normal compression on the interface cannot jump or else there would be an infinite

acceleration. We can state these conditions as:

[
(n, t1, t2)

TTn
]

= 0. (D.8)

Equations D.6, D.7, and D.8 can be expanded and reorganized to yield the im-

portant jump relationship, which we shall revisit in more depth later:

[
µ

∂v
∂x

]
= [µ]

∂v
∂x

(0, t1, t2)(0, t1, t2)T+[µ]nnT
∂v
∂x

nnT−[µ](0, t1, t2)(0, t1, t2)T
(

∂v
∂x

)T
nnT

(D.9)
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 pi,j , !i,j
 pi+1,j , !i+1,j

 pi,j+1 , !i,j+1  pi+1,j+1 , !i+1,j+1

ui+1/2,j

ui+1/2,j+1

vi,j+1/2 vi+1,j+1/2

Figure D-1: A MAC grid in 2D.

The right side of the above can be evaluated at any grid point as long as we always

use the value that [µ] takes at the interface. Through Eqs D.6, D.7, and D.8 it can

be shown that the right side is actually continuous everywhere even though it only

carries meaning at the interface. This fact will be useful in our Eulerian treatment

because it enables us to interpolate to the appropriate jump conditions when the

interface is between grid points. We refer to this long tensor expression as J.

The first step when using the projection method is to omit the pressure term in

Equation D.1 and name the solution to this after one time step v∗:

v∗ − v

∆t
+
∂v

∂x
v =

1

ρ

(
∂

∂x
· τ
)

+ g (D.10)

This work uses a MAC grid where p and φ are stored on the integer grid points

and components of the velocity are stored on the “cell edges”. Figure D-1 illustrates

analagously in 2D which fields are stored where. Equation D.10 is equivalently three

scalar equations, each of which is solved numerically at different locations with respect

to the grid. For instance, the first scalar component is solved only at locations of the

form (i+ 1/2, j, k) for i, j, k integers.

As long as the interface is not crossed, we can apply the simplification

∂

∂x
· τ = µ

(
∂

∂x
· ∂
∂x

)
v
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thanks to incompressibility. So, for example, to compute u∗i+1/2,j,k, the Laplacian of

u at (i + 1/2, j, k) is the only second derivative operation needing to be taken. To

compute this, the point must be flanked by two “good” values of u in each of the

three directions. On the occasion that one or more of the needed u values are across

the interface, the values at the interface must be constructed and used to attain an

accurate Laplacian. In the next section we shall delve into the precise technique

behind constructing these better values. For now, we summarize the method:

1. Locate precisely where the interface lies by interpolating to the location where

φ = 0 between the grid points.

2. Since J is continuous, approximate the value of J at the interface via interpo-

lation.

3. Equate the resulting J to [µ∂v
∂x

] using one-sided derivatives that connect to an

unknown value at the interface.

4. Solve this for the value of the needed velocity component at the interface.

D.2 Introductory large deformation elasticity

While the shear stress in a fluid depends on the rate of deformation, shear stresses in

an elastic solid are a function of total deformation; that is, how much the solid object

has been deformed from its original configuration. For small deformations, the total

strain is measured using a displacement gradient. This regime is common knowledge

and simple, but unfortunately we are concerned with large deformations for which

the infinitessimal definition becomes an invalid strain measure.

We begin with the motion function χ which maps every starting position X in

the solid body B, to the location x that it has moved to t time units later (see Figure

D.2). In other words,

x = χ(X, t).
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B Bt

X x = !(X,t)

Reference Deformed

dX
dx = F dX

Figure D-2: An illustration of the motion function χ and the deformation gradient
F as they relate to a solid which deforms from the reference body B to a deformed
body Bt over the course of t time units.

For a given χ we define the deformation gradient:

F =
∂χ

∂X
. (D.11)

The deformation gradient describes local stretching and rotation. For a small material

element dX in the reference body, its image dx in the deformed body can be seen

through the chain rule to be equivalent to F dX. Incompressibility means det F = 1.

To isolate the stretching from the rotation, we perform the polar decomposition

enabling us to write F = VR for rotation tensor R and symmetric positive definite

tensor V known as the “left stretch”. This decomposition is unique and we may

quickly note that V =
√

FFT .

Strain locally measures relative changes in length and inter-filament angles. Thus,

a valid finite strain measure cannot involve R. It also must asymptote to the infinites-

simal definition of strain as F → 1. There are many functional forms that uphold

these restrictions, and consequently there are many valid ways of defining finite strain.

We choose the Hencky strain measure

EH = log(V)

because it is additive under simple extension/compression and also because the in-

212



compressibility condition forces trEH = 0 simplifying the upcoming steps. Let us

create a typical quadratic free energy based on the Hencky strain:

ψ = G
∣∣EH

∣∣2 .
Incompressible elasticity theory states that in order for such a material to upold

isotropy, frame indifference, and the second law of thermodynamics, the stress tensor

must relate to the free energy by

T = −p1 + 2 dev

(
∂ψ

∂B
B

)
for B = FFT = V2

where the pressure p is independent of the strain and will be calculated using projec-

tions. Applying the above law to our stated free energy gives the deviatoric stress

τ = 2GEH (D.12)

which maintains such a simple form because of our choice of the Hencky strain mea-

sure.

D.3 Eulerian solid mechanics

We now wish to extend the algorithm from Section D.1 to apply when one material

is an elastic incompressible solid. This notion is rare among solid algorithms because

the grid points are fixed. Solids, due to their dependence on strain, are normally

discretized in a Lagrangian vantagepoint where computation is performed on a lattice

that advects with the material therefore enabling a direct update for F each time step.

Throughout, we will treat the entire material as having a general constitutive law

τ = τ f + τ s (D.13)

where τ f takes the form in Eq D.3 and τ s follows Eq D.12. The shear modulus G is

zero in the fluid and the viscosity µ is zero in the solid, so the above form correctly
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segregates the flow.

We must develop an Eulerian method for constructing τ s. Define a vector field

ξ(x, t) by ξ(x, 0) = x = X and the evolution law

ξ̇ =
∂ξ

∂t
+
∂ξ

∂x
v = 0. (D.14)

Then at any time later, since the initial values of ξ are being advected through the

flow, we may claim that

X = χ−1(x, t) = ξ(x, t)

thus giving us a way of knowing where the material began that is now occupying

some location x. This provides us the needed link to the reference configuration and

enables us to determine F via

F−1 =
∂ξ

∂x
. (D.15)

The full ξ vector is computed and stored on each of the cell edges. Unlike the

velocity, every component of ξ must be stored at every cell edge since the divergence

of τ s does not simplify to Laplacians and requires a full F in all directions every time.

Away from an interface, (F−1)i,j,k can be found using centered differences, for

example the {23} component is:

(
F−1

23

)
i,j,k

=
(ξ2)i.j,k+1/2 − (ξ2)i,j,k−1/2

∆z
. (D.16)

Inverting gives Fi,j,k and consequently τ si,j,k.

D.4 The solid/fluid jump relation

In analogy with Section D.1, we note that ξ and, numerically, its gradient F are both

continuous. However, ∂
∂x
·τ s is discontinuous. Like before when a velocity was needed

at the interface to discretize the second derivative in Eq D.10, we must know ξ to

first-order at the interface to properly discretize this divergence.

First we must rederive Eq D.9 for the fluid/solid interface. Eqs D.6, D.7 and D.8

214



still apply, but the deviatoric stress τ must be treated in the form of Eq D.13. The

jump condition described in Eq D.8 now gives

[
(n, t1, t2)

T (−p1 + τ f + τ s)n
]

= 0. (D.17)

Expanding τ f and utilizing Eqs D.6 and D.7 to pull terms outside of [·]’s that do not

jump leaves the following three important conditions:

− [p] + 2[µ]nT
∂v

∂x
n + nT [τ s]n = 0 (D.18)

t1
T

[
µ
∂v

∂x

]
n + [µ]nT

∂v

∂x
t1 + t1

T [τ s]n = 0 (D.19)

t2
T

[
µ
∂v

∂x

]
n + [µ]nT

∂v

∂x
t2 + t2

T [τ s]n = 0 (D.20)

Eqs D.19 and D.20 enable us to write

(0, t1, t2)
T

[
µ
∂v

∂x

]
n = −[µ](0, t1, t2)

T

(
∂v

∂x

)T
n− (0, t1, t2)

T [τ s]n.

All other components of [µ∂v
∂x

] reference components of the velocity gradient that are

continuous across the interface. Therefore we have the full jump relationship

[
µ
∂v

∂x

]
+ (0, t1, t2)(0, t1, t2)

T [τ s]nnT

= [µ]
∂v

∂x
(0, t1, t2)(0, t1, t2)

T + [µ]nnT
∂v

∂x
nnT − [µ](0, t1, t2)(0, t1, t2)

T

(
∂v

∂x

)T
nnT

(D.21)

Since µ and G are never simultaneously nonzero, the jumps indicated on the left

side of the above simplify— for example if the solid is on the left of the interface,

[τ s] = τ sR−τ sL = −τ sL. Eq D.21 is identical to Eq D.9 except for the additional term

on the left side. The right side expression is what we called J in Section D.1.
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D.5 Process of the numerical solution

In the original fluid/fluid approach, Eq D.10 is solved at each cell edge in a standard

way except for when the computation uses velocities that come from locations with

differing signs of the level set function. When this occurs, an on-the-spot remedy

is avaliable; the jump relation J is interpolated to the interface and an improved

velocity component is generated which is in turn used in computing the Laplacian of

the velocity.

Our problem is much more complicated. In order to apply the jump relation,

we need τ s at the interface which in turn requires knowing ξ at the interface. To

maintain the added accuracy that invoking the jump condition gives us, we cannot

simply extrapolate the ξ field from inside the solid region to obtain ξ at an interface as

this would be as accurate as linearly interpolating the velocity field for the interfacial

velocity. To keep high accuracy, we must advect ξ near the interface using velocities

found via the jump relation. We could literally follow the interface as a Lagrangian

set, but this would mar the simplicity of our fully on-grid approach.

Instead, we will carry along two sets of data to be stored and updated each time

step on the cell edges. The first is the extended solid velocity field v̄ which has the

initial condition v̄ = v and the second is the extended solid reference field ξ̄ with

initial condition ξ̄ = ξ. As with their unbarred counterparts, the components of v̄ are

stored at specific edges and the full ξ̄ vector is kept at every cell edge. These fields

are smooth continuations of the v and ξ fields extended out from the solid region

with the key feature that they give first order accurate results when interpolated to

the interface. Since ξ is not necessary to update variables in the fluid zone, we need

only concern ourselves with the extrapolated field ξ̄ which is equivalent to ξ in the

solid.

Suppose we are at the nth time step and are given the fields ξ̄, v, v̄, and φ. We

shall now describe how to update all of these fields to the n+ 1th time step.

Step 1: Advect ξ̄, and φ to the next time step

Advect ξ̄ under the v̄ field numerically along the cell edges invoking local averages
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to obtain the needed additional velocity components. For example, at the location

(i+ 1/2, j, k), one would solve

ξ̄
n+1
i+1/2,j,k − ξ̄

n
i+1/2,j,k

∆t
+

(
∂ξ̄

∂x

)n
i+1/2,j,k

v̄ni+1/2,j,k = 0 (D.22)

where

v̄ni,j+1/2,k + v̄ni+1,j+1/2,k + v̄ni.j−1/2,k + v̄ni+1,j−1/2,k

4
≡ v̄ni+1/2,j,k (D.23)

w̄ni,j,k+1/2 + w̄ni+1,j,k+1/2 + w̄ni.j,k−1/2 + w̄ni+1,j,k−1/2

4
≡ w̄ni+1/2,j,k (D.24)

and the gradient of ξ̄ is computed with centered differences, for example

({
∂ξ̄

∂x

}
23

)
i+1/2,j,k

=
(ξ̄2)i+1/2,j,k+1 − (ξ̄2)i+1/2,j,k−1

2∆z
.

To update the level set function, we advect it under the actual velocity field; that is,

φn+1
i,j,k − φni,j,k

∆t
+ (uni,j,k, v

n
i,j,k, w

n
i,j,k) ·

(
∂φ

∂x

)n
i,j,k

= 0

where the velocity components above are obtained at (i, j, k) by simple averaging of

the two neighboring off-grid components. The gradient of φ is obtained using centered

differences. Since φ remains differentiable as long as it begins as such, there are no

qualms about performing centered differences across the interface. To reinitialize

the resulting φ field, we apply Eq D.5 until steady-state is reached using centered

differences for the gradient of φ.

Step 2: Update the v field

We now solve Eq D.10. This relies on our ability to compute the necessary com-

ponent of ∂
∂x
· τ at any cell edge.

Suppose we wish to compute u∗ at a fluid point (i+3/2, j, k). The first component

of ∂
∂x
· τ f is equivalent to

(
∂
∂x
· ∂
∂x

)
u so in most cases it is not numerically difficult to

find this Laplacian. But suppose we have the problem that one of the u values needed
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to compute the second x derivative, say at (i+1/2, j, k), lies across the interface. We

obtain this second derivative in a manner analagous to Kang et al.. We first locate

the point I = (i + 1/2 + α, j, k), 0 < α < 1, where the interface crosses the grid by

linearly interpolating φn to determine where φn = 0. Recall that Eq D.21 gives us

J. This quantity is continuous, so an approximate value of J11 at the interface can

be found by linearly interpolation; letting JI represent the interfacial value of J11,

compute JL = (J11)i+1/2,j,k and JR = (J11)i+3/2,j,k from the right side of Eq D.21 and

interpolate linearly to obtain a value for JI . Then equate the result to the discretized

left side of Eq D.21. That is,

µ
ui+3/2,j,k − uI
∆x(1− α)

−
(
(0, t1, t2)(0, t1, t2)

Tτ sInnT
)
11

= JI . (D.25)

Before this can be solved, we must determine τ sI . To accomplish this, we need a good

value for F−1
I on the solid side of the interface. For this sole reason, we have invented

the solid extended reference variable ξ̄.

As per Eq D.16, replacing ξ with ξ̄, solve for F−1
L = (F−1)nbi+1/2+αc,j,k and F−1

R =

(F−1)ndi+1/2+αe,j,k and then apply the simple interpolation

F−1
I − F−1

L

i+ 1/2 + α− bi+ 1/2 + αc
= F−1

R − F−1
L

to obtain F−1
I . From this result, we construct EH

I which is used to give τ sI .

Now, Eq D.25 may be solved for uI . With uI in hand, we may accomplish our

original objective here by writing

(
∂2u

∂x2

)n
i+3/2,j,k

=
1

∆x

(
uni+5/2,j,k − uni+3/2,j,k

∆x
−
uni+3/2,j,k − uI

∆x(1− α)

)
.

Before continuing this procedure anywhere else, we should store a quantity that

will be of interest in a future step. Define a field ux stored wherever u is stored and

let (ūx)
n
i+1/2,j,k = (uI − uL)/(α∆x).

We have described up to now how to obtain u∗ at a fluid point. Suppose that

we wish to compute u∗ at a solid point. Replacing ξ with ξ̄ in Eq D.16, we easily
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calculate F−1 and consequently τ s at all neighboring grid points and compute the

divergence using centered differences. Since ξ̄ is a solid extention that is differentiable

over the interface, no special routine must be employed near the interface.

Now, the algorithm up to this point can be applied at all grid points and all

directions yielding a v∗ field fit for the projection method. That is to say, following

Kang et al., we obtain the pressure p, by numerically solving

(
∂

∂x
· ∂
∂x

)
p =

ρ

∆t

∂

∂x
· v∗

Then v∗ and p are both used to produce the velocity field at time n+ 1 via

vn+1 − v∗

∆t
+

1

ρ

∂p

∂x
= 0

which is solved numerically in the same fashion as Kang et al..

Step 3: Update the field v̄.

To obtain v̄n+1, we must perform extrapolation. Since we have a level set function

on-hand and wish to extrapolate the solid region into the fluid, we utilize the PDE-

based extrapolation method described in Aslam [10].

From the last step, we have vn+1 throughout and the components of ∂v̄
∂x

at solid

points adjacent to the interface. We now fill in the remaining components of ∂v̄
∂x

in a fashion fit for solid extrapolation; consider the representative example of the

component ux at some arbitrary location (i+ 1/2, j, k):

(ux)i+1/2,j,k =

 0 if φi+1/2,j,k < 0

(uni+3/2,j,k − uni−1/2,j,k)/(2∆x) if φi+1/2,j,k > 0 and φi+1/2±1,j,k > 0.

(D.26)

We assume in the above that φ > 0 represents solid and φ < 0 fluid. At locations

where neither of the two above conditions apply, ux is already known from Step 2.

We perform an analagous procedure to construct every component of ∂v̄
∂x

.

To linearly extrapolate the velocity field from the solid region, we find a steady-
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state solution for

∂v̄n
∂t

+H(−φ)
∂v̄n
∂x

n = 0

where H is the Heavyside function. The variable v̄n is the directional derivative

v̄n =
∂v̄

∂x
n for n =

∂φ

∂x

/∣∣∣∣∂φ∂x
∣∣∣∣ .

The extrapolated velocity is then the steady-state solution to

∂v̄

∂t
+H(−φ)

(
∂v̄

∂x
n− v̄n

)
= 0.

To illustrate the numerical method for the above procedure, without loss of generality,

we perform the calculation for ū. First we compute nn+1
i+1/2,j,k using

(
∂φ

∂x

)n+1

i+1/2,j,k

= (1/2)

((
∂φ

∂x

)n+1

i,j,k

+

(
∂φ

∂x

)n+1

i+1,j,k

)

and iterate

(ūn)i+1/2,j,k := (ūn)i+1/2,j,k −∆tH(−φn+1
i+1/2,j,k)n

n+1
i+1/2,j,k ·

(
∂ūn
∂x

)
i+1/2,j,k

using centered differences for the gradient of ūn. Once ūn is sufficiently steady, we

solve for ū by iterating

ūi+1/2,j,k := ūi+1/2,j,k −∆tH(−φn+1
i+1/2,j,k)

(
nn+1
i+1/2,j,k ·

(
∂ū

∂x

)
i+1/2,j,k

− (ūn)i+1/2,j,k

)

using centered derivatives for the gradient of ū and the initial condition

ūi+1/2,j,k =

 0 if φi+1/2,j,k < 0

un+1
i+1/2,j,k if φi+1/2,j,k > 0.

(D.27)
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The steady solution of this is presicely ūn+1. This process is executed analgously to

obtain v̄n+1 and w̄n+1.
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Appendix E

Explicit VUMAT

The Fortran 90 code below is the material model (VUMAT) under explicit integration.

The internally called subroutines “matinv” and “spectral” are not included for the

sake of brevity. The “matinv” subroutine computes the inverse and determinant of

the inputted matrix, and “spectral” computes the eigenvalues and eigenvectors of the

inputted matrix. Both come from Numerical Recipes.

SUBROUTINE VUMAT (

! Read only (unmodifiable) variables :-

+ NBLOCK, NDIR, NSHR, NSTATEV, NFIELDV,

+ NPROPS, LANNEAL, STEP_TIME, TOTAL_TIME,

+ DT, CMNAME, COORD_MP, CHAR_LENGTH, PROPS,

+ DENSITY, STRAIN_INC, REL_SPIN_INC,

+ TEMP_OLD, STRETCH_OLD, DEFGRAD_OLD,

+ FIELD_OLD, STRESS_OLD, STATE_OLD,

+ ENER_INTERN_OLD, ENER_INELAS_OLD, TEMP_NEW,

+ STRETCH_NEW, DEFGRAD_NEW, FIELD_NEW,

! Read and ! write (modifiable) variables :

+ STRESS_NEW, STATE_NEW, ENER_INTERN_NEW,

+ ENER_INELAS_NEW)

INCLUDE ’VABA_PARAM.INC’

DIMENSION COORD_MP(NBLOCK,*),CHAR_LENGTH(NBLOCK), PROPS(NPROPS),
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+ DENSITY(NBLOCK), STRAIN_INC(NBLOCK,NDIR+NSHR),

+ REL_SPIN_INC(NBLOCK,NSHR), TEMP_OLD(NBLOCK),

+ STRETCH_OLD(NBLOCK,NDIR+NSHR),

+ DEFGRAD_OLD(NBLOCK,NDIR+NSHR+NSHR),

+ FIELD_OLD(NBLOCK,NFIELDV), STRESS_OLD(NBLOCK,NDIR+NSHR),

+ STATE_OLD(NBLOCK,NSTATEV), ENER_INTERN_OLD(NBLOCK),

+ ENER_INELAS_OLD(NBLOCK), TEMP_NEW(NBLOCK),

+ STRETCH_NEW(NBLOCK,NDIR+NSHR),

+ DEFGRAD_NEW(NBLOCK,NDIR+NSHR+NSHR),

+ FIELD_NEW(NBLOCK,NFIELDV), STRESS_NEW(NBLOCK,NDIR+NSHR),

+ STATE_NEW(NBLOCK,NSTATEV), ENER_INTERN_NEW(NBLOCK),

+ ENER_INELAS_NEW(NBLOCK)

character*8 CMNAME

integer km

real*8 F_t(3,3),F_tau(3,3),U_tau(3,3),U_inv(3,3), R_tau(3,3)

real*8 T_tau(3,3), Ee(3,3), det_F, E_tau(3,3), Re_tau(3,3)

real*8 Fp_t(3,3), Fp_tau(3,3), Fe(3,3), eigvecs(3,3), eigvals(3)

real*8 nu_p, p, tau, I_1(3,3),Dp(3,3),Te_0(3,3),stretches(3,3)

real*8 Fp_inv(3,3), Ee0(3,3), tr_Ee, mus, mu2, diam, I0, dtmp

real*8 det_Fe, det_Fp_tau, zero_m(3,3), snake, z, Ue_inv(3,3)

real*8 mu, kappa, dens_p, excess, B, Te_sph, det_U

real*8 D(3,3), F_inv(3,3)

I_1 = reshape((/1, 0, 0, 0, 1, 0, 0, 0, 1 /), (/3,3/))

Zero_m = reshape((/0, 0, 0, 0, 0, 0, 0, 0, 0 /), (/3,3/))

z=0.d0

! Get properties defined in input file

B = props(01)

mus = props(02)

I0 = props(03)

Diam = props(04)

mu2 = props(05)

dens_p = props(06)

mus = dtan(mus*3.14159265358979/180.)

mu2 = dtan(mu2*3.14159265358979/180.)
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snake = 1.d0 / mu2**2

! Main loop over the block of material pts supplied by ABAQUS

do km = 1,NBLOCK

!Copy the old and new Deformation gradients into F_T and F_tau

!respectively

F_T(1,1) = DEFGRAD_OLD(KM,1)

F_T(2,2) = DEFGRAD_OLD(KM,2)

F_T(3,3) = DEFGRAD_OLD(KM,3)

F_T(1,2) = DEFGRAD_OLD(KM,4)

F_tau(1,1) = DEFGRAD_NEW(KM,1)

F_tau(2,2) = DEFGRAD_NEW(KM,2)

F_tau(3,3) = DEFGRAD_NEW(KM,3)

F_tau(1,2) = DEFGRAD_NEW(KM,4)

U_tau(1,1) = STRETCH_NEW(KM,1)

U_tau(2,2) = STRETCH_NEW(KM,2)

U_tau(3,3) = STRETCH_NEW(KM,3)

U_tau(1,2) = STRETCH_NEW(KM,4)

if (NSHR .eq. 1) then

F_T(2,3) = ZERO

F_T(3,1) = ZERO

F_T(2,1) = DEFGRAD_OLD(KM,5)

F_T(3,2) = ZERO

F_T(1,3) = ZERO

F_tau(2,3) = ZERO

F_tau(3,1) = ZERO

F_tau(2,1) = DEFGRAD_NEW(KM,5)

F_tau(3,2) = ZERO

F_tau(1,3) = ZERO

U_tau(2,3) = ZERO

U_tau(3,1) = ZERO
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U_tau(2,1) = U_tau(1,2)

U_tau(3,2) = ZERO

U_tau(1,3) = ZERO

else

F_T(2,3) = DEFGRAD_OLD(KM,5)

F_T(3,1) = DEFGRAD_OLD(KM,6)

F_T(2,1) = DEFGRAD_OLD(KM,7)

F_T(3,2) = DEFGRAD_OLD(KM,8)

F_T(1,3) = DEFGRAD_OLD(KM,9)

F_tau(2,3) = DEFGRAD_NEW(KM,5)

F_tau(3,1) = DEFGRAD_NEW(KM,6)

F_tau(2,1) = DEFGRAD_NEW(KM,7)

F_tau(3,2) = DEFGRAD_NEW(KM,8)

F_tau(1,3) = DEFGRAD_NEW(KM,9)

U_tau(2,3) = STRETCH_NEW(KM,5)

U_tau(3,1) = STRETCH_NEW(KM,6)

U_tau(2,1) = U_tau(1,2)

U_tau(3,2) = U_tau(2,3)

U_tau(1,3) = U_tau(3,1)

endif

if(total_time.eq.0 .and. step_time.eq.0) then

! If first dummy step: Initialize state vars

State_old(km,1:9) = (/1, 0, 0, 0, 1, 0, 0, 0, 1 /) ! Fp

State_old(km,10:18) = (/0, 0, 0, 0, 0, 0, 0, 0, 0 /) ! M_0

State_old(km,19) = 0.d0 ! Sph Mandel

call SPECTRAL(matmul(transpose(F_tau), F_tau), eigvals, eigvecs)

E_tau = matmul(matmul(eigvecs,

+ 0.5d0*reshape((/ dlog(eigvals(1)),z,z,z,dlog(eigvals(2)),z,z,z,

+ dlog(eigvals(3)) /), (/3, 3/))), transpose(eigvecs))
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! Elastic repsonse in dummy step:

tr_Ee = E_tau(1,1)+E_tau(2,2)+E_tau(3,3)

Ee0 = E_tau - (tr_Ee/3.d0) * I_1

if(tr_Ee .lt. z)then

kappa = B*dsqrt(-tr_Ee)*(1.d0 +

+ 0.5d0*sum(Ee0*Ee0)/(snake*(tr_Ee**2)))

mu = B*dsqrt(-tr_Ee)/snake

else

kappa=z

mu=z

end if

T_tau = 2.d0 * mu * Ee0 + kappa * tr_Ee * I_1

state_old(km,20:28) = reshape(eigvecs,(/9/))

state_old(km,29) = 0.d0

state_old(km,30) = 0.d0

else

det_F=F_tau(1,1)*(F_tau(2,2)*F_tau(3,3)-F_tau(3,2)*F_tau(2,3))

+ -F_tau(2,1)*(F_tau(1,2)*F_tau(3,3)-F_tau(3,2)*F_tau(1,3))

+ +F_tau(3,1)*(F_tau(1,2)*F_tau(2,3)-F_tau(2,2)*F_tau(1,3))

! Get state vars from last step

Fp_t = reshape(state_old(km,1:9), (/3, 3/))

Te_0 = reshape(state_old(km,10:18), (/3, 3/)) ! Dev Mandel

Te_sph = state_old(km,19) ! Sphere Mandel

eigvecs = reshape(state_old(km, 20:28), (/3, 3/)) ! Evecs Ce

p = - Te_sph

tau = dsqrt(0.5d0*sum(Te_0*Te_0))

excess = tau - mus*p - 1.d-3

state_new(km, 31) = 0.d0

state_new(km,33) = -10.d0
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if(excess .gt. 0.d0)then

state_new(km, 31) = 1.d0

nu_p = (I0/DIAM)*DSQRT(p / dens_p)*(excess)

+ /(mu2*p - tau)

state_new(km,33) = dlog(nu_p)

Dp = nu_p * Te_0/(2.d0*tau)

stretches = matmul(matmul(transpose(eigvecs), Dp), eigvecs)

Fp_tau = matmul(matmul(

+ matmul(eigvecs, reshape((/

+ dexp(stretches(1,1)*dt), z, z,

+ z, dexp(stretches(2,2)*dt), z,

+ z, z, dexp(stretches(3,3)*dt) /), (/3, 3/))),

+ transpose(eigvecs)), Fp_t)

det_Fp_tau = Fp_tau(1,1)*(Fp_tau(2,2)*Fp_tau(3,3)-

+ Fp_tau(3,2)*Fp_tau(2,3))-Fp_tau(2,1)*(Fp_tau(1,2)*Fp_tau(3,3)

+ -Fp_tau(3,2)*Fp_tau(1,3)) +Fp_tau(3,1)*(Fp_tau(1,2)*

+ Fp_tau(2,3)-Fp_tau(2,2)*Fp_tau(1,3))

Fp_tau = Fp_tau * (det_Fp_tau)**(-1.d0/3.d0)

else

nu_p = 0.d0

Dp = zero_m

Fp_tau = Fp_t

det_Fp_tau = Fp_tau(1,1)*(Fp_tau(2,2)*Fp_tau(3,3)-

+ Fp_tau(3,2)*Fp_tau(2,3))-Fp_tau(2,1)*(Fp_tau(1,2)*Fp_tau(3,3)

+ -Fp_tau(3,2)*Fp_tau(1,3)) +Fp_tau(3,1)*(Fp_tau(1,2)*

+ Fp_tau(2,3)-Fp_tau(2,2)*Fp_tau(1,3))

end if

call matinv(Fp_tau, Fp_inv, dtmp)
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! Calculate Fe:

Fe=matmul(F_tau, Fp_inv) ! This is off-rotated from Fe

call SPECTRAL(matmul(transpose(Fe), Fe), eigvals, eigvecs)

Ee = matmul(matmul(eigvecs,

+ 0.5d0*reshape((/dlog(eigvals(1)),z,z,z,dlog(eigvals(2)),z,z,z,

+ dlog(eigvals(3)) /), (/3, 3/))), transpose(eigvecs))

tr_Ee = Ee(1,1)+Ee(2,2)+Ee(3,3)

Ee0 = Ee - (tr_Ee/3.d0) * I_1

tr_Ee = dlog(det_F)

if(tr_Ee .lt. z)then

kappa = B*dsqrt(-tr_Ee)*(1.d0 +

+ 0.5d0*sum(Ee0*Ee0)/(snake*(tr_Ee**2)))

mu = B*dsqrt(-tr_Ee)/snake

state_new(km,32)=0.

else

kappa=z

mu=z

state_new(km,32)=1.

end if

Te_sph = kappa * tr_Ee

Te_0 = 2.d0 * mu * Ee0

Ue_inv = matmul(matmul(eigvecs,

+ reshape((/ eigvals(1)**(-.5d0),z,z,z,eigvals(2)**(-.5d0),z,z,z,

+ eigvals(3)**(-.5d0) /), (/3, 3/))), transpose(eigvecs))

Re_tau = matmul(matmul(F_tau, Fp_inv), Ue_inv)
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T_tau = matmul(Re_tau, matmul(Te_0+I_1*Te_sph,

+ transpose(Re_tau)))/det_F

state_new(km,10:18) = reshape(Te_0, (/9/)) ! Dev Mandel

state_new(km,19) = Te_sph ! Sph Mandel

state_new(km,1:9) = reshape(Fp_tau, (/9/))

state_new(km, 20:28) = reshape(eigvecs, (/9/)) ! Eigvecs of Mandel

state_new(km, 29) = nu_p

state_new(km, 30) = tau/(dabs(p) + 1.d-4) ! mu

end if ! if(total_time.eq.0 .and. step_time.eq.0)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Rotate Cauchy stress to ABAQUS stress

call MATINV(U_tau, U_inv, det_U)

R_tau = matmul(F_tau, U_inv)

T_tau = matmul(transpose(R_tau),matmul(T_tau,R_tau))

! Update ABAQUS stresses

do i = 1,NDIR

STRESS_NEW(KM,i) = T_tau(i,i)

end do

if (NSHR .ne. 0) then

STRESS_NEW(KM,NDIR+1) = T_tau(1,2)

if (NSHR .ne. 1) then

STRESS_NEW(KM,NDIR+2) = T_tau(2,3)

if (NSHR .ne. 2) then

STRESS_NEW(KM,NDIR+3) = T_tau(1,3)
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endif

endif

endif

! Specific internal energy

stress_power = ONE_HALF * (

+ ( stress_old(km,1)+stress_new(km,1) )*strain_inc(km,1) +

+ ( stress_old(km,2)+stress_new(km,2) )*strain_inc(km,2) +

+ ( stress_old(km,3)+stress_new(km,3) )*strain_inc(km,3))

if(nshr .eq. 1) then

stress_power = stress_power + one_half*(

+ TWO*(stress_old(km,4)+stress_new(km,4))*strain_inc(km,4) )

else

stress_power = stress_power + one_half*(

+ TWO*(stress_old(km,4)+stress_new(km,4))*strain_inc(km,4) +

+ TWO*(stress_old(km,5)+stress_new(km,5))*strain_inc(km,5) +

+ TWO*(stress_old(km,6)+stress_new(km,6))*strain_inc(km,6) )

endif

ener_intern_new(km) = ener_intern_old(km)

+ + stress_power/density(km)

end do ! loop over km

return

end
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Appendix F

Implicit VUMAT

The Fortran 90 code below is the material model (VUMAT) under implicit integra-

tion. The internally called subroutines “matinv” and “spectral” are not included for

the sake of brevity. The “matinv” subroutine computes the inverse and determinant

of the inputted matrix, and “spectral” computes the eigenvalues and eigenvectors of

the inputted matrix. Both come from Numerical Recipes.

SUBROUTINE VUMAT (

! Read only (unmodifiable) variables :-

+ NBLOCK, NDIR, NSHR, NSTATEV, NFIELDV,

+ NPROPS, LANNEAL, STEP_TIME, TOTAL_TIME,

+ DT, CMNAME, COORD_MP, CHAR_LENGTH, PROPS,

+ DENSITY, STRAIN_INC, REL_SPIN_INC,

+ TEMP_OLD, STRETCH_OLD, DEFGRAD_OLD,

+ FIELD_OLD, STRESS_OLD, STATE_OLD,

+ ENER_INTERN_OLD, ENER_INELAS_OLD, TEMP_NEW,

+ STRETCH_NEW, DEFGRAD_NEW, FIELD_NEW,

! Read and write (modifiable) variables :-

+ STRESS_NEW, STATE_NEW, ENER_INTERN_NEW,

+ ENER_INELAS_NEW)

INCLUDE ’VABA_PARAM.INC’

DIMENSION COORD_MP(NBLOCK,*),CHAR_LENGTH(NBLOCK), PROPS(NPROPS),
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+ DENSITY(NBLOCK), STRAIN_INC(NBLOCK,NDIR+NSHR),

+ REL_SPIN_INC(NBLOCK,NSHR), TEMP_OLD(NBLOCK),

+ STRETCH_OLD(NBLOCK,NDIR+NSHR),

+ DEFGRAD_OLD(NBLOCK,NDIR+NSHR+NSHR),

+ FIELD_OLD(NBLOCK,NFIELDV), STRESS_OLD(NBLOCK,NDIR+NSHR),

+ STATE_OLD(NBLOCK,NSTATEV), ENER_INTERN_OLD(NBLOCK),

+ ENER_INELAS_OLD(NBLOCK), TEMP_NEW(NBLOCK),

+ STRETCH_NEW(NBLOCK,NDIR+NSHR),

+ DEFGRAD_NEW(NBLOCK,NDIR+NSHR+NSHR),

+ FIELD_NEW(NBLOCK,NFIELDV), STRESS_NEW(NBLOCK,NDIR+NSHR),

+ STATE_NEW(NBLOCK,NSTATEV), ENER_INTERN_NEW(NBLOCK),

+ ENER_INELAS_NEW(NBLOCK)

character*8 CMNAME

integer km, n

real*8 F_t(3,3),F_tau(3,3),U_tau(3,3),U_inv(3,3),R_tau(3,3)

real*8 T_tau(3,3), Ee(3,3), det_F, E_tau(3,3), Fe_tr(3,3)

real*8 Re_tr(3,3), Ee_tr(3,3), trace_Ee_tr, Ee_tr_0(3,3)

real*8 mag_Ee_tr_0, delta, G, C, dp, J(2,2), Jinv(2,2)

real*8 Fp_t(3,3), Fp_tau(3,3), Fe(3,3), eigvecs(3,3), eigvals(3)

real*8 p_old, I_1(3,3), dp_old, Te_0(3,3), stretches(3,3)

real*8 Ee0(3,3), tr_Ee, mus, mu2, diam, I0, dtmp, det_U

real*8 zero_m(3,3), snake, z, Fp_inv(3,3), det_Fp_tau

real*8 mu, kappa, dens_p, tau, Te_sph, x_prev, y_prev

real*8 f1, f2, coh, x, y, B

I_1 = reshape((/1, 0, 0, 0, 1, 0, 0, 0, 1 /), (/3,3/))

Zero_m = reshape((/0, 0, 0, 0, 0, 0, 0, 0, 0 /), (/3,3/))

z=0.d0

! Get properties defined in input file

B = props(01)

mus = props(02)

I0 = props(03)

Diam = props(04)

mu2 = props(05)

dens_p = props(06)
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mus=dtan(mus*3.141459265/180)

mu2=dtan(mu2*3.141459265/180)

snake = 1.d0 /(mu2**2)

coh = 1.d-5

! Main loop over the block of material pts supplied by ABAQUS

do km = 1,NBLOCK

!Copy the old and new Deformation gradients into F_T and F_tau

!respectively

!

F_T(1,1) = DEFGRAD_OLD(KM,1)

F_T(2,2) = DEFGRAD_OLD(KM,2)

F_T(3,3) = DEFGRAD_OLD(KM,3)

F_T(1,2) = DEFGRAD_OLD(KM,4)

F_tau(1,1) = DEFGRAD_NEW(KM,1)

F_tau(2,2) = DEFGRAD_NEW(KM,2)

F_tau(3,3) = DEFGRAD_NEW(KM,3)

F_tau(1,2) = DEFGRAD_NEW(KM,4)

U_tau(1,1) = STRETCH_NEW(KM,1)

U_tau(2,2) = STRETCH_NEW(KM,2)

U_tau(3,3) = STRETCH_NEW(KM,3)

U_tau(1,2) = STRETCH_NEW(KM,4)

if (NSHR .eq. 1) then

F_T(2,3) = ZERO

F_T(3,1) = ZERO

F_T(2,1) = DEFGRAD_OLD(KM,5)

F_T(3,2) = ZERO

F_T(1,3) = ZERO

F_tau(2,3) = ZERO

F_tau(3,1) = ZERO

F_tau(2,1) = DEFGRAD_NEW(KM,5)
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F_tau(3,2) = ZERO

F_tau(1,3) = ZERO

U_tau(2,3) = ZERO

U_tau(3,1) = ZERO

U_tau(2,1) = U_tau(1,2)

U_tau(3,2) = ZERO

U_tau(1,3) = ZERO

else

F_T(2,3) = DEFGRAD_OLD(KM,5)

F_T(3,1) = DEFGRAD_OLD(KM,6)

F_T(2,1) = DEFGRAD_OLD(KM,7)

F_T(3,2) = DEFGRAD_OLD(KM,8)

F_T(1,3) = DEFGRAD_OLD(KM,9)

F_tau(2,3) = DEFGRAD_NEW(KM,5)

F_tau(3,1) = DEFGRAD_NEW(KM,6)

F_tau(2,1) = DEFGRAD_NEW(KM,7)

F_tau(3,2) = DEFGRAD_NEW(KM,8)

F_tau(1,3) = DEFGRAD_NEW(KM,9)

U_tau(2,3) = STRETCH_NEW(KM,5)

U_tau(3,1) = STRETCH_NEW(KM,6)

U_tau(2,1) = U_tau(1,2)

U_tau(3,2) = U_tau(2,3)

U_tau(1,3) = U_tau(3,1)

endif

if(total_time.eq.0 .and. step_time.eq.0) then

! If first dummy step: Initialize state vars

State_old(km,1:9) = (/1, 0, 0, 0, 1, 0, 0, 0, 1 /) ! Fp

State_old(km,10:18) = (/0, 0, 0, 0, 0, 0, 0, 0, 0 /) ! M_0

State_old(km,19) = 0.d0 ! Sphere part of Mandel

call SPECTRAL(matmul(transpose(F_tau),F_tau),eigvals,eigvecs)
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E_tau = matmul(matmul(eigvecs,

+ 0.5d0*reshape((/ dlog(eigvals(1)),z,z,z,dlog(eigvals(2)),z,z,z,

+ dlog(eigvals(3)) /), (/3, 3/))), transpose(eigvecs))

! Elastic repsonse in dummy step:

tr_Ee = E_tau(1,1)+E_tau(2,2)+E_tau(3,3)

Ee0 = E_tau - (tr_Ee/3.d0) * I_1

if(tr_Ee . lt . 0.d0) then

kappa = B*dsqrt(-tr_Ee)*(1 +

+ one_half*sum(Ee0*Ee0)/(snake*tr_Ee**2))

mu = dsqrt(-tr_Ee)*B/snake

else

kappa = 0.d0

mu = 0.d0

end if

T_tau = 2.d0 * mu * Ee0 + kappa * tr_Ee * I_1

state_old(km,20:28) = reshape(eigvecs,(/9/))

state_old(km,29) = 0.d0 ! dp

state_old(km,30) = 0.d0 ! excess

else

! Get state vars from last step

Fp_t = reshape(state_old(km,1:9), (/3, 3/))

Te_0 = reshape(state_old(km,10:18), (/3, 3/)) ! Dev Mandel

Te_sph = state_old(km,19) ! Sph Mandel

eigvecs = reshape(state_old(km, 20:28), (/3, 3/)) ! Evecs Ce

dp_old = state_old(km,29) ! Old plastic shearing rate

p_old = - Te_sph

call matinv(Fp_t, Fp_inv, dtmp)
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Fe_tr = matmul(F_tau, Fp_inv)

call spectral(matmul(transpose(Fe_tr),Fe_tr),

+ eigvals, eigvecs)

Re_tr = matmul(Fe_tr,

+ matmul(matmul(eigvecs,

+ reshape((/eigvals(1)**-0.5d0,z,z,z,eigvals(2)**-0.5d0,z,z,z,

+ eigvals(3)**-0.5d0 /), (/3, 3/))), transpose(eigvecs)))

Ee_tr = matmul(matmul(eigvecs,

+ 0.5d0*reshape((/dlog(eigvals(1)),z,z,z,dlog(eigvals(2)),z,z,z,

+ dlog(eigvals(3)) /), (/3, 3/))), transpose(eigvecs))

trace_Ee_tr = Ee_tr(1,1) + Ee_tr(2,2) + Ee_tr(3,3)

Ee_tr_0 = Ee_tr - (trace_Ee_tr/3.d0)*I_1

mag_Ee_tr_0 = dsqrt(sum(Ee_tr_0*Ee_tr_0))

if(trace_Ee_tr . ge. 0.d0)then

dp = 0.d0

Fp_tau = Fp_t

Te_0 = zero_m

Te_sph = 0.d0

else

delta = -trace_Ee_tr

if(dsqrt(2.d0)*mag_Ee_tr_0/snake - mus*delta*(1.d0+mag_Ee_tr_0**2/

+ (2.d0*snake*delta**2)) - coh/(B*dsqrt(delta)) .lt. 0.d0) then

dp = 0.d0

Fp_tau = Fp_t

Te_sph =-B*delta**(1.5d0)*(1.d0+

+ mag_Ee_tr_0**2/(2.*snake*delta**2))

Te_0 = (B*2.*dsqrt(delta)/snake)*Ee_tr_0

else
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! Newton-Raphson iteration

G = B*dsqrt(delta)/snake

C = I0/(diam*dsqrt(dens_p))

if(dp_old .lt. 1.d-9)then

x = dsqrt(dp_old) + 1.d0

else

x=dsqrt(dp_old)

end if

y = dsqrt(dsqrt(p_old))

f1 = mu2*(y**4)*(x**2) + C*mus*y**6 -

+ (dsqrt(2.d0)*G*mag_Ee_tr_0 - G*dt*x**2 - coh)*(x**2+C*y**2)

f2 = -y**4 + B*delta**(1.5d0)*(1.d0+((mag_Ee_tr_0-

+ dt*(x**2)/dsqrt(2.d0))**2)/(2.*snake*delta**2))

x_prev = 10.d10

y_prev = 10.d10

n = 1

do while (dabs((x-x_prev)/x)+ dabs((y-y_prev)/y) .gt. 1.d-4)

x_prev = x

y_prev = y

J(1,1) = 2*x*(coh + 2*dt*G*x**2 +

+ C*dt*G*y**2 + mu2*y**4 - dsqrt(2.d0)*G*mag_Ee_tr_0)

J(1,2) = 4*mu2*(x**2)*(y**3) + 6*C*mus*y**5

+ + 2*C*y*(coh + dt*G*x**2 - dsqrt(2.d0)*G*mag_Ee_tr_0)

J(2,1) = -dsqrt(2.d0/delta)*(B*dt*x/snake)*
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+ (-(dt*x**2)/dsqrt(2.d0) + mag_Ee_tr_0)

J(2,2) = -4*y**3

dtmp = J(1,1)*J(2,2)-J(1,2)*J(2,1)

Jinv(1,1) = J(2,2)

Jinv(1,2) = -J(1,2)

Jinv(2,1) = -J(2,1)

Jinv(2,2) = J(1,1)

Jinv = Jinv/dtmp

x = x - (Jinv(1,1)*f1 + Jinv(1,2)*f2)

y = y - (Jinv(2,1)*f1 + Jinv(2,2)*f2)

f1 = mu2*(y**4)*(x**2) + C*mus*y**6 -

+ (dsqrt(2.d0)*G*mag_Ee_tr_0 - G*dt*x**2 - coh)*(x**2 + C*y**2)

f2 = -y**4 + B*delta**(1.5d0)*(1.d0+((mag_Ee_tr_0-

+ dt*(x**2)/dsqrt(2.d0))**2)/(2.*snake*delta**2))

if(n .gt. 1.d10)then

stop

endif

n = n+1

end do

dp = x**2

Te_sph = - y**4

Te_0= 2.*G*Ee_tr_0-G*dt*dsqrt(2.d0)*dp*Ee_tr_0/mag_Ee_tr_0

tau = dsqrt(sum(Te_0*Te_0)/2.d0)

stretches = matmul(matmul(transpose(eigvecs),

+ (1.d0/dsqrt(2.d0))*dp*Ee_tr_0/mag_Ee_tr_0), eigvecs)
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Fp_tau = matmul(matmul(

+ matmul(eigvecs, reshape((/

+ dexp(stretches(1,1)*dt), z, z,

+ z, dexp(stretches(2,2)*dt), z,

+ z, z, dexp(stretches(3,3)*dt) /), (/3, 3/))),

+ transpose(eigvecs)), Fp_t)

det_Fp_tau = Fp_tau(1,1)*(Fp_tau(2,2)*Fp_tau(3,3)-

+ Fp_tau(3,2)*Fp_tau(2,3))-Fp_tau(2,1)*(Fp_tau(1,2)*Fp_tau(3,3)

+ -Fp_tau(3,2)*Fp_tau(1,3)) +Fp_tau(3,1)*(Fp_tau(1,2)*

+ Fp_tau(2,3)-Fp_tau(2,2)*Fp_tau(1,3))

Fp_tau = Fp_tau/det_fp_tau**(1.d0/3.d0)

end if

end if

det_F = F_tau(1,1)*(F_tau(2,2)*F_tau(3,3)-

+ F_tau(3,2)*F_tau(2,3))-F_tau(2,1)*(F_tau(1,2)*F_tau(3,3)

+ -F_tau(3,2)*F_tau(1,3)) +F_tau(3,1)*(F_tau(1,2)*

+ F_tau(2,3)-F_tau(2,2)*F_tau(1,3))

T_tau = matmul(Re_tr, matmul(Te_0+I_1*Te_sph,

+ transpose(Re_tr)))/det_F

state_new(km,10:18) = reshape(Te_0, (/9/)) ! M_0

state_new(km,19) = Te_sph ! Sph Mandel

state_new(km,1:9) = reshape(Fp_tau, (/9/))

state_new(km, 20:28) = reshape(eigvecs, (/9/)) ! Evecs M

state_new(km, 29) = dp ! New shearing rate

state_new(km, 30) = -tau/Te_sph ! mu

state_new(km,33) = dlog(dp+3.4d-4)

end if ! if(total_time.eq.0 .and. step_time.eq.0)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Rotate Cauchy stress to ABAQUS stress

call MATINV(U_tau, U_inv, det_U)

241



R_tau = matmul(F_tau, U_inv)

T_tau = matmul(transpose(R_tau),matmul(T_tau,R_tau))

! Update ABAQUS stresses

do i = 1,NDIR

STRESS_NEW(KM,i) = T_tau(i,i)

end do

if (NSHR .ne. 0) then

STRESS_NEW(KM,NDIR+1) = T_tau(1,2)

if (NSHR .ne. 1) then

STRESS_NEW(KM,NDIR+2) = T_tau(2,3)

if (NSHR .ne. 2) then

STRESS_NEW(KM,NDIR+3) = T_tau(1,3)

endif

endif

endif

! Specific internal energy

stress_power = ONE_HALF * (

+ ( stress_old(km,1)+stress_new(km,1) )*strain_inc(km,1) +

+ ( stress_old(km,2)+stress_new(km,2) )*strain_inc(km,2) +

+ ( stress_old(km,3)+stress_new(km,3) )*strain_inc(km,3))

if(nshr .eq. 1) then

stress_power = stress_power + one_half*(

+ TWO*(stress_old(km,4)+stress_new(km,4))*strain_inc(km,4) )

else
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stress_power = stress_power + one_half*(

+ TWO*(stress_old(km,4)+stress_new(km,4))*strain_inc(km,4) +

+ TWO*(stress_old(km,5)+stress_new(km,5))*strain_inc(km,5) +

+ TWO*(stress_old(km,6)+stress_new(km,6))*strain_inc(km,6) )

endif

ener_intern_new(km) = ener_intern_old(km)

+ + stress_power/density(km)

end do ! loop over km

return

end
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