
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-070
CBCL-276

November 26, 2008

Mathematics of the Neural Response
Steve Smale, Lorenzo Rosasco, Jake Bouvrie,
Andrea Caponnetto, and Tomaso Poggio

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4408249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

November 17, 2008

CBCL Paper
November 17, 2008

Mathematics of the Neural Response

Steve Smale‡, Lorenzo Rosasco†], Jake Bouvrie†, Andrea Caponnetto�, Tomaso
Poggio†

‡Toyota Technological Institute at Chicago and University of California, Berkeley
�Department of Mathematics, City University of Hong Kong

]DISI, Università di Genova
†CBCL, McGovern Institute, Artificial Intelligence Lab, BCS, MIT

Abstract

We propose a natural image representation, the neural response, motivated by the
neuroscience of the visual cortex. The inner product defined by the neural response
leads to a similarity measure between functions which we call the derived kernel. Based
on a hierarchical architecture, we give a recursive definition of the neural response and
associated derived kernel. The derived kernel can be used in a variety of application
domains such as classification of images, strings of text and genomics data.

1 Introduction

The goal of this paper is to define a distance function on a space of images which reflects
how humans see the images. The distance between two images corresponds to how similar
they appear to an observer. Most learning algorithms critically depend on a suitably defined
similarity measure, though the theory of learning so far provides no general rule to choose
such a similarity measure [19, 4, 11, 5]. In practice, problem specific metrics are often used
[16]. In this paper we propose a natural image representation, the neural response, motivated
by the neuroscience of the visual cortex. The derived kernel is the inner product defined by
the neural response and can be used as a similarity measure. The definition of neural response
and derived kernel is based on a recursion which defines a hierarchy of local kernels, and can
be interpreted as a multi-layer architecture. At each layer (local) derived kernels are built
by recursively pooling over previously defined local kernels. Here, pooling is accomplished by
taking a max over a set of transformations. This model, while purely mathematical, has a
key semantic component: a system of templates which link the mathematical development to
real world problems. In the case of images, derived kernels consider sub-patches of images at
intermediate layers and whole images at the last layer. Similarly, in the case of derived kernels
defined on strings, kernels at some m-th layer act on sub-strings. From a learning theory
perspective the construction of the derived kernel amounts to an unsupervised learning step
and the kernel can ultimately be used to solve supervised as well as unsupervised tasks.

The work in this paper sets the stage for further developments towards a theory of vi-
sion. One might consider especially two complementary directions, one empirical, the other
mathematical. The empirical requires numerical experiments starting with databases com-
ing from real world situations. The goal is to test (with various algorithmic parameters)
how the similarity derived here is consistent with real world experience. In vision, to what
extent does the mathematical similarity correspond to similarity in the way humans view
images? In Section 6 we show the results of preliminary work towards this end. On the
purely mathematical side, the problem is to examine how closely the output response char-
acterizes the input. In other words, does the neural response discriminate well? In the case
of strings, it is shown in Theorem 4.1 that if the architecture is rich enough and there are
sufficient templates (“neurons”) then indeed the answer is a sharp “Yes” (up-to reversal and
“checkerboard” patterns). We show under quite mild assumptions that the neural response
is invariant under rotations, and for strings, is reversal invariant. In Section 5 we suggest
that the Shannon entropy is a promising tool for obtaining a systematic picture.

Our work seeks to establish a theoretical foundation for recent models designed on the
basis of anatomical and physiological data describing the primate visual cortex. These models
are beginning to quantitatively account for a host of novel data and to provide human-level
performance on rapid categorization of complex imagery (see [13, 15, 14] and references
therein). These efforts are the most recent examples of a family of biologically-inspired
architectures, see for example [7, 10, 20], and related computer vision systems [8, 18]. The
hierarchical organization of such models – and of the cortex itself – remains a challenge for
learning theory as most “learning algorithms”, as described in [9], correspond to one-layer

2

architectures. In this paper, we attempt to formalize the basic hierarchy of computations
underlying information processing in the visual cortex. Our hope is to ultimately achieve a
theory that may explain why such models work as well as they do, and give computational
reasons for the hierarchical organization of the cortex.

Some preliminary results appeared in [17], whereas related developments can be found in
[2]. In the Appendix we establish detailed connections with the model in [15] and identify a
key difference with the model developed in this paper.

The paper is organized as follows. We begin by introducing the definitions of the neural
response and derived kernel in Section 2. We study invariance properties of the neural
response in Section 3 and analyze discrimination properties in a one-dimensional setting
in Section 4. In Section 5 we suggest that Shannon entropy can be used to understand
the discrimination properties of the neural response. Finally, we conclude with preliminary
experiments in Section 6.

2 Derived Kernel and Neural Response

The derived kernel can be thought of as a similarity concept on spaces of functions on patches
and can be defined through a recursion of kernels acting on spaces of functions on sub-patches.
Before giving a formal description we present a few preliminary concepts.

2.1 Preliminaries

The ingredients needed to define the derived kernel consist of:

• an architecture defined by a finite number of nested patches (for example subdomains
of the square Sq ⊂ R2),

• a set of transformations from a patch to the next larger one,

• a suitable family of function spaces defined on each patch,

• a set of templates which connect the mathematical model to a real world setting.

We first give the definition of the derived kernel in the case of an architecture composed
of three layers of patches u, v and Sq in R2, with u ⊂ v ⊂ Sq, that we assume to be square,
centered and axis aligned (see Figure 1). We further assume that we are given a function
space on Sq, denoted by Im(Sq), as well as the function spaces Im(u), Im(v) defined on
subpatches u, v, respectively. Functions are assumed to take values in [0, 1], and can be
interpreted as grey scale images when working with a vision problem for example. Next, we
assume a set Hu of transformations that are maps from the smallest patch to the next larger
patch h : u→ v, and similarly Hv with h : v → Sq. The sets of transformations are assumed
to be finite and in this paper are limited to translations; see remarks in Section 2.2. Finally,
we are given template sets Tu ⊂ Im(u) and Tv ⊂ Im(v), assumed here to be discrete, finite
and endowed with the uniform probability measure.

3

Figure 1: Nested patch domains.

The following fundamental assumption relates function spaces and transformation spaces.

Axiom. f ◦ h : u → [0, 1] is in Im(u) if f ∈ Im(v) and h ∈ Hu. Similarly f ◦ h : v → [0, 1]
is in Im(v) if f ∈ Im(Sq) and h ∈ Hv.

We briefly recall the general definition of a reproducing kernel [1]. Given some set X, we
say that a function K : X ×X → R is a reproducing kernel if it is a symmetric and positive
definite kernel, i.e.

n∑
i,j=1

αiαjK(xi, xj) ≥ 0

for any n ∈ N, x1, . . . , xn ∈ X and α1, . . . , αn ∈ R. In this paper we deal with inner product
kernels which are known to be an instance of reproducing kernels.

In the following we always assume K(x, x) 6= 0 for all x ∈ X and denote with K̂ kernels
normalized according to

K̂(x, x′) =
K(x, x′)√

K(x, x)K(x′, x′)
. (1)

Clearly in this case K̂ is a reproducing kernel and K̂(x, x) ≡ 1 for all x ∈ X.

2.2 The Derived Kernel

Given the above objects, we can describe the construction of the derived kernel in a bottom-up
fashion. The process starts with some normalized initial reproducing kernel on Im(u)×Im(u)
denoted by K̂u(f, g) that we assume to be non-negative valued. For example, one could choose
the usual inner product in the space of square integrable functions on u, namely

Ku(f, g) =
∫
u
f(x)g(x)dx.

4

Next, we define a central object of study, the neural response of f at t:

Nv(f)(t) = max
h∈H

K̂u(f ◦ h, t), (2)

where f ∈ Im(v), t ∈ Tu and H = Hu. The neural response of f is a map Nv(f) : Tu → [0, 1]
and is well defined in light of the Axiom. By denoting with |Tu| the cardinality of the template
set Tu, we can interpret the neural response as a vector in R|Tu| with coordinates Nv(f)(t),
with t ∈ Tu. It is then natural to define the corresponding inner product on R|Tu| as 〈·, ·〉L2(Tu)

– the L2 inner product with respect to the uniform measure 1
|Tu|

∑
t∈Tu

δt, where we denote

by δt the Dirac measure. The derived kernel on Im(v)× Im(v) is then defined as

Kv(f, g) = 〈Nv(f), Nv(g)〉L2(Tu), (3)

and can be normalized according to (1) to obtain the kernel K̂v.
We now repeat the process by defining the second layer neural response as

NSq(f)(t) = max
h∈H

K̂v(f ◦ h, t), (4)

where in this case f ∈ Im(Sq), t ∈ Tv and H = Hv. The new derived kernel is now on
Im(Sq)× Im(Sq), and is given by

KSq(f, g) = 〈NSq(f), NSq(g)〉L2(Tv), (5)

where 〈·, ·〉L2(Tv) is the L2 inner product with respect to the uniform measure 1
|Tv |

∑
t∈Tv

δt.

As before, we normalize KSq to obtain the final derived kernel K̂Sq.

The above construction can be easily generalized to an n layer architecture given by sub-
patches v1 ⊂ v2 ⊂ · · · ⊂ vn = Sq. In this case we use the notation Kn = Kvn and similarly
Hn = Hvn , Tn = Tvn . The definition is given formally using mathematical induction.

Definition 2.1. Given a non-negative valued, normalized, initial reproducing kernel K̂1, the
m-layer derived kernel K̂m, for m = 2, . . . , n, is obtained by normalizing

Km(f, g) = 〈Nm(f), Nm(g)〉L2(Tm−1)

where
Nm(f)(t) = max

h∈H
K̂m−1(f ◦ h, t), t ∈ Tm−1

with H = Hm−1.

We add some remarks.

Remarks

5

Figure 2: A transformation “restricts” an image to a specific patch.

• Examples of transformations are translations, scalings and rotations. In the case of the
first two, we have transformations of the form h = hβhα, hα(x) = αx and hβ(x′) = x′+β,
where α ∈ R and β ∈ R2 is such that hβhα(u) ⊂ v. The transformations are embeddings
of u in v and of v in Sq. In the vision interpretation, a translation h can be thought of
as moving the image over the “receptive field” v: see Figure 2.

• To make sense of the normalization (1) we rule out the functions such that K(f, f)
is zero. This condition is quite natural in the context of images since for K(f, f) to
be zero, the neural responses of f would have to be identically zero at all possible
templates by definition, in which case one “can’t see the image”.

• In the following, we say that some function g ∈ Im(vn−1) is a patch of a function
f ∈ Im(v) at layer n − 1, or simply a function patch of f , if g = f ◦ h for some
h ∈ Hn−1. If f is an image, we call g an image patch, if f is a string, we call g a
substring.

• The derived kernel naturally defines a derived distance d on the space of images via the
equation

d(f, g)2 = K̂(f, f) + K̂(g, g)− 2K̂(f, g) = 2
(
1− K̂(f, g)

)
. (6)

where we used the fact that normalization implies K̂(f, f) = 1 for all f . Clearly, as
the kernel “similarity” approaches its maximum value of 1, the distance goes to 0.

• One might also consider “input-dependent” architectures, wherein a preliminary pre-
processing of the input data determines the patch sizes. For example, in the case of
text analysis one might choose patches of size equal to a word, pair of words, and so
on, after examining a representative segment of the language in question.

In the following section, we discuss in more detail the nature of the function spaces and
the templates, as well as the interplay between the two.

6

2.3 Probability on Function Spaces and Templates

We assume Im(Sq) is a probability space with a “mother” probability measure ρ. This brings
the model to bear on a real world setting. We discuss an interpretation in the case of vision.
The probability measure ρ can be interpreted as the frequency of images observed by a baby
in the first months of life. The templates will then be the most frequent images and in
turn these images could correspond to the neurons at various stages of the visual cortex.
This gives some motivation for the term “neural response”. We now discuss how the mother
probability measure ρ iteratively defines probability measures on function spaces on smaller
patches. This eventually gives insight into how we can collect templates, and suggests that
they can be best obtained by randomly sampling patches from the function space Im(Sq).

For the sake of simplicity we describe the case of a three layer architecture u ⊂ v ⊂ Sq,
but the same reasoning holds for an architecture with an arbitrary number of layers. We
start by describing how to define a probability measure on Im(v). Let the transformation
space H = Hv be a probability space with a measure ρH , and consider the product space
Im(Sq) × H endowed with a probability measure P that is the product measure given by
the probability measure ρ on Im(Sq) and the probability measure ρH on H. Then we can
consider the map π = πv : Im(Sq) × H → Im(v) mapping (f, h) to f ◦ h. This map is
well defined given the Axiom. If Im(v) is a measurable space we can endow it with the
pushforward measure ρv = P ◦ π−1 (whose support is typically a proper subset of Im(v)).

At this point we can naturally think of the template space Tv as an i.i.d. sample from ρv,
endowed with the associated empirical measure.

We can proceed in a similar way at the lower layer. If the transformation space Hu is
a probability space with measure ρHu , then we can consider the product space Im(v) × Hu

endowed with a probability measure Pu = ρv × ρHu , with ρv defined as above. The map
πu : Im(v)×Hu → Im(u) is again well defined due to the Axiom, and if Im(u) is a measurable
space, then we can endow it with the pushforward measure ρu = Pu ◦ π−1

u . Similarly, the
template space Tu can then be thought of as sampled according to ρu and endowed with
the corresponding empirical measure. As mentioned before, in the case of several layers one
continues by a similar construction.

The above discussion highlights how the definition of the templates as well as the other
operations involved in the construction of the derived kernels are purely unsupervised; the
resulting kernel can eventually be used to solve supervised as well as unsupervised tasks.

2.4 Normalized Neural Response

In this section we focus on the concept of (normalized) neural response which is as primary
as that of the derived kernel. The normalized neural response at f , denoted by N̂(f), is
simply N̂(f) = N(f)/‖N(f)‖L2(T), where we drop subscripts to indicate that the statement
holds for any layer m within an architecture, with m− 1 the previous layer.

The normalized neural response provides a natural representation for any function f .
At the top layer, each input function is mapped into an output representation which is the

7

corresponding neural response

f ∈ Im(Sq)︸ ︷︷ ︸
input

7−→ N̂Sq(f) ∈ L2(T) = R|T |︸ ︷︷ ︸
output

,

with T = Tn−1. For the time being we consider the space of neural responses to be L2, however
more generally one could consider Lp spaces in order to, for example, promote sparsity in
the obtained representation. The coordinates of the output are simply the normalized neural
responses N̂(f)(t) of f at each given t in the template set T and have a natural interpretation
as the outputs of neurons responding to specific patterns. Clearly,

K̂(f, g) =
〈
N̂(f), N̂(g)

〉
L2(T)

. (7)

A map satisfying the above condition is referred to as a feature map in the language of kernel
methods [11]. A natural distance d between two input functions f, g is also defined in terms
of the Euclidean distance between the corresponding normalized neural responses:

d(f, g)2 = ‖N̂(f)− N̂(g)‖2L2(T) = 2
(
1− 〈N̂(f), N̂(g)〉L2(T)

)
, (8)

where we used the fact that the neural responses are normalized. Note that the above distance
function is a restatement of (6). The following simple properties follow:

• If K̂(f, g) = 1, then N̂(f) = N̂(g) as can be easily shown using (7) and (8).

• If K̂(f, g) = 1, then for all z, K̂(f, z) = K̂(g, z), as shown by the previous property
and the fact that 〈N̂(f), N̂(z)〉L2(T) = 〈N̂(g), N̂(z)〉L2(T).

The neural response at a given layer can be expressed in terms of the neural responses at
the previous layer via the following coordinate-wise definition:

NSq(f)(t) = max
h∈H

〈
N̂v(f ◦ h), N̂v(t)

〉
L2(T ′)

, t ∈ T

with H = Hv, T
′ = Tu and T = Tv. Similarly, we can rewrite the above definition using the

more compact notation

NSq(f) = max
h∈H

{
ΠvN̂v(f ◦ h)

}
,

where the max operation is assumed to apply component-wise, and we have introduced the
operator Πv : L2(Tu)→ L2(Tv) defined by

(ΠvF)(t) = 〈N̂v(t), F 〉L2(Tu)

for F ∈ L2(Tu), t ∈ Tv. The above reasoning can be generalized to any layer in any given
architecture so that we can always give a self consistent, recursive definition of normalized
neural responses. From a computational standpoint it is useful to note that the operator Πv

can be seen as a |Tv|×|Tu| matrix so that each step in the recursion amounts to matrix-vector
multiplications followed by max operations. Each row of the matrix Πv is the (normalized)
neural response of a template t ∈ Tv, so that an individual entry of the matrix is then

(Πv)t,t′ = N̂v(t)(t
′)

with t ∈ Tv and t′ ∈ Tu.

8

3 Invariance of the Neural Response

In this section we discuss invariance of the (normalized) neural response to some set of
transformations R = {r | r : v → v}, where invariance is defined as N̂(f) = N̂(f ◦ r) (or
equivalently K̂n(f ◦ r, f) = 1).

We consider a general n-layer architecture and denote by r ∈ R the transformations
whose domain (and range) are clear from the context. The following important assumption
relates the transformations R and the translations H:

Assumption 1. For all r ∈ R, and h ∈ H, there exists a unique h′ ∈ H such that

r ◦ h = h′ ◦ r. (9)

In the case of vision for example, we can think of R as reflections and H as translations
so that f ◦ h is an image patch obtained by restricting an image f to a receptive field. The
assumption says that reflecting an image and then taking a restriction is equivalent to first
taking a (different) restriction and then reflecting the resulting image patch. In this section
we give examples where the assumption holds true. Examples in the case of strings are given
in the next section.

Given the above assumption we can state the following result.

Proposition 3.1. If the initial kernel satisfies K̂1(f, f ◦ r) = 1 for all r ∈ R, f ∈ Im(v1),
then

N̂m(f) = N̂m(f ◦ r),
for all r ∈ R, f ∈ Im(vm) and m ≤ n.

Proof. We proceed by induction. The base case is true by assumption. The inductive hy-
pothesis is that K̂m−1(u, u ◦ r) = 1 for any u ∈ Im(vm−1). Thus for all t ∈ T = Tm−1 and for
H = Hm−1, we have that

Nm(f ◦ r)(t) = max
h∈H

K̂m−1(f ◦ r ◦ h, t)

= max
h′∈H

K̂m−1(f ◦ h′ ◦ r, t)

= max
h′∈H

K̂m−1(f ◦ h′, t)

= Nm(f)(t),

where the second equality follows from Assumption 1 and the third follows from the inductive
hypothesis.

The following result is then immediate:

Corollary 3.1. Let Q, U be two families of transformations satisfying Assumption 1 and
such that K̂1 is invariant to Q, U . If R = {r = q ◦ u | q ∈ Q, u ∈ U}, then

N̂m(f) = N̂m(f ◦ r)

for all r ∈ R, f ∈ Im(vm) and m ≤ n.

9

Proof. The proof follows noting that for all m ≤ n,

N̂m(f ◦ r) = N̂m(f ◦ q ◦ u) = N̂m(f ◦ u) = N̂m(f).

We next discuss invariance of the neural response under reflections and rotations. Con-
sider patches which are discs in R2. Let

Ref = {ref = refθ | θ ∈ [0, 2π)}

be the set of coordinate reflections about lines passing through the origin at angle θ, and
let Rot denote the space of coordinate rotations about the origin. Then the following result
holds true.

Corollary 3.2. If the spaces H at all layers contain all possible translations and K̂1(f, f ◦ ref) = 1,
for all ref ∈ Ref , f ∈ Im(v1), then

N̂m(f) = N̂m(f ◦ ref),

for all ref ∈ Ref , f ∈ Im(vm) with m ≤ n. Moreover under the same assumptions

N̂m(f) = N̂m(f ◦ rot),

for all rot ∈ Rot, f ∈ Im(vm) with m ≤ n.

Proof. We first show that Assumption 1 holds. Each translation is simply ha(x) = x + a,
and since the space of transformations contains all translations, Assumption 1 holds taking
h = ha, r = refθ and h′ = ha′ , with a′ = refθ(a). Since the initial kernel K̂1 is invariant under
reflections, Proposition 3.1 implies K̂m(f, f ◦ ref) = 1 for all ref ∈ Ref , f ∈ Im(vm), with
m ≤ n.

Rotational invariance follows recalling that any rotation can be obtained out of two re-
flections using the formula rot(2(θ − φ)) = refθ ◦ refφ, so that we can apply directly Corol-
lary 3.1.

We add the following remark.

Remark 3.1. Although the above proof assumes all translations for simplicity, the assump-
tion on the spaces H can be relaxed. Defining the circle H̃a = {hz | z = ref(a), ref ∈ Ref},
it suffices to assume that,

If ha ∈ H, then H̃a ⊆ H. (10)

The next section discusses the case of one dimensional strings.

10

4 Analysis in a One Dimensional Case

We specialize the derived kernel model to a case of one-dimensional strings of length n (“n-
strings”). An n-string is a function from an index set {1, . . . , n} to some finite alphabet
S. We build a derived kernel in this setting by considering patches that are sets of indices
vm = {1, . . . , `}, m ≤ n, and function spaces Im(vm) comprised of functions taking values in
S rather than in [0, 1]. We always assume that the first layer consists of single characters,
v1 = S, and consider the initial kernel

K̂1(f, g) =

1 if f = g,

0 otherwise
,

where f, g ∈ S.
In the following we often consider an exhaustive architecture in which patches differ in size

by only one character so that vm = {1, . . . ,m}, and the function (string) spaces are Im(vm) =
Sm, for m = 1, . . . , n. In this case, the template sets are Tm = Sm, for m = 1, . . . , n, and
the transformations are taken to be all possible translations. Note that the transformation
spaces H = Hm at each layer m, contain only two elements

H =
{
h1, h2

}
,

with h1(j) = j and h2(j) = j + 1. For example, if f is an n-string and H = Hn−1, then
f ◦ h1 and f ◦ h2 are the substrings obtained from the first and last n − 1 characters in f ,
respectively. Thus, the n-layer neural response of f at some n− 1-string t is simply

Nn(f)(t) = max
{
K̂n−1(f ◦ h1, t), K̂n−1(f ◦ h2, t)

}
.

We now introduce a few additional definitions useful for discussing and manipulating
strings.

Definition 4.1 (Reversal). The reversal r of patches of size m ≤ n is given by

r(j) = m− j + 1, j = 1, . . . ,m.

In the development that follows, we adopt the notation f ∼ g, if f = g or f = g ◦ r.
Finally, we introduce a pair of general concepts not necessarily limited to strings.

Definition 4.2 (Occurrence). Let f ∈ Im(Sq). We say that t ∈ Im(vn−1) occurs in f if

Nn(f)(t) = 1.

where H = Hn−1.

Note that the above definition naturally extends to any layer m in the architecture,
replacing Sq with vm and vn−1 with vm−1.

Definition 4.3 (Distinguishing Template). Let f, g ∈ Im(Sq) and t ∈ Im(vn−1). We say
that t distinguishes f and g if and only if it occurs in f but not in g, or in g but not in f .
We call such a t a distinguishing template for f and g.

In the next subsection we discuss properties of the derived kernel in the context of strings.

11

4.1 Discrimination Properties

We begin by considering an architecture of patches of arbitrary size and show that the neural
response is invariant to reversal. We then present a result describing discrimination properties
of the derived kernel.

Corollary 4.1. If the spaces H at all layers contain all possible translations then

K̂m(f, f ◦ r) = 1,

for all f ∈ Im(vm) with m ≤ n.

Proof. We first show that Assumption 1 holds. Let u ⊂ v be any two layers where Im(v)
contains m-strings and Im(u) contains `-strings, with ` < m. Every translation h : u → v
is given by hi : (1, . . . , `) 7→ (i, . . . , i + ` − 1), for 1 ≤ i ≤ m − ` + 1. Then Assumption 1
holds taking h = hi, and h′ = hϕ(i), where ϕ : (1, . . . ,m − ` + 1) → (1, . . . ,m − ` + 1) is
defined by ϕ(i) = m− `− i+ 2. Using the fact that the initial kernel is invariant to reversal,
Proposition 3.1 then ensures that K̂v(f, f ◦ r) = 1.

The following remark is analogous to Remark 3.1.

Remark 4.1. Inspecting the above proof one can see that the assumption on the spaces H
can be relaxed. It suffices to assume that

If hi ∈ H, then hϕ(i) ∈ H. (11)

with the definition ϕ(i) = m− `− i+ 2.

We now ask whether two strings having the same (normalized) neural response are indeed
the same strings up to a reversal and/or a checkerboard pattern for odd length strings. We
consider this question in the context of the exhaustive architecture described at the beginning
of Section 4.

Theorem 4.1. Consider the exhaustive architecture where vm = {1, . . . ,m}, the template
sets are Tm = Im(vm) = Sm, for m = 1, . . . , n and the transformations are all possible
translations. If f, g are n-strings and K̂n(f, g) = 1 then f ∼ g or f, g are the “checkerboard”
pattern: f = ababa · · · , g = babab · · · , with f and g odd length strings, and a, b arbitrary but
distinct characters in the alphabet.

The theorem has the following interpretation: the derived kernel is discriminating if
enough layers and enough templates are assumed. In a more general architecture, however,
we might expect to have larger classes of patterns mapping to the same neural response.

To prove the above theorem, we make use of the following preliminary but important
result.

Proposition 4.1. Let f, g ∈ Im(vm) with m ≤ n. If K̂m(f, g) = 1, then all function patches
of f at layer m− 1 occur in g and vice versa.

12

Proof. We prove the lemma assuming that a function patch t̄ of f distinguishes f from g,
and then showing that under this assumption K̂n(f, g) cannot equal 1.

Since t̄ occurs in f but does not occur in g, by Definition 4.2,

Nn(g)(t̄) < 1 and Nn(f)(t̄) = 1. (12)

Now, let t′ be any function subpatch of g at layer n− 1, then

Nn(g)(t′) = 1 and Nn(f)(t′) ≤ 1, (13)

where the last inequality follows since t′ might or might not occur in f .
Now since K̂n(f, g) = 1 and recalling that by definition K̂n is obtained normalizing Kn(f, g) =〈
Nn(f), Nn(g)

〉
L2(Tn−1)

, we have that Nn(f), Nn(g) must be collinear, that is

Nn(f)(t) = c ·Nn(g)(t), t ∈ Tn−1 (14)

for some constant c.
Combining this requirement with conditions (12),(13) we find that

Nn(f)(t̄) = cNn(g)(t̄) ⇒ c > 1

Nn(f)(t′) = cNn(g)(t′) ⇒ c ≤ 1.

Thus, there is no such c and K̂n(f, g) cannot equal 1. Similarly, by interchanging the roles
of f and g above we reach the conclusion that if there is a function patch in g which does
not occur in f , then K̂n(f, g) again cannot equal 1.

We can now prove Theorem 4.1 by induction.

Proof. The statement holds trivially for K̂1 by definition. The remainder of the proof is
divided into three steps.

Step 1). We first note that since K̂n(f, g) = 1 then Lemma 4.1 says that both n − 1
strings in f occur in g and vice versa. Denoting with s1 (s2) the first (second) n−1-substring
in an n-string s, we can express this as

K̂n−1(f1, g1) = 1 or K̂n−1(f1, g2) = 1

and
K̂n−1(f2, g1) = 1 or K̂n−1(f2, g2) = 1,

and another set of similar conditions interchanging f and g. When u, v are odd-length strings
then we write u ./ v if u ∼ v or if u, v are the checkerboard pattern (but not both). When
u, v are even-length strings then u ./ v is simply u ∼ v. The inductive hypothesis is that
K̂n−1(α, β) = 1 implies α ./ β, so that the above conditions translate into a large number

13

of relationships between the substrings in f and g given by combinations of the following 4
predicates:

a) f1 ./ g1

b) f1 ./ g2

c) f2 ./ g1

d) f2 ./ g2.

Step 2). The next step is to show that the number of relationships we need to consider
can be drastically reduced. In fact the statement “both n−1 strings in f occur in g and vice
versa” can be formalized as

(a+ b+ ab)(c+ d+ cd)(a+ c+ ac)(b+ d+ bd), (15)

denoting logical exclusive OR with a “+” and AND by juxtaposition. The above expression
corresponds to a total of 81 possible relationships among the n− 1-substrings. Any product
of conditions involving repeated predicates may be simplified by discarding duplicates. Doing
so in the expansion of (15), we are left with only seven distinct cases:

{abcd, abc, abd, acd, ad, bc, bcd}.

We claim that, for products involving more than two predicates, considering only two of the
conditions will be enough to derive f ∼ g or f, g checkerboard. If more than two conditions
are present, they only serve to further constrain the structure of the strings or change a
checkerboard pattern into a reversal equivalence, but cannot change an equivalence to a
non-equivalence or a checkerboard to any other non-equivalent pattern.

Step 3). The final step is to consider the cases ad and bc (since one or the other can
be found in each of the 7 cases above) and show that this is in fact sufficient to prove the
proposition.
Let f = a1a2 · · · an and g = b1b2 · · · bn, and denote the checkerboard condition by f � g.
Case ad:f1 ./ g1 ∧ f2 ./ g2

There are nine subcases to consider,

(f1 = g1 ∨ f1 = r(g1) ∨ f1 � g1) ∧ (f2 = g2 ∨ f2 = r(g2) ∨ f2 � g2)

however for n odd the n− 1 substrings cannot be checkerboard and only the first four cases
below are valid.

1. f1 = g1 ∧ f2 = g2: The conditions give immediate equality, f = g.

2. f1 = g1 ∧ f2 = r(g2): The first condition says that the strings are equal everywhere
except the last character, while the second says that the last character in f is b2. So
if b2 = bn, then f = g. The conditions taken together also imply that bi = bn−i+2, i =
2, . . . , n− 1 because g1 overlaps with g2 by definition. So we indeed have that b2 = bn,
and thus f = g.

14

3. f1 = r(g1) ∧ f2 = g2: Symmetric to the previous case.

4. f1 = r(g1) ∧ f2 = r(g2): The first condition says that f = bn−1 · · · b1an and the sec-
ond gives f = a1bn · · · b2. Thus we have that a1 = bn−1, an = b2 and bi = bi+2 for
i = 1, . . . , n − 2. The last relation implies that g has two symbols which alternate.
Furthermore, we see that if n is even, then f = g. But for n odd, f is a one character
circular shift of g, and thus f, g are checkerboard.

5. f1 = g1 ∧ f2 � g2: The checkerboard condition gives that f = a1a2a3a2a3 · · · a2 and
g = b1a3a2a3a2 · · · a3. Then f1 = g1 gives that a2 = a3 and a1 = b1 so f = g.

6. f1 = r(g1) ∧ f2 � g2: The first condition imposes a1 = a2 = a3 and b1 = a3 on the
checkerboard structure, giving f = g and both strings comprised of a single repeated
character.

7. f1 � g1 ∧ f2 � g2: The first condition imposes a1 = a3 and b1 = a2 on the structure given
by the second checkerboard condition, thus f = a3a2a3 · · · a2, g = a2a3a2 · · · a3, and
f = r(g).

8. f1 � g1 ∧ f2 = g2: Symmetric to the case f1 = g1 ∧ f2 � g2.

9. f1 � g1 ∧ f2 = r(g2): Symmetric to the case f1 = r(g1) ∧ f2 � g2.

Case bc:f1 ./ g2 ∧ f2 ./ g1

There are again nine subcases to consider:

(f1 = g2 ∨ f1 = r(g2) ∨ f1 � g2) ∧ (f2 = g1 ∨ f2 = r(g1) ∨ f2 � g1).

But suppose for the moment g′ = b1 · · · bn and we let g = r(g′) = bn · · · b1. Then every
subcase is the same as one of the subcases considered above for the case ad, only starting
with the reversal of string g. For example, f1 = g2 here means that f1 = bn−1 · · · b1 = r(g′1).
When n is even, note that f1 � g2 ⇔ f1 � r(g′1)⇔ f1 � g′1, where the last relation follows from
the fact that reversal does not effect an odd-length alternating sequence. Returning to the
ordering g = b1 · · · bn, each subcase here again gives either f = g, f = r(g) or, if n is odd,
f, g are possibly checkerboard.

Gathering the case analyses above, we have that K̂m(f, g) = 1 =⇒ f ∼ g (m even) or
f ./ g (m odd).

5 Entropy of the Neural response

We suggest that the concept of Shannon entropy [3] can provide a systematic way to assess the
discrimination properties of the neural response, quantifying the role played by the number
of layers (or the number of templates). This motivates introducing a few definitions, and re-
calling some elementary facts from information theory. Conversations with David McAllester
and Greg Shakhnarovich were useful for this section.

15

Consider any two layers corresponding to patches u ⊂ v. The space of functions Im(v)
is assumed to be a probability space with measure ρv. The neural response is then a map
N̂v : Im(v) → L2(T) = R|T | with T = Tu. Let us think of N̂v as a random variable and
assume that

E
[
N̂v(f)(t)

]
= 0

for all t ∈ Tu (or perhaps better, set the median to be zero). Next, consider the set O of

orthants in R|T |. Each orthant is identified by a sequence o = (εi)
|T |
i=1 with εi = ±1 for all i.

We define the map N̂∗v : Im(v)→ O by

N̂∗v (f) =
(
sign(N̂v(f)(t))

)
t∈Tu

and denote by N̂∗∗v ρv the corresponding push-forward measure on O.
We next introduce the Shannon entropies relative to the measures ρv and N̂∗∗v ρv. If we

assume the space of images to be finite Im(v) = {f1, . . . , fp}, the measure ρv reduces to the
probability mass function {p1, . . . , pd} = {ρv(f1), . . . , ρv(fd)}. In this case the entropy of the
measure ρv is

S(ρv) =
∑
i

pi log
1

p i

and similarly

S(N̂∗∗v ρv) =
∑
o∈O

qo log
1

q o
,

where qo = (N̂∗∗v ρv)(o) is explicitly given by

(N̂∗∗v ρv)(o) = ρv

({
f ∈ Im(v) |

(
sign(N̂v(f)(t))

)
t∈Tu

= o
})

.

When Im(v) is not finite we define the entropy S(ρv) by considering a partition π = {πi}i
of Im(v) into measurable subsets. In this case the entropy of ρv (given the partition π) is

Sπ(ρv) =
∑
i

ρv(πi) log
1

ρv(πi)
.

One can define Sπ(N̂∗∗v ρv) in a similar fashion.
Comparing S(ρv) to S(N̂∗∗v ρv), we can assess the discriminative power of the neural re-

sponse and quantify the amount of information about the function space that is retained
by the neural response. The following inequality, related to the so called data processing
inequality, serves as a useful starting point:

S(ρv) ≥ S(N̂∗∗v ρv).

It is then interesting to quantify the discrepancy

S(ρv)− S(N̂∗∗v ρv),

which is the loss of information induced by the neural response. Since the inequality holds
with equality when the map N̂∗v is one-to-one, this question is related to asking whether the
neural response is injective (see Theorem 4.1).

16

5.1 Short Appendix to Section 5

We briefly discuss how the development in the previous section relates to standard concepts
(and notation) found in information theory [3]. Let (Ω, P) be a probability space and X a
measurable map into some measurable space X . Denote by ρ = X∗(P) the push-forward
measure on X associated to X. We consider discrete random variables, i.e. X = {x1, . . . , xd}
is a finite set. In this case the push-forward measure reduces to the probability mass function
over the elements in X and we let {p1, . . . , pd} = {ρ(x1), . . . , ρ(xd)}. Then the entropy H of
X is defined as

H(X) =
d∑
i=1

pi log
1

p i
.

Connections with the previous section are readily established when Im(v) is a finite set.
In this case we can define a (discrete) random variable X = F with values in X = Im(v) =
{f1, . . . , fd} and domain in some probability space (Ω, P) such that P is the pullback measure
associated to the measure ρv on Im(v). Then {p1, . . . , pd} = {ρv(f1), . . . , ρv(fd)}, and

S(ρv) ≡ H(F).

Moreover we can consider a second random variable Y defined as N∗v ◦ F so that

S(N∗∗v ρv) ≡ H(N∗v ◦ F).

6 Empirical Analysis

The work described thus far was largely motivated by a desire to understand the empirical
success of the model in [15, 14] when applied to numerous real-world recognition problems.
The simplified setting we consider in this paper trades complexity and faithfulness to biology
for a more controlled, analytically tractable framework It is therefore important to verify
empirically that we have kept what might have been responsible for the success of the model
in [15, 14], and this is the central goal of the current section. We first describe an efficient
algorithm for computing the neural response, followed by a set of empirical experiments in
which we apply the derived kernel to a handwritten digit classification task.

6.1 Algorithm and Computational Complexity

A direct implementation of the architecture following the recursive definition of the derived
kernel leads to an algorithm that appears to be exponential in the number of layers. How-
ever, a “bottom-up” algorithm which is linear in the number of layers can be obtained by
consolidating and reordering the computations.

Consider a set of global transformations, where the range is always the entire image domain
vn = Sq rather than the next larger patch. We define such global transformations recursively,
setting

Hg
m = {h : vm → Sq | h = h′ ◦ h′′, with h′ ∈ Hg

m+1, h
′′ ∈ Hm},

17

Algorithm 1 Neural response algorithm.

Input:f ∈ Im(Sq), N̂m(t),∀t ∈ Tm, 1 ≤ m ≤ n− 1
Output: N̂n(f)(t)
for m = 1 to n− 1 do

for h ∈ Hg
m do

for t ∈ Tm do
if m = 1 then
Sm(h, t) = K̂1(f ◦ h, t)

else
Sm(h, t) =

∑
t′∈Tm−1

Ĉm−1(h, t
′)N̂m(t)(t′)

end if
end for

end for
for h ∈ Hg

m+1 do
for t ∈ Tm do
Cm(h, t) = maxh′∈Hm Sm(h ◦ h′, t)

end for
end for
Ĉm = NORMALIZE(Cm)

end for
Return N̂n(f)(t) = Ĉn−1(h, t), with h ∈ Hg

n, t ∈ Tn−1

for any 1 ≤ m ≤ n− 1 where Hg
n contains only the identity {I : Sq → Sq}.

If we assume the neural responses of the templates are pre-computed, then the procedure
computing the neural response of any given image f ∈ Im(Sq) is given by Algorithm 1.
Note that in the Algorithm Cm(h, t) corresponds to the neural response Nm+1(f ◦h)(t), with
h ∈ Hg

m+1, t ∈ Tm. The sub-routine NORMALIZE simply returns the normalized neural
response of f .

We estimate the computational cost of the algorithm. Ignoring the cost of normaliza-
tion and of pre-computing the neural responses of the templates, the number of required
operations is given by

τ =
n−1∑
m=1

(
|Hg

m||Tm||Tm−1|+ |Hg
m+1||Hm||Tm|

)
(16)

where we denote for notational convenience the cost of computing the initial kernel by |T0|.
The above equation shows that the algorithm is linear in the number of layers.

6.2 Experiments

In this section we discuss simulations in which derived kernels are compared to an L2 pixel
distance baseline in the context of a handwritten digit classification task. Given a small

18

4 8 12 16 20 24
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
2−Layer: Accuracy vs. Patch Size

u size
A

cc
ur

ac
y

Figure 3: 2-Layer architecture, accuracy vs. patch sizes.

16 18 20 22 24
0.55

0.6

0.65

0.7

0.75

0.8

v size

u = 12x12

10 12 14 16 18 20 22 24
0.55

0.6

0.65

0.7

0.75

0.8

v size

A
cc

ur
ac

y

u = 8x8

20 24
0.55

0.6

0.65

0.7

0.75

0.8

v size

u = 16x16

24
0.55

0.6

0.65

0.7

0.75

0.8

v size

u = 20x20

Figure 4: 3-Layer architecture, accuracy vs. patch sizes.

labeled set of images, we use the 1-nearest neighbor (1-NN) classification rule: an unlabeled
test example is given the label of the closest training example under the specified distance.

An outline of this section is as follows: We compare a 3-layer architecture to a 2-layer
architecture over a range of choices for the patch sizes u and v, and see that for the digit
recognition task, there is an optimal architecture. We show that three layers can be better
than two layers, and that both architectures improve upon the L2 baseline. We then illustrate
the behavior of the 3-layer derived kernel as compared to the baseline by presenting matrices
of pairwise derived distances (as defined in Equation (6)) and pairwise L2 distances. The
block structure that typifies these matrices argues graphically that the derived kernels are
separating the different classes of images. Finally, we impose a range of artificial translations
on the sets of train and test images and find that the derived kernels are robust to large
translations while the L2 distance deteriorates rapidly with even small translations.

In all experiments we have used Sq = 28 × 28 pixel grayscale images randomly selected
from the MNIST dataset of handwritten digits [8]. We consider eight classes of images: 2s
through 9s. The digits in this dataset include a small amount of natural translation, rotation,
scaling, shearing and other deformations – as one might expect to find in a corpus containing
the handwriting of human subjects. Our labeled image sets contain 5 examples per class,
while the out-of-sample test sets contain 30 examples per class. Classification accuracies

19

images

im
ag

es
Pairwise 3−layer Derived Distances

50 100 150 200

50

100

150

200

images
im

ag
es

Pairwise L
2

 Distances

50 100 150 200

50

100

150

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Matrices of pairwise 3-Layer derived distances (left) and L2 distances (right) for the
set of 240 images from the database. Each group of 30 rows/columns correspond to images
of the digits 2 through 9, in left-right and top-bottom order.

using the 1-NN classifier are averaged over 50 random test sets, holding the training and
template sets fixed. As in the preceding mathematical analysis, the transformations H are
restricted to translations.

The template sets are constructed by randomly extracting 500 image patches (of size u
and/or v) from images which are not used in the train or test sets. For the digits dataset,
templates of size 10x10 pixels are large enough to include semi-circles and distinct stroke
intersections, while larger templates, closer to 20x20, are seen to include nearly full digits
where more discriminative structure is present.

In Figures 3 and 4 we show the effect of different patch size selections on classification
accuracy. For this particular task, it is clear that the optimal size for patch u is 12×12 pixels
for both two and three layer hierarchies. That accuracy levels off for large choices in the case
of the 2-layer architecture suggests that the 2-layer derived kernel is approximating a simple
local template matching strategy [6]. It is clear, however, from Figure 4 that an additional
layer can improve on such a strategy, and that further position invariance, in the form of
8 pixels of translation (since v = 20 × 20 and Sq = 28 × 28) at the last stage, can boost
performance. In the experiments that follow, we assume architectures that use the best patch
sizes as determined by classification accuracy in Figures 3 and 4: u = 12× 12, v = 20× 20.
In practice, the patch size parameters can be chosen via cross validation or on a separate
validation set distinct from the test set.

Figure 5 illustrates graphically the discrimination ability of the derived kernels when
applied to pairs of digits. On the left we show 3-layer derived distances, while the L2 distances

20

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Translation (pixels)

A
ve

ra
ge

 A
cc

ur
ac

y

Accuracy vs. Translation Size

L
2

3−layer

2−layer

Figure 6: Classification accuracy on artificially translated images.

on the raw image intensities are provided for comparison on the right. Both matrices are
symmetric. The derived distances are computed from derived kernels using Equation (6).
Each group of 30 rows/columns correspond to images of the digits 2 through 9, in left-right
and top-bottom order. Off diagonal blocks correspond to distances between different classes,
while blocks on the diagonal are within-class measurements. In both figures, we have rescaled
the range of the original distances to fall in the interval [0, 1] in order to improve contrast and
readability. For both distances the ideal pattern corresponds to a block diagonal structure
with 30 × 30 blocks of zeros, and ones everywhere else. Comparing the two matrices, it
is clear that the L2 baseline tends to confuse different classes more often than the 3-layer
derived kernel. For example, classes 6 and 8 (corresponding to handwritten 7s and 9s) are
frequently confused by the L2 distance.

The experiments discussed up to this point were conducted using a dataset of images that
have been registered so that the digits appear approximately in the center of the visual field.
Thus the increase in performance when going from 2 to 3 layers validates our assumption that
objects particular to the task at hand are hierarchically organized, and can be decomposed
into parts and parts of parts, and so on. A second aspect of the neural response architecture
that warrants empirical confirmation is that of invariance to transformations accounted for
in the hierarchy. In particular, translations.

To further explore the translation invariance of the derived kernel, we subjected the
labeled and unlabeled sets of images to translations ranging from 0 to 10 pixels in one of
8 randomly chosen directions. Figure 6 gives classification accuracies for each of the image
translations in the case of 3- and 2-layer derived kernels as well as for the L2 baseline. As
would be expected, the derived kernels are better able to accommodate image translations
than L2 on the whole, and classification accuracy decays more gracefully in the derived kernel
cases as we increase the size of the translation. In addition, the 3-layer derived kernel is seen
to generally outperform the 2-layer derived kernel for translations up to approximately 20%
of the field of view. For very large translations, however, a single layer remains more robust

21

Animal
vs.

non-animal

C1

S1

S2

S3

S2b

C2

S4

C2b

C3

Complex cells
Tuning

Simple cells

MAX
Main routes
Bypass routes

Figure 7: The model of Serre et al [15]. We consider here the layers up to C2. (modified
from [14])

than the particular 2-layer architecture we have simulated. We suspect that this is because
large translations cause portions of the digits to be clipped off the edge of the image, whereas
templates used by two-layer architectures describe nearly all regions of a class of digits. Lack
of a digit part could thus undermine the descriptive advantage of the 3-layer architecture
over the 2-layer hierarchy.

On the whole the above experiments confirm that the derived kernels are robust to trans-
lations, and provide empirical evidence supporting the claim that the neural response includes
mechanisms which can exploit the hierarchical structure of the physical world.

A Appendix: Derived Kernel and Visual Cortex

In this Appendix, we establish an exact connection between the neural response and the model
of Serre et al. [14, 15, 12]. We consider an architecture comprised of S1, C1, S2, C2 layers
as in the model, which is illustrated in Figure 7. Consider the patches u ⊂ v ⊂ w ⊂ Sq
and corresponding function spaces Im(u), Im(v), Im(w), Im(Sq) and transformation sets
Hu = Hu,v, Hv = Hv,w, Hw = Hw,Sq. In contrast to the development in the previous sections,
we here utilize only the template spaces Tu ⊂ Im(u) and Tw ⊂ Im(w). As will be made clear
below, the derived kernel Kv on Im(v) is extended to a kernel Kw on Im(w) that eventually

22

defines the next neural response.
S1 and C1 units. Processing steps corresponding to S1 and C1 cells can be defined as
follows. Given an initial kernel Ku, let

NS1(f ◦ h)(t) = Ku(f ◦ h, t) (17)

with f ∈ Im(v), h ∈ Hu and t ∈ Tu. Then NS1(f ◦ h)(t) corresponds to the response of an
S1 cell with template t and receptive field h ◦ u. The operations underlying the definition of
S1 can be thought of as “normalized convolutions”.

The neural response is given by

NC1(f)(t) = max
h∈H
{NS1(f ◦ h)(t)} (18)

with f ∈ Im(v), H = Hu and t ∈ Tu so that NC1 : Im(v) → R|Tu|. Then NC1(f)(t)
corresponds to the response of a C1 cell with template t and receptive field corresponding to
v.
The derived kernel at layer v is defined as usual as

Kv(f, g) = 〈NC1(f), NC1(g)〉L2(Tu),

with f, g ∈ Im(v).
The kernel Kv is then extended to the layer w by

Kw(f, g) =
∑
h∈Hv

Kv(f ◦ h, g ◦ h) (19)

with f, g ∈ Im(w).

S1 and C1 units. The steps corresponding to S2 and C2 cells can now be defined as follows.
Consider

NS2(f ◦ h)(t) = Kw(f ◦ h, t), (20)

with f ∈ Im(Sq), h ∈ Hw and t ∈ Tw. Then NS2(f ◦ h)(t) corresponds to the response of an
S2 cell with template t and with receptive field h ◦ w for h ∈ Hw. Now let

NC2(f)(t) = max
h∈H
{NS2(f ◦ h)(t)} (21)

with f ∈ Im(Sq), H = Hw and t ∈ Tw so that NC2 : Im(Sq) → R|Tw|. Then NC2(f)(t)
corresponds to the response of a C2 cell with template t and with receptive field corresponding
to Sq. The derived kernel on whole images is simply

KSq(f, g) = 〈NC2(f), NC2(g)〉L2(Tw)

We add three remarks.

23

• We can identify the role of S and C units by splitting the definition of neural response
into two stages, where “convolution” steps (17) and (20) correspond to S units, and
are followed by max operations (18) and (21) corresponding to C units.

• A key difference between the model in [15] and the development in this paper is the
“extension” step (19). The model considered in this paper corresponds to v = w and
is not completely faithful to the model in [15, 14] or to the commonly accepted view
of physiology. However, S2 cells could have the same receptive field of C1 cells and
C2 cells could be the equivalent of V 4 cells. Thus the known physiology may not be
inconsistent.

• Another difference lies in the kernel used in the convolution step. For sake of clarity
in the above discussion we did not introduce normalization. In the model by [15] the
kernels Kw, KSq are used either to define normalized dot products or as input to a
Gaussian radial basis function. The former case corresponds to replacing Kw, KSq by

K̂w, K̂Sq. The latter case corresponds to considering

G(f, g) = e−γd(f,g)
2

,

where we used the (derived) distance

d(f, g)2 = K(f, f)− 2K(f, g) +K(g, g),

where K = Kw or K = KSq.

References

[1] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–404,
1950.

[2] A. Caponnetto, T. Poggio, and S. Smale. On a model of visual cortex: learning invariance
and selectivity from image sequences. CBCL paper 272 / CSAIL technical report 2008-
030, MIT, Cambridge, MA, 2008.

[3] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley and Sons,
Inc., 1991.

[4] N. Cristianini and J. Shawe Taylor. An Introduction to Support Vector Machines. Cam-
bridge University Press, Cambridge, UK, 2000.

[5] F. Cucker and D. X. Zhou. Learning theory: an approximation theory viewpoint. Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge University
Press, Cambridge, 2007.

24

[6] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall,
2002.

[7] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biol. Cyb., 36:193–202, 1980.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proc. of the IEEE, 86(11):2278–2324, November 1998.

[9] T. Poggio and S. Smale. The mathematics of learning: Dealing with data. Notices of
the american Mathematical Society (AMS), 50(5), 2003.

[10] M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex.
Nat. Neurosci., 2:1019–1025, 1999.

[11] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

[12] T. Serre, M. Kouh., C. Cadieu, U. Knoblich, G. Kreiman, and T. Poggio. A theory of ob-
ject recognition: computations and circuits in the feedforward path of the ventral stream
in primate visual cortex. AI Memo 2005-036 / CBCL Memo 259, MIT, Cambridge, MA,
2005.

[13] T. Serre, M. Kouh., C. Cadieu, U. Knoblich, G. Kreiman, and T. Poggio. A quantitative
theory of immediate visual recognition. Progress in Brain Research, 165:33–56, 2007.

[14] T. Serre, A. Oliva, and T. Poggio. A feedforward architecture accounts for rapid cate-
gorization. Proceedings of the National Academy of Science, 104:6424–6429, 2007.

[15] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object recog-
nition with cortex-like mechanisms. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 29:411–426, 2007.

[16] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, Cambridge, 2004.

[17] S. Smale, T. Poggio, A. Caponnetto, and J. Bouvrie. Derived distance: towards a
mathematical theory of visual cortex. CBCL paper, MIT, Cambridge, MA, November
2007.

[18] S. Ullman, M. Vidal-Naquet, and E. Sali. Visual features of intermdediate complexity
and their use in classification. Nat. Neurosci., 5(7):682–687, 2002.

[19] V. N. Vapnik. Statistical learning theory. John Wiley & Sons Inc., New York, 1998.

[20] H. Wersing and E. Koerner. Learning optimized features for hierarchical models of
invariant recognition. Neural Comp., 15(7):1559–1588, 2003.

25

