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Abstract

Skeletal muscles are the primary actuators that power, stabilize and control locomotive and
functional motor tasks in biological systems. It is well known that coordinated action and
co-activation of multiple muscles give rise to desirable effects such as enhanced postural and
dynamic stability. In this thesis, we study the role of muscle co-activation from an energetics
perspective: Are there situations in which antagonist co-activation leads to enhanced power
generation, and if so, what is the underlying mechanism?

The mechanical energetics of muscles are traditionally characterized in terms of workloop
measures where muscles are activated against oscillating, zero-admittance motion sources.
We extend these measures to more natural, "mid-range" admittance loads, actuated by
multiple muscles. Specifically, we set up the problem of a second-order mechanical system
driven by a pair of antagonist muscles. This is the simplest problem where the influences
of load dynamics and muscle co-activation on the output energetics may be investigated.

To enable experimentation, a muscle testing apparatus capable of real-time servo emu-
lation of the load is developed and utilized for identification and workloop measurements.
Using this apparatus, an experimentally identified model predicting muscle contractile force
is proposed. Experimental data shows that with a simple Weiner structure, the model ac-
counts for 74% (sigma = 5.6%) of the variance in muscle force, that force dependence on
contraction velocity is minimal, and that a bilinear approximation of the output nonlinearity
is warranted.

Based on this model we investigate what electrical stimulation input gives rise to max-
imal power transfer for a particular load. This question is cast in an optimal control
framework. Necessary conditions for optimality are derived and methods for computing
solutions are presented. Solutions demonstrate that the optimal stimulation frequencies
must include the effects of muscle impedances, and that optimal co-activation levels are
indeed modulated to enable a pair of muscles to produce more work synergistically rather
than individually. Pilot experimental data supporting these notions is presented. Finally,
we interpret these results in the context of the familiar engineering notion of impedance
matching. These results shed new light on the role of antagonist co-activation from an
energetics perspective.
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Chapter 1

Introduction

Skeletal muscles are the primary mechanical actuators in biological organisms. Their ac-
tions, which are modulated by neural input, powers, stabilize and control locomotive and
functional motor tasks. Anatomically, muscles are situated to act on skeletal joints in groups
of two or more with some degree of antagonism. It is well known that antagonist muscles co-
activate simultaneously to enhance postural and dynamic stability of joints [37, 38, 32, 11].
The focus of this thesis is on the power-generating capability of muscles and the role an-
tagonist co-activation plays in enhancing their energetics. Specifically, two questions are
posed:

" How is the power generating capability of muscle maximized?

" Are there situations in which antagonist co-activation leads to enhanced muscle power
generation, and if so, what is the underlying mechanism?

These questions touch upon three distinct but interrelated areas of research: i) muscle
physiology and biomechanics, ii) biological motor control, and iii) functional electrical stim-
ulation. Skeletal muscles play a central role in all these areas, but are studied from different
perspectives and with different objectives in mind. In what follows, we briefly discuss these
three areas, and describe how they relate to the questions.

1.1 Muscle physiology and biomechanics

Under appropriate neural control, muscles provide a variety of biomechanical motor func-
tions that are rich and subtle. In vivo measurements have shown that muscles approximate
the actions of power generating sources, springs, struts, dampers, or a combination thereof
[18]. Such behaviors are in part due to the intrinsic mechanical properties of muscle, and in
part due to feedforward and feedback neural control [77, 2]. Numerous biomechanical stud-
ies have focused on investigating how muscles give rise to such behaviors [73], and providing
correlations between muscle properties, electro-myographic (EMG) measurements, biome-
chanical constraints, and motor control objectives. Figure 1-1, which is reproduced from
[18], shows an exposition of the wide range of muscle functions that are used in locomotion.

To understand what gives rise to such responses, it is necessary to look carefully at the
microscopic structure of skeletal muscles, and how it relates to their macro scale properties.
Appendix A provides a basic description of the contractile mechanisms of muscle and their
properties.
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Figure 1-1: Reproduced from [18] with permission. Muscles play a wide range of biome-
chanical functions that can be described succinctly in terms of workloops.

Workloops

In the muscle physiology literature, the capability of muscles to generate mechanical work
has been traditionally characterized in terms of workloop measurements [46]. In these
measurements, the muscle is subjected to prescribed sinusoidal length variations in time
by means of an external motion source. An electrical stimulus is triggered at a particular
phase of the cycle, resulting in a contractile force. A plot of measured force vs. displacement
results in a workloop plot. The area enclosed in the workloop is a measure of the mechanical
work done by the muscle on its environment (its mechanical energetics). In [46, 69, 68, 53,
16, 43, 47, 2], the dependence of the energetics of muscles on electrical stimulus parameters
was investigated and correlated with the biological functions of particular muscles.

Workloops may be viewed not only as measures of muscle power, but also as succinct
descriptions of the biomechanical roles that muscles play under periodic motions. While
the area enclosed by the workloop is an indication of the amount of mechanical work done
by the muscle, its shape, volume and directional sense can be interpreted in relation to the
function of the muscle. For example, in Figure 1-1, power generating muscles produce more
voluminous workloops, whereas power dissipating muscles produce workloops that have a
different directional sense. If the workloops are of small volume, this would indicated that
they have more of a structural function, such as a stiffness element, a strut, or in some cases
a clutching mechanism.

1.2 Biological motor control

Research in biological motor control seeks to understand how the actions of multiple muscles
are coordinated to give rise to motor behavior. A central theme is the interplay between the



mechanical properties of muscles, and how motion is generated and stabilized. One of the
clearest examples of this is the relationship between active muscle force, and the impedance
of a muscle. As a muscle is activated, not only that a contractile force is generated, but also
its output stiffness and damping increase dramatically. From an engineering perspective,
this coupling confounds the control problem and makes it more challenging. Yet this feature
is exploited by the central nervous system advantageously. It has been suggested that
for muscles acting in concert about a common joint, antagonist muscles may provide the
central nervous system with the capability of modulating the stiffness of the joints. This is
achieved via co-activation of antagonist muscles. Co-activation has been observed to play
an important role in postural and dynamics stability.

In this thesis we study the role of muscle impedance and co-activation from an energetics
perspective, and offer a parallel motivation for co-activation. The same mechanisms that
stiffen a joint for stabilization purposes may also be used to modulate joint impedance, and
therefore enhance power transfer. Connections with the engineering notion of impedance
matching are therefore be drawn.

1.3 Functional electrical stimulation

Functional electrical stimulation (FES) is the artificial stimulation of muscles in vivo to
rehabilitate functional capabilities. It has been an active area of research, with the elusive
goal of re-animating limbs and motor skills that are adversely affected either due to paralysis
or other neurological disorders.

In the FES literature, much attention has been directed to the problem of developing
algorithms for controlling the mechanical response (particularly contractile force) of muscle
via artificial electrical stimulation [72, 15, 13, 14, 71, 44, 61, 31, 17}. The basic motivation is
that FES may provide a compelling rehabilitation modality for spinal chord injuries (SCI)
and stroke subjects. This gave rise to an extensive literature that focuses on many of
the subproblems such as: what muscle models should be used, [9, 67, 63], what system
identification schemes [12, 22, 21], what electrodes and stimulation patterns [52, 33, 75],
and so forth.

The predominant approach in the FES literature has been to control muscles to act
as ideal (impedance-free) force sources, and then using those " force sources" to provide
the desired functions via an outer control loop. This approach seems to be influenced by
approaches in robotics that involve actuation by motors, which ideally are impedance free,
but has the drawback of attempting to negate some of the inherent muscle dynamics. In
this thesis, however, we focus directly on the desired functions, while operating within the
constraints imposed by the muscle dynamics. In doing so, it may be possible to harness some
of the muscle properties in a manner the enhances performance. The particular function
chosen is that of power generation.

1.4 Where does this thesis lie?

This thesis lies at the intersection of the three fields mentioned above. It is worthwhile
repeating the question here:

e How is the power generating capability of muscle maximized?



* Are there situations in which antagonist co-activation leads to enhanced muscle power
generation, and if so, what is the underlying mechanism?

In relation to biomechanics, the focus of this thesis is on the capability of muscle to
do mechanical work on a load, and how this capability is achieved and maximized. In

relation to biological motor control, the focus is on how the actions of multiple muscles are

coordinated to maximize power energetics. In relation to FES, instead of focusing on force

trajectory tracking, we focus directly on the power generating capability of muscles.

Problem Setup Choosing an appropriate problem setup as an embodiment for answering
these questions is crucial. The problem should be rich enough to test for the desired effects,
but stripped of superfluous details. The problem setup is shown in Figure 1-2.

k b Load
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Figure 1-2: Problem setup: antagonist muscle pair acting on a second order mechanical

load.

Why choose this setup? First, it is general enough to model antagonist mono-articular

muscles actuating a single degree-of-freedom joint acting on realistic loads such as ankle

muscles delivering power to the body during normal walking. Second, this is the simplest

system in which the net force produced by the muscles can be modulated with some degree of

independence over the net stiffness by appropriately co-contracting the muscles - a problem

with only one muscle will not allow for this effect. Third, by simplifying the muscle loads to

well understood, but non-trivial loads, we can focus our attention on the muscle response,
and eliminate the complexities of real skeletal loads. Finally, the load has to be a non-zero

admittance load, otherwise the muscles would not be able to "feel" the effects of one another

since the motion source acts as a barrier preventing them from communicating mechanically.

Approach The first question is tackled via model-based optimal control, with the ob-

jective of finding what electrical stimulation input to the muscles maximizes their power

output. The optimization requires a mathematically tractable model describing the prob-
lem setup. The models are obtained via system identification methods, and are based on
experimentally measured data.

The second question is answered via computation of the optimal controls, and observing
the effect of co-activation on the solutions. Conclusions based on the optimization of the
computations are then verified experimentally.



1.5 Dissertation Overview and Contributions

This dissertation is organized around the main contributions of the thesis:

" One of the main challenges in muscle research is robust experimentation. Chapter 2
presents the design and hardware implementation of a muscle testing apparatus that is
used as the experimental platform for a wide variety of experiments. It is fitting that
this chapter is presented early on since this apparatus is used as a test platform for
all experiments conducted in this thesis, including muscle identification and workloop
energetics measurements.

" Chapter 3 presents a method for identification of dynamical models that describe the
contractile dynamics of muscles undergoing periodic oscillation. We assess the ability
of multi-affine models to capture the force response of the muscles. We conclude that
bilinear models with no velocity dependence are sufficient.

" Chapter 4 discusses the problem of maximizing the the power generated by muscles
against a passive second order mechanical system. Several approaches are taken, rang-
ing from the mechanistically intuitive to the mathematically rigorous. Basic analysis
shows that co-activation can be beneficial from an energetics point of view. Then
via direct simulations and optimal control analysis, we show that for a full-fledged
model that this indeed is the case. The computed optimal solutions demonstrate that
the optimal stimulation frequency must include the effects of muscle impedances, and
that optimal co-activation levels are indeed modulated to enable a pair of muscles
to produce more work synergistically rather than individually. Roughly this means
that a muscle pair when working in concert under optimal conditions can produce
more work than individual muscles, also working optimally. Finally, the results are
interpreted in the context of impedance matching conditions (in conjunction with the
development in Appendix B).

" Chapter 5 describes the results of workloop experiments in relation to the predictions
of the optimization work of Chapter 4. The experimental results support optimization
conclusions.

" Finally, in Chapter 6, we summarize the conclusions and present directions for future
work.

Enjoy!
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Chapter 2

Experimental Apparatus and
Methods

In this chapter I describe the experimental approach and apparatus utilized in the iden-
tification and energetics measurements of chapters 3 and 5. This chapter is essentially a
reprint of [26]. The focus is to describe the apparatus (hardware components, integration
and real-time software implementation) as well as some of the experiments that are possible
under the system architecture. For illustration purposes, experimental measurements com-
paring single muscle workloops under zero and non-zero admittance loads are presented. In
doing so, methods for conducting experiments on isolated skeletal muscles harvested from
frogs are also described.

2.1 Motivation for Hardware Development

Muscle biomechanists have evaluated the mechanical response of muscle cells and tissues
using a variety of experimental approaches, including isometric force-length characteriza-
tions [36, 35, 74, 56, 42], force-velocity testing [34, 23, 55, 4], quick release motion profiles
[74, 56], and workloop testing [46, 69, 68, 70, 47]. These classical experimental protocols
can be classified in one of two categories: i) position-trajectory controlled experiments, or
ii) force-controlled experiments. In position-trajectory controlled experiments, the motion
of the endpoints of the muscle-tendon structure is controlled as a predetermined function
of time. This motion is usually delivered by means of a mechanical servo-system attached
to the end points of the muscle-tendon structure. Consequently, the contractile forces
generated by the muscle do not affect its endpoint motion trajectory. In distinction, in
force-controlled experiments, the force imposed on the muscle is regulated independent of
its motion. Therefore, as the muscle moves, there is no change in the reaction forces from
its surroundings. Force controlled experiments are mostly implemented via a force feedback
servo, but simple dead weights may be used. Examples of position-trajectory controlled
experiments include isometric force-length experiments where muscle position is regulated
at constant length, standard sinusoidal workloop experiments where muscle strain follows
a sinusoidal path in time, and force-velocity experiments where the velocity is the indepen-
dent variable. Examples of force-controlled experiments include quick release experiments,
where the force imposed on the muscle is regulated to zero, and force-velocity experiments,
where the force is the independent variable.

These two experimental categories offer two extremes of the load admittance range. In



position-trajectory control mode, the admittance of the mechanical boundary conditions
acting on the muscle is ideally zero (practically to within limitations of the servo-system
used). In force-control mode, the admittance is ideally infinite, since there will be no change
in force applied on the muscle due to a change in its length or velocity. Catering to such
experimental requirements, standard off-the-shelf muscle testing systems provide dual-mode
servo functionality, corresponding to these two extremes [65].

Therefore the question arises as to whether testing for finite (but non-zero) admittance
boundary conditions is necessary to fully characterize muscle tissue. Clearly, to understand
in vivo tissue performance, muscle dynamics and the dynamics of the load for which the
muscle acts upon must be taken into consideration. Examples of finite-admittance boundary
conditions include loads such as springs, dampers, masses, drag friction, coulomb friction,
or a combination thereof. Such loads prescribe boundary conditions that are generally
defined in terms of dynamic relationships between force and displacement. Under these
loading conditions, it would be expected that the dynamics of the load will interact with
the contraction dynamics of the muscle, leading to a behavior that is a resultant of both.
This is primarily because the force generated by the muscle is dependent on its mechanical
state, namely its length and velocity. Several researchers characterized muscle under such
loads by developing task specific apparatuses. Bawa [6, 5] characterized muscle under
inertial and elastic loads. Krylow and Rymer [48] and Zhou [78] characterized muscle under
pure inertial loading.

Aside from the need for generalized boundary conditions, there is increasing experimen-
tal interest in real-time control of muscle, primarily in the context of Functional Electrical
Stimulation (FES) [13, 72, 71, 30, 44, 31, 25, 14]. In these investigations, attempts were
made to control the response of muscle(s) and associated loads to a desired trajectory by
varying electrical stimulation parameters as a function of time. Electrical stimulation pat-
terns are typically square pulses characterized by frequency, amplitude, pulse-width and
number of pulses per trigger (considering the cases of doublets, triplets, or more generally
N-lets). In feedback experiments, these parameters are varied by a control algorithm to
achieve a desired muscle response. Feedback control via pulse width modulation has been
popular [13, 72, 71, 44, 31] due to ease of implementation, and is preferred over amplitude
modulation since it minimizes tissue damage [14]. In [25] frequency was modulated, and in
[14], both frequency and pulse width were modulated. In [75, 57] the number of pulses per
cycle was modulated. For testing a variety of FES algorithms, an experimental apparatus
is needed that is capable of real-time modulation of stimulation parameters as a function
of a muscle's mechanical response.

In this chapter we present a system that can implement muscle testing protocols under
generalized boundary conditions while also providing flexible feedback control of electrical
stimulation parameters (see for examples [22, 20, 49]). These features are accomplished
by having two real-time control loops running in parallel (see Figure 2-1). The first loop,
the Mechanical Boundary Conditions (MBC) control loop, ensures that the mechanical re-
sponse of the servo simulates the dynamics of the associated muscle boundary condition.
For example, if the desired boundary condition is a linear spring, the MBC control loop
controls the motion of the end points of the muscle-tendon to be proportional to the force
generated by the muscle. The second loop implements the electrical stimulus control based
on measurements of the muscle's mechanical response. This loop, referred to as the Elec-
trical Stimulus (ES) control loop, offers simultaneous real-time modulation of pulse-width,
amplitude, frequency, and the number of pulses per cycle.

In one experimental embodiment, dynamic boundary conditions may be applied to a
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Figure 2-1: Two control loops are operating simultaneously. The Mechanical Boundary
Conditions (MBC) control loop causes the moving stage to simulate desired boundary con-
ditions based on current position and force signals. The Electrical Stimulus (ES) control
loop regulates muscle stimulus based on mechanical response.

muscle performing workloops. As a demonstration of the capabilities of the system, we
present this new approach to workloop experiments for oscillatory power output measure-
ments. The experiments were performed on Plantaris longus muscles of Rana pipiens. We
show pilot data illustrating the difference between the finite-admittance testing method and
current standard methods reported in the muscle workloops literature [46].

In Section 2.2 we provide a description of the apparatus, and in Section 2.4, we discuss
various experimental protocols that are easily implemented using the apparatus. Finally,
in Section 2.5, we present workloop experimental data of muscle acting against finite and
zero-admittance boundary conditions.

2.2 Muscle Testing Apparatus

Figure 2-2 summarizes the system. A description of its functional requirements and com-
ponents follows.

2.2.1 Functional Requirements

Off-the-shelf dual-mode servo muscle testing systems are capable of generating classical
muscle characterizations mentioned in Section 2.1. In addition, the following functional
requirements are recognized:

Capability to implement generalized dynamic boundary conditions on muscle
This involves simulating the different mechanical environments with which a muscle inter-
acts. A flexible approach would be to simulate such environments in software, and allow for
a servo-system to deliver their response. The servo-system needs to be responsive enough
to accommodate force disturbances generated by the muscle. A bandwidth > 120 Hz was
determined as a requirement for the muscles under consideration (Rana pipien jumping
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Figure 2-2: Overall system summary. Experimental definitions and parameters are entered
via the Graphical User Interface, which in turn invokes the appropriate SIMULINK block
diagram and downloads the experimental parameters. The real-time code then takes control
over the hardware to acquire the muscle data, which is then sent back to the GUI for post-
processing. The apparatus is shown above with the primary sensors and actuators noted.
The coarse positioning stage is adjusted at the beginning of the experiment to accommodate
different lengths, but is typically kept at a constant position during a particular contraction.
The primary stage provides the motion that simulates the boundary conditions. The muscle
shown in the apparatus is a frog (Rana pipien) semimembranosus muscle submerged in
Ringer's solution. The vertical syringe has a suction electrode at its tip that is connected
to the stimulation electronics in the background. Silicone tubing recirculates solution via a
peristaltic pump, while oxygen is injected in the loop.



muscles). This estimate was based on the rise time of a typical twitch force profile (typi-
cally 40 ms). This requirement is fulfilled by the MBC control loop shown in Figure 2-1.
A closed-loop impedance of 20 kN/m, approximately corresponding to 1% muscle strain at
maximum force, was deemed sufficient.

Electrical stimulus real-time feedback control For FES and control purposes, the
system should allow for real-time changes to the signal parameters as a function of the
muscle's mechanical state. This requirement is fulfilled by the ES control loop shown in
Figure 2-1.

Testing of agonistic/antagonistic muscle pairs In a single muscle arrangement, the
force and impedance of the muscle are both modulated simultaneously by its activation
level. At least two muscles are needed to achieve independent control of impedance and
net force generation over a joint. A testing apparatus, or a combination of apparatuses,
should be capable of mimicking a situation where agonistic and antagonistic muscles act
against a common load. This requirement is fulfilled by connecting two testing apparatuses
to the same PC, and controlling them by the same real-time process. The two systems
are therefore linked in software, and are essentially seeing the same virtual load. As the
antagonistic contracts, the agonist stretches commensurately. Under this arrangement, not
only can the system be used for motion trajectory control via the muscle pair, but also for
muscle impedance control strategies.

2.2.2 Sensors/Actuators

The sizing of the components for the apparatus depends on the type of muscles desired
for experimentation. The particular unit presented here is sized to accommodate muscles
extracted from Rana pipien frogs (e.g. semitendinosus, semimembranosus, plantaris longus,
etc.). These muscles are typically less than 15-25 mm in length (muscle belly, at 10, the
length corresponding to maximum force output), with a mass < 1 gram. The maximum
forces generated by these particular muscles are on the order of 3-5 N. In-vivo aggregate
strains are generally less than ± 15%, resulting in end point motion of less than ± 4 mm
[1, 60]. The time to peak force in a twitch is typically 30-40 ms. During apparatus design,
these figures guided the selection of sensors and actuators.

A two-actuator approach was used to achieve large-stroke and high-bandwidth.

" A linear stepper motor actuator [Haydon Switch and Instruments] provides a large
travel stroke of the coarse positioning stage, covering a total span of over 100 mm.
The actuator is driven by a bi-polar stepper motor driver.

" A high-bandwidth voice coil motor (VCM) [BEI Kimco] provides fine positioning of
the primary stage. A transconductance H-bridge amplifier [Centent Company] drives
current through the VCM, resulting in a force proportional to current that acts on
the moving mass. The VCM has a smaller stroke (± 4 mm) 1 and a stall force of (±
30 N).

This stroke range is sufficient for in-vivo like strains for the muscles considered. Larger strokes may be
achieved by combined dual control of the linear stepper motor and the VCM [64]. While this feature has
not been implemented yet, its implementation is straight-forward within the software framework described
below.



During initialization of a particular experiment, the coarse stage positioning stepper
motor is adjusted to accommodate the nominal length of the muscle under experimentation.
Its location is typically held fixed for the duration of the experiment. The high-bandwidth
actuator takes control to provide desired endpoint motions, rejecting disturbances due to
muscle contraction via the servo loop.

Position sensing is attained by a 1 pm resolution, incremental, non-contact magnetic
encoder [SIKO Products]. In-series force sensing is attained via a strain gage based load
cell [Transducer Techniques Inc.] in conjunction with a wheat-stone bridge amplifier 2.

An electric stimulator with real-time programmable pulse parameters is implemented
via an H-bridge design on a custom built breakout board. The stimulus is controlled by a
Field Programmable Gate Array that controls all stimulus timing parameters. Stimulator
specifications are provided in Table 2.2.

2.2.3 Integration and Design

The sensors and actuators are mechanically integrated into the design shown in Figure 2-
2. A breakout board was designed to integrate all the system components electrically, to
provide stimulation to the muscle via an onboard programmable stimulator, and to act as
a communication interface between the hardware and the real-time software.

2.2.4 Mechanical Boundary Conditions Control Loop

As is the case with standard muscle testing apparatuses, the mechanical boundary condi-
tions control loop can be operated in direct position-trajectory control mode and in force-
control mode. Additionally, implementation of simulated dynamic boundary conditions is
achieved by directly measuring the muscle force, filtering it through the transfer function
of the desired boundary condition, and directing the result as the new reference position of
the servo controller. This assumes that the bandwidth of the servo-system is high enough to
accommodate the dynamics of the simulated boundaries, and that the backloading effects of
the muscle are small. Typically, this condition is satisfied. Boundary conditions of interest
have natural frequencies <10 Hz, which is well below the servo-system bandwidth.

Experimentally identified closed-loop bode plots confirm a -3 dB bandwidth of 150 Hz
for the MBC control loop. (See Figure 2-3). Root locus analysis was performed to ensure
that this bandwidth and stability are not compromised as the muscle stiffness changes.
Section 2.3 summarizes the system's servo-mechanical performance metrics.

2.2.5 Electrical Stimulus Control Loop

The electrical stimulus applied to the muscle is a pulse train that is characterized by am-
plitude, pulse width, period between pulses, and number of pulses per trigger. All four
quantities can be controlled in real-time, simultaneously and independently. In feedback
muscle control experiments, these parameters are typically a function of the mechanical
response of the muscle-actuated system (that is, the muscle in a given experiment, and its
virtual load that is simulated by the mechanical boundary conditions control loop). Table
2.2 summarizes the electrical stimulator specifications.

2The in-series measured force is assumed to be entirely due to the contraction of the muscle. Inertial
effects due to acceleration of the muscle mass were estimated to be 3 orders of magnitude less than its
contractile force, and therefore safely neglected.



2.2.6 Control Implementation

Real-time control, data acquisition and storage are implemented under the MATLAB Real-
Time Workshop, SIMULINK and the xPC Target [Mathworks Inc.]. A multipurpose data
acquisition card [Measurement Computing] is used in conjunction with a target PC to
communicate with the breakout board. Control and data acquisition sampling rates are
set at 2 kHz. A library of block diagrams implementing different experimental logics is
developed. New experiments are easily added since all that is required is the generation of
the appropriate SIMULINK block diagram.

2.2.7 Graphical User Interface

A graphical user interface implemented in MATLAB's Graphical User Interface Development
Environment (GUIDE) allows the user to select and control all experimental parameters. The
interface invokes the real-time code to operate and trigger data-acquisition for a particular
experiment. It also invokes appropriate subroutines for high-level data post-processing and
plotting.

2.3 System specifications

The performance specifications of the servo-mechanical system are summarized in Table 2.1.
Table 2.2 shows the specifications of the electrical stimulus parameters. Figure 2-3 shows
the closed-loop position frequency response of the mechanical boundary conditions (MBC)
control-loop.

Table 2.1: Servo-mechanical specifications
Displacement Total coarse positioning range 0 - 100 mm

Sensing resolution 1 pm

Voice coil motor range 8 mm

Force Sensing range ± 22.5 N

Sensing resolution 1 mN

Bandwidth Open-loop 92 Hz
Closed-loop 153 Hz

Gain margin 14 dB

Phase margin > 50 degrees

Voice coil motor Stall Force ± 30 N



Table 2.2: Stimulator Electrical Specifications
Amplitude Max 16.2 V

Resolution 0.25 mV

Saturation Current 25 mA

Output Impedance Driving high 4.7 Q

Driving low 2.2 Q

Waveform Bipolar square pulses, both electrodes driving

Pulse width Max 0.32 s

Resolution 1 Ps

Pulse interval Max 0.32 s

Resolution 1 Ps

Pulse count 1 to 65,536 pulses per trigger
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Figure 2-3: Unloaded closed-loop position frequency response of the mechanical boundary
conditions (MBC) control-loop. Shown is the experimentally measured transfer function
from desired reference motion to actual motion. The -3 dB bandwidth was measured at
153 Hz. Actuator reference signal was white noise (to within sampling frequency), with a
standard deviation o = 1 mm, implying a 6a range of ±3 mm.



2.4 Experimental Applications

In this section we provide descriptions of potential experimental protocols that can be
implemented using the muscle testing apparatus.

Muscle Identification Experiments Basic open-loop muscle identification experiments
including force-length, force-velocity, quick release and workloop characterizations can be
implemented using the apparatus. Here the term open-loop refers to the electrical stimulus
since it is predetermined at the start of an experiment. In classical muscle characterization
experiments, the boundary conditions implemented have generally been constant length,
constant velocity or constant force boundary conditions [74, 56, 23, 55, 4]. Furthermore,
pseudo-binary random sequence (PBRS) identification and deconvolution methods have
been implemented under isometric conditions to identify the muscle recruitment character-
istics [31, 8, 22]. The apparatus presented here may extend these experiments in the context
of generalized boundary conditions.

Position/Force Control of a Simulated Load Using Electrical Stimulus Feedback
The objective of this experiment would be to test algorithms for position control of a known
load via muscle actuation. See for example [22] and [49]. Here the MBC control loop would
simulate the dynamics of the load, (e.g. a second order mass-spring-damper system) while
the ES control loop would implement the algorithms being evaluated.

Impedance control of Agonistic/Antagonistic Pairs It is known that co-contraction
is employed to increase the output impedance of muscle-actuated systems [37]. Implement-
ing impedance control (without human supervisory control as in [20]) in electrically stim-
ulated muscle systems has not been demonstrated experimentally to the authors' knowl-
edge, and is considered an open area of research. Using two apparatuses in an agonis-
tic/antagonistic muscle testing arrangement would allow for the testing of control strategies
with impedance as the desired output. Here the impedance of the closed loop (muscle plus
simulated load) system would be measured via perturbation response.

PC with Real-Time Widows Simulated System
Target

Real-Time Interface k b
Code Card Apparatus I M

(Agonist)

(Simulated
load) 4Interfacepaats1 Agonist Antagonist ,

(Antagonist)

(a) System setup (b) Agonist-antagonist pair acting on common
load

Figure 2-4: Setup for agonist antagonist control experiments. 2-4(a) Two testing appara-
tuses are controlled by the same program, simulating the physical system shown in 2-4(b)

Fatigue Studies It has been reported that the number of pulses per cycle affects the
fatigue life of a muscle undergoing electrical stimulation [57, 75]. The experiments in 157]



and [75] focused on isometric development. Using the apparatus presented, fatigue studies
may be implemented under generalized boundary conditions.

Identification of Muscle Workloop Power Output Under Finite Admittance
Boundary Conditions The capacity of muscles to generate mechanical power output
has been characterized in terms of workloops. In [46], Josephson presented a method of
measuring muscle workloop output under sinusoidal conditions. This method set the stan-
dard for muscle workloop testing in the muscle physiology literature. Briefly described, the
muscle is subjected to prescribed sinusoidal length variations in time. An electrical stimulus
is triggered at a particular phase of the cycle, resulting in a contractile force. A plot of
force vs. displacement results in a workloop plot (as in Figure 2-5(a) and 2-5(c)). The
area enclosed in the workloop is a measure of mechanical the work output by the muscle.
In [46, 69, 68, 53, 16, 43, 47, 2] the dependence of the energetics of muscles on electrical
stimulus parameters was investigated, and was correlated with the biological functionality
of particular muscles.

The testing methodology in [46] is essentially an zero-admittance testing methodology.
A richer test would be to have the muscle perform workloop experiments under passive,
finite-admittance loads. In this scheme the muscle stimulus is triggered at a particular
frequency. Consequently a force is generated, that results in a motion trajectory that is
dependent on the boundary conditions. This alters the character of the workloop output of
the muscle, and therefore the muscle energetics estimate. Sample results for this particular
experiment are presented in the next section.

2.5 Pilot Data of Workloop Experiments

In this section we present pilot data on the workloop experiments described in 2.4. Pilot
data are presented as an illustration of the system's capacity to measure workloop power
production under finite-admittance boundary conditions. Using the MBC control loop, a
second order mass-spring-damper system is simulated as the compliant boundary condition
against which the experimental muscle specimen acts. This experiment is designed to show
how muscle power output may change significantly in the context of a finite-admittance
boundary condition compared to the traditional zero-admittance motion source first pro-
posed by Josephson [46].

2.5.1 Methods

Plantaris longus muscles were dissected out of adult male Rana pipiens (approx. 30 gram
frogs). Prior to removal from the animal, the muscle rest length was measured with both
the knee joint and the hip joint positioned at 90 degrees. To minimize tendon damage, the
muscle was removed with bone chips attached to both ends. A reflex clip was stapled to
the bone chips, tightly sutured, and secured to the interface points in the testing apparatus
via a dove tail connection (the muscle's distal end to the primary stage, and the proximal
end to the coarse positioning stage through the load cell). Periodic testing throughout
the experiment ensured that there was no slack or slippage of the muscle specimen. Tests
included visual inspection as well as monitoring the shape and peak levels of single isometric
twitch force profiles. The muscle was submerged in a tub of Ringer's solution that was
circulated via a peristaltic pump. The solution was generously oxygenated via direct 02
gas bubbling at an insertion point in the circulation loop.



Stimulation was delivered through a suction electrode to the sciatic nerve of the muscle.
Initial successive isometric twitch measurements were used to establish full recruitment volt-
age levels, beyond which there was no increase in force production. Additionally, isometric
twitch tests were interleaved periodically within experimental measurements to ensure that
the muscle did not fatigue, and that force production levels remained constant throughout
the duration of the experimental session. When muscle twitch force levels decreased to
below 90% of their initial value, the ensuing data were discarded.

Electrical stimulus parameters were set at: pulse frequency = 200 Hz, pulse width = 100
ps, and amplitude = full recruitment voltage3 . Two sets of data with stimulation durations
of 40 ms and 60 ms were acquired. For the zero-admittance cases, the stimulation was
triggered at 900 phase, corresponding to the point of maximal stretch.

In the zero-admittance case, the motion of the endpoints was sinusoidal with a frequency
of 4 Hz and an amplitude of ±2 mm. Correspondingly, for the finite admittance case, the
natural frequency of the passive load and the frequency of the stimulus trigger were both
set at 4 Hz. The stimulus trigger was matched with the system's resonance frequency so
as to produce maximum amplitude excursions. This condition provided the highest energy
absorption in the simulated damper, or the highest muscle workloop power output. The
static stiffness of the simulated load was set such that the resulting motion had the same
amplitude as that of the zero-admittance case for relevant comparison.

2.5.2 Results

Sample experimental results are plotted in Figure 2-5. In the zero-admittance case (Figures
2-5(a) and 2-5(c)), the motion was driven by the servo-system, and the muscle force did not
affect its motion trajectory. In the finite admittance case (Figures 2-5(b) and 2-5(d)), the
motion was caused by the muscle force.

Energy output was estimated by integrating the areas inside the workloops. To normalize
the results, power output was divided by the total muscle mass. The normalized results are
summarized in Table 2.3. Under the described conditions, muscle preparations typically
lasted for 5-15 data sets (similar to that shown in Figure 2-5) over the course of 1-3 hours.

Table 2.3: Experimental Workloop Muscle Power Output

Stimulation Duration FAW [Watt/kg] ZAW [Watt/kg] Ratio [%]

40 ms 14.7 ± 0.25 29.3 ± 0.43 50.1

60 ms 18.0 ± 0.38 31.7 ± 0.31 56.8
Muscle power output for finite-admittance workloops (FAW) and zero-admittance

workloops (ZIW). Data shown are mean ± S.E., N = 6 workloop trials for each case.

3
1n the muscle workloop literature (see for example [46, 69, 1]), the muscle is typically overstimulated to

guarantee full recruitment. While this decreases the in-vitro life of the muscle, we opted to use such patterns
to enable relevant comparison with established data
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Figure 2-5: Comparison of zero-admittance workloops (ZAW) vs. finite-admittance work-
loops (FAW). Here the FAW power output was 56% of that of the ZAW. (a) Sinusoidal
stimulation with frequency of 4 Hz and amplitude = 20 % strain. (b) Workloop plot with a
mass-spring-damper boundary condition. Parameters for this particular measurement are:
m = 0.79 kg, k = 500 N/m, b = 11.9 Ns/m. These parameters were chosen such that the
natural frequency w, = 4 Hz = stimulation frequency, damping ratio ( = 0.3, and static
gain k, = 10% strain at maximum force generated.
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2.6 Discussion

The measurements of Section 2.5 indicate that although the motion of the muscle had
the same frequency and peak-to-peak amplitude in both the zero and finite admittance
cases, the power output was substantially different (almost by a factor of 2). This is
primarily attributed to the dependence of muscle force output on its mechanical state.
Changing boundary conditions changes the dynamic relationship between state and force,
and therefore the character of the work output.

While these experimental results are meant as an illustration of the capabilities of the
testing apparatus, they lead to a set of interesting research directions regarding muscle
energetics. Specifically, there is a need to understand how muscle workloop performance
changes with boundary condition admittance, as described by natural frequency, damping
ratio, and spring stiffness. Experiments of this nature may provide important insights as
to how muscle power output is affected by the nature of the task at hand, and in light of
variations in muscle environment. While it not surprising that the power generated by a
muscle is influenced by its boundary conditions, the methods presented provide a direct
means of quantification.

In the muscle control arena, the apparatus may also be employed to investigate the
merits of different algorithms. Typical muscle control investigations, specially in the con-
text of FES, are conducted on limbs where muscular contraction dynamics confound with
complexities of skeletal dynamics. This results in a highly complicated problem. One way
to decompose this complexity is to simulate idealized loads acted upon by the muscle. The
apparatus presented here allows for the implementation of such idealized loads precisely via
the MBC control loop. This includes linear, nonlinear, as well as loads that simulate actual
in vivo biomechanics. The simulation of idealized loads in series with the muscle specimen
allows the experimenter to focus only on the muscle control problem. Once adequate control
schemes are advanced for these idealized boundary conditions, one may then move to more
complex environmental muscle conditions.

The muscle testing system presented provides a versatile platform for generalized muscle
testing experiments, in open-loop stimulation as well as closed-loop stimulation modes. Ad-
ditional system functionality may be added with minimal software development (primarily
the development of the associated SIMULINK block and adding relevant GUI controls). The
flexibility of the system stems from its capacity to implement simulated boundary conditions
on the tested muscles, coupled with its capacity to modulate electrical stimulus parameters
in real-time based on a computed control output. In future studies on muscle behavior,
we anticipate this platform will support a wide variety of muscle control and identification
investigations.
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Chapter 3

Identification of Muscle Dynamics

In this chapter I develop models that describe the dynamics of electrically stimulated muscle
undergoing periodic mechanical oscillations. The objective is to identify models that are
simple in their structure, therefore enabling mathematical tractability, while capturing the
essential features of a muscle's response. The objective is not to arrive at a comprehensive
model for muscles that captures all facets of their response.

It is well known that the force generated by a muscle is a function of many factors,
including its length, contraction velocity, activation levels, chemical state, fatigue state
and time history [74, 56]. At a first glance, this makes the modeling task formidable.
However, by restricting the models investigated to certain classes, and by limiting their
scope, simplifications arise.

This chapter proceeds as follows. First, the utilization of a Wiener model structure is
motivated. This structure consists of an LTI system representing activation dynamics in
cascade with an algebraic nonlinearity that represents the dependence of a muscle's force on
its mechanical state. Then, via successive approximations, a multi-affine structure for this
nonlinearity is motivated. We describe a set of experiments that enable fitting of parameters
for this structure via least squares regression, and present the experimental data. Based on
the data, three questions are tackled:

1. What is the efficacy of multi-linear models in capturing essential features of a muscle's
mechanical response for oscillatory motions?

2. What terms of the model should be retained, and what terms can be discarded without
significant loss of model performance?

3. Based on experimental data, what are appropriate model parameters, and what is
their variance?

Scope We focus on the force response of a muscle undergoing periodic oscillatory motions
with frequencies in the range of 1 Hz to 7 Hz and amplitudes of 0.5 mm to 2 mm, comprising
muscle strains of upto ±20%. Additionally, we focus on aggregate behaviors, meaning that
we are not interested in isolating canonical features of a muscle response, such as the force-
length, force-velocity or history dependent effects. Rather, we are interested in the net
effect of the interaction of all of those features simultaneously.

Summary of findings Based on experimentation, our results indicate that bilinear mod-
els in the form of F = A + Bx + Ca + Dxa have a performance that is virtually indistin-



guishable from a multi-affine model in the form of F = A + Bx + Ca + Dxa + Et + Gia +
Hxi + Ixa, where x is the muscle displacement, & is its velocity and a is its activation.
Bilinear models capture approximately 64.55% to 80.58% of the variance of the muscles
output (p = 73.61%, o- = 5.73%). The active terms Ca and Dxa were found to contribute
most to the variance of the response. The dependence of force on active and passive velocity
and visco-elasticity was minimal.

3.1 Motivating the model structure

3.1.1 Hammerstien-Wiener model structures

Hammerstein-Weiner cascades have been proposed, and to a large degree successful, in
modeling muscle dynamics [40, 58, 62, 19]. The cascade is shown in figure 3-1. The inputs
to the model are the electrical stimulus signal u(t), the muscle length x(t) and velocity
±(t). The output F(t) is the force produced by the muscle. The variables v(t) and a(t)
are intermediate variables, where a(t) represents the muscle activation and v(t) represents
the stimulus transformed by the input nonlinearity. The cascade consists of an algebraic
nonlinear function f (u), followed by a linear dynamical system G(s) (where s is the Laplace
variable) followed by another algebraic nonlinear function h(a, x, i). In the context of
muscles f(u) typically describes the recruitment properties of muscles, G(s) represents the
dynamics of calcium transport between the sarcoplasmic reticulum and the sarcoplasm,
and h(a, x, 1) represent the modulation of force due to the force-length and force-velocity
characteristics of the muscle, which can be traced back to the sliding filament theory and
the cross-bridge hypothesis of muscle contraction [74, 56].

- -- G(s) -"-a
Input nonlinearity Linear Dynamics Output nonlinearity

f(u) G(s) h(a X, x)

Figure 3-1: Hammerstien-Wiener model cascade consisting of a static nonlinearity f(u), fol-
lowed by a linear dynamical system G(s), followed by another static nonlinearity h(a, x, .).

This model structure is further simplified in the following ways:

9 Ignore the recruitment characteristics f(u). Maximizing the power output de-
livered to the load via optimal control leads to bang-bang control trajectories, meaning
that the control input assumes only two values, either Umin or Umax (see section 4)1.
Therefore, intermediate values do not matter, and the shape of the function f(u) will
not be of concern. Thus we may eliminate this function with a linear counterpart that
passes through the points [Umin, Vmin] and [Umax, Vmax]. This linear gain may then be
easily incorporated, without loss of generality, to any of the other two blocks.

'Assuming the optimization does not include any penalty on the command u.



* Simplify the dynamics of G(s). First, we ignore any time delays since we are
working with open loop control. The temporal shifting of the output of a(t) due
to the delay will have no effect on the muscle's power. Second, calcium diffusion
dynamics are assumed to bear the response of a second order system with real poles.
This is a plausible model since the underlying process is a diffusion process. Thus,
G(s) is written as:

G(s) = Pu
(s + p)(s + po)

(3.1)

* Assume a multi-affine approximation to h(a, x, i). This will be discussed in
detail in the next section.

These simplifications result in the model structure shown in figure 3-2.

x | Ii

Linear Dynamics Output nonlinearity
G(s) h(ct, x, x)

Figure 3-2: Wiener model cascade of a linear
earity.

dynamics block followed by a static nonlin-

3.1.2 Multilinear models for h(a, x, z)

Consider the output nonlinear function:

F(t) = h (x(t),f (t), a(t))

The following analysis is based largely on [39]. Assuming differentiability, we take a Taylor
series expansion of h(.) about some operating point (X0 , zO, ao).

h (x, ib, a) == h(x,.io, ao) + (x - xo) Ih
x=xo

Oh
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a=ao

a2 h
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+ Higher-order terms



By neglecting the higher order terms (H.O.T.) of the Taylor series and collecting similar
terms, one obtains an approximation in the form of

F(t) ;z A + Bx + Ca + Dxa + Et + Gta + Hxt + Ixia (3.2)

What are the physical interpretations of each of the terms in this approximation? The
A term represents the residual force in the muscle about the linearization point. In the
context of the experiments of this chapter, this point is at ao = 0, t = 0, and x = 10, which
is a nominal estimate of the resting length of the muscle in the frog. This residual force
is subtracted out from any force measurements, and therefore the value of A is equal to
zero. The Bx and Et represent linear approximations to the muscles' passive elasticity and
damping respectively. The Ca term represents a linearization of the muscles' dependence
on activation. The Dxa and Gia terms are important terms that capture the dependence
of a muscles stiffness and damping on activation. Figure 3-3 shows schematics of the force-
strain and force-strain rate curves of a muscle at different activation levels. At the operating
point (xo, io), the slopes of those curves vary as a function of activation. This variation of
the slope is thus captured in the model. Finally, the Hxz and Ixia terms are a natural
extension that capture the passive and active visco-elastic effects as well. These terms may
be considered generalizations of the bilinear models proposed in [37].

- - P ActheBne E W Anhw
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(a) Active force-strain curves. (b) Active force-strain rate curves.

Figure 3-3: At the operating point, the muscle stiffness and damping are dependent on its
activation level. This is evident from the slopes that increase in magnitude with activation.

In summary the model structure for muscle contraction is given by:

a(s) = PaO U(S) (3.3)
1(S + PCO)(S + pO) I

F = A + Bx + Ca + Dxa + Ei + Gia + H x± + Ixia (3.4)

where a(s) and U(s) are the Laplace transforms of a(t) and u(t) respectively.
For the rest of this chapter, I focus on the multi-linear model of equation 3.4, and take

it as a departure point for experimentation and parameter identification. Equation 3.3 is
not used in the identification scheme, but rather more direct estimates of a are used (as
described in the next section). Equation 3.3 is only used as a basis model to derive the



optimal control in chapter 4 when an analytical formulation of the activation dynamics is
required.

3.2 Experimental approach

The goal for this section is to estimate the parameters A through I of equation 3.4. Those
parameters are determined experimentally using direct measurements of x(t), i(t), F(t)
and estimates of a(t). Recall that direct measurements of the muscle activation a(t) are
not accessible experimentally.

Since the purpose of the experiments is to determine the efficacy of the model under
periodic workloop oscillations, it may be tempting to use the data generated from such
experiments to estimate those parameters directly. This, however, is not feasible. Figure
3-4 shows a typical plot of the system trajectories for a mass-spring-damper load excited by
an antagonist muscle pair. Each muscle is stimulated, with the stimulus triggered at a given
frequency, and both muscles stimulated out of phase (1800 phase). Owing to the dynamics
of the combined muscles-load system, the time trajectory of the solutions converges to a
limit cycle, with the the stimulation points being phase-entrained with the limit cycle. Thus,
the stimulation points become clustered around a narrow region of the force-velocity space.

System Trajectory in Phase Plane Time Triectory

-- Trajectory
15 .* Stimulus Trigger .

10-1

5- 0

-1
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-10-

-15

-2020

-25 __ _ _ __40__ _ _ __ _ _ _-1 -0.5 0 0.5 1 1.5 -005 1.2 25
Poe , [mm 0 0.5Tim , 5e2c

(a) Trajectory in the force-velocity space (b) Time domain plots of position and velocity.
Red asterisks indicate trigger points.

Figure 3-4: Trajectory of the muscle undergoing periodic oscillations. Note that, with the
exception of the first trigger point, all remaining triggers are confined to a very small region
of the position-velocity space indicated by the red ellipse.

Clearly, the restriction of stimulation to a narrow range of the force-velocity space
diminishes the informativity of the data. To get a model that spans a wider region of the
position-velocity space, it is desirable to scatter those stimulation points more uniformly. To
achieve this, the muscle is subjected to sinusoidal oscillations by programming the apparatus
to act as a high impedance motion source. The sinusoids trace ellipsoids in the position-
velocity plane. At different points that are temporally equidistant on the ellipsoid, the
muscle stimulus is triggered as shown in figure 3-5(a). Consequently a contractile force is
generated. This force, coupled with the position and velocity signals, is used to fit the multi-
linear model parameters. The procedure is repeated for different oscillation amplitudes and
frequencies, thereby spanning a wider region in the position-velocity combinations.
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Figure 3-5: Distribution of stimulus trigger points in the position-velocity space.

This experimental procedure gives us direct measurements of x(t), ±(t), and F(t). But
what about a(t)? One approach is to model the dynamics of G(s) of figure 3-1 (perhaps
using the model of equation 3.3) and use this model to estimate a(t). Instead, we use
the following procedure. Noting that a(t) is the muscle activation, and noting that it
is inaccessible experimentally, and assume that the profile of the force generated under
isometric conditions is an indication of the activation level of the muscle. Therefore, at
the beginning of each set of measurements, a pre-twitch is measured isometrically. One
such pre-twitch has the profile showin in figure 3-6(a). This profile is then normalized and
convolved with the trigger pulse signals, to produce an estimate of the activation trace
shown in figure 3-6(b). This gives us an estimate of c(t).
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The profile of a single twitch force is normalized (b) a(t) is estimated by convolving the normalized
reate an estimate of a(t). twitch profile with trigger impulses.

Figure 3-6: Estimating a(t)

Two points are worth noting regarding this experimental design:

(a)
to c



" This method avoids the explicit modeling and estimation of G(s), and therefore focuses
on h(o, x, x). This is advantageous since modeling errors of G(s) will not contaminate
estimates of the parameters of h(a, x, x).

* In some cases it may be possible to use boot-strapping methods to estimate the
parameters of both G(s) and h(a, x, x) simultaneously. One such procedure is outlined
in [27].

3.2.1 Parameter estimation via least-squares regression

Parameter estimates are obtained in a straightforward manner via least-squares regression.
At each time instance ti, we assume that the muscle force is generated according to

F = A + Bxi + Cai + Dxiai + E ±i + G±ka + Hxi±i + Ixj:c aj

where the subscript denotes the value of the quantity at time index i. Writing the equations
in matrix form for all values of i E [1, N]

A
F ~ 1 x 1  Oi xia1 1 zia1q xi±i x1&1ai ~ B

F, = 1xi ai xiai ±i ±jai xik± xizzaii E

FN 1 aN XNaN ±N XNNN X NENaN H

or

F = ME) (3.5)

Standard least squares regression yields the optimal E*.

* = (MTM) 1 MTF (3.6)

It is important to note that the columns of the matrix M are not necessarily orthogonal
given the experimental procedure outlined. This has consequences that will play a role
when determining which of the model terms are significant and which are not. The first
consequence is that the values of the parameters 8* will depend on which columns of the
regressors matrix M are included in the regression. For example, if we choose to include
only the first four columns of the matrix M in the regression (dropping out all velocity
terms), the values of the parameters A through D will not necessarily be the same as those
obtained when the entire M matrix is used. This is not the case with orthogonal regressors.
The second consequence is that the variance of the vector F is not equal to the sum of
variances of the individual terms (A, Bx, Ca, - - - , Ixia).

3.3 Experimental Protocol

The experiments described for the rest of this chapter are all conducted using the test ap-
paratus and methods reported in chapter 2. Briefly described, plantarus longus muscles are



harvested from leopard frogs (Rana pipiens). The muscle is placed in a bath of amphibian
Ringer's solution. The relative motion of both ends of the muscle is controlled using a
servo system that imposes the sinusoidal motions at specified frequencies and amplitudes.
Electrical stimulation is delivered through the sciatic nerve, which is left connected to the
muscle during the dissection phase. Every time the electrical stimulus is triggered, a 200 Hz
pulse train is delivered for a period of 5 ms (10 pulses), with each pulse having a duration
of 100 ps. The amplitude of the pulses is usually between 10 to 15 volts. While the motions
and stimulations are imposed on the muscles, the contractile muscle force is measured via
an in-series force transducer.

Experiments were conducted on seven muscle specimens. For each muscle, measurements
were taken for a variety of oscillation frequencies and amplitudes. Table 3.1 summarizes the
different conditions under which measurements were taken. Muscles 1 and 2 were both left
and right plantaris longus muscles
for muscle pair 3 and 4 and muscle

(respectively) harvested from the
pair 5 and 6.

same frog. Likewise

Frequency Amplitude Muscle Muscle Muscle Muscle Muscle Muscle Muscle
Hz mm 1 2 3 4 5 6 10

2.0 * * * *

1 1.5 * * * *

1.0 * * * *

0.5 * * * *

2.0 * * * * *

2 1.5 * * * * *

1.0 * * * * *

0.5 * * * * *

2.0 * * * * *

3 1.5 * * * * *

1.0 * * * * *

0.5 * * * * *

2.0 * * *

4 1.5 * * *

1.0 * * *

0.5 * * *

2.0 * * *

5 1.5 * * *

1.0 * * *

0.5 * * *

2.0 * *

6 1.5 * *
1.0 * *

0.5 * *

2.0 * *

7 1.5 * *
1.0 * *

0.5 * *

Table 3.1: Summary of experimental conditions. Measured data are indicated by an asterisk.

3.4 Experimental results

The data is presented in the following sequence. First, a detailed description of one data set

(one particular muscle at one particular frequency and amplitude) is presented. Then data



sets at all frequencies and amplitudes for one particular muscle are combined in a single
model. Finally, we look at all the muscle responses in combination.

3.4.1 One data set: A detailed look

Figure 3-7 shows one data set from measuring the response of muscle 1 subjected to 2
mm oscillations at 3 Hz, which is a typical data set. Notice that the trigger points span
a wide range of the position-velocity space. Also notice that there is clear modulation of
the force levels produced by the muscle as a function of the different position and velocity
combinations.

Time Domain Plots. Frequency 3 Hz, Amplitude 2 mm
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Figure 3-7: Sample data set of multi-linear model identification for oscillations with 2 mm
amplitude at 3 Hz. Plots from top to bottom are position, velocity and force. In all plots,
blue lines indicate actual measurements, green lines indicate reference trajectories, and red
asterisks indicate trigger points.

Figure 3-8(a) shows the exact same data of figure 3-7, but plotted in position-velocity-
force coordinates. Plotting the data this way reveals a structure - the data lines are all
contained in a wedge shaped volume. While the muscle is triggered all around the harmonic
ring in the position-velocity plane, clearly the force is pronounced in only part of the space.
This structure was found to be consistent across all data sets and all muscles measured.

Fitting the multi-affine model of equation 3.4 gives the plot shown in figure 3-8(b).
There are two surfaces that show the estimated force developed by the muscle according to
the multi-linear approximation for maximal activation (a = 1) and zero activation (a = 0).

Two observations are made:

* The surfaces are surprisingly planar even though the model structure allows for cur-
vature. This indicates that the effect of cross-coupling terms between position and
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Figure 3-8: Sample data set of multi-linear model identification for oscillations with 2 mm
amplitude at 3 Hz.

velocity are minimal (i.e. the viscoelastic Hxr and Ixia terms). Otherwise some
curvature of the surfaces would have been apparent.

9 The plane corresponding to full activation (red plane) exhibits a larger slope in the
direction of x that the direction of z. This indicates that the dependence of the force
on position out-weighs the dependence on velocity.

The significance of individual model terms

To make an assessment of the significance of individual terms of the model, we use the
"variance accounted for" metric [51], which is defined as

VAF(Model) = 1 - Var(Fmeas - Fmodel) x 100 (3.7)
Var(Fmeas)

where Var(.) is the variance. Essentially this measures how much of the measured data
variance is captured by the model. For an unbiased estimator, the value of VAF ranges
between 0% and 100%.

There are two ways to investigate the effect of the multi-affine model parameters using
this metric:

1. Apply-least squares regression using only the parameters considered one-at-a-time.
For example, if we are to investigate the effect of the active damping term (Gat)
term on the results, we would evaluate the VAF metric for Fmodell = Ga.

2. Apply least squares regression using all but the parameters considered. Continuing
with the example, we would evaluate the VAF metric for Fmodel2 = A + Bx + Ca +
Dxa+ E±+ Hx.k + Ixa.

If the effect of active damping is significant, then then VAF(model 1) would be high, and
VAF(model 2) would be low.

Time domain plots. Muscle 1. Frequency 3 Hz. Amplitude 2 mm Time domain plots. Muscle 1. Frequency 3 Hz. Amplitude 2 mm



Why do we need those two computations? In least squares regression, if the columns
of the matrix M in equation 3.6 are orthogonal, then methods 1 and 2 above would yield
complementary information, i.e. VAF(model 1) + VAF(model 2) = 100%. However, since
the matrix M columns are not orthogonal, then the VAFs would not necessarily sum up
to 100%. Figures 3-9 shows the values of those indicators applied to all model elements for
the data set of figure 3-8(a).

VAF of single term model for muscle 1. Frequency 3 Hz. Amplitude 2 mm.
100

LL

50-

0 ' - -_
A Bx Ca Dxa Ev Gva Hxv lxva All

Single term model
VAF of all minus one term models for muscle 1. Frequency 3 Hz. Amplitude 2 mm.
100-

u.
50-

A Bx Ca Dxa Ev Gva Hxv lxva All
Term eliminated from model

Figure 3-9: Relative contribution of all the terms in the multi-linear models for data set 1 of
muscle 1. Contributions are quantified according the the "variance accounted for" metric.
Notice that the Ca and Dxa terms dominate. The Bx term has a smaller contribution.
All other terms are negligible. This trend is observed in most other data sets.

The top bar chart indicates that a multi-affine model is capable of capturing 83.97%
of the variance of the data. Furthermore, the elimination of the Ei, Gia, Hxi, Ix.za will
provide minimal impact. A bilinear models consisting only of the terms A, Bx, Ca and
Dxa is capable of capturing 83.68% of the variance of the data.

3.4.2 One muscle: A detailed look

Now that one data set is analyze in detail, the results are reproduced for oscillations at
different amplitudes and frequencies. Each of the plots of figures 3-8(a), 3-8(b) and 3-9 are
reproduced for a range of frequencies and amplitudes, and are shown in figures 3-10, 3-11
and 3-12. The following observations are made:

" From figure 3-10, all data sets exhibit similar shape and structure when plotted in
the position-velocity-force space, i.e. the curves are all contained in a similar "wedge"
shaped volume.

" From figure 3-11, the bilinear model fits are to a large degree very similar (at least
by visual inspection). They tend to deviate for the small amplitude oscillations (0.5
mm), possibly because the planes evaluate the model at a larger extrapolation range.



" From figure 3-12, the contributions to all of the terms in the multi-linear model struc-
ture are always dominated by the Ca and Dxa terms. Also note that the relative
contributions of the Co term becomes relatively more significant with decreasing os-
cillation amplitudes.

" The quality of the fits according to the VAF metric, using all model terms, ranges
between 82.2% to 98.4% of the total variance of the experimental data.

* Because the columns of the matrix M are non-orthogonal, we see that the sum of
heights of the bars of the individual terms do not sum to the height of the bar cor-
responding to all the terms. In fact, it is evident that VAF(All) f VAF(Ca) +
VAF(Dxa).

" Since the residual forces are subtracted from the experimental force measurements,
the value of the A term is always equal to zero.
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Figure 3-10: Plots of all data sets for muscle 1. The plots are constructed in an identical
different amplitudes/frequencies of the oscillations label each column/row respectively. All
thus for different velocities, the curves have different aspect ratios.
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3.4.3 Combining data sets for one muscle

The above plots show the data and the model fits for one data set at a time. We would
like to obtain a single model fit for all data sets for each muscle. Doing so by direct
concatenation of all data sets for a particular muscle may be inappropriate since the effect
of fatigue penalizes the the amplitude of force measurements taken toward the end of an
experimental session (because the muscle forces diminish). Therefore some compensation
scheme is required.

One way to compensate for fatigue is to model its effect on the muscle response, and
take that into account as a source of force deficit. Alternatively, we choose to use a periodic
standardized test that indicates muscle "health". In particular, before each measurement,
we obtain an isometric twitch response, and use that response to scale the data.

Individual isometric twitches for one experimental data set are shown in figure 3-13.
Much of the decay in force levels is due to fatigue. Therefore, for modeling purposes, we
use the peak values as normalizing factors. The lower plot of figure 3-13 shows that the
twitch profiles are highly reproducible.

Isometric Twitches for muscle 1
1.5

6
0
U 0.5-

-0.5
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Time, [sec]
Normalized Isometric Twitches for muscle 1
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Figure 3-13: Variation of twitch profiles as the muscle fatigues. Peak values for each twitch
is used as the normalizing factor.

Figure 3-14 shows all the force traces for all of the measurements taken from muscle 1.
Measurements were taken at 1, 2 and 3 Hz oscillation frequencies and amplitudes of 0.5, 1,
1.5 and 2 mm. All the data of figure 3-10 is plotted on the same axes, and one single model
is fit to the entire collection.

The efficacy of this one model to reproduce the variance in all the data sets is captured
in figure 3-15. Note that the values of the VAF metric are generally lower than in figure
3-12 because one model now fits a much larger data set.

3.4.4 Data sets for different muscles

The experiment above is repeated for a six muscles. The experimental conditions were
varied, and are summarized in table 3.1. Combining all the data sets for all frequencies and
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amplitudes, the plots of figure 3-16 are obtained.

3.5 Conclusions

To conclude, let us return to the set of original questions posed:

What is the efficacy of multi-linear models in capturing essential features of a
muscle's mechanical response for oscillatory motions?

The variance accounted-for metrics for all the experiments yielded correlations between
65.02% to 80.59% (y = 74.21%, o- = 5.56%). We assert that this is sufficient for the tests in
hand, particularly when viewed in the context of how simple the models are. The essential
features of a muscles response have been shown to the active force (the Ca term) and
activation dependent stiffness (the Dxa term).

What terms of the model should be retained, and what terms can be discarded
without significant loss of model performance?

From figures 3-15 and 3-16, the Bx, Ca and Dxa terms are by far the most significant

terms, accounting for most of the variance contribution of the model. With the bilinear
model terms only, the statistics of the VAF metric have been only slightly reduced (P =
73.61%, o = 5.73%, range from 64.55% to 80.58%). This is a reaffirmation of the validity
of bilinear muscle models suggested in the literature.

Based on experimental data, what are appropriate model parameters, and what
is their variance?

The computed parameters are summarized in the following table 3.2.

Coef. Muscle 1 Muscle 2 Muscle 3 Muscle 4 Muscle 5 Muscle 6 Muscle 10 Mean Var
A -0.0038 0.0006 0.0156 0.0224 0.1468 0.3248 0.0237 0.0757 0.0147
B 0.0024 0.0085 0.0134 0.0187 0.0511 0.1128 0.0008 0.0297 0.0016
C 0.7685 0.8896 1.3946 1.3723 1.4505 2.4826 1.1458 1.3577 0.3145
D 0.7912 0.8284 1.0542 0.8720 0.8618 1.1844 0.7683 0.9086 0.0234
E 0.0003 0.0002 0.0008 0.0001 0.0020 0.0015 0.0013 0.0009 0.0000
F -0.0002 0.0019 -0.0013 0.0019 0.0056 0.0080 0.0018 0.0025 0.0000
G -0.0002 0.0001 0.0006 0.0003 0.0013 -0.0003 0.0011 0.0004 0.0000
I 0.0017 0.0008 -0.0047 -0.0053 -0.0050 -0.0062 -0.0085 -0.0039 0.0000

Table 3.2: Coefficients of the multi-linear muscle

To enable meaningful comparisons between different muscles, and accounting for the
fact that different muscles have different nominal strengths, some form of normalization is

required (larger muscles naturally produce more force than smaller muscles). This is done

by normalizing all the coefficients for each muscle by its C coefficient, which is an indication

of the nominal strength of the muscle.
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Figure 3-16: Summary for muscles 2, 3, 4, 5, 6 and 10.



Coefs. Muscle 1 Muscle 2 Muscle 3 Muscle 4 Muscle 5 Muscle 6 Muscle 10 Mean Var
A -0.0049 0.0007 0.0112 0.0163 0.1012 0.1308 0.0207 0.0394 0.0029
B 0.0031 0.0096 0.0096 0.0137 0.0352 0.0455 0.0007 0.0168 0.0003
C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
D 1.0296 0.9312 0.7559 0.6355 0.5942 0.4771 0.6706 0.7277 0.0376
E 0.0003 0.0002 0.0006 0.0001 0.0014 0.0006 0.0012 0.0006 0.0000
F -0.0003 0.0022 -0.0009 0.0014 0.0039 0.0032 0.0015 0.0016 0.0000
G -0.0002 0.0001 0.0005 0.0002 0.0009 -0.0001 0.0010 0.0003 0.0000
I 0.0023 0.0009 -0.0034 -0.0038 -0.0034 -0.0025 -0.0075 -0.0025 0.0000

Table 3.3: Normalized coefficients of multi-linear model

Why is there minimal dependence on velocity?

An interesting finding of this chapter is that, under the given testing conditions, the re-

sponse of the muscles can be described with essentially no dependence of muscle force on the

velocity of contraction. This is indeed a surprising finding given that muscle force-velocity

characteristics are among the most important and well studied properties in muscle physi-

ology. Why is there such an apparent discrepancy?
One potential avenue for reconciliation is to consider the force-velocity relationships at

sub-maximal levels. Such data is relatively rare in the muscle physiology literature, and
experimental protocols vary making comparisons difficult. However, results reported in [29]
indicate that at low activation levels, the force-velocity curve tends to assume a more sym-

metrical shape. This symmetry has also been predicted by the moment-distribution model

[76, 54]. A first-order (linear) approximation of any symmetric (even) function yields a

constant value, i.e. with no dependence on velocity. The model proposed in this chapter

(equation 3.4) is essentially linear velocity. The activation levels in the experimental proto-

col, while variable in nature, average out to low activation levels. Therefore, the combination

of the model and experimental protocol may collude to give this apparent independence.



Chapter 4

Optimization of Muscle Workloop
Energetics

In this chapter I tackle the problem of maximizing the power transfer from muscle actuators
to a passive load. More specifically the problem of maximizing the power generated by an
antagonist muscle pair against a second-order mechanical load is considered. Three different
methods of analyzing the problem are presented, each having its own merits:

1. Basic analysis By making simplifying assumptions regarding the problem setup and
the nature of the solutions, we arrive at a mechanistic, intuitive explanation that yields
interesting insights to the problem at hand. The results of this analysis motivate a more
formal study of the role of muscle stiffness and co-activation on the energetic output of an
antagonist pair.

2. Direct simulation One straightforward approach to maximize the power delivered to
the load without the need to make additional simplifying assumptions is to systematically
search over a wide family of inputs. By direct simulation and computation of the power
outputs we obtain estimates of the work done by the muscles, and the conditions under
which it is maximized.

3. Optimal control The third approach is tackle the optimization more formally in
an optimal control framework. First order necessary conditions for optimality are derived
which take the form of a two-point boundary value problem. Methods to solve the two-point
boundary value problem are developed. This tool is then used to understand the role of
co-activation and muscle impedance on the workloop energetics of the system.

This chapter is organized as follows. First, I set set up the problem, write the equa-
tions that model the muscle, and derive the equations of motion of the muscle actuated
system. Then I present the analysis, optimization results and discussion for each of the
three approaches aforementioned.

4.1 Problem Setup

The most general problem setup is that of a multi-port mechanical load acted upon by an
arbitrary number of muscles with arbitrary interconnections. The problem considered here
instead is one of the simplest instances, and is depicted in figure 4-1. A pair of identical,



antagonist muscles act upon a common second-order mechanical load. The electrical stim-
ulation inputs to the muscles are ui(t) and u2 (t) (or the vector u = [u, U2]T). The muscle
responds by producing contractile forces F1 (t) and F 2 (t). This is the simplest model where
muscle co-activation may play an important role in stiffness modulation (and consequently
power transfer), yet it is general enough to model single degree-of-freedom joints acted upon
by mono-articular muscles.

K:
Agonist Muscle La

M

FF

Ix x2
:X, X

Antagonist Muscle

Figure 4-1: Antagonist muscle pair acting against a second order mechanical load.

The problem statement becomes: given a description of the load, and given a model of
muscle contraction, find control input trajectories ui(t) and u2 (t) such that the steady state
power transferred from the muscles to the load is maximized under periodic oscillations.

4.1.1 System Model

To model the system, the factors are considered: i) the excitation-contraction dynamics of
the muscles, ii) the dependence of force on mechanical state, and iii) the dynamics of the
load. The muscle models are based on the discussion of chapter 3.

Excitation-contraction dynamics We assume the excitation-contraction dynamics are
important and cannot be neglected. They are captured by second order processes with real

poles that model calcium diffusion dynamics. We assume the model is as follows:

a(s) G(s)
U(s) = ) di(t

(S + poi) (S + pai)

= paa(t)+f+#
= poiAM +t) +pui Ut)

where ai is the activation state of the muscle and f3 is an intermediate state of Ca 2+

diffusion and re-uptake dynamics.

Multi-affine force modulation We assume that the force generated by the muscle is a
multi-affine function of its activation a and its mechanical state [x, z].

F = Ai + Bixi + Clai + Dixiai + Eisi + G iiai + Hixi~i + Ixii(a42

(4.1)

(4.2)



While in chapter 3 we concluded that a bilinear model is sufficient, we maintain the gen-
erality of the full multi-affine model in the foregoing analysis. In actual experimentation,
it is not expected to include all the parameters (A through I), since some terms may be
deactivated by setting the appropriate coefficient to zero.

Load dynamics The net muscle force excites the mass-spring-damper system:

Fnet = mi + bi + kx (4.3)

To interconnect the muscle model with the load model, we first write all equations in terms
of the same coordinate system. We use the following transformation:

X1 = i+x
X2 = X2-x

; i=t

i2 = -i

where x? and xO are the nominal lengths of the muscles. Therefore,
equations become:

F1 =A1+Bl(xO+x)+Cia1 +D1('+x)ai +E 1 +

Gizcai + H1(xO + x)i + Ii(xO + x)ia1

F2 = A2 - B 2(x - X2)+C 2a 2 - D2(x - x2)a2 - E2 i -

G2ia 2 + H2(x - xo)i + I2(x - xO)ia2

The net force is therefore given by:

Fnet = F2 - F1

the muscle force

= (A2 - A1 ) - B 2 (x - x2) - B1(x + x) + (C02a 2 - Cia) +
-D 2(x - z2)a 2 - D1(x' + x)ai - (E2 + E1 )i - (G2o 2 + Gia)i +
(H 2 (x - X2) - H 1(X4 + x))i + (12(x - X4)a2 - li(X4 + x)ai)±t (4.4)

System state equations Let the system state vector be x = [ai; #1; a2; #2; x; d], and the
control vector be u = [U1; U2]. The dynamics of the interconnected system are written as:

1  a 1
P'c31

02

S= f(x, u)

Pa2 1

+

0 1
-k/m -b/m

PuiU1

Pu2 U2

Fnet(x,u)/m J

(4.5)

While this system is mostly linear, the nonlinearity is fairly benign in form and is due to
the multi-linear nature of Fnet (x, u). The model of equation 4.5 will be treated as the basis
for our analysis.
Given this model, our objective is to maximize the average power transfer from the muscles
to the load. The instantaneous power delivered to the load is given by P(t) = tFnet. The



work done by the muscles on the load is the integral of the power over one complete cycle.
Therefore, the optimization problem setup becomes

T T

max Power (t) dt j Fnetdt
u(t) O o
s.t. x f(x, u) (4.6)

Umin < U(t) Umax

x() = x(T)

In this formulation, we assume that the terminal time T is given and is defined by the task
objective.

In the next three subsections, I tackle problem 4.6 using three different approaches.
In the first approach, a simplified and approximate solution to the problem is developed,
which provides an intuitive ground. This solution yields insight to the role of co-activation
on the energetics of the muscles, but at the expense of making gross assumptions that
may undermine the validity of the approach. In the second approach, we relax many of the
assumption and simplifications of the first approach. We use direct simulation to investigate
the role of different stimulation parameters on the net output energetics, without resorting
to approximations. In the final approach, we adopt a more formal treatment of the problem
based on optimal control theory. Thus the three approach are presented in increasing
formality.



4.2 Approach 1: A Basic Model

4.2.1 Model simplification

Let us develop a simplified model for the treatment of problem 4.6. We will take liberty in
making several assumptions with the goal of achieving tractability.

First consider the muscle model. Based on the results of chapter 3, we established that
a bilinear muscle model is plausible. We will use this bilinear formulation with all of its
inherent assumptions, but make the additional simplification of ignoring the stimulation-
activation dynamics. Therefore, the electrical stimulus signal ui will be taken as a direct
measure of the activation signal ai.

ai (t) = ui(t)

Based on this, we therefore assume that for each muscle, its contractile force F and stiffness
Ki are given by

Fj = Ai + Bixi + C ai + Dxiai

= Ai + Bixi + Ciuj + Dxiu

Ki - *9 -- Bi + Djuj

In this model, the residual force of the muscle is given by Ai, its passive elasticity is captured
by Bixi, the stimulation dependent contraction is captured by the Ciui term, and finally
a term that couples activation and elasticity is Djxjuj. The coefficients Aj, Bi, Ci, Di are
muscle parameters to be determined either via prior data from the literature, or from
identification experiments. See chapter 3.

This bilinear muscle model has two important consequences:

1. Activation dependent stiffness Plotting the force-length curve according to this
bilinear model for different values of activation ui yields the family of curves in figure 4-2(a).
The curves are plotted for different values of activation ranging from 0 to 1. Immediately
we notice that force is linear in activation, and that the slope of the curves increases with
increasing activity. This feature is the essence of the bilinear muscle model - that it captures
the stiffening of the muscle with increasing activation.

2. Affine relationship between muscle force and stiffness Another consequence
of this model is that, at a given muscle length x, the muscle stiffness is given by a linear
relationship with force. This is shown in figure 4-2(b).

Consider an antagonist and identical muscle pair (i.e. A1 = A 2 = A, -, = D2 = D).
Let us compute the net force and stiffness applied by the muscle pair to the load. The forces
are given by

F1  = A +Bx1+Cu1+Dxju1
F2 = A + Bx 2 + Cu2 + Dx 2U2

Fnet = F2 - F1
= B(x 2 - X1) + C(u 2 - u1) + D(x 2u 2 - x 1u1)
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(a) Force-length relationships (b) Force-stiffness relationship

Figure 4-2: Two properties of the bilinear muscle model

Using the coordinate transformation x = xi = -X 2 , we get'

Fet = -2Bx + C(U2 - U1) - Dx(u 2 + ui)
O(-Fet)

Knet= = 2BD(u 2 + U1)Ox
= K1 + K2

We plot the net muscle stiffness Knet against the net muscle force Fct for all combinations
of 0 < ui K 1 and 0 < U2 1. The achievable range is indicated by the shaded area in figure
4-3. Furthermore, one can verify that any line segment parallel to the x-axis represents a
set of activations with constant sum, i.e. U1 + U2 = constant. The diamond shaped region
is similar to the co-activation analysis in [59].

Net Muscle Stiffness

2Kn u + u2 - 2

U1 + U2 - 1

Kmax

ul + U2 = 0

Ne Mcle Force
0

Figure 4-3: Co-activation map for a pair of bilinear muscles. The shaded area indicates
achievable net muscle force and stiffness combinations for bounded and non-negative acti-
vations. The oblique [ui, u2 ] axes indicated the activation levels required.

Let us make some further simplifications. Assume that this shaded region equally applies
to the situation of the muscle pair acting on the mass-spring-damper load, and let us
temporarily ignore the fact that this model applies only to isometric activation. Also further

The net stiffness Knet is defined as a -Q" to maintain appropriate signs



assume that the load will be excited sinusoidally and antagonistically along those lines of
constant activation, i.e.

ui(t) = A,(1 + sin(wst))

u 2 (t) = A0 (1 - sin(wt))

In making those assumptions, we are conceptually separating the effects of the active
stiffness (the Du) of the muscles from the forces produced and other dynamic effects. The
resulting equations of motion of this combined muscle-load is

Mi + Bx + Kx = -2Bx + C(u 2 - u1) - D(u 2 + u1 )x
Mi + Bi + (K + 2B + 2DA0 ) x = 2CAo sin(wut)

Ktotal Fnet

From standard harmonic analysis, the net power delivered by the muscles to the load is
given by:

2 2~
P ~Fnetwa B(47

2 [(Ktotai - Mw2) 2 + (BwF)2]

where Fnet is the amplitude of the net force produced (indicated by the horizontal abscissa
in figure 4-3), w, is the driving frequency of stimulation, and Ktotal is defined above. Note
that this combined muscle-load system has increased stiffness due to the muscle activation,
the natural frequency consequently has increased to Wtotal = v/KtotalI/M.

Equation 4.7 indicates that there are two ways to maximize P(wo). The first is to
increase Fnet as much as possible, since the power increases quadratically with the force
applied. The second is to minimize the denominator, by ensuring that Ktotai = MW. Those
two requirements cannot generally be simultaneously satisfied because of the constraints
relating Fnct and Knet, but their effects determine the optimal solution.

Contour and surface plots of the power as a function of Fnet and Ktotal in equation 4.7
are shown in figures 4-4(a) through 4-4(d) for different driving frequencies Wo. In order to
maximize the net power delivered by the muscles to the system, we need to maximize the
value of the power P(wo) over the feasible space indicated by diamond region. The location
of the optimal operating points is indicated by the red asterisks in the figures2

2This optimal point is computed as follows. First, we recognize that the optimal solution must be an
extremal solution, and must lie on the boundaries of the feasible space. Therefore we restrict our attention
to the constraints given by

Ktotai = aiFnet + bi

where ai and bi are the slopes and intercepts of the four line segments bounding the feasible region. Solving
for the power along those line segments, we get

F setw2B

2 [(aiFnet + bi - Mwo) 2 + (Bw.) 2]

Therefore the power is expressed explicitly in terms of the force. Taking derivatives with respect to Fnet,
and setting 9 = 0, we get

,~- w2(Mw +B 2 - 2biM) + b?
ajMWo - aibi

K* =M + M-- b



From those figures, an interesting result arises. One would generally expect that the
maximal power levels require the muscles to activate in a manner that creates the largest
amount of net forces, indicated by the widest level in the diamond shaped region. This
is indeed the case in figures 4-4(a) and 4-4(d). The plots of figure 4-4(b) show that at

some frequencies, it is better to "back off" a little, and not stimulate the muscles at full
amplitudes. At other frequencies, it is better to over-activate the muscles such that the

muscles would oppose each others actions 4-4(c). In those cases, the benefit attained from

tuning the net frequencies of the muscle actuated system far outweigh the net enhancement
of power due to using the full forcing amplitudes.

How do the optimal stiffness and optimal co-activation levels vary with the
driving frequency, and what are the resulting power levels? Figure 4-5 shows the

trends. We notice that for most of frequencies it is optimal to work with a co-activation
level of one, meaning that on average one muscle is fully stimulated. This corresponds to

the widest abscissa of the diamond shaped region in figure 4-3, and gives the largest force

amplitude. However, for some frequency ranges it is optimal to sacrifice force amplitudes
in order to match the resulting resonance frequency wotal with the stimulation frequency

w,. This effect manifests itself in two ways. In frequency region I (between 6.7 Hz and 7.8
Hz) it is optimal the that the two muscles co-contract in order to achieve this frequency

tuning. In region II (between 5.1 Hz and 6.5 Hz), it is optimal that the muscles would do

the opposite, i.e. contracting less than they potentially can in order not to over-boost the

stiffness and the corresponding Wtotal.

How does the picture of figure 4-5 change as the system parameters change?
Figure 4-6 captures the variation of the optimal power with changes in B, K, Kmuscle and

M.

" Variation with B (figure 4-6(a)) Since the damping term is the only non-conservative

term in the load, we expect that it should be the primary determinant of net average
power transfered to the load. We also find that frequency regions I and II diminish

with increasing damping. Also note that as B decreases, two effects take place: First,
the damping force at a given velocity decreases. Second, the amplitude of velocity

of oscillation increases and, theoretically, tends toward infinity for very low values of

damping. As B decreases, the velocity increases at a faster than linear rate. The

dissipated power is the product of the two terms. Consequently the dissipated power

increases with increasing damping. However, B = 0, it evaluates to exactly zero,
resulting in a discontinuity in the power trend.

* Variation with K (figure 4-6(b)) The obvious effect is that changing K shifts

the resonance frequency Wtotal, and hence the location of the peak power. Another
consequence is that as K increases for a constant Kmuscle, the ability of the muscle to

influence Wtotal decreases, and therefore the region of optimal co-activation diminishes.
Therefore the smaller the nominal stiffness of the load in comparison to the active
muscle stiffness, the wider regions I and II are.

" Variation with Kmuscie (figure 4-6(c)) Shown in. Similar to changing K, changing
Kmuscie also shifts the resonance frequency, but also offers more influence over the co-
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Figure 4-5: Power and co-activation levels as a function of W,. The natural frequency of
the load w is 5 Hz.

activation ranges. Therefore increasing Kmusce relative to K expands the regions I
and II.

* Variation with M (figure 4-6(d)) Again, the change in mass shifts the location of
the optimal frequency. We also notice that for smaller mass, the widths of frequency
regions I and II increases, but the variance in muscle activity decreases.

Key Points for Approach 1

The analysis above suggests the following:

" According to this simplified bilinear model, there is a constraint between the amplitude
of the net force developed by the muscle pair, and the net stiffness. This constraint is
characterized by the diamond shaped region in the force-stiffness coordinates shown
in figure 4-3.

" The increase in muscle stiffness due to activation augments the nominal stiffness of
the mass-spring-damper system. Therefore the resonance frequency of the combined
muscle-load system Wtotal is greater than the resonance frequency of the load without
the muscles w.

" For a harmonically excited mass-spring-damper system, the maximum power delivered
to the load by the driving source occurs at at a frequency equal to Wtotal, irrespective
of the damping in the system.

" At certain stimulation frequencies w, > w, it is optimal to co-activate the muscles
in order to achieve a net increase in stiffness such that wtotal is tuned to match the
desired excitation frequency w. However, because of the force-stiffness constraint,
the co-activation will be at the expense of diminishing force amplitude. But in the
final analysis, this may be a dominant factor.
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" At other frequencies, it is optimal to utilize the maximal amplitude excursions avail-
able.

* The absolute maximum power over all frequencies is when w, is equal to Wtotal eval-
uated at U1 + U2 = 1. This frequency optimal frequency is w*oal = /K*otai/M =
V/(K +D)/M.

These conclusions, however, have been a consequence of a simple model with many
simplifying assumptions (in addition to the inherent assumptions of the bilinear muscle
model). It is worthwhile to recap some those assumptions here:

" A bilinear muscle model with no velocity dependence holds.

* Ca+2 diffusion dynamics are ignored.

* The shape of the feasible space of figure 4-3 is maintained independent of position x.

It is worth noting here that even though this analysis assumed bilinear approximations,
one would expect that different approximations would still lead to similar conclusions. As
long as the the muscle stiffness increases with muscle force monotonically, and by virtue of
the fact the forces of antagonist muscles subtract while their stiffnesses add, the resulting
achievable range of force-stiffness combinations will assume a convex region, though not
necessarily diamond shaped. The effects of maximizing net force amplitudes and tuning
muscle stiffness will still hold in such a situation.



4.3 Approach 2: Direct Search Via Simulation

Another approach to investigating the conditions of optimal muscle power production is via
direct simulation. Using the full sixth order model described in equation 4.5, we simulate
the system given certain input signals ui(t) and U2(t), and compute the net delivered to
the loads. We then search through a family of stimulus signals for the optimal power. We
restrict our attention to stimulus trains that are are periodic, consisting of a single "on-
period" per cycle. Thus, for a given load, these simulations will give us sub-optimal control
trajectories, since we restricted the shape of the stimuli. The parameters we vary are the
stimulus driving frequency w,, the pulse width ttim and the phase # between the signals for
u1 and u2. Figure 4-7 shows different examples of control inputs with different parameters.

-1 Hz, = 90 degree, t = 0.1 sec Cs . 2 Hz, 4 n 90 degrees, t = 0.1 sec

u2 u2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S= 1 Hz, 4 n 180 degrees, t = 0.1 sec ns 1 Hz, 4 a 10 degrees, t = 0.05 sec

u1 u1

u2 u2

0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1 0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1

Figure 4-7: Single pulse control inputs with difference parameters

The procedure to construct the numerical simulations is as follows:

* Generate periodic control signals ui (t) and u2 (t), parameterized by w8, tstim and 4.

" Simulate the system, and obtain a periodic response. The simulation procedure is
explained in detail in appendix C.

" Compute the average power, co-activation level, and average overall stiffness, all in-
tegrated over one complete cycle

* Vary stimulation parameters ws, tstim and 4.

" Find the conditions for maximal power transfer.

Simulation Results

We run the simulations for a system with the following parameters: A1 = A2 = 0, B1 =
B2 = 15, C 1 = C2 = 1, D1 = D2 = 750, M = 1, w, = 21r4 rad/s = 4 Hz, and ( = 0.1. This
results in a stiffness K = 631 and B = 5. The parameters of the calcium diffusion dynamics
were chosen such that the system gain is 1 and the two poles are at time constants = 0.05
sec. We simulate the system as per the procedure above, and observe the average power as
the parameters of the stimulation ws, 4, and ttim are varied.



An example simulation One example result is shown in figure 4-8. In this particular
case, the driving stimulation frequency is w, = 3 Hz, with a phase # = 90 degrees and a
stimulation duration of tstim = 0.1 sec. The figure shows the plots of all the states, the
individual and net forces, the total stiffness due to the muscles, the net power generated
and the integrated work, all over one cycle. This particular simulation used 200 harmonics.
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Figure 4-8: Simulation results for one particular case. The x-axis indicates time [sec] for all
plots. On each plot, there are two curves that coincide. The green curve is the computation
with the Fourier method of appendix C. The blue curve is a Runge-Kutta integration of
the system equations with the appropriate initial condition. Since the curves coincide, this
validates the Fourier method. The red curve in the power plot indicates the average power,
P, integrated over the full cycle.

From figure 4-8, three important parameters are extracted. The first is the average net
power delivered by the muscles P (equal to 1.868E-3 in this case). The second is the average
stiffness of the combined muscles due to their activations Kmuscie (equal to 480.1 in this
case). The third is the average level of co-activation 0. While the electrical stimulation
signals ui of the two muscles do not overlap in time, the activations are indeed overlapping,
and hence providing a net increase in muscle stiffness. We define the co-activation metric



2 min (ai, a2) dt
N= to" ty (4.8)

I adt + Jt a2dt

According to this definition of co-activation, the value of V) ranges between 0 and 1 for
positive activation functions. In the particular case of figure 4-8, the V) = 0.26.

Simulations are repeated for all combinations of the following parameter variations:

" w. ranging between 1 Hz and 10 Hz in increments of 0.25 Hz.

" tstim ranging between 0.01 sec and 0.25 sec in increments of 0.02 sec.

a 4 ranging between 0 degrees and 180 degrees in increments of 5 degrees.

We compute the three quantities aforementioned (P, Kmuscle and V)) as a function of the
parameters of the control input w,, tstim and #.

Stiffness tuning For a fixed tstim, we produce the plots of figures 4-9 and 4-10. For each
figure, we produce a surface plot of P as a function of w, and tstim. The color of the surface
indicates 4. In each plot, there are two planes that cut the surface. The grey plane cuts
the surface at the natural frequency of the load (without the influence of the muscles, i.e.
at w, = wn). The red surface cuts the surface at the frequency that corresponds to the peak
power. The distance between those two planes indicates the difference in frequencies that
is primarily due to the stiffness contribution of the muscles on the load. In other words,
the presences of the muscles, and the activation of the muscles increases the stiffness of the
overall system such that wtotal > Wn.

As one might expect, for longer durations of tstim, the muscles contribute a higher
average stiffness to the system across one complete cycle. This is indicated by the larger
plane separation distance in figures 4-10. This trend continues up to a point where stiffness
tuning does not pay off any longer. When the period totim becomes excessively long (greater
than 0.13 seconds in this case), the muscles are co-activated for most of the cycle of the
muscles, and therefore the net forces decrease considerably.

Key Points for Approach 2

" Workloop energetics are explored via direct simulation. The stimulation patterns are
restricted to periodic single-pulse waveforms of varying frequencies, pulse-widths and
relative phase between the agonist and antagonist control ui(t) and u 2(t).

* The optimal frequency of muscle stimulation is higher than the natural frequency of
the load, primarily due to the stiffening effects the muscles induce to the system. This
is consistent with the analysis in section 4.2.
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4.4 Approach 3: Optimal Control

The basic model above simplified the response of muscles, and overlooked the non-isometric
nature of the contractions considered and the activation dynamics. Nevertheless, it provided
insight as to the role that the muscle stiffness plays in influencing the net power transfer.
The direct simulation approach used a more complete model, however restricted the controls
signals to belong to the class of single pulse signals.

To tackle the optimization question more formally and more generally, we seek optimal

(or locally-optimal) stimulation patterns that maximize the muscle's energetic function, and
observe if co-activation occurs. In this section, we adopt an optimal control approach. The
problem formulation is repeated again here:

min T -Power(t)dt = jT -Fnetdt = fT L(x, u)dt
u(t) 10 0 0
s.t. x = f(x, u)

Umin < u(t) U Umax

where f(x, u) is defined in equation (4.5) and u(t) = [u1 , u2 ]T is the control input vector.
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The procedure of the analysis are as based on the application of the Pontryagin minimum
principle [10]:

1. Augment the cost function with appropriate multipliers on the constraints.

2. Define the Lagrangian and Hamiltonian scalar functions.

3. Write the equations governing the dynamics of the multipliers.

4. Define the necessary conditions for optimal control.

5. Solve the resulting 2-point boundary value problem.

4.4.1 Control Derivation

Our purpose here is to derive necessary conditions for optimality of the control signals. The
integrand of the cost function L(x, u) and the Hamiltonian function H(x, u) are given by

L(x,u) =-Fet

-i {(A - A1 ) - B2 (x - x8) - B 1 (zi + x) + (C 2 a 2 - C1a1)

-D2(X - z2)a2 - D1(x + x)ai - (E 2 + E 1 )i - (G22 + Giai)i +

(H 2(x - X') - Hi(x' + x))i + (12(x - X')a2 - Ii(X' + X)ai)i}

The Hamiltonian is a scalar function defined as

H(x, u) = L(x, u) + ATf(x, u)

From [10], the evolution of the "optimal" co-state variables are governed by:

A = -VxL(x,u) - Vxf(x.,u)A

where

QLCl.- + Dli(x + x) + Gli2 + i4 )
Bai

0
OL

8901
-C 2 .± + D 2 -±(X - xO) + G 2± . 2(

OL
aa 2

VxL(x, u) = = 0
QL
02 -(B2±B1 )-(D2a2A+Dia)+

Ciz + Di Hl ) + Giz22 + I1(i+ ) 2-

__ f Fnet - E2 + B1 ) - (G2DYa 2 + GDi) )++
H 2 (x - x0) - H1(x + x) + I2(x - Xz)a 2 - Ii(z + X)a} J

74



- 8fi(x,u)
cfa ofi (x,U)
51-

f2(X,U)
BaOi

81f (xu)

Pai 0 0

... 08fA(X,U) -
19i~ 8

Of6 (x,u)

0 0 - {-C1-D1(x+x)-Gi2-Ii(x+x).}

1 P'31 0 0 0 0

o o Pa2 0 0 {C2-D2(X-Xz)-G2i+I2(X-Xo)i}

0 0 1 PO2 0 0

0 0 0 0 0 + -(B 2 + Bi) - (D2ai + Diai)+
m m (H2 - H1)ik + (I2a2 - Ilai)-tI

o o 0 0 1 + (E2 + E1) - (G2a2 + G1a1) + H2(x - xO)-
m m H1(xo + x) + (I2(x - xo)a2 - Ii(x + x)ai

The optimal control u* is given by

u = arg min H(x, u)
U

= arg min L(x, u) + AT f(x, u)
U

= arg min ATf(x, u)
U

where the last equality follows since L(x, u) is not a function of u in this particular context.
Therefore

u* = arg min A1(pal a1 + 31) + A2 (p,13,#1 + Pii) + A3(Pa2 a2 + 02)+
u _ A4(P32,32 + Pu2 U2) + A5x + A6 M (-Fnet - bt - kx)

= arg min [A2PuiUi + A4P 2u2]
U

which implies

Umin
Umax

S _ Umin
2 Umax

if A2pui > 0
if A2Pui < 0

if A4PU2 > 0
if A4Pu2 < 0

Therefore, depending on the signs of the switching functions A2Pui and A4Pu 2 , the con-
trol assumes only the values Umin or Umax. This is a bang-bang control solution, and is a
reasonable outcome. Such solutions are common in minimum time problems. Intuitively,

and

VXf(x, u)

1- U 1



minimum time implies maximum "acceleration", which is means maximum power. Mathe-
matically, such solutions appear when the Hamiltonian H is a linear function in the control
u. In the absence of limits on the control, the optimization problem would be unbounded
(which is reasonable, since a muscle that can generate unbounded forces will add infinite
power to the load). Therefore, for the problem to be well posed, the bounds on the control
inputs ui and U2 are necessary.

The result that the optimal control is bang-bang is reasonable.
In summary, the first order necessary conditions for power optimal solutions are given by:

5 =f (x, u) System Dynamics (4.9)

= - VxL(x, u) - Vxf(x, u)A Costate Dynamics (4.10)

U* Umin if A2 Pui > 0 Optimal control (4.11)1 Umax if A2Pui < 0

U* umin if A4PU2 > 0
2 = Umax if A4 PU2 < 0

x(t = 0) =x(t = Tf) State boundary conditions (4.12)

A(t = 0) =A(t = Tf) Costate boundary conditions (4.13)

Equations (4.9) and (4.10) define a two-point boundary value problem (2-point BVP) that
is subject to the cyclic boundary conditions (4.12) and (4.13). This 2-point BVP must be
solved simultaneously with the equations for the optimal control (4.11).

Peak Performance vs. Economic Performance - A More General Problem

In a slightly more general formulation, we penalize the cost of the control inputs u integrated
over time. The weight of the control input is designated by ?7. Therefore, the problem
formulation becomes

J* min { Fnet± + 77U'U dt
U 0

s.t. X = f(x, u)

0<u<I

x(0) = x(T)

where q > 0

which reduces to the original problem when 97 = 0.
The addition of a cost of control to the objective function transforms the problem from

a "peak performance problem", to one that takes "efficiency" into account by appropriate
choice of 71. The presence of the a control quadratic cost will transform the control from
bang-bang to one where intermediate values are utilized. The bounds on the control are
still in place.



All of the optimization analysis remain essentially unchanged, however, the control terms
will change. The co-state evolution equations will not change. The new expressions for the
control are given by:

u*= argmin {A2PuiUi + A4Pu2 u2 + 77uTU}
U

which evaluates to

Umax if - A2Pu max

S -12Pui A2uU, 2ui if Umin < < Umax (4.14)

Umin if <Umin

Umax if 2 > Umax

-- 4Pu2  - Um4iU2
U2 = q *if Umin < < Umax (4.15)

Umin if < Umin

Solution Methods

The solution of the BVP above is non-trivial, primarily due to the discontinuous nature of
the control. Even with the addition of the quadratic term, the hard bounds on the control
lead to the failure of many of the standard solution algorithms. We solve this issue via the
use of penalty methods, which are briefly described in the next section.

Penalty methods Penalty methods simplify the solution of a constrained optimization
problem by converting it to a sequence of unconstrained optimization problems [28]. This
sequence of problems is solved, with an increasing penalty function added for violating the
constraints. In the limit, as the value of the penalty weight increases, the solutions will
converge to the optimal solution of the constrained problem.

Consider the following illustrative example. Suppose we want to minimize the function
f(x) = 100x 2 _ 10Ox subject to x > 2 and x < 3. Figure 4-11(a) shows a plot of this
function, and the bounds of the feasible range. From the figure, it is evident that the
minimum solution occurs at x* = 2. Also, we notice that the minimizer of the unconstrained
f(x) is at x = 0.5, indicated by the red asterisk. One way of solving this problem, is to
augment a cost for violating the constraints. Therefore, we would minimize a function in
the form of fk(x) = 100x 2 - 10Ox + ckp(x), where p(x) is a penalty function for violating the
constraints, and Ck is a positive penalty weight. Penalty functions must have the property
that p(x) = 0 for all x that are within the feasible range, and p(x) > 0 for all x that are



infeasible. In this particular example, we choose a quadratic penalty function in the form
of

(x - 3)2

p(x)= 0
(2 - X)2

if x > 3
if x is feasible

if x < 2

This quadratic form of the penalty function has desirable differentiability properties.

We start by solving the problem for ck = 0, and then progressively increase the value of
Ck as shown in figure 4-11(b). For each ck, we get an optimal solution of x*, also indicated by
a red asterisk. We monitor the change in the value of z* until further increase in changing
the penalty weight does not further change the value of z* significantly. Finally the solution
converges to x* = z* = 2.

Ouadrate penafty funcons to solve constraned quadratc opmizton

Consrakied quadrate opneraUon \ \\\I I I1

-2 -1 0 1 2 3 4

(a) Constrained quadratic optimization
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(b) Constrained quadratic optimization with penalty
functions

Figure 4-11:

Applying penalty methods to the problem Penalty methods, as described in the
section above, are applied to the optimal control problem in the following manner. We
would like to make sure that the control is limited to the admissible bounds, i.e. u < umax
and u ;> umin for all t. Therefore the penalties are imposed if the control ui violates those
bounds. We also use quadratic penalties in the form of

(ui - Umax )
2

p(ui) = 0

(Umin - U,)2

if ui > Umax
if ui is feasible
if ui < Umin

Therefore, the optimal control problem takes the following form:

4000

3000

1000

0



J* = min T Fnet.'i + Ckp(U - Umax) + CkP(Umin - u)dt
u 0

s.t. k = f(x, u)

x(O) = x(T)

where rq > 0

Ck > 0

( 0 2for y< 0
y2 for y > 0

Recall that the optimal control was a bang-bang control strategy. This means that,
depending on the sign of the switching function, it is optimal to push the control signal as
far out as possible. Previously, we placed hard bounds on the signal. With the penalty
methods, this bound is softened it becomes optimal to push the control signal as far out
until the penalty dominates.

Consider the case if the resulting optimal control is between umin and Umax. Then
p(ui) = 0. Therefore,

u* = arg min {A2pNi + 77 uTu}
U1

*T = 2Pul
2q

= arg min {A4Pu 2 + r/uTu}
U2

277

if "1 > Umax or ~ 2 ua > Umax, then p(ui) = (ui - Umax) 2 . Therefore,

u* = arg min {A2Pu +'rjuTU + Ck(Ui - Umax)}
Uj

2 CkUmax - A2 Pu1U1  2(77+ Ck)

U = arg min {A4Pu 2 + 77UTu + ck(U2 - Umax)}
2 U2 U+C U mx

2 CkUmax - A4U2

2(77+ck)



If 2 < Umin or < Umin, then p(Ui) = (Umin - U Therefore,

= arg min {A 2pui + u'ua + ck(Umin - u1) 2}

T 2
Ckumin - A2Pui

2(TI + Ck)

= arg min { A4Pu 2 + uTua + Ck (Umin - )2
U2

U* 2 Cku~min - A\4PU22(Ti + ck)

In summary:

-A2Puj if Umin < < Umax
217 27 <

2
CkUmax - A2Pui -A24.i

(i = <k if 1 > Umax (4.16)14= 2(T1+ ck) 2rj

2
CkUmin - A2Pui if <Umi

2(n + ck) 2,q

-- A4Pu 2  if Umin < <m4Pu2

2rj 217

2
CkUmax - A4Pu 2  (.- 4PU2

32 = < , +If)27 > Umax (4.17)z4= 2(r + ck) 2r

2
CkUmin - A4Pu 2  if- 4u 21f < Umin

2(q + ck) 2,q

We solve this softened version of the problem numerically. We start with low values for

Ck, and increase it until ui(t) violates the bounds constraints to within acceptable errors.

Solving the 2-point boundary value problem The 2-point boundary value problem
is solved using the MATLAB solver bvp4c for increasing values of ck. This solver descretizes
the solution space to via an adaptive mesh, and fits piecewise cubic functions to each
segment. The residuals in the interface points have to match the differential equation, and
the boundary conditions. For a description of the algorithm, refer to [66].

The solution approach in this section enables us to investigate a few interesting questions
via computation of the power optimal controls. For example, we can vary the parameters
of the muscles and the load, and observe their effects on the power generated. We can turn
one muscle "off" by setting its coefficients to zero. We can compare the bilinear muscles
with linear "impedance-free" actuators by turning the bilinear coefficients to zero. In the
next section, some of those questions are investigated.



4.4.2 Optimal control results

In this section, we use the optimal control tools developed to answer questions regarding
conditions of muscle optimal power generation:

What control input maximizes the power delivered by the muscles to the load?
By computing the optimal control (equations 4.14 and 4.15), and the corresponding system
response, we obtain power optimal periodic trajectories. Figure 4-12 shows two examples
of the optimal solutions when the commanded driving frequencies F, are 4 Hz and 5 Hz.
The plots show time profiles of the control, activation, forces, stiffnesses, load displacement
and velocity, power and workloops.

From the solutions we observe that the input control u(t) is symmetric and 180" out of
phase. We also notice that the co-activation levels (and hence the stiffness of the muscles) are
higher for the 5 Hz stimulation than the 4 Hz levels, which is compatible with the notion
of increasing the muscle stiffness contributions, and therefore matching the stimulation
frequencies to the overall resonance frequencies. We also notice that at 5 Hz stimulation
frequency, the input controls ui (t) and u2 (t) overlap.

What is the effect of muscle impedance (stiffness) on optimal solution? One
way to elucidate the effect of muscle impedance is to compare its performance to that of
a similar "impedance-free" actuator as shown in figure 4-13. Such an actuator would have
the same temporal dynamics (i.e. activation dynamics) and nominal force levels that the
muscle would have. In order to realize this, we model the impedance-free actuator as a
muscles with identical activation dynamics G(s) to that of the bilinear muscles. However
the parameters of the bilinear model do not include impedance effects. For this actuator,
the bilinear parameters are set to A = 0, B = 0, C = 1, and most importantly, D = 0.

Solving the optimal control problem for various stimulation frequencies results in the
plot of figure 4-14. Each point on the curves summarize one solution to the problem as
described in figures 4-12. The plots are explained as follows:

" For the impedance free plot, we notice that the optimal power generating frequency
coincides with the resonance of the load (4 Hz). We also notice that the peak repeats
itself at slower frequencies that have a period time that is an integer multiple of
the resonance period time. At those frequencies, the optimal solution collapses to a
repetitions of peak power attained at 4 Hz, and hence the repetitous structure of the
plot.

" The peak power for the bilinear muscle pair is shifted in comparison to the impedance-
free case, in a manner reminiscent of the direct simulations of figure 4-10. The increase
in frequency can be estimated form net contributions of the stiffnesses of the muscles,
and its average effect on the system resonance frequency.

What is the role of co-activation? Is it an epiphenomenon of activation dynam-
ics? In the previous sections, based on intuitive reasoning, we showed why co-activation
may be desirable from a frequency tuning perspective. It may be argued however that any
observed co-activation in the optimal solution is an epiphenomenon of the dynamics of Ca2 +
release and re-uptake (which were not modelled in approach I). To test for this effect, we
compare the co-activation levels for the optimal solution with muscles and compare it to
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Figure 4-13: Comparison of muscles with impedance-free actuators

the co-activation levels with the impedance-free actuators. The results are shown in the
lower plot of figure 4-14.

It becomes evident from the plots that there is a certain baseline of co-activation that
is unavoidable because of Ca 2+ dynamics. This co-activation unavoidable because the acti-
vation dynamics do not allow the muscle to turn on or off sufficiently fast to accommodate
the required stimulation frequencies. Therefore this baseline co-activation increases linearly
with frequency F,. The apparent jumps in the optimal co-activation levels is due the repeti-
tious pattern described above. This curve is then taken as the impedance-free co-activation
baseline.

For the bilinear muscles, there is a clear modulation about this baseline. The manner in
which this level is modulated is very similar to the pattern of figure 4-5. Similar explanations
are attributed: at frequencies higher than the optimal frequencies, the muscles are co-
activated more than is required by the impedance-free co-activation baseline in order to
stiffen the muscles to tune the system stiffness appropriately. At lower frequencies, the
optimal solution "backs-off", and stimulates activates the muscles less than what is required.

Can antagonist muscles cooperate to produce more power than the sum of
individual muscles? We compare the optimal solutions of two bilinear muscles to the
optimal solution of one bilinear muscle driving on the same load. The comparisons are
shown in figure 4-15. It becomes evident from the figure that, at all frequencies, the power
from two bilinear muscles is always greater than two muscles, sometimes reaching a peak
of approximately 9 times higher or more. While the peak powers have a ratio of 4, the
comparison at given stimulation frequencies may enable a more favorable comparison.

How does this level of cooperation compare with that of two impedance-free
muscles? We compare the optimal solutions of two impedance-free actuators to the opti-
mal solution of one impedance-free actuator acting on the same load. The comparisons are
shown in figure 4-16. The power ratio is a constant at 4 throughout (with the exception of
two notches that are numerical errors at small power levels).

How does the speed of Ca2+ dynamics affect net co-activation levels? One way
to investigate this effect would be to replicate the plots of figure 4-14 but for various models
of Ca2+ dynamics with different speeds. Particularly, we focus on the the location of the
poles of G(s), and the compare how the diffusion rates affect the net energetics of the
system.

Plots are shown in figures 4-17 and 4-17 for the impedance-free and the bilinear cases.
Again, each point on the curves is a solution of the appropriate optimal control problem.
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Key Points for Approach 3

" The optimal solutions for the system driven by bilinear muscles is obtained via optimal
control analysis. The resulting control was a bang-bang control function, who function
and duration are determined by the stimulation period and system parameters.

" The solution was numerically attained using quadratic penalty functions. These func-
tions alleviate the hard non-differentiable control amplitude bounding constraints by
adding softer, differentiable costs terms to the objective function. By increasing the
weighting factor for these functions, the solution gravitates to a feasible control tra-
jectory.

* Due to the temporal dynamics of the muscles G(s), there is an unavoidable baseline
co-activation level that is linearly increasing with frequency.

" The level of optimal muscle co-activation @ is modulated about the unavoidable base-
line so as to modulate the average system impedance to match that of the desired
stimulation frequency F,.

" Faster muscles naturally are more capable of enabling more power, and do so with
less co-activation.

* A pair of bilinear muscles may interact in a manner to produce substantially more
power at particular frequencies than the power generated by a single muscle.



4.5 An impedance matching interpretation

The analysis in the preceding three sections have direct connections with the engineering
notion of impedance matching. When two dynamical networks are interconnected, it is
said that the optimal condition for power transfer occurs whenever the "impedances are
matched". What does this exactly mean?

In appendix B, an explicit derivation "impedance matching" is presented, primarily for
linear systems undergoing either DC or steady-state sinusoidal AC interactions. The results
for a bilinear systems in DC conditions are also presented.

Now consider an example of a source network that consists of an ideal force source in
series with a spring acting on a mass-spring-damper system. For the case of muscles, co-
activation is a knob that changes the stiffness of this in-series spring. The impedance of the
load is

ZL= M(jW) 2 + Bjw + K =B+j(Mw-.K)

The impedance of the source is

Ka
Zs = K-

Therefore, for this source impedance, we do not have the ability to arbitrarily change the
phase. It is always 90'. For a given driving frequency and a given load, what is the optimal
source impedance K,? From equation B.1:

XS=-XL

K
= j -- MLO

(M2 - K)

which is equivalent to a source stiffness of K. = Mw2 - K. Under such conditions, the total
system resonance frequency becomes w = V(K + K,)/M = V(K + Mw 2 - K)/M = w,
which implies that the source stiffness is chosen so that the resonance frequency Wo of the
system matches the desired excitation frequency w.

In a similar manner, an antagonist muscle pair has the ability to change the source
stiffness K, such that resonance conditions are achieved. The plots in figure 4-12 confirm
this. The average stiffness due to the muscles in the plots, when factored with the dynamics
of the load, result in a resonance frequency that is the same as the desired excitation
frequency.
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Chapter 5

Experimental Workloop
Measurements

This chapter presents experimental workloop measurements for the thesis problem (as de-
picted in figure 4-1). All measurements are carried out using the apparatus and protocol
described in chapter 2 and the methods therein.

These workloop measures are fundamentally different from the standard measures em-
ployed in the muscle physiology literature. To the extent of the authors knowledge, these
are the first controlled in vitro workloop measures where the muscles interact against a
finite-impedance load, and where the muscles have a means to communicate mechanically,
and influence each others response. This is not an experimental tweak, but rather a sub-
stantially different testing paradigm.

Since a dissected muscle can only be used for a limited amount of in vitro experimental
measurements, it is prohibitive to test all the conditions described in the workloop opti-
mizations chapter 4. Therefore it becomes necessary to test for certain particular effects.
The following two are considered:

" Optimal stimulation frequency: that the power optimal frequency of stimulation must
include the effects of muscle stiffness

" Workloops of antagonist muscle pairs: that antagonist muscles may cooperate to
generate more power than that produced by the individual muscles acting separately.

Experimental parameters In all of the measurements below, the load is chosen to be a
second-order mechanical system with the following parameters: natural frequency wn = 4
Hz, damping ratio ( = 0.15, and a nominal stiffness K = 3000 N/m. At each electrical
stimulation trigger point, a train of pulses with duration of 50 ms, frequency 200 Hz and
pulse width of 100 Is is delivered to the muscles via the electrodes as shown in figure 5-1.
Thus each train consists of 10 pulses. The amplitudes of the pulses vary for each particular
muscle specimen, primarily depending on the contact between the electrodes and the muscle.
However, for a particular muscle, once the amplitude is set, it is maintained constant for
all measurements taken on that particular muscle. The load stimulation frequency F, is
controlled by the frequency of triggering the stimulator. This varies, and will be indicated,
depending on the experimental conditions. Typically the stimulus trigger frequencies range
between 4 to 6 Hz (in relation to the Wn = 4 Hz load), but will be indicated for each
pertaining measurement.
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Figure 5-1: Description of a typical stimulus signal for the workloop experimental measure-
ments.

Factoring out fatigue Since the muscles fatigue as workloops measurements progress in
time, absolute measurements of power penalize measurements taken at a later stage of an
experimental session as compared to those taken earlier. Therefore we focus on taking the
ratios between successive measurements. For example, when comparing the power output
of a muscle pair under two different conditions (A and B), we take a series of alternating
measurements at [A, B, A, B, A, B, .. .]. The absolute values of the measurements are ex-
pected to decrease as the muscle fatigues. However, the ratios of the power output at two
successive measurements is assumed not to be significantly affected by fatigue, but are as-
sumed to be affected only by the difference between the measurement conditions. Another
reason for considering ratios is that it becomes necessary to compare outcomes from differ-
ent muscle preparations. There is a considerable variation in the size of the frogs obtained
(whole body mass ranges between 29 grams and 46 grams). This inevitably affects the size
of the dissected muscles, and thus their power outputs.
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5.1 Workloops with Antagonist Muscle Pairs

I start by showing two individual workloop measurements for a muscle pair. In these mea-
surements, the muscles act against the load, and are stimulated in an alternating manner.
Figures 5-2(a) and 5-2(b) shows the time domain force and position data for 4 Hz stimula-
tion frequency, with the system starting from rest. Stimulus trigger points are indicated on
the figure via the red and green lines.

This data is replotted in the form of a workloop in figures 5-2(c) and 5-2(d). Each
workloop for each muscle is plotted in the respective coordinates of each muscles coordinates,
and therefore all the workloops have the same sense. The net workloops, plotting the net
force against position, are plotted in figure 5-2(e), and the net work generated by the muscle
pair for consecutive cycles is plotted in figure 5-2(f).

By comparison, the workloops for a stimulation frequency of 5 Hz are all plotted in a
similar manner in figure 5-3. A few observations are made:

" The first cycle has a substantially lower amplitude oscillation amplitude since the
system starts from resting initial conditions. This is in contrast to standard muscle
testing experiments where the motion is imposed on the muscles, and steady state
conditions may be achieved prior to muscle stimulations.

" As cycles progress, the area of the workloops diminish due to muscle fatigue.

" The magnitude and shape of the workloops change considerably with frequency. The
change in shape (from a more rounded workloop at 4 Hz, to a more triangular shape
at 5 H1z), may be attributed primarily to the change in phase between the stimulus
and response of the load. This change in phase is also apparent from the time domain
plots.

It is important to note that these measurements, to the author's knowledge, are the
first direct in vitro workloop measurements where muscles interact with a finite impedance
source. Furthermore, the muscles are interacting against a common load, and thereby
communicate mechanically, and can affect one another.
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Figure 5-2: Workloop measurements for antagonist muscle pair at 4 Hz with 180 stimula-
tion phase. Time domain plots for the agonist (a) and antagonist (b) muscles. Respective
workloops are plotted in (c) and (d). The net workloops are shown in (e). A bar chart for
the net work delivered to the system is shown in (f). The red and green lines in (a-b) and
asterisks in (c-e) represent the stimulus trigger times for the agonist (red) and anatagonist
(green) muscles. For plots (a) through (d), positive position values indicate a lengthening
muscle, while positive force values are contractile.
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Figure 5-3: Workloop measurements for antagonist muscle pair at 5 Hz with 1800 stimula-
tion phase. Time domain plots for the agonist (a) and antagonist (b) muscles. Respective
workloops are plotted in (c) and (d). The net workloops are shown in (e). A bar chart for
the net work delivered to the system is shown in (f). The red and green lines in (a-b) and
asterisks in (c-e) represent the stimulus trigger times for the agonist (red) and antagonist
(green) muscles. For plots (a) through (d), positive position values indicate a lengthening
muscle, while positive force values are contractile.



5.2 Optimal Stimulation Frequency

Now that individual workloop data sets are shown, let us focus testing some of the ideas
proposed as a consequence of the optimization results of chapter 4. We start with the
notion that the optimal frequency of stimulation of the system must take into account the
enhanced muscle stiffness due to activation. The muscle-actuate system is stimulated at 4,
5 and 6 Hz, and a comparison of the net workloop energetics is made.

The experimental conditions considered are summarized in table 5.1. Bar charts showing
absolute and ratiometric power measures are shown in in figures 5-4 and 5-5. A final
comparison of the power at different frequencies is compiled in figure 5-6.

Muscle Pair Frequency Comparison Number of measurements
1 4&5Hz 4
2 4&5Hz 4
3 6&5Hz 7
4 6&5Hz 5

Table 5.1: Frequency conditions

Muscle Pair 1 Muscle Pair2
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Figure 5-4: A comparison of power output generated by two muscle pairs. Top row compares
absolute power at 4 Hz (blue) and 5 Hz (red). Since the muscles fatigue, we notice a declining
trend in power measurements. To account for fatigue, power measures are normalized, and
we focus on ratios of consecutive measurements.

The experimental evidence thus far supports several notions resulting from chapter 4.
Figure 5-6 shows that the optimal frequency for driving this load is closer to 5 Hz than it is
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to 4 Hz, which is the natural frequency of the load. This indicates that effects of frequency
stiffening are apparent, and that the active stiffness of the actuator must be taken into
consideration. While this is not a surprising result, and has been considered in the muscle
physiology literature to explain frequencies of oscillation (especially high frequency flight
muscle), in this controlled environment we show this effect explicitly.



5.3 Workloops of Antagonist Muscle Pairs

The second idea we investigate experimentally is that a muscle pair actuating a mass-
spring-damper system, acting in parallel can produce more power than the sum of powers
generated by the individual muscles. Measurements were made on three muscle pairs. For
each muscle pair, 9 to 14 measurement sets are taken. For each measurement set, three
measurements are taken:

" Workloop power generated by the agonist alone Pa.

" Workloop power generated by the antagonist alone Pn.

" Workloop power generated by the muscle pair stimulated at 1800 from each other
Pa+n-

The order in which particular measurements are made within each set is randomized.
For each measurement set, the data is normalized by Pa+n. Furthermore, the ratio r =
Pa+n/(Pa + Pn) is computed, which allows us to make comparisons with figure 4-15. Figure
5-7 summarizes the measurements for three muscle pairs. We show raw data, as well as
relative power measurements, normalized by Pa+n for each set.

Muscle Pair Number of measurements Average ratio r
1 9 2.27
2 10 2.20
3 14 1.28

Table 5.2: Frequency conditions

In comparing the measurements of Pa+n to Pa + Pn, the results a somewhat mixed.
The first two muscle pairs show a ratio r > 2, clearly indicating the energetic advantage.
However, the last measurement showed a smaller ratio (table 5.2), even though the exper-
imental conditions are identical. We also note that for muscle pair 3, measurement sets 1
and 3 show that the ratio r is less than 1. It is not clear why this may be the case.

It is also important to note that the power advantage is less than that predicted in
chapter 4. A few factors may contribute to this. First, the muscle parameters (particularly
those of the bilinear model), while based on the data from chapter 3, may not necessarily
be the same for the particular preparations used. Secondly, while in simulation the power
factor can, in theory, be magnified by a factor of 9, this will inevitably require motions with
amplitudes and velocities that are higher than for the ranges characterized in chapter 3.
The same would also apply to the limitations on forces produced.
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Figure 5-7: Comparison of power output of individual muscles vs. power output of pairs.
The left column (a, c and e) shows bar charts of absolute power measurements. The right
side plots show data normalized by Pa+n for each measurement. The error bars in the
normalized plots indicate ± one standard deviation. The measurements of Pa and P" are
stacked on top of each other to be compared with the measurements of Pa+n.



Chapter 6

Conclusions and Future Work

This thesis set out to answer the following questions:

* How is the power generating capability of muscle maximized?

" Are there situations in which antagonist co-activation leads to enhanced muscle power
generation, and if so, what is the underlying mechanism?

Several tools were assembled to answer these questions. The first question was tack-
led via model-based optimal-control. Necessary conditions for optimality suggest that to
generate maximal power, the optimal stimulation pattern takes a bang-bang form. This
optimization was based on a muscle model obtained via identification techniques. Identi-
fication results show that the description of the contractile dynamics of muscles based on
a Weiner model structure yields a reasonable approximation of their responses (approx-
imately 75% VAF). These results were consistent across different specimens of the same
muscle type. Surprisingly, the contractile forces, in their aggregate effects, were indepen-
dent of the velocity of contraction.

To enable experimentation, necessary instrumentation was developed in chapter 2. The
instrumentation hardware and software allow for a clear separation between load dynamics
and muscle dynamics, and allow for the study of the interaction of muscles with loads. This
is an important feature. Furthermore, we demonstrated a new method by which muscle
workloop energetics can be evaluated, and antagonist pairs can be studied in vitro. The
experimental results of this thesis could not be attained with standard, zero-admittance
muscle workloop measurements.

The second question was tackled via computation of the optimal solutions as well as
experimental verification of antagonist workloops. It was found that the impedance of
muscles plays an important role in determining power-optimal stimulation. The optimal
contraction frequency must include the effects of muscle impedance when coupled to the
load. The level of muscle co-activation modulates the net contribution of muscle stiffness
to the load dynamics. Depending on the desired excitation frequency, optimal stimulation
parameters show direct modulation of co-activation about a baseline that is determined by
the excitation-contraction dynamics of the muscle. Furthermore, antagonist muscles may
cooperate to produce more power synergistically than compared to the sum of powers from
the muscles acting on the load independently. Finally, an interpretation of our findings
based on the classical engineering notion of impedance-matching was presented.



6.1 Future Work

Biological evidence of co-activation Are there examples of biological motions that
use co-activation to enhance output energetics? For example, EMG readings of antagonist
muscles actuating the pectoral fin in the bluegill sunfish show an overlap in stimulation [50]
at steady-state locomotion. This implies co-stimulation, which is a stronger condition than
co-activation. Is this co-activation due to a need for stabilization, a need for higher energetic
performance, or is it perhaps a necessary consequence of the dynamics and kinematics of
swimming?

What is the role of series elasticity? Tendons may provide a substantial amount
of series elasticity [77]. The form of series elasticity affects the capability of a muscle to
modulate the net impedance of muscle-tendon complex. If the tendons are linear springs
(i.e. constant impedance), then this capability diminishes. If the tendon is a nonlinear
hardening spring, then the stiffness due to co-activation depends more on tendon properties
than muscle properties. The question becomes, to what extent is it possible to modulate
the stiffness given the tendon properties, and what are the implications on optimized power
energetics? Furthermore, from an anatomical perspective, is there any correlation between
the stiffness of the tendons and the need to modulate impedance (from an energetics point
of view)?

Investigating the role of series elasticity requires reformulation of the problem. Simply
adding the elasticity in the model does not suffice since the resulting equations suffer from
derivative causality (see [7], page 33), and thereby the dynamics of the system become
ill-posed. Therefore small masses mt are added to alleviate this problem, with the added
advantage of modeling the muscle and tendon masses. The resulting model is shown in figure
6-1. While this problem is more complex (10th order system), the optimization techniques
should still apply.

Load

Agonist Muscle K B .pAntagonist Mmusce

Figure 6-1: Problem setup with tendon elasticity. The tendon stiffness is shown as k.

On the apparent lack of velocity dependence In chapter 3 it became apparent that
for the proposed model structure and the experimental protocol employed, the muscle re-

sponse exhibited minimal dependence on velocity. Further work is needed to clarify if this
is an artifact of the model-structure utilized and the particular experimental design, or if
this is an intrinsic muscle property that becomes more apparent at sub-maximal stimulation
levels.
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From an energetics perspective, is muscle impedance a "bug" or a "feature"?
The plots of figure 3 show that across a broad frequency range, bilinear muscles show the
same peak energetic level as that obtained by impedance-free actuators. This may imply
that the impedance properties of muscles are energetically undesirable (a "bug") since the
required co-activation is metabolically expensive. On the other hand, one may ask if there
are situations where the impedance of muscles enables higher levels of power generation. For
example, muscle stiffness may create resonance out of non-resonant loads, and co-activation
may be used to modulate the resonance frequency'. This would potentially lead to large
energetic advantages. In this case, muscle impedance would be a desirable "feature".

Additional muscle functions We only looked at one particular biomechanical role for
muscle: that of power generators. Many other roles are at least equally important (as
illustrated in figure 1-1). Therefore many questions arise, including: How do the conclusions
of this thesis change when muscles act as power absorbing dissipating elements [2]? Is
the change simply a change of sign in the optimal control formulation, or are there other
consequences that need to be accounted for? How can direct or feedback modulation of
joint stiffness be implemented?

Implications on new actuator designs The results of this thesis may also have impli-
cations on new actuator design and control methodologies. The essential property of muscle
that was exploited is that muscle stiffness increases with activation. This gave rise to the
bilinear model, based on which the role of co-activation was studied. Several actuator mate-
rials do exhibit a similar increase in stiffness with activation. For example, Nickle-Titanium
(NiTi) shape memory alloys exhibit a three fold increase in stiffness across their activation
range while polyelectrolyte gel actuators experience upto a ten fold increase in stiffness. [41].
Since those actuators offer that same essential feature, the analytic and optimization tools
developed in this thesis may be applicable as well.

Muscles as engineering actuators Can muscles be used as viable engineering as actua-
tors in robotic systems? Monetemagno and colleagues [45] have demonstrated micro devices
that are actuated by cultured muscle tissue. Similarly micro-fluidic systems have been used
as perfusion systems to differentiate, align and engineer muscle tissue [3]. The ability to
use muscle optimally in those circumstances, particularly from an energetic perspective is
desirable. The work presented in this thesis sheds light on how to control the muscles of
maximal energetic performance.

'This was suggested by Professor Neville Hogan.
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Appendix A

The Structure and Function of
Skeletal Muscle

A.1 The structure of skeletal muscle

What gives rise to muscle force? At the most basic level, muscles consist two types of
parallel protein filaments: thick filaments and thin filaments. Thick filaments consist of
the protein myosin with myosin heads that protrude radially outwards of the bundle. The
thin filaments predominantly consist of the proteins actin, tropomyosin and troponin. Other
proteins exist, such as titin for example, that play secondary roles in the contractile process,
but provide structural integrity to the muscle [24].

The sarcomere is the smallest functional unit of the muscle. A sarcomere consists of
a bundle of protein filaments that are organized in an hexagonal, inter-digitating manner.
Sarcomeres are typically 1 micron in diameter, and 1-3 microns in length, depending on
the contractile state of the muscle. Sarcomeres are connected in-series, forming myofibrils.
These are wrapped in a network of electrical conduction pathways and stores of calcium ions
called the transverse tubules and the sarcoplasmic reticula. Myofibrils are bundled to form
muscles fibers which, in turn, form the muscle belly. The fibers extend along the length of
the muscle, connecting two tendons, that form the mechanical interface with the skeletal
structure.

The muscle interfaces with the nervous system via the motor end plates at the neuro-
muscular junction. The neuromuscular junction conducts the action potentials that encode
motor commands from the nervous system to the muscle body. The end plates contain a
collection of receptors of acetylcholine, a common neurotransmitter. This allows the muscle
to interface with the nerves in a manner similar to synapses.

Once a descending action potential crosses the neuromuscular junction, it is conducted
to the entire muscle volume via the sarcoplasimic reticula and the transverse tubules. The
action potential temporarily depolarizes the cell membranes, and allows calcium ions (Ca 2+)
to diffuse to the sarcoplasm by the action of calcium ion channels. The presence of Ca 2+,
'phosphocreatine, ATP and other metabolites allows the molecular contractile machinery
to operate. The actin-troponon-tropomyosin complex undergoes conformal changes in the
presence of calcium to expose myosin binding sites. Myosin heads, which are undergoing
random motions attach to those binding sites forming transient linkages, or a cross-bridges.
Cross-bridges execute two power strokes that generate relative forces between those two
chains before detaching. Thus, the cross-bridge is the fundamental indivisible unit of muscle
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contraction is the cross-bridge. The net result is a sliding motion between the two chains,
which gives rise to the name sliding-filament model of contraction. The parallel action of
a large number of cross-bridges acting simultaneously sum up to give rise to the muscle
force. The active stiffness of the muscle is also largely dependent on the number of binding
cross-bridges, which makes bilinear muscle models plausible.

A.2 Macro-scale mechanical properties

The structure of muscles and its contractile mechanisms give rise to a set of well defined
biomechanical properties that are well studied. Those properties define a contractile force
as a function of its activation, mechanical state (strain, relative velocity, and force), as well
as its chemical state. Several cross-sections this relationship have been well defined in the
biomechanics literature.

For example, a muscle's passive force-length characteristic measures the forces generated
by the muscle as a function of its length in the absence of any activation. Active force-
length relationships typically are characterized at at full activation (although sub-maximal
relationships have also been reported). Such experiments have been reported at the level
of individual muscles, fibers, sarcomeres, both in vivo and in vitro [56, 74]. Similarly
force-velocity characteristics measure such quantities at constant velocities. Again, most
canonical measurements characterize such properties either in the absence of activation
(passive damping) or under full stimulation. These are just two examples of the many
possible characterizations performed on muscle.
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Appendix B

Impedance Matching

In this appendix, the classical engineering notion of impedance matching is considered in
relation to the optimal power conditions described in the previous chapters. Impedance
matching is an important concept heavily utilized in the design of antennas, robotic trans-
mission systems, power grids, and others. This appendix serves the discussion in chapter 6
where we interpret the optimal control results in the context of impedance matching. The
conditions are derived for three cases:

" An interconnection of linear systems operating in DC conditions

" An interconnection of linear systems operating in steady-state AC conditions

" An interconnection of a bilinear source and a linear load operating in steady-state DC
conditions

" Finally, for bilinear system source and a linear load operating in steady-state AC
conditions, the approach is only stated.

To generalize the discussion, we use generalized domain-independent variables. Gen-
eralized effort variables are e(t), E(s) (time and frequency domains), and generalized flow
variables are f(t), F(s). In the mechanical domain, the effort variable is force and the flow
variable is velocity. In electrical networks the effort is typically a voltage and the flow is the
current to the network. The subscripts ()L and (-)s denote load and source respectively.
Therefore the load impedance is ZL and the source impedance is Zs. Optimal variables are
denoted by an asterisk (e.g. Z ), and conjugates of complex numbers are indicated by an
apostrophe (e.g. Zs).

It is important to clarify if the source is modeled as a Thevenin equivalent network or
a Norton equivalent network. In a Thevenin equivalent network, the source is modeled as
an ideal effort source is series with an internal impedance. In a Norton equivalent network,
the source is modeled as an ideal flow source in parallel with an internal impedance. The
distinction between the two is important because the statement regarding the conditions
for optimal power requirements will be different under both cases. For example, in the
linear DC case, if we are modeling the source as a Thevenin equivalent network, then it
is generally desirable to minimize the series source impedance in order to maximize power
transfer. In contrast, if we are modeling the source as a Norton equivalent network, then it
is desirable to maximize the parallel source impedance in order to maximize power transfer.
Converting from one network representation to another will show that the conditions are
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Source

Figure B-1: Thevenin equivalent network

essentially identical - it is only the statements that differ. Therefore confusion may occur
if the source model is not clearly defined. In the following discussion, we will consider only
Thevenin equivalent networks.

B.1 Impedance Matching for Linear Systems

B.1.1 The linear DC case

Assume a Thevenin network representation of a source driving a load. The source is mod-
eled as an ideal effort source providing constant effort E, in series with a DC impedance
(resistance in this case) ZS as shown in figure B-1 . Since we are considering the DC case,
the source and load impedance are real, nonnegative quantities. The flow in the network is
denoted by F. Therefore, the source is described as

ES = Eo - ZsFz

A linear load is described by

EL = ZLFL

When the two systems are interconnected, we impose the conditions of common flow
and effort, that is FL = Fs = F and ES = EL = E. Solving simultaneously in terms of the
common variables gives the following operating point:

F EoF-=
ZL + ZS

E =Eo ZL
ZL + Zs

At this operating point, the power flow is given by

P = EF = E2  ZL
(ZL + Z) 2
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Now consider under what conditions is the power transfer maximized. The power is
clearly dependent on Eo, ZS and ZL. Examine the effects of varying the three parameters
on the net power flow:

Case 1: Maximizing over the effort source E,0

E* = arg max P = arg max E2 ZL = Eomax
0 Eo E, 0 (ZL + Z) 2 I

which implies that the optimal effort should be maximized to the highest possible value
Eomax.

Case 2: Maximizing over the source impedance (Zs)

Z = argmax P = argmax E2 ZL } =
ZS ZS " (ZL + Zs)2

The power transfer is maximized by minimizing the denominator. Clearly for all non-
negative Zs, this is attained at the minimum possible value ZS = Zym'.

Case 3: Maximizing over the load impedance (ZL)

Z = arg max P = arg max E2 ZL }
zL zL (ZL + Zs)2

To solve this, we write:

dP 2 1 ZL(-2)
=0 = E2+

dZL (ZL+Zs)2  (ZL+Zs))3

0 = (ZL+ZS)-2ZL

=>ZL = Zs

Therefore the optimal load impedance is equal to (or matched to) the source impedance.
Having said that, the maximal power is given by

_ (Emax)
2

In summary, for a DC network, and in the absence of other constraints, to maximize
the power transfered from the source to the load, the effort source should be maximized.
In parallel, the source impedance should be minimized. Finally, the load impedance should
should be selected, when possible, to match that of the source.

B.1.2 The linear dynamic case

Now consider the situation when the source and load impedances are linear dynamical
systems undergoing steady-state sinusoidal responses. Following the same analysis steps as
before, assume that the ideal effort source is given by

Eo(t) = EoejWt
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The source effort is then given by

ES = (Eo - Zs -Fs) eiwt

where here Zs, ZL, FS and FL are in general complex quantities. The load is characterized
by

EL(t) = ZL - FLeiwt

Imposing interconnection constraints, we have FS = FL = F and ES = EL = E. Solving
simultaneously, we get:

1 jiF = E0eiwt
ZL+ZS

E = E 0 ZL eiwt
ZL + ZS

The power is characterized by the following phasor quantity

P = E-F'

_ |E0|2 ZL
IZL + Zs| 2

Note that this is the complex power, which includes the real power (real part) and the
reactive power (imaginary part). Also note that the frequency of power oscillation is twice
that of the source. Our objective is to find what conditions give rise to maximal real power
transfer.

The reactive power is not considered in steady state cases because it integrates to iden-
tically zero over a complete cycle. The real power is given by:

Preal = {IEo|2 ZL }
|Z L + Zs|2l

E012  RL

IZL + Z 2

=E012  RL
(RL + Rs)2 + (XL+ X) 2

where ZL = RL + iXL and Zs = Rs + iXs. Note that resistances R(.) are non-negative,
where as reactances X(.) can be either positive or negative.

Similar to the discussion for the DC case, we now define three cases:

Case 1: Maximizing over the effort source E0 Similar to above

E* = arg max P = arg max |E|2 R SL =2 EEo Eo |ZL+Zs|J

which implies that the ideal effort source should be maximized to the highest possible limit
Egma .
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Case 2: Maximizing over the source impedance (Zs) The source impedance con-
sists of two parts (Rs and ZS). We maximize over each separately

RS arg maxPreai = argmax E0 |2(RL+Rs)2 +RL+Xs) 2  =R"

X = arg max Preai = arg max |E| (R + R) 2 + (X + X) -XL

Case 3: Maximizing over the load impedance (ZL) Again, the impedance consists
of two parts (Rs and Zs). We maximize over each separately

XL = arg max P = arg max IEO2 RL
XL XL (RL + Rs)2 +(XL + Xs)2

To solve this, we write:

0 = dPreai - |E012  -RL 2 (XL + Xs)
dXs ((RL + Rs)2 + (XL + XS)2)2

0 = XL+XS

XL = -XS (B.1)

R* =argmaxP=argmax |E012  RL
RL RL (RL + Rs)2 + (XL + XS) 2 J

To solve this, we write:

dPreal = 1E012  1 -E2-RL'2(RL+RS)

dRL (RL + RS) 2 + (XL + XS) 2  ((RL + Rs)2 + (XL + Xs)2) 2

0 io2 1 1- RL* 2(RL +RS)

(RL + Rs)2 + (XL + XS) 2  (RL + Rs)2 + (XL + Xs)2

RL = 2+ (XL + Xs) 2  (B.2)

= Rs if XL = -XS as from above

In summary, for the dynamic case, and in the absence of other constraints, to maximize
the power transfered from the source to the load, the effort source should be maximized. In
parallel, the real part source impedance should be minimized, and then, the load impedance
should match the complex conjugate of the source impedance, or ZI(jw) = Z'(jw).
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Complex Conjugate Impedances

What does it mean to have the complex conjugate impedance of a mechanical system? The
impedance of a mass-spring-damper system is given by

I(j) = M 2 + jBw + K

= B+j Mw- )

Therefore the complex conjugate of this can be attained at a particular matching fre-
quency wm as such:

K
I*(jw) = B + j ( Mm

which can be attained, for example, if the mass of the conjugate system has a mass of
(K/w 2) and a stiffness of (MW2). See plots below for examples.

B.2 Impedance Matching for Linear Loads with Bilinear Sources

What happens in the case of a bilinear source? In this section we consider

The DC Bilinear Case

Consider a case where a muscle is attached to a mass-spring-damper system. The stiff-
ness and damping of the muscle are activation dependent, and are given by the bilinear
formulation. In terms of impedances, we may write (while abusing notations):

Zs= b* + -o + b+ -) Eo
s s

From the power formulation, recall that
EZL

P =E -F = EZ Z

(ZL + ZS)
2

To compute the optimal activation (E,) that gives us the most power, we write

dP OP OP OZs

dEo O +0Zs Eo

2EOZL -2E2ZL ~ I
0- =I b+-

(ZL + ZS) 2 + (ZL + ZS) 3  s

0 = ZL (ZL + Zs) - EoZL + -
s

0 =Eo (ZL + ZsZSO)
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which clearly is satisfied when E, = 0, which corresponds to a minimum rather than a
maximum. The power actually has no maximum. It's supremum is never attained. This
supremum is given by

ur ZLlim P=- Z
Eo--oo Z 2

which is a complex number that indicates both the real and reactive power.

The Dynamic Bilinear Case

In such an analysis, one can no longer write the expression in a simple form as above. The
problem will need to be cast in a optimal control framework as in chapter 4.
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Appendix C

Simulation of Periodic Solutions

This appendix presents a method of computing periodic solutions of system 4.5 due to the
periodic control input. One way to simulate the system is to integrate equation 4.5 (perhaps
via Runge-Kutta integrators) starting with zero initial conditions. We may integrate the
system for a sufficiently long duration until the homogeneous solution dies out, leaving only
the forced periodic response. In our studies, we found that this approach is not practical
because the computational time is very long. This is particularly important since we will
need to evaluate many cases to achieve a systematic search over the parameters of the input
functions.

An alternative, and less time consuming approach is to directly find a periodic solution
that satisfies the model equations. In this appendix, we describe how this is achieved. The
method is based on harmonic balancing, and is described as follows.

We need to find periodic solution of the state vector x due to a periodic input vector
u and satisfies the system differential equation 4.5. First let us write the control inputs in
terms of their Fourier series coefficients

00

ui = E culke ikt
k=-oo

00

U2= cU2ke 'w;
k=-oo

Next we recognize that the solution of the system will also be periodic. Therefore, the
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solution for each of the states and their derivatives can be written in terms of Fourier series:
00

El Calkeiwkt i
k=-oo

00

1 =Z C,31ke iwkt
k=-oo

00

a 2 = cCa2keiwkt i
k=-oo

00

02 = E CB32keiwkt

k=-00

00

S= E Cxkeiwkt

k=-00

Z = ckkiwkt

k=-00

00

E1 Caikiwke ikt.;

k=-oo

00

1 cEC13ki( iwkt.
k=-oo

00

62 = E Ca2kiwkeiwkt.;
k=-oo

$2 = E C0kiwkeiwkt.

k=-oo

00

E cxkikeiwkt.
k=-oo

00

E Ckiwkkiwkt.
k=-00

The differential equation 4.5 represents a constraint relating the Fourier coefficients of
the different states c.k. If the system was linear, then those constraints would also be
linear, and solving for the coefficients would be straightforward. However, because of the
nonlinearity in the forcing function, the constraints in the coefficients become nonlinear as
well.

By judicious choice of solving for parameters, and exploiting the multi-linear structure,
the problem can be solved by a cascade of least-squares regression computations, that are
relatively fast. We proceed as follows. From equation (4.5), it is clear that the dynamics of
aei, flu, 1a 2 , 32 are linear in ul and u2. Therefore, the Fourier coefficients of those variables are
directly related to the Fourier coefficients of the control inputs by the value of the transfer
functions evaluated at s = iwk. Therefore,

1PukCuk

CB-1 k = iw k -p1

Caik = COi k

k -P2U 2 k
CC -k2/3k-iwk -p2

(C.1)

CUk= CB2k
ca 2 k =iwk - Pa2

Since the forcing term is nonlinear, we use a slightly different approach to solve for cxk

Mz + Bt + Kx = (A 2 - A 1 ) - B 2 (X - X') - B1(x + x) + (C2a2 - Cia1)

-D2(X - zy2)a2 - D1(zi + z)al

Substituting x = E cxkeiwkt we get
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Nk(t)

(-w 2k2 M + iwkB + K + B1 + B 2 + Dia1(t) + D2a2 (t)] eiwkt Cxk

A 2 - A1 + B 2x" - Bizx + (C2 + D2x)a 2 (t) - (C1 + Dixo)ai(t)

bk (t)

or

Nk (t)cxk = bk(t )

Writing this last expression for different k and t, we get

' Nk(to) ' bk(to)

Nk(t) Cxk = bk(t)

_ Nk(tf) _ L bk(tf)

NCxk = b

Cxk = (NTN)-lNTb (C.2)

Finally,

Cdk = iwkCxk (C-3)

In summary, the procedure becomes:

1. Compute Culk and cU2 k, the Fourier coefficients of u1 and U2 respectively.

2. Using Culk and Cu2 k, compute the Fourier coefficients C/31k, Calk, c02 k, and Calk as in
equations C.1.

3. By inverse Fourier transforms, compute the states #1(t), a1 (t), #2(t), and a 2(t).

4. Compute the coefficients Cxk and Ck using equations C.2 and C.3..

5. Compute x(t) and (t) by inverse Fourier transforms.

6. Compute the power P(t) = i(t) -Fnct(t)
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