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Abstract
Most people have two ears, but we can hear with only one ear. The ability

to use two ears can substantially improve performance in many circumstances.
There are times, however, when the addition of a second ear results in poorer
performance (i.e., contra-aural interference). Contra-aural interference is of
interest because it is not explained by current auditory models, it has theoretical
ramifications, and its understanding could lead to improvements in the quality
of life of the hearing-impaired. More generally, the techniques and results can be
applied to fields in which information is combined across an array of sensors
(e.g., vision with two eyes and radar arrays). This thesis includes both
psychophysical measurements and black-box modeling of level discrimination.
Level discrimination was chosen to study contra-aural interference since it has
traditionally been considered a monaural task (dependent on only a single ear)
even though the loudness of a sound depends on both ears (i.e., binaural).

This thesis demonstrates that the ability to discriminate small changes in
the level of a low-frequency target stimulus presented at one ear can be
adversely affected by a distractor stimulus presented simultaneously and contra-
aurally to the target. The thesis focuses on conditions in which the target and
distractor perceptually fuse; the dominant perception of the stimulus is a
compact auditory image with a salient loudness and position and a secondary
image referred to as the "time-image". Contra-aural interference was greatest
when the introduction of the distractor decreased the reliability of both the
perceived loudness and position of the dominant-image.

Although the tasks used in this thesis are artificial, their simplicity allows
for detailed computational modeling. The results are consistent with a model
based on non-optimal integration of the information carried by the dominant-
image and the time-image. The modeling separates the effects of internal coding
noise and decision noise (criterion jitter). The techniques used to separate the
internal coding noise from the criterion jitter can be applied to a broad range of
psychology experiments.





Acknowledgements
In order for me to have completed this thesis, I required a tremendous

amount of support. Some of this support came in terms of academic
contributions while other portions were social. The academic environment of the
Speech and Hearing Bioscience and Technology program and the Hearing
Research Center was supportive, nurturing, and above all rigorous. I am grateful
to all the faculty, staff, and students who have helped me become a scientist.

I would especially like to thank my thesis committee for their help.
Bertrand Delgutte not only served as the chair of committee he was also my
academic advisor and chair of my concentration area. He always kept me on
track even when I wanted to veer. Andrew Oxenham helped in the
conceptualization of the psychophysical tasks and the interpretations of their
results. He stuck by me even as much of what he was most interested in got cut
from the thesis document. Nat Durlach and his ability to question the most basic
aspects of my research shaped the later portions of the thesis. Steve Colburn was
not only my thesis supervisor, but also a friend. This thesis represents an
infinitesimal portion of what I learned from Steve. I can only hope that Steve
enjoyed working with me a fraction of how much I enjoyed working with him.

Apart from my committee, I would also like to thank the students, post
docs, and faculty members who comprise the binaural gang at Boston University.
In my years as a graduate student, there were too many members of the gang to
name, and all have shaped me. My time interacting with Barbara Shinn-
Cunningham at our weekly lab meetings has shown me that research can be
intellectually stimulating and a great deal of fun.

With the quality of my mentors it would have been hard for this thesis to
fail. Without my friends and family, however, the thesis would not have
succeeded. I would like to thank my friends who have kept me climbing and
reminded me to get out occasionally. Mot importantly I want to thank Kristine
Juncker for making home such a nice place to go.

Whether your contributions were academic or social, this thesis could not
have been completed without you. Thank you.





Table of Contents

Chapter I. Introduction 9
I. Thesis O verview ........................................................................................... 9
II. Background.................................................................................................. 9
III. O verview of the Thesis D ocum ent.............................................................13
References ....................................................................................................... 14

Chapter II. Monaural Level Discrimination Under
Dichotic Conditions 17

Abstract ............................................................................................................ 17
I. Introduction................................................................................................ 18
II. Experim ental M ethods ............................................................................ 24

A. Subjects 24
B. Apparatus and Materials 25
C. Stimuli 25
D. Experimental Procedures 26
E. Data Analysis 27

III. M odeling .................................................................................................. 30
IV . Results ....................................................................................................... 32
V . Explanation of the M odel Predictions.................................................... 36
VI. D iscussion................................................................................................ 41
VII. Sum m ary ................................................................................................ 47
A cknow ledgem ents...................................................................................... 48
A ppendix A .................................................................................................... 48
A ppendix B ..................................................................................................... 51
References ....................................................................................................... 56
Tables and Figures......................................................................................... 59

Chapter III. One Interval Level Discrimination Under
Dichotic Conditions 69

A bstract ............................................................................................................ 69
I. Introduction................................................................................................ 69
II. M ethods..................................................................................................... 73

A. Stimuli and Paradigm 73
B. Subjects 75
C. Apparatus 76
D. Data Analysis 78

III. M odeling.................................................................................................. 80
IV . Psychophysical Results.......................................................................... 81
V . M odel Results ........................................................................................... 87

A. Graphical Analysis of the Model 89
B. Model Predictions of the

Psychophysical Results 97
VI. D iscussion....................................................................................................105



V II. Sum m ary .................................................................................................... 113
A cknow ledgem ents..........................................................................................114
A ppendix ........................................................................................................... 114
References .......................................................................................................... 121
Tables and Figures............................................................................................123

Chapter IV. Modeling Monaural Level Discrimination
Under Dichotic Conditions 137

I. Introduction....................................................................................................137
II. Psychophysical Experim ent........................................................................138

A. Methods 139
B. Results 140

III. M odeling ..................................................................................................... 141
A. Model Overview 142
B. Maximum Likelihood Indicator

Function 147
C. Non-Ideal Observer 149
D. Data Analysis 151
E. Model Implementation 153
F. Results 154

IV . D iscussion .................................................................................................... 158
V . Sum m ary ....................................................................................................... 162
A cknow ledgem ents..........................................................................................162
A ppendix A ....................................................................................................... 162
A ppendix B ........................................................................................................ 166
A ppendix C ........................................................................................................ 171
A ppendix D ....................................................................................................... 173
References .......................................................................................................... 176
Figures and Tables............................................................................................178

Chapter V. Conclusions 187
I. Introduction....................................................................................................187
II. Sum m ary ....................................................................................................... 189
III. Future W ork ................................................................................................ 191

A. Psychophysical 191
B. Modeling 192

References .......................................................................................................... 193
Biographical Note 195

8



CHAPTER I. INTRODUCTION

I. Thesis Overview
Most people have two ears, but we can hear with only one ear. The ability

to use two ears can substantially improve performance in many circumstances,

although for many auditory tasks, the addition of a second ear results in only a

marginal improvement. Most important for this thesis, however, is that there are

times when the addition of a second ear results in poorer performance. These

cases are said to exhibit "contra-aural interference". This thesis includes both

empirical measurements and theoretical analyses which seek to identify when

and how a second ear results in a decrease in performance. This chapter begins

with an introduction of the aspects of auditory psychophysics and modeling

which motivated this thesis.

II. Background
From a broad perspective, this thesis examines, through psychophysical

measurements and black-box modeling, the interweaving of binaural and

monaural processing. This interweaving is studied by considering the

disadvantages of binaural listening over monaural listening in a level

discrimination task. Binaural hearing research has traditionally focused on

advantages in localization, discrimination, detection, and intelligibility (Durlach

and Colburn 1978; Blauert 1997) that arise from listening with two ears. Based on

psychophysical research and auditory modeling one might erroneously believe

that binaural and monaural processing are independent; psychophysical research
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and auditory modeling have traditionally been classified as either binaural or

monaural (dependent on only a single ear). Further, monaural models do not

consider the "other" ear and binaural models typically include separate

monaural and binaural pathways. This monaural/binaural division suggests that

listeners should be quite adept at attending to a single ear when it is desirable.

The psychophysical measurements in this thesis evaluate some limitations on the

ability to extract information presented to a single ear under conditions in which

it is subjectively difficult to attend to a single ear.

Systematic studies of contra-aural interference are needed not only to

increase our understanding of the fundamentals of auditory processing, but also

to help the hearing impaired. The hearing impaired often use bilateral aids to

improve their ability to localize sounds and understand speech in noise. Speech

intelligibility with two hearing aids, however, can be worse than intelligibility

with one aid (Walden and Walden 2005). Localization with no aids can be better

than with two aids (Van den Bogaert et al. 2006). These decreases in performance

may be a result of mismatches in the aided ears due to both the pathology of the

hearing loss and the independent processing in the two hearing aids. Typically,

each hearing aid has its own automatic gain control, level setting, and phase

delays that can lead to the corruption of the binaural information. The possibility

for corruption of the binaural information is even greater in bilateral cochlear

implants where the pulse rate and pulse timing also can vary across the ears.



How this corruption affects the ability of a listener to access monaural

information is not understood.

There have been no systematic studies of contra-aural interference; instead

contra-aural interference is generally treated as an anomalous finding. Treating

contra-aural interference as an anomaly is unjustified given the range of

experimental conditions for which contra-aural interference has been reported,

including "central masking" (Zwislocki 1972; Mills et al. 1996), binaural masking

(Taylor and Clarke 1971; Taylor et al. 1971; Yost et al. 1972; Koehnke and Besing

1992), and speech-on-speech masking (Brungart and Simpson 2002; Kidd et al.

2003) studies. Contra-aural interference has also been measured in studies of the

precedence effect (Zurek 1979) and pitch perception (Bernstein and Oxenham

2003). Heller and Trahiotis (1995) reported that the ability of subjects to

discriminate monotic noise targets can be decreased by presenting a distractor in

the ear contralateral to the target. Most important for this thesis are the reports of

contra-aural interference in level discrimination tasks (Rowland and Tobias 1967;

Yost 1972; Bernstein 2004; Stellmack et al. 2004).

A series of psychophysical experiments on contra-aural interference in a

level discrimination task were conducted. All of the psychophysical work

involved normal-hearing subjects making judgments about the level of a target

in the presence of a distractor. The target (a 600-Hz tone) and the distractor (also

a 600-Hz tone) were presented simultaneously, but in opposite ears. The

dominant perception of the combined target and distractor stimulus was a single
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compact auditory image with a salient loudness and position. Therefore, changes

to the target level affected both the perceived loudness and position.

Traditional binaural models have strong predictive power for classical

psychoacoustic experiments involving changes in the perceive loudness and

position (Colburn and Durlach 1978; Colburn 1996; Blauert 1997; Stern and

Trahiotis 1997), but they fail to predict any contra-aural interference. In

traditional models the decision devices typically have access to both purely

monaural and binaural representations of the signals under all stimulus

conditions (monotic, diotic and dichotic). Modeling of contra-aural interference

has been limited to ad hoc models included in some of the studies in which the

interference was reported (Zurek 1979; Heller and Trahiotis 1995). These models,

however, are not able to predict the same breadth of psychophysical results as

traditional models.

This thesis is a systematic study of contra-aural interference in a level

discrimination task. The aim of this thesis is to demonstrate that contra-aural

interference is not an anomalous result, but rather can be interpreted by

considering the perceptual attributes of the stimuli. Interpreting the results based

on perceptual attributes is substantially different than the traditional

interpretation based on independent monaural and binaural processing. To

achieve this aim, the stimuli in the psychophysical experiments were

manipulated to give variable amounts of contra-aural interference. In the



modeling, predictions based on non-optimal use of the obvious perceptual

dimensions were calculated.

III. Overview of the Thesis Document
The thesis work can be divided into psychophysical and modeling work,

which are nevertheless highly intertwined. The psychophysical tasks were

designed to test the model predictions and the model formulation stemmed from

the psychophysical tasks. For this reason both the psychophysical results and the

modeling predictions are presented in close association throughout the thesis.

This thesis is divided into five chapters. Chapters II, III, and IV present the

findings of both the psychophysical and the modeling work. These chapters are

structured such that they can be read individually. Chapter II presents the

findings of a level-discrimination experiment which used a multi-interval

adaptive paradigm to estimate the just-noticeable difference in level and

compares the results with the predictions of a model based on the perceived

loudness and position. Chapter III presents the findings of a level-discrimination

experiment which used a single-interval, constant-increment paradigm; the

predictions of the model based on two decision variables, perceived loudness

and position, are evaluated. Chapter IV focuses on predicting the psychophysical

results of Chapter III with a model based on a non-optimal combination of three

decision variables, namely the perceived loudness, position, and time-image.

Chapter V presents an integrated picture of the psychophysical results and the

modeling as well as some directions for future work.
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CHAPTER II. MONAURAL LEVEL DISCRIMINATION UNDER
DICHOTIC CONDITIONS

Abstract
A psychophysical experiment using a monaural level discrimination task

was carried out in order to assess the influence of the contralateral ear (the ear

that was not involved in the monaural task) on performance. Subjects were asked

to discriminate the level of a 600-Hz target tone at one ear in the presence of a

600-Hz distractor tone presented simultaneously and contra-aurally to the target.

Subjects were unable to ignore the distractor, even though the distractor was

presented contra-aurally to the target. In general, subjects perceived a single,

compact, auditory image whose perceived loudness and lateral position were

influenced by both the target and the distractor. The results of this experiment

are compared to predictions from a model that utilizes two binaural dimensions

that loosely correspond to the perceived loudness and lateral position. The

information conveyed by the loudness and position dimensions of the model is

severely degraded by roving the level and phase of the distractor tone. In the

data, when the level and phase of the distractor were both roved, the measured

level discrimination thresholds increased by an order of magnitude (average

thresholds increased from 0.7 dB to over 7.0 dB). When only the distractor phase

was roved, the information in the lateral position dimension was disrupted, but

the information in the loudness dimension remained intact. Under this condition,

the average threshold was 1.6 dB. The presence of a distractor with a fixed level



and phase had a small, but significant, detrimental effect; the threshold was 1.1

dB with a fixed distractor.

I. Introduction
Auditory research has traditionally been classified as either monaural

(dependent on only a single ear) or binaural (dependent on interaural

differences). Overall-level discrimination of monotic, diotic, and dichotic stimuli

has traditionally been considered a monaural task. Classic models predict that

performance on a monotic level discrimination task cannot be degraded by the

addition of a stimulus at the other ear: Monaural models do not consider the

"other" ear and, therefore, predictions are independent of the stimuli at that ear.

Binaural models typically include both monaural and binaural pathways (cf.,

Colburn and Durlach 1978 for a review of binaural modeling) so that monotic

performance provides a lower bound on performance. This monaural/binaural

division suggests that listeners should be quite adept at attending to a single ear

when it is desirable. In this work, we evaluate the ability (or inability) of normal-

hearing listeners to attend to a target sound at one ear in the presence of a

distractor sound at the other ear. This work tests the hypothesis that monotic

level discrimination uses information carried by binaural channels.

In disagreement with the monaural/binaural division and traditional

models, studies of informational masking (Brungart and Simpson 2002; Kidd et

al. 2003), the precedence effect (Zurek 1979), pitch perception (Bernstein and



Oxenham 2003), and noise-token discrimination (Heller and Trahiotis 1995) have

provided evidence that, under complex listening conditions, normal-hearing

subjects are, in fact, unable to attend to a single ear. In studies of informational

masking (e.g., Brungart and Simpson 2002; Kidd et al. 2003), monaural speech

intelligibility was reduced by adding a masker to the other ear. Zurek (1979)

demonstrated that detection of an acoustic reflection can be better under diotic

conditions than under dichotic conditions. In Bernstein and Oxenham (2003), the

ability to discriminate changes in the fundamental frequency of a harmonic tone

complex was reduced under dichotic conditions. Heller and Trahiotis (1995)

reported that subjects could discriminate different noise tokens under monotic

conditions, but that the subjects were unable to discriminate the tokens under

some dichotic conditions. These studies all reported substantial contra-aural

interference (i.e., a decrease in performance when two ears are used relative to

performance when one ear is used)'. In the studies with complex listening

conditions, the contra-aural interference was interpreted using the concepts of

the central spectrum (Bilsen 1977; Bilsen and Raatgever 2000) and non-optimal

across-frequency processing.

Substantial contra-aural interference has also been reported in both

masked (Taylor and Clarke 1971; Taylor et al. 1971a; Taylor et al. 1971b; Yost et

al. 1972; Koehnke and Besing 1992) and absolute (Zwislocki 1972; Mills et al.

1996) detection experiments. Due to the nature of the stimuli used in these

experiments, the central spectrum and non-optimal across-frequency processing
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are insufficient to explain the contra-aural interference. The reliability of some of

these results, however, has been questioned. Durlach and Colburn (1978), for

example, stated that the results of Zwislocki were highly dependent on the

paradigm and training and were not easily replicated. Further, in the studies by

Taylor and colleagues, the psychometric functions (percent correct versus signal

to noise ratio) were non-monotonic, but performance was measured adaptively.

Finally, in the masked detection studies, the relevant perceptual attributes were

unstable. For example, while for one signal-to-noise ratio (SNR) the presence of

the signal was detected as an increase in the tonality of the sound, for another

SNR, differing by just a few decibels, the target was detected as a decrease in the

tonality. The effects of these drastic changes in the relevant perceptual attributes

on contra-aural interference have not been explored.

Small amounts of contra-aural interference have also been demonstrated

in level discrimination experiments. Rowland and Tobias (1967) and Yost (1972)

measured small, but significant, amounts of contra-aural interference in a level

discrimination task. In a similar task, however, Stellmack et al. (2004) did not

find significant contra-aural interference. Bernstein (2004) used a more complex

distractor and reported slightly larger amounts of contra-aural interference.

Although contra-aural interference has been reported with a wide range

of stimuli and paradigms, modeling of contra-aural interference is limited.

Monaural models are incapable of predicting contra-aural interference since they

do not include the required contra-aural inputs. In some cases, binaural models
20



have been able to predict certain aspects of contra-aural interference (Zurek 1979;

Heller and Trahiotis 1995). These models of contra-aural interference, however,

have not been applied to a wide range of experiments. For example, the model

used by Zurek (1979) bases its decisions on the depths of notches in the central

spectrum. To our knowledge, this model has not been applied to the results of

any other experiments.

Traditional binaural models based on equalization and cancellation

(Durlach 1963), cross-correlation (Colburn 1973) and position variables (Hafter

1971; Yost 1972; Stem and Colburn 1978) require monaural processors to

accurately predict performance on monotic and diotic tasks. In these models, the

decision devices usually (1) use an optimal combination of the information from

monaural and binaural processors, (2) optimally switch between using the

information from the monaural processor and from the binaural processor, or (3)

have unspecified mechanisms for using the monaural and binaural information.

The monaural processor places a lower limit on performance in these models and

prevents the models from predicting contra-aural interference. In general, it

appears that the monaural/binaural division of research and the traditional

framework of auditory models persist due to the paucity of the psychophysical

data convincingly demonstrating contra-aural interference in simple tasks which

can be thoroughly analyzed.

In the work described in this paper, a psychophysical experiment was

conducted in order to assess the ability of listeners to attend to a single ear with
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tonal stimuli. This study extends the work of Rowland and Tobias (1967) and

Bernstein (2004) and measures contra-aural interference in a level discrimination

task with pure-tone stimuli. In the psychophysical experiment, subjects were

asked to discriminate the level of a low-frequency target tone at one ear, in the

presence of an identical frequency distractor tone, presented simultaneously and

contra-aurally to the target. The psychophysical data are compared to

predictions of a two-dimensional detection theoretic model.

Throughout this work, the level and phase of the target and the distractor

are discussed individually. The experimental task is nominally monaural level

discrimination, and traditional models of level discrimination process the

monaural target and contra-aural distractor separately. Treating the target and

distractor separately, however, does not agree with the perception of the stimuli;

the target and distractor perceptually fuse into a single dominant image with a

salient loudness and lateral position. Unlike monaural models, which predict no

influence of the distractor on performance, a substantial influence of the

distractor is predicted by a binaural model that relates the binaural level, the

interaural difference in level (ILD), and the interaural difference in time delay

(ITD)2 to the loudness and lateral position.

Across the experimental conditions, the reliability of the loudness and the

lateral position are systematically varied. The loudness and lateral position are

both reliable for discriminating the level of the target when the distractor level

and phase are not roved (i.e., are fixed). When the phase of the distractor is
22



roved, the reliability of the lateral position for discriminating the target is greatly

reduced. Roving the level of the distractor reduces the reliability of both the

loudness and the lateral position. In order to reduce the reliability of the

loudness and lateral position, the ranges over which the phase and level of the

distractor are roved are large (30 dB range in level and n in phase).

Discrimination performance with a fixed distractor, however, has been shown to

be nearly independent of the level and the phase of the distractor over the entire

range of distractor levels and phases used in this work (Hershkowitz and

Durlach 1969; Domnitz 1973; Domnitz and Colburn 1977). Thus, any changes in

discrimination performance are due to the roving of the distractor, rather than

the specific level and phase of the distractor.

In the modeling portion of this work, a binaural model based on the

binaural level and a simple position variable (a weighted sum of the ILD and

ITD) is evaluated. Models based on this position variable have predicted the

results of many binaural experiments (Hafter 1971; Yost 1972). Although this

position variable has strong predictive power, it is insufficient to predict all

binaural effects. Particularly, the position variable predicts a complete time-

intensity trade, while the incomplete nature of the trade has been widely

demonstrated (Hershkowitz and Durlach 1969; Hafter and Carrier 1972; Ruotolo

et al. 1979). Further, Bernstein (2004) reported that subjects can outperform an

ideal observer of this simple position variable when discriminating the ILD of

tones with a random ITD. The shortcomings of this simple position variable may
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be overcome by a variety of modifications (Stern and Trahiotis 1997). These

modifications add complexity and may not be required to predict monaural level

discrimination under dichotic conditions. The modeling portion of this work

calculates the information, for monaural level discrimination, carried by the

binaural level and the unmodified position variable.

II. Experimental Methods
Subjects were asked to discriminate the level of a 600-Hz target tone at one

ear, in the presence of a 600-Hz distractor tone presented simultaneously and

contra-aurally to the target. Five different conditions were explored. Across the

conditions, the target was the same and the properties of the distractor varied.

Table 1 lists the properties of the distractor used in each condition. In the

psychophysical experiment, a 4-interval, 2-cue, 2-alternative, forced-choice,

(41-2AFC) adaptive paradigm was used. All roving was done in an interval-by-

interval manner.

A. Subjects
Four subjects (S1, S2, S3, and S4) completed the tasks. Subject S1 is an

author. Subjects, with the exception of the author, received an hourly wage for

their participation. All subjects had pure tone thresholds below 20 dB HL at

frequencies of 250, 500, 1000, 2000, 4000, and 8000 Hz in both ears. Subject ages

were between 19 and 31 years old. Subjects S1 and S2 had prior listening



experience in similar tasks, while subjects S3 and S4 had no prior listening

experience.

B. Apparatus and Materials
During the experiment, subjects sat in a sound treated in front of a

computer monitor. They responded through a graphical interface via a computer

mouse. On each trial, "lights" displayed on an LCD monitor denoted the current

interval number. The experiment was self-paced and listening sessions lasted no

more than 2 hours with frequent rest breaks. A PC and Tucker-Davis-Technology

System II hardware (AP2, PD1, PA4, and HB6) generated the experimental

stimuli at a sampling rate of 50 kHz. Stimuli were presented over Sennheiser HD

265 headphones.

C. Stimuli
The stimuli in the experiment consisted of both a target and a distractor.

The target and distractor were both 600-Hz tones with 300-ms durations and

25-ms rise/fall times. The left ear received the target, while the right ear received

the distractor. The target and distractor were gated on and off simultaneously.

The target was presented at either the reference level of 50 dB SPL or the

reference level plus an increment of AL (in decibels); the target phase was always

zero.

As indicated in Table 1, five different distractor conditions were explored:

(1) no-distractor, (2) fixed, (3) roving-phase, (4) roving-level, and (5) double-rove

(i.e., roving-phase and roving-level). In conditions in which the level was fixed
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(fixed and roving-phase), the level of the distractor was fixed at 50 dB SPL (the

reference level of the target). In the conditions in which the level was roved

(roving-level and double-rove), the level of the distractor was chosen randomly,

on an interval-by-interval basis, from a uniform distribution between 50 and

80 dB SPL. In the conditions in which the phase was roved (roving-phase and

double-rove), the phase of the distractor roved uniformly between ±n/2 on an

interval-by-interval basis. In the fixed-phase conditions (fixed and roving-level),

the phase of the distractor was fixed at zero.

D. Experimental Procedures

In the psychophysical experiment, a 41-2AFC paradigm (ABAA or AABA)

was used (Bernstein and Trahiotis 1982). There was 500 ms of quiet between each

interval. In the reference intervals, the target level was held fixed at the reference

level; in the test interval, the target level was incremented by AL. A 2-down 1-up

adaptive procedure, modeled after Levitt (1971), estimated the minimum change

in the target level required to achieve a probability of a correct response of 0.7.

The adaptive runs consisted of 16 reversals, and each adaptive run began with a

random initial value of AL (chosen uniformly between 15 and 25 dB). According

to the 2-down 1-up adaptive rule, AL was initially adjusted by

multiplying/dividing its current value by a scale factor of 1.8. After two

reversals occurred, the increment was adjusted by multiplying/dividing by a

scale factor of 1.4. The magnitude of the scale factor was further reduced when



the fourth, sixth, and eighth reversals occurred to values of 1.2, 1.1, and 1.05,

respectively. After the eighth reversal, the scale factor remained at 1.05 for eight

additional reversals, at which point the adaptive run was concluded. The

adaptive trials were self-paced and the subjects had an unlimited time to

respond. The subjects received correct-answer feedback after every trial.

During each testing session, subjects completed four adaptive runs for

each of the five different conditions. The ordering in which the conditions were

presented was fixed as follows: no-distractor, fixed, roving-phase, roving-level,

and double-rove. Since the perceptual cues for each condition were different,

subjects were alerted to the condition using a unique letter for each condition.

Subjects ran the four adaptive runs for each distractor condition in succession.

The blocking of the adaptive runs in this manner was done to allow the subjects

to re-familiarize themselves with the relevant perceptual cues. Subjects were

given a minimum of 10 hours of training before the reported data were collected.

For each condition, the reported results are based on 16 post-training adaptive

runs.

E. Data Analysis
Level discrimination thresholds have been reported in many forms and

the analysis reported here follows the recommendations of Buus and Florentine

(1991). In accordance with their recommendations, the performance metric used

is AL, the decibel change of the target level. The data from the experiment are

reported in two ways. First, level discrimination thresholds were determined

27



from the geometric mean of the values of AL that occurred on the last eight

reversals of each adaptive run. Second, psychometric functions were fitted to the

data from all the trials of the adaptive runs. Note that, due to the experimental

paradigm, only a few trials were conducted with each value of AL. (The adaptive

runs began with a random initial value of AL; on each trial AL was adjusted

according to the adaptive rule.) Further, on any trial, the subject was either

correct or incorrect. The fitting of the psychometric functions was done with

these binary data.

In accordance with Buus and Florentine (1991), d' is assumed to be

proportional to AL. Due to the binary nature of the data, converting the data into

d' is problematic since trials in which the subjects were correct have a d' of

infinity. By assuming (1) that d' is proportional to AL, (2) an unbiased observer

(which is reasonable in a 41-2AFC task), and (3) that performance is limited by

Gaussian noise, one can relate d' to the probability of a correct response. Further,

with these assumptions, the probability of a correct response depends on AL, and

can be expressed as

AL x2

Pcorrect(AL)= r |e 2 2 dx, (1)

where a is a fitting parameter and is related to the proportionality between d'

and AL. When fitting psychometric functions to the subject data, the parameter a

was adjusted to minimize the root-mean-squared (RMS) error between the



predicted percent correct and all of the data for a given subject and condition

(collapsed over adaptive runs).

For each subject and condition, analysis of the fitted psychometric

function is based on the parameter a and the RMS error statistic. Confidence

intervals for both a and the RMS error were calculated by randomly drawing,

with replacement, the results of N trials (where N is the total number of trials for

a given subject and condition) and fitting a psychometric function to this

sampled data. For each subject and condition a total of 1000 random drawing

were made. An additional estimate of threshold is obtained by substituting the

appropriate value of a into Eq. 1 and then solving for the AL that yields a

probability of a correct response of 0.7. These estimates of threshold based on the

psychometric functions agree with the measurements of threshold based on the

reversals of the adaptive runs and are not explicitly presented. The binary nature

of the data complicates the interpretation of the RMS error statistic. The RMS

error statistic is not a direct measure of the difference between the data and the

fitted function; even if the data were drawn from a random process defined by

the fitted function, the expected RMS error would not be zero.

Also in accordance with Buus and Florentine (1991) the value AL is

displayed on a logarithmic scale. The analysis and statistics are therefore based

on the logarithm of AL. For example, threshold was estimated from the geometric

mean of the reversals of the adaptive runs and when averaging threshold across

conditions, the geometric mean was also used. The results were also analyzed by
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considering AL on a linear display (i.e. using the arithmetic mean). Both analyses

lead to similar conclusions.

III. Modeling
This work considers a detection theoretic model based on a 2-dimensional

decision space in a 41-2AFC paradigm. The two dimensions, which loosely

correspond to the perceived loudness and lateral position, are denoted A and e.

These two dimensions are functions of the level of the left ear LLeft (in decibels),

the level of the right ear LR (in decibels), the interaural time difference T (in

microseconds), and two internal noises NA and Ne (both in decibels). The

dimensions are defined as

Lefp LRight

A=l10logio 10 10 +10 10 +NA (2)

and

e=LLef -LRight +kT+ No. (3)

where k is the intensity-time trading ratio in dB per ps which is related to the

time-intensity trading ratio used by Hafter (1971) and Yost (1972).

As mentioned in the Introduction, models based on the e dimension

(often referred to as a position variable) have been shown to have strong

predictive power. Models based on the A dimension (the binaural level or

energy) have been evaluated as an aspect of central spectrum models (Bilsen

1977; Bilsen and Raatgever 2000). These studies of the central spectrum have
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focused on issues concerning across-frequency integration. To our knowledge,

the information carried by the A dimension with narrowband stimuli has not

been explicitly explored. Under monotic conditions, A is the monaural energy

and models based on a monaural energy detector have been explored for many

monotic and diotic tasks. The analysis is limited to the A and E dimensions, since

they correlate well with the dominant perceptions of the stimuli. The analysis

does not include dimensions that correlate with any additional percepts or

images (e.g., time-image, spatial width, and spatial shape).

The model dimensions are further specified by using internal noises NA

and N. that are zero-mean Gaussian random variables that are independent

across the dimensions, the observation intervals, and the trials. With these

assumptions, the model has only three parameters k, a, and a. which

correspond to the intensity-time trading ratio and the standard deviations of the

two internal noises. These three parameters are chosen and held fixed

throughout all the modeling such that the model predicts the results from studies

of time-intensity trading and lateral position discrimination (cf. Blauert 1997) and

studies of overall-level discrimination (cf. Viemeister 1988). The intensity-time

trading ratio k is fixed at 1 dB per 20 ps, and the standard deviations of the

internal noises (aA and a0 ) are fixed at 0.5 dB.

To complete the model specification, three maximum likelihood observers

are considered as the decision device. These maximum likelihood observers are



the ideal observer of (1) A alone, (2) 0 alone, and (3) A and E together. Note that

none of these observers has direct access to the level of the monaural target; the

two dimensions on which the model is based are both binaural dimensions.

Performance of the three ideal observers, in a 41-2AFC task, is derived in

Appendix A. Model predictions are then compared to subject performance.

IV. Results
Figure 1 contains the geometric mean of the thresholds (calculated from

the reversals of the adaptive runs) of the four subjects for each of the five

different conditions. A global analysis of variance (ANOVA) test found

statistically significant effects of distractor condition and subject and a

statistically significant interaction between distractor condition and subject

(p<<0.02). The measured thresholds vary with the type of distractor and subject.

Multiple post hoc ANOVA tests were used to test for statistically significance

differences across conditions (all combinations) and subjects (all combinations).

There are statistically significant differences (p<0.0002) in performance across all

conditions and subjects except between the roving-level and double-rove

conditions (p>0.05). The post hoc ANOVA tests were not repeated measures, and

therefore differences which were not found to be statistically significant with the

non-repeated measures ANOVA, may in fact be statistically significant with a

repeated measures ANOVA. Performance in the no-distractor condition was the

best with an average (across-subject geometric-mean) threshold value of AL of 0.7



dB. Performances with the roving-level and double-rove distractors were the

worst with average thresholds of 5.8 and 7.3 dB, respectively. The fixed and

roving-phase distractors had small detrimental affects on performance, with

average thresholds of 1.1 dB and 1.6 dB, respectively.

In addition to the thresholds of the subjects, Fig. 1 also shows thresholds

for the ideal observer of either A or 0 individually, as well as the thresholds for

an ideal observer of A and 0 jointly. The lowest threshold the ideal observer of A

obtains is in the no-distractor condition. In this condition, the predicted

threshold is 0.5 dB. In both the fixed and roving-phase conditions, the threshold

is 0.9 dB, while in both the roving-level and double-rove conditions, the

thresholds are 11.9 dB. The ideal observer of 0 performs best in the fixed

condition with a threshold of 0.6 dB. The ideal observer of E never obtains

threshold performance in the no-distractor condition. In the roving-phase,

roving-level, and double-rove conditions, thresholds are 15.8, 11.9, and 15.8 dB,

respectively using 0 alone. The ideal observer of A and 0 together performs best

in the fixed condition with a threshold of 0.3 dB, while in the no-distractor

condition the threshold is 0.4 dB. In the roving-phase, roving-level, and double-

rove conditions, thresholds were, respectively, 0.8, 0.5, and 4.5 dB.

Figure 2 shows an example of psychometric functions for a representative

subject (S2) for all five conditions. The psychometric functions take into account

all trials, whereas the threshold measurements take into account only trials at

which reversals in performance occurred. Visually, the data appear to be well
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fitted by psychometric functions defined by Eq. 1. Since the data were collected

using an adaptive paradigm, most trials had values of AL near threshold.

Traditionally psychometric functions are not constructed from data collected

with adaptive paradigms. In this work, however, this analysis was required to

determine the extent to which performance was monotonic in AL. The values of a

(the single fit parameter for the psychometric function) that best fit the data are

presented in the top panel of Fig. 3. Consistent with the threshold data presented

in Fig. 1, the value of a that best fits the data varies systematically across the

conditions. Paired t-tests show no statistically significant differences (p>0.05) in

the values of a between the no-distractor, fixed, and roving-phase conditions,

nor are there statistically significant differences between the roving-level and

double-rove conditions (p>0.05). The differences in the values of a between the

no-distractor, fixed, and roving-phase conditions and the roving-level and

double-rove conditions, however, are statistically significant (p<0.025).

In addition to the changes in a, there are also changes in the RMS error

between the fitted psychometric function and the data. The bottom panel of

Fig. 3 shows the RMS error. Paired t-tests show no statistically significant

differences (p>0.05) in the RMS error between the no-distractor, fixed, and

roving-phase conditions, nor between the roving-level and double-rove

conditions. The differences in the RMS error between the no-distractor, fixed,

and roving-phase conditions and the roving-level and double-rove conditions,



however, are statistically significant (p<0.025). These changes in the RMS error

are indicative of a change in how well the fitted psychometric function fits the

data. These changes could be a result of either a change in the underlying

psychometric function, or an artifact of the adaptive paradigm, which arises from

the change in a. Independent of the source, these changes in the quality of the fit

are relatively small and do not indicate a drastic departure from the assumed

shape of the psychometric function.

In addition to the thresholds reported in Fig. 1, the model also predicts

psychometric functions for the five different distractor conditions. Figure 4

shows predicted psychometric functions of the ideal observer of A alone

(dashed), 0 alone (dotted), and A and 0 together (solid). The predicted

psychometric functions of the ideal observer of A alone visually agree with the

reconstructed psychometric functions of the subjects in the no-distractor, fixed,

and roving-phase conditions (cf. Figs. 2 and 4). The predicted psychometric

functions of the ideal observer of 0 alone agree only with the psychometric

functions of the subjects in the fixed condition. The subject psychometric

functions for the roving-level and double-rove conditions are neither predicted

by the ideal observer of A alone, nor the ideal observer of 0 alone. For all

conditions except the roving-level condition, the predicted psychometric

functions of the ideal observer of A and 0 together are consistent with the

psychometric functions of the subjects. The predicted psychometric functions of

the ideal observer of A and 0 together for the roving-level condition has an
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appropriate shape, but shows substantially better performance than that

obtained by the subjects.

V. Explanation of the Model Predictions
Insight into the model predictions (cf. Figs. 1 and 4) is gained by

considering the three ideal observers (A alone, 0 alone, and A and E together)

that are derived in Appendix A. All three ideal observers are completely

characterized by the conditional joint probability density function of observing A

and 0, given the target level L,,,. A closed form expression of this conditional

joint probability density function, denoted fA t , could not be derived

analytically. Rather, fA,9|L rget was approximated with a mixture of analytical and

numerical techniques; a detailed derivation of this calculation is presented in

Appendix B. This section considers how the joint and marginal probability

density functions of A and 0, given LTarge,, are affected by changes to AL and the

stimulus condition.

Figure 5 shows the conditional probability density for A given LT e ,

denoted as f L , for the five conditions and a range of AL sizes. In the no-

distractor, fixed, and roving-phase conditions, fAIL has a Gaussian shape.

Changing the size of AL shifts the mean (Fig. 5 panels A-C). The width (variance)

of fAIL is independent of the size of AL. For a given LTae, (i.e. AL), the shape is

Gaussian because variation in the random variable A depends only on the
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internal Gaussian noise. In the fixed and roving-phase conditions, the

distributions (and the effects of the increment size on the distributions) are

identical. For a given AL, the mean in the no-distractor condition is slightly less

than the mean in the fixed and roving-phase conditions. These across-condition

differences in the mean are greatest for small AL. The difference is due to the

presence of the distractor, and as AL increases, the distractor influence decreases.'

The shifts in the distributions associated with a change in the increment size are

slightly smaller in the fixed and roving-phase conditions than the shifts in the no-

distractor condition and, therefore, an ideal observer of only A performs slightly

worse in the fixed and roving-phase conditions.

In the roving-level and double-rove conditions, the distributions of A

(Fig. 5 panels D and E) are more complicated; the distributions are much broader

than the distributions of A in the no-distractor condition. The increased

complexity of f in the roving-level and double-rove conditions arises

because the random variable A depends not only on Le and the internal noise

(as is the case in the other conditions) but also on the random level of the

distractor. The level of the distractor, in decibels, was chosen from a uniform

distribution. A uniform distribution of level is neither a uniform distribution of

pressure (units of force per area) nor intensity (units of power per area). The

random variable A adds the intensities, not the levels, of the target and distractor.

In the roving-level and double-rove conditions, the distributions of A and the



effect of changes to the increment size on the distributions are identical. When AL

is changed, the mean of the distribution shifts and the shape of the distribution is

also affected. In these two conditions, changes in AL have a much smaller

influence than in the no-distractor condition. The performance of an ideal

observer of A is considerably worse in these two conditions.

A detection theoretic analysis reveals that performance is limited by the

width and how the mean depends on AL; further, the analysis demonstrates that

performance is neither affected by the changes in shape of fAIL associated with

changes in AL nor the complexity of the shape of fh . Many fAIL shapes

(e.g., rectangular) will lead to the same predictions. [For example, the

psychometric functions for the ideal observers of A alone and 0 alone in the

roving-level condition (refer to Fig. 3) are nearly identical even though fAIL

and fOIL aT~,e are strikingly different in this condition (see Figs. 5 and 6).]

Figure 6 shows fe , the conditional probability density function for the

observed 0 given L.rge,, for four of the five different conditions and a range of

increment sizes. In the no-distractor condition, the decision variable 0 is

undefined and carries no information, and this case is not included in Fig. 6. In

the fixed condition (Fig. 6 panel A), fe1L is Gaussian; changing the increment

size shifts the mean and has no effect on its variance. For a given L,,,,, the shape



is Gaussian because the randomness of the variable 0 comes only from the

Gaussian internal noise. In the roving-phase condition (Fig. 6 panel B), f is

nearly uniform over a large range. For a given Lr.e,, the variable 0 depends on

both internal noise and the phase of the distractor. The predictions are robust to

the method used to empirically extract the phase since the stimuli are tones with

relatively long durations. These predictions were derived by using the actual

phase of the target and distractor stimuli. Note that in the roving-phase

condition, 0 carries substantially less information about AL than A carries.

In the roving-level condition (Fig. 6 panel C), felL is also nearly uniform

over a large range (although the range is smaller than in the roving-phase

condition). In this case, for a given LTaet the variable 0 depends on both internal

noise and the level of the distractor. In the roving-level condition, fe is

nearly uniform, as opposed to fAL , since the random variable E is calculated

by subtracting the levels in decibels, not the intensities (units of power per area),

of the target and distractor. Note that changes in AL result in only small changes

in the marginal distributions of both A and 0. Finally, in the double-rove

condition (Fig. 6 panel D), the marginal distributions of 0 are nearly trapezoidal

in shape since they arises from the sum of two uniformly distributed random

variables. Changes to AL have only small effects on this distribution.



In the roving-level condition, neither A nor e carry useful information

individually. The variables A and 0, however, carry information jointly and

therefore, there is substantial information for discriminating changes in the target

level. The joint probability distributions of A and 0 for a range of increment sizes

for the roving-level condition are shown in Fig. 7. Although both A and 0 take

on a large range of values, for each increment size, the probability of 0

conditioned on A is narrow (and vice-versa) and changes in AL substantially shift

the distribution. If the effects of the internal noise are disregarded, for each

increment size, every value of A corresponds to a single value of 0 (performance

is limited only by the internal noise). Thus, for each increment size, there is a

unique {A,01, making monaural level discrimination possible with these two

dimensions.

In the double-rove condition, the variables A and 0 do not carry useful

information (neither individually nor jointly). The joint probability distributions

of A and 0 for a range of increment sizes for the double-rove condition are

shown in Fig 8. The variables A and 0 take on large ranges of values, as in the

roving-level condition. Unlike the roving-level condition, however, in the

double-rove condition, the probability of 0 conditioned on A is broad (each value

of A now corresponds to a range of 0 values and vice-versa) and changes in the

increment size have only small effects (cf. Fig. 8). Therefore, performance on

monaural level discrimination based on A and E is greatly reduced. Note that
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adding almost any third dimension would result in monaural level

discrimination performance in the double-rove condition being limited only by

internal noise.

In summary, the A and E dimensions carry information both individually

and jointly about the target level (cf. Figs. 5-8). The roving-phase condition

decreases the information in 0, without compromising the information in A. The

roving-level condition reduces the information in A and 0 individually, but does

not reduce the joint information. The double-rove condition reduces the

information in A and 0 individually and also reduces the joint information. Note

that in all the conditions, however, the signal at the target ear is unchanged;

therefore, any decreases in performance are a result of an inability of the subjects

to access the information available at the target ear.

VI. Discussion
The results are consistent with the hypothesis that monotic level

discrimination uses information carried by binaural channels. The experimental

stimuli were chosen such the monaural level of the target ear was always

reliable. Thus, if a subject were able to focus exclusively on the ipsilateral ear (the

ear in which the target is presented), performance would not vary across

conditions. Alternatively, attending to only the contralateral ear would result in

chance performance in all conditions because the distractor never carried

information useful for level discrimination. The results presented in Figs. 1 and 3

clearly demonstrate that it is possible to measure large amounts of contra-aural
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interference with a tonal stimulus. Both the analysis of the measured thresholds

and the analysis of the reconstructed psychometric functions show a significant

effect of the contralateral ear on monaural level discrimination (cf. Figs. 1 and 2).

The contra-aural interference is greatest when the reliability of the

perceived loudness and lateral position is reduced. In the no-distractor and fixed

conditions, subjects could have relied upon any perception that varied with the

level at the target ear. For these conditions, subjects typically reported listening

for a change in the loudness (no-distractor condition) or changes in both the

loudness and lateral position (fixed condition). These well-studied conditions

were repeated (1) to provide a baseline for comparison, (2) to decrease the effects

of inter-subject variability, and (3) as a training condition. The measured

thresholds in the no-distractor condition agree with previous measures of

monotic (and diotic) level discrimination (Viemeister 1988). The measured

thresholds in the fixed condition also agree with previous measures of interaural

level discrimination (Blauert 1997). The small, but significant, differences

between the no-distractor and fixed conditions agree with previous reports of

small increases in threshold due to the addition of a distractor (Rowland and

Tobias 1967; Yost 1972; Bernstein 2004; Stellmack et al. 2004).

The measured thresholds in the roving-phase condition are approximately

twice as large as the thresholds in the no-distractor condition (1.6 dB versus

0.7 dB). Although this increase in threshold is contra-aural interference, there

may be other interpretations. For example, this relatively small increase in
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threshold could be due to the perceptual complexity of the task when the

distractor has a random phase. In the no-distractor condition, three of the four

intervals are identical; whereas in the roving-phase condition, all four intervals

are different and subjects must focus on the correct perceptual attribute. The

further increases in the thresholds in the roving-level and double-rove

conditions, however, challenge this perceptual complexity argument. If subjects

are basing their decisions on the monaural level, the roving-level and double-

rove conditions have the same perceptual complexity as the roving-phase

condition and, therefore, the thresholds should be the same in these three

conditions.

Another competing hypothesis is that the decrease in performance in the

roving-level and double-rove conditions is due to crosstalk. A theoretical

analysis of crosstalk, however, suggests that its contributions are not sufficient to

explain the results. The predictions of the ideal observer of A are equal to the

predictions of the monaural energy detector when there is no attenuation of the

crosstalk signal. Since the predictions of the ideal observer of A are so close to the

measured thresholds, the amount of attenuation of the crosstalk signal would

need to be near zero, which is unreasonable.

One hypothesis consistent with all observations is that monotic level

discrimination uses information carried by binaural channels. Predictions of an

ideal observer of A and 0 agree with the measured thresholds (cf. Fig. 1) except

for three discrepancies. The first is that subject S3 outperformed the ideal
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observer in the no-distractor condition. The second is that the model predicts a

slight improvement (lower threshold) due to the addition of a fixed distractor

and the data indicates a slight decrease (higher threshold) in performance. The

third is that the predicted performance in the roving-level condition is much

better than the actual performance. These three discrepancies are considered in

the following two paragraphs.

The inconsistency between the measured threshold of subject S3 and the

threshold predicted by the ideal observer of A and E is a result of how the

parameters of the model were selected. The values of the parameters were fit to

the average performance across many studies and subjects. In the no-distractor

condition, the performance of the ideal observer is limited only by internal noise

in the A dimension and therefore highly influenced by the oA parameter. A

small decrease in the amount of internal noise would result in the ideal observer

having a lower threshold than subject S3. In fact, the predictions of the no-

distractor, fixed, and roving-phase conditions would be improved by tuning the

model parameters for each subject.

The discrepancies in the fixed condition and roving-level condition are

related to the assumption that the joint information in A and E is used optimally.

The amount of joint information" is minimal in the no-distractor and roving-

phase conditions and maximal in the fixed, roving-level, and double-rove

conditions. Further, the predictions in the double-rove condition are less



sensitive to perturbations of the ideal decision rule than the predictions in the

fixed and roving-level conditions.

This invariance to non-ideal perturbations is best highlighted by a one-

interval analysis, even though the experiment used a four-interval paradigm.

Figure 8 shows the joint probability density function of A and E in the double-

rove condition for the un-incremented target and targets with level increments of

4 and 16 dB. The probability density functions are nearly identical for many

values of A and 0. For example, comparing the un-incremented target

distribution and the distribution of a target with a level increment of 4 dB, the

probability density functions are nearly identical for A above 65 dB and 0

between -20 and 20 dB. Making non-ideal decisions in the regions where the

probability of the reference target is similar to the probability of the incremented

target does not drastically decrease performance. In the roving-level condition,

however, perturbations of the ideal decision rule drastically affect performance.

There are no regions where the probability of the un-incremented target is

similar to the probability of the incremented target. (See Fig. 7.)

The departure from ideal processing may also be related to the ability to

reliably observe A and 0 on the same interval. In the studies of overall-level

discrimination and lateral position discrimination used to select the parameters

of the model, observations of only a single dimension were required to obtain

ideal performance (e.g., the A dimension carries all the relevant information in

overall-level discrimination studies). It is not known whether subjects can
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reliably observe A and e in our paradigm. Clearly, subjects can rate the loudness

or the position of a tonal stimulus. In the paradigm used in this work, in order to

make optimal decisions, subjects would be required to accurately rate both the

loudness and position of a single observation of a short tonal stimulus on each

interval. This joint rating would most likely need to be done rapidly (during the

brief quiet between each interval) or slowly, but delayed (i.e., after the trial and

therefore requiring more memory). Studies on divided attention (e.g., Bonnel and

Hafter 1998) report that performance decreases when subjects are required to

judge multiple dimensions.

Most of the model analysis has focused on comparing the predicted

thresholds to the measured thresholds. The model also predicts psychometric

functions (cf. Fig. 4), and it is possible to compare the predicted and measured

psychometric functions. Due to the experimental design, the scope of this

comparison is limited since comprehensive measurements of the psychometric

functions were not obtained with the adaptive paradigm. One can make,

however, some general statements about the psychometric functions. The first is

that the predicted psychometric functions of the ideal observer of A and e have

the general shape of the psychometric functions of the subjects (compare Figs. 2

and 4) for all conditions. Further, the shapes of the predicted psychometric

functions of the ideal observer of only A or e are incorrect in many conditions.

Second, there are slight variations across conditions in the shapes of the
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psychometric functions predicted by the ideal observer of A and 9. This is

consistent with the change, across conditions, in the quality of fit of the

psychometric function defined by Eq. 1 and the data (refer to Fig. 3). As

mentioned previously, the change in the quality of fit across conditions could

also be an artifact of the adaptive paradigm. Most importantly, it appears

reasonable to assume that the psychometric functions in all the conditions are

monotonic in AL and smooth. Therefore, the measured increases in threshold due

to the addition of the distractor are neither an artifact of adaptive procedure nor

an artifact of a major perceptual changes as a function of AL. The influence of the

distractor on performance cannot be explained by monaural processing. The

psychophysical results are consistent with a binaural model based on correlates

to the perceived loudness and lateral position.

VII. Summary
This work measured large amounts of contra-aural interference in a

monaural level discrimination task. Subjects were unable to ignore the ear

contralateral to the target. As a result of this failure, thresholds were increased by

nearly an order of magnitude in some conditions. In general, subjects perceived a

single compact auditory image. The reliability of the perceived loudness and

lateral position of this image were systematically varied. The increases in the

measured thresholds were greatest when both the perceived loudness and lateral

position were unreliable. These results are predicted by a detection theoretic

model based on only binaural information. Further, the results are consistent
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with the hypothesis that monotic level discrimination uses information carried

by binaural channels.
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Appendix A
In this appendix, performance in a 41-2AFC task is calculated for three

observers in the {A, 01 space, as defined by Eqs. 2 and 3 in the text. Three

models are considered: the ideal observer of A and 0 together, the ideal observer

of A alone, and the ideal observer of 0 alone. The task requires the observer to

discriminate the level of the target La,, On a given interval the target is either

un-incremented, such that LTaret is equal to L, (the reference level) or the target

is incremented, such that L,,,t is equal to the sum of 4 and AL. To calculate

performance we note: (1) on each interval there is a single observation of both A

and 0 and (2) on a single trial there are eight total observations (four of A and

four of 0). Due to the experimental paradigm, the observations in the first and

last intervals carry no information for the ideal observers' and, therefore, only

four observed values (two pairs) are relevant. The observation of A on the second

interval is A,; the observation of A on the third interval is A3 . Similarly, the



observation of e on the second interval is 02 and on the third interval is 93. The

ideal observer of A and e together is considered first, since the performance of

the ideal observers of A alone and E alone follow from the ideal observer of A

and 0.

The ideal observer of both A and e depends on two 4-dimensional joint

probability functions. The first is the probability densities of A2, A, 02, and 93

given that an increment of size AL occurred on the second interval; the second is

the probability density of A2, A3, 02, and 9, given that an increment of size AL

occurred on the third interval. These 4-dimensional joint probability functions

can be written as the product of two 2-dimensional joint probability functions by

noting that when the interval in which the increment occurred is given, the

observation of 4 is independent of A3 and the observation 02 is independent of

93. Since there are two intervals in which the target level can be incremented,

there are four relevant 2-dimensional probability density functions.

The relevant 2-dimensional conditional joint probabilities are the

probability of observed values of A and e on a particular interval given a target

level. The log-likelihood ratio Yie is defined in terms of these probabilities as

(fA,8ILT , (2,0 2 14)fA,eI,9,., ( 3, 3 14 +AL)
77,e (A2,9 2 ,A39 3, AL) = 10logl0 f,91L 02,0214 +AL) fA,9ILT.rg (31L)j

The ideal observer is defined by a binary indicator function A0', which

depends on the likelihood ratio. Specifically, when the second interval is most

49



likely to have the incremented target y,,A is equal to zero. Similarly, when the

third interval is most likely to have the incremented target Y,e is equal to one.

Mathematically the indicator function is

VA~ (4 62, ,63 AL = I when 1, 0202 ( A6, ,3,3 AL) 2! 0
0 when y (/,02, ,63,AL)<0

The probability that the ideal observer of both A and 0 results in the

correct answer is a function of AL and can be written as

ECorrect ( AL) f VA,0 (A)=-92 ,/ 3 ,939AL d2dddA32 f f e (A,62 ILA3 ALo)) (A l,0|4 +AL)

S xfAeL (A2,0 2 jL0 +AL)f(0 , ,, 3 0 ) 2 3

The probability of a correct response depends only on the joint probability

density function of A and 0 given LT,,,e. This conditional joint probability

density function f is derived in Appendix B. The probabilities of correct

for the ideal observers of A alone and 0 alone are calculated in an analogous

manner and the derivation is not presented. The probability of a correct response

of the ideal observer of A alone depends only on the probability of observing A

given LT,,,,. This conditional probability fAIL is a marginal of f .

Similarly, the probability of a correct response of the ideal observer of 0 alone



depends only on the probability of observing e given Lrase,. This conditional

probability fe is also a marginal of f.
probability feJL TargetfAe'rgt

Appendix B
In this appendix, analytical and numerical techniques are used to

approximate the joint density function of A and 0, as defined in Eqs. 2 and 3, for

a target level L,,,,, equal to the sum of L (the reference level) and an increment

AL. (In this notation, AL is zero when the target is un-incremented.) Before the

details of the derivation of f are outlined, the model variables are related

to the experimental variables. Specifically, the values that are appropriate for the

psychophysical experiment are substituted into Eqs. 2 and 3. In the experiment,

LL, is the level of the target LTrget and the level of the distractor is LRight. The

level of the target is the sum of a reference level L and an increment AL, such

that LLeft = LTarget = LO + AL . The distractor has a level that is equal to the reference

level plus a random variable A; the level of the right ear can, therefore, be written

as LRight = + A. The interaural time difference T is the negative of the distractor

phase -CD divided by the radian frequency co (i.e., T = -D/). The psychophysical

experiment specifies that A has a uniform probability density function between

amin and max. The experiment also specifies that <D has a uniform probability

density function between ,mit, and ,mar- Using this notation, when the distractor

level is roved amin =0 and amax =30 and when the distractor level is fixed,
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amin=am.=0. Similarly, when the distractor phase is roved pm,,, =- an

#m = and when the distractor phase is fixed, pm,,, = #ma, =0. Making these

substitutions into Eqs. 2 and 3 results in

A=10logo ( 10 10 +10 10

= La, -(LO +A) CD+No.
CO

This derivation of fAeI. begins by using the definition of conditional

probability to expand the joint density function to

fAeI4,,wet fALr, (A|L +AL)f9A g,, (0|k,L +AL).

Then expanding fAeILa into its marginal distribution with respect to A and CD

results in

fAO,,= f ( |L + AL

(0|a,0, A, Lo + AL)

(a,#|A,LO+AL) doda

Making a substitution of E based on Eq. B2 and using the definition of

conditional probability yields

fA8,. = fAI., (AlL +AL)fffNe k A,DArger , , L +a

and

+NA (B1)

(B2)

and

+ AL) doda,.



is equal to AL-a-0. Using the

probability for fA , and then noting the independence of <D on A, A, and

LTarget gives

fA,+Target =fAge, (AILO +AL) f #O -p(a) JfAIA, (a|A,LO+AL)f, (#)d da.

the definition of conditional probability

independence of f, on LTa,, and simplifying yields

fA,OIlI,,e, =ffA(a)fATrw, (A la,L +AL) ff, (#)f, -pe (a) doda.

Making use of the uniform probability density functions of the random variables

A and CD, f can be rewritten as

(cJA A (lagLO +AL) f ke I -,u.' (a) )d~bda,,,, L.,Vt f fAALTMe,)

where c is equal to
(amu -amin )(#m -#min) Substituting the density function of

N. and simplifying gives

,fs,, = xr2 9.,,A.jp, 14g 42roT)E - h mxfIATrge,

k7Pe(a)

(Ala, LO+AL)Jfe (ke dqda.
'Pminl

Defining the integral of an exponential squared function as

P (x-P)2

G(a,g,p,o)= e 2a 2 dx,

Using fA ALrarget , noting the

where p,,,(a) definition of conditional



we rewrite f

f - ~C
fA,OILre, -2 f fAjAL 7j,,,

02rr ,,

Noting that fAfA JT,ge,

i+AL e1 +a

is equal to JNA A-00l 10 '0 +10 1 (cf. Eq. B1) and

making a substitution of the density function of NA yields

C aa - 20A 2  GP max I Yr,2ra , i k

( O0 _

where uA (a) is equal to 101log10 10 10

Further analytical manipulations of f do not appear

complexity of the solution, but, using the above equation

to reduce the

f4.G4aw, can be

approximated numerically. The first step of the numerical implementation is to

approximate the definite integral over A through finite summation. Let us denote

a [n] as a sampled version of the continuous random variable A. Further let a [1]

equal a,,, and a[N] equal ama. The probability density function f can

then be numerically approximated as

fAOjLT, ~
N({ px

N j)20-A2 
2

-p,,,n) 2xcqEaA n=1

) da .

da(a),- ek

-ar
k

+ AL) G Omin I Omax I CO #,(a), W Cek k

+10 10.

#,,, 9,#,x ,-P. (a [n])
k



One should note that in the limit when ama -amn = 0 or $fma - #min = 0 one

cannot simply evaluate this expression at zero, but must rather evaluate the

expression in the limit as the difference approaches zero.

1 In Zurek (1979) the reference condition was diotic and not monotic.

2 Note that the binaural level and the interaural differences in level and time

delay fully define the target and distractor stimuli.

3 The random variable A is calculated by adding the intensities (units of power

per area), not the decibel levels, of the target and distractor. When the

target is 50 dB and the distractor is absent, the expected value of A is 50.

When the target and distractor both have a level of 50 dB, the expected

value of A is 53. Thus, adding the 50-dB distractor to the 50-dB target

increases A by 3. Adding a 50 dB distractor to a 66 dB target increases A by

only 0.1.

*The ILD component of the random variable e is calculated by subtracting the

decibel levels, not the intensities (units of power per area), of the target

and distractor. Therefore the change in the mean of f9L associated with

a change in the level of the target from 50 dB to 51 dB is identical to the

change in the mean of f4L associated with a change in the level of the

target from 70 dB to 71 dB. The effects of changing the level of the target

on f4L are different than the effects on f .



The joint information can be quantified by considering the joint probability

density functions. The joint probability density functions for the roving-

level and double-rove conditions are shown in Figs. 7 and 8, respectively.

Joint probability density functions for the no-distractor, fixed, and roving-

phase conditions are not explicitly derived or presented in this work.

6 Although the first and last intervals convey no information for the ideal

observer, these intervals may aid the non-ideal subjects.
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Tables and Figures

Frequency Duration Phase Level
(Hz) (ms) (radians) (dB SPL)

No-Distractor - - - -

Fixed 600 300 0 50
Roving-Phase 600 300 Uf 50

Unior 2
Roving-Level 600 300 0 Unform(50,80)

Double-Rove 600 300 Uf Unform(50,80)
Umfor 2 2T

Table 1. Distractor properties in the five conditions. In all conditions, the target
has a frequency of 600 Hz, duration of 300 ms, a phase of zero, and a reference
level of 50 dB SPL. The distractor was presented simultaneously but contra-
aurally to the target. Roving of the level and phase of the distractor was done on
an interval-by-interval basis, with values chosen from uniform distributions.



414C

Figure 1. Mean thresholds for the four subjects under the five different
conditions. Error bars are two times the standard error of the mean. Thresholds
of the ideal observer of A and 0, both alone and together, are also shown. In the
no-distractor condition, the ideal observer of E never obtains threshold
performance.



0.5

0 No-distractor

0.5

0' Fixed

0

0.5

01 Roving-phase

0.5

0 Roving-level

0.5

0 Double-rove
0.1 1 10

AL (dB)

Figure 2. Examples of the dependence of the probability of a correct response as a
function of the target increment for subject S2 for the five different conditions.
Panels A-E correspond to the no-distractor, fixed, roving-phase, roving-level,
and double-rove conditions, respectively. The data has been binned according to
AL, and the size of the symbol is proportional to the number of trials that
occurred within the bin. The best fitting psychometric functions, based on un-
binned data, are also shown for each condition.
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Figure 3. Fit parameter (top panel) and the root-mean-square (RMS) error
(bottom panel) for the psychometric functions that were fitted to the data of the
four subjects under the five different conditions. Error bars are the 95 percent
confidence intervals derived by re-sampling the data. When the error bars are
absent, the confidence interval is on the order of the size of the symbol.
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Figure 4. Predicted psychometric functions for the five conditions for the ideal
observer of both A and 0 (solid), A alone (dashed) and 0 alone (dotted). Panels
A-E correspond to the no-distractor, fixed, roving-phase, roving-level, and
double-rove conditions, respectively.
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Figure 5. Marginal probability distributions of A for the five different conditions.
Panels A-E correspond to the no-distractor, fixed, roving-phase, roving-level,
and double-rove conditions, respectively. Each panel plots fA Lrrger (A|L + AL) for

five different values of AL (0, 2, 4, 8, and 16 dB). The marginal probability
distribution corresponding to a AL of 0 dB (the reference in the experiment) is
shown as a dotted line in each panel. One should note the change in scale
between panels A-C and panels D and E.
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Figure 6. Marginal probability distributions of 0 for the five different conditions.
Panels A-D correspond to the no-distractor, fixed, roving-phase, roving-level,
and double-rove conditions, respectively. Each panel plots f9 (0|L + AL) for

five different values of AL (0, 2, 4, 8, and 16 dB). The marginal probability
distribution corresponding to a AL of 0 dB (the reference in the experiment) is
shown as a dotted line in each panel. In the no-distractor condition 0 is infinite.
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Figure 7. Joint probability density functions of A and E for the roving-level
condition with three different values of AL. Panels A-C, respectively, correspond
to values of AL of 0, 4, and 16 dB. Areas of high probability are dark and areas of
low probability are light. In addition to the color coding, contours of equal
probability are also shown.
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Figure 8. Joint probability density functions of A and E for the double-rove
condition with three different values of AL. Panels A-C, respectively, correspond
to values of AL of 0, 4, and 16 dB. Areas of high probability are dark and areas of
low probability are light. Note that the color scale used in this figure is different
than in Fig. 7. In addition to the color coding, contours of equal probability are
also shown.





CHAPTER III. ONE INTERVAL LEVEL DISCRIMINATION
UNDER DICHOTIC CONDITIONS

Abstract
A one-interval level-discrimination task was used to test three binaural

models (corresponding to optimal observers of loudness alone, position alone,

and loudness and position together). The stimuli used in the psychophysical task

consisted of a 600-Hz target tone presented at the left ear and a 600-Hz distractor

presented at the right ear. The target level was either un-incremented or

incremented and the target phase was fixed. In the most complex condition, the

distractor level and phase were roved. The psychophysical results show little

inter-subject variability of the average percent correct and bias, but considerable

inter-subject variability in the conditional probabilities of responding

"Incremented" given combinations of target level, distractor level, and distractor

phase. These results suggest that subjects can adopt substantially different

strategies and still obtain the same probability of correct. No single model could

predict the average percent correct and bias for all conditions. Further, all the

models considered failed to predict the conditional probabilities as a function of

the distractor level and phase.

I. Introduction
The monaural level discrimination experiment presented in this chapter

has many similarities to the experiment in Chapter II. Both experiments involved

discrimination of the level of a target at one ear in the presence of a distractor



presented simultaneously, but contra-aurally to the target. One notable exception

between the experiments is the paradigm. In the previous experiment, the

paradigm was multi-interval and adaptive; in this experiment, a one-interval,

two-alternative-forced-choice (11, 2AFC) constant-increment paradigm is used.

The 1I, 2AFC constant-increment paradigm allows for analyses which are not

possible with the multi-interval, adaptive paradigm. In particular, the

conditional probability of a given response (either "Un-Incremented" or

"Incremented") is estimated as a function of the distractor attributes (e.g., the

distractor level and phase). These conditional probabilities are then used to

compare performance across subjects as well as to test several models.

In the psychophysical portion of the work described here, subjects are

asked to judge the level of a target tone at one ear in the presence of a distractor

tone with the same frequency at the other ear. The levels and phases of the target

and distractor were manipulated independently. The dominant perception of the

stimulus is a single, compact, auditory image with a salient loudness and

position. It is hypothesized that subjects may judge the level of the target tone in

one of three ways. The subjects may attend to (1) the perceived loudness, (2) the

perceived lateral position, or (3) a combination of the perceived loudness and

lateral position. The modeling includes predictions of three models which

correspond to the three hypothesized listening strategies. Based on a growing

body of evidence we assume that subjects are unable to attend to a single ear.



In some early studies, an inability to attend to a single ear was reported by

Rowland and Tobias (1967) [monaural level discrimination] and Zwislocki (1972)

[central masking]. Work by Taylor and colleagues (Taylor and Clarke 1971;

Taylor et al. 1971a; Taylor et al. 1971b) and Yost et al. (1972) clearly demonstrated

that, in masked detection, subjects are not able to attend to a single ear. Studies of

the precedence effect also have reported contra-aural interference; Zurek (1979)

reported that the detection of an acoustic reflection was better under diotic

conditions than under dichotic conditions. There is also a growing body of

literature on informational masking in which listening with one ear is better than

listening with two ears (Brungart and Simpson 2002; Kidd et al. 2003). More

recently Bernstein (2004) demonstrated contra-aural interference in a level

discrimination task. Finally, in the Chapter II, it was shown that, with identical

stimuli in a similar paradigm, subjects are unable to attend to a single ear.

Given that subjects are unable to attend to a single ear in a level

discrimination task when tones of the same frequency are presented

simultaneously, it is hypothesized that subjects are basing their decisions on

binaural percepts. It is clear from studies of binaural phenomenon [refer to

Durlach and Colburn (1978) for a review of binaural psychophysics] that normal

hearing listeners are sensitive to changes in interaural differences in level (ILD)

and time delay (ITD). In general, it is believed that discrimination of changes to

the ILD or ITD is based on changes in the perceived lateral position. This belief

stems from the strong predictive power of models based on correlates of the
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lateral position (e.g., Hafter and Carrier 1972; Stern and Colburn 1978). Since

changing the level at one ear changes the perceived lateral position, subjects

could discriminate changes in level at one ear by attending to the position.

Changing the level at one ear may also change the loudness. The extent to which

the loudness varies with the change in level at one ear depends strongly on the

interaural difference in level. Under some circumstances, attending to the

loudness is a reliable way to discriminate changes in the level at one ear.

While subjects could choose to attend exclusively to the loudness or

exclusively to the position, it is possible that some subjects would attend to a

combination of the loudness and position. Studies of divided attention suggest

that there is a limited cost of dividing attention across two independent

dimensions of the same modality (Bonnel and Hafter 1998). But, these studies

have not examined dependent dimensions or conditions in which there is

considerable joint information.

Although the modeling focuses on the position and loudness, there are

many other perceptual attributes of tonal stimuli. For example, a tonal stimulus

has a strong pitch percept, but the pitch of a tone is generally not considered to

be strongly level dependent. Two less salient aspects of the tonal stimulus are the

"time-image" (Hafter and Jeffress 1968a; Hafter and Carrier 1972) and the spatial

width (Smith 1973; Ruotolo et al. 1979). The role of these less salient dimensions

in the discrimination of the level at one ear is unknown, and only the two salient

and obvious dimensions are incorporated into the models analyzed here. The
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increased complexity required to include the less salient dimensions in a model

is substantial and it is the intent to present the limitations of models based on

these obvious dimensions.

II. Methods
Subjects were asked to discriminate the level of a target at the left ear, in

the presence of a distractor presented simultaneously, but contra-aurally, to the

target. Performance was measured under three experimental conditions which

were differentiated by the properties of the distractor as listed in Table 1. Across

conditions, the properties of the target were identical and the properties of the

distractor varied. The experimental paradigm in all three conditions was one-

interval, two-alternative-forced-choice (1I, 2AFC) with a constant-increment that

was held fixed for each subject.

A. Stimuli and Paradigm
Each stimulus consisted of a target and a distractor. The target and

distractor were both 600-Hz tones with rise and fall times of 25 ms and a total

duration of 300 ms. The left ear always received the target, while the right ear

received the distractor. The target and distractor were gated on and off

simultaneously. The phase of the target was fixed at zero and the level of the

target was either un-incremented or incremented. The level of the un-

incremented target was always 50 dB SPL. Performance was measured with

fixed, roving-level, and double-rove (i.e., roving-phase and roving-level)

distractors. In the fixed condition, the level of the distractor was fixed at
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50 dB SPL (the same level as the un-incremented target). In the other two

conditions (roving-level and double-rove) the decibel level of the distractor was

chosen randomly from a uniform distribution between 50 and 80 dB SPL. In the

fixed and roving-level conditions, the phase of the distractor was fixed at zero. In

the double-rove condition, the phase of the distractor was also roved, uniformly

between -n/2 and +n/2.

Noticeably absent from the conditions tested is a roving-phase condition

in which the level of the distractor is fixed and the phase of the distractor is

roved. In Chapter II fixed, roving-level, and double-rove as well as target-only

and roving-phase conditions were tested with a multi-interval adaptive

paradigm. It was demonstrated that in the roving-phase condition subjects

attend to the loudness and perform essentially the same as they perform in the

target-only and fixed conditions. Additionally the predictions of a model based

on the perceived loudness and position are also essentially the same for the

target-only, fixed, and roving-phase conditions. Therefore only the fixed, roving-

level, and double-rove conditions were tested.

In all three conditions, the size of the target level increment AL was fixed

and the size of AL was adjusted individually for each subject. Specifically, for

each subject, AL was adjusted such that the subject obtained a probability of

correct of approximately 0.75 in the double-rove condition. For subjects S1 and

S2, AL was fixed at 8 dB; the target was presented at either 50 or 58 dB SPL with



equal a priori probability. For subject S4, AL was fixed at 14 dB (the target was

either 50 or 64 dB SPL). These individualized values of AL were used for all trials

of all runs of all three conditions. For all subjects, data were collected for the

double-rove condition first, then for the roving-level condition second, and

finally for the fixed condition last. Data were collected in sessions which lasted

between one and a half and two hours with frequent rest breaks and

approximately 2000 trials were collected per session. The trials were self paced

and subject received correct-answer feedback after every trial. Subjects

completed two or three sessions per week.

B. Subjects
Three of the four subjects (S1, S2, and S4) who participated in the

psychophysical experiment of Chapter II also completed this study. Subject S3

from that study did not obtain satisfactory performance in the initial stages of

this experiment and therefore data collection for this subject was stopped. More

specifically, data collection was stopped for subject S3 since in the double-rove

condition with a AL of 20 dB subject S3 reported a feeling of "total confusion"

and was performing at near chance levels. Note, however, that subject S3 was

among the best performers with the multi-interval, adaptive paradigm of the

Chapter II. An additional subject was recruited and given a moderate amount of

training (approximately 10 hours) and was also not able to perform satisfactorily

with a 11, 2AFC constant-increment paradigm' and therefore additional data

were not collected for this subject either. Only the results from the three subjects
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who completed the study are reported. Subject S1 is an author. Subjects, with the

exception of the author, received an hourly wage for their participation. All

subjects had pure tone thresholds below 20 dB HL at frequencies of 250, 500,

1000, 2000, 4000, and 8000 Hz in both ears. Subject ages were between 19 and

31 years old.

Subjects S1 and S2 completed 30,000 trials in the double-rove condition,

then they completed 12,000 trials in the roving-level condition and finally

2,000 trials in the fixed condition. Subject S4 completed 24,000 trials in the

double-rove condition, 6,000 trials in the roving-level condition, and 2,000 trials

in the fixed condition. Fewer trials were conducted with subject S4 due to the

limited availability of the subject for participation in the experiment. The number

of trials varied across the conditions since sufficient data were needed across the

entire range of distractor properties to estimate the conditional probabilities of

each response. In the double-rove condition, the distractor varied in both level

and phase (two dimensions). In the roving-level condition, the distractor only

varied in one dimension. In the fixed condition, the distractor did not vary.

C. Apparatus
The experiments were conducted in a double walled sound treated booth.

Stimulus generation was implemented with Tucker-Davis-Technology System II

hardware (AP2, PD1, PA4, and HB6) with a sampling rate of 50 kHz. The stimuli

were presented over Sennheiser HD265 headphones. The subjects responded

through a graphical interface displayed on a computer monitor. The graphical
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response buttons were labeled "A" and "B". When the target level was un-

incremented, the correct response was A. Conversely, when the target level was

incremented the correct response was B. The subjects were given instructions

(and correct-answer feedback) intended to aid in the use of these un-informative

labels.

The instructions were based on the previous experience of the subjects

with a multi-interval version of the experiment in which the target level was un-

incremented in all but one of the intervals (cf. Chapter II). The instructions

referred to "same" and "different" stimuli. Based on the previous paradigm, a

"same" stimulus was one in which the target level was un-incremented and a

"different" stimulus was one in which the target level was incremented. The

terms "Un-Incremented" and "Incremented" were not used in the instructions

given to the subjects. Rather, the subjects were only instructed that A

corresponded to a "same" stimulus and that B corresponded to a "different"

stimulus. The subjects who completed this experiment reported no difficulties

assigning these labels and felt comfortable with their prior experience of the

"same" and "different" stimuli.2 For ease of discussion, throughout this chapter,

the responses A and B, respectively, will be referred to by the more informative

labels "Un-Incremented" and "Incremented". These more informative labels were

not given to the subjects due to concerns about biasing the subjects towards

using a particular response strategy.



D. Data Analysis

The responses are analyzed by calculating the probability of the subject

responding Incremented, conditioned on the binary target level (the target level

was either un-incremented or incremented). These conditional probabilities are

referred to using the nomenclature of signal detection theory where the signal to

be detected is the target with a level that is incremented. In particular, the

probability of the subject responding Incremented given that the target level is un-

incremented is P (the probability of a false alarm) and the probability of the

subject responding Incremented given that the target level is incremented is P

(the probability of a detection).

In the fixed condition, P and PD are calculated for each subject by

averaging across all trials. In the roving-level condition, PF and PD are calculated

as a function of the distractor level every 0.25 dB; distractors which have levels

within ±1 dB of the nominal level are included in the calculations. Overlap

between calculations both increases the number of trials included in each

average and smoothes the data. For subjects S1 and S2 approximately 400 trials

are used in each calculation and for subject S4 approximately 200 trials are used.

In the double-rove condition, PF and PD are calculated as a function of

both distractor level and phase. These probabilities are calculated for 20,000 cases

(every 0.25 dB in the level dimension and every 5 ps in the phase/time

dimension). Distractors which have levels and phases/times within ±1 dB and



±20 ps of the specified values are included in each calculation. In the double-rove

condition, for subjects S1 and S2, each calculation is based on approximately

50 trials; calculations for subject S4 are based on a slightly smaller number of

trials (approximately 40 in the double-rove condition).

In addition to PF and P,/ the across distractor level and phase average

probability of a correct response P and bias towards responding incremented

# are also calculated. These values depend on P and P, as well as the

probability of the target level being incremented. Although the a priori

probability of the target level being incremented is equal to 0.5 (the target level is

un-incremented and incremented with equal probability), the actual fraction of

trials incremented is different and this actual fraction is used to estimate Pc and

#8. Note that an observer who performs perfectly has a Pc of unity, an observer

who performs at chance has a Pc of 0.5, and an observer who is always wrong

has a Pc of zero. The expected bias towards responding Incremented # is given

by =P,,,cremented P + (1 - Incremented)F Incremented . An observer who responds Un-

Incremented and Incremented with the same frequency has a /# of zero. While an

observer that always responds Un-Incremented has a # of -0.5 and one that

always responds Incremented has a # of 0.5. Note that an ideal (maximum

likelihood) observer can have a non-zero # even when the probability of the



target level being incremented is 0.5 and Pc is substantially greater than chance

levels.'

III. Modeling
The modeling considers the responses of an ideal (maximum likelihood)

observer of a two-dimensional decision space as well as ideal observers of each

dimension individually. The two dimensions loosely correspond to the perceived

loudness and lateral position and are denoted A and E, respectively. The two

dimensions are functions of the level (in decibels) of the left ear (LLf,), the level

of the right ear (L,,,h,), the interaural difference in time delay (T), and two

hypothesized internal noises (NA and N). They are defined as

LLef LRigh)

A =l10loglo 10 10 +10 11 + N(

and

O= LLe ,LRght +kT +Nq, (2)

where k corresponds to the intensity-time trading ratio. The additive internal

noises are Gaussian random variables which are statistically independent of each

other and across trials. The zero-mean internal noises NA and N, are

characterized by their respective standard deviations aA and a.. The free

parameters of the model (a, a., and k) are fixed for all conditions: both aA and

a. are fixed at 0.5 dB and k is fixed at 0.05 dB per ps.4 The 0 dimension is a noisy



version of the weighted the sum of the interaural differences in level and time

delay. The A dimension is a noisy representation of the sum of the intensities

(units of watts per area) at the two ears expressed in decibels.

The model predictions are based on calculations of P and P.

Specifically, P, and P are calculated as a function of the distractor level and

phase for a 11, 2AFC constant-increment paradigm. A mixture of analytic and

numerical techniques is used to approximate PF and PD. A detailed derivation is

presented in the Appendix. The derivation defines P and P in terms of a

maximum likelihood indicator function. The indicator functions divides the

{A,E)j space into two regions; one in which the target level is more likely to be

un-incremented and the other in which the target level is more likely to be

incremented. In Chapter II an approximation of the maximum likelihood

indicator function for a four-interval paradigm was derived. The derivation with

a one-interval paradigm is similar and therefore is not provided. Note that the

approximations of the indicator function, PF, and P require no Monte-Carlo

type simulations. The approximations arise from the use of numerical techniques

to calculate the integrals of continuous functions.

IV. Psychophysical Results
The top panels of Fig. 1 show the average probability of correct P for

each of the three subjects in each of the three conditions. Recall that the target

level increment AL is constant across the three conditions, but varies across the
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subjects. For subjects S1 and S2, AL is 8 dB; for subject S4, AL is 14 dB. Due to the

large number of trials, a formal statistical analysis is not presented since many

small differences are statistically reliable. For example, the 95 percent confidence

intervals for P based on binomial variability are approximately ±0.01. More

conservative estimates of the reliability based on day-to-day and block-to-block

repeatability also reveal a high degree (although less than with the binomial

estimation) of reliability.

All three subjects perform best in the fixed condition. On average, Pc in

the fixed condition was 0.14 higher than Pc in the roving-level condition and

0.23 higher than Pc in the double-rove condition. Although there is inter-subject

variability (e.g., S4 performed much worse than S1 and S2 in the fixed condition

and S1 was better in the roving-level condition), overall Pc amongst the subjects

was similar both in magnitude and the trends across conditions. The small

across-subject differences of Pc in the double-rove condition are not surprising

since AL was adjust for each subject to yield a Pc of approximately 0.75 in the

double-rove condition. Subject S4 required a 6 dB increase in AL to obtain

approximately the same Pc as the other subjects in all the conditions.

The bottom panel of Fig. 1 shows the bias # for the three subjects in the

three conditions. As was the case with Pc , no formal statistical analysis on # is

presented due to the large number of trials. Essentially all visible differences of
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/# are statistically significant. In all three conditions, all the subjects show little

bias with values of # near zero (note the expanded scale). The mean value of #

was -0.03; the probability of the subjects responding Un-Incremented (response

button "A") was 0.03 greater than the probability of responding Incremented

(response button "B"). The largest magnitude of # was 0.07 (Si in the double-

rove condition), in which a response of Un-Incremented was favored. In summary,

a strong bias was not exhibited by any of the subjects in any of the conditions.

Although the across-subject differences in P, and # are relatively small,

there are large across-subject differences when the effects of the distractor level

and phases are separated. Across-subject variability can be further assessed by

considering performance as a function of both (1) the distractor level in the

roving-level condition and (2) the distractor level and phase in the double-rove

condition. (This is possible because such a large number of trials were collected

and the paradigm was 11, 2AFC constant-increment.) Performance as a function

of the distractor properties is reported in terms of P and P, (conditional

probabilities of responding Incremented given that the target level was un-

incremented and incremented, respectively). The results of the roving-level

condition are reported first, followed by the results of the double-rove condition.

For the roving-level condition, PF and D as a function of the distractor

level are shown as thick lines (solid and dashed, respectively) in Fig. 2. The

dependency of P and PD on the distractor level (e.g., increasing, decreasing or
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flat) varies from subject to subject even though the average P and #3 are similar

(cf. Fig. 1). Additionally, the range which the P and P functions span varies

from subject to subject. The general trends of the results for the three subjects are

as follows. For subject S1, P, and P are nearly constant at 0.17 and 0.88,

respectively. For subject S2, PF increases with distractor level from near zero

with the lowest distractor levels to near 0.5 with the highest distractor levels and

P is nearly constant at 0.78. For subject S4, as the distractor level increases, both

PF and P decrease. For this subject, when the distractor level is low, PF is

approximately 0.5 and P is nearly unity and at the highest distractor levels, PF

is near zero and P is about 0.25. The differences in the dependencies of PF and

PD on the distractor level suggests that the three subjects have chosen three

different strategies; these different strategies, however, all yield similar Pc and

#3.

For the double-rove condition, PF and PD are two-dimensional functions

which depend on the distractor level and phase. Surface plot representations of

these two-dimensional functions are shown in Fig. 3. Each panel of Fig. 3

corresponds to either PF (left column) or PD (right column) for a single subject.

Note that a positive phase distractor leads the target (i.e., T in Eq. 2 is negative

for positive phase distractors). For each subject, the dependencies of PF and P

on the distractor level and phase are complex. Furthermore, similar to the
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roving-level condition, each subject performs differently, even though all

subjects obtain similar values of Pc and # (cf. Fig. 1).

Although the response patterns are complex, some generalities can be

made about P and P in the double-rove condition. First, as expected, for a

given distractor level and phase, P is generally greater than P . Further, PD is

less dependent than P on the distractor level and phase. Finally, areas of low

and high P appear to be separated by a simple boundary that varies across the

subjects. For subject Si, P depends most strongly on the distractor phase; PF is

near unity for distractors with negative phases (distractor lags the target) and

near zero for distractors with positive phases (distractor leads the target).

Subjectively, this dependence is reasonable; distractors with negative phases

should be perceived more towards the ear at which the target is presented which

is similar to the effects of incrementing the target level. For subject S2, PF

depends predominately on the distractor level. For distractors with a level lower

than 65 dB SPL, PF is near zero and for higher level distractors PF increases to

nearly 0.8. For subject S4, the boundary depends on both the distractor level and

phase. For distractors with levels in excess of approximately 75 dB SPL or phases

greater than n/4, PF is near zero while for lower level distractors with less

positive phases, PF increases to 0.7. This dependence is also subjectively

reasonable; a distractor with a positive phase and low level should have a



perceived position and loudness more similar to that of the un-incremented

target.

In the double-rove condition the distractor phase is different on every

trial. On some trials the distractor phase is near zero making the distractor

similar to the distractor in the roving-level condition. The probabilities PF and

P, for trials on which the distractor phase is near zero in the double-rove

condition, are shown in Fig. 2 as thin lines along with the corresponding results

from the roving-level condition (thick lines). For each distractor level, the

number of trials in the double-rove condition for which the distractor phase is

near zero was small (40 on average, but as few as 10). Therefore the statistical

reliability of the data from the double-rove condition is much less than for the

data from the roving-level condition.

Although the dependence of PF and P on the distractor level varies

across the subjects, for each subject the dependence of P and P on the

distractor level is the same in the roving-level and double-rove conditions when

the distractor phase is near zero. Statistically, the correlation coefficient between

the P and P functions from the roving-level condition and the P and P

functions from the double-rove condition when the distractor phase is near zero

are 0.94, 0.96 and 0.88 for subjects S1, S2, and S4, respectively. Visually, as

suggested by the correlation coefficients, the gross trends of P and P are

captured, while the fine details are often different. These high correlation
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coefficients suggest that subjects are using the same decision rule in both the

double-rove and roving-level conditions.

V. Model Results
The ability of an ideal observer to discriminate changes in the target level

is limited by either (1) internal noise alone (i.e., a combination of NA and Ne) or

(2) a combination of internal noise and distractor variability. Whether an ideal

observer is limited by internal noise alone or by a combination of internal noise

and distractor variability depends on both (1) the number of dimensions

observed (one for the A-alone and e-alone observers and two for the joint, A and

9 together, observer) and (2) the number of dimensions in which the distractor

properties vary (none in the fixed condition, one in the roving-level condition

and two in the double-rove condition). Specifically, when the number of

dimensions on which decisions are based is greater than the number of

dimensions in which the distractor properties vary, performance is limited by the

internal noise. When the number of dimensions on which decisions are based is

less than or equal to the number of dimensions in which the distractor properties

vary, performance is limited by a combination of internal noise and distractor

variability.

In the model, the internal noise is much smaller than the distractor

variability. The standard deviations of the internal noises on the A and 0

dimensions are 0.5 dB. In the double-rove condition, the distractor level varies

uniformly over a 30 dB range (standard deviation of 8.7 dB) and the intensity-
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time traded distractor phase varies over a range equivalent to 40 dB (standard

deviation of 11.5 dB). Further, the size of AL (either 8 or 14 dB) is large compared

to the internal noise and of the same order of magnitude as the distractor

variability. Therefore, when performance is limited by the internal noise, the

ideal observer should perform nearly perfectly (P, of zero, P of unity, Pc of

unity, and # of zero). When performance is limited by a combination of internal

noise and distractor variability, optimum performance decreases substantially. In

these cases of decreased performance, the influence of the internal noise is small

compared to the influence of the distractor variability. The exact performance of

the model depends on the dimensions observed (A alone, e alone, or A and 0

together), AL, and the experimental condition (fixed, roving-level, or double-

rove).

The model results are presented in two parts. A graphical analysis of the

model is presented first, followed by predictions for the psychophysical results.

The graphical analysis focuses on combinations of observers and conditions in

which the performance is limited by a combination of internal noise and

distractor variability; the graphical analysis does not consider the combinations

of observers and conditions in which the performance is limited by only internal

noise (i.e., when the distractor variability has no effect). Further, the graphical

analysis is limited to the values of Lrge, used in the psychophysical experiment.

Specifically, three values of La,,,, are considered: 50 dB (the reference level for all
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three subjects), 58 dB (the incremented level for S1 and S2), and 64 dB (the

incremented level for S4). The psychophysical predictions include predictions of

PF and P as a function of the distractor level (roving-level and double-rove

conditions) and phase (double-rove condition) for values of AL of 8 and 14 dB.

Additionally, predictions of Pc and (as well as PF and PD) are presented for

all three conditions and both values of AL.

A. Graphical Analysis of the Model
The graphical analysis is intended to give insight without requiring a

formal mathematical derivation of the model. (The formal derivation of the

model is presented in the Appendix.) The graphical analysis, however, does

require some mathematical notation to be introduced. First, note that when the

level of the target LT,,,g,, is un-incremented, LT,,,, is equal to the reference level

Lo (in decibels) and when the level of the target is incremented, LTag,, is equal to

the sum of the reference level and AL (in decibels). On each trial, the modeled

observer (A-alone observer, e-alone observer, A-and-e-together observer) must

decide whether the target level was incremented or not based on an observation

of A, e or, both. The observation of A is denoted X and the observation of e is

denoted 0.

Decisions are based on the conditional probability of the observation (A

alone, 0 alone, or A and E together) occurring, given L,,,g,,,. These conditional

probabilities are denoted f fEL , and fA , respectively 5 ThefAILa,,,r A,0lLgt8
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observers are defined in terms of a log-likelihood ratio of these density functions

when Lg,,,, is equal to the un-incremented (LO) or the incremented levels

(LO + AL). Specifically, the log-likelihood ratio for the A-alone, e-alone, and A-

and-e-together observers are denoted lA, 70l and 17A,O respectively and are

defined as

AjLrarge = Lr7A(A, AL)=10 loglo r (
fAIw (A ILargel = LO + AL

17e (0, AL) =10 log, eL., 0ILagt=L
felLe ( Lrarget = LO +,AL )

and

(fl 1  A, ,6 Lrarge, = L 0)

1A,O (A,6, AL) = 10 log1o (A'e Larget = L . (3)
f A,6(4 ILrar, = LO + AL)

When the log-likelihood ratio is equal to zero, the conditional probability

of the observed values given that the target level is un-incremented is equal to

the conditional probability of the observed values given that the target level is

incremented. Positive values for the log-likelihood ratio imply that the observed

values are more likely to occur with a target level that is un-incremented while

negative values imply that the target level is more likely to be incremented.



According to our assumptions, the maximum likelihood indicator

functions defined by comparing q, Ye and Aq to zero are relatively simple.

For example, the indicator function for the ideal observer of A alone is to respond

Incremented when A is above a criterion value. For the observers of A alone and 0

alone, these indicator functions can be inferred from 77A and %, respectively.

Therefore the graphical analysis begins with fA, and g1A, followed by an

analysis of fa11 V and %o. For the observer of A and E together, the increased

dimensionality of f and i7A make a graphical analysis of limited use and

therefore it is not presented. Although a graphical analysis of f and i, e is

not practical, a graphical analysis of the indicator function for the observer of A

and E together is presented. In the graphical analysis, the three conditions (fixed,

roving-level, and double-rove) are treated separately.

In the fixed condition, the performance of all three observers (A alone, 0

alone, and A and 0 together) is limited by only internal noise and therefore a

graphical analysis is not presented. In the roving-level condition, the observer of

A and 0 together is only limited by internal noise and a graphical analysis is not

presented; the observers of A alone and 0 alone, however, are limited by a

combination of internal noise and distractor variability, and therefore graphical

analyses for these two observers in the roving-level condition are presented.

Figure 4 graphically displays fAjr (top) and i1A (bottom) in the roving-level
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condition, while the left column of Fig. 5 displays fe (top) and %i (bottom) in

the roving-level condition.

In the roving-level condition, the density function fA (cf. Fig. 4) is

heavily skewed towards smaller values of A. Further, the minimum value of A

for which f is substantially greater than zero shifts systematically with AL.

In contrast, the maximum value of A for which fA is substantially greater

than zero is nearly independent of AL. The properties of f are a direct

consequence of the definition of A (cf. Eq. 1) which sums the target and distractor

intensities. That is units of power (per area), not the decibel levels, are summed

to be more consistent with measurements of binaural loudness. The lack of a

change in the maximum value of A associated with changes in AL is expected

since at high distractor levels the distractor dominates the loudness. The change

in the minimum value of A is also expected since at low distractor levels the

target influences A. For the un-incremented target level (AL of 0 dB) the low level

distractors influence A to nearly the same degree as the high level distractors. For

the incremented target (AL of 8 and 14 dB), the low level distractors do not

influence A while the high level distractors do influence A. This variable

influence of the distractor results in the skew of ffAIL,eW



Given the dependence of f on A and AL, the dependence of i, on A

and AL is not surprising. For values of A less than some criterion (approximately

58 dB and 64 dB for values of AL of 8 and 14 dB, respectively), i7A is positive with

a large magnitude. For values of A above this criterion, il behaves in a complex

manner. Near the criterion Y7A rapidly becomes negative. Although the

dependence of the magnitude of 77 on A is complicated, for all values of A

greater than the criterion, 71A is negative (i.e. the target level is more likely to be

incremented). Comparing the top and bottom panels of Fig. 4 reveals that

generally if the probability of A given an incremented target is substantially

greater than zero, the value of 77A is negative. This suggests that the ideal

observer of A in the roving-level condition is biased towards responding

incremented.

The left column of Fig 5 displays f (top) and e (bottom) in the

roving-level condition. Note that For each LT,, f is nearly uniform over a

30 dB range (recall that in Eq. 2 0 is defined as having units of decibels) and the

limits of the range are shifted by AL. The distractor level is uniformly distributed,

but the internal noise results in slight deviations. Since the internal noise has a

standard deviation of 0.5 dB and the distractor level is roved over a 30 dB range,

these deviations are small. For each AL the span is approximately 30 dB, the

upper (right) limit is approximately equal to AL, and the lower (left) limit is
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approximately 30-AL. The dramatic difference between f6  and fapprximaely 0-AL Thedramticdiffrenc beteen A14Lgea 14
is that

O is defined by summing the levels (in decibels) of the target and distractor and

an intensity-time traded phase component (in the roving-level condition the

phase component is always equal to zero).

The log-likelihood ratio 1e follows from fe . Changes to AL

horizontally shift the i1e function substantially. There is a wide range of values of

0 such that 1 , is nearly zero. However, there is only a single value of 0 for

which 170 is equal to zero. There is a single criterion value of 0 such that for

values of 0 less than the criterion, q, is positive; for values greater than the

criterion, %e is negative. Both fe and q. are symmetric and therefore the

ideal observer of 0 alone will be unbiased. The wide range of values of 0 such

that qA is nearly zero implies that numerous non-ideal indicator functions can

lead to nearly the same probability of correct as achieved by the ideal indicator

function, but these non-ideal indicator functions will have different biases.

In the double-rove condition the ideal observers of A alone, 0 alone, and A

and 0 together are limited by a combination of internal noise and distractor

variability. Since A is independent of the distractor phase, f9 and i7A in the

double-rove condition is identical to f and 9 in the roving-level condition

and the functions are not discussed again. The 0 dimension depends on both the



distractor level and phase and therefore f and e are different in the

double-rove condition. The right column of Fig 5 displays f01 . (top) and y4

(bottom) in the double-rove condition. The function is nearly trapezoidal

in the double-rove condition. Mathematically, fe in the double-rove

condition is the convolution of fn in the roving-level condition with a

rectangle corresponding to the variability of the intensity-time-traded distractor

phase. The log-likelihood ratio Y in the double-rove condition is visually

different than Ye in the roving-level condition, however, two important

properties of %e are maintained: q, is again symmetric and there is only one

value of e for which e is equal to zero. Unlike in the roving-level condition, T7e

in the double-rove condition does not have a wide range of values near zero;

there is a more limited set of non-ideal indicator functions which can lead to

nearly the same probability of correct.

The dimensionality of f and Y7,, makes a graphical analysis of the

functions of limited use. However, the maximum likelihood indicator function

based on comparing Y7 A9 to zero results in a boundary which divides the {A,}

plane into regions of indicate-Un-Incremented and indicate-Incremented for all

three conditions. A graphical analysis of this boundary is insightful. The top

panel of Fig. 6 shows the decision boundary for the roving-level condition with



values of AL of 8 and 14 dB. The boundary is approximately a diagonal line with

a negative slope. The indicate-Incremented regions are above the negative sloped

diagonal line (larger A and 0) while indicate-Un-Incremented regions are below

the line (smaller A and 0). Increasing AL increases the A intercept and does not

affect the slope. The bottom panel of Fig. 6 shows the decision boundary for the

ideal observer of A and E together in the double-rove condition for values of AL

of 8 and 14 dB. The boundary is a continuous function such that larger A and 0

fall into the Incremented region. Increasing AL shifts the boundary function

towards higher values of A and 0.

Without f , it is not possible to infer the performance of the ideal
A eLT~

observer of A and 0 together; however, two important aspects of the ideal

observer of A and 0 together are gained from an analysis of the decision

boundary. The first aspect is that the decision boundary in the roving-level

condition is different than in the double-rove condition. The second is that the

decision boundary in all three conditions is relatively simple and well behaved.

If the decision boundary was highly complex, it would be unlikely that subjects

would be able to respond accurately based on the boundary. Surprisingly, as

discussed in the next section, none of the subjects behave similar to any of the

ideal observers considered (A alone, E alone, and A and 0 together).



B. Model Predictions of the Psychophysical Results

Predicting P, and PD from the graphical analysis of the probability

density functions, the likelihood ratios and the indicator functions is not trivial.

The graphical analysis is performed in the {A, 01 space while the predictions are

made relative to the distractor level and phase. To aid the transition A and 0

(the expectation of A and 0, respectively) are considered. Figure 7 displays

contours of equal A (top row) and equal 0 (bottom row) as a function of the

distractor level and phase for when the target level is un-incremented (left

column) and incremented (right column). The contours of equal A are horizontal

lines. The contours are closer for higher distractor levels than for lower distractor

levels since the influence of the target on A is greater at lower distractor levels.

To achieve an equal A, the distractor level needs to be higher with the un-

incremented target than with an incremented target; the difference is greatest for

lower distractor levels. The contours of equal 0 are diagonal lines (they depend

on both the distractor level and phase). For a given distractor level and phase, E

is larger for the incremented target. Unlike the contours of A, the spacing

between the contours of 0 is constant.

The modeling described here explores the hypothesis that subjects base

their decisions on A and 0 as defined in Eqs. 1 and 2, respectively. Specifically,

PF and PD are predicted under the three experimental conditions for (1) the ideal

observer of A alone, (2) the ideal observer of 0 alone, and (3) the ideal observer
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of both A and 0 together. Each model can be used to predict P and # (as well

as P, and P%) in all three conditions with any value of AL. In addition to these

average values, the models can also be used to predict the dependence of P and

P on the distractor level in the roving-level condition and on the distractor level

and phase in the double-rove condition. The average values of the predicted P ,

#, PF and PD are presented first. This is followed by the predictions of P, and

P as a function of the distractor level in the roving-level condition. Finally, the

dependence of P and P on the distractor level and phase in the double-rove

condition is reported.

Table 2 contains the predictions (P, 1, PF, and PD) of the ideal

observers of A alone, 0 alone, and both A and 0 together in the fixed, roving-

level, and double-rove conditions for values of AL of 8 and 14 dB. In the fixed

condition, the performances of all three models are limited by internal noise and

the predictions are determined by the standard deviations chosen for the model.

Theoretically, performance is slightly better with a AL of 14 dB as opposed to a

AL of 8 dB, but this difference is small. Further, the ideal observer of both A and

E together has a small advantage over either the ideal observer of A alone or the

ideal observer of E alone. Due to the large values of AL used relative to the

internal noise, however, the performances of all the models considered with

either value of AL are nearly perfect.
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In the roving-level condition, the ideal observer of both A and 0 together

is again limited by internal noise and also performs nearly perfectly for both

values of AL. In contrast, the ideal observers of A alone and 0 alone in the

roving-level condition are limited by a combination of internal noise and

distractor variability. The ideal observer of 0 alone is theoretically unbiased (due

to computational rounding errors, the prediction are slightly biased) as expected,

Pc increases with increasing AL. The ideal observer of A alone obtains values of

Pc similar to the ideal observer of 0 alone, but is biased (the ideal observer of A

alone responds "Incremented" with higher probability). Increasing AL, increases

Pc and decreases #; in other words, increasing AL only decreases P and does

not affect P. Note that the ideal observer of A alone responds "Incremented"

more frequently than "Un-Incremented", which is the opposite of the slight bias of

the subjects.

In the double-rove condition, all the ideal observers considered are limited

by a combination of internal noise and distractor variability and therefore none

achieves near perfect performance. The predictions of the three observers are

different. The observer of A and 0 together has the highest Pc . The observer of A

alone has a value of Pc similar to the observer of 0 alone. For all the observers,

as expected, Pc increases with increasing AL. The observer of 0 alone is unbiased

for both values of AL. The observer of A alone and the observer of A and 0



together, however, have high values of # for both values of AL. For these

observers, increasing AL, decreases P and does not affect P and therefore #

also decreases.

Figure 8 presents the average differences in P, (top panel) and # (bottom

panel) between the ideal observers and the subjects in the three different

conditions. In the fixed condition, there are only small differences between the

subjects and all three modeled observers; the model observers have a P less

than 0.1 better than the subjects. In the roving-level condition, there are

substantial differences between the models. The subjects outperform the ideal

observers of A alone and 0 alone; on average, the subjects have values of P 0.2

greater than the ideal observers of A alone and 0 alone. This indicates that the

subjects must be basing their decisions on more information than is contained in

either A alone and E alone. The ideal observer of A and 0 together, has a P 0.2

better than the subjects indicating that there is sufficient information in A and 0

together to predict the average subject performance. In the double-rove

condition, the values of P for the ideal observers of A alone and 0 alone are

again worse than the subjects (by at least 0.1), while the ideal observer of A and 0

together has a value of P nearly identical to that of the subjects.

By considering the differences in Pc between the subjects and modeled

observer, one can dismiss certain observer models since they do not have access
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to sufficient information. Overall, the models do a reasonable job of predicting

P in both the fixed and double-rove conditions. All the models fail to predict

P, in the roving-level condition. Since the subjects outperform the ideal

observers of A alone and 0 alone, these cannot be the correct model for the

roving-level condition; the subjects must have access to additional information.

The subjects never outperform the ideal observer of A and 0 together and

therefore the predictions of this model are considered in detail. Although the

ideal observers of A alone and E alone do not have access to sufficient

information, considering the predictions of these observers is insightful to

understanding the ideal observer of A and 0 together.

By considering differences in p, one can gain insight into the

discrepancies in the P between the model observers and the subjects. In the

fixed condition, the magnitude of the difference in # between the modeled

observers and the subjects is less than 0.05; the modeled observers respond

Incremented only slightly more often than the subjects. In the roving-level

condition, the differences in # between the subjects and the modeled observers

varies. The ideal observers of 0 alone and A and 0 together have nearly the same

values of #i as the subjects, while the ideal observer of A alone has a value of #i

that is 0.4 smaller than the subjects (i.e., the ideal observer of A alone responds

Incremented more often than the subjects). In the double-rove condition, the ideal
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observers of A alone and A and 0 together have substantially different values of

/# than the subjects (-0.3 and -0.4, respectively). Again, these observers respond

Incremented more often than the subjects. The ideal observer of E alone performs

much more similarly to the subjects with a difference in # of -0.05.

As was the case with the psychophysical results in the roving-level and

double-rove conditions, the average values of P and # do not completely

describe the data since there is an interaction between performance and the

distractor level (roving-level and double-rove conditions) and phase (double-

rove condition). The predicted P and P, for the roving-level and double-rove

conditions, are shown in Figs. 9, 10, and 11. Figure 9 shows the predicted P, and

P as a function of the distractor level in the roving-level condition. Only the

predictions for the ideal observers of A alone and 0 alone, with values of AL of

both 8 and 14 dB are shown since the ideal observer of A and 0 together

performs nearly perfectly. Figures 10 and 11 show the predicted dependence of

PF and PD on the distractor level and phase for the ideal observers of A and 0

together, A alone, and 0 alone in the double-rove condition for values of AL of 8

and 14 dB, respectively.

In the roving-level condition (cf. Fig. 9), the ideal observer of A alone

predicts a PF near zero for low distractor levels and a P near unity for high

distractor levels. The transition in PF is extremely rapid and its exact location
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depends on AL. The ideal observer of A alone predicts a PD of nearly unity for all

but the lowest distractor levels. The ideal observer of e alone predicts a

substantially different dependence of PF and PD on the distractor level. Both PF

and PD are near unity for low level distractors and near zero for high level

distractors. The PF and PD function have rapid transitions between these two

probabilities. The distractor level at which the transitions occur depend on AL,

but the steepness does not. The distractor level at which the transition occurs is

smaller for PF than for PD,

Figures 10 and 11 show the predicted dependence of PF and P, on the

distractor level and phase for the ideal observers of A and E together, A alone,

and E alone in the double-rove condition. Figure 10 contains the predictions with

a AL of 8 dB while Fig. 11 is for a AL of 14 dB. The three models predict

substantially different dependencies of PF and PD on the distractor level and

phase. A general trend is that when performance depends on the distractor level

and phase, there is a rapid transition from areas of low probability to areas of

high probability. The shapes of these transition regions depend on the model and

the statistics (PF and PD) but not on AL. The locations of the transitions, however,

depend on AL. The presentation of the predictions in the double-rove condition

will begin with the ideal observer of both A and e together, followed by the ideal

observer of A alone and then finally the ideal observer of e alone.
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The ideal observer of both A and 0 together predicts a PF which depends

on the distractor level and phase. The predicted PF is near zero for distractors

with low levels and large phases and near unity elsewhere. The predictions of P

are nearly independent of the distractor level and phase and are near unity for all

distractors. Consistent with the results presented in Table 2, the ideal observer of

both A and 0 together is biased. The ideal observer of A alone predicts a PF that

depends predominantly on the distractor level. Low-level distractors yield aPF

near zero and high-level distractors yield a PF near unity. The distractor level at

which the transition occurs is approximately the same for the ideal observer of

both A and 0 together and the ideal observer of A alone. Similar to the ideal

observer of both A and 0 together, the ideal observer of A alone, predicts a P

which is nearly independent of the distractor level and phase, and near unity for

all distractors. Consistent with the change in the predicted PF, the ideal observer

of A alone is even more biased than the ideal observer of both A and 0 together.

The ideal observer of 0 alone is substantially different than either the

ideal observer of both A and 0 together or the ideal observer of A alone. The

ideal observer of 0 alone predicts that both PF and PD depend on the distractor

level and phase. The transition region from high to low P and P is n

linear. Distractors whose level and phase fall in the lower triangle (low level and

small phase) have values of PF and P, near unity, while distractors whose level
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and phase fall in the upper triangle (low level and small phase) have values of

PF and PD near zero. The transition regions of PF and P are not identical

resulting in a narrow region of extremely high probability of correct. Due to the

similarities of the predictions of PF and PD/ the ideal observer of 0 alone is the

least biased of all the models.

VI. Discussion
This study is a follow up to the work in Chapter II in which it was

reported that in a monaural level discrimination task subjects could not focus

exclusively on a single ear. In that work, the measured level discrimination

thresholds were well predicted by a model based upon an ideal observer of the A

and 0 dimensions. It was suggested that the decisions of the subjects may be

based upon observations of the loudness and position. Here, psychophysical

data were collected with a different paradigm, but with nearly identical stimuli

and subjects, to further test the model based upon the ideal observer of A and .

The current results confirm the psychophysical findings that roving the level

(and phase) of a contra-aural distractor decreases performance on a monaural

level discrimination task. The psychophysical results, however, refute models

based upon ideal observers of A and 0 (either alone or together).

In the original study which used a multi-interval adaptive paradigm, in

order to obtain a probability of correct of 0.7 in the double-rove condition, a

target level increment AL of 7.8, 5.7 and 11.3 dB was needed for S1, S2, and S4,
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respectively. In this study which used a one-interval constant increment

paradigm, subjects S1 and S2 obtained a Pc of 0.69 and 0.72 with a AL of 8 dB

and S4 obtained a Pc of 0.72 with a AL of 14 dB. This study does not directly

assess the degree to which performance was affected by the change in paradigm;

however, the overall effect appears to be small. For a AL near the threshold

measured in the previous work, performance was approximately the same as the

threshold criterion of a probability of correct of 0.7.

Unlike the original study, which included a no-distractor control

condition, this work did not investigate the no-distractor condition. Stellmack et

al. (2004) argue that two interval monotic (i.e., no distractor) level discrimination

is the same as one-interval interaural (i.e., fixed distractor) level discrimination.

Jesteadt and Bilger (1974) measured monotic level discrimination thresholds

under 2 dB with both one-interval and two-interval paradigms. Based on these

previous studies, it would not be expected to measure values of Pc near 0.7

(approximately the measured Pc of the subjects in the roving-level and double-

rove conditions) in a one-interval monotic level discrimination task with values

of AL of either 8 or 14 dB given the relatively high Pc in the fixed condition.

Although not directly tested, performance is consistent with our previous

conclusions that subjects cannot exclusively attend to a single ear.
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In the fixed condition, all three subjects perform nearly perfectly with

values of Pc near unity (cf. Fig. 1). Subject S4, had the largest AL of 14 dB, but the

worst performance with a Pc of 0.88. Although this is substantially less than one

might expect, the relatively small number of trials (2000) in the fixed condition

and the one-interval paradigm without any explicit training might account for

the relatively poor performance. All three models predict nearly perfect

performance in the fixed condition. The lack of explicit training is less of a factor

in the roving-level and double-rove conditions since the number of trials is much

greater (at least 6,000 and as great as 30,000). In the roving-level condition (6,000

trials for S4 and 12,000 trials for S1 and S2), for all three subjects Pc decreases

compared to the fixed condition. The ideal observer of both A and e together

does not get worse, but the ideal observers of either A alone or 0 alone predict

the values of Pc obtained by the subjects. In the double-rove condition (24,000

trials for S4 and 30,000 trials for S1 and S2) the performance of the ideal observer

of A and 0 together is degraded appreciably. In this condition, all three models

predict the values of P obtained by the subjects to within 0.2. These findings are

similar to those reported in Chapter II. Specifically, all three models predicted

the average performance in the fixed and double-rove conditions and the ideal

observer of both A and 0 together substantially outperformed all the subjects in

the roving-level condition.
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Although the models predict Pc to some degree, an exploration of the

predictions and data in greater depth reveals serious shortcomings of these

reasonable models. In particular, the subjects outperform the ideal observers of

either A alone or e alone in both the roving-level and double-rove conditions. In

these conditions, the performance of the ideal observers of either A alone or e

alone is limited by a combination of internal noise and distractor variability.

Removing the internal noise does not sufficiently increase performance.

Additionally, the ideal observers of either A alone or E alone demonstrate a bias

that the subjects do not. Further evidence against the models based on ideal

observers of either A alone or 0 alone can be seen in a comparison of Figs. 2 and

9. The dependence of P and PD on the distractor level in the roving-level

condition for the subjects differs from the predictions of both models. Finally, the

predictions of P and in the double-rove condition are also in disagreement

with the subject data. These discrepancies imply that the subjects are basing their

decisions on more than either A alone or 0 alone.

One could simply dismiss the model based on the ideal observer of A and

0 together due to the sizable discrepancy between the predictions and the values

of Pc obtained by the subjects in the roving-level condition. We believe,

however, that although large, the discrepancy is not serious since the ideal

observer is performing better than the subjects. One possible remedy to this

discrepancy is to use a non-ideal observer. Calculations of performance in the
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roving-level with a non-ideal indicator function are not presented, since, we

believe that the model based on A and e together has other flaws. Specifically,

these flaws are most evident in the double-rove condition.

In the double-rove condition, there is only sufficient information (not an

excess of information) contained in A and 0 together to predict the values of P

obtained by the subjects. In other words, the ideal observer of A and 0 together

does not greatly outperform the subjects. The model, however, is much more

biased than the subjects (cf. Fig. 8). Further, the predicted dependence of P and

PD on the distractor level and phase does not match the subject performance

(refer to Figs. 3, 10, and 11). When evaluating the models with P , all three

models seem to have reasonable amounts of predictive power. By evaluating the

models on the finer aspects of the data (P and P as a function of the distractor

properties), one can determine that the models in fact have very little predictive

power. Although these binaural models failed to predict the data, a monaural

model, would predict no effect of the distractor since the target is the same in all

three conditions and the distractor is presented contra-aurally to the target. By

using models based on binaural cues (e.g., A and 0) performance that varies

across the different conditions can be predicted.

We conclude that models based on an ideal observer of decision variables

related to the perceived loudness (A) and position (0) or their combination are

inadequate to predict the psychophysical results. We attribute the failure to
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predict the data to three independent aspects of the models. These three aspects

are the use of (1) only two perceptual dimensions, (2) decision variables which

drastically simplify the perceptual dimensions, and (3) ideal observers.

Psychophysical studies of time-intensity trading have demonstrated that

the perceived loudness and position does not completely describe the perception

of a dichotic tone (Hafter and Jeffress 1968a; Hafter and Carrier 1972; Smith 1973;

Ruotolo et al. 1979). Additional perceptual aspects such as the "time-image"

(Hafter and Carrier 1972), "level-difference" (Hartmann and Constan 2002), and

"spatial width" (Ruotolo et al. 1979) have been suggested. One could also include

a monaural loudness dimension, but this percept would have to be extremely

noisy to allow the model to predict the decreases in performance associated with

the addition of the distractor. Adding dimensions, however, increases the

theoretical complexity of the model.

In the modeling work presented here, A is the sum of the intensities at the

left and right ears and e is a weighted sum of the ILD and ITD. Extensive studies

on the perception of both overall level (e.g., Viemeister 1988) and interaural

differences (e.g., Durlach and Colburn 1978) have been conducted in the past. At

best, the definitions of A and 0 used are first-order approximations to the

perceived loudness and position. The exact forms of the definitions of A and 9

were chosen to balance the following three competing factors (1) correlation to

perception, (2) computational simplicity, and (3) theoretical simplicity.
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Increasing the complexity of the definitions of A (e.g., a binaural version of the

loudness incorporating the findings of Edmonds and Culling 2006) and 0 (e.g.,

Stern and Colburn 1978) might lead to better correlation with perception. Even

with the simple definitions of A and 0, however, a mixture of analytical and

numerical techniques were required to compute the model predictions. Increases

in the complexity of the definitions, could result in an intractable model. Further,

increasing the complexity of the definitions would raise questions as to what

aspects of the definitions are crucial to predict the psychophysical results.

The final aspect of the model which may give rise to the poor predictive

power is the use of an ideal observer. Overall, all three subjects in this

experiment performed similarly achieving an average P between 0.68 and 0.72

in the double-rove condition (cf. Fig. 1). Notably, subject S4 did require a larger

AL than the other two subjects. The performance as a function of the distractor

level in the roving-level condition and as a function of the distractor level and

phase in the double-rove condition were extremely different for the three

subjects. The inter-subject variability is likely to be even greater than that

reported here since in addition to the three subjects who completed the study,

two subjects were dismissed from the study due to extremely poor performance.

An ideal observer cannot predict inter-subject variability. Since there are

an infinite number of non-ideal observers, each subject could be modeled as a

different non-ideal observer. For example one non-ideal observer could weight

A more than 0 and another could weight A and 0 equally. One could also
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"jitter" the decision boundaries (cf. Fig. 6). The properties of the jitter could be

adjusted for each subject. One could also impose a cost for attending to multiple

dimensions (i.e., divided attention). The imposed cost matrix could be different

for each subject.

Predictions of models based on many of the possible non-ideal observers

of the currently defined A and 0 can be calculated. The predictions of the ideal

observer of A and 0 are so different from the psychophysical data that

substantial modifications to the ideal observer would be required. One problem

with using a non-ideal observer is that the P predicted by the ideal observer of

A and 9 is only marginally better than the P obtained by the subjects. Since the

P predicted by the non-ideal observer will be less than that predicted by the

ideal observer', a non-ideal observer will most likely not have access to sufficient

information and will be outperformed by the subjects.

After resolving the first two issues with the model (the simplicity of the

dimensions and the number of dimensions), there may be more information

available to a model decision device which would allow for the use of non-ideal

observers. Designing and implementing a model which addresses these issues is

beyond the scope of this chapter, but is included in Chapter IV. The simplicity of

the dimensions seems secondary to the number of dimensions. The relatively

simple A and 0 have strong predictive power for many psychophysical tasks,

and studies of time-intensity trading (Hafter and Carrier 1972; Ruotolo et al.
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1979) have demonstrated that two dimensions are insufficient to characterize the

stimuli. The modeling framework presented here can be expanded to three or

more dimensions.

VII. Summary
Monaural level discrimination was measured with a contra-aural

distractor. The subjects could neither attend exclusively to the ear at which the

target was presented, nor make optimal use of the information carried by A and

O (correlates to the perceived loudness and position). The finding that subjects

could not exclusively attend to the ear at which the target was presented is in

agreement with the results of Chapter II, and demonstrates that those findings

are not highly dependent on the experimental paradigm. Also in agreement with

the findings of Chapter II, the subjects obtained a probability of correct similar to

that of the ideal observer of A and 0 together. The subjects, however, did not

make optimal use of the information carried by A and 0. Performance as a

function of the distractor parameters (level and phase) was substantially

different between the subjects and the ideal observer, suggesting that the subjects

used additional information than that which is carried by A and 0. Finally, there

was little inter-subject variability in the overall probabilities of correct and bias,

but substantial inter-subject variability in performance (P and P,) as a function

of the distractor parameters, implying that the listeners used different listening

strategies.
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Appendix
This appendix presents a detailed derivation of the performance of the

ideal observer of the two dimensions defined by Eqs. 1 and 2 in the text.

Specially, the probability of the ideal observer responding Incremented

conditioned on the target level, the distractor level, and the distractor phase is

derived. Both the notation and the general framework of the derivation are

similar to that in Chapter II. The derivation only considers the A and E together

model and does not explicitly derive the A alone or 0 alone models. These

derivations, however, follow trivially from the given derivation.

The derivation begins by substituting the experimental values into Eqs. 1

and 2. In the experiment the level of the left ear LLe is the target level L,,; the

un-incremented target level is equal to the reference level I0 (in decibels) and the

incremented target level is equal to the sum of L and the target increment AL (in

decibels). The level of the right ear LRight is the sum of L and the distractor level

increment A (in decibels). The interaural time difference T is the negative of the

distractor phase <D divided by the distractor frequency o. Making these

substitutions into Eqs. 1 and 2 results in

Lrarge: LO+A

A =10loioO 10 10 +10 10 +NA, (Al)
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and

k
Lre - (Lo+ A) -(bID+ No. (A2)

On each trial there is a single observation of both A and 0. These

observations are denoted A and 0, respectively. The maximum likelihood

observer is defined in terms of two joint probability density functions. The first is

the probability of observing A and 0 given LT,,,, is equal to the reference level

LO, fL6  (2,6A14). The second is the probability of A and E given the target

level was incremented, fAO 1Lr. (, IL0 + AL). The log-likelihood ratio Y7l e is

defined in Eq. 3.

The ideal observer is defined by a binary indicator function y A which

depends on Y E. Specifically, when y is equal to zero, the target level is most

likely incremented. Similarly, when y/t is equal to one the target level is most

likely to be equal to the reference level Lo. Mathematically the indicator function

is

YfAO(, 6 ) I 1 when 7Ae(A,6,AL)>1
0 when Y7A e(9,6,AL)<11

In order to calculate yAE f must be determined. In Chapter II it

was found that a closed form solution to f could not be found with

analytic methods. An approximation of f was calculated in the appendix
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to Chapter II with a mixture of analytic and numerical techniques. That

derivation is not presented here. Recall that the approximations used in that

derivation involved approximating integration with summation. No Monte-

Carlo type simulations were required.

In Chapter II, the probability of correct as a function of AL was calculated.

In this work, PF and PD are calculated as a function of the distractor level and

phase. The probabilities PF and 1D depend on the indicator function and the

joint probability of A and e given (1) a, the particular value of the random

variable A (the distractor level), (2) < the particular value of the random variable

<D, and (3) LTarget This conditional joint probability of A and e is denoted as

fAIA,,.,, -The probabilities PF and P can be written as

P, (a, , AL) = JJfVA, (A,0, AL)fAe 1A'I 29I ( a,, Lo )dAdO

and

P (a,#,AL) = f f (A,,AL)fAeA..rg, (A,0|a,#,Lo +AL)dAde. (A3)

The derivation of the model proceeds by considering only PD. The

derivation of P follows trivially from the derivation of P by adjusting Larget

To solve for PD, the definition of conditional probability is used to expand the

joint density function f to

fAJA-O,,,,,= fIA1'ci4)'1ge (A la,0, LO + AL )fOAA'b,L7,a,, (09A, a,, LO + AL).
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Noting from Eq. Al that A is independent of <D and from Eq. A2 that E is

conditionally independent of A when A is given, allows fA,8IAA .,at to be

simplified to

fAA,e,L,rgeI, AlsLr.,r (Ala, Lo +AL)fAA0 ,Lag, (6|a,#, Lo + AL)

Making a substitutions of A based on Eq. Al and e based on Eq. A2 and using

the definition of conditional probability yields

fA9A.ge .=/NA (A N e) f, (a

where pa (a) is equal to 10logo (
L3+AL

10 10
LO +a

+ 10 10 )
and

k
AL -a $ -. Then substituting the Gaussian density functions

CO

#) is equal to

of NA and N.

gives

fA,9kA,4LeT.,

(A-PA(a))
2 (0-pe(a p))

2

e 2a 
2  e 2a02

2;o-sag

Substituting the expanded form of f into Eq. A3 yields

(6-pe2 (a (o)2
PD (a ,AL 2 2r.2 fVAe (A,6,1 AL) e

2xaoro-

(a-PA (a))2

2aA2 dAdO.

To solve for P, we note that the conditions of the experiment lead to an

indicator function y A, which is relatively simple. For a fixed AL,

characterized by a boundary function 'P A which divides the {A, 0} plane into
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two regions (cf., Fig. 6). The probability of a detection can be expanded by

splitting the integration over A into two segments, such that

P(a,#,AL) =
(-e (a,#))2e

f e 2 ,.2

2xo-aea

A-pa (a))2

2aA 2

(a--A (a))2

2A2 dA
(', M

Noting that yVf, is equal to one when A is greater than TA, and zero otherwise,

allows for P to be simplified to

(6-pe(ao))2

P (a,#,A)= A e 2a82

21raga@

(A-pA (a))
2

e 2crA dAdO.

Defining the integral of an exponential squared function as

p (x-p)
2

G(a,#,p,or)= e 2G2 dx,

allows for further simplification of P

(0-pe(a,#o))2

P(a,#,AL) = 1 e 2 2

A4O

G(T A (6,AL),,pA(a),a A)d6.

In the experiment, the maximum likelihood boundary AO with a fixed

AL is relatively smooth; the boundary 'Pe can be approximated as a constant

over a small range of 0. We denote 0 [m] as a sampled version of the continuous

random variable 0. Splitting the integration over 0 into M minus one segments

(where M is the number of samples of 0), PD can be written as
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M-1 [m+1l (6-ue(a,$))2

P (a,0, AL) = e 2E2 G(Ae (0, AL), oo, pA (a), a,,)dO.
2;~Ta)m=I 6[m]

Noting that PAO is nearly independent of e over the range {E[m],E[m + 1]), P

is well approximated even when the G function is moved outside the integration

(but still inside the summation) only, namely,

M[m + 1, ( -p e (a ,))2

P(a,,AL) G(QA([MAL),, JA(a),a) f e 2o,2 dO.

Substituting in the G (a, fl, p, a) notation gives

1 M-1 G(QAe(O[MIAL),9opiA(a),aA
P (a,#,AL)=Y

2A(Fe m=t _xG(6[m],6[m+1],pe (a,#),a.)

This approximation of P can be implemented computationally once ',Pe is

calculated.

I For this subject, the first few hours of training were with a multi-interval

paradigm in a target only condition. Following the satisfactory

performance in this target only condition, a few hours of training in the

double-rove condition with a multi-interval, adaptive paradigm was

conducted. The subject also performed similarly to the other subjects in

this condition and had threshold values of AL substantially less than

20 dB. Finally the subject was trained in the double-rove condition with

the one-interval paradigm with a AL of 20 dB. With the one-interval
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paradigm the subject reported total confusion and performed at near

chance levels.

2 The abilities of the subjects who were excluded from the study to use the labels

were not assessed. None of the subjects, however, complained about the

use of the labels

A simple example of a biased ideal observer is the case of two six-sided dice

(one fair and one "loaded" slightly towards six). If the ideal observer must

decide which die was rolled (fair or loaded) based on the outcome of a

single roll, the ideal observer will only respond "loaded" for a roll of six

and will respond "fair" for all other outcomes (one through five). Since six

is only slightly more probable than the other values, the ideal observer is

biased.

*The chosen value of 0.05 dB per ps for the intensity-time trading ratio k matches

the classic time-intensity trading ratio of 20 ps per dB (Whitworth and

Jeffress 1961; Hafter and Jeffress 1968b; Hafter and Carrier 1972). By using

an intensity-time trade instead of a time-intensity trade, both the A and 8

dimensions are expressed in decibels.

* Note that f and f are the marginal probability density functions of

the joint density function . Since A and 0 are not independent
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(both depend on the target level and the distractor level), f cannot

be reconstructed from f and f r.

6 The two subjects that did not obtain satisfactory performance performed similar

to the other subjects in the fixed condition (high probability of correct),

but performed near chance in the double-rove condition even with a AL of

20 dB.

The maximum likelihood ideal observer maximizes Pc .
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Tables and Figures

Frequency Duration Phase Level
(Hz) (ms) (radians) (dB SPL)

Fixed 600 300 0 50
Roving-Level 600 300 0 Unform(50,80)

Double-Rove 600 300 Uo Unform(50,80)

(2 2

Table 1. Distractor properties in the three conditions. In all conditions the target
has a frequency of 600 Hz, a duration of 300 ms, a phase of zero and a reference
level of 50 dB SPL. The distractor was presented simultaneously but contra-
aurally to the target. When roved, the values of the level and phase were chosen
from uniform distributions.
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Model Condition AL P # 1% PF

Fixed 8 dB 1.00 0.00 1.00 0.00
14 dB 1.00 0.00 1.00 0.00

8 dB 1.00 0.00 1.00 0.00A and e Roving-Level 14 dB 1.00 0.00 1.00 0.00

Double-Rove 8 dB 0.70 0.27 0.97 0.57
14 dB 0.82 0.16 0.98 0.34

Fixed 8 dB 1.00 0.00 1.00 0.00
14 dB 1.00 0.00 1.00 0.00
8 dB 0.62 0.37 0.99 0.75

A only Roving-Level 14 dB 0.72 0.28 0.99 0.56

Double-Rove 8 dB 0.62 0.37 0.99 0.75
14 dB 0.72 0.28 0.99 0.56

Fixed 8 dB 1.00 0.00 1.00 0.00
14 dB 1.00 0.00 1.00 0.00
8 dB 0.63 0.07 0.70 0.43

9 only Roving-Level 14 dB 0.73 0.03 0.76 0.30

Double-Rove 8 dB 0.60 0.00 0.60 0.40
D 14 dB 0.67 0.00 0.66 0.33

Table 2. Model Predictions of the ideal observer of A and 0 together, A alone and
E alone for the three conditions for the two values of AL used.

124



A

A S1: AL=8 dB

* S2: AL=8 dB

* S4: AL=14 dB

Y 0.75

0.5
0.1

0.05

CC 0

-0.05

-0.1

E 0

Roving-Level Double-Rove

Figure 1. Probability of correct P (top panel) and the bias towards responding

"Incremented" p (bottom panel) for each subject and conditions. The 95 percent
confidence intervals, based on a binomial distribution with the appropriate
number of trials for each condition, are on the order of the size of the symbols
and are not shown.
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ISI: L= 8dB

0.75

0.5

0.25

0

S2: AL =8 dB

0.75

0.5

0.25

S4AL 14dB
l --

0.75 \

0.5

0.25

01
50 55 60 65 70 75 80

Distractor Level (dB SPL)

Figure 2. Each panel shows P (solid) and PD (dashed) as a function of the
distractor level in the roving-level condition (thick lines) for subjects S1, S2, and
S4, respectively. The shaded regions around the functions represent the 95
percent confidence intervals based on a binomial distribution. Also shown as
thin lines are P, and P as a function of the distractor level in double-rove
condition, for trials in which the distractor phase was near zero.
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Probability

0 0.2
1- Al =RriR

0.4 0.6 0.8 1

S2: AL=8dB
80 -. ,

70

60

50

S4: AL = 14 dB
80

50
-iT/2 --7/4 0 n/4 n/2 -n/2 -7E/4 0 nE/4 n/2

Distractor Phase

Figure 3. Two-dimensional surface plots of P, (left column) and P, (right
column) as a function of the distractor level and phase in the double-rove
condition for subjects S1 (top row), S2 (middle row), and S4 (bottom row). Areas
of high probability are red and areas of low probability are blue. Each surface
plots consist of approximately 20,000 overlapping bins with a width of 40 gs and
a height of 2 dB.
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Roving-Level and Double-Rove
r
i .... AL=0dB

AL=8dB
+=- - -AL=l4dB

10-
Respond Un-I remerted AL = 8 dB

5 -- -- AL=14dB

0 -- . .. .-. -. . .- - -- ..

-5 -

Respond Incremented
-10 '

40 50 60 70 80 90

A (dB)

Figure 4. The top panel contains the probability density functions for the ideal
observer of A alone in the roving-level and double-rove conditions with a AL of 0,
8, and 14 dB. The bottom panel contains the log-likelihood ratio for the ideal
observer of A alone in the roving-level and double-rove conditions with a AL of 8
and 14 dB.
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Roving-Level Double-Rove

101

Respond qn-Incremented Re nd Un-Incremented

5

0 ....... -........ -........ ..-

-5
Respond Incre ented Respond Increment

-10 - - -

-60 -40 -20 0 20 40-60 -40 -20 0 20 40

0(dB)

Figure 5. Similar to Fig. 4 except for the ideal observer of e alone. The probability
density functions and log-likelihood ratio vary across the conditions. Results for
the roving-level condition are in the left column and in the right column for the
double-rove condition. The dotted, solid, and dashed lines correspond to values
of AL of 0, 8, and 14 dB.
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Roving-Level

Double-Rove
80 -

75 - Respond Incremented

70 -

65 -

60 -,

55 Respond Un-Incremented

50
-40 -30 -20 -10 0 10 20

O(dB)

Figure 6. Decision boundaries of the ideal observer of A and E together for the
roving-level condition (top panel) and double-rove condition (bottom panel) for
values of AL of 8 dB (solid lines) and 14 dB (dashed lines).
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Un-Incremented Incremented
80

70

.. . .. . .. . .60.
60

70

6 0

80 ".-

50
-n/2 -x/4 0 W/4 x/2 -7/2 -7d4 0 /4 x/2

Distractor Phase

Figure 7. Contours of equal A (top row) and equal 0 (bottom row) for the un-
incremented target (left column) and incremented target (right column). The
target level increment AL is 14 dB. The contours are for values of A equal to
64.25 dB (dotted), 69.25 dB (solid), and 74.25 dB (dashed) and values of e equal
to -10 dB (dotted), 0 dB (solid), and 10 dB (dashed).
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0.2 A A and E
0 A alone

0.1 4e alone

0 .............
A U S

-0.1

-0.2

0.25

0

-0.25

-0.5
Fixed

0 0

.........

Roving-Level Double-Rove

Figure 8. Differences between the average subject P (top panel) and # (bottom

panel) and the ideal observer of A and e together (triangles), A alone (squares),

and e alone (circles) in the three conditions. Negative values of P are indicative

of the subjects having a lower probability of correct than the modeled observer.

Negative values of # are indicative of the modeled observer responding

Incremented with a greater probability than the subjects. In both the P and #
panels the perfect match reference is shown as a dotted horizontal line at zero.
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A alone: AL = 8 dB

-- F

A alone: AL = 14 dB

O alone: AL = 8 dB

O alone: AL = 14 dB

0 , '
50 55 60 65 70 75 80 50 55 60 65

Distractor Level (dB SPL)

70 75 80

Figure 9. Predictions of the ideal observer of A alone (left column), and e alone
(right column) in the roving-level condition with a AL of 8 dB (top row) and a AL
of 14 dB (bottom row). The solid line is P and the dashed line is P as in Fig. 2.

Predictions for the ideal observer of A and E together are not shown since
performance is nearly perfect.
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Probability

0 02
A and Q: Al = 8 dR

04 06 08 1

A alonA Al = R dR

80,

70

60

50
-xr/2 -7t/4 0 7r/4 n/2 -n/2 -7t/4 0 n/4 7L/2

Distractor Phase

Figure 10. Predictions of the ideal observer of A and 0 together (top row), A
alone (middle row), and e alone (bottom row) in the double-rove condition with
a AL of 8 dB. The predictions consist of P (left column) and P (right column).
Areas of high probability are red and areas of low probability are blue.
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Distractor Phase

Figure 11. Same as Fig. 10 except with a AL of 14 dB.
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CHAPTER IV. MODELING MONAURAL LEVEL
DISCRIMINATION UNDER DICHOTIC CONDITIONS

I. Introduction
A three-dimensional model based on the perceived loudness and position

of the dominant-image and the position of the time-image is used to predict the

results of the psychophysical experiment from Chapter III. In that level-

discrimination experiment, subjects were asked to judge the level of a target tone

at one ear in the presence of a distractor tone with the same frequency at the

other ear. When the level and phase of the distractor tone were randomized,

discrimination of changes to the target level was much worse than when the

level and phase were fixed. That chapter reported the results in terms of the

conditional probability of responding that the target level was incremented given

it was not, P, and the conditional probability of responding that the target level

was incremented given it was, P, as a function of the distractor level and phase.

The P and P functions were not accurately predicted by a two-dimensional

model based on the loudness and position of the dominant-image. A natural

extension of that model is to include a third dimension related to the position of

the time-image. This chapter investigates the extent to which this three-

dimensional model can predict the results. There are no new psychophysical

results reported in this chapter.

Figure 1 presents a block diagram of the detection theoretic model based

on a non-optimal observer of the observations of the loudness and position of the
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dominant-image (A and 9, respectively) and the position of the time-image (Y).

The inputs to the model are the level of the left ear LL,, the level of the right ear

LRih,, and the interaural difference in time delay T. The model does not specify

how these inputs might be extracted by the auditory system. The modeled

psychophysical experiment uses long duration tonal stimuli and therefore the

specifics of the extraction method are of limited importance. The inputs of the

model are processed by an internal processor to generate observations of A, 0,

and Y. Again the mechanisms by which the auditory system generates these

observations/dimensions is not specified.

The model treats the A, 0, and Y dimensions as mathematical abstractions.

The specifics of the generation of the dimensions are given below in the Model

Overview section; note, however, that the dimensions include processing noise.

The observations of A, 0, and Y are used to generate a maximum likelihood

indicator function. The model decisions (whether the target level was

incremented or not) are based upon a comparison of the observations and a

jittered version of the maximum likelihood indicator function.

II. Psychophysical Experiment
This chapter investigates the extent to which a three-dimensional model

(cf. Fig. 1 for the block diagram of the model) can predict the psychophysical

results reported in Chapter III. Those methods and results are reviewed briefly,
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highlighting the aspects important for the model. A more general and complete

treatment of the methods and results are given in the previous chapter.

A. Methods
The ability of three normal-hearing subjects (S1, S2, and S4)' to

discriminate changes in the level of a target in the presence of a distractor was

assessed with a one-interval, two-alternative-forced-choice (11, 2AFC) constant-

increment paradigm. The target was presented at the left ear and the distractor at

the right ear. The target and distractor were presented simultaneously. Both the

target and distractor were tones with frequencies of 600 Hz and durations of

300 ms. The phase of the distractor was chosen randomly from a uniform

distribution between -n/2 and +7c/2 and the distractor level (in decibels) was

chosen randomly from a uniform distribution between 50 and 80 dB SPL. The

phase of the target was fixed at zero and the level of the target was either un-

incremented or incremented. The level of the un-incremented target was

50 dB SPL and the level of the incremented target was 58 dB SPL for S1 and S2

and 64 dB SPL for S4. In other words, the target level increment AL was 8 dB for

S1 and S2 and 14 dB for S4. Subjects S1 and S2 each completed 30,000 trials and

subject S4 completed 24,000 trials. All testing was done over headphones in a

sound treated booth.

The results were reported as the probability of a false alarm P and the

probability of a detection P as a function of the distractor level and phase. In
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calculating P and P/ the data were binned according to the distractor level and

phase. The bin size was 2 dB by 40 ps and the bins overlapped by 50 percent at

each boundary. Although data for a large number of trials were collected, the

ranges over which the distractor was roved were also large (30 dB in level and

830 ps) and therefore only a few trials (approximately 40 on average, but in some

cases less than 10) were included in each bin.

B. Results
The empirical results to be predicted are shown in Fig. 2 with a separate

panel for each subject and for each of the two probabilities (P and P).

Specifically, Fig. 2 shows surface plot representations of P (left column) and P

(right column) as a function of the distractor level and phase. Averages over the

distractor stimuli showed (cf. Chapter III) that all the subjects had an average

probability of responding correctly P, of approximately 0.7 and the subjects

were unbiased (they responded "Un-Incremented" as frequently as they

responded "Incremented"). Thus, there was little across subject variability when

performance was averaged across distractor level and phase. Unlike the average

performance, the dependencies of P and P on the distractor level and phase

are different for each subject (different rows). For subjects S1, S2, and S4, the PF

functions depend predominately on distractor phase, distractor level, and a

combination of distractor level and phase, respectively. The P, function depends

on both distractor level and phase for subject S1 and predominately on distractor
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level for S4. For subject S2, the P function is nearly independent of both the

distractor level and phase.

The correlation coefficient R can be used to quantitatively assess the across

subject differences. The root mean squared (RMS) value of R across the subjects

(considering both P and P simultaneously) is 0.70 reflecting the similarities in

the average values of P and PD for each subject (generally, P is low and P is

high). The across-subject RMS value of R when the PF and P functions are

treated separately is only 0.36, quantifying the across-subject differences in the

dependencies of P and P on the distractor level and phase.

The correlation coefficient can also be used to evaluate the predictions of a

simple hypothetical model which only predicts the average PF and P for each

subject. This hypothetical model predicts no dependence of PF and P on the

distractor level and phase, but has an R value of 0.81. Models which have values

of R greater than 0.81 are predicting some of the dependence of P and Ion the

distractor level and phase.

III. Modeling
The model is based on a non-ideal observer of a three-dimensional

decision space in which the dimensions loosely correspond to the perceived

loudness and position of the dominant-image and the position of the time-image,

respectively denoted A, e, and Y. The model is evaluated on the monaural level

discrimination task described above. Specifically the model is used to make

141



predictions of P and P as a function of the distractor level and phase. The free

parameters of the model are adjusted to predict the dependence of P and on

the distractor level and phase and the substantial individual differences.

A. Model Overview
The A, 9, and Y dimensions of the model are defined in terms of their

dependence on the level of the left ear LL,, (in decibels), the level of the right ear

LRight (in decibels), the interaural difference in time delay T (in seconds), the

intensity-time trading ratio k (in decibels per seconds), and three hypothetical

internal noises NA, No, and Nr (in decibels). Specifically, the dimensions are

defined as

LLpef LRight

A =10logio 101' +10 10 +NA (1)

E = LLP - LRight + kT+ No (2)

T=kT+Ny . (3)

Note that A and 0 are defined the same as in Chapters II and III. Both A and 0

have units of decibels and for consistency the position of the time-image Y is

defined in decibels as well. The A and 0 dimensions were chosen since they

correlate with the dominate perception of the stimuli. The Y dimension has been

proposed by others (Hafter and Carrier 1972; Yost 1972) and also leads to a

mathematically tractable solution.2
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Throughout the modeling, the intensity-time trading k and the internal

noises NA, No, and N. are held fixed. The intensity-time trading ratio k is held

fixed at 1 dB per 20 ps (cf. Blauert 1997). The internal noises are zero-mean

Gaussian and statistically independent across the dimensions. The standard

deviations of NA, No, and N. (denoted aA, a-, and a., respectively) are held

fixed at 0.5 dB, chosen to be consistent with previous studies on the

discrimination of overall level (Viemeister 1988), ILD, ITD, and the time-image

(Hafter and Carrier 1972; Yost 1972).

The variables LLeft, LRight, and T depend on the target level Lrge,,, the

distractor level A, and the distractor phase <D, respectively. Note that, on any

trial, LTarget A, and <D are randomly chosen. On each trial the model observer

responds either "Un-Incremented" or "Incremented" based on observations of A, e,

and Y. The conditional probabilities of responding Incremented (i.e., P and P)

as a function of the distractor level and phase are defined in terms of the

conditional probability density for A, 0, and Y, given LTare,, A, and <D and

denoted fA,,|A,'.bLre , and the conditional probability of responding Incremented

given A, 0, and Y and denoted PIncrementedAeY * Noting that LTarget is equal to L (in

decibels) when the target level is un-incremented and that LTarg,, is equal to the

sum of L and AL (both in decibels) when the target level is incremented, P, and

PD as a function of the distractor level and phase are defined as
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"IncrementedAOT ("Incremented "12,9, v) dddv,

( = xfAergA0  (A,9,vja,#,L)

and

PD (a0) =( L f "IncrementedaA,,,T ("Incremented "d2,, V) LAd~dv. (4)
L-xfA,,A'~r (A, 0, vla,#,9LO +AL)

In calculating P.Incremened1A, an indicator function is defined. The

maximum likelihood indicator function equals unity (i.e., indicates Incremented)

when the probability of the observed A, 0, and Y is greater with an incremented

target level than with an un-incremented target level. The conditional probability

of A, 0, and Y given La,,, is denoted f . As was the case in the two-

dimensional models of the previous chapters, a closed form analytical expression

of f was not found. Rather, a mixture of analytic and numerical
AGTLarge,

techniques is again used to approximate f . A detailed derivation of

f4,0,14J,, is presented in Appendix A. Note that in approximating fAeTIk no

Monte-Carlo type simulations were used; the approximations were limited to

using numerical techniques to solve for the integrals of continuous functions.

The specifics of the maximum likelihood indicator function are presented

below in the Maximum Likelihood Indicator Function section. In general terms,

the maximum likelihood indicator function divides the {A,6, T} space into

regions of indicate-Un-Incremented and indicate-Incremented. For this model, the
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resulting indicator functions are such that for each value of {0, T}, there is only

one Un-Incremented/Incremented boundary value of A; the boundary can be

represented by a single valued function of 0 and Y, denoted y The indicator

function indicates Un-Incremented for values of A less than yfA, and Incremented

for values of A greater than yA y . In other words, for a given 0 and Y the ideal

observer responds Incremented whenever the A (the loudness) is greater than

some threshold value; this threshold value is a function of 0 and Y, but not A.

Estimates of the stimulus attributes (LLe, L,,,,,, and T) from the A, 0, and

Y dimensions are only limited by the internal noises NA, N9, and N,. One could

represent any set of N-dimensions based on combinations (linear and non-linear)

of A, 0, and Y. For example, transforming the Y dimension (or the A or 0

dimension) into a monaural energy dimension has no effect on the predictions of

the ideal observer. Similarly, one could transform the Y dimension (or again the

A or 0 dimension) into dimensions which correspond to the spatial width or

interaural level difference and again have no effect. In regards to the

psychophysical experiment, the ideal observer of A, 0, and Y performs nearly

perfectly (P, of zero and P of unity) with the values of AL used in the

experiment (8 and 14 dB) and the chosen values of a, aq, and l.

In preliminary investigations, three methods of reducing the performance

of the ideal observer were explored. The first is a jittered decision boundary (this
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is the method used in the reported results), the second is related to divided

attention (modeled as an increased cost for attending to multiple dimensions),

and the third is ad hoc manipulations of the decision boundary. One ad hoc

manipulations considered was for the indicator function to be unity (indicate

Incremented) when the loudness (A) was in excess of some criterion level

independent of 0 and Y and the maximum likelihood indicator functions.

Similar manipulations were also considered for e and Y. Combining ad hoc

manipulations of the decision boundary with either the divided attention

observer or the jittered observer, increased the predictive power of the model

only slightly. The predicative power of the jittered observer and the divided

attention observer were approximately equal. The added predictive power of

combining the two observers was minimal.

The performance of the ideal observer was limited by jittering the

maximum likelihood indicator function. The jittered observer was chosen since

the maximum likelihood indicator function is complex (cf. the Maximum

Likelihood Indicator Function section) and conceptually the authors believe that

subjects could have problems implementing such a complex indicator function.

The divided attention observer was not included since Bonnel and Hafter (1998)

reported minimal costs for attending to multiple auditory dimensions

simultaneously. Further, the increase in the predictive power was minimal given

the increase in the number of free parameters. The increases in the predicative
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power from ad hoc manipulations was also insufficient to warrant their inclusion

in the reported model.

The derivation of ,,ncrementedA, e and fA which are used to

calculate P and P, for the jittered observer are presented in Appendix B.

Closed-form analytic expressions of PIncrementedA and fA, A were not

found; rather, they were approximated with a mixture of analytical and

numerical techniques. As was the case with the f the approximations

were limited to using numerical techniques to solve for integrals of continuous

functions.

B. Maximum Likelihood Indicator Function

The maximum likelihood indicator function divides the {A, 0, T} space

into regions of indicate-" Un-Incremented" and indicate-"Incremented". Although,

the decision boundary is only an intermediate stage in the calculation of P and

P1 (i.e., the model predictions) understanding the boundary is useful for

understanding the predictions. The maximum likelihood indicator function is

defined in terms of a log-likelihood ratio y1,A, which depends on f .

Specifically 1A , is defined as

Aer,,(A,60, V ILra, =L" )
iAr (A,9 T, AL) = 10 log 0  fAerJL.,,

fA e,riaYt,, (A,9, V Larget = L + AL)
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The indicator function indicates Incremented when Y7,e, is less than zero. In this

model, the indicator function can be characterized by a decision boundary T,,Ae,

such that the indicator function indicates Incremented when the observed A is

greater than T'', evaluated at the observed E and Y. Note that 17A,.,, and

hence ',GAer depend on AL.

Figure 3 shows ',Pr for the values of AL of 8 dB (top panel) and 14 dB

(bottom panel). In each panel there are seven lines corresponding to 'TAO

evaluated at values Y equal to -15, -10, -5, 0, 5, 10, and 15 dB (the expected value

of Y with a 300 gs ITD is 15 dB). The boundary function ',AOT systematically

shifts with Y. The line corresponding to 'P, y evaluated at the largest value of Y

is the upper-right most line, while the line corresponding to ',PAer evaluated at

the smallest (most negative) value of Y is the lower-left most line. For a given Y,

the maximum likelihood indicator function indicates Incremented for values of

{A,0} which fall above and to the right of the appropriate line. In the three-

dimensional {A,O,T} space, the boundary is a smooth surface. This surface is

shifted by changes in AL; the boundary function 'P, , for a AL of 8 dB is

approximately a shifted version (down and left) of 'P, y for a AL of 14 dB.
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C. Non-Ideal Observer
An ideal observer of the three dimensional decision space is only limited

by the internal noises NA, Ne and Nr. A non-ideal observer is used to further

limit discrimination performance. We have chosen a non-ideal observer that

bases its decisions on observations of A, 0, and Y (denoted X, 0, and u,

respectively) relative to a jittered version of the maximum likelihood indicator

function (cf. Fig 4). The non-ideal model observer responds Incremented when X is

greater than 'PAer(6+JeV+Jr)+JA, where JA, J, and Jy are the criterion

jitters. The criterion jitters are assumed to be zero-mean Gaussian random

variables which are independent across the dimensions. The standard deviation

of the jitters JA, J8, and Jy are denoted a,-,, a,,, and Ua- . The standard

deviation of the jitters were treated as free parameters and adjusted for each

subject independently to predicted P, and ',

In fitting the model, - , je, and o-, were allowed to vary between zero

and infinity. Setting all three jitter standard deviations equal to infinity results in

chance performance. When all three jitter standard deviations are equal to zero,

the non-ideal observer is the ideal (maximum likelihood) observer. Setting the

jitter standard deviation of one dimension to infinity and the other dimensions to

zero, does not simply reduce the model to a two-dimensional model.

Figure 4 shows the maximum likelihood decision boundaries for the

{A, 0, r} space (top panel) and for the {A, G} space (bottom panel) with a AL of 8
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dB. The decision boundary for the {A,e, T} space, denoted TA,,r shown in Fig.

4 is the same the one shown in the top panel of Fig. 3. The decision boundary for

the {A,O} space, denoted TA,O was derived in Chapter III. It can also be derived

from by integrating over all Y to get f and creating a log-

likelihood function. It does not appear that the boundary T,. can be obtained

by a simple combination of ',P , evaluated at the different values of Y.

The criterion jitter is fundamentally different than the internal noise

incorporated into the indicator function. Internal noise results in variable

observations given a fixed stimulus. Criterion jitter results in variable responses

given a fixed observation. In the uni-dimensional Gaussian case internal noise

and criterion jitter are mathematically inseparable. In this model, as discussed

above, there appears to be a mathematical difference. Appendix C proves that

there is a mathematical difference between internal noise and criterion jitter for

the ideal observer of A alone.

A comparison between the predictions of a model with only coding noise

and one with both coding and decision noise is not made. Intuitively it seems

reasonable that the same stimulus does not always need to give rise identical

observations (supporting the inclusion of internal noise). It also seems reasonable

that given the same observations that subjects may not react identically; criterion

jitter incorporates this second effect. By including decision noise which differs

across the subjects, some of the inter-subject variability can be captured. It seems
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reasonable that given the same observations that subjects would make different

decisions. It is not clear if it is valid to assume that the coding noise varies across

the subjects and therefore the coding noise is held fixed.

D. Data Analysis
The predictions are evaluated with three statistical metrics: the (1) mean

difference, (2) correlation coefficient R, and (3) root of the mean squared (RMS)

difference between the psychophysical measurements and the predictions. In

calculating the statistics no regard was given to the confidence of the estimates of

the P and P at each distractor level and phase (the confidence depends on the

conditional probability and the number of trials). The mean difference quantifies

the average difference between the measured and predicted data (P, and 1D)

without regard to the dependencies on the distractor level and phase. The

correlation coefficient quantifies the similarity of the dependencies on the

distractor level and phase between the measured and predicted data without

regard to the average difference. The RMS difference weights both the average

difference between the measured and predicted data and the dependencies on

the distractor level and phase. Given the complexity of the measured and

predicted data functions, no single statistic captures all the aspects of the data.

Large mean differences would indicate a fundamental flaw in the model.

A model which on average (across distractor level and phase) predicts a

probability of a correct response Pc or a bias that is substantially different than

the subjects has limited predictive power. A model which predicts the average
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P and bias (or equivalently the average PF and ,) for each subject has

substantial predictive power; as mentioned in the presentation of the

psychophysical results such a model has an R value of 0.81 (it predicts 2/3 of the

variance of the data). An even better model would not only predict the average

P and P for each subject, but would also predict some the dependence of P

and P on the distractor level and phase.

In evaluating the model predictions, recall that although data for a large

number of trials were collected for each subject, P, and 1, for each distractor

level and phase bin was based on only a small number of trials. Each estimate of

and P has a different reliability due to the underlying trial-to-trial variability

(Bernoulli). Davidson et al. (2006) described how to calculate this percentage of

the variance, expanding upon that we state that the maximum correlation

coefficient R,,, is

EaOP (a,#)(1-P (a,#0)) + aOPF (a9O)(1~PF (aO))

Rm I- "'--- nin,,i,,(a,#0) "'*1 nin,,u,-_,,(a,#)---

ax UTot2

where Tot 2 is the total variance of the psychophysical data, n,,,(a,#b) is the

number of trial for which the response was "Incremented" and the target level

was incremented and nncun,_,, (a, $) is the number of trial for which the response

was "Incremented" and the target level was un-incremented. Given the data from

the psychophysical experiment R,.. is 0.97.
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E. Model Implementation

The free parameters (a , - and o,) of the model were adjusted to

minimize the RMS difference between the measured and predicted data. The

fitting was done for each subject independently. Note that minimizing the RMS

difference does not minimize the mean difference. The mean difference with the

parameters that minimized the RMS difference, however, was small enough that

it was not necessary to consider more complex fitting algorithms.

The reported predictions are for the parameter values returned by the

fminsearch function included in Matlab. Due to the computational complexity of

the model, it is not possible to be assured that the reported values of the RMS

difference are truly the minimum values. Further, the parameter search was

performed using a poorly sampled version of the indicator function (1 dB step

size). The final model predictions were made with a finely sampled indicator

function (0.1 dB step size). The RMS difference in the predictions of P and P

with the poorly and finely sampled indicator function was 0.17. Using a more

finely sampled indicator function (e.g., 0.05 dB) did not substantially change the

predictions (i.e., RMS difference in the predicted P and P with the 0.1 and 0.05

dB sampling was negligible).

The minimization routine was run on a single processor computer and

took approximately 8 hours of computing time. Once the "best fitting"

parameters were obtained with the minimization routine, the values of P and

P, were obtained with the finely sampled version of the indicator function. The
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predictions were obtained on a 54 processor super-computer and also took

approximately 8 hours of time. Conducting a more extensive parameter search

with the finely sampled indicator function might lead to a different set of

parameters which further reduce the RMS difference between the measured and

predicted data.

In the preliminary analysis parameter values which maximized R were

also found. The parameter values which maximize R are substantially different

than those which minimize the RMS difference. The R value obtained with the

parameter values which maximize R is much greater than the R value obtained

for the parameter values which minimize the RMS difference, but the change in

the RMS difference is small. The improved R value comes at the cost of large

errors in the mean differences. Since the reported predictions are for the

parameter values which minimize the RMS difference, the reported values of the

mean difference and R are not the best values which can be obtained. In our

opinion, the values of the parameters which minimize the RMS difference (or

maximized R) do not give the best visual fit between the measurements and the

predictions. The quality of the visual fit, however, is highly subjective and was

not considered in adjusting the parameters.

F. Results
Figure 5 shows the model predictions of P (left column) and P (right

column) for subjects S1 (top row), S2 (middle row), and S4 (bottom row). As with
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the psychophysical results (cf. Fig. 2), the predicted P and P are functions of

the distractor level and phase. The dependence of the predicted PF and PD on

the distractor level and phase varies across the subjects. The prediction of PF for

subject S1 depends predominately on the distractor phase. The predictions of PF

for subjects S2 and S4 depend predominately on the distractor level. For subject

S2, the predicted PF increases with increasing distractor level, but for subject S4,

the predicted P decreases with increasing distractor level. The predicted PD

functions predominately depend on level and phase (S1), and level alone (S2 and

S4). For subject S1, the predicted P is minimal for positive distractor phases and

high distractor levels. For subjects S2 and S4, the predicted P decreases with

increasing distractor level. For a given distractor level and phase, the predicted

PD is higher than the predicted PF '

The summary statistics comparing the predictions and the data are

presented in Table 1. The standard deviation of the criterion jitters (a , Ci , and

a,, ) used for the predictions are substantially different across the subjects. Given

the differences in the PF and PD functions, differences in the criterion jitters are

not surprising. Subject S1 accurately places the decision boundary in the A and E

dimensions and inaccurately in the Y; the subject uses the information in the

loudness and position of the dominant-image more than the information in the

position of the time-image. Subject S2 more equally weights the A, 0, and Y
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dimensions, but puts the least importance on the position of the dominant-

image. Subject S4 weights the position of the time-image the most and the

loudness the least.

The relative weightings of the dimensions in the model quantify how

accurately the decision boundary is located. The relative weightings do not

quantify on how accurately the subjects could rate the loudness and position of

the dominant-image and the position of the time-image. For example, although

not directly measured, but based on the data reported in Chapter II it is probable

that, all the subjects can discriminate changes in the loudness and position of the

dominant-image and the position of the time-image equally well even though the

subjects weighted the dimensions differentially. It is hypothesized that the

differences across the subjects arise due to the multidimensional nature (little

information is contained in any dimension individually) of the modeled task.

The mean differences between the predictions and the data in P and the

bias are small for all the subjects. The model is accurately predicting the average

performance of each subject. The average performance, however, does not vary

substantially across the subjects. Subject S1 had the lowest value of P of 0.69

and subject S2 and S4 had values of Pc of 0.72. The minimum bias was 0.02 (S4)

and the maximum bias was 0.07 (Si).

The R value between the data and the predictions is 0.87. This R value is

less than the R. value of 0.97, but is higher than 0.81 which is the R value for a
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model which predicts the average PF and P independent of the distractor level

and phase. Therefore the model is predicting some (but not all) of the

dependence of PF and PD on the distractor level and phase. The ability to predict

the fine structure of the data is quantified by considering the R value for each

subject for PF alone and PD alone. The model better predicts the distractor level

and phase dependence of P than that of P. The model does similarly well

predicting PF for subjects S1 and S2 with R values of 0.73 and 0.74, and slightly

worse for S4 with an R value of only 0.54. The R values for P are much more

variable across the subjects. The predictions are best for subject S1 with an R

value of 0.64 and worse for subject S2 with an R value of 0.10. Note that the

extent of variability with respect to the distractor level and phase in the P

function for subject S2 is much less than the variability for subject S1. The low R

value is a result of this lack of dependence (there is essentially no dependence to

predict).

Although the correlations between the model and the data are relatively

high and the model predicts some of the dependence of PF and P on the

distractor level, there are systematic discrepancies between the model and the

data. Figure 6 shows the differences between the measured and predicted PF

(left column) and P (right column) functions for each subject (different rows).

The distribution of the errors with an ideal model would be randomly scattered.

The magnitude of the errors of the ideal model would depend on the measured
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PF and P, (probabilities near zero and unity have higher confidences than

probabilities near 0.5). The actual differences, although generally small (cf. Table

1) are highly clustered. This clustering is to be expected since the predicted

dependence, on distractor level and phase, of P and P is less than the

measured dependence.

The dependence of the errors on the distractor level and phase vary across

the subjects. In general, the magnitude of the transitions in the predicted

probabilities (in both P and PD,) are less than the magnitude of the measured

transitions. When the measured probability is high the predicted probability is

not high enough and when the measured probability is low, the predicted

probability is not low enough. The failure of the model to accurately predict the

transitions is consistent across the subjects, even though the dependence of P,

and P varies across the subjects.

IV. Discussion
One of the most interesting aspects of the psychophysical results is the

finding that all three subjects performed similarly on average, but seem to have

used different strategies. In the previous chapter it was shown that the

magnitude of the difference between the psychophysical data and the predictions

of the average probability of a correct response for the ideal observers of A alone,

E alone and A and e together were as large as 0.2. Further, the predicted

dependence of the P and P functions on the distractor level and phase was in
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disagreement with the data. By introducing a third dimension (Y) and

considering a non-ideal observer, the revised model predicts the average

psychophysical performance better (mean differences less than 0.05 in both Pc

and bias). The P, and P,, functions, however, are not fully predicted. The RMS

difference between the measured data and predictions for each PF and PD

function is similar (between 0.11 and 0.14). The R values, however, are highly

variable with a maximum of 0.73 and a minimum of 0.10. The minimum R value

(worst "fit") occurs for the same case (subject S2 P) for which the minimum

RMS difference (best "fit") occurs. This discrepancy highlights the danger in

assessing the quality of the predictions based on a single statistic.

In general the model correctly predicts the trends in the P and P

functions. The predictions, however, do not show as strong a contrast between

areas of high and low probability as do the psychophysical data. For subject Si,

both the measured and predicted P, depend predominately on the distractor

phase. The measured P functions almost spans the entire ranges between zero

and unity (between 0.0 and 0.94), but the predicted function varies only between

0.15 and 0.69. Similarly for subject S1, both the measured and predicted P

depend on the distractor level and phase, and again the measured function

varies between 0.22 and 1.0 while the predicted function varies only between 0.60

and 1.0. Although more difficult to assess visually, this same trend is also

observed for subjects S2 and S4.
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The model makes different predictions for the different subjects because

the parameters are adjusted for each subject individually. Given the complexity

of the task, it is not unreasonable to assume that the subjects would implement

different listening and response strategies. The framework of the model allows

for the effects of divided attention and criterion jitter to be analyzed separately.

Only the effects of criterion jitter on the predictions were formally evaluated.

This decision to only consider the effects of criterion jitter was based on

three reasons. The first reason was the increase in computational time needed to

account for divided attention; even when not accounting for divided attention,

computing PF and PD required considerable computer time and computing

power due to the range over which the distractor level and phase varied relative

to the sensitivity of normal-hearing subjects. The second reason was that the

preliminary attempts at modeling both divided attention and criterion jitter did

not substantially increase the predictive power of the model. The third reason

was that studies of divided attention in auditory tasks (e.g., Bonnel and Hafter

1998) have reported limited effects of attending to multiple dimensions.

The failure of the model to predict all of the dependence on the distractor

level and phase may be related to the simplifying assumptions incorporated into

the model. As will be discussed below, some of the assumptions are in

disagreement with psychophysical results. Most of the assumptions are not

unique to our model. For example the assumption that the internal noise in the e
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dimension is independent of the ILD and ITD disagrees with the psychophysical

results of Domnitz (1973) and Domnitz and Colburn (1973) who demonstrated a

small effect. The perceived loudness, position, and time-image are obviously

more complicated than the assumed model dimensions. It is also assumed that

subjects can generate and utilize a maximum likelihood indicator function.

Finally it is assumed that subjects jitter the maximum likelihood indicator

function in a Gaussian manner. Given the number of simplifying assumptions, it

is not surprising that the model fails to predict all of the dependence on the

distractor level and phase.

Reducing the number of simplifying assumptions could increase the

amount of the variance in the data predicted by the model. The current model

predicts 76% of the variance in the data. Given the intrinsic variability in the data

attributable to the underlying Bernoulli trials, only 94% of the variance in the

data is predictable. The changes to the model needed to account for this

remaining 18% are not obvious. Some changes (e.g., changes to the definition to

the dimensions or an increased dimensionality) will increase the computational

complexity of the model (quite possibly to a level for which predictions cannot

be made). Other changes will not increase the computational complexity of the

model (e.g., ad hoc manipulations to the indicator function), but have little

support to justify their inclusion. Overall a model based on the loudness,

position, and time-image can predict the average performance in a monaural

level discrimination task under dichotic conditions. Further the model can
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predict some of the individual differences in the dependencies of the P and P

functions on the distractor level and phase.

V. Summary
Applying a sub-optimal detection theoretic model based on observations

of the loudness and position of the dominant-image and the position of the time-

image gives insight into the decision process of subjects under conditions in

which contra-aural interference is observed. In the modeled psychophysical

experiment subjects are unable to attend exclusively to the ear at which the target

is presented. This model demonstrates, that although the subjects are not

attending exclusively to the target ear, they are behaving reasonably. The

relatively high correlation between the model and data suggests that subjects are

making non-optimal use of the modeled dimensions. By allowing different

relative weightings of the three dimensions the model predicts a considerable

portion of the inter-subject variability.
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Appendix A
In this appendix, analytical and numerical techniques are used to

approximate the conditional joint probability density function of A, 0, and Y, as

defined in Eqs. 1, 2, and 3, given a target level L,,,r,, equal to the sum of the

reference level L and an increment AL. The conditional joint probability density
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function is denoted as f . The derivation of f is similar to the

derivation of the two dimensional conditional joint probability density function

of A and 0 given LT,,,,g,, derived in Chapter II.

Before the derivation of f begins, Eqs. 1, 2, and 3 are restated in

terms of the variables of the psychophysical experiment. Specifically, LLeft i

equal to L,,, and LRight is equal to the distractor level expressed as a sum of LO

and a random variable A. The negative of the distractor phase D divided by the

radian frequency (o is equal to T. Making these substitutions into equations 1, 2,

and 3 results in

A =10o10go 10 10 +10 10 + NA, (Al)

E = Lrarget -(LO + A) - + N, (A2)

and

k
T=- kD + N,. (A3)

Note that to match the psychophysical experiment the random variables A and (D

are uniformly distributed between ai,,n and a, and #,., and p,, respectively.

The derivation of f begins by using the definition of conditional

probability to expand f . With this expansion and noting the

independence of Y on A and LTarget, f can be rewritten as
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fAe=LTrg, - fLT-are (A L + AL)fy (v) f A, (Iv, A,Lo + AL) - (A4)

The fe1rA, term is then rewritten in terms of its marginal distributions with

respect to A and CD as

ejr,A,L,,, J JfeA,,A,ge, ,v,a,#,Lo + f (a,,A,v, 4 +AL)doda.

Making a substitution based on Eq. A2 into feIArge, gives

fTTg = JJfN. e (a A,A,Y,,, (a,#IA,vL +AL)dbda

where x,(a,$0) is equal to k#-AL+a+6.
0)

Then using the definition of

conditional probability to expand fA,4D(A,r,L, noting that fV;AATa is independent

of A, A, and Lar,,, and fAJA 4 is independent of Y, and simplifying gives

f = f fN e ( a q AA,L))f ge, (aT,4 +AL)fv1 y (#|Iv)dqda.

Using the definition of conditional probability on f and fr, then noting

the independence of fa on LTge, and simplifying gives

fer,A,J~arg, = JfN

fA (a)f

J AJL, rgei'k

(Ala, L, + AL) f() 

Substituting f into Eq. A4 and simplifying gives

fAe,,,Trg (a)f, (Ala, Lo + AL) fNe (e T(a,0)) f (v 1) f, (#)doda.
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Making use of the uniform probability density functions of A and D, f

can be rewritten as

ax,

fA,O,.,L , = f fAIA,LT,,,,
amin

where K is equal to

(A a, Lo + AL)

(ax -ain )(pax -Pi,) Making a substitution based on Eq.

A3 into f, results in

a-

fA,),T|g,, = f fAAIrrg,,,

(.
( Ala,4L +AL) f fN (xN (a, ))fN (x p())d pda,

k
where x, (p) is equal to v + k 0 . Substituting the Gaussian density functions of

N9 and Nr, combining, and simplifying gives

fAerjILa,,, =Kf H(a,0,v)fAIA, (Ala,LO
S-(2-p(a,d,v))d2

+ AL) fe 2 U2 dpda,
Omin

where the constant cY and the functions H(a,0,V) and p(a,0,v) are defined in

Appendix D. Defining the integral of an exponential squared function as

G(af,u,a) =

allows for

(x-p)
2

2U2 dx, (A5)

f to be simplified as

amax
fA''I~re f H (a, 0, V) fpj,~r (A la,L4+AL)G(pminpmx,p(a,,v),-)da.

Finally a substitution into fA L based on Eq. Al is made to get
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2 2

fAO'jL.= - - - 2 f H (a,0, v) eI 'a (Omn ma 5It( a,,V) , a) da

4+AL 4+a

where xA(A,a) is equal A-101ogo 10 '0 +10 '0

Further analytical manipulations of f do not appear to reduce the

complexity of the solution, but at this stage, f can be approximated with

numerical methods. The first step is to approximate the definite integral with

summation. Let us denote a[n] as a sampled version of the continuous random

variable A. Further let a[1] equal ami,, and a[N] equal a,,m. The probability

density functions f can then be numerically approximated as

1 1
A,e,I4are, = 27C0AN O - Omin)

x H(a[n] 2G(#, , (a[n],6,V),a)
n=1

Appendix B
This appendix contains a derivation of the conditional probabilities of

responding Incremented given an incremented target level (i.e., PD) as a function

of the distractor level and phase. This appendix only outlines the analytical and

numerical techniques used in approximating PD, but the derivation of P is

extremely similar. Decisions are based upon the observation of A, 0, and Y, as
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defined in Eqs. Al, A2, and A3, respectively. As defined in Eq. 4, P depends on

two conditional probabilities. The first is the conditional probability of A, 0, and

Y given the target level Larg,,, the distractor level increment A, and the distractor

phase <D and is denoted fA,@,jA0 I T . The second is the conditional probability of

responding Incremented given A, 0, and Y and is denoted Pncr,,,,,ed,,A,,r .

The conditional probability fA0,A, can be expanded by iteratively

using the definition of conditional probability such that

=' fAA0age (A la,qO,4 + AL)

XfIAA,.,, , (V Jl, a,# , LO + AL) frAAL,. (e Iv, A, a, #, LO + AL)

Noting that (1) A is independent of 4), (2) Y is independent of A, A and LTarge,, and

(3) 0 is conditionally independent of Y and A when A and <D are given (i.e.,

feirA,A,O,.,, is equal to feIA4,a ), allows us to simplify f to

fA,,jA,,LTr,, =-':fAAIqaI, (A2lagLO + AL)fl., (v 10) fOjAOT.q (0Iag , LO + AL).

Making substitutions based on Eqs. Al, A2, and A3 and then substituting the

Gaussian density functions of NA, No and N. and simplifying results in

('-pA(a))
2 -(-Pr(o))2 -(6-ipe(a,#))2

f -ye 2 2 e 27r 2  e 24
A.,eA.T|re, ,

(B1)
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4+AL /4+a

where g(a), pe (a,$0), pr($), and -y are equal to 10loglo 10 '0 +10 10

k k 1_ _

AL-- $ of---$, and ,respectively.
(2;c) 2 area

The conditional probability of responding Incremented given A, 0, and Y

PIncrementedIA,,T depends on the criterion jitters and the indicator function. The

criterion jitters for the A, E, and Y dimensions are denoted JA, J9, and Jr,

respectively. The criterion jitters are both Gaussian and statistically independent

across the dimensions. The indicator function divides the {A,e,Tr} space into

regions of indicate-Un-Incremented and indicate-Incremented. The boundaries

which arise from the psychophysical experiment are such that for each value of

{e,T}, there is only one Un-Incremented/Incremented boundary value of A (cf.,

Fig. 3); in other words each boundary can be represented by a single valued

function of {0,T}, denoted TP E . The indicator function indicates Un-

Incremented for values of A less than ',PY and Incremented for values of A

greater than PA,O,

The probability of A being greater than the jittered boundary is equal to

P"IncrementediAeT . Expressing 1
"Incremed'iAOr in terms the observations of A, 0, and Y,

the criterion jitters JA, JE , and J., and the decision boundary T A,,I gives

P-lncrementedAGr PA 'YAerAO+JeT+J)+JAA,9,Y (A2< T , (G + J19,V + J) +JA JAIo1V).
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Treating PA<YA e(e+Jer+Jr)+JAIAe, a

A"A,e,r(O+J.,T+Jr)+JA ,O+Je,T+Jy A,O,T gives

RIncremented "A,e,r =

f f A<YAew,(e.+J,r+J)+JA,0+Jr+JTIA,O,r (A < TA,e,r (q, u) + JA, q, u lA,0, v) dqdu

the definition of conditional probability to expand

PA'YA.(0+Je,T+Jr)+JA,e+Je,T+JrIA,e,T , noting the independence of feO on JT, and

simplifying yields

RIncremented"|A,e8r

ff j (q -6 0) f, (u V) )q

_XP JA<A'-PAe(,+J,T+Jr)IA,E,T,E+J,r+Jr - 4 A,, (q,u) A,9,v,q,u)

Rewriting P<-v.(e+4,T+J)^er+4,r+J, as a cumulative distribution results in

*'1.crementedIA.E,T

A e.,r(q,u)

=0 ffj.(qv6 - f fJ j )dqdu.Main sbsiutono teGassa dnst fncinso J~ JU ad J

Making a substitution of the Gaussian density functions of JA, J9, and JT

results in

-(q-0) 2  
-(u-v) 2 

'YA.eAq,u)

2a, je 2ar f
'-Incremented-A,|E,T = v e

_(s--i )2

e 2^ dj dqdu, (B2)

where v is equal to .
(21r) -JA -'r je

Restating Eq. 4 in terms of Eqs. B1 and B2 and rearranging gives
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_(q_0J 2 e( -ue(a,))2

fe2a, e 2 o, 2
-(A-A)

2  
-( (a)

2

e 2, 2GA2 dAd~dvdjsdqdu

Calculating the integrals over X, 0, and o results in

-(u-pr(a))2

PD (a,o) = yvf e 2(a 2 + )

-(q -pq(a,#))2 T,.T(q,u'

Je 2(""e2*O') f

q

) 2(a 2'
eI ^ J) dj dqdu

Making a substitution of variables to replace the non-intuitive JA, q, and u

notation with the more familiar X, 0, and u notation gives

(o-pry(a))2'

P (a, ) = yvf e 2( r 2+

1)

-(O-p.9(a p))2 41ROU

e 2+qe) f e-I 2(aA2 +A) dMAdOdv

Replacing the definite integral over with X with Eq. A5 yields

-(O-pe(a o))2

"a24,j*)

-(+-p,(a))2

P (a, p) vf e 2(, a2 G(-oo, TAO(6,v), A(a),o- + ,A J)dOdv

Since the ',P, which arises from the psychophysical experiment is relatively

smooth and can be approximated as a constant over a small range of {, TJ the

integrals over 0 and o to be approximated by summation. This allows for PD to

be re-written into a form which can then be computed:
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-(u-V)2
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G (v[n],v[n+1],py (a), VaT +0 a

P (a,#)= yv G (0[m],0[m+1],,ye (a,#), ae2 + a)
n 

IyV A j,'m xG[(oo,' AO,( (1,V), ), 9R2+ )J

where 0[m] and v[n] are sampled versions of the continuous e and Y.

Appendix C
This appendix proves that a coding noise Ne and a decision noise ND

cannot be summed together into a single equivalent coding noise NEq' The

appendix begins by demonstrating that for some probability distributions the

maximum likelihood criterion c is dependent on the standard deviation of a zero-

mean Gaussian noise. Figure 7 shows the log-likelihood ratio of A (cf. Eq. 1) in

the double-rove with a AL of 14 dB for three different noise standard deviations

(0.5, 2, and 8 dB). The criterion value (the value of A for which the log-likelihood

ratio is equal to zero) shifts systematically with changes to the noise standard

deviation. For a standard deviation of 0.5 dB (the value used throughout this

work) the criterion is 63.4 dB; for standard deviations of 2 dB and 8 dB the

criterion is 62.1 and 61.6 dB, respectively.

To prove that N, and N cannot be summed together into a single

equivalent coding noise NEq, we consider the theoretical cases in which decisions

are based on observations of the decision variable X (including separate coding

and decision noises) or X' (single "equivalent" coding noise). The arbitrary

event A (which can be conceptualized as a response of "un-incremented") occurs
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if X is less than C, the sum of the criterion value pcoding and the decision noise ND.

Similarly, the event A' occurs if X' is less than p,Eq. The following derivation

shows that the probabilities of A and A' are generally only equal if po,,d,, is

equal to pEg . Since, as discussed above, in the double-rove condition the criterion

depends on the noise standard deviation, pcoding will not be equal to pEq

The random variable X is the sum of a random variable Y (which depends

on the stimulus) and the coding noise Nc (which is independent of the stimulus)

and X' is the sum of Y and NEq. We begin the derivation by formally stating the

probabilities of A and A' as

PA = f P( X< UCoding +ND Ix) f (x)dx

PA = f P(x'< .q Ix') fr (x') dx'.

Noting that P(x' < pq Ix) is either equal to zero or unity gives

P&q

P = f, (q) d77 .

Making use of the fact that X' is the sum of Y and NEq gives

PA= fy { q ) fN
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The probability of A can be expressed in a form similar to that of Eq. C3 by

expressing P(x < lcoding +NDIx) as the integral of a probability density function

such that one obtains

00 INCoding

JA = fx (x) fND (x-7)d7dx.

Then by expanding fx (x) (it is the sum of Y and N) one gets

PCoding

P = f Jfy (W fNC (X )fND (x-r1)dxddrdI.

Recognizing the innermost integral as the result of the summation of N and Nc

allows for the integral to be replaced by N, such that

PCoding f f (C4)
P = Jffy ( ) fNq,(q-{d~drq.

Comparing Eqs. C3 and C4 one can see that P and P,, are generally only equal

when fpCoding and pEq are equal. Since the criterion value in the double-rove

condition depends on the noise standard deviation, one cannot simply sum the

coding noise and decision noise into a single equivalent noise. Rather, coding

noise and decision noise affect the probability of a particular response

differently.

Appendix D
In this appendix the values of a, H (a,0,v), and g (a,6,v) which satisfy
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H(a,9,v)e 2,
2

1 2cr 2

2x e e
1 2

2 _ 
, e

2-

are found. We begins by rearranging and combing the terms on the right hand

side of the equality to get

-(#-s(a,V))2
H (a,0, v) e 2(7

2 e 2 0y

2 1 e (k

Letting pA equal O(AL-0-a),
k

p2 equal -OV, o-, equal
k k

and u 2 equal

-a allows the above equation to be rewritten as
k

-(p-s(ao,))2
H (a,6,v)e 2C2

Expanding the exponential term gives

-($-gea,0,v))2
H(a,6,v)e 272

2;roa2 k

-(#-P)2 (#-2)2

e 2, ' 2r 2 2

2 U22 22 222 0 222+C2 2 2) e 2a i Cr 2  i 2+p2 2 a 2 a+p 22

-2;rala 2 ( k )~ ~ r 2 cc 2

(D1)

Recalling that

A2X2 -2ABx+B 2 +C =(Ax -B) 2 +C =

and expressing A, B, and C in terms of p,, P2a o',, and o2 gives
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S22 _ a 2 +a 2 2
22  2 CY2 2

-2ABx = _ - 2 21 x
2 2 2 2

B2 +C= U2 A 2 22

2a 242
2

allowing for equation D1 to be rewritten as

_ 7 2 +a2 2
-> B= _1 2 x22

2a12  2

- = 912 + u2
2 -aB2

2 2

82
A c

(p-a20,)2  5
H(a,6,v)e 2e

21ra1q2 kI

One can then readily determine that

1 1
2 22 2 2

2a, 2 , 2

2

2+ 2

B _ p122 + p 2 g _ pla2+ pp 2

A 4a2a 2
2 A2 2a 22 '

and

H(a,6,v) - I ao
2xraa 2 k

21raa2 k

2;raxo2 k

_0,22p2+0,2 J2 2 _B2

(2a 22 

a22,p +0, 12U2 2 rc71cT (
e( 2a, 2a2 2 )P - I (C

2;o-,o2 k

e-22( 2+,2 22 2'

et2G,2
2

2 2o52

Finally, re-substituting the original values for p,, /2- i, and o2 gives

2 T

k a92 + 2-
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=k )(AL-9-a)a, 2 _ 2p(a,6,v)= L J 2Y 2 ' -
CO 2ae 2 cy

and

1 y2( AL-a-6)
2
+ae2V2 U2

H(a,6,v)= 1  j e 2a@e2 oY 2a2

2;ral2 k

* No data was reported for S3.

2 The mathematical complexity of the model drastically increases when all three

dimensions depend on the target level and the distractor level and phase.

The complexity is reduced by defining dimensions such that e depends

on the target level and the distractor level and phase, that A depends on

the target level and distractor level, and that Y depends on only the

distractor phase.
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Figures and Tables

S1 S2 S4
A (dB) 8 8 14

o-A' ajO, and -, (dB) 1.0, 2.1, and 15.5 0.0, 7.0, and 5.8 12.6, 7.0, and 1.1
Mean Difference Pc 0.04 0.01 0.00
Mean Difference Bias 0.01 0.04 0.04
RMS Difference for PF 0.13 0.14 0.13
RMS Difference for P 0.14 0.11 0.14
RMS Difference for PF and P 0.14 0.13 0.14
R for PF 0.73 0.74 0.54

R for P 0.64 0.10 0.48
R for PF and PD 0.86 0.89 0.87

Table 1 Model Parameters and Performance
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LLeft

T
INTERNA LDECISIONL

PROCESSOR DEVICE

LR-ight

Figure 1. Block diagram of the model based on a non-optimal observer of A, e,
and Y. The model inputs are the level of the left ear LLfi / the level of the right ear

L,,h, and the interaural difference in time delay T. The model does not specify

mechanisms for estimating LLf, , and T.
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Probability

0 0.2
Si: AL=8dB

0.4 0.6 0.8 1

S4: AL = 14 dB

-7/4 0 n/4 nT/2 -7/2 -n/4 0 nE/4 n/2

Distractor Phase

Figure 2. Two-dimensional surface plots of P (left column) and P (right

column) as a function of the distractor level and phase in the double-rove
condition for subjects S1 (top row), S2 (middle row), and S4 (bottom row). Areas
of high probability are red and areas of low probability are blue. Each surface
plots consist of approximately 20,000 overlapping bins with a width of 40 js and
a height of 2 dB.
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80 - .

75 -

70 ' Incremented

65 -

%
60- -

Un-Incremented -%

80 -

75 -

70. \ Incremented

65 . 4

60 - -

Un-Incremented ''. % .. -'55
-50 -40 -30 -20 -10 0 10 20 30

O(dB)

Figure 3. Maximum likelihood indicator functions Tl, Y for the {A,0, T} space

with a AL of 8 dB (top panel) and 14 dB (bottom panel). Each line corresponds to
er for a particular value of Y. The upper-right most line is for Y of -15 dB (an

ITD of -300 ps) and the lower-left most line is for a Y of 15 dB.
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AeT

Respond Incremented

AO
80

75 -Respond Incremented

70

65 -

60-

Respond Un-Incremented

55
-40 -30 -20 -10 0 10 20

9(dB)

Figure 4. Maximum likelihood indicator function 'P for the {A,E,r} space

(top panel) and TP for the { A, 0} space (bottom panel) with a AL of 8 dB. The

P AB, functions is the same as in Fig. 3. The indicator function ',PE cannot be

obtained by a simple weighted combination of ' A,,,at different values of Y.
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Probability

0 0.2
S1: AL = 8 dB

80 -

70

60

50
-n/2 -n/4

0.4 0.6 0.8 1

0 n/4 n/2 -n/2 -7t/4
Distractor Phase

0 n/4 n/2

Figure 5. Two-dimensional surface plots of the predicted PF (left column) and PD
(right column) as a function of the distractor level and phase for subjects S1 (top
row), S2 (middle row), and S4 (bottom row). Areas of high probability are red
and areas of low probability are blue. The model parameters o, -,,, and a-
were adjusted for each subject individually.
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Difference in Probability

-O 2
S1: AL=8

S2 AL = 8i

sS4. AL =14

80

60

-7E/2 --A/4

-0.1 0 01 0,2
dB

dB

dlB

0 /4 n/2 -n/2 -7T/4 0 7t/4 n/2
Distractor Phase

Figure 6. Two-dimensional surface plots of the difference between the measured
and predicted P, (left column) and P (right column) as a function of the
distractor level and phase for subjects S1 (top row), S2 (middle row), and S4
(bottom row). Areas in which the predicted is less than the measured are blue
and areas with higher predicted probability are red. Note the expanded color
scale.
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Double-Rove

50 55 60 65 70 75 80 85 90

A (dB)

Figure 7. Log-likelihood ratios for A in the double-rove condition with a AL of 14
dB and three different coding noise standard deviations. The criterion value of A
changes as a function of the standard deviation. This dependence of the criterion
value on the standard deviation of the coding noise is required for separating the
effects of coding noise and the decision noise.
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CHAPTER V. CONCLUSIONS

I. Introduction
This chapter summarizes the results of Chapters II, III, and IV and

discusses some future work that follows upon the understanding achieved by the

"thesis" and would expand our understanding of contra-aural interference. In

summarizing the results of chapters II, III, and IV emphasis is given to

integrating the results across the chapters. The future work section is divided

into two parts: psychophysics and modeling.

The set of psychophysical experiments reported in Chapters II and III

involved the discrimination of the level of a monotic target (600-Hz tone) in the

presence of a monotic distractor (600-Hz tone) presented simultaneously but

contra-aurally to the target. The stimuli were such that the dominant perception

was a fused image with a salient loudness and position. The reliabilities of the

loudness and position in the discrimination of changes in the target level were

manipulated by parametrically varying the distractor level and phase across the

experimental conditions. In all conditions the information carried by the target

was unchanged and therefore attending exclusively to the ear at which the target

was presented would lead to identical performance across conditions. The target

and distractor stimuli were chosen, however, such that they perceptually fused;

attending to the loudness and position of this fused image would result in

variable performance across conditions.
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In the simplest condition the distractor level and phase were fixed and

therefore both the loudness and position carried useful information for

discriminating the target level. In the most complex condition, both the distractor

level and phase were randomly chosen on every presentation and therefore the

loudness, the position, and their combination did not carried sufficient

information for discriminating the target level. In addition to the information

carried by the loudness and position of the dominant-image, additional

secondary images (e.g., the "time-image") may have also carried information.

The modeling work considers a theoretical observer of simple

representations of the perceived loudness and position of the dominant-image

and the position of the time-image. Even in the most complex experimental

condition tested (random distractor level and phase), the ideal observer of

loudness, position, and time-image together is only limited by internal noise.

Therefore both optimal and non-optimal integration of the information across the

modeled perceptual dimensions is considered. Although the model is only

applied to the experimental conditions tested in this thesis, the similarity of the

model to traditional models (Hafter 1971; Yost 1972; Stern and Colburn 1978) is

such that it is believed that the model will predict a wider set of psychophysical

results.
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II. Summary
The paradigms of the psychophysical experiments in Chapter II (multi-

interval adaptive) and Chapter III (single-interval constant-increment) were

different, but the most general findings were similar. Discrimination

performance decreased when the distractor variability reduced the reliability of

both the loudness and position for discriminating changes in the target level.

Since the distractor was presented contra-aurally to the target, this decrease in

discrimination shows contra-aural interference and provides evidence that

subjects cannot attend exclusively to a single ear even when it is desirable. In

control conditions in which both the loudness and position, or only the loudness,

or only the position carried the information, subjects performed similar to

previous studies. The conditions in which the reliability of both the loudness and

position were reduced was modeled extensively.

In both Chapters II and III a model based on optimal use of the loudness

and position was used to interpret the results. The predictive power of this

model was limited. In some cases the model failed to predict the extent of the

contra-aural interference (the loudness and position carried too much

information). The model also failed to predict the dependence of the probability

of a false alarm P and the probability of a detection PD as a function of the

distractor level and phase. In Chapter IV the scope of the model was expanded; a

model based on the non-optimal use of the loudness and position of the
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dominant-image and the position of the time-image partially predicted the

dependence of P and P on the distractor level and phase.

Predictions of the measured contra-aural interference presented here were

limited to a modification of traditional binaural models. In the modified model,

the monaural processors were removed and the decision process was

implemented as a non-ideal observer. It is possible that a model with monaural

processors could lead to similar (or better) predictions of the contra-aural

interference. In such a model, the ability to use the relevant monaural

information, or the information itself, would need to be degraded by the

introduction of the distractor.

One structure for such a corrupted monaural model could be based on the

activity of efferent neural pathways that are stimulated by the contralateral

stimulus. (Guinan 1996) Incorporating the efferent neural pathway into the

monaural (and binaural) processors might degrade the information

appropriately. It is not obvious, however, how such a model would predict the

inter-subject variability in the dependence of P and PD on the distractor level

and phase. The current model predicts the inter-subject variability by assuming

that each subject integrates the information across multiple perceptual

dimensions differently.

This thesis investigates overall-level discrimination of a low-frequency

tonal stimulus and demonstrates that the ability to discriminate small changes in
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the level of a target stimulus presented at one ear can be adversely affected by a

distractor stimulus presented simultaneously at the ear contralateral to the

target. The thesis focuses only on conditions in which the target and distractor

are perceptually fused. The introduction of a distractor stimulus contra-aural to

the target, which decreases the reliability of the perceived loudness and position

for discriminating changes in the target level, increased discrimination

thresholds substantially. The results are consistent with a model based on non-

optimal integration of the information carried by the loudness, position, and

time-image. The non-optimality assumed that subjects had difficulties reliably

using the multi-dimensional maximum likelihood decision rule; this idea was

implemented as criterion jitter. The modeling of the psychophysical results

demonstrates that, although contra-aural interference is not predicted by

traditional models, contra-aural interference is consistent with a reasonable use

of the information carried by binaural perceptual attributes.

III. Future Work

A. Psychophysical
Future work on the psychophysical aspects of contra-aural interference

could focus on the perceptual fusion of the target and the distractor. In the

experiments reported in this thesis, the target and distractor had the same

frequencies and were presented simultaneously. The target and distractor were

perceptually fused. The perceptual fusion was maintained throughout the

psychophysical experiments. Understanding how perceptual fusion affects

191



contra-aural interference will give insight into the mechanisms by which the

stimuli at the two ears are integrated (non-optimally). Traditional binaural

models assume that the information from each ear is available individually and

are obviously incorrect. The current model assumes an obligatory non-optimal

integration of the information; this integration is independent of the perceptual

fusion. Future psychophysical work on how perceptual fusion affects the

integration is crucial for testing the model.

B. Modeling
The model presented in Chapter IV only made predictions for the

condition in which the distractor level and phase were randomized. No

predictions for other psychophysical tasks were made. The reports of contra-

aural interference by Taylor and colleagues (Taylor and Clarke 1971; Taylor et al.

1971a; Taylor et al. 1971b) work on Monaural Detection with Contralateral Cue

(MDCC) are conceptually inconsistent with the model; in those studies the

"loudness", as defined in the model, was reliable, yet subjects were unable to use

the "loudness" to detect a target. To our knowledge the results of Taylor and

Colleagues have never been satisfactorily conceptualized or modeled. Shub and

Colburn (2005) suggested that modifications to the "loudness" coupled with the

position variable model of Stern and Colburn (1978) might be able to predict the

contra-aural reported in the MDCC studies. The effects on the predictions of the

MDCC studies of incorporating the recent work by Edmonds and Culling (2006)

on the dependence of the perceptual binaural loudness on the interaural
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correlation into the model should be explored. This exploration would consist of

redefining the loudness dimension and re-deriving the model to make

predictions of the MDCC results.

The model also mathematically separates the effects of internal coding

noise and criterion jitter. The multi-dimensional nature of the model allows for

these effects to be evaluated separately. The internal coding noise determines the

extent to which the perceptions of identical stimuli vary while the criterion jitter

determines the extent to which the responses to identical perceptions vary.

Although the model presents a way of separating these effects (for both contra-

aural interference and perception in general), only a cursory examination was

conducted. Future work on the differential effects of internal coding noise and

criterion jitter may prove helpful for a wide range of psychological studies.
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