
Extracting Information from Informal Communication

by

Jason D. M. Rennie

B.S. Computer Science
Carnegie Mellon University, 1999

S.M. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2001

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2007

© Massachusetts Institute of Technology 2007. All rights reserved.

A u th or r ,
Depart nt of Electrical Engineering and Computer Science

January 23, 2007

Certified by . .
Tommi Jaakkola

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

A ccepted by
Arthur C. Smith

Chairman. Departmental Committee on Graduate Students

ARCHVES

MASSAC-HUSETTS INSTITUE,
OF TECHNOLOGY

APR 3 E 2007

LIBRARIES

Extracting Information from Informal Communication
by

Jason D. M. Rennie

Submitted to
the Department of Electrical Engineering and Computer Science

January 23, 2007
in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Abstract

This thesis focuses on the problem of extracting information from informal communication.
Textual informal communication, such as e-mail, bulletin boards and blogs, has become a
vast information resource. However, such information is poorly organized and difficult for a
computer to understand due to lack of editing and structure. Thus, techniques which work
well for formal text, such as newspaper articles, may be considered insufficient on informal
text. One focus of ours is to attempt to advance the state-of-the-art for sub-problems of
the information extraction task. We make contributions to the problems of named entity
extraction, co-reference resolution and context tracking. We channel our efforts toward
methods which are particularly applicable to informal communication. We also consider
a type of information which is somewhat unique to informal communication: preferences
and opinions. Individuals often expression their opinions on products and services in such
communication. Others' may read these "reviews" to try to predict their own experiences.
However, humans do a poor job of aggregating and generalizing large sets of data. We
develop techniques that can perform the job of predicting unobserved opinions. We address
both the single-user case where information about the items is known, and the multi-user
case where we can generalize opinions without external information. Experiments on large-
scale rating data sets validate our approach.

Thesis Supervisor: Tommi Jaakkola
Title: Associate Professor of Electrical Engineering and Computer Science

2

Contents

1 Introduction 7
1.1 Chapter Summaries . 8

2 Named Entity Extraction 10

2.1 Introduction 10

2.2 Informativeness Measures . 11

2.3 Mixture Models . 13
2.4 Expectation-Maximization . 14

2.5 Finding Restaurants . 14

2.5.1 The Restaurant Data . 15

2.6 Informativeness Filtering . 15

2.6.1 Are Mixture and IDF Independent? 17

2.6.2 Combining Mixture and IDF . 19
2.7 Named Entity Detection . 20

2.7.1 Performance Measures . 20

2.7.2 Significance . 21
2.7.3 Experimental Set-Up . 22

2.7.4 Experimental Results . 22

2.8 Sum m ary . 24

3 Co-reference Resolution 25
3.1 Motivation: Why Co-Reference Resolution? 26

3.2 Views of Co-reference Resolution . 26

3.3 The Co-Reference Resolution Problem . 27

3.4 M odel3 . 28
3.4.1 Minimum Cut Equivalence . 29

3.4.2 Maximum Inter-Cluster Similarity Equivalence 29

3.5 An Antecedent Model of Co-Reference Resolution 30

3.5.1 Learning . 31
3.5.2 Inference . 32

3.6 Hybrid Model . 32
3.6.1 M otivation . 32
3.6.2 D etails . 33

3.7 D iscussion . 34

3

4 Tracking Context
4.1 Introduction .

4.2 Model Overview .

4.2.1 Structure .

4.2.2 Clustering .
4.2.3 Definitions .

4.3 Trace Norm Distribution .

4.4 Normalizing Constant .

4.5 Clustering Algorithm .

4.5.1 Bottom-up clustering

4.5.2 k-flats .
4.6 Simulated Data .

4.7 Discussion .

5 Preference Learning
5.1 Introduction .

5.2 Ordinal Regression .

5.2.1 Related Work .
5.2.2 Specific contribution

5.2.3 Preliminaries .

5.2.4 Margin Penalty Functions

5.2.5 Ordinal Regression Loss Functions

5.2.6 Experiments .

5.2.7 Related Models

5.2.8 Ranking .
5.2.9 Summary .

5.3 Collaborative Filtering .

5.3.1 Introduction and Related Work

5.3.2 Simultaneously Learning Weights and Features

5.3.3 Maximum Margin Matrix Factorization

5.3.4 Low-Rank Solutions

5.3.5 Properties of the Joint Objective

5.3.6 Implementation Details

5.3.7 Experiments .

5.3.8 Discussion .

5.4 Hybrid Collaborative Filtering
5.5 A Missingness Mechanism for Collaborative Filtering

5.5.1 Introduction .

5.5.2 The Model .
5.6 Summary .

A Expectation-Maximization
A.1 EM for Mixture Models .

A.2 A Simple Mixture Example

B Gradients for a Two-Component Binomial Mixture Model

4

35
35
37
37
38
38
39
43
47
47
47
48
49

50
50
52
53
54
54
55
58
60
61
64
64
65
65
67
69
70
71
76
76
79
79
80
80
81
82

84
84
85

87

Acknowledgements

I owe a great deal of gratitude to a number of people, without whom I may never have been

able to make it to MIT and complete the PhD program.

First, I'd like to thank my parents, Charles & Louise Rennie for nurturing me, teaching

me the values of respect and hard work and giving me the tools to succeed. Mom, I will

never forget the fact that you gave up your career in order to raise my brother and me,
that you gave a part of yourself so that we could be raised in a caring, loving and safe

environment. Dad, I will never forget how hard you worked to provide for us and to provide

me with the opportunities to learn and succeed. Mom & Dad, I could have never made it

this far without all that you gave to me. For that, I am eternally grateful.

I'd like to thank my brother, Kevin, for sharing his life with me, the celebrations and

sorrows, for providing that intimate human bond that is so scarce and so hard to develop.

For giving me a piece of my humanity, I thank you, Kevin.

Arkadiy, Tonya, and Leo, I'd like to thank you for allowing me to be part of your family,
for sharing your love with me and introducing me to some wonderful traditions. With my

thesis finished, we can spend even more time arguing over politics and religion!

I'd like to thank Tommi, my advisor, for taking me in as a naive first-year grad stu-

dent, mentoring me, gently guiding me and teaching me everything I know about machine

learning. You gave me the confidence and knowledge I needed to turn my dreams into

reality.
I'd like to thank Nati Srebro for teaching me about his work on matrix factorization

and using the trace norm for supervised learning, and for allowing me to take part in that

work. Without Nati's guidance and teachings, my chapter on preference learning would not

be what it is today.
I'd like to thank John Barnett, my officemate and friend, for numerous discussions

that helped shape what this work is today. I owe him a particular deal of gratitude for

helping me in my quest to evaluate the trace norm distribution normalization constant,

f exp(-AIXIlx)dX. I'd also like to thank Prof. Alan Edelman for writing the class notes

which allowed us to eventually complete the quest.

I'd like to thank my committee members, Professors Michael Collins and Tomaso Poggio

for guidance during the thesis writing process. Prof. Collins, thank you for taking the time

to provide me detailed comments on the entire thesis draft. Prof. Poggio, thank you for

providing me the opportunity to give guest lectures in your Learning Theory class. Those

lectures helped give me the confidence and practice I needed to deliver my thesis defense

presentation.
I'd like to thank Prof. Tom Mitchell for taking a risk on me as a freshman undergrad to

help develop homework assignments for his Machine Learning class. That summer of 1996

was when I learned about Decision Trees and Naive Bayes. It was then that I had my first

real taste of machine learning and I've felt that it has been an inspiration for me ever since.

I'd like to thank the Cora group, Kamal Nigam, Kristie Seymore, and, especially Andrew

McCallum, who involved me in my first research project and helped me develop the ideas

that led to my first published work.

I'd like to thank everyone that I've known through the years at CSAIL and the AI

Lab, including Harald Steck, Chen-Hsiang Yeang, Brooke Cowan, Greg Marton, David

Sontag, Claire Monteleoni, Martin Szummer, Tony Jebara, Annie Lawthers, Luis-Perez

Breva, Bryan Russel, Lilla Zollei, Polina Golland, Chris Stauffer, Kinh Tieu, Mihai Badoiu,
Piotr Indyk, Amir Globerson, Kai Shih, Yu-Han Chang, Jaime Teevan, Mike Oltmans,

5

Jacob Eisenstein, Ryan Rifkin, Ali Mohammad, Harr Chen, Rodney Daughtry and everyone

whose names I am momentarily forgetting. Thank you for sharing a part of your life with

me. These were wonderful, at times trying, yet ultimately rewarding 7.5 years of my life

and I will never forget them.

I'd like to thank Mark Stehlik for helping to guide me through my undergraduate ed-

ucation, for being one of the most amazing people I have ever met and for being so kind

as to marry my wife and I. We couldn't have asked for a better person to lead us into our

lives as adults.
Lastly, I'd like to thank the person who's life has most touched me during these years

that I've been working toward my degree. When I embarked on my graduate studies, we

were just beginning our lives together. I didn't realize how challenging the Ph.D. would

be. When I felt inadequate, you reminded me of my achievements. When I needed to get

away, you took me to places near and far. When I felt uninspired, you helped remind me

of applications and ideas which I had forgotton. When I felt that I couldn't organize and

plan my own work, you acted as my manager, helping me set deadlines and work through

the parts that I didn't want to do. Without you, this thesis would have never been born.

This is for you, Helen, my love.

6

Chapter 1

Introduction

This thesis began as an investigation of ways of extracting information from informal

communication. By "informal communication", we mean unedited textual communica-

tion which has at most minimal formal structure. Some examples include e-mail, mailing

lists, bulletin boards, blogs and instant messages. We think this kind of communication is

interesting for two reasons: (1) the volume of it which is available, and (2) the quickness

with which it can reflect current events or new information. With the advent of the Internet

and digital communications networks, text has become increasingly popular as a means of

communication. As such, textual communication has become less formal and the range of

information available in such communication has become extremely broad. Another trend

has been the increased ease with which individuals can produce textual communication.

Whereas access to the Internet was once quite limited and required specialized knowledge,
now individuals can publish content via a web browser or even a cellular phone. The result

of this trend is that informal communication can provide specialized, up-to-date informa-

tion beyond that of more formal sources of communication (such as newspapers, guides and

"portal" web sites). However, informal communication has obvious drawbacks: it is poorly

organized and more difficult to understand than structured or well-edited text. So, locating

and extracting information in which we might be interested can be quite difficult. Yet,
the volume and timeliness of such information suggests to us that the extra effort may be

worthwhile.
One possible approach to this task of extracting information from informal communica-

tion is to construct a system which at least partially solves the problem. This would require

substantial domain-specific knowledge and engineering effort. We feel that before such a

system will be valuable, advancements need to be made on the core information extraction

problems. So, instead of building a system, we focus our efforts on tackling what we feel are

key sub-problems of the information extraction task. For each sub-problem, we identify a

deficiency in existing techniques' ability to handle informal communication and provide an

alternate approach or attempt to advance the state-of-the art. We feel that this will allow

us to make lasting contributions to this problem.

We consider four sub-problems, devoting a chapter to each. Our depth of analysis and

contribution varies, from a relatively small extension of an existing co-reference resolution

algorithm (Chapter 3), to development of and large-scale evaluation of a new framework for

learning user preferences (Chapter 5). We use restaurant discussion boards as a running

example. Restaurant discussion boards exhibit many of the benefits and drawbacks that we

find in general informal communication. They provide a wealth of up-to-date information

7

on local restaurants. But, they can be so unwieldy and free-form so as to make finding

information difficult.
We begin with one of the most fundamental problems in information extraction: named

entity extraction. People, places, locations, organizations, etc. almost always play a role in

information that we want to extract. One type of information we find on restaurant discus-

sion boards is opinions about specific restaurants, e.g. "French Laundry was outstanding."

Before we can extract the opinion, it is helpful, if not necessary, to identify "French Laun-

dry" as the name of a (restaurant) entity. Identification of such names is the first step

toward being able to extract information about them. An entity (particularly after it has

been mentioned), may be referred to in many different ways-with the full name, using

an abbreviation, or via a pronoun or descriptive phrase. To be able to extract all of these

information about an entity, we must be able to resolve all these various mentions-we must

perform "co-reference resolution", which is the association of multiple mentions of the same

entity. If we can solve these two tasks, named entity extraction and co-reference resolution,
we will be able to identify and resolve all explicit entity mentions. However, sometimes

information is provided indirectly, without explicit mention of an entity. For example, in

reviewing a restaurant, someone might say, "The swordfish was excellent," which is a com-

ment on the food served at a particular restaurant. Association of this comment with the

restaurant requires that we be able to track context. We must be able to follow the "topic"

of conversation. A final sub-problem that we address involves adding value to the morsels

of information that we extract from text. Whereas formal communication tends to focus

on factual information, informal communication often is filled with expressions of opinions

and preferences. For example, restaurant boards are typically filled with user reviews of

restaurants. Individually, such reviews and opinions are of limited value. But, collectively,
they can be used to characterize differences between restaurants (or other named entities)
and may also be used to predict unobserved opinions-whether an individual will like a

restaurant she hasn't experienced yet.

1.1 Chapter Summaries

Most work on named entity extraction has focused on formal (e.g. newspaper) text. As

such, systems tend to rely heavily on titles ("Mr."), keywords ("Inc."), capitalization and

punctuation. However, capitalization and punctuation are noisy in informal communication.

And, titles and keywords are used relatively rarely in informal communication, if they are

used at all. Some named entity types (e.g. restaurant names) do not have keywords or titles.

One aspect of names that is not fully utilized is that they are often involved in the "topic" of

discussion. As such, words in names are often distributed like topic-oriented or informative

words. If we can characterize the distribution of topic-oriented words, then we can use this

as an additional feature for extracting named entities. Our contribution is exactly that: a

new score which estimates a word's "informativeness" or "topic-orientedness". The score

captures two aspects which we believe to be typical of the distribution of topic-oriented

words: modality and rareness. Experiments indicate that our score can be used to improve

NEE performance. Details can be found in Chapter 2.

Two categories of co-reference resolution algorithms have emerged. The first treats each

noun phrase mention as referring to a single other mention; learning involves training a

classifier to identify the antecedent for each noun phrase mention. The other framework

treats co-reference resolution as a clustering problem; mentions are grouped together which

8

have high average "similarity". We view neither approach as being the answer. The clas-

sification approach treats each mention as referring to exactly one other mention (if any).

Pronouns and other non-proper nouns do typically refer to other mentions in this way,
but reference for proper nouns is less constrained. The classification approach also has the

disadvantage of being greedy, making locally optimal reference decisions. The clustering

approach requires that each mention in a cluster have (relatively) high average "similarity"

with the other mentions in that cluster. This reflects how proper nouns tend to co-refer

(string similarity), but is less appropriate for other nouns, which heavily depend on context

and locality. Our contribution is a new co-reference resolution algorithm which is a hybrid

of these two approaches. We extend a probabilistic clustering-style algorithm to utilize the

clustering approach for proper nouns and a classification approach for other nouns. Details

can be found in Chapter 3.
Topic or context changes in formal or structured text are often indicated by formatting

or markup. Not so with informal communication, where word meaning may be the only clue

that context has changed. Thus, we treat the problem of tracking context in informal com-

munication as a sentence clustering problem. One theory for how text is generated within a

topic is that it corresponds to a low-dimensional subspace of the probability simplex. Nei-

ther of the two popular clustering frameworks, mean/centroid and spectral/normalized cut,
can discover low-dimensional subspaces in noisy data. Our contribution is the development

of a new clustering framework which simultaneously identifies cluster assignments and the

subspace of variation corresponding to each cluster. Details can be found in Chapter 4.

We address two related preference learning problems. Individuals typically express their

opinions as partial orderings or ratings. Yet, we think that limited attention has been

paid to algorithms which learn ordered categories. First, we consider the problem where

a single user rates items and feature information is available on each of the items which

might be rated. This is known as ordinal regression, which is an generalization of binary

classification to multiple, ordered classes. We introduce a loss function which extends large

margin classification theory: our loss function bounds the ordinal classification error. Our

contribution is a set of experiments which show that it greatly outperforms other loss

functions used for ordinal regression. Details can be found in Section 5.2. The second

problem we address is when we have multiple users, but no information about the items.

This is known as collaborative filtering. Most approaches to this problem have utilized a

rank constraint to force the model to uncover similarities between users and items. However,
a rank constraint yields poor solutions due to local minima which are introduced. We

instead utilize a soft trace norm penalty for regularization which encourages a low-rank

solution without the creation of local minima. We contribute a new way to optimize the

trace norm which allows us to scale the framework to large collaborative filtering problems.

Experiments on two large collaborative filtering data sets validate our approach. Finally,
we show how to extend our preference learning framework in various ways. Details can be

found in Section 5.3.

9

Chapter 2

Named Entity Extraction

2.1 Introduction

We are interested in the problem of extracting information from informal, written com-

munication. The web is filled with information, but even more information is available in

the informal communications people send and receive on a day-to-day basis. We call this

communication informal because structure is not explicit and the writing is not fully gram-

matical. Web pages are highly structured-they use links, headers and tags to mark-up the

text and identify important pieces of information. Newspaper text is harder to deal with.

Gone is the computer-readable structure. But, newspaper articles have proper grammar

with correct punctuation and capitalization; part-of-speech taggers show high accuracy on

newspaper text. In informal communication, even these basic cues are noisy-grammar

rules are bent, capitalization may be ignored or used haphazardly and punctuation use is

creative. There is good reason why little work has been done on this topic: the problem

is challenging and data can be difficult to attain due to privacy issues. Yet, the volume

of informal communication that exists makes us believe that trying to chip away at the

information extraction problem is a useful endeavor.

Restaurants are one subject where informal communication is highly valuable. Much

information about restaurants can be found on the web and in newspaper articles. Zagat's

publishes restaurant guides. Restaurants are also discussed on mailing lists and bulletin

boards. When a new restaurant opens, it often takes weeks, or months before reviews are

published on the web or in the newspaper (Zagat's guides take even longer). However,
restaurant bulletin boards contain information about new restaurants almost immediately

after they open (sometimes even before they open). They are also "up" on major changes:

a temporary closure, new management, better service or a drop in food quality. This

information is difficult to find elsewhere.

Here, we address the first step in extracting information about restaurants (or other

entities) from informal communication. Before we can identify and extract facts about

restaurants, we must first be able to identify and resolve restaurant names. In this chapter,
we address the problem of identifying restaurant names, which is a specialization of the

more general problem, "named entity extraction" (NEE).

Systems for performing named entity extraction (NEE) are commonly evaluated on

newspaper and newswire articles. As such, they typically rely heavily on capitalization

and punctuation information, as well as certain keywords, such as "Company" and "Mr.",
which are used almost exclusively for organization and people names (Bikel et al., 1999).

10

In informal communication, such information is often unavailable or noisy. Capitalization

and punctuation are inconsistent and noisy. And, there is no keyword which consistently

identifies restaurant names. So, features which are effective for extracting organization and

people names from newspaper text will have limited value in extracting (e.g.) restaurant

names from informal communication.

In this chapter, we develop a new "feature" which will aid us in identifying restaurant

names in informal communication. One aspect of names which is not typically exploited is

the fact that each name occurs rarely, but is usually mentioned multiple times when it does

occur. This fits a pattern of occurrence which is associated with topic-oriented or "infor-

mative" words. Though not all words which fit the topic-oriented occurrence pattern are

names, knowledge of whether a word fits the topic-oriented occurrence pattern increases our

certainty as to whether a word is (part of) a name. This information is especially valuable

for the case where traditional NEE features are insufficient for making the determination.

In order to utilize the occurrence distribution for a word, we develop a real-valued "score"

which quantifies the degree to which the occurrence pattern fits a topic-oriented one. This

score is then provided to the NEE system as an additional feature for each word token.

It is well known that topic-oriented/informative words have "peaked" or "heavy-tailed"

frequency distributions (Church & Gale, 1995b). Many informativeness scores have been

introduced, including Inverse Document Frequency (IDF) (Jones, 1973), Residual IDF

(Church & Gale, 1995a), x, (Bookstein & Swanson, 1974), the z-measure (Harter, 1975) and

Gain (Papineni, 2001). Only xi makes direct use of the fit of a word's frequency statistics

to a peaked/heavy-tailed distribution. However, x, does a poor job of finding informative

words. We introduce a new informativeness score that is based on the fit of a word's fre-

quency statistics to a mixture of 2 Unigram distributions. We find that it is effective at

identifying topic-centric words. We also find that it combines well with IDF. Our combined

IDF/Mixture score is highly effective at identifying informative words. In our restaurant

extraction task, only one other informativeness score, Residual IDF, is competitive. Using

Residual IDF or our combined IDF/Mixture score, our ability to identify restaurant names

is significantly better than using capitalization, punctuation and part-of-speech information

alone. In more formal or structured settings, informativeness may be of marginal use, but

here we find it to be of great value.

2.2 Informativeness Measures

Inverse document frequency (IDF) is an informativeness score that was originally introduced

by Jones (Jones, 1973). It embodies the principle that the more rare a word is, the greater

the chance it is relevant to those documents in which it appears. Specifically, the IDF score

for a word, w, is

IDF = - log (docs with w) (2.1)
(total # docs)

The IDF score has long been used to weight words for information retrieval. It has also

been used with success in text classification (Joachims, 1998; Rennie et al., 2003). Recently,
Papineni (Papineni, 2001) showed that the IDF score can be derived as the optimal clas-

sification weight for a special self-classification problem using an exponential model and a

generalized form of likelihood. In short, IDF has seen much success and has theoretical

justification. However, it is a weak identifier of informative words.

11

Since the introduction of IDF, many other informativeness scores have been introduced.

Bookstein and Swanson (Bookstein & Swanson, 1974) introduce the xi measure for a word

x'(w) = fw - dw, (2.2)

where fw is the frequency of word w and dw is the document frequency of word w (number

of documents in which w occurs). Informative words tend to exhibit "peaked" distributions

with most occurrences coming in a handful of documents. This score makes sense at the

intuitive level since, for two words with the same frequency, the one that is more concen-

trated will have the higher score. However, this score has a bias toward frequent words,
which tend to be less informative.

Harter (Harter, 1975) noted that frequency statistics of informative or "specialty" words

tend to fit poorly to a Poisson distribution. He suggested that informative words may

be identified by observing their fit to a mixture of 2 Poissons ("2-Poisson") model; he

introduced the z-measure as a criterion for identifying informative words. The z-measure,
introduced earlier by (Brookes, 1968), is a general measure between two distributions. It

computes the difference between means divided by square-root of the summed variances:

Z I - 12 (2.3)

where I1 and A2 are the means of the two distributions and o2 and o,2 are their variances.

Harter found that this measure could be used to identify informative words for keyword

indexing.
Twenty years later, Church and Gale (Church & Gale, 1995a) noted that nearly all words

have IDF scores that are larger than what one would expect according to an independence-

based model (such as the Poisson). They note that interesting or informative words tend

to have the largest deviations from what would be expected. They introduced the Residual

IDF score, which is the difference between the observed IDF and the IDF that would be

expected:

Residual IDF = IDF - IDF. (2.4)

The intuition for this measure is similar to that of Bookstein and Swanson's xi-measure.

Words that are clustered in few documents will tend to have higher Residual IDF scores.

However, whereas x, has a bias toward high-frequency words, Residual IDF has the poten-

tial to be largest for medium-frequency words. As such, it serves as a better informativeness

score. In our experiments, we find that Residual IDF is the most effective individual infor-

mativeness score.
Recently, Papineni (Papineni, 2001) showed that IDF is the "optimal weight of a word

with respect to minimization of a Kullback-Lieber distance." He notes that the weight

(IDF) is different from the importance or "gain" of a feature. He suggests that the gain

in likelihood attained by introducing a feature can be used to identify "important" or

informative words. He derives the gain for a word w as

Gain(w) = d - 1 -log), (2.5)

12

where d, is the document frequency of word w and D is the total number of documents.

Extremely rare and extremely common words have low gain. Medium-frequency words have

higher gain. A weakness of this measure is that it relies solely on document frequency-it

does not take account for "peaked-ness" of a word's frequency distribution.

These informativeness measures represent a variety of approaches to identifying informa-

tive words. Only Harter's z-measure directly makes use of how a word's frequency statistics

fit a heavy-tailed mixture distribution. Yet, our study indicates that the z-measure is a

poor identifier of informative words. In the next section, we introduce a new measure based

on a word's fit to a mixture distribution.

2.3 Mixture Models

It is a given that topic-centric words are somewhat rare. But we think that they also exhibit

two modes of operation: (1) a high frequency mode, when the document is relevant to the

word, and (2) a low (or zero) frequency mode, when the document is irrelevant. A simple

unigram model captures this behavior poorly since it places nearly all of its probability mass

close to the expected value. In contrast, a mixture of two unigrams has two modes, one

for each of the two unigram models. Thus, a word that occurs rarely in some documents

and frequently in others can be modeled accurately with a mixture of unigrams, whereas a

simple unigram would model such a word poorly. We can evaluate how well a model fits

data by looking at the likelihood after we fit parameters. The ratio of likelihoods gives us

a suitable measure for comparing the two models.

Consider the modeling of a single vocabulary word. At each position in a document,
there are only two possibilities: occurrence, and absence. The unigram model draws a word

at each position independently of all other positions, so the marginal likelihood of a single

word (under the unigram model) is a binomial:

pun~(hI(,90) = 1 19 h 1 (-)(ni -hi), (26

where hi is the number of occurrences of the word, ni is the length of the document, and 0

is the chance of occurrence. In other words, the unigram treats each word like a biased coin

where 0 is the chance of heads-a "head" represents an occurrence, and a "tail" represents

an absence. Consider the following four short "documents":

{{HHH}, {TTT}, {HHH}, {TTT}}

A unigram/binomial model fits this data extremely poorly. The maximum likelihood pa-

rameter is 9 = 0.5, which yields a likelihood of 2-12. Though each "word" occurs half the

time overall, there is a switching nature to the data-either the word occurs throughout

the document, or it never occurs. This data is better modeled by a two-step process-one

which randomly selects between two unigrams/binomials to model the document. This is

known as a mixture. The likelihood of a mixture of two binomials is:

Pmix(n, A, (1 2) = A (1 - #1) + (1- A)2(1 - 2) (2.7)

Here, the maximum likelihood parameters are A = 0.5, 01 = 1, #2 = 0 and the data

likelihood is 2-4. In effect, the mixture model makes 4 binary decisions (one per document)

13

whereas the unigram makes 12 binary decisions (one per word). The additional parameters

of the mixture allow for a improved modeling of the data. When data exhibits two distinct

modes of behavior, such as with our coin example, the mixture will yield a much higher

data likelihood than the simple unigram.

Now we are ready to introduce our new informativeness score. For each word, we find

maximum-likelihood parameters for both the unigram and mixture models. Our "Mixture

score" is then the log-odds of the two likelihoods:

Smix = log p .(. (2.8)
Puni(hin, 6)

We use a ratio because we are interested in knowing the comparative improvement of the

mixture model over the simple unigram. And, the log-odds ratio grounds the score at

zero. The mixture is strictly more expressive than the simple unigram, so the score will be

non-negative.

2.4 Expectation-Maximization

We use Expectation-Maximization (EM) to maximize the likelihood of the mixture model.

A detailed understanding of EM is not essential for appreciation of this work, so we avoid it

here. We refer the reader to Appendix A and Dempster et al. (1977) for more information.

EM uses a bound to iteratively update model parameters to increase likelihood. Since

likelihood as a function of mixture parameters is not convex, the maximum EM finds may

be local. To increase our chances of finding a global maximum, we use two starting points:

(1) one slightly offset from the unigram model, and (2) one "split" model where the first

unigram component is set to zero and the second component and the mixing parameter (A)

are set to otherwise maximize the likelihood of the data. We found that this worked well to

find global maxima-extensive random sampling never found a higher likelihood parameter

setting.
EM can be viewed as a particular optimization algorithm. Compared to general-purpose

gradient descent algorithms, such as Conjugate Gradient (see (Shewchuk, 1994) for a tu-

torial), EM tends to be slow and inefficient. It served our purpose for the experiments

presented later in this chapter, but may not be appropriate for work involving larger data

sets. Appendix B provides the necessary gradient calculations for the mixture of two bino-

mials model used in our work.

2.5 Finding Restaurants

We think that the Mixture score can serve as an effective term informativeness score. To

evaluate the correctness of our belief, we use the task of identifying restaurant names in

posts to a restaurant discussion bulletin board. We treat each thread as a document and

calculate various informativeness scores using word-thread statistics. Restaurants are often

the topic of discussion and tend to be highly informative words. The task of identifying

them serves as a good test ground for any measure that claims to rate informativeness.

We collected posts from the board and hand-labeled them. The next section details our

findings.

14

sichuan 99.62 31/52 sichuan 2.67 31/52
fish 50.59 7/73 ribs 2.52 0/13
was 48.79 0/483 villa 2.36 10/11

speed 44.69 16/19 tokyo 2.36 7/11
tacos 43.77 4/19 penang 2.17 7/9
indian 41.38 3/30 kuay 1.92 0/7

sour 40.93 0/31 br 1.92 6/7
villa 40.36 10/11 khao 1.92 4/7

tokyo 39.27 7/11 bombay 1.92 6/7
greek 38.15 0/20 strike 1.77 0/6

Table 2.1: Top Mixture Score (left) and Residual IDF (right) Tokens. Bold-face words

occurred at least once as part of a restaurant name.

2.5.1 The Restaurant Data

We used as a test-bed posts from a popular restaurant bulletin board. The maintainers of

the site moderate the board and lay out a set of ground rules for posting. The people who

post are not professional restaurant reviewers. They simply enjoy eating and discussing

what they have eaten. Information about restaurants can be found in the discussions that

ensue. Major metropolitan areas each have their own bulletin board; other boards are

grouped by region.
We collected and labeled six sets of threads of approximately 100 posts each from a

single board (615 posts total). We used Adwait Ratnaparkhi's MXPOST and MXTER-

MINATOR' software to determine sentence boundaries, tokenize the text and determine

part-of-speech. We then hand-labeled each token as being part of a restaurant name or not.

Unlike a more typical NEE annotation, we did not explicitly identify start/end tokens, so if

two restaurant names appeared in sequence without any separating punctuation or words,
the labels did not provide any distinction between the two names. Labeling of the 56,018

tokens took one person about five hours of time. 1,968 tokens were labeled as (part of) a

restaurant name. The number of restaurant tokens per set ranged from 283 to 436. We

found 5,956 unique tokens. Of those, 325 were used at least once as part of a restaurant

name. We used a separate set of data for developing and debugging our experiment code.

2.6 Informativeness Filtering

Here we explore how the various measures serve as informativeness filters. First, we consider

the density of restaurant tokens in the top-ranked words. Both Gain and IDF serve as

poor informativeness filters, at least with respect to restaurant names-only occasional

restaurant tokens are found in words ranked highest by Gain and IDF. The xi-measure

ranks some restaurant tokens highly-five of the top 10 words occur at least once as part

of a restaurant. However, these tokens appear as a part of a restaurant name somewhat

rarely. None of the top 30 xi words occur as part of restaurant names at least 50% of the

time. The z-measure serves as a reasonably good informativeness filter-three of the top 10

words occur as restaurant tokens and nine of the top 30 words occur in restaurant names

1http://www.cis.upenn.edu/~-adwait/statnip.html

15

ScoreToken Rest.Token Score Rest.

Rank Token Rest. Rank Token Rest.

1 sichuan 31/52 1 sichuan 31/52
4 speed 16/19 3 villa 10/11
8 villa 10/11 4 tokyo 7/11
9 tokyo 7/11 5 penang 7/9
21 zoe 10/11 7 br 6/7

22 penang 7/9 8 khao 4/7

23 pearl 11/13 9 bombay 6/7

26 dhaba 8/13 12 aroma 5/6

29 gourmet 23/27 14 baja 3/6

30 atasca 9/10 16 mahal 5/6

Table 2.2: Top Mixture Score (left) and Residual IDF (right) Restaurant Tokens (50%+

restaurant usage)

at least 50% of the time. Both the mixture score and Residual IDF have high densities

of restaurant tokens in their top ranks. Table 2.1 shows the top 10 words ranked by the

Mixture score and Residual IDF. For both measures, seven of the top 10 words are used

at least once as part of a restaurant name. Table 2.2 shows, for each measure, the top 10

words used a majority of the time in restaurant names. Most of the top-ranked Residual

IDF words occur a majority of the time in restaurant names. Fewer top Mixture score

words are majority used in restaurant names, but those that are occur more often than the

top Residual IDF words. Top-ranked words give only a partial view of the effectiveness of

an informativeness filter. Next, we look at average and median scores and ranks across our

entire corpus.

Score Avg. Rank Med. Rank

Mixture 505 202
z 526 300

XI 563 326
RIDF 858 636
Gain 2461 1527

Baseline 2978 2978
IDF 4562 5014

Table 2.3: Average and Median Restaurant Token Ranks (lower is better)

So far, we have considered the upper-tail of informativeness scores; we have done our

counting over unique words, thus overweighting rare ones. Here, we compile statistics

across the full set of data and count each restaurant token occurrence separately. For each

informativeness score, we compute the score for each unique word and rank the words

according to score. Then, for each of the 1,968 tokens labeled as (part of) a restaurant

name, we determine the token's rank. We compute both the average and median ranks of

the restaurant tokens. Table 2.3 gives the average and median ranks of restaurant words for

the various informativeness scores. The Mixture score gives the best average and median

rank. The z-measure and xi-measure give slightly worse rankings. Residual IDF and Gain

16

are better than the baseline2 , while IDF yields worse rankings than the baseline. The

average and median rank give us a good feel for how well a score works as a filter, but not

necessarily as a feature in a natural language system. Next, we discuss an evaluation that

may better reflect performance on a real task.

Score Avg. Score Med. Score

RIDF 3.21 2.72
IDF 1.92 3.90

Mixture 2.49 2.89
z 1.10 1.09

Gain 1.00 1.22
Baseline 1.00 1.00

XI 0.33 0.00

Table 2.4: Average and Median Relative Scores of Restaurant Tokens

Now we consider the average and median score of restaurant tokens. For each of the

1,968 tokens labeled as (part of) a restaurant name, we compute the informativeness score.

We then take an average or median of those scores. We divide by the average or median

score across all 56,018 tokens to attain a "relative" score. We do this so that absolute

magnitude of the informativeness score is irrelevant; i.e. multiplication by a constant has

no effect. Table 2.4 shows average and median relative scores for restaurant tokens. Of

note is the fact that informativeness scores that produce good average/median ranks do not

necessarily produce good average/median scores (e.g. z and xI). Residual IDF gives the

best average relative score; IDF gives the best median relative score. The Mixture score

gives the second-best average relative score and second-best median relative score.

Only IDF, Residual IDF (RIDF) and the Mixture score appear to provide unique value

for identifying informative words. The other scores, the z-measure, the xi measure and

Gain do not appear to provide value beyond what we can achieve with IDF, RIDF and

Mixture. xi and the z-measure share similarities to the Mixture score, but appear strictly

less effective. Gain seems severely handicapped by the fact that it only uses document

frequency information. For the remainder of this work, we focus on the three scores that

show some uniqueness in their ability to identify informative words: IDF, Residual IDF and

the Mixture score.

2.6.1 Are Mixture and IDF Independent?

To this point, both Residual IDF and the Mixture Score appear to be excellent informa-

tiveness scores. Both have a high density of restaurant tokens in their highest ranks; for

both measures, average/median ranks/scores are much better than baseline. IDF, however,

ranks restaurant words poorly, but yields the best median relative score. Since IDF seems

so different from the other two scores, we postulate that it might work well in combination.

We look at how well correlated the scores are. If two scores are highly correlated,

there is little use in combining them-their combination will be similar to either score

individually. However, if two scores are uncorrelated, then they are measuring different

2Baseline average and median rank are what would be expected from a score that assigns values randomly.

Note that there are 5,956 unique words; 2,978 is half that number.

17

50 x

040 x
0 X

C/) X M
30 x X

xX X

20 X X

x X
10 1 x x

_0 2 3 4

2.5

2

1.5 -

0.5 x x

1 1 2 3 4

50

040*
0x x

20 x
~30 X X

CX20 x X xx

0 . 1 .5 2 .

IDF IDF Residual IDF

Figure 2-1: Scatter plots comparing pairs of the IDF, Residual IDF and Mixture scores.

Only words that appear at least once within a restaurant name are plotted. RIDF/Mixture

shows a high degree of correlation. IDF/RIDF shows some correlation. IDF/Mixture shows

relatively little correlation.

sorts of information and may produce a score in combination that is better at identifying

informative words than either score individually.

First, we consider a very simple test on our restaurant data set: how much overlap is

there in highly-rated restaurant words? For each of the scores, we choose a threshold that

splits the restaurant words (approximately) in half. We then count the number of restaurant

words that score above both thresholds. For scores that are independent of each other, we

would expect the joint count to be about half of the individual count. Table 2.5 gives the

individual and joint statistics. The Mixture/RIDF and IDF/RIDF combinations both show

a substantial degree of dependence. This is not the case for Mixture/IDF. If the Mixture

and IDF scores were independent, we would expect a joint count of 176 * 170/325 = 92,
almost exactly the joint count that we do observe, 93. This gives us reason to believe that

the Mixture and IDF scores may be uncorrelated and may work well in combination.

Condition Restaurant

Mixture > 4.0 176/325
IDF > 4.0 170/325
RIDF > 0.5 174/325
Mix > 4.0 and IDF > 4.0 93/325
Mix > 4.0 and RIDF > 0.5 140/325
IDF > 4.0 and RIDF > 0.5 123/325

Table 2.5: Number of restaurant tokens above score thresholds.

Our test provides evidence that the IDF and Mixture scores are independent, but it does

not exclude the possibility that there are pockets of high correlation. Next, we consider

more traditional measures. Figure 2-1 shows scatter plots of the pairs of scores. Residual

IDF (RIDF) and Mixture show a high degree of correlation-knowledge of RIDF is very

useful for attempting to predict Mixture score and vice versa. IDF and RIDF show corre-

lation, at least partially reflecting the fact that IDF bounds RIDF. IDF and Mixture show

little relation-there is no clear trend in the Mixture score as a function of IDF. These ob-

servations are reflected in correlation coefficients calculated on the data, shown in Table 2.6.

IDF and Mixture are practically uncorrelated, while the other score pairs show substantial

correlation.
That the IDF and the Mixture scores would work well together makes sense intuitively.

18

Score Names I Correlation Coefficient

IDF/Mixture
IDF/RIDF

RIDF/Mixture

-0.0139
0.4113
0.7380

Table 2.6: Correlation coefficients for pairs of the IDF, Residual IDF and Mixture scores

on restaurant words. IDF and Mixture are effectively uncorrelated in the way they score

restaurant words.

Token
sichuan

villa
tokyo

ribs
speed
penang
tacos
taco
zoe

festival

Score
376.97
197.08
191.72
181.57
156.25
156.23
153.05
138.38
134.23
127.39

Restaurant
31/52
10/11
7/11
0/13
16/19

7/9
4/19
1/15

10/11
0/14

Table 2.7: Top IDF*Mixture Score Tokens

They capture very different aspects of the way in which we would expect an informative

word to behave. IDF captures rareness; the Mixture score captures a multi-modal or topic-

centric nature. These are both aspects that partially identify informative words. Next we

investigate whether a combination score is effective for identifying informative words.

2.6.2 Combining Mixture and IDF

We use the relaxation of conjunction, a simple product, to combine IDF and Mixture.

We denote this by "IDF*Mixture." Table 2.7 shows the top 10 tokens according to the

IDF*Mixture score. Eight of the top 10 are used as restaurant names. Worth noting is

Rank
1
2
3
5
6
9

12
16
19
21
23

Token

sichuan
villa

tokyo
speed

penang
zoe

denise
pearl
khao

atasca
bombay

Restaurant
31/52
10/11
7/11

16/19
7/9

10/11
5/8

11/13
4/7
9/10
6/7

Table 2.8: Top IDF*Mixture Score Restaurant Tokens (50%+ restaurant usage)

19

, ,

that the other two words ("ribs" and "festival") were topics of discussions on the restaurant

bulletin board. Table 2.8 gives the ranks of the top 10 tokens that were used regularly in

restaurant names. Compared to the Mixture score, restaurant tokens more densely populate

the upper ranks. Ten of the top 23 tokens are regularly used as restaurant names. The trend

continues. 100 of the top 849 IDF*Mixture tokens are regularly used in restaurant names,
while 100 of the top 945 Mixture tokens are regularly used in restaurant names. However,
Mixture catches up and and surpasses IDF*Mixture (in terms of restaurant density) as we

continue down the list. This explains why Mixture has better average and median ranks

(next paragraph).

Score Avg. Rank Med. Rank

Mixture 507 202
IDF*Mixture 682 500

RIDF 858 636
IDF 4562 5014

Table 2.9: Average and Median Restaurant Token Ranks

Score Avg. Score Med. Score

IDF*Mixture 7.20 17.15
RIDF 2 7.54 7.40

Mixture2 4.61 8.35
IDF 2 2.31 15.19

Table 2.10: Average and Median Relative Scores of Restaurant Tokens. Note that a super-

script indicates that the score is raised to the given power.

Here we give rank and relative score averages for IDF*Mixture. Table 2.9 gives the

average and median ranks like before. Mixture still leads, but IDF*Mixture is not far

behind. Table 2.10 gives the average and median relative scores. The relative score is

affected by scale, so we compare against squared versions of IDF, Mixture and Residual

IDF. IDF*Mixture achieves the best median and is a close second for average relative score.

IDF*Mixture appears to be a better informativeness score than either IDF or the Mixture

score and very competitive with Residual IDF. In the next section, we describe the set-up

for a "real" test: a named entity (restaurant name) extraction task.

2.7 Named Entity Detection

So far, we have focused on filtering. In this section, we consider on the task of detecting

restaurant names. We use the informativeness scores as features in our classifier and report

on how accurately restaurants are labeled on test data.

2.7.1 Performance Measures

The F-measure (van Rijsbergen, 1979), is commonly used to measure performance in prob-

lems where negative examples outnumber positive examples. See Table 2.11 for notation.

We use the Fl-measure ("Fl"), which equally weights precision, p = , and recall,

20

classification

+1 -1
true +1 tp fn
label -1 fp tn

Table 2.11: The contingency table for the binary classification problem. 'tp', 'fn', 'fp', and

'tn' are the numbers of true positives, false positives, false negatives and true negatives,
respectively.

tp+fn

2pr
F1(p, r) = pr (2.9)

P + r

F1 varies as we move our classification threshold along the real number line. To eliminate

any effects of selecting a particular threshold, we report the maximum F1 score attained

over all threshold values. We call this "F1 breakeven" in reference to a similarity it shares

with precision-recall (PR) breakeven (Joachims, 1997); the F1 breakeven tends to occur

when precision and recall are nearly equal.

We avoid the use of PR breakeven because it is somewhat ill-defined-there may not be

any setting for which precision and recall are equal. When the classifier cannot differentiate

within a set of examples, it may not be possible to make changes in precision and recall

sufficiently small to find a breakeven point. This is not generally an issue in Joachims'

domain, text categorization, unless the documents are extremely short. Hence, Joachims

simply uses a null value for PR breakeven when a breakeven point cannot be found. Our

case is a bit different. We are categorizing individual word tokens. Though we use a number

of different features to differentiate the tokens, many tokens have identical feature vectors,
which makes it impossible for the classifier to differentiate between them. Thus, it seemed

clear that some "hack" would be necessary for us to utilize PR breakeven for evaluation.

Instead, we chose to use a metric (F1 breakeven) which is better "behaved".

2.7.2 Significance

Given two classifiers evaluated on the same test sets, we can determine whether one is better

than the other using paired differences. We use the Wilcoxon signed rank test (Wilcoxon,
1945); it imposes a minimal assumption-that the difference distribution is symmetric about

zero. The Wilcoxon test uses ranks of differences to yield finer-grained distinctions than

a simple sign test. We apply the Wilcoxon test by comparing the F1 breakeven of two

different classifiers on pairs of random splits of the data.

We use the one-sided upper-tail test, which compares the zero-mean null hypothesis,
Ho : 0 = 0, against the hypothesis that the mean is greater than zero, H1 : 0 > 0. We

compute a statistic based on difference ranks. Let zi be the ith difference-the F1 breakeven

difference on the ith random split of the data. Let ri be the rank of Izi I. Let 'i be a an

indicator for zi:

1, if zi >0 '.
0, if Zi < 0. (2.10)

21

The Wilcoxon signed rank statistic is:

n

T+= zii. (2.11)
i=1

Upper-tail probabilities for the null hypothesis are calculated for each possible value3 . We

reject HO (and accept H 1) if the probability mass is sufficiently small. We use a = 0.05

as the threshold below which we declare a result to be significant. Table 2.12 gives the

upper-tail probabilities for a subset of the possible values of T+. Values of 19 and higher

are significant at the a = 0.05 level.

x Po(T+ > x)
17 .109
18 .078
19 .047
20 .031
21 .016

Table 2.12: Upper-tail probabilities for the null hypothesis.

2.7.3 Experimental Set-Up

We used 6-fold cross-validation for evaluation: for each of the six sets, we used the other

five sets as training data for our classifier 4 . No data from the "test" set was ever used to

select parameters for the corresponding classifier. However, since the test set for one fold

is used in the training set for another, we note that our significance calculations may be

overconfident.
For classification, we used a regularized least squares classifier (RLSC) (Rifkin, 2002) and

used a base set of features like those used in (Bikel et al., 1999). Current, next and previous

parts-of-speech (POS) were used, along with current-next POS pairs and previous-next POS

pairs. We included features on the current, previous and next tokens indicating various

types of location, capitalization, punctuation and character classes (firstWord, lastWord,
initCap, allCaps, capPeriod, lowerCase, noAlpha and alphaNumeric). Unlike HMMs, CRFs

or MMM networks, RLSC labels tokens independently (like an SVM does). We believe that

using a better classifier would improve overall classification scores, but would not change

relative performance ranking.

2.7.4 Experimental Results

Table 2.13 gives the averaged performance measures for six different experimental settings:

" Baseline: base features only

* IDF: base features, IDF score

* Mixture: base features, Mixture score

3Values are from Table A.4 of Hollander and Wolfe (1999).
4To select a regularization parameter, we trained on four of the five "training" sets, evaluated on the fifth

and selected the parameter that gave the best F1 breakeven.

22

F1 brkevn

Baseline 55.04%
IDF 55.95%

Mixture 55.95%
RIDF 57.43%

IDF*RIDF 58.50%
IDF*Mixture 59.30%

Table 2.13: Named Entity Extraction Performance

Base. IDF Mix RIDF IDF*RIDF
IDF 20 - - - -

Mixture 18 15 - - -

RIDF 20 19 19 - -

IDF*RIDF 20 18 18 16 -
IDF*Mixture 21 21 21 21 15

Table 2.14: T+ Statistic for F1 Breakeven. Each entry that is 19 or higher means that the

score to the left is significantly better than the score above. For example, IDF*Mixture is

significantly better than RIDF.

" RIDF: base features, Residual IDF

* IDF*RIDF: base features, IDF, RIDF, IDF2 , RIDF 2 , IDF*RIDF

* IDF*Mixture: base features, IDF, Mixture, IDF 2 ,

Mixture2 , IDF*Mixture

These numbers are lower than what is typically seen for named entity extraction for a

number of reasons. The primary reason may be the specific task: extracting restaurant

names. Restaurant names vary widely. Unlike company and person names, there are no

commonly used prefixes (e.g. "Mr.") or suffixes ("Inc.") which easily identify restaurant

names. Another reason for the low scores may be the domain-as we have already noted,
capitalization and punctuation features are noisy in informal communication and so are not

as reliable for identifying names. Finally, named entity extraction systems typically use

word tokens as features and predict labels jointly; we do not use word tokens as features

and use a classifier which predicts the label for each word token independently of other

labels. All of these distinctions may contribute to the atypical error rates.

Table 2.14 gives the Wilcoxon signed rank statistic for pairs of experimental settings.

IDF and the Mixture score both yield small improvements over baseline. The improve-

ment for IDF is significant. Residual IDF serves as the best individual informativeness

score, yielding a significant, 2.39 percentage-point improvement over baseline and signifi-

cant improvements over both IDF and Mixture. The IDF*Mixture score yields further im-

provement, 4.26 percentage-points better than baseline and significantly better than IDF,
Mixture and Residual IDF. For completeness, we compare against the IDF*RIDF score

(the product of IDF and Residual IDF scores). IDF*Mixture yields the larger average F1

breakeven, but we cannot say that the difference is significant.

These results indicate that the IDF*Mixture product score is an effective informativeness

criterion; it is better than Residual IDF and competitive with the IDF*RIDF product score.

23

The IDF*Mixture product score substantially improves our ability to identify restaurant

names in our data.

2.8 Summary

We introduced a new informativeness measure, the Mixture score, and compared it against

a number of other informativeness criteria. We conducted a study on identifying restaurant

names from posts to a restaurant discussion board. We found the Mixture score to be

an effective restaurant word filter. Residual IDF was the only other measure found to

be competitive. We found that the Mixture score and IDF identify independent aspects of

informativeness. We took the relaxed conjunction (product) of the two scores, IDF*Mixture,
and found it to be a more effective filter than either score individually. We conducted

experiments on extracting named entities (restaurant names). Residual IDF performed

better than either IDF or Mixture individually, but IDF*Mixture out-performed Residual

IDF.

24

Chapter 3

Co-reference Resolution

In the previous chapter, we discussed the task of extracting named entities from informal

communication. We argued that traditional approaches for named entity extraction (NEE),
which have been highly effective on newspaper text, are insufficient for NEE on the noisy,

and (at times) ungrammatical text found in informal communication. We proposed a new

measure for identifying informative words, which, when paired with traditional NEE tech-

niques, improved extraction performance. In this chapter, we explore an essential next step

in the information extraction process. Once named entities have been identified, we must

resolve mentions of the entity. Many different names may be used to refer to the same

entity-abbreviations, shortened forms and context-sensitive descriptions, as well as pro-

nouns. To properly extract and organize the information contained in text, we must resolve

all of these mentions. This task of resolving named entity mentions is known as co-reference

resolution.
Co-reference resolution (CRR) is essentially a clustering problem. The goal is to group

together noun phrase mentions which refer to the same entity. However, it is not like

clustering documents or images. In a typical clustering problem, a distance measure between

objects is given or assumed and the relation between objects is symmetric. Many clustering

algorithms take a symmetric distance or similarity matrix as input and do not consider any

special structure in the data. However, in co-reference resolution there is not symmetry

amongst the mentions. In the case of pronouns and other non-proper noun phrases, the

mention is not linked to all co-referent mentions, but rather has a specific antecedent. That

is, for such mentions, chain or tree structure links the mention to its entity. Sentence

structure, locality and context tend to play a large role in determining linkage. Any CRR

algorithm must balance this structure against that of proper noun phrases, which tend to

have the symmetric structure usually assumed with clustering algorithms.

Others have addressed these issues, but not to our satisfaction. In particular, it seems

that no one has developed a framework for co-reference resolution based on what we see as

the hybrid nature of the task. Named entity mentions can be divided into two categories:

(1) proper nouns, and (2) non-proper nouns. The proper nouns tend to have a symmetric

relationship and fit into the traditional clustering scenario quite well. For proper nouns, the

content of the string is usually more important than the locality of the mention. In contrast,
non-proper nouns (including pronouns) are strongly dependent on context and location for

resolution and tend to point to a specific prior mention, its "antecedent." We think this

hybrid nature requires a framework that treats proper and non-proper nouns differently.

The algorithm proposed by McCallum and Wellner (2005) comes close to meeting our

25

requirements. They learn a similarity measure between mentions, but do not recognize

the hybrid nature of the clustering task. Their algorithm performs exceptionally well on

proper nouns. But, we feel there is still room for improvement on the overall task. Our

contributions in this chapter are (1) an explanation of the hybrid nature of CRR, (2) a new

classification-based CRR algorithm which finds an antecedent for each NP mention, and

(3) a hybrid CRR algorithm which combines our "antecedent" model with McCallum and

Wellner's Model 3 to yield a "hybrid" CRR algorithm which we feel provides the proper

balance of viewpoints for the co-reference resolution task.

3.1 Motivation: Why Co-Reference Resolution?

Consider the task of collecting information about entities. For example, we might want to

collect opinions on movies, or names of recently opened restaurants. Now, imagine an oracle

which can identify short text excerpts which provide the desired information (e.g. "I loved

it!" "I ate there yesterday, the day they opened."). But, these excerpts are only informative

in the context of the rest of the document. Mentions of entities in which we have an interest

may not be specific and may need to be resolved. How an entity is mentioned in text can

vary widely. Usually its full name is mentioned at least once. This "full name" mention

serves as a connection to the actual entity. But, later mentions may use an abbreviated

form, a contextual description or even a pronoun to refer to the entity. When a person reads

a document with multiple mentions of an entity, (s)he must link together the mentions using

the structure and context of the document. This task of joining mentions that refer to the

same entity is known as co-reference resolution. Without it, our access to information is

limited, even in the idealistic case described above. Some form of co-reference resolution is

necessary whenever the full name of the entity is not used.

3.2 Views of Co-reference Resolution

There are two main views of the co-reference resolution problem. The first view treats

CRR as a problem of finding the antecedent for each noun phrase (NP) mention. This view

assumes that there is an initial "root" mention, followed by successive mentions, each of

which refer to a specific, earlier mention. The referent is known as the "antecedent;" the

referring mention is known as the "anaphor." Considering each mention as a node in a

graph, the anaphor-antecedent relations for a text, represented as directed edges, form a

forest, where each tree corresponds to a single entity. There is one "root" mention/node for

each tree, corresponding to the first mention of the entity. This is the only node of a tree

without an outward edge; other mentions/nodes have a single outward edge, each pointing

to its antecedent. The inference problem is a certain type of classification problem: for

each mention except for the first, identify the mention to which it refers. Aone and Bennett

(1995) trained a decision tree to perform binary classification where each positive example

was an anaphor-antecedent pair. Various features were defined and extracted to help the

decision tree identify co-referent pairs. In labeling new data, the antecedent was determined

to be the one in which the decision tree had the highest confidence. Soon et al. (2001) and

Ng and Cardie (2002) used similar set ups, also using antecedent-anaphor pairs for training

and binary decision trees for learning. But, no matter details of the implementation, this

"classification" approach is handicapped by the fact that it makes local decisions, and thus

cannot deal with certain important situations. McCallum and Wellner (2005) provide an

26

apt example. Consider the reference chain ("Mr. Powell" -+ "Powell" -+ "she"). Locally,
it looks reasonable. But, it clearly can't be correct due to the gender mismatch.

The second view of co-reference resolution is as a clustering problem. Each noun phrase

mention is a data item and the goal is to cluster together mentions that refer to the same

entity. As with the classification approach, a feature vector is created/extracted for each

mention pair. But, unlike the classification approach, a distance measure is established

based on the feature vector and a global clustering measure is optimized to determine

how mentions should be grouped. Cardie and Wagstaff (1999) hand-crafted a distance

measure and used a simple, iterative clustering algorithm to group mentions. McCallum

and Wellner (2005) took the approach further-they used labeled training data to learn a

distance measure and performed clustering by optimizing an objective on the cluster labels.

Thus, their procedure was completely automated and could adapt to different languages

or writing styles. Experiments conducted by McCallum and Wellner indicated excellent

performance for proper noun resolution and performance that compared well to state-of-

the-art for the overall resolution task.

In this work, we propose a hybrid model of co-reference resolution which applies the

clustering framework to the problem of resolving proper noun mentions, and applies the

classification framework to the problem of resolving non-proper noun mentions. This hybrid

model utilizes Model 3, as well as a classification-based antecedent model which we have

developed. Next, we provide a detailed introduction to CRR and representations of reference

that we will use for discussion of the models.

3.3 The Co-Reference Resolution Problem

Given a text document, we assume that a natural language parser (or similar program) can

identify the noun phrases (NPs) and tell us whether each is a proper or non-proper NP.

We use a vector, x, to designate the set of NPs in a text. To establish a complete ordering

on NPs, we first order them according to their starting position in text, then according to

their location in a parse tree. Thus, an "outer" NP will always come before an "inner" NP

in our ordering. We use xi to designate the ith NP in the the text.

An entity is a person, place, company, institution, etc. Anything that can be named can

be an entity. Each noun phrase serves as a reference to an entity. In some cases (almost

exclusively when the NP is proper), the reference is direct-no other information from the

text is needed to identify the entity. In other cases, the reference is indirect-document

context and other NPs are necessary to determine the ultimate reference. The primary

computational task in resolving each NP mention to its corresponding entity is that of

grouping or clustering together co-referent mentions. The final step of linking each cluster

to its corresponding entity is often unnecessary, as the set of proper NP mentions of an

entity is usually sufficient identification for computational purposes.

There are two ways of representing co-referring NPs, each of which will be used in our

later discussion. The first takes a clustering viewpoint, simply assigning an identifier to

each mention corresponding to the entity to which it refers. In this case, we use an integer-

valued vector to represent references over a set of mentions, y E {1, . . . , n}n. Since we do

not deal with the entities themselves, the integer values in this representation are arbitrary;

customarily, we use the index of the first mention as the cluster identifier. This information

can be equivalently represented as the upper-triangular portion of a binary-valued matrix,

Y E {0, 1 }flX". Here, entry i, j is "on" (Yij = 1) iff xi and xj are co-referent. Note that not

27

all values are allowable. If mentions xi and xj are co-referent (Yij = 1), and mentions xj and

Xk are co-referent (Yk) are co-referent, then mentions xi and Xk must also be co-referent

(Yk = 1). I.e. three indicator variables forming a ring or triangle cannot sum to 2, i.e.

Yij + Yk + Yk 5 2. This representation will be used in the discussion of Model 3 (§ 3.4).

The second representation assumes that each mention either directly refers to the entity

or refers to it indirectly, via a chain of mentions. In the case of an indirect reference, the

mention is assumed to refer to an earlier mention in the text, known as its antecedent.

A mention that refers directly to the entity will be said to have a "null" antecedent. As

with the clustering representation, the antecedent information can be represented as the

upper-triangular portion of a binary matrix. However, the constraints on, and the meaning

of the entries is different. Entry i, j (i < j) is "on" (Yij = 1) if the antecedent for xj is xi.

Each mention has at most one antecedent, so each column-sum of the matrix is bounded

by unity. I.e. Zi 3 Yij < 1. This representation will be used for the discussion of the

antecedent model (§ 3.5).

3.4 Model 3

Here we give an introduction to McCallum and Wellner's model for co-reference resolution,
"Model 3."

Let x = {xi,... ,x4 denote a set of mentions. Let yij E {o,1}, 1 < i < j m,

be indicator variables: yij = 1 iff xi and xj refer to the same entity, yij = 0 otherwise.

The indicator variables are not independent; if yij = Yjk = 1 (i < j < k), then we must

have Yik = 1. In other words, the sum of indicator values in a triangle cannot be two:

Yij + Yjk + Yik 0 2. McCallum and Wellner define a likelihood distribution over the indicator

variables,

P(ylx; A) - Z)exp AlfI(xi, rXYi 3)) (3.1)

where the fl, I E {1, ... ,m}, are feature functions defined on mention pairs and indicator

values, A, is the weight associated with feature function fi, and variable settings where

Yij + Yjk + Yik = 2 are not allowed. The partition function is a sum over feasible values of

the indicator variables,

Z(x, A) = exp Ajfj(xj, jyy) . (3.2)

YIYj+Yjk+Yik# 2 (Z~I~ xix~Yi)

Given labeled training data (x and y), we learn weights {A1} by maximizing the like-

lihood, (3.1). Often, likelihood is maximized via EM or gradient ascent. However, in this

case, the normalization constant requires a sum over exponentially many terms, so such

traditional algorithms are not practical. Instead, McCallum and Wellner use perceptron

updates as described by Collins (2002) in order to maximize likelihood.

Given fixed weights (A) and a set of mentions (x), we learn indicator values (and hence,

a clustering of the mentions) again by maximizing the likelihood, (3.1). In this case, the

partition function, Z(x, A), is constant, so we can ignore it for optimization. What remains

is a classic multi-way min-cut/max-flow problem, or equivalently, a classic maximum intra-

28

cluster similarity clustering objective. We discuss this equivalence in detail in the following

subsections.

3.4.1 Minimum Cut Equivalence

Likelihood maximization for Model 3 is equivalent to a generalization of the "minimum

cut" problem. Given a graph with edge weights and two special nodes, one identified as the

"source" and one as the "sink," the minimum cut is the set of edges with smallest summed

weight such that any path from source to sink must pass through one of the selected edges.

In the inference problem for Model 3, there are no "special" nodes. Rather, the goal is to

find the set of edges (the "cut") with minimum summed edge weight which separate the

nodes into "clusters." As suggested by its name, if two nodes are separated by an edge in

the cut, then any path between the nodes must include at least one edge in the cut. Next,
we give the mathematical details for the minimum cut interpretation of Model 3.

If the "cut" is empty, then the log-likelihood of the model is

log P(C = 01x) = E Akfk(Xi, xj, 1) - log Z(x, A). (3.3)
i,j,k

where C is the set of edges in the "cut." If C is not empty, we get

log P(Cx) = Afk(xi,xj,1) + E Ak[fk(i,xj,O) -fk(xi,xj,1)] -logZ(x,A).
i,j,k (ij)EC k

(3.4)

The maximum likelihood objective maximizes this second quantity. However, we can sub-

tract the empty cut likelihood (3.3) without harm since it is constant. Thus,

argmaxlogP(Clx) = argmax E YAk[fk(i,xi,O) - fk(XXi,,1)], (3.5)
C

(ij)EC k

In other words, maximum likelihood is equivalent to finding the minimum cut on the

graph with edge weights Wi = EZk Ak [fk(xi, x, 1) - fA(Xi, x, 0)].

3.4.2 Maximum Inter-Cluster Similarity Equivalence

Similarly, we can show that maximum likelihood is equivalent to maximizing inter-cluster

similarity on the graph with particular edge weights. Let E be the set of edges connecting
objects within the same cluster; i.e. two objects are in the same cluster if and only if the

edge between them, e, is in E. If E is empty, then the log-likelihood of the model is

log P(E = 01x) = A kfk(Xi, Xj, 0) - log Z(x, A). (3.6)
i,j,k

If E is not empty, we get

log P(Elx) = 5Akfk(xiXJ,O) + 5 5 fk(i, xj, 1) - fk(XiXi, 0)] - log Z(x, A).
i,j,k (ij)EE k

(3.7)

29

The maximum likelihood objective maximizes this second quantity. However, we can sub-

tract the empty set likelihood (3.6) without harm since it is constant. Thus,

argmaxlogP(Elx) = argmax E ZAk[fk(xiixj,1) -fk(xixi,0)]. (3.8)
EE

(ij)EE k

In other words, maximum likelihood is equivalent to maximum inter-cluster similarity on

the graph with edge weights Wij = Ek Ak [fk(xi, xj, 1) - fk(Xi, xi, 0)] , the same weights as

those found for the Minimum Cut Equivalence.

3.5 An Antecedent Model of Co-Reference Resolution

Here we introduce a conditional model for co-reference resolution that embodies the classi-

fication viewpoint used by Aone and Bennett (1995), Soon et al. (2001) and Ng and Cardie

(2002). We assume that each noun phrase mention has at most one antecedent. Either

that antecedent is a mention that occurs earlier in the text, or there is no antecedent-an

antecedent cannot come after the mention and a mention cannot be its own antecedent.

Consider a graph where the nodes are the mentions of a text and two nodes have an edge

between them if one is the antecedent of the other. Then, two mentions are "co-referent"

if their corresponding nodes are connected, i.e. if they are linked via a series of antecedent

relations. This is known as an "antecedent" viewpoint because inference involves identifying

the antecedent for each mention; it is known as a "classification" viewpoint because, for the

nth mention, inference involves selecting between one of n possibilities.

One of our goals here is to construct an antecedent-based model which is compatible

with McCallum and Wellner's Model 3. Though our antecedent model can be used alone,
we see it's most valuable application as part of a hybrid model involving Model 3. We

discuss this in more detail in § 3.6.
Our antecedent model is essentially a product of softmaxi models. It can also be seen as

modification of Model 3. Model 3 uses binary indicator variables, yij E {0, 1}, to represent

whether two mentions refer to the same entity. For our antecedent model, we use the binary

indicator variables to represent antecedent relationships. A positive value value (yij = 1,

i < j) means that xi is the antecedent of xj; i.e. mention xj refers to mention xi. Two

mentions refer to the same entity if an antecedent chain connects them. Each mention has

at most one antecedent, so we require Zi<,yij < 1. Thus, if the {yij} are viewed as edges

on a graph, two mentions refer to the same entity iff there is a path of edges connecting

their corresponding nodes.
Recall the distribution over label indicator variables that McCallum and Wellner define,

P(ylx;A) ocexp (Z Alfl(xixjYij)). (3.9)

Ignoring the variable constraints that McCallum and Wellner impose, this is simply a prod-

uct of Logistic Regression models, one per mention pair. Let A be the column vector of

weights; let g(xi, xj) be the column vector of feature differences for mention pair (xi, xj),

'Softmax is the generalization of Logistic Regression to multiple categories.

30

gj(xi, xj) = f1 (xi, xj, 1) - fh(xi, x3 , 0). Then, we can rewrite the model as

P(yJx; A) = exp(yig(xixj)) (3.10)
.1 + exp(ATg(xi, x)

Note that the yij in the numerator simply selects between two unnormalized probability

values (1 for yij = 0, and exp(AT g(x,, Xj)) for yij = 1). In our antecedent model, each

yij = 1 setting corresponds to an antecedent relation. Each mention may have at most

one antecedent relation, so the normalization of our model must reflect this. The indicator

variables for each mention, {yi,J, Y2,j,... , yj-1,j} are tied, so the model must normalize

each such group of variables jointly. Note that the unnormalized probability of an indicator

variable being "off" (yi3 = 0) is unity, so to calculate the unnormalized probability of an

event, we need only account for variables that are "on" (yij = 1). Thus, the unnormalized

probability of xj having no antecedent is unity. The unnormalized probability of xj having

xi (i < j) as its antecedent is exp(ATg(X,, xj)). The joint antecedent model is

P(ylx; A) = R I exp(yi.ATg(X, (3.11)
1+ Ei < exp(ATg(Xi Xj)1

This can be viewed as a product of classification models, one per NP mention. Each

individual classification model is a generalization of logistic regression to multiple classes

(softmax), where each preceding mention acts as a "class." We include a special "null"

mention to indicate the case that an NP is the first mention of an entity.

Like Model 3, learning and inference for the antecedent model are performed via max-

imum likelihood, (3.11). Also like Model 3, inference for the antecedent model is efficient.

However, whereas exact parameter learning for Model 3 scales exponentially and involves a

non-convex objective, parameter learning for the antecedent model is efficient and involves

a convex objective. In the next two sub-sections, we provide the details of learning and

inference for the antecedent model.

3.5.1 Learning

In our antecedent model, the set of weights that establishes the similarity function between

mentions must be learned. We proceed by finding the setting of the weights that maximizes

the conditional likelihood of the indicator variables given the mentions, (3.11). We minimize

the negative log-likelihood, a convex quantity, as it provides a simpler form for optimization.

The gradient with respect to the weight vector is

a(- log P) Ei <j g(xi, xj) exp(Ag(xi, x))(
9A 1 + E><, exp(ATg(xi, x3)) . j

which is expected feature count minus empirical feature count, the typical gradient form of

exponential family models. The normalization constant for the antecedent model is efficient

(quadratic in the number of mentions) to compute. So, learning can be performed using

traditional optimization techniques, such as the method of Conjugate Gradients (Shewchuk,
1994).

31

Limited Training Data

The above discussion assumes that we are given antecedent information in our training data.

While it is common for a specific antecedent to be identified for each mention in training

data, it is also reasonable for each mention to simply be assigned an identifier corresponding

to the entity to which it refers. In this case, antecedent relations must be inferred in order

to learn the weight vector for our model. We do this by altering our objective. Instead of

maximizing the chance that our model selects the right antecedent, we maximize the chance

that each mention's path of antecedent links terminates at the correct "root" mention.

As noted earlier, in the antecedent representation of co-reference, there is a distinct root

mention for each entity. The root mention is always the first mention of that entity. Given

a cluster label for each mention, we can trivially identify the root for each mention. Then,
the probability that a mention's antecedent chain ends at its root can be easily defined in

terms of antecedent probabilities. Let R(i, j) be the probability that the root for mention

xj is xi (i < j). Then,

R(i, j) = P(y.j = 01x; A)Ji=j + E P(yk = 1ix; A)R(i, k). (3.13)
i<k<j

Let r(j) be the index of the root for the cluster with which mention j is associated. Then,
the likelihood that we maximize when antecedent information is not given is

P(yx; A) = J7R(r(j), j). (3.14)

As with the earlier objective, this can be optimized efficiently using traditional optimization

techniques. However, due to the fact that we are solving a hidden-variable problem, the

objective cannot be written as a convex program.

3.5.2 Inference

Given a learned weight vector and mentions in a document, we infer antecedents which

maximize the conditional likelihood, (3.11). Due to the structure of the likelihood, we can

treat the inference problem for each mention as a separate, local problem. We simply select

the antecedent which yields the largest (unnormalized) likelihood. Note that the "null"

antecedent (which has an unnormalized likelihood of unity) is one of the possibilities.

3.6 Hybrid Model

3.6.1 Motivation

Our antecedent model groups together mentions which either (1) have an antecedent rela-

tionship (i.e. one mention is a clear reference to the other), or (2) are linked via antecedent

relationships. Pronouns and other non-proper nouns tend to be linked in this way-by di-

rectly linking to another mention. Sentence structure, locality and context play important

roles and it is often impossible to determine whether two distant non-proper noun men-

tions are related without following the chain of antecedent relations which link them. A

disadvantage of the antecedent model is that it cannot enforce sex and number consistency.

Model 3 treats co-reference resolution as a clustering problem-a mention is included in

32

a cluster if its average similarity with other mentions in the cluster is relatively high.Model

3 works especially well for proper nouns as most pairs of proper nouns which refer to the

same entity have some clear similarity, such as string overlap. Model 3 can enforce sex

and number consistency, but may dismiss a mention from a cluster if it only shows high

similarity to a single mention in the cluster. Hence, performance on pronouns and other

non-proper nouns since such mentions may suffer.

Next, we discuss a hybrid model which utilizes the clustering viewpoint for resolution

of proper nouns and the classification viewpoint for resolution of non-proper nouns. We

utilize both Model 3, as well as our antecedent model to create a hybrid model of co-reference

resolution.

3.6.2 Details

For our hybrid model of co-reference resolution, we divide the set of noun phrases (x) into

two groups. The first, which we denote A, is the set of proper noun phrases; the second,

denoted B, is the set of non-proper noun phrases. It is common for an automatic parser

to provide the proper vs. non-proper distinction, so we assume this information is given.

We use Model 3 to resolve references among proper nouns (model A), and our antecedent

model to determine antecedents for non-proper nouns (model B).

These models act largely independently of each other. For inference, model A operates

completely in a stand-alone fashion-given the weight vector, it does not use any information

about the non-proper nouns in order to cluster the proper nouns. Model B makes use of the

result of proper noun inference, but only in a limited fashion. To ensure consistency, we use

the result of proper noun inference to "fill in" any missing information in the feature vector.

For example, if the prospective antecedent is ambiguous in its gender (e.g. "Powell"), other

mentions in its cluster are used to determine gender (e.g. "Mr. Powell"). In practice,
we run inference for model A first, to determine the proper noun clusters. Then, we run

model B inference, one mention at a time, updating cluster attributes as necessary and

utilizing cluster attributes to fill-in any feature information not immediately apparent from

a mention pair.
Learning involves the setting of the weight vector to maximize conditional likelihood.

Using the chain rule, we can write down the conditional likelihood as a product of the two,

individual model likelihoods

P&I x; A) = pA (YA IxA; AA)PB (YB Ix, yA; AB), (3.15)

where superscripts are used to distinguish between proper (A) and non-proper (B) parts.

Since different features tend to be used for clustering proper nouns vs. resolution of non-

proper nouns, we have designated separate weight (and hence feature) vectors for each

model. In this case, learning is performed independently for each of the two models. We

may also use a single weight (and feature) vector for the entire model, thus necessitating

that we use an approximate optimization technique for the entire model (rather than just

model A). Note the dependence of model B on the proper NP labels (yA); this is due to its

use of them to "fill in" feature information.

33

3.7 Discussion

Recent work in co-reference resolution has given evidence of a community divided over how

to approach the problem. One body of work, (Aone & Bennett, 1995; Soon et al., 2001; Ng

& Cardie, 2002), views each mention as either directly referring to the entity, or else referring

to the entity indirectly via a chain of antecedents. In this case, the key task for each mention

is to either (1) identify its antecedent, or (2) determine that it has none (i.e. it refers directly

to the entity). This is essentially a classification task and has been approached as such by

this work. A second body of work, (Cardie & Wagstaff, 1999; McCallum & Wellner, 2005),
views mentions that refer to the same entity as being part of a cluster. No assumptions

are made about how mentions are related and mentions are treated uniformly. Clusters are

inferred which optimize a clustering criterion which maximizes intra-cluster similarity, and

minimizes inter-cluster similarity.

Our contribution in this chapter was to explain the differences between these two ap-

proaches, identify their strengths and weaknesses and provide a unified algorithm for co-

reference resolution. We noted that the clustering viewpoint is well-suited to the task of

grouping proper nouns, and that the classification/antecedent viewpoint is well-suited to the

task of grouping pronouns and other non-proper nouns. We developed a probabilistic, con-

ditional classification/antecedent model of co-reference resolution which shares similarities

with McCallum and Wellner's (2005) clustering model for co-reference resolution. Finally,
we provided specification of how to combine these two models to achieve a hybrid model

which applies the most appropriate viewpoint to each type of NP mention.

34

Chapter 4

Tracking Context

4.1 Introduction

So far in this thesis, we have described methods for identifying named entities and resolv-

ing multiple mentions of the same named entity. In this chapter, we continue the process

of developing methods for extracting information from textual data, especially informal

communication. Of importance in extracting opinions, descriptions, etc. is to be able to

identify transition points-where the author changes topic. This can be especially diffi-

cult in e-mail, bulletin board posts and other informal text because traditional cues such

as paragraph breaks and titles/headings are used less frequently, or are used incorrectly.

Instead of relying on traditional cues, which may be noisy or nonexistent, we instead use

word statistics to attempt to identify changes in topic. We approach this as a text clus-

tering problem. The text document provides an ordering of text segments (e.g. sentences).
Our goal is to identify points where there is a substantial change in topic. To do this, we

perform clustering on segments with the constraint that two segments may be in the same

cluster only if all intermediate segments are also in that cluster.

Many have addressed the text clustering task before. Elkan (2006) uses a heavy-tailed

text frequency distribution to model text for clustering. Bekkerman et al. (2005) simul-

taneously clusters documents, words and authors utilizing pairwise interactions between

the three data types to determine associations. McCallum et al. (2004) use a derivative

of the Latent Dirichlet Allocation (Blei et al., 2002) model to cluster e-mail messages, in-

corporating author information into the multinomial model. A variety of algorithms find

clusters which minimize a normalized cut of a similarity graph of the items to be clustered.

Meila and Shi (2001) show the correspondence between this view and spectral clustering

algorithms. Ng et al. (2002) provide a straightforward spectral clustering algorithm and an

analysis of the conditions under which the algorithm can be expected to work well.

The goal in any clustering model is to group together similar items. There are two

common approaches to this. The first is to identify each cluster with a "mean" or "centroid"

representing the cluster and then to associate each point with the nearest mean/centroid.

The quintessential example of this approach is k-means. k-means is, in fact, equivalent to

MAP estimation of a Gaussian mixture model with identity covariance matrix. Many other

mixture models used for clustering or semi-supervised learningi are also mean/centroid

Semi-supervised learning can be viewed as clustering where the clusters are seeded by a small number

of "labeled" examples.

35

Bush

Iraq stem

Figure 4-1: A 2-simplex, points of which represent parameters of a trinomial. Here, the

three possible outcomes (words) are "Bush", "Iraq" and "stem". Two topics-the Iraq war

and funding of stem cell research-are represented by two bold edges of the simplex. Note

the intersection at "Bush".

algorithms, such as a Gaussian mixture (without covariance constraints), a mixture of Factor

Analyzers (Ghahramani & Hinton, 1996), a mixture of Naive Bayes models (Nigam, 2001),

and Latent Dirichlet Allocation (Blei et al., 2002). The second main approach to clustering

is known as "spectral clustering" or "normalized cut". Here, the points are represented as

nodes on a graph; edge weights, which represent similarities between points, are computed as

a function of the data. Normalized cut finds a segmentation of the points which minimizes a

normalized inter-cluster similarity. Meila and Shi (2001) show the correspondence between

this and "spectral clustering". Spectral clustering algorithms tend to group together points

which are well connected. An advantage is that any prior knowledge of the data may be

incorporated into the similarity function. However, neither mean/centroid nor spectral

approaches may be effective for a data set where points for each cluster are drawn from a

low-dimensional subspace. If the subspaces for two clusters intersect, then neither approach

can successfully untangle points from the two clusters.

Consider two political topics: one pertaining to the Iraq war and another pertaining

to funding of stem cell research. Both are likely to include mentions of President Bush,

but "Iraq" and "stem" are likely unique to their corresponding topic. If we consider term

distributions over a vocabulary limited to three relevant keywords (Bush, Iraq, and stem),

then, as depicted in Figure 4-1, the two topics represent subspaces of the 2-simplex which

intersect at "Bush".
Here, we develop an algorithm which can recover clusters where points for each clus-

ter are drawn from a low-dimensional sub-space. The algorithm we present is related to

mean/centroid algorithms. It establishes a mean/centroid for each cluster. However, its bias

for recovering clusters is atypical. Mean/centroid algorithms generally select centroid loca-

tions which minimize a (weighted) average distance and make cluster assignments purely

based on the distance function. In contrast, our algorithm is sensitive to the rank of the

subspace spanned by the member points. Given points equidistant from the cluster centroid,

it is easier to add a point which lies in the subspace already spanned by member points than

to add a point outside of the subspace. Thus, our algorithm will prefer to cluster together

points which lie in a low-dimensional subspace. Our clustering algorithm can generally be

thought of as a way of automatically uncovering subspaces or linear manifolds from a data

set.

36

4.2 Model Overview

Here we introduce our new clustering algorithm, along with the mathematical details of

how it works and the intuitions for understanding its behavior.

Trace Norm Clustering (TNC) can be thought of as a mean/centroid algorithm. And,
like many mean/centroid algorithms, TNC can be viewed as a model-based algorithm. We

can write-down an explicit joint probability for the data and parameters; we use MAP

estimation to set parameters for the model. Before providing the mathematical details, we

provide an overview of the structure of the model.

4.2.1 Structure

The model consists of three parts: (1) a likelihood, (2) a centroid prior, and (3) a low-rank

prior. Here we provide an overview of the model.

Likelihood The likelihood links each data point with a set of parameters which will

"represent" that data point in the priors. The likelihood is applied to each data point

individually, so it cannot capture interactions between data points. This task is left to

the priors. A simple exponential model can work well, such as the multinomial for text

data, or an identity-covariance Gaussian distribution for continuous data. Other likelihoods

may also be used. The only hard limitation is that parameters of the likelihood must be

continuously-valued; ideally, a subspace of parameters of the likelihood would correspond to

some meaningful intuition for how data is generated-the subspaces depicted in Figure 4-1

correspond to likelihoods from which certain words are never generated. The likelihood

function allows us to try to find a low-dimensional fit for a group of points which is not

perfect. If a set of points nearly fit into a low-dimensional subspace, we can utilize a set of

parameters which do fit into the low-dimensional subspace and simply incur some loss in

likelihood for the imperfect fit between data points and parameters. Thus, the likelihood

provides us with a mechanism for trading off fit-to-the-data with our goal of finding clusters

corresponding to low-dimensional subspaces.

Centroid Prior As with all mean/centroid algorithms, we learn a set of centroids, one

per cluster. Due to the interaction with the low-rank prior, which will be described next, we

must penalize distance to the origin of each of the centroids to avoid the trivial clustering

of one-point-per-cluster.

Low-Rank Prior The unique aspect of our model is a prior over likelihood parameter

which encourages a low rank solution. Consider an assignment of points to clusters. Our

goal is to discourage an assignment which groups together points which are a poor fit to

a low-dimensional subspace. Intuitively, we want a prior which encourages each cluster to

have few dimensions. But, this sounds easier than it really is-we can trivially satisfy our

stated criteria of fit-to-the-data and low-dimension-per-cluster by assigning each point to

its own cluster. To seemingly complicate matters, we also prefer a prior/criterion which is

smooth, or, ideally, concave. To find a prior which will allow us to find an appropriate trade-

off between data fitness and low-dimensionality clusters, we turn to the rank minimization

problem (RMP). The rank of a matrix is the number of basis directions needed to represent

all rows or columns of the matrix-it's "dimensionality". The generic RMP is to minimize

the rank of a matrix within a convex set. However, the RMP is NP-hard. Fazel (2002)

37

discusses various heuristic approaches, including the trace norm, which tends to prefer low-

rank solutions. The trace norm of a matrix is the sum of its singular values. It is a convex

function of a matrix; minimizing the trace norm within a convex set is a convex optimization

problem, making it easy to solve compared to the RMP. We utilize the trace norm in the

creation of our parameter prior. We do so by stacking likelihood parameter vectors into a

matrix for each cluster. We then calculate the trace norm of this stacked parameter matrix

and compute the prior as a function of the trace norm.

4.2.2 Clustering

Now that we have provided an overview of the Trace Norm Clustering model, we provide an

overview of how that model is used to cluster data points. The simplest description of our

clustering procedure is that we find a clustering and parameters which maximize the joint

model probability. This involves both optimizing the assignment of points to clusters, as well

as optimizing centroids and other likelihood parameters. Due to our choice of priors, as long

as the likelihood is a concave quantity, optimization of the parameters is relatively easy-it

can be written as a convex optimization problem and there are fast methods for optimizing a

tight bound on the objective. A discussion of such optimization can be found in Rennie and

Srebro (2005a). What makes our algorithm computationally challenging is the selection

between different assignments of data points to clusters. The default way to determine

the optimal assignment is to evaluate each assignment individually. This approach has

exponential time complexity. We can find approximate solutions efficiently by constructing

clusters in a top-down or bottom-up fashion. However, there is another computational

bottleneck to our model-calculation of the normalization constant for our low-rank prior.

The constant need not be computed for every assignment of points to clusters-only those

which differ in terms of their set of cluster sizes. But, computing a single normalization

constant may require exponential time. To make our clustering algorithm practical, we

focus on efficient ways of computing the normalization constant.

4.2.3 Definitions

Before discussing the details of our model, it is helpful to provide notation and mathematical

definitions for our model. We assume that there are a number of sources, 1, which generate

data.

Centroids We assume that each cluster/source generates a centroid, pl, which helps to

define how data from that source is generated. The centroid can be represented in terms

of a radius r = ||'112 and a set of angles. We are not concerned with the direction of the

centroid and only care about its distance from the origin. So, our centroid prior is a m x 1

trace norm distribution (which is, in fact, a gamma distribution over the radius value),

P(plIA) oc e-AIhIiIE, (4.1)

where A > 0 controls the scaling of the distribution, and the vector M1 is treated as an m x 1

matrix. Note that the trace norm of a m x 1 matrix is simply the L 2 (Euclidean) length of

the vector. We assume that A is fixed and known: it is an input to the generative process.

38

2.5

0

1.1

1 0
-1 -1

Y x

Figure 4-2: Trace norm of X(x, y) = [1 0; x y]. The x- and y-axes represent parameters of

X(x, y). the z-axes represents the trace norm of X(x, y), IIX(x, y)E . Note that X(x,0) is

a rank one matrix, whereas X(O, y) is a rank two matrix for y - 0.

Low-rank Parameters We assume that each source generates a matrix of parameters,

01, via a trace norm distribution,

P(GiIA) oc exp(-AIO1IIE), (4.2)

where, again, A, controls the scaling of the prior. Details of this distribution are discussed

in § 4.3. We use 01i to denote the ith row of 01 and G1y to denote the (i, j) position of 01.

Likelihood We assume that there is a common likelihood function which uses a vector

of parameters to generate data points. Each data point to be generated has its own vector

of parameters, which is a combination of a centroid (common to all points in the same

cluster) and a row of the low-rank matrix (unique to the point). Let Xh be a vector which

represents the ith point generated from cluster 1. Then, the distribution which generates

Xu is

P(Xi I Al + 01). (4.3)

In other words, 41 + 01i is the parameter vector that we use to parameterize the likelihood

for generation of X1i.

4.3 Trace Norm Distribution

A major part of our clustering model is our choice of a low-rank prior for modeling of the

likelihood parameters. We utilize the trace norm to give us a prior which encourages a

low-rank parameter matrix. A difficulty with this choice is that the normalization constant

for the prior is not easy to compute. The normalization constant is needed to compare

different clusterings of the data. We discuss various approximations for the normalization

constant.

39

Trace Norm

The trace norm of a matrix, denoted IIXI|i3, is the sum of its singular values. The trace

norm of a column (or row) matrix is simply the Euclidean length (L 2-norm) of the matrix

(treated as a vector). The trace norm was introduced by Fazel et al. (2001) as a surrogate

for rank in the rank minimization problem. Srebro et al. (2005) utilized the trace norm for

regularization in supervised learning.

To gain intuition for the 2 x 2 case, we consider the matrix X(x, y) = [0. The
Ix y

trace norm is rotationally-invariant (i.e. IIRX1r, = IIXII3, R is a rotation matrix) and

commutative with scalar multiplication (i.e. cIIXIIx = tcX||k, c is a scalar). Hence, X(x, y)

allows us to fully explore trace norm values of 2 x 2 matrices by varying the two parameters,

x and y. Figure 4-2 plots IIX(x, y) JJ as a function of x and y. We can see from this plot

that the trace norm encourages a low-rank solution. Consider using the trace norm as a

negative log-prior. MAP estimation involves minimizing a sum of the trace norm and a

negative log-likelihood (aka loss function). Consider optimizing x and y. Consider any

point with x = 0. If the negative log-likelihood has a non-zero derivative for x, then we

can decrease the overall objective by changing x due the smooth derivative of the trace

norm with respect to x. This is not the case for y. Consider any point with y = 0. If the

negative log-likelihood has a non-zero derivative with respect to y, it will not necessarily be

advantageous to change y from 0 due to the non-continuous derivative of the trace norm

with respect to y; the gradient of the negative log-likelihood (wrt y) must be at least as

large as the gradient of the trace norm (wrt y) at y = ±E in order to force a move away

from y = 0. Also, note that the gradient of the trace norm with respect to y is always at

least as large as the gradient with respect to x-minimization of the trace norm will prefer

to decrease the magnitude of y first, unless constraints or another objective component (e.g.

loss function) force it to do otherwise.

Now, consider the general m x n case. Again, we will observe a discontinuous gradient

and larger magnitude gradient for directions which would change the rank of the matrix.

As discussed in the 2 x 2 case, this will tend to a yield low rank solution since substantial

"force" is needed from constraints or the loss function to counter this tendency to decrease

the rank.

Definition

The Trace Norm Distribution (TND) is the parameter prior for our model which encourages

low-rank/low-dimension clusters. It is applied to the set of parameters corresponding to

the set of points in each cluster. A single parameter, A, controls the strength of the prior.

Minimization of the trace norm in combination with other objectives tends to yield a

low-rank solution; we formulate the prior to take advantage of this fact. We define the

Trace Norm Distribution as

Pmxn(XIA) oc exp(-AIIX|s), (4.4)

where X E Rmx. I.e. the distribution is over matrices of size m x n. The distribution is

normalized by integrating over matrices of fixed size,

Zmxn(A) = f exp(-A JX||s)dX. (4.5)
J R" x 71

40

Thus, the negative log-prior will be a multiple of the trace norm (plus a normalizing con-

stant), - log Pmxn(XIA) = A IIXII, - log Zrnxn(A). Thus, MAP estimation will minimize a

sum of the negative log-likelihood and a constant multiple of the trace norm. We use the

TND as the parameter prior for each cluster. The probability is large when the rows or

columns of X lie in a low-dimensional space and the magnitude of the matrix is low. The

probability is small when the rows and columns of X are close to perpendicular and the

magnitude of the matrix is high. A controls the scaling of the distribution.

Comparison to Exponential Distribution

A cursory understanding of the distribution might lead one to mistakenly believe that it is

the product of exponential distributions, one for each singular value, since the trace norm

is the sum of singular values. If so, sampling from the trace norm distribution would be

straightforward: (1) sample the singular values independently from an exponential distribu-

tion, (2) arrange in a diagonal matrix, E, and (3) multiply on the left by a random matrix

with orthonormal columns, U, and (4) multiply on right by a random with orthonormal

rows, VT. Alas, this is not correct as the volume of points increases as we move away

from the origin. Thus, additional terms appear in the likelihood in the change of variables

to the singular value decomposition. A simple example might aid intuition. Consider the

two-dimensional Gaussian,

p(x, y) oc exp(-(x2 + y2)/2). (4.6)

It is tempting to believe that the radius r = Vx 2 + y2 is Normally distributed. However,
the change of variables to polar coordinates introduces an extra r term,

p(r, 0) oc re- 2 (4.7)

This is a direct result of the fact that the surface (circumference) of a circle is a linear func-

tion of the radius. Large radii are more likely than they would be if radius were distributed

as a Normal. As we will see in section 4.4, in rewriting our trace norm distribution in terms

of singular values, additional terms are introduced which make clear that the singular values

are neither independent, nor individually distributed as an exponential.

Partitioning

Determining the best clustering for our model involves selecting between assignments of data

points to clusters which maximize the joint probability as a function of the parameters. To

gain intuition for how our model behaves, it will be helpful to have some notation for an

assignment of data points to clusters. We will use "partitioning" to describe the assignment

of points to clusters and will use notation which is typical for this terminology. Let m be the

total number of data in all clusters. Let Rm = {1, . . . , m}. Then, we define a partitioning

of the data points as a function,

p : Rm -+ Rm, (4.8)

which takes a data point index and returns a cluster index. We also define the inverse

function which takes a cluster index and returns the set of data point indices corresponding

41

to that cluster,

p : Rm - P(Rm), (4.9)

where P(.) denotes the power set, or the set of all possible subsets of the argument. We

will use Io(i)I to denote the size of cluster i. Note that i E g(p().

Lambda

To provide further intuition about our model, we provide some discussion on the impact of

A. We focus on how A affects the impact of the trace norm prior on the optimal clustering.

To gain intuition for the effect of A, we consider the case that all parameters (0, A)
are fixed and that the only remaining choice to be made is the partitioning. To simplify

further, we consider only two scenarios: a single cluster vs. two clusters. Let E Rmxn be

the full matrix of low-rank parameters. Let 01 and 02 be a row-wise partitioning of those

parameters. Then, the partitioning into two clusters will be preferred over the single cluster

if

P(911A)P(92 jA) > P(9IA). (4.10)

Equivalently, the split will be preferred if

log Zmxn - log Zni x. - log Zm2 xn > A(I1iIIE + 1102II - |II|Ik), (4.11)

where m is the total number of data points, m, and m2 are the number of data points in

each of the two clusters (m = m1 + M 2), and n is the dimensionality of the space in which

the data points lie. The trace norm is sub-additive (see, e.g., Corollary 3.4.3 of (Horn &

Johnson, 1991)),

11011r <; 10111r + 10211r. (4.12)

The fact that the log-normalization constants are sub-additive is an immediate corollary.

Continuing from (4.12) (note the change in direction of the inequality),

e-I 1 II d9 > J e- 1j' 11Fd91 J e- 11 2Il2Ed 2 , (4.13)

log Zmxn > log Zm1 xn + log Zm2 xn. (4.14)

Thus,

= log Zmxn - log Zmixn - log Zm2 xn (4.15)
1101||I, + 1102||J - 1|01|E

is the point at which neither partitioning is preferred. For A < A*, the split into two

clusters will yield a larger prior; for A > A*, the single cluster will have a larger prior.

Note that A* is non-negative. We can draw clear conclusions from this observation. As A

decreases, finer partitionings are preferred, and in the limit as A -- + 0, no partitioning will

be preferred over the one-point-per-cluster partitioning. Conversely, as A increases, we will

tend to prefer a few, large clusters. As A -+ oo, no partitioning will be preferred over the

single cluster solution. By changing A we can control the granularity of clustering. Note

42

that the intuition here is similar to supervised learning where we minimize a loss function

plus a regularization term. Here, the trace norm prior corresponds to the regularization

term. For small A, the loss function dominates and we prefer parameters which provide a

close fit to the data. For large A, the regularization dominates and we prefer parameters

which satisfy the regularization term (such as a low-rank parameter matrix in the case of

the trace norm).

4.4 Normalizing Constant

As mentioned earlier, computation of the normalization constant of the trace norm distri-

bution cannot be computed exactly and efficiently; yet, it is essential for clustering-it tells

us how to compare trace norm values for different size partitionings. The normalization

constant for the Trace Norm Distribution is an integral over matrices of size m x n. In this

section, we show how use a change of variables to rewrite the integral into a form in which

it can be integrated analytically. However, this form is computationally inefficient and

may scale exponentially as m or n increases. Thus, we also discuss two ways of efficiently

calculating estimates of this quantity.

Singular Value Decomposition

The Singular Value Decomposition of a matrix X E Rmxn (wlog m > n) is a product of

three matrices, U E Vm,n, E E diag(R"), and V E Vn,n, where Vm,n is the Stiefel manifold 2

(i.e. UTU = I, VTV = I). The SVD is X = UEVT. Note that since E is diagonal, and

that U and V are orthogonal, the number of entries in X is equal to the number of free

entries in U, E, and V. We assume that the singular values (diagonal elements of E) are

ordered. If the singular values are unique, al > ... > an, then SVD is unique up to a

change in signs of matching columns of U and V.

Recall that the normalization constant is an integral of the exponentiated negative trace

norm over matrices of size m x n. A change of variables to the SVD simplifies the trace

norm computation (to the sum of diagonal entries of E), but our variable of integration is

incorrect,

Zmxn(A) = exp(-AIXjfE)dX = exp -A 7i dX. (4.16)
Rmxn fRmxn

Next, we calculate the proper change of variables from X to UEV.

Jacobian for the Change of Variables

To change variables to the SVD, we must calculate the Jacobian. Following the derivation

given in Edelman (2005a), we get

dXA = JJ (0, - ?) 1 ,T-"n(dE)A(VT dV)A(HTdU)A. (4.17)
i<j~n im

where H is an m x m orthogonal matrix whose first n columns are identical to U, and A

denotes the wedge product.

2See Edelman (2005b) for a discussion of the Stiefel manifold.

43

The change of variables introduces two new terms. First, there is a o-" factor, which

is similar to the extra r introduced in the Gaussian change of variables to radial coordinates.

These account for the extra density arising from integrating over the surface of a sphere.

When combined with the exponential term, these yield the form of a gamma distribution

PDF. Second, there is a term that goes to zero with the difference between singular values.

Thus, singular values are clearly not independent of each other. The trace norm favors

matrices where the singular values are separated. Indeed, it is this coupling between singular

values which makes the distribution difficult to integrate, as we discuss next.

Trace Norm Distribution Integral

Applying the change of variables to our integral, we get

Zmxn(A) = 1 j fi (u -) J al ne-Ai (dE)^(VTdV)^(HTdU)^. (4.18)
i<jn 2 i<n

Recall that except for a measure zero set, the SVD is unique up to a sign, hence the initial

2~n factor. There is no intermingling between E, U and V, so what we really have is the

product of three separate integrals,

1 J I1 (c4 - a) J1 U-e- i(dE)A (VTdV)A (HdU)A. (4.19)
i<j<n i<n

Note that f (VTdV)A and f (HTdU)A are volumes of the Stiefel manifold. Edelman (2005b)
provides the Stiefel manifold volume,

m-n+1 m-n+1 _ _4i/2

VOl(Vm,n) = Ai = r , (4.20)

where Ai is the surface area of the sphere in R' of radius 1. The remaining integral over

singular values,

/jr (? n.-i ? 1 (oQ - a) du n ... dui, (4.21)
f 0 i<j<n i<n

can be computed analytically. Using maxima 3 , we can compute this for matrix sizes of 10 x 5

and 40 x 4 in a few minutes of CPU time. However, the non-constant limits of integration,
as well as the explosion of terms makes evaluation intractable for large n or m. Large n

presents a problem because JjJ[< (a? - ?) yields a polynomial with a number of terms

which is exponential in n; simply expanding this product is infeasible for large n. For small

n, we can still face a problem because of large m, as each stage of the integration yields

an incomplete gamma function of order m. Integrating the incomplete gamma function

doubles the number of terms involved, resulting in a total number of terms of 0(2 "). In

the next sections, we discuss ways of approximating the integral for large matrices.

44

3http://maxima.sourceforge.net/

Sampling

The form of the integral over singular values (4.21) suggests a sampling scheme. Define

g(x a, 9) = a) O as the gamma distribution pdf. Furthermore rewrite the integral so

that it is symmetric with respect to the variables by taking absolute values of the difference

terms and using constant limits of integration,

J.. e ... do,. (4.22)
0 0 i<jn i=1

Clearly the integral can be computed as an expectation over a product of gamma distribu-

tions of a product of difference between squared singular values. We can approximate the

integral by taking an average of weighted samples of singular values. Define a = m - n + 1

and 0 = 1/A. Define the following sampling scheme:

* for t = 1 to k:

- Sample {1,... , On} iid from g(afla, 0)

- Let zt = ~i<j 1o - ? I.

Then, our estimate of the integral is J ~ (Om Zt-1 zt. Note that as the number

of samples goes to infinity, so does the approximation tend toward the correct answer,
J = limk roo z t.

Variational Bound

Another approach to approximating the singular value integral is to find an upper bound.

Here we describe such a method developed in conjunction with John Barnett (personal

communication, March 2006). Note that any definite integral can be reformulated as an

optimization problem:

I f(x)dx = min g(x)dx, (4.23)
A fg:gf J A

assuming that f and g are in a space of integrable functions. Restricting the space of

functions to those of a parametric form, one obtains an upper bound,

Sf(x)dx < min g(x;0)dx. (4.24)
fA 0 j A

A suitable upper bound depends on finding a suitable class of parametric functions.

A logarithmic bound is used to replace the product of differences. Since the logarithm

is concave, we can bound it with the tangent line at any point a, log x < ! - 1+log a. So,

(2 - <) exp b .l a 2 + log aijbij

i<j) e~i i<d (4.25)

ajbi e~" ieD= is (4.25)

(i<j

45

where di = n + + N-~ - . This gives us an upper bound which is

log-linear in the singular values, {ai}.
To eliminate the incomplete gamma functions, rewrite the integral using step functions

so that our limits of integration do not depend on the variables themselves. Applying our

first bound, (4.25), and ignoring constant quantities, the singular value integral becomes

S. j J a m-ne-(1-di)aiu(ai_1 - ai)dun ... da, (4.26)
0 0

where ao = oo and u(.) is the Heaviside step function. Using an exponential bound on

the step function, u(x) eOx, we obtain a tractable bound. Continuing from (4.26), we

substitute the exponential bound to attain a bound on the full integral,

n

am-ne-(1-di+±i+1I-i)idai, (4.27)
i=10

where /1 3 n+l _ 0. The integral inside the product is the normalization constant for a

gamma distribution, which is well-known and easy to evaluate,

00 m-ne-(1-di+3i+1-0i)0ida - F(m - n +1) (428)

Sad(1 - di + i+1 - fl)m-n+1'

Adding back the constant terms we ignored earlier, one arrives at a bound on the singular

value integral,

< rl ijli n I(n - m + 1)e-n(n-1) (.9
< (3b) (1 - di + 0i+1 -)3)m-n+l (4.29)

This bound holds for all aij, bij > 0 and for all /i > 0. One finds the best bound by

optimizing over these parameters.

Note that this approach can also be used to obtain a lower bound on the normalization

constant.

Evaluation

Table 4.1 gives approximate and exact log-values of the trace norm distribution normaliza-

tion constant for various values of m and n. Our ability to compute the integral exactly

is quite limited-we were not able to compute exact values for m > n > 5. We tested the

two approximate methods we have described: sampling and the variational bound. The

sampling method seems to be moderately accurate, especially for m > n. However, sam-

pling may not scale well and we can observe inconsistencies even for this small evaluation.

Sampling returns a larger value for a 16 x 8 size matrix than it does for a 16 x 16 size

matrix. Yet, it can be shown that the value for the 16 x 16 case is larger than the 16 x 8

case. The variational bound was less accurate over the sizes we tested. However, it scales

better and might be valuable in conjunction with a (yet developed) lower bound to provide

an accurate, scalable estimate.

46

m

n method 2 4 8 16
2 exact .405 3.27 16.2 54.6

sampling .406 3.27 16.3 54.6
variational 1.86 4.35 17.2 55.6

4 exact 8.22 31.3 106
sampling 8.13 31.3 106
variational 17.4 36.1 110

8 sampling 56.9 205
variational 118 229

16 sampling 186
variational 672

Table 4.1: Values of the logarithm of the Trace Norm Distribution normalization constant.

4.5 Clustering Algorithm

Now that we have approximate methods for efficiently calculating the normalization con-

stant of the Trace Norm Distribution, we can turn to the task of efficiently finding an

approximately optimal clustering of the data points. As noted earlier, to find the optimal

clustering, we must evaluate all possible assignments of data points to clusters. This is

computationally infeasible for even relatively small numbers of data points. The applica-

tion we are considering, sentence clustering, yields fewer possible assignments as a function

of the number of data points, but still an exponential number. So, we consider two greedy

partitioning methods: (1) a bottom-up approach and, (2) a k-means-like approach.

4.5.1 Bottom-up clustering

Bottom-up clustering is a typical method for finding a cluster assignment. We begin with

a one-point-per-cluster assignment and consider all possible cluster merges. We select the

merge which yields the largest joint probability according to our model.

There are two possible approaches we can take for bottom-up clustering. The first is to

take A as a fixed value and perform merges as long as they increase the joint probability

of our model. This will differ from a typical bottom-up approach in that the model will

typically select a stopping-point before all points have been merged together into a single

cluster. Another approach is to slide A from 0 -+ oo in order to achieve a full range of

possible clusterings (from one-point-per-cluster to a single cluster). To do this, we begin

with each point in its own cluster. Then, for each pair of clusters, we calculate the A value at

which the model would be indifferent about merging them, as in (4.15). We merge the pair

of clusters with the lowest A-indifference value. After merging, we recalculate indifference

values and repeat until we are left with a single cluster. An advantage of this approach is

that it gives us with a full hierarchy of the data, providing us with additional association

information which a simple clustering does not provide.

4.5.2 k-flats

An alternative approach is to use iterative reassignment in the style of k-means. However,
the intuition behind the algorithm is sufficiently different to warrant a new name, hence

47

4 4 2 2 80% 0.12%
4 4 3 3 40% 0.12%

6 2 4 21 52% 1.8%

Table 4.2: Accuracy of Trace Norm Clustering on Simulated Data

"k-flats". Whereas k-means attempts to find k centroids which provide the best fit to the

data, k-flats attempts to find best-fit centroids and low trace norm ("flat") sub-spaces. We

initialize the algorithm with a random assignment of points to clusters. Each round, we

select a random data point and consider assigning to each of the other clusters; we also

consider establishing a new cluster for the point under consideration. We evaluate each

possibility for the selected point and choice the one that yields the largest joint model

probability. We repeat this procedure for a pre-determined number of rounds or until the

assignment becomes stable.

4.6 Simulated Data

Here we merely begin to evaluate our Trace Norm Clustering framework. We use simulated,

real-valued data and use a trivial likelihood function, effectively applying our trace norm

prior directly to the data itself. We force all centroids to the origin, effectively eliminating

the centroid component from our model. I.e. this is a pure test of the model's ability to

recover data generated in a low-dimensional subspace. So that we could make computations

without approximation, we limited ourselves to 8 data points, each embedded in R 5 . We

generated points from two low-dimensional standard Normals, then used our TNC model

to find the most likely partitioning for a range of A values. We conducted 100 trials for

each scenario and report the fraction of times our model selected the correct assignment of

all points for some value of A. Note that this is a difficult task: if the algorithm does not

select the correct assignment of all points for some value of A, the entire trial is considered

incorrect (no partial credit). Table 4.2 provides the results. ni and n2 are the number

of data points generated for each of the two clusters. d, and d2 is the dimensionality of

the standard Normal that was used to generate the points in each of the two clusters.

"TNC Accuracy" denotes the number of trials for which TNC made the correct assignment

(for some value of A). "Baseline Acc." gives the accuracy for an algorithm which assigns

points uniformly at random to one of the two clusters (ensuring the appropriate number

per cluster). The generated points in each cluster were (jointly) randomly projected into

R 5 . We used a standard Normal to generate the projection matrix for each cluster. Note

that since both clusters have mean zero, any mean-based clustering algorithm would likely

fail. Spectral and normalized cut algorithms would also likely fail at this task due to the

intersection of the subspaces at the origin. Trace Norm Clustering is able to recover the

clusters with regularity, vastly outperforming the baseline algorithm. Of particular note is

the fact that it is able to recover the 6/2 clustering at all. Since the cluster of 2 is being

projected from a 2-D standard Normal, the points are effectively iid from a 5-D standard

Normal. I.e. they are only related to each other in how they are different from the cluster

of 6.

48

ni n2 Idi d2 I

I

TNC Accuracy Baseline Acc.

4.7 Discussion

We have introduced a new framework for clustering based on associating points which lie

together in a low-dimensional space. We use the trace norm as our basis, which provides

a smooth penalty on the dimensionality of data. Incorporation of the trace norm into

a distribution allowed us to compare partitionings of various sizes. Normalization of this

distribution is computationally difficult, so we discussed approximation methods that would

be useful for clustering of large data sets. Experiments on simulated data indicate that our

framework is able to uncover low-rank data partitionings.

49

Chapter 5

Preference Learning

5.1 Introduction

So far, this thesis has focused on direct extraction of information (identifying and resolving

restaurant names; determining the extent of opinions in text). In this chapter, we assume

that information about user opinions/preferences has already been extracted. Here, we

will describe methods for the synthesis of that information to predict unobserved user

preferences.
The preference learning problem is common to many domains. Two popular applica-

tions are ratings of books and movies. Users give discrete ordinal ratings (e.g. 1 through

5 "stars") and we would like to be able to predict ratings for unobserved user/item pairs.

The task of predicting restaurant preferences is similar. However, when extracting opin-

ions from bulletin boards, an additional step must be taken to translate written opinions

into discrete ordered ratings. We do not address the problem of extracting the direction

(positive/negative) and magnitude of the opinion, as many before us have worked on this

problem (e.g. Wiebe, 1994; Pang & Lee, 2004). However, we do address the issue that

users express themselves in different ways. The methods we describe allow each user to

have his/her own rating system. The rating "style" and/or number of rating levels may

vary by user. Thus, the translation system may focus on identifying the user's summary

opinion and translating the key words/adjectives to an ordinal scale. Any uniqueness in the

words chosen by the user to express him/herself will be handled by the preference learning

system.
We begin this chapter with a discussion of the Ordinal Regression (OR) problem, where

we assume that there are a collection of items, each with an associated feature vector, some

of which have an associated rating. There is a single user, and the goal is to predict ratings

for the items which have not been rated. We simplify the problem to one of learning a user

weight vector which represents, as best as possible, his/her preferences for the items. For our

restaurant bulletin-board example, the feature vector might include who owns the restau-

rant, the number of seats, the type of cuisine, as well as specific food and/or drink items

from the menu. The user weight vector would then reflect the direction (positive/negative)

and magnitude of the user's feelings toward each of these aspects. Two important charac-

teristics of OR are that (1) the user may not treat the ratings in a uniform fashion, and (2)

mistakes may vary in their magnitude. We describe techniques that address both of these

concerns. We also give a detailed discussion of the construction of loss functions for OR and

their relation to loss functions for binary classification. Finally, we provide an experimental

50

comparison of the discussed techniques.
When there are multiple users, a simple solution would be to learn weight vectors in-

dependently via OR. However, this ignores the fact that the problems are related. When

two (or more) users rate the same item, they implicitly provide information about how

their preferences relate. This can, in turn, be used to deduce information about the items.

Such information may not be otherwise available-there may be aspects of items which are

difficult to quantify (such as the dramatic component of a movie) or impossible to access

(such as the done-ness and seasoning of a dish consumed by a certain restaurant customer).

In section 5.3, we discuss Collaborative Filtering (CF), the name given to this task of

predicting unobserved ordinal ratings based on a sparse set of user-item ratings. Unlike OR,
we assume that no item information is given a priori. Rather, we use the overlapping pref-

erences to generalize to unseen user/item pairs. Whereas OR is limited by the identifiable

features of the items, CF is limited by the overlap of ratings provided for learning.

One approach to the CF problem is to learn a low rank matrix which approximates

the observed user/item rating matrix. The idea is that though there are many users and

items, there are only a handful of factors which determine the ratings. Limiting the rank

of the learned matrix encourages the predictions to be based on the factors that influence

ratings rather than any noise which may have corrupted the ratings. Applying ideas from

our Ordinal Regression discussion (user-specific "styles" and a loss function which accounts

for the mistake magnitude) yields a viable CF framework. However, a lingering difficulty

is that the space of rank-constrained matrices is not convex1 . As a result, optimization

over rank-constrained matrices will generally face local minima problems. This, in effect,
makes the problem ill-defined, since very different solutions may appear to be optimal or

near-optimal. An alternative approach to the CF problem is to allow an unlimited rank

matrix, but to apply a regularization penalty which encourages a low-rank solution. The

idea of using the trace norm for this purpose was recently introduced as "Maximum Margin

Matrix Factorization" (MMMF). MMMF poses no constraint on the reconstructed rating

matrix, so the search space is convex. Also, the trace norm is a convex function, so as long

as the loss function used to measure dissimilarity between the true and reconstructed rating

matrix is convex, the result is a convex optimization problem with a well-defined solution.

Interestingly, MMMF is a generalization of the soft-margin Support Vector Machine. We

describe how to scale MMMF to large collaborative filtering problems (Fast MMMF), then

evaluate Fast MMMF against a variety of CF algorithms and find that Fast MMMF yields

the best generalization performance.

MMMF was originally formulated assuming that no outside feature information is avail-

able for the items and users. However, the Fast MMMF optimization method that we de-

scribe lends itself to a hybrid algorithm where given features/weights can be incorporated

alongside features/weights learned from the ratings. This can be viewed as a synthesis of

ordinal regression (OR) and collaborative filtering (CF). In OR, we relied upon given fea-

ture vectors for the items to generalize; in CF, we relied upon the overlapping user ratings

to generalize. Our hybrid approach, which we describe in section 5.4, uses both sources of

information to better predict unobserved ratings.

A typical assumption in both ordinal regression (OR) and collaborative filtering (CF)

is that there is no pattern to the rating observations; it is assumed that the selection of

user/item pairs corresponding to "observed" ratings is made via a uniform distribution (over

users and items). A quick analysis of one's own movie-watching habits will likely reveal that

'To see this, note that the convex combination of two rank-one matrices can yield a rank-two matrix.

51

this is not the case. Some people follow certain actors or actresses: others have a favorite
director or writer; others limit themselves to certain genres. And, it is rare to find someone

who is completely unaffected by movie marketing and promotion. The process by which
a user selects movies to see and rate is known as a Missingness Mechanism (MM). In the
context of OR and CF, the MM can be viewed as a binary classification problem (whether
the user saw and rated the movie) layered on top of the rating prediction problem. We
describe a MN extension to MMMF in section 5.5.

Though we do not address such problems here, we note that preference learning and
collaborative filtering techniques are not limited to users/item pairs. The techniques we
describe may be applied to general tuples (e.g. triples). This might be useful for modeling
sports performance, where many factors combine to yield the observed performance. Our
methods might also be applied to a scenario where interactions are between objects from
a comion set, such as in social networking, trust networks or predicting the results of
head-to-head competitions.

5.2 Ordinal Regression

In many systems, users specify preferences by selecting, for each item, one of several rat-
ing "levels", e.g. one though five "stars". When learning to predict further preferences,
these rating levels serve as target labels (responses). This type of discrete ordered labels
differs from more standard types of target labels encountered in other machine learning
problems: binary labels (as in classification tasks), discrete, unordered labels (as in multi-
class classification tasks), and continuous real-valued labels (as in typical regression tasks).
Rating levels are discrete with a finite number of possibilities, like class labels in multi-class
classification. However, unlike a standard multi-class classification setting, the labels are
ordered-a rating of "three stars" is between a rating of "two stars" and a rating of "four
stars".

Two obvious approaches for handling discrete ordinal labels are (1) treating the different
rating levels as unrelated classes and learning to predict them as in a multi-class classification
setting, and (2) treating them as a real-valued responses and using a standard regression
setting with a loss function such as sum-squared error. However, neither of these reflects
the specific structure of discrete ordinal labels.

We view fitting rating levels as a regression problem with discrete ordered labels. We
view this as a generalization of binary classification, which can be seen as a degenerate case
in which only two levels, "positive" and "negative," are available. As is common for binary
classification, we learn a real-valued predictor, z(x), to minimize some loss, loss(z(x); y, 9),
on the target labels and thresholds. Whereas the single threshold in binary classification
is often made implicit in the loss function by including a "bias" term in the predictor, we
must make the thresholds explicit for ordinal regression to allow for multiple thresholds.
Common choices for the binary classification loss function are the logistic loss (as in logistic
regression), arid the hinge loss (distance from the classification margin) used in the Support
Vector Machine. Here, we consider various generalizations to these loss functions suitable
for multiple-level discrete ordinal labels.

52

5.2.1 Related Work

Probabilistic approaches

McCullagh (1980) introduces the Proportional Odds model, which can be viewed as the
basis of the Ordinal Regression algorithms we present in this section. The Proportional

Odds model learns a linear map from examples to the real number line and uses a set of

thresholds to define segments corresponding to the ordinal rating values. McCullagh focuses
on a specific model which is similar to what we call immediate-thresholds with a Logistic

Regression MPF. However, Proportional Odds cannot be described as a sum of MPFs, and
so cannot easily be extended to an all-thresholds loss function. We provide a more technical
discussion of Proportional Odds at the end of this section (§ 5.2.7). Other statistical models,
such as the adjacent category odds model (Clogg & Shihadeh, 1994) and the continuation
ratio model (Feinberg, 1980), vary in how they define the likelihood or cumulative likelihood
of a label (Fu & Simpson, 2002), but otherwise are largely similar to Proportional Odds.

Chu and Ghahramani (2004) introduce a Gaussian Processes approach to Ordinal Re-
gression. The core of their model can be seen as identical to Proportional Odds except for

the substitution of the sigmoid function for the Gaussian CDF in the likelihood. The result-
ing loss penalizes margin violations in an approximately quadratic fashion, possibly leading

to the model being overly sensitive to outliers. We provide a more detailed discussion at

the end of this section.
Rennie and Srebro (2005b) introduce the Ordistic model, which differs from other prob-

abilistic models in that each label class is represented in terms of a mean value, rather than
as segments of the real number line defined by thresholds.

Loss Threshold-based approaches

Shashua and Levin (2003) suggest a generalization to the Support Vector Machine (SVM):
the single margin constraints (for each observation) of standard SVMs are replaced with
a pair of margin constraints on the thresholds bounding the "correct" region (the region
corresponding to the target label).

When slack is allowed, Shashua and Levin's approach can be seen as regularized regres-
sion with a specific generalization to the hinge loss, which we describe in Section 5.2.5 as the
immediate-thresholds generalization of the hinge loss. In Section 5.2.5 we discuss a different
generalization, the all-thresholds generalization, where constraints (and slack) are consid-
ered for all K - 1 thresholds-not only those immediately bounding the correct region. We
argue that such a generalization better penalizes predictions which violate multiple thresh-
olds and present experimental evidence supporting this argument. We also discuss how

other margin penalty functions, such as the logistic, and modified least squares, can also be

generalized in the same way.

Other approaches

Crammer and Singer (2002) provide a perceptron-style online update algorithm for Ordinal
Regression. They map examples to the real line and use thresholds similar to McCullagh.

On-line updating is done by treating each threshold as representing a separate, but related
binary classification problem. Updates for multiple thresholds are combined to make a single

update per example. Their online algorithm performs updates to minimize absolute error

(difference between correct label and predicted label). The error that they are minimizing

53

is equivalent to the all-thresholds loss function (§ 5.2.5) when a sign agreement margin

penalty function is used.

We briefly mention another approach suggested for handling discrete ordinal ratings.

Herbrich et al. (2000) suggest extracting from the rating levels binary comparison rela-

tionships on the rated items and thus mapping the problem to a partial ordering problem.

Herbrich et al. then study a generalized SVM for learning from binary comparison rela-

tionships. A drawback of this approach is the number of order constraints on T items with

observed labels can be of order T 2 , even though the original input to the problem (the

observed labels) is only linear in T.

Ranking

Ordinal Regression (or more generally, "rating") can be viewed as a specific type of partial

ordering, where each example is placed into one of a number of equivalence sets and the

equivalence sets are given a total ordering. This relation is evident in work by Cohen et al.

(1998), where a weighting of expert opinions is used to yield a ranking on items. Each

expert specifies a rating of the items (mapping of the items into totally ordered equivalence

sets); since each expert has his/her own rating style/system, the authors are able to use the

overlapping ratings to establish a (nearly) total ranking of the items.

5.2.2 Specific contribution

The main contribution of this section is to study, in a systematic way, various loss functions

for (discrete) ordinal regression. Reflecting the fact that ordinal regression is a generalization

of binary classification, we separate the choice of a loss function for ordinal regression into

two parts: (1) the selection of a margin penalty function (MPF), and (2) the selection of a

construction, or particular combination of MPFs. Since our main interest is in how to handle

discrete ordinal labels, we focus on regularized linear prediction in a simple learning setting,

which we clarify in Section 5.2.3. In Section 5.2.4 we review various binary classification loss

functions, their corresponding margin penalty functions and we discuss their properties. In

Section 5.2.5 we present the immediate-thresholds and all-thresholds constructions, each of

which can utilize any of the MPFs discussed in section 5.2.4. In Section 5.2.6 we compare

the various methods through experiments using the various convex MPFs, and compare

them also to standard multi-class and sum-squared-error regression approaches.

5.2.3 Preliminaries

Since our main object of interest is how to handle discrete ordinal labels, we focus on

a simple learning setting in which we can demonstrate and experiment with various loss

functions. We are given a training set (Xi, Yi)i=1...n of n rated items, where for each item,

xi E Rd is a feature vector describing the item and yi E {1, ... ,l} is the rating level for

the item. We want to predict ratings that the user would give to future items. We do so

by learning a prediction mapping, z(x) : Rd -+ R, and set of thresholds, 0 E R1, such that

for an item with feature vector x, z(x) corresponds as well as possible to the appeal of the

item. We investigate different loss functions, loss(z; y, 9), for measuring the goodness of the

correspondence between the mapping, z(x), the target rating level, y, and the thresholds,
9.

In this paper, we focus on L 2-regularized linear prediction, where z(x; w) = wTx is a

linear function of x, parameterized by a weight vector w E Rd. We seek a linear predictor

54

3. 3 - 3 - 3 - 3.- 3

2 2 2 2 2 2

1 1 1 1 11

po 0 0 10 00
-1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2

Figure 5-1: Different margin penalty functions (left to right): (1) sign agreement, (2) margin

agreement, (3) hinge, (4) smooth hinge, (5) modified least squares, (6) logistic regression.

that minimizes a trade-off between the overall training loss and the squared (Euclidean)

norm of the weights:

J(w,9) = Zloss(wTx; yi, 9) + A-IIW2, (5.1)
2 2

where A is a trade-off parameter set using (e.g.) cross-validation. Note that by using 1 = 2

and substituting the appropriate loss function, we can arrive at the minimization objective

for a variety of linear predictor binary classification models (e.g. SVM, logistic regression,
least squares).

5.2.4 Margin Penalty Functions

The ordinal regression objective (5.1) with 1 = 2 is a common choice for binary classification.

Sign values, y E {-1, +1}, are typically used in place of the ordinal values for convenience.

The per-example loss is typically defined in terms of a non-negative, real-valued function,
what we will call the margin penalty function (MPF),

loss(z; y, 9) = MPF(y(z - 9)). (5.2)

Input to the MPF is the real-valued predictor, shifted and oriented so that zero corresponds

to the decision, a positive value corresponds to a correctly classified example and a neg-

ative value corresponds to an incorrectly classified example. As such, MPFs are usually

monotonic, non-decreasing functions.

Many well-known binary classifiers can be defined in this way. For the remainder of this

section, we discuss various MPFs and their corresponding binary classifiers. Note that a

binary label is inferred for an example by taking the sign of the linear predictor after the

threshold is subtracted: (x) = wTx - 9.
As we will discuss in section 5.2.5, MPFs are instrumental in our development of loss

functions for ordinal regression. In particular, they can be "plugged" into threshold-based

constructions to achieve ordinal regression loss functions. We go into some detail regarding

aspects of these margin penalty functions (MPFs), as understanding them will be valuable

for our later discussions.

Sign Agreement Our objective in binary classification is to be able to correctly predict a

binary label. The simplest conceivable binary classifier is one that selects the weight vector,

w, and threshold, 9, so as to minimize the number of errors on the training data. The

55

corresponding MPF is the negation of a slight variation of the Heaviside 2 step function,

MPFsign(z) = -H(z) = if z 0 (5.3)
1 if z < 0

This is also known as zero-one error and is the quantity that we would like to minimize on

future, unobserved examples. However, using this simple loss function is problematic for

several reasons:

1. It is insensitive to the magnitude of z, and thus the magnitude of w. Regularizing w

is therefore meaningless, as shrinking w towards zero would yield the same error, but

with a regularization term approaching zero.

2. It is not convex, and minimizing it is a difficult (in fact, NP-hard) optimization prob-

lem.

3. It is not continuous, let alone differentiable, and so even local optimization is difficult.

Margin The first problem can be addressed by requiring not only that z predict y cor-

rectly, but that it does so with a margin:

MPFMargin(z) = if Z>1 (5.4)
1 if z < 1

The corresponding loss function is sensitive to the magnitude of z, and therefore also to the

magnitude of w. Summing this loss function corresponds to counting the number of viola-

tions of the constraints y(wTX -) 1. Rewriting these constraints as y (W x - I) >

we can interpret Tw-I as a geometrical margin around the separating hyperplane,

specified by its normal wF . Minimizing the loss plus L 2 regularizer I wI 2 (5.1) can there-

fore be interpreted as maximizing the separation margin M = while minimizing the

number of training points not classified correctly with a margin of at least M. Note that

the Margin MPF retains the second and third drawbacks of the Sign Agreement MPF.

Hinge Using the Margin MPF (5.4) for binary classification might be worthwhile, but

it (and its corresponding loss) are neither convex nor continuous. A common approach to

large-margin classification is therefore to use the Hinge MPF,

MPFHinge(z) = (1 - z)+ = if z>1 (5.5)
1 - z if z < 1

The corresponding Hinge loss is minimized for soft-margin Support Vector Machine (SVM)

classification. In the context of SVMs, the Hinge loss is usually written as a sum over

margin violations i included in the constraints y(wTX - 9) > 1 - ,.

An important property of the Hinge MPF is that it is an upper bound on the Sign

Agreement MPF (5.3); thus, the Hinge loss is a bound on the number of training data

errors. Thus, any generalization error bounds on the Hinge loss on unseen data also provide

2The Heaviside function is typically defined with H(O) = 0.5.

56

a bound on the number of misclassifications on said unseen data, which is the true object

of interest.
Since the Hinge MPF is convex, we can easily analyze the minimum Hinge loss solution

easily. Ignoring any regularization term, the minimum is achieved when the sum of gradients

of the Hinge losses is zero. Margin violations of positive and negative examples correspond

to gradients of -1 and +1 (respectively). So, without regularization, the hinge MPF yields

a solution where equal numbers of positive and negative examples incur margin violations,
y(wTxi - 0) < 1. Note that the gradient is discontinuous-points on the margin can be

considered to have either a 0 or ±1 gradient.

Other MPFs share properties of the hinge, such as convexity, continuity and sensitivity

to w, but are easier to minimize since they have a smooth derivative. We describe these

alternate MPFs presently.

Smooth Hinge loss The Smooth Hinge MPF, introduced by Rennie and Srebro (2005a),

is an approximation to the Hinge MPF that is easier to minimize:

0 if z > 1

MPFSmooth(Z) = J(1 - z)2 /2 if 0 < z < 1 (5.6)

0.5 - z if z < 0

The gradient of the Smooth Hinge is identical to that of the hinge except for z E (0, 1).
As such, the minimum Smoothed Hinge loss solution is similar to the minimum Hinge loss

solution. However, whereas the Hinge solution equates the number of positive and negative

examples which violate the margin, the Smooth Hinge solution counts an example in the

margin (but on the correct side of the decision boundary) as a partial example, so examples

are weighted according to the severity of the margin violation.

The Smooth Hinge is not a bound on zero-one error, but twice the Smooth Hinge is.

Since the appropriate trade-off parameter (from eqn. 5.1) is problem-specific, the scale of

the MPF is irrelevant. I.e. if 3a with 1 < a < oo s.t. aMPF(z) > MFPsign(z) Vz, then the
binary classification loss corresponding to MPF(z) is effectively a bound on zero-one error.

Modified Least Squares Zhang and Oles (2001) suggest a different MPF with a smooth

derivative:

(0ifz>
MPFMLS(Z) = 2 z<1 (5.7)

(1 - Z)2 if Z < 1

The modified least squares MPF is much more sensitive to the magnitude of violations.

Whereas the Smooth Hinge MPF is only sensitive to magnitude within the margin (z E
(0, 1)), and the Hinge MPF is insensitive to the degree of violation, the Modified Least

Squares MPF is continuously sensitive to a violation of any magnitude. Adding a single

outlier in the training data can severely affect the Modified Least Squares solution, whereas

a single outlier will have a limited affect on the Hinge and Smooth Hinge solutions.

Logistic Regression Logistic Regression can be described in terms of the objective and

loss functions we have discussed. The conditional likelihood of an example under the Logistic

57

y=1 y=2 y=3 y=4 y=5 y=1 y=2 y=3 y-4 y-5

Figure 5-2: Shown are ordinal regression loss functions with the hinge MPF and two different

constructions: (left) immediate-thresholds, and (right) all-thresholds. Both correspond to

an example with label y = 4. Note that the slope of the immediate-thresholds loss remains
constant outside the label segment, whereas for all-thresholds, the slope increases with each

margin/threshold.

Regression model is

1
P(ylx) = (5.8)1 + exp(-y(xT w - 6))

where y E {-1,+1}. The per-example loss corresponding to (5.1) is the negative log

conditional likelihood, - log P(ylx). The corresponding MPF is

MPFLR(Z) = log(1 + ez). (5.9)

The L 2 regularizer as in (5.1) corresponds to maximum a-posteriori (MAP) estimation with

a Gaussian prior on the weight vector w.

Like the Hinge MPF, the sensitivity of the Logistic Regression MPF to outliers is limited

since the magnitude of the gradient of the MPF is bounded by 1. However, the Logistic

Regression MPF has a "perfectionist" tendency in that it decreases continuously as z -+ oo.

I.e. a solution is encouraged where (correctly classified) examples are as distant as possible

from the decision boundary.

5.2.5 Ordinal Regression Loss Functions

To extend binary loss to the case of discrete ordinal regression, we introduce K-1 thresholds

01 < 02 < ... < OK-1 partitioning the real line to K segments. The exterior segments are

semi-infinite, and for convenience we denote 00 = -oo and OK = +oo. Each of the K

segments corresponds to one of the K labels and a predictor value: a value 0 y_1 < z < Oy
(the yth segment) corresponds to a rating of y. This generalizes the binary case, where we

use a single threshold separating the real line into two semi-infinite segments: (1) z < 0,
corresponding to negative labels y = -1, and (2) z > 0, corresponding to positive labels.

Often in binary classification, a threshold of zero is used, but a bias term is added to weight

vector, in effect, performing the same role as the threshold. The K - 1 thresholds replace

the single bias term/threshold.
We restrict our attention to a class of two-part loss functions. Each loss function is

composed of: (1) a margin penalty function (MPF), and (2) a threshold based construction.
Each loss function is simply a sum of copies of the specified MPF. The threshold-based
construction specifies the orientation, number and locations of the MPFs.

58

Beyond Feature-Based Learning

We focus on linear predictors using explicit features, but we note that the methods dis-

cussed here can also be "kernelized," as in Support Vector Machines. Both the immediate-

thresholds and all-thresholds constructions with a hinge loss are generalizations of the

SVM and can be stated as quadratic programs to which optimization techniques typi-

cally employed in learning SVMs apply. In fact, Shashua and Levin (2003) introduced the

immediate-thresholds construction in the context of SVMs.

Immediate-Thresholds

Immediate-thresholds combined with the Hinge MPF was originally introduced by Shashua

and Levin (2003) under the name "fixed margin". Our description here is slightly more

general in that we detach the "construction" from the MPF.

For the immediate-thresholds construction, we consider, for each labeled example (x, y),
only the two thresholds defining the "correct" segment (y-1, Oy), and penalize violations

of these thresholds:

loss1 (wTx; y, 0) = MPF(wTx - Oy-1) + MPF(0y - wTx), (5.10)

where z(x) = wTx is the predictor output for the example. Figure 5-2 (left) gives an example

visualization for y = 4. Note that if MPF is an upper bound on the sign agreement MPF,
then the immediate-threshold loss is an upper bound on the misclassification (zero-one)

error. The immediate-threshold loss is ignorant of whether multiple thresholds are crossed.

When a convex MPF is combined with immediate-thresholds, it yields a convex loss

function. The Hinge MPF minimum loss solution equates the number of optimistic predic-

tions (rating too high) with the number of pessimistic predictions (rating too low).

All-Thresholds

All-thresholds was originally introduced by Srebro et al. (2005) (briefly in §6), and later

published by Chu and Keerthi (2005). Our descriptions here are slightly more general in

that we detach the "construction" from the MPF and consider a range of MPFs, not only

the hinge function (as in both Srebro et al. (2005) and Chu and Keerthi (2005)).
In a simple multi-class classification setting, all mistakes are equal; there is no reason

to prefer one incorrect label over another. This is not true in ordinal regression. Since

the labels are ordered, some mistakes are better than others. For example, if someone

adores a movie ("5 stars"), it is better that the system predict a moderately high rating

("4 stars") than a low rating ("1 star"). This is reflected in the evaluation criterion used

for ordinal regression. It is typical to use absolute error-the absolute difference between

the true and predicted labels-as the evaluation criterion. Immediate-thresholds does not

bound absolute error and the immediate-threshold gradient does not reflect the absolute

error criterion.
We introduce a loss function, all-thresholds, that bounds mean absolute error. To bound

absolute error, we must introduce a MPF at each threshold. A sum of Sign Agreement

MPFs, one located at each threshold, and oriented appropriately, is equal to the absolute

error. In order for the loss to bound absolute error, we must place an MPF at each threshold

and use an MPF which bounds the Sign Agreement MPF. To achieve the proper orientations

59

Multi-class Imm-Thresh All-Thresh
Test MAE Test MAE Test MAE

Mod. Least Squares 0.7486 0.7491 0.6700 (1.74e-18)
Smooth Hinge 0.7433 0.7628 0.6702 (6.63e-17)

Logistic 0.7490 0.7248 0.6623 (7.29e-22)
Multi-class Imm-Thresh All-Thresh

Test ZOE Test ZOE Test ZOE

Mod. Least Squares 0.5606 0.5807 0.5509 (7.68e-02)
Smooth Hinge 0.5594 0.5839 0.5512 (1.37e-01)

Logistic 0.5592 0.5699 0.5466 (2.97e-02)

Table 5.1: Mean absolute error (MAE) and zero-one error (ZOE) results on MovieLens. For

each construction/loss and error type, we selected the regularization parameter with lowest

validation error. Numbers in parentheses are p-values for all-threshold versus the next best

construction. As a baseline comparison, simple sum-squared-error (L2) regression achieved

test MAE of 1.3368 and test ZOE of 0.7635.

of MPFs, we define s(j; y) = -1 if . Then the all-threshold loss is
+1 ifj>y

1-1

lossA(wTX; y, O) = ZMPF (s(j; y)(Oj - wTx)). (5.11)
j=1

Figure 5-2 (right) gives an example visualization for y = 4 and the Hinge MPF. Note that

the magnitude of the slope increases with each threshold margin crossing.

When a convex MPF is used for all-thresholds, the result is a convex loss function.

The Hinge MPF minimum loss solution balances a the number of optimistic margin viola-

tions with the number of pessimistic margin violations. Whereas the immediate-thresholds

solution only accounts for immediate margin violations, the all-thresholds solution counts

margin violations for all-thresholds.

Learning Thresholds

Fitting an ordinal regression models involves fitting the parameters of the predictor, e.g.

z(x) = wTX, as well as the thresholds 01,...,01-1. Learning the thresholds, rather than

fixing them to be equally spaced, allows us to capture the different ways in which users

use the available ratings, and alleviates the need for per-user rating normalization. In a

setting in which multiple users are considered concurrently, e.g. in collaborative prediction,

a different set of thresholds can be learned for each user.

5.2.6 Experiments

To determine the appropriateness of the different constructions discussed earlier, we con-

ducted experiments on a well-known collaborative filtering data set. We implemented the

two threshold-based constructions discussed in Section 5.2.5 (combined with a variety of

MPFs), as well as multi-class classification and sum-squared error regression to compare

against.

60

We used the "1 Million" MovieLens data set for evaluation. The data set contains

1,000,209 rating entries, made by 6040 users on 3952 movies. Similar to the work of Cram-

mer and Singer (2002) and Shashua and Levin (2003), we used the ratings of the top 200

users to predict the ratings of the remaining users. I.e. each of the "remaining" users'

ratings were predicted as a weighted sum of the top 200 users' ratings. To deal with "miss-

ing" ratings, we subtracted the user's mean rating and filled-in empty values with zero. We

used the remaining 5840 users for evaluation. For each user, we used one randomly selected

rating for testing, another for validation and the remaining ratings for training. We limited

our experiments to the top 2000 movies to ensure a minimum of 10 ratings per movie. This

gave us test and validation sets each of 5,840 ratings and a training set of 769,659 ratings.

For each method (combination of construction method and MPF), and range of values

of the regularization parameter A, we fit weight and threshold vectors for each user by

minimizing the convex objective (5.1) using conjugate gradient descent 3 . We calculated

mean absolute error (MAE) and zero-one error (ZOE) between predicted and actual ratings

on the validation set and used the regularization parameter with the lowest validation set

MAE/ZOE for test set evaluation.
Table 5.1 shows test MAE and ZOE for various constructions and MPFs. Across all

MPFs, all-threshold yields the lowest MAE. The MAE differences between all-threshold

and the next-best construction (multi-class or imm-thresh depending on loss function) are

highly significant according to a non-parametric, two-tailed binomial test-the largest p-

value is 6.63e-17. Interestingly, all-threshold also yields lower ZOE, though the comparison

with multi-class classification (the next-best construction) is not conclusive (p-values E

(0.03, 0.14))4. Performance of the immediate-threshold construction seems poor, performing

roughly the same as multi-class for MAE and worse than multi-class for ZOE.

Results indicate that the choice of construction is more important than threshold penalty

function-all-threshold with the worst-performing penalty function yields lower MAE and

ZOE than the best non-all-threshold construction. However, it appears that the logistic

loss tends to work best; in particular, the differences in MAE between logistic and other

penalty functions (for the all-threshold construction) are significant at the p = 0.01 level

(largest p-value is 9.52e-03) according to the two-tailed binomial test.

5.2.7 Related Models

Before concluding, we provide an extended discussion of McCullagh's Proportional Odds

model (1980) and Chu and Ghahramani's Gaussian Processes model, comparing them to

the loss-based constructions we have discussed above.

Proportional Odds

McCullagh's Proportional Odds model (1980) assumes that:

* Examples are represented as d-dimensional real-valued feature vectors, x E Rd,

3 Note that any simple gradient descent method (such as Conjugate Gradients) requires that the objective

has a smooth gradient. Thus, we restricted ourselves to MPFs with a smooth gradient. Optimization of the

Hinge MPF requires (e.g.) a sub-gradient optimization method.
4 The difference between all-thresholds and immediate-thresholds is significant for ZOE-the largest p-

value is 7.84e-6 (not shown).

61

" Each example has an underlying score, defined by the dot-product between the feature

vector and a weight vector, w E Rd,

" The real number line is segmented via a set of threshold values, -00 = 0 < 01 <

02 < - < 01- 1 < 0i _ +oo, and

* Each example is associated with a discrete, ordinal label, y E {1, ... ,

" Each label, y, is associated with a segment of the real number line, (Oy-1, y).

These assumptions match those that that we use for development of our models. Define

g(z) = 1 , the sigmoid function. Proportional Odds defines the cumulative likelihood

of an example being associated with a label less-than-or-equal-to j (for j 5 1 - 1) as the

sigmoid function,

1
PPO(y 5 jx) = g(0j - wTx) = 1 . (5.12)

1 + exp(w x - Oj)

By definition, P(y lix) = 1. Note that P(y lx) = P(y = lix). We calculate other

likelihoods by taking cumulative differences,

Ppo(y = jlx) =Ppo(y x) - Ppo(y : j - 1ix) for j > 2, (5.13)
1 1

1 + exp(wTx - 9,) 1 + exp(wTx - 0j-1)

Parameters (w, 9) are learned via maximum likelihood. One can "modernize" Proportional

Odds by introducing a Gaussian prior on the weight vector (w), which would serve to

regularize the predictor. Also, a non-linear predictor can be added to Proportional Odds

without increasing the memory footprint via the kernel trick (Vapnik, 1995).

One might also include a (e.g. Gaussian) prior for the weight vector, which would corre-

spond to the L 2-norm penalty commonly used in SVMs and other classification algorithms.

Comparison with Proportional Odds The "loss" function for immediate-thresholds

with a Logistic Regression MPF is

LossIM(jlx) = log [1 + exp(wTx - O)] + log [1 + exp(oji - wTx)] (5.14)

= - log [g(9, - wTx)] - log [g(wTx - 9j_1)] (5.15)

Note that we can artificially reproduce this from Proportional Odds by treating each y = j

event as two events: y j and y > j - 1. Treating these two events as independent, we get

an (unnormalized) likelihood of

1
IM (y = 3 IX) 0C , (5.16)

[1 + exp(wTX - 9j)] [1 + exp(0j 1 - wTx'

which corresponds 5 exactly with the IM loss. Note that we can similarly artificially repro-

duce All-Thresholds (w/ Logistic Regression MPF) by splitting the y = j event into 1 - 1

events.

5 The loss function for a probabilistic model is the negative log probability.

62

3 3 3

3222I

-4 -3-2 -1 0 1 2 34 -4 -3 -2 -10 1 2 34 -4 -3 -2 -10 1 23 4

Figure 5-3: Loss functions for Proportional Odds (left), Immediate Thresholds (center),
and Gaussian Processes (right). The x-axis is the predictor output, z = wTx; the y-axis is

the loss (negative log-likelihood). The thresholds are fixed at 0== 2 and 9j-1 = 2.

Figure 5-3 compares the loss functions for Proportional Odds and immediate-thresholds

using z = wTx as a single parameter (as well as Gaussian Processes, discussed in sec-

tion 5.2.7). The two plots (for PO and IM) look strikingly similar. In fact, they are

identical save for a small constant difference of 0.0185 (PO loss is larger). Why is this?

Consider the difference between loss functions:

A = LossiM(j x) + log P(y = jix) = log [g(0, - wTX) - g(o_ - wTX)] -

log [g(93 - wTx)] - log [g(wTx - 9,_1)]. (5.17)

Now, consider the partial derivative of the difference with respect to w,

A exp(Oyi1 - w Tx) exp(wTx - oj_1)

0w 1 + exp(9jj - wTx) 1 + exp(w T x - Oj-1) ~

A change in the weight vector, w, does not affect the difference in loss functions. This

explains the near-identical graphs in Figure 5-3. Now, consider the partial derivative with

respect to a threshold, 0j,

&ALoss _ exp(wTx - Oj) 1 (5.19)
a0 exp(wTx - oj_1) - exp(wTx - 9,) exp(Oj - Oj_1) - 1

Note that 9, > 9j_1 so the partial derivative is non-negative. We see that the loss differ-

ence is affected by the threshold parameters. If we had compared Proportional Odds and

immediate-thresholds with a different upper threshold (9,), we would have found a different

constant difference between the loss functions.

We conclude that if the thresholds are fixed a priori, then the two models (Propor-

tional Odds and immediate-thresholds) are equivalent. However, the models are affected

differently by the settings of the threshold values.

Gaussian Processes

Chu and Ghahramani (2004) introduce a Gaussian Process framework for Ordinal Re-

gression. Similar to Proportional Odds, they introduce a predictor function and a set of

thresholds. They also use a probabilistic model which is normalized over the set of labels.

63

They posit an "ideal" likelihood 6

Pidea1(Y = T1<W X O (5.20)
PidalY =jjx) {0 otherwise

and assume a Gaussian prior over the data point location to account for noise in the data.

They integrate the "ideal" likelihood over the Gaussian prior to arrive at the likelihood,

P(y = jx) = J Pideal(y = jwTx + 6)J(6; 0, a2)dS = (Zl) - 4D(z2), (5.21)

where z1 = OWTXIZ = e JJJJ x , 4t(z) = f .A(z;0,1)dz and (j; 0, 0,2) denotes a

Gaussian PDF with random variable 6, zero mean and o2 variance.

Comparison with Proportional Odds Recall that the likelihood for Proportional Odds

is the difference between two sigmoids (5.13). The likelihood for Chu and Ghahramani's

model is the difference between two Gaussian CDFs. If we replace the Gaussian PDF in

(5.21) with the derivative of the sigmoid, we arrive at the Proportional Odds likelihood,

P(y = lX) = JPideal(Y = jlwTx + J)g(J)(1 - g(3))dJ (5.22)

= g(9i - wTx) - g(9i_1 - wTx). (5.23)

I.e. at its core, Chu and Ghahramani's model is Proportional Odds with a swap of the

sigmoid for a Gaussian CDF. As can be observed in Figure 5-3, Proportional Odds imposes

an approximately linear penalty on margin violations, whereas Chu and Ghahramani's

model imposes an approximately quadratic penalty. As a result, Chu and Ghahramani's

model may be overly sensitive to outliers.

5.2.8 Ranking

Though we have focused on the task of rating (assigning a discrete ordinal value to each

item), the techniques we use are readily applicable to the task of ranking (ordering a set of

items). Note that any Ordinal Regression model trained according to our objective (5.1)

can ran a set of items simply according to the predictor output: lb Tx,, where lb is the

learned weight vector. Furthermore, if we are given ranked training data, we can apply an

all-thresholds-type construction by interpreting each pair of examples as an example and

threshold. An MPF is introduced for each example pair where the input to the MPF is the

predictor output difference: wT(x 1 - x2). When there are a large number of examples, it

may be a waste to introduce an MPF for every pair; it may be sufficient to only introduce

an MPF for pairs of examples within (say) 5 or 10 rank-values of each other.

5.2.9 Summary

Our motivation for this work was to be able to synthesize opinions and preferences expressed

about items in informal communication, such as those expressed about restaurants on a

6For simplicity and consistency, we use a linear predictor here. Chu and Ghahramani's framework allows
for general (non-linear) predictors.

64

restaurant bulletin board. We assumed that each item can be represented as attribute

values and that opinions/preferences are given to us in terms of discrete, ordered values,
which might correspond to different words used to describe the item. We detailed the

construction of loss functions for this domain (ordinal regression) and recommended the

use of one in particular (all-thresholds), which is well motivated, and performed very well

in our experimental evaluation.

5.3 Collaborative Filtering

In the previous section, we conducted a study of preference learning based on two key

assumptions: (1) preferences are given in terms of discrete, ordered ratings, and (2) we

can encapsulate information about each of the items in a vector of attribute values (feature

vector). The first assumption seems reasonable for our informal communication setting

since adjectives and words used by a user to describe an item are, effectively, a personalized,
discrete rating system. The second assumption seems too strong since it can be difficult or

impossible to observe and/or quantify all aspects of items that may affect a user's rating.

Consider the restaurant scenario. It may be easy to gather information on cuisine type,

menu items, ownership, and staffing. But, service, decor and the balance & complexity of

the food are all aspects which may affect a user's rating of a restaurant, yet cannot easily

be quantified.
In this section, we discuss an alternate paradigm, "collaborative filtering", which elimi-

nates assumption #2, but makes its own assumption-that preference information can be

deduced by observing how multiple users rate a variety of items. In ordinal regression, each

user is treated separately. Yet, when users express opinions on a common set of items, the

overlap of opinions can be used to generalize to unseen user/item pairs-we do not need

to collect features/attributes of the individual items. This is a natural extension of the

experiments conducted in the previous section, where we used one set of user preferences

as the attribute vectors for ordinal regression.

5.3.1 Introduction and Related Work

"Collaborative filtering" refers to the task of predicting preferences of users based on their

preferences so far, and how they relate to the preferences of other users. For example, in

a collaborative filtering movie recommendation system, the inputs to the system are user

ratings on movies the users have already seen. Prediction of user preferences on movies they

have not yet seen are then based on patterns in the partially observed rating matrix. The

setting can be formalized as a matrix completion problem-completing entries in a partially

observed data matrix Y. This approach contrasts with a more traditional feature-based

approach, such as Ordinal Regression § 5.2, where predictions are made based on features

of the movies (e.g. genre, year, actors, external reviews) and/or users (e.g. age, gender,

explicitly specified preferences). Users "collaborate" by sharing their ratings instead of

relying on external feature information.
A common approach to collaborative filtering is to fit a factor model to the data, and use

it in order to make further predictions (Azar et al., 2001; Billsus & Pazzani, 1998; Hofmann,

2004; Marlin & Zemel, 2004; Canny, 2004). The premise behind a low-dimensional factor

model is that there is only a small number of factors influencing decisions, and that a user's

choices are determined by how the factors for a movie relate to each user's preferences. In

65

a linear factor model, movie factors and user preferences are each represented by a real-
valued vector with one entry per factor. Thus, for m users and n items, the predicted
ratings according to a k-factor model are given by the product of an m x k preference
matrix U (each row representing a user's preferences) and a n x k factor matrix V (each
row representing the factors, or features, of a movie). The rating matrices which admit such
a factorization are matrices of rank at most k. Thus, training such a linear factor model
amounts to approximating the observed ratings Y with a low-rank matrix X.

The low-rank matrix X that minimizes the sum-squared distance to a fully observed
target rating matrix Y is given by the leading singular components of Y and can be efficiently
found. However, in a collaborative filtering setting, only some of the entries of Y are
observed, and the low-rank matrix X minimizing the sum-squared distance to the observed
entries can not be computed in terms of a singular value decomposition. In fact, the problem
of finding a low-rank approximation to a partially observed matrix is a difficult non-convex
problem with many local minima, for which only local search heuristics are known (Srebro
& Jaakkola, 2003).

Furthermore, especially when predicting discrete values such as ratings, loss functions
other than sum-squared loss are often more appropriate: loss corresponding to a specific
probabilistic model (as in pLSA (Hofmann, 2004) and Exponential-PCA (Collins et al.,
2002)) or a bound on classification error such as the Hinge loss. Finding a low-rank matrix
X minimizing loss functions other then squared-error is a non-convex optimization problem
with multiple local minima, even when the the target matrix Y is fully observed 7.

Low-rank approximations constrain the dimensionality of the factorization X = UVT,
i.e. the number of allowed factors. Other constraints, such as sparsity and non-negativity
(Lee & Seung, 1999), have also been suggested for better capturing the structure in Y, and
also lead to non-convex optimization problems.

Recently, Srebro et al. (2005) suggested "Maximum Margin Matrix Factorization"
(MMMF), constraining the norms of U and V instead of their dimensionality. Viewed
as a factor model, this corresponds to constraining the overall "strength" of the factors,
rather than their number. That is, a potentially infinite number of factors is allowed, but
relatively few of them are allowed to be important. For example, when modeling movie
ratings, there might be a very strong factor corresponding to the amount of violence in
the movie, slightly weaker factors corresponding to its comic and dramatic value, and ad-
ditional factors of decaying importance corresponding to more subtle features such as the
magnificence of the scenery and appeal of the musical score.

Mathematically, constraining the norms of U and V corresponds to constraining the
trace norm, or sum of singular values, of X. Interestingly, this is a convex constraint, and
so finding a matrix X with a low-norm factorization minimizing any convex loss versus
a partially (or fully) observed target matrix Y, is a convex optimization problem. This
contrasts sharply with rank constraints, which are not convex constraints, yielding non-
convex optimization problems as described above. In fact, the trace norm (sum of singular
values) has also been suggested as a convex surrogate for the rank (number of non-zero
singular values) in control applications (Fazel et al., 2001).

Fazel et al. (2001) show how a trace-norm constraint can be written in terms of a
linear and semi-definite constraints. By using this form, Srebro et al. (2005) formulate

7The problem is non-convex even when minimizing the sum-squared error, but for this special case of

minimizing sum-squared error over a fully observed target matrix, all local minima are global (Srebro &

Jaakkola, 2003).

66

MMMF as semi-definite programming (SDP) and employ standard SDP solvers to find

maximum margin matrix factorizations. However, such generic solvers are only able to

handle problems with no more than a few tens of thousands of constraints, corresponding

to about ten thousand observations (observed user-item pairs). This is far from the size of

typical collaborative filtering problems, with thousands of users and items, and millions of

observations.
In this section, we investigate methods for seeking a MMMF by directly optimizing the

factorization X = UVT. That is, we perform gradient-based local search on the matrices

U and V. We call this strategy Fast MMMF. We show that the Fast MMMF objective is a

bound on the original MMMF objective and that any solution to the Fast MMMF objective

is a solution of the original MMMF objective. Though the Fast MMMF objective is not

convex, empirical tests reveal no evidence of local minima. Using such methods, we are

able to find MMMF solutions for a realistically-sized collaborative filtering data set, and

demonstrate the competitiveness of MMMF versus other collaborative filtering methods.

5.3.2 Simultaneously Learning Weights and Features

Consider fitting an m x n target matrix Y with a rank-k matrix X = UVT, where U E Rmxk

and V E Rnxk. If one of the matrices, say V, is fixed, and only the other matrix U needs

to be learned, then fitting each row of the target matrix Y is a separate linear prediction

problem. In the case that the entries of Y are discrete ordered values, then we will also learn

a matrix of threshold values, 9 E Rmx(- 1), and fitting each row of Y is exactly an Ordinal

Regression problem as discussed earlier. Each row of V serves as a "feature vector;" each

row of U is a vector of preference weights. Their product yields a matrix UVT = X which

is compared to the target matrix, Y, via a set of thresholds, 9, and an Ordinal Regression

loss function (such as all-thresholds, § 5.2.5).
In collaborative filtering, U, V and 9 are unknown and need to be estimated. This can

be thought of as learning feature vectors (rows of V) for each of the columns of Y, enabling

good linear prediction across all of the prediction problems (rows of Y) concurrently, each

with a different linear predictor (row of U) and set of thresholds (row of 9). The features

are learned without any external information or constraints which is impossible for a single

prediction task. The underlying assumption that enables us to do this in a collaborative

filtering situation is that the prediction tasks (rows of Y) are related, in that the same

features can be used for all of them, though possibly in different ways.

Note that k bounds the rank of X. If k < min(m, n), learning of the approximation

matrix X is rank-constrained. This is similar to limiting the number of features available

for Ordinal Regression. A rank constraint is a common choice of regularization to limit the

strength of the model in order to improve generalization. Instead, our framework for Ordinal

Regression (§ 5.2) already has regularization in the form of a squared L 2 penalty (5.1), which

encourages a solution where data are well separated from the thresholds.

Iterative Algorithm The symmetry of the collaborative filtering problem suggests a

simple iterative solution. Allow U and V to be full rank, k = min(m, n), and initialize the

parameters (U, V, and 9) to random (e.g. drawn from unit Normal) values. Learn U and

9 while holding V fixed, effectively learning a Ordinal Regression (OR) model for each row

of Y-each row of U (9) corresponds to a weight (threshold) vector. Then, learn V while

holding U and 9 fixed. Here, the OR problems are tied and must be learned jointly, each

row of V representing the feature vector for a single item across all OR problems. The

67

minimization objective for learning U and 9 can be written as a set of OR objectives, or as

a single, combined objective,

Ji(U, 9) = [loss(UiVT; Yij, i) +-IIUIIN, (5.24)
i,jES

where Ui is the ith row of U, V is the jth row of V, 92 is the ith row of 9, "loss" is one of

the Ordinal Regression loss functions discussed in § 5.2.5, S is the set of observed (training)

entries in Y, and 1| . 112 designates the squared Frobenius norm, which is simply a sum of

squared entries of a matrix: |IUI| 0 = Q, U?. Optimization of V cannot be divided and

must be learned jointly. The minimization objective for V is

J2 (V) = [loss(UiVT; Yij, 92) + Fr|VII'o. (5.25)
i,jES

Each of these two objectives is simply a sum over users of the Ordinal Regression objective.

Note that for any loss function with a smooth derivative (including constructions based

on the Modified Least Squares, Logistic Regression, and the Smooth Hinge MPFs), param-

eters (U, V and 9) for the above iterative algorithm may be learned via gradient descent

style algorithms (such as Conjugate Gradients (Shewchuk, 1994) or L-BFGS (Nocedal &

Wright, 1999)).
A disadvantage of the iterative algorithm is that it hinders the optimization procedure

by separating the parameters. A primary challenge of optimization is to account for second

and higher order effects. The iterative algorithm optimizes U and V separately, so any joint

curvature in the objective function is not accounted for in the choice of descent directions.

Such optimization may lead to a "zig-zag" phenomenon and exceedingly slow convergence,
as discussed in §6.2 of Shewchuk (1994); see Figure 19 of Shewchuk (1994) for a visualization.

Joint Optimization We can remedy this issue by solving for U, V and 9 jointly. We do

this by optimizing what we call the "joint" objective (aka "Fast MMMF"). To jointly solve

for U, V and 9, we simply combine regularization terms from the iterative objectives,

J(U, V,9) = Y] loss(UiVf; Yij,) + A 2(Ul12 + (5.26)
iJSi2 (Fro + 1IVI~r). 5.6

i,jES

Fast, first-order gradient descent algorithms, such as Conjugate Gradients and L-BFGS,
will converge more quickly using this joint objective than using the aforementioned iterative

algorithm due to the additional information available to the algorithm at each iteration.

One drawback with the joint objective (Fast MMMF) is that it cannot easily be kernel-

ized. The kernelization typically employed in (e.g.) Support Vector Machines require that

the "feature vector" be fixed. Here we are (in effect) simultaneously learning both features

and weights. Thus, in order to learn kernelized features, we would need to calculate the

gradient of the inverted kernel mapping. For polynomial kernels, this would not be diffi-

cult, but use of other kernels may prove difficult. Note that kernels may not be particularly

useful in the context of MMMF. Whereas with linear binary prediction, the expression of

the classifier is limited by the set of feature vectors, this is not the case with MMMF, where

expression is only limited by the strength of the regularization.

Though we have presented the joint objective (5.26) as a simple generalization of Ordinal

68

Regression, solutions to the joint objective have an appealing property which is not clear

from our development. The joint objective was originally introduced as a way to apply

Maximum Margin Matrix Factorization to large data sets. In the next section, we detail

this alternate development and discuss properties of the joint objective.

5.3.3 Maximum Margin Matrix Factorization

Maximum Margin Matrix Factorization (MMMF) was introduced by Srebro et al. (2005) as

a framework for Collaborative Filtering. The all-thresholds, trace norm variant of MMMF

uses a minimization objective closely related to the joint objective we have developed (5.26).

However, the matrix (X) is not factorized and the trace norm of X is used in place of the

sum of Frobenius norms of the factorized components,

JMMMF(X, 0) = E loss(Xij; Yij, 9i) + AIIXIIr, (5.27)
i,jES

where "loss" denotes an Ordinal Regression loss function (§ 5.2.5) and IIX|rI denotes the

trace norm of X (the E subscript alluding to the fact that it is the sum of singular values).

This objective cannot be optimized via simple gradient descent techniques. As observed by

Srebro et al. (2005), the objective can be written as a semi-definite program (SDP). Modern

SDP solvers can handle medium-size problems (e.g. a few thousand rating observations),
but cannot cope with large data sets involving millions of rating observations. For this

reason, the joint objective (5.26) has been suggested as an alternative to the original MMMF

objective (5.27) (Rennie & Srebro, 2005a).

Trace Norm The trace norm of a matrix, IIXIIE, is the sum of its singular values. See

§ 4.3 for additional background and intuition. The trace norm in the MMMF objective is

used to encourage a low-rank solution. The trace norm penalizes the rank of X much in

the same way that the hinge loss penalizes classification error and the Ll-norm penalizes

non-zero weights. It is a convex function with a non-continuous derivative at each change in

rank. One way which the trace norm can be defined is as the minimum over factorizations

of X of the average Frobenius norm of the factors:

IIXIkE = min (UII + IVII12). (5.28)
u,v 2 R iia)

X=UVT

In other words, given a factorization of X = UVT, the average Frobenius norm of the

factors is a bound on the trace norm of X, :!XI P(U1I, + IIVI12 0). Thus, our "joint"

objective is actually a tight upper bound on the MMMF objective.

Consider substituting this trace norm definition into the MMMF objective:

JMMMF(Xi) = loss(Xi3 ; Yij,94)+ m in (IIUlII0 + IVInIo). (5.29)
i,jES X=UVT

To go from this to our joint objective, we must change parameters from X to U,V and

eliminate the (now unnecessary) minimization over U,V in the regularization term.

The joint objective is a tight variational bound on the MMMF objective. The objectives

are equal when X = UVT and U,V are the minimum average Frobenius norm factorization

69

of X. Generally speaking .AIrNIw(UV T , 6) < J(U. V.0). We describe the bound as "vari-
ational' because additional parameters are introduced which make the objective easier to
optimize.

5.3.4 Low-Rank Solutions

Here we discuss the reason that the MMMF and joint objectives tend to produce low-rank
solutions. To begin, we discuss a simple setting involving linear prediction and Lr-norm
regularization of the weight vector. The use of the trace norm in our collaborative filtering
work is a generalization of this simple case. Whereas the L1-norm encourages few non-zero
parameter values, the trace norm encourages few non-zero singular values (i.e. low-rank).

L1 Regularization for Linear Prediction

It is well known that L 1 regularization in linear prediction encourages a solution where
many parameter values are null. A typical such objective is

J i(W) = loss(wTxi; y,) + AlwIl, (5.30)

where the sum of absolute values is the L, norm, ||wJ|1 = Z. |wj|. If the loss function is
convex, as is typical, then the minimum/solution is found where the gradient with respect
to w is zero. The sub-differential of the Ll norm at wj = 0 is [-1, +1], and it is +1 for all
other values, wn9 f 0. Let w* denote a global minimum of JL,. In order that w* # 0, it must
be that the gradient of the loss with respect to wj somewhere has magnitude > A. Compare
this to an L2 -norm regularized objective. The gradient of the L 2-norm is continuous, so
any non-zero loss gradient is sufficient to offset the cost of a non-zero parameter value. The
idea of using the L, norm to regularize supervised learning was introduced by Tibshirani
(1996) as "Lasso".

Trace Norm

The trace norm, ||X||r is an L1 norm on the singular values of X. Let W(w) be a diagonal
matrix parameterized by w (values along the diagonal). Then, the following objective using
trace norm regularization is equivalent to the Li objective (5.30),

JE (w) = loss(wTXi; yi) + AfllW(w)llE JL,(W). (5.31)

When we apply the trace norm as regularization to an unconstrained matrix, as in the
MMMF objective (5.27), it encourages few non-zero singular values in the same way that
the L -norm encourages few non-zero weight values. See §5.1.7 of Fazel (2002) for additional
discussion.

For additional intuition, we consider the trace norm of a 2 x 2 matrix. Note that the
trace norm (1) is rotation invariant (i.e. ||XIr = I|XR||E for R E 0(n)), and (2) the trace
norm is associative with scalar multiplication (i.e. ||cXJlr = cllXIlz). Thus, orientation and
scale of one row of X is arbitrary. So, we only parameterize the second row:

X (x, y) = 1 0 (5.32)

70

2.5-

E

1 0
-1 -1

Y x

Figure 5-4: Shown is the trace norm of the matrix X(x, y).

28 8

22

o 1 2 2

-2 2io 2 6 -' - 2 -2 0 2-2 - 0 1 21

Figure 5-5: Visualization of the joint objective for a simple example from various viewpoints.

From left-to-right, the first plot provides a general view of the surface; the second plot

provides a top-down view, where colors indicate surface height, with red being the highest

and dark blue being the lowest-note the two minima at (1, 1) and (-1, -1); the third plot

shows values of the objective for u = v; the fourth plot shows values for u = -v.

We plot the trace norm of X in Figure 5-4 as a function of x and y. For any fixed x = c,

the trace norm is approximately IIX(c, y)II ~y + 1+ c2 . For fixed y = c, the trace

norm is approximately IIX(x, c)IIr ~ cl + v1+ x2 . When y = 0, the matrix has rank 1.

When y f 0, the matrix has rank 2. The fact that trace norm behaves like an absolute

value function as y changes (x held fixed) means that when the trace norm is used in a

combined objective, a low rank solution is encouraged. Thus the trace norm is an effective

regularizer for learning-it provides a continuous, convex penalty which discourages a high

rank solution.

5.3.5 Properties of the Joint Objective

Now that we have established some intuition for the trace norm and described how it

encourages a low-rank solution, we now turn to a discussion of the joint objective (5.26).

We focus on stationary points, paying special attention to points where gradient descent

optimization might terminate (minima).

A Simple Example

To build intuition, we begin with a simple example of the joint objective. Consider the

scenario of binary classification on the real number line with the hinge as our loss function.

There is only a single variable, x (E R, which we parameterize as x = uv, u, V E R. The

71

joint objective is

J(u, v, 9) = Z(1 - yi(uv - O))+ + A(U2 + v 2) (5.33)

To simplify further, consider the case that there is just a single, positively labeled (y1 = +1)
example, the regularization parameter is fixed at A = 1/2 and the threshold is set to 9 = 0.
Figure 5-5 provides a graphical depiction of this objective surface as a function of u and v.

Note that there are exactly two minima, at (1, 1) and (-1, -1), both attaining the same

globally minimal objective value, J(1, 1, 0) = 0.5.
Note that it is trivial to show that there are (at least) two global minima. Let (U, V)

be a global minimum. Then (-U, -V) yields the same matrix X = UVT = (-U)(_V)T
without affecting the regularization term.

Non-Convex

An immediate corollary of the fact that the joint objective has multiple global minima
is that it is not convex. This introduces questions of stationary points, and, especially,
local minima. Recall that the joint objective is a variational bound on the (convex) MMMF
objective. The joint objective is over-parameterized relative to the MMMF objective. What
is the consequence of these additional parameters? Do they simply serve to create stationary
points and multiple global minima? Or, do they also have the effect of creating local minima.

Multiple Global Minima

We have established that there are at least two global minima in the joint objective. Are
there more? Generally speaking, the answer is: yes. And, we can describe those additional
minima succinctly. First note that there are many factorizations which yield the same
matrix product. Let (U, V) be a parameter setting of the joint objective. Then, any
appropriately-sized invertible matrix, A, yields a parameter setting8, (UA, VA-T), with
the same product: X = UVT = UAA-VT. This change does not affect the loss portion of
the joint objective, but it may affect the regularization term. Given a single global minimum
of the joint objective, we can attain other global minima via invertible transforms which do
not affect the average Frobenius norm; i.e. via rotation. Given a global minimum, (U, V),
and an appropriately-size rotation matrix, R, (UR, VR) is a global minimum. Note that in
our simple example, R = [-1] is the only non-trivial rotation matrix. However, for more

interesting cases, such as the 2 x 2 matrix, there is a continuum of rotation matrices, and
thus a continuum of global minima.

Parameter Counting

Ignoring 9 and A, the MMMF objective has mn parameters (recall that X E Rmxl). Wlog,
assume m < n. Then, the joint objective has m(m + n) parameters (U E Rmxm and

V E Rnxm). mn of the joint objective's parameters are accounted for in the determination of

X = UVT. This leaves m 2 parameters. The multiple global minima account for m(m- 1)/2
of those parameters, which is the number of parameters required to define an m x m rotation
matrix (strictly upper triangular matrix). Another m parameters (diagonal matrix) are

8 The notation AT denotes the transpose of A-'.

72

accounted-for by variations in the average Frobenius norm ((11U 120 + IIV|2 .)/2). Note

that by multiplying a column of U by c > 0 and multiplying the corresponding column of

V by 1/c, we can alter the average Frobenius norm without altering the matrix product,
X = UVT. This leaves us with m(m - 1)/2 parameters (strictly lower triangular matrix)

which are accounted-for by another rotation. We observed earlier that any m x m invertible

matrix transform U and V (to UA and VA-T) without affecting the product UVT - X.

The set of non-invertible matrices is a measure-zero set and so does not affect the number

of parameters. Note that the singular value decomposition of a matrix (X = USVT, where

U, V are orthonormal and S is diagonal) is a decomposition into two rotation matrices (U

and V) and one diagonal/magnitude matrix (S). I.e. this corresponds exactly with our

discussion: the set of parameters which do not affect X are exactly the (m 2) parameters of

an invertible matrix, corresponding to two rotation matrices and a diagonal matrix.

Normalized Optimization

Of note in our U-V parameterization is that we have twice the number of magnitude param-

eters that we need. Note that we can multiply the kth column of U by ck and the kth column

of V by 1 without affecting the product UVT = X. However, this scaling of the columns

does affect the average Frobenius norm, which we define as Fro(U, V) (1IU112 +IIVII 2)/2.

Can we eliminate this excess variability in scale? In fact, it can be done relatively easily.

Consider parameterizing U and V with a column-scale vector, c E R'. Let U and V rep-

resent some factorization of X = UV T . Then, Uik(c) = ckUik and Vk(c) = -Vfjk. We can

modify the average Frobenius norm of U(c) and V(c) by changing c. Consider minimizing

the average Frobenius norm:

mi +2 (5.34)
m n k i k

Each column can be minimized independently. Note that arg min. x2 a + b = . Hence,
- a

the optimum is c* - Ei Uk, which corresponds to equalizing the column norms. I.e. c*

is chosen so that the kth column of U(c) has the same L2 -norm as the kth column of V(c).

This observation suggests that we can eliminate the duplicate magnitude control in our

parameterization. This can be done by parameterizing each row of U and V as a unit-length

vector using radial coordinates and by creating a new vector of magnitude parameters which

are represented as the diagonal of a diagonal matrix E.

An alternative, heuristic method for applying this knowledge (which does not require a

reparameterization) is to simply normalize the columns of U and V before every iteration

of gradient descent. Figure 5-6 provides an outline of the algorithm. This provides us

with much of the benefit of a reparameterization without having to substantially alter code

we have written for optimization of the joint objective. We find this heuristic technique

to be a great improvement over regular optimization of the joint objective. In testing on

the MovieLens data set, we find that, with random initialization of U and V, performance

through approximately the first 50 iterations is comparable to regular optimization. After

the first 50 iterations, we see the heuristic method making much larger decreases in the

objective compared to regular optimization. All of our MMMF experiments in § 5.3.7 use

this "normalized" optimization method.

73

" Select random initialization: U0 , V0

" Repeat:

1. Normalize UT, 1 T so that each pair of kth columns have the same length:

Z:3(V31 _ __U T = Ti

2. Perform iteration of gradient descent, yielding updated parameters: UT, iT

Figure 5-6: Outline of heuristic algorithm for "normalized" optimization of the joint objec-

tive.

Stationary Points

In our simple example (Figure 5-5), the origin is a stationary point. Generally, the joint

objective may have a continuum of stationary points much like it may have a continuum of
global minima. A factor in establishing stationary points of the joint objective is whether U
and V have matching rank deficiency. Consider U,V such that 3x $ 0 with Ux = Vx = 0.
U and V are rank deficient. Now, consider the gradient of the joint objective at (U, V).

We find that the gradient of J(U, V, 0) with respect to U or V is zero in the direction of x.

I.e. -J(Uv,-)x = 8J-Uv,0)X = 0 (where 8 =). This is due to the fact that adding

a constant multiple of x to any row of U will not effect a change in X = UVT. Without
a corresponding change in V, x will remain in V's null space and the change to U will not

affect the matrix product. I.e. a setting of U,V with matching rank deficiency is stationary
with respect to the rank deficient portion. Gradient descent will find a minimum with

respect to the non-rank-deficient portion of U and V, leaving the rank-deficient portion of

U,V unchanged. This is an important issue for the initialization of gradient descent-U and

V must be initialized to full-rank matrices. However, stationary points are unlikely to be

a concern for optimization since rank deficient parameter settings represent a zero-measure
set and stationary points are not attractive.

Local Minima

We now have some intuition and understanding of the joint objective. However, a lingering
question remains: are there local minima? If so, we may not be any better off than we

would have been by imposing a hard rank constraint. On the contrary, if local minima are

nonexistent, then we have found an efficient method for finding Maximum Margin Matrix

Factorizations. We proceed by conducting an empirical investigation.
Maximum Margin Matrix Factorization (Srebro et al., 2005) was originally proposed

with the Hinge MPF. For relatively small problems (e.g. a few thousand rating observa-

tions), we can use an SDP solver to obtain the correct global solution to the original MMMF
formulation (equation (5.27) where "loss" is all-thresholds with the Hinge MPF). However,
since we optimize the joint objective with conjugate gradients, we cannot effectively opti-

mize a loss involving the Hinge because it is not sufficiently smooth. Instead, we optimize a

parameterized upper bound on the Hinge which becomes increasingly tight as the parameter

74

14
10

5 10

S10 310

E
0 10a10 100 i

E

Y Y

Figure 5-7: (left) Summed absolute difference between X (top) and Y (bottom) matrices

between the joint/SGL solution and the MMMF/Hinge solution as a function of -y. A

value of 102 for the Y matrix corresponds to a difference in at most 1% of entries. (right)

Difference between SGL and Hinge objective values as a function of -y. The top two lines

show the SGL objective values for the (top) SDP, and (middle) SGL solutions. The bottom

line gives the Hinge objective value for the SGL solution. There is a clear trend toward zero

as -y - 0, suggesting that there are no local minima issues.

increases. The shifted generalized Logistic' (SGL) is the bound that we use on the Hinge,

1
MPFSGL(Z) = - log(1 + exp(y(1 - z))). (5.35)

Note that as -y -* o, this function approaches MPFHinge(z) = (1 - z)+.
To test for local minima in the joint objective, we took a 100x100 subset of the Movie-

Lens data set, found the solution to the MMMF Hinge-based objective using an SDP solver,

then optimized via Conjugate Gradients using the SGL-based joint objective. We found

that as we increased y toward infinity, the solution found via Conjugate Gradients became

increasingly close to the "correct" solution returned by the SDP solver. Figure 5-7 (left)

shows differences in the solution matrices of the joint objective compared to MMMF solu-

tions returned by the SDP solver. As y increases, the differences in X and Y shrink toward

zero. Numerical issues made it impossible for us to explore values of y > 300, but the trend

is clear-the difference tends to zero as y - oo. Tests using a variety of regularization

parameters and randomly drawn training sets were similar. Figure 5-7 (right) shows ob-

jective values compared to the "correct" solution. The top two lines give the SGL-based

objective values for the (top) SDP/Hinge and (middle) Conjugate Gradients/SGL solutions.

If the SGL solution were a local minimum, the corresponding objective value would likely

be somewhere greater than the loss for the SDP/Hinge solution. The bottom line gives the

Hinge-based objective value for the SGL solution. It tends toward zero, suggesting that,

in the limit, the SGL solution will achieve the same global minimum as the SDP/Hinge

solution.
Note that for our large-scale experiments (§ 5.3.7), we limit the sizes of U and V. This

is equivalent to imposing low-rank constraints on U and V, which is certain to introduce

local minima. However, the trace norm regularization seems to temper the local minima

issue as our approach out-performs many rank-constrained approaches.

9 Zhang and Oles (2001) and Zhang et al. (2003) discuss the generalized Logistic.

75

.0

0 20 40 60 80 100
Rank

Figure 5-8: Objective value after learning U and V for various regularization values on a

100x100 subset of the MovieLens data set. The "rank" axis indicates the number of columns

we used for U and V (the value of k). Each line corresponds to a different regularization

constant (A). Each point corresponds to separate, randomly initialized optimization.

5.3.6 Implementation Details

The original MMMF formulation does not directly impose any restriction on the rank of X.

However, a matrix of size m x n cannot have rank larger than k = min(m, n). Furthermore,
a convex combination of two m x n matrices, X = AX 1 + (1 - A)X 2 , cannot have rank

larger than k. So, in our optimization of the joint objective, it is sufficient to use U, V

matrices of rank k; we gain no benefit from using larger-sized U, V matrices. However,
for dealing with large data sets, even rank-k matrices may be too large due to real-world

computational resource constraints. For our experiments in Section 5.3.7, we use values of

k E {100, 500}. This is certain to introduce local minima. While using a too-small value of

k may lead to a sub-optimal solution, we found a wide range of values of k that yielded near-

identical solutions on a sample data set. Figure 5-8 shows the objective value for various

regularization values and rank-truncated U, V matrices on a subset of the MovieLens data

set. Although X is 100x100, values of k E (20,40) (depending on A) achieve nearly the same

objective value as k = 100. Trace norm regularization seems to temper the local minima

issue as is seen here and in our large scale experiments (detailed in the next section) as our

approach out-performs many rank-constrained approaches.

For optimization of U, V and 0, we used "normalized" optimization of the joint ob-

jective, as described in § 5.3.5. For gradient descent, we used the Polak-Ribiere variant

of Conjugate Gradients (Shewchuk, 1994; Nocedal & Wright, 1999) with the consecutive

gradient independence test (Nocedal & Wright, 1999) to determine when to "reset" the

direction of exploration. We used the Secant line search suggested by (Shewchuk, 1994),
which uses linear interpolation to find an approximate root of the directional derivative. We

found PR-CG to be reasonably fast, yielding matrix completion on a 30000x1648 EachMovie

rating matrix (4% observed entries, using rank k = 100 U, V matrices) in about 5 hours

of computation time (single 3.06Ghz Pentium 4 CPU). We note that other gradient-based

algorithms, such as L-BFGS (Nocedal & Wright, 1999), may yield even faster optimization.

5.3.7 Experiments

Here we report on experiments conducted on the IM MovieLens and EachMovie data sets.

76

Data and Setup

The EachMovie data set provides 2.6 million ratings for 74,424 users and 1,648 movies.

There are six possible rating values, {1, 2, ... , 6}. As did Marlin, we discarded users with

fewer than 20 ratings. This left us with 36,656 users. We randomly selected 30,000 users

for the "weak generalization" set and used the remaining 6,656 users for the "strong gener-

alization" set. The MovieLens data set provides 1 million ratings for 6,040 users and 3,952

movies. There are five possible rating values, {1, 2, ... , 5}. All users had 20 or more ratings,
so we utilized all users. We randomly selected 5,000 users for the "weak generalization" set

and used the remaining 1,040 users for the "strong generalization" set.

We mimic the setup used by Marlin (2004) and compare against his results. Marlin

tested two types of generalization, "weak" and "strong." We conduct test on both types.

"Weak generalization" is a single stage process which involves the learner filling-in missing

entries of a rating matrix. "Strong generalization" is a two-stage process where the learner

trains a model on one set of users and then is asked to make predictions on a new set of

users. The learner is given sample ratings on the new set of users, but may not utilize those

ratings until after the initial model is constructed.

As did Marlin, we repeat the user selection process three times for each data set. We

randomly withheld one movie for each user to construct the test set. We compute Nor-

malized Mean Absolute Error (NMAE) as Marlin describes. The normalization constant

for MovieLens (5 rating values) is 1.6; the normalization constant for EachMovie (6 rating

values) is 1.944.

Results

We present results on two algorithms based on the ideas we have described in this chapter.

The first, which we dub "All-Thresholds", is a rank-constrained variant of MMMF. For

All-Thresholds, we use the rank of U and V as a regularization parameter and optimize

only the "loss" portion of the joint objective-the trace norm portion is dropped. The

second is "Fast MMMF", or optimization of the joint objective. We evaluate a range of

regularization parameters for Fast MMMF and All-Thresholds. To select the regularization

parameter for each, we withhold one movie per user from the training data to construct

a validation set and chose the regularization parameter with lowest validation error. To

train the models, we run 100 iterations of gradient descent; we utilize the solution for one

regularization parameter to initialize the next; we use a random initialization for the first

regularization parameter.
Table 5.2 provides the results. Parenthetical comments indicate settings for each of the

two algorithms. k denotes the rank of U and V for Fast MMMF; "SH" denotes use of

the Smooth Hinge MPF; "Log" denotes use of the Logistic Regression MPF. Due to time

constraints, we do not provide EachMovie results using the Logistic Regression MPF. We

note that the rank chosen for All-Thresholds was typically quite small, k E {3, 4}.

Our first observation is that All-Thresholds and Fast MMMF substantially and con-

sistently outperform the algorithms that Marlin tested (URP and Attitude). Nearly all

All-Thresholds/MMMF average errors are at least one standard deviation lower than the

lowest URP or Attitude error-many are multiple standard deviations better. This sug-

gests that the all-thresholds loss function is superior to the loss function (equivalents) for

the algorithms that Marlin tested.

We observe that error sometimes decreases when we use larger rank U and V matrices

77

Algorithm

URP
Attitude

All-Thresholds (SH)
Fast MMMF (k = 100, SH)

IlL
-[I-

EachMovie
Weak NMAE I Strong NMAE

.4422 ± .0008 .4557 ± .0008

.4520 ± .0016 .4550 ± .0023

.4394 ± .0035 .4373 ± .0047

.4387 t .0003 .4369 t .0039
Fast MMMF (k = 500, SH) 1 .4387 ± .0013 .4259 ± .0017

MovieLens
Algorithm Weak NMAE I Strong NMAE

URP
Attitude

All-Thresholds (SH)
All-Thresholds (Log)

Fast MMMF (k = 100, SH)
Fast MMMF (k = 500, SH)
Fast MMMF (k = 500, Log)

A:
III~

.4341 ± .0023

.4320 t .0055

.4153 ± .0028

.4145 ± .0059

.4148 ± .0043

.4111 ± .0026
.4090 ± .0039

.4444 ± .0032

.4375 ± .0028

.4185 ± .0099

.4201 ± .0096

.4195 t .0055

.4191 ± .0066
.4183 ± .0117

Table 5.2: Collaborative filtering experimental results on (top) EachMovie and (bottom)
MovieLens. URP and Attitude are the best two performing algorithms from Marlin's ex-
periments; his results are reproduced here for comparison. We report performance on "Fast
MMMF", and "All-Thresholds", which is rank-constrained Fast MMMF without the (trace
norm) regularization term. For Fast MMMF, k is the rank of the U and V matrices. We
use "SH" to abbreviate the smooth hinge MPF; we use "Log" to abbreviate the Logistic
Regression MPF. All-Thresholds and Fast MMMF select their regularization parameters
(rank and A, respectively) via a validation set taken from the training data. Marlin's re-
sults represent the lowest error across a range of regularization parameters (no validation
evaluation).

78

I

(EachMovie Strong NMAE and MovieLens Weak NMAE). We presume that the larger U
and V matrices allowed optimization to find a solution closer to the global optimum and
lessened the chance of getting stuck in a local minimum. We found that Fast MMMF
solutions selected via evaluation on the validation set were always of full rank (rank equal
to k). This suggests that performance may improve further as we increase k. We were not
able to test larger values of k due to memory limitations.

We observe that the Logistic Regression MPF performs slightly better than the Smooth
Hinge MPF on MovieLens, mimicking the results seen for our Ordinal Regression experi-
ments. though the difference here is smaller.

Finally, we observe that Fast MMMF performs as well as or better than All-Thresholds,
indicating that use of the trace norm does provide practical benefit. For two out of the four
experiments, Fast MMMF (k = 500) achieves at least one-standard-deviation lower error
than All-Thresholds. Further experimentation will be needed to determine whether trace
norm regularization provides a consistent benefit over using a rank constraint. Note that
the inconsistent performance may be a result of our experimental conditions: we limit the
ranks of U and V for Fast MMMF and for both algorithms, we limit gradient descent to 100
iterations. Experiments using full-rank U and V may show that the trace norm is superior.

5.3.8 Discussion

We began this section by noting that ordinal regression may be hindered by the fact that
it is limited to using features which can be explicitly derived from the data. In many
domains, such as restaurant reviews, such features cannot completely describe the items
in question. We discussed collaborative filtering, a paradigm for the preference learning
problem which does not require external item information. Instead, it makes use of the
fact that the user rating tasks are related-information about one user's preferences can
be transfered to another user via movies that both users rate. We presented a specific
collaborative filtering algorithm, Maximum Margin Matrix Factorization (MMMF), which
utilizes the best-performing all-thresholds loss function described earlier. Since the original
formulation of MMMF cannot currently be applied to large data sets, we developed an
alternate formulation utilizing a variational bound on the MMMF objective called "Fast
MMMF". We found that this Fast MMMF was able to achieve a lower error rate on two large
collaborative filtering problems than a variety of other collaborative filtering algorithms.

5.4 Hybrid Collaborative Filtering

So far, we have discussed one technique for preference learning which utilizes only "fea-
tures" of the items, ignoring the fact that other users' ratings may be useful for learning

(ordinal regression), and one which ignores "feature" information, and instead utilizes only
the relations between users' ratings in order to learn and make predictions (collaborative
filtering). It is clear that there are (at least) two sources of information we can use to
learn preferences and make future rating predictions: (1) item features, and (2) other users'
ratings. There is no reason that we cannot utilize both of these sources of information in
an attempt to improve our ability to generalize.

Our development from ordinal regression to collaborative filtering provides an excellent
foundation for establishing such a "hybrid" approach to preference learning. Recall the

79

joint objective:

Hybrid(U, V, 9) = loss(UiVjT; Yi, 0) + (||U111 + IIVI1| 0). (5.36)
ijES

Our suggested collaborative filtering approach was to minimize the above objective utilizing
one of the ordinal regression loss functions from section 5.2. We learned both user preference
weights (rows of U) and feature vectors for the items (rows of V), as well as per-user
thresholds. To attain a "hybrid" preference learning algorithm, we can simply split V =
[V V2] into two parts: (1) "fixed" features which are given a priori (as in ordinal regression),
and (2) feature variables which are learned during the optimization (as in collaborative
filtering). The fixed features compose the first k, columns of V and are not modified
during learning. The variable features compose the next k2 columns of V and are learned.
Preference weights are learned for both sets of features. Le. U has k, + k2 columns, k,
weights per user for the fixed features, and k2 weights per user for the learned features.
The only changes that we need to make to our joint objective are to exclude V from the
optimization, and to pre-populate V with the given, fixed features.

Note that this hybrid approach may also be applied to the original MMMF formulation.
We treat it as a combination of one part ordinal regression with one part MMMF. We
add together ordinal regression and MMMF outputs before feeding the value to the loss
function, and we sum regularization terms in the objective to yield:

JHybridMMMF (U, X, 0) = E loss(UiV + Xg; Yi, 0i) + A (|U Fro + (5.37)
ijES2

where V is the matrix of "fixed" features and U are the corresponding user preference
weights.

We also note that the Hybrid approach can be extended to user features. For example,
a person's age, sex, location of residence, race and socioeconomic status may affect their
preferences for movies, restaurants, etc. We can incorporate this information by adding
extra columns to U which encode this fixed information about the person. Corresponding
columns are added to V which are learned during the optimization. In short, fixed "weights"
are added to U which define known characteristics of the users; corresponding "features" of
the items are learned which best represent how the fixed weights affect user/item ratings.

An advantage of the Hybrid approach is that it takes advantage of both sources of
information which may be available in a collaborative filtering task: (1) features of the
items, and (2) overlapping ratings given by the users. As a result, the algorithm is able to
dynamically adapt to whichever source of information proves better able to predict ratings.

5.5 A Missingness Mechanism for Collaborative Filtering

5.5.1 Introduction

A common choice in approaching the problem of collaborative filtering is to assume that the
observations (ratings of item given by users) are independently and identically distributed
(iid). Clearly, this is not the case. For movies, some people watch only heavily promoted
movies. others follow certain actors or directors, some restrict their viewing to a certain

genre. while still others limit their watching to movies from a certain era or about a certain

80

set of events. The process for other types of items is analogous---there are usually certain
factors which influence the items which each user rates. Note that there are, in fact, two
situations which may account for a missing rating: (1) a user not having the experience

(watching a movie, eating at a restaurant), and (2) a user choosing not to rate the item
once he/she has rated it. For example, a user may only rate movies which are memorable,
or are different from what he/she expected. For our discussion here, we will ignore this
distinction and focus on a model for missing ratings.

When a user rates a movie, he/she is providing two bits of information: (1) what he/she
thinks of the movie, and (2) an example of movies he/she watches (and rates). Since our
goal in collaborative filtering is to predict how the users will rate unobserved items, the
pattern of (un)rated movies might seem irrelevant. However, the two processes (selecting
items to rate, and user rating of the items) may be related. Usually. people do not select
items randomly, but rather try to find items that they will like. Even if the selection and
rating processes for a user are independent, it may be that the factors one user utilizes
to select movies may overlap with the factors another user uses to rate movies. In either
case, we can take advantage of transfer. The idea of transfer learning is that modeling two
processes jointly may improve generalization for both sets of data since there is a larger
pool of data to draw from. Transfer learning can be successful when the two processes are
closely related, so that information about one process indirectly provides information about
the other. We believe this to be the case for collaborative filtering. Consider the case of
movies. Many people only watch and rate movies that they will like-they may exclude
entire categories of movies that are unlikely to appeal to them. With this information about
a user, one might conclude that the majority of unseen movies for that user will receive poor
ratings. In contrast, a user might watch mainstream, heavily marketed movies to appease
his/her friends even though his/her real interest lies in historical documentaries. The poor
ratings generally given by the user may be due to his/her viewing habits and may not reflect
an overly pessimistic view of movies in general. By introducing a missingness mechanism,
we allow the model to use the simplest explanation to explain the data.

5.5.2 The Model

First, we develop a missingness mechanism for MMMF. Then, we show how this is easily
extended to our joint objective (5.26) ("Fast MMMF"). Our key observation is that the
selection process-what movies are "observed"-is a binary classification problem. We learn
a set of real values (one per user/item) and per-user binary thresholds to minimize a binary
classification loss, such as one of the margin penalty function discussed in section 5.2.4. To
link the missingness model with the rating prediction model, we use as regularization the
trace norm of a combined matrix, which includes the real-valued "attitudes" parameters
from both models. It is via this combined regularization that we hope to achieve transfer.
This regularization will encourage the selection of parameters where there is overlap in how
items are rated and how they are selected for rating. The objective that we minimize is

Ju 5F(X, B. 0, >) = E loss(Xij; Yi, Oi) + E lossBC(Bij; Zij, #i) + A [(5.38)
ijeS ij

81

where Zij = [[(i, j) E S]] indicates' 0 whether user i has rated item j, loss is the all-thresholds

loss, lossBC is a margin penalty function and B represents the vertical concatenation

of matrices X and B.

Computational Issues

Note that MMMF with the missingness mechanism is more computationally complex than

ordinary MMMF. The number of parameters is approximately double and the number

of supervised data points is much larger. A typical collaborative filtering problem may

have approximately 5% of the ratings observed for training. Each observed rating has a

corresponding ordinal regression loss, which is the sum of 1 - 1 (typically 1 = 5) margin

penalty functions (MPFs). I.e. a typical MMMF scenario is a number of MPFs equal to

20% of the entries. The missingness mechanism introduces a binary loss for each user/item

pair, or one MPF per entry. MMMF with the missingness mechanism yields a combined loss

function which has a number of MPFs equal to 120% of the entries, or a six-fold increase

in complexity of the loss function. If the complexity of the missingness mechanism is a

bottleneck, one can obtain some of the transfer benefit with a reduced computational burden

by (uniformly) sampling (without replacement) missingness observations for inclusion in the

loss function. If the increase in the number of parameters is an issue, one may randomly

exclude users from the missingness mechanism model.

Fast MMMF

The missingness mechanism is easily extended to the joint (Fast MMMF) formulation. A

new matrix, A E R" is introduced to represent the user weights pertaining to the chance

that the user will rate an item. Utilizing the definitions from the MMMF formulation, we

arrive at the updated minimization objective,

JFastM,5F(U, V, A,,)= loss(UiVT; Yij,) + Z lossBC(AiV ; Zij,# 0)
ijES ij

+ F(UtNo + IIAINO + IIVIO). (5.39)

5.6 Summary

We began with the goal of analyzing opinions about items (such as restaurants or movies)
extracted from informal communication in order to predict unobserved opinions. This task

can be separated into two parts: (1) identifying opinions in text and translating them to

numerical ratings, and (2) using the observed ratings to predict unobserved opinions. We

chose to focus on the second task and noted others who have dealt with the first task. The

task of predicting user opinions of items can be called "preference learning".

We began our treatment of preference learning with a generalization of binary classifica-

tion: "ordinal regression". We assumed that for each item, we were given a feature vector

identifying various aspects of the item. The goal of learning was to find a vector of pref-

erence weights for the user that, when combined with the feature vectors, would minimize

1OFor consistency with our margin penalty function notation, we assume that the logic notation [Hi] returns

±1 instead of the traditional 0/1 value.

82

a loss associated with the observed ratings. We used the standard L2-nori regularization
penalty to encourage generalization. We described various loss functions for ordinal regres-
sion, including one which is a bound on the average absolute error. the quantity that is
commonly used to evaluate an ordinal regression system.

Our ordinal regression approach proved highly effective, but it ignored a valuable source
of information: the overlap in ratings between users. Ordinal regression treats users inde-
pendently even though the preference learning task is typically addressed to a set of users
and a set of items. By simultaneously learning preferences for all users, we hoped to take
advantage of transfer, the concept that jointly solving multiple related problems may yield
better generalization. We used "collaborative filtering" to describe the task of predicting
ratings where no information about the items are given, save for the observed ratings. We
showed how to generalized our ordinal regression framework to this collaborative filtering
scenario and observed that the regularization term for our "joint" objective was actually
a tight bound on the trace norm, a convex quantity that penalizes rank much like the L 1-
norm selects features in learning. This connection revealed that our framework could be
viewed as a "fast" version of Maximum Margin Matrix Factorization (MMMF) which could
be applied to large collaborative filtering data sets. Experiments showed our Fast MMMF
algorithm to be highly effective.

To round-out our discussion of the preference learning problem, we described two ex-
tensions to Fast MMMF which are likely to further improve performance without severely
affecting computational complexity of the algorithm. The first is a straightforward ex-
tension of the ordinal regression and collaborative filtering techniques we have described.
Each of ordinal regression (OR) and collaborative filtering (CF) ignored some portion of
information that is normally available for preference learning. We described a "hybrid"
algorithm which combines OR and CF to take advantage of both item feature vectors and
the transfer of information from other users' ratings. The second extension examines an
aspect of preference learning that is often ignored: the process by which users experience
and express opinions about items. Most work on preference learning assumes the selection
of items for rating to be i.i.d. We introduced a "missingness mechanism" for (Fast) MMMF
which models this process. Though the missingness mechanism does not directly affect
predicted ratings, it uses the regularization term to transfer information between the rating
and missingness tasks, thus allowing for improved generalization.

83

Appendix A

Expectation-Maximization

We show how to derive the Expectation-Mazimization (EM) algorithm for mixture models.
In a general setting, we show how to obtain a lower bound on the observed data likelihood
that is easier to optimize. For a simple mixture example, we solve the update equations
and give a "canned" algorithm.

A.1 EM for Mixture Models

Consider a probability model with unobserved data, p(x, y19), where x represents observed
variables and y represents unobserved varaibles. Expectation-Maximization (EM) is an
algorithm to find a local maximum of the likelihood of the observed data. It proceeds in
rounds. Each round, parameters are chosen to maximize a lower-bound on the likelihood.
The lower-bound is then updated so as to be tight for the the new parameter setting.

Let OW be the current parameter setting. The log-likelihood of the observed data is

-() = logp(j(t)) = Elog p(i, yJOt). (A.1)
i y

We want to find a new parameter setting, 0(t+1), that increases the log-likelihood of the

observed data. Let Q(9, (t)) = 1(o) - 1(0(t)). Note that p(yjxi, (t)) P(xyl9())
Ey p(x2 ,y~lj9W))

Consider the following manipulations which result in a lower bound on Q

Q(, 0()) = log p(xi, y10) (A.2)
y

= ElogEp(y1Xi,O() P() 10 (A.3)i y Vli W

= log Ep(yx,)) xY10) (A.4)
p(x, y|9)

> Ep(l 8 (t9)) log p(yx , Y0) (A.5)

(p(yxi, 0(t) log pxiY10) - L(9. 0(0) (A.6)

84

The inequality is a direct result of the concavity of the log function (Jensen's inequality).
Call the lower bound L(9,6()).

Consider the following (trivial) fact for an arbitrary function f. Let g be a lower bound
on f such that for some Y, g(-) = f(Y). Then g(x) > g(Y) implies f(x) > f(Y). In
other words, if we find a new point, x. that increases g, then it also increases f. We have
constructed L as a lower bound on Q in exactly this way. L(9, 0(0) is a lower bound on
Q(,9(IO) and L(9(t),(t)) = Q(9(O,0(0). Thus, we can increasing L rather than Q.

Note that maximizing L(, 6 (0)) with respect to 0 does not involve the denominator of
the log term. In other words, the parameter setting that maximizes L is

0(t+') = arg max p(ylxi, 6() logp(i, y16). (A.7)
i y

It is often easier to maximize L(9, O(W) (with respect to 9) than it is to maximize Q(, O(W)
(with respect to 9). For example, if p(xj, y16) is an exponential distribution, L(9, 0(0) is a
convex function of 9. For some models, we can solve for the parameters directly, such as in
the example discussed in the next section.

(Dempster et al., 1977) is the original Expectation-Maximization paper. (Salakhutdinov
et al., 2003) discuss the convergence properties and suggest a hybrid algorithm that switches
between EM and Conjugate Gradients based on an estimate of the "missing information."

A.2 A Simple Mixture Example

Consider a two-component mixture model where the observations are sequences of heads
and tails. The unobserved variable takes on one of two values, y E {1, 2}. Three parameters
define the joint distribution, 9 = {A, q1, 052}. A is the probability of using component #1
to generate the observations. #1 is the probability of heads for component #1; #2 is the
probability of heads for component #2. Let ni be the length of observed sequence i; let hi
be the number of heads. Let A1 = A, A2 = 1 - A. The joint likelihood is

p(xi, y19) = A y#hi(1 - #y)(ni-hi). (A.8)

To maximize the observed data likelihood, we start from an initial setting of the parameters,
9(0), and iteratively maximize the lower bound. Let

J(, (t) = p(yixi, 0(')) log p(xi, y10) (A.9)

p(yIxi, O(t)) log _ (- oy)(ni-hi) (A.10)
yY

Due to the structure of the function, we can solve for the optimal parameter settings by
simply setting the partial derivatives to zero. Let pi = p(y = 1Jx, (t)), P2i = P(y =
21x.i ,0(0). The partial derivative of J with respect to A is

WP2 (A. 11)

85

Thus. the maxinizing setting of A, is A* = ',,2-. The partial of J wrt 01 is

BJ Ej pli hi - 01 JEj plini A 2- ~i ~Pi~m(A.12)
01 (1 - 01)

Thus, the maximizing setting of 01 is 4* = Similarly, the maximizing setting of

02 is * = . We set 0 (t+i) = (At, *, 4) and repeat. Figure A-i gives a concise
summary of the implementation of EM for this example.

The "canned" algorithms given in (Shewchuk, 1994) (Appendix B) provide useful criteria
for determining convergence.

" Randomly choose an inital parameter setting, 0(0).

" Let t = 0. Repeat until convergence.

- Let (X 1, 1 , 0 2) := 6 (t), A2 := 1 - A1.
,\Yohi~__o)(n-hij)

- Let Pyi , hi for y- {1, 2}, Z E {1,$(,(-.)

-- Let A* := ~~±~
Z p1 2

- Let *:=
- Let PI hi..h

EjPlini

- Let E*: P2 hi
2 Y P2ini'

- Let 0(+:1) .

- Let t:=t+1.

Figure A-1: A summary of using the EM algorithm for the simple mixture example.

86

Appendix B

Gradients for a Two-Component
Binomial Mixture Model

We observe many samples of a binomial. hi and ni are the numbers of heads and total flips
for the ith sample. For each sample, there are two binomials that could have produced it.
Our goal is to learn the mixing parameter and parameters for the two binomials that are
most likely to have produced the samples. Our model is:

p(DIO) = 1J () [A#(1 - #I)ni-hi + (1 - A)q5h(1 - 02)ni-hi (B.1)

For numerical stability reasons, we don't simply maximize likelihood in order to find the best
parameters. We re-parameterize using (unconstrained) natural parameters, and minimize
the negative log-odds ratio of the mixture and (simple) binomial likelihoods. Let g(x) =
(1 + exp(-x))~1 , the logistic function. We reparameterize as follows:

A = g(u) 01 = g(vi) 02 = g(v2) (B.2)

Let #* = be the maximum-likelihood (simple) binomial parameter. We define the

following ratios which appear in the log-likelihood ratio:

01 1-#1 02 1-#2
r i = r 12 = =- r= - r (B.3)

We define the following quantities which are useful for writing the log-odds and its deriva-
tives:

PI = rhiri-hi
P r1 1r 12 (B.4)

=h- n--h..
Pi2 = r2zr2 (B.5)

Zi = ApMi + (1 - A)pA2 , (B.6)

Then the log-odds is simply

1(DJO) = - log(2) (B.7)

87

Note that g(x)(1 - g(x)). The partial derivatives are:

.2)- a(i-.\)Pa as Pi2

0-1 A &Pil
09VI zi 0VI

al (1 - A) Pi2
9V2 zi 0V2

-A(l A)ZPil - A2

- iA)-p (hi -- #1ni)

- 1_)i (hi - 02ni)

One can use general-purpose optimization software to solve for (locally) maximum-likelihood
parameters.

88

(B.8)

(B.9)

(B.10)
i.

Bibliography

Agresti, A., Mehta, C. R., & Patel, N. R. (1990). Exact inference for contingency tables

with ordered categories. Journal of the American Statistical Association, 85, 453-458.

Aone, C., & Bennett, S. (1995). Evaluating automated and manual acquisition of anaphora

resolution strategies. Proceedings of the 33rd conference on Association for Computational

Linguistics.

Azar, Y., Fiat, A., Karlin, A. R., McSherry, F., & Saia, J. (2001). Spectral analysis of data.

ACM Symposium on Theory of Computing (pp. 619-626).

Bekkerman, R., El-Yaniv, R., & McCallum, A. (2005). Multi-way distributional clustering

via pairwise interactions. Proceedings of the 22nd International Conference on Machine

Learning (ICML).

Bikel, D. M., Schwartz, R. L., & Weischedel, R. M. (1999). An algorithm that learns what's

in a name. Machine Learning, 34, 211-231.

Billsus, D., & Pazzani, M. J. (1998). Learning collaborative information filters. Proceed-

ings of the 15th International Conference on Machine Learning (pp. 46-54). Morgan

Kaufmann, San Francisco, CA.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2002). Latent dirichlet allocation. Advances in

Neural Information Processing Systems 14.

Bookstein, A., & Swanson, D. R. (1974). Probabilistic models for automatic indexing.

Journal of the American Society for Information Science, 25, 312-318.

Brookes, B. C. (1968). The measure of information retrieval effectivenss proposed by Swets.

Journal of Documentation, 24, 41-54.

Canny, J. (2004). Gap: A factor model for discrete data. SIGIR '04: Proceedings of the 27th

Annual International Conference on Research and Development in information Retrieval

(pp. 122-129). ACM Press.

Cardie, C., & Wagstaff, K. (1999). Noun phrase coreference as clustering. Proceedings of

the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and

Very Large Corpora (pp. 82-89).

Chu, W., & Ghahramani, Z. (2004). Gaussian processes for ordinal regression (Technical

Report). University College London.

Chu, W., & Keerthi, S. S. (2005). New approaches to support vector ordinal regression.

Proceedings of the 22nd International Conference on Machine Learning.

89

Church, K. W., & Gale, W. A. (1995a). Inverse document frequency (IDF): A measure of

deviation from poisson. Proceedings of the Third Workshop on Very Large Corpora (pp.

121-130).

Church, K. W., & Gale, W. A. (1995b). Poisson mixtures. Journal of Natural Language

Engineering.

Clogg, C. C., & Shihadeh, E. S. (1994). Statistical models for ordinal variables. SAGE
Publications.

Cohen, W. W., Schapire, R. E., & Singer, Y. (1998). Learning to order things. Advances

in Neural Information Processing Systems 10.

Collins, M. (2002). Discriminative training methods for hidden markov models: Theory

and experiments with perceptron algorithms. Proceedings of EMNLP.

Collins, M., Dasgupta, S., & Schapire, R. E. (2002). A generalization of principal com-

ponents analysis to the exponential family. Advances in Neural Information Processing

Systems 14.

Crammer, K., & Singer, Y. (2002). PRanking with ranking. Advances in Neural Information

Processing Systems 14.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society series B, 39, 1-38.

Edelman, A. (2005a). Jacobians of matrix transforms (with wedge products).

http://web.mit.edu/18.325/www/handouts.html. 18.325 Class Notes: Finite Random

Matrix Theory, Handout #3.

Edelman, A. (2005b). Volumes and integration. http://web.mit.edu/18.325/www/handouts.html.

18.325 Class Notes: Finite Random Matrix Theory, Handout #4.

Elkan, C. (2006). Clustering documents with an exponential-family approximation of the

dirichlet compound multinomial distribution. 23rd International Conference on Machine

Learning.

Fazel, M. (2002). Matrix rank minimization with applications. Doctoral dissertation, Stan-

ford University.

Fazel, M., Hindi, H., & Boyd, S. P. (2001). A rank minimization heuristic with application to

minimum order system approximation. Proceedings of the American Control Conference

(pp. 4734-4739).

Feinberg, S. E. (1980). The analysis of cross-classified categorical data. MIT Press.

Fu, L., & Simpson, D. G. (2002). Conditional risk models for ordinal response data: si-

multaneous logistic regression analysis and generalized score tests. Journal of Statistical

Planning and Inference, 108, 201-217.

Ghahramani, Z., & Hinton, G. E. (1996). The EM algorithm for mixtures of factor analyz-

ers (Technical Report CRG-TR-96-1). Department of Computer Science, University of

Toronto.

90

Harter, S. P. (1975). A probabilistic approach to automatic keyword indexing: Part I. On

the distribution of specialty words in a technical literature. Journal of the American

Society for Information Science, 26, 197-206.

Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for

ordinal regression. In Advances in large margin classifiers, 115-132. MIT Press.

Hofmann, T. (2004). Latent semantic models for collaborative filtering. ACM Transactions

on Information Systems, 22, 89-115.

Hollander, M., & Wolfe, D. A. (1999). Nonparametric statistical methods. John Wiley &

Sons.

Horn, R. A., & Johnson, C. R. (1991). Topics in matrix analysis. Cambridge University

Press.

Joachims, T. (1997). Text categorization with support vector machines: Learning with many

relevant features (Technical Report LS-8 Report 23). Computer Science Department,
University of Dortmund.

Joachims, T. (1998). Text categorization with support vector machines: Learning with many

relevant features. Proceedings of the Tenth European Conference on Machine Learning.

Johnson, V. E., & Albert, J. H. (1999). Ordinal data modeling. Springer.

Jones, K. S. (1973). Index term weighting. Information Storage and Retrieval, 9, 619-633.

Kramer, S., Widmer, G., Pfahringer, B., & Groeve, M. D. (2001). Prediction of ordinal

classes using regression trees. Fundamenta Informaticae, 47, 1-13.

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix

factorization. Nature, 401, 788-791.

Marlin, B. (2004). Collaborative filtering: A machine learning perspective. Master's thesis,
University of Toronto, Computer Science Department.

Marlin, B., & Zemel, R. S. (2004). The multiple multiplicative factor model for collaborative

filtering. Proceedings of the 21st International Conference on Machine Learning.

McCallum, A., Corrada-Emmanuel, A., & Wang, X. (2004). The author-recipient-topic

model for topic and role discovery in social networks: Experiments with enron and aca-

demic email (Technical Report UM-CS-2004-096). University of Massachusetts, Depart-

ment of Computer Science.

McCallum, A., & Wellner, B. (2005). Conditional models of identity uncertainty with

application to noun coreference. Advances in Neural Information Processing Systems 17

(pp. 905-912). Cambridge, MA: MIT Press.

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical

Society, Series B (Methodological), 42, 109-142.

Meila, M., & Shi, J. (2001). A random walks view of spectral segmentation. Proceedings of

the Eighth International Workshop on Artificial Intelligence and Statistics.

91

Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis and an

algorithm. Advances in Neural Information Processing Systems 14.

Ng, V., & Cardie, C. (2002). Improving machine learning approaches to coreference res-

olution. Proceedings of the 40th Annual Meeting of the Association for Computational

Linguistics (A CL).

Nigam, K. (2001). Using unlabeled data to improve text classification. Doctoral dissertation,
Carnegie Mellon University.

Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer-Verlag.

Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity

summarization based on minimum cuts. Proceedings of the A CL.

Papineni, K. (2001). Why inverse document frequency. Proceedings of the NAACL.

Rennie, J. D. M., Shih, L., Teevan, J., & Karger, D. R. (2003). Tackling the poor assump-
tions of naive bayes text classifiers. Proceedings of the Twentieth International Conference

on Machine Learning.

Rennie, J. D. M., & Srebro, N. (2005a). Fast maximum margin matrix factorization for

collaborative prediction. Proceedings of the 22nd International Conference on Machine

Learning.

Rennie, J. D. M., & Srebro, N. (2005b). Loss functions for preference levels: Regression

with discrete ordered labels. Proceedings of the IJCAI Multidisciplinary Workshop on

Advances in Preference Handling.

Rifkin, R. (2002). Everything old is new again: A fresh look at historical approaches in

machine learning. Doctoral dissertation, Massachusetts Institute of Technology.

Salakhutdinov, R., Roweis, S., & Ghahramani, Z. (2003). Optimization with EM and
expectation-conjugate-gradient. Proceedings of the Twentieth International Conference

on Machine Learning (ICML-2003).

Shashua, A., & Levin, A. (2003). Ranking with large margin principle: Two approaches.

Advances in Neural Information Processing Systems 15.

Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the

agonizing pain. http://www.cs.cmu.edu/-jrs/jrspapers.html.

Soon, W. M., Ng, H. T., & Lim, D. C. Y. (2001). A machine learning approach to coreference

resolution of noun phrases. Computational Linguistics, 27, 521-544.

Srebro, N., & Jaakkola, T. (2003). Weighted low rank approximation. 20th International

Conference on Machine Learning.

Srebro, N., Rennie, J. D. M., & Jaakkola, T. S. (2005). Maximum margin matrix factoriza-

tion. Advances in Neural Information Processing Systems 17.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society B, 58.

92

Tutz, G. (2003). Generalized semiparametrically structured ordinal models. Biometrics,
59.

van Rijsbergen, C. J. (1979). Information retireval. London: Butterworths.

Vapnik, V. (1995). The nature of statistical learning theory. Springer-Verlag.

Wiebe, J. (1994). Tracking point of view in narrative. Computational Linguistics, 20,

233-287.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80-83.

Zhang, J., Jin, R., Yang, Y., & Hauptmann, A. G. (2003). Modified logistic regression: An

approximation to svm and its applications in large-scale text categorization. Proceedings

of the 20th International Conference on Machine Learning (ICML).

Zhang, T., & Oles, F. J. (2001). Text categorization based on regularized linear classification

methods. Information Retrieval, 4, 5-31.

93

