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Abstract

In the thirty years since the installation of the first fiber optic data link, data rates in
installed fiber links have risen from a few Mb/s to tens of Gb/s. In the laboratory, data
rates in a single optical fiber have already reached tens of Tb/s. These data rates
greatly exceed electronic processing rates, so researchers have turned to all-optical
signal processing to achieve many basic network tasks, like wavelength conversion,
packet switching, and data regeneration.

As data rates increase, the impairments caused by propagation through the glass
of optical fiber become worse. Chromatic dispersion causes the temporal broaden-
ing of optical bits during propagation, leading to interference between neighboring
bits. Nonlinear effects, like the nonlinear index of refraction and four-wave mixing,
can cause interference between neighboring wavelength channels. The interaction
of dispersion and nonlinearities can lead to variations in the timing of bits and the
appearance of optical energy where there had been none.

All these effects make 1-bits and 0-bits difficult to distinguish. Today, these dis-
tortions are overcome by electronic regenerators. Optical data streams are converted
to electrical signals, processed electronically, converted back to an optical signal, and
returned to the optical network. In this way, regenerators prevent the accumulation
of noise and prevent noise from contributing to the production of more noise. The
electronic solution is costly because of the extra hardware required for optical to elec-
trical to optical conversions and performs poorly because of the losses incurred by
those conversions.

In this thesis, we investigate two regenerators that restore the data quality of
ON/OFF keyed data without a conversion of the data to the electrical domain. Both
regenerators are based on all-optical switches that take two inputs: the data pulses
from the network, and a locally generated clock-pulse train. The all-optical switches
then modulate the data pattern onto the clock-pulse train, which becomes the new
data stream.

The first switch we consider, the WMFUNI, uses the nonlinear properties of fiber
to produce the switching action. Using the WMFUNI regenerator, we demonstrate



the propagation of 10 Gb/s data over 20,000 km of commercial optical fiber. We also
demonstrate the WMFUNI's ability to operate on 40-Gb/s data. Unfortunately, fiber
has only a weak nonlinearity, so the WMFUNI is large (-40 cmx40 cm).

The second switch uses the much stronger nonlinearity of a semiconductor optical
amplifier (SOA). SOA-based switches can be integrated onto chip-scale optics. The
switch we test, the SOA-MZI, fits on a ~0.5 cmx1 cm chip. Using the SOA-MZI
regenerator, we demonstrate the propagation of 10 Gb/s data over 10,000 km of
commercial optical fiber. We also show in simulation that the SOA-MZI's operation
may be extended to 40 Gb/s.

Thesis Supervisor: Erich P. Ippen
Title: Elihu Thomson Professor of Electrical Engineering

Thesis Supervisor: Scott A. Hamilton
Title: MIT Lincoln Laboratory, Assistant Group Leader
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Chapter 1

Introduction

In 1977 GTE sent telephone voice data, coded as pulses of light, through kilometers

of glass optical fiber at 6 Mb/s [1]. Now we measure the capacity of commercial

optical fiber links in tens of Gb/s, and research groups have reported transmission

of data at tens of Tb/s with spectral efficiencies above 3 b/s/Hz [2, 3, 4]. These

data rates far exceed the processing speeds of electronic hardware. This problem is

overcome by demultiplexing these high data rate channels down to many lower rate

channels, which are then converted to electronic data channels. The channels are then

processed electronically, converted back to optical signals, and finally multiplexed up

to the optical data rate to propagate further in the network. For applications requiring

complex logical operations, this solution remains the best one [5, 6].

For some applications, however, processing of the optical data signals in the optical

domain (i.e., without an optical-electrical-optical conversion) offers several possible

advantages, like higher speed and lower power consumption. For example, all-optical

logic has been demonstrated at 100 Gb/s [7]. This speed advantage suggests that

optical data can be processed at rates much faster than electronics and, therefore,

without the need for demultiplexing and optical-to-electrical conversions. In fact,

such logic has been experimentally tested in wavelength conversion [8, 9, 10], label

swapping [11], packet synchronization [12], packet switching [13, 14], and data regen-

eration [15, 16, 17, 18].

This thesis considers the application of all-optical signal processing to data regen-



eration. Data in optical fiber networks are most often coded using ON/OFF keying

(OOK), in which pulse envelopes are modulated onto a carrier wavelength of light.

The presence of a pulse of light represents a 1-bit and the absence of a pulse represents

a 0-bit. These pulses distort over long-distance propagation in fiber so that Os and

is become difficult to distinguish, as we will see in Section 1.1. To prevent runaway

degradation of the data signal, we can place data regenerators periodically along the

optical link to restore pulse quality so that errors do not accumulate. In this thesis I

present two interferometric all-optical switches designed to regenerate OOK data and

assess their performance in data regeneration.

1.1 Networks and Fiber Propagation

Data from electronic systems have to be multiplexed up to optical rates. There are

several methods for doing so, two of which are shown in Figure 1-1. Commercial

systems typically use wavelength-division multiplexing (WDM). In WDM systems,

data in the optical link are divided among many channels, each with a different

carrier wavelength. Figure 1-1 (a) shows part of a WDM system. The data are

OOK in this case, although the data could instead be coded using phase-shift keying

or one of many other modulation formats. Each channel is a train of data pulses

modulated onto a distinct carrier wavelength, shown in the figure with different shades

of grey. Transceivers (Tx/Rx) add and drop wavelength channels to and from the

link. The technology for WDM systems is well-developed because of commercial and

industrial investment, and very high data rates are possible. For example, Alcatel

has demonstrated an experimental 2,100-km WDM optical link at 6.4 Tb/s [19].

Unfortunately, the time required to reconfigure transceivers to add and drop different

wavelength channels is long compared to the length of a packet of data. Therefore,

WDM networks are circuit-switched rather than packet-switched networks.

Slotted optical time-division multiplexed systems, on the other hand, provide the

possibility of a packet-switched optical network [14]. Figure 1-1 (b) shows part of a

slotted OTDM optical link. All the data are part of a single ultra-fast channel and are
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Figure 1-1: Two methods of multiplexing data: (a) wavelength-division multiplexing
and (b) slotted optical time-division multiplexing.

composed, in this case, of OOK pulses modulated onto a single optical wavelength.

This time, the different shades of grey denote different time slots in the data stream

rather than different wavelengths. Transceivers burst data onto the optical channel in

distinct time slots. This system allows on-demand resource allocation by a centralized

processor and improves the efficiency of bandwidth allocation [20, 21]. Nonetheless,

many of the basic tools required to make such a system work, like ultrafast data

regeneration, still require development.

In fact, both of these multiplexing systems can, at high data rates and long prop-

agation distances, require inline data regeneration because the optical fiber distorts

data pulses during propagation. One effect is loss in the fiber, which decreases opti-



cal power by ~0.25 dB/km. This loss can be compensated with Erbium-doped fiber

amplifiers (EDFAs), which add noise to the optical signal. The other dominant dis-

torting effects are chromatic dispersion, which causes different groups of wavelengths

to have different group velocities, and the nonlinear index of refraction, which causes

more intense light to experience a higher index of refraction. In higher rate systems

the interactions that these distortions produce among pulses, both within and across

wavelength channels, become more severe. This is especially true when higher rates

are achieved with shorter optical pulses.

Figure 1-2 shows the results of a simulation of data pulse propagation in TrueWave

fiber. The optical link, shown at the top of the figure, contains three 80-km spools of

TrueWave fiber separated by EDFAs that restore the time-averaged power of the data

signal. The EDFAs are assumed to be prefect so that they add no noise to the data

signal. The only distorting effects included in the model are the chromatic dispersion

(approximated out to third order) and the nonlinear index of refraction. The link

also includes a dispersion compensation module, which perfectly compensates the

chromatic dispersion in the 240 km of TrueWave. So, in the absence of a nonlinear

index, the pulses will propagate undistorted through the link. The top plot in the

figure shows the intensity envelope of the input data pulses. The optical pulses are

modulated onto a 1550-nm carrier and have a width of 2.5 ps. The data rate is

100 Gb/s and the data pattern is a 25 - 1 pseudorandom bit stream (PRBS). At the

input to the link and after each EDFA, the data stream has a time-averaged optical

power of 25 mW. The next two plots show the intensity envelope of the data pulses

after one and two passes through the optical link. The is no longer have uniform

intensity, and optical energy appears in the 0 spaces. We can see that some of the Os

and is have become indistinguishable, leading to errors at the data receiver.

1.2 Regeneration of Optical Data

A simple way to correct the data pulse distortions incurred during propagation

through the TrueWave fiber above is intensity thresholding, shown in Figure 1-3.
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The top diagram in the figure shows an ideal thresholder, which blocks optical pulses

below a certain peak intensity threshold. Above that threshold it outputs a single

intensity. Thus, the thresholder extinguishes optical power in the Os and restores the

is to a fixed peak intensity. Of course, no real thresholder works this way. A real

Ideal Threshold
2 -Regenerator

Input Pulse
Threshold Intensity

Ln Realistic Threshold
-.Regenerator

Input Pulse
Intensity

Figure 1-3: The thresholder is a simple regenerator that extinguishes noise in the Os
and restores Is to their proper intensity. The top diagram shows an ideal thresh-
older acting on distorted data pulses. The bottom diagram shows a more realistic
thresholder.

thresholder may not have an instantaneous response time and will not have a perfect

step-function nonlinearity. The bottom plot shows a more realistic thresholder with

a raised sine-function nonlinearity. Its output reduces the optical power in the Os and

reduces variability in the intensity of the Is, but not perfectly. The thresholder will

occasionally flip a bit's value, for example, when a noise spike adds too much energy

to a 0-bit. In most circumstances, however, the thresholder improves the signal-to-

noise ratio so that noise will not accumulate and so that the noise will not contribute

to interactions that produce even more noise.



Thresholder regenerators are simple enough that all-optical designs exist and have

been tested in transmission experiments. One common design is based on the nonlin-

ear optical loop mirror (NOLM) [22], which has been demonstrated in regeneration

experiments at 42.66 Gb/s over 10,000 km of transmission [23]. Nonetheless the

thresholder does not accomplish everything an ideal regenerator should. For exam-

ple, it does not necessarily correct phase distortions under the pulse's envelope. It

also does not correct the random drifts of pulses from the center of their bit periods

(timing jitter). Finally, it does not correct any polarization drifts that the data pulses

have accumulated during propagation.

These problems can be solved with more complicated regenerators that correct

timing jitter and restore pulse polarization by either modifying the data pulses di-

rectly or, more commonly, replacing them altogether. Ideally, such a regenerator

accomplishes four things, the 4Rs of regeneration. First, it Re-amplifies the data to

restore signal strength lost in propagation. Second, it Reshapes data pulses, restoring

both the envelope shape and a flat phase under the envelope. Third, it Retimes the

data pulses so that neighboring bits will not interfere with each other. Fourth, it

Repolarizes the pulses so that variations in polarization at the regenerator's input do

not affect the output polarization. The two regenerators presented in this thesis are

all-optical 4R regenerators.

Today, however, such regenerators are electronic. Figure 1-4 one such regenera-

tor. Optical data that have become distorted after long-distance propagation enter a

demultiplexer, which divides the optical data among many electronic-rate data chan-

nels. Photodiodes then convert these channels to electrical signals, which are detected

in electronic regenerators. These regenerators decide whether each bit is a 1 or 0 and

then modulate the appropriate bit value onto the output of a laser transmitter.

The electronic solution requires extra hardware for demultiplexing the data and

converting the data between the optical and electrical domains, and both these do-

main conversions add loss to the link. Instead, we can use the speed of all-optical

switches to design a regenerator that operates at the line rate, eliminating the need

for demultiplexing. Figure 1-5 shows a basic schematic for a broad class of all-optical
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Figure 1-4: Schematic for an electronic regenerator.
include network routing or other functionality.

The regenerator boxes may also

regenerators. Incoming network data pulses (white) are distorted after propagation

through optical fiber. The power of these pulses is split between a clock recovery

circuit and an all-optical switch. The clock recovery circuit produces a clock signal

(black), which may be optical or electrical, depending on the design. In the regener-

ators presented in this thesis, the clock is an optical pulse train, and the all-optical

switch modulates the data pattern of the input data pulses (white) onto the clock

pulses (black). In other designs, clock pulses enter the all-optical switch not to re-

place the data pulses, but to re-form them. One such regenerator uses synchronous

Figure 1-5: Schematic for a broad class of all-optical regenerators. In this case the
clock pulses (black) are modulated with the original data pattern. In some regenera-
tors, however, the clock pulses are used to improve the quality of the incoming data
pulses, rather than replace them.



modulation, described in Chapter 2.

1.3 Organization of Work

This thesis presents an evaluation of two all-optical regenerators, both based on in-

terferometric all-optical switches. Before presenting the results of this evaluation,

Chapter 2 reviews four classes of regenerators with an emphasis on interferometer-

based regenerators. Two of the classes are 2R regenerators that only re-amplify and

reshape the pulses. One is a 3R regenerator that re-amplifies, reshapes, and retimes

the pulses. The fourth class can be adapted to both 3R and 4R regeneration. Chap-

ter 2 also discusses the importance of nonlinear materials for interferometric switches.

Chapter 3 discusses the two most common nonlinear media used in interferometer-

based switches and regenerators. The first is optical fiber, which possesses a nearly

instantaneous nonlinear index of refraction. The second is the semiconductor optical

amplifier (SOA), which possesses a much stronger nonlinearity but also has a much

longer response time. This chapter may be omitted on a first reading.

Chapter 4 discusses the experimental evaluation of a fiber-based all-optical regen-

erator: the wavelength-maintaining folded ultrafast nonlinear interferometer (WM-

FUNI). Fiber-based regenerators have the advantage of being nearly instantaneous

medium. SOAs, on the other hand, have long recovery times. So the effects on the

SOA of a bit can linger through the next several bits, producing undesirable interfer-

ence between neighboring bits. Fiber switches, however, can operate on bits without

such interference. We have demonstrated operation of the WMFUNI in 10-Gb/s re-

generation over 20,000-km of transmission. We have also shown that the WMFUNI

operates at data rates up to 40 Gb/s.

Chapter 5 discusses the experimental evaluation of an SOA-based all-optical regen-

erator: the SOA Mach-Zehnder interferometer (SOA-MZI). The principle advantage

of SOA-based regenerators and switches is their ability to be integrated onto semicon-

ductor chips. We have demonstrated successful operation of an integrated SOA-MZI

regenerator in a 10,000-km transmission experiment at 10 Gb/s. Simulations of the



SOA-MZI regenerator, presented in Section 5.2, show how the SOA-MZI's operation

may be extended to 40 Gb/s.

This thesis evaluates the ability of all-optical regenerators to extend the propaga-

tion distances of high data-rate communications. All-optical solutions, however, are

not the only possibilities. Chapter 6 will consider briefly how all-optical solutions may

develop in the future, and how they may compare with other methods of high-rate

communication, including opto-electronic regeneration and specially designed optical

links that do not need regeneration.
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Chapter 2

Overview of Regeneration

In order to extend data propagation distances and increase data rates, researchers

and businesses have tested many different regenerators, including both electronic and

all-optical solutions (see references [1, 2] for broad reviews of these areas). This thesis

presents our work on two all-optical regenerators. Therefore, Section 2.1 reviews four

broad classes of all-optical regenerators. The last class of regenerators described

in Section 2.1 will be interferometer-based designs. Both of the regenerators we

present in this thesis have interferometer-based designs, so we will review this class of

regenerators in more detail in Section 2.2. As we saw in Figure 1-5, clock recovery is

an important component in all-optical regenerators. Although this thesis focuses on

the all-optical switch component of regenerators, an understanding of regeneration

would be incomplete without a review of research in clock recovery. So, Section 2.2

will also describe some clock recovery solutions from the literature.

2.1 Classes of Regenerators

An ideal regenerator accomplishes four tasks, which are called the 4Rs. First, it Re-

amplifies the optical data signal to compensate losses. Second, it Reshapes the data

pulses, producing the proper envelope and phase. Third, it Retimes data pulses that

have randomly drifted from the centers of their bit periods. Fourth, it Repolarizes

data pulses to correct any drifts in polarization caused by fiber propagation. Repolar-
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Figure 2-1: (a) Saturable absorbers can be used to produce all-optical switches. (b)
The 2R self switch has an intensity-dependent transmittance, as shown in this plot
of output pulse intensity versus input intensity.

ization ensures that all data packets leave the regenerator with the same polarization.

The four classes of all-optical regenerators described in this section cover most

of the designs discussed in the literature. The first two are 2R regenerators, which

re-amplify and reshape the data pulses. The third is a 3R regenerator, which re-

amplifies, reshapes, and retimes the data. The fourth is a 4R regenerator and will be

the subject of most of the rest of this thesis.

2.1.1 Intensity Self-Switches: Gain Modulation

Intensity self-switches use cross-gain modulation (XGM) to produce an intensity-

dependent or pulse-energy-dependent gain or loss. These switches can be implemented

in several ways, including with a semiconductor optical amplifier (SOA) or a saturable

absorber (SA). Figure 2-1 (a) shows how an SA can be implemented as both a 2R and



a 3R regenerator. The SA's transmittance depends on the input optical intensity, as

shown in Figure 2-1 (b). At low intensities, the SA is opaque, but at high intensities

it becomes transparent'. In the 2R case, this low-intensity opacity causes the SA

regenerator to suppress small amounts of noise in the 0-bits. The Is, as long as they

have sufficient energy, pass through the SA unchanged.

In the 3R case, intense data pulses enter the SA along with weaker clock pulses,

which are produced by a clock recovery unit (CR). The CR extracts the pulse rate

from the network data pulses, producing a clock train with the same pulse rate and

a different carrier wavelength. The presence of a data pulse switches the SA from

opaque to transparent, which modulates the data pattern of the data pulses onto the

clock pulses. SAs are rarely used this way as logical switches because the contrast

between their opaque and transparent states are often only a few dB. For regeneration,

however, such low contrast may be adequate.
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Figure 2-2: Experimental data showing the degradation of the Q-factor of a 40-Gb/s
data stream versus propagation distance both with (solid) and without a cross-gain
modulation regenerator (dashed). This plot comes from Figure 4 of Rouvillain, et al.,
OFC, 2002 [3].

'In fact, the SA's transmittance does not usually depend on instantaneous intensity. Rather,
it often has a recovery time that causes its transmittance to depend on a weighted integral of the
intensity over tens or even hundreds of picoseconds. In this simple description, we neglect this effect,
although it has important consequences. For example, at high data rates, it causes the SA's behavior
to depend on the value of previous bits, leading to undesirable pattern-dependent effects.



Figure 2-2 shows experimental data from [3] for a transmission experiment using an

SA-based regenerator. The optical data were modulated onto a 40-Gb/s train of 8-ps

pulses. The data pulses entered a loop containing 240 km of dispersion-compensated

fiber and they propagated through the loop 41 times for a total propagation distance

of -10,000 km. The figure shows the Q-factor of the data train in the loop as a

function of propagation distance. The Q-factor in ON/OFF keyed data is defined as

|p -- pio|Q = , , 0
-1 + go

where si and po are the means of the peak intensities of the is and Os, and o- and

o are the standard deviations of the distribution of intensities of the is and Os. The

solid lines in the plot show the quick decline of the Q-factor when the loop contains

no regenerator. When there is a data regenerator in the loop, the Q-factor drops

much more slowly, as shown with the dashed lines in the plot.

2.1.2 Intensity Self-Switches: Self-Phase Modulation

In the previous section, we saw an intensity self-switch with an intensity-dependent

transmissivity. This suppresses noise in the Os, but does not suppress variations in the

intensities of the 1s. A 2R regenerator could instead have an input-output response

like that shown in Figure 2-3 (b). In this case, is entering the regenerator with a

range of intensities all exit with the same intensity.

Figure 2-3 (a) shows a schematic of a 2R regenerator that produces the desired

input-output response. A data pulse with carrier wavelength A0 enters an Erbium-

doped fiber amplifier (EDFA), which increases the intensity of the pulse. The pulse

then enters a section of nonlinear fiber, in which the index of refraction is higher for

higher intensities. The pulse's intensity has an approximately Gaussian envelope so

that the peak of the pulse moves more slowly than its tails, causing the leading tail to

red shift and the lagging tail to blue shift. This effect is often referred to as self-phase

modulation (SPM), and, for Gaussian pulses with the proper length of propagation,

produces the middle spectrum plot shown in Figure 2-3 (a). The filter then passes
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Figure 2-3: (a) Schematic of a 2R all-optical regenerator based on self-phase modula-
tion. The plots show the pulse spectra at the input, at the end of the fiber, and after
the band-pass filter. (b) Desired input-output response of this regenerator.

one of the two peaks in that spectrum.

Figure 2-4 shows experimental data from [4] for the SPM regenerator. The dotted

line shows the output pulse intensity versus input pulse intensity. The solid line shows

the same plot for a chain of two SPM regenerators, showing the desired step-function

response.

The SPM regenerator has many useful properties. It gives 2R regeneration with

a very simple design. Nonetheless, the regenerator does not retime or repolarize the

data. Moreover, its operation depends on the pulse shape, as described above. So

amplifier noise, which will not have the same time profile as the Gaussian pulse,

may not be eliminated from the Is. So, in the next two sections, we consider more

complicated designs that overcome these problems.
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Figure 2-4: Output pulse intensity of the SPM regenerator versus input pulse intensity
after one stage of the regenerator (dotted) and two stages (solid). The plots are
experimental data from Figure 2 of Mamyshev, ECOC, 1998 [4].

2.1.3 Synchronous Modulation

Synchronous modulation has received a great deal of attention in the literature, es-

pecially from the private sector [5, 6, 7]. Figure 2-5 (a) shows the schematic of a

synchronous-modulation regenerator. The energy of the data pulses is split in two.

Part of the energy enters the clock recovery circuit (CR) that generates the clock pulse

train, in this case an electronic pulse train, that drives an electro-optic modulator.

The pulses then pass through a filter and a section of highly nonlinear fiber.

The electro-optic modulator (E/O modulator) retimes the data pulses. The clock

pulses change the transmissivity of the E/O modulator, as shown in Figure 2-5 (b).

The peak of the clock pulses correspond with the peak of the E/O modulator's trans-

missivity. In the figure, the data pulse leads the clock pulse, which causes its leading

edge to be attenuated. This attenuation moves the center of mass of the pulse towards

the center of the clock pulse. Many other devices have been used in place of the E/O

modulator, including electro-absorption modulators, all-optical switches, and phase

modulators. The filter serves a similar purpose in the frequency domain, dragging

the data pulse's frequency center to the desired frequency.

The nonlinear fiber's purpose is subtler. When the pulse widths and intensities are

at the right values, the fiber's second order chromatic dispersion, discussed in the next
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Figure 2-5: (a) Schematic of the synchronous modulator. (b) Effect of the E/O
modulator on the pulse timing.
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Figure 2-6: Plot of the Q-factor of data pulses as a function of propagation distance.
One plot (triangles) shows the evolution of Q with a 2R regenerator, and the other
(circles) shows the evolution of Q with 3R synchronous modulation. This plot comes
from Figure 3 of Raybon, et al., OFC, 2002 [5].

chapter, and its self-phase modulation can cancel out, producing first order soliton

pulses [8, 9]. First order soliton pulses propagate undistorted through lossless fiber.

Moreover, they are stable to perturbations so that any pulse that deviates slightly

from the ideal soliton shape will evolve during propagation into an ideal soliton. It is

this property that allows the nonlinear fiber to reshape the pulses. The soliton effects

also ensures that all the pulses possess the same peak intensity and that the energy

in the Os dissipates away during propagation.

Figure 2-6 shows the results of the transmission experiment given in [5]. The

optical data were modulated onto a 40-Gb/s train of 8-ps pulses. The data pulses en-

tered a loop containing 400 km of dispersion-compensated fiber and they propagated

through the loop -2500 times for a total propagation distance of ~1,000,000 km. The

figure shows the Q-factor of the data train in the loop as a function of propagation

distance. One plot (triangles) shows the evolution of Q when the loop contains a 2R

regenerator. The accumulation of random timing jitter causes a steady degradation

in the data quality. To correct the timing jitter, a 3R synchronous modulator was

inserted into the loop, causing the value of Q to remain stable after 1,000,000 km of

propagation.
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Figure 2-7: (a) Schematic of interferometer-based regenerator. Cross-phase modula-
tion (XPM) is used to imbalance the interferometer. (b) Output pulse intensity versus
input pulse intensity, showing the raised-sine response typical of interferometers.

2.1.4 Interferometric Switches

Synchronous-modulation regenerators do not repolarize the data pulses. In networks

that have polarization-sensitive components, regenerators may need to convert the

polarization of all input data pulses to a single constant output polarization. One

solution is to use a regenerator that replaces the incoming network data pulses with

a new set of data pulses modulated with the same data pattern.

One such regenerator is shown in Figure 2-7 (a). A clock recovery circuit (CR)

produces a train of optical clock pulses. A 50/50 coupler splits the optical power into

the two arms of the Mach-Zehnder interferometer (MZI). When the pulses from the

two paths recombine at the MZI's output, they destructively interfere. A data pulse

can be coupled into the interferometer's top arm. It then enters a medium with an

intensity dependent index of refraction (XPM in the figure) where the pulse increases

the optical path length of the top arm by a half wavelength. This process modulates

the data pattern onto the clock pulses. Usually a filter at the output removes the
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Figure 2-8: Bit-error rate data showing the performance of an MZI-based regenerator
at 10 Gb/s over 1,250,000 km of propagation. The plots show the number of errors per
bit as a function of the optical power input into an optical receiver. The optical data
are regenerated after every 125 km of propagation. These data come from Figure 6
of Zhu, et al., Photonics Technology Letters, 2006 [10].

original data pulses and passes the clock pulses.

Figure 2-8 shows the results of the transmission experiment presented in [10]. The

optical data were modulated onto a 10-Gb/s train of 40-ps pulses. The data pulses en-

tered a loop containing 125 km of dispersion-compensated fiber and they propagated

through the loop -10,000 times for a total propagation distance of ~-1,250,000 km.

The figure shows the bit-error rate (BER) performance of the data pulse train after

several different propagation distances. The vertical axis plots the number of er-

rors per bit as detected by an optical receiver. The horizontal axis plots the optical

power input into the receiver. The BER curves after 125 km, 1,250 km, 12,500 km,

125,000 km, and 1,250,000 km show nearly identical performance.



2.2 The Nonlinear Mach-Zehnder Regenerator

As discussed in Chapter 1, all-optical switches are often one of the basic components

of all-optical regenerators. Many of the benefits as well as the deficiencies of all-

optical regeneration are well-illustrated by one of the simplest all-optical switches.

The nonlinear Mach-Zehnder interferometer (MZI), like many all-optical switches

and regenerators, uses optical interference and ultrafast changes in the balancing of

an interferometer to create optical switching. We will consider in Chapter 3 the

materials and methods used to obtain these ultrafast changes in the interferometer

balancing. In this section, it will be enough to look at MZI performance at a high

level.

2.2.1 Mach-Zehnder All-Optical Switch

Figure 2-9 shows the basic schematic of a nonlinear MZI configured as an all-optical

switch. In this case, the MZI is implemented using discrete free-space optics, although

it can also be assembled from fiber optic components or integrated onto an optical

chip. A 50/50 beam splitter divides the signal pulse's power into two arms. One

arm is ideally linear and nondispersive. The second arm contains a medium whose

optical path length is easily controlled. When the two path lengths are equal, the

optical power in the two arms constructively interfere so that the signal pulse exits

by Output Port A. When we change the optical path length in the second arm by

1/2 a wavelength, the signal pulse will instead exit from Output Port B.

When MZIs are used as electro-optic modulators, the second arm's path length

depends on the value of a voltage placed across the material. Therefore, the speed

of electro-optic modulators is limited by the speed of electronic drivers, as well as

other related problems. Instead, as shown in the figure, we can place a nonlinear

material in one arm of the interferometer whose optical path length can be changed

by variations in the total optical power in the material. Thus an optical path length

change can be induced by an ultrashort control pulse, as shown in Figure 2-9. Now

the operating speed of the switch depends on the duration of the control pulse and
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Figure 2-9: Nonlinear Mach-Zehnder interferometer.

the response time of the medium. In fiber that response time is ~ 10-14 S.

We can calculate the optical power at Output Port A as a function of the control

pulse power: simply split the optical power into the two paths, then account for the

phase shift that each path adds to the optical signals propagating through them,

and finally add the optical fields together at Output Port A. There are 5 sources

of phase shift in the MZI: 1. propagation through free-space (because the observer

at Output Port A observes a phase change if the free-space path length changes),

2. reflection off mirrors, 3. reflection off beamsplitters, 4. transmission through the

beamsplitters, and, most important, 5. transmission through the linear and nonlinear

media in Figure 2-9. Fortunately, as can be quickly seen in Figure 2-9, the first 4

sources of phase shift are the same for the upper and lower paths from Input to

Output Port A. As we shall see, we are only interested in the relative phase between

the two interferometer arms, so we only need to calculate the phase shifts caused by

the linear and nonlinear media.

Calculating the phase shifts is simple. Suppose that the signal pulses have a free-

space carrier wavelength of A0. Also, let L, be the physical length of the linear medium

and let L,1 be the physical length of the nonlinear medium. If the lower arm contains



only linear material with an index of refraction equal to no, then the linear medium's

optical path length is nOL. Now, we assume that the upper arm contains a nonlinear

medium with an instantaneous nonlinear index of refraction given by no' +n2Ic, where

ni" is the linear component of the index of refraction, n 2 is the nonlinear component

of the index, and Ic is the intensity of the control pulse, which temporally overlaps

the signal pulse (note that there is an implied assumption here that the signal pulse

is too weak to affect the nonlinear index). The optical path length of the nonlinear

medium is (no' + n 2Ic)Lni.

Now we can calculate the relative phase shift induced between the signal pulses

in the two arms of the interferometer. Taking the difference of the two optical path

lengths, we have

n' L, - (n"' + n 2 Ic)Lnl. (2.1)

Dividing by Ao/27r gives us the relative phase shift:

=re= - noL, - (no"' + n 2Ic)Li ]. (2.2)
Ao0 0

For simplicity let us assume that the MZI can be made so that n'Ll - n n'Lnl =-Ao,

from which we obtain

4brel = n 2IcLnl - 27r. (2.3)

Assume that at the input we have a signal with a field given by

ES = 1Eo cos(wot + 0), (2.4)

where Eo is a positive real number and 0 is an arbitrary phase. At the first beamsplit-

ter, the intensity of E, is split equally into the two arms. Intensity is proportional

to the square of the field, so the field's magnitude in each arm is 1/v'2 times the

intensity at the input. At Output Port A, the optical field in each arm goes through

another beamsplitter, yielding another factor of 1//2. Thus at the output we have

the field
1 1

= -Eo cos(wot + 0) + -1Eo cos(wot + / + 1rei) (2.5)ot 2 Xo2 rl



where each term in Equation 2.5 is the field from one of the two arms. Notice that

Equation 2.5 justifies our use of relative rather than absolute phase, because adding

some constant phase to both terms does not affect the calculation of the time-averaged

output intensity:

1 1

Io=u - (|Et x Botl) = (|EtI12)

1 1 1 GDrel 2
= Eo cos (Pot + 0) + -Eo cos Wot + 0 +
cpo 2 2 2

= 1 Eo cos (wot + )cos (1Ire) 2 (2.6)

= 1 E2 Cos 2 (Drel
2cpO ( 2)

= Ijn cos 2 (n 2IcLni - = n sin 2  2cL

where Bout is the magnetic field, c is the speed of light, and po is the permeability

of free space. GDrel is linearly related to Ic, so we can control the phase shift between

the pulses in the two arms to cause constructive or destructive interference at Output

Port A. The output intensity, in normalized units, is plotted versus n2 1cLnl. 1irel in

Figure 2-10.

We can easily apply this interferometer to all-optical switching. As can be seen in

Figure 2-10, by changing the control pulse intensity Ic, we can turn the output power

Iot on and off. Also notice that if Ic = 0 or Ic = "r/(n2 Lnl), then the Iou curve is

at a zero derivative point. This fact implies that variations in Ic at these two points

leads to no variation in Iot to first order. This property is useful in data regeneration

because, as we shall see, the control pulses will be replaced by data pulses from the

network. These data pulses will have amplitude noise, so we will want our switch to

be insensitive to small variations in the amplitude.

Although simple, the nonlinear Mach-Zehnder design in Figure 2-9 has several

problems. First, there may be undesirable and uncontrollable asymmetries between

the two arms. If the carrier wavelength is 1550 nm, then even small variations in tem-

perature between the two arms could affect the difference in their optical path lengths
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Figure 2-10: Normalized output intensity of the nonlinear Mach-Zehnder interferom-
eter versus Prel.

enough to move the bias point of the switch from Ist is ON to It is OFF. Even

acoustic vibration from ambient sound could noticeably affect the switch's perfor-

mance. Active electronic control of the path length could stabilize these asymmetric

variations, but it adds hardware and complexity. One solution to this problem is the

single-arm interferometer, like that presented in Chapter 4. This solution works well

for interferometric switches with large dimensions. Another solution is to reduce the

size of the interferometer so that environmental changes affect both arms equally.

This type of solution is presented in Chapter 5.

Another problem with the nonlinear Mach-Zehnder interferometer arises when

the medium used in the nonlinear arm does not have an instantaneous response. In

Chapter 5 we will discuss an MZI that uses a semiconductor-based nonlinear medium

that includes several recovery effects ranging in speed from several femtoseconds to

several nanoseconds [11]. The long carrier-density recovery time will affect switching

if the nonlinear response exceeds one bit length. A control pulse might then induce

a phase shift both in the pulse it temporally overlaps and in a subsequent pulse. We



will see how this problem can be overcome by using control pulses in both arms of

the interferometer.

2.2.2 Clock Recovery

In Figure 1-5 we saw that all-optical 3R regenerators typically have two components:

the all-optical switch and a clock recovery circuit. This thesis presents our work in

the all-optical switch component, but an understanding of clock recovery is important

in the evaluation of a regenerator's performance. Clock recovery has received a lot

of attention in the literature. Electronic solutions often use a phase-locked loop to

recover an electronic clock from an optical data pulse train [12]. A number of all-

optical solutions have been proposed as well, including designs based on fiber ring

lasers [13], semiconductor ring lasers [14], Fabry-P6rot filters [15, 16], and stimulated

Brillouin scattering [17, 18].

There are several important criteria by which we judge clock recovery circuits.

First, there is the precision of the recovered clock. Second, there is the speed of

recovery. This second criterion is important because there are practical limits to

the length of optical delays. So, when a data packet arrives, the network components

cannot wait an arbitrary amount of time for a recovered clock. Moreover, data packets

may arrive from different sources and so may not be synchronous. Thus, a new clock

will have to be extracted for each arriving data packet, which requires fast "burst

mode" clock recovery.

The two criteria above are incompatible because perfectly precise clock recovery

requires infinite time so that the clock recovery circuit can, in effect, calculate the

Fourier transform to find the center frequency of the data signal. The proper balance

between the two criteria is an engineering decision that depends on network design.

Shorter data packets, for example, will require less precise clock recovery.

We consider the performance for a couple of the all-optical solutions mentioned

above. Figure 2-11 (a) shows a schematic of a ring laser. The amplifier (triangle)

provides gain in the ring, and, as we will describe below, the modulator forces the

laser to produce optical pulses. The only supported cavity modes are sinusoidal waves
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Figure 2-11: (a) Schematic of a ring laser. (b) The top plot shows the cavity frequency
modes and the bottom plot shows the cavity modes with net gain.

with wavelengths that evenly divide the ring's length, L,. So, the output electric field

amplitude can be expressed as

E = akcos (21rfkt + k),
k

where fk = kc/Lr, ak is the mode's amplitude, and # is the phase of the mode. The

cavity modes are shown in the top plot of Figure 2-11 (b). The amplifier in the cavity

has a limited bandwidth, and cavity modes that fall outside its bandwidth experience

net loss and, therefore, cannot be supported in the ring. The supported modes, then,

are shown in the bottom plot of Figure 2-11 (b).

If the #k are randomly distributed, then the output electric field will appear

random as well. On the other hand, if we mode-lock the laser so that the #k become

equal to each other, then it will produce narrow pulses. We can force the laser to

mode-lock by applying an amplitude modulation of the desired pulse frequency to the

modulator in the ring. In an all-optical clock recovery system, the drive signal for

the modulator is an optical data pulse stream, and the modulator itself is a nonlinear
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Figure 2-12: Clock recovery circuit based on the Fabry-P rot filter. The filter fills in
the Os with pulses, and the semiconductor optical amplifier (SOA) equalizes the pulse
intensities.

optical medium.

For fiber ring clock recovery circuits [13], the free space ring shown in Figure 2-

11 (a) is replaced by a fiber ring. The fiber makes the ring long compared to the

pulse period, so that clock recovery with mode-locked fiber lasers is a slow process.

As mentioned above, packet-switched networks require very fast recovery after only

a few of data pulses.

Other solutions do offer fast burst-mode clock recovery. One such simple solution

is based on Fabry-Perot filters [16], which has been shown to recover a clock within a

few bits [19]. Figure 2-12 shows the basic schematic, which has only two components.

One is the Fabry-Perot filter with a free spectral range equal to the data pulse rate.

Data pulses that enter the Fabry-Perot filter will partially reflect in a cavity with a

round trip time equal to the bit period. Therefore, pulses in the data pattern's 1-bits

fill in the Os, where there are no pulses. There is, however, variation in the peak

intensities of these pulses, so an SOA equalizes the pulse intensities.

Figure 1-5 showed that OOK regenerators have two basic components: a switch

to reform or replace the data pulses and a clock recovery circuit to retime them. Sec-

tion 2.1 reviewed several implementations of the switch component, and this section

has reviewed several implementations of clock recovery circuits. The Fabry-Perot so-

lution in particular has shown promise as a burst-mode circuit. This thesis, however,

focuses on the switches. Before discussing the two switches we have evaluated, how-

ever, Chapter 2 will develop the theory of the nonlinear media that our all-optical

switches use.
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Chapter 3

Nonlinear Media

Many implementations of all of the four regenerators described in Chapter 2 use some

kind of nonlinear optical medium to produce the produce the switching. The most

used nonlinear media are optical fiber and semiconductor optical amplifiers (SOAs),

both of which we will discuss in this chapter. We will develop models for both, and

simulations based on the models will appear in this chapter and Chapter 5.

The principle advantages of the SOA are its small size and strong nonlinearity,

which allows small switching energies. Indeed, the small size of SOAs and the mate-

rials from which they are made allow them to be integrated onto optical chips. Such

integrated designs have been tested in all-optical switches [1], regenerators [2, 3], data-

packet switches [4], and many other applications. The optical response of SOAs, how-

ever, can long compared to bit periods (SOA recovery times are typically ~ 100 ps;

at 40 Gb/s, bit-periods are 25 ps). This long response time can cause effects in

the switch to linger for several bits, which is undesirable if we require independent

bit-by-bit switching.

Where such bit-by-bit operation is required, optical fiber can be used instead

because of its nearly instantaneous response time. As we shall see, however, optical

fiber has a weak nonlinearity so that long lengths of fiber are required to obtain

enough of whatever nonlinear effect is required. Nonetheless, fiber has be tested in

many applications including wavelength conversion [51, all-optical switching [6], and

regeneration [7, 8].



3.1 A Brief Introduction to Nonlinear Optics

This thesis discusses two all-optical regenerators [3, 8]. The wavelength-maintaining

folded ultrafast nonlinear interferometer, examined in Chapter 4, uses dispersion-

shifted optical fiber as its nonlinear medium. The SOA Mach-Zehnder interferometer,

examined in Chapter 5, uses SOAs as its nonlinear medium. We can study both of

these media with the tools provided by nonlinear optics, which we briefly introduce

here.

To describe the propagation of waves through nonlinear media, we need to derive

a nonlinear wave equation. We start, as always, with Maxwell's equations in SI units:

V x E(r,t) = &B(r, t)
19t
OE(r t)

V x B(r, t) = pOEo ' + poJ(r, t)

1
V -E(r, t) = -p(r, t)

EO

V - B(r, t) = 0.

The charge density, p(r, t) = pj(r, t) + pb(r, t), contains two components. The bound

charges, Pb, describe the distribution of charges bound to the atoms in the medium

of propagation. In the absence of fields, the atoms are on average charge neutral.

When an E-field is present, electrons are pulled away from their nuclei, polarizing the

medium and yielding a non-zero Pb. The bound charges can always be represented

by Pb = -V -P [9], where P is the polarization vector. In a linear isotropic medium,

P = EOXeE, where Xe is called the electric susceptibility1 . We will discuss the form P

takes in nonlinear media later in this section. The free charge, pf, such as charge that

has been added to an otherwise neutral conductor, is typically zero in the dielectric

waveguides we will be discussing.

Similarly, the current source, J(r, t) = Jf(r, t) + Jb(r, t) + J,(r, t), contains three

components. Jf and Jb are the free and bound currents. Free currents are typically

'This form of P seems to imply a continuously divisible medium. In fact, this form is accurate
for ordinary matter as well, as discussed in detail in Section 4.2.3 of [91.



defined as applied currents, as when an experimenter hooks up a battery and a wire.

Bound currents, on the other hand, are those that are created by the effect of the

magnetic field on the dipole moments of the matter with which it interacts. Jf will

be zero in all the cases we will study. The bound current can always be represented as

Jb = V x M, where M is the magnetization [9]. All the media we will consider in this

thesis are linear, so that M = XmH where H = B/po - M, and H is an auxiliary field

that accounts for the interaction of the magnetic field and matter2 . Finally, J, is the

current that exists when there is a time-varying polarization vector. That is, it is the

current that is created by the motion of bound charges and is given by J, = &P/&t.

We define two auxiliary fields, one of which we saw above:

D = coE + P (3.1)

1
H = -B - M, (3.2)

where y = pto(1 + Xm) for linear magnetic media. In optics, most media are nonmag-

netic, so we will assume that Xm = 0. Then we use the following expressions for the

various charges and currents:

Jf =0, Jb=VXMK J, = aj (3.3)

Pf =0, Pb=-V-P (3.4)

Using Equations 3.1 through 3.4, we obtain the standard form of the sourceless

2 Many textbooks refer to H as the magnetic field; I prefer to call B the magnetic field because
its divergence always vanishes, as it should for the magnetic field because of the nonexistence of the
magnetic charge carrier. Doubters should consider A. Sommerfeld, who wrote "The unhappy term
'magnetic field' for H should be avoided as far as possible. It seems to us that this term has led into
error none less than Maxwell himself..."



Maxwell's equations in matter:

V x E(r,t) = B(r, t) (3.5)

V x H(r,t) =aD(r, t) (3.6)at
V - D(r,t)= 0 (3.7)

V -B(r, t)= 0. (3.8)

To derive the wave equation, we take the curl of Equation 3.5. Then we take the curl

of Equation 3.6 and use it to eliminate B from Equation 3.5, obtaining

a2E a2p
VxVxE = -poeo -pIO 2

Now we can use the vector identity

V x V x E = V(V -E) - V 2E.

In linear optics V - D = 0 implies that V -E = 0, but this is not necessarily true in

nonlinear optics. Nonetheless, we can often use the approximation V -E = 0, which

we will do throughout this thesis. So, we obtain the desired nonlinear wave equation:

82E 82p
V 2E = pocoE a2 + ao2-. (3.9)

We still have to discuss the representation of the polarization vector P in nonlinear

media. To simplify the discussion, we will assume for now that the electric field and

polarization vector are scalar functions, which we represent with E and P. If the

medium is instantaneous, then we can represent the nonlinear polarization as a power

series:

P(r, t) = Ao + A1E(r, t) + A 2E(r, t) 2 + - . (3.10)

The coefficients A, fully characterize this nonlinear medium and they may depend

on r or t if the medium is different from point to point or time to time.



Many nonlinear media, however, are not instantaneous. So, P is a function of

E at several different times. As an example, let us suppose that P(r, t) depends on

E(r, t) and E(r, t - A). Then we can expand P in a multivariable Taylor series [10]:

P(r, t) =C1 ,oE(r, t) + C1,1E(r, t - A) (3.11)

+C2,1E(r, t) 2 + 2C 2,2E(r, t)E(r, t - A) + C2 ,3 E(r, t - A) 2 + ...

We omit the constant term because the bound charge, pA = -V -P, is not changed by

adding a constant to the polarization vector. In the C.,,, coefficients, n refers to the

order of the nonlinearity, and j simply indexes the various possible nth order terms.

The 2 before the C2,2 in Equation 3.11 refers to the fact that this term is, in fact, two

terms: one for E(r, t)E(r, t - A) and the second for E(r, t - A)E(r, t). We can easily

generalize. If P(r, t) depends on E(r, t - mA), where m is an integer from 0 to M,

then we get the multivariable Taylor series

P(r, t) = F1,,E(r, t - jA)

+ F2,j,kE(r, t - jA)E(r, t - kA) (3.12)
j,k

+ F3 ,j,k,,E(r, t - jA)E(r, t - kA)E(r, t - lA) + .

j,k,l

The first index in the Fnj,k,... coefficients refers to the order of the term and the

remaining indices simply index the variables E(r, t - mA). The Fn,j,k,... may depend

on r or t.

So, we have seen that an instantaneous medium's polarization can be fully char-

acterized by a power series with coefficients Ak. If the medium's polarization depends

on the electric field at several points in time, then the medium can be fully charac-

terized by a multivariable power series with coefficients Cn,k. We take this process

to its logical end and consider a medium that depends on the electric field at all

times. So, now P(r, t) is a "functional" of a continuum of variables E(*), where *

can take any value, whereas before * only took the values t - mA for m = 0 to M.



In standard notation, before we had P(r, t) = P(E(r, t), - - - , E(r, t - mA)) and now

we have P(r, t) = P[E(r, *)] where the square braces mean that P is a functional of

E(r, *). More often this is written as P(r, t) = P[E(r, t)].

Now, we want to have something like a power series for functionals, and we can

obtain such a series by taking the limit as A goes to 0 and M goes to infinity in

Equation 3.12. When we do so, the sums in the equation become integrals:

P(r,t) = o R(') (r, -ri)E(r, t - Ti) dri

+Co Jj R(2
)(r, r 1 , 2)E(r, t - Ti)E(r, t - T2 ) dridr2

+ I R (3)(r, ri,r2, 73 )E(r, t - Ti)E(r, t - 2)E(r, t - T3) dridT2dT3 +---

(3.13)

where R(n) are the response functions and they correspond with the coefficients F,3 ,...

above.

So far, we have neglected the vector nature of E and P. We can add them to

Equation 3.11 easily. Instead of using the factors E(r, t - mA) to form the terms

of Equation 3.12, we can use the factors E3 (r, t - mA), where j is an index that

refers to the three polarization directions. When we take this into the limit, as in the

derivation of Equation 3.13, we obtain

P(r,t) =P '(r,t) + P 2) (r,t) + - - -

= + EO j R1 (r, ri)Ek(r, t - T) dr1  (3.14)

+ co R ((r, -1, -r2)Ek(r, t - -ri) El(r, t - -r2) d-rid-r2 + --- ,

where the indexes refer to the three polarization directions and take the values x,

y, or z. We have used the Einstein notation in which there is an implied sum over

repeated indexes. For example, R EkE, is the same as E, R E2 EE. It is also

common to represent this using bold fonts so that R(2):EE = ) R EE. We will

most often use the index notation for vectors and matrices in this thesis, except where



it is convenient to use bold fonts.

We often use E-fields that are the sum of several frequencies, so it is also conve-

nient to represent Equation 3.14 in the frequency domain. For simplicity we consider

only the second-order term (i.e., the term with R(2 ) above), although all the results

generalize easily to the other orders. We represent the E-field as a sum of frequency

components:

Ej(r,t) = j(r,w)e~-iwdw, (3.15)

where

E(r,w) = 1i E (r, t)ei'w dt (3.16)

with analogous relationships between P (r, t) and P (r, w). When we substitute Equa-

tion 3.15 into the second-order term of Equation 3.14, we obtain

P 2) (r, t) = x (r, wi, w2)5k(r, wi)5 1(r, w2 )ei"'t dw1dw2 , (3.17)

where P 2) is the second-order polarization in the jth direction, w., = w1 + w2 , and.

(2) x R(2 (r ti t 2 )egi(ltl W2t2) (3.18)Xjkl = __-0 jk1'I dtldt2

Finally, we can calculate the Fourier transform of the polarization vector to obtain

P 2(r, w). Using Equation 3.17 and the well-known formula for the delta function,

3(t),

- et ds = 6(t),
27r-e

we obtain

P 2 (r w) = J (r, wi, w2)Ek(wi)EI(w2 )(w - w,) dwidw2, (3.19)

where again w, = w1 + W2 . This is an important result and shows that E 2 ) (r, w) is

created by two monochromatic waves whose frequencies add to w.

The mathematical development of functional power series above allows us to char-



acterize many nonlinear dielectric media with the response tensors, R.., in the time

domain or the susceptibility tensor, x .. , in the frequency domain. With this basic

notation, we return to the nonlinear wave equation, which we repeat here:

V2 92E a2 p(2)
=poco [p( + +. -]. (3.20)

where P = p(') + p(2) +. . It is convenient to separate the linear and nonlinear

components of the polarization vector so that P = p(l) + pNL

We would like to transform Equation 3.20 into the frequency domain. So, we

substitute in the following Fourier integrals into Equation 3.20:

Ej(r, t) = j(r, w)e-iwt dw (3.21)

P(1 (r, t) = 1)(r, w)eiwt dw (3.22)
pNI [ 0 0 i -it

P L (r,t) = jT L(r, w)e do. (3.23)

Integral 3.22 can be further evaluated by substituting Equation 3.21 into the identity

P =(r, t) = R( (r t - ri)Ek(r, -1) dri

which comes from Equation 3.14. We obtain

P 1) (r, t) = j (r, w)5,(r, w)e- d. (3.24)

If we substitute Equations 3.21, 3.23, and 3.24 into Equation 3.20, we obtain the

nonlinear wave equation in the frequency domain:

V 25 = -p1ocoW 2 E _ PoEow2 X (1 . t _ POw2fNL

where xM - is the matrix form of X 52Ek. We re-arrange the terms to get

V 2 E + LO(W 2 2t = w~ NL (3.25)
C2



where E(w) = 1 + XM and c = 1/Feopo.

3.2 Optical Fiber

Optical fibers are cylindrical waveguides, usually composed of two concentric media

as shown in Figure 3-1. Long-distance communications fiber is drawn from fused-

silica glass. The two layers are doped with different materials to change the index

of refraction so that the core has a higher index that the cladding, allowing light to

be guided by total internal reflection. As we know from basic waveguide theory, each

frequency of light that can propagate in the waveguide can often do so in several

different discrete modes, each with its own propagation speed through the fiber (you

may think of this as resulting from different angles of reflection, although this is not

entirely accurate). In standard mode fiber (SMF), however, the waveguide is designed

to guide only a single mode of light, preventing dispersion due to the different speeds

of different modes.

Cladding

Cor

Radial Distance

Figure 3-1: Figure of the cross-section of an optical fiber. The core's higher index of
refraction allows total internal reflection.

Nonetheless, SMF still has a number of impairments. One of these impairments

is chromatic dispersion in which the group velocity varies with frequency. Another

is the nonlinear index of refraction, in which the index of refraction increases with
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Figure 3-2: The top plots show the effects of second- and third-order dispersion on
the intensity envelope. Second-order dispersion broadens the pulse width, and third-
order dispersion causes ringing in one of the tails. The bottom plot shows the effects
of the nonlinear index of refraction on a pulse's spectrum. The spectrum continues
to broaden with more propagation.
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higher optical intensities. Figure 3-2 shows the effects of these impairments on the

intensity envelope of an optical pulse. The first plot shows second-order dispersion,

which causes a linear change in group velocity with respect to optical frequency. As

the figure shows, it leads to pulse broadening, which can cause the pulse's energy

to enter the neighboring bit (intersymbol interference). Second-order dispersion also

causes a blue-shifting of one tail of the pulse and a red-shifting of the other. The

second is third order dispersion, which causes a quadratic change in group velocity

with respect to optical frequency. It leads to a characteristic ringing in one tail of the

pulse, also leading to intersymbol interference. The third is the nonlinear index of

refraction, which leads to self-phase modulation. It causes a broadening of the pulse's

optical spectrum. When there are several wavelength channels present, this spectral

broadening can cause inter-channel interference. The interaction of these three effects

is quite complicated, and modeling them is the subject of the rest of this section.

3.2.1 The Intensity-Dependent Index of Refraction

The intensity-dependent index of refraction is given by

n = no + n21 (3.26)

where no is the linear index, n2 is the nonlinear index, and I is the intensity of

the electric field envelope. This intensity-dependent index is a consequence of the

nonlinear interaction of the optical field with the medium of propagation. More

specifically, in SI units, we have

D(r, t) = eoE(r, t) + P(r, t) (3.27)

where D is the electric displacement, E is the electric field, and to is the permittivity

of free space. The nonlinear effects are included in P:

P(r, t) = coX - E(r, t) + PNL(r, t). (3.28)



X(1), the linear susceptibility, is a matrix that describes propagation for low optical

intensities. PNL is the nonlinear polarization

PNL(r,t) = P(2)(rt) +p(3)(r,t) +- (3.29)

where, from Equation 3.14 in Section 3.1 we have

p(2) = co R(2)(r, rl,T 2):E(r, t - ri)E(r, t - T2 ) drid-r2

p(3 ) = EO R( 3 )(r,T71,T 2,T3):E(r, t - ri)E(r, t - 2)E(r, t - r3) drid-r2d-r3

where the " " notation is explained after Equation 3.14. Assuming the pulses are

propagating down a one-dimensional waveguide in the z-direction, we can replace the

r variable with the z variable'. We now assume that we can expand E(z, t) in a

Fourier series as

E(z, t) = E(z, wn)e(nz-nt) (3.30)
n

In Equation 3.30, we have assumed that the waves are propagating in the z-direction

down a waveguide with a propagation constant of on. We also expand the polarization

in a Fourier series to get

P(b)(r, t) - (b) (r, wn)e-iwnt.

n

E and P are real, so E(r, wn) = E*(r, -wn) and #(b)(rw = #(b)*(r, -wn). The jth

component of P#(2) is given by Equation 3.19

p 2) (r, w) = x (r, wn, wm)k(r, wng) k(r, wm)ei(3n+Pm)z (3.31)
k1 (nm)

where j, k, and I can be any of the Cartesian components of the field, x, y, and z.

The integrals in Equation 3.19 become sums over n and m because there are only

3This assumes that we can average appropriately over the transverse x and y dimensions. We
will consider this issue more carefully in Section 3.2.3.



a discrete number of frequencies. E (r, Wn) is the jth vector component of E(r, w)

of Equation 3.30. The notation (nm) requires that the sum be performed over wn

and Wm such that Wm + wn = w. This fact is a consequence of the 6-function in

Equation 3.19. More generally, the expression for P 6) is given by

ki.-- (nm...) (3.32)

$kk (r7 wn)Zi (r,wLm) -. -- -e "++--)

For a more thorough and similar description of the nonlinear polarization, see [11].

Now we show how the nonlinear polarization yields the intensity dependent index

of refraction. We assume a medium where the only significant susceptibilities are XS)

and X(3). This assumption is reasonable in the silica glass of optical fibers, where X(2)

is zero because of the amorphous nature of SiO 2 . To begin, we consider the problem of

two interacting plane waves at different optical frequencies. We simplify the problem

by first assuming that the fields are copolarized along the x-axis:

E1(z, t) = 5(z, wi)e-i"l + c.c. with E(z, wi) = 2E,(z, wi)einiz (3.33)

E 2 (z, t) = E(z, w2)e-iw2t + c.c. with E(z, w2) = E,(z, w 2)e%2z (3.34)

where c.c. denotes the complex conjugate, and wi and w2 are parameters for E rather

than variables on which E is functionally dependent. We assume that E1 is much

more intense than E2 . Let us call Ei the pump and E2 the probe.

Equation 3.27 becomes, in the Fourier domain,

D(z, w) = eoE(z, w) + P(z, w) (3.35)

We would like to calculate the effect of the pump on the probe. Thus, we are interested

in calculating P(3)(z, w2), which is the nonlinear polarization of the component of b



at frequency w2 . The jth component of p(') (z, w) is given by

Il (Z LO= wL + Wm + wr) = 2 x (zon, Wm, Wr)
klp (nmr)

E(z, Wn)k (z, wm)E(z, Wr)ei( 3 n+#,+r)z

(3.36)

If we substitute in w2 for Wn + Wm + Wr we can calculate Pi(3)(z, w2):

13 )(Z7 W2 ) = 3 Z (Z7 Wn7Wm7 Wr)
kip (nmr) (3.37)

Ek(z, wn)EI(z, om) Ep(Z, wr)ei(0n+#,+#r)z.

Four facts help us evaluate Equation 3.37.

1. The sum over (nmr) is covered in only six cases, assuming that wi 7/ w2 . For

example, Wn = W2, Wm = w1 , and Wr = -w 2 . The other 5 cases are just the other

possible distinct assignments of ±1,2 to Wn,m,r that still yield Wn+Wm+wr = W2 .

2. The E of Equation 3.30 is real, so E(z, -wi) must equal E*(z, wi). Thus,

E(z, wi)E(z, -wi) equals IE(z, wi)12 .

3. Silica is an isotropic medium, so X(3 must be zero if the indices, jklp, take on

(3) X(3)values that repeat an odd number of times. For example, XYY = x = 0

because in the first case x and y are repeated an odd number of times, and

in the second x and z are repeated an odd number of times. If, for example,

XYY 74 0, then a field in the +y-direction would create a response in the

+x-direction. But the symmetry of an isotropic medium implies that there is

no reason there should be a response in the +x-direction rather than the -x-

direction. Moreover, because both E1 and E2 are polarized on the x-axis, the

sum over klp in Equation 3.37 is nonzero only when kip are all x. Therefore,

we are concerned only with (x which is nonzero only when j = x. So, the

only relevant nonzero xlis ixXX2, and, for simplicity, we drop the subscripts.



4. The intrinsic permutation property states that X (z, on, Wi, W-) = X3 (z, w, W,, Wm).

This equation is true because the names of the subscripts themselves are ar-

bitrary and, therefore, interchangeable, although Equation 3.37 implies that a

change in the order of w's requires a corresponding change in the order of the

subscripts of X

These four points imply that all x(3) tensor values relevant to this problem have

the subscripts xxxx and have some ordering of wi, -wi, and w2, and thus are all

equal. Therefore, we drop all subscripts and arguments of X(3) to obtain

2
PNL (z, W2) 3 )(z, w2 ) = $6eox9) 52(z,wi) 5x(z,w 2)ei2z (3.38)

where E, is defined in Equations 3.33 and 3.34. Substituting Equation 3.28 into

Equation 3.27 and taking it into the Fourier domain, we have

D(r, w) = eoE(r, w) + Eox E) - (r, w) + PNL(r, w). (3.39)

We are interested in the component of the field at the probe frequency w2 so we

consider Equation 3.39 only at w 2 :

D(r,w2) = coE(r,w 2) + EoX1) - E(r,W2 ) + PNL (r, w2)- (3.40)

We substitute Equation 3.38 and the positive frequency component of Equation 3.34

into equation 3.40. All of the vectors are nonzero only for their x components, so we

drop the vector notation

D(z,W2) = coE5(z, w2) + EOx ()52(z,W 2) + 6eoX 3) 5x(z, wi)1 E(z, w2) e 02z.

(3.41)

In Equation 3.41, D(w2 ) depends on both the pump field at carrier frequency wi and



the probe field at carrier frequency w2 . We can rewrite Equation 3.41 as

D(z, w2 ) = Co (1 + x( + 6x(3) 5(z, Wi) 1

where

Eef f = ( + +6X

5X (z, w 2 )e 02z = eeff5X(Z, w2 )e 0z

(3.42)

5k(zwi) 2) (3.43)

By the definition of the index of refraction, we have n 2 = C2/p1ef. In a nonmagnetic

medium, this equation reduces to

n2 eff
(3.44)

In Equation 3.42, we see that the proportionality of eff to I52(z, wi)12 implies an

intensity-dependent refractive index. By Equation 3.33, the pump wave is given by

E1(z, t) = i[5xE(z, wi)ei(31zW t) +c.c.] so that the time averaged electric field intensity

is given by

(IE1(z, t)12) = 2E,(z, wi)E*(z, wi) = 2 E(z,wi) 2. (3.45)

Thus, assuming a linear relationship between the index of refraction and the electric

field intensity, we have

n = no + 2n 2 jE2(zwi) (3.46)

We substitute Equations 3.46 and 3.43 into Equation 3.44 to get

no + 2n 2 5x(z wi) ] = 1+ X(1 + 6X(3) 5(z,wi) (3.47)

The left side of Equation 3.47 equals

n! + 4non 2 IE(z, wi) 2 + 4n 2 1E(z,wi) ~ n! + 4non 2 (z, Wi) (3.48)

where we assume that n2 < no. If we substitute the approximation of Equation 3.48



into Equation 3.47, then we have

no +4non 2 5x(zwi)2 = 1+ x1) + 6X(3 ) 5(zwi) . (3.49)

From Equation 3.49, we find that

no = 1+ X)(W2) (3.50)

and that
33 )(wi)

n2 = . (3.51)2no

Remember, that in this derivation it was assumed that the pump was much more

intense than the probe. Therefore, the effect of the pump on the index of refraction

seen by the probe was much more significant than the effect of the probe on the

same index of refraction. This change in index of refraction changed the optical path

length for the probe, in effect adding a phase shift to the probe. The case we studied

in this section demonstrated the phase shift induced on a probe by a very intense

pump. This effect, where a signal of one carrier frequency induces a phase shift in

a signal of a different carrier frequency is called cross-phase modulation (XPM) [12].

Nonetheless, a probe signal, even in the absence of a pump signal, can induce a phase

shift in itself. This effect is called self-phase modulation (SPM). In this thesis, we will

limit our discussion to the case of an intense pump with a probe too weak to induce

a noticeable phase shift in itself.

3.2.2 Dispersion

A short optical pulse contains many frequencies. In fact, the shorter the pulse is

in time, the wider its frequency spectrum. In a dispersive medium, each frequency

component propagates down the fiber at a different speed, leading to pulse distortion.

These dispersive effects are very important in determining which nonlinear medium

one should select for an all-optical switch or regenerator. We can express these disper-

sive effects mathematically by defining a frequency dependent propagation constant,



,#(w). After propagating a distance z, the component of the field at w, E(w), receives

a phase shift of 3(w)z to become 5(w)ep()z.

We consider first the case of the dispersion of a Gaussian pulse, because this

problem can be solved analytically. We expand 3(w) in a Taylor series around the

carrier frequency wo:

1
(w) = 3o + )1 (w - wo) + _,32 (W - wo) 2 + - . (3.52)2

The constants 0, in 3.52 are equal to = 3o is an initial and constant phase

shift on the pulse. #1 is the group delay and determines the velocity of the center of

the Gaussian pulse envelope. #2 is called the group velocity dispersion (GVD) and,

as we will see later, causes the pulse width to increase. We write the electric field for

the pulse at z = 0 as

-2t21In 2-
E(z = 0, t) = Eo exp T 2 e-"*O (3.53)

where we have dropped the c.c. because dispersion is a linear effect, making the c.c.

term is unnecessary. This optical pulse's full width at half its maximum intensity

(FWHM) is

TFWHM = TO. (3.54)

The propagation of the Gaussian pulse in a dispersive medium is easily solved in the

frequency domain, so we calculate the Fourier transform of this field:

=1 *0-td
E(z = 0, w) = - E(z = 0, t)eiwt dt

27r _00

1f'EOexp[ -- ]2t2 ln 2] ei(ww0)i dt. (3.55)
Ecnalyomex T2 e sa in t.

We can easily solve this equation by completing the square in the exponent and



consulting standard integral tables [13]:

To~~ -( -WO)2T2
E(z = O,w)= T exp [ ( ) . (3.56)

227r -In 2 81n2

Thus, the spectrum of the Gaussian pulse is another Gaussian pulse in w with a

spectral intensity FWHM of

AWFWHM = 4 (3.57)
TO

In a purely dispersive medium, in which nonlinear effects are negligible, the field,

after propagating a distance L, is given by

5(z = L, w) = 5(z = 0, w)ei3(w)L

= E(z = O,uw)e[+±2wo)+i2(-wo)+--L

where we have substituted Equation 3.52 into 3(w). We neglect terms higher than

#2 because in fiber #3 only becomes significant for very short pulses. Then we have

from Equation 3.58

E(z = L, w) = E(z = 0, w)ei[+' -wo)+ 2(-wo]L

TO T2 i# 2 L 2

272 nln 2 2 8 In 2 2 (3.59)

+ i,1L(w - wo) + i)oL .

Equation 3.59 is still a Gaussian pulse with the same spectral intensity FWHM given

in Equation 3.57. So the spectrum of the pulse has the same envelope, but now has a

phase shift equal to /3(w)L. We take the inverse Fourier transform of Equation 3.59

to see how the pulse evolves in time at z = L:

E(z = Lt) = j E(z = L, w)et dw

T e/L-wot)# exp -(t - # 1 L) 2T 2 - (3.60)

227r -In 2 2ln 2 (42 +4#2 L2



where # is a phase factor given by

- (#2 L - t)2
4(t,z = L) = . (3.61)

4 0 - i](6

As can be seen in Equation 3.60, the pulse is still a Gaussian, although a new phase

factor is present, and the pulse's width has changed. We now make several important

definitions related to the coefficients, 0#,, in the propagation constant that will help us

to understand the physical significance of each coefficient. First, the phase velocity

of the pulse, vo = wo/o, is the speed at which the carrier frequency propagates

through the medium. Second, the group velocity, vg = 1/#1 is the speed at which the

pulse envelope propagates through the medium. Last, we call #2 the group velocity

dispersion, which is related to the rate at which the pulse broadens in a second-order

dispersive medium.

We can justify the definition for the phase velocity, vo, by looking at the factor

ei(0z 0t) of Equation 3.60 and noticing that a point of constant phase exists at

0 z - wot = 0, so vo = dz/dt = wo/#o. This exponential factor is the underlying

carrier frequency. We can justify the other definitions by looking at the argument of

the exponential in Equation 3.60:

-(t - 1 z) 2 T2
T4 0 (3.62)

2ln2 4  ( .z26

To justify the definition of the group velocity, we note that the center of the pulse

exists where t - #1z = 0 and so, vg = dz/dt = 1/01. To justify the group velocity

dispersion, we note that #2 influences the pulse width. A larger 32 implies a larger

denominator in Equation 3.62 and, therefore, a wider Gaussian in Equation 3.60. It

is also useful to calculate the intensity FWHM, as we did in Equation 3.54:

2ln 2T4
TWM-21n2 ____ +4022Z 2  (3.63)TFW HM = To 4no2 4 2

T 4(ln 2)2

In Figure 3-2 we saw a Gaussian pulse propagating in a second order dispersive



medium. As can be seen in the plot and in Equation 3.60, the pulse broadens and its

peak intensity drops as the pulse propagates farther in fiber. This distortion, caused

by the second-order dispersion, has a significant effect on the choice of nonlinear

medium for an all-optical switch or regenerator. For example, the decreased peak

intensity of the pulse reduces the effect of the nonlinear index of refraction, which

is the key effect in fiber-based switches. The lower intensity causes a smaller phase

shift, forcing the use of a longer nonlinear medium.

Dispersion causes other problems as well. In the regenerator described in Chap-

ter 4, the signal pulses are separated temporally into two orthogonal polarizations.

Ideally, the separation is larger than the pulse width. If it is not, as may happen

because of dispersive broadening, the two orthogonally polarized pulses may induce

unwanted phase shifts in each other. In some regenerators, this problem is solved by

using a semiconductor optical amplifier with high nonlinearity and a short interaction

length in order to decrease the dispersive effects. But if we consider using optical fiber

as the nonlinear medium, as we will later in this thesis, we must use longer interaction

lengths. The design of any fiber based all-optical switch must account for the long

interaction lengths and dispersive effects of the fiber.

3.2.3 The Nonlinear Schrodinger Equation

In many cases in fiber optics, the dominant physical effects are second-order dispersion

and the nonlinear index of refraction. Both of these effects are described by the

nonlinear Schr6dinger equation (NLS), a wave equation often used in modelling pulse

propagation through an optical fiber. Here we provide an outline of the derivation of

the NLS drawn largely from [12].

We derived the nonlinear wave equation in Section 3.1 in both the time domain

(Equation 3.9) and the frequency domain (Equation 3.25). We now apply these results

to opitcal pulse propagation through optical fiber, where the pulse is modulated on

an optical carrier with frequency wo. To make the problem tractable, we must make

some simple assumptions. First, we assume that the pulse's spectral width, 6w, is

small compared to wo. Second, we assume that the pulse is linearly polarized and



maintains its polarization in the fiber. This assumption is not quite true, but it

produces an accurate result nonetheless. The pulse takes the form

E(r, t) = iEx(r, t) = Id [E,(r, t)e-wOt + c.c.] (3.64)

where E,(r, t) is a slowly-varying envelope on the carrier and c.c. is the complex

conjugate of the preceding term. Here, slow means that the pulse envelope is longer

than ~0.1 ps for a carrier wavelength is 1550 nm (wo ~ 1,215 TRad/s). This is

necessary for Aw < wo. We write the polarization vectors in the same form:

PL (r, t) = zPL = 1 PL (r, t)ewo + c.c. (365)
pN [N -iO + (3.65)

PNL _ PNL = __ N(366)(r tP L 2 (r, tOeiwi+cc](6)

These equations imply that the 2-polarized electric field induces only i-directed po-

larization, which is true in the fused-silica glass used to make optical fiber. pNL

includes the second- and higher-order terms of Equation 3.14. The glass in optical

fiber is amorphous, so R (= 0 [14}. Moreover, R(n) is small for n > 3, so we only

need to include the effects of R(1) and R .3
jk jklm'

We will also need the Fourier expansions of these quantities, so, for example

Es(r, t) = 5s(r, w)eiw dw. (3.67)

We will be consistent so that the Fourier transform of any variable in time is written

as the same variable with a tilde over it.

The polarization vector, p = pL + pNL is given by the 1st and 3rd order terms

from Equation 3.14:

Pf (r, t) = co R2(r, Ti)Ek(r,t - Ti) dTi (3.68)



pNLfO fOO 0 1 00R(3
PL(r, t) = Eo ] R3- m(r, 7 1, T2, T3)-_o -_ - (3.69)

Ek(r, t - ri)Ei(r, t - 12)Em(r, t - 73 ) dridT2 dr 3 .

If we substitute Equations 3.64 and 3.65 into Equation 3.68, we easily obtain

PL(r,t) = EoJ R (r,ri)E,(r,t - Tl)e- "0O1 dr1

_00 (3.70)
= eo X 2(r, w + wo)5,(r, w)e-iwt dw

where

= j R (r, t)ei'1 dri.

In Equation 3.70, the E-fields are all x-polarized, so the only relevant R are R(.

We assumed above that only the x-component of the polarization vector is excited,

so the only nonzero component of R is RX4.

Now we evaluate the nonlinear component of the polarization given in Equa-

tion 3.69. The third order response, R (3  has 43 = 256 components. The E-field is

x-polarized, so the only relevant components are R (3 . Again, we assume that only

the x-directed polarization is excited, leaving only R x22. If the medium responds

instantaneously to the field, then R ()(r,, T 2 , T3 ) is proportional to S(T1)6(T 2 )6(T3 ),

which ensures that the polarization vector at time t = to, P(r, to), depends only on

E(r, t) at time t = to. By assuming that the medium is instantaneous, we are ne-

glecting the Raman effect, which has a response time of --60-70 fs [12]. Our model,

then, is accurate for pulses longer than ~1,l ps. So, we let R1x2 = R(3)6(Ti) (T2 )3(r3 ),

which, combined with Equation 3.69, gives us the nonlinear polarization

PNL(r, t) = ZEoR( 3 (r, t)Ex (r, t). (3.71)

When we substitute Equation 3.64 into Equation 3.71, we get terms at frequencies of

3wo, wo, -wo, and -3wo. The terms at ±3wo require phase matching4 to significantly

affect the E-field. Phase matching is difficult to achieve unless chromatic dispersion

4For a quick discussion of phase matching, see Section 2.2 of Boyd [14].



is very low, so we neglect those terms to obtain

PNL(r) |Ea R (3 [IE,(r, t)|2 Ese~i'o + c.c.]

Using Equation 3.66 to get

PNL (r, t) = EONLE(r, t) (3.72)

where

ENL = _ R(3)|Es(r, t)|2.4

Now that we have expressions for PL and pNL, we can start deriving the nonlinear

Schrbdinger equation. We derived the nonlinear wave equation in Section 3.1:

V2E = 2 + a2 [PL pNLpOE 0[o [L+ N (3-73)

It will be easier to work in the frequency domain, so we substitute in the Fourier

expansions of E, pL, and pNL. This is easy for all the quantities except pNL, which

has no simple Fourier expansion. The E-field is slowly varying, so we can simplify the

problem significantly by treating ENL as a constant [15]. Then the Fourier transform

of pNL is PNL = cONLE,(r, w). So, we substitute Equations 3.64, 3.67, 3.65, 3.66, the

bottom equality of 3.70, and PNL into Equation 3.73 to obtain

V 2 5w(r,w - wo) + E(w)2 5,(r,w - wo) = 0 (3.74)

where c = 1/4Eopo and

(w) = 1 + x. (w) + eNL. (3.75)

Many derivations now introduce the new variables ii, a, which we interpret as a

refractive index and an absorption coefficient. These quantities are defined by

C== ( i+iC) 2 , A = n + n2|E.| 2, a=a+a 2|IES 2.



From these equations and Equation 3.75, we obtain

n= 1+ 2 Re (X9),

n 2 = +Re (R( 3 )),8n

a = ncIm (xXX),nc

a 2 = 3wo Im (R().
4nc

a 2 is small for silica fibers, so we will ignore its effects.

We can solve Equation 3.74 with a separation of variables solution of the form

E(r, t) = F(x, y) A(z, L - wo)eioz

where A is a slowly varying envelope, and #0 is the wave-number constant that we

will set later. Substituting this solution into Equation 3.74, we obtain the equations

a 2F 92F W 2 lF
&x + + C(W) F = 0

aX2 y2  1 C

2i/3o 5 + (/3-#)A=o

(3.76)

(3.77)

where 32 is the separation coefficient, and we used the slowly varying approximation

to neglect the second derivative 82 A/az 2 . We can also simplify the equations with

an approximation of e(w):

C = (n + An) 2 _ n2 + 2nAn, where

An = n2|EI

We will not go into detail, but Equation 3.76 can be solved approximately with per-

turbation methods [16, 17]. For the single-mode fibers used in long-distance commu-

nication, when e = n2, then F is approximately a two-dimensional Gaussian whose

peak coincides with the fiber axis. Then we perturb e to include An to obtain a



first-order perturbation solution. F is unchanged, but 3 does change

#(w) = 3(w) + A#(w) where

w2n(w) fo fo An(w)|F(x, y)|2 dxdy
c2/(w) fo f~ IoF(x, y)|2 dxdy

Equation 3.77 determines the propagation of the pulse down the fiber. We can

simplify it by noticing that 32 _ #3 = (/+#o)(/ - #3 ) 2#3(3 - #0) to get

' - WO)) = i [(w) + A3(w) - /o A(z, w - Wo). (3.78)

This equation is in the frequency domain, and we would now like to return to the

time domain. We first expand /(w) and A/(w) in Taylor series around the carrier

frequency wo to obtain

1
/(w) = o+(w - wo)3 1 + I(w-wo)+2 /32 +

2
1

A/(w) = A3 0 + (W - wo)A# 1 + 1 (W - wo) 2 A# 2 +
2

We can usually ignore #3, for n > 3 because Aw < wo. We can also ignore A3" for

n > 0 because A0 0 contains the effects we are interested in: the nonlinear index of

refraction and the fiber loss.

We substitute these Taylor series into Equation 3.78. As we know from basic

Fourier transform properties, multiplication by w - wo in the frequency domain is the

same as if in the time domain. We can see this easily in the formula

A(z, t) = j A(z, w - wo)e-("o)t dw

So, Equation 3.78 becomes

&A A i 82 AOA/+1 (9A+ i/32 902 A= iA/3oA.
Nz wt + u t2 thtA.

Now, we use 3w ~-' n(w)w/c. We also assume that the transverse-mode profile, F(x, y),



does not change much with with small changes in frequency so that all frequencies

contained in the pulse will have nearly the same F(x, y). We then get

&A A i &2A a yw)A 2

+ 1 + - 2 + -A = i(wo)|A12A (3.79)(9z + t 2 &t 2

where
n 2 (wo)wo

cy(wo) f

and

Aeff f F(x, y)|2dxdy
( )2

Ae55 f f. |F(x, y)|14 dxdy

Aeff is the effective area and is a rough measure of the area of the transverse mode

F(x, y).

We can make one more simplification by transforming to a moving reference frame,

T = t - #1 z and U(z, T) = A(z, t)

to get
aU 1 a2U

- = - - 2 + iy Ul 2U , (3.80)

which is the desired nonlinear Schr6dinger equation.

In Equation 3.80 the dispersion is expressed in the first term on the right side

of the equation and the nonlinear phase modulation in the second term. The group

delay, 31, has fallen out of Equation 3.80 because the moving reference frame, given

by T = t - #1z, moves with the group velocity of the pulse envelope. In this way,

a pulse at carrier frequency wo remains centered at T = 0. Zakharov and Shabat,

in a monumental paper, discovered exact solutions to the NLS [18]. Nonetheless,

adding other terms to this equation to account for effects other than dispersion and

the nonlinear index of refraction, render the equation unsolvable. Methods exist

that solve these equations numerically, and one such method, the split-step Fourier

method [12], generated the plots in Figure 3-2.

We can understand Equation 3.80 better by considering two cases: one in which



-y is negligible and the other in which #2 is negligible. If -y is negligible, we consider

pulse propagation in the presence of dispersion alone:

OU 1 ' 2 U
- 2 . (3.81)oBz 2 Br2

Equation 3.81 is solvable by taking its Fourier transform with respect to r:

BU(z w') 1= -.i/I2w12g(z,w') (3.82)
0z 2

which has the simple solution

U(z, w') = U(z = 0, w)e-2 2 . (3.83)

Equation 3.83 describes the effects of second order dispersion, as we discussed in

Section 3.2.2. Notice that the magnitude of U(z, w') does not change. Nonetheless,

the magnitude of the same function in the time domain, U(z, T), broadens as the pulse

propagates. Now, if #2 is negligible, we consider pulse propagation in the presence of

the nonlinearity alone.
(U
a_ = iy|U 2 U. (3.84)

Equation 3.84 is solved by considering U in polar form. We can easily verify the

solution

U(z, r) = U(z = 0, r)e^U(zOr)Pz. (3.85)

From Equation 3.85, we see that a phase shift is added to the pulse that is proportional

to y and to the intensity of the pulse. This phase modulation is exactly what we expect

from Section 3.2.1, where we discussed the nonlinear index of refraction. Also notice

that, unlike the case above with just the dispersion term, the magnitude of the time

domain pulse, |U(z, T) , does not change. But, the magnitude of the same pulse in

the frequency domain does change.

In single-mode fiber (SMF), only the HE,, mode is excited. Nonetheless, if z

is the direction of propagation, then the electric field can be considered polarized



in either the x or y direction to good approximation. Thus, even single-mode fiber

supports two different modes of polarization [12]. Equation 3.80 does not account for

two possible polarizations or loss in the fiber. To include these effects, we must use a

coupled set of two partial differential equations:

0Ax i 0 2A a 12 2 1 +iA*A22iAz
+-02 2 x + -A, = i-Y(\Ax| + A,|2 Ax + A*A2-1p (3.86)

Az i2 2  2 3  i x

04 i 0 a ~ +2 3 12 *'* 2e-A (3.87)
+ #2 2+ A = iA| 2)A + A*A22A)yz. (.7

In these equations, a is the loss in the fiber, Ax and A are the electric field envelopes

of the two polarizations, and A3 = #1x- ,3y. So, these equations still account for

dispersion and the nonlinear index of refraction, but also account for the fiber loss

with a and linear birefringence with A,#. The linear birefringence causes each of the

polarization components to propagate at different rates. In fact, microbending in the

fiber causes the value of the birefringence to change randomly down the length of the

fiber, causing the polarization to change quickly and unpredictably. This effect will

be important in the design of all-optical regenerators. One last interesting point in

these equations is the nonlinear terms: i-y(IAx12 +IA,| 2)Ax and i-y (IAy2 + JAI 2)Ay.
Notice that the intensity of A affects the index of refraction seen by Ax only two-

thirds as strongly as the intensity of Ax itself. This weakening of the nonlinear index

of refraction between orthogonally polarized fields will also affect the design of fiber-

based regenerators.

3.2.4 Effects of Loss on Phase Shift

For this thesis, we have tested all-optical regenerators that use silica optical fibers to

provide the nonlinear medium. Optical fibers have inherently low loss. The single-

mode fiber common in communications has a loss of about 0.25 dB/km at a wave-

length of 1550 nm. As pulses propagate in fiber, their peak intensity falls and, there-

fore, the intensity-dependent index of refraction decreases. The all-optical switches

we presented above all operate by inducing a 7r phase shift in one pulse with respect



to another. These two pulses are then interfered at the output. Therefore, loss in-

creases the length of fiber or the magnitude of optical power needed to induce that

phase shift. Because longer fibers can entail more noise and distortion from effects

like Rayleigh scattering and dispersion, we must consider carefully how substantial

the loss is. We must also remember that each pulse has a nonuniform intensity, so

low intensity wings on the pulse receive a smaller nonlinear phase shift than the high

intensity peak.

Let U(z, r) be the pulse envelope on a carrier of frequency wo. As we did for

dispersion in section 3.2.2, we expand the change in U(z, r) 12 as a Taylor series:

IU(z, r)12 = -al U(z,T) 2 - aNLIU(Z,r)2 +-.- (3.88)Oz

The first term on the right accounts for linear gain or loss (a is positive for loss and

negative for gain). In this thesis, we will neglect higher order nonlinear loss terms.

aNL, for example, accounts for nonlinear losses such as two-photon absorption, which

can become significant with high optical powers [19].

If we neglect higher order losses, then we have

IU(z,r)|2 = |U(z = 0, -r)|2 az. (3.89)

First, let us consider how much longer a fiber with loss must be to induce the same

self-phase modulation that would be induced in a lossless fiber. To simplify the

problem, we assume that the pulse has uniform intensity. In a lossless fiber of length

Lo, the self-phase modulation induced from Equation 3.85 is

L

1 () = /O -yjU(z = 0,T-) I'dz ( .0
= = _(3.90)

= yU(z = 0,Tr)| 2 Lo.



In a lossy fiber of length L, the self-phase modulation induced is

-I (z -r) I'( aL (3.91)

= yU(z = 0, -r)| 2 1-

Equations 3.90 and 3.91 imply that if the phase shift induced in a lossless fiber of

length LO is to be the same as that induced in a lossy fiber of length L, then we must

have Lo = [1 - exp(-aL)]/a. The larger a is, the longer the lossy fiber must be.

3.2.5 Numerical Solution to the NLS

The most popular numerical method for solving the nonlinear Schrddinger equation

is the split-step Fourier method [12]. The nonlinear Schr6dinger equation with the

loss term is:

BU(z, -r) 1 92U(z r) _ aU(z T) +i-yIU(z,)1 2U(Z,). (3.92)
Oz 2 &r2 2

The standard numerical method used to solve this equation is the split step Fourier

method. In this method, Equation 3.92 can be rewritten in operator notation as

WU(z, -r)
az = (L + N)U(z, r) (3.93)
B~z

where the operators are given by

-a 12 2f
Lf -f - i#22, (3.94)

Nf = i7y|f|2f. (3.95)

The formal solution to Equation 3.93 is

U(z = z 2 , r) = e*+nU(z = zi, T) (3.96)



where

' = (z2 - zi)L and Q = z2 N(z, T) dz. (3.97)

In general these two operators cannot be dealt with separately because exp(I + Q)

exp(4') exp(Q). But, if z2 - z1 is very small, then the approximation

exp(T + Q) ~ exp(T) exp(Q) (3.98)

can be used.

In the slit-step Fourier method, we consider the nonlinear and linear operators sep-

arately. First, we assume periodic boundary conditions with period T. The solution

to the nonlinear part, as shown in Section 3.2.3, is simply

U(z, T) = U(z = 0, T)eIYIU(z=')Z I (3.99)

The solution to the linear part can be found by assuming U(z, T) has a Fourier series

solution:
00

U(z, r) = 1 Un(z)e'
n=-oo

where wn = 27rn/T. The linear part of Equation 3.93 is

BU(zr) _1 2 U(z,T) aU7)
Iz we2 s bru io2 2 U(z

If we substitute in Equation 3.100, we obtain

(3.100)

(3.101)

f00
aln(Z )w-

BUazz ""=
00

-00 2 - O22 (z)ew"z
n=-oo

yielding the system of equations

(3.102)

OUn (z)
Oz

(3.103)1 n On )(). 
2
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Figure 3-3: The split-step Fourier method of solutions involves alternate applications
of the linear and nonlinear operators. Linear steps are labeled with an "L" and
nonlinear steps are labeled with "NL." The axis shown is the discretized spatial axis.

The solutions to Equations 3.103 are

U.(z) = Un(z = 0)e(2 n -j)z. (3.104)

Thus, we have solved the linear part of the NLS in the frequency domain and the

nonlinear part of the NLS in the time domain.

Now we consider putting these two solutions together. The spatial coordinate z is

discretized into steps of length Az. We begin with initial conditions of U(z = 0, r),

where U has period T along the temporal axis r. To demonstrate the split step

method, let us consider a slightly simpler version of it. First, we neglect dispersion

and use Equation 3.99 to solve for U at z = Az. Let us call the results of that

calculation UNL(z = Az, r). Now we have to calculate the effects of dispersion by

taking UNL(z = Az, r) into the frequency domain to get UL(z = Az, wa). We use

TNL(z = Az, wn) as the initial conditions for one spatial step of dispersion, from

z = 0 to z = Az. Then we return to the time domain to obtain U(z = Az, r).

We repeat this procedure for all subsequent spatial steps. The solution will converge

more quickly to the correct solution if we interleave the steps, as shown in Figure 3-3.

Instead of solving an entire spatial step of dispersion and then using those initial

conditions to solve another full spatial step of nonlinearity, we begin with a half step

of dispersion, then a full step of nonlinearity, and finally a half step of dispersion. We

then repeat for subsequent spatial steps.



To run this simulation on a computer, we cannot let the n of Equation 3.100 vary

from -oo to o0. Instead we truncate the series to vary from -N to N, where we

choose N based on the accuracy of simulation desired. Once we choose this truncation

constant, we can use the fast Fourier transform and inverse fast Fourier transform to

move between the frequency and time domains. The fast Fourier transform grows in

computational difficulty by the order of N log N, which is why this method is often

preferred to much slower algorithms based on the finite difference method. Nonethe-

less, we must keep in mind that the approximations we have made can lead to error:

space is discretized into small intervals so that we can make the assumption of Equa-

tion 3.98; the initial conditions, and, therefore, the solution is assumed to be periodic;

in the frequency domain, higher frequencies are truncated from the Fourier series ex-

pansion of U; the FFT actually calculates the discrete time Fourier series rather than

the desired continuous time Fourier series. We must also keep in mind that at the

periodic boundaries, if the function is not continuous and does not have a continu-

ous derivative, then the numerical solution may behave undesirably. After all, most

physical pulse trains are continuous at bit-period boundaries and have continuous

derivatives.

3.3 Semiconductor Optical Amplifiers

SOAs are pn-junctions designed to amplify light. Figure 3-4 (a) shows a schematic of

the SOA. The depletion layer that forms around the pn-junction serves as the active

region in which optical signals are amplified. An optical signal enters the active region

(into the page) and is amplified when energy is transfered from the carriers to the

optical field.

It is minority carriers that provide the gain. Consider, for example, the p-doped

region of the SOA where the minority carriers are electrons. The semiconductor's

periodic structure causes the available energy states of the electrons to be banded.

Within these bands, there are so many available states that we can think of a band

as a continuum of energy states. Between the bands is a gap containing energies that
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Figure 3-4: (a) The SOA is a pn-junction designed to produce gain. (b) Heterostruc-
ture designs trap carriers in a potential well in the active region.
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Figure 3-5: The three basic SOA processes are (a) absorption of light, (b) stimulated
emission of light, and (c) spontaneous emission of light.

no electron can take. The size of this gap is the bandgap and it is the minimum

photon energy that can be amplified. In the second generation of SOAs, a thin layer

of a different semiconductor was placed between the p- and n-type regions, forming

a heterostructure device in which the active region's bandgap is narrower. As shown

in Figure 3-4, this narrower bandgap produces a potential well that traps carriers in

the active region.

Ordinarily, there are very few minority-electrons in the p-region of the SOA, but

when we forward bias the pn-junction minority carriers are injected into both regions.

Electrons can occupy either the lower-energy valence band or the higher-energy con-

duction band. As we can see in Figure 3-5, which shows a simplified two-energy-level

system, there are three basic processes. In (a), an electron in the lower energy state

(E1 ) absorbs a photon with energy E2 - E1 causing stimulated absorption. In (b),

an electron in the higher energy state (E2) is stimulated by the arrival of a photon



to drop to the lower energy state, releasing another photon of the same energy and

causing stimulated emission. This process is the source of gain in an SOA. Finally,

in (c) an electron can drop spontaneously, releasing a photon of energy E2 - Ei in a

process called spontaneous emission, which is a source of noise in SOAs. By injecting

current through the diode, we increase the number of high-energy electrons so that

stimulated emission exceeds absorption. There are, of course, analogous processes

involving minority holes in the n-type region.

3.3.1 Basic Model

The model used for the SOA simulations presented in Chapter 5 is drawn from [20],

and this section reproduces the derivation from that paper. As discussed in Sec-

tion 3.3, it is the change in energy states of carriers that produces gain in SOAs. So,

we start with an equation that describes time-evolution of the carrier density, N(r, t),

in the SOA's active region:

ON N a (N - No) 1E12. (3.105)= DV 2 N kI --- l.(315
at TC hw0

D is the diffusion coefficient, I is the injection current (usually on the order of hun-

dreds of mA), Tc is the spontaneous carrier lifetime, hwo is the photon energy, a is the

gain coefficient, No is the carrier density where gain and absorption cancel each other

(the transparency point), and E. Equation 3.105 and the assumptions used to derive

it are discussed in [21], but it will be enough for us to consider it phenomenologi-

cally. Each of the terms in the Equation 3.105 corresponds with one of the processes

described in Section 3.3. The first term on the right-hand side accounts for diffusion

of the carriers in the SOA. The second term describes the repopulation of carriers

by current injection into the SOA. The third term describes the depletion of carriers

through spontaneous emission. Finally, the fourth term describes the depletion of

carriers due to stimulated emission of photons.

Of course, we wish to obtain an equation that describes the effect the SOA has

on an electromagnetic wave propagating through it. Wave propagation through the



SOA is described by
e f2E

V2E - - = 0, (3.106)c 2 jot2

where c is the speed of light. The dielectric parameter, e, describes the optical proper-

ties of the SOA, including gain and index changes. It is clear that the gain is affected

by changes in the carrier density, N, because carrier depletion produces the gain.

Moreover, we know that the index of refraction is connected to the gain through the

Kramers-Kronig relations. So c is functionally dependent on N. We express e as

E = n 2 (3.107)~b + X,

where nb is the background index of refraction. nb a function of the transverse coor-

dinates, x and y, because the SOA has a cylindrical waveguide structure that guides

waves in the z direction. X accounts for the effects of the charge carriers and is the

portion of E that contains the dependence on N.

X's exact dependence on N is complicated, and consideration of it is beyond the

scope of this thesis. For a more thorough discussion of this matter and others, see

Chapter 2 of [22]. We will use a simple model for X given by

X(N) = --- (a + i)a(N - No). (3.108)
WO

In this equation, a is a constant which is related to the gain, A is the effective mode

index, and a is a constant that accounts for carrier-dependent index changes, often

referred to as the linewidth enhancement factor.

Equations 3.105, 3.106, 3.107, and 3.108 are the fundamental equations of the

model, but they do not directly and easily provide us with the relationship between

the input optical signal and the output optical signal. To simplify these equations,

we assume that the SOA is an ideal traveling-wave amplifier and we assume that its

active region is a rectangular waveguide that supports a single mode. If the input

wave is linearly polarized and remains so, then we can use a separation of variables



solution given by

E(r, t) = i {F(x, y)A(z, t)ei(koz-wot) + c.c.}. (3.109)

F(x, y) is the waveguide-mode distribution, ko = hwo/c, and A(z, t) is the envelope of

the optical pulse. When we substitute Equation 3.109 into Equation 3.106, we obtain

the separation of variables solution given by

82 F 2 F 2 2
+ (n 2) F = 0 (3.110)

aX2  ay2  C2

&A 1 A iwor
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The group velocity is given by vg = c/ng, the group index is given by n. = +

wo(&5/&w), and the mode confinement factor is given by

_ f" I F(x, y) 2 dx dy

f' f 2f IF(x,y) 2 dx dy

where w and d are the dimensions of the waveguide. Equation 3.111 neglects sec-

ond derivatives of A(z, t), which is called the slowly-varying envelope approximation.

This approximation is allowed because the pulse's envelope is short compared to the

wavelength of the carrier.

There are two unknowns in Equation 3.110: the transverse mode profile, F(x, y),

and the effective mode index, I5, which is related to the propagation constant, ko.

We can solve Equation 3.110 for F(x.y) and ii by applying the waveguide boundary

conditions and using first-order perturbation theory, similar to the problem described

in Section 3.2.3.

We can also simplify Equation 3.105. The waveguide dimensions, w and d, are

small enough that the carrier density, N, is nearly uniform across the transverse

dimensions. So, we can ignore the diffusion term DV 2N because N is constant with

respect to x and y. Thus, in Equation 3.105, the only quantity that varies over x and

y is E. So, we can easily average over the transverse dimensions by integrating over



x and y to obtain
&N _ I N g(N)A 12 (3.112)
Ot qV Tc hwo

where g(N) is defined by

g(N) = Fa(N - NO). (3.113)

We combine Equations 3.112 and 3.113 to get

g go-g - g Al 2  
(3.114)

at re Esat

with Esat = hwowd/(Fa) and go = FaNo(rckI/Io - 1). In Equationeqn:gl, IA(z, t)|2

is normalized so that it equals the total optical power in the SOA.

Now only two equations, 3.111 and 3.114, give us the needed relationship between

input optical signal and output optical signal, but they can be simplified further.

First, by making the time transformation T = t - z/vg we can eliminate the term

with v in Equation 3.111. Next, we can write the field amplitude as A = Vi-exp(i#).

Then, by combining Equations 3.111, 3.114, 3.108, and 3.113 we obtain

P gp (3.115)az
- = -- aeg (3.116)az 2
-- = - - -. (3.117)

ar -rc Esat

Equation 3.28 justifies our use of the letter g in Equation 3.113, because g is clearly

the gain per unit length in the SOA. With one more simplification, we can eliminate z

from the equations above. Equations 3.115 and 3.116 are easily solved by integration,

which allows us to write all three equations above as

P.t(T) = Pine hr

1
#xt(T) = #n- 2ah(r) (3.118)

h goL-h Pi() [h

T rc Esat



h(r) is the integrated gain given by

L

h(T) = JOg(z,T)dz,

where L is the length of the SOA in the z-direction. Equations 3.118 complete the

SOA model that we will use in Chapter 5 to simulate SOA-MZI performance.
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Chapter 4

Wavelength-Maintaining Folded

Ultrafast Nonlinear Interferometer

In Section 2.2.1 we saw that a Mach-Zehnder interferometer can be used as an

all-optical switch. In this section we consider another interferometric switch, the

wavelength-maintaining folded ultrafast nonlinear interferometer (WMFUNI), and

its application to data regeneration. Figure 4-1 is a schematic of a simple regenerated

optical fiber link. Clock pulses from a clock recovery circuit enter the signal input

of the switch. Degraded data pulses from the network enter the control input, and

the presence of a data pulse (i.e., a 1-bit) sets the switch to transmit the clock pulse,

replacing the data pulses with undistorted clock pulses. The new data pulses then

propagate in fiber until they arrive at the next regenerator.

An ideal regenerator should accomplish four things (the 4Rs). 1) It must re-

amplify the signal. That is, it must restore all data pulses, representing 1-bits, to the

Fiber Clock
Fiber Clock Recovery Sgal

Daa nRecovery Signal Switch
Switch Dontrol

-Now Control

Figure 4-1: Schematic of a fiber link with data regeneration.



proper pulse energy. 2) It must reshape the pulses, which includes the underlying

phase. 3) It must retime pulses that have acquired variations in timing. 4) It must

repolarize the data. By this, we mean that the switch should output a constant

output polarization, and the switch's behavior should be independent of the input

control-pulse polarization. We will examine the WMFUNI's performance in all four

of these criteria.

The best test of performance would be exactly that depicted in Figure 4-1. Testing

a full link, with many regenerators, is impractical of course. Instead, we can test a

single regenerator inserted in a loop of optical fiber. The data pulses then recirculate

many times through the loop and regenerator. Section 4.4 presents loop regeneration

experiments of the WMFUNI.

4.1 The Folded Ultrafast Nonlinear Interferome-

ter

The ultrafast nonlinear interferometer (UNI) has been demonstrated to switch at

100 Gb/s [1] and has been considered for all-optical 3R regeneration [2]. The UNI

does, however, suffer from slow polarization drifts, and its three polarization con-

trollers must be actively monitored. Stabilization of the polarization drifts in the

UNI would make practical operation more likely. In the folded UNI, a Faraday mir-

ror added to one end of the optical path creates inherent polarization stabilization

within the switch.

Like the UNI the folded ultrafast nonlinear interferometer (FUNI) [3, 4] is a single-

arm interferometer. There are, however, several important differences between the

two switches. The nonlinear medium of the FUNI is a length of optical fiber rather

than a semiconductor optical amplifier (SOA). In SOA-based switches, data pattern-

ing on the input pulses causes amplitude patterning on the output pulses because

of the long recovery times in SOAs [5]. Fiber, however, has a nearly instantaneous

nonlinearity, which eliminates the amplitude variations on the output [6]. Also, as we
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will see, the FUNI uses a Faraday mirror to stabilize polarization within the switch.

4.1.1 FUNI description

The FUNI is assembled from commercially available discrete components. The cir-

culator, shown with a curved arrow in Figure 4-2, passes optical power into port 1

out port 2 and power into port 2 out port 3. PC1 and PC2 are manual polarization

controllers. The ~6-m length of birefringent fiber (BRF) has two different group

velocities on its two polarization axes and is cross-spliced at 450 to the polarizer,

allowing it to split each clock pulse into two orthogonally polarized components sep-

arated temporally by 10 ps. The nonlinear medium is dispersion shifted fiber (DSF),

which has a smaller core than standard single-mode fiber (SMF). This smaller core

is designed to reduce the amount of chromatic dispersion on pulses with wavelengths

near 1550 nm [7]. The smaller core also increases the intensity of the light, creating

a larger nonlinear effect. Finally, there is a Faraday mirror at the bottom of the

diagram. The Faraday mirror reflects all the pulses and rotates their polarizations by

900.

To explain switching in the FUNI, we consider two cases: for each clock pulse, a

data pulse is either present or absent. First, consider the FUNI's operation in the

absence of data pulses. The clock pulses enter at the signal port where PC1 aligns

them to the polarizer. We align the birefringent fiber (BRF) at 450 to the polarizer,

thus splitting the clock pulse into two temporally-separated orthogonal polarizations.

The separation time between the polarizations is 10 ps. Both components propagate

through 1 km of DSF, with a dispersion zero at 1551.4 nm. Then a Faraday mirror

reflects the pulses and rotates them by 900. Optical fiber can be thought of as a

long series of stacked waveplates whose fast and slow axes are randomly oriented to

each other, so the polarization of the pulses becomes distorted in the DSF. This 900

rotation causes polarization components originally aligned to the slow axes of these

hypothetical waveplates to be aligned to the fast axes, and vice versa. So, during

the return pass through the DSF and BRF, all of the relative delays and phase shifts

accumulated in the forward pass are compensated, restoring the polarizations of the
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Figure 4-2: In the folded UNI, a Faraday mirror provides polarization stabilization.
PC1 and PC2 are polarization controllers. The nonlinear medium is - 1 km of

dispersion shifted fiber.
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pulses (aside from a 900 rotation) and recombining the separated clock pulses. The

polarizer then blocks the temporally-recombined clock pulses because they are now

rotated by 90* from their original polarization.

The FUNI turns on when a data pulse enters the FUNI at the control port.

These pulses are amplified in an erbium-doped fiber amplifier (EDFA) to produce

sufficient intensity. Each data pulse co-propagates with one of the two temporally-

separated orthogonal clock pulse polarizations. During propagation through the DSF,

the nonlinear interaction between data and clock pulses induces a 1800 relative phase

shift between the orthogonal clock components. This phase shift rotates the clock

pulse polarization by 900 so that, upon arrival at the polarizer, the clock pulse is

aligned to the polarizer transmission axis and exits out port 3 of the circulator. A

bandpass filter (BPF) passes the clock pulse and blocks the data pulse. Thus, the

on-off keyed data pattern is modulated onto the clock pulse wavelength. Data pulses

that are moving in the opposite direction of the clock pulses (e.g., after reflection)

interact with both orthogonal clock polarizations, adding approximately the same

total phase shift to each clock pulse polarization. Therefore, the contrast problem

with the nonlinear optical loop mirror (NOLM) regenerator [8] at higher data rates

does not appear in the FUNI. There may, however, be unwanted nonlinear polarization

rotation effects at higher data rates.

Faraday rotation and similar phenomena have been investigated before as a means

of polarization stabilization in switches similar to the FUNI. In one FUNI-like op-

tical switch, polarization-maintaining fiber served as a nonlinear medium [9]. This

technique has a possible disadvantage: the high birefringence of the polarization

maintaining fiber results in the two orthogonal clock pulse components temporally

overlapping or "walking-through" multiple control pulses during transmission through

the device. Thus, the output contrast may be significantly degraded. Also, a data

pattern on the control pulses can cause an unpredictable phase-shift in these clock

pulses components. In another optical switch, dispersion-shifted fiber was tested as a

nonlinear medium [10]. This switch, unlike the FUNI, does not split the signal pulses

into two temporally-separated polarizations. Instead it relies on the fact that the
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control pulse, when temporally overlapping the signal pulse in a nonlinear medium,

induces more phase shift in the co-polarized component of the signal pulse than in

the cross-polarized component of the signal pulse.

4.1.2 Choice of Nonlinear Medium in the FUNI

As we reviewed in Section 3.2, optical fiber has both linear and nonlinear properties

that we must consider when choosing the proper nonlinear medium for the FUNI. The

linear effects play an important role in the tolerance of the switch to random variations

in the timing between signal and control pulses (timing jitter). The nonlinear effects,

which provide the switching operation, can create a phase shift that is not uniform

across the signal pulse, leading to output pulses with larger spectra than desired.

Moreover, the interaction of linear and nonlinear effects can cause splitting of the

optical pulses.

So, full characterization of the various nonlinear media the FUNI can use is im-

portant in the design of the FUNI switch. We can easily measure the -y coefficient of

Equation 3.80 [11], which characterizes the nonlinear index of refraction. The typical

value in DSF is -y = 2 m- 1 W-1, which is the value for the spools of fiber used in this

work. With Equation 3.85 we can easily estimate what control pulse energy would

be required to induce a 7r-phase shift in an ideal fiber with no loss and no dispersion.

Assume that the control pulses are Gaussian with an intensity width of ~ 3-ps when

measured at the point of half-maximum intensity. Also remember that the optical

pulses pass twice through the nonlinear fiber. We then find that a 500-m spool will

require a pulse energy of ~ 5 pJ/pulse and a 1000-m spool will require a pulse energy

of - 2.5 pJ/pulse. These values are close to the experimentally measured ones.

Linear dispersive effects can broaden pulses in time, but they can also increase

the FUNI's tolerance to timing jitter. In the FUNI the control and signal pulses are

at different wavelengths, allowing it to remove the control pulses once the switching

operation is complete. Group-velocity dispersion implies that pulses with different

carrier wavelengths propagate at different speeds through fiber, as discussed in Sec-

tion 3.2.2. The nonlinear phase shift in the signal pulses only accumulate when the
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Figure 4-3: This plot shows the relative positions in time of a signal pulse and three
possible control pulses with jitter, all at the beginning of the DSF. Each control pulse
moves 4 ps with respect to the signal pulse, guaranteeing signal-control overlap during
propagation through the DSF.

control pulse overlaps it, so the group velocities of the control and signal pulses should

be nearly the same in order to create the ir-phase shift with as little control-pulse

energy as possible. In the regeneration application, there is, however, a good reason

to increase the difference in the control and signal speeds. In regeneration, network

data pulses are used as control pulses, and these data pulses may have timing jitter,

in which case the positions of the optical data pulses will be randomly distributed

around the center of the bit period. Sometimes, therefore, the control and signal

pulses may only slightly overlap. If they have different speeds, then we can increase

the chances that the pulses will overlap at least some of the time, as shown in Fig-

ure 4-3. A large walk-off between the signal and control pulses will also sharply reduce

the interaction time, which increases the control-pulse energy needed to produce the

ir phase shift. Thus, a trade-off exists between low control-pulse energy and tolerance

to timing jitter.

So, measurement of the dispersion of the nonlinear medium is important in the

design of any fiber switch or regenerator. Figure 4-4 shows the setup used to measure

dispersion in fiber. In this experiment, we directly measure the propagation time
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Figure 4-4: Experimental setup for dispersion measurement. The polarization con-
troller adjusts the polarization of light from the continuous wave source to the polar-
ization axis of the electro-optic modulator. An RF driver modulates a sine wave onto
the CW light, which then passes through the test fiber. An oscilloscope or network
analyzer then measures the relative propagation delay through the fiber as a function
of wavelength.

of pulses traveling through the fiber as a function of carrier wavelength. A tunable

source produces light of the desired wavelength, onto which a 150-MHz sine wave is

modulated. A wavemeter is used to measure the carrier wavelength of the resulting

pulses. These pulses then propagate through the test fiber to an oscilloscope or

network analyzer, where the phase of a reference signal from the RF driver can be

compared with the phase of the envelope of the optical pulses. From this comparison

we can determine the propagation time to within an integer multiple of the pulse

period. This means that we can only really measure relative propagation delays,

which is all that is needed to determine the 32 and #3 components of the dispersion.

As we saw in Section 3.2.2, after an electric field propagates a distance z, the com-

ponent of the field at w, 5(w), receives a phase shift of #(w)z to become 5(w)e 3 (W)z.

We expanded 3(w) in a Taylor series:

1 1
O(w) =00 +31(W - wo) + 1#2(W - WO)2+ I03(W - WO)... (4.1)

Each of the coefficients is a function of the center frequency, wo, around which we
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expand the series. In Section 3.2.2, we saw that #1(wo) equals the propagation delay

per meter of fiber of a pulse with carrier frequency wo. The setup of Figure 4-4 directly

measures f1 (wo). We want, however, the values of 32 and 3. We know that

On(WO) - a (4.2)

So, we can calculate

2(WO) =03 (WO)
( -WO 

(4.3)

33(WO) = .3 (WO)

Figure 4-5 contains data for two different spools of fiber tested as nonlinear media

in the FUNI. The first column contains the data for the 530-m spool used in this

section, and the second column contains the data for the 1100-m spool used in Sec-

tion 4.3. The top row contains the measured relative group delays of the 150-MHz

pulses as a function of carrier wavelength. I have fit second-order polynomials to the

data using a minimum mean-squared error criterion. From that polynomial fit, we

can easily calculate the values of 32(wo), shown in the second row, and 33(wo), shown

in the third row using Equations 4.3. Of course, the data are measured as a function

of A so we have to use the formula v = c/A. #2 and #3 give additional useful informa-

tion about the behavior of the fiber. 32 is important in determining how much the

pulses broaden as they propagate through the fiber. When 32 is small, the value of

#3 becomes significant. As we shall see, this can cause the splitting of pulses.

First, though, we consider how to measure directly the tolerance of an all-optical

switch to timing jitter. In one simple method, the switch operates as it ordinarily

does, with two input pulse trains. Then one measures the average output power of

the switch as a function of the relative time delay between the control and signal

pulses. The plot of output power versus relative delay is the switching window of

the switch, and the wider this window is, the greater the tolerance to timing jitter.

Unfortunately, manual adjustment of such a delay might be too slow for accurate
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Figure 4-5: Dispersion data for (a) the 530-m spool used in this section and (b) the
1100-m spool used in Section 4.3.
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Figure 4-6: Experimental setup for switching window measurement. Two mode-

locked fiber lasers provide the input pulse trains at slightly offset pulse frequencies.

The oscilloscope, triggered at the offset frequency, displays the switching window.

measurement because of drifts in polarizations and fiber lengths. Instead, we can

obtain a quickly varying delay between the two pulse trains by offsetting their pulse

frequencies by - 1 kHz. Figure 4-6 shows the experimental setup for such a switching-

window measurement. Two mode-locked fiber lasers generate the two input pulse

trains at pulse frequencies offset by 1-kHz. The two RF sources are tied together

with a 10-MHz reference clock. The average output power of the FUNI is measured

at an oscilloscope triggered at the offset frequency, which is also synchronized with a

10-MHz reference clock.

Figure 4-7 shows switching windows for the FUNI using two different fiber spools

as a nonlinear medium. Figure 4-7 (a) shows the switching window for the 530-in

spool of dispersion-shifted fiber with the dispersion profile shown in Figure 4-5 (a).

The control pulses had a carrier wavelength of 1549.8 nm and a pulse energy of 6 pJ.

The signal pulses had a carrier wavelength of 1545.5 nm and a pulse energy of 0.15 pJ.

The control pulse train had a pulse rate of 10 GHz and the signal pulse train had

a pulse rate of 10 GHz+100 kHz. Neither pulse train had a data pattern for this

switching window measurement. We determined all pulse widths by measuring the

full widths of their intensity profiles at the point of half-maximum magnitude, referred

to from here as the intensity full-width at half maximum or IFWHM. Both the signal

pulses and the control pulses were 3 ps wide in the DSF. In the switching window
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Figure 4-7: Switching windows for the FUNI (a) with 530 m of DSF as its nonlinear
medium, and (b) with 1100 m of DSF as the nonlinear medium. In both cases the
principle peak is 4.1 ps wide at its half-maximum point.

of Figure 4-7 (a), the width of the larger peak at its half-maximum point is 4.1 ps,

implying a tolerance to timing jitter of approximately the same value.

Notice that there are two peaks in the switching window rather than just one.

Recall from Figure 4-2 that the FUNI separates in time the two orthogonal polariza-

tions of each signal pulse. The control pulse can overlap either of these two separated

polarizations. The larger peak occurs when the control pulse overlaps the signal pulse

component that has the same polarization. The smaller peak occurs when the control

pulse overlaps the signal pulse component with the orthogonal polarization. As dis-

cussed in Section 3.2, the nonlinear effects are weaker on the orthogonal polarization,

producing a smaller phase shift and less switching. We can easily adjust the control

pulse polarization so that both peaks in the switching window have equal magnitudes.

In this case, the control pulses must induce equal nonlinear phase shifts on both signal

pulse polarizations (e.g., when the control pulse has a circular polarization). In some

circumstances, this arrangement is preferred, as in the FUNI-based all-optical XOR

switch [12]. Also notice that the peaks are 6.0 ps apart in this case, implying that

the birefringent fiber in the switch creates 6.0 ps of delay between the two orthogonal
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polarization components of the signal pulses.

Figure 4-7 (b) shows the FUNI switching window when the nonlinear medium is

1100 m of dispersion-shifted fiber with the dispersion profile shown in Figure 4-5 (b).

This time the control pulses had a carrier wavelength of 1557.5 nm and a pulse energy

of 2.6 pJ in the DSF. The signal pulses had a carrier wavelength of 1547.5 nm and a

pulse energy of 0.18 pJ. The signal pulse train had a pulse rate of 10 GHz+1 kHz and

the control pulse train had a pulse rate of 10 Ghz. The control and signal pulses had

pulse widths of 3 ps IFWHM. Once again, the larger peak of the switching window

has a width of 4.1 ps at its half-maximum point. Note that the separation between

the two peaks, however, is now 11.5 ps. For this experiment the birefringent fiber

created 11.5 ps of delay between the orthogonal signal pulse components.

In the previous switching windows, we do not see any obvious evidence of 03 ' s

effect on the pulses. Nonetheless, in dispersion-shifted fiber a nonzero 33 can have a

crippling effect on switching performance, and it must be accounted for in the design

of the FUNI. It turns out that a nonlinear index of refraction, a slightly negative #2,
and a relatively large 3 can interact, causing the splitting of an optical pulse into

several smaller pulses. We can observe this effect in a switching window experiment.

The fiber used as a nonlinear medium in this experiment has the dispersion profile

shown in Figure 4-8.

Figure 4-9 shows two switching windows in a FUNI that uses this 2 km length of

DSF as its nonlinear medium. In both experiments, the signal pulses had a carrier

wavelength of 1547.9 nm, a pulse frequency of 10 GHz+1 kHz, a pulse energy of

0.28 pJ, and a pulse width of 3 ps. Also, the control pulses had a pulse frequency of

10 GHz, a pulse energy of 1 pJ, and a pulse width of 3 ps. The experiment was run

at two different control-pulse carrier wavelengths. Figure 4-9 (a) shows the switching

window when the control pulses have a carrier wavelength of 1552.1 nm. Figure 4-

9 (b) shows the switching window when the control pulses have a carrier wavelength

of 1556.3 nm. The change in carrier wavelength has changed the strength of the

dispersion, resulting in the splitting of the pulse into several smaller pulses. The two

peaks have become four because several control pulses per bit period now exist. Each
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Figure 4-8: Dispersion data for the fiber used in the experiments shown in Figure 4-9.
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Figure 4-9: Switching windows of the 2 km fiber at a control-pulse carrier wavelength
of (a) 1552.1 nm and (b) 1556.3 nm.

produces some phase shift: less than what is necessary for full switching, but enough

to produce undesirable results.

4.1.3 The FUNI as an All-Optical Switch

In Sections 4.2 and 4.4 we will examine the FUNI's performance in all-optical regen-

eration. The FUNI is the all-optical switch component of the regenerator, so it is

important to measure its performance in all-optical logic. Figure 4-10 shows the ex-

perimental setup for bit-error rate (BER) experiments. Two mode-locked fiber lasers,

both driven by the same 10-GHz RF source, provide 10-GHz pulse streams of 3-ps

pulses. A 10-Gb/s pulse pattern generator drives an electro-optic modulator. This

modulator passes pulses corresponding to logical is and block pulses corresponding to

logical Os, thus modulating a 231 - 1-length pseudorandom bit sequence (PRBS) onto

the control pulse train. The output of the FUNI then enters a pre-amplified optical

receiver. In this receiver, we can manually vary an optical attenuator to measure per-

formance as a function of received optical power. Once attenuated, the optical signal
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Figure 4-10: Experimental setup for bit-error rate measurements of the FUNI and
other all-optical switches.

enters an Erbium-doped fiber pre-amplifier. A photodiode then converts the optical

signal into an RF signal, which is amplified and low-pass filtered by an RF amplifier.

The resulting RF signal is detected by a 10-GHz receiver, where we optimize the BER

by adjusting timing and amplitude thresholds.

Figure 4-11 shows a plot of the bit-error rate as a function of the optical power

that arrives at the receiver. In this case, the FUNI used the 500-m spool with the

dispersion profile shown in Figure 4-5 (a). The signal pulses had a pulse frequency of

10-GHz, and carrier wavelength of 1550 nm, and pulse widths of 3 ps. The control

pulses were modulated with a 231 - 1 PRBS, had a pulse frequency of 10-GHz, a

carrier wavelength of 1545 nm, and pulse widths of 3 ps. In Figure 4-11 there are

plots of the FUNI's bit-error rate performance and of the transmitter back-to-back,

in which the output of the electro-optic modulator is input directly into the optically

pre-amplified receiver. The FUNI's performance shows only a 0.35-dB power penalty

when compared to the transmitter back-to-back at an error rate of 10-.

The receiver is adjusted to optimize the performance of the back-to-back BER,

so obviously the FUNI cannot perform better than the back-to-back. Still it seems

strange that a switch to be used in data regeneration actually makes the receiver

performance worse. This test, however, is not a regeneration test. Instead, this test
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Figure 4-11: Bit-error rates of both the FUNI output and the transmitter back-to-
back plotted as a function of the optical power at the receiver input. Also shown are
linear fits minimizing the mean squared error.

just demonstrates that the optical receiver can be improved by adding some optical

processing at its input. In a realistic regeneration test, the control input to the

regenerator would be a degraded data stream with timing jitter and pulse distortions.

A regenerator would then produce an improved data stream at its output. In the next

section, I will present some methods of characterizing the regenerative performance

of the FUNI. In Section 4.4 we will consider a more thorough test using 100-km of

fiber to produce the pulse distortions. We will also see that multiple FUNI's can be

cascaded without extra power penalty.

4.2 FUNI Regenerator Performance

As we discussed at the beginning of this chapter, the ideal 4R regenerator has impor-

tant required properties. It must re-amplify the optical power of the data, reshape

the data pulses, and retime data pulses that have acquired timing jitter. It must also

repolarize the data, which requires two properties: the output of the regenerator must
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Figure 4-12: Normalized output pulse energy of FUNI with respect to input pulse
energy.

have a constant polarization, and the regenerator's performance must be insensitive

to the input polarization. Moreover, it should have very stable operation and, in most

cases, it should be wavelength maintaining so that its input and output wavelengths

are the same.

4.2.1 Re-amplification

Re-amplification does not refer just to a restoration of the optical energy averaged

over many pulses, but rather to the restoration of each pulse to the same energy. Thus,

the output pulse energy of the regenerator must be nonlinearly related to the input

data pulse energy. Ideally, the regenerator would be a perfect thresholder, giving only

two output pulse energies: zero energy if the input power is below some threshold,

and some constant energy if the input power is above some threshold. Figure 4-12

shows the experimentally measured energy of the output pulse as a function of the

energy of the input pulse for the FUNI. The zero derivative points, where the input

power equals 0 and 1, dampen amplitude patterning in the FUNI output caused by

amplitude variations in the data-pulse input amplitude. In this experiment, the data

pulses had a carrier wavelength of 1557.5 nm and were modulated by a pseudorandom
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bit stream at 10 Gb/s. Each data pulse was 5 ps wide IFWHM in the DSF. The clock

pulses had a carrier wavelength of 1547.5 nm, a pulse energy of 0.18 pJ, and widths of

3 ps IFWHM. The nonlinear medium used was 1100 km of DSF with the dispersion

profile given in Figure 4-5. The birefringent fiber introduced an 11-ps optical delay

in the signal pulse polarization components.

By interpolating a cosine curve to the data in Figure 4-12, we estimate that a

0.5-dB variation in the output power at the curve's peak leads to only a 0.06-dB

variation in the output power. Note the similarity between the nonlinear response

curve in Figure 4-12 and that of the MZI, calculated for Figure 2-10. Both curves are

the raised cosine characteristic of interferometers. This nonlinearity is much weaker

than that which an ideal thresholder would produce. A chain of several interferometric

switches together has a response curve closer to the ideal thresholder, but we shall

see in Section 4.4 that the raised-cosine nonlinearity is sufficient for regeneration.

4.2.2 Reshaping

The reshaping property is less obvious because it involves more than just reshaping

the intensity envelope of the data pulses. It also requires the regenerator to maintain

a nearly constant phase across the pulse so that we have approximately transform-

limited pulses. In a pulse with a Gaussian envelope, we can test if it is transform-

limited by measuring its time-bandwidth product, AtAv, where At is the square root

of the second central-moment of the pulse's intensity envelope in the time domain

and Av is the same measurement in the frequency domain. There are difficulties in

making this measurement. First, it is often easier from experimental data to calculate

AtFWHM and AVFWHM. AtFWHM is the intensity-envelope's full-width where the

intensity is at half its maximum value, and AVFWHM is the same measurement in the

frequency domain. Second, the optical pulses we are studying are too short to measure

directly with a photodiode. Instead, we use an intensity autocorrelation measurement

in which the pulse being measured is used to sample itself. Our autocorrelator is a

117



-10 -5 0
Time (ps)

(a)

-5

-10

-15

-20

-25

-30

-35

-4U
5 10 1545 1546 1547 1548 1549 1550

Wavelength (nm)
(b)

Figure 4-13: (a) Intensity autocorrelation, A(r), of the FUNI's output pulse. This
autocorrelation's full-width at half maximum is 4.53 ps. If we assume a Gaussian
shape to the pulse, the intensity full-width at half maximum of the pulse itself is
3.20 ps. (b) Intensity of the output pulse's spectrum plotted versus wavelength (v =

c/A). The intensity full-width at half maximum is 1.22 nm or 155.4 GHz.

free-space optical device that, in effect, calculates

1+00
I(t)I(t - (r) dt,

where I(t) is the intensity of the optical pulse.

Figure 4-13 (a) shows the intensity autocorrelation of the FUNI's output pulse

and Figure 4-13 (b) shows the spectral intensity of the output pulse. As described

in the figure, we can now make the estimates AtFWHM = 3.20 ps and AVFWHM =

155.4 GHz. A transform-limited Gaussian pulse would have AtAv = 1/2 or, in terms

of FWHM measurements, AtFWHMAVFWHM = 0-441. For the FUNI's output pulses,

we have AtIFWHM1AVFWHM = 0.50, which implies that we have a spectrum that is

~ 13% larger than necessary for a pulse of this width.
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Figure 4-14: Plot of bit-error rate of the FUNI output versus the delay between the
data pulses and the clock pulses. The optical energy per bit at the receiver was
6.3 aJ/bit or 26.9 dBphotons/bit.

4.2.3 Retiming

A regenerator must also retime pulses, correcting for changes in the relative spacing of

the pulses that can be caused by effects like Gordon-Haus timing jitter [13]. The FUNI

replaces incoming data pulses from the network with locally generated pulses, so the

output jitter is only as bad as the local pulse source. Jitter in the incoming data pulses,

however, can still degrade the FUNI's performance. If an incoming data pulse is far

off center, then the data and clock pulses in the FUNI may not completely overlap.

This partial overlap will decrease the nonlinear phase shift, thus causing a decrease

in the output power. The FUNI's nonlinear response (see Figure 4-12) dampens the

effects of timing jitter. We can better characterize the FUNI's insensitivity to timing

jitter by manually adjusting the time delay in Figure 4-2 to change the relative delay

between the data pulse and the clock pulse.

Figure 4-14 shows the effect that changing the relative delay has on the bit-error

rate performance of the FUNI. The figure shows that delays up to 4 ps still yield

BERs better than 10-9. In this test, the control pulses had an energy of 3.2 pJ and

a carrier wavelength of 1545 nm. The signal pulses had an energy of 0. 1 pJ and a
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carrier wavelength of 1555 nm. Both pulse trains had a pulse rate of 10 GHz, and

the control pulse train had a 231 - 1 PRBS modulated on it.

4.2.4 Repolarization

As discussed in Section 3.2, single-mode fiber supports two polarization modes, which

we can approximately think of as horizontal and vertical polarization states. Some

network components are sensitive to polarization, and other network components,

like fiber, can create time-dependent polarization changes. So, we must consider the

effects of polarization at the input and output of the FUNI. First, a regenerator should

be insensitive to the state of the input polarization so that it will be unaffected by

polarization changes in the network data pulses, like those caused by temperature

changes in the fiber. Second, a regenerator should produce a constant polarization

at its output, independent of any changes in the input, because network components

farther along may be sensitive to sudden polarization changes.

The FUNI obviously produces a constant output polarization because the signal

pulses that become the output have a constant polarization and because the FUNI

has a polarizer near its output. Still, the FUNI is sensitive to changes in the input

polarization. As mentioned in Section 3.2.1, the nonlinear phase shift induced by the

control pulse on the orthogonal polarization is 2/3 that of the phase shift induced

on the parallel polarization. A 2/3 decrease in phase shift in an ideal interferometer

switch will cause a 1.25-dB drop in optical power in a logical 1-bit. In Figure 4-15,

the polarization controller (PC) can shift the polarization of the control pulses to be

orthogonal, instead of parallel, to the overlapped signal pulse. Doing so causes an

even larger than expected 2.1 dB drop in optical power at the output. Moreover,

even if we increase the optical power at the receiver by 2.1 dB to compensate for the

drop in received optical power, the bit-error rate performance still degrades. In fact,

with the control pulses at an orthogonal polarization to the overlapped signal pulse,

there is a 0.6-dB power penalty at a BER of 10- when compared to the FUNI with

the correct polarization. Remember from Figure 4-12 that a lower phase shift means

the is are no longer generated at the top of the response curve. Therefore variations
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Figure 4-15: By changing the control polarization with the polarization controller
(PC), we can measure the FUNI's sensitivity to input polarization.

in the input power will now cause larger variations in the output power. Section 4.3

will present a solution to this problem.

4.3 Wavelength Maintaining FUNI

At the beginning of Section 4.2, I mentioned the importance of wavelength-maintaining

operation and of the need for stable operation in a regenerator. The FUNI does pro-

vide stability, within the optical switch, to vibrations, temperature changes, and other

environmental effects. It is, however, affected by changes in input polarization. The

FUNI is also wavelength converting, which can be useful in routing operations like

label swapping [14]. Regenerators, however, usually make no such logical decisions

and so they have no criterion by which to justify a change in wavelengths.

The FUNI can, however, be made both wavelength maintaining and insensitive to

input polarizations. We can make these two changes at once by adding a simple SOA-

based optical wavelength converter [15, 16]. Figure 4-16 shows the basic schematic

for the wavelength-maintaining FUNI (WMFUNI). Both the signal and control pulse

trains have a carrier wavelength of 1547.5 nm, a pulse rate of 10 GHz, and an IFWHM

of 3 ps. The wavelength converter changes the carrier wavelength of the control pulses

to the auxiliary wavelength of 1557.5 nm and increases their pulse widths to 5 ps.

This wider pulse width increases the switching window of the FUNI so that we will

not require the walk-off discussed in Section 4.1.2. The signal and control pulses then

enter the FUNI, which produces a 1547.5 nm output, the same wavelength as the
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Figure 4-16: A wavelength converter (A-conv.) changes the control pulse wavelength
from 1547.5 nm to the auxiliary wavelength of 1557.5 nm.

original data input into the wavelength converter.

The FUNI is sensitive to changes in the control input polarization (see Sec-

tion 4.2.4). As we shall see, the SOA wavelength converter has a constant output

polarization, independent of the input polarization. Moreover, the bit-error rate per-

formance of the wavelength converter is nearly independent of the input polarization.

Therefore, the control input to the FUNI component of the WMFUNI is independent

of the input polarization of the wavelength converter, making the WMFUNI's output

independent of input polarization.

4.3.1 SOA Wavelength Converter

Figure 4-17 shows the SOA wavelength converter used in the WMFUNI. Leuthold et

al. first proposed a similar idea in [17] and tested it at 40 Gb/s. Nielsen et al. tested

the same setup shown in Figure 4-17 in [18] and found the BER performance to have

a - 2.3-dB power penalty when compared to a transmitter back-to-back. Liu et al

tested yet another similar wavelength converter at 160 Gb/s with a 2.5-dB penalty

compared to back-to-back [19] and at 320 Gb/s with a 10-dB penalty compared to

back-to-back [20].

In Figure 4-17, we see that a 1547.5-nm input is coupled together with a 1557.1-

122



0.2-nm 1.5-nm
Notch BPF EDFA

1547.5 rm

1547.5 1557.1 1547.5 1557.1 1547.5 1557.1
Wavelength (nm) Wavelength (nm) Wavelength (nm)

Figure 4-17: Schematic of the SOA wavelength converter. Two optical signals couple
together into an SOA, the output of which passes through a notch filter, a band-pass
filter, and an optical amplifier.

nm CW signal. Their spectra are shown in the first plot below the schematic. In

Section 3.3, we saw that pulses in an SOA cause changes in the SOA gain, which lead

to a time-dependent phase shift on any optical signal in the SOA. In the absence of

an input pulse, there is no phase shift induced onto the CW in Figure 4-17. Thus, the

0.2-nm notch filter blocks the CW and the 1.5-nm BPF blocks the 1547.5-nm pulses,

so that there is no optical power at the output. When an input pulse is present,

the leading edge of the pulse causes a sudden drop in gain and a corresponding red-

shifted chirping in the portion of the CW signal that coincides with the pulse's leading

edge. There is a slower gain recovery in the pulse's trailing edge, where the CW will

acquire a blue-shifted chirp. The second plot below the schematic in Figure 4-17

shows that this chirping has broadened the spectrum of the original 1557.1-nm CW

line. After the SOA, the notch filter removes the CW line, and a 1.5-nm BPF removes

the 1547.5-nm pulses as well as the blue-shifted side of the broadened CW spectrum,

leaving only the red-shifted side. This produces a 1557.5-nm output pulse with the

spectrum shown in the final plot of Figure 4-17.
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The SOA wavelength converter cannot serve as a 4R regenerator. The signal

power is not pulsed, so it does not correct any timing jitter in the input data pulses.

Moreover, the ~ 100-ps gain recovery time of the SOA causes amplitude patterning

in the data output for data rates higher than ~ 10 Gb/s. It does, however, have im-

portant advantages. The SOA wavelength converter is simple to turn on and operate

and, once optimized, requires almost no attention from the user. It is also insensitive

to changes in the polarization of the input data pulses. Varying the polarization of

those pulses causes at most a 0.2-dB variation in the output power and a 0.2-dB

power penalty when compared to its performance at the optimum polarization at a

BER of 10~. Finally, it produces a nearly constant polarization output because the

polarization of the CW beam is not significantly affected by the state of the input

data pulses.

These polarization properties are very important in the design of the WMFUNI.

As shown in Figure 4-16, the SOA wavelength converter changes the carrier wave-

length of the incoming data pulses, which are then used as control pulses in the

FUNI. In Section 4.2.4, we saw that the FUNI is sensitive to the polarization of the

control pulses. The SOA wavelength converter produces a nearly constant output

polarization, so that changes in the polarization of the network data pulses at the

WMFUNI input do not affect the polarization of the control pulses in the FUNI. The

SOA wavelength converter, however, does produce a small 0.2-dB amplitude ripple

in the output power if there are large variations in the input data polarization. The

FUNI, however, can suppress this ripple if it is operating around the zero derivative

points in Figure 4-12.

Figure 4-18 shows the autocorrelation and spectrum of the output pulses of the

SOA wavelength converter. The input data pulses had a carrier wavelength of

1547.5 nm, a pulse width of 3 ps, a data rate of 10 Gb/s, and were modulated

with a 231 - 1 PRBS. These pulses were coupled into an SOA with a 1557.1-nm

CW signal. The figure shows that the output pulses had an IFWHM of 4.7 ps and

a spectral width of 119 GHz, which corresponds to a time-bandwidth product of

AtFWHMAFWHM = 0.56. This implies that the spectrum is about - 27% greater
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Figure 4-18: (a) Intensity autocorrelation, A(r), of the SOA wavelength converter's
output pulse. The autocorrelation full-width at half maximum is 6.63 ps. Assuming
a Gaussian pulse, the pulse's IFWHM is 4.69 ps. (b) Intensity of the output pulse's
spectrum plotted versus wavelength. The IFWHM is 0.95 nm or 119 GHz.

than necessary for 4.7-ps pulses, most likely because of the chirping induced in the

SOA. The pulse widths leaving the wavelength converter and entering the control

port of the FUNI are, therefore, wider than those of the experiments in Section 4.1.

These wider pulses broaden the switching window of the WMFUNI so that we no

longer require the signal-control walk-off described in Section 4.1.2.

Figure 4-19 shows the BER performance of the wavelength converter compared

to a transmitter back-to-back. The figure shows a power penalty of 0.7 dB when

compared to the back-to-back BER at an error rate of 10-. We shall see in the next

section that this power penalty is reduced in the WMFUNI.

4.3.2 Wavelength-Maintaining FUNI Switching Performance

Section 4.2 presented an evaluation of the regeneration performance of the FUNI, es-

pecially its performance in re-amplification, reshaping, retiming, and repolarization.

In the first three of those categories, the FUNI performed well, but its output am-

plitude and BER performance were affected by the input control pulse polarization.
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Figure 4-19: Bit-error rate performance of the wavelength converter compared to a
transmitter back-to-back BER.

The FUNI does produce a constant output polarization, but with its sensitivity to

input polarization, it cannot be called a repolarizing regenerator. In this section, we

verify that the WMFUNI performs as well as the FUNI in optical switching, while

also eliminating the FUNI's dependence on the polarization of the incoming network

data pulses.

In WMFUNI experiments we use a single mode-locked fiber laser to produce op-

tical pulse trains for both the network data pulses and the clock pulses, which is

possible because both input pulse trains can have the same carrier wavelength. Fig-

ure 4-20 shows the autocorrelation and spectrum for the pulses used for both control

and signal. The pulse rate was 10 GHz and the carrier wavelength was 1547.5 nm.

The autocorrelation implies a time width of 3.5 ps and the spectrum shows a spectral

bandwidth of 1.0 nm. These measurements produce a time-bandwidth product of

AtFWHMAVFWHM = 0.44, which implies transform-limited pulses.

Figure 4-21 shows the autocorrelation and spectrum of the WMFUNI's output.

In this experiment, both the signal and control inputs had a pulse rate of 10 GHz and

a carrier wavelength of 1547.5 nm. The autocorrelation implies an output IFWHM
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Figure 4-20: (a) Intensity autocorrelation, A(r), of the WMFUNI's input pulses. The
autocorrelation full-width at half maximum is 4.97 ps. Assuming a Gaussian pulse,
the pulse's IFWHM is 3.51 ps. (b) Intensity of the input pulse's spectrum plotted
versus wavelength. The IFWHM is 1.01 nm or 126 GHz.
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Figure 4-21: (a) Intensity autocorrelation, A(r), of the wavelength-maintaining
FUNI's output pulse. The autocorrelation full-width at half maximum is 4.57 ps.
Assuming a Gaussian pulse, the pulse's IFWHM is 3.23 ps. (b) Intensity of the out-
put pulse's spectrum plotted versus wavelength. The IFWHM is 1.3 nm or 162 GHz.
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Figure 4-22: Bit-error rates curves for the SOA wavelength converter and for the
WMFUNI, both compared to the transmitter back-to-back BER curve.

of 3.2 ps and a spectral bandwidth of 1.3 nm. These measurements produce a time-

bandwidth product of AtFWHMAVFWHM = 0.52, a slight improvement over the wave-

length converter's output time-bandwidth product of 0.56. The FUNI's output is not

transform limited because of chirping of the signal pulses' phase. The control pulse

has a Gaussian-like shape, and the phase shift is proportional to instantaneous inten-

sity, so the signal pulse that it overlaps will receive a nonuniform phase shift.

Figure 4-22 shows the BER curves for the transmitter back-to-back, the SOA

wavelength converter, and the WMFUNI. In these tests, the data-pulse trains were

modulated with a 2" -1 PRBS. The SOA wavelength converter has a 0.7-dB penalty

compared to the back-to-back at an error rate of 10-. The WMFUNI improves the

BER performance to a smaller 0.3-dB penalty. Much of the difference in penalty is

likely due to differences in the output-pulse spectra of the two devices. The WM-

FUNI's output pulses have spectral and temporal widths that are much closer to the

transmitter back-to-back pulses, and so the receiver is likely more closely matched

to the WMFUNI than to the SOA wavelength converter. It is also possible that the
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Figure 4-23: Setup used to test sensitivity of WMFUNI to polarization at the control
input.

wavelength differences of the two outputs along with a wavelength dependent gain

in the EDFA pre-amplifier contributes to the difference. Finally, a small amount of

gain patterning due to carrier recovery in the SOA may introduce some amplitude

patterning on the wavelength converter's output, which is then removed by the FUNI.

Thus, the WMFUNI functions well as an optical switch and 3R regenerator, but

we must ensure that, unlike the FUNI, its output is independent of input control-pulse

polarization. Figure 4-23 shows the experimental setup used to test the WMFUNI's

sensitivity to input control-pulse polarization [16]. In regeneration the control pulses

are the incoming data pulses, which may have a time varying polarization due to

environmental changes on the transmission path or due to the different points of

origin for arriving data packets. To simulate these effects, we inserted a polarization

scrambler between the data transmitter and the WMFUNI's control input. The

scrambler varies the polarization across all possible polarization states at several

frequencies, going up to 700 kHz. In regeneration, the signal pulses are a locally

generated clock source, so we can safely assume that there will be no polarization

changes at the signal input. Figure 4-24 (a) shows two BER curves. One curve is

the SOA wavelength converter's BER performance without a polarization scrambler

and operating at its optimum input polarization. The other curve includes the effects

of placing the polarization scrambler between the transmitter and the control input.

The curves show that the polarization scrambler adds a 0.3-dB power penalty at an
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error rate of 10-9. The bulk material SOA we use here is only slightly polarization

sensitive, so this result is what we expect. Figure 4-24 (b) repeats the same experiment

with the WMFUNI. Now the power penalty added by the polarization scrambler is

only 0.08 dB, most likely due to the nonlinear response of the FUNI as shown in

Figure 4-12, which suppresses any amplitude patterning added by the SOA wavelength

converter.

Wavelength Converter
10 - : - -

1 Opt. Pol.
0 Pol. Scrambler

10 -5 ........ ..... ....

10~
106

8 ... ..... .....% .. ...... .........

10-
10-

17 18 19 20 21 22
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Received Energy (Photons/bit, dB)

(b)

Figure 4-24: Comparison of bit-error rate performances at a fixed optimum polariza-
tion with a scrambled input polarization in (a) the SOA wavelength converter and
(b) the WMFUNI.

4.3.3 WMFUNI Regenerative Buffer

One application of regenerators is in optical data buffers. In a packet-switched net-

work, it is important to be able to store data while users wait for the network to

become available. The simplest such buffer is a loop of fiber with an electro-optic

switch that can load data onto and remove data from the loop. An EDFA may be

added to the loop to compensate loss [21], but the storage time is still limited by

loss because the round-trip gain must remain low to prevent the loop from lasing.

An alternative is to place a regenerator in the loop to restore data quality on each

pass [22].
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Figure 4-25: Schematic of a regenerative buffer using the wavelength-maintaining
FUNI.

When that regenerator is an all-optical switch, like the WMFUNI, then the switch

must be able to operate in a chain of switches. A single WMFUNI adds a 0.3-dB

power penalty compared to the transmitter back-to-back. In a chain of WMFUNIs,

we need later switches to add no power penalty. Figure 4-25 shows the WMFUNI

regenerative buffer in which data pulses pass many times through a single WMFUNI,

simulating a chain of switches. A 10-GHz RF source drives a mode-locked fiber laser,

which produces a 10-GHz pulse train. A pattern generator drives a transmitter (Tx)

that modulates a 231 - 1 PRBS onto the pulse train. The loop itself contains an

EDFA to compensate losses in the loop, a 5-nm band-pass filter to eliminate out-of-

band noise, a variable attenuator to control power in the loop, a single-polarization

fiber isolator to maintain a constant polarization, and the WMFUNI to regenerate

the data in the loop. There is also a variable delay so that the loop length can be set

to an integer number of bit periods. This ensures that the signal pulses and control

pulses temporally overlap in the WMFUNI during every pass the data take through

the loop.

At the beginning of the experiment, a pulse generator sets the 2x2 in the loop to
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the cross state, loading data pulses into the loop. These data pulses enter the control

input of the WMFUNI while synchronized clock pulses from the same MLFL enter

the signal input. The WMFUNI outputs the clock pulses, now modulated with the bit

pattern from the data pulses. After the loop is loaded with data, the pulse generator

sets the 2x2 to the bar state so that the data remain in the loop for 20 passes. After

20 passes through the loop, the 2x2 returns to the cross state, sending the loop's data

into the optical receiver and reloading the loop with another set of data. The pulse

generator also sends a gate signal to the optical receiver that activates the receiver

only during the unloading of the loop data into the receiver. Figure 4-26 shows BER

curves for the WMFUNI and for the loop data after 5, 15, and 20 passes. All curves

are compared to a transmitter back-to-back. The penalty remains low for all passes,

demonstrating the cascadability of the WMFUNI.

4.4 Transmission Experiments in a Recirculating

Loop

Section 4.2 presented tests demonstrating the FUNI's ability to re-amplify, reshape,

and retime optical data. Section 4.3.2 showed that the addition of an SOA wavelength

converter made the FUNI repolarizing as well. Finally, the previous section showed

that the WMFUNI could be used in a cascade of switches without creating any error

floor or runaway power penalty. In this section, we present a test of the regenerative

abilities of the WMFUNI by inserting it into a 100-km recirculating loop in order to

characterize its performance as a 4R regenerator in a long-haul fiber network.

Figure 4-27 shows the 100-km recirculating loop used to test the WMFUNI's

regenerative performance [23]. As in the regenerative buffer of Section 4.3.3, the

optical pulse train is generated by a 10-GHz mode-locked fiber laser that is then

modulated in the transmitter (Tx) with a 2" - 1 PRBS. The loop itself contains two

50-km sections of large effective-area fiber (LEAF) along with 3.2 km of dispersion-

compensation fiber (DCF). The DCF has a highly positive second-order dispersion to
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compensate the negative second order dispersion that exists in the LEAF. Two EDFAs

compensate loss in the loop. A single-polarization fiber isolator (SPFI) maintains a

constant polarization. Two variable attenuators control power in the loop. A loop

acousto-optic (A/O) modulator blocks pulses in the loop when necessary. There is

also a variable delay to keep the loop length an integer number of bit periods long

so that the control and signal pulses temporally overlap in the WMFUNI for all loop

passes.

At the beginning of the loop experiment the load A/O modulator is closed, al-

lowing data pulses to enter the loop. At the same time, the loop A/O modulator is

open, discarding any pulses that are already in the loop. Once the loop is loaded with

data, the loop A/O modulator closes, and the load A/O modulator opens. The data

then recirculate through the loop 200 times, or ~21,000 km. Figure 4-28 shows the

cross-correlation of the pulses in the loop when there is no regenerator. These data

are taken by tapping off the loop data pulses right after the SPFI (tap not shown in

figure). Similar to the autocorrelation, the cross-correlation calculates the function

C(r) = I(t)1,(t - T) dt, (4.5)

where I(t) is the intensity envelope of the pulse in the loop, and I,(t) is the intensity

envelope of the pulse used to used to sample the loop pulse. In this case, I,(t) is a 200-

fs pulse generated in an adiabatic pulse compressor [24]. The top plot of Figure 4-28

shows pulses from passes 0 through 63 of the loop. The figure shows that after more

and more passes through the loop, the pulses become wider, acquire a ringing tail,

and quickly fall below the noise floor. The three smaller plots below show the Oth,

10th, and 20th passes through the loop. The cross-correlation of the 0-pass pulses

have an IFWHM of 4.4 ps. After 10 passes, the cross-correlation of the data pulses

have an IFWHM of 8.7 ps, and the pulses have acquired the tail that often appears

when 33 is significant. After 20 passes, the pulse cross-correlation's IFWHM has

grown to 16 ps.

Figure 4-29 shows the same cross-correlation experiment, except with the WM-
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FUNI regenerator placed in the recirculating loop. This time, the cross-correlation

data are taken by tapping off the loop data pulses right after the WMFUNI. The

cross-correlation of the 0-pass pulses have an IFWHM of 4.0 ps. After 50 passes,

the cross-correlation of the data pulses have an IFWHM of 5.8 ps. After 119 passes,

the pulse cross-correlation's IFWHM is again 5.8 ps. The small side pulse on the

cross-correlations of the 50th and 119th passes are about 10 ps from the main peak

and so are probably due to a slight polarization misalignment caused by a nonlinear

polarization rotation of the signal pulses in the FUNI. These side pulses can be sup-

pressed by proper adjustment of the polarization of the output of the SOA wavelength

converter.

Cross-correlations of the data pulses in the loop provide information about pulse

shape, but without BER tests it is difficult to judge the regenerator's performance.

There may, for example, be some undesirable feedback process in the regenerative

loop that has changed all bits to be 1s. Figure 4-30 shows BER plots of the data

pulses in the loop after 100 and 200 passes. The data are taken by tapping off

the data pulses in the loop right after the WMFUNI. These data then enter a pre-

amplified optical receiver, which is controlled by a gate signal from the same pulse

generator that drives the two acousto-optic modulators. This gate signal ensures that

the optical receiver only measures the bit-error rate during the 100th pass (as in the

top plot of Figure 4-30) or the 200th pass (as in the bottom plot of Figure 4-30).

In these data, the WMFUNI has a 0.06-dB power penalty penalty compared to the

transmitter back-to-back at an error rate of 10-. After 100 passes through the loop,

the loop data have a power penalty of 0.5 dB. After 200 passes, the loop data have

a power penalty of only 0.6 dB compared to the back-to-back with no visible error

floor.

The good performance of the WMFUNI regenerator in the 100-km loop suggests

that it may be possible to extend the transmission distance between regenerators.

Figure 4-32 shows a modified recirculating loop that has two separate paths within

the loop. After the SPFI, the data pulses are split by a coupler into two paths.

In one path the data pulses pass through the WMFUNI regenerator, and in the
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Figure 4-30: Bit-error rates after 100- and 200-loop passes through the WMFUNI
recirculating loops, corresponding to 10,000 and 21,000 km of data propagation.

other path the pulses pass through 2.2 km of DSF. This 2.2 km section of DSF is

placed in the loop to make equal the lengths of the two alternative paths in the

loop. The two paths join together again in a 2x1 A/O modulator, which blocks

one path and passes the other. A pulse generator drives all three A/O modulators.

In Figure 4-32 we show cross-correlations of the loop data pulses taken right after

the WMFUNI. In this experiment, the pulse generator switches the 2x1 so that the

data pulses pass twice through the loop before being regenerated. Figure 4-32 shows

cross-correlations of the data pulses after 0 to 100 passes through the loop. The four

smaller plots show cross-correlations after 1, 2, 99, and 100 loop passes. The IFWHM
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of these cross-correlations are 4.4 ps, 5.4 ps, 4.2 ps, and 6.2 ps. The regenerated

pulses (odd numbered passes) show a stable pulse width. The unregenerated pulses

(even numbered passes) seem to be loosing signal strength. Without bit-error rates,

however, it is difficult to make a good judgment about regenerator performance.

4.5 40-Gb/s Operation of WMFUNI

In on/off keyed systems, the short -' 3-ps pulses used in the experiments above could

be used at channel data rates up to - 150 Gb/s. So far, I have only presented data at

10 Gb/s. In this section we consider the WMFUNI's operation at 40 Gb/s. Figure 4-

33 shows the experimental setup for tests at 40 Gb/s. As before, a mode-locked

fiber laser provides a 10-GHz pulse train with a carrier wavelength of 1547.5 nm.

The power in this 10-GHz train is separated into three paths. The middle path

enters a transmitter (Tx) where a 2" - 1 PRBS is modulated onto the 10-GHz pulse

train. These data pulses enter a 10 Gb/s to 40 Gb/s multiplexer, which has multibit

delays to decorrelate neighboring bits in the 40 Gb/s output. The 40 Gb/s data then

enters the control port of the WMFUNI. The top path also enters the multiplexer,

producing a 40 Gb/s clock train that enters the signal port of the WMFUNI. The

bottom path enters the control port of the UNI, which serves here as a 40 Gb/s to

10 Gb/s demultiplexer. The 40-Gb/s WMFUNI output enters the UNI's signal port

input. The UNI passes every fourth of these signal pulses into a pre-amplified optical

receiver where a BER measurement is made. By adjusting the delay between signal

and control in the UNI, we can choose which of the four 10-Gb/s channels enters the

optical receiver.

Figure 4-33 shows the BER curves of all four 10-Gb/s channels of the WMFUNI.

The back-to-back measurement is the same for all four plots. It is taken by first using

the UNI to demultiplex the 40-Gb/s data output of the multiplexer down to 10 Gb/s.

The BER of the UNI's output is then measured by the pre-amplified optical receiver.

All four channels were measured down to an error rate of ~ 10-. Channel 1 has a

3.4-dB power penalty when compared to the back-to-back at an error rate of 10-9.
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Figure 4-33: Experimental setup to test 40 Gb/s WMFUNI.

Channel 2 has a penalty of 3.6 dB, Channel 3 has a penalty of 6.0 dB, and Channel

4 has a penalty of 6.5 dB. The difference between the last two channels and the first

two channels has several possible explanations. First, the multiplexer is a passive

free-space device that, if not perfectly aligned, will produce a 40-Gb/s output whose

four channels do not have equal optical powers. So, some of these unequal channels

may not be operating at the peak of the WMFUNI's nonlinear response curve. The

is of those channels will have a larger variance of energies, which causes the slope

of BER curve at higher optical powers to become shallower. We see evidence of this

shallowing in Channels 3 and 4 and, to some extent, Channel 2. Another possible

explanation for the difference is reflections in the free-space multiplexer, which may

affect some channels more than others.

4.6 Conclusions

The FUNI's single-arm geometry and nearly instantaneous nonlinear medium give it

many useful properties. It is automatically biased, is stable to environmental changes

like vibrations and temperature variations, and can operate on short optical pulses

( 3 ps). Nonetheless, the FUNI is wavelength converting and sensitive to input

polarization, both of which are usually undesirable in regeneration. It could be used

as an all-optical switch or wavelength converter. The FUNI is, however, a fiber-based
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switch, and its size limits it to applications that require little optical logic.

The WMFUNI, by adding an SOA wavelength converter to the control input, re-

moves the sensitivity to input polarization while also making the switch wavelength

maintaining. It also retains the FUNI's stability to environmental changes and its

ability to operate on short pulses. These short pulses are useful for systems requir-

ing ultrafast operation or highly sensitive operation when peak power must be high

enough to rise above the noise.

Transmission experiments are the only sure test of a regenerator's performance.

The WMFUNI successfully regenerated a 10-Gb/s data train in a 100-km recirculating

loop. With ~ 3-ps pulses, the WMFUNI should in principle operate in systems with

data rates up to - 100 Gb/s. We have seen that the WMFUNI operates at 40 Gb/s

with additional penalty, but more experimentation is needed to see if it will still

function as a regenerator at these rates.

So, the WMFUNI possesses many advantages over the FUNI. Still, the WMFUNI,

like the FUNI, is too large for complicated logical operations, like header processing

and label swapping [25, 26]. The most common all-optical switches for such ap-

plications are SOA-based interferometric switches, which is the subject of the next

chapter.
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Chapter 5

SOA Mach-Zehnder Interferometer

Before the development of the Erbium-doped fiber amplifier (EDFA) [1, 2], the semi-

conductor optical amplifier (SOA) was a leading candidate for optical signal amplifi-

cation. In addition to a wide bandwidth of up to - 100 nm, it can achieve 30 dB of

small signal gain [3]. Nonetheless, the SOA has several drawbacks as an amplifier. 1)

The gains and output power are lower than those of the EDFA. 2) SOAs require high-

quality anti-reflective coatings to prevent lasing in the device. 3) Crosstalk between

wavelength channels in WDM systems is often large. 4) The SOA can create vari-

ations in the pulses' output amplitudes. 5) SOAs are not fiber-based amplifiers like

EDFAs, so coupling losses are larger in SOAs, leading to higher noise figures. 6) Gain

fluctuations in an SOA will cause nonlinear phase shifts in the signal propagating

through the SOA.

This last problem becomes an advantage in certain applications. In fact, since the

introduction of the EDFA, the SOA has found many new uses based on its nonlinear

properties, including its ability to induce phase shifts [4]. We discussed some of these

in Section 3.3. In this chapter we look at the SOA Mach-Zehnder interferometer

(SOA-MZI) switch, an MZI switch in which the SOA serves as the nonlinear medium.

Researchers have tested the SOA-MZI in many applications including wavelength

conversion [5], label swapping [6, 7], an all-optical flip-flop [8], AND switching [9, 10],

XOR switching [11], and data regeneration [12, 13].

In this chapter, we will examine a simple model for an SOA-MZI at several data
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rates. This will give us intuition for the behavior of single SOA-MZI switches. In

regeneration, however, we are not just interested in the performance of a single SOA-

MZI, but rather in cascades of SOA-MZI switches in which the output of one switch

becomes the input for the next switch. Data patterning on the input to the switch

causes amplitude variations on the output pulses. These amplitude variations cause

problems when cascading the switches together, and we will investigate circumstances

where such cascading will work.

One key advantage of SOA-based optical switches is their integrability onto solid-

state chips. Through a collaboration with Alphion, we tested an integrated SOA-MZI

at 10 Gb/s. These experiments suggested the possibility of the use of the SOA-MZI

in optical data regeneration, which we confirmed in regeneration experiments in the

100-km transmission loop described in Chapter 4 [?].

5.1 SOA-MZI Model for Simulations

SOAs are a common tool in optics, and so it would be useful to predict how they

behave in Mach-Zehnder interferometers. We can characterize an SOA by a few

parameters. First, there is the carrier recovery time, Tc. When an optical pulse

propagates through the SOA, the SOA provides gain by stimulated emission of light,

causing excited electrons to drop to lower energy states. T is a measure of the time

it takes for current injected into the SOA to re-excite the electrons. Second, there is

the unsaturated gain, ho, which is the gain given to a very weak pulse propagating

through the SOA. Third, there is the saturation energy, Esat, which is a measure of

the amount of optical energy required for a short pulse to saturate the SOA, driving

the gain down to near unity. Fourth, there is the linewidth enhancement factor, a,

which we will use to calculate the phase shift that an SOA induces on optical pulses

Simulations help determine how changes in these four parameters affect perfor-

mance, which can be used in the design of integrated switches. The MZI geometry

is simple enough that an SOA-MZI model is straightforward to simulate in principle,

although run times may still be long. In order to assess the SOA-MZI's performance,
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the simulations will also need a model for the optical pre-amplified receiver, which

will measure the bit-error rate performance of the switch's output. The receiver has

an EDFA pre-amplifier, so the receiver model must include noise added by the am-

plifier. Finally, the SOAs themselves add noise to the signal pulses. We will consider

each of these issues in the following sections.

5.1.1 SOA Model

Section 3.3 described in detail the mathematical model used in this thesis to simulate

SOA behavior [14]. We provide only a summary of those results for this chapter.

Let the total integrated gain factor of the SOA be called h(r), where r is time. Let

a pulse at the input of the SOA have an electric field of Ai(r) cos(wer + #i (r)),

where Ai2 (r) is the slowly varying envelope. Ai, is a real function normalized so that

I Ai,, (r) 12 equals the optical power, P,(r). we is the carrier frequency, and #i5,(T) is

the optical phase. The optical field at the output of the SOA is given by [14]

Put(r) = Pin(r)eh(r) (5.1)

1
#bt(T) = #in(T) - -ah(r) (5.2)

where a is a constant usually between 3 and 8 and is often referred to as the linewidth

enhancement factor. The integrated gain, h(r), can be calculated from

dh(T) ho - h(r) Pin( T) [eh(r) _ 1] (5.3)
dr T Esat

-rc is the carrier recovery time, ho is the unsaturated gain, and Esat is the saturation

energy. As we can see from the second term on the right hand side, any input power,

Pin, reduces the gain of the SOA. The first term shows, however, that the SOA gain

recovers up to its unsaturated level of ho at a rate inversely proportional to re.

We can solve Equation 5.3 by a standard fourth-order Runge-Kutta finite differ-

encing solution. Figure 5-1 shows the Runge-Kutta solution to one such problem.

The top plot shows the optical power of the pulse envelopes at the input of an SOA
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Figure 5-1: The top plot shows the optical pulse power at the input of the SOA. The
middle plot shows the resulting value of h(-r). The bottom plot shows the output
power of the SOA. In this SOA, ho = 7, Te = 75 ps, and Eat = 1 pJ.

in which ho = 7, Tc = 75 ps, and Eat = 1 pJ. The pulses have an IFWHM of 5 ps

and a pulse energy of 5 fJ. The middle plot shows how h(T) changes in response

to the input pulses. The bottom plot shows the optical power at the output of the

SOA. The first three pulses quickly saturate the SOA until the gain recovery between

pulses balances the gain depleted by the optical power of the pulse. Then the gain

recovers in the gap without pulses so that the final pulse receives more gain. The

resulting variation in output pulse energy is the main problem in the performance of

SOA based optical switches.
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Figure 5-2: Model used for simulations of the SOA-MZI. The switch is a Mach-
Zehnder interferometer, like that described in Section 2.2.1. One SOA in each arm
serves as the nonlinear medium. The control pulse in Arm 1 enters the SOA-MZI
first, turning the switch on. The signal pulse then enters both arms through a power
splitter. Finally, the control pulse in Arm 2 enters the switch, turning it off.

5.1.2 SOA-MZI Model

Figure 5-2 shows the SOA-MZI model used in the simulations presented in this chap-

ter. The signal pulses are split in a 50/50 coupler into both arms. A phase bias, 4,
in Arm 1 adjusts the interferometer so that the signal pulses destructively interfere

at the output, blocking the signal pulse.

When a control pulse is present, its power is split. Some of its optical power

enters the Control 1 Input and enters SOA1 before the signal pulse, changing the

index of refraction of SOAl. This index change persists for a length of time on the

order of r, and causes the SOA-MZI to switch to constructive interference so that the
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Figure 5-3: Schematic of the receiver used in Figure 5-2.

signal pulse in passed by the SOA-MZI. The rest of the control pulse power enters

the Control 2 Input and enters SOA2 after the signal pulse, changing the index of

refraction of SOA2 so that the SOA-MZI switches back to destructive interference.

Control 2 exists only to re-balance the MZI so that the interferometer is rebalanced

before the next set of pulses arrives. Finally, the band-pass filter blocks the control

pulse and passes the signal pulse. The SOA-MZI's output then enters an optically

pre-amplified receiver, the modeling of which is the subject of the next section.

5.1.3 Model of Pre-Amplified Receiver

A full characterization of the SOA-MZI's performance in simulation requires a model

of the pre-amplified receiver used to measure the bit-error rate performance. The

model given here is drawn from [15]. Figure 5-3 shows a schematic of the pre-amplified

receiver used in Figure 5-1. An attenuator adjusts the power to the level we wish

to test. An EDFA amplifies the signal, which then passes through a matched filter

(BPF) before being converted to an RF signal and amplified again. This signal is

then detected by an RF receiver. The receiver noise includes shot noise, thermal

noise, and spontaneous emission noise added by the pre-amplifier. We assume that

the spontaneous emission noise dominates the noise in the receiver.

The data are on-off keyed, so we start by assuming that the signal to be detected

exists entirely in the time period 0 < t < T, where T is the bit period. If the EDFA

in the receiver were noiseless, we could represent its output signal with a basis set of
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real orthonormal functions, {#k(t)1:

s(t) = Z skJ(t ),

{k}

where {k} is the set of positive integers and the Sk are real-valued coefficients. If

we include spontaneous emission noise in this signal, then s(t) becomes a stochastic

process. It would be convenient if we could simply add an independent noise term

for each # (t) mode above so that we obtain

s(t) = Z(Sk + nk)$Ok(t), (5.4)
{k}

where the nk are independent random variables, but it is not obvious that we can do

this.

So, first we must justify Equation 5.4. At this point, it is useful to introduce the

auto-covariance function, K,(t, u), of any stochastic process x(t):

Kx (t, u) E { [x(t) - p-x (t) ][x (u) - yx (u)]}

where E{r(to)} denotes the expectation value of any stochastic process r(t) at time

t = to, and p,(to) denotes the mean value of r(t) at time t = to. Now if Kx(t,u)

is positive definite, as it will be in the cases of interest to us, then we can obtain a

complete orthonormal basis set using Kx(t, u). We start with the integral equation

Ak k(t ) = j K(tu)#k(u) du 0 < t < T, (5.5)

where any #k (t) satisfying this equation is called an eigenfunction, and Ak is its

associated eigenvalue. An important result from the theory of integral equations

states that if Kx (t, u) is positive definite, then the #4(t) form a complete orthonormal

set of basis functions on the interval 0 < t < T [16].

'The set {rkk(t)} could, for example, be sines and cosines in a Fourier series, although we will see
that a more convenient basis set exists.
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This particular basis set is very useful when combined with the fact that the pre-

amplifier's noise can be approximated as an additive white Gaussian process [17].

The Gaussian nature of the noise has an important consequence: as shown in [18],

we can in fact use Equation 5.4, where the nk are statistically independent Gaussian

random variables2 . Each nk has zero mean and a variance of N0/2 where No =

N,,hv(G - 1) [17]. N,, accounts for imperfections in the amplifier and is ideally 1, h

is Planck's constant, v is the frequency of the light, and G is the gain of the amplifier.

Now, we would like to determine what form the {#k(t)} basis from Equation 5.5 takes.

The noise is white, so K,(t, u) oc (t - u). Therefore, any function #k(t) satisfies

Equation 5.5, so we can, in fact, choose any set of orthonormal basis functions we

want. We will see the usefulness of this fact below.

Our model of the EDFA pre-amplifier is now complete. The EDFA's output is

converted to an RF signal, which is then amplified. We assume that the photodiode

and RF amplifier of Figure 5-3 have unity gain and are noiseless. This assumption is

valid when the EDFA gain is large. The electronic receiver then integrates the signal

energy over the bit period, the value of which we denote by the random variable x.

As discussed more precisely in [19], a signal with bandwidth B and time spread T

can be represented accurately by 2M = 2BT terms of Equation 5.4. So, the value of

x measured by the receiver is

T 2M 2 2M

x = 0 (Sk+ nk)#k(t) dt = Z(sk + n) 2  (5.6)
f0 k=1 k=1

where we have used the orthonormality of the #5(t) to evaluate the integral. Using

Laplace transform methods, we can derive the probability density function of x [15]:

fE(x) = 1 ( j)M-1/2 exp x+E IM-1 2 v'I )
No (E No )No)

where In is the nth modified Bessel function of the first kind, and E = 2 sM is

2 This result is a consequence of the Karhunen-Loeve expansion applied to Gaussian stochastic
processes.
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the energy of the bit in the noiseless case.

We are now ready to calculate the bit-error rates. The receiver simply determines

the value of a bit by thresholding x from Equation 5.6, deciding 1 if x is above the

threshold 'y and 0 otherwise. The probability that a 1-bit is incorrectly decided to be

a 0-bit equals

Pi = jfE(x) dx = 1 - QM ( 2E/No, N27/No) (5.7)

where QM is the Marcum Q function of order M [20], E =EkM s is the optical

energy contained in the bit from the noiseless case, and 'y is the receiver's threshold.

Similarly, the probability that a 0-bit is decided to be a 1-bit equals

Po= fE(x)dx=QM( 2E/No, 2'/No). (5.8)

Now we can exploit the freedom we have in choosing our basis set. We choose a

basis so that 1 (t) and #2 (t) are sufficient to represent undistorted data pulses (i.e.,

M = 1; we need two basis functions so that we can represent both the in-phase and

quadrature components of the pulse). The noise still exists in all modes, but the

signal only exists in two modes. Moreover, if we assume that the band-pass filter in

Figure 5-3 is perfectly matched to the input signal, then we can neglect nk for k > 2.

5.1.4 Estimation of BER Performance of the SOA-MZI

The models presented above are sufficient to estimate the BER performance of an

SOA-MZI at its optimum operating point. Unfortunately, even if we know the SOA

parameters (ho, Tc, Esat, and a), we still need to determine the two control pulse

powers and the phase bias @ that produce the optimum BER. This problem is com-

putationally intensive. First, we choose a data pattern to test on the switch. Then,

we choose values for the energies of the two control pulse trains and for the phase

bias. We calculate the SOA outputs using the fourth-order Runge-Kutta method.

The SOA outputs are rejoined at a coupler, so we add their outputs together, ignor-
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Table 5.1: Parameters used for SOA-MZI simulations in Section 5.1.4.

Description Symbol Value Units
Unsaturated Gain ho 7 -

Carrier Recovery Time 7c 100 ps
Saturation Energy Esat 1 pJ

Linewidth Enhancement Factor a 5 -

Data Rate R 40 Gb/s
Pulse Widths TIFWHM 8.33 ps

Delay Between Control Pulses 1 and 2 Td 25 ps
Control Pulse Energy 1 E1  36.3 aJ
Control Pulse Energy 2 E2  26.8 aJ

Signal Pulse Energy Esg - aJ
Phase Bias V ir - 0.0076 rads

Amplifier Efficiency Factor No 1 -

Carrier Wavelength Ac 1550 nm

ing the control pulses at this point because they are filtered out. The resulting signal

enters the receiver. To minimize the BER, we next find the value of -Y that mini-

mizes the error rate as calculated by Equations 5.7 and 5.8. The value of -y depends

on the received power for which the BER is being calculated. Then, we repeat this

calculation on a new set of values for the control pulse powers and phase bias.

Much of the simulation is written as MatLab scripts, although the most-used

sections of code, which execute the Runge-Kutta and Marcum Q function calculations,

are written in C. The Marcum Q function in particular requires a fast algorithm. I

used those given by Shnidman in [21, 22]3. I ran the simulations on a 32-processor

grid of AMD64s and assumed that the signal power was too small to affect the gain

dynamics in the SOAs. This assumption reduces the number of parameters to search

through.

Table 5.1 shows the SOA and pulse parameters used in the simulations shown

in this section. The simulation scanned over many possible values of control pulse

energies and phase bias. The values shown in Table 5.1 are the ones that produced

the lowest error rate at a received power of 18 dBphotons/bit. The control pulse

3In 122] Shnidman makes several corrections to his original paper and introduces a new error in
the process. His formula for A has an easily corrected mistake.
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Figure 5-4: Intensity of the output of the SOA-MZI, showing the 2 - 1 PRBS as well
as some patterning on the is and Os.

energies in both arms are extremely small. As we shall see, the switch still produces

a good output, but the small control pulse energies makes the assumption of small

signal pulse energy less likely. We will see in Section 5.1.5 how to test this assumption

more precisely and we will see in Section 5.2 that simulating a chain of SOA-MZIs

predicts higher control pulse power. In this section, however, we will assume that the

signal pulse energy is less than a tenth of the control pulse energies so that the signal

pulses will not significantly affect the SOA-MZI.

There is still one more parameter to consider. The Runge-Kutta calculation re-

quires an initial condition for the integrated gain. We could let the initial integrated

gain equal ho, however it is more realistic to have the SOAs in some steady state at

the beginning of the simulation. So, we simply input the optical data pattern into

the control ports twice, but we only test the error rate on the second pattern. The

data pattern used is the standard 2' - 1 PRBS.

Figure 5-4 shows the intensity of the output of the SOA-MZI. There is amplitude

patterning on the Is and, to a lesser extent, the Os. This patterning occurs because
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Figure 5-5: Integrated gains in both SOAs. The relative phase shift induced equals
the difference in the two gains times a = 5. This section of the gains corresponds
with 10 bits of the pattern (0100000110). The vertical grid lines mark the center of
the signal pulses.

the integrated gain in each SOA, and therefore the output of each SOA, depends on

the pattern of pulses that have passed through them. We can see better how this

patterning occurs in Figure 5-5, which shows the integrated gain, h(t), in both SOAs

over a 10 bit-period. The relative phase shift between the arms equals adh/2 where

Ah is the difference in h(t) between the two arms. In the figure, the vertical grid lines

mark the center of the signal pulses. The SOA-MZI is biased so that a zero relative-

phase shift results in destructive interference of the signal pulse. Two effects switch

the SOA-MZI to the on state. First, when a control pulse arrives, it first changes

the gain in SOA1 while the gain in SOA2 continues to recover, leading to a relative

phase shift that drives the SOA-MZI away from destructive interference. Then the

control pulse arrives in SOA2, eliminating the relative phase shift and returning the

SOA-MZI to destructive interference.

The second effect that switches SOA-MZI to the on state is the gain imbalance

between the two arms. This gain imbalance implies there cannot be perfect inter-
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ference, even if the two arms are out of phase. In fact, Figure 5-5 shows that Ah

is ~ 0.04 for 1-bits, so the relative phase between the two arms is only - 0.1 rads.

This phase shift corresponds with only a 1% transmissivity through the SOA-MZI.

On the other hand, the gain difference in the two arms causes the ratio of the signal

pulse power to go from 1:1 to 1.04:1. So, in this case gain effects are the dominant

switching mechanism.

Figure 5-5 reveals other important behavior of the SOA-MZI that leads to pattern-

ing in the output amplitude. Consider the first 1-bit, which occurs at time 337.5 ps.

The control pulse in SOA 1 arrives at time 325 ps and the control pulse in SOA 2 ar-

rives at time 350 ps. The change in integrated gain in SOA 2 at time 350 ps is smaller

than the change in integrated gain in SOA 1 at 325 ps, implying that the control pulse

in Arm 2 is less than that of Arm 1. Simulations confirm that this is indeed true. To

obtain a high extinction ratio, control pulse 2 should change the h in SOA 2 so that it

equals the h in SOA 1. In this way, the two arms are perfectly matched and the zeros

(e.g., at times 362.5 ps and 387.5 ps) will completely destructively interfere. We have

to fix the ratio of the energies of control pulse 1 and control pulse 2, and it would be

convenient to be able to choose a ratio that would always completely extinguish the

0-bits. Unfortunately, as can be seen from simulations and analysis of Equation 5.3,

this cannot be done. The desired ideal ratio cannot be fixed, but rather it depends

on the initial values of h in each SOA before each 1-bit. For example, in Figure 5-5,

the gains in the SOAs before the 1-bit at time 337.5 ps is ~6.97. The gains of the

SOAs before the 1-bit at time 487.5 ps is -6.98. This difference is only slight in this

case, but in Section 5.1.5 we will see that control pulse energies will have to be higher

than they are in this case, and the value of h will vary over a much wider range than

that shown in Figure 5-5.

With the data in Figure 5-4, we can determine the distribution of energies in 0-bits

and 1-bits, shown in Figure 5-6. In this figure, the possible bit-energies have been

divided into 1000 bins ranging from 0 up to the energy of the most energetic 1-bit.

Using these data and Equations 5.7 and 5.8, we can determine the bit-error rate as a

function of received power. Figure 5-7 shows the bit-error rate curve of the SOA-MZI
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Figure 5-6: Distribution of energies in (a) 0-bits and (b) 1-bits, all normalized to the
power in the bit with the most energy.
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Figure 5-7: Simulated bit-error rate curve of the output of the SOA-MZI compared
to the transmitter back-to-back.
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Figure 5-8: Histogram of power penalties of 10,016 random bit-patterns compared to
the 27 - 1 pattern at an error rate of 10-9.

compared to that of a simulated transmitter back-to-back.

The simulations optimize the SOA-MZI for performance on a 27 -1 PRBS, just as

most laboratory experiments test optical equipment of one of several pseudo-random

bit streams. Figure 5-8 compares the SOA-MZI's performance on 10,016 random

patterns of 127 bits with its performance on the 27 -1 PRBS. In the BER calculations

for each of these data patterns, the simulation used the same value for the threshold,

-y, that was calculated for the PRBS (in reality, there is a different value of -y for

each received power). The figure shows a histogram of power penalties calculated for

the random bit patterns, showing that all patterns tested perform within 1 dB of the

PRBS.

5.1.5 Adding Noise to the SOA Models

We have so far neglected the noise added by the SOAs, considering only the noise

added by the pre-amplifier in the optical receiver. In Section 5.1.4 we assumed that

the effects of the signal pulses on the SOAs were small compared to those of the
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control pulses. This assumption implies that the signal pulses have to be very weak,

so that noise becomes a large fraction of the optical energy output by the SOAs. In

this section, we add noise to the SOAs in the SOA-MZI model.

In Section 5.1.3 we modeled noise added by the optical pre-amplifier in the receiver.

We can adapt this model to the SOA-MZI model discussed in Section 5.1.2. Once

again, we expand one signal pulse coming out of Arm 1 in the real-valued {#k} basis:

si(t) = Z(1,k + nl,k)#Ok(t). (5.9)
{k}

Again, the sum is over the positive integers, si,k is a real number, and ni,k is a Gaus-

sian distributed random variable with zero mean and a variance of No/2. Similarly,

we can expand the signal pulse exiting Arm 2 as

s2 (t) = Z(s2,k + n2,k)#k(t). (5.10)
{k}

As before, we assume the filter in Figure 5-2 is perfectly matched to #1(t) and 42 (t),

so that we can neglect all other terms.

At the output of the SOA-MZI, si(t) and s 2 (t) sum together:

2

s(t) = Z(si,k + S2,k + ni,k + n2,k)#k(t). (5.11)
k=1

To calculate BERs, we need the SOA-MZI's output intensity integrated over the full

bit period, so

= T 2 
2

= T ( s,k + 8 2,k+ n1,k + 2,k)4k(t)) dt
J 0k=1

2 2 5.12)
= (si,k + 8 2,k + ni,k + n2,k),

k=1

where we have used the orthonormality of the #k(t) to evaluate the integral. T is the
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bit period and ( is the random variable of the SOA-MZI's output energy. If ni,k = 0

and n2,k = 0, then Equation 5.12, when applied to each bit at the SOA-MZI's output,

simply reproduces a n energy distribution density figure like Figure 5-6. Adding noise

into the SOAs, however, broadens the distribution of energies in both the Os and the

1s.

Using standard properties of random variables, we know that if nik and n2,k are

Gaussian variables with zero mean and a variance of No/2, then S,k + S2,k+ni,k +n2,k

is also a Gaussian variable with a mean of s1,k + s2,k and a variance of No [23]. From

Equation 5.12, we see that we want the sum of the squares of two Gaussian random

variables, for which we will need the noncentral x 2 distribution [24].

Let Xk be N independent Gaussian random variables with means pk and variances

o2. Then the random variable

N2

Z = k22(5.13)
k=1

has a noncentral x2 distribution. Notice that this distribution does not describe the

behavior of an arbitrary linear combination of squared Gaussian random variables.

Instead the random variables must be weighted by 1/ok. In our case, Xk = S1,k +

S2,k + n1,k + n2,k and, from Equation 5.12, we need the distribution for

2

= (Xk) 2 .
k=1

Fortunately, X1 and X 2 both have the same variances, so

S= a2Z

where a = Y1= U 2 , allowing us to use the noncentral x2 distribution.

There is one more important simplification. It seems from Equation 5.12 that

we need to know what fraction of the pulse amplitude is in the in-phase mode (si,1

and s2,1) and what fraction is in the quadrature mode (s1 ,2 and s2,2). It turns out,
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Table 5.2: Parameters used for SOA-MZI simulations in Section 5.1.5.

Description Symbol Value Units
Unsaturated Gain ho8 -

Carrier Recovery Time rc 75 ps
Saturation Energy Esat 1 pJ

Linewidth Enhancement Factor a 5 -

Data Rate R 10 Gb/s
Pulse Widths TIFWHM 2 ps

Delay Between Control Pulses 1 and 2 Td 10 ps
Signal Pulse Energy Esig 100 aJ

Amplifier Efficiency Factor No 1 -

Carrier Wavelength _Ac 1550 nm

however, that the noncentral X2 distribution has only two degrees of freedom, even

though it can be the sum of many squared Gaussian random variables. The first

degree of freedom is N in Equation 5.13, which equals 2 in our matched filter case.

The second degree of freedom is

N2

E ( (5.14)
k=1 OUk

where, in our case, y4 = s1,k + s2,k and o- = No. Therefore, by Equation 5.12, we see

that J is simply the total output energy of the SOA-MZI in the noiseless case divided

by a2 , regardless of how the field is divided among the in-phase and quadrature

modes.

With this model, we can test the effects of noise and signal pulse energy on the

SOA-MZI. Table 5.2 shows the parameter set for two simulations of the SOA-MZI,

one with noise in the SOAs and one without. Figure 5-9 shows the results of these

simulations by plotting the optimal bit-error rate of the SOA-MZI at a range of

control pulse energies in Arm 1. The solid plot shows the simulation without any

SOA noise. For each control pulse energy in Arm 1, the simulation finds the phase

bias and Arm 2 pulse energy that produces the lowest bit-error rate at a received

power of 18 dBphotons/bit. The solid plot shows unrealistic behavior: extremely
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Figure 5-9: Optimal bit-error rates of the SOA-MZI over a range of control pulse
energies in Arm 1. The bit error rates are taken at a received optical power of
18 dBphotons/bit.

small control pulse energies seem to produce excellent error rates. These very weak

control pulses cause h to vary only slightly from ho. As we saw in the discussion of

Figure 5-5, this implies that we will be able to choose control energies in Arm 1 and

Arm 2 that will extinguish 0-bits almost perfectly, leading to low bit-error rates.

The dashed plot of Figure 5-9 shows the same simulation using the same values

for the control pulse energies and phase bias, but with noise added to the SOAs in the

MZI. When the control pulse energies are very weak, very little of the signal power

is output from the MZI. The noise, however, still has the same amount of energy

because it depends on the gain, G, rather than on the signal or control energies.

Therefore, the noise will dominate the SOA-MZI's output when the control pulses

are weak. This fact is seen in the high bit-error rate that exists in the dashed plot

for low control pulse energies.

Figure 5-9 suggests that adding noise to the SOAs does not affect bit-error rate

performance too much for many control pulse energies. The dashed plot shows that

the best performance is at a control pulse energy of E1 = 2.15 fJ. In this case E2 =
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Figure 5-10: BER plots of SOA-MZI's output cases with and without noise in the
SOAs.

1.52 pJ and r = r 0.02 rads. Figure 5-10 shows bit-error rate plots of this operating

point in the noiseless and noisy cases. The penalty at a BER of 10-' is < 0.5 dB

and there is only a slight slope change. So, with Ej 9 = 0.1 fJ, the noise doesn't

dominate the SOA-MZI performance. For most simulations in the following sections,

we will continue to use Eig = 0.1 fJ because it is intense enough to avoid SOA noise

problems and weak enough to avoid heavily saturating the SOAs. When the SOAs

are saturated, our model becomes less accurate [25].

5.2 Simulation of a Cascade of SOA-MZIs

Optical switches used in regeneration must be cascadable. That is, we must be able

to use the output of one optical switch as the control input of the next one in a chain

of such switches. Figure 5-11 shows SOA-MZI switches used as regenerators in an

optical link. The output of the first SOA-MZI propagates through the fiber link to

an EDFA. The EDFA amplifies the data pulses to the proper energy so that they can

serve as control pulses in the next SOA-MZI.
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Figure 5-11: Cascade of SOA-MZI's in regeneration.

As we saw in Figure 5-4, the output bits of the SOA-MZI have amplitude varia-

tions. For example, assume a sequence of 1-bits follows a long sequences of 0-bits at

the MZI input. The first 1-bit passes through unsaturated SOAs and so receives high

gain, producing an intense output pulse. The final 1-bit in the sequence will receive

the least gain, producing a weaker output pulse. So, when these output bits are used

as the control inputs for the next switch, the earlier 1-bits will be more intense than

later ones. This may lead to even earlier saturation of the SOAs and, therefore, even

more severe amplitude patterning.

It is not clear that we can find an operating point of the SOA-MZIs to prevent

this runaway increase in amplitude patterning. In this section, we'll examine the

circumstances that will produce a successful cascade of SOA-MZIs. We can expect

more success at 10 Gb/s, because the SOA recovery time of -r = 75 ps is shorter

than the 100-ps bit period. Therefore, the SOAs have time to recover nearly to their

unsaturated state before every bit. At 40 Gb/s cascading becomes more difficult, but

we will see operating points where it may succeed.

5.2.1 SOA-MZI Cascade at 10 Gb/s

Figure 5-11 shows the model for this section's simulation of an SOA-MZI cascade,

although the simulations neglect the effects of the optical fiber. The SOA and optical

pulse parameters are the same as those given in Table 5.2. The simulations treat

the EDFAs as ideal amplifiers that add no noise to the optical pulses. They also

neglect the effects of noise in the SOA. This approximation is necessary to keep the
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Figure 5-12: Simulated BER curves for an optical data stream in a cascade of SOA-
MZIs taken after 1, 50, and 100 switches.

simulation runtimes reasonable. Otherwise we would need to run many instances of

the simulation in a Monte Carlo simulation. As we will see, though, the pulse energies

are high enough that we may safely neglect SOA noise in many cases. The simulation

sets the amplifier gain before each SOA-MZI so that the average control pulse energy

is the same for every SOA-MZI. Of course, each SOA-MZI adds amplitude patterning

on the pulses, so that many pulses will vary around that average. As in the simulations

of Section 5.1, we use the standard 2' - 1 pseudorandom bit stream. Also, as before,

the simulations send this PRBS pulse stream twice into the SOA-MZIs to simulate

the effects of steady-state operation.

It is in fact possible to operate a cascade of SOA-MZI switches at 10 Gb/s. Sec-

tion 5.3.2 presents experimental data for a cascade of 100 SOA-MZIs. The simulations

also show that a cascade of switches at 10 Gb/s will operate out to 100 switches. Fig-

ure 5-12 shows simulated bit-error rate curves for the optical data stream in a cascade

of SOA-MZIs after the 1st, 50th, and 100th switches. The optimal operating point

was found by searching a space of values for E1 , E2, and V). The best performance

occurred at Ei = 2.23 fJ, E 2 = 1.48 fJ, and 4 = 7r + 0.025 rads. By the 50th switch,

most of the power penalty in the BER curves has already accumulated so that the
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Figure 5-13: Output pulse intensity of 4 of the switches in the SOA-MZI cascade.

100th switch's performance is only slightly worse.

Figure 5-13 shows the output pulses of the 1st, 98th, 99th, and 100th SOA-MZI.

The 98th and 100th are nearly identical because the cascade has reached an oscillating

steady state. So the BER performance will not continue to worsen. This oscillating

behavior likely occurs because the more intense control pulses actually produce a

phase shift > 7r so that the corresponding output signal pulse is weaker. Moreover,

the most intense control pulses reduce the gain in the SOAs so that corresponding

output signal pulses are weaker. Conversely, the weakest control pulses reduce the

gain less, so the corresponding output signal pulses are more intense.
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5.2.2 SOA-MZI Cascade at 40 Gb/s

At 40 Gb/s the bit period is only 25 ps, several times less than the recovery time

rc = 75 ps. So, now patterning effects are much more severe, and it becomes less

certain that the SOA-MZIs can be cascaded as far as we saw in the previous section.

In fact, when we apply the simulations of the previous section to a 40 Gb/s data

stream, the bit-error rate performance becomes intolerable after only a few switches.

Fortunately, we can relax a couple of constraints placed on the SOA-MZIs to obtain

better performance.

The simulations in the previous section placed two implicit constraints on the cas-

cades: 1) the SOA-MZIs do not invert the data pattern, and 2) the optical pulses in

the SOA-MZIs are weak enough not to fully saturate the SOAs. With these two con-

straints on operation, the SOA-MZI cascade will not function at 40 Gb/s. Nonethe-

less, we will see that when we relax the first constraint, allowing the SOA-MZIs to

invert the data pattern, the SOA-MZIs will be cascadable. Moreover, when we relax

the second constraint, it may be possible that increasing the signal pulse energy will

also make the the SOA-MZI cascadable. Signal pulse energies near Esat will drive

the SOAs close to saturation. Then weaker control pulses create the perturbations in

the SOA gain that produce switching. So, most of the energy is in the signal pulses,

which are present in every bit period. Thus the data patterning on the control pulses

create less amplitude patterning on the output. The simulations do show that high

signal pulse powers can improve performance of the cascade, although not out to

100 switches. Unfortunately, the model we have been using becomes less accurate as

the SOAs become more saturated, so the conclusions we draw in such cases must be

provisional. As we saw in Section 3.3, the gain is assumed to be proportional to the

carrier-population inversion, which limits the range of accuracy to small changes in

the carrier density.

Figure 5-14 shows the output pulses of 4 of the switches in a cascade of SOA-MZIs

operating at 40 Gb/s. At the 5th SOA-MZI, there is already significant patterning

in the optical pulses. By the 10th SOA-MZI, the original data pattern is no longer

174



5th SOA-MZI

10th SOA-MZI

1 2 3
Time (ns)

0.8

0.6

0.4

0.2

0 -
04 1 2

Time (ns)

Figure 5-14: Output pulse intensity of 4 of the switches in the SOA-MZI cascade at
40 Gb/s.
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Figure 5-15: Simulated BER curves for an optical data stream in a cascade of inverting
SOA-MZIs taken after 2 and 100 switches at 40 Gb/s compared with the BER curve
of the transmitter back-to-back.

recognizable. By the 12th SOA-MZI, all the optical power has been concentrated in

a few pulses. These pulses are the 1-bits that follow the long sequences of bits that

are dominated by 0-bits. The most likely explanation is simply that the gain recovers

during these sequences, concentrating more and more power in the 1-bits that follow

them. As before, the SOA and optical pulse parameters are given in Table 5.2. This

time, the optimum operating point was found by simulating the bit-error rate of a

cascade of only 5 SOA-MZIs because longer cascades do not produce reasonable error

rates. After searching over a space of possible values for Ei, E2, and @, the simulation

found the optimum BER performance at E1 = 13.4 aJ, E2 = 10.5 aJ, and V) = ir rads.

If we allow the SOA-MZI to invert the bits in the data pattern, then the cascade

does operate out to 100 switches. Now, of course, the data pattern is the correct one

only after every other switch. Figure 5-15 shows the simulated bit-error rate curves

of the optical data stream after the 2nd and 100th switches in the cascade. The BER

curves of both these switches are nearly identical. A transmitter back-to-back BER

curve is shown in the figure as well, and both switches show a 2 dB power penalty.

In inverting operation, the amplitude patterning introduced in the even numbered

switches of the cascade compensate the amplitude patterning introduced by the odd
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numbered switches. We can see this compensation in Figure 5-16, which plots the

output intensity of 4 of the switches in the inverting SOA-MZI cascade. In the plot of

the 1st MZI's output, the first cluster of 1-bits has a rising amplitude, in contrast to

the noninverting case in which pulses in groups of 1-bits have a falling amplitude (e.g.,

as in the upper-left plot of Figure 5-13). In the noninverting case the amplitudes of

clusters of 1-bits at the output falls because the corresponding control pulses are also

1-bits. These 1-bits reduce the gain of the SOAs. In the inverting case, clusters of

1-bits at the output correspond to control pulses that are 0-bits with little energy. So

the gain recovers during these gaps, and this gain recovery is reflected in a amplitude

recovery in the output.

When we chain two inverting SOA-MZIs together, the output of the first one has

clusters of 1-bits with rising amplitudes. These pulses become the control pulses in

the second SOA-MZI. So, in clusters of control pulses that are 1-bits, the later control

pulses are stronger, so the imbalance the MZI more than earlier control pulses. This

switches out more of the signal pulse power. On the other hand, the gain by this

time is depleted, compensating the increased switching. You can see this clearly in

Figure 5-16 where amplitude patterning in the 1-bits in the outputs of the 1st and

99th SOA-MZIs is reduced in the 2nd and 100th SOA-MZ~s.

As mentioned before, there are two mechanisms for switching in the SOA-MZI:

the phase difference caused by the difference between h in the two arms, and the gain

imbalance caused by changes in h with time. In the noninverting SOA-MZI, these

two mechanisms work together, but in the inverting SOA-MZI they work against each

other. In an inverting SOA-MZI, the control pulses produce the phase shift to cause

destructive interference, but the gain imbalance generated makes that interference

incomplete. This fact explains the poor extinction of 0-bits in Figure 5-16.

It also suggests that a, the constant of proportionality between shift in h and

the shift in phase, should play a more significant role in inverting SOA-MZIs than in

noninverting SOA-MZIs. Figure 5-17 shows the optimal BER as a function of control

pulse energy, E1 for a cascade of 11 SOA-MZIs. The solid curve shows the simulation

for a = 5 and the dashed curve for a = 0. There is a difference in performance.
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Nonetheless noninverting switching does not require a phase shift. Figure 5-18 shows

the same plot for a cascade of 7 SOA-MZIs at 40 Gb/s. The difference between a = 1

and a = 5 is very large, reflecting the complete reliance of the inverting SOA-MZI in

a differential phase shift.

5.3 Integrated SOA-MZI

The simulations of Section 5.1 suggest that SOA-MZI switches can be chained together

without producing a runaway increase in the BER's power penalty. This fact in turn

means that the SOA-MZI is a candidate for all-optical data regeneration. This section

presents results of performance tests on an integrated SOA-MZI all-optical switch

provided by Alphion. Jade Wang has demonstrated wavelength converting operation

with the Alphion switch at 10 Gb/s [26].

This section contains these results as well as results of tests of the SOA-MZI as

a regenerator in the 100-km loop described in Section 4.4. SOA-MZI's have been

tested in regenerative recirculating loops before, usually when operated in a data

inverting mode. Here I describe a noninverting wavelength maintaining SOA-MZI

which uses the SOA wavelength converter of Section 4.3.1 at the control input of

the SOA-MZI [27]. The wavelength maintaining SOA-MZI, like the WMFUNI, can

function as a regenerator in a 100-km recirculating fiber loop.

5.3.1 SOA Mach-Zehnder Interferometer

Figure 5-19 shows the schematic diagram of the Alphion SOA-MZI switch we tested in

all-optical regeneration. SOA 4 and SOA 5 serve as the nonlinear media for switching,

like the 2 SOAs in Figure 5-2. The extra SOAs in the figure (1, 2, 3, and 6) are

necessary to compensate coupling losses between the fiber connectors and the chip as

well as loss in the integrated waveguides. Finding the correct bias currents to drive

the SOAs on the chip is a difficult task. Jade Wang developed a solution, which she

used to find the optimal bias currents [26].

As with the WMFUNI, we used the SOA wavelength converter of Section 4.3.1 so

180



Integrated SOA-MZI

Arm I

Band-Pass
I Filter

Control 2 I

Figure 5-19: Schematic of the Alphion integrated SOA-MZI optical switch.
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Figure 5-20: Schematic of the SOA wavelength converter presented in Section 4.3.1.
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Figure 5-21: Schematic of the wavelength-maintaining SOA-MZI setup for a BER
measurement.

that the incoming signal and control pulses would have the same carrier wavelength.

Figure 5-20 shows the basic schematic of the wavelength converter. Figure 5-21 shows

the wavelength-maintaining SOA-MZI setup for a bit-error rate test. A single 10-GHz

mode-locked fiber laser provides pulses with a carrier wavelength of 1547.5 nm for

both the the signal and control input ports. A transmitter, Tx, driven by a pulse

pattern generator, modulates a 231 - 1 PRBS onto the control pulse train. The

wavelength converter shifts the carrier wavelength of the control pulses to 1557.5 nm.

These wavelength-converted pulses enter the SOA-MZI and their power is divided

into the two arms of the MZI. The pulses entering Arm 2 are delayed by ~ 15 ps

with respect to those entering Arm 1. An optically pre-amplified receiver measures

the BER of the SOA-MZI's output. Figure 5-22 shows the logical performance of the

wavelength-maintaining SOA-MZI. The SOA-MZI shows a 1.2-dB penalty compared

to the back-to-back measurement at an error rate of 10~9.

As discussed in Section 4.2.3, a regenerator must be able to tolerate random

variations in the timing of the control pulses. To measure this tolerance, we use the

switching window, the measurement of which was described in Section 4-16. The

width of the switching window approximately equals the amount of timing variation

in the control pulses that the SOA-MZI can tolerate. Figure 5-23 shows the switching

window of the wavelength-maintaining SOA-MZI. Its IFWHM is 15 ps.
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Figure 5-22: BER curves of the SOA wavelength converter and the wavelength-
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Figure 5-23: Switching window of the SOA-MZI. This plot shows the average output
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5.3.2 The Wavelength-Maintaining SOA-MZI All-Optical Re-

generator

Figure 5-24 shows the 100-km recirculating loop used to test the SOA-MZI's regen-

erative performance [?]. As above the optical pulse train is generated by a 10-GHz

mode-locked fiber laser that is then modulated in the transmitter (Tx) with a 23 - 1

PRBS. The loop itself contains two 50-km sections of large effective area fiber (LEAF)

along with 3.2 km of dispersion compensation fiber (DCF). The DCF has a highly pos-

itive second order dispersion to compensate the negative second order dispersion that

exists in the LEAF. Two EDFAs compensate loss in the loop, a single-polarization

fiber isolator (SPFI) maintains a constant polarization, two variable attenuators con-

trol power in the loop, and a loop acousto-optic (A/0) modulator blocks pulses in

the loop when necessary. There is also a variable delay to keep the loop length an

integer number of bit periods long so that the control and signal pulses temporally

overlap in the wavelength-maintaining SOA-MZI for all loop passes.

At the beginning of the loop experiment the load A/O modulator is closed, allow-

ing data pulses to enter the loop. At the same time, the loop A/O modulator is open,

discarding any pulses that are already in the loop. Once the loop is loaded with data,

the loop A/O modulator closes, and the load A/O modulator opens. The data then

recirculate through the loop 100 times, or -10,000 km. As we saw in Figure 4-28,

without regeneration, the cross-correlation of the pulses in the loop show fast dete-

rioration of the pulses on successive passes. As before the cross-correlation is given

by

C(T) = I(t)Is(t - T) dt,

where I(t) is the intensity envelope of the pulse being measured and I,(t) is the

intensity envelope of the sample pulse.

Figure 5-25 the cross-correlation of the data pulses after passing 1 through 114

times through the loop with the wavelength-maintaining SOA-MZI regenerator placed

in the recirculating loop. The data are taken by tapping off the loop data pulses right

after the SOA-MZI. The cross-correlation of the 0-pass pulses have an IFWHM 5 ps.
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After 50 and 114 passes through the regenerator, the cross-correlation of the data

pulses still have IFWHMs of 5 ps.

Figure 4-30 shows BER plots of the data pulses in the loop after 10 and 100 passes.

The data are taken by tapping off the data pulses in the loop right after the WMFUNI.

These data then enter a pre-amplified optical receiver, which is controlled by a gate

signal from the same pulse generator that drives the two acousto-optic modulators.

This gate signal ensures that the optical receiver only measures the bit-error rate

during the 10th pass or the 100th pass. In these data, the wavelength-maintaining

SOA-MZI has a 1.1-dB power penalty penalty compared to the transmitter back-to-

back at an error rate of 10-9. After 10 passes through the loop, the loop data have

a power penalty of 1.3 dB. After 100 passes, the loop data have a power penalty of

1.6 dB compared to the back-to-back with no visible error floor.

5.4 Conclusions

Previous experimental work on SOA-MZIs have shown full switching operation at

up to 80 Gb/s [9] and demultiplexing operation from 160 Gb/s to 4x40 Gb/s [28].

Moreover, SOA-MZIs have been used in regenerative loop experiments at up to

40 Gb/s [12]. In this experiment, the 40 Gb/s optical data stream is loaded onto

a 300-km loop. The data propagates through the loop 100 times, and is regenerated

each time. The regenerator itself is actually of cascade of two optical switches: a

data inverting SOA switch using cross-gain modulation and a data inverting SOA-

MZI switch. Simulations of the SOA-MZI all-optical switch, presented in Section 5.2,

suggest that such an experiment at 40 Gb/s might be difficult at best. The simu-

lations do suggest, however, that an SOA-MZI regenerator may function well if the

SOA-MZI inverts the data, just as in [12].

This chapter, however, presented tests of an SOA-MZI optical switch that does

not invert the data. This SOA-MZI switch can be adapted to all-optical regenera-

tion, as shown in Figure 5-11. We used transmission experiments to test the SOA-

MZI regenerator's performance. The wavelength-maintaining SOA-MZI successfully
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regenerated a 10-Gb/s data train in a 100-km recirculating loop, shown in Figure 5-

24. With ~ 3-ps pulses, the wavelength-maintaining SOA-MZI should in principle

operate in systems with data rates up to ~ 100 Gb/s. The simulations suggest that

a single SOA-MZI can operate at such high rates. As mentioned above, operation of

a cascade of SOA-MZI switches, as in Figure 5-11, is more difficult. Further work is

required to determine if the SOA-MZI of Figure 5-19 will operate as a regenerator at

> 40 Gb/s.
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Chapter 6

Future of All-Optical Data

Regeneration

As discussed in Chapter 1, all-optical switching is not ready to compete with electron-

ics in complicated logic and may remain so [1]. All-optical switches, however, may

become useful in optical data regeneration [2], and there is evidence that all-optical

regenerators have a performance advantage over electronic regenerators [3]. We saw

two all-optical regenerators evaluated in this thesis, the WMFUNI and the SOA-MZI,

both of which are based on interferometer switches. They both successfully regener-

ated a 10-Gb/s data pattern in transmission experiments over distances greater than

10,000 km. Simulations and experimental work suggest that extension of these results

to 40 Gbit/s is possible.

With these results in hand, we now consider what the future course of regeneration

in optical communications may be. There are many different designs for 3R and 4R

all-optical regenerators, but most of them rely on one of only two different nonlinear

media: semiconductor optical amplifiers (SOAs) and optical fiber. Each of these

media have their advantages, which we will consider in this section. It is possible, of

course, that the ultimate solution will be entirely different. For example an exotic

nonlinear medium or new ultrafast electronics. It is even possible that regenerators

will be dispensed with entirely, in favor of transmission links and modulation formats

that do not require regeneration at all. We will briefly consider each of these questions
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in this Chapter.

6.1 Choice of Nonlinear Medium

Optical fiber and SOAs have important differences that guide the design of all-optical

switches and regenerators. For example, fiber has such a weak nonlinearity that

interferometric switches based on fiber require kilometer-long sections of it. Most

interferometers are two-path interferometers, like the Mach-Zehnder, and such inter-

ferometers are difficult to stabilize when they are many meters long, to say nothing

of thousands of meters. This fact is why the design of the WMFUNI of Chapter 4 is

based on a single-arm interferometer in which the two pulses are separated in time

in a single arm rather than being separated into separate arms. Unfortunately, this

means that the pulses in the WMFUNI must be half as long as they otherwise would

be in order to prevent the interference of neighboring bits. Thus, the WMFUNI forces

the network to be less bandwidth efficient.

We could instead try to find a medium that is much more nonlinear than optical

fiber, allowing us to use a very small two-arm Mach-Zehnder interferometer design.

In Chapter 5 we saw such a design. The SOA-MZI switch we tested was integrated on

a chip only ~1 cm long. Temperature controllers on the chip kept the Mach-Zehnder

interferometer at the appropriate bias point. SOA-based regenerators also have a

power advantage because of the high optical powers that fiber-based regenerators use

to overcome fiber's weak nonlinearity. I estimate that the optical amplifiers used in

the WMFUNI consume on the order of ~20 Watts of electrical power. The amplifiers

in the SOA-MZI consume on the order of -2 Watts of electrical power.

Nonetheless, fiber-based switches and regenerators do have one obvious advantage

over SOA-based designs: as discussed in Chapter 4 optical fiber is a nearly instanta-

neous nonlinear medium. SOAs, on the other hand, have recovery times that can last

several bits. This fact implies that the behavior of SOA-based switches will depend

on not just the current bit being processed, but previous ones as well. In Chapter 5

we saw that the SOA-MZI's output pulses had variations in amplitude that depended
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on the data pattern. We also saw how this patterning can become worse in a cascade

of switches, where the output of one switch becomes the input of the next, as in

regeneration. These patterning effects can become more severe at higher data rates,

as the simulations at 10 Gb/s and 40 Gb/s in Chapter 5 imply. Indeed the fastest

regeneration result to date is of a fiber-based regenerator at 160 Gb/s over 186 km

and three regeneration stages [4, 5]. An SOA-based regenerator has been tested at

160 Gb/s, but without a transmission test its performance is difficult to assess [6].

So, optical fiber's nonlinearity is too weak, and the SOA's nonlinearity is not in-

stantaneous. A more far-off solution is the development of a medium with both a

strong and instantaneous nonlinearity. Highly nonlinear fiber (HNLF) has been stud-

ied many years, although until recently HNLFs have had large chromatic dispersion

at 1550 nm [7]. Experimental work on HNLFs includes 2R all-optical regeneration [8].

HNLFs cannot be integrated onto chips, so photonic crystals have been studied as

an integrable nonlinear medium. Such devices can in theory produce very strong

nonlinearities for switches [9], but experimental demonstrations have produced less

than optimal nonlinearities with high insertion losses [10, 11].

6.2 Possibility of an Opto-Electronic Solution

All-optical regenerators are not yet the obvious solution. One advantage to all-optical

signal regeneration, perhaps the primary commercial advantage, is the removal of

costly optical to electrical to optical (OEO) transceivers, as we saw in Figure 1-4. All-

optical solutions, however, are not the only possibility for next-generation networks.

For example, Infinera has worked to reduce the cost of OEO transceivers through

monolithic integration of optical and electronic devices onto indium-phosphide [12].

Even with significant cost reductions in opto-electronic designs, all-optical regener-

ation still has a speed advantage. SOA-based regenerators operate at data rates up to

40 Gb/s [13], and fiber-based regenerators operate at rates up to 160 Gb/s [4], where

both results are for a single wavelength-channel. But all-optical regenerators are not

ready for commercialization, so we should compare all-optical regenerator speeds not
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with opto-electronic speeds today, but rather with speeds 5 or 10 years from now.

Already, we can see in the literature a number of electronic and opto-electronic tools

operating at speeds approaching those of all-optical tools.

One such tool is the modulated optical transmitter, which provides the transceiver's

electrical to optical conversion. Directly modulated laser sources, in which a laser

diode is made to pulse by a direct modulation of the current drive, have been demon-

strated up to 30 GHz [14]. Laser diodes can also be externally modulated by an

electro-optic intensity modulator. Lithium niobate intensity modulators have been

demonstrated at rates approaching 100 GHz [15, 16]. Unfortunately, lithium niobate

modulators typically require swings in the drive voltage up to --5 Volts. InP-based

devices, among others, can operate with lower drive voltages down to less than 2 Volts

and with bandwidths up to 40 GHz [17, 18]. On the other side of the OEO conversion

are the photodetectors that execute the optical to electrical conversion. Commercial

InGaAs photodetectors already achieve 40-GHz bandwidths. Research work has ex-

tended bandwidths to 100 GHz in InP structures [19]. Other research has focused on

increasing the photocurrent produced by photodetectors with, for example, avalanche

photodiodes, although gain-bandwidth products still only reach 200 GHz [20].

Electronic processing has also advanced to high rates. A common measure of the

upper limit of electronic processing speeds is data multiplexing, in which to lower

rate data streams are combined into a single high rate data stream. Recently, a 2:1

electronic multiplexer was demonstrated at 60 Gb/s [21], and a 4:1 electronic multi-

plexer was demonstrated at 100 Gb/s [22]. More complicated circuitry is also possible,

including a pseudo-random bit-stream generator that operates at 100 Gb/s [23]. Elec-

tronic processing at 100s of Gb/s involves many difficulties, but it is a well-established

industry that cannot be ignored.

6.3 Transmission without Regeneration

Another avenue of research is unregenerated transmission. Instead of periodically re-

generating the data signal, one can try to engineer the signal so that it will propagate
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through the fiber with less distortion. There are several ways to achieve unregenerated

transmission, including pre-distorting the pulses to compensate distortions in the fiber

and the use of exotic data modulation formats. Optical fiber propagation affects differ-

ent modulation formats in different ways. For example, in links with uncompensated

polarization-mode dispersion, return-to-zero ON/OFF keyed formats perform better

than nonreturn-to-zero ON/OFF keyed formats, and differential phase-shift keyed

formats perform even better [24]. Phase-shift modulation formats also often per-

form better in links with nonlinear effects because their intensity envelopes need not

vary in time. So, changes in modulation formats could expand the available channel

capacity and propagation distances in existing networks without the need for regener-

ation. Some recent results include 1.7-Tb/s transmission over 5,200 km [25], 6.4-Tb/s

transmission over 2,100 km [26], and 25.6-Tb/s transmission over 240 km [27].

The advantage of unregenerated transmission is that it pushes the hardware to

the ends of the optical fiber rather than placing regenerators along the entire link.

So, hardware and performance upgrades can be achieved by making changes at the

transeivers where we have the easiest access. Unfortunately, in a network, different

data packets will take different optical paths through the network. So each packet

may have to be modulated or pre-distorted for its particular path, which may make

management of network resources a very difficult problem.

As we have seen, there are many ways to compensate and correct distortions

caused by propagation through networks. This thesis has focused on all-optical inter-

ferometric regenerators, but there are other possible solutions. We have seen many

of them in this chapter, and none of them today is the clear answer. It is certain,

however, that research into data regeneration will continue to be an area of intense

research. One such area of research is the simultaneous regeneration of many data

channels, each modulated onto a different wavelength of light. When erbium-doped

fiber amplifiers, which could amplify many wavelength channels simultaneously, be-

came available, network capacity burst forward. A similar burst could follow the

design of a successful multi-wavelength regenerator. This thesis has presented several

promising ideas for all-optical regenerators, and with further development they could
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see application in low-power, ultrafast, multi-wavelength regeneration. They only

require the arrival of a new nonlinear material or new device to make them ready for

commercial application.

200



Bibliography

[1] H. Caulfield, C. Vikram, and A. Zavalin, "Optical logic redux," Optik, vol. 117,
no. 5, pp. 199-209, 2006.

[2] 0. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain,
and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," Journal of
Lightwave Technology, vol. 21, no. 11, pp. 2779-2790, 2003.

[3] B. Mikkelsen, G. Raybon, T. N. Nielsen, U. Koren, B. I. Miller, and K. Dreyer,
"Opto-electronic and all-optical wavelength translators and their cascadability,"
Optical Fiber Communication Conference, vol. 4, 1999.

[4] S. Watanabe, F. Futami, R. Okabe, Y. Takita, S. Ferber, R. Ludwig, C. Schu-
bert, C. Schmidt, and H. Weber, "160 Gbit/s optical 3R-regenerator in a fiber
transmission experiment," Optical Fiber Communications Conference, 2003.

[5] C. Schubert, R. Ludwig, S. Watanabe, E. Futami, C. Schmidt, J. Berger,
C. Boerner, S. Ferber, and H. Weber, "160 Gbit/s wavelength converter with
3R-regenerating capability," Electronics Letters, vol. 38, no. 16, pp. 903-904,
2002.

[6] J. Leuthold, L. Moller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cap-
puzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, "160
Gbit/s SOA all-optical wavelength converter and assessment of its regenerative
properties," Electronics Letters, vol. 40, no. 9, pp. 554-555, 2004.

[7] K. Hansen, J. Jensen, C. Jacobsen, H. Simonsen, J. Broeng, P. Skovgaard, A. Pe-
tersson, and A. Bjarklev, "Highly Nonlinear Photonic Crystal Fiber with Zero-
Dispersion at 1.55 pm," Optical Fiber Communication Conference (Optical So-
ciety, of America, Washington, DC, 2002) PDFA9.

[8] P. Petropoulos, T. Monro, W. Belardi, K. Furusawa, J. Lee, and D. Richard-
son, "2R-regenerative all-optical switch based on a highly nonlinear holey fiber,"
Optics Letters, vol. 26, no. 16, pp. 1233-1235, 2001.

[9] M. Yanik, S. Fan, M. Soljacic, and J. Joannopoulos, "All-optical transistor action
with bistable switching in a photonic crystal cross-waveguide geometry," Optics
Letters, vol. 28, no. 24, pp. 2506-2508, 2003.

201



[10] M. Soijacic and J. Joannopoulos, "Enhancement of nonlinear effects using pho-
tonic crystals," Nature Materials, vol. 3, no. 4, pp. 211-219, 2004.

[11] J. Joannopoulos, P. Villeneuve, and S. Fan, "Photonic crystals: putting a new
twist on light," Nature, vol. 386, no. 6621, pp. 143-149, 1997.

[12] L. Geppert, "A quantum leap for photonics," IEEE Spectrum, vol. 41, no. 7,
pp. 16-17, 2004.

[13] G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T. Her, C. Joergensen, P. Stein-
vurzel, and K. Feder, "40 Gbit/s pseudo-linear transmission over one million
kilometers," Optical Fiber Communication Conference, 2002.

[14] K. Sato, "Semiconductor light sources for 40-Gb/s transmission systems," Jour-
nal of Lightwave Technology, vol. 20, no. 12, pp. 2035-2043, 2002.

[15] K. Noguchi, H. Miyazawa, and 0. Mitomi, "75 GHz broadband Ti: LiNbO
3 optical modulator with ridge structure," Electronics Letters, vol. 30, no. 12,
pp. 949-951, 1994.

[16] B. Thomsen, D. Reid, R. Watts, L. Barry, and J. Harvey, "Characterization of
40-Gbit/s pulses generated using a Lithium Niobate modulator at 1550 nm using
frequency resolved optical gating," IEEE Transactions on Instrumentation and
Measurement, vol. 53, no. 1, pp. 186-191, 2004.

[17] L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and
S. Chandrasekhar, "Low-voltage high-speed travelling wave InGaAsP-InP phase
modulator," IEEE Photonics Technology Letters, vol. 16, no. 8, pp. 1831-1833,
2004.

[18] K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and
Y. Tohmori, "A 40-gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder Modulator
with a drive Voltage of 2.3 V," IEEE Photonics Technology Letters, vol. 17, no. 1,
pp. 46-48, 2005.

[19] H. Bach, A. Beling, G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger,
M. Stollberg, and W. Schlaak, "InP-based waveguide-integrated photodetector
with 100-GHz bandwidth," IEEE Journal of Selected Topics in Quantum Elec-
tronics, vol. 10, no. 4, pp. 668-672, 2004.

[20] S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherpt-
ner, and A. Anselm, "High-responsivity and high-speed evanescently-coupled,"
Electronics Letters, vol. 39, no. 25, pp. 1848-1849, 2003.

[21] D. Kehrer, H. Wohlmuth, I. AG, and G. Munich, "A 60-Gb/s 0.7-V 10-mW
monolithic transformer-coupled 2:1 multiplexer in 90 nm CMOS," IEEE Com-
pound Semiconductor Integrated Circuit Symposium, pp. 105-108, 2004.

202



[22] T. Suzuki, Y. Nakasha, T. Takahashi, K. Makiyama, T. Hirose, and M. Takikawa,
"144-Gbit/s selector and 100-Gbit/s 4:1 multiplexer using InP HEMTs," IEEE
MTT-S International Microwave Symposium Digest, vol. 1, 2004.

[23] H. Knapp, M. Wurzer, W. Perndl, K. Aufinger, J. Bock, T. Meister, C. Res,
I. Technol, and G. Munich, "100-Gb/s 2/sup 7/-1 and 54-Gb/s 2/sup 11/-1
PRBS generators in SiGe bipolar technology," IEEE Journal of Solid-State Cir-
cuits, vol. 40, no. 10, pp. 2118-2125, 2005.

[24] C. Xie, "Comparison of PMD sensitivity for different modulation formats," 2003
Digest of the LEOS Summer Topical Meetings, 2003.

[25] C. Rasmussen, S. Dey, F. Liu, J. Bennike, B. Mikkelsen, P. Mamyshev, M. Kim-
mitt, K. Springer, D. Gapontsev, and V. Ivshin, "Transmission of 40x 42.7
Gbit/s over 5200 km UltraWave@ fiber with terrestrial 100 km spans using
turn-key ETDM transmitter and receiver," 28th European Conference on Opti-
cal Communication, vol. 5, 2002.

[26] G. Charlet, J. Antona, S. Lanne, P. Tran, W. Idler, M. Gorlier, S. Borne,
A. Klekamp, C. Simonneau, L. Pierre, Y. Frignac, M. Molina, F. Beaumont,
J.-P. Hamaide, and S. Bigo, "6.4 Tb/s (159x 42.7 Gb/s) Capacity Over 21 x 100
km Using Bandwidth-Limited Phase-Shaped Binary Transmission," 28th Euro-
pean Conference on Optical Communication, vol. 5, 2002.

[27] A. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows,
T. Kawanishi, T. Sakamoto, and K. Higuma, "25.6-Tb/s C+L-Band Transmis-
sion of Polarization-Multiplexed RZ-DQPSK Signals," Optical Fiber Communi-
cation Conference, Postdeadline Session, 2007.

203


