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ABSTRACT

As dimensions shrink and current densities increase, the reliability of metal

interconnects becomes a serious concern. In copper interconnects, the dominant

diffusion path is along the interface between the copper and the top passivation layer

(usually Si 3N4). One of the predominant failure mechanisms in Cu has been open-circuit

failure due to electromigration-induced void nucleation and growth near the cathode

ends of interconnect segments. However, results from accelerated electromigration tests

show that the simple failure analyses based on simple void nucleation and growth can

not explain the wide range of times-to-failure that are observed, suggesting that other

types of failure mechanisms are present. In this thesis, by devising and performing

unique experiments through the development of an electromigration simulation tool,

unexpected complex failure mechanisms have been identified that have significant

effects on the reliability of copper interconnects.

A simulation tool was developed by implementing the one-dimensional non-

linear differential equation model first described by Korhonen et al. By applying an

implicit method (Backward Euler method), the calculation time was significantly

reduced, and stability increased, compared to previous tools based on explicit methods

(Forward Euler method). The tool was crosschecked with experimental results by

comparing void growth rates in simulations and experiments. Using this tool, one can

simulate stress and atomic concentration states over the entire length of an interconnect

segment or throughout a multi-segment interconnect tree, to identify analyze possible

failure locations and mechanisms.

Experiments were carried out on dotted-i structures, where two 25pm-lomg

segments were connected by a via in the middle. Electrical currents were applied to the

two segments independently, and lifetime effects of adjacent segments were determined.

Using the simulation tool and calculations, it was shown that adjacent segments have a

significant effect on a segment's stress state, even if the adjacent segment has no

electrical current. This explains experimental observations. This also suggests that for

reliability analyses to be accurate, the states of all adjacent segments must be considered,

including the ones without electrical current.

In a second set of experiments, the importance of pre-existing voids was

investigated. Using in-situ scanning electron microscopy, voids away from the cathode

were observed. These voids grew and drifted toward the cathode and the shape of the

voids were found to be closely related to the texture and stress state of individual grains

in the interconnect. The drift velocity of voids was shown to be directly proportional to



surface diffusivity. Electromigration tests on unpassivated samples were performed

under vacuum to obtain the surface diffusivity of copper and its dependence on texture

orientations.

Simulation results show that pre-existing voids cause void growth away from

the cathode. Subsequent failure mechanisms differ depending on the location of the pre-

existing void and the critical void volume for de-pinning from grain boundaries. If pre-

existing voids are present, void-growth-limited failure is expected in interconnects at
low current densities, due to growth of pre-existing void, and the lifetimes are expected

to scale inversely with j. However, at higher current densities (typical for accelerated

testing), failure can occur through nucleation of new voids at the cathode (so that
lifetimes scale inversely with j2), or through a mixture of nucleation of new voids and
growth of pre-existing voids. These effects must be taken into account to accurately
project the reliability of interconnects under service conditions, based on experiments

carried out under accelerated conditions.
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FIGURE AND TABLE CAPTIONS

Chapter 1

Figure 1.1 Schematic diagram of interconnects in first (a) and second (b) metallization.

Stress gradient (Oa/Ox) opposes e- force.

Figure 1.2 Stress profile with time increments along the length (20pm) of the
interconnect with electrons flowing left to right. Note that void is forced not to nucleate.
Magnitudes of maximum tensile stress at cathode end and maximum compressive stress
at anode end are identical at steady state.

Figure 1.3 Stress profile with time increments along the length (20gm) of the
interconnect with electrons flowing left to right. Void nucleates once stress reaches
40MPa. Steady state is reached with stress at cathode end fixed at zero.

Figure 1.4 Atomic concentration with time at the cathode end of the interconnect. The
rate of change decreases as the steady state is reached. The size of the void can be
calculated by subtracting the value in this graph from the initial concentration state.

Figure 1.5 Aluminum fabrication process. (a) Al and shunt layer are deposited using
PVD. (b) Metals are patterned and etched with RIE. (c) Dielectric material is deposited
with CVD. (d) CMP dielectric material (e) Dielectric material is patterned and etched
with RIE. (f) Via material is filled for next metallization.

Figure 1.6 (a) Void nucleating at grain boundary site, (b) Void spans through thickness
and width of the interconnect to cause failure by high resistance.

Figure 1.7 (a) Polycrystalline Al (b) Polycrystalline Al with large grains (c) Bamboo Al.

Figure 1.8 (a) Schematic of Al interconnect tree (b) Separating interconnect tree into
individual segments for reliability estimation.

Figure 1.9 Copper fabrication process. (a) ILD is patterned and etched with RIE. (b)



Diffusion barrier layer and Cu seed layer is sputter deposited. (c) Cu is electroplated (d)
Over-burden Cu is polished with CMP, and diffusion barrier passivation layer is

deposited.

Figure 1.10 Void nucleation site in Cu interconnect. Void nucleates at the Cu/Si3N4

interface near cathode end.

Chapter 2

Figure 2.1 Sketch of an interconnect segment: a) side view, b) top view.

Figure 2.2 Discretization of an interconnect segment into individual cells. The stress
and atom concentration is tracked for each cell. The atomic flux between cells is
calculated by using a staggered grid system, which can be envisioned as corresponding
to cell boundaries.

Figure 2.3 Stress profile with At larger than the stability limit in forward-Euler method
(low-order explicit method). Notice that the stress profile shows random behavior.

Simulations conditions : 50 cells of 1.O m length, total length = 50pm, j = 2.5MA/cm2
T = 623K, D = 4.5x10-16 m 2/s.

Figure 2.4 Calculation time comparison for explicit-based and implicit-based methods.

Simulations conditions: (a) 100 cells of 1.0pm length, total length = 10Om, j =
2.5MA/cm2 , T = 623K, D = 4.5x106 m2/s; (b) 200 cells of 1.0gm length, total length =

200pm, j = 2.5MA/cm 2, T = 623K, D = 4.5x106 m2/s. (c) is the close up region of (b).

Figure 2.5 Schematic diagram of an interconnect tree where two segments are
connected with a via in the middle. Current density (j ) of the left segment is fixed

while j in the right segment is varied. T=3500C, jL=O, i0.5, ±1.5, ±2.5 (MA/cm2 ), two

25gm segments for total 50gm in length. Detailed analysis is in chapter 4.

Figure 2.6 Stress evolution before and after nucleation of a void at the cathode. (a)
Stress profiles at 1 hour intervals of simulated time. A void nucleates when the stress

reaches the critical value Tcrit=40MPa. (b) Concentration vs. time in the first cell where
the void nucleates. Note that there is a sudden increase in the rate of depletion of atoms



when void nucleation occurs, due to the sudden change in the stress gradient, both in

magnitude and sign. Simulation conditions: 50 cells of 1.0gm length, total length =

50ptm, j = 0.5MA/cm2 , T = 623K.

Figure 2.7 Stress profiles at 1 hour intervals of simulated times for an interconnect

segment with a pre-existing void 5pm away from the cathode. (b) Volume of pre-
existing void vs. time. Simulation conditions: 50 cells of 1 .Om length, total length =

50pm, j = 0.5MA/cm 2, T = 623K.

Figure 2.8 Stress profiles at 1 hour intervals of simulated time for an interconnect
segment with diffusivity variations of the type expected in polycrystalline segments.
Note that the diffusivity effect decreases as the stress approaches a steady state.

Simulation conditions: 30 cells of 1.0gm length, total length = 30gm, j = 0.5MA/cm 2, T
= 623K, D varied between 0.5Deff to 2Deff.

Chapter 3

Figure 3.1 Schematic diagram of Ml and M2 structures.

Figure 3.2 Preferential void nucleation and growth at the Cu/Si 3N4 interface in (a) M1
and (b) M2 structures.

Figure 3.3 The number of atoms removed from a void nucleation site vs. time in (a)
50gm, (b) 100gm, and (c) 800gm lines, as determined through simulations.

Figure 3.4 (a) M2 L=800pm, w=0.28pm, current terminated after 312 hours.
(b) M2 L=800pm, w=1.00gm, current terminated after 55 hours.
(c) Ml L=1OOgm, w=0.28pm, current terminated after 192 hours.

Figure 3.5 f=atomic flux (a) Void nucleation and growth away from the cathode in M2.
(b) Void nucleation and growth at the end of the cathode in M2.

Figure 3.6 (a) Cathode of M2 interconnect, L = 800gm, w = 0.28gm, STTF at j =
22.5MA/cm. (b) Cathode of M2 interconnect, L = 100pm, w = 0.28gm, STTF at j =

2.5MA/cm2.

Xiii



Table 3.1 t5o's and STTFs The widths of all lines are 0.28gm; All lines are single via

terminated; the thickness of M1 is 0.34gm and of M2 is 0.24gm. All tests were done at

T = 350 *C Assumed failure when resistance increases more than 30% of the initial

resistance [Gan 2001]. j=current density, L=length

Table 3.11 number of removed atoms and void volumes j=current density, N=number

of atoms removed, V=void volume, L=length of the interconnect

Table 3.111 void volume comparisons The error range of measured void volumes is

within 0.4 x10-20 M3 . VEx/Vsim corresponds to ratio of the voids between experiment and

simulation.

Chapter 4

Figure 4.1 (a) Top and (b) cross-sectional view of the dotted-I test structure. The arrows

indicate the directions of the electron flow.

Figure 4.2 (a) Plot of the percentages of samples in which the right segment failed, as a

function of the current density in the left segment, jL. (b) Plot of the percentage of the

samples that failed with failure occurring first in the left or right segments, or with

failure occurring simultaneously in both segments.

Figure 4.3 SEM images for the voids formed in the right segments either (a) at the

cathode or (b) at region close to the central via, though the left segments had higher

current densities. The arrows indicate the directions of electron flow.

Figure 4.4 TEM image of the central via for the failed sample where jL = -0.5

MA/cm2.

Figure 4.5 SEM image for the large volume void in the left segment for jL = -1.5

MA/cm 2 where the right segment first failed.



Figure 4.6 (a) SEM image of a failure site near the central via in the right segment for

jL = -1.5 MA/cm 2. The arrows indicate the directions of the electron flow. (b) SEM
image of the trace of metal extrusion at the Cu/Si 3N4 interface parallel to the test line.

The arrows indicate the extruded metal with clear dielectric cracks, while the dashed-

circle is the erupted failure site in (a). The M2 test line is not visible as it had been over-

cut.

Figure 4.7 Plot of the overall failure percentage of the tested structures for tests
carried out under conditions leading to different values of (jL),g. Absolute immortality

was obtained from 10 lm-segment dotted-I with [0 <-0.5 MA/cm 2] test configuration.

Figure 4.8 Simulated stress evolution for various test.

Figure 4.9 Schematic illustration of the balanced stress distribution with and without
a passive segment for the cases (a) when void nucleation does not occur (the peak
tensile stress is higher when there is a passive reservoir) and (b) when void growth
saturates (the void length at saturation is larger when there is a passive reservoir).

Table 4.1 Percentages of the 50p m-long dotted-I (25pm segment) that failed, for
individual segments and for the overall structure. The arrows indicate the electron flow
directions. R denotes the right segment and L the left segment. Also shown are the
percentage of the failures that occurred first in the right or left segments, and the
percentage of the samples that failed simultaneously in both the right and left segments.

Table 4.11 Failure percentages for the 20pm-long dotted-I (10ptm segment).

Chapter 5

Figure 5.1 Si3N4 passivation layer thinning process using focused ion beam (FIB).
Thinning process enables to see Cu/Si 3N4 interface more clearly using SEM.

Figure 5.2(a) In-situ SEM images of the voids from the top view with out of plane
orientation of the tested samples and resistance during the test. The width of the test
structure is 0.3pm.



Figure 5.2(b) In-situ SEM images of the voids from the top view with out of plane

orientation of the tested samples and resistance during the test. The width of the test

structure is 0.3gm.

Figure 5.2(c) In-situ SEM images of the voids from the

orientation of the tested samples and resistance during

structure is 1.0 m.

Figure 5.2(d) In-situ SEM images of the voids from the

orientation of the tested samples and resistance during

structure is 1.0ptm.

Figure 5.2(e) In-situ SEM images of the voids from the

orientation of the tested samples and resistance during

structure is 2.25pm.
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Figure 5.3 Void drift velocities at various line widths. Average drift velocities are

3.3 nm/min (0.3prm), 7.62nm/min (1.0tm), and 46.22nm/min (2.25gm).

Figure 5.4 Shape of the void drifting in a single grain region is well maintained until

the void reaches to the different grain.

Figure 5.5 (a) First void passing through a circled region of the grain and (b) second

void passing through a circled region of the grain. Cathode edge of the second void has

the same shape as the grain, but the shape of the first void is different, suggesting that

the grain has changed in the circled region after the first void drifted.

Figure 5.6 (a) First void passing through a circled region of the grain and (b) second

void passing through a circled region of the grain. Both cathode edges of first and

second void have similar angle, suggesting that the grain in that region has not changed.

Figure 5.7 Length of the void vs. location of the void for the voids that nucleated away

from the cathode. 1.0ptm width samples.

Figure 5.8 Void residues are observed that are left behind by the first void.

xvi



Figure 5.9 A cartoon shows the case in which void may nucleate and grow. e- is
electrons, and blue arrow indicates the direction of electrons. The void is at a grain
boundary, between grain a and b where diffusivity of Cu/Si3N4 passivation interface in
grain a (Dint(SiN)_a) is larger than that of grain b (Dint(SiN)_b). Thick red arrow in grain a
indicates large atomic flux and thinner red arrow in grain b indicates smaller atomic flux.

Figure 5.10 A cartoon shows the case in which void drifts in a single grain. D, is the
surface diffusivity of the exposed surface at the void, which is much larger than
interface diffusivity (Dint(SiN)) around the void, as indicated by the thickness of the red
arrow. The overall direction of the void drift, then, is against the direction of the
electrons, shown by black arrow.

Figure 5.11 A cartoon shows the case in which the existing or incoming void shrinks
and possibly disappears. Similarly as in Figure 5.9, void is between grain a and b, but in
this case, Dint(SiN)_a is lower than D-int(SiN)_b, leading to smaller outgoing flux from the
void, than the incoming flux to the void.

Table 5.1 Summary of Experimental Results

Table 5.11 Out of plane crystallographic orientations of grains at anode and cathode
edges of the void as voids nucleate away from the cathode end of the interconnect.

Chapter 6a

Figure 6a.1 Surface z*D at Various Temperatures.

Figure 6.2 Average Surface z*D at Various Temperatures.

Figure 6.3 (z*D)s of three different values. Note that z* for Bradshaw was set to 1 [Hu
1999].

Table 6a.I Reported Es and De values obtained experimentally. Note that values
obtained through EM test (first four rows) are (z*D), rather than Ds.

Xvii



Table 6a.II Average void drift velocity obtained from in-situ EM testing [Choi Ch.5]
and drift velocity obtained by using surface diffusivity. T = 370"C, j = 3.OMA/cm2.

Chapter 6b

Figure 6b.1 One of immobile voids in the middle of the

faster diffusivity than the cathode edge of the void.

Figure 6b.2 Inverse pole figures of the cathode edge

immobile voids in the tested samples.

line, anode edge of the void has

(a) and anode edge (b) of the

Figure 6b.3(a) Inverse pole figure of the untested sample with 0.3 jm width, 10OOpm
length. Circled regions show (1 1 1) and its first (1 1 5) and second (7 5 13), (11 1 11)
twin orientations.

Figure 6b.3(b) Mackenzie plot of randomly oriented sample (gray) versus untested

sample (red).

Table 6b.I Volume fractions of orientations within 9" of (1 1 1), its first and second

generation twins, and the rest of the orientation of untested sample.

Table 6b.II Number of grains observed in cathode and anode edges of the voids, within

90 of (1 1 1), its first and second generation twins, and the rest of the orientation of

untested sample.

Table 6b.III Number of grain orientation pairs in each individual voids.

Chapter 7

Figure 7.1 Voids in an interconnect segment terminating in a cathode via below the

segment. (a) Voids most readily nucleate at the Cu-cap interface, and grow at the site

where the electromigration-induced tensile stress is highest. (b) Voids are sometimes

xviii



observed at the base of vias, where they may have nucleated or where they may have
drifted from other locations. Voids are sometimes observed at locations other than
directly at the cathode via. These voids can drift toward the via (c) or grow in place
(d) to cause failure.

Figure 7.2 Voids in an interconnect segment terminating in a cathode via above the
test segment. (a) Voids most readily nucleate at the Cu-cap interface, and grow where
the electromigration-induced tensile stress is highest. Voids are sometimes observed at
locations other than directly at the cathode via. These voids can drift toward (b) the
via or grow in place (c) to cause failure.

Figure 7.3 (a) Void nucleation and growth at boundaries is favored when the atomic
interfac diffusivity at the Cu-cap interface of the cathode-side grain is lower than the
diffusivity of the anode-side grain. (b) Once voids have grown to a critical size they can
de-pin from boundaries and drift toward the cathode. The drift rate is determined by
the magnitude of the diffusivity on the surface of the void relative to the interface
diffusivity.

Figure 7.4 Stress-profiles along a 50pm-long line after four 100-minute steps and
after the last step at 10000min., when the evolution stops due to a balance of the

electron wind force and the back stress (j=0.5MA/cm2, T=3500C, anuc=40MPa). (a)
uniform diffusivity of Do=4.5x10-16m2/s throughout the line. (b) diffusivities of either
Do/2, Do, or 2Do randomly assigned to 50 lpm-long grains (so that the average
diffusivity is Do.

Figure 7.5 Stress profiles after 2-minute intervals, with a 2Pm-long grain 20pm
away from the cathode via with a diffusivity of 100Do (with a diffusivity of Do
everywhere else along the line). (j=0.5MA/cm 2, T=3500 C, anue=40MPa) Notice that
the cathode edge of the grain quickly reaches a local maximum stress that is initially
higher than the stress at the cathode via, but that the stress at the cathode via eventually
exceeds this local maximum stress.

Figure 7.6 Stress profiles after four 2 minute intervals for an interconnect segment with
a 5pm-long cluster of grains with a high diffusivity, with the diffusivity elsewhere set at
Do. (=30MA/cm 2, T=3500C, anuc=40MPa.) The high-diffusivity grain cluster is 3pm
away from cathode via in the 50pm-long interconnect segment. The diffusivity in the

XiX



high-diffusivity cluster is l1 Do in (a) and 5Do in (b). The tensile stress reaches ana
(40MPa) first at the cathode edge of the cluster in (a) and first at the cathode via in (b).

Figure 7.7 Stress profiles at the cathode end of an interconnect segment after five 1-

minute time intervals with a pre-existing void (a) 5pm and (b) 2pm away from the
2ocathode via. (j=3.0MA/cm2, T=370"C, anuc=40MPa) In case (a) the stress at the

cathode via reaches a.uc and the stress in the region between the void and the cathode
via quickly relaxes to zero. In case (b) the stress stops evolving when a force balance

develops, and a void does not nucleate at the cathode via.

Figure 7.8 (a) Stress profiles after five 1-minute. intervals at the anode end of an

interconnect segment with a pre-existing void 5pm away from the anode. (b) Change in
void volume of a pre-existing void as a function of time for voids at different distances

La from the anode via. (Segment length = 1000pm, j=3.OMA/cm 2, T=3700C, D=Do
everywhere a long the segment.)

Figure 7.9 Change in the volume with time for a pre-existing void in the middle of a

50pm-long interconnect segment. The grain on the anode side of the void is 0.6pm long,
with a diffusivity varied from Do/2 to 2Do, while all other regions have diffusivity Do (j
= 3.OMA/cm 2, T = 370"C).

Figure 7.10 Change in void volume as a function of time for pre-existing voids at

different distances from the cathode via Le (j = 3.OMA/cm 2, T = 3700C, anuc=40MPa,

D=Do everywhere). (a) When Lc>L,cr, void growth saturates. (b) Only when Lc<L,cr
do voids continue to grow.

Figure 7.11 Change in the volume with time of a pre-existing void 2mm away from

cathode via with an anode-side 0.6gm-long grain with diffusivities Do/2, Do, and 2Do,
with the diffusivity set to Do everywhere else (j = 3.OMA/cm 2, T = 3700C).

Table 7.1 Parameters used for simulations.

Chapter 8

Figure 8.1 (a) Unpassivated test structure with strips of passivation of desired material.



(b) Assuming surface diffusion is higher than the interface diffusion, voids will grow at
the edges of the passivation.

Appendix A

Figure a.1 TTF of unpassivated and monolayer deposited samples. (a) 0.3pm width and
(b) 1.0im width samples.

Figure a.2 Monolayer deposited samples after EM tests. (a) shows precipitate-like spots
in extrusion monitor righ and test line. (b) Region showing nanowire growth (c) Region
with clean surface.

Figure a.3 (a) Thiol group of diacetylene adheres to Cu surface. (b) UV light turns
triple bonds in diacetylene to cross-linked double bonds with other molecules.

Figure a.4 Other monolayer candidates:
(a) COOH terminated of diacetylene

(b) Mercaptopropyltrimethoxylsilane
(c) Aminopropyltriethoxylsilane

Table a.I MTTF of samples with different monolayers. *Note that a.4(a), a.4(b), and
a.4(c) are monolayers described in figure a.4; very limited number of samples are tested.

Appendix B

Figure b.1(a) A schematic diagram of vacuum electromigration test chamber setup.

Figure b.1(b) A photograph of actual vacuum electromigration test chamber.

Figure b.2 A photograph of actual socket with wires, ceramic package, and halogen
lamp heater.

Figure b.3 Transistor regulates current by difference in resistance of the potentiometer.

Xxi



Figure b.4 It can be controlled with a accuracy with variable resistance in the

configuration shown in the left.
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CHAPTER 1

INTRODUCTION



1.1 ADVANCES IN SEMICONDUCTOR INDUSTRY

1.1.1 Moore's Law

Since the introduction of Intel 4004 4-bit central processing unit (CPU) in 1971,

microprocessors have become an essential part of living. Microprocessors are used in

virtually all electronics that people use, from sophisticated state-of-the-art

supercomputers to everyday gadgets such as cell phones and personal MP3 players.

Because of benefits that microprocessors have provided, pursuit of improving capability

and speed have been at the center of electronics industry's interest. Following Moore's

Law, the density of the transistors in a microprocessor has been doubling about every 2

years, now counting about 600 million transistors in a single chip as of 2007 [Moore

1971]. Moreover, the switching speed of transistors is also steadily rising to decrease

computational time, where the clock speed is over 3.0GHz as of 2006. There have

been many technical challenges to attempts to increase transistor density and the

switching speed.

1.1.2 Technical Challenges in Back-End Technology

Some of these challenges arise from concerns with metal interconnects, which

are fabricated late, or in the 'back-end', of the microprocessor fabrication process.



Interconnects in a microprocessor are electrically conductive wires that connect

transistors to transistors or other parts of the system. These metal interconnects in the

back-end are surrounded by inter-level dielectric (ILD) layers to prevent electrical

shorts and to provide mechanical stability for the wiring. In order to keep up with

increasing transistor density, the total length of interconnects and the current density in a

single interconnect structure need to increase and the spacing between interconnects

(metal 1 wiring pitch) needs to decrease. Currently, as of 2007, the total interconnect

length in a microprocessor is over 1.2km/cm 2, with the smallest width interconnects

reaching 150nm, and the current density as high as 1.37xl0 6A/cm 2 [ITRS]. With

longer total length and higher current density, ensuring interconnect reliability becomes

more challenging.

1.1.3 Challenges in Reducing RC Delay

With increasing interconnect length, delay associated with the interconnect and

the ILD becomes a more serious concern, as the resistance-capacitance (RC) delay time

starts to exceed the gate delay time for CMOS, leading to an overall increase in

calculation time [ITRS]. From the 1960's to the mid 1990's, the materials for the

interconnect and ILD remained the same, aluminum (Al) and SiO 2, respectively.



However, both the resistance of the interconnect and the dielectric constant of the ILD

need to decrease in order to minimize RC delay.

For lowering the dielectric constant of the ILD, a broad range of research is

being conducted using various low-k materials, such as doped SiO 2, polymers, porous

materials and air gaps [Ho 2003] [Hu 1998a]. Beyond manufacturability, the primary

concern is the reliability of low-k dielectric materials, both electrically and mechanically.

It has been observed that as the dielectric constant decreases, young's modulus and

rigidity also decrease, resulting in easy mechanical failure of the dielectric, which can

lead to electrical shorts by extrusion of interconnect material [S.Hau-Riege 2000b].

To reduce resistance, lower resistance Cu is replacing Al. Due to intrinsic

differences between Al and Cu, significant changes have been made in terms of

fabrication processes as well as reliability analysis.

1.2 FAILURES BY ELECTROMIGRATION

1.2.1 Fundamentals of Electromigration

One of the main reliability issues for metal interconnects is due to a

phenomenon called electromigration (EM). Electromigration occurs when electrical

current is applied to a electrically conductive material; electrons transfer momentum to



the conductor atoms and cause the atoms to drift in the direction of the electron 'wind'

(opposite to the direction of current). The atomic flux, Ja, due to the electron current in

a one dimensional system is given by: [Lloyd 1999]

J = - U Eq*
- J pzfe (1.1)

where Deff is the effective diffusivity of conductor atoms in the interconnect, Ca is

atomic concentration, E is the electric field that drives the current, q* is the effective

charge, k is Boltzmann's constant, and T is the temperature. The electric field can be

written as the product of the resistivity, p, and the current density, j. Effective charge

can also be written as the product of the effective charge number, z*, and the electron

charge, e.

1.2.2 Back Stress Effect

Interconnects in an actual device are usually fully surrounded and confined by

ILD, and vias block the diffusion of atoms between interconnects. In this confined

interconnect, electromigration causes atoms to accumulate at the anode which leads to
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Figure 1.1 Schematic diagram of interconnects in first (a) and second (b)
metallization. Stress gradient (Oa/x) opposes e- force.
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Figure 1.2 Stress profile with time increments along the length (20pm) of the
interconnect with electrons flowing left to right. Magnitudes of maximum tensile
stress at cathode end and maximum compressive stress at anode end are identical at
steady state.



compressive stress and deplete from the cathode which leads to tensile stress (Figures

1.1, 1.2) [Blech 1976]. The net atomic flux is also affected by the magnitude of the

stress gradient that opposes the electron wind force.

gradient relationship is given as: [Clement 1995]

The atomic flux and stress

DgC a0-
Jll = " a" kTax (1.2)

where i is the atomic volume and Oa/Ox is the stress gradient along the length of the

interconnect. Putting Eq. 1.1 and Eq. 1.2 into one equation,

D C _ 
0-

Ja = -jpz,e - x .

Thus, typically in interconnects the atomic flux is dominated by two types of driving

forces, electron wind force and the 'back-stress' force due to the stress gradient. Stress

is also related to the atomic concentration through an effective modulus, B, by:

[Korhonen 1993]

(1.3)



a- = -Bln

where Cao is the atomic concentration at zero stress. Figure 1.2 shows the stress

evolution in a one-dimensional (1D) interconnect at given time intervals. This plot

was generated using an electromigration simulation tool developed by Zung-Sun Choi

and Jung Hoon Lee called xSIM, which will be described in Chapter 2.

1.2.3 Steady State with Force Balances

At early times, the magnitude of the stress gradient, which is the slope of the

line in the figure 1.2, is maximum at both ends of the interconnect, and the magnitude

decreases with increasing distance away from both ends. However, the stress gradient

becomes more uniform as time elapses, and the stress state of the interconnect

eventually comes to a steady state with a linear stress gradient along the length of the

interconnect. At steady state, the force due to the stress gradient balances the electron

wind force [Blech 1976]. This leads to net atomic flux of zero. The magnitude of the

stress gradient at steady state is:

(1.4)



0- jpzge

ax 0
(1.5)

Also, at steady state, both the compressive and tensile stresses at the ends of the

interconnect are at their maximum, where the maximum magnitude of the stress is given

as:

jpzy-e
max = - L,

2n
(1.6)

where L is the length of the interconnect. According to equation (1.6), amax varies with

j and L, but it is independent of both the diffusivity and temperature.

1.2.4 Compressive Stress/Extrusion Failures

Many failures of interconnects are related to the development of stress. A

compressive stress at the anode can cause extrusion of atoms from the interconnect

when the liner and passivation layer mechanically fail. Atoms may diffuse or extrude

through the ILD and bridge to other isolated interconnects; causing electrical shorts

between interconnects. Failure due to extrusion, therefore, is closely related to the

mechanical characteristics of surrounding ILD, liner, and passivation layer materials



The materials industry is seeking with lower

dielectric constants to reduce RC delay usually exhibit lower Young's moduli and

toughness, which can reduce the compressive stress required to cause an extrusion

failure. The maximum compressive stress occurs at the end of the anode, which means

that failure due to extrusion is more probable near the anode. Thus, it is important to

consider ILDs with low dielectric constants that also have a relatively small loss in

mechanical strength.

1.2.5 Tensile Stress/Voiding Failures

Another type of failure occurs at the cathode. Electromigration leads to a

tensile stress at the cathode, and if the tensile stress reaches a certain critical stress acrit,

a void nucleates [Rosenberg 1971] [Korhonen 1993] (acrit for Al: [Greenebaum 1991]

[Park 1999], for Cu: [S. Hau-Riege 2002] [C. Hau-Riege 2002]). Similarly to the

anode end where the maximum compressive stress is obtained, the maximum tensile

stress occurs at the cathode end [Blech 1976].

close to the end of the cathode. After the v

Thus, it is most likely to observe voids

oid nucleates, the stress around the void

quickly drops to zero by releasing energy and creating a free surface on the void, and

the tensile stress region gradually relaxes as shown in figure 1.3, with stress at the void

[Morgen 2000] [C.Hau-Riege 2004].
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Figure 1.3 Stress profile with time increments along the length (20Pm) of the
interconnect with electrons flowing left to right. Void nucleates once stress reaches
40MPa. Steady state is reached with stress at cathode end fixed at zero.
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Figure 1.4 Atomic concentration with time at the cathode end of the interconnect. The
rate of change decreases as the steady state is reached. The size of the void can be
calculated by subtracting the value in this graph from the initial concentration state.



fixed at zero. A different steady state is reached with a void present. If the same

magnitude of current density is applied, the difference in stresses between the cathode

and anode ends of the interconnect with the void at the cathode end is identical to that of

the interconnect without a void, because in both cases the magnitude of the stress

gradient at steady state is the same. However, in the interconnect without a void,

magnitudes of tensile and compressive stresses at each are equal (but opposite,

assuming an initial stress state of zero) at steady state, whereas in the interconnect with

a void, the stress is zero at the cathode end and the magnitude of the compressive stress

at the anode end is twice the magnitude of the compressive stress at the anode of the

interconnect without a void.

After the void nucleates near the cathode end, it grows until the interconnect

reaches steady state, because the net atomic flux prior to achieving the steady state

always depletes atoms from the cathode. The rate of depletion decreases as it reaches

the steady state, which leads to a decrease in the void growth rate (Figure 1.4). Thus,

the maximum void volume is obtained at steady state.

Depending on the location of void nucleation, failure can occur in the

interconnect at any time during the void growth. The failure can occur almost

immediately after the time taken to nucleate a void in a specific location, or failure may



never occur if the maximum void volume at steady state does not span the width and

thickness of the interconnect or if current can shunt around the void through the

conductive liner. Criteria for these cases are described in chapter 3.

1.2.6 Black's Equation

Because the failure types and times even at identical test conditions may be

different, several tens of identical samples or more are tested under the same accelerated

conditions, with temperature and current density used to accelerate EM-induced failure,

to obtain statistical results. Failure times (times-to-failure; TTFs) are fit to a

distribution function (mostly either lognormal or Weibull distribution function). The

temperature and current density dependence of the median time to failure, t5o, can then

be analyzed using Black's empirical equation [Black 1967]:

t50 = Aj-" exp ,kT)
(1.7)

where A is a constant, Q is the activation energy, and n is the current density exponent

factor (n). With A, Q, and n obtained from accelerated EM tests, Black's equation can

be used to extrapolate failure times of interconnects in actual operating conditions in



integrated circuit. The exponent factor n is observed to range roughly from 1 to 2. It

has been demonstrated to have a value close to 1 for failures occurring due to void

growth (void-growth-limited failure), and close to 2 for failure occurring due to void

nucleation at specific locations (void-nucleation-limited failure) [Lloyd 1991] [Park

1999] [Andleigh 1999].

However, it is possible to have both void-growth and nucleation-limited failures

in a single set of nominally identical samples under identical test conditions.

Furthermore, there may be other kinetic processes that affect n, such as void drift and

pinning. All failure mechanisms are therefore represented in the obtained current

density exponent and activation energy determined through the process described above.

It has also been demonstrated that under some circumstances, the exponent factor is

different between operating condition and accelerated EM testing conditions [Andleigh

1998]. These problems can lead to extrapolations that can be different by orders of

magnitude compared to actual behavior in real operating conditions. Therefore, an

improved fundamental understanding of different failure mechanisms of interconnects is

needed in order to ensure accurate predictions of the lifetimes interconnects.

1.3 ALUMINUM INTERCONNECT TECHNOLOGY



1.3.1 Advantages of Al

From 1960's until relatively recently, aluminum (Al) was the metal chosen for

interconnects [Wolf 1990]. Al has several advantages over other materials for

interconnect materials.

First, Al has a relatively low electrical resistivity compared to most other metals. Its

resistivity is 2.65pQ-cm at room temperature. Second, Al does not contaminate

silicon-based devices in the same way that metals such as gold and copper do, which

diffuse rapidly into Si and form intermediate states in a silicon bandgap to cause a

reduction in the minority carrier lifetime and a degradation of device performance.

Therefore, Al can be deposited and handled with other silicon-based device fabrication

tools without concern with contamination problems. Third, Al adheres very well to

dielectrics, giving it mechanical stability. Fourth, Al forms an ohmic contact with Si.

Fifth, Al forms a very stable self-passivating oxide layer where the oxide acts as a

diffusion barrier layer which prevents Al atoms from diffusing into the ILD. Lastly, it

has a well-developed fabrication processes that has proven to be manufacturable and

cost effective [Luce 1992].

1.3.2 Fabrication Processes



Figure 1.5 shows the fabrication process for Al-based interconnects in integrated

circuits [Licata 1995]. Al and barrier layers are deposited using a physical vapor

deposition (PVD) tool, generally a sputter deposition system. The Al films are

polycrystalline in the as-deposited state (Figure 1.5(a)). Materials used for shunt

layers are typically refractory metals or compounds, such as Ti, TiN, and TiW. The

overlayer was introduced as an anti-reflection coating that was later found to provide

electromigration resistance. The underlayer was initially included as a nucleation layer

for W in the vias, and then also found to help suppress electromigration. (Note that there

were never layers on the side of the Al).

These shunt-layer materials were chosen for the following characteristics: [Ramkumar

1993]

1. Not react excessively with Al so the interconnect resistance does not increase

too much.

2. Resist electromigration.

3. Easily dry-etched along with Al.

4. Have deposition process that is compatible with other IC fabrication processes.

5. Have low stress.

6. Adhere well to both ILD/Si and Al.
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Figure 1.5 Aluminum fabrication process. (a) Al and shunt layer are deposited using
PVD. (b) Metals are patterned and etched with RIE. (c) Dielectric material is
deposited with CVD. (d) CMP dielectric material (e) Dielectric material is patterned
and etched with RIE. (f) Via material is filled for next metallization.

After the film deposition, photolithography is used to pattern the film into appropriate

dimensions for interconnects and is etched using reactive ion etching (RIE) (Figure

1.5(b)). The fabricated Al interconnect is then encapsulated by a dielectric material

such as SiO2 using plasma-enhanced a chemical vapor deposition (PECVD) tool, and

planarized by chemical mechanical polishing (CMP) (Figure 1.5(c), (d)). Again using

photolithography and RIE, vias are made and filled with tungsten (via CVD) to connect



Al interconnects in different layers of metallization (Figure 1.5(e), (f)).

1.3.3 Electromigration in Al

One of the drawbacks for use of Al for interconnection is its relatively poor

resistance to electromigration due to the relativity high self-diffusivity of Al atoms.

Improving reliability with respect to electromigration has been the central theme for

research on Al interconnects for the past few decades. In Al interconnects, there are

several diffusion paths: bulk (lattice), grain boundary (gb), and interfaces (Al/A120 3,

Al/SiO2, Al/barriers, and Al/W). The effective diffusivity and effective charge product,

(z*D)eff, of the interconnect has contributions from all possible diffusion paths, and can

be described as: [Hu 1998]

(z*D),, = z'DB (1- F,)+ Fz*D, (1.8)

where the subscripts B and f refer to bulk and fast diffusion paths, respectively, and Fm

is the fraction of atoms diffusing along the mth fast-diffusion path. For a thin film Al

interconnect, the possible fast-diffusion paths could be along grain boundaries and

interfaces. Assuming that the contribution from bulk diffusion is negligible, then



equation (1.8) can be simplified to:

(z*D), = z,,Dgb gb + z* )z, D + r23 ILD 1ZILDDILD,
W )

where the subscripts gb, is, and iILD refer to grain boundary, top and bottom interfaces

between Al and the shunt/barrier layer, and side interfaces between Al and the ILD,

respectively. 8 is the grain boundary or interface width, d is grain size, w is

interconnect width, and h is interconnect thickness.

It has been observed that the dominant diffusion path in wide Al interconnects

is along grain boundaries [Vaidya 1980]. Not only do grain boundaries provide the

fastest diffusion path, they also provide the most probable sites for the nucleation of

voids. Voids nucleate and grow at grain boundaries [Borgesen 1992] (Figure 1.6).

Thus, a grain boundary near the cathode end of an interconnect is the most likely

location for void nucleation. It has been found that -it for Al is about 400MPa

[Greenebaum 1991] [Park 1999]. The nucleated void can grow to span the width and

the thickness of the interconnect, forcing electron current to shunt through higher

resistive barrier layers (Figure 1.6(b)). With the electron current shunting through

barrier layers, the resistance may increase beyond the tolerable limit, thereby causing a

(1.9)
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Figure 1.6 (a) Void nucleating at grain boundary site, (b) Void spans through
thickness and width of the interconnect to cause failure by high resistance.

failure. Joule heating caused by current shunting can accelerate the diffusion and thus

shorten the failure time or even cause a catastrophic failure. Therefore in Al

interconnects, preventing or reducing electromigration along grain boundaries is the

most important task in improving the overall reliability.

1.3.4 Improvements in Al Interconnect Reliability

One approach to improve the reliability of Al interconnects is to use an Al-Cu

alloy by adding about 1 atomic percent of Cu [D'Heurle 1971]. It has been shown that

the lifetime of Al-Cu interconnects increases by an order of magnitude compared to that

of pure Al interconnect [Agarwala 1972]. It is believed that Cu atoms segregate to the

01



grain boundaries and occupy the Al vacancy sites. Cu atoms in the Al grain boundaries

resist the diffusion of Al atoms [Blech 1977][Hu 1993]. Even though adding Cu

improves the reliability of interconnects, the overall resistivity increases about 0.3pQ-

cm per % of Cu added, which is undesirable [Ramkumar 1993].

Secondly to improve reliability, it has been observed that Al interconnects with

bamboo microstructures have significantly longer TTFs compared to interconnects with

polygranular clusters. In bamboo microstructures, all grain boundaries lie in planes

perpendicular to the axis of the length of the interconnect or the direction of the electron

flow (Figure 1.7(c)). Therefore, atoms can no longer diffuse along fast grain boundary

paths, but are forced to diffuse through slower interfacial paths, which significantly

reduces the flux rate [Joo 1994]. The average grain size in 0.4ptm-thick Al films is

about 0.3 m, but bamboo structures are formed by intentionally growing large grains by

annealing interconnects at elevated temperature. Grains can grow to larger than

100ptm when annealed at 5500C [Cho 1989]. As interconnect dimensions shrink in

order to increase the density of ICs, widths and thicknesses of interconnects become

smaller than the average Al grain size at room temperature, causing interconnects to

form near bamboo structures - mixtures of bamboo structures and polygranular clusters.

Reliability of near bamboo structures highly depends on the detailed microstructure of
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Figure 1.7 (a) Polycrystalline Al (b) Polycrystalline Al with large grains (c) Bamboo

Al.

the interconnect, as flux divergences in boundaries between bamboo and polygranular

clusters serve as high tensile stress and void nucleation sites (Figure 1.7(b)) [Cho 1989]

[Thompson 1993] [Joo 1994]. Again, the reliability can by significantly improved by

removing polygranular clusters from near bamboo structures by carrying out a post-

patterning anneal [Walton 1992].

1.3.5 Reliability of Al Interconnect Trees

Most test structures usually terminate with vias at each end, at the cathode and

anode, giving straight interconnects with specific lengths. However, in real ICs,

interconnects of different dimensions are all connected with each other in the same or

different metallization levels, as shown schematically in Figure 1.8(a). These groups
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Figure 1.8 (a) Schematic of Al interconnect tree (b) Separating interconnect tree into
individual segments for reliability estimation.

of linked interconnects are called "interconnect trees." Conventionally, when

performing a reliability analysis of a certain IC, interconnect trees in the IC are

separated into straight segments and the lifetimes of individual straight segments are

used to predict the lifetime of the IC (Figure 1.8(b)). The predicted lifetimes of the

straight segments are obtained by performing accelerated EM tests on straight test

structures and applying Black's equation to predict TTF at service conditions.

However, accelerated EM tests on simple Al interconnect trees show that reliability of



each segment in the tree is not independent of the reliability of other segments [S.Hau-

Riege 2000]. Therefore, the conventional method for predicting the reliability of ICs

can lead to a conclusion that is likely to deviate from the actual behavior.

To make a predictions with better accuracy, each interconnect tree should be

considered as one reliability unit, or Fundamental Reliability Unit (FRU) [S.Hau-Riege

1998]. The failure time of an FRU depends on the path between any two vias that has

the highest product of current density and length,

(jL)ff = (2
i

j Lj , and this can be written
/max

jL )max (1.10)

where (jL)eff determines the failure time of the FRU. Accelerated EM tests on simple

interconnect trees confirm that the method using trees as FRUs has better accuracy than

the conventional method. Therefore, with the proper FRU and data on the

microstructure of interconnects, one can carry out a reliability estimation of actual ICs

with good accuracy in Al interconnect technology.

1.4 COPPER INTERCONNECT TECHNOLOGY



1.4.1 Advantages and Disadvantages of Cu

As mentioned earlier in this chapter, due to the unavoidable requirement to

lower the resistivity of interconnects to minimize RC delay, lower resistance Cu has

been introduced to replace Al. However, integrating Cu interconnects in ULSI systems

requires completely different fabrication processes compared to Al. Because of the

need to have sub-micron-scale interconnects and high thickness-to-width ratio structures,

RIE is used in Al interconnect fabrication instead of wet etching, for its fine scale etch

capability and anisotropic etching. However, RIE of Cu is not practical because of the

lack of volatile Cu compound formation at low temperature [Howard 1991]. Also,

because Cu diffuses through SiO 2 and creates mid-gap energy levels in the Si band gap,

which degrades the electronic properties of Si, diffusion barrier layers are needed to

encapsulate Cu [Sze 1981]. The only known process that can meet these requirements

is use of the damascene technique with CMP [Kaanta 1991].

1.4.2 Cu Interconnect Fabrication

The Cu metallization fabrication sequence using the dual-damascene method is

described in figure 1.9. The ILD is first etched, then a diffusion barrier layer and Cu

seed layer are deposited using sputter deposition. Cu is then electroplated, and
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Figure 1.9 Copper fabrication process. (a) ILD is patterned and etched with RIE. (b)
Diffusion barrier layer and Cu seed layer is sputter deposited. (c) Cu is electroplated

(d) Over-burden Cu is polished with CMP, and diffusion barrier passivation layer is
deposited.

planarized using CMP. Finally, diffusion-barrier capping layer, which has been

typically Si3N4, is deposited to completely encapsulate the Cu interconnects.

1.4.3 Electromigration in Cu Interconnects

With the transition from Al to Cu, the reliability of interconnects also changes,

due to the differences of the intrinsic properties between Al and Cu. First, due to

changes in the surrounding materials and geometry for Cu interconnects, (z'D) is

calculated differently compared to that of Al, which was given in equation (1.9).



Using equation (1.8), [Hu 1997]

(Z*D ), =z*DB B cDiCS h+

where subscripts ici and icp are interfaces between Cu and liner material and interfaces

between Cu and the passivation layer, respectively. Other notations are described

earlier. With a higher melting point than Al, Cu is expected to have lower self diffusion.

Therefore, assuming similar failure mechanisms, Cu should have much better

electromigration resistance, especially in bamboo structures. However, experimental

results show that Cu-based interconnects do not exhibit superior reliability as expected

[C. Hau-Riege 2004].

In Al interconnects the dominant diffusion path is along grain boundaries, and

the grain boundary paths are effectively reduced by forming bamboo structures, or by

inclusion of impurity materials (such as copper) into the grain boundaries. However,

in Cu interconnects, grain boundary paths are not the dominant diffusion paths. The

dominant diffusion path is reported to be along the interface, especially between Cu and

the top passivation layer (Cu/passivation) [Hu 1997]. The Cu/passivation interface is

also most prone to void nucleation due to its weak bonding nature, especially with Si3N4.

2) 7 D *b Dgb 45gb+ z, CP ilp gilp + E zg
W h d



It has been found that crit for a Cu interconnect is about an order lower than that for Al,

at around 40MPa [S. Hau-Riege 2002][C. Hau-Riege 2002]. Therefore, unlike Al

interconnects, forming a bamboo structure in Cu interconnects does not effectively

reduce the overall diffusivity or improve reliability.

have significantly

In order for Cu interconnects to

superior reliability compared to that of Al, diffusion along

Cu/passivation interface must be effectively suppressed.

1.4.4 Improvements in Cu Interconnect Reliability

For Cu interconnects, enhancing the bonding energy or reducing the diffusion at

Cu/passivation interface are key to overall improvement of reliability. The procedure

or the material that can reduce the diffusion at this interface should also be simple and

able to be integrated into a current technology process. Hu et al. used materials that

preferentially deposited only onto the Cu surface and showed the increase in lifetime

[Hu 1998a] [Hu 2002]. One of the materials used was cobalt tungsten phosphate

(CoWP). After CMP, CoWP was selectively deposited only onto Cu surface using

electroless deposition. By having a selective deposition, an extra photolithography

step is avoided, thus reducing the time and cost of the overall fabrication process.

However, so far, yield for this process has been poor, which has prevented its use in



AMD has a process in which Al is included in

the seed layer, so that when the interconnect is annealed it segregates to the top surface

and suppresses diffusion, and greatly enhances reliability. Unfortunately, this comes

with the cost of increased resistivity. Also, there have been general process

improvements that have lead to better interfaces, involving cleaning a surface. While

more research is in progress to find an effective solution to reduce the Cu/passivation

interface diffusivity, there has been no significant integration process for actual

production to date.

1.4.5 Voids in M1 and M2 of Cu Interconnects and Their Roles in Reliability

Another critical factor to reliability of Cu interconnects is the characterization

of void dynamics, which is also significantly different from that of Al. As described

earlier (Figure 1.6), the most likely site for void nucleation in Al interconnects is at

grain boundaries. In Cu interconnects, the Cu/passivation interface is the site most

prone to void nucleation. Because of this, the main difference in Cu interconnects

compared to that of Al is that the void mostly nucleates at the upper side of the cathode

end (Figure 1.10). This leads to differences in failure times with the level of

metallization in Cu interconnect [Gan 2003, C. Hau-Riege 2002, Lee 2001, Alam 2004].

actual production [Rosenberg 2005].



Figure 1.10 Void nucleation site in Cu interconnect. Void nucleates at the Cu/Si3N4

interface near cathode end.

If the interconnect is in the first level of metallization (Ml) (Figure 1.10(a)), or the via

is above the interconnect, a void will be likely to nucleate near the base of the via.

Because the passivation layer is insulating (in contrast with Al technology), if the void

fully covers the base of the via, an open circuit failure occurs. The void volume

required to cause open-circuit failure in Ml or via-above structures can be small [S.

Hau-Riege 2002].

On the other hand, if the interconnect is in the second metallization layer (M2)

(Figure 1.10(b)), or the via is below the interconnect, the nucleated void at the

Cu/passivation layer interface needs to span the thickness and width of the interconnect

in order to cover the via. Therefore, a larger void volume than that required in Ml



structures is required to cause the failure [Gan 2003].

chapter 3. Thus, in M1 or via-above structures, failure occurs at or shortly after void

nucleation, which is regarded as void-nucleation-limited failure. As described earlier,

this gives a current density exponent value of 2 in Black's equation. In M2 structures,

failure occurs after the void grows to a critical size, and this is regarded as void-growth-

limited failure. This gives a current density exponent value of 1. However,

Rosenberg et al. observed that the current density exponent in M1 structures is close to

1 only at low current densities, and changes to 2 at higher current densities [Rosenberg

2000]. Also in M2 structures, a current density exponent of 1 is observed at low

current densities, but the value changes to around 1.6 at high current densities [Padhi

2003] [Vairagar 2004]. These phenomena have so far not been clearly understood, and

are the subject of chapter 7.

1.4.6 Liners

With industry pushing toward higher IC density, the dimension of the Cu

interconnect as well as the liners must shrink. Currently, Ta, Ta based alloys, or Ti-

based alloys are used as liners in Cu interconnects [Hu 1998a]. As described earlier,

liners need to provide good adhesion between Cu and the ILD, and also prevent Cu

This is described in detail in



diffusion into the ILD. Liners are already expected to be reduced to a few atomic

layers [ITRS] [Hu 1998a]. This is another reliability concern because having a

continuous, reliable liner is critical.

1.4.7 The Reliability of Cu Interconnect Trees

As with Al interconnects, the reliability of individual segments in a Cu

interconnect tree behave differently compared to similar single interconnect segments in

isolation [Gan 2003]. The reliability of Cu must also be treated with trees serving as

FRUs and by using (jL)eff. Moreover, (jL)eff of MI and M2 structures must be treated

separately for Cu interconnects [Alam 2004]. More detailed analyses

interconnect trees are described in chapter 4.

1.5 SCOPE OF THE THESIS

Many of the failure mechanisms found in Al interconnects are not be directly

relevant to Cu interconnects.

are unique to Cu interconnects.

Thus, it is important to understand the phenomena that

The scope of this thesis is to observe and analyze the

failure mechanisms of Cu interconnects, especially mechanisms that involve voids,

using new techniques and simulations. Information obtained on failure mechanisms

of Cu



can be applied to development of more accurate reliability predictions for Cu

interconnect technology.
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CHAPTER 2

NUMERICAL SIMULATION TOOL FOR

OBSERVING ATOMIC CONCENTRATION AND

STRESS IN METAL INTERCONNECT DURING

ELECTROMIGRATION



ABSTRACT

A new technique for simulation of electromigration-induced atom diffusion and stress

evolution in a confined metal interconnect has been developed. The Korhonen model for

stress evolution was used. In this model, diffusion is driven by both a momentum

transfer from the electron 'wind' and by the gradient in chemical potential that results

from stress gradients and opposes the electron wind force. This model results in a

differential equation that describes the evolution of stress as a function of time and

location along the length of an interconnect. However, because the diffusivity of

electromigrating atoms in a confined interconnect is dependent on stress, the differential

equation is non-linear. It is shown that high-order implicit time integration methods

result in stable simulations and much shorter simulation times than the low-order

explicit schemes, such as, the forward-Euler technique, used in earlier work. A

simulation tool based on implicit methods was constructed to allow investigation of the

conditions leading to void nucleation and growth in both single interconnect segments

and complex multi-segment interconnect trees. This tool allows mechanistic analyses of

accelerated test results, as well as extension of these analyses to the much long times

expected under service conditions.
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Figure 2.1 Sketch of an interconnect segment: a) side view, b) top view.

2.1 INTRODUCTION

Electromigration is one of the main causes of failures in metal lines that are used

to interconnect devices in integrated circuits [Blech 1967]. When electrical current is

applied to a metal interconnect, electrons transfer momentum to metal atoms and cause

them to diffuse in the same direction as the direction of electron motion. The rate of

electromigration scales with the diffusivity of the conducting metal, so that, at a given

temperature, electromigration rates in materials like Cu are much higher than

electromigration rates in the materials used as liners and diffusion barriers in Cu-based

interconnect metallization schemes, such as Ta, TaN, and TiN. These liner materials

are present at the 'vias' that connect different levels of metallization, and partition the

interconnect network into segments and trees (Figure 2.1). As atoms electromigrate



they accumulate at anode vias and deplete at cathode vias. Because interconnects are

confined, both by liners and insulating materials such as silicon dioxide, a compressive

stresses build up at the anode vias and tensile stresses build up at the cathode vias. A

compressive stress at an anode via can cause the mechanical failure of the surrounding

materials, which leads to leakage or extrusion of metal atoms to cause short-circuit

electrical failures. A tensile stress at a cathode via can cause nucleation and growth of a

void, which can lead to an open-circuit failure. Therefore, understanding

electromigration-induced stress evolution is critical for understanding the failure rates

and mechanisms of interconnects.

Korhonen et al. proposed an equation describing the electromigration-induced

evolution of the hydrostatic stress a along the length x of a confined conductor

[Korhonen 1993]

at x kT ax
+Zfep]j , (2.1)

where t is time, Deff is the effective atomic diffusivity, Q is the atomic volume, k

is Boltzmann's constant, T is the temperature, Zlgf is the effective charge number for

the electromigrating atoms, e is the fundamental electron charge, p is the electrical



resistivity of the conducting material, and j is the current density. B is an effective

modulus that describes the composite elastic response of the materials surrounding the

conductor, to changes in the volume of the conductor due to atom accumulation or

depletion. The effective atomic diffusivity is expressed as [Clement 1995]

D= D0 ex(- A'H ) exp[ -- -),+
kT kT B

(2.2)

where AH is the activation energy for diffusion and Do is a temperature independent

constant. As shown in equation (2.2), De is stress dependent, so that when equation

(2.2) substituted into equation (2.1), the differential equation becomes highly non-linear.

There is no known analytic solution for this equation, so that it must be solved

numerically. In the past this has been done using low-order explicit schemes, such as

the forward-Euler technique [Park 1997]. However, this approach often leads to long

computation times and time-domain instabilities that can result in solution failures due

to the strong nonlinearity and stiffness of the Korhonen's model in equation (2.1)

[Ascher 1998]. In this paper we develop a solution approach based high-order implicit

time integration methods, and use this approach in a tool that allows analysis of stress

evolution, and the conditions leading to compressive or tensile failures, in both



individual interconnect segments and multi-segment interconnect tress.

2.2 SIMULATION APPROACH

2.2.1 Atom Conservation

Equation (2.1) can be reformulated into the form of a conservation law.

Because the total number of metal atoms in a confined interconnect is conserved

[Korhonen 1993],

aca " - 0, (2.3)
&t ax

where Ca is the atomic concentration (number per volume) and J a is the atomic flux.

Also,

C. = C, -C,, (2.4)

where C is the concentration of lattice sites and C, is vacancy concentration, and

where C, and CV vary with a according to:



C =Cioexp -
B

and

CV = CVO exp .T
(kT

Furthermore, the atomic flux, J, is given by:

J' DC=- Z*ep-0 a ,
kT (8f x

where the effective atomic diffusivity D eff is given as [Clement 1995]:

D= D C
eftV 

C

and

D, := D exp j.
kT IH

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)



Equations (2.5) through (2.8) combine to give equation (2.3), with

Do = D. 0  (2.10)
CI0

Equations (2.3) through (2.10) provide the basis for our simulation approach.

2.2.2 The Finite Volume Method for Spatial Discretization

Finite-volume methods constitute a class of methods developed primarily for

computational fluid mechanics, to (a) satisfy the conservation law; and (b) capture

shock effects accurately [LeVeque 2006]. The reformulation of equation (2.1) as a

conservation law allows application of these methods as described in the following.

An interconnect of length L is discretized into a number of cells Ne, each

with length Ax , so that:

L = NCAx.

The atomic concentration, stress, and state value of each cell are tracked.

(2.11)

The state

values distinguish cells filled with conductor from cells that represent voids. The

atomic concentration and stress in conductor cells are related by equations (2.4) through

(2.6). However, in voided cells, the atomic concentration is allowed to change even



though the stressed is fixed at zero. Cells share boundaries with adjacent cells at

which the atomic flux is defined, as shown in Figure 2.2. Following the usual

staggered grid convention [Legeque 2006], cells have integer indices from 1 to N, and

the cell boundaries have half integer indices, e.g. 1/2, 3/2, 5/2 etc., up to N. +1/2.

The atomic flux defined by equation (2.7), is approximated as:

= (Df (_1) + De/.(i) XC((, C ) +Ca, ' .

4kT Ax)
(2.12)

Linearly interpolated values are used for Deff and C, at the half-integer indices,

resulting in a first-order accurate approximation. Finally, the conservation law in

equation (2.3) is approximated as:

(2.13)
BCa~) Ja xi1i2> -xai-ii2> _ ati-ii2> --x ati.1/2>

at Ax Ax

Once the atomic concentration Ca is found from equation (2.13), o- can be evaluated

either by using equations (2.4), (2.5), and (2.6), or it can be forced to zero, depending on

the state of the cell.
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Figure 2.2 Discretization of an interconnect segment into individual cells. The stress
and atom concentration is tracked for each cell. The atomic flux between cells is
calculated by using a staggered grid system, which can be envisioned as
corresponding to cell boundaries.

2.2.3 Time Integration

Consider an ordinary differential equation,

dCa = f(C) 
(2.14)

dt

where C, can be treated as a vector of dimension N and f is a vector-valued

function that maps an N dimensional vector to an N dimensional vector. Such an

abstraction applies to equation (2.13) if f evaluates the net atomic influx fromCa,

based on the right-hand side of equation (2.13). The problem is to find C, at



time tk+, denoted C'', from the known sampled values C0 ,C', ... , C'.

integration methods are classified based on where and how many points are used to

dC
approximate "

dt
[Ascher 1998]. The derivative at either t' or t'+ is approximated

by a weighted sum ofC2 , C',, ... Ck**

dC (

dt

k+

S a
j=o

(2.15)

The accuracy of this approximation tells the order of the numerical integration and

approximating
dCa

dt
at t or tk+ determines whether the method is explicit or

implicit.

A straightforward and simple method is to utilize a low-order explicit method.

One such method is the forward Euler method, which discretizes equation (2.14) into

ck+1 - c f
a _= f(Ck)

At

or

C = C+ Atf(Ca)

(2.16a)

(2.16b)

Different time



The method is widely used in practice since each update is a simple function evaluation.

But, the simplicity comes with a price; the time step At is limited by both the accuracy

requirement given by the user and the stability requirement imposed by the equation

itself [Ascher 1998]. This can be shown with a linear example. Suppose equation

(2.16) is linearized around Ck,

C * C -C k

At

where Ak is an N-by-N matrix and diagonalizable. Ak - VkAkV-k for some Vk

where Ak is a diagonal matrix of eigenvalues 4$ and Vk is an invertible matrix of

eigenvectors. In this case, k = V-kCk

ck** = (1 + AtAk )k

and for each scalar equation of (2.18) to be stable,

1+ AtA < 1

(2.17)

satisfies

(2.18)

(2.19)



This leads to the time step size limit:

Atm < ~i . (2.20)

A differential equation is called stiff if the largest At to meet the stability

requirement is much smaller than that to meet the accuracy requirement. For such

equations, explicit methods usually perform poorly especially if moderate accuracy is

required. The discretized Korhonon model in equation (2.13) falls into this category.

The problem of explicit methods can be mitigated if higher order approximation is used.

In addition, an adaptive algorithm to adjust the order or approximation and At can

help improve the algorithm for nonlinear ordinary differential equations, like equation

(2.13), since the stability requirements for nonlinear equations are different for

different t 's.

The number of calculations can be significantly reduced by an implicit method.

An example is the backward Euler method, which discretizes equation (2.14) into

must be satisfied.



c= - c f(C*')

At \a)

Obtaining Ck*' requires solution of a nonlinear equation, making each step

considerably more computationally expensive. However, this method guarantees

stability for all positive time step sizes, so that larger time steps can be used.

this, equation (2.21) is again linearlized,

Ck 1 - = AtAk+Ck+,

To see

(2.22)

where A*k+ is assumed diagonalizable, and the difference equation for each component

is

= k (1 AtAk+ 1)' k (2.23)

All the scalar equations are stable for all positive At. Note that, we have used the

assumption that all l*' are negative to arrive at this stability result, which means that

the linearized systems in equation (2.14) are stable for all values of t.

Implicit methods enable us to take large time steps even for stiff problems. As

(2.21)



a result, fewer steps are necessary to reachtf, especially if the accuracy requirement

is not stringent, the overall cost is less compared to an explicit method even though each

step is more expensive.

2.3 NUMERICAL EXPERIMENTS

In the final implementation of the numerical method, the ode23s function in

Matlab, an adaptive semi-implicit time integration scheme, is used to shorten simulation

time and improve stability since equation (2.13) is highly stiff. In this section, the

performance of such time integration scheme is compared with two other methods: the

forward Euler method and an adaptive explicit scheme.

For the simulations, values for Cu-based interconnects with SiO 2 dielectric

insulators have been used, and simulations have been carried out for a temperature of

3500C, to correspond to electromigration experiments carried out by the authors [Chang

2006]. The following values were used for the simulations: acrit = 40MPa [C.Hau-

Riege 2002]; Z*g = 1 [Hu 1999]; B = 28GPa [S.Hau Riege 2000]; 0 = 1.18 x 1029 m3 -

p = 4.1 x 10- Q-m (at 3500C); AH = 0.8eV [Hu 1997].

The importance of meeting the stability requirement is shown by forcing the

forward Euler method to take At larger than the stability limit. As shown in Figure 2.3,
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Figure 2.3 Stress profile with At larger than the stability limit in forward-Euler

method (low-order explicit method). Notice that the stress profile shows random

behavior. Simulations conditions: 50 cells of 1.OIm length, total length = 50pm, j =
2.5MA/cm 2 , T = 623K, D = 4.5x10-16 m 2/s.

the stress profile shows random behavior.

Comparison of the adaptive implicit and explicit methods has been carried out

using the ode23 function in Matlab, an adaptive explicit numerical. The order of

approximation and At's for both ode23 and ode23s are optimized internally by Matlab.

The results of this comparison are shown in Figure 2.4. The calculation time

increases linearly with the simulated time when ode23 is used since At is limited by the

stability of equation (2.13). The rate of increase of the calculation time depends on a
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Figure 2.4 Calculation time comparison for explicit-based and implicit-based

methods. Simulations conditions: (a) 100 cells of 1.0ptm length, total length =

100pm, j = 2.5MA/cm 2, T = 623K, D = 4.5x10-16 m 2/s; (b) 200 cells of 1.0jtm length,

total length = 200pim, j = 2.5MA/cm 2, T = 623K, D = 4.5x10-16 m2/s. (c) is the close

up region of (b).

(a)

(b)

(c)



number of factors, including the diffusivity, the temperature, and the number of cells.

Using ode23s, the calculation time at short simulated times (<10minutes) is longer than

when ode23 is used since each time step for ode23s is more expensive than that of

ode23. However, the calculation time using ode23s increases very slowly with

increasing simulated time since At is no longer limited by stability requirements.

Figure 4b shows that at a simulated time of 150 minutes, ode23 is 16 times slower than

ode23s (ode23s - 18.71 seconds, ode23 - 306.57 seconds).

A typical failure time for interconnects under accelerated electromigration

testing is 100 hours. At this simulation time, the calculation time is about factor of 600

times longer for explicit-based (12000 seconds) than implicit-based (19 seconds)

methods. The difference is greater as the simulated time increases, making the use of

implicit methods mandatory for simulations of failure mechanisms operating at the

times expected under actual service conditions.

2.4 SIMULATION TOOL CAPABILITIES

Input variables for the tool include: j, T, Deff, p, B, Q, and AH. Along with

the ability to investigate the impact of adjustment of these input parameters, three main

additional capabilities were implemented.
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Figure 2.5 Schematic diagram of an interconnect tree where two segments are

connected with a via in the middle. Current density (j ) of the left segment is fixed

while j in the right segment is varied. T=3500C, jL=O, ±0. 5, ±1.5, ±2.5 (MA/cm2), two

25 pm segments for total 50pm in length. Detailed analysis is in chapter 4.

2.4.1 Simulation of Stress Evolution in Interconnect Trees

An interconnect tree is defined as a group of interconnect segments that are

connected without electromigration barriers, such as liners, between them. This

usually means segments connected within one layer of metallization, since liners in vias

block electromigration between layers of metallization. In our simulation tool,

interconnect trees are defined by the length of all of the segments within a tree, where

each segment terminates at a node, either defined by a via or a connection to one or

more other segments. Currents can be applied independently in each tree segment, as

long as Kirchoff's laws are obeyed. An example is shown in Figure 2.5, in which two

interconnect segments are connected with a via in the middle. Current densities are

applied to each of two segments independently and observed the stress profiles with

time increments (refer to Figure 4.8 in chapter 4). Experimental results by Chang et al.



showed the reliability of the two adjacent segments depend on each other [Chang 2006]

which were clearly shown through the simulation tool by observing the sites of void

nucleation. More complex interconnect tree structures can also be designed and

simulated.

2.4.2 Void Nucleation/Growth, Pre-existing Voids

The simulation tool can be used to treat void nucleation and growth. Void

nucleation is assumed to occur if the stress at any point exceeds the critical stress for

void nucleation, -crit. Once a void nucleates, the stress in the cell with a void is

assume to relax to zero. Rather than requiring that voids nucleate, pre-existing voids

can also be placed anywhere in the segments of a tree, by changing a cell state to

indicate a void, and setting the stress in that cell to zero. Figure 2.6 shows an example

of stress evolution leading to nucleation and growth of a void and Figure 2.7 shows the

effects of a pre-existing void in an otherwise identical simulation. Number of vacant

sites is calculated by subtracting the number of atoms in each cell from the initial

number of atoms. Then, the void volume is approximated by volume of the vacant site

(which is approximated as atomic volume) multiplied by the number of vacant sites.
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Figure 2.6 Stress evolution before and after nucleation of a void at the cathode. (a)
Stress profiles at 1 hour intervals of simulated time. A void nucleates when the stress

reaches the critical value crit=40MPa. (b) Concentration vs. time in the first cell
where the void nucleates. Note that there is a sudden increase in the rate of depletion
of atoms when void nucleation occurs, due to the sudden change in the stress
gradient, both in magnitude and sign. Simulation conditions: 50 cells of 1.0plm
length, total length = 50pm, j = 0.5MA/cm 2, T = 623K.
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Figure 2.7 Stress profiles at 1 hour intervals of simulated times for an interconnect

segment with a pre-existing void 5 Lm away from the cathode. (b) Volume of pre-

existing void vs. time. Simulation conditions: 50 cells of 1.O m length, total length

= 50gm, j = 0.5MA/cm 2, T = 623K.



2.4.3 Diffusivity Variations Along the Interconnect

It has been reported that the diffusivity varies with change in crystallographic

orientations of grains along the length of polycrystalline interconnect segments [Choi

Ch.6b]. Using the approach described above, the effects of diffusivity variations can

be readily simulated by varying the diffusivities associated with individual or groups of

cells. Figure 2.8 shows the effects of diffusivities varying randomly between 0.5Dff and

2Deff, for an average diffusivity Deff, every 1 gm along the length of a segment.

values were chosen to simulate the effects of known diffusivity variations.

These

The

simulation shows that, in this case, effects are limited. However, the effects of

diffusivity variations on void growth are more profound, and are described in chapter 7.

2.5 CONCLUSION

A simulation tool based on the Korhonen model for electromigration-induced

stress evolution along the length of confined metal interconnect has been developed for

simulation of various effects of electromigration within interconnect segments and

within multi-segment interconnect trees. The tool is based on the use of implicit

methods rather than the explicit methods used in earlier studies. Implicit methods lead

to stable calculations that allow much reduced calculation times for phenomena
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Figure 2.8 Stress profiles at 1 hour intervals of simulated time for an interconnect

segment with diffusivity variations of the type expected in polycrystalline segments.

Note that the diffusivity effect decreases as the stress approaches a steady state.

Simulation conditions: 30 cells of 1.Opm length, total length = 30Am, j =

0.5MA/cm 2, T = 623K, D varied between 0.5Deff to 2Defj.

occuring at long simulation times. It was demonstrated that using implicit method, the

calculation time was 19 seconds for a specific conditions described in figure 3b with

100 hours of simulation time, where simulation based on explicit method resulted 12000

seconds of calculation time. The difference in calculation times further increases as

the simulated time increases. A new tool, based on use of implicit methods, was

constructed to allow simulation of stress-evolution everywhere within a multi-segment

interconnect tree, simulation of the conditions leading to nucleation of voids, the effects



of pre-existing voids, the rate of void growth as a function of time and location, and the

effects of diffusivity variations along the length of individual interconnect segments.

All of these phenomena are know from experiments to occur during electromigration.

The simulation approach described above provides a much improved tool for

mechanistic investigation of phenomenology observed in accelerated lifetime testing.

Moreover, this new approach allows analysis of the effects of these mechanisms at the

much longer times for which interconnects are expected to survive in service.
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CHAPTER 3

FATAL VOID SIZE COMPARISON IN VIA-BELOW

AND VIA-ABOVE COPPER DUAL-DAMASCENE

INTERCONNECTS



ABSTRACT

The median-times-to-failure (t50 's) for straight dual-damascene via-terminated

copper interconnect structures, tested under the same conditions, depend on whether the

vias connect down to underlaying leads (metal 2, M2, or via-below structures) or

connect up to overlaying leads (metal 1, Ml, or via-above structures). Experimental

results for a variety of line lengths, widths, and numbers of vias show higher t50's for

M2 structures than for analogous M1 structures. It has been shown that despite this

asymmetry in lifetimes, the electromigration drift velocity is the same for these two

types of structures, suggesting that fatal void volumes are different in these two cases. A

numerical simulation tool based on the Korhonen model has been developed and used to

simulate the conditions for void growth and correlate fatal void sizes with lifetimes.

These simulations suggest that the average fatal void size for M2 structures is more than

twice the size of that of M1 structures. This result supports an earlier suggestion that

preferential nucleation at the Cu/Si 3N4 interface in both Ml and M2 structures leads to

different fatal void sizes, because larger voids are required to span the line thickness in

M2 structures while smaller voids at the base of vias can cause failures in M1 structures.

However, it is also found that the fatal void sizes corresponding to the shortest-times-to-

M1 and M2, suggesting that the voids that lead to thefailure (STTF's) are similar for



shortest lifetimes occur at or in the vias in both cases, where a void need only span the

via to cause failure. Correlation of lifetimes and critical void volumes provides a useful

tool for distinguishing failure mechanisms.

3.1 INTRODUCTION

As described in chapter 1, it is well understood that electromigration, atomic

diffusion driven by a momentum transfer from conducting electrons, leads to serious

reliability concerns for integrated circuits. The failure mechanisms due to

electromigration are well characterized in aluminum (Al) interconnect technology [Hu

1993][S.Hau-Riege 2000][Wang 1998]. As industry migrates to lower resistance

copper (Cu), different failure mechanisms have been discovered, due to different

material properties and processes.

One of the failure characteristics in Cu interconnects that differs from that of Al

is the asymmetry of the median-times-to-failure (t5o's) in Ml and M2 structures,

terminating in vias to upper levels (via-above) and vias to lower levels (via-below),

respectively. The terminating vias for these two types of dual-damascene copper

interconnects, are illustrated in Figure 3.1. In earlier studies [Gan 2001], it has been

shown that the t5o for M2 structures of various lengths, widths, and numbers of vias are
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Figure 3.1 Schematic diagram of M1 and M2 structures.

higher than those of analogous Ml structures tested under the same current density and

temperature conditions (Table 3.1). It has been proposed that the cause of this

asymmetry in lifetimes is due to the preferential nucleation of void at the Cu/passivation

layer (Si 3N4) interface [Gan 2001]. The critical tensile stress for the void nucleation at

the Cu/ Si3N4 interface is reported to be about 40MPa [S.Hau-Riege 2002]. The stress

in an interconnect evolves non-uniformly when it is subjected to continuous

electromigration stressing. The critical tensile stress for void nucleation will first be

reached at the cathode end of the line [Filipi 1995].

While for M2 structures, the maximum tensile stress is expected to develop at

the base of the Cu-filled via, if the critical stress required for void nucleation at the



Table 3.1
t5o's and STTFs

Type/j MTTF / STTF
L (pm) (x10 6 A/cm2) (hours)

50 Ml / 2.3 20.8 / 1.38

50 M2 / 3.6 68.7/3.13

100 M1 / 2.3 25.2/4.53

100 M2 / 3.6 116/5.73

100 M1 / 2.5 20.5 / 7.33

100 M2 / 2.5 122.8 / 10.01

800 M1 / 2.3 14.5 / 7.36

800 M2 / 3.6 48.5/11.67

800 M1 / 2.5 28.7/4.44

800 M2 / 2.5 107/3.98

The widths of all lines are 0.28gm; All lines are single via terminated; the thickness

of Ml is 0.34pm and of M2 is 0.24pm. All tests were done at T = 350 "C Assumed

failure when resistance increases more than 30% of the initial resistance [Gan 2001].

j=current density, L=length

Cu/S 3N4 interface is significantly lower than that of the Cu-liner (Ta) interface, a void

will nucleate and grow on the Cu/ Si 3N4 . To cause failure, a void that nucleates at the

Cu/Si3 N4 interface in M2 structures must span the width and thickness of the line to

cause failure (Figure 3.2(b)). Once current must shunt through the thin Ta liner, it is

assumed that Joule heating rapidly leads to failure.

In MI structures, voids that nucleate at the Cu/Si3N4 interface need only grow

to span the base of the via to cause failure [Gan 2001][S.Hau-Riege 2002], because of



(a) (b)

Figure 3.2 Preferential void nucleation and growth at the Cu/Si 3N4 interface in (a)
Ml and (b) M2 structures.

the Si3N4 passivation layers do not provide a shunting path for current as TiN anti-

reflection coating (ARC) layers did in Al technology (Figure 3.2(a)). In this paper, the

critical void sizes at the TTFs of MI and M2 structures are calculated using a numerical

simulation tool.

The experimental results reported earlier for failure times for straight Cu dual-

damascene lines of type MI and M2 are listed in Table 3.1 [Gan 2001]. The median

time to failure (t5o) and shortest time to failure (STTF) are listed for each test

population. These Cu test structures were fabricated by IME in Singapore and had Ta

liners and Si3N4 passivation layers. The lengths for both M1 and M2 lines are 50pm,

100pm, and 800pm. The thicknesses for Ml and M2 line are 0.36pm and 0.24pm,

respectively. The width of all lines is 0.28pm and the cylindrically shaped vias have

diameters of 0.26pm. For the analysis, only data for lines terminated with a single via



was used. The wafers were diced and packaged in ceramic packages.

were used to connect the bond pads to package lead frames. The structures were

stressed in an electromigration test system at various current densities and a temperature

of 350"C.

In a separate set of studies [Wei 2002], we have investigated the

electromigration drift velocities as measured in Ml (via-above) and M2 (via-below

structures) prior to failure. After voids have nucleated, but before they grow large

enough to cause failure, their growth often leads to a steady resistance increase.

Characterization of this resistance increase can be related to the rate of void growth,

which is also often referred to electromigration drift, in which the rate of drift of the

void edge is related to the drift velocity, which can, in turn be related to the effective

electromigration induced diffusivity, or more specifically the effective z*D product,

where z* and D are the effective charge and diffusivity, respectively, that characterize

electromigration. The values of drift velocity, vd, obtained using the Ml interconnects

are in agreement with the value measured using the M2 interconnects, even among the

samples fabricated by different organizations. Therefore, the median lifetimes are

significantly different in Ml and M2 structures, but the drift velocity is not.

Gold wires

This



indicates that electromigration in these two types can be modeled using the same

effective z*D product.

3.2 NUMERICAL SIMULATION

Assuming each atom has the atomic volume Q = 1.18 x 10-29m3 the size of the

void is estimated as the total volume of the atoms removed from the void nucleation

site. Deff was calculated to be 2.99 x 10-16 m2/s for M1 structure and 4.23 x 10-16 m2/s

for M2 structure at T = 350"C and a=0, which is the diffusivity at the Cu/Si 3N4

interface, the dominant diffusion path for Cu interconnects [Gan 2003]. The following

values were used for the simulation: acit = 40MPa [S.Hau-Riege 2002]; Zeff* = 1 [Hu

1999]; B = 28GPa; Q = 1.18 x 10-29 M3 ; p = 4.1 x 10-8 Q-m; AH = 0.8eV.

3.3 ANALYSIS AND DISCUSSION

3.3.1 Analysis with Simulation

The number of atoms removed from the void nucleation site for each structure

was simulated as shown in Figure 3.3. The numbers of atoms removed at t5o and at the

shortest-times-to-failure (STTFs) of each structure have been determined and are shown

The critical void volumes for failure were calculated at each t5o and thein Table 3.II.
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Figure 3.3 The number of atoms removed from a void nucleation site vs. time in (a)

50pm, (b) 100pm, and (c) 800pm lines, as determined through simulations.

STTF and are also shown in Table 3.II.

From the calculated critical void sizes, it is clear that the M2 structures require

larger void sizes for failure than the M1 structures. This supports the earlier

conclusion that the reason for the difference in void sizes is due to preferential void

nucleation at the Cu/ Si3N4 interface which causes the void size required for failure in

M2 to be larger than that of Ml, as shown in Figure 3.2. The void in M2 must fully

span in the line in order to cause an open circuit failure, where as only partially



j=current density, N=number
interconnect

void volumes

of atoms removed, V=void volume, L=length of the

spanning voids directly below the via can cause failure in M1 structures. It is

important to note that the thickness of M2 is smaller than that of Ml. If the thickness

of M2 is increased to that of Ml, the t5o of M2 should also increase. This will result in

an even larger difference in fatal void sizes.

When comparing the critical void sizes at the STTF, however, it can be seen that

failure of M2 structures does not necessarily require a larger void than for failure of M1

structures. We predict that the reason for the similarity in critical void sizes for failure

at the STTF is due to the void forming near in the via in M2 structures and at the base of

Table 3.11
number of removed atoms and

L Type/j N(x10 8) /V(p 3) N (x10 8) /V(m 3)
(pm) (x10 6 A/cm2 ) (t50) (STTF)

50 M1 / 2.3 3.05 / 0.0052 0.20 / 0.0003

50 M2 /3.6 11.1/ 0.0190 0.51 /0.0009

100 M1/ 2.3 3.69 / 0.0063 0.67 /0.0011

100 M2 /3.6 11.9 / 0.0203 0.93 /0.0016

100 M1 /2.5 3.27 / 0.0056 1.17 /0.0020

100 M2 /2.5 11.4 / 0.0195 1.13 / 0.0019

800 M1/ 2.3 2.13 / 0.0036 1.08 / 0.0018

800 M2 /3.6 5.47 / 0.0094 1.90 / 0.0032

800 M1 /2.5 4.58 / 0.0078 0.71 / 0.0012

800 M2 /2.5 12.1 / 0.0207 0.45 / 0.0007



If the void forms right in the via in M2 structures, even a

small void size can lead to a fatal failure.

Also, it will be shown in chapter 5 that the void formed at the Cu/passivation

layer interface can drift into the via to cause the failure, which does not require a large

void. In the case of Ml, as shown in Figure 3.2, if a void nucleates at the end of the

line it must grow first to the via, and then across it to cause failure. If the void

nucleates "downwind" of the via, it must grow to span the line width and thickness, as

in the case of M2 structures, the void can grow towards the via and cover the bottom of

the via to cause an open circuit failure at relatively small volume.

Fatal void volumes depend critically on the site for void nucleation, so that

critical void volumes and lifetimes can vary over broad ranges for both Ml and M2

structures. While the Cu/Si 3N4 interface is the most probable site for void nucleation

in M2 structures, it is possible to have a defect inside the via, such as a pre-existing void

present before the test, that can lead to void growth and the resulting line failure, which

are described in later chapters of this thesis.

3.3.2 Comparison between Simulated and Experimental Results

In order to verify that the void volumes simulated are fair representation of the

the vias in MI structures.



actual void volumes created in the electromigration experiments, the two void volumes

were compared. Several cross-sectional images of failed interconnects have been

obtained using focused ion beam/scanning electron microscopy as shown in Figure 3.4.

The void volumes were measured based on the voids seen from the cross-sectional

images. Interconnects terminated with 4 vias (Figures 3.4(a), (b)) were also included.

Voids were assumed to span across the width of the interconnects. The void volumes

between the simulation and the experiment match reasonably well (Table 3.111). The

discrepancies in void volumes, especially for cases in Figures 3.4(b) and 3.4(c), could

be the fact that the voids formed away from the cathode. In the simulation, voids form at

the end of the cathode because it is the location where the critical stress for the void

nucleation is first reached in the straight line interconnect structures. In Figures 3.4(b)

and 3.4(c), pre-existing voids away from the cathode may have been present before the

Figure 3.4 (a) M2 L=800m, w=0.281im, current terminated after 312 hours.
(b) M2 L=800pm, w=1.00m, current terminated after 55 hours.
(c) M1 L=1OOIm, w=0.28pm, current terminated after 192 hours.



Table 3.111
void volume comparisons

Figure Simulation Experiment Vex/Vsim
(x 10-20 M 3 ) (x 10-20 M 3 )

4(a) 4.12 3.73 -90%

4(b) 9.31 6.44 ~69%

4(c) 3.61 1.92 -53%

The error range of measured void volumes is within 0.4 x10-20 m 3.

VEx/VSim corresponds to ratio of the voids between experiment and simulation.

current was applied for the electromigration test, which led to a growth as current was

applied in the interconnect. The growth rate of the voids away from the cathode is

expected to be lower than that of voids at the cathode. This is because while an atomic

flux is only going out from the void that forms at the end of the cathode (Figure 3.5(b)),

there is an additional atomic flux which goes in to the void when the void is away from

the cathode (Figure 3.5(a)). The imbalance of fluxes going out from and into the void

may lead to the drift of the void towards the cathode as well as the growth of the void.

This is also described in more detail in chapters 5 and 7.

To observe the void volume and the location for the STTF samples, cross-

sectional images of 800pm and 100pm length M2 lines at 2.5MA/cm 2 have been

obtained (Figure 3.6). In both cases, the location of the failures was at the via, which



(a)f

Figure 3.5 f=atomic flux (a) Void nucleation and growth away from the cathode in
M2. (b) Void nucleation and growth at the end of the cathode in M2.

was as expected. However, the failure sites seem to show poor integrity of the shape of

the failed vias. The failure criterion of the interconnects is a 30% increase of the initial

resistance. However, the current is set to flow until the interconnects become

completely open circuit. Therefore, the voids seen in Figure 3.6 represent the voids after

the open circuit of the interconnects, which occurred later than STTF. Moreover, the

shunted current through a high resistance Ta layer causes the local joule heating, which



(a) (b)

Figure 3.6 (a) Cathode of M2 interconnect, L = 800pm, w = 0.28pn, STTF at j =
2.5MA/cm 2. (b) Cathode of M2 interconnect, L = 100pm, w = 0.28pmn, STTF at j =

2.5MA/cm 2.

can result in melting or eruption of the interconnects, which might be the case in the

poor integrity of the shape as seen in Figure 3.6.

3.4 CONCLUSION

We have developed a simulation tool for electromigration modeling. The tool

was utilized to simulate the number of atoms removed from the site of void nucleation.

The number of atoms removed was used to estimate the fatal void size. The void

volume simulated matches well with the void volume obtained experimentally. The

simulation results corresponding to observed t5o's of straight M1 and M2 lines confirm

that the average void sizes required for failure in M2 structures is larger than for M1



structures. This is due to the preferential nucleation of voids at the Cu/SibN 4 interface.

On the other hand, the simulation results for STTFs show that the fatal void sizes for

Ml and M2 do not show asymmetric behavior. The similarity in void sizes suggests

that the minimum fatal void sizes correspond to nucleation in the via in M2 structures,

and at the base of the voids in M1 structur

with cross-sectional images in figure 3.6.

es. The nucleation in the via is confirmed

The simulation suggests that while in most

cases M2 structures are more reliable than M1 structures, the minimum lifetimes for the

two structures might generally be similar if a few flaws exist in the vias. These results

show that the variations in the location of void nucleation lead to large variations in the

lifetimes of Cu-based interconnects, not only from line-to-line, but from structure-to-

structure. This is different from that of Al-based interconnects, where the void

nucleates at a grain boundary and is not sensitive to metallization levels [Borgesen

1992]. Therefore, the lifetimes for different metallizations in Al-based interconnects

should be similar. These variations in Cu-based interconnects are larger than in the

case of Al, and complicate the task of accurate reliability projections for large

populations of interconnects. These results also demonstrate the usefulness of

simulations, in combination with experimental data, in differentiating complex

variations in failure mechanisms.
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CHAPTER 4

ELECTROMIGRATION RESISTANCE IN A

SHORT THREE-CONTACT INTERCONNECT

TREE



ABSTRACT

Electromigration has been characterized in via-terminated interconnect lines

with additional vias in the middle, creating two adjacent segments that can be stressed

independently. The mortality of a segment was found to depend on the direction and

magnitude of the current in the adjacent segment, confirming that there is not a fixed

value of the product of the current-density and segment-length, jL, that defines

immortality in individual segments that are part of a multi-segment interconnect tree.

Instead, it is found that the probability of failure of a multi-segment tree increases with

the increasing value of an effective jL product defined in earlier work. However,

contrary to expectations, the failures were still observed when (iL)eff was less than the

critical jL product for which lines were found to be immortal in single-segment test

structures. It is argued that this is due to reservoir effects associated with unstressed

segments, or due to liner failure at the central via. Multi-segment test structures are

therefore shown to reveal more types of failure mechanisms and mortality conditions

that are not found in tests with single-segment structures.

4.1 INTRODUCTION

As described in chapter 1, the net atomic electromigration flux, Ja, results from



an electron wind force which is countered by a force caused by the resulting mechanical

stress gradient:

Dac=- Ze -- ,

T Uax)

where Da is the atomic diffusivity, C is the concentration of diffusing species, kT is the

thermal energy, Z* is the effective charge number, e is the elementary charge, p is the

resistivity,j is the current density, K is the atomic volume, and a is the hydrostatic stress

(4.1)

along the length x of the interconnect. For short lines bound by zero-flux boundaries

that are electrically stressed at low current densities, a steady state will be reached when

the stress along the line evolves to a uniform stress gradient, so that the back force due

to the stress gradient is balanced by the electron wind force [Blech 1976]. If the

stresses remain low enough that void nucleation or metal extrusion does not occur, the

back stress will balance the electron wind force and Ja will go to zero. In this case the

metal line will be immortal, i.e. immune to electromigration-induced failure. For zero

net atomic flux, Equation (4.1) can be rearranged to give:

(jL)c,.t = M, (4.2)UL rtZ *ep'



where (jL)cit is the critical product of current density, j, and the line length, L, for which

the forces balance and A- is the difference in the hydrostatic stress between the anode

and the cathode.

If a void nucleates, it will grow until failure occurs or until the forces balance.

The latter can occur if the void does not cause an open circuit failure or if it causes a

resistance increase less than the increase defined as unacceptable, ARfail. In this case,

the line will be immortal as long as

(p/ A) ARy 2QB

( p/A), R Z*ep
(4.3)

where (p/A) and (p/A), are the ratio of the resistivity and the cross-sectional area of the

primary conductor and the liner, respectively, and R is the resistance of the line without

a void [Suo 1998].

(jL)c,., and (L)s, are important parameters in IC interconnect layout design as

they determine the line length beyond which electromigration would be a concern. It

also serves as an important input in circuit-level reliability analysis tools in defining the

While immortality has been demonstrated for

jL < (jAL,,

overall reliability of the IC metallization.



straight via-to-via Cu interconnects [Wang 2001][Lee 2001][C.Hau-Riege 2002], a

range ofjL values, from 1500 A/cm to 3700 A/cm, have been reported. This is mainly

due to the asymmetrical EM behavior for the via-above (Ml) and via-below (M2) of Cu

interconnects [Gan 2001], and the sensitivity of the interconnects to the location of

voids formation [S.Hau-Riege 2002]. Moreover, the reliability of a segment in a Cu-

based interconnect tree has been reported to depend on the stress conditions of adjoining

segments [Gan 2002][Gan 2003], where an "interconnect tree" has been defined as a

unit of continuously connected high conductivity metal lying within one layer of

metallization [S.Hau-Riege 2000]. In this paper, the reliability of the segments in the

interconnect trees is further investigated to validate the applicability of the immortality

criteria, (jL)crit, determined in single-segment trees, for segments within multi-segment

interconnect trees.

4.2 EXPERIMENTS

Experiments were performed by Choon-Wai Chang, a student from Singapore-

MIT Alliance. Chang carried out the experiments at National University of Singapore.

Package-level electromigration tests were carried out on simple two-segment

interconnect trees consisting of straight via-terminated lines with an additional via in the



middle that creates two segments ('dotted-I' structures). Most experiments were

carried out in lines with two 25 jm-long segments each, and unless otherwise noted, it

should be assumed that the segments were 25 m-long. In some cases the lines had a

total length of 20pm with two segments of length lOm each. Via-below (M2-type)

dotted-I structures were 0.28 m-wide test structures in the metal-2 layer connected to

wide leads in the metal- 1 layer (Figure 4.1). The inter-level dielectric (ILD) was SiO 2,

with Ta as the diffusion barrier and silicon nitride as the capping dielectric. The

current density in the right segment was kept constant at 0.5 MA/cm2 with the electrons

flowing from the right via towards the middle via, while the current density in the left

segment was varied, with values of 0, 0.5, 1.5 or 2.5 MA/cm2, and with electrons

flowing either into or out of the central via. The current density in the left segment (jL)

was defined to be positive if the electron flow direction was the same as in the right

segment (see Figure 4.1(a)).

There were 16 samples in the population for each of the test condition. All the

samples were stressed at 350 0C in the EM tester. The samples were stressed for 780

hours until a failure criterion of a 30% resistance increase was met. Failure sites of



(a)
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0.5 MA/cm 2
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Figure 4.1 (a) Top and (b) cross-sectional view of the dotted-I test structure. The
arrows indicate the directions of the electron flow.

selected samples were characterized using focused ion beam (FIB) milling with

scanning or transmission electron microscopy.

4.3 EXPERIMENTAL RESULTS

Tests were carried out at a current density in the right segment that was not

expected to cause failure in an individual isolated segment of 25pm length. Due to the

small number of failures in some of the test configurations, the percentages (or

fractions) of the population that had failed at the end of the experiments are used for

comparison instead of the median-time-to-failure. The percentages of the population



Table 4.1

Percentages of the 50JIm-long dotted-I (25pm segment) that failed, for individual

segments and for the overall structure. The arrows indicate the electron flow

directions. R denotes the right segment and L the left segment. Also shown are the

percentage of the failures that occurred first in the right or left segments, and the

percentage of the samples that failed simultaneously in both the right and left

segments.

Test Total Failed Failure Sequence
Configuration (% of population) (% of total failed)

(MA/cm2) R L Overall R first L first R = L

2.5 <- - 0.5 68.8 68.8 81.2 46.2 38.5 15.4

1.5 <- <- 0.5 62.5 43.8 62.5 80 10 10

0.5 <- <- 0.5 37.5 12.5 37.5 100 0 0

0 - 0.5 18.5 0 18.5 100 0 0

0.5 + < 0.5 14 14 20 40 40 20

1.5 4 <- 0.5 46.2 46.2 53.8 75 25 0

2.5 < - 0.5 35.7 50 57.1 20 80 0

Table 4.11
Failure percentages for the 20gm-long dotted-I (10pm segment).

Total Failed Failure Sequence
Test (% of population) (% of total failed)

Configuration
(MA/cm 2) R L Overall R first L first R = L

0.5 <- - 0.5 12.5 6.2 12.5 100 0 50

0 ( 0.5 0 0 0 0 0 0
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Figure 4.2 (a) Plot of the percentages of samples in which the right segment
failed, as a function of the current density in the left segment, jL- (b) Plot of the
percentage of the samples that failed with failure occurring first in the left or right
segments, or with failure occurring simultaneously in both segments.
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that failed in the left segments, right segments, and anywhere in the overall structure

(where the dotted-I was considered failed when either the left or right segment had

failed) for all the test conditions on 50gm-long (25pm segment) lines are tabulated in

Table 4.1. Also given in the table is the percentage of the lines that either failed first in

the left segment, failed first in the right segment, or that failed in both the left and right

segments simultaneously. Table 4.11 shows data for the 20gm-long lines (10gm-long

segments). The percentage of the samples that failed in the right segment and the

percentage of the samples that failedfirst in either the left or right segment, are plotted

for the 50gm-long (25gm-long segment) lines as a function of the current density in the

left segment (L) in Figure 4.2.

Results from focused ion milling and electron microscopy are shown in Figures

4.3 through 4.6. Figure 4.3 shows scanning electron micrographs of typical samples

that failed in the right segment, either at the cathode end (Figure 4.3(a)) or near the

anode or central via. Figure 4.4 shows a transmission electron micrograph of an

unusual failure indicating liner failure at the central via. Figure 4.5 shows a scanning

electron micrograph of a typical sample that failed at the cathode of the left segment,

where failure in the right segment was detected earlier. Figure 4.6 shows unusual



Figure 4.3 SEM images for the voids formed in the right segments either (a) at the
cathode or (b) at region close to the central via, though the left segments had higher
current densities. The arrows indicate the directions of electron flow.

Figure 4.4 TEM image of the central via for the failed sample where jL = -0.5
MA/cm2.

Left. Right

Mt-1lead



Figure 4.5 SEM image for the large volume void in the left segment for jL = -1.5
MA/cm2 where the right segment first failed.

Figure 4.6 (a) SEM image of a failure site near the central via in the right segment

for jL = -1.5 MA/cm2. The arrows indicate the directions of the electron flow. (b)
SEM image of the trace of metal extrusion at the Cu/Si 3N4 interface parallel to the
test line. The arrows indicate the extruded metal with clear dielectric cracks, while
the dashed-circle is the erupted failure site in (a). The M2 test line is not visible as it
had been over-cut.
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failures of the same sample in Figure 4.5, in which the right segment failed

catastrophically, despite a higher opposing current in the left segment.

4.4 DISCUSSION

In all experiments, the jL product in the 25pm-long right segment was 1250

A/cm, which is below the values of 3700 A/cm and 1500 A/cm at which EM-induced

failure is reported to occur for similar M2 structures [Lee 2001] and MI (via-above)

structures [C.Hau-Riege 2002], respectively. Despite this, complete immortality (0%

failed) was not found in our experiments on 25pm-long segments, even when the

current density in the left segment was zero. Moreover, the mortality (percent that

failed) of the right segment in the dotted-I structure was found to depend on the

direction and magnitude of the current in the adjacent left segment. Riege and

Thompson [Riege 1998] and Clement et al. [Clement 1999] recognized these effects as

being due to interacting segments acting as sinks or reservoirs for diffusing atoms, and

suggested that immortality of a multi-segment interconnect tree can be determined

through calculation of an effectivejL product, (jL)eff given by

(jL) = L
/~ )max

(4.4)
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Figure 4.7 Plot of the overall failure percentage of the tested structures for tests
carried out under conditions leading to different values of (jL),ff. Absolute
immortality was obtained from lOpm-segment dotted-I with [0 <-0.5 MA/cm 2] test
configuration.

wherej and Li are the current density and length of individual segments and the sum is

taken over all possible paths through the tree, with (jL),ff given as the maximum of these

sums. Figure 4.7 shows the overall failure percentages of the dotted-I as a function of

(jL),ff. Also shown in Figure 4.7 are the expected failed percentage for (jL)cri,= 1500

A/cm and (iL),,, = 3700 A/cm.



It can be seen that the failure percentage decreases monotonically with

decreasing (iL),ff and goes to zero at finite (jL),gf. However, the transition to full

immortality is not sharp, with some lines with high (jL),ff proving to be immortal, and

some lines with low (jL),ff proving to be mortal. The rest of this discussion will focus

on these differences from expected behavior.

4.4.1 Active and Passive Reservoirs

A reservoir can be defined as the extension of an electrically stressed line either

at the cathode or the anode side. A reservoir at the cathode end can be treated as an

atomic source for the test line, while it is an atomic sink at the anode end. A reservoir

is considered as 'active' when it carries electrical current and 'passive' if there is no

current in it.

The failed population of the right segments was observed to increase with

increasing current density in the left segment for electron flow in and out of the central

via, with the smallest percent failing when jL = -0.5 MA/cm 2, the case for which the

atomic fluxes into the central via was counter-balanced in the two segments. For the

cases ofL = 0.5, 1.5 and 2.5 MA/cm 2, for which the electron flows of the two segments

were in the same direction, over one third of the samples' right segments failed earlier



than the left segments, even though the current densities in the left segments were

higher. This is due to the right segment serving as an active atomic source for the left

segment in these cases. The atomic flux from the right segment to the left segment

relaxes the tensile stress built-up in the left segment at the central via, and accelerates

the build-up of tensile stress at the cathode-end of the right segment. Voids can form

either near the cathode via of the right segment for moderate current density in the left

segment (jL = 1.5 MA/cm 2), or in a region close to the middle via for a large current

density in the left segment (jL = 2.5 MA/cm 2), as shown in figure 4.3.

4.4.2 Failures at Low (jL),ff with Inactive Segment

To gain insight into the interactions of the interconnect segments, stress

evolution was simulated using the 1 -D electromigration finite-differential equation

solver [Choi 2004] for all the test conditions. The increased mortality of the right

segment with increasing jL was found to match with the simulated results as shown in

Figures 4.8(a)-(d). The simulations show that when electrons flowed in the same

direction in both segments, the time to reach the critical tensile stress for void

nucleation of 40 MPa [S.Hau-Riege 2002] at the cathode of the right segment reduced

with increasing current density in the left segment. Void nucleation in the right
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segment is also predicted when the left segment is inactive (jL = 0), since even in this

case the left segment serves as an inactive sink for atoms from the right segment.

effects of inactive segments are not accounted for in the definition of (jL),ff.

The

This

causes the unexpected mortality observed at low (jL),ff shown in Figure 4.7, forjL = 0

and segment length equal to 25gm.

The segment that failed earlier could also serve as an inactive sink for the other

surviving adjacent segment. For example in the case where jL = -2.5 MA/cm 2, most of

the left segment failed earlier than the right segment as shown in Figure 4.2(b). The

segment with higher current density fails first and becomes an inactive segment while

the adjacent right segment is still active. This causes the failure percentage of the right

segment to increase with the current density in the left segment as well when the

electron flow was in the opposite direction.

4.4.3 Accounting for the Effects of Inactive Segment

Consider the cases shown in figure 4.9, which compares the steady state stress

distribution in an isolated active segment of length a, with the case in which the active

segment is connected to a passive segment of length p. In the case that void nucleation

does not occur, the peak tensile stress is higher when there is a passive reservoir. The



presence of a passive reservoir therefore makes void nucleation (and failure) more

likely.
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Figure 4.9 Schematic illustration of the balanced stress distribution with and

without a passive segment for the cases (a) when void nucleation does not occur (the

peak tensile stress is higher when there is a passive reservoir) and (b) when void

growth saturates (the void length at saturation is larger when there is a passive

reservoir).

The stress is related to the atomic concentration by C=Coexp(-o-/B), or for small a, C

Co[1-(a 2B)]. If -o is the equilibrium stress, it can be shown that mass conservation

requires that
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a- = U2 = Z* pe (2ap + a2 .

2Q ap ) (4.5)

The criterion for immortality is therefore that (jL)eff < (jL)cri, and -max < nuc, where -nue

is the stress required for void nucleation.

If a void nucleates, but its growth saturates before leading to failure, the steady

state stress distribution will be as shown in figure 4.9(b). The presence of a passive

segment leads to a higher void size at saturation, and is therefore more likely to lead to

failure. It can be shown that:

V. = wh a+p-
2B Kp 2 a KI+12  +-K(2B;

where w is the segment width, h is the segment thickness, and K = Z*pje/Q. The

criterion for immortality is therefore that (iL),ff < (jL)sar and V,x < Vfail, where Vnax is

the maximum void volume and Vfail is the void volume that leads to failure. Equations

(4.5) and (4.6) are derived in the appendixes.

4.4.4 Failures at Low (jL),ff with Liner Failure
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The other case in which unexpected high failure rates occurred at low (jL),ff is

whenjR 1 -jLI. In this case, as shown in figure 4.8(e), a compressive stress is expected

to develop at the central via. However, in some cases the liner at the central via was

found to have been non-blocking (as shown in Figure 4.4). This could be the result of a

discontinuous liner in the as-fabricated structure or could have resulted from rupture of

the liner caused by the compressive stress. In either case, a non-blocking liner at the

central via allows the wide metal-i lead to serve as an active sink for electromigrating

atoms from the metal-2 segments, and will lead to continued build-up of tensile stresses

in these segments and eventually to their failures.

4.4.5 Unexplained Failures

When the electron flow direction is toward the central via in both segments, and

the left segment had higher current, failure is expected to occur first at the cathode of

the left segment. However, this was not always observed in our experiments especially

when jL = -l.5A/cm2, where very long void can be formed in the left segment.

4.5 and 4.6 show failure sites for such samples. Not only did the right segments fail

first, but they failed catastrophically near the central via rather than at the cathode end

of the right segment. These results are difficult to explain. However, the micrograph
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in figure 4.6(b) suggests that failure is associated with compressive decohesion at the

Cu-silicon nitride interface. This would result in Cu extrusion and copious Cu voiding

near the extrusion site.

4.5 CONCLUSIONS

The mortality of a multi-segment interconnect tree is governed by interactions

among the segments, not by the stress conditions in individual segments. The

existence of an active or passive reservoir causes the electromigration behavior of an

interconnect tree to be very different compared to straight via-to-via lines, which was

confirmed through experiments and simulations. The probability of failure was shown

to depend on the effective jL product, (jL),ff, with immortality occurring when (iL),ff was

sufficiently low. However, the effects of inactive segments must be accounted for in

order to predict immortality based on (jL),ff. It was also shown that failures can occur

for low values of (jL),ff when liners are missing or ruptured. Testing of multi-segment

trees allows greater flexibility in testing to reveal different failure mechanisms, and

different constraints on immortality.
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4.7 APPENDICES FOR CHAPTER 4

4.7.1 Maximum Stress at Steady State

Consider an interconnect tree in steady state as shown in figure 4.9(a). The

stress along the direction x in the right segment is given by

a(x)= Z pje(x - p)+aC,1, (4.Al)

where cc, is the steady stress in the left segment.

approximating C = Coexp(-qc.1/B) ~ C[1-(-c.1/2B)],

COA(a+p)= CoA f(1-
-0

aC1' )dx
2B

Since mass is conserved, by

a+p K(x-p)+aC1
+ f (1- 2B ' )dx

p

(4.A2)

where A is the cross-sectional area of the line and K = Z*pje/). Solving for ci,,
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a2+ 2 ap)
K(ap- 2 -Ka 2

C, 'I = (a2
a +p 2(a + p)

(4.A3)

For a single segment of line length a in steady state with o, = 0, the maximum tensile

stress is given by

-Z*p=ea (4.A4)
20

When an adjacent segment is present, the same stress gradient develops in the right

hand segment (when the same current density is used), but in the steady state the

compressive stresses at the end of the segment is reduced. The new stress at the

compressive end is given by

aCJ = amax

*

-Z pjea = amax - Ka.
0

(4.A5)

Combination of equations (4.A3) and (4.A5) gives
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Z pje 2ap +a 2
2max a+p

(4.A6)

4.7.2 Maximum Void Length at Steady State

If a void nucleates but its growth saturates before leading to failure, the steady

state stress distribution will be as shown in figure 4.9(b). The presence of a passive

segment leads to a larger void size at saturation, and is therefore more likely to lead to

failure. If we assume that the void spans the width w and thickness h of the segment,

mass conservation requires that for a void volume at saturation of V2,

CO A(a + p)= Co A f(1 - C,2 )dx +
2B

d+p

f
p

K(x - p)+c 2
(1- ')dx ,

2Bj

where d = a-(V2/wh).

aC,2 K(d 2 + 2dp)
a+p=p- 2B p+d-

2B 4B
Kdp dac,2
2B 2B

(4.A8)

Since C.2 = -Z*ped/Q = -Kd,
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Hence,



d2B (Kp + + aK-1 -pK 2B B

The maximum void size at saturation Vmax is then given by

V./1wh =V2/wh = a-d = a+p- +1 +K-12 Kp aK
K (2BI+B

(4.A9)

(4.A10)
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CHAPTER 5

EFFECTS OF TEXTURE ON THE FORMATION,

SHAPE, AND MOTION OF VOIDS DURING

ELECTROMIGRATION IN PASSIVATED COPPER

INTERCONNECTS

108



ABSTRACT

In-situ scanning electron microscope (SEM) observations have been performed

on passivated damascene Cu interconnect segments of different widths during

accelerated electromigration (EM) tests. In some cases, voids form and grow at the

cathode. However, an alternative failure mode is also observed, during which voids

form distant from the cathode end of the interconnect segment and drift toward the

cathode where they eventually lead to failure. The number of observations of this

failure mode increased with increasing line width. During void motion, the shape and

the velocity of the drifting voids vary significantly. Post-mortem electron back-

scattered diffraction (EBSD) analysis was performed after in-situ testing and a

correlation of EBSD data with the in-situ observations reveals that locations at which

voids form, their shape evolution, and their motion all strongly depend on the locations

of grain boundaries and the crystallographic orientations of neighboring grains.

5.1 INTRODUCTION

It is well established that electromigration in confined metal interconnects can

lead to tensile stresses that can cause void nucleation and growth [[Korhonen 1993].

In via-terminated interconnect segments, electromigration is usually blocked by

109



refractory metal liners found at the base of the vias. Therefore, when an electrical

current is applied, electromigration leads to stress evolution such that a maximum

tensile stress occurs at the cathode-end via. This via is therefore generally expected to

be the most probable location for the nucleation of a void. More specifically, for the

case of Cu-based interconnects, voids are typically located at the interface between Cu

and the top passivation layer, very close to the via at the cathode. This preferred site for

nucleation is due to the weak Cu/Si 3N4 interface, which has a poor adhesion [Lloyd

1995] and a high diffusivity [Hu 1997, Arnaud 1999]. The dominant failure mechanism

of interconnects in metallization segments with vias below the interconnects is reported

to be void growth above the via at the cathode end [Lee 2001], which eventually causes

an electrical open circuit.

Recent failure analysis and in-situ scanning electron microscopy (SEM)

experiments show that voids can not only nucleate at the cathode, but often also form

away from the cathode, and then drift toward the cathode to cause open circuit failure

by diving into the via [Meyer 2002, Zschech 2004, Choi 2006]. The behavior of a void

as it drifts can lead to critical variations in the failure characteristics and failure time.

In order to estimate or improve reliability it is therefore important to better understand

void motion and determine factors influencing it. In this study, accelerated in-situ
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electromigration tests were performed in an SEM. Post-failure Electron Backscatter

Diffraction (EBSD) analysis was carried out to correlate behavior observed during

testing with miocrostructural features and characteristics.

5.2 EXPERIMENTAL PROCEDURE

5.2.1 Test Structure

Nucleation, growth and motion of voids were observed by performing

accelerated electromigration (EM) tests in an SEM at elevated temperatures and current

densities. The orientations of grains at the Cu/Si 3N4 passivation-layer interface were

identified after the tests using back-scattered diffraction (EBSD) analysis. By observing

the location, drift rate, and size of the voids, we investigated the relationship between

diffusivities at the Cu-capping layer interface for Cu grains of different orientations. In

this experiment, we used interconnects that were fabricated by Sematech Inc, in which

the test structures were located in the second metallization layer (M2). The test

structures were 1000pm long, 0.45pm thick and had a width of either 0.3gm, 1.0pm or

2.25pm. The interlayer dielectric (ILD) was SiO2 and the passivation layer was a

200nm-thick layer of Si3N4 . The Cu was lined on both sides and the bottom with a

25nm-thick Ta layer.
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5.2.2 Thinning Passivation

Before testing we used a focus ion beam (FIB) Microscope to reduce the

thickness of the Si 3N4 to roughly 1 00nm to be able to obtain SEM images of good

quality of the underlying metal (Figure 5.1). The FIB can mill material through

bombardment and sputtering with Ga ions. Thus, the material that is used in an FIB is

typically doped by trapped Ga ions.

voltage of 30kV were used for milling.

Ion beam current of 300pA and accelerating

Depending on the material and Ga ion energy,

the penetration depths of Ga ions vary. In our case the penetration depth of Ga ions in

Si 3N4 was estimated using the simulation with SRIM [SRIM], which indicated that a

negligible number of Ga ions came to rest at depths of 50nm or more in Si 3N4. Thus,

when we milled the Si3N4 with roughly 100nm remaining thickness, it can be safely

assumed that Ga did not affect the Cu/passivation layer interface or any of the observed

in-situ phenomenology. The FIB used was an FEI Strada DB235 located at Center for

Nanoscale Systems (CNS) at Harvard University. A 5pm x 10gm window was milled

at a rate of 10nm/min. After this treatment the quality of SEM images showing voids

underneath the 1 00nm-thick passivation was significantly improved.
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FIB

Figure 5.1 Si3N4 passivation layer thinning process using focused ion beam (FIB).
Thinning process enables to see Cu/Si3N4 interface more clearly using SEM.

5.2.3 In-Situ SEM

After the FIB sample preparation, samples were mounted and gold-wire bonded

onto a commercial 24-pin ceramic package. The sample was attached using Duralco 124

silver filled epoxy to withstand the elevated temperature of the accelerated

electromigration test. The epoxy was cured prior to wire bonding at 120*C in a furnace

for 50 minutes. The package was then mounted onto a custom-made SEM sample

holder which was connected to an electrical feed-through for application of electrical

current to the test structures and the resistive heater. The SEM sample holder with the

ceramic package was inserted into the SEM. We used a JEOL 450 tungsten filament

SEM which was located at the Rowland Institute at Harvard. The sample was heated

to the desired temperature of 3700C and the temperature was measured using a
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thermocouple that was securely attached to the heated ceramic package. There was

severe image drift caused by thermal expansion during heating, therefore the sample

was heated at the same electrical power for at least 10 hours prior to starting the tests, to

avoid sample drift during the SEM observation. Accelerated EM tests were then

performed using a current density of 3.0 MA/cm2. The base pressure of the chamber

was 1x10-6 torr during the tests. The tests were terminated when the sample met the

failure criterion of an open circuit. SEM images of the Cu /passivation interface around

the thinned Si 3N4 region of the sample were taken in top view and were automatically

recorded every 165 seconds using a computer and custom-written software. The beam

current was 1 nA, the accelerating voltage was 20 kV, and the working distance was

chosen to be 20mm to reduce heat transfer from the hot stage to the SEM column. The

resistance of the samples was recorded throughout all experiments.

5.2.4 EBSD

After the tests, the samples were carefully removed from the ceramic package,

and the remaining passivation layers were fully removed using the FIB. EBSD analysis

was used to map the crystallographic orientations of the grains in the region that had

been observed during the in-situ experiments. EBSD analysis was performed with a
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system from HKL using a Channel 5 detector that was mounted to a SEM with a

Schottky Emitter (Leo 982) at CNS at Harvard University. For EBSD measurements,

the sample was tilted at 700 with working distance of 8mm, and an accelerating voltage

of 19kV was used.

5.3 RESULTS

Out of ten 0.3 m-wide samples, two samples formed voids away from the

cathode. In the 1.Opm-wide samples, three out of seven samples formed voids away

from the cathode and all four of the samples that were 2.25pm-wide formed voids

distant from the cathode. A summary of these and other observations is given in Table

5.1. For all samples in which voids formed at a distance from the cathode, voids were

never subsequently observed to form at the end of the cathode.
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Table 5.1

Summary of Experimental Results

5.3.1 Void Drifting in 1.0pm and 2.25pm Width Samples

For the samples with 1.Opm and 2.25 pm widths, voids that had formed away

from the cathode drifted toward the cathode. In one case, a 1.OPm-wide line failed

when a void grew to span the width and thickness of the interconnect after drifting close

to, but not all the way to, the end of the cathode (Figure 5.2(c)). In all other 1.0pm and

2.25pm-wide samples, open circuit failures were detected after the voids reached the

end of the cathode.
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Grains Likely to form Number of Location of Distance Void drift TTF of samples
per voids away voids away first void void velocity with void away

width from cathode from away from drifted (nm/min) from cathode
cathode cathode

0.3pm Mostly I Low I or 2 12-13pm l-2pm 3.31 -1000min

(2 out of 9) away

I.Opm 1-3 Intermediate I or 2 More than To or 7.62 1000-2750min

(3 out of 7) 13im away close to
cathode

end

2.25p1m 2~5 High 3 to 7 Within To 46.22 Less than

(4 out of 4) 3pm away cathode 300min
end
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Figure 5.2(a) In-situ SEM images of the voids from the top view with out of plane
orientation of the tested samples and resistance during the test. The width of the test
structure is 0.3gm.
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Figure 5.2(b) In-situ SEM images of the voids from the top view with out of plane

orientation of the tested samples and resistance during the test. The width of the test

structure is 0.3pm.
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Figure 5.2(c) In-situ SEM images of the voids from the top view with out of plane
orientation of the tested samples and resistance during the test. Width of the test

structure is 1.0ptm.
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Figure 5.2(d) In-situ SEM images of the voids from the top view with out of plane
orientation of the tested samples and resistance during the test. Width of the test

structure is 1.Om.
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Figure 5.2(e) In-situ SEM images of the voids from the top view with out of plane
orientation of the tested samples and resistance during the test. Width of the test

structure is 2.25pm.

5.3.2 Void Drifting in 0.3pm Width Samples

In the case of the 0.3gm-wide interconnects, voids that formed away from the

cathode did not drift all the way to the end of the cathode. Instead, after drifting for only

one or two micrometers, the voids grew to span the width and thickness of the line and

caused failure (Figures 5.2(a) and (b)). Very close to the time of failure it was

observed that when the void nearly spanned the line, both the anode and cathode edges

of the void still propagated slowly toward the cathode end of the interconnect. Once the

void fully spanned the line, both edges of the void instantly changed their direction of

motion and propagated away from the cathode end.

122

1 2 5 6 7 8 1 1



0.3pm 1.Opm 2.25pm

Figure 5.3 Void drift velocities at various line widths. Average drift velocities are

3.3 1nm/min (0.3 pm), 7.62nm/min (1.0tm), and 46.22nm/min (2.25 m).

5.3.3 Void Drift Velocity

The void drift velocity changed substantially as voids drifted toward the

cathode during all observations.

plotted in figure 5.3.

Averaged drift velocities of individual voids are

Ds was extracted from the drift velocity and is compared and

analyzed in a separate study [Choi Ch.6a]. Voids in 2.25pm-wide samples drift

significantly faster than voids in 1.Opm and 0.3pm-wide samples. Drift velocities for

2.25p m-wide samples also have a very wide range, from 8. lnm/min to 100nm/min.
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Table 5.11

Anode and cathode edges of the void as voids nucleate away from the cathode end of

the interconnect.

Sample Anode/Cathode

2.25gm wide (2 4 7)/(10 13 21)

2.25pm wide (3 2 6)/(18 19 27)

1.0pm wide (2 3 12)/(8 11 12)

0.3gm wide (1 0 1)/(15 13 18)

5.3.4 Grain Orientation Dependence on Voids

The EBSD data for the interconnects showed that in the wider lines there were

more grain boundaries per length of the interconnect than in the narrower lines. In

particular there were more grain boundaries oriented along the length of the

interconnect in the wider samples. From the EBSD measurements, we also were able to

locate the sites at which voids appeared in four samples including all widths. The

orientations of the grains at the anode and cathode edge of the void are listed in Table

5.11.

In the 1.0gm-wide lines, the changes in size and shape of drifting voids were
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Figure 5.4 Shape of the void drifting in a single grain region is well maintained until
the void reaches to the different grain.

observed in detail. EBSD results on these test lines also show that the shape of a void

changed as it passed through or along grains with different orientations (Figures 5.2

(c),(d)). When a void moves within a single grain, the shape of the void is fixed as

shown in Figure 5.4. The shape of the void changes drastically once the void moves into

a different grain which can be also seen in Figure 5.4. In a few cases it was observed

that the void shape within certain regions was different for different voids. Examples are

shown in Figures 5.5 and Figure 5.6.
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Figure 5.5 (a) First void passing through a circled region of the grain and (b) second
void passing through a circled region of the grain. Cathode edge of the second void
has the same shape as the grain, but the shape of the first void is different, suggesting
that the grain has changed in the circled region after the first void drifted.

(b)

Figure 5.6 (a) First void passing through a circled region of the grain and (b) second
void passing through a circled region of the grain. Both cathode edges of first and
second void have similar angle, suggesting that the grain in that region has not
changed.
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Distance from Cathode (pm)

Figure 5.7 Length of the void vs. location of the void for the voids that nucleated

away from the cathode. 1.Opm width samples.

5.3.5 Void Elongation and Residues

In general, the length of voids increased as the voids drifted closer to the end of

the cathode and the increase was especially pronounced near the end of the cathode

(Figure 5.7). Some voids left small residual voids behind, as can be seen in figure 5.8.

For all samples with voids distant from the cathode, no void at the end of the cathode

was observed. These observations will be analyzed in detail and discussed by Choi et al

[chapter 7]. Residual voids sometimes grow and drift as shown in figure 5.2(d).
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Figure 5.8 Void residues are observed that are left behind by the first void.

5.4 DISCUSSION

5.4.1 Failure by Voids Away from Cathode

The results of our in situ EM observations clearly show that two different

failure modes exist in interconnects. EM failure mostly occurs by voids causing an

electrical open at the cathode via, as has been found in numerous lifetime tests [Hu 1995,

S. Hau-Riege 2002, C.Hau-Riege 2002, Ogawa 2002, Hauschildt 2006]. Our

observations show that there are two modes that can lead to this failure. One is the

formation of a void at or in the via, as has been discussed before, and is growth of voids

at a distance from the via and their subsequent motion toward the cathode via. The

failures observed in Figures 5.2(d) and (e) can be explained by voids diving into the via

to cause failure at the bottom, as has also been observed in cross-sectional view in-situ

SEM studies [Meyer 2002].

5.4.2 Effect of Grains on Void Growth
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Voids initially grow in the locations at which they first appeared, before de-

pinning and drifting toward the cathode. The locations of void appearance and initial

growth were found to correlate with the locations of grain boundaries. The activation

energies for diffusion of Cu atoms on Cu surfaces are known to vary on surfaces with

different crystallographic orientations of the surface [Karimi 1995]. It is reasonable to

expect that this will also be true for Cu/passivation-layer interfaces. Therefore, as

illustrated in figure 5.9, assuming a bamboo structure, if a void is pinned at a grain

boundary and the grain on the anode side of the void has a higher diffusivity than that

on the cathode side of the void, the void will grow in size due to the flux divergence.

After growing to a certain size, the void may de-pin from the grain boundary and drift

toward the cathode [Borgesen 1992].

As a void drifts it can become pinned at another grain boundary. The grain

size for the Cu used in this study was about 0.6p m, so that a void can become pinned or

change velocity frequently as it drifts toward the cathode. Once a void is pinned at a

new grain boundary it can continue to grow and eventually again de-pin. However, the

flux divergence at the new boundary might also cause the void to shrink and eventually

disappear (Figure 5.2(a)).
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Figure 5.9 A cartoon shows the case in which void may nucleate and grow. e- is
electrons, and blue arrow indicates the direction of electrons. The void is at a grain
boundary, between grain a and b where diffusivity of Cu/Si3N4 passivation interface in
grain a (Dint(SiN)_a) is larger than that of grain b (Dint(SiN)_b). Thick red arrow in grain a

indicates large atomic flux and thinner red arrow in grain b indicates smaller atomic

flux.

5.4.3 Effect of Grains on Void Drift

Voids drift because of to the difference in diffusivities on the void's surface and

in the Cu/passivation-layer interface next to the void. The Cu surface diffusivity is a few

orders magnitude larger than the diffusivity in the interface [Hu 1997, 1997a]. Thus, at

the cathode edge of the void there is a local flux divergence between the Cu surface of

the void and the Cu/passivation-layer interface next to the void, where the outgoing flux

on the surface is larger than the incoming flux in the interface (Figure 5.10). At the

anode edge of the void, a flux divergence of opposite sign exists and the outgoing flux

through the interface is smaller than the incoming flux on the surface. These flux

130



Figure 5.10 A cartoon shows the case in which void drifts in a single grain. D, is the
surface diffusivity of the exposed surface at the void, which is much larger than
interface diffusivity (Dint(SiN)) around the void, as indicated by the thickness of the red
arrow. The overall direction of the void drift, then, is against the direction of the
electrons, shown by black arrow.

divergencies lead to gain (loss) of Cu on the anode (cathode) side of the void and

therefore to a motion towards the cathode end.

By these arguments, the drift rate of the void should be directly proportional to

the differences between the diffusivities of the surface and the Cu/SibN 4 interface. Since

the stress is effectively reduced to zero around the void, the atomic flux Ja is given by

[Korhonen 1993]

DegfCa *

a = -- kT jpeff, (5.1)

so that the flux difference on the anode side of the void is:
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(_ {s(z*D), -, (z*D)IC, jpe
hkT

(5.2)

where the subscript s indicates the Cu surface of the void, i indicates the Cu/passivation-

layer interface, AJ is the net flux that is accumulated/removed from the edges of the

void, z* is the effective charge, D is the diffusivity around the void, Ca is the atomic

concentration of Cu, k is Boltzmann's constant, T is the temperature, j is the current

density, e is the fundamental charge, 6 is the surface (interface) thickness, h is the

thickness of the Cu interconnect and p is the resistivity.

void will then drift with a velocity Vvoid given by:

It can be seen then that the

Vd = -r( Ain, 1'51,(z*D), -9,(z*D)},A void) hkT
(5.3)

where Aint is the cross-sectional area of the interconnect, Avoid is the cross-sectional area

of the void, assuming a fully spanning void through the width and thickness, (Aint/Avoid)

is 1. Also, since s(z*D), is much greater than 6i(z*D);, the equation can be further

simplified to:

vk s- jpe. (5.4)
hkT
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Equation (5.4) shows that the void drift velocity is directly proportional to the

surface diffusivity, D. Since Ds depends on the crystallographic orientation of the

surrounding grain the velocity of a void will vary with the crystallographic orientation

of the grains it passes through. Therefore, the substantial variation of the drift velocity

observed for drifting voids is likely due to changes in the diffusivities on different

exposed grain surfaces as the voids moved from grain to grain. A quantitative analysis

of relationship between drift velocity and grain orientation of the exposed void surface

could not be obtained from in-situ SEM experiment because it is not possible to observe

grain orientations of the exposed void surface while performing EM tests. However,

the observed range of drift velocities suggests that surface diffusivities vary over a range

of a factor of about 4.

The fact that the overall velocity of voids is higher in wider lines could be due

to preferential motion of voids along grain boundaries that are oriented parallel to the

direction of the electron wind, as predicted by Borgesen [Borgesen 1992].

5.4.4 Effect of Grains on Void Shape

After the electroplating and annealing steps, the average grain size of the Cu in

133



the interconnect was 0.6pim. Thus, if a void drifts for more than 0.6 im and hits a grain

boundary, and if the interface diffusivity of the cathode-side grain is larger than that of

the anode-side grain, the void will shrink or even disappear.

explain the observation shown in Figure 5.11. Accordi

Such a scenario could

ng to these simplified

considerations, one expects that the size of the void depends on the interface diffusion at

both edges of the void and the drift velocity of the void depends on the surface diffusion

within the void. The fact that the voids that were drifting grew on their way to the

cathode suggests that during EM the cathode edge of the voids tends to propagate faster

than the anode edge.

Table 5.11 contains some information about the individual diffusivities of the

different grains. Unfortunately it is difficult to draw a conclusion with such a small

number of data points. These results are compared with results that were obtained with

better statistics using a different method by Choi et al [Choi Ch.6].

5.4.5 Width Dependence on Void Drift Velocity

The fact that the overall velocity of voids is higher in wider lines could be due

to voids preferentially moving along grain boundaries that are oriented parallel to the

direction of the electron wind, as predicted by Borgesen [Borgesen 1992].
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Figure 5.11 A cartoon shows the case in which the existing or incoming void shrinks

and possibly disappears. Similarly as in Figure 5.9, void is between grain a and b, but

in this case, Dint(SiN)_a is lower than D-int(SiN)_b, leading to smaller outgoing flux from

the void, than the incoming flux to the void.

5.4.6 Difference in Grain Orientation Before and After Void Drift

Since all EBSD measurements were performed after the in-situ experiments,

there is the chance that the region through which a void has passed might have an

orientation other than the initial orientation. Indications for this are the observations

shown in figure 5.5, where the first void seemed to be unaffected by one particular grain,

but when the second void drifted through this region the shape of the void closely

matched the shape of the grain. This indicates that this particular region in figure 5.5

had a different orientation after the first void had passed through. Some regions seemed

to maintain their orientations as shown in figure 5.6, where the cathode edges of both

voids are aligned at a very similar angle. From the small number of observations we

made it is not clear what distinguishes the reconstruction of a grain with same
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orientation from a grain with different orientations.

5.4.7 Criteria for Void Growth Away from the Cathode

When performing experiments in an SEM, only one sample could be imaged at

a time. Therefore, only a limited number of samples could be tested in this study and

therefore statistical analyses are not possible. However, the numbers in Table 5.1 suggest

that more voids form away from the cathode as the width of the line increases.

Considering that the density of grain boundaries was higher in the wider lines this

supports the idea that voids preferentially nucleate at grain boundaries or grain

boundary triple junctions. [Korhonen 1993a]. However, even given defects such as grain

boundaries that catalyze void nucleation, significant stresses are still required for

nucleation. For electromigration-induced void formation, in Cu, stresses develop due

to differences in diffusivities in the Cu/passivaition-layer interfaces. Stress can

therefore develop at grain boundaries, for the reasons dicussed earlier.

Crystallographic differences in the the surface diffusivity for Cu have been estimated to

range up to a factor of 4 [Choi Ch.6b]. While these differences are large and would be

expected to lead to large electromigration flux divergences and associated stresses, the

electromigration flux divergence at vias will always be higher. The flux through the
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liner is zero, while the flux at the Cu/passivation-layer will always be finite.

separate analysis, we have shown that it is therefore very unlikely that the critical stress

for void nucleation will be reached at a grain boundary before it is reached at the

cathode [Choi Ch.7]. These results therefore suggest that voids observed to grow

away from the cathode pre-existed, and did not nucleate because of the electromigration

flux. There was no SEM evidence of pre-existing voids. However, the critical size for

void nucleation is of order lnm, so that voids as small as lnm could grow due to an

electromigration flux divergence, without the requirement that new voids be nucleated.

Such small pre-existing voids, or void 'embryos' would generally be hard to detect. It

should be noted that the increasing lifetime with decreasing linewidth observed in the

current study is consistent with a recent study in which voids were known to exist

before electromigration began [Chang 2005].

5.5 CONCLUSION

In situ observations of electromigration-induced failure of passivated

interconnects demonstrate that there are at least two distinct failure modes, involving

formation and growth of voids directly at the cathode via, and formation and growth of

voids at significant distances (many line-widths) away from the cathode via. In the
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latter case, voids generally drift toward the cathode and continue to grow to cause

failure, either before or after arriving at the cathode.

Observations of void drift showed that voids first grew in place, and then de-

pinned to drift toward the cathode, with velocities that frequently varied significantly

until the void reached the cathode. Driffing voids sometimes became pinned again at

grain boundaries. Post-failure EBSD analysis allowed association of all of these

effects with grain boundaries.

The voids first appeared and grew at grain boundaries, presumably due to the

difference in the electromigration flux at grain boundaries, arising from differences in

interface diffusivities for grains with different crystallographic orientations. Drifting

voids sometimes became pinned at boundaries again. In this case they sometimes

shrank and disappeared instead of growing larger. This can also be understood to be

associated with electromigration flux differences at grain boundaries. Data from

experiments of this type, can, in principle, allow determination of relative values for the

diffusivities between grains with different crystallographic orientations.

to obtain such data in only a few cases in the current study.

We were able

However, in a related

study on unpassivated interconnects [Choi Ch.6b], it was confirmed that voids that grow

tend to have grains with similar orientations on their anode side (presumably
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orientations with low diffusivities), and grains with a different set of similar orientations

on the cathode side (presumably orientations with high diffusivities).

As voids drifted, their shape and drift velocity constantly changed, depending

on the grains that the voids were passing next to or through. The drift rate of a void is

determined by the diffusivity of Cu on the surface of the void. This is also expected to

vary with the crystallographic orientations of grains. The jerky motion of 'voids' was

clearly correlated with the grain structure revealed by EBSD analyses. When voids

drift through large grains, their velocity, volume and shape remained fixed. However, as

voids drifted from grain to grain, their shape and drift velocity usually changed radically.

All voids drifted toward the cathode and the voids in wider interconnects

reached the cathode via. However, voids in narrower interconnects typically drifted

shorter distances, presumably because the volume required for de-pinning was not

reached before the void spanned the width and thickness of the interconnect. Void drift

velocities were also higher in wider lines than in narrow lines, presumably because

voids tended to drift faster along grain boundaries that had components parallel to the

length of the interconnect. This type of grain boundary was observed more frequently in

wider lines.

The overall kinetics of failure will be influenced by the mode of void formation
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that ultimately leads to failure. Voids that form at the cathode via need only grow to

cause failure. The time required for void nucleation is thought to scale with j2 [Lloyd

1991] and the rate of void growth scales with j1 [Kircheim 1991]. Voids that form

away from the cathode generally form at grain boundaries, from which they de-pin at a

volume that scales as j- [Borgesen 1992], drift at a rate that varies dramatically with

the grain structure, but should scale as j within a single grain, and continue to grow or

shrink (at a rate that also scales with j), depending on subsequent microstructural

interactions. It is therefore reasonable to expect that the operation of both of these

failure modes in a single test population (void formation away from and at the cathode)

will affect the way in which reliability test data should be properly interpreted, and how

the test results should be scaled to predict in-service lifetimes. These issues will be

quantitatively treated in chapter 7.
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CHAPTER 6A

ACTIVATION ENERGY AND PRE-FACTOR OF

SURFACE ELECTROMIGRATION IN COPPER

INTERCONNECTS
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ABSTRACT

Dual-damascene Cu interconnect segments were without passivation layers were

subjected to electromigration testing in vacuum after removal of the native copper oxide

on their top surfaces. Electromigration-induced voids grew at the cathode end of the

segments due to a flux divergence at refractory-metal -lined vias to the lead lines below

the test segment. The diffusivity of the clean Cu surface was determined by measuring

the size of the voids as a function of time and test temperature, at a fixed current. An

activation energy of 0.45+0.11 eV, and a pre-factor of 3.35x1 0-12 m2/s was found fro the

product of the effective charge z* and the surface diffusivity Ds. This result is shown

to be consistent with void drift rates measured in passivated interconnects.

6a.1 INTRODUCTION

Electromigration-induced failures in interconnect segments usually occurs by the

nucleation and growth of voids at or near the cathode end via. In Cu interconnects,

void nucleation usually occurs at the Cu/passivation layer-interface since this interface,

since this interface provides the dominant diffusion path (Hu) and because adhesion is

poor at this interface [Lloyd 1995].

In recent in-situ scanning electron microscope (SEM) experiments on passivated
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interconnects, voids have been observed to often form at significant distances away

from the cathode (many line-widths away) [Zschech 2004, Choi Ch.5]. When voids

are found at a distance from the cathode, they typically grow to a certain size, then de-

pin from their original location, and later drift toward the cathode end, against the

direction of the electron and atom flow, where they either grow or coalesce with other

voids to cause failure.

void nucleation and

These observations demonstrate that not only are the kinetics of

growth important factors that influence the reliability of

interconnects, but that rate of void motion is an important factor as well.

The motion of a void against the direction of electron current is the result of the

difference in diffusivities between the Cu on the surface inside the void (Ds), and the

Cu/passivation-layer interface (Di) surrounding the void [Choi Ch.5]. At the anode

side edge of the void, the flux out of void's edge is governed by Di and the flux into the

edge is governed by Ds, and because Di<Ds [Lloyd 1995] [Hu 1997] atoms accumulate

at the anode edge, which results in the propagation of the anode edge against the

direction of the electrons. A similar analysis applies for the edge at the cathode side of

the void, so that the void moves against the direction of the electrons due to the flux

divergences at both edges of the void.

The flux into and out of the void edge is given by
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(Z* Deff ) -(Z* Deff )iCa
a =Tjpe, (6a.1)

where z* is the effective charge, j is the current density, p is the resistivity of the

conducting metal, e is the electron charge, k is the Boltzmann's constant, T is the

temperature, Ca is the volumetric concentration of atoms, Deff is the effective diffusivity,

and the subscripts s and i refer to the surface of the void and Cu/passivation-layer

interface, respectively. For Cu, the effective diffusivity is given by the surface or

interface diffusivity D, times the surface interface thickness d and divided by the

thickness of line (at the edges of the void) h [Hu 1997] so that,

{SS (z*D)s - s, (z*D) I' jpe, (6a.2)
hkT

or because Ds>>Di

Ala 5s (z *D)s Ca jpe (6a.3)
hkT

The velocity of the void can be by applying the Nernst-Einstein equation to give

Ss (z*D) (a4v1 , " ) jpe, (6a.4)
h kT
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If the void forms at a distance from the cathode end of the interconnect and then drifts

toward the cathode to cause failure, the time to failure (TTF) of the interconnect is

governed by the initial location of void formation and the value of (z*D)s, which

determines the drift velocity of the void in a passivated interconnect, as well as the time

for void nucleation, growth and de-pinning. For an accurate lifetime analysis it is

therefore critical to have reliable data for the electromigration-induced diffusivity on the

free Cu surface. In this paper, we have performed experiments to obtain values for

(z*D)s on clean Cu surfaces.

6a.2 EXPERIMENTAL PROCEDURES

In this experiment, we used interconnects that were fabricated by Sematech Inc,

in which the test structures were located in the second metallization layer (M2).

test structures were 1000gm in length, 0.45pm in thickness and 0.34m in width.

The

The

interlayer dielectric (ILD) was SiO 2. However, for the samples used in this experiment,

they were only processed up to chemical mechanical polishing (CMP) of second

metallization, which means before deposition of the passivation layer on the second

metallization. Thus, the top copper surface is exposed in these samples. The samples
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were mounted on 24-pin ceramic package using the silver epoxy, as in the previous

chapter, but unlike in previous chapter, while curing the epoxy at 1200C, H2 gas was

flown to prevent Cu oxidation. Then the sample was gold wire-bonded, and the

package was inserted into the self-made vacuum electromigration test chamber. After

pressure reaches below 1x10-7 torr, 5% hydrogen and 95% nitrogen forming gas was

flown with 500sccm/min at lx10-3torr and 250*C for 5 minutes to reduce the residual

copper oxides on the top surface of the interconnect [Y.Hu 2001] [Rodriguez 2003].

Then temperature was raised to an accelerated testing condition and the chamber was

remained undisturbed until the pressure reached 2.5x10-8 torr. After the base pressure

of 2.5x10-8 torr or below was reached, accelerated electromigration test was performed

by applying a current density of 1.852xl0 6A/cm 2.

electromigration station is described in Appendix

Detailed setup of vacuum

3. After the accelerated

electromigration test, the sample was removed from the ceramic package, and the void

volumes at the cathode end were obtained using scanning electron microscope (SEM).

6a.3 RESULTS AND DISCUSSION

Voids were observed at the end of the cathode in all samples. This was

expected since there is no incoming flux from the blocking via due to the refractory
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metal liner. Voids were often observed elsewhere, but were not the focus of the current

study [Choi, Ch.6b]. By measuring the volume of the cathode void and correlating this

volume with the time a particular line was subjected to current, one can calculate (z*D),

using equation (6a.4). The drift velocity v, is the length L, of the void when fully

spanning the line divided by the time t,,,,

( ,\ -h LkT
8, tt,,t jp

(6a.5)

For the evaluation of z*Ds, 0.5nm was used for 5, [Hu 1999]. Values for (z*D), were

obtained at three different temperatures, 261*C, 281"C, and 320*C, and are plotted in

figure 6a.l. An average of 17 measurements was made at each temperature. The

activation energy Es extracted from a ln((z*D)s) vs. l/T is 0.450.lleV (Figure 6a.2).

E, is the activation energy for surface self diffusion of Cu, where

-E (
(z *D)s=[ z* Do exp( s )]s =(z *DO )s exp

kT
(6a.6)

The pre-exponential factor in equation (6a.6), (z*Do),, was found to be 3.35x1 012 m2/s.

Values for Es determined by other groups are given in table 6a.I. Hu extracted Es
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Table 6a.I

Reported E, and (z*Do)s, D,, values determined in various studies.

Es (eV) (z*Do), (m2/s) Experimental Surface
Method Condition

This study 0.45±0.11 3.35x10-12 m2/s vacuum EM test clean

Park[Parkl991] 0.79±0.02 not known vacuum EM test oxidized

Hu [Hul991] 0.9 7.39x10-6  EM test exposed to air

Liniger [Liniger 0.89 not know vacuum EM test exposed to air
2002]

DOS (m2/s)

Jo [Jo1995] 0.47±0.03 not known vacuum EM test clean

Ernst [Ernst1 992] 0.35±0.06 not known He beam scattering clean

Breeman 0.39 not known Low Energy Ion clean
[Breeman1992] Scattering

Bradshaw 0.824 7 x10-6 grain boundary clean

[Bradshawl967] grooving I

values from electromigration-induced drift of unpassivated Cu strips on refractory metal

conducting underlayers. The value of Es are around 0.9eV [Hu 1999]. Liniger et al

observed the void growth rate of dual-damascene unpassivated Cu interconnects using

in-situ SEM and extracted Es which has similar value to that of Hu [Liniger 2002].

The main difference between this study and the procedures of Hu and Liniger is that in

their studies, the Cu surfaces had been exposed to air and no further treatment was used
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to remove the native oxide prior to electromigration (EM) tests. Jo and Vook created

Cu strips in vacuum chamber using shadow mask, and performed EM tests without

breaking a vacuum, so that Cu strips remain oxide free. Their value was 0.47+0.03eV

which closely matches with the value obtained here. However, (z*Do), was not reported.

Other values of E, obtained on clean Cu surfaces using different techniques are

generally similar, except for the work of Bradshaw et al, in which the kinetics of grain

boundary grooving was characterized to extract the Cu surface diffusivity [Bradshaw

1967].

To our knowledge, only Hu has reported a measured values of (z*Do), (Table

6a.I) However, because this value applies for Cu coated with a native oxide, it is not

surprising that, as in the case Es, the value for (z*Do), reported here differs significantly

form the value reported by Hu. Figure 6a.3 shows values of (z*Do), plotted vs. l/T,

based on the values of (z*Do), and Es reported by Hu, Bradshaw and reported here. At a

typical integrated circuit temperature of operation, 100"C, (z*D), for oxide-free Cu is

more than three orders of magnitude higher than values found by Hu for native-oxide-

coated Cu.

When a void nucleates in a passivated interconnect, the exposed surface of the

void is likely to be free of oxide, due to the complete encapsulation of the Cu.

152



N)

E

N0

1E-10

1E-12

IE-14

1E-16

IE-18

1E-20

0.0010

- -- Hu 1
- s - -Bradshaw
'- .- Choi

- -

- 9

- -1

0.0015 0.0020 0.0025 0.0030 0.0035 0.0040

1/T (K1 )

Figure 6a.3 (z*D), of three different values. Note that z* for Bradshaw was set to 1
[Hu 1999].

Therefore, the D, for an oxide-free Cu surface is more relevant to void dynamics than

the D, for Cu coated with a native oxide.

To test this conclusion, the drift velocity of voids was calculated using equation

(6a.4) and the experimentally determined values of (z*Do), and Es and was compared

with the void drift velocities measured by Choi et al. during SEM in-situ

electromigration studies [Choi Ch.5] (Table 6a.II). Void drift rates were measured in

lines of three different widths, and the drift velocity was found to increase with

increasing line width. Drift velocity values calculated for oxide-free surfaces, rather
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Table 6a.II

Average void drift velocity obtained from in-situ EM testing [Choi Ch.5] and drift

velocity obtained by using surface diffusivity. T = 370"C, j = 3.OMA/cm 2.

Interconnect width Average Drift Velocity

2.25pm 0.0462gm/min

1.0pm 0.0076pm/min

0.3gm 0.0031 m/min

Extracted from z*DS

Choi 0.0013gm/min

Hu 0.00096pm/min

than oxidized surfaces, are in the best agreement with measured drift rates for all three

line widths. The agreement is best in the narrowest lines, which had the most bamboo-

like grain structures. The wider lines had more grain boundaries and grain boundary

networks lining along the length of the lines. In the widest lines, these grain boundary

networks were clearly observed to provide preferred paths for void migration. We

therefore conclude that in lines with near-bamboo grain structures, the rate of void

migration is set by the Cu diffusivity on the clean oxide-free surfaces of the void.

6a.4 CONCLUSION

Using accelerated electromigration tests on unpassivated interconnects in

vacuums, we were able to obtain temperature dependent data for electromigration-
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induced surface diffusivity, (z*D),, on clean oxide-free Cu embedded in damascene

structures. When this data is used calculate void drift velocities in passivated

interconnects, reasonable agreement is found with void drift rates observed in SEM in-

situ experiments on passivated interconnects, especially in narrow lines with near-

bamboo grain structures. When voids first form at a distance from the cathode and

drift toward and to the cathode to cause failure, the temperature dependence of rate of

void drift plays an important role interpretation of test results and in accurate reliability

projections.
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DEPENDENCE OF THE ELECTROMIGRATION

FLUX ON THE CRYSTALLOGRAPHIC

ORIENTATIONS OF DIFFERENT GRAINS IN

POLYCRYSTALLINE COPPER INTERCONNECTS
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ABSTRACT

Dual-damascene Cu electromigration test structures with unpassivated segments

in the second level of metallization were tested under vacuum. About 20 immobile

voids formed along 10OOpm-long structures. Crystallographic orientations of grains

on anode and cathode sides of 158 voids were obtained. It is shown that

electromigration diffusivities vary with crystallographic orientations of the grains,

increasing in the order (1 1 1), (1 1 5), (7 5 13), (11 1 11), and other orientations not

twin-related to (1 1 1). Data of this type provides an improved basis for process-

development for optimized reliability and for extrapolation of test results for reliability

projections.

6b.1 INTRODUCTION

One very important factor influencing the reliability of interconnects carrying

such high current densities is electromigration (EM). Different mechanisms for EM-

induced failure of Cu-based interconnects have been proposed and a wide range of

activation energies for failure have been reported [Lloyd 1999, C.Hau-Riege 2004].

There is evidence that nucleation, growth, motion, and coalescence of voids may all

play roles in EM-induced failure [Gan 2001, S.Hau-Riege 2002]. EM leads to tensile
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and compressive stresses where there are divergences in the atomic flux, and voids are

expected to nucleate in regions with high tensile stresses [Korhonen 1993, C.Hau-Riege

2004a]. The highest tensile stress in an interconnect segment is expected to develop at

the cathode-end via, where the Cu that electromigrates away from the via can not be

replaced because the refractory-metal liners at the base of the via blocks migration.

However, in-situ side-view observations of EM-induced void dynamics indicate that

voids often form away from the cathode and then drift toward the cathode [Meyer 2002,

Zschech 2004, Choi Ch.5]. Because the product of the effective charge and diffusivity

(z*D) on the surface of a grain depends on the crystallographic orientation of the grain

relative to the surface, there can be flux divergence sites where grain boundaries that

span the width of a line meet the Cu/passivation-layer interface. Voids can therefore

nucleate at grain boundaries away from the cathode [Borgesen 1992, Sekiguchi 2003],

however, Choi et al [Choi Ch.7] showed that it is very unlikely for voids to nucleate

away from the cathode.

induced stresses. Thes

There can be pre-existing voids that result from processing-

e pre-existing voids can also grow due to the electromigration

flux divergence at a grain boundary, if the diffusive flux of copper out of the void is

higher than the flux into the void. Because of the higher z*D of Cu along the free

surface within a void compared to the z*D of Cu along the Cu/passivation-layer
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interface, atoms tend to move from the cathode side to the anode side of a void, leading

to motion of the void toward the cathode end of the interconnect [Choi Ch.7]. This

occurs after a void reaches a critical size that allows it to become de-pinned from a

boundary [Borgesen 1992a]. Drifting voids can become trapped at other boundaries

where they can either grow or shrink, depending on the sign of the flux divergence.

Generally, though, they drift to the cathode where they coalesce to form a fatal void. If

EM-induced failure occurs due to these dynamic void phenomena, it is clear that the

crystallographic texture of the copper has an important role in governing reliability

[Zschech 2004]. The purpose of this work is to correlate texture and EM reliability by

observing the texture-dependence of void growth and drift in interconnects.

6b.2 EXPERIMENTAL PROCEDURES

Experimental procedures and conditions are identical to that of chapter 6a and

appendix B. In this experiment, we used interconnects that were fabricated by Sematech

Inc, in which the test structures were located in the second metallization layer (M2). The

test structures were 1000pm in length, 0.45p m in thickness and 0.3ptm in width. The

interlayer dielectric (ILD) was SiO 2. However, for the samples used in this experiment,

they were only processed up to chemical mechanical polishing (CMP) of the second
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metallization, which means before deposition of the passivation layer on the second

metallization. Thus, the top copper surface is exposed in these samples.

The samples were mounted on 24-pin ceramic package using the silver epoxy, as

in the previous chapter, but unlike in previous chapter, while curing the epoxy at 120*C,

H2 gas was flowed over the specimen to prevent Cu oxidation. Then the sample was

gold wire-bonded, and the package was inserted into the self-made vacuum

electromigration test chamber. After pressure reaches below 1x10-7 torr, 5% hydrogen

and 95% nitrogen forming gas was flown with 500sccm/min at 1x10 3 torr and 2500C for

5 minutes to reduce the residual copper oxides on the top surface of the interconnect.

Then temperature was raised to a testing condition of 320*C and the chamber was

remained undisturbed until the pressure reached 2.5x 10-8 torr. After the base pressure of

2.5x10-8 torr was reached, accelerated electromigration test was performed by applying

a current density of 1.852x106A/cm 2.

After the accelerated electromigration test, the sample was removed from the

ceramic package and the grain orientation of the exposed copper surface was obtained

using EBSD.

6b.3 RESULTS AND DISCUSSION
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6b.3.1 Voids in Flux Divergence Sites

While voids in fully-processed passivated interconnects drifted toward the

cathode, no drift was observed in in-situ SEM observations of unpassivated samples.

In the latter case, the z*D within the void and along the surfaces next to the voids are

similar so the void becomes immobile. SEM observations revealed that there were

typically about 20 to 30 evenly distributed voids along the length of one 1000 m-long

test sample. The voids are assumed to form and grow due to the divergence in the z*D

of the surface at grain boundaries. The surface z*D of the grain at the anode edge of

the void has to be higher than that of the cathode edge for a void to grow (Figure 6b.1).

Therefore, by obtaining grain orientation data at the cathode and anode edges of the

voids, one can determine the relative diffusivities of grains.

6b.3.2 Relative Diffusivities in Different Grain Orientations

A direct comparison of this type is only possible if there is only one grain across

the width of the interconnect (a bamboo or near bamboo structure). This was the case

for the 0.3tm wide interconnects that were used. Figure 6b.2 shows the inverse pole

figure for grains on the cathode side (figure 6b.2(a)) and anode side (figure 6b.2(b)) of

the voids after the EM tests. For grains on both the cathode and anode edges of the
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Anode side of the void,
Faster diffusion

Cathode side of the void,
Slower diffusion

Figure 6b.1 One of immobile voids in the middle of the line, anode edge of the void
has faster diffusivity than the cathode edge of the void.

voids, there is a frequent occurrence of three orientations.

orientations are (1 1 1), (1 1 5), and (7 5 13).

The out of plane

(1 1 5) is the first generation twin

orientation for the (1 1 1) grains and (7 5 13) and (11 1 11) are the second generation

twins of (1 1 1) grains. We observed a relatively small population of (11 1 11) oriented

grains compared to the three orientations as expected from twinning. We also

determined grain orientations of 0.3 m-wide samples that had not been subjected to EM

testing and found that they also showed frequent occurrence of these three twin related

orientations (Table 6b.I, Figure 6b.3). Others have observed similar textures in

interconnects with dimensions that are smaller than the size of the grains [Hu 1997].

Table 6b.II shows the number of grains found for cathode and anode edges that are

within 90 of (a) (1 1 1), (b) (1 1 5), (c) (7 5 13), and (d) (11 I 11). Also shown in Table
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Figure 6b.2 Inverse pole figures of the cathode edge (a) and anode edge (b) of the

immobile voids in the tested samples.

Table 6b.I
Volume fractions of orientations within 9"of (1 1 1), its first and second generation

twins, and the rest of the orientation of untested sample.
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Volume
Fractions

(1 11) 18.89

(11 5) 19.22

(7 5 13) 23.32

(11 1 11) 13.09

Rest 25.48
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Figure 6b.3(a) Inverse pole figure of the untested sample with 0.3gm width, 1OOpm
length. Circled regions show (1 1 1) and its first (1 1 5) and second (7 5 13), (11 1 11)
twin orientations.
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Figure 6b.3(b)
sample (red).

Mackenzie plot of randomly oriented sample (gray) versus untested
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Table 6b.II

Number of grains observed in cathode and anode edges of the voids, within 90 of (11

1), its first and second generation twins, and the rest of the orientation of untested

sample.

6b.II are the number of grains that are not in one of these four orientations (Table

6b.II(e)). As seen in table 6b.II, (1 1 1) grains are most common at the cathode edge,

(1 1 5) and (7 5 13) are evenly distributed between the two edges, and the grains with

random orientations (not twin related) have higher populations at anode edge.

Assuming that voids can only grow when there are flux divergencies, this suggests that

the z*D increases from (1 1 1) to (1 1 5) and (7 5 13) to (11 1 11).

higher for grains with other orientations.

The z*D is still

No significant trend for preferred

crystallographic orientations along the interconnect line has been found. Table 6b.III

shows the number of grain pairs (on either side of a void) of each crystallographic type
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Cathode Anode total
(slow) (fast)

(111) 64 16 80

(115) 45 46 91

(7513) 30 31 61

(11111) 7 26 33

High 11 38 49



Table 6b.III

Number of grain orientation pairs in each individual voids.

and allows direct comparison between two different orientations at two edges of each

void. Table 6b.III clearly shows that most of the grains around the void follow the

proposed behavior noted earlier, i.e. that the diffusivity increases in the order of (1 1 1),

(1 1 5) and (7 5 13), (11 1 11) and the rest of the orientations. A percentage of about

12% of all voids were found that did not follow this behavior.

explanations.

There are a few possible

First, in some cases, there can be more than one grain through the

thickness of the interconnect, so that if the upper grain is the faster diffusing grain, the

grain can be completely removed when the current is applied, leaving the slower grain

exposed in the bottom.

anode edge of the void.

In this case, a slow-diffusion grain would be observed at the

Second, the edge of the void can sometimes be difficult to
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Anode (1 1 1) (11 5) (141026) (11 1 11) Rest

Cathode

(111) 8 17 9 11 19

(115) 3 14 11 8 9

(7513) 2 10 7 5 6

(11111) 2 2 2 0 1

Rest 1 3 2 2 3



Table 6.IV

(z*D), of various grain orientations

z*D (at 3200C)

(xIO1 3m 2/s)

(111) 2.84

(11 5) 4.61

(7513) 5.94

(11 111) 7.06

Rest 8.65

identify and can lead to indexing with an incorrect grain orientation. Third, while no

strong correlation with in-plane orientations was observed, weak dependencies may

contribute to deviations from the observed trend. Given the strength of the observed

trend, even in the presence of these sources for deviations, we are able to identify

relative z*D in different grain orientations. Using the (z*D), distribution at 3200C

[Choi Ch.6a] and volume fraction of grains in an untested sample, absolute values of

(z*D), in various orientation can be extracted (Table 6.IV). Diffusivity at 3200C shows

that slowest diffusing (1 1 1) grain is about four times slower than that of fastest

diffusing grains of orientations unrelated to (1 1 1) and its twins.
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6b.4 CONCLUSION

It seems likely that the trend in crystallographic-orientation-dependent surface

z*D observed here is preserved in passivated lines. This is the subject of on-going

research. If this is the case, z*D values between neighboring grains at the

Cu/passivation-layer interfaces can be used to predict the rate of void growth or

shrinkage at grain boundaries, while measurements of the z*D at free surfaces allows

prediction of the rates of void drift. Together, this information provides an improved

basis for understanding the impact of texture control on reliability improvement, and for

development of improved models for relating failure rates observed at test conditions to

those expected at service conditions.
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CHAPTER 7

VOID DYNAMICS IN COPPER-BASED

INTERCONNECTS
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ABSTRACT

The electromigration lifetimes of Cu-based interconnects are strongly influenced

by whether voids are present before electromigration, and by where fatal voids initially

form and grow. Modeling, simulations, and comparisons with in-situ experiments are

used to establish criteria for void formation away from the cathode end of a copper

interconnect. It is shown that observation of voids at locations other than the cathode

strongly suggests that the voids grew from pre-existing voids. When pre-existing voids

are within a current-density-dependent critical length of the cathode, new voids are

unlikely to nucleate at the cathode and failure occurs only when the pre-existing voids

grow. For voids to grow they must be at grain boundaries and the diffusivity on the

anode side of the void must be higher than on the cathode side. As these voids grow,

they will either lead directly to open-circuit failure or, once they reach a critical size,

they will de-pin from grain boundaries and drift toward the cathode. In the latter case,

multiple voids might accumulate and coalesce to cause failure. This mechanism has

been observed in both side-view and top-down in-situ accelerated life-time testing. It

is shown that the relative importance of these various void-induced failure mechanisms

depends on the current density, and is different under typical accelerated test conditions

from what is expected at service conditions.
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7.1 INTRODUCTION

A divergence in the electromigration flux leads to local evolution in the stress

state of encapsulated metal interconnects. In via-terminated Cu-based interconnect

segments, an electromigration flux divergence will usually occur at the base of vias

where there is a refractory metal liner (e.g. Ta). The electromigration flux at a given

current density scales with the atomic self-diffusivity of a conducting material. Due to

their much different self-diffusivities, electromigration will occur in Cu at much lower

current densities and temperatures than in liner materials. Therefore, the liner at the

base of a cathode via will prevent replacement of Cu electromigrating away from the via,

resulting in development of a tensile hydrostatic stress. When the tensile stress reaches

the critical value, the stored strain energy will drive nucleation of voids. In a via-

terminated interconnect segment, the critical stress reaches its highest value at the

cathode via [Korhonen 1993]. It is therefore generally expected that void nucleation

will occur at the cathode. However, recent in-situ experiments on electromigration-

induced voiding in encapsulated interconnects have revealed that while voids do

sometimes first appear at cathode vias, voiding often is first detected at significant

distances away from the cathode [Meyer 2002, Zschech 2004, Choi Ch.5]. Moreover,

these voids can grow in-place to cause failure or de-pin from grain boundaries and drift
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toward the cathode where they can grow or coalesce with other voids to cause failure.

It is the purpose of this paper to explore the origin, consequences, and implications of

this varied behavior. This will be done through development of simple models and

simulations that have been developed through direct quantitative comparisons with

experimental data.

Several different mechanisms for void-induced failure will be considered, as

illustrated in figures 7.1 and 7.2. First, for cathode vias in via-below interconnect

segments, voids can nucleate and grow to cause failure above the via (Figure 7.1(a)) or

nucleate and grow to cause failure at the base of the via (Figure 7.1(b)). The former

case is generally expected to be more likely because void nucleation is expected to be

easier at the Cu-cap interface [Lane 2003, Lloyd 1999], and growth should be faster

because of higher diffusivities along the Cu-cap interface [Rosenberg 2000, C.Hau-

Riege 2001]. However, failure analysis often reveals voids at the base of vias [Lee

2001]. Voids away from the cathode have also been observed both in in-situ studies

[Meyer 2002, Zschech 2004, Choi Ch.5] and in failure analyses [S.Hau-Riege 2002,

Chang 2007]. These voids can migrate to the cathode to contribute to failure (Figure

7.1(c)), or can grow in place to cause failure (Figure 7.1(d)).

been observed in in-situ experiments. It also important to r

Both mechanisms have

ote that voids have been
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Figure 7.1 Voids in an interconnect segment terminating in a cathode via below the
segment. (a) Voids most readily nucleate at the Cu-cap interface, and grow at the site
where the electromigration-induced tensile stress is highest. (b) Voids are sometimes
observed at the base of vias, where they may have nucleated or where they may have
drifted from other locations. Voids are sometimes observed at locations other than
directly at the cathode via. These voids can drift toward the via (c) or grow in place (d)
to cause failure.
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Figure 7.2 Voids in an interconnect segment terminating in a cathode via above the
test segment. (a) Voids most readily nucleate at the Cu-cap interface, and grow where
the electromigration-induced tensile stress is highest Voids are sometimes observed at
locations other than directly at the cathode via. These voids can drift toward (b) the via
or grow in place (c) to cause failure.

observed to grow or coalesce at the cap above the via, before abruptly 'diving' into the

via to cause failure at the base [Meyer 2002]. In this case, post-testing failure analysis
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might incorrectly lead to the conclusion that the void formed at the base of the via.

The scenario is somewhat different for cathode vias in via above configurations.

A void that nucleates and grows directly under a via (Figure 7.2(a)) can cause failure

even when the void is quite small, because of the absence of a cap layer that can shunt

current [S.Hau-Riege 2002]. A void that forms away from the via can drift to the via

to cause failure (Figure 7.2(b)), again at a small void size, or grow in place to cause

failure (Figure 7.2(c)). The difference in the fatal void size in via-above and via-below

structures is thought to be the cause of the different lifetimes and critical lengths

measured in these different types of structures [Gan 2001]. It should be noted that

failure analyses suggest the case illustrated in figure 7.2(a) is rare, and also shows

examples of the failure mode illustrated in figure 7.2(c) [S.Hau-Riege 2002].

If only one of the mechanisms discussed above dominates (e.g. Figure 7.1(a) or

Figure 7.2(a)), failure-time distributions would be expected to be monomodal. Also,

if the mechanisms of figures 7.1(a) and 7.2(a) were the only mechanisms, for example,

the current density scaling of lifetimes should be the same for both types of vias.

However, when mechanisms of type 7.1(a) and 7.1(b) are mixed, failure can be affected

by void nucleation ( t50 c j-2 ) [Shatzkes 1986, Korhonen 1993] or void-growth

( t50 oc j 1 ) [Lloyd 1991], as well as void de-pinning and drift. TTF data from copper
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interconnect reliability tests often show complex behavior suggestive of the operation of

multiple failure mechanisms [Hu 1998] [Lloyd 1999] [C.Hau-Riege 2004].

Likely sites for void nucleation and growth away from the cathode are

associated with grain boundaries, either at locations where single boundaries contact the

capping layer (Figure 7.3(a)) or at grain boundary triple junctions at the capping layer.

The former is more likely in narrow lines with near-bamboo structures. If we consider

the case illustrated in figure 7.3, if the diffusivity at the Cu-cap interface for grain 2 (the

anode-side grain) is higher than for grain 1, the electromigration flux divergence will

lead to a tensile stress that might lead to void nucleation. Once a void is present at

such a boundary, it will grow at a rate proportional to the difference in the cap-liner

interface diffusivities (D1,int-D2,nt for the two grains and the current density j, and will

continue to grow at the boundary until, or unless, it de-pins from the boundary

[Borgenson 1992]. Both in-place growth and growth to de-pinning behavior have been

observed in in-situ experiments [Mayer 2002, Zschech 2004, Choi Ch.5] as well as in

simulations [Zaporozhets 2005].

Voids can be pinned at grain boundaries because of the energetic cost associated

with replacement of the grain boundary once the void has moved away (Figure 7.3(a)).
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Figure 7.3 (a) Void nucleation and growth at boundaries is favored when the atomic

interfac diffusivity at the Cu-cap interface of the cathode-side grain is lower than the

diffusivity of the anode-side grain. (b) Once voids have grown to a critical size they can
de-pin from boundaries and drift toward the cathode. The drift rate is determined by the
magnitude of the diffusivity on the surface of the void relative to the interface diffusivity.

The magnitude of this energy, relative to the energy associated with the electron-wind

force that would be released once the void drifts away, increases with increasing void

size. Borgesen et al. [Borgesen 1992] have argued that for hemi-cylindrical voids, this

leads to a critical void radius for de-pinning R& that depends on the current density

according to
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3 7gbo
R=4qz* pj (7.1)

where Q is the atomic volume of the conductor, q is the fundamental charge, z* is the

effective charge for electromigration, p is the resistivity, and ygb is the grain boundary

energy.

Once a void de-pins, it will drift due to electromigration on the free surface of

the Cu inside the void. The rate of drift (or drift velocity v) will scale with the current

density and the Cu self diffusivity on this surface, (Dsuf). The void will not grow

when it drifts through a grain because there will not be a difference in Dint on either side

of the void. The drifting void may subsequently be pinned at a higher energy boundary,

or grow while it passes through boundaries.

Choi et al. [Choi Ch.6b] characterized the crystallographic texture of anode-

side grains and cathode-side grains in unpassivated lines (in which voids do not de-pin),

and to a more limited extent, passivated lines. By tracking the growth rates of pinned

voids, they were able to determine D1,Int-D2,int for a large range of different boundary

types. From growth rates measured for voids at the cathode vias of lines, they were

also able to determine the magnitude of the average interface diffusivity, Dint- Their

results indicate that Dint varies among different individual grains only up to a factor of 4
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[Choi Ch.6].

7.2 MODELING AND SIMULATION

An understanding of stress evolution during electromigration is critical to

understanding void nucleation, growth, and drift. We will employ the simple 1D

model of Korhonen et al [Korhonen 1993] to discuss and analyze these phenomena. In

this model, the rate of evolution of the hydrostatic stress a at any position x along the

length of an interconnect segment is given by

a 8[DB Ba )-- =- - - ( u -+z*q p j)],&t ax IkT ax (7.2)

where D is the relevant diffusivity (Dint for Cu) and B is a modulus that accounts for the

elastic response of the material around the conductor to volume changes of the

conductor resulting from electromigration-induced mass transport. 'B' therefore

defines the relationship between mass transport and the resulting hydrostatic stress in

the interconnect. 'B' can be determined from finite element analyses that include the

complex elastic interactions of the various materials surrounding the Cu [S. HauRiege

2002, Lee 2003].
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Equation (7.2) can be used to calculate a everywhere along an interconnect

segment. In a via-terminated segment, stress at the cathode via increases at a rate that

scales with j-2 . It is typically assumed that once this stress reaches the critical value

required for void nucleation, anuc, a void will nucleate and the local stress will drop to

zero. However, in the absence of void nucleation (or metal extrusion), stress evolution

can reach a steady state in which the tensile stress is at a maximum at the cathode, amax,

and a minimum amin at the anode. Reaching a steady state requires that a max < (ne,

and lamin < Geomp , where acomp is the critical stress for compressive failure (e.g., for

dielectric cracking an metal extrusion). For a segment that is initially at zero stress,

this condition will be met when the product of the segment length L and current density

j fall below a critical value,

(7.3)(jL)cri <r Q crit
z*q p j

where Aa crit = nuc - Gcomp

The Korhonen model has been successfully used to explain a wide range of

experimental behavior [Korhonen 1993a, Brown 1995, Knowlton 1997&1998].
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Table 7.1

Parameters used for simulations.

Parameter Value

anc 40 MPa [C.Hau-Riege
2002]

z* 1 [Hu 1999]

B 28 GPa [S.HauRiege
2000]

Q 1.18 x 10-29 m-3

Do 1.25 x 10-9 m2/s

p 4.1 mQ-cm (at 3700C)

AHef, 0.8eV [Hu 1997]

Unfortunately, because D depends on a, equation (7.2) can not be solved analytically.

We have recently developed a numerical solver based on use of a reverse Euler

technique that allows use of equation (7.2) for simulation of stress evolution leading to

void nucleation, and stress evolution and mass transport in the presence of voids. A

detailed description of this solver is given elsewhere [Choi Ch.2]. Here we report

analyses based on the use of this tool to investigate the implications of the location of

voids in interconnects.

In using equation (7.2) for the simulations described below, we have, unless

otherwise noted, used the experimental values indicated in Table 7.1. Do is the average

interfacial diffusivity determined from observations of voids growing at the cathode end
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in-situ experiments fully passivated via-terminated interconnect segments [Choi Ch.6a].

In a study reported elsewhere, we have characterized the crystallographic orientations of

grains on the anode-side and cathode-side of stationary voids in both passivated and

unpassivated Cu damascene lines. We found that while certain grain orientations have

high diffusivities and others have low diffusivities, these two extremes differ only by a

factor of about 4 [Choi Ch.6b]. This variation will be used in a number of the

simulations described below.

7.3 RESULTS

7.3.1 Conditions for Void Nucleation at Grain Boundaries

We will first consider whether or not void nucleation at grain boundaries is

likely. We consider a simplified scenario illustrated in figure 7.3(a), which would be

expected in a narrow line with bamboo or near-bamboo grain structures. As discussed

above, interface diffusivities vary with the crystallographic orientations of grains,

causing an electromigration flux divergence at grain boundaries.

In order to assess the effects of different diffusivities in various grains on stress

evolution, we have simulated behavior in a 50pm-long via-terminated interconnect

segment with and without 1 m-long grains, with a randomly assigned diffusivity for
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each grain of 0.5D 0, Do, or 2D0 , where Do is the average diffusivity (with 0.5Do to 2Do

represents the range of diffusivity variations suggested by experimental measurements).

The first grain was manually set to have a diffusivity of Do. This simulation was

compared with simulation of stress evolution in a 50p m-long interconnect segment with

uniform diffusivity of Do.

Figure 7.4 shows the results from these two simulations. In the case of uniform

diffusivity (Figure 7.4(a)), the stress rises to that required for void nucleation, amen, at

the cathode via. Once this occurs it is assumed that the stress adjacent to the void falls

immediately to zero, so that over time, the tensile stress everywhere along the line drops

to, or below, zero, and the compressive stress continues to increase at the anode.

Eventually the electron wind force is balanced by the back-stress force and

electromigration stops with the cathode stress at zero the anode stress at a fixed value

acomp,max (assumed to be less than the critical stress required to cause compressive

failure, acomp). At this point there is a constant stress gradient between the vias and both

the magnitude of acomp,ma and the stress gradient scale with j.

Figure 7.4(b) shows the results for a segment with varying interface diffusivities.

The differences in diffusivities at grain boundaries initially lead to mass accumulation

(compressive stress) or depletion (tensile stress) at the boundaries, and stress gradients
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Figure 7.4 Stress-profiles along a 50pm-long line after four 100-minute steps and after

the last step at 1 0000min., when the evolution stops due to a balance of the electron wind

force and the back stress (j=0.5MA/cm 2, T=350 C, a-nuc=40MPa). (a) uniform diffusivity

of Do=4.5xl0-16m 2/s throughout the line. (b) diffusivities of either Do/2, Do, or 2Do

randomly assigned to 50 1 jLrm-long grains (so that the average diffusivity is Do.
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Figure 7.5 Stress profiles after 2-minute intervals, with a 2gm-long grain 20gm
away from the cathode via with a diffusivity of 100Do (with a diffusivity of Do
everywhere else along the line). (j=0.5MA/cm 2, T=350"C, ancr=40MPa) Notice that
the cathode edge of the grain quickly reaches a local maximum stress that is initially

higher than the stress at the cathode via, but that the stress at the cathode via eventually

exceeds this local maximum stress.

along grain lengths. However, these effects are always small compared to those found

at the vias and even the small gradients within grains or grain clusters are 'washed out'

near the vias. By comparing the results in figures 7.4(a) and 7.4(b), we see that both

the time and location for void nucleation are unchanged by the grain-by-grain

diffusivity variations expected in narrow copper interconnects.
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Figure 7.6 Stress profiles after four 2 minute intervals for an interconnect segment with a

5pm-long cluster of grains with a high diffusivity, with the diffusivity elsewhere set at

Do. (j=3.OMA/cm 2, T=3500C, acue=40MPa.) The high-diffusivity grain cluster is 3pim

away from cathode via in the 50pm-long interconnect segment. The diffusivity in the

high-diffusivity cluster is 11Do in (a) and 5Do in (b). The tensile stress reaches anuc
(40MPa) first at the cathode edge of the cluster in (a) and first at the cathode via in (b).
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Next consider the existence of a single grain with a diffusivity 100 times the

average value (10ODo). Figure 7.5 shows results for a 2pm long grain located 20pms

away from the cathode (j = 0.5 x 106 A/cm 2). The stress within the grain quickly

evolves until the electron wind and back-stress forces are balanced. The tensile stress

at the cathode end of the grain then stops increasing, and the critical stress for void

nucleation is again first reached at the cathode. The magnitude of the tensile stress

reached at the cathode side of the high diffusivity grain is determined by its length

(according to a relationship of the type given by equation (7.3)). If we assume that

there was a cluster of high diffusivity grains in a segment composed otherwise of grains

with average diffusivities, we find that the cluster would have to be 28gm long (-28 or

more high-diffusivity grains in a row) for the stress to reach the critical value at the

cathode-end grain boundary before it is reached at the cathode via. Assuming the actual

current density of a service condition is around 0.1 x 106 A/cm 2, the length of the cluster

needs to be 140gm. This is unlikely.

We next consider the effects of a 5gm-long high-diffusivity grain cluster 3gm

from the cathode. Here we have used a higher current density (3 x 106 A/cm 2) to

amplify the effects of the high-diffusivity segment. Results from two cases are shown

in figure 7.6, with the magnitude of the diffusivity in the high-diffusivity segment of set
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at 5Do (Figure 7.6(a)) or 11Do (Figure 7.6(b)).

diffusivities) is the critical stress first reached at the grain boundary instead of the

cathode via. For this to happen at 0.5 x 106 A/cm 2, the diffusivity in the 28pam long

high diffusivity segment would have to be more than 70Do.

It can be seen then that the only scenarios that lead to void nucleation at grain

boundaries are very unlikely, and that the probability of void nucleation at a grain

boundary decreases with decreasing current density.

7.3.2 Effects of Pre-Existing Voids

Pre-existing voids, which are believed to be present due to tensile stresses

associated with differential thermal expansion [Ogawa 2002], have been observed in

untested Cu interconnects [Nucci 1995] [Sekiguchi 2001] [Sekiguchi 2003] [Chang

2007]. As argued above, the observation of voids at locations other than the cathode

via strongly suggests that they have grown from pre-existing voids. Voids that have

grown to cause failure away from the cathode via are commonly observed in failure

analyses after accelerated lifetime testing [S.Hau-Riege 2002, Chang 2007]. Also void

growth and drift at locations away from the cathode have been observed through in situ

observations in fully passivated copper interconnects [Meyer 2002, Zsechech 2004,
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Pre-existing voids may therefore be common.

In this section we will investigate the effects of pre-existing voids on void

nucleation at the cathode and the conditions that lead to the growth of pre-existing voids.

The void divides the line into a cathode-side region (region 1) and an anode side region

2. To simplify the discussion, we will in most cases assume that the diffusivity is

uniform along the line in these two regions, and consider the effects of pre-existing

voids at different locations along a 1000 lm-long via-terminated line. We assume that

the void does not fully span the line and that remains pinned at fixed location (e.g., at a

grain boundary). We also assume the current crowding and joule heating effects near the

void are negligible. We have picked simulation conditions that match those under which

voids have been observed to grow in in-situ experiments [Choi Ch.5], and have chosen

kinetic parameters that match observed void growth rates.

7.3.2.1 Void Nucleation at the Cathode

We first consider the case when a void is at a significant distance from the

cathode via, Lc. Figure 7.7(a) shows stress evolution in the presence of a void at

Le=5jim. The stress between the void and the cathode via evolves in the same way it

evolves without a void, up to the time at which the critical stress for void nucleation at

the cathode via is reached. Pre-existing voids that are at this distance from the cathode
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Figure 7.7 Stress profiles at the cathode end of an interconnect segment after five 1-

minute time intervals with a pre-existing void (a) 5pm and (b) 2pm away from the

cathode via. (j=3.OMA/cm2, T=370"C, anuc=40MPa) In case (a) the stress at the

cathode via reaches acy and the stress in the region between the void and the cathode via

quickly relaxes to zero. In case (b) the stress stops evolving when a force balance

develops, and a void does not nucleate at the cathode via.
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are therefore not expected to affect void nucleation at the cathode.

When a pre-existing void is placed closer to the cathode its effects can be much

different, as can be seen in figure 7.7(b) for Lc=2pim. In this case, the stress in the

segment between the void and the cathode via quickly reaches the condition in which

there is a balance between the electron-wind force and the back-stress, and the stress at

the cathode does not reach anuc. Therefore, when pre-existing voids lie within a

critical distance Le,cit from the cathode they are expected to prevent nucleation of voids

at the cathode. This critical distance can be determined by recognizing that the stress

at the cathode will reach anuc only when

jqz * p < Q nue -
Le

so that

Lc,crit .Q(aYn -(T)
jqz * p

(7.4)

(7.5)

where ao is the initial stress, here taken to be zero. It should be noted that as j is

decreased, Lc,cr increases, so that when pre-existing voids are present the probability that
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a void will nucleate at the cathode decreases as j is decreased.

7.3.2.2 Void Growth Near the Anode Via

Figure 7.8(a) shows stress evolution when a void is present at a distance

La=5tm from the anode via. Here we have assumed that the critical stress for

compressive failure, acomp, is large. In analogy with the results shown in figure 7.7(b),

the affect of the void is to cause the segment between it and the anode via to quickly

reach a force balance, so that the stress at the anode via approaches a fixed value that

may be less than acomp. As this is happening, the void will grow or shrink at a rate

dictated by the difference in the diffusivities for the anode-side and cathode-side grains.

However, as back-stress forces become important near the void it will always shrink.

The rate at which the void will shrink (even when the diffusivities are the same in

regions 1 and 2) depends on the distance of the void from the cathode via, as shown in

figure 7.8(b). It should be noted that in all cases the same steady state growth rate is

reached. What changes is the time it takes to reach this steady state, which increases

as the distance from the anode via, La, increases. It should also be noted that the

steady state growth rate scales with j.
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Figure 7.8 (a) Stress profiles after five 1-minute. intervals at the anode end of an

interconnect segment with a pre-existing void 5pLm away from the anode. (b) Change in
void volume of a pre-existing void as a function of time for voids at different distances

La from the anode via. (Segment length = 10OO m, j=3.OMA/cm 2, T=3700C, D=Do
everywhere a long the segment.)
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Figure 7.9 Change in the volume with time for a pre-existing void in the middle of a

50pm-long interconnect segment. The grain on the anode side of the void is 0.6pm long,

with a diffusivity varied from Do/2 to 2Do, while all other regions have diffusivity Do (j =

3.OMA/cm2, T = 3700 C).

7.3.2.3 Void Growth Far from the Vias

If a pre-existing void lies at a distance greater than Lc,cr from the cathode and

aynuc<<acomp, whether or not it will grow or shrink depends on the diffusivity of the

anode-side grain relative to the diffusivity of the cathode-side grain. This is illustrated

in figure 7.9 for a simple case in which the diffusivity on the anode-side grain is either

Do/2 or 2Do, and the diffusivity is Do everywhere else. When the diffusivity of the

anode-side grain is smaller than Do the void will shrink at a constant rate that scales

with j. When the diffusivity in the anode-side grain is smaller than Do, the void will

196



grow. However, the rate of void growth diminishes over time.

in more detail in the next section.

7.3.2.4 Void Growth Near the Cathode Via

Figure 7.10(a) shows the change in void volume as a function of time for a void

located near the cathode but still at a distance Le greater than Lc,cr. In this case, we

have assumed that there is no difference in diffusivity in either region, so that void

growth results from effects associated with stress evolution alone. It can be seen that

while voids at Lc>Lc,cr grow, their growth saturates. The voids first grow because a

stress gradient between the void and the cathode via develops and drives a flux of atoms

out of the void, while no stress gradient exists on the anode side. When Lc>Lc,cr, a void

will eventually nucleate and grow at the cathode. This lowers the stress between the

cathode via and the pre-existing void until no gradient exists, and the void stops

growing. This happens more quickly and leads to a larger final void size the closer Le

is to Lc,cr. Therefore, for Lc>Lc,cr continued void growth occurs only due to differences

in diffusivities in the anode-side and cathode-side grains, However, even in this case

local force balances within grains will lead to a zero net growth so that growth will still

saturate at a size that depends on the probability of finding long clusters of high-
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Figure 7.10 Change in void volume as a function of time

different distances from the cathode via Le ( = 3.OMA/cm 2,
D=Do everywhere). (a) When Lc>Lc,cr, void growth saturates.

do voids continue to grow.

for pre-existing voids at

T = 370*C, a(nac=40MPa,

(b) Only when Lc<Lc,cr
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Figure 7.11 Change in the volume with time of a pre-existing void 2mm away from

cathode via with an anode-side 0.6 tm-long grain with diffusivities Do/2, Do, and 2Do,
with the diffusivity set to Do everywhere else (j = 3.OMA/cm 2, T = 370*C).

diffusivity and low-diffusivity grains. It should be noted that in all cases these voids

will eventually shrink when the effects of the flux divergence at the anode via leads to

stress gradients on the anode side of the voids.

When a pre-existing void is at a distance Le that is less than Lc,cr its growth is

much different. Figure 7.10(b) shows the change in volume with time for voids at

different distances L, less than Le,cr. In all cases, the void grows without limit (even

without diffusivity variations). Referring back to figure 7.7(b), recall that in this case a

force balance develops and a constant stress gradient develops between the void and the

cathode via. Once this happens there is a driving force for a flux of atoms out of the
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void, toward the cathode, while at the same time there is no stress-related driving for a

flux of atoms into the void. When this happens the void grows at a constant rate. It

should be noted that this constant rate is not a function of L,, and that the constant

growth rate scales with j. Le affects the time required to reach a constant growth rate,

with this time increasing toward infinity a Le approaches Lc,cr.

Figure 7.11 illustrates the effects of diffusivity variations on growth of voids

closer than Lc,cr to the cathode via. In this case we let a grain on the on the anode side

of the void have different diffusivities Da, while the diffusivity is fixed at Do every

where else. The case that Da=Do is the same as illustrated above in figure 7.10(b).

When Da>Do, the steady state growth rate is reached earlier and when Da<Do, the void

initially shrinks, but if it does not first disappear it will eventually grow at a rate limited

by the steady state growth rate associated with stress effects. If the same void (with

Da<Do) pre-existed at a distance Lc>Lc,cr, it would shrink and disappear.

7.4 DISCUSSION AND CONCLUIONS:

From the forgoing analyses we conclude that:

1) Observations of voids at locations at locations other than the cathode via strongly

suggest that these voids pre-existed before electromigration began.
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2) Pre-existing voids that are at a distance from the cathode L. less than a critical

distance Lc,cr will prevent nucleation of voids at the cathode via (where Le,cr scales with

j).

3) Pre-existing voids at Le < L,cr will prevent nucleation at the cathode via and will

grow at a rate limited only by a steady state value V , where V scales with the current

density, V oc j.

4) Pre-existing voids at distances Le>Le,c, may grow, but their size will be limited and

they will eventually shrink and disappear. Such voids will not affect either the

probability or time for void nucleation at the cathode via.

First, it is important to recall that in the absence of pre-existing voids, the time

required to reach the critical stress for void nucleation at the cathode scales with j-2,

while, because V oc j, the time required for a pre-existing void to grow to a size that

will cause failure scales with j-1. Therefore if an interconnect segment has pre-

existing voids within Lc,cr, void growth will lead to failure at lifetimes that will scale

with j-1. If there are no pre-existing voids within Lc,cr, both nucleation and growth are

required for failure and the time for failure will have a current density dependence that

can range from j-2 scaling if failure is nucleation limited to j1 scaling if failure is growth

limited. Therefore, if there is a low density of pre-existing voids, some lines will fail
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due to growth of pre-existing voids and some will not.

segments failing with very different mechanisms which have different current density

dependencies. This will lead to multimodal failure time distributions, and will greatly

complicate life-time projections, not only because the different failure mechanisms must

be separated in statistical analyses, but also because lifetime projections will require

different current density scaling.

It should be further noted that Le,cr itself scales inversely with j, so that for a

fixed density of pre-existing voids, the fraction of a test population of segments that will

fail due to growth of pre-existing voids will be higher at low current densities (service

conditions) than at high current densities (test conditions). This also greatly

complicates scaling of test results to service conditions. At high current densities, void

nucleation is expected, so that in this regime, j-2 scaling is expected, even though at

lower currents, where most lines fail due to the growth of preexisting voids, j-1 scaling

might be found. This might explain why Rosenberg et al [Rosenberg 2000] observed

both j-2 scaling at high current densities and j-1 scaling at lower current densities in a

single set of experiments. It may also explain why there are reports of both

approximately j2 [Padhi 2003] and j-1 scaling [Wei 2003, Vairagar 2004] found

elsewhere in the literature. If results from populations with a mixture of modes are fit to
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a j~" scaling relationship, it would be expected that values between 1 and 2 would be

expected, which might also explain values of n=1.5 found by Padhi et al [Padhi 2003].

Proper scaling would require isolation and characterization of results for growth of pre-

existing voids (if they exist), either by testing at low current densities or through use of

special test structures.

assuming j2 scaling.

Alternatively, scaling can be conservatively carried out by

In the forgoing analyses we have not considered the effects of void drift. As

discussed in the introduction, voids can be pinned at grain boundaries, due to the energy

required to replace the grain boundary once a void drifts away. However, void drift

has been observed in in-situ experiments in which it is usually observed that voids

usually grow in place before drifting toward the cathode. As also outlined in the

introduction, this is consistent with the expectation that a void must grow to a critical

size Verit before it can de-pin from a boundary. The magnitude of this critical size

scales inversely with the square root of the current density.

As discussed above, pre-existing voids at Lc<Lcr might be expected to rapidly

reach the critical size for de-pinning, and drift to the cathode where they either continue

to grow or coalesce with other voids to cause failure. The overall rate of failure will

not be greatly affected by de-pinning in this case. As also discussed above, pre-
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existing voids at Le>L,cr will grow only if the anode-side grain has a diffusivity higher

than the cathode-side grain, and even then the growth rate will saturate and eventually

become negative. However, it is still possible that pre-existing voids at Lc>Lc,cr

might drift to locations for which Le<L,cr, and then more rapidly grow, drift, and/or

coalesce to contribute to failure. It should be noted though that this possibility becomes

even less likely at lower current densities, as the critical size for de-pinning is larger and

the rate of void growth is smaller. Void drift is therefore considered to not affect the

conclusions discussed above.

Finally, the forgoing discussion has focused on the case in which the vias lie

below the test segment (Figure 7.1). Si

above the test segments (Figure 7.2).

milar effects are expected in when vias lie

However, tests of lines in these two

configurations generally lead to different lifetimes [Gan 2001, Padhi 2003], because the

fatal void volume is higher for via-below test structures [S.Hau-Riege 2002, Gan 2001].

This may also lead to a greater sensitivity to nucleation of voids at or near the via for

via-above than for via below configurations, and an associated difference in fitted

current density scaling exponents for these to types of configurations, as observed by

Padhi et al [Padhi 2003].
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7.5 SUMMARY

Electromigration-induced tensile stresses in void-free via-terminated

interconnect segments are expected to first reach the magnitude required for void

nucleation at the cathode via. However, in both post-testing failure analysis and in in-

situ electromigration testing, voids are often observed at locations other than the

cathode via. We have shown that observations of such voids strongly suggest that they

have grown from voids (perhaps quite small voids) that existed before electromigration

testing was started. Such voids have often been observed and usually are the results of

tensile stresses associated with differential thermal expansion during interconnect

fabrication.

It is also shown that the existence and frequency of occurrence of pre-existing

voids will significantly affect the mechanism of failure, including the current density

dependence of the time to failure. It is further argued that the effects of pre-existing

voids become more important at lower current densities compared to the higher current

densities used in lifetime testing. The consequence is that scaling of test results to

service conditions is complicated not only by the presence of multiple failure modes

with different current density scaling, but also by a change in the mode frequency as test

results are scaled to service conditions.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK
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8.1 SUMMARY

Previously, reliability assessment of copper interconnects has been carried out

with under assumptions that a specific limited number of failure mechanisms operate,

which can lead to an inaccurate extrapolations of tests results to operating conditions.

By introducing new experimental techniques and a new simulation tool, a number of

additional failure mechanisms were identified and analyzed in this thesis

8.1.1 xSim

A simulation tool based on the one-dimensional Korhonen model was

developed to assist in identification and analysis of failure mechanisms. The new

simulation tool, xSim, has most of the features from the previous version by V. Andleigh

(called EmSim), plus an improvement listed in 1. Following key features are:

1. Implemented implicit method to reduce calculation time and improve stability.

2. Able to construct more complex interconnect trees, with application of independent

current densities in each segment, to allow analysis of stress/atomic concentration

interactions between segments.

3. Able to change current densities of the segment while running the simulation.

4. Able to obtain void volume as a function of time.
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5. Set different values of failure criteria by changing cycrit or the critical void volume for

failure.

6. Manually insert pre-existing voids at desired locations.

7. Manually vary diffusivities of individual grains.

8. Able to simulate the conditions for liner ruptures.

8.1.2 Effect of Adjacent Segments

Dotted-i structures, in which is two 25 jm-long segments are connected with a

via in the middle, were tested to observe the stress interactions between two segments.

We observed that the stress state of a segment strongly depends on the state of the

adjacent segment. Therefore, even though the product of current density and length (jL)

of the segment is lower than (jL)crit, failure can still occur, depending on the state of the

adjacent segment. Moreover, even if the adjacent segment has no electrical current, it

acts as a passive reservoir, and leads to a different stress state than that of the segment

without an adjacent segment. More specifically, if the inactive segment is adjacent to

the anode side of the active segment, the maximum tensile stress, Cymax, at the cathode is

given as:
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_ Z*pje 2ap+a2 ,
"" 2n a+p

(4.5)

where a is the length of active segment, p is the length of inactive segment. From this,

amax of a segment with an adjacent inactive segment can be as much as twice that of a

segment without the adjacent segment. Similarly, the maximum void volume with an

adjacent segment is significantly larger than that of a segment without an adjacent

segment. Therefore, it is important to consider even the inactive segments in

interconnect trees to accurately locate the most probable location for failure and to also

correctly predict failure times.

8.1.3 Dynamics of Voids Away from the Cathode

8.1.3.1 Accelerated EM Tests with In-Situ SEM

Accelerated electromigration (EM) tests were performed while top-view

imaging of the cathode region of the interconnect, using scanning electron microscopy

(SEM). The tests revealed that the failures not only occur by void nucleation and growth

at the cathode but voids also grow away from the cathode to cause failure. They grow at

a junction between copper/passivation-layer interface and a grain boundary. These voids

away from the cathode grow to a certain size, de-pin from the grain boundary, and drift
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to the cathode, some times diving into the bottom of the via (in M2) to cause the failure.

With simple analyses, the drift velocity is found to be directly proportional to the

surface diffusivity of the void surface. Some voids also grow to span the width and

thickness of the interconnect at the initial location and cause the failure by shunting

current through higher resistance liner material.

After in-situ tests, the top passivation layer was removed and grain

texture/orientation mapping carried out using an electron backscatter diffraction (EBSD)

tool. The shape and drift velocity of voids away from the cathode depend on the

crystallographic texture of the grains in the interconnect.

8.1.3.2 Vacuum EM Tests

A separate set of experiments was carried out to measure average surface

diffusivities for copper and relative diffusivities for grains with different orientations.

Unpassivated test structures were tested in a home made vacuum EM station to obtain

these results. Using measurements of the void volume at the end of the cathode as a

function of test time, the average surface diffusivity for copper was extracted. The

activation energy was found to be 0.45±0.1leV, and the pre-factor, Do, was found to be

3.35x101 m2/s. Without passivation, voids also grew at flux divergence sites such as
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grain boundaries, but they did not drift, due to the relatively high surface diffusivity

compared to copper/passivation-layer. We expect that the source for a flux divergence

is the differences in diffusivities for different grain orientations. The diffusivities

increase in the order (I 1 1), (1 1 5), (7 5 13), and higher out of plane orientations. Note

that (1 1 5) is the first generation twin and (7 5 13) is the second generation twin

orientation of (1 1 1). These results from unpassivated samples are consistent with

limited results from passivated samples observed from in-situ SEM and post-testing

EBSD experiments.

8.1.3.3 Effect of the Stress State Around a Pre-Existing Void

Simulation results show that it is very unlikely for a void to nucleate at

locations other than at the cathode end of an interconnect segment. Thus, those voids

observed away from the cathode in-situ SEM experiment must be due to defects or pre-

existing voids. Using the simulation tool, the behavior of pre-existing voids was

analyzed. Pre-existing voids were manually inserted in various locations in the

interconnect and changes in the void volume, which depends on the stress state around

the void, were observed. We found that voids near the anode are likely to shrink and

disappear, so that an insignificant contribution to fatal is expected. However, voids near
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the cathode may cause a failure. We predict that if the pre-existing voids are within a

certain length, Le,crit, from the cathode end, they are likely to grow to cause failure,

while also preventing a void nucleation at the cathode end. However, if the pre-existing

void is further away than Lecrit, its growth saturates, and the failure is governed by void

nucleation and growth at the cathode end. Le,crit is defined by:

Lc,crit = Q(anue -GO)
jqz * p

(7.5)

where c is the critical stress for the void nucleation and ao is the initial stress. From

equation (7.5) we observe that L,crit increases with decreasing current density, j. Thus,

at low current densities, there is a higher probability of having pre-existing voids within

Lc,crit, leading to more fatal failures due to pre-existing voids.

8.1.4 Effect of Pre-Existing Voids on Current Density Exponent

8.1.4.1 Low Current Density

A current density exponent close to 1 is observed at low current densities. We

suspect that this is due to two effects. First, as explained above, low current densities

lead to longer L,crit, causing more failures due to pre-existing void. Secondly, the
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critical void volume required to de-pin from the grain boundary increases with

decreasing current density, according to:

3 Ygb
Rd 4qz* pj

where Rd is the radius of the void required to de-pin from the grain boundary. Thus,

especially in interconnects with small dimensions, pre-existing voids are likely to grow

to span the width and thickness of the interconnect before it de-pins and drifts toward

the cathode. This may cause failure by electrical shunting through higher resistant liner

material.

Combining the above two effects, the failure at low current densities may be

predominantly by growth of the pre-existing void, leading to a current density exponent

of I (void-growth-limited failure).

8.1.4.2 High Current Density

At high current densities, voids are likely to nucleate at the cathode end, which

can lead to void-nucleation-limited failure or mixture of void-nucleation-limited and

void-growth-limited failures. This can lead to a current density exponent that is greater
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than 1 (up to 2).

8.2 CONCLUSIONS

By introducing new experimental techniques and utilizing an internally

developed simulation tool, new Cu-interconnect reliability issues have been identified.

First, by testing and analyzing dotted "i" interconnect trees, inactive segments

are shown to be as critical as active segments for reliability of interconnect trees.

Therefore, a current method of identifying (jL)eft must be modified to include the

contribution from the inactive segment for more accurate reliability assessment of both

Cu-based and Al-based interconnects. Also, process defects, such as discontinuous liner

at the bottom of the via, can lead to a variation in lifetime of the interconnect.

Second, EM tests with in-situ SEM show that open circuit failures are not only

by the void nucleation and growth at the cathode end of the interconnect. Pre-existing

voids that are away from the cathode can also cause the failure. Pre-existing voids can

either grow to span the thickness and width of the via or drift into the bottom of the via

to cause the open circuit failure. We have also observed the effect of crystallographic

orientation of copper grains on motion and shape of the voids that can lead to variations

in lifetime of the interconnects.
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We have shown that at low current densities, a failure by growth of a pre-

existing void may be more likely to occur than a failure by void nucleation and growth

at the cathode end. This leads to current density exponent (n) value close to 1 at low

current densities while n is close to 2 at high current densities. This is critical because

most accelerated EM tests are performed at much higher current densities than that of

the service conditions. Thus, using values obtained from EM tests (with n close to 2) to

extrapolate lifetimes at service conditions can be too conservative.

Studies in this thesis can lead to better understanding of reliability of metal

interconnects especially Cu-based interconnects. We have shown that it is critical to

understand detailed geometry of the interconnect trees (both active and inactive

segments) as well as fabrication defects (missing liners or pre-existing voids) in order to

correctly assess the reliability of the interconnect.

8.3 PROPOSED FUTURE WORKS

There are a few experiments that can be carried out to further clarify the

phenomena described in this thesis.

A. With unpassivated samples, one can have various surface treatments before
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(a)

Figure 8.1 (a) Unpassivated test structure with strips of passivation of desired

material. (b) Assuming surface diffusion is higher than the interface diffusion, voids

will grow at the edges of the passivation.

passivation and compare the diffusivities of untreated and treated samples. Preliminary

results with self-assembled monolayer (SAM) deposition onto Cu surface are described

in appendix A. Various intermediate layers can be deposited between Cu and the

passivation layer.

B. By depositing strips of materials perpendicular to the length of the

interconnect as shown in figure 8.1, one can obtain the relative diffusivities between

surface and Cu/material interface. For example, by depositing strips of Si 3N4, a void is

expected to grow at the boundary between the Cu/Si 3N4 interface and the Cu surface
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(figure 8.1(b)). By obtaining the void volume as a function of test time, the relative

diffusivities of the Cu surface and Cu/Si3N4 interface can be determined.

C. The current density in fully processed samples can be varied to confirm the

proposed failure mechanism by pre-existing void growth with extensive failure analysis.

D. Using in-situ SEM, void pinning at the cathode end can be observed. In teh

second metallization (M2) layer, the void is expected to nucleate at the cathode end of

the Cu/passivation interface. Some voids grow to a certain size and dive into the via to

cause the. There seems to be a critical void volume required for the void to transfer from

the Cu/passivation interface to Cu/liner interface. One may identify factors leading to

the critical void volume for de-pinning at this location.

E. Quantitatively obtain the relationship between pre-existing void initiated

failure and the width of interconnects.

F. Manually insert defects at various locations prior to passivation and observe

the failure characteristics.
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APPENDIX A

MONOLAYER ON UNPASSIVATED COPPER

INTERCONNECT SURFACE FOR REDUCING

ATOMIC DIFFUSION
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A.1 INTRODUCTION

Electromigration (EM) has been one of the major factors for reliability of metal

interconnects. EM is a diffusion of metal atoms induced by momentum from applied

electron current. In order to minimize failures due to EM, diffusion of metal atoms must

be effectively suppressed. In copper interconnects, dominant or fastest diffusion path is

along the interface between copper and top passivation layer (Cu/passivation). Si3N4 has

been the choice of material for passivation layer. Therefore, suppressing diffusion in

Cu/passivation interface is the key to reliability improvement in copper interconnects.

Also, it is important that the method that can suppress the interface diffusion should be

simple and low cost process in order to be implemented in an actual production

fabrication procedure.

A number of attempts have been made to suppress the interface diffusion. One

of them is alloying Cu with elements such as Al, Cr, Mg, Pd, Sn, and Zr [C.Hau-Riege

2004]. Alloying with these materials has shown improvements in lifetime of the

interconnect, however, it was difficult to prevent resistivity increase of the interconnect.

Second method involves depositing a thin metal cap layer between copper and

passivation layer. CoWP, CoSnP, and Pd have been selected as a metal cap [Hu 1998].

Using electroless deposition, these metals selectively deposit on copper surface. Thus, it
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does not require an extra lithography step. Also, unlike alloying method, resistance

increase is negligible. A number of them showed significant improvements in lifetime.

However, one of the problems is having a uniform deposition across the wafer that is as

large as 12 inches in diameter.

Third method is depositing organic monolayer between copper and passivation

layer. It has been shown that a thiol-terminated monolayers selectively adhere onto only

copper surface which may pin the surface atoms and reduce diffusion [Ganesan 2005].

However, one of the main issues with organic monolayers is their thermal resistance.

Some of the back-end fabrication processes require temperatures up to 4000C and most

of organic monolayers can not resist this temperature. Thus, selecting a monolayer that

can withstand high temperatures is the key to this process.

In this paper, we select thiol-terminated diacetylene for suppressing diffusion of

copper atoms. We deposited this monolayer onto surface of the copper interconnect and

performed accelerated EM tests to observe effect of the monolayer on suppressing

diffusion of copper atoms.

A.2 EXPERIMENTAL PROCEDURES
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Samples used for this experiment are identical to that of the samples in chapter

6 and appendix B. The samples that were used in this experiment are 1000pm long and

either 0.3pm or l.0 m wide. Monolayer was deposited by Xiaogang Liu. Detailed

synthesis of thiol-terminated diacetylene salt is described by Kim et al [Kim 1994]. 10 -4

mol of prepared salt is dissolved in 1OOmL of CHCl 3 to make a 1mM solution.

Unpassivated samples were immersed into the monomer solution for 3 hours. The

monolayer is cross-linked by exposing 254nm wavelength light from Hg(Ar) UV pen

lamp (UV Products Ltd.) for 5 minutes with nominal power of 4.75mW/cm2 . Si3N4

passivation layer was not deposited. The samples were mounted to 24-pin ceramic

package and wire-boned using Au wires. The package was inserted into the vacuum EM

station for accelerated EM test at a temperature of 320"C and 1.85MA/cm 2. Again more

detailed procedure of accelerated EM tests in vacuum are described in chapter 6 and

appendix B. Tested samples were observed using secondary electron microscopy (SEM)

for further analysis.

A.3 RESULTS

Figure a. 1 shows the time-to-failure (TTF) results of untreated and SAM treated
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Figure a.1 TTF of unpassivated and monolayer deposited samples. (a) 0.3pjm width

and (b) 1.Opm width samples.

samples. The result shows that TTF of the SAM treated samples is two to three times

longer than that of the untreated samples. SEM images of the tested samples show

inconsistent surface morphology (Figure a.2). There were regions where surface looks

contaminated and shows precipitates of some kind (Figure a.2(a),(b)), while some
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Figure a.2 Monolayer deposited samples after EM tests. (a) shows precipitate-like
spots in extrusion monitor righ and test line. (b) Region showing nanowire growth (c)
Region with clean surface.

regions show no signs of any disturbance (Figure a.2(c)). However, TTFs showed no

dependence on these different regions.

A.4 DISCUSSION

A molecular structure of thiol-terminated diacetylene is shown in figure a.3

[Kim 1994]. It is well known that thiol end of the molecule selectively adheres to the

gold surface [Batchelder 1994], behaving as a self-assembled monolayer (SAM). Since

Cu-S [Gimarc 1983] and Au-S [Kim 1994] have similar bonding energies, thiol-
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(a) (b)

~2nm

I I

Figure a.3 (a) Thiol group of diacetylene adheres to Cu surface. (b) UV light turns
triple bonds in diacetylene to cross-linked double bonds with other molecules.

terminated diacetylene is expected to adhere on copper surface as well as on gold

surface. Then with ultraviolet light, triple carbon bonds in diacetylene break into double

bonds and the remaining bond cross-links with the neighboring molecule, as shown in

figure a.3(b) [Wegner 1969]. The cross-linked monolayer is known to resist elevated

temperature condition [Kim 1996]. Thus, the monolayer may be able to withstand the

later process of Si 3N4 passivation, which is usually done with PECVD at 4000C.

The thickness of the monomer on copper surface is obtained by ellipsometry

[Kim 1996], however, this technique alone does not guarantee the uniform deposition of

the monolayer onto the entire surface of the substrate. From the observed SEM images

after the EM tests (Figure a.2), it is evident that the monolayer was not uniformly
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Figure a.4 Other monolayer candidates:

(a) COOH terminated of diacetylene

(b) Mercaptopropyltrimethoxylsilane

(c) Aminopropyltriethoxylsilane

deposited throughout the surface. The monolayer deposition needs to be optimized to

give more uniform deposition. Samples with SAM showed an increased TTF compared

to unpassivated samples with clean copper surface, but TTF of passivated samples is
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Table a.I
MTTF of samples with different monolayers. *Note that a.4(a), a.4(b), and a.4(c) are

monolayers described in figure a.4; very limited number of samples are tested.

Samples Untreated Thiol a.4(a)* a.4(b)* a.4(c)*
_____- terminated

widths dicetylene

0.3ptm 20.56hrs 70.24hrs 19.15hrs 26.38hrs 40.92hrs

L.0pm 25.09hrs 47.48hrs 44.85hrs 63.90hrs 62.88hrs

significantly longer (-460 hours in identical conditions). To make a fair comparison

with passivated samples, samples with SAM should also be passivated.

There are other SAM candidates as shown in figure a.4, which are also known

to withstand high temperatures by forming cross-links. Preliminary results of these

monolayers were also obtained (Table a.I). However, due to low number of tested

samples, it is difficult to draw any conclusion.

A.5 CONCLUSION

Thiol-terminated monomers only adhere onto Cu surface, which leads to a very

simple process integration - immersing the sample into the monomer solution for self-

assembled monolayer (SAM). With a strong bond between Cu and S, the mobility of the

Cu atoms at the surface should be well reduced, which can lead to overall improvement
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in reliability of Cu interconnects. Thiol-terminated dicetylene was selected because it is

resistant to elevated temperature when cross-linked. Preliminary EM tests were

performed and showed improvements in TTF compared to unpassivated samples,

however, further experiments need to be done for more quantitative and in-depth

analysis.
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APPENDIX B

SETUP FOR VACUUM ELECTROMIGRATION

STATION
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Vacuum Electromigration Setup

At an elevated temperature, copper oxidizes and continuously forms unstable

oxide. Oxidation of copper leads to degradation of copper interconnects. In fully a

processed copper interconnect test structure, oxidation is not an issue because copper is

surrounded by interlevel dielectric (ILD) and passivation layer. However, test structures

we used in chapter 6 and appendix A are structures without top Si 3N4 passivation layers.

Thus, top copper surface of the test structure is exposed. In order to perform accelerated

electromigration (EM) test on these samples, high vacuum environment is necessary to

minimize the oxidation. Furthermore, native oxide must be removed prior to EM test for

accurate observation of copper surface.

Vacuum electromigration station is designed and constructed by Zung-Sun Choi

and Reiner M6nig. The samples were mounted on 24-pin ceramic package using the

silver epoxy, and the epoxy was cured at 1200C with H2 gas flow to prevent the Cu from

oxidation. Then the sample was gold wire-bonded, and the package was inserted into a

vacuum electromigration test chamber (Figure b. 1). Main body of the test chamber is a

304L stainless steel five-way cross tube with 6-inch diameter CF flange connections

purchased from Kurt J. Lesker Company. One of the five connections leads to TCU-170

turbo pump by Pfeiffer Vacuum Co. with Duo 2.5 rotary vane pump also by Pfeiffer

Vacuum Co. A Micromaze Foreline trap by Kurt J. Lesker Co. is used between the turbo

and rotary pump to prevent turbo pump from oil contamination by the rotary pump.

Both pumps are controlled by TCP-300 controller by Pfeiffer. The pressure is measured

by an ion gauge and the connection is shown in figure b. 1.

A socket made of alumina (received from a courtesy of Chang, Choonwai at
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Electrical feedthrough
for lamp heater

Figure b.1(a) A schematic diagram of vacuum electromigration test chamber setup.

T Current
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Figure b.(b) A photograph of actual vacuum electromigration test chamber.
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Singapore-MIT Alliance) connects 24-pin ceramic packages via electrical feedthroughs

to the outside of the vacuum chamber (Figure b.2). For wiring inside the vacuum

chamber, 1mm diameter bare copper wires surrounded with alumina tubes for isolation

are used to be compatible with high vacuum and temperature.

Wires for sample testing and heating are separated. For heating, the radiation of

a MR-16 24 V halogen lamp is used. The lamp is connected to an adjustable voltage

source that allows the adjustment of the sample temperature by manually adjusting the

lamp's voltage. Temperatures on the order of 400*C can be achieved with this setup

(Figure b.2). The sample temperature is measured by a thermocouple that is attached to

the ceramic package which is in good thermal contact with the interconnects.

For the electrical current supply for the test samples, another power supply is

connected to eleven LM334 3 terminal transistors which supply adjustable constant

current depending on the amount of the resistance connected to the transistor, as shown

in figure b.3. To effectively adjust the amount of current, potentiometers, are used to

regulate the resistance in each transistor. (Figure b.4) With this setup, 11 samples can be

tested simultaneously only using one main power supply and adjusting the current

densities for individual samples with the potentiometers.

With constant currents, voltages of individual samples are recorded then

converted to resistance using a SCB-68 collector block attached to a National

Instruments A/D card in a computer running a Labview program (Figure b. 1(b)). The

vacuum system is equipped with a gas feedthrough for flowing forming gas in order to

reduce oxides on the sample's surface. The Time for the chamber to reach pressures

below 1x10~7 torr is about 5 hours. After the pressure reached below 1x10-7 torr, 5%

hydrogen and 95% nitrogen forming gas was flowed with 500sccm/min at 1x1O-3torr
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Figure b.2 A photograph of actual socket with wires, ceramic package, and halogen

lamp heater.

LM334
Transistor

LEDs
light
when
current
flowing

Figure b.3 Transistor regulates current by difference in resistance of the

potentiometer.
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Figure b.4 It can be controlled with a accuracy with variable resistance in the
configuration shown in the left.

and 250"C for 5 minutes to reduce the residual copper oxides on the top surface of the

interconnect. [YHu 2001] [Rodriguez 2003]. Then temperature was raised to the

testing condition while the system was pumping. After about 12 hours the pressure was

below 2.5x10~8 torr and accelerated electromigration tests were performed by applying a

desired current density to the interconnects.

Reference: Appendix B
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APPENDIX C

MANUAL FOR RUNNING XSIM
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The code is in a folder named "xsim" in an attached DVD with the thesis. The

code requires Matlab software to run the simulation.

1. After opening a Matlab software, go to "command window" and type "cd xsim"

or the name of the folder where xSim code is. Then the "current directory" will

show this folder.

2. Go to file and select "open file"

3. select one of the *.m file

For single interconnect terminated with two vias.

4. select "sim one interconnect.m"

5. in the file "sim one interconnect.m", some of the fundamentals constants are in

lines 9 through 20. q = fundamental charge (C), B = effective modulus (Pa),

omega = atomic volume (m3), CIO = lattice concentration at zero stress (M-3),

CvO = vacancy concentration at zero stress (m-3), EtDa = diffusion activation

energy (Joule), EtCv = vacancy activation energy (Joule), sigmac = critical stress

for void nucleation (Pa), efactor = void propagation factor.

6. line 21 "lc" sets the number of cells in the interconnect, currently set to 25 cells

(lc = 25)

7. line 25 sets status of the cell, set to zero, which is initial condition

8. lines 26 to 34 are user defined conditions. DaO = diffusivity pre-factor of

individual cells (m2/s), Dac = surface diffusivity pre-factor at voided region of

individual cells(m 2/s), T =temperature (K), dx=cell length (m), A=cross-

sectional area (m2 ), E = electric field ( (A/m 2)*p(K)m))
9. lines 37 and 38 initialize atomic concentration of each cells.

10. line 45 is the time step of each integration, assign desired time steps you wish to

output

11. line 46 is the number of time steps, assign desired number of time steps you

wish to output

12. lines 47 and 48 output the results.

13. once user defined values are inserted, go back to "command window" and type

"sim one interconnect" which will run the simulation

14. after the simulation, go to "Desktop" menu and check "workspace"

15. click on either "sigma" or "Ca" and you will see the spreadsheet with simulated

238



results of stress and concentration profiles

16. Type plot(sigma) or plot(Ca) in "command window" to see the plots

For interconnect with two segments.

1. open "simtwointerconnect.m" file

2. lines 8 and 9 assign the number of cells for two interconnects, numcelll, and
num cell2.

3. lines 11 to 22 are material parameters described in "simoneinterconnect.m"
4. lines 25 to 42 are user input values for the first interconnect, definitions and

parameters are described in "simoneinterconnect.m"
5. line 41, "NETLIST" combines all interconnects into one structure. First

interconnect is assigned as "il" and cells of "il" occupies from cell 1 of
NETLIST.

6. lines 45 to 60 are user input values for the second interconnect.
7. line 59, Second interconnect is assigned as "i2" and cells of "i2" occupies from

cell (num celll + 2)

8. lines 64 to 84 are user input values for a junction connecting two interconnects.
9. lines 64 to 72 are assigned values for junction cell, similar to that of

interconnect assignment.

10. line 75 connects a junction to the first interconnect (inter numl). "isblocked"
means there is a block between a junction and interconnect to prevent atomic
diffusion. It is marked "0" for false, so atoms are diffusing. "is end" means
junction is connected to the last cell of the interconnect, which is marked "1" for
true.

11. line 76 connects a junction to the second interconnect. "is end" is marked "0"
meaning junction is connected to the first cell of the second interconnect.

12. line 83 junction cell is assigned as 'j 1" and occupies cell (num-celll+1)
13. lines 89 to 92 are for simulation output, described in "simoneinterconnect.m."
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