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Abstract

Linear edge waves were first found mathematically by Stokes (1846). It has long been
a topic of interest, since edge waves are believed to be responsible for the formation
of beach cusps. Galvin (1965) was the first to observe in the laboratory that edge
wave mode of frequency w can be excited by incident waves of frequency 2w. Guza
and Bowen (1976) gave a theoretical explanation of the nonlinear mechanism of sub-
harmonic resonance. This type of theory has been extended by Minzoni & Whitham
(1977), Rockliff (1978), and Rockliff & Smith (1985), among others. Rockliff also
initiated a theory whereby subharmonic resonance can be achieved by an incident
wave of frequency w, which leads to second harmonic at the second order to excite
the edge wave. Their theory was however incomplete.

The goal of this thesis is to extend the existing theories in order to show other paths
to resonance. The'nearshore region is a plane beach of small slope. For all cases we
shall derive the evolution equations governing the edge wave amplitudes and analyze
the stability of the equilibrium (static or dynamic) state. We first study in Chapter
2 synchronous resonance as a special case. We shall show that interaction between
the edge wave and the incident/reflected wave also generates circulation cells on the
beach. Comparison is made between our theoretical results and the experiments by
Bowen & Inman. We then give a corrected version of the work of Rockliff and Rockliff
& Smith. Next, in Chapter 3 we generalize the idea of Chapter 2 and examine the
excitation of an edge wave by a pair of incident waves of magnitudes comparable
to the saturated edge wave but the sum of their frequencies can cause subharmonic
resonance nonlinearly. In the development of theory, singularities were discovered
at certain incident wave frequencies, each of which coincides with the difference of
natural frequencies of two edge wave modes. Hence lower-order resonance happens.
To remove this singularity we consider in Chapter 4 the simultaneous excitation of
two modes of edge waves by one incident wave. The two edge waves are shown to be
coupled by both linear and nonlinear terms. Instead of a fixed point, the dynamical
system has two limit cycles as dynamic equilibria. Nonlinear numerical simulation
and linear instability are analyzed.
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Chapter 1

Introduction

Rhythmic or periodic features such as rip currents, beach cusps and crescentic bars,

are often found among many plane sandy beaches. The photograph (Figure 1-1) by

Steve Elgar [33] clearly shows beach cusps running down the shoreline.

Since the nineteen sixties (Eckart [7] and Ursell [31]), the formation of beach cusps

has been attributed to edge-waves (e.g. Galvin [10], Bowen and Inman [3], Komar

[21], Guza and Bowen [13]). There is increasing evidence from field observations (Coco

et al. [5]) that these edge waves are often excited subharmonically by waves incident

upon the beach, i.e., edge waves of frequency w is excited by incoming wind waves of

frequency 2w. For these edge waves, sandy horns coincide with the edge-wave nodes,

where swash excursion is the minimum, and bays coincide with the antinodes, where

swash excursion is the maximum. Different edge wave modes have different node and

antinode structures, in both longshore and cross-shore directions. These edge-wave

modes are believed to be responsible for the formation of beach cusps and longshore

bars. Multiple edge wave modes can also be excited simultaneously, implying that

several length scales may coexist on one beach. A striking feature of beach cusps is

their regular or quasi-regular spacing along-shore, even in the random sea condition.

To explain this, theories that beach cusps are evolving features resulting from self-

organizing feedback processes have been proposed by Werner and Fink [32], Coco et

al. [6]. Recent field work in this direction has been focused mainly in two areas.

Firstly high resolution beach experiments have been conducted in order to discern the

19



Figure 1-1: Reflective beach and beach cusps at Duck, North Carolina (photo by Steve

Elgar).

nearshore dynamics and to identify harmonic forcing signals. Secondly mathematical

models are used to test features of self-organizing processes. Such computational

models have shown that with a simple grid on a beach and using irregular chaotic

waves as forcing, cuspate patterns can begin to evolve, if an initial edge wave signal

is introduced into the model.

Edge waves are first found mathematically by Stokes [29] (1846), and extended by

Ursell [30] (1951). They can be excited linearly by a moving storm (Greenspan [11],

1956) but not by incident waves of the same frequency. Galvin [10] (1965) was the

first to observe in the laboratory that edge wave mode of frequency w can be excited

by incident waves of frequency 2w. Guza & Bowen [12] gave a theoretical explanation

of the nonlinear mechanism of subharmonic resonance. This type of theory has been

extended by Minzoni & Whitham [23] (1977), Rockliff [26] (1978), and Rockliff &

Smith [27] (1985), among others. Rockliff also initiated a theory whereby subharmonic

resonance can be achieved by an incident wave of frequency w, whose second harmonic

at the second order excites the edge wave. Their theory was however incomplete.
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The goal of this thesis is to extend the existing theories where subharmonic reso-

nance of one edge wave mode is achieved by a single incident/reflected wave system of

much smaller amplitude and twice the frequency. Throughout the thesis, we treat the

incident wave as the energy source of the dynamical system and its amplitude is always

considered as a constant. The nearshore region is assumed to consist of many natural

modes of longshore oscillation, i.e. the edge waves. We first study synchronous reso-

nance as a special case. In this part, we shall show that interaction between the edge

wave and the incident/reflected wave also generates circulation cells on the beach. To

check the correctness of the theory, we make a comparison between our theoretical

results and the experiments by Bowen and Inman [3]. While somewhat similar to

the work of Rockliff [26] and Rockliff & Smith [27], our theory clears the errors in

Rockliff & Smith. The technique solving second-order problem are typical and will be

used in the rest of chapters. Next, we generalize the idea of synchronous resonance to

the excitation of an edge wave by a pair of incident waves of magnitudes comparable

to the final edge wave. Then we consider the simultaneous excitation of two modes

of edge waves by one incident wave. The two edge waves are selected so that cross

resonance can happen. Next, we study the generation of two edge wave modes by two

incident/reflected wave systems subharmonically. The initial growth of the two waves

are independent, whereas the nonlinear interaction adds new features to the nonlinear

dynamical system as soon as one of the edge wave reaches a finite amplitude. In the

last case, we choose two edge wave modes sharing same eigen frequency and let them

compete under the excitation of one incident wave of frequency twice of theirs. In

particular we shall find if it is possible that only one of the eigen mode finally survives

the competition. The nodal structure of the dominant mode should be relevant to

beach cusps and bars observed in field and laboratory experiments. Otherwise the

interaction of the two edge waves would generate a steady circulation on the beach.
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Figure 1-2: Wedge-like water body on a confined plane sloping beach

1.1 Basic linearized theory

As an introduction, we first recall the solutions of the edge waves and the inci-

dent/reflected waves on a sloping beach, according to the linearized theory.

An idealized plane beach of constant slope s is chosen, as shown in Figure 1-2.

The sloping beach is infinitely long in the x (cross-shore) direction, while bounded

by vertical walls laterally in the y (longshore) direction. The width of the bay is W,

which can be taken as an integral multiple of the wave length on an infinitely long

beach. The origin of the coordinate system is located at the intersection of the still

water beach line and one of the walls.

The linearized Airy's shallow-water equation for the velocity potential is [22]

L = - 4 'tt + sg [((x ), + X4 ,w] = 0 (1.1)

where L is a linear operator. And the corresponding boundary conditions are

i) No flux on the channel walls, i.e. , = 0 on y = 0 and y = W.

ii) No flux at shore, i.e. vAx = 0 at x = 0.

iii) The edge wave must diminish to zero as x -+ oo.

Along the free surface, vanishing of surface pressure requires,

g+ = 0. (1.2)at
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Two kinds of eigen solutions to the linearized equation (1.1) are of our interest.

1) Edge wave of frequency w:

e = Oo(x) cos kye"t +*

The longshore wave number k is related to the bay width by the eigenvalue condition

in y:
mir

k= , m=1,2,3... (1.3)

The cross-shore factor 4o(x) satisfies

(xzox)x + -- k2x 0o = 0
(gs

which is a confluent hypergeometric equation and has two homogeneous solutions

ekxM(a, 1, 2kx), or e-kxU(a, 1, 2kx)

with
1 W2

2 gks

Of the two the first is bounded at the beach and is of physical interest. To satisfy the

condition at infinity M must satisfy the eigenvalue condition

= (2n + 1)gks, n = 0, 1, 2... (1.4)

Note that the lowest mode has the eigen frequency wo = kgs.

With this eigen value condition, the confluent hypergeometric function M becomes

the Laguerre polynomials Ln, i.e.

(-) r2 2(n _ 1)2
M(-n, 1, ) = Ln() = ( " - -((n-) + n(n-2)-- + (-1)n!]

n! 1! 2!
(1.5)

with ( = 2kx. The final solution for the edge wave is

e = -igBe-k Ln(2kx) cos kye-wn' +* (1.6)
Wn

where B is half of the edge wave amplitude at the shoreline.

2) Normally incident/reflected wave:
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Considering the long-crested wave without y-dependence:

4Do = Oo(x)e-iwt +*

Then 00(x) satisfies
W 2

(x4ox)x + -$0 = 0

which is a Bessel equation and has solutions of the form

Jo (2w I)s, or Yo (2wyIY)

The Bessel function Y has a logarithmic singularity at x = 0, which must be discarded

for boundedness. The solution for the standing wave is

<_O igA JO 2 - e~w t+* (1.7)

where A is half of the incident/reflected wave amplitude at the shoreline.
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Chapter 2

Synchronous excitation of edge

wave by incident wave of

comparable magnitude

It is known that an edge wave of frequency w and amplitude of order O(e) can be

excited by incident wave of frequency 2w and amplitude (e2)[14]. Their quadratic

interaction at the third order, combining with the cubic interaction of the first-order

edge wave, generates a forcing of frequency w, which resonates the edge wave at the

order Q(0s). If there are both an incident wave of frequency w and an edge wave

of the same frequency at the same order O(e), then the quadratic self-interaction of

the incident/reflected wave system will generate harmonic of 2w frequency at order

0(6 2 ), which can trigger subharmonic resonance of the edge wave at the third order.

This idea has been recognized by Rockliff [26]. Her theory is however incomplete and

contain algebraic errors, as will be pointed out later. For simplicity, we consider an

edge wave of the lowest cross-shore mode. Therefore the eigen frequency is

W = wo = kgs (2.1)

Airy's theory is the leading order approximation for very long waves of finite

amplitude in shallow water. Its validity requires that kh < 1 and A/h 0 0(1). Edge

waves are appreciable only near the shore because of their exponentially decaying
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eigenfunctions as in (1.6). Hence any interactions with incident/reflected waves can be

regarded as taking place within a distance comparable with the longshore wavelength.

As a plane wave approaches a sloping plane beach, its incidence becomes increasingly

normal to the shoreline due to refraction. We treat it absolutely normal when it enters

the interaction domain. The mathematical infinity for x refers only to the nearshore

shallow-water region, where it is appropriate to apply Airy's theory as in [12] by Guza

and Bowen. Using primes to denote physical variables, we cite below the nonlinear

shallow-water equation of Airy [22]:

= -',+ sg [(x'' ),+x Y = Q(V) + C('I) (2.2)

where L is the same linear operator in Eq. (1.1). Q(IV) and C(QV) are the quadratic

and cubic nonlinear forcing terms defined below

Q4)= 2 + + PdIt (+ 4VI+ /t) (2.3)

The corresponding nonlinear free surface condition is

OQ' 1
C' + '+ II42= 0. (2.5)

2.1 Normalization

We use the following nondimensionalized variables:

x = kx', y=ky', t=wt', (= I =

where JA'j is one-half the absolute amplitude of the incident wave at shoreline. The

complex amplitude A' = IA'lew contains the phase angle (:. Upon substitution into

Eq. (2.2) we get

-4tt + (x4D)X + xDYY = EQ(4) + e2 C(4) (2.6)

where we have introduced the small parameter

kJAI= <. (2.7)
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The quadratic and cubic nonlinear terms remain the same

Q(<b) = 2 (<I<bt + <bY4) + ot (<XX + <byy) (2.8)

C(4) = 2 + <) ( + IDYY) + Xb + < Y + 2<bx<bYOb2, (2.9)

Use has been made of the eigenvalue condition for the edge wave (2.1). We also

normalize the free surface boundary condition (2.5) to get

a(D + EI 2V|2 = 0. (2.10)

The parameter defined in (2.7) implies that the wave slope must be much less than

the bed slope. It is known empirically that standing wave breaks when the following

surf parameter exceeds a critical value [22]

7r 1/2
k=s .

This critical value roughly implies the following incident wave slope

k =7A = 2 2

Since breaking waves are beyond the scope of present theory, we require that

k =7<2s. 
(2.11)

Skoo 4

Notice that k is the edge wave number, k, is the incident wave number in deep

water, A' is one-half the incident/reflected wave amplitude at the shoreline and Ab is

the breaking wave amplitude. We have replaced Ab with 2jA'l in (2.11).

2.2 Harmonics and nonlinear forcing terms

We represent the solution as a perturbation expansion:

(b = (DO + E4i + 6 2 (D2 + - - - (2.12)

At the leading order we assume the co-existence of one edge wave and one normally

incident and reflected wave of the same frequency (unity because of normalization):

,'Do = <De + (Di (2.13)
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where

4)e = 0o e * + *; with Oo = -iB(r)e-- cosy; (2.14)

is the edge wave, and

= Oo e * + *; with #o = -ie'I Jo(2V/) (2.15)

is the normally incident and reflected waves.

Quadratic interaction at the second order O(e) leads to forcing terms with the

following time-harmonics :

(4e, CiNe), ((e, 'ti), ((Di, ' i) - 0, ±2. (2.16)

We shall use the spatial parts of the first order solutions to symbolize the nonlinear

forcing (2.8) and (2.9), where their complex conjugate counterparts are implied. For

example, (4o, #o) represents the quadratic terms due to the interaction of edge wave

and the incident wave, and gives rise to a second harmonic. From the same interaction,

(o, 0) produces zero harmonic. We now give the details:

Second harmonic

[Q-11. (o, 00) and its complex conjugate:

(0o, Po) = 2 [Ooxox(-i) + 4o-yoy(-i)] = -2i (OO2+ OY)
= -2i (-iBe x)2 (cos2 y + sin2 y) = 2iB2e-2 (2.17)

after using

V2oXX + V)oyy = 0.

[Q-2]. (0, 0) and its complex conjugate:

(0, 0) = 2 [#oxqox(-i)] + #o(-i)#ox2

I# IJ7(2)/) 2 .d 2Jo(2y')1
= -ie v (-ie') -2i d Jo ( ) 2 Jo(2 /i) d 2

= e i2 ' 2 ( dJo (2VI15) + Jo(2 1 Z) d (2 } (2.18)
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[Q-3]. (0o, 0) and its complex conjugate:

= 2[4oqo(-i) + #oxox(-i)] + (-i)/ooxx

dJo(2 Vx5)
= -ieI (-iB) ex cosy 2(-2i)(-1) dx

= -ie lBe-x 4 d x J(2Vx-)

= -ie *Bg11(x) cosy

.d2Jo(21E) }
dx2

d 2v') cosy

(2.19)

where we introduced

gli(x) = e { d Jo (2 /G)

dx

for brevity.

Zeroth harmonic

[Q-4]. (0o, #*) and its complex conjugate:

('bo, #*)

- -ie-I*Bg 12 (x) cosy

where we introduced
_ d2 J0 (2 f)912(x) = e~ dx2

for brevity.

There are two terms that do not give any forcing:

[Q-5].

(0o,0*) = 2[?o2?p2(i) + 0* Oox(-i) + Ooyo*,(i) +@, o(-i)

-ioo (0*XX + O, ) + i0* (@OO + @o,,) = 0.

and

29

(0o, 00)

(2.20)

= 2 [Vox*(i) + 0*x, 0 (-i)] + (-i)Voo*2

d 2Jo (2 VX)= ie ' (-iB) e-x cosy [-i dx2 
I

_e B _2d 2Jo(2 VG-)= -ie'Be dx2 cos y

(2.21)

(2.22)

(2.23)

d2 Jo(2 N%)
dX2



[Q-6].

(0o, 0$) = 2 [0o0#*X(i) + #3*#oX(-i) + 4o,#*,(i) + 0*00,(-)

-iV0o #* + #*YY) + i0* (4OXX + OOYY) = 0. (2.24)

Therefore, we have four pairs of effective forcing terms producing zeroth and second

harmonics. In response to these forcing terms, the following types of second-order

solutions will be excited:

i) (ko, Obo) + (0o, Oo) -+ #1(x)e-i2t

ii) ('Po, 40) -+ 12 (X Y, r)ei 2t

iii) ( 0 , #ks) -+ ' 10(x, y, T).

With these first- and second-order solutions, we can work out all the effective

resonance-forcing terms at the third order, guided by two rules : 1) Only the first

harmonic (frequency 1) will force resonance and is of interest; and 2) The forcing

first harmonic must be proportional to cos y. It follows immediately that the edge

wave <), can appear once or three times, but not twice, in each combination (since all

combinations of the incident/reflected waves do not depend on y.). The cubic nonlin-

ear terms which can produce first harmonics are [C-1]: (,0*, 0o, 'o), [C-2]:(*, q00, q0),

[C-3]:( o; 0o, 0), [C-4]:(0*, ?Io, ko) and [C-5]:(0o, ko, #*).

Among these first harmonics, both [C-4] and [C-5], where the edge wave appears

twice, produces quadratic terms of the form sin y sin y, cos y cos y or sin y cos y. By

recalling the trigonometric identities that all these products do not give rise to cos y.

The number of effective cubic-nonlinear resonance terms reduces to three. From (2.9),

(2.14) and (2.15), we now calculate the three effective forcing terms in detail:

[C-1].

- ')oxx2?/)ox?/)* + 0* 0/)x?/ox + 00y000 + 0*0y~

+ 2 (Ooxboyo* Y + + /ox 1+ oX/ )O )

- (-iB)2 iB*e-3 x {3 cos3 y - 2cos y sin2 y - cos y sin2 y

+ 2 [ cos y (- sin2 y - sin2 y) + cos y sin2 y]
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= -iB 2B*e- 3x {3 cos3 y + 3 cos y sin2 yl

= -3iB 2B*e~ 3x cosy = hC1(x)B2B* Cos y

[C-2].

(0*, 0,100)

= 0* o2 + 3 (4Oxx0Ox) e*

= B*i (-iew) (-ieP) ex cos y
(dJo(2 §5)\ )2

dx )
3 d2 Jo(2 %f) dJo(2v)

-- 3 dX2 dx

= -ie e cos y
3 d
2 dx

d Jo(2/?Z) \2]

dx

ie 2 g.c2 (x)B* cos y

[C-3].

(0o, q0, q*)

= #oxx*xox +# 4Ox + 2 0oxx + 2Vox xx + 2V)O#OOXO*

= 20oxx#*4ox + 3 (#oxxo* + #O#x) ?)Ox

= ~(-ie') e e cos y 2( d Jo(2Vf))
2

2 dx )

d2 Jo ( 2) B J
6 dx 2 dx B

= -iex cos y

= ifc 3 Bcosy

[2 (dJo(2Vi) )
2

2dx
- d (dJo(2 Vr)) 2 B

-3 dx B

Additional contributions will come from quadratic interactions of the pairs (#1, **),

(012, 0*), (01o, Oo), and ( *, #o). Details of these forcing terms will be given after the

second-order solutions 1, 012, io are derived.

2.3 Multiple-scale expansions

With these preparations, we now proceed with the solution via multiple-scale expan-

sions

4D = [Oo(x, y, -r)e~" + *1 + [o(x)e-it + *
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(2.26)

(2.27)

(d Jo (2 Vx) 2

dx )



+ E {[O1(xr)ei2t + * + [1 2 (x, y, r)e-i2t + *1 + [010(x, y, T) + *]I

+ 2 [02(x, y, )ei + * + ... (2.28)

where two time variables are introduced: fast time t and slow time r = E2t. Accord-

ingly time derivatives will be changed as follows

a _ 2 a 0 2 a2 2 a a 4 a2
+ E -022 __+

-+ a + a' at2 at2 + t OT aT2

Substituting (2.28) into Eq. (2.2) and separating different orders, we get

{[Vo + (xVPox)x + x4'oyy] eit + *1 + {[o + (xox),] e-t +

+E {[40, + (xq1i)x] e-i2t + *I

+E {[4Vb12 + (X4'12x)x + xVPi 2 ,y] e - 2t + *1

+E {[(x'io,)x + xpioYy] + *}

+C2 {[/2 + (xV)2x)x + x'02 y]e-it +

= e {[(o, /o) + (Oo, 4o)] ei2t + *I

+e {(o, #o)e-i 2t + *1 + f {(o, ) + *}

+E 2{[(1,) + (012, 0*) + (@10, $o) + (0* , #o)] e-t +

+2 [(, ?o, b0 ) + (0, #0, #*) + ('b, 40, 40)] e +*

+E2 {-2i ae +* +... (2.29)

2.4 The leading-order solution

For convenience we repeat the leading order solution here. The governing equations

are

00 + (xo,)x + x YoY, = 0

0 + (xqox )x = 0

The homogeneous solutions to the first is an edge wave,

o = -iB(r)e-0 cos y (2.30)
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and to the second is the incident /reflected wave

#o = -ie"PJo(2 x) (2.31)

Note that B(r) is the slowly varying, dimensionless, complex amplitude of the

edge wave at the shore. The physical amplitude of edge wave is

B' = 2\A'|B. (2.32)

For later use note that the function F = e-x which describes the x dependence of

the edge wave satisfies

F + [(xFx)x - xF] = 0, (2.33)

and the boundary conditions

xFx = 0, x = 0; and F -+ 0, X ~ 00. (2.34)

2.5 The second-order solution

At O(c), there are two harmonics, but three components : q1(x)ei 2 t, '1 2 (x, y, T)e-i2 t

and /1o(x, y, T). They are solved separately.

2.5.1 01 - Radiated second-harmonic

From previous discussion we know that both (00, 4o) and (#o, #o) contribute to the

excitation force for this harmonic. From (2.29), we have

40, + (xoi1), = (0o, o) + (#o, ko) (2.35)

The details of the two quadratic forcing terms are given in (2.17) and (2.18). Let us

introduce the abbreviation

g(x) = 2iB 2g, + ie pgi = 2iB 2e 2 x

+ iei2 W 2
dJo(2 ) 2

dx
+ Jo(2jH)

d2 Jo(2 x)
dx2
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where

(2.37)

represents the self-interaction of edge wave and

( dJo(2 V') 
2gi = 2 ( d

the self-interaction of incident/reflected wave.

mogeneous Eq. (2.35) as

+Jo2x~)d2 Jo(2fH }+ J ( 2 vx) d 2 ,r-
dx2

(2.38)

With these we can rewrite the inho-

(2.39)#1iX2 + I O12+ 1 = g(x)
X x X

We shall solve the inhomogeneous equation by method of variation of parameters. To

ensure correctness, we compare our solution with others in Appendix A.

By the method of variation of parameters, the general solution of this inhomoge-

neous equation takes the form

i = C1 Jo(4 V) + C2 Yo(4 VG) + ui(x)Jo(4VG) + u2 (x)Yo(4 Vx/) (2.40)

where
x Y(4N/ )g( )

U - W(Jo, Yo)()d= -T Yo(4V)g()d

U2(X) = Jo(4)g( r Jo(4)g()d

where the Wronskian W is

(2.41)

(2.42)

dY0
W(Jo,Yo)(x) = Jo

dx
dJo

-Yo-=(J 0 Y'-dx
YoJ6) d(4N/x

dx

22 
4 / --

The constant coefficients C1, C2 are to be determined by boundary conditions. Use

has been made of the properties

J0 = -J, YO = -1Y1, Ji(z)Yo(z) - Jo(z)Yi(z) = 2
7rz

Here primes " ' "denote derivatives with respect to the argument z, which is equal

to 4k/i.

At the shoreline x = 0, boundedness of the solution (2.40) requires that C2 = 0.

For detailed confirmation please refer to Appendix B.
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At large x, we shall require that q1 behaves as an outgoing wave. To impose this

condition, we need the asymptotic behavior of both the forcing g(x) and the solution.

Using the facts that

Jo(z) (Cos Z - ) Yo(Z) sin (Z -

and

dJo(2Vx5) ~ x-3/ 4 sin (2v'x - ; d2Jo(2,fx) X-5 1 4 cos 2V -
dx 4 ~dX2  (vx

we find

g(x) ~ 2iB 2e--, + X- 3/2 {sin(-) sin(.), cos(-) cos()} (2.43)

The sinusoidal factors inside the curly brackets { } oscillate fast at large x and

do not affect the magnitude. When integrated, these fast oscillatory terms make the

integral converge fast due to cancelations. Even without accounting for the oscillatory

factor,

YO(4 6)g(6) ~- JO(4 )g(6) ~ x -7/4

The integral ul(x) and u2(x) diminish like x-3/ 4 at infinity. Therefore, ul(x) and

u2 (X) converge to constants as x -+ oo. Finally, the solution #1 ~ x-1/ 4 like Jo(4\/x)

and Yo(4,/F) at x = oo.

By comparison we can see that at large x, the forcing function g(x) diminishes

faster than the solution 01(x) ( x-3/ 2 versus x-1/ 4), i.e. relative to the solution 41 (x),

the forcing g(x) is a local disturbance. Therefore, we impose the radiation condition

that 0 1(x) should appear as outgoing wave at infinity. It is easy to see that

01 ~ -iU 2 (oo)H(1 )(4,'-) ~-iu2 (oo) 2 e(4vi) as -> o
0 -- -iU(00 47r x s *o

representing the propagating wave if we let

C1 = -Ul(oo) - iU2(oo).

We recall from (2.36) that g(x) = 2iB 2 ge + iei2 pgi, where g, and gi are defined in

(2.37) and (2.38). Let us denote

ui(x) = 2iB 2Ue (x) + iei2 pui(x), u2 (X) = 2iB 2U,(x) + ie 2 up(x) (2.44)
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The coefficients have contributions from the edge wave through

=- p Yo(4 )ge( )

= -7r Yo(4f)e-2Qd

ue(X) = f dV') d< = 7r J (4 J)ge( )d

= fr Jo(4 V/)e-2d

and from the incident and reflected waves through

u (x) = - N/( )( )d< = -7r Yo(4q)g ()d

+ Jo(2A )dJo( 2V)

= x J/4Y gi dg = f Jo (4V/)gi(t)ck

r fJo(4 ) 2
dJo(2V/) 2

+ Jo(2A )dJO(2/)

By numerical integration, the variations of u' (x) and u'(x) are shown in Figure 2-1.

Note that u (oo) = 0.

In Figure 2-2 we show the calculated variations of Ue (x) and ue (x).Note that

ue(oo) is finite, implying finite radiation to infinity.

In summary, the final solution for the second-harmonic forced by self-interactions

is

01 = 2iB 2 0e + ie 2W/4 (2.49)

with

e= [-u(oo) - iui(oo)] Jo(4') + ue(x)Jo(4vx) + ue(x)Yo(4Vx)

# = [-U'i(oo) - iu'(oo)] Jo(4Vf) + u'(x)Jo(4Vf) + u'(x)Yo(4VxZ)

= Jo(4 Vx) + u'(x)Jo(4x/) + u'(x)Yo(4 V)

36

u1(x) = -it j Yo(4 ,/) ge( )d

(2.45)

(2.46)

(2.47)2 (dJo)(2T

Ui(x)

}ck

d} (2.48)

and

(2.50)

(2.51)

= - 7rf Yo(4A
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Figure 2-1: Curves for u'(x) and u'(x).
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Figure 2-2: Curves for ut(x) and u'(x). To be filled in.
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Use has been made of u (oo) = -1, u'(oo) = 0 as discussed in Appendix A. Note

that 01 is complex, whereas #' is real.

For later use in (2.93), we record that

d# 1(x)
dx x=o

= C1(-4) + g(0) = 4 (ui(oo) + iU2 (oo)) + g(0) (2.52)

and

01(0) = C1 = -ui(oo) - iu2 (oo) (2.53)

2.5.2 '012 - Forced second-harmonic trapped wave

From (2.29), this harmonic is governed by

4012 + (XO12x), + X012yy = ( 0 , 00) (2.54)

The details of the quadratic forcing term (0o, #o) are given in (2.19), which suggests

a solution of the form

012 = -iet(Bfi1(x) cos y (2.55)

where fu(x) satisfies

xfllx + fiix - [x - 4] fii = gjj(x) (2.56)

with the abbreviation

g11(X) = e-x_ dJo(2,x)
9n~x)=e 4 dx

d2 Jo(2NFt)
dX2 (2.57)

Let us first study the differential operator. By the change of variables

S=2x, f1 = e- f()

(2.56) reduces to the confluent hypergeometric equation,

1-4 1
2 29u

i
2 e2
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The left-hand-side possesses non-trivial eigen-solutions only if the third coefficient is

an integer n. Since
3
-$n, n =O,1,2...,

2

the inhomogeneous equation can always be solved uniquely provided that the bound-

ary conditions are well posed. For this, let us first examine the property of this

equation.

A solution of an inhomogeneous ODE consists of two parts: the homogeneous

solution and the particular one. In our problem, the forcing gn1 (x) decays exponen-

tially as x increases. As x -- oo, Eq. (2.56) becomes a homogeneous modified Bessel

equation

xfnXX + fnix - xf11 = 0

which has the general solution in terms of zeroth-order modified Bessel function of

the first and second kind

fii = C1Io(x) + C 2Ko(x)

For boundedness at x = 0, Io is excluded. Therefore, the solution of our problem

behaves like K0 , which vanishes as e-x at oo. Because of this property of V511 is

localized and trapped.

Now we can impose the boundary condition at a large distance

fl -+ 0 at x -+ oo (2.58)

and the no flux condition on the shore:

xf1 X = 0 as x -4 0 (2.59)

This problem can be solve analytically as well as numerically by the standard

Finite Element Method (See Appendix E.).

2.5.3 Series solution

In their study of topographic effects on nonlinear edge waves, Rockliff and Smith [27]

solved the inhomogeneous equation

_ ____(2 ) d2 Jo(2.f) '
xfnlxx + fnjx - (x - 4) fit = e-x 4 dJo$( 7) (2.60)

dx dx2 I
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by Fourier-Laguerre series expansion:
00

fii = ex E CnL,(2x)
n=o

with

C = {1- e-1/2 E
[1 1 i)e

2 e /2 ]
3 -22

Refer to Case 5 in [26] for their inhomogeneous forcing and (5.4a, b) in [27] for the

solution. For convenience of comparison, we isolated this problem from others and

changed it to the normalized form. By repeating their analysis we found a different

solution. For later comparison the first 10 coefficients obtained from the formula

above are listed in Table 2.1.

Table 2.1: Coefficients C, from (2.61) by Rockliff and Smith.

Co C C2 03 C4

0.37483560608 -0.02159839480 0.09823948189 0.01417411203 0.00250133241

0Q 06 C7 C8 C9

0.00041345924 0.00006138948 0.00000812875 0.00000096328 0.00000010287

A correct calculation is given below which will be checked by an independent

method of finite elements.

Let us first carry out the differentiations on the right of (2.56 ):

dJo(2VIx) J(2V) = -- 1/2j_ (2G)
dx -X

d2Jo(2\I)
dX2

= X- 3 / 2 J1 (2 ,/) -
2 [Jo (2f) (2VG)I2 X 1/2J,

Therefore, R.H.S. of Eq. (2.60) becomes

gii(x) = e-x -4x~1/2jI -3/2j + XJO - 3/2j

= e-x [-4x -1/2 _ - 31 2J1 + x-Jo

By the change of variables

(2.62)

(=2x, fi = e-2f()

40

(2.61)



we get

1 - 4 19 -\2
(f" +f1-(f 2 2(1

(2.63)

We now construct the inhomogeneous solution by series of Laguerre polynomials, i.e.

00
f(() =S CnLn(()

n=O

where Ln( ) is the Laguerre polynomial. Substituting the series into the equation, we

get the L.H.S.

iCn L" +(1
n=O-
00

= Cn [Ln~n +

- )L' + 3L

00

- )L' +nLn] +Z
n=O

The first summation on the right of above equation is equal to zero and only the

second series of Laguerre polynomial remains on the left of (2.63). The R.H.S. is

[-4X [41/2 j -3/2 1 Jo

+ 2(-1)k+
k!O F(k +2)

(_ I) k+1

2(k +1)!

(-1)k+1 k
k!F(k+2) -

00 (-I)k+1(2k + 9/2) k

k! (k + 2)!kz=O

00 (-1)k+l(2k + 9/2) k

E 2kk!(k + 2)!

Use has been made of

00 (-1)k(x/ 2 )n+2k

k= k!F(n + k + 1)

and

Jo (2 j/7) =

J1 (2/ ) = )

(-1)kxk

k!F(k + 1)

(-1)kok+1/2
k!r(k + 2)

F(n + 1) = n!

41

(2.64)

X1 (-[1)
F(2))

2+
00

k=5

1 1 -k(F(k+2) F(k+3)jX"

- n) Ln

00

E
=O

2(k +1) k +2



Equating the left and right-hand sides, we get

3 (1)k+1(2k + 9/2) k
Cn -n L 2kk!(k+2)!

Invoking orthogonality :

0d6 e- Ln()Lm() = bnm, (2.65)

we find the coefficient

3 -n (-1)k+l(2k + 9/2)k <Cn -n = e-L(() 2kk!(k+ 2)! d

Replacing Ln by Rodrigue's formula

en dn e,

n! d<n

we get
Cn (3 - () = (1)k+l(2k + 9/2) 0ook d (2.66)

C 2kk!(k + 2)!n! d (e )

For k < n, the right-hand-side integral becomes zero (Refer to Appendix F for detail.).

Otherwise, we can evaluate it by partial integration and get

(3 - n (-1)k+1(2k + 9/2)k!(-1)"k!
C\2 - kn 2kk!(k + 2)!n!(k - n)! (2.67)

Evaluation of the integral can be found in Appendix F. Therefore,

m0 (_1)k+n+l(2k + 9/2)k!
Cn = E -(2.68)

0 = (3 - 2n)2k-1(k + 2)!n!(k - n)!

By truncating the series at k = 15, 20, 30, the first 10 coefficients are computed as

listed in Table 2.2. It is obvious that after truncation at k = 15 the computed C do

not change anymore. The results listed here are different from those in Table 2.1 by

Rockliff & Smith.

For numerical computation we only need to compute the first N + 1 Laguerre

polynomials and rewrite the the solution as

N

f1 1 (x) = e-- E anx"%  (2.69)
n=O
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Table 2.2: Coefficients C, for the Fourier-Laguerre series expansion

lytical formula (2.68).

of f,1(x) by ana-

k CO C, C2 03 C4

15 -1.1912924537 -0.7869386806 0.1228573090 0.0049207918 0.0002875715

20 -1.1912924537 -0.7869386806 0.1228573090 0.0049207918 0.0002875715

30 -1.1912924537 -0.7869386806 0.1228573090 0.0049207918 0.0002875715

k C 06 C7 C8 C9

15 1.67989 x 10-5 9.20254 x 10-7 4.6548 x 10-8 2.169 x 10-9 9.3 x 10-11

20 1.67989 x 10-5 9.20254x 10-7 4.6548 x 10-8 2.169 x 10-9 9.3 x 10-"

30 1.67989x 10-5 9.20254x 107 4.6548x10-8 2.169x 10-9 9.3x10-"

Table 2.3: Coefficients a, for the final solution of fii.

N ao a, a 2  a3  a4

4 -1.8501654620 1.0506228021 0.2786902271 -0.0080947705 0.0001917143

9 -1.8501476940 1.0504430821 0.2790558959 -0.0083456405 0.0002581084

N a5 a6  a7  a8  a9

9 -6.2483 x 10-6 1.16860 x 10-7 -1.708 x 10-9 1.9x 10 -" -1.3 x 10-13

The coefficients a, for N = 4 and N = 9 are listed in Table 2.3, suggesting that five

terms are sufficient.

The computed solution fli(x) by different N is plotted in Figure 2-3 and the nu-

merical values are listed in Table 2.4 as well. The analytical solution will be confirmed

by a numerical solution later. For later comparison we use only the first 5 Laguerre

polynomials.
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Table 2.4: Computed f 11(x) using different truncation number N. Error is defined by

100 x f11 (N=9)-f 11 (N=4)
f11 (N=9)

x fli(x), N = 4 fli(x), N = 9 Error (%)

0 -1.850165462 -1.850147694 -0.000960354

0.5 -0.761912514 -0.761917413 0.000643013

1 -0.194518274 -0.194513452 -0.002478997

1.5 0.072845851 0.072849027 0.004358618

2 0.176497552 0.176495342 -0.001252441

2.5 0.196939438 0.196934915 -0.002296632

3 0.179576232 0.17957311 -0.001738616

3.5 0.148651919 0.148651856 -0.000042421

4 0.116164796 0.11616744 0.002276656

4.5 0.087339966 0.087343951 0.00456297

5 0.06386347 0.063867325 0.006035813

5.5 0.045719948 0.045722606 0.00581237

6 0.032190094 0.032191037 0.002927422

6.5 0.022360261 0.022359445 -0.003650993

7 0.015359571 0.015357266 -0.015009274

7.5 0.010451882 0.010448509 -0.032278513

8 0.00705536 0.007051367 -0.056626681

8.5 0.004729634 0.004725416 -0.089252263

9 0.003151405 0.00314727 -0.131379004

9.5 0.002088652 0.00208481 -0.184251502

10 0.001377772 0.001374349 -0.249131465

10.5 0.000905028 0.000902076 -0.327294501

11 0.000592258 0.000589781 -0.420027319

11.5 0.000386268 0.000384237 -0.52862529

12 0.000251153 0.00024952 -0.654390276
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Figure 2-3: fJ (x) reconstructed using first 5(N 4, solid line) and 10(N = 9, crosses)

Laguerre polynomials.
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2.5.4 010 - zeroth harmonic and steady circulation

Collecting the coefficient of zeroth harmonic in (2.29) we get

(x)10i)X + X0zioly = (0o 1/0) (2.70)

In (2.21) the details of the quadratic nonlinear forcing ('o, 0*) are given. We propose

a solution of the following form

10 = -ie-'Bfi2(X) cosy (2.71)

where f12 (X) satisfies

Xf1 2xx + f12x - Xfi2 = 912(X), (2.72)

with the abbreviation

912(X) = e

subject to the boundary conditions

Xfi2x = 0

d2Jo(2 Vr5)

dx2 -

as x -> 0

fl2x= 0 as x -+ oo

To solve this boundary value problem, the standard Finite Element Method can be

applied as described in Appendix E. Again, an analytical solution can be constructed

by a Fourier-Laguerre series.

Recalling the recurrence relation of Bessel function, we have

dJo (2 N/) =

dx

X-3/2J(:
2

the R.H.S. of Eq. (2.72) can be written as

[ 3/2j _ x-1J + -3/2j1
L2 X 10 2

By the change of variables

S=2x, f12= e2f()

46

Ji(2 V )

d2J J(2V7~x)
dX2 [Jo(2ix) -

g(X) = eX

I-1/2j(

= -x ~[X3/2j _ -_ X1j]

-- 1/2j(2Vx



we get the Laguerre differential equation

U /"+ (I )'- f =C2
2 2 2

Note again the left-hand side does not possess eigen solutions since

1
- # n n=0,1,2...2

By assuming a series of Laguerre polynomials as the inhomogeneous solution, i.e.

00

f(() = E CLn()
n=O

we get

00

E Cn
n=O

L 2 Ln

1

n=O

(2.73)
n=O

Again the first summation is equal to zero, leaving only the second series of Laguerre

polynomial on the right. The R.H.S. is

-3 x /2J 1 __

01 (-1)k

2 k!F(k + 2)

k=1

k=1

1 1 1

F(k+2) F(k+1)J

(- 1)- k _k1
2(k + 1)!k!

(--1)k-lk _-
2k(k + 1)!k!

k!I(k-+ 1) x

2k!

Use has been made of

0(_1)k (X2)n+2kJn(X) = E krn+k+1
k=0

and

JO(2V) =

J1 (2x)z=

E
k=0

(-l)kxk

k!P(k + 1)-

00 k+1/2

k (k 2)
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FP(n + 1) = n!

In order for the coefficients C to satisfy

00

zo n
n=O

(1
2

- )

we require

Cn -
1 00

J e
0-~~)

{=1

by orthogonality of Laguerre polynomials. Therefore,

2 0
Cn 1 + 27k

2 +2

1 + 2n E

(-1)k (k + 1) 00oo ~
2k+1(k + 1)!(k + 2)! ~ (

(-+1)(k + 1) ko d
2+(k + 1)! (k + 2)!n! 0 d<n

1 0C (-I)k+n+1

1 + 2n 2k(k + 1)(k + 2)n!(k - n)! (2.74)

Listed in Table 2.5 are the first 10 coefficients of the series computed by above

formula with truncation of k = 20. After that, the computed C shows no difference

anymore.

Table 2.5: Coefficients C for the Fourier-Laguerre series expansion of f12(x).

Co C1 C2 C C4

-0.4261226389 -0.0217688657 -0.0015511771 -0.0001070564 -0.0000067703

05 06 C C C9

-3.884 x 10-7 -2.025 x 10-8 -9.6388 x 10-10 -4.213 x 10-" -1.70 x 10~12

Similar to fi, we can use the first N + 1 Laguerre polynomials and rewrite the

the solution as
N

fi2 (x) = e~x E an Xn
n=o

The coefficients an for N = 4 and N = 9 are listed in Table 2.6.

(2.75)
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Table 2.6: Coefficients a. for the final solution of f12.

N ao a, a 2  a3  a 4

4 -0.4495565083 0.0504389405 -0.0038259361 0.0001788501 -4.5135 x 10-6

9 -0.4495569180 0.0504430820 -0.0038343552 0.0001846175 -6.0354 x10-6

N a5  a6  a7  a8  a9

9 1.4207 x 10-7 -2.51726 x 10-9 3.459 x 10-" -3.6 x 10-13 0 x 10-14

The computed solution f12(x) by different N is plotted in Figure 2-4 and the nu-

merical values are listed in Table 2.7 as well. The analytical solution will be confirmed

by a numerical solution later. For later comparison we use only the first 5 Laguerre

polynomials.

2.5.5 Wave set-up/set-down at equilibrium

In terms of the first-order waves the steady component of the second-order free surface

displacement, i.e., the wave set-up and set-down, can be determined by taking the

time-average of Bernoulli equation over a period T = 27r

- /- 
-= ( aI+ v2

- -- [(4oxe-it + *) + (#00e-it + *)]2 + (Ooye-it + *)2}

= -_2 (4,Ooo + boy'* + qO4 0 * +/Ooxo* + Ox*

= -6 BB*e-2x (cos2 y + sin 2 ) + dJo(2V)- (B + B*) e-x dJ (2 ) cos y
dx dx

d___2____ dJo(2V?) 1= -E BB*e-2x + dJo ) 2 - (B + B*) e-x d x cos Y (2.76)dx dx

Please refer to (2.10) for the normalized free surface boundary condition, (2.28) for

the total solution 1, (2.30) and (2.31) for 00 and qo. We have replaced B in (2.30)

with Be*' due to change of variable in (2.91).
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Table 2.7: Computed f12(x) using different truncation number N. Error is defined by

100 x f 12 (N=9)-f 12 (N=4)
f12(N=9)

x fi 2 (), N = 4 f12 (), N = 9 Error (%)

0 -0.449556508 -0.449556918 0.000091132

0.5 -0.257940172 -0.257940059 -0.000043855

1 -0.148170496 -0.148170607 0.000075019

1.5 -0.085219139 -0.085219213 0.000086181

2 -0.049075793 -0.049075742 -0.000103575

2.5 -0.028299052 -0.028298948 -0.000368948

3 -0.016340601 -0.016340529 -0.000442258

3.5 -0.009448672 -0.009448670 -0.000017909

4 -0.005471335 -0.005471396 0.001113502

4.5 -0.003172836 -0.003172928 0.002901020

5 -0.001842659 -0.001842749 0.004839700

5.5 -0.001071759 -0.001071821 0.005749068

6 -0.000624334 -0.000624356 0.003526254

6.5 -0.000364267 -0.000364249 -0.005122848

7 -0.000212875 -0.000212822 -0.024970259

7.5 -0.000124611 -0.000124533 -0.062565908

8 -0.000073071 -0.000072978 -0.126546139

8.5 -0.000042927 -0.000042829 -0.227946019

9 -0.000025267 -0.000025171 -0.380510884

9.5 -0.000014903 -0.000014814 -0.601003198

10 -0.000008810 -0.000008730 -0.909501667

10.5 -0.000005220 -0.000005152 -1.329689118

11 -0.000003101 -0.000003044 -1.889129913

11.5 -0.000001848 -0.000001801 -2.619532843

12 -0.000001105 -0.000001067 -3.557000336
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Figure 2-4: f12(x) reconstructed using first 5(N = 4, solid line) and 10(N = 9, crosses)

Laguerre polynomials.
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Physical implications will be discussed later after the edge-wave amplitude B is

found.

2.6 The third-order problem

2.6.1 Governing equation and forcing

From (2.29) the governing equation for the first harmonic at O(C2) is

OB
02 + (x02x)x + x02yy =-2 ae- cos y + S(x) cos y (2.77)

09r

where E(x) denotes all the resonance-forcing terms from quadratic interactions of

first and second-order solutions, and from cubic interactions of first-order solution, of

frequency 1. Noticing that all of these forcing terms are proportional to cos y, we get

S(x) cosy = (4*, o,'0) + (0*,qdoq#o) + (0oo,'k*)

+ (1i, Q/) + (012, ) + (010, 0) + (0**, 0) (2.78)

The first three terms on the right have been labeled as [C-1], [C-2] and [C-3] re-

spectively. The last four will be labeled as [C-4], [C-5], [C-6] and [C-7] respectively.

It is obvious that [C-2] to [C-7] are proportional to cos y since only one edge wave

component is present in each of the forces. For [C-1], refer to (2.25) for the detail.

We now propose the solution to be

02 = H(x) cosy (2.79)

so that
OR

H + [(xHz), - xH] = -2 e-" + E(x) (2.80)
aT

Details of the nonlinear forcing terms involving cubic interaction of the leading-order

contributions ([C-1], [C-2] and [C-3]) are given in (2.25), (2.26) and (2.27). We shall

now work out the third-order forcing terms due to quadratic interactions of first- and

second-order solutions:
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[C-4].

(#1, 0*) = 2 [4/*x(i) + *x+(-2i)] +$*(i)# 1x

= -2i#1xO*x + i#j1xx*

= e-X cosy -2i iB*(-1)
dx

-B*e-xcosy 2
(dx

+ i d 2 iB*

+ d20,

= ihc4 B 2B* cosy + ieU2 Oc 4B* cos y (2.81)

where use has been made of

* + *YY = 0.

and we have recalled that #1 = 2iB 2 0e + iei2(p#i with #e and #' defined in (2.50) and

(2.51). Therefore, C4 is real due to real #', whereas hC4 is complex due to complex

[C-5].

(0 12, 0)

= 2 [4 12x#*X(i) - i20*xOI2x] - i2120*$X + iO* (012xx + V)12yy)

= -ie WB(ie *)
F. dJo(2jF) . d2 J0 (25f)

cos y -z2f11x dx 2fu d2 2 + iJo(2Vx) (fulx -

-iBcosy 2 f d Jo(2\)

= ifc 5Bcos y

where fli is given by (2.56) and plotted in Figure E-3

[C-6].

(010, o)

=2 [,IoXoX(-i)] - too (/1OXX + V)1Oyy)

= -ie-B(-ie') cosy i 2 fl2x dJo(2 x)

dJo(2 /)iB cos y 2f12x dx

= Yfc 5 B cos y

d2 J0 (25f)-
+2fii d2 2 - J (2 )

(2.82)

- h12)1

- f12)]

(2.83)
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= 2 [0* qoX(-i)] - iqo (* +

= iet B*(-ie') cos y -i2f (2 ) iJo(2 ) (flzx[-ifl~ J0 dx

= --e i2cB* cos y [2fl,

= ie i2Wc 7B* cos y

dJo(2 Nh)
dx + Jo(2H) (f12xx - f12)]

where f12 is given by (2.72) and plotted in Figure E-3.

In summary, we group the terms according to B, B* and B 2 B*, and get

E(x) = if(x)B + iei2 y(x)B* + h(x)B2B* (2.85)

where if, iei2 w, h are the sum of coefficients of B, B* and |B|2B respectively. Specif-

ically

* if(x) is collected from [C-3] in (2.27),[C-5] in (2.82) and [C-6] in (2.83), i.e.,

if = i(fc3 + fC5 + fc6). (2.86)

9 y(x) is collected from [C-2] in (2.26), [C-4] in (2.81) and [C-7] in (2.84), i.e.,

ie i§ = ie 2 (yc2 + §C4 + 9^C7) (2.87)

* h(x) is collected from [C-1] in (2.25) and [C-4] in (2.81), i.e.

h(x) = hci(x) + hC 4 (x). (2.88)

Obviously, f and 9 are real while h is complex.

2.6.2 Solvability and evolution equation

Since the homogeneous version of (2.80) has nontrivial solution F = e-x, as described

in (2.33) and (2.34), H must satisfy a solvability condition which is found by Green's
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(HLF - FLH)dx = j [H(xFx)x - F(xHx)x] dx

= j [(xHFx) - (xFHx)x] dx = 0

The last equality follows after integration and applying the boundary conditions.

Since LF = 0, we must have

j FLHdx = 0

which gives the solvability condition

dxe- -2 ae-
0 (- -r

+ E(x) =0

or, the evolution of the edge wave amplitude

(2.89)

where

(2.90)[a, N,'] = 10

By the change of variable

B = Bew* - = B (2.91)

the phase of the incident wave <p can be eliminated from the governing equation (2.89):

(2.92)

This shows that the phase cp is of no consequence dynamically and will be taken to

be zero from. here on.

2.6.3 The coupling coefficients

We now derive the coefficients a, 3 and n explicitly.
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[C-1]. From (), #o, Oo) in (2.25):

j dxe-x (-3i) e 3 x B 2B* = - B 2B*

[C-2]. From (/o, #0, 0*) in (2.27), we perform partial integration to get

I 00
dxe-x (-i)

-i dxe-2x

= i[3

e-x[

[
dJo(2 j

dx

with

a1 = dxe72 x

[C-3]. From (V)*, #O, q0) in (2.26):

2 d Jo(2 V') 2

dx)

2 (d Jo(2 vx- 2

dx

JOO

d
- 3-

dx

d Jo (2 ) \ 2

dx J

-3 (dJo(2Vxi) B3dx Kdx

dxe- 2 x dJo(2 x ) 2

dxex (
-ie i2) ex [( d Jo(2 rx) 2

dx

-iei2p - 209 B*

with

w 9 = a, -- dx e - 2x  d xJo 2 2

[C-41. From (#1, 'i/) in (2.81), we perform partial integration to get

2 +

2 d~
Sdx

00

dxe-x (-B*) e-x

-B* j dxe 2x

-B* (-41(0)

-B* (-g(0) + 8 f0

d2 ,

dx 2 )

do,1(x)
dx X=0

+ 8 dxe-2xol(x))

dxe-2x 1 (x))

- g(O)B* - 8B* JO dxe-2 xo 1 (x)
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R

( dJo(2 x)

dx

3 d
2 dx

d Jo (2 x)

dx

I;

(2.93)



Use has been made of (2.52) and (2.53). We recall that g(0) = 2iB2 + ie 2 from (B.2)

and #1 = 2iB 25 + iei2s%/i with 0' and 1 defined in (2.50) and (2.51). Therefore,

g(0)B* = 2iB 2B* + 5iei2 B*
2

and

-8B* dxe- 2xq01 W

= -16iB2B*j d

-16iB2B* di

xe-2x40 - 8ie i2 OB* dxe- I

,-2x {[-u'(oc) - iu'(oo)1 Jo(4 x)

+u, (x) Jo(4 V') + u(x)Yo(4 Vx)

-8ie i2 OB* dxe-2x {4(Oo) iui(0o)] Jo(4V"-)

+u,'(x)Jo(4 x) +u'(x)Yo(4 V )

16 j dxe- 2 x Jo(4J/)u (oo)B 2B* + 8iei2, (00dxe-2xJo (4 xG>4u'(oo) B

-16i j' dxe-2xJo(4x/)u e(x)B 2B* - 8ieip 00 dxe- 2 x Jo(4If)u'(x)B*

-161 dxe 2 x Jo(4/Iu (oo)B2 B* - 8e dxe- Jo(4 x)4(oo)B*

-16i dxe 2 xYo(4if)u (x)B2 B* - 8ie j dxe-2xYo(4\)u(x)B*

(2.94)

Therefore, the R.H.S. of (2.93)

g(0)B* - 8B* jO dxe- 2x#1(x)

2iB 2B* + 5iei2cB*
2'

-16i7rKB 2B* - 8iei2 W7r (201 + /2) B*

+16i7r, 2 B 2B* + 8ieZ2sr (203 + /34) B*

-167rK 3B 2B* - 8ei22 7r (205 + /6) B*

-16i7r 4B 2B* - 8ieZ2(7r (207 + /8) B* (2.95)

with

S= J dxe-2 Jo(4 cc)
10 <e--Yo(4 )
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j1 = dxe 2 xJo(4/Z) 10 dYo (4 )
dJo(2\/-) 2

dxe-xJo(4 x)100

2 dxe-2xJ (4 V)

d<Yo(4 )Jo (2

J e 2 4 )

03= Idxe-2x J(4) dYo(4 )

04= dxe-2x Jo(4 x djc1 Yo(4 )Jo (2 )d2 Jo (2f )

K = 00 dxe- 2xJ (4 2V) j00 de 2 Jo (4 / )

05 = 1 dxe 2xJo(4 V) d Jo (4 /)
dJo (2 2

d2 J (2 )
06 = j dxe- 2x Jo(4 v) f0 d Jo(4 )Jo ( )

4 dxe- 2xYo 4 V)

I=
dxe- 2xYo(4 V)

00 x
-2xy

08- dxe 0 (4 ,Fx) <
1 00

I x <ek- 2KJo(4 iA

SJoJ(4 d Jo (2V ) 2

Jo(4 ) J( ) d2 J (2V )

Use has been made of (2.45) through (2.48). The numerical values of all the integrals

are evaluated later.

[C-5]. From (b12, #0*) in (2.82):

-i f0 dxe-

-- ia 2 B

[2fix
dJo(2__) +2fd 2Jo(2 cV)

dcv ±2i dcv2 - J0(2V/) (fnlxx - fh)1 B

with

a 2 = fnjx(O) + 4fni(O) + jO dxe-xfii
E dJo(2 c) d2Jo(2V3)1

dx dx 2 I
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[C-6]. From (Vio, qo) in (2.83):

i jdxe-x

= ia3B

dJo(2Y5)
dx

+ Jo(2 /x) (fl2xx -

a3 = -fl2x(0) - 10dxe-xfi2 dO( 2Irx

[C-7]. From ('b*o, ko) in (2.84):

-iei 2  J - 2f12x dJO(2x)

-ieUzo#31oB*

with

310 = a3 = -f12x(0) -

+ Jo(2V,5) (fl2xx - f12)] B*

J 00 de d2Jo(2 5)d dX2

All the integrals are evaluated numerically by adaptive Lobatto quadrature within

an error of 106. To ensure the accuracy of the numerical integration, we did some

asymptotic analysis near the two ends 0 and oc in Appendix D. The numerical values

are list in Table 2.8.

Table 2.8: All the numerically evaluated coefficients for the governing equation.

In summary, we get

ia = i(4a - 3 - a2+ a3 ) = -0.0340i;
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(2.96)

with

f12)] B

a, = #9 a2 a3 =10 '31 02

0.326330 -2.069132 -0.408492 0.008322 0.004901

_ 3 04 ( 5 36 /7

-0.009742 -0.004169 0.000003 -0.000008 0.016142

38 K1 K2 K3 K4

0.007550 0.007221 -0.007085 0.004579 0.014306



5
if = i - 8ir (20 + 0 2 ) + 8ir (203 + 0 4 ) - 87r (235 + 36 ) - 8i7r (23 7 +3 8 )

2

i- - 2391 - i010 = 0.000065 - 0.0760i (2.97)

Referring to (2.94) and (2.95) and comparing with (2.48), we observe that the Re{i} =

-87r(235 + 36) = -8 fJOO dxe- 2x Jo(4VQ)u'(oo), where u'(oo) is equal to zero as dis-

cussed in Appendix A. Here the sum is practically zero (=0.000065) so that io =

-0.0760i.

K = 2i - 16i7rri + 16i7r,2 - 167r 3 - 16i7rr 4 - = -0.2302 - 0.1882i
4

We point out that the constant K = -0.2302 - 0.1882i is identical to that in the

subharmonic resonance [22].

Let us return to physical variables by making following replacements

- B' 2 k|' 2
B --+ -) T t =w

A's

in (2.92). Hence we get the physical evolution equation

- = ia ( wIA'12B' + i( wA 2 B'* + ( wIB'12 B' (2.98)

In the following analysis we shall use the simpler equation (2.92) and drop the

overbar for brevity. Note that B is the ratio of complex amplitude (including the

phase) of edge wave to that of incident wave, i.e. phase of B is the phase difference

of the two waves.

2.7 Initial growth

In the initial stage the edge-wave amplitude is infinitesimally small so that only the

linear terms come into play. Eq. (2.92) becomes

= iaB + ifB* (2.99)
a-r
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It follows that
2B B B* o

-=a + i3 = ( 22 Ba8r2 a-r T

Since from (2.96) and (2.97), , = -0.0760 and a = -0.0340, 131 > jal. Therefore,

solution to the above equation is

B(r) = B(0)e*'-V 2 = B(0)e±0-0679- (2.100)

The dimensionless growth rate of unstable disturbances is 0.06791. Note that

__k|'|_ wo|A'| w3 |A'I
T = C t = C Wot, = C w2A' Wot, = E W 2 ' tl

s gs2  gs2

where wo is the edge-wave frequency. This time scale is much longer than that

' t for subharmonic resonance (See Appendix J.) if c < 1. This means that

subharmonic resonance has a faster initial growth than the synchronous resonance

since 0.2707/8 = 0.0338 - 0(0.0679).

2.8 Effects of detuning

Instead of perfectly synchronous resonance, we now consider the effects of detuning,

i.e. the incident wave has a frequency

=+

The incident wave becomes

00= oe-i(j 2 )t + *. (2.101)

This amounts to a replacement

#0 = -ies*Jo(2V%/_) -+ #o = -iewe- 2QJo (2 ).

i.e., the incident wave amplitude changes from A' to A'e _i2n'. This replacement does

not affect the coefficient a since it is related to IA'12 (Refer to Eq. (2.98).). But it

does alter the coefficient 3 to 3e-2inr

'In the classical case of subharmonic resonance the growth rate is 0.2707. See Appendix J.

61



The evolution equation (2.92) becomes

=B
= iaB + i~e-sir B* + ,sB 2B*

After the change of variable B = Be-"', we get

aB (B
ar a-

- iQB) e-if

Hence Eq. (2.102) becomes

=+
-= i(a + )5B+ il*+ |5|2 5 (2.103)

Comparing the above equation with Eq. (2.92) we found that detuning only changes

the first coefficient from the constant a to a + Q, which is a linear function of the

bifurcation parameter Q.

An energy relation can be derived by multiplying (2.103) by B*,

3* = i(a + r)nB* + i3*o * + ,IB3I 2 BB*
Or

(2.104)

The complex conjugate of the preceding equation is

- O*
B = -i(a +

Or
Q)BB* - i/3B + K*[B|2ff* (2.105)

The sum of (2.104) and (2.105) is a statement of energy evolution

____ = 2/3Im{P} + 2Re{}|41 BI
aT

(2.106)

Since Re{i} = -0.230160 is negative, the cubic nonlinear term in (2.103) gives rise

to damping by radiation of waves.

For simplicity, we drop the overbar from now on.

2.9 Analysis of nonlinear dynamical system

Consider the dynamical system

OB
= iaB - ibB* - (o + iy)IB| 2B (2.107)a -
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where

a =Q + a = Q - 0.0340 (2.108)

and b = 0.0760 , - = 0.2302, y = 0.1882. We make a replacement of b = -3 so that

b is real and positive. Refer to (2.96) and (2.97) for the value of a and 3.

Replacing B by its polar form

B = Ve&9

we get from (2.103)

&r
aOT

+ ivim6) e

= iaVie'o - ibVeJ&O - (u + i7)IVieiO

where I = B| 2 is the action variable and 9 the phase variable. Separating the real

and imaginary parts, we obtain

I = -2-I2 - 2bI sin 29 (2.109)

9 = a - yI - bcos20 (2.110)

Now we seek the equilibrium points (Io, 0) by requiring i(Io, Oo) = 0 and 6(Io, Oo) =

0.

21o (ulo + b sin 290) = 0

a - -yIo - b cos 200 = 0

(2.111)

(2.112)

It is obvious that

(Io, 0) = (0, cos- a)

is a fixed point, where

a 
b

is the bifurcation parameter through Q. Another fixed point is

b
= -- sin 200,a-

cos 200 = b
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By eliminating 00 we obtain a relation between 1 and the detuning parameter a,

+ (a - bIo ) =1 (2.116)

or,

(2.117)

where

8 = = 3.0284,b = - = 2.4765.b

are numerical constants and a is defined in (2.114). The solutions to this quadratic

equation are

I0:1 = 2 + i2 1+ (L-5)8.2 (2.118)

Since Io must be real, we require that

<+8 a2 < 1.292

Since 10 must also be positive, there is one finite fixed point I+ when IaI < 1, and two

finite fixed points IO± when 1 < & < 1.292. For a > 1.292 only the trivial fixed point

Io = 0 exists.

The equilibrium branches are plotted in Figure 2-5. After Io is known, we can get

O0 from (2.115)
cos- 1 (6 - W/o)

00 2
(2.119)

2.9.1 Equilibrium state - mature edge wave and the second-

order steady flow

In this section, we discuss some implications of equilibrium state of the dynamical

system.

. First-order
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Figure 2-5: Bifurcation diagram of equilibrium branches.

At perfectly synchronous resonance, Q = 0 and a = a = -0.0340 by definition

(2.108). Therefore, & = 1 = -0.4479 from (2.114). Therefore, we can compute the

corresponding fixed point from (2.118) and (2.119) to obtain

Io = 0.1673, Oo = -1.3052 (2.120)

which implies that the mature edge wave amplitude Bo = lBo e- 0o with

|BoI = = 0.409. (2.121)

Returning to physical variables, BO = 0.409e-1.305 2iA', or, JB6j = 0.4091A'| 2 and

the phase difference between the edge wave and the incident wave is 1.3052, which is

closed to 7r/2.

To visualize what happens at the shoreline at this steady state, we rewrite the two

first-order solutions (2.30) and (2.31) in physical variables

V jA'=jg BoeIe-kx cos ky' = -oj0OA /9g kx

50= -i BBoWeioi ek' cos ky' (2.122)

=-i AWI t(OJo(2V.1kx1) = -i A'g (\/xl (2.123)

where we have replaced B in (2.30) by Be4' due to (2.91). Refer to (2.121) and (2.120)

for the value of IBo| and 0o.

2In subharnonic resonance, JB'j = 0.9541 (g|A'|)1/2 . See Appendix J.
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Figure 2-6: The normalized surface elevation ('(0, y, t) along shore line at different

time t = 1, n=1, 2, 3,..., 12, which are labeled on corresponding curves.

Applying the surface boundary condition (1.2), we get from (2.122) and (2.123)

(' = BojA'ek'' cos ky'e-i(wt'-G0) + * = 21Bo|A'|e-kx' cos ky'cos(wt' - Oo) (2.124)

and

(j= A'J 0(2 k)e-t' + * = 2|A'|Jo(2 v7k) cos(wt'). (2.125)

where we have set p = 0 without loss of generality. The sum of the two elevations along

the shoreline C' = Q'+ (, is plotted for different times during one period T = 27r/w in

dimensionless form in Figure 2-6.

* Second order

In their lab experiment [3], Bowen and Inman generated edge waves with exactly

the same period as the input wave and rip currents were observed. The test were

performed in a wave basin with W = 24 feet = 731.5 cm wide working area and a

bottom slope s = 0.075. Two kinds of waves were used: In the nonbreaking surge
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case, they used incident wave of period equal to 6.4 seconds. For a 5.0 second period,

the incident wave broke. There was no record in their paper about the incident wave

amplitudes. But for 5.0-second incident wave, they recorded the longshore variation

of breaker height in Table 2 of their paper. For convenience, we quoted part of the

records in Table 2.9. In the nonbreaking case, they observed longshore period which

they interpreted as edge waves and rip currents appeared to grow simultaneously and

quite rapidly. The pattern was established a few wave periods after the first wave

reached the beach. In their test with incident waves of period 6.4 seconds (W 1

rad /s ) rip currents were clearly present at such spacing as seen in Fig. 3 from their

paper [3]. We cite the photo in Figure 2-7 for convenience. In the breaking case, they

claimed that no edge waves were visible inside the breaker, although the rip currents

occurred at the theoretical positions of the alternate antinodes of edge waves having

the input frequency. Measurements outside the breakers showed that edge waves were

present there.

In their test with incident wave of 5.00 seconds period, Bowen and Inman [3]

reported in their Table 2, a breaker height Hb = 2.41 cm at the distance Xb = 34 cm

from SWL. This measurement was taken at the node of the edge wave, where edge

wave makes no contribution to the total wave height. From their Table 1, it can be

identified that the edge wave mode m = 5 was generated with 4.96 see eigen period.

The longshore wave number should be k = = 0.0215/cm. From these data, we can

infer the incident wave amplitude at the shoreline ao = 2|A'j through (2.125) that

ab = aoJo(2 kxb) => IA' - ab Hb 1536 cm.
2Jo(2V/k) 4Jo(2Vk - 1)

Although the incident wave amplitude of the nonbreaking wave of period 6.4 see was

not reported, we assume it to be the same as in the 5.00 see test. With the amplitude

|A'j known, the perturbation parameter in this experiment can be estimated as

E= k|A'I = 0.44.
S

which is not small. Therefore, the experimental condition is outside the scope of our

theory. Nevertheless we use this value for further comparisons.
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With the inferred |A'J, the mature edge wave amplitude at shoreline should be

IB'I = 2IBo|IA'J = 2 x 0.409 x 1.536cm = 1.256cm according to (2.32) in our theory

(wave height H = 2.51cm). Projected onto the sloping beach, this wave height creates

an runup of 2.51 cm/0.075 = 33.5cm. From their Figure 3 (see Figure 2-7) of the 6.4

sec test, the waterline variation on the beach is roughly 731.5cm x 0.6cm/11.8cm =

37.2 cm, which is close to our theoretical prediction despite the large difference in E.

Table 2.9: Quoted records of the longshore variation of breaker height from Bowen

and Inman [3].

Antinode(Rip) Node Antinode(No Rip)

Longshore distance(cm) 0 144 288

Breaker height(cm) 2.05 2.41 3.18

Distance of breaker from SWL(cm) 34 34 40

From (2.71) the steady flow generated by interaction of the incident wave and the

edge wave is

10 = -ie -iBe'1 f1 2(x) cos y = -iBf(x, y) (2.126)

where we have introduced an abbreviation

f(x, y) = f12 (x) cosy

The normalized velocity (u, v) = (01, 1) is shown in Figure 2-8. Note that the

length of the arrow is proportional to the strength of the velocity. The local mass

flux is equal to the product of local velocity and water depth. Therefore, the flux at

shoreline is zero due to the zero water depth at x = 0. Returning to physical variables

we have at equilibrium

' = -jBoleioA' fi2(kx') cos ky'

= - IBo es(+ 0) f 2(kx') cos ky'
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0 -

Fig. 3. Edge waves and rip currents in the wave tank for an input wave of period
seconds. The antinodes A and nodes N of the edge wave are visible at the wster line o
beach.

Figure 2-7: Photo cited from Bowen & Inman's 6.4 sec test.
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Figure 2-8: The normalized steady flow velocity (u, v) = (, ). The two lines in the

bottom figure represent the instantaneous edge wave surface elevation and the solid

line is half period away from the dashed line. AN- Antinode, N- Node.

Adding to its complex conjugate, the total potential for the steady flow

10 = -2|Bo| cos + Wo IA 12(kx') cos ky'

= 0 .789 |A'Wf(kx', ky') (2.127)

Again, we recall the value of IBoI and Oo from (2.121) and (2.120). Note that the

coefficient in front of f(kx', ky') in (2.127) is positive. Starting from the second

antinode from the wall at y = 0, seaward rip currents are predicted at alternate

antinodes (see Figure 2-8) according to (2.127). Comparing Figure 2-8 with Figure

2-7 we can see that our theory predicts an identical circulation pattern as in Bowen

& Inman's experiment.

From (2.75) and Table 2.6 we can get

f12x(0) = k(ai - ao) = 0.5k.

The maximum cross-shore velocity occured at the antinodes, where cos y = t1 and

01'Io = 0.789 x 0 .5kA = 0.394-IA'I.w S
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Therefore, the velocity must be

W
Umax = 0.394c-A'|. (2.128)

As a speculative check, we compute the rip current velocity upon substitution of the

incident wave amplitude IA' = 1.536 cm into (2.128)

27r
Umax = 0.394 x 0.44 x s x 1.536 cm = 4.46cm/sec.5sec x 0.075

Thus a 4.46 cm/s maximum rip current should occur at the shoreline in the exper-

iment. In the breaking wave (5sec) experiment, they reported a 5cm/sec maximum

rip current velocity. We should remark that breaking was observed in this particu-

lar experiments of Bowen and Inman, which may enhance the surf zone circulation.

That may explain why our theory, based on non-breaking wave assumption, predicts

a smaller velocity. Although the two results are close, the crude agreement is not a

confirmation of our theory.

With the small parameter e known, we can compare the initial growth rate of

synchronous resonance with that of subharmonic resonance. From Section 2.7 the

growth rate of synchronous resonance is

ws|A'| w3IA'I
0.0679e = 0.030 , for c = 0.44.

gs 2  gs2

where the coefficient 0.0679 is from (2.100). On the other hand, according to the

classical theory of subharmonic resonance, the initial growth rate is

0.2707 w3| A'j -0. A'j
8 gs 2  gs 2

Thus numerically, the synchronous resonance and subharmonic resonance have almost

the same rate of initial growth.

At equilibrium, we recall the edge-wave amplitude B0 = 0.409e- 30 . Substi-

tuting this result along with e = 0.44 in (2.76), we get the second-order wave set-

up/setdown

-(-2 dJo(2f) 2 dJo(2 f/) 1(2.129)= - [jBo|2ex + d )- 2IBoIcos Goe dx cosy2
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Figure 2-9: Normalized wave set-up on the beach. The two curves at x = 0 represent

the instantaneous edge wave surface elevation at shoreline and the solid line is half

period away from the dashed line.
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Figure 2-10: Normalized wave set-up at the shoreline x = 0. The dashed curves

represent the instantaneous edge wave surface elevation at shoreline and the two

curves are half period away from each other.

with IBol = 0.409, 90 = -1.3052. Figure 2-9 shows the normalized wave set-up on the

beach according to (2.129).

At the shoreline x = 0, this set-up is equal to

(= -0.44 (1.1673 + 0.2147 cos y) (2.130)

which is plotted in Figure 2-10. Use has been made of do ) - -1 at x = 0. The

dashed curves in the figure shows the node and antinode position of the edge wave. It

is actually a set-down due to the negative value. As in Bowen and Inman's experiment,

the incident wave has an amplitude jA'j = 1.536cm. Therefore, the physical set-up is

('= |A'j o = -0.676 (1.1673 + 0.2147cos y)

From the first anti-node of the edge wave at y = 0, the wave set-down increases

from its lowest level to reach the maximum at the second anti-node.
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2.9.2 Local dynamics around the fixed point

In order to analyze the stability of the equilibrium state, we add some infinitesimal

disturbances to both Io and 00 so that

1=Io+I', 0=00+0'

Substituting these into (2.109) and (2.1 10)and linearizing both equations, we get

(' -4-Io -2bsin(200) -4bIocos(200) (2.131)

N'-7 2b sin(20o) ( '

Making use of (2.115) we can further simplify the coefficient matrix to

A = -2uio 4Io(-a + yIo)

Substituting

( = At

into (2.131) we get the characteristic equation

det(A -AT) -2-o -- A 41o(-a +710) 0
-'Y -2a 0 -A

This quadratic equation gives two eigenvalues

-2-Io ± i2 -ylo(a - -Io), if (a - yIo)<0 (2.132)
-2oIot2 yIo(a-yIo), if (a-yIo)>0.

There are two possibilities:

Two complex-conjugate eigen values,

This happens when (a - -ybo) < 0. For this to happen we require a < -YIo - I ;

ba. In this case, we have Re (A) = -2uIo < 0, meaning that the fixed points

are asymptotically stable foci. These equilibria correspond to the branch AB

of the bifurcation diagram in Figure 2-5 and 2-12. The equilibrium of perfect

synchronous resonance is on this branch. All orbits spiral to this fixed point. A

sample phase portrait near this equilibrium is shown in Figure 2-11.
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Figure 2-11: Phase portrait near the perfect resonance stable equilibrium (Io, 9o) =

(0.1673, -1.3052).
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. Two real eigen values,

This happens when (a - -yo) > 0, or a > -/Io - Io < ka, which corresponds

to branch AC of the bifurcation diagram. Within this branch, we have two

possibilities:

a) One positive and one negative eigen value, i.e. one of the eigen value A+ > 0.

This happens when -2uIo + 2 yIo(a - yIo) > 0, which requires

_a__ b -y
10 < - a.

7 2 + U.2 72 + U.2

Therefore, the fix points 1o < i are unstable saddle, which correspond to

branch CD of the bifurcation diagram in Figure 2-5 and 2-12.

b) Both the eigen values are negative.

These fix points are asymptotically stable nodes, corresponding to branch AD

of the bifurcation diagram in Figure 2-5.

All points with 1o = 0 are trivial equilibrium points, around each we have double

zero eigen value A = 0 and

cos20 = -a

Linearization leads to

I = 2bI sin 20 = k2bI 1- ( )2

which gives the solution

I = I(0)e±2br 1- (R) (2.133)

Hence the fixed point 1o = 0 is unstable when b > |a| (i.e. I&| < 1). In order to see

what happens beyond & = ±1, we turn to the Cartesian coordinate system and let

B = x + iy. Then (2.107) can be transfered to two real ODEs

x = -(a + b)y - (X2 + y 2 )(ox - yY) (2.134)

= (a - b)x - (x 2 + y 2 )(Uy + yx) (2.135)
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Figure 2-12: Bifurcation diagram.

The linearized dynamical system around fixed point (X0 , yo) = (0, 0) is

(2.136)
y a-b 0 y

With (x, y) oc e , the eigen value condition is

-A -(a + b) x 0
a - b -A y

There is a pair of eigen values A = ±b 2 - a2, which are purely imaginary if b < Iaj

(i.e. Jl > 1), corresponding to neutrally stable centers along lo = 0. Obviously,

|al = b (i.e. ' = +1) are two critical points of bifurcation.

Let us examine the whole bifurcation diagram in Figure 2-12.

Starting from point E, the lower end of e, we have only one trivial stable center

until B, i.e. & = -1, where the dynamical system start to develop a stable focus

besides the trivial unstable saddle. Therefore, the system will jump to this static

equilibrium with arbitrarily small perturbation. This jump becomes greater along

the branch BA as & increases until it reaches its maximum at A, where 1o = 0.33

and & = 0.82. After that the system jumps to the stable node along section AH.

The jump height decreases with the increase of &. After passing through point H,

the system enters a complicated domain of motion. It has two choices, node branch
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HD or center branch CF, depending on the initial perturbation. Suggested by the

bifurcation diagram, this dependence on initial condition should be closely related

to the saddle branch CD. Referring to Figure 2-13 for the separation of the two

different motions by a saddle separatix. As an example, we take & = 1.15. Therefore,

the unstable saddle is located at (I0, 0) = (0.0697, -0.106) and the stable node is at

(Io, 0) = (0.303, -0.579). PQ denotes the stable eigen direction of the saddle, while

MN is the unstable direction. All the orbits starting from points on the right-hand

side of PQ will be attracted to the stable node, whereas those starting from points in

between the periodic PQ curves will be suppressed by MN and finally go to 1o = 0.

Here we denote the periodic repetition of PQ curve by (P)(Q), as well as for MN

curve in Figure 2-14. Figure 2-14 shows this process. The equivalent phase portrait

under Cartesian coordinate system is shown in Figure 2-15 and Figure 2-16, where

x = V1 cos 9, y = V7 sin 9. After F, the system dies on the trivial equilibrium again.

In a laboratory experiment, the edge wave has a frequency w. Let the incoming

waves have a frequency -u w by controlling the wave maker. The detuning frequency

is
o- - W s2 u. - W

we2  
-k

2 wJAI2

As Q is varied, the dynamical system approaches its critical bifurcation points ei-

ther along EB or GF, depending on whether - < w or - > w. As soon as the

incoming wave amplitude JAl reaches a critical value so that & = n03404 > -1 or

a = -0.6640 < 1.29, the system response grows continuously to a finite value (for

EB branch) or discontinuously with a sudden jump (for GF branch). Under either

situation, an edge wave is observed.

2.10 Summary

In this chapter we have found the following:

1. For a given incident wave with frequency equal to the eigenfrequency of an

edge wave, the edge wave can be excited by the second harmonic resulting from the
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Figure 2-13: Attraction domain demarcation by the saddle separatix for & = 1.15.

79



10

8

6

4
04 (N) Q

(M)
2

(P)
0 - N Q

M

-2
P

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 2-14: A trajectory starting from (1(0), 0(0)) = (0.25,0.2) in between the PQ

curve is suppressed by the MN branch.
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Figure 2-15: Attraction domain demarcation by the saddle separatix for & = 1.15.
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Figure 2-16: A trajectory with a starting point in between the PQ curve is suppressed

by the MN branch.
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self-interaction of the incident wave. At the first order linear sum of the edge wave

and incident/reflected wave creates a periodic pattern of waterline excursion;

2. The nonlinear interaction of the two waves produces second-order circulation

cells on the beach. The relative phase between the two waves determines the sign of

the flow velocity field, and further determines the location of the rip currents;

3. The rip current velocity can be calculated after both incident and edge wave

amplitudes are known;

4. We have studied the synchronous resonance in this chapter as a special case.

The ideas here can be generalized to the excitation of one edge wave by an incident

wave pair, which can be a part of a broadbanded sea.
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Chapter 3

Edge wave generation by a pair of

incident waves of comparable

magnitude

Instead of the synchronous or subharmonic resonance, we examine how a pair of

incident waves can excite one edge wave mode. All the three components are assumed

to be present at the first order. Nonlinear interaction of the two incident waves

generates harmonics twice of the frequency of the edge wave (w). This requires that

the frequency pair (w', w') from the two incident waves satisfy

w' ± w' = 2w. (3.1)

so that an excitation similar to subharmonic resonance follows at the third order.

Generally speaking, here w' - w' = w f 0. For simplicity of analysis, we consider an

edge wave with eigen function cos ky (i.e. longshore wave number k) and the lowest

cross-shore mode. Therefore the eigen value condition (1.4) gives

w = wo = kgs (3.2)

For other x modes of the edge wave, similar procedure should be followed.

The full version of the nonlinear shallow-water equation is as (2.2) and we use the
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following nondimensionalized variables:

X = kx', y = ky' t = Wt', C = ,/74 = W '

where IA'I is one-half of the average of the two incident waves amplitudes at shoreline

and taken to be a constant, i.e.

, A' + |A'
jA'j 2 (3.3)

with A' and A' are half of the amplitude of the two incident waves respectively. Then

the same set of dimensionless governing equation as (2.6) is obtained, as well as the

small parameter e. Note that here the definition of A' is different from the one in the

synchronous resonance case.

-4Dtt + (x4), + x4,y = cQ(4) + E2C(I) (3.4)

with
k|A'I

S

and quadratic and cubic nonlinear terms

Q(1) = 2 (Dx4xt + 4DyIt) + 4t (442 + Dyy) (3.5)

C(4) = (4 + D) (4)X + 4DY) + D24 + 2 + 24D2 (3.6)

The normalized free surface boundary condition becomes

+ a + C 2 2= 0. (3.7)

3.1 Harmonics and nonlinear forcing terms

Let the perturbation expansion solution be

= 4O + 64Di + E 2 O2 + -- (3.8)

At the leading order we assume the co-existence of one edge wave and two normally

incident and reflected waves of frequency w, and w2:

"O = e + V1 + D02 (3.9)
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where

e= o eit + *; with Oo = -iB(T)e~xcosy; (3.10)

is the edge wave, and

41oi = 0 1 e-iwlt + *; with 0, = -iAJo(2w, Vx); (3.11)W1

(D02 = 002 e t + *; with 0 2 = -i WJo(2w2y' ); (3.12)

are the two incident and totally reflected waves. Please refer to (1.6) and (1.7) for

dimensional form of the two kinds of wave solutions. B, A1 and A2 are one half of

the normalized amplitudes of those waves at the shoreline x = 0. Therefore, their

physical amplitudes are

B' = |A'IB, A' = IA'|A 1, A' = |A'|A 2. (3.13)

Therefore, IA11 + JA21 = 2 according to the definition of the nondimensionalization

scale JAI in (3.3). w, and w2 are the normalized frequencies of the two incident and

reflected waves, i.e. wj = W'/w, (j = 1, 2). Note also that the edge wave solution

depends on x and y and is 2-dimensional, whereas the two incident and reflected waves

are longerested 1-dimensional and have no y dependence.

In order to find out what are the harmonics excited by nonlinear interaction at

second order O(e) and consequently contributing to resonance forcing at the third

order 0(c2), we need to look at the quadratic nonlinear forcing terms first. Out of

the three first order wave solutions, there are totally six possible combinations, which

give different harmonics as follows:

Q-1. (4be, (De)40, ±2

Q-1I. (4be, 401)--+ (1 + w1 ), +(1 - wi)

Q-III. (4e, '0o2)> +(1 + w2 ), (1 - w2 )

Q-IV. ((Dli, 4boi)- 0, ±2u),

Q-V. (o2, 'D02)- 0, ±2w2

Q-VI. (4Doi, 4o2)-- +(wi + w2 ), ±(wi - w2 )

Similar to the classical edge wave theory [22], we try to find all the possible reso-

nance forces for the edge wave, i.e. only those with unit frequency and y-dependence
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of cos y are of our ultimate concern. Obviously, the first three combinations will not

give harmonic of frequency 1 (For the time being, only one mode of the edge wave

is considered and those with frequencies other than 1 are not of interest.). The re-

maining three combinations can give the right frequency 1. But they only involve

incident and reflected waves and there is no y dependence in the forcing term, which

is necessary in order to resonate the edge wave. Therefore, resonance of the edge wave

of frequency 1 is not expected to happen until the third order.

Now let us look at the third order cubic nonlinear terms. We require that at

least one edge wave (Pe is involved in each combination. Then the remaining two

components can come from any of the three first order components and the possible

combinations are reduces to 6 (Q-I to Q-VI) as in the quadratic combinations. Fur-

thermore, from the quadratic combination Q-II and Q-III we can see that combination

(4)e, 4)e, 4o) and (4e, 4e, (o2) do not give rise to harmonic of frequency 1. Only

combinations with one e or three 4)e is possible to resonate the edge wave. From now

on, we use the spatial part of the first order solutions to symbolize the combinations,

where their complex conjugate counterparts are implied.

C-I. ( ?Po, 1b)-0 ±1

C-IL. (0o, 001, q51)-+1

C-IIL. (00, 02, 7 2)- ±1

C-IV. (M, 001, 402)- i(wi +w 2 - 1)

C-V. (M , 001, 4*2)- +(wi - 2- 1)

Among these combinations, w, in C-II and w2 in C-III can be arbitrary in order

for them to give harmonic of 1. The interaction of the two incident and reflected

waves lead to combination C-IV and C-V, which are the excitation force we want to

see. Notice that if and only if w1 + w2 = 2 in C-IV or wi - W2= 2 in C-V, then C-IV

or C-V can give rise to harmonic of 1. Depending on where the natural frequency of

the edge wave w is located in the spectrum of the incident waves, we can pick either

C-IV or C-V in our analysis. Finally, the total number of effective cubic nonlinear

combinations are reduced to 4.

Among the quadratic terms at second order, any pair out of the three components
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Table 3.1: Effective second-order harmonics and their further interactions.

2nd-order harmonics Further interaction with 3rd-order harmonic

[Q-1] (0*, b0 )-+ 0 0 (+) +1

[Q-2] (o, bo)-> 2 V*(-1) -+ 1

[Q-3] (#01, 01)-+ 0 o(+1) -* 1

[Q-4] (/o, 001)- 1 + w0 #*1(-w1) -* 1

[Q-5] (4'o, I)-> 1 - W1 #01(+i) -> 1

[Q-6] (02, 1* 2)--> 0 ?0(+1) -+ 1

[Q-7] (' 0 , 02)-> 1 + w2  # 2(-W2) - 1
[Q-8] (o, #*2)- 1 - -2 02(+W2)* 1

[Q-9] (01, q 02 )--* I + W2 = 2 4' (-1) --

[Q-10] (', 001) ) W1 - 1 #02(+2 -+ 

[Q-11] (00, #02)> W2 - 1 001(+U1) -+ 1

[Q-12] ( #b2  - = 2 '/(-1) - 1

[Q-13] (003, #01)- Wi - 1 *2 (-W2) -- 1

[Q-14] (4*, #2)-+ -W 2 - 1 001(+1) -( 1

in each of the 4 effective cubic combinations might generate a certain harmonic and

further interact with the third one at the third order to resonate the edge wave. For

example, both combinations (0o, ?o) and (001, #02) give rise to a harmonic of 2. Later

on we will see that the y dependence will disappear in combination (o, 4o). Q-I and

Q-VI will excite the incident and reflected kind of wave #1 of frequency 2 at second

order. Subsequently #1 will interact with V)o at the third order to resonate the edge

wave. All the effective nonlinear forcing and the corresponding harmonics excited at

second order are listed in Table 3.1.

First let us deal with the case

W1 + W2 = 2.

Then combination [Q-1] to [Q-11] are of our concern at the second order. Only when
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W1 - W2 = 2, [Q-12] to [Q-14] are of interest instead of [Q-9] to [Q-11], hence they

will be excluded here. Let's derive from (3.5) the details of these forces one by one in

order to determine the effective harmonics at second order for case wi + w2 = 2:

[Q-11.

= 2 [*@o2)Ox(-i) + OoxO*(i) + 0* Ooy(-i) + *

+ io* (bOX + OYY) - ibo (0*22+ *yy) = 0.

[Q-2].

(0o, 4o) = 2 [Oox2o 0.(-i) + Ooyoy(-i)] = -2i (022 + OY)

= -2i (-iBeX) 2 (cos2 y + sin 2 y) = 2iB2e-2x (3.14)

after noting that

[Q-3].

(#01, #*1) = 2 [* 12#o 1 (-iwi) + 4oix#*1x(iwi)] + iwiO*1oiOj - iWi00i0*

= 0

[Q-4].

= 2 [oxoix(-iwi) + 0oi'xox(-i)] + (-i)Ooo1xx

A _ dJo (2w, N/x)
S-%-- (-iB) e-x cosy -2i(I+ wi)(-1) dx

dJo(2w1 x/)
+wi) d x

d .d2Jo(2w') f
dx 2

d2Jo(2wiV) Cosy
dx2 Io

(3.15)-i-Bg 13(X) cosy
W1

[Q-5].

(0o, #*1) = 2 [?Pox* 1j(iwL) + *1 2xox(-i)] + (-i)00o0*12
A* _

= A- (-iB) ex cosy
Wi

2i(wi dJo (2wi VG)
dx

- d2 Jo(2L /)
S dX2 I

.A* _
=-i'-Be-x 2(w, dJo(2wi Vf)

- 1) dx
+ d2 Jo(2wiL4 ) } Cosy

dX2 Io

.A*
-i- 1 Bgi(x) cos y

W1
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(01o, 001)

= -2 B - 2(1

(3.16)

( , o )

V)OX + V)Oyy = 0.



= 2 [q#*2.qo2 x(-iw2) + 0 2x#*2x(iw 2)] + iW2#*202xx - iW2#O2#*2xx

= 2 [ o~xo 2x(-iw2) + 0O2xbOx(-i)] + (-i)V)o0o 2xx

-iA (-iB) e~x Cos y -2i(1+ L2)(-1) dJo(2w2 x

J2 dx

S d 2Jo (2w2 X)
v dx 2

-iA 2 Be-{ 2(1
LJ2

+ L2) dJo(2w2 x)
dx

d2 Jo(2w
2  ) Cos y

dX2 I

(3.17)A2
S-i--Bg14(X) COS y

[Q-8].

2 ['oX*2x(iw2) + #*2x2/ox(-i)1 + (-i) o#*2xx

i 2 (-iB) e-x
W2A

S-2 Be 2(w 2 -

-i 2 Bg12 (X) cos y

dJo (2W2 v'7)
1)(-1) d dx

Sd2 Jo(2w2\/7)

dX2

dJo(2w 2xft) d2Jo(2w2v/Y) C
1) dx dx2 s

(3.18)

2 [olxOo2x(-iw2) + #o2x0qx(-iwl)] + #o1(-i1)0o2xx + #2(-iw2)#olxx

= -2- -2i(wi+ W2) dJo(2wi ft) dJo(2w2 Ji)
w1 \ 2) dx dx

-iwJo(2i ) d2 Jo(2w 2xI) - iw2JO(2w2V) d2 Jo(2w1 x)
iw~(wi/) dX2 dX2 J

A A2 r dJo(2w1 x) dJo(2w2 x)
__4

wi w 2  dx dx

+ wiJo(2wi x) d2Jo(2w 2 VX) + w2Jo(2w 2dX2

[Q-10].

(*,95 #01) - (V, 0*1)*

is the complex conjugate of [Q-5].
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[Q-6].

(02, *2)

[Q-7].

(0o, 02)

cos y 2i(w2 -

[Q-9].

(001, 02)

v) d2Jo(2wi 
x) (3.19)

( o, #*2)



[Q-11].

is the complex conjugate of [Q-8].

Therefore, we have total 6 effective forcing terms, i.e. [Q-2], [Q-4], [Q-5], [Q-7],

[Q-8] and [Q-9]. [Q-1], [Q-3] and [Q-6] are identically zero. In response to these forcing

terms, the following types of second-order waves will be excited:

(0o, o) + (001, 02) -1 #1(X)e-i 2t

(00, #*1) -- O1 (x, y,-r)e-i(-U)J'

(00, 001) --- 013(X, y, -F)e-i(+WJdt

(00, #*02) -+ V12(X, y, -r)e -i(-W2)t

(0o, 02) -- 0 14(x, y, r)e-i(+w2)t

3.2 Multiple-scale expansions

We demonstrate the mathematical derivation of the evolution equation governing the

edge wave amplitude using case (The case wi - W2= 2 can be treated similarly but

omitted.)

+ = W1 + w 2 = 2W W

Let us assume the multiple-scale expansion

<[=o(x,y, r)e-it+ + [oi(x)e-iwlt+* + [0o2 (x)e-iW2t +

+e [011(x, y, T)ei(''+1)t + + E [0 13 (X, Y, T)e i(1+wi)t + *

+E [012 (x, y, T)e (1 -W2 )t + * + E 10 14(x, Y, r)e-i(1+w2 )t + *

+E [01(X, r)e-i 2t + *+ 62 [ 2 (x, y, T)eit + * + ... (3.20)

where two temporal variables are used: fast time t and slow time r = e2t, implying

a a 2 a a2 a2 20 a 4 a2
+ f -- ) - 2  c

-- +t Ot t2 Ot2 + t Tr a7 2

Plugging 3.20 into Eq. 3.4 and separate different orders, we get

{[0o + (XV)oX)X + XV$ovY] e--t + + { [W2001 + (XqoiX)X] e-iw + *1

90



+ { W2'02 + (Xqo2x)x] e-2t + + C {[4, + (xq1i),] e~t+

+E {[(1 - Wi) 2 V)1, + (X41,i)x + XV1iyY] e-i(-W)t +*

+C { [(1+ )2 013 + (X' 13x)x + X 13y] e-i(1W)t +*

+ { (1 - W2)24012 + (XO12x)x + X012,y ei(w2)t + *

+ { (1 + W2) 2 014 + (XO 14x)x + XV)i4yy ei(+W2)t + *

+e 2 {[2 + (X0 2x)x + X02yy] e- t +

= c[( 1o 0o) + (001, 02)] e-i2t + *I

+E ((1o, *1)ei(1W)t + * + E {(4, q0o)e (+wt +

+{ ((0, *2 )ei(1W2)t + * + f {(o, 402)ei(1+L2)t +

+62 {[(4i, 0*) + ( 4*o, o) + (0, 001, 0*1) + (00, #02, 00*2)] e~tt +

+62 {[( *, 01, 002) + (411, 001) + (013, #01) + (012, 002)] e~-t +

+2 {[(014, 0*02) + (01*11 002) + (1*2, 1o)] eit +

+C2 -2i O e-t +* +... (3.21)

3.3 The leading order

At 0(1) we separate different harmonics (1, wi and w2 ) to get

0o + (x4ox) + x4o0Y = 0

W 21 + (X1)ol) = 0

w2 002 + (Xo2x)x = 0

which give the homogeneous solutions of one edge wave (So far the lowest mode is our

concern.)

41o = -iB(T)e~x cos y (3.22)

and two normally incident and reflected waves

#01 = -i A,Jo(2w, ) (3.23)
W1
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002 = -i Jo(2w2VG) (3.24)

B(r) is the slowly varying dimensionless amplitude of the edge wave at shore, whose

evolution equation is to be obtained at the third order.

For later uses note that the factor F = e- which describes the x dependence of

the edge wave satisfies

F + [(xFx), - xF] = 0,

xFx=0 at x=0; F -+0, x -oo.

3.4 The second order solutions

At 0(E), there are totally five harmonics- V1u(x, y, r)e-i(1W)t, /013(x, y, T)e--(+1)t,

012(x, y, T)e 2 )t, ' 14 (x, y, T)e-(+w 2 )t and #1(x)e-i2 t. We solve them individually.

3.4.1 #1 - Radiated wave of frequency 2

From previous discussion we know that both (?O, 0o) and (001, 02) contribute to the

excitation force for this harmonic. Referring to (3.21), we have

40, + (xo1x)x = (4o, 4o) + (001, 0 02 ) (3.25)

The details of the two quadratic terms are given in (3.14) and (3.19). Introducing an

abbreviation for the total force

g(x)= 2iB2 AA 2  2iB 2,- 2x +AA 2 4 dJo(2w1 Vx) dJo(2W2 Xf)

w 1 w 2  w 1 w 2  dx dx

d2 Jo (2W2' ) d 2Jo (2 w1 Vf)
+ wiJo(2wiV') dx 2  + W2 Jo (2W2 ) (3.26)

where

ge e 2x (3.27)

represents the self-interaction of edge wave and

4 dJo(2w, VG) dJo(2w2 /f)
dx dx

d2 Jo (2w 2 ) d 2 2 Jo(2 (2,jIx )+ WiJO(2widfx) -x2 +U2 JO (2W2 V/) (3.28)
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the self-interaction of incident/reflected wave. With these we can rewrite the inho-

mogeneous Eq. (3.25) as the standard form

(3.29)q1XX + 1 + 41 = g(x)X X X

By the method of variation of parameters, the general solution to this inhomogeneous

equation takes the form

01 = C1Jo(4Vx) + C2Y(4 VG) + ui(x)Jo(4VF) + u2(x)Yo(4 VG) (3.30)

where

ui(x) =- ________ _ d = - 7r
W (JOI YO) ( ) Jo

u 2(x) =

with the Wronskian

W (Jo,Yo)(x) = dYo
dx

Jo(4F) g (6) d6 = 7r X Jo(4/6)g(6)

6W (JOI Yo) () Jo

-YO dJ
dx - (J0 Yo' - YOJ) d(4vF)

0dx
2 2

7r 4 Vx V~
1

and C1, C2 are the constants to be determined by boundary conditions. Use has been

made of

= -J 1, Y ' = -Y Ji(z)Yo(z) - Jo(z)Y(z) = 2
7rz

Also notice that prime " " is the derivative with respect to argument z, which is

equal to 4NXf.

Following the same argument as in last chapter, we can obtain the solution

01 = [-Ul(OO) - iu 2 (oo)] Jo(4v/Y) + ui(x)Jo(4v/x) + u 2 (x)Yo(4 'x). (3.31)

which is the same in form as the synchronous resonance case except the definition of

the forcing function g(x) is different, hence the ui(x) and u2 (x). We recall from (3.26)

that g(x) = 2iB 2ge + if A gi, where g, and gi are defined in (3.27) and (3.28). Let
Ws W2

us denote

ui(x) = 2iB 2U, (X) + i Ui W,W1 W2
u2(x) = 2iB 2U,(x) + i j A (2 )

W1 W2
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The coefficients have contributions from the edge wave through

= - d( = - 7X
Jo W(JOI YO)() WJo

= -7r Yo(4v/)e-2c <

S Jo(4v)ge(d) d( = 7r J
Jo W(Jo, YO)Q() fo

= rf Jo(4Vf)e-2Cd

Yo(4xf)ge()df

(3.33)

(3.34)

and from the incident and reflected waves through

ut(x)
= - Yo( = -IFr YO(4)g()d

fx Y(4 4d Jo(2w1) dJo(2w 2Vf)

+ wi Jo(2w1
d2JO (2w2 V )

+ W2 Jo( 2 W2 \) d2Jot(2wV/() } d (3.35)

= < = 7r JoJ(4())gi6)
Jo W(JO, YO)(~

fx Jo(4 ) 4dJo(2wv() dJo(2W 2 f)

+wiJo(2wiy6) d2 Jo(2w2 V1) + w2 Jo(2w2 )2(r) d Jo(2u)} d6 (3.36)

In summary, the final solution for the second-harmonic forced by self-interactions

is

#1 = 2iB2 + W1 W2

= [-u'(oo) - iu'(oo)] Jo(4fi1) + u'(x)Jo(4v') + u'(x)Yo(4v/i)

(3.37)

(3.38)

= [-u'(oo) - iu'(oo)] Jo(4\/xE) + u'(x)Jo(4Vf) + u'(x)Yo(4v' )

= -U(oo)Jo(4Vx) + u'(x)Jo(49/A) + ut(x)Yo(4V/)
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with

and

(3.39)
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Use has been made of u'(oo) = 0 as discussed in Appendix C for the last chapter.

Note that #6 is complex, whereas #4 is real.

For later uses in (3.68), we now work out the constant g(0) as follows. From (D.2)

we see that

dJo(2c.ji) = 2 + 14 - 0( 2 ),
dx 2

d2 Jo(2c C /)

dX2 2 - O()
2'

as x -+ 0. Upon substitution into (2.36), we get

g(0) = 2iB2 + -i c4(-U) (-w2)
Wi W2 1

2iB 2 +i A, A2  4+
W 

2 2

2 W1
w 2 _ w++
2w1 2w2 J

do 1(x)
dx x=O

= wi(-4)+g(0)

= 4 (u,(oo) + iu2 (oo)) + g(0) (3.41)

#1(0) = C1 = -ui(oo) - iu2 (oo) (3.42)

A guessed partial solution similar to Guza and Davis [14] can be found in Appendix

C for the last chapter.

3.4.2 0 11 - Trapped wave of frequency (1 - wi)

Referring to (3.21), we have for this particular harmonic

(1 - wi) 2 b11 + (Xobix)x + Xb 11Y = (0b, 0*51)

The quadratic nonlinear forcing (4o, #*1) is given in (3.16), which suggests a solu-

tion

Ol = -i-Bfu(x) cos y
Wl

with fli(x) satisfying

XfllXX + flx - IX - (1 - wi)2] fil = gu(x)
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Change of variables

(=2x, fi = e-2f()

leads to the Laguerre differential equation, which belongs to the class of confluent

hypergeometric equation.

U" + (1 - O)f 12

Generally speaking, w, is within the range of (0, 2), which does not satisfy the eigen

value condition, i.e.
- W1)2

2 =

since

w1= 1 ± 1+2n,

is not possible.

n = 0, 1, 2...

As in the last chapter, we can apply the standard Finite Element

Method. For this, equation (3.43) can be rewritten as

dx (xfn.) + Ex =-911(x)

with the boundary conditions

xfn, = 0

xf1 . = 0

as x- 0

as x -L.

It is easy to show that the boundary-value problem above is equivalent to the

stationarity of the following functional

1(f)= L df) 2 +q(x)f2] dx +

p(x) = x, q(x) = x - (1 -_w 1 )2
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1
-911 - e2

2 2() 1
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3.4.3 b12-- Trapped wave of frequency (1 - w2 )

Referring to (3.21), we have for this particular harmonic

(1 - w2)2 12 + (XV 122)x + Xb 12yy (00, *2)

The quadratic nonlinear forcing (0o, 02) is given in (3.18), which suggests a solution

012 = -i 2Bf 2 (X) cos y

where fi 2 (X) satisfies

Xfi 2xx + f122 - X - (1 - W 2)2] f12 = g12(X) (3.45)

We rewrite (3.45) as

d (Xfl2x) + X - (1 - w2 )2 f12 = -912(X)

And the corresponding boundary conditions are

Xfl2x = 0

Xf12x = 0

as x- 0

as x- L

Similar to 4)u, W2 in the range of (0, 2) is not an eigen value.

3.4.4 013 - Trapped wave of frequency (1 + wi)

Referring to (3.21), we have for this harmonic

(1 + wi) 2 ) 13 + (X413x)x + X) 13 yy = (0o, #01)

The quadratic nonlinear forcing (4)o, Oo1) is given in (3.15), which suggests a solution

A1
013 = -i--Bf13(X) cosy

Wi

with fi 3 (X) satisfies

Xf1 3xx + fl3x - IX-- (1 + w1 )2] f = g13 (x) (3.46)
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which can be rewritten as

d(fixx) + x - (1 + W1 )2] f13 = -913((3.47)

And the corresponding boundary conditions are

Xfi3, = 0 as x - 0

Xfax= 0 as x -+ L

The eigen value condition can be satisfied, i.e.

1 +- (1+WI) 2

2

when

wi=-1± vl +2n, n=0,1,2...

For example, within the range of w, E (0, 2), the possible values are

W1 = /35 - 1, v/5 - 1, V7 - 1.

corresponding to n = 1, 2 and 3 respectively. Therefore, the eigen function are La-

guerre polynomials Ln, more specifically

1 3213
Li -l L2 = 1 - 2 + 1 2, L3 = 1 - 3 + 3 2 _ 13, 1 2x.

2 2 6

which are mode 1, 2 and 3 of the edge waves. By direct substitution, it is easy to

check that they are the eigen solutions to the homogeneous version of (3.47), i.e.

Xfl3xx + f 13x- [x - (2n +1)] f1 3 = 0

When the eigen value condition is satisfied, a new eigen mode is resonated. A

quadratic interaction between one mode of edge wave and one incident/reflected wave

can resonate another mode of edge wave, and vice versa. This kind of cross resonance

will be discussed in the next chapter. In this chapter, we exclude this situation and

simply require that wi is not equal to any of these three values: v/5 - 1, vf5 -

1, V - 1.
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3.4.5 g - Trapped wave of frequency (1 + W2 )

Referring to (3.21), we have for this harmonic

(1 + W2)2 + (XV'i 4 x)x + X' 14y = (0, 02)

The quadratic nonlinear forcing (o, 02) is given in (3.17), which suggests a solution

A 2
01= -i-Bf 4 (x)cosy

W2

with fl4(x) satisfies

(3.48)XfHzz + fl4x - X - (1 + W2 )2] f14 = g14 ()

which can be rewritten as

d (Xfl4 x) + x - (1 +0 2 )2] f14 = -g 14 (X)

And the corresponding boundary conditions are

Xflgx= 0

Xfax = 0

as x-+0

as x- L

Similar to 413, the eigen value condition can be satisfied when

w2 = 3- 1, vf5 - 1, Vf7 - 1.

within the range of W2 C (0, 2).

3.4.6 1-D Finite element formulation

From the analysis of the previous four sections we can see that, except for a few special

frequencies, the four harmonics of trapped waves share the same generic form of BVP

as follows:
dt (X f) -dx

with the boundary conditions

[X -w'1]f =g(X)
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xfx = 0 as x- 0

xf = 0 as x L

Therefore, the Finite Element formula is exactly the same as in the previous chap-

ter (see Appendix E of last chapter.), although we have different definition for w and

g(x) in this chapter. For convenience, we summarize the solution to the four trapped

harmonics as follows:

oi = -i i Bfu(x) cos y,
Wi

W = 1 - Wi, g(x) = ex {2(wi
dJo(2wiVI) + d2Jo(2wif)
- ) dx dX2

012 = -i 2Bfl 2 (X) cos y,
w 2

g(x) = eX {2(W2
dJo(2w2 fX) + d2Jo(2w2V'f)
-) dx dX2

A1
013 = -i-Bf 13 (X) cosy,

Wi

w = 1 +Wi, g(x) = e { 2(1 + dJo (2wFx)
+wi)

d2 Jo(2w1 /x)
d2

A 2
'114 = -i-Bf 4 (x) cos y,

w = 1 + w2, g(x) = ex {2(1 dJo (2W2 V/X)
+w2 ) dx

_d
2 Jo(2w2V5) 1

dx2 '

3.5 The third order

At 0(62 ) the governing equation for 0 2 can be reduced to

H + [(xHx)x - xH]
9B

= -2 e x + 8(x)
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W = 1 -W2,

with
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after the introduction of

2= H(x) cosy

by separation of variables. &(x) denotes all the quadratic and cubic nonlinear terms

of frequency 1 and with y-dependence of cos y. Except one of the forcing (* 0, '0 o),

each of these forcing terms has only one edge wave as its component, which makes

them all proportional to cos y. Later on we will show in (3.52) that even (0*, 0o, o)

is only proportional to cos y. Therefore we get

£(x) cos y = (P,3) + (#,1 o, 0o) + (0o, #01, *i) + (01o 02, *2 ) + (O, 01,1 02)

+ (0 11, 0oi) + (0 3, 0) + (012, 02) + (01, 4*2) + (*1,12)+(*2 1)

(3.50)

We shall recall from (3.5) and (3.6) and work out all above nonlinear forcing terms as

follows:

[C-1].

(#1, '*) = 2 [#iO* (i) + *kx1(-2i)] + V)*(i)# 1lx

= -2i1xV)* + i#1xxV/*

Se-Xcosy -2i iB*(-1)+i iB*
dx dx 2  J

-B*ex cosy 2 kdok + d 21

- cj1B 2B* cosy + c1AIA 2B* cosy (3.51)

where use has been made of

20 + ~ A 0
We have recalled that q1 = 2iB2q1 + i 20# with 0' and 0' defined in (3.38) and

(3.39). Therefore, 'ci is real because 0' is real, whereas hCi is complex because #e is

complex.

[C-2].

= Ooxx2/oxOk*+ */,ox/ox + Ooy2ou*+ *, OyO
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+ 2 (+oxooy* + @0,*yb1xy ± **X4oY@1xY)

(-iB)2 iB*e-3 x 3 cos3 y - 2cosy sin2 y - cosy sin 2 y

+ 2 - cos y (- sin2 y - sin2 y) + cos y sin2y]

= -iB 2 B*e- 3x 3 cos3 y

= -3iB 2 B*e-3x cos y

- hc 2B 2 B* cos y

+ 3 cosy sin2 y}

(3.52)

[C-3] & [C-4].

(00 0, 0n, O*n)

=0Onxnx' /)Ox + #*nxxOnxO# + 2#0nx#*nxV)xx

+2 ox-*nx#Fnxx+ 2 OOxOon*nxx

= 2'oxx4*nx00nx + 3 (nxx0* + #*nxxOnx) 0Ox

-i (-) (-i) (-1)ex cosy 2 dJo(2Wnx) 2
_0 H)(-I~edx

d2 Jo(2wn Vx) dJo(2wn rx) An A*
-6 B

dx2 dx Jn Wnw

An A* d Jo (2w F) 2
= -- Bew cosy2 d

-3 d (Jo(2wnxT) ) 2 ]
- x 3

with n = 1, 2. For brevity, we introduce

e--"
fC3 2-- 2

e--[
ic 4 = 2

(dJo(2wi x) 2

dx

(dJ0 (2W2 \/X)2
dx )

- d (dJo(2wji)F) 2

d dJo(2W2 5FX) 21
3 dx dx J

[C-5]. Similarly,

( o #01, #02)

= 2 1*$xo1x02x + 3 (0O1xx02x + 02x01x) '0b*x
B*i A A2 2 dJo(2w1 x) dJo(2w2 x)

w1  W2 dx dx

- 3 d2Jo(2w x) dJo(2w2 x) d2Jo(2w 2\/3) dJo(2wI Vx)
dx 2 dx dx 2 dx
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= - 2 -Bxe~" cs y 2dJo(2w1 vkx) dJo(2w2 V/)BeCos y 2 dxd
W1 W2  d dx

-3 d (dJo(2w1,) dJo(2W2 x)
dx dx dx j

- k 5AIA2B* cos y

[C-6].

(01,)001)

= 2 [4'iqoi(-iwi) - i(1 - wi)#00,xVl]

-(1 - wi)4'ii0oiz - jiioi (Oiix + 0iYY)
A* A, F
A* B(-i-) cosy - i2flx
W1 W1

dJo(2w ix)

dx

. d 2Jo(2wVx/) wlJo(2w, /x)
-(1-wi)f d2 J(2)x2

i A, A B Cos y 2flx dJo(2w1 x)
Wi W1 dx

d2 Jo(2w1 x)+wo(w
+(1 - wi)fu d 2 + Li Jo(2ui

-ic 6 \Ai1 2B cos y

where fli is defined by Eq. (3.43).

[C-7].

(V)1, #02)

= 2 [' 2nxqo2 x(-iW2 ) - i(1 - w2)#o2x~' 2~x]

-i(1 - W2)012o2xx - iW2# 02 ('12x + 012yy)

- A2 B(-iA2) COS -- i2fr dJo(2w2 V/X)

W2 2 dx
.d2 Jo(2w2v/ft) 2o 2x-(1 - w2 )f 1 2 d 2 - iL2 JO(2W2V/X)

2f12x dJo(2w2 Vx)
Io Vdx

d x2 Jow(22 2J22X)+(l - L2)fA2 l d2 + 02Jo(202cosy)

=-4C71 A212 B Cos y

A2A BCosy
LL2 W2

(f122x - f12)

fl2xx - f12)1

(3.56)
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= -2

(f1lxx-f)

(3.55)

-\/-X-) (fllxx - fil)]

(



is defined by Eq. (3.45).

(0131 0*1)

= 2 /[13xo 1jx(iLw) - i(1 + wl)O*1$413x]

-i(1 + Wl!) 13#1xx + iw *1 (413xx + /)13yy)

.A1  A* . dJo(2w1  x)
= --- B(i A*) cosy -z2f13x d x

wi wI dx

d2Jo(2w1  x) + iw1+i(1±wi)fi3 dx2

.*A1 A*
= ---- B cosy

wi wi
2fl3 dJo(2w1  x)

dx

+(1I + wl)fi3 d2Jo(2w - W1

-ifc8lAi 12B cos y

where f13 is defined by Eq. (3.46).

[C-9].

Jo (2wi x) (fi3xx -

(4b14, *2)

= 2 [?/1l4 xO* 2x(iw 2 ) - i(1 + w2)0*2x'14x]

-i(1 + W2)V)14#* 2xx + iw2#*2 (/ 14xx + 4'14yy)

.A 2  Az . dJo(2W2 x)
S -z-B(i-) cos y -i2fi4x

w2  w2  L dx

d2 Jo(2w2  x)
-2(1 + w2)fl4 dX2 + izw2JO(2w 2 VX) (fl4xx-

. A-A d Jo(2w2 x)
= -2---Bcosy 2f14x d2

W2 W2 dx
d 2jo (2w2 Vx)

+(I+ 2)f4 222 ) -w 2Jo(2w2 x)

-iC91A 2 12B cos y

where f14 is defined by Eq. (3.48).

[C-10].

(fi4xx - f14)I

(3.58)

(01* ,02)
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where f12

[C-81.

Jo (2wi x) (fl3xx - f13)]

fi)]

(3.57)

f14)]



2 [q *0o2x(-iw2) + i(1 - WI)O2xf*I]

+i(1 - Wl)*1#0 2 xx - iW2 0 2 (01x + #/*Y

A A2= zi B*(-i )cosy
Wi W2

- i2fl dJo (2w2 VX)
dx

d2 Jo(2w2 v/x)+i(l - w1 )f11 dx2 -zw2Jo(2w 2

= -i AA2B* cosy 2f dJ

Wi W2

d2Jo(2w 2 x)
--(1- wi)f 1 1 dx2

= cioAIA2B* cos y

j(2w 2 /)
dx

+ w2Jo(2w2V'Y) (flx -

I
f i)]

where fli is defined by Eq. (3.43).

[C-11.

(01*21 001)

= 2 [ xb*22qo1x(-iw1) + i(l - 12@*2x]

+i(l - W2)V)1*2001x - Zwicoi (01*2xx + 1Y*y)

= i B*(-i )cosy -
w2 dX

2Jo (2wi
+i(1 -w2)f12 dx2

= --iA2B*cosY 2f12x
w 1 w2

-(1W- 2 )f1 2 d2 + Wi

=cu A1A 2B* cos y

2flxd Jo (2 w IV/x)
dx

X)- iWJo(2w,\

dJo(2w1 /x)
dx

Jo(2wv/x)

/x) (f12x - f12)]

where f12 is defined by Eq. (3.45).

In summary, we group the terms according to B, B* and B 2 B*, and get

S(x) = -i (fi(x)|Ai12 + f 2(x)|A2 12) B + .(x)AIA 2B* + h(x)B 2B* (3.61)

where -i (fi(x)|AI12 + f 2(x)IA 2 2), ., hare the sum of coefficients of B, B* and |B|2B

respectively. Specifically
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* ifi(x) is collected from [C-3], [C-6] and [C-8], i.e.,

f1 = fC3 + fC6 + fC8. (3.62)

. if 2 (x) is collected from [C-4], [C-7] and [C-9], i.e.,

2 fc 4 + fc7 + fc9 . (3.63)

9 .(x) is collected from [C-1], [C-5], [C-10] and [C-11], i.e.,

# = ci + bC5 + bc1m + Pc11. (3.64)

. h(x) is collected from [C-1] and [C-2], i.e.

h(x) = hci(x) + hC2 (x) (3.65)

3.5.1 Solvability and evolution equation

The homogeneous version of Eq. (3.49) has nontrivial solution F = e-x as described

at the first order. By Green's formula,

J(HLF - FLH)dx =

= 00
J 00

[(xHFx)x - (xFHx)x] dx = 0

FZHdx = 0 since LF = 0

This gives the solvability condition

jdxe-- 2 e~ +
0 a-r

which can be rewritten as
OB
aB = f(B)

98(x)) = 0

106

Therefore

[H(xFx)x - F(xHx)x] dx

o 00



governing the evolution of the edge wave amplitude B for given A1 and A2. By

collection of the similar terms with respect to B, the evolution equation of the edge

wave amplitude can be written as

B
OT

= j dxe-E(x)

= -i (ai(wi)A12 + a2 (w2 ) A 2 |2) B + a3 (W1, w2)A1A 2B* + ,IB1 2B (3.66)

where a1 , a2 , a3 and K are constants obtained by numerical integrations

[a,, a2 , a3 , K] = I ex[f1(x),f 2 (x), §(x), h (x)]d x, (3.67)

3.5.2 The coupling coefficients

We now derive the coefficient a1 , a2 and a3 from the integral of [C-1] to [C-11] explicitly.

[C-1]. From (#1,?/g) in (3.51):

I de-x (-B*)
( dqgie-X 2

(dx

-B* j dxe-2x 2 i

+ d2,

+

( d# 1(x)-B* -401(0)- d x
dx X=O

= -B* (-g(o) +

+8 de-2xi(X)
0

= g(0)B* - 8B* jdxe-2x01()

Use has been made of (3.41) and (3.42). We recall that

g(0)=2iB2+ AA 2W2W2 4+
W1

W2

2  2w12

2w, 2W2 f

from (3.40) and #1 = 2iB2q5 + ies2 'q5i with /4 and 0q defined in (3.38) and (3.39).

Therefore,

g(0)B* = 2iB 2B* + iw2w 4 + 2 + w1  A1 A2B

2wi 2W2 JW 1 W2

and

-8B* dxe -2xq#(X)
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= -16iB 2B* j dxex4$ -- 8iei2 B* f dxe 2 x4j

= 16iB 2 B* j dxe 2 {-_() - iu4(oo)j Jo(4 x)

+ue(x) Jo(4 ) + u(x)Yo(4 x)}

-8iei2 PB* dxe 2 x { [-U(oo) - iui(oo)] Jo(4 x)

+uz(x) Jo(4 ) + u(x)Yo(4/ x)

16ij dxe 2 Jo(4 x)u'(oo)B2 B* +8ie dxe- 2xJo(4Vx)u4(oo)B*

-16i dxe- 2 x Jo(4V x)U'(x)B 2B* - 8ie i j dxe 2 Jo(4 x)u'(x)B*I 00d6x(4xz()B

16 dx2x Jo(4 x)u2(oo)B 2B* -

-16i dxe-2 xYo(4Vx)ue(x)B 2 B* - 8ie dxe- 2 xYo(4 x)u'(x)B*

(3.69)

Therefore, the R.H.S. of (3.68)

g(O)B* - 8B* j dxe- 2x01(

= 2iB 2B* + L)2O2 4
2 + 4)2 AA 2

+ W2  B1)
2w, 2W2 fWl W2

A 1 A 2- 16i7riB2B* - 8i7r (401 + L0 102 + w2 03) B*

A1 A 2
+ 16i7K2B2B* + 8i7 (404 + W105 + W206)-- 2B*

A1 A2-- 167K3B 2B* - 87 (407 + W108 + W09) A, A2 B*
A1 2

- 16ir ' 4B 2 B* - 8iwr (401+o + wl311 + 2012 ) B*

Ki = j dxe- 2x Jo(4 V-) j <e o(4 /)

J 01
01=

dxe- 2 xJo(4 cV)

02 100 dxe - 2xJo(4 cv)
0

3= J0 dcve7 2x JO(4 cVx)

0o d Jo(2iJ) dJo(2w2 V)
dtY0 (4 ) dgd

00 Yo (4 JO(2W1 d2 Jo(2W2 N )

SDYo (4) JO(22) d2 Jo(2w1 )
] 0 ( <2o2w

108

0 x

with



K 2 = j dxe-- 2 x Jo(4 x) jd <e-Yo(4 )

= 00

dxe- 2xJo(4 x)

Sx
d<Yo(4 ,)

jcYo (4

dJo(2w

Jo(2wi

06= / dxe--2xJo(4,G) dYo (4 ) Jo(2W2

J =o

K3= j00 dxe- 2xJo (4 VY) <e0 d-2K

(00 f00 dJ ~ ) dJo(2W2 F
/37 dxe72xJo(4 /x) fdc<Jo(4 )UdJo(2wd2

foo 0 <d<

/, [00 dx- 2xJo (4 x) dJo(4 )Jo(2w d)d2Jo (2W2  )

3o - dxe-2x Jo(4 ) Jo (4 )Jo(2w2  )dJo(2w, N)

j4 = dxe- 2xYo(4 x) jde- Jo(4 )

10 0 dxe-2xYo(4 jdJo(4 ) dJo(2w, lv) dJo(2w2 )
dxe~~d d 4l') o(

O/ =f dxe2 xYo(4 cv) j d Jo(4 V)Jo(2wi ) d2Jo(2w2 V)

/12 = j dxe2xYo(4 fl) J dJo(4 V) Jo (2w 2

[C-2]. From (0*, Vo, Oo) in (3.52):

= - B2B*
4

[C-3]. & [C-4j. From (4'oq#o1,q53 1) and (o, 02, #* 2 ) in (3.53):

-3 d (dJo(2wn

2 (dJo(2wn VY)) 2

dx )
-- -d (dJo(2Wn V)

dx dx )

S)2 An

2 AnA*B

- n B

(dJo(2wn V ) ) 2

dx x=o0
4 dxe -2x (dJo(2Wn V))

4 x dx )

= -i(3w - 4an) AnAB
nw -- B

109

/34 I 0dxe- 2x Jo(4 x)0
1 ) dJo(2W2 V)

d2Jo(2w2  )

d2 Jo(2wi I)

Jo(4 V)

d2 Jo(2wiV/ )

I 000dxe-x (-30) e 3 xB 2 B*

j00)( dxe~x (-i) e-x

- dxe--2x

4 B

=-i3
wn wn

2 (dJo (2wn vlx) 2



with

a dxe- 2  dJo (2wn /)2
c o dx J

with n = 1, 2.

[C-5]. From (?00, 0o1, 002) in (3.54):

I 00
dxe-x (-i) ex

d
3-

-dx

2 dJo (2w1 V/x) dJo (2W2 V/X)
dx dx

dJo(2w1V'-) dJo(2w2 /) A1 A2B*
dx dx ) W1

= -i [3ww22 - 4/313] A12 B*
W1 W2

with

0313 =~ dxe-2xdJo (2wi/fx) dJo (2w2 xfi)
JC dx dx

[C-6]. From (0'i, qOol) in (3.55):

dxex 2flx
dJo(2wi/Fx)

dx
+ (1- wi)fii

d2 Jo(2w, xF)
dx2

+wi Jo(2wi v')

.a A1 A*B= ZA01--B
w1 w1

(3.70)

with

a 3 = 00 dxe-x 2 f1 dJo(2w1,x) + (1- wi)fii

+wi Jo(2wi v) (fnxx - fI)]

= --wf 1 1x(0) - wi(1 - wi)2fli(0)

d2Jo(2wi/t)
dx2

+ dxe-xfii [2(1 dJo(2wi VF)
- wi) dx

d2Jo(2w1 ) 1
dx 2 I

Use has been made of the generic form of the partial integral

J dxf (x)e-x = -f(0)G(0) - j0 dx J
dx(f' - f)e-xG.

[C-7]. From (012, 002) in (3.56):

i f dxex F2f 12 dJo(2w2 /z) + (1 - w2 )f 12d 2 J 0(2w2 if)
0 o dx dX2
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+w2 Jo (2w2 V/X)

. A 2 A*
=Za4-- B

W2 U)2

(f12xx - f12)] 2 A B
W2 W2

(3.72)

with

a 4 = dxe-x 2f[2x dJo(2w 2 X)

fI dx + (1W- 2)f 12 d2 Jo( 2w2X)
dx2

+w2Jo(2w2 VIX) (f122x - f12)]

S--w 2f1 2x (0) - w2 (1 - w2)
2f1 2(0)

+ dxe-xfi2 [2(

[C-8]. From ('13, 0*01) in (3.57):

-i] dxe-x 2f13dJo

W2) dJo(2w 2 X)1-w2 ) dx
d2Jo(2w 2 X)1

dX2 I
(3.73)

2wit ) + (1+ WI)f13 d2 Jo(24) I)
dx dx 2

-wi Jo(2w1  x) (f13xx - f13) AlA1B

.ia A1 A*= -za--i WB
wi w1

(3.74)

with

a5 = jdxe-x 2fia dJo (2wi vl§)
fI dx +(1 +w 1 )f 13

d2Jo(2wi )
dx2

-w Jo(2w, v/ ) (fl3xx - f13)]

wifi3x(0) + wi(1 + w1)2f13(0)

+ dxe-xfil3 2(1

[C-9]. From (7b1 , #*2) in (3.58):

-i dxe-x 2f

+ wi) dJo(2w, lx)

dJo (2W2 VX)
14x dx

d2Jo(2w Ix)1

dX2 I
(3.75)

+ (1 +w 2)f 4 d2Jo(2w2 x)
dX2

-w 2Jo (2w 2 NI)

-ia6 -W B
W2 W2

(f4xx - f14)1 A2 A2B

(3.76)
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with

a6 1J0 dxe-x Hfl4x

d Jo(w2/s)d 2 Jo(2w 2 x)dJo(2w 2 -)+ + w2)f14 dx 2

dx X

-w 2 Jo(2w2 X) (fl4xx - f14)

= W2 fi 4 x(0) + w2(l + w2 )2 f 14(0)

idxxfd2(1+W2) dJo(2W2x) d2 Jo(2w2 x)j
+ n ~f4 (o 2 dx dX2

[C-10]. From (1, 002) in (3.59):

o 0dJo(2w 2sx) _

-ijdxe~[ 2f dx (l-wi1fii

A1 A2 *
w2 Jo(2w 2/x) (fxx - f --) B

-0p14 AA2B*
W1 W2

with

014

O( F dJo(2w 2 /)
= 1dxe~ 2 fnx dx

+w2 Jo(2w2 Vx) (fllxx - fii)]

d2Jo(2w 2 x)

dx
2

=-W2flix(O) - W2(1 - W2 )2f,,(0)
O) dJo(2w 2 x) _ d2Jo(2w 2 x)l

+ j dxe--fni 2(w 2 - 1) dx dx2

[C-11. From (V*21 001) in (3.60):

100 f dJo(2w, fx)
I dxe -2f12x dx

d2 Jo(2wi Ix)
-(l -w 2)fi dx2

+L1wJo(2w xv/x) (fl2xx - f12)] AA2B*

A1 A2
= -i015A 2 B*

W I W2

00 d Jo(2wi ) d2 Jo(2wi fx)
015 = dxe-I 2f2x dx -(1 - w 2)fIi dx 2

Jo Ldx
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d2Jo(2w 2 x)

dx2

(3.78)

(3.79)

with

(3.80)



+w, Jo(2wVx) (fl2xx - f12)]

= -wif 2x (O) - W1(1 - W) 2fh 2 (0)

+ _ dxe fi2 2(wi -
dJo(2w1 v's)

1) dx
_ d2 Jo(2w1 /) 1

dX2 J

Collecting the similar terms with respect to B according to (3.67), we get

a, = 1 (3w4 - 4a,
:Ti

a 2 = I (3w 4

- a 3 + a 5)

- 4a 2 - a 4 + a 6 )

a3 =
W1 W 2

[iwiw2 ( 4+

2 2\

+
2u), 2W2)

- 8i7r (40, + W10 2 + W2 0 3)

+8i7r (404 + w1 5 + W20 6) - 87r (417 + W10 8 + w2,39)

-8i7r (403o + wil)3 + W2 0 12 ) - i (3w2w - 413 + 114 + 13)]

3i
r = 2i - 16iirui + 16i7rK2 - 167r, 3 - 16i7rK4 -

(3.84)

(3.85)

Substituting a,, a 2 , a3 and K into (3.66) we get

= -i (a,(wi)IA 1 2 + a2 (w2 )A 212) B + a3(wi, 12 )A1A 2B* + r|BI2 B

= -iiB - ibei2wB* + rIB12 B (3.86)

where 5 = aj(wi)jA1j 2 + a 2 (P 2 ) A 2 2, b = ja3 (wi, w 2 )A1 A 2 and 2 p is the sum of the

two incident waves phases, i.e. A1A2 = JAA 2|e12 p . b is a real number after noticing

that a3 is negative and pure imaginary since R(a3 ) oc 407 + wi,38 + w2 0 9 = 0 due to

u 2 (oo) = 0 (See Appendix E of last chapter). Change of variable

B
B = Be - = - - (3.87)

will eliminate the phase of the two incident waves 2p from the governing equation

(3.86):

= -idB - ibB* + * (3.88)
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Therefore, the phase p is immaterial to the dynamics. In the following discussion, we

will use
DR = -i&B - ibB* + rB2B*
OT-

(3.89)

where we omit the overbar for simplicity.

The normalized integrals are summarized as follows:

. In a1 and a 2 , we have

= j dxe~2x

a 3 = j dxe~xfii

a4 = j dxe xf12

a5 = j dxexfia3

a 6 = j dxe-xf14

2(1

2(1

2(1

2(1

SdJo (2wn V ) ,2

dx )

- W)dJ o(2w 1 f)

- W2) dJo (2w2 Vf)
-w)d )dx

dx

+W2)dJo (2W2 /X)
+w2 ) dx

n = 1,2

_ d2 J0 (2wiV')]

d2 J0 (2w2 )]

_ d2 Jo(2wi V)
dx2

_ d2 Jo (2W2 VX

o In a3 , we have

01 = dxe- 2x Jo(4 v) I0
dJo (2wi l) dJ (2w 2 A)

d<Yo(4 A)dg ck

02 = dxe 2x Jo(4i/i) f d Yo(4 )Jo

03 = dxe- 2x Jo(4x/f) I dYo(4 J) JO

04 = dxe- 2 x Jo(4 Fx) 1

0o x
05 = 10dxe~2x Jo (4 VG) dg Yo(4q) Jo (2wl

(2w,

(2W2

d2 J0 (2W2 A)
< 2

d2 Jo (2Lvi

<g2

dJo (2w1) dJ (2w 2 A)
d<Yo (4 i) - <d<

d2 J (2w2 A)
V ) <2

06 = I0 dxe- 2x Jo(4 V) I xd<Yo(4 ) Jo (2W2 N )
d2 J0 (2wiA)

< 2
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08 j dxe- 2 xJo(4 x) d Jo(4 ) Jo (2w 1 )

/39 = dx-2 Jo(4 v)] 0 d'Jo(4 ) JO

/31o j dxe62 Yo(4 /x) jdJo(4

3= j, dxe- 2xYo(4 x) j dxJo(4 )JO

f100 
=x/312 ]o dxe- 2x Yo (4 Vx) ]o < Jo(4 )Jo

/313 = dx

(2w2 K)

dx

d2 Jo ( 2 )2

d2Jo (2wi

Jo (2w, / ) dJo (2w 2

/]c 17C

(2w

(2w2

d2 Jo (2w 2

d2Jo (2w,

014 = dexfi 2(U2

015 = dxe-xfi2 2(wi

dJo(2w2 /)
-1) ddx

1dJo(2w1 x-)
-) dx

d2 Jo (2w2 VX)

d2Jo (2w, x)

All integrals above depend on w, or w2.

* In , we have,

j= dxe 2"Jo(4 x) jc

K2 =j de-2xJo(4/x) xd

K3 =f dxe-2xJo(4 ) )

dke2 Yo(4 ) = 0.007221

e-2 Yo(4) = -0.007085

de 2 Jo(4 V) = 0.004579

r,4 = dxe- 2xYo(4 / ) de- Jo(4 ) = 0.014306
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Note that the constant

r = -0.2302 - 0.1882i (3.90)

is identical to the one in the synchronous resonance case. The coefficients a1 , a2 and

the absolute value of a3 for different w, are plotted in Figure 3-1. Singularities occur

at w, = 0 (W2 = 2, i.e. twice the frequency of the edge wave, and hence subharmonic

resonance is the case. a 2 singularity), wi = ,r- 1 = 0.732 (ai singularity) , w, = 2 -

(, - 1) = 0.764 (w2 = v - 1, hence a 2 singularity.) and w = 2- (v'F - 1) = 0.354

(w2 = F - 1, hence a2 singularity.) . The last three cases will be studied later. For

example, when wi = d - 1 = 0.732, this incident wave will interact with the edge

wave (mode 0) of eigen frequency 1 to generate harmonic of VF, which is the eigen

frequency of another edge wave (mode 1). Compared with the synchronous resonance,

all these singularities indicate a lower-order resonance.

The special case of wi = 1, w2 = 1 corresponds to the synchronous resonance case

except here we count the excitation force contribution from the two identical incident

waves. Refer to Eq. (3.86) for the detail of the corresponding coefficients. For this

special case, a, = a2 = 0.034 and a3 = -0.152i. Comparison with a in (2.96) and 0

in (2.97) from Eq. (2.89) shows that the value of the coefficients in front of the same

term is precisely doubled.

3.6 Effects of detuning

Instead of perfect subharmonic resonance, i.e. w, +w 2 = 2, we now consider the effects

of detuning, i.e.

(1 +W2 = 2(1+ 62Q)

This frequency mismatch may come from both incident/reflected waves:

(Doi = #oie-i(W1+E 2 n)t + *, <bO2 = #0 2 e(w2+E 2 2 )t + * (3.91)

This amounts to making replacement

A1 - AieiEO2Ql, A 2 --+ A 2ei 2Q2t (3.92)
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Figure 3-1: Coefficients a, (solid lines), a2 (dash lines) and absolute value of a3 (dash-

dot line) v.s. wi. The three vertical dot lines indicate positions of discontinuities at

Wi = 0.354, 0.732 and 0.764, where resonance occurs.
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with

Q1 + Q 2 = 2Q

Recall the evolution equation (3.89)

OB
= -i&B - ibB* + r|B12B

This replacement (3.92) does not change the value of coefficient 5 since it is related

to JA112 and IA2 12 . But A1 A2 will be changed to

A1A2e-20-t = A1A2e 2 inr

Then the evolution equation (3.89) becomes

r
= -iiIB - ibe-2 ins B* + i'|Bj2 B (.3

Change of variables B = Be-'O' gives

OB (aP
OT a

- iQB) e-if

and (3.93) becomes

= -i(& - Q)B - ibB* + K|I12 f (3.94)

The detuning merely changes the coefficient of one term as in the synchronous

resonance theory. In the following analysis, we omit the overbar for simplicity of the

notation, i.e. considering the dynamical system

OB
- = iaB - ibB* - (u+i y)fB 2B (3.95)

where , = -(u + i-y), with -= 0.230160, y = 0.188212 from (3.90) and

a = Q - a,(wi)IA112 -a2(W2) A212, b a3 1(wi, w2 )AIA 2 1

Due to the normalization, IA1| + IA2 1 = 2. Therefore, the maximum of lA1IIA2 1 is

1 when IA1! = IA2!. With zero detuning, we can plot curves of ao = -aj(wi)A1 2 _

a2 (W2 )jA 2 12 V.S. w, and b v.s. wi for several combination of (|A 1!, |A 2 |) in Figure 3-2

and Figure 3-3.
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4-

3"-
I I. :j

2 -

.-1..-

-4 - O'=0.354 4o=0.732 oa=0.764

0 0.2 0.4 1 0.6 0.81

Figure 3-2: Coefficients ao v.s. w, for zero detuning Q = 0 and (JA1|, JA21) = (I, q)_

-12 2

dash lines, (I1, JA21) = (1, 1)- solid lines, (JAil, JA21) = - j- dash-dot lines.

-2

Note the singularities at w, = 0.354, 0.732 and 0.764.
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0.6-
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0
0 0.2 0.4 0.6 0.8

1

Figure 3-3: Coefficients b v.s. wi for zero detuning Q = 0 and (1A 11, 1A21) = (1, 4)-

dash-dot line, (1A11, |A 2 1) = (I, j)- dash line, (jA 1f, IA2) = (1, 1)- solid line.
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3.7 Initial growth

If the initial edge wave amplitude is much smaller compared to the standing waves, i.e.

JBI << 1. Therefore, only the linear terms come into play. Equation (3.95) becomes

= iaB - ibB* (3.96)

92B B OB* b2 -
=ia -ib =b - a2)B

The solution to the above equation is

B(Tr) = B(0)e±1 b"-a 2 7

With zero detuning,

r2 = b2 - a2 = JA1 12 A 21
2 |a3|2- a1 A1 + a2|A 2 |

r |A 2 1 + A1 )

We plot curves of r 2 v.s. w, for several combination of (!A1!/A 2|) in Figure 3-4.

From Figure 3-4 we can see that most of parts of the curves are positive, meaning

unstable response of dynamical system to the perturbation. The stable response to

the perturbation only occurs near the singularities. The growth rate decreases with

the increase of w, under the three combinations of (!A1 |/|A2 J). For a certain w1,

the growth rate is the largest when the two incident waves have almost the same

amplitude. The plot suggests a largest growth rate in this case r = vf9 = 0.95

at w, = 0.18 around (refer to Figure 3-5). A refined search shows the maximum

r = /" 55= 0.964 occurs at IA1 = 1.15 when w1 = 0.14. Compared with the growth

rate of 0.0679 for the synchronous resonance, 0.964 is closed to unity and is a much

faster initial growth. Refer to Figure 3-6 for curve of r2 v.s. JA 11 with different wi. In

this plot, it is confirmed that the maximum growth rate occurs at JA1 I = 1.15.

3.8 Analysis of nonlinear dynamical system

The dynamical system (3.95) has exactly the same form as (2.107) in the synchronous

resonance case. Therefore the analysis is the same, except the coefficients a and b
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Figure 3-4: Growth rate r2 v.s. wi for zero detuning Q 0 and (IAIA21) (1, )-
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dash lines, (|A11,|JA2|) =(1, 1)- solid lines, (JA1|, JA21) = (1, !)-dash-dot lines.

Singularities occur at w, 0.354, 0.732 and 0.764.
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Figure 3-6: Growth rate r2 v.s. IA1 I for zero detuning Q = 0 and w, = 0.1- dash-dot

line, w1 = 0.14- solid line, w1 = 0.18- dash line.
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have different meanings for the two cases.

OR
= iaB - ibB* - (u + i-y)IB| 2B

with a = 0.230160, y = 0.188212 and

a = Q - ai(wi)|AI|2 - a2 (W2 )|A 2 12, b |a3 (wi, W2)AiA 2 | (3.97)

At equilibrium we denote B -vIe"0, then

a2 tb)] b,-FO +62 1 b2 F21If= Ia± 1+ -(1 - 2)I = i± 1+ -- (1 - 2)~,±2 [ ' 2  2 [

Therefore, I± oc b as

= t + -- (- 2 &2)]
b y2 + U.2-72

A single curve of equilibrium branch Io/b v.s. e can be drawn and shown in Figure

3-7, where
a

a = -. (3.98)

From the plot we can see that the equilibrium branch curve has exact feature as

Figure 2-5 in the synchronous resonance case. Larger b simply means larger mature

edge wave amplitude. The four critical points are at a = -1, 0.82, 1, 1.29, which

are four surfaces in the parameterized space (w1, IA1, Q). From (3.98) and (3.97) we

can get

Q a I a3 (1,w 2 )A1A 2 + a,(wi)IA112 + a2(02)A 21
2. (3.99)

For each of the four critical e, we compute Q for different w1 and A1 and plot them

in Figure 3-8 to Figure 3-11.

Alternatively, (3.99) can be rewritten as

Q - a1(wi)|A 1 1
2 - a2(W2)|A212

ja3(W1, w2 )A1A 2 (

For given w1 and A1, & is linearly proportional to Q. Therefore a straight line can be

drawn on the (0, &) plane. The slope of the line is determined by b a3 (w1 , w2)A1A 2

and the &-intercept is determined by

ao _ (-aj()j|A1
2 - a2 (U2 )|A 2 2)

b |a 3(w1, W2)A 1 A 2 1
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Figure 3-12: a v.s. 0 curves for critical value of w, with A1 = 0.25, A2 = 1.75- First

branch of ao.

Refer to Figure 3-2 and Figure 3-3 for the property of ao and b. Basically, b is

monotonic with wi. But ao is only monotonic on the first and the last branches. We

also found that different (A1 , A2 ) combinations do not affect the features of ao too

much. Plotted in Figure 3-12 to Figure 3-15 are the & v.s. Q curves for critical value of

w, with A1 = 0.25, A2 = 1.75. We add some intermediate values of w, on the figures,

which are plotted in dash lines.

On the other hand, we plot the & v.s. w, curve with fixed Q and A1 in Figure 3-16,

3-17 and 3-18. Note the singularities at w, = 0.354,0.732 and 0.764.
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Figure 3-14: & v.s. Q curves for critical value of w, with A1 = 0.25, A2 = 1.75- Third

branch of ao. The dashed line in the middle is for w, = 0.749.
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0.764.

134



I .

-I 4

-

- 's 4-

' 1
0.2

I

9' I
44

44
44 I--

44
44 91

44 -
44

44 -

44 I
44'-

441

I

0.4
CO1

0.6

Figure 3-17: & v.s. w, curves for A1 = 0.5 and several Q's: Q = 0- solid lines, Q =

-2- dash lines, Q = 2- dash-dot lines. Note the singularities at w, = 0.354, 0.732

and 0.764.

135

20

15

10

a 5.

0'

-5-

--1

-1

0-

5-

I.
9'

-20'-
0 0.8 1

- . -

I

.I



20

15--

10-1 5

0 -

-5--

-10 -

-15-

-20'
0 0.2 0.4 0.6 0.8

(01

Figure 3-18: & v.s. w, curves for A1 = 1.5 and several Q's: Q = 0- solid lines, Q =

-2- dash lines, Q = 2- dash-dot lines. Note the singularities at w, = 0.354, 0.732

and 0.764.
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3.9 Conclusion

1. Although we require that w1 + w2 = 2, the generation of one edge wave by a pair

of incident waves allows a continuous spectrum of frequency within (0, 1);

2. At specific value of wi, lower-order resonance occur, which is not appealing for

this study, but intriguing a new topic of cross-resonance;

3. The equilibrium of the dynamical system depends on the frequency W, amplitude

A and detuning Q of the incident waves. Otherwise, it shares the same features of

dynamics with the synchronous resonance.
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Chapter 4

Resonance of two edge waves by

one incident/reflected wave system

In the last chapter, we found that unbounded resonance of two edge waves happens

when the eigen frequency of the incident wave and the two edge waves takes some

special values. In order to deal with this situation properly, the following multiple

scale scheme is proposed: Two edge wave modes are present at leading order, whereas

one normally incident/reflected wave exists at one order higher. It is expected that

nonlinear interaction of the incident wave and one of the edge wave modes resonates

the other edge wave mode. This cross resonance requires that the two edge wave

modes share the same longshore dependence cos ky while the normally incident wave

has only x-dependence in the cross-shore direction. Also the incident wave frequency

w must be related to the two edge wave frequencies wp and w. by

W = Wq t WP. (4.1)

Later study will show that the choices for different signs on the right hand side of (4.1)

make the dynamics of the whole system quite different. Only the plus sign will lead

linear instability of the dynamical system, hence is of interest. This resonance triad has

been recognized by Guza and Davis [14]. But they only limited their discussion to the

initial stage of growth and did not allow the saturation of the edge wave amplitudes.

Therefore they did not obtain the complete evolution equations governing the two

139



edge wave amplitudes.

We consider two general edge wave modes p and q of (1.6) sharing the same eigen

function in y:
igB '

,k= - e L(2kx') cos ky', j = p, q

where we use prime " ' " to represent the physical variables in order to distinguish

them from the normalized ones to be defined. The two edge waves have the same

wave number k, which is related to the channel width W by the eigenvalue condition

in y:
mir

k =_ ,M = 1, 2, 3...
WI

Their eigen frequencies are different according to the eigenvalue condition in x:

w' = (2n + 1)kgs , n = 0,1, 2, ... (4.2)

In normalized form the eigen frequencies for these two modes satisfy

w= /W = 2j + 1, j = p, q. (4.3)

with the scale

w= kg (4.4)

which is the eigen frequency for the lowest 0 mode of edge wave. We assume without

loss of generality that q > p.

Refer to (2.2) for Airy's nonlinear shallow-water equation and (2.3) and (2.4) for

the quadratic and cubic nonlinear terms in physical variables. We introduce the

following nondimensionalized variables:

X.= kx', y =ky', t =W 1~' - , -
JA '19g

where the scale JAl is defined by

s| ' 1/2

|A| = . (4.5)

where A' = lA'le is one-half the physical amplitude of the incident/reflected wave

at the shoreline. Let us define the small parameter

klAl «1 (4.6)
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Then

A' = K|Aje (4.7)

and

JA'J = | AI = JA2
S

Physically, JA| is the scale of the edge waves when fully resonated.

Upon the substitution into equation (2.2), we obtain

- 4 tt + (Xd@,)x + X1p1Y, = EQ(4) + 2C(4) (4.8)

where the quadratic and cubic nonlinear terms are

Q(4) = 2 (Dx4It + 4y~yt) + 1 t ( 2x + 41y) (4.9)

C(<D) = (4 + D) ('yxx + 4YY) + <4XX + ) + + 424 (4.10)

We also normalized the surface boundary condition to get

+ D+ IV|2 = 0. (4.11)

As confirmation, a typical linear term is normalized as follows:

anda tpial uaratc (WO) j-jg

and a typical quadratic nonlinear term as follows:

001//--+ k 2o(JIg 2(9)Xt

(WO

The ratio of quadratic nonlinear term to the linear term is the small parameter

JA|gk 2  sgk kAI kjAj

(w6)2 - (W,)2 s s

where use has been made of the eigenvalue condition for the lowest 0 mode of edge

wave (4.4).
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4.1 Harmonics and the nonlinear forcing terms

The proposed perturbation expansion is:

S= Do + E4, + O2@2 + --- (4.12)

At the leading order we assume the co-existence of two edge waves of frequencies w,

and wq:

4 = (Dop + '1 Oq (4.13)

where

Bj (-r)
4oj = ?oj e~-i + *, with 4'oj= -i w B e~Lj (2x) cos y; j = p, q (4.14)

Wi

are the two edge wave modes with normalized eigen frequencies wj = V2j + 1. Here

Lj is the jth order Laguerre polynomial by

(- 1)i j2 U1 2( - _ 1)2 j2
L ( = (. - - - -... + (-1)ij!

with = 2x (With this definition, dL = L = 2L' since the prime "'" denotes the

derivative with respect to argument i.). Bj(T)'s are the slowly varying dimensionless

amplitudes of the edge waves at the shoreline in accordance with the linearized free

surface boundary condition

l+, =0. (4.15)
at

Besides the incident and reflected waves at the second order 0(b), there are in

total ten harmonics generated by the quadratic interaction of the four first-order

wave harmonics (±w and ±wq). In order to see which of these harmonics are of our

interest, we first gives the details as follows:

[Q-0]. Zeroth harmonic:

( 0 j, 0*)

= 2 @ @ + 4$$ 'oix(-iwj) + 4ojy*y 3 (iwi) + vojy(-iwj)

-2Wj?)Oj ($2 + ?/*yyy) + i~wj*) (OoIjTx + Gojyy) = 0, j = p, q. (4.16)
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[Q-1]. Harmonic e-i(q-P)' and its complex conjugate:

2 [V)oqV* ,(iWp) + /)Opx<)oqxiUWq) + 0PoqyV)*y(iWp) + 0*y'Ooqy Iwq)]

-WqJOq ('v*5, + 'i*pyy ) + iWp 4)* (iIoqxx + 4'oqyy)

2(wp - wq)i [V*p2/oqx + /*Oy4 Oqy]

-iwqOg (/ *XX + 0* + p* (0oqxx + 90qyy)

= i B,* B ie 2X {2(wu - wq) (2L' - Lp)(2L' - Lq) cos 2 y + LpLq sin2

+ [-wqLq (4L"/ - 4L' ) + wpLp (4L'/ -4L')] cos 2 y}

= BiBq e-2 X {2(wu - wq) [(4Lp'Lq - 2L' Lp - 2Lj'Lq) cos 2 y + LpLq]
WpWqq

+ [wpLp (4L1' - 4L/ wqLq (414' -4L)] cos2

= *Bq e--2x [fi(x) cos 2y + gi(x)] (4.17)

with

fI(x) (wp-wq)(4L L -2L'jLp-2LjLq)+I [wpLp (4L4' - 4L') - wqLq (414 - 41 )

g1 (x) = f1(x) + 2(wp - wq)LpLq

[Q-2]. Harmonic e-+i(wpq)t and its complex conjugate:

(4'Op, 'oq)

= 2 [0oqx'opx(-iwp) + 0opx/ox(-iwq) + 0qy/Oy(-iwp) + 0opyogqy(-iwq)

-iwqgOq (4'Opxx + ,LOpyy) - iWp?1op (V)Oqxx + 4'oqyy)

= -2(wc + wq)i '[00pxOqx + /Opy/Oqy]

-iwq'Oq (7Npxx + 4Opyy) - iWp)Op (V'oqxx + 0oqyy)

= -i (Bj)_ 2 x { 2(wp + wq) [(2L' - Lp)(2L' - Lq) cos2 y + LpLq sin2

+ [wqLq (4L" - 41') + wpLp (4L'/ - 4L;)] cos 2 y}

= BpB _2x { 2(w, + wq) [(4L' L' - 2L'L - 2L) cos2 y + LpLq]
WpWq 

q qP-L'q

+ [wpLp (414 - 414) + WqLq (4L" - 414)] cos 2

B i B)B --2x (f2(x) cos 2y+ 92(X)] (4.18)
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with

f 2 (x) = (wp+wq)(4L'L' -2L'Lp-2L'Lq)+ [wL, (4'' - 4q)

92(x) = f2(x) + 2(wp + wq )LpLq

Use has been made of trigonometric identity

2 1 + cos 2y
2

[Q-3]. Harmonic ei 2 pt and its complex conjugate:

(0P,) Op)

=2(-iwip) (V)2x +,02py iWp00p (,Opxx+#p

=p 2at ( iwp)e-2x 2 [(2L' - Lp) 2 cos 2 y + Lp sin 2 y] + LP (4L" -

B 2

= e [f 3 (x) cos 2y + g3 (x)]
Lp

4L') cos2y}

(4.19)

with

f 3(x) = 2LP'2 - 6LpL' + 2LpL"

g3(x) = f3(x) + 2L2

[Q-4]. Harmonic e-i 2,qt and its complex conjugate:

(4'oq, oq)

= 2(-iq) (V)2X + V)2qY) - i2q'/Oq (/)oqxx + V)oqyy)

(-iw,)--2x { 2 [(2L' - Lq) 2 cos 2 y + L sin 2 y] + L, (4L'"' - 4L') cos2 y}

B2
= e~q [f4(x) cos 2y + g4 (x)] (4.20)

with

f 4 (x) = 2L'12 - 6LqL' + 2LqL'

g4(x) = f4(x) + 2Lq

In summary, there are 4 effective harmonics with their complex conjugates [Q-1]

to [Q-4], each of which consists of two parts, the forcing with y dependence and the
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one without. They will excite two kinds of waves, one trapped and one radiated. We

treat the two kinds of responses differently and therefore have eight wave components

at the second order besides the known incident and reflected wave. We distinguish

the two kinds of responses by different notations - 4 for the trapped wave and # for

the radiated wave:

i) (00,, 0oq) -+ [ 11(x, y) + q 1, (x)] e-i(we--);

ii) (Op, ?Pq) - [012(X, y) + # 12 (X)] e-i(,+wq)t;

iii) (4 Op, 0Op) [' 13 (x, y) + 0 13(X) e-i 2wpt.

iv) (00q, 0oq) - [i 14(X, y) + 014(x)] e- 2 Wqt

where 011, 012, 13 and 014 are proportional to cos 2y.

4.2 Multiple-scale expansion

Let the incident and reflected wave have the normalized frequency w = Wq + Wp =

V/2q+1+ N2p+1. Case of w = wq - Op = 12q+1 - N2p+l can be treated

similarly and the details are given in the Appendix G. The multiple-scale expansion

of the solution is

= [Oop(x, y, r)e-t + * + ['-oq(x,y, r)e iqt +*

+ [#11(X, T) + V)11(X, y, T)] e-i(wq~WP)t *

+ [#1 2(x, T) + 012(x, y, r)] e-i(p+Wq)t + *

+[ [013 (x, T) + 0 13 (X, y, r)] e-i2wpt + *

+E [0 14 (x, T) + 4' 14 (x, y, r)] e-i2Wqt + *

+2 0 2p(x, y, r)e -wpt + * + 2 [V)2q(X, y, r)e-iwet + *1 ... (4.21)

where the known incident and reflected wave will be incorporated in 012 as part of

the homogeneous solution. We have two time scales in the system, fast time t and

slow time r = O2 t. Change of variable will give

09 a 2 a 2 C92 2 0 a -4 2
- + +I 2 , - + -2 + 2 2 8 - - +r 2

t 09t &T 0tt 2 09t 0-rT -T2
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Substituting 4.21 into Eq. (4.8) and separating different orders, we get

{[w 2Vo, + (x4'ox)x + xVPoyy] eWp +*}

+ { [o4'oq + (x/oq)x + XV)Ioqyey] +iWq +}

+{(Wq- ,) 2 g 11 + (xolix)x] e-i("qWp)t +*

+ {[(wq - w) 2,01i + (xolli)x + x'y I] e-i(W-Wp)t +*

+s{[(wp + Wq1) 2  + (xOi 2x)x] e-+i(p+}q)t

{[(w + Wq) 2012 + (xV)12x)x + xe12y,] e-i(pwq)t +*

+-E{ [4wPqs13 + (xO13x)x] e-i 2wpt +*

+- { [4wpb13 + (X'013x)x + x'013I,] e-i2wpt+ *

+s { [4q14 + (xi 4x)x] ei2Wt+

+E f[4Lt)+2 .,+~ae-i2Wq+t+ q{ )w1' 4 + (X?,bl 4x)x + X'0l 4yy] g2q

+ t2 {[w0b2, + (x4 2p)x + x0 2py]e-i]et +*}

+32 {[wj24+(2q)+ + (X02)x 2] q t +*}

= E{(OP , oq)e-i(wqWP)t + + {(Op , 4Oq)e -i(Wpwq)t +

+ {(@op, Oop)e-i2wpt + *+ {(?4'oq, 0j)0)e-i 2Wqt +

+E{[ (i1'oq) + (/*1, "/oq) + (12, 0) + (012), )] e-Wpt +
+2{E[(#13, ,) + (013,,)] e6iwpt +

+E2 [(kop7 00p, 0*,) + (Op, 'OOq, V)] e-i'pt +

+2{[(, 0o) + (11, 0Op) + (0 12, 4*,) + (, 12,0*)] e-Wqt +

+E2 {[1, *q) + (0 14, *)] 0 iWqt +

+E2 {[(00,, p, ) + (0o0,0q, V)] e-iWqt +*}

+E2 -2iw, ee" + + 2 2ii eq + +

4.3 The leading-order solution

At 0(1), we separate different harmonics to get

wj2oj + (xoojx)x + x ojyy = 0, j = p, q-
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With the boundary conditions of no flux at shore and exponential decay at infinity,

the first order equations allow the edge wave eigen solutions (Modes with the same y

dependence, but different x dependence are of our concern.)

.B,(T)
00j= -Z e-L. (2x) cos y, j = p, q. (4.23)

Wj

B (r)'s are the slowly varying dimensionless amplitudes of the edge waves at the

shoreline (The physical amplitudes of the edge waves are Bj = |A|Bj. The evolution

equations governing the complex amplitudes B (T) are to be obtained at higher order.

For later use note that the functions F = e-xLj (2x), which describe the x de-

pendence of the edge wave modes, are eigen functions of the homogeneous boundary

value problems

jF- + [(xFjx)x - xF)j =0

xFjx=0 at x =0; F -+0, x -oo.

4.4 The second-order solution

At O( ), there are eight locally generated wave components as mentioned at the end

of section 4.1. These harmonics fall into two categories: 1-D outgoing radiated waves

(denoted by q1, to #14) and 2-D trapped waves (denoted by 01, to 01 4 ). The known

incident and reflected wave is contained in 12 as its homogeneous part. We now

pursue the inhomogeneous solutions.

4.4.1 011 to 14 - Radiated harmonics

Collecting the second-order terms from (4.22) according to their harmonics, we get

four equations governing the four radiated wave components

(Wq - wp)2 #0 + (xq1i )X = i 4e _2 g1(x)

(Wq + w) 2q012 + (XO12x)x = e~ _2xg92(X)
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B2
4w,20 13 + (x413x)x = i--e -2x g3(x)

4wq 14 + (xO14x)x = il-e 2xg 4 (x)
Wq

where we chose the part independent of y from forcing [Q-1] to [Q-4]. Refer to (4.17)

(4.20) for the detail of those forcings.

The generic equation governing these four waves can be summarized as

0 + (xOX)x = g(x) (4.24)

where Co is the generic frequency of the harmonic and 9(x) is the corresponding forcing

out of the quadratic interaction.

We first rewrite the inhomogeneous Eq. (4.24) in the form

(4.25)Oxx + OX + -g =X X X

Then the particular solution of the inhomogeneous equation will be

# = C1Jo(20 G) + C2 Yo(20 V/) + ui(x)Jo(20 V) + u2 (x)Yo(2o N/7) (4.26)

where

u1(x) =- 6W (JOI YO)(=)

U2 (X) x Jo (20vN )9(0 )U2(~x) - JfW(Jo, Yo)()
with Wronskian

dYo
W(Jo,Yo)(x)=J dx

dJo
dx

-7r j Yo(20V/)g( )d

= Xj Jo(20,/)g()d6

d(20 V') 2 20
dx ir2CDX2\ "

and C1, C2 are the constants to be determined by boundary conditions. Use has been

made of

J0 = -iJl Y' = -Y, J1(z)Yo(z) - Jo(z)Yi(z) = 2
7rz

The prime "' " denotes the derivative with respect to argument z = 2CAfi.

First, for boundedness at the shoreline we require C2 = 0. For confirmation, let

us examine the no flux condition at shoreline, i.e.

xx -+ 0 as x -- 0 (4.27)
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As x -+ 0, we can approximate Bessel functions of the zeroth order by the following

ascending series

1Z2

'10 (Z) (1!)2 + - 0(z), Yo(z) = 2 ln
Z

+ -y} Jo(z) + O(z2)

and their first derivatives by

dJo(29 x) LI_2 + I4X _ O(X2)
dx 2

dYo(2W' 0x)

dx =X
(4.28)

Upon substitution into (4.27), the first term in solution (4.26) becomes

C1x (J(2 x)) = C1 (-02x + O(x2))

and the second term becomes

0 (x ln(-V)))

For the third and fourth terms, Yo(2cD0 )g(x) ~ g(O) ln(& x) as x -+ 0 so that

ui(x) 7r foxln(W )~ jln(x)d xIn x + O(x)

and J(2D x)g(x) --+ g(0) as x --+ 0 so that

U2(X) = jx [g(O) + 0()] d = 7 [xg(0) + O(x2)

The third and fourth term become

x [(u i(x)Jo(2c Vx)) + (u2(x)Yo(20 V))]

) dJo Dx U2 (x) d Yo(2 )
dx dx

~ x (--D2x ln( x) + g(0)) ~ g(0)x

where use has been made of

uiJo(2C. x) + u2xYo(2 x) = -,rYog(x) Jo + -FJog(x)Yo = 0

Collecting all four terms, we get at x = 0

as x --+ 0
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Therefore, C2 must be 0 in order for # to satisfy the no-flux condition at the

shoreline.

Secondly, a boundary condition at infinity is required for a semi-infinite domain

problem. In order to find out what is this boundary, we need study the asymptotic

behavior for both the forcing g(x) and the particular solution # at large x.

JO (z) ~ -Cos (Z- - ;) Y (Z)~ - sin (Z - 4

dJo (2' D/ ) _3/4 2 ' r d2Jo(20vfx) _5/4~X sin 20,1-- ; ~2 X Cos 2,D/x--
dx 4)1 dx2  4

Since

g(x) e 2x

it follows that

YO(2CD f)g( ) ~- JO(2(D~g(w ~ X-1/4e-2x

i.e. the integrand of ui(x) and u2 (x) diminish exponentially at infinity, which guar-

antees that the integral ui(x) and u2 (x) converge to a constant as x --+ 00. Finally,

the solution # ~ x-11 4 like Jo(20&I/) and Yo(20V/) at x = 00.

By comparison we can see that at large x, the forcing g(x) diminishes faster than

solution O(x) (exponential versus x-/ 4), i.e. relative to the solution O(x), forcing g(x)

can be treated as local disturbance. Therefore, the radiation condition applies so that

the inhomogeneous solution #(x) should appear as an outgoing wave at infinity. It is

easy to see that

# ~ -iU 2(oo)H(1(2C0rV4) ~ -iu 2 (oo) _ 2 ei(2v') as x -+ 00

representing the propagating wave if we let

C1 = -u1(oo) - iu2 (oo).

Therefore, the particular solution corresponding to the local forcing g(x) is

G(x) = [-ui(oo) - iu2 (oo)] Jo(2 CD) + ui(x)Jo(21Dlx) + u2(x)Yo(2CVx) (4.30)
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For later uses, we work out some constants as follows. From (4.29) we get

dG(x)
dx x=o

= C1(-& 2) + g(O)

= w2 (ui(oo) + iu 2(oo)) + g(0)

where g(0) is the excitation force at x = 0. And

G(0) = C1 = -ui(oo) - iu2 (oo)

From (4.31) and (4.32) we can see that

dG(x)
dx x=O

Solutions to the four outgoing waves are summarized as follows:

B*Bq
# W= p " 1(),

with g(x) = ~2xgi(x) and c = Wq - U,;

i2W BpBq
012- W JO(wV)+iWpWqG2() with g(x) = e~2xg2(x) and c = wq + Wp;

B 2

013 = G3(X)

B 2

014 = i-IG4(X)
Wq

with g(x) = e-2xg3 (x) and co = 2wp;

with g(x) = e- 2 xg 4 (x) and C = 2wq. (4.34)

where G1 , G2 , G 3 and G4 are given by (4.30). We have incorporated the incident

wave in the solution 12(x) , where A'= EIAle 2W is the known incident and reflected

wave amplitude at the shoreline and w = wq + wp is its frequency.

4.4.2 0 11 to V) 14 - Trapped harmonics

Collecting the second-order terms from (4.22) according to their harmonics, we get

four equations governing the four trapped wave components

(wq - wP) 2011 + (Xollx)
B*B

+ XV~lYY = B; B 2xf (x) cos 2y

(wq + W,) 2 b12 + (X'O12x), + X4lyy = .BpBq _2xf2(x) cos 2y
WpWq

B 2

4L2V 13 + (XV/13x)x + XV'iiy, = i-Be_2x f 3 (x) cos 2y
P WP
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B2

q4 + (xOb4.T)x + YY = i--e2xf4 (x) cos 2y
Wq

where we chose the part with y-dependence from forcing [Q-1] to [Q-4]. Refer to (4.17)

(4.20) for the detail of those forcings.

The generic equation governing these four waves can be summarized as

w 2/ + (x~x+ xOYY = g(x) cos 2y

where C is the generic frequency of the harmonic and g(x) cos 2y is the corresponding

forcing out of the quadratic interaction. Since each of the four forcing [Q-1] to [Q-4]

has a y dependence of cos 2y, we adopt a solution

= f(x) cos 2y

with f(x) satisfying

xfx, + fx + [ 2 4x] f = g(x) (4.35)

Change of variables

6= 4x, f= e-2f(6)

leads to the Laguerre differential equation, which belongs to the class of confluent

hypergeometric equation.

f" + (1 - )f' + - f = g e

Notice that, for the homogeneous equation,

CV2 1
4 2 _ n, n =0, 1, 2...

where C is one of the four values

w =2q + I k 2p + 1

or

CD=2 2j+1, j=p,q

Therefore, there is no question of solvability. For CD = 2V2j + 1,

(2 1 1 1
- - = 2j + 1-- = 2j +
4 2 22
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Therefore, it is obvious that inequality

o,2 1

4 2

holds since both n and j are integers;

For CD = V2q + 1 i 2p + 1, the eigen value condition is satisfied if

C 2 2(p + q + 1) ±2 (2q + 1)(2p + 1) 1
4 2 4 2

or

or

(p + q) ± (2q + 1)(2p + 1) = 2n,

(2q + 1)(2p + 1) = [(p + q) - 2n]2

which does not hold for the several cases we will study (see Table 4.1).

(p, q)

(0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2, 3)

W v3 /± 1 -v5 ±i1v7 /± 1 v/5-V± V/3 ,7±v'F vf V± Vf5
w2  1 1±N/ 2 ±V 3±x/7 3 ±_ 4±T 5 _

4 2 2 2 2 2 2 2

Table 4.1: Check for the eigen value condition for several combinations of (p, q).

The no-flux boundary condition applies at the shoreline, i.e. xfx -+ 0 as x -+ 0.

Since the forcing g(x) exponentially decays as x increases, only the homogeneous

solution survives at a large distance. As x --+ oo, the equation becomes the modified

Bessel equation

XfXX + fX - v2 xf = 0, v = 2

which has the general solution in terms of zeroth-order modified Bessel function of

the first and second kind

f = C1Io(vx) + C2K0 (vx)

Since Io grows exponentially in x, whereas KO exponentially decays at x ~ oo.

1
0 (Z) - 1 eZ,

vl-7z
Ko(z) - -e-, as z --+ oo.

2z
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1 o must be excluded from our solution and the solution of our problem behaves like

KO, which diminishes like e- 2x at oo. 0 is therefore trapped..

Now we impose a boundary condition at a large distance for our problem as follows:

f - 0 at x = L

with L is large enough so that both forcing g(x) and the homogeneous solution Ko(x)

vanish there. Eq. (4.35) can be rewritten as

d
dx (xfX)
dx

+ [4x _ CV2] fii = -g(x)

with the corresponding boundary conditions

xfx =0 as x- 0

xf, = 0 as x -+ L

In Appendix H the numerical formula of the finite element method is given and

is used to compute the solutions to the four trapped harmonics fii, f12, fL3 and f14,

which are summarized as follows:

41 = B*Bqf, 1(x) cos 2y

12 = BBq f 12 (x) cos 2y,

B2
013 = i-.f 13 (x)cos 2y,

B2
014 = i i fi 4 (x) cos 2y,

Wq

g(x) = e~ 2xf1 (x)

g(x) = e- 2xf 2 (x),

g(x) = e- 2xf 3 (x),

g(x) = e- 2xf 4 (X),

, = Wq - 'Jp;

= Wq + Wp;

2w;

~i2wq;

Now fii to f14 can be solved by Finite Element Method as described in Appendix

H.

4.5 The third-order problem

4.5.1 Governing equations and forcing

At Q(2), we collect terms of same harmonic and get the governing equations for two

edge waves
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w 2 V2p + (xV)2px). + x)22,yy = -2i, 0T

WgV) 2 q + (XV)2qx)x + XV )2qyy = -2iW

+ EP(x) cos y

+ 4q(x) cos y

where we introduced E£(x) to denote the resonance forces with y-dependence of cos y

from the contribution of all the following terms

(#*1, 00q) + (O*l, 00q) + (012, 0* ) + (012, 0*)

+(013, '01) + (013, '0*) + (0Op, /Op, 90*) + (0op, iOq, 0 /q*) (4.37)

and Eq(x) from

(Oil, 00p) + (/1, 00p) + (12), * ) + (012, * )

+(041,0*q) + (014, 0*q) + (@Og, 00p, 0* ) + (00g, V)g, @ 0) (4.38)

Let 02j = Hj (x) cosy and recall the first-order solution from (4.23), then the

governing equation becomes

I23 H = 2 M F(x) + Ej (x),

where the linear operators are defined by

I2 H = WH + (xHjx)

j = p, q (4.39)

- xHj]

Details of forcing Sp(x) and Sq(x) are given below:

In E,, we have

[8,-i].

= 2f{#*1x'oqx [i(wq - w,) - iwq)]} - iWq)Oq* 4 + i(wq - wp)#*1(boqxx + 'Oqy)

= -i2wp4b*'00oqx - iWq/OqO*xx + i(wq - wp)*11(0oqxx + 0qyy)

= -ie-cos( iBB* ' Bq 2w, dG1 (2L' - Lq)
dx q

d2 G
+Wq dx2Lq- (w - wp)G1(4L''- 4L'q)

= i B 2 e -x
WPWq

{ dG1 q +Wq d2 G1 - (WqS2uwp dx (2L' - Lg )+qdxLg-(q-

= hpi(x)BpBqB*

w,)G1(4L'' - 4L') cosy

(4.40)

155



[Sp-2].

= 2 {#12x$o*qx [-i(WP + wq) + iwq)1} + iWq 4 *q~12xx - i(w% + W))012()+qxx +

-i2Wp#12xV)O*qx + iWql*/qg12xx - i w, + Wq)012(0V*qxx + 0/*qyy)

- -ie~2 Cos y
B .LdG2 q

i z 2wp (2L' -- Lq)
Llpwq wq dx

-d 2
2 Lq + (wp + Wq)G2(4L' -4L/)

-ie-2 cos y
(.e2,) (B)

o2wp S(2L' - Lq)

-Wq Lq + (wp + wq)Jo(4 Lq - 4Lq)

iBpBqB*
2_q e-

-i q e-
WLWq

{
{

2wp dx (2L' - Lq)

d 2q
2wp dxo (2L/ - Lq)

-wqd 2G2 L
- Wq dx

W Lq d2 Lq

S(wp + Wq)G2(4L' - 4L'

+ (wp + wq)Jo(4L'/ - 4L )

= hp2 (x)BpBqB* + ie*2Ip(x)B*

cos y

cos y
(4.41)

[Sp-3].

(013, 0*p)

= 2 ~b* x [-i2wp + iwp]} + iW4O'O*PO13xx - i2wpo±3( x +

-i2 p#13A *px + iWpV) OPO1 3 xx - i2Lp#13(VO*pxx + oyy)

= -- ie- cosy i BLipN (B LO2w dx (2L' - Lp)

-p G3L + 2wpG 3 (4L" - 4}

= BpBpB* -x

= eB2p) B

2 (2 L' -dx
d 2G3 L + 2G3 (4L 4L')cos y

(4.42)

= *Oq)

= 2 {I*IXV)Oqx [-ZLWq + i(wLq - wv))] + V)*iy 4'Oqy [H2Wq + i(wq - pl
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-iWqIOq (0+*1 + *1,) + i(wq - wp)O* 1 (04oqxx + 0qyy)

= -i2w) [1Xl)oqx + 4'*lyoqy] - iwqOOq (I*,+

+i(wq - wp)V)*j ("oqxx + Vkoqyy)

= -ie- * i i-q 2wpfni(2L' - Lq)cos 2y cos y

+2wpf(-2)Lq(-1) sin 2 y sin y + wqLq(fiixx- 4fI) Cos 2 y Cos y

-(wq - wp)fn (4L"' - 4L') cos 2y cos y
BqB B*I

= i 2B x [wpfiix(2L' 1 -Lq) + 2 wupfnLq
2 q

+ Lq(f Ixx- 4 fj) - Wq Wf(4L''-4L') cosy

BpBqB*= i*2p[qB L f +w (2L', -Lq)fiix
Pq

-q ~ (4L' - 4L' + 4Lq)fii] s

= hp3(x)BpBB* (4.43)

where terms not proportional to cos y are discarded. Use has been made of the trigono-

metric identities

Cos Cos = cos(s + t) + cos(s - t) sinssintCos(S - t) -Cos(s + t)
2 2

[Ep-5].

(V)1, '0*q)

= 2 {/12x/O*qx [iwq - i(wp + wq)] + '012yOcqy [iwq - i(w, + wq)]}

+iqV)-*q (P12xx + ?)2yy) - i(wp + Wq)/)12 (V1/*qxx + '*qyy)

=-i2wp [4'12xO1ibqx, + 0Z/12y?/)oqy] + iUq?/)i ('1P12xx + V12yy)

-i(we + Wq)/)12 ()O*)qxx + V*qyy)

= -ie-' i j 2wpfi 2x(2L' - Lq) cos 2y cos yJk,,~ WqJ)I
+2wpf2(-2)Lq(1) sin 2y siny - WqLq(fl2xx - 4f2) cos 2y cos y

+(wL + Wq)f12(4L' - 4L') cos 2y cos y

BpBqBq* 
L= X 2 ~pflx(2L'/ -Lq) + 2wpfl2Lq

P 61,q
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-- Lq(f12xx - 4f12)2

= iB B*

P q

+ 2 4L''

= hp4 (x)BpBpB*

)p( 2Lq

+ ff2(4L' - L') cosy
2 q q

-Lq)f12x - Wq~qlxy~2x

- 4L/ + 4Lq)f12 cosy

(4.44)

[Sp-6].

(b 131 V)*P)

= 2 {'V)13x x [Wp - i2w] + '013y 4 opy [2Wi - i2wp}

+iW,4*, (b 13xx + /13yy) - i2wp'i 3 ( opxx + V)*YY)

-i2w0p [V13 V O*px + !13y*kpy] + iWp'V* (413xx - /13yy)

-i2wpB 3 (PXX + *PYY)

Bj*
(i wp/ [2wpfi3x(2L' - Lp)cos2ycosy

+2wop f 3(-2)Lp(-1) sin2ysiny - wL(fi 3xx - 4f13) cos 2y cos y

+2wpfi 3(4L" - 4L )cos 2y cos y]

SBBB* e-x [fi3x(2L' - LP) + 2fI3L,

1 Lp(fi3xx - 4f13) + f13(4L" - 4L) cos y
2 I

-= e2

p)pB
f13x(2L' - LP) - 1Lpfl3xx + fi 3(4L"2 p- 4L' + 4L,) Cos y

(4.45)

where only terms proportional to cos y are kept.

[4p--7].

2P, VP, -+)+ o+

3 Vopxx22 opxV + V)*xxV opxVopx + V)Opyy2V)Opy Vy+ py * oy
2P p ) YVOY)P

+1 opyy2 o *x + V*y)Y-Opx 4'opx - ±opxx2@bPY00PY + '*xx'opy0opy)

+2 opxVopy + )OPXVO*Pyvo+xy+ 0*XOOYOOPXY

(4L"/ - 4L' + Lp)(2L' - Lp)2 COS3 Y 9P-Lcos y sin2 Y
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33 33 (2L' - L,) 2 L, cos3 y + (4L" - 4 L' + L) L Cos y sin2 y

+ 2 [3(2L' - L2P)L Cos y sin 2 y
B 2B* -9L3

- __ 3 e _3x IA - -2 3 -P2L= -i e3 (4L" - 4L' + Lp) (2L' - L- 21, Cos

+ 6 ;2L' -2 2 (4L"/ - 4L',+ Lp)LP - LP ICos y sin2y

BL> B* -x27 9= -i e- .8 (4L" -- 4L + Lp)(2L' - (2L'
p

+ (2L'/ - + (4L" - 4L' + Lp)L -- 9L,]cos y

= B23()BB* (4.46)

where terms not proportional to cos y are discarded. Use has been made of

3 3 1 *2 1 1cos3 y = gcosy + cos 3y, cos y sin2 y= 1 cosy - 1 cos 3y

[8,-8].

3
= - ( /'opxx2Voqx'*qx + 0qxx 2 /opx0*qx + V*qxx2'0pxpoqx)

+ ()opyy2oqyV*qy + 0'qyy2 IopyV)qy + p/gqy2/opy4oqy)

+ 209qxO*qx + /Oqyy 2 ,0px00oq, + t/*,qy20opx p)qx)

+I (V$opxx2V)OqyV*qy + 00q~x20opy0*qy + * qxx2V0opyoy)

+2 (0px'o)qy0/*qxy + OOPx?*qyOqxy + oqxOopyO*qxy)

+2 (0qxt*qy0opXy + /*q)x)OpyVOqxy + 0$*qxo~qyOpxy)

(-)3x {3(4L" - 4L' + Lp)(2L' - Lq) 2 cos3 y

+ 6(4L' - 4L; + Lq)(2L' - L) (2L' - L,) cos 3 y - 2 cos y sin 2 y

- (2L, - Lq) 2 Lp COS 3 y - 2 Lq(2L', - Lp)(2L' - Lq) COS 3 y

+ (4L"1 - 41' + Lp)L2 cos y sin 2 y + 2(4L'' - 4L' + Lq)LpLqcos y sin 2

+ 2 [4(2L' - Lp)(2L'I - Lq)Lq + 2(2L' - Lq)2Lp] cos y sin2 y}

B 13 B*= - q e- 3x { [3(4L" -L' + Lp)(2L' - Lq) 2 - (2L' - Lq) 2Lp
2 p q q
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+ 6(4L'' - 4L',+ Lq)(2L - Lq)(2L' - Lp) - 2Lq(2L' - Lp)(2L' - Lq)1 cos3 y

+ (8(2L' - Lp)(2L' - Lq)Lq + 4(2L' - Lq) 2 Lp

9L L 2+ (4L" - 4L' + Lp)L + 2(4L'' - 4L' + Lq)LpLq] cos y sin2y}

*BpBqB 3  ( 3 r,
= -Z [3(4L''- 4L' + Lp) (2 L' - Lq)2 -- (2L' - Lq)2Lp

Sq

+ 6(4L' - 4L/ + Lq)(2L'j - Lq)(2L/ - Lp) - 2Lq(2L/ - Lp)(2L' - Lq)]

1+ 8(2L' - Lp)(2L' - Lq)Lq + 4(2L/1 - Lq) 2Lp

-9LpL + (4L/' - 4L' + Lp)L2 + 2(4L' - 4L' + Lq)LpLq } Cosy

hp5(x)BpBqB* (4.47)

There is no need to consider terms not proportional to cos y.

In 8 q, we have the following terms

[q- 1].

(011, OOP)

2 {qOix4opx -i(Wq - wp) - iw,4} - iw ,#11xx - i(wq - L)41 1 ()Opxx + kOpyy)

-i2Wgq 1xV)Opx - iWp'{OpO$nxx - i(wq - U)p11(400xx + 4'Opyy)

-ie-x Cosy )-- 2Wd (21L' - L,)

d2G1  1L)
+c dx 2 L, + (wq - wp)G 1 (4L" - 4L

BP B dG1 Pd2G1

-i ; ex 2
Wq dGi( 2 L' - L) d 2, L,

WqWj2 dx P P o X

+(wq - w,)G 1 (4L" - 4L')} cos y

hq 1(x)BqBpB* (4.48)

[8q-2].

(412, 0*)

= 2 {12x*,x [-i(wp + wq) + iWp)]} + iw *,xx - i(wp + WLq)12(0* xx + 0,*

-i 2w)qq12xO*px + iWpV4* 012xx - i(w, + Wq>)#12(4* xx + *

-ie~' Cosy i BPB- ) 2 dG2 (2L - Lp,)
(~w Lo~ IP) dx
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W-(P-2 Lp + (wp + Wq)G2(4L" - 44L')

-ee COSy i2) 2wdJo (2L' - LJ)

-Wp L± (wp + wq)Jo(4 L" - 4L

= BqBpB*
= i BB p*e-"

WqWj

eiswB*
-2x-i W -"

2wd (2L' - LP) --wp d 2 LP + (Wp +Wq)G2(AL" - 4L Cos y

dJ d2J0
2wq dx (2L' - Lp) - wp d2 Lp + (Wp + wq)Jo(41" - 4L1) cosy

dx dx2

= hq2(X) l3qBpB* + iei j(x)B*

[&q-3].

( 14, V'o*q)

= 2 {014xV)O*qx i2Wq+ iWq]} + iWqV/(*q14xx - i2wq014()*qxx + )*gqyy)

=--i 2Wgq$14xV)*q + iwqg*q 414xx - i2Wgq 14(V)*qxx + V)*yy)

(Bq\ Bq' dG4x 2 d12-L
= -ie-cosy (i - ) i 2w 2L 2Lq-- q)

wq wq, dx

d ag2 G+24A'g-L
-wq dj-LL + 2wqG4(4L11 - 4Qi)

.BqBqB~ fdG4  d d2G4 L+GL"4'CS
q x dx (2L/qLq) - qx qq qJ= WqB , e 2x (2q -- L-dx G2 Lg+ 2G4(4 L'' - 4Q L Cos y

=~ Iq(x)B 2 B*

[8q-4].

( V, op)

= 2 { ix 4 opx [-iwp - i(wq - wp)] + O11y'Opy [-iwp - i(wq -

-- Zwp)op (V/)1xx + 4'Olyy) - i(wq - wp)4'nl (4 Opxx + /)pyy)

= -- i2wq [V)xn)Opx + V4llyV)Opy1 - iWp/)op (4'112x + llyy)

-i(wq -- wp)4' (4'oqxx + 4'oqyy)

-- ,e- ( -i [ 2wqflix(2L' - Lp) cos 2y cos y
Lp q LO

+2wq fl(- 2 )Lp(-l) sin 2y siny + wpLp(f 11 xx - 4fi) cos 2ycosy

+(wq -- wp)f 1 1(4Lj - 4LQ) cos 2y cos y
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= B P e- wqfinx(2L' - Lp) + 2wLqfiiLp

+ Lp(fnjx - 4f) + W P fi (4L"-4L') cosy

*BB e , [Lpfllxx + w q(2L' - Lp)fnx
Wq2 . 2

+Wq - Wpf(4L" - 4L' + 4L)l Cos y+ 2 p P!P

= hq3(x)BqBpBp* (4.51)

where terms not proportional to cos y have been discarded.

[5q-5].

=-2 {)12xO*px [iWp - i(Wp + wq) 1 + V)12y/)o*y [iwr - i(Wp + Wq)]

+iwp*, (7l 2 @xx + 02yy) -i(w ±p+ Wq)1 (V)*XX + * yy)

-i2LWq [V'12xV/* P + 012y Opy + ip) (V)12xx + /)12yy)

-(Wp + WLq)12 (O~x + OPY

= -qie- ) * B) [BB* 2wxf (2L' - Lp) cos 2y cos y
Wpw~q j Wp

+2wqf2(-2)Lp(-1) sin 2y sin y - wLp(fl 2xx - 4f12) cos 2y cos y

+(wp + Wq)f12(4LP - 4L ) cos 2y cos y]

= iBqBB [wqfl2x(2L' - Lp) + 2W qfl2Lp
Wq p

-- P L,(flx - 4f12) + W f (4L" - 4L') cosy
2 2 P Pj

= i*BBpB _ Wq(2L' - Lp)fl 2x -

+ W f 12 (4L" - 4L' + 4Lp) cosy
2 P P~pO

hq4(x)BBpBp* (4.52)

[Sq-6].

(014, V)*q)

-2 {V$14xV)b*qx [iWq - i2Wq] + '14y'*qy [iWq - i2Wq]}

+ioqV/*q (014xx + <14yy) - i2Wq4 '1 (O*qxx + O*iqy)
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-i2wq [V)14x?$*qx + V)14y/)Oqy] + ('14xx + 7P14yy)

-i2wqI/14 (&*qxx + )*qy)

-ie~' (z (.q ) (j ) [2wqfi 4x(2L' - Lq) cos 2y cos y

+2qf4(-2) Lq(-1) sin 2y sin y - wqLq(f14xx - 4f14) cos 2y cos y

+2wqf14(4L' - 4L')os 2y cos y
1-3BqB*

= - ~BB* e~x [f14x(2L' - Lq)+ 2fl4Lq
Wq e

-Lq(f14xx - 4f14) + f 14 (4L' 1' - 4L/) Cos y

LB,BqB*-1=i q- B e-x (2L' - Lq)f14x - Lqf14xx +(4L' - 4L' + 4Lq)f14 Cos y
Wq I q2q 

q

=sq2 (x) B 2B* (4.53)

where only terms proportional to cos y are kept.

[8q-7].

3
= ( xx2O0qxV*qx + V/qwx')Oqx'/Oqx + VOqyy 2 V)Oqy'*qy +0*?qy00qy00)jy

+ I(L)Oqyy2OqxV)*qx + V'*qyyVOqxV)Oqx + -)Oqxx2V)Oqy)*qy + V)* qxxVOqyV)oqy)

+2 (,0oqxVOqyVf'*qxy + V)Oqx)*qy 4Oqxy + *qxVoqy'oqxy)

(I5q ii3x{2 (4L/4-4L/+Lq)(2L -Lq )2 COSIy Y L o3 i2 y= q - e-3 (+ X - 2 s y - Lqcos y sin2

3 (2L' - Lq) 2Lq COS 3 Y + 3(4L - 4L'/ + Lq)L cos y sin 2 y

+ 2 [3(2L/q - Lq )2 Lq Cos y Sin2

= -i -3x + )2_' -- )22Lqcs

S-i----3x 8 (4L/ - L'/+ Lq)(2L' - L 2 - (2L - L)2L

8 q q q q 2 q q q

+ [3(2L' - Lq) 2 Lq + 3(4L'' - 4L' + Lq)L2 - 9L 3cos y

=2#q3(x)B Bq*q (4.54)
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[Eq-8].

( q, p, p ± /0*P)
3

-VOgxx 2V@pxV)* x + V#opxx 2V)OqxV* x + V)* 2V)OqxV)

+3 (4oqyy24opyO*pY + )opyy 2 /)OqyV* py + V/*pyy2V)Oqy)Opy)

+I (Voqyy2VopxV)*,x + V)opyy 2 )OqxV)*px + '* yy2<)Oqx<)Opx)

+I (V)Ox 2OopyV* Y + /Opxx2 /OqyVb*py + 0*oxxq2yopy)

+2 ( V/OqxVOpyVi*pxy + ,bOqxV*y)yOpxy + ?Opx'+iOqy 4Pxy)

+2 (OopxVe*yVOqxy + 40*oOyV-,xy -+ V0px'Voy/>oxy)

Bq Bp B= --i (i i---B-e~3{3(4L' - 4L' + Lq)(2L' - L)2 cos3 y

+ 6(4L' - 4L/ + Lp)(2L' - Lp)(2L' - Lq) COS3 y - 9LqL cos y sin 2

- (21' - Lp) 2 Lq COS 3 y - 2Lp(2L'q - Lq) (2L' - Lp) Cos 3 Y

+ (4L/' - 4L' + Lq)L cos y sin 2 y + 2(4L" - 4L' + Lp)LqLp cosy sin2 y

+ 2 [4(2L/ - Lq) (2L/ - Lp)Lp + 2(2L/ - Lp)2 Lq cosysin2 y}

BqBpB* e~3 { [3(4L' - 4L' + Lq)(2L' - L -)2 _ (2L' - Lp) 2 Lq
qp

+ 6(4L' - 4L/ + Lp)(2L' - Lp) (2L' - Lq) - 2Lp(2L' - Lq)(2L' - Lp)) Cos3 y

+ [8(2L' - Lq)(2L' - Lp)L, + 4(2L' - Lp) 2 Lq

- 9LqL + (4L"' - 4L/ + Lq)L2 + 2(4L" - 4L4 + Lp)LqLp cosy sin2 y}

BqBpB * e 3x -- [3(4L"l - Lj + Lq)(2L/ - Lp) 2 - (2L' - Lp) 2 Lq
Wq Wp 4A q q P

+ 6(4L" - 4L' + Lp)(2LI - Lp)(2L' - Lq) - 2Lp(2L' - Lq) (2L' - Lp)]

+ 8(2L' - Lq) (2L4 - Lp)Lp + 4(2L/ - Lp) 2 Lq

- 9Lq L + (4L'' - 41L'+ Lq)Lp + 2(4L" - 4L' + Lp)LqLp } Cos y

hq5(x)BqBpBp* (4.55)

Again, terms not proportional to cos y have been discarded.

Homogeneous equation 4.39 has nontrivial solutions Fj = e-xLj(2x), j =p, q as

described at the first order. Hj must satisfy a solvability condition which is found by
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Green's formula

'(H HLF - F L H3)dx = j [Hj(xFx)x - Fj(xHjx)x] dx

= [(xHFj)x - (xFjHjx)] dx = 0

The last equality follows after integration and applying the boundary conditions both

at the shoreline and at infinity. Since I2F = 0, we must have

F ,Cj Hdx = 0

which gives the solvability condition

j dxFj(x) (2 aBFj(x)+Ej(x) =0

In summary, we group the terms in Ep(x) according to B*, BB* and BBqB,

and get

,(x) = zei2Pf(x)B* + g,(x)B2B,* + hp(x)BpBqBq (4.56)

where ie 2 JM, , h, are the sum of coefficients of B*, BB* and BpBqB* respectively.

Specifically

* ifp(x) is found in (4.41);

" yP(x) is collected from (4.42), (4.45) and (4.46), i.e.,

(4.57)

* hp(x) is collected from (4.40), (4.41), (4.43), (4.44) and (4.47), i.e.

hp(x) = hp1 (x) + hp2(x) + hp3 (x) + hp4(x) + h 5(x) (4.58)

Obviously, f, is real while p and hp are complex.

Similarly, we group the terms in E,(x) according to B*, B 2B* and BqBp B, and

get

£q(x) = iei2* jq(x)B* + q(x)BqB* + hq(x)BqBpB* (4.59)
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where ie 29fq, gq, hq are the sum of coefficients of B,* B2 B* and BqBB respectively.

Specifically

" ifq(x) is found in (4.49);

* gq(x) is collected from (4.50), (4.53) and (4.54), i.e.,

9q = gq1 + gq2 + q3 (4.60)

" hq(x) is collected from (4.48), (4.49), (4.51), (4.52) and (4.55), i.e.

hq(x) = hqi(X) + hq2(X) + hq3(X) + hq4(X) + hq5(x) (4.61)

Again, fq is real while ^q and hq are complex.

Therefore, two complex nonlinear ODE's

= icle i2,B* +c2BBpB* + c 3BpBqB*; (4.62)
a-F q

Bq= idle'2,B* + d2BqBqB* +d3BqBpB*. (4.63)

governs the two edge wave amplitudes Bp and Bq. We have collected terms from the

integral of gp(x) and £q(x) according to their Bp and Bq dependence and defined the

coefficients as follows

[Ci, c2 , c3] = Fp(x)[fp(x), 9P(x), hp(x)]dx, (4.64)

[di, d2, d3] = Fq(x)[fq(x), gq(x), hq(x)]dx. (4.65)

More specifically, we introduce

c2 = C 21 + c 22 + c 23, C3 = c 31 + c 3 2 + c 33 + C 34 + C 35

with

c j F,(x) 3 (x)dx, j = 1, 2,3 (4.66)

01
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and

d2 = d21 + d22 +d23, d3 =d 31 +d 32 +d 33 +d 34 +d 35

with

/od2J = j F(x)§qj(x)dx, j = 1, 2, 3 (4.68)

d3j = j Fq(x)hqj(x)dx, j = 1, 2, 3, 4,5 (4.69)

These coefficients c's and d's are constants obtained by numerical integration, to be

given later. Use also has been made of the property of Laguerre polynomial

j F?(x)dx = e- 2 x L (2x)dx = - j e- L 2( )d = 1
0 3 o 32 0 2

As in the case of synchronous resonance, we replace Bj by Bjes' to eliminate the phase

of incident wave,i.e. ei2W, from the evolution equation. Without loss of generality we

drop ez2P from Eq. (4.62) and Eq. (4.63) to obtain the evolution equation:

=ic1B* + C2BqB B*+ C3BpB q'*; (4.70)
a-F q c BB-B;+cPBPBB*q

aBq
= id1B;* + d2BqBBq* + d3BqBpB*. (4.71)

These two nonlinear equations are coupled.

4.6 Initial evolution

The edge wave amplitudes are much smaller than the incident/reflected wave, i.e.

Bp, Bq << 1. Therefore, the linear terms on the right-hand side of Eq. (4.70) and

Eq. (4.71) dominate. The following discussion shows how governing equations behave

with different choices of the modes combinations (p, q).

Ignoring nonlinear terms, Eq. (4.70) and (4.71) becomes

a9Bp .OBq
= iciB* and = idiB*. (4.72)

which can be manipulated to yield

2 ic1 (-id*B ) = cid*B p

(4.73)
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The solution to the above equation is

B, = B,(0)e*

(4.74)

Similarly,

92Bq = id1 (-ic*Bq) = c*d1Bq

(4.75)

The solution is

Bq = Bq()e ' Vft

(4.76)

We now give a1 and b, for several pairs of (p, q), which can be excited by one

incident/reflected wave:

. Case (1). p = 0, q = 1;

Wp=, Wq =, =Wp + Wq = /3+1, L,(2x) = 1; Lq( 2 x) = (1 - 2x)

Therefore from [Ep-2] we get

icl

fc r 1 -

= 10 dxFp(x) -i1 e-e 2 d Jo (2L/
2 dx 2q - Lq) - Wq d 2 JLdX2

+(wp + Wq)Jo(4Lq - 4L')] }
-i 0dx 2 (4x

fo wd /3

+4cJo(2wV/G)}

= 0.1410i

And from [8q-2]

id,

dJo(2wVIx) V(I - 2d2Jo(2wG)
dx dx2
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-2x

ijOdxe 2(1

= 0.2441i

. Case (2). p = 0, q = 2;

Sx) 2/ 3 d Jo(2w x)
dx

Wp = 1, Wq =5, b = W + =V5 +1,

L d 2 jo
- LP) - p dz 2 P

d2 J (2w x-)

dX2

L,(2x) = 1; Lq(2x) = 1 -- 4x + 2x 2

Therefore from [ES-2] we get

icl

= dxFp(x) -i Ie-
d Jo(

2wpd (2Lq-
d2 jo

Lq) - Wq dx 2 Lq

+(wp + Wq)Jo(4Lq' - 4LQ)] }
-i 1j dx e2x

--5(1- 4x +

(16x - 10 - 4x2) dJo(2w i)
dx

2X2) djo(2 x) + 4c(3 - 2x)
dX2

= 0.1056i

And from [Eq-2]

id{

= dxFq(z) -i e -x 2wq dJo(2L' - L) WPdd2 jo L
-4dX2 LP

+(wp + wq)Jo(4L" - 4L'>] )

- 4x + 2X2) 2 5dJo(2w x)
dx

+ d2 Jo(2w x)

dX2

= 0.2360i

* Case (3). p = 1, q = 2;

Wp = /3, Wq = 5, W = Wp+Wq = V'+v3, Lp(2x) = 1-2x; Lq( 2x) = 1-4x+2x2
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+(Wp + Wq)Jo (414p - 4 L') ] }

Jo(2w x)

dx -2x (1
0 w



Therefore from [S-2] we get

Zcl

- jdxFp(x)
f 1 FdJ 0

2Z e-x 9, P (2LT
WWq [Pdx\~

- Lq) - Wq d 2 Lq

+ (p + q)Jo(4Lq' - 4L') }
= -i f dx -2x (1

0o w4 /
- 2x) /-3(16x -

- 5(1 - 4x + 2x2) d2 Jo d2w ) +

= 0.0970i

And from [Sq-2]

10- 4 x2) d Jo(2w x)
dx

4c(3 - 2x)Jo(2Lox-)

id(

= dxFq(x) -iz e-" [2Jfo (2L/
2qdx p2'

+(wp + Wq)Jo(4L" - 4L')] }
ijdxe (1-4x + 2x2) 5(6 - 4x)

0o wv13

+V(l - 2 x) d2 Jo (2w ) + 4cJo(2w Vx)

= 0.1524i

. Case (4). p = 0, q = 3;

Wp l, W= = , W = Wp+Wq

Therefore from [S-2] we get

d2 j
-Lp) wpdx2 L,

dJo(2w x)

dx

+7-+1, Lp(2x) = 1; Lq(2x) = 1- 6 x+ 6x2-ix3
3

icl

= dxFp(x) -i11 e
JO Lw~q

dJo I
2LLw d (2L'q

+(w + Wq)Jo(4L'' - 4L')1 }
-iJO dx

Jo w v7
(36x - 14 - 20x 2 + x3) dJo(2w Vx)

3 dx

-/(1 - 6x + 6x 2 - x3) d2Jo (2w x) + 8c(3 - 4x + x 2 )Jo(2w vx)

=0.0876i
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And from [Sq-2]

f= dxF(x) - 2i e-x 2 dJ (2L'
+(d '

-t(wp + wq)Jo (41<p - 414p) ]}

--L ) - w dx2 LP

Sdx 2x( - 6x + 6x2
0o LL

4x3)
3

2 dJo(2w x)
dx

+ d2Jo(2w x)
dx2

= 0.2318i

* Case (5). p = 1, q = 3;

Wp -V3, q\/VT W =Up +WIq v/7+ /3,

Lp(2x) = 1 - 2x;

Therefore from [8p-2] we get

ici
1 _

= 0dxFp(x) -z e

Lq(2x) = 1 - 6x + 6x 2 -

2dJo
24dx 2q

+(Wp + wq)J(4L'q' - 4Lq)]}

= -i dx 2x(1 2x) x/3(36x - 14 - 20x 2

- ( - 6x + 6X2 _4 x 3) d x2 Jo 2u ) + 8c(

= 0.0807i

And from [Eq-2]

id{

= dxFq(x) -ie
d J
dx (2 Lp'

3x) { (6

+v(l - 2 x) d2 Jo ( 2 x) + 4c Jo(2w

= O.1466i
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- Lq) - Wq dx2 JL
dX2 L

+ 83) dJo(2w x)
3 dx

3 -4x +x 2 ) Jo(2w N/x)}

-x 2Wq

+(w, + wq)Jo(4L" - 4L')]

= < dx (1 - 6x +6x 2 -

d2 j
- Lp) - dx2 L,

- 4x)x)-4x) dx



* Case (6). p = 2, q = 3;

Wp = ~ U)g Wq = -VF, W W Up + Wq =V+V,

Lp(2x)= 1 - 4x + 2x 2; Lq(2x)=1-6x+6X2  4 3
3

Therefore from [Ep-2] we get

ic'
001 dJo d2 jo

= j dxFp(x) -i-e-x 2,Pd (2 L'q - Lq) - Wq d 2 L

+(wp + wq) Jo(4Lq - 4Lq)]

/o e-2X 83 dJo(2w\/)
= -i dx (1 - 4x + 2x2) v(36x - 14 - 20x2 + -X3)

- (1 - 6+6x2 3) dJo(2w ) + 8c(3 - 4 + X2)Jo(2x)

= 0.0787i

And from [Eq-2]

id,

1 4 dJ d2 J0= xzq~x)-i--e-- 2Wqd (2L -Lp) -WpdLp

+(wL + wq)Jo(4LQ - 4L,)]

= i dx (1-6x+6X2_ 4_X3) v(10 - 16x + 4x2) dJo(2wv'f)
= wf V 3 dx

+V(1 - 4x + 2x 2 ) d2Jo(2w f) + 4c(2x - 3)Jo(2wV')

= 0.0931i

The results for all six cases are summarized in Table 4.2:

From Table 4.2 we see that, ci and d, are all positive real numbers, which makes

c*di = cid* = c1d1 real and positive. Amplitudes of the two edge wave modes grow

or decay exponentially in the rate proportional to Vi/ jij. Therefore, there is linear

instability of the edge wave to the incident/reflected wave system so that the nonlinear

terms come into play at large t. In Table 4.3 we list the growth rate factor Vc 1d for

different combination of p and q.
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Table 4.2: Coefficients pairs (ci, di) for different edge wave modes combinations.

Table 4.3: The growth rate factor V/ci-li for different edge wave modes combinations.

4.7 Nonlinear evolution equations

In order to see the nonlinear effects of the dynamical system, we work out all the

coefficients in the evolution equations. Three specific cases of p, q combination will be

discussed. In these cases, we try to make various combinations from different x-modes

of the edge wave until some sort of pattern is revealed.

4.7.1 Nonlinear term coefficients for case (1): p = 0, q = 1

Now we have

W , Wq , W = Wp + Wq + 1, Lp(2x) = 1; Lq(2x) = (1 - 2x)

We already knew from Table 4.2 that c1 = 0.1410 and d, = 0.2441 from previous

discussion.
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q

1 2 3

0 (0.1410, 0.2441) (0.1056,0.2360) (0.0876,0.2318)

p 1 (0.0970,0.1524) (0.0807,0.1466)

2 (0.0787,0.0931)

q

1 2 3

0 0.1855 0.1579 0.1425

p 1 0.1216 0.1088

2 0.0856



fi(x)

= (wp-wq)(I4Lj -2L,- 2L'Lq) + I [wLp (4L' - 4L') - wqLq (4L" 4L

= 4 - 2-,

g1(x) = fi(x) + 2(wp - wq)LpLq= 6 - 4vf - 4(1 - v)x;

f2 (x)

= (wp+w)(4L,'L' - 2LgLp - 2LIaq) + I [wpLp (4L '- 4L) +wqLq (4LP - 4L)]

= 4 + 2V,

g2(x) = f 2 (x) + 2(wp + wq)Lp Lq = 6 + 4V3- - 4(1+ )x;

f 3(x) = 2L/ - 6LpL' + 2LpL" = 0,

g3(x) = f 3(x) + 2LP2= 2;

f 4 (x) = 2L 2 - 6LqL' + 2LqL' = 10 - 12x,

g4 (x) = f 4(x) + 2L2 = 8x 2 - 20x + 12.

Referring to (4.36), the numerical solutions to fii, fh2 and f14 are plotted in Figure

4-1. Note that f 3(x) = 0 identically, hence f13 = 0 in this case. Our numerical results

by finite element method (Appendix H) show that all of them are close to zero after

x > 4 (See Figure 4-1.).

Other c's from 9p:

[E-1]. From (4.40),

C31

= dxFp,(x) {i leX 2wi dx (2L' - Lq) + d2G Lq

- (u - wp)G,(4L' - 4L)]}
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Figure 4-1: Numerical solutions to fn-- solid line, f12- dash line, and f14- dash-dot

line for Case (1): p = 0, q = 1.
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dxe- 2x (4x - 6) dG+ ( - 2x) ,- 4( - 1)G,

-\/ d (0)- (4- - 6)G 1 (0) + j dxe- 2 x [(8Vf - 12) + 8(1 - V3)x] G1

I-/g,(0) + a} = -0.0063 + 0.5412i

where use has been made of relation (4.33).

integral is

00 dxf (x)e-2x = -f(0)G(0) -

The integral a can be evaluated as

a = j0 dxe~2 x [(8v'3 - 12) + 8(1 -

And the generic form for the partial

dx(f' - 2f)e~2xG.

4

Vf3)x] G, = 1:aj = 0.0158 + 0.0190i
j=1

(4.78)

where

a, = r j dxe- 2x [(8v '- 12) + 8(1 - x.-) x] Jo(20f) j0de-2g1()Yo(26 )

a 2 = -Ir dxe~2x [(8V4 -

a3 = -irr dxe- 2x [(8v -

12) + 8(1-

12)+8(1 -

a 4 = ?r0 dxe- 2x [(8,'3 - 12) + 8(1 - V'r)x] Yo(20V/) f dXe~2 g( )Jo(20 f)

with CD = F - 1. Refer to (4.30) for the generic form of solution G1. Constant a's

are given in Table 4.4.

Table 4.4: Coefficients of a's by numerical integration.

a, a 2  a 3  a4

-0.0777 0.0856 0.0190i 0.0079

[8 p-2]. From (4.41),

C3 2
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v/3) x J, (2,Dx) d e-2 91 ( )Yo (2D

vf3)x Jo (2CAVIx) d~e-2 gl(6) Jo (2C )



= dxF(x) i1 e x 2Wj dG2 (2L'

+(wp + wq)G 2 (4L'q - 4L }
- Lq) - d2 Lq

dxe-2x (4x -6) dx- v(1 - 2x) d 2

3-<+ (0)+(4V + 6)G 2 (0)3 dx

= {Vd92(0) + ,1 = -0.2329 + 3.

The integral 1 can be evaluated as

S dxe -2x [8(1 + v13)x - (8v'3 + 12)] G2

+ j dxe~2x [8(1 + v'3)x - (8 V3+

9662i

4

1=,3 = -10.4938 + 0.6988i (4.80)
j=1

71 = fr dxe 2 x [8(1 + V1)x - (8v/' + 12)] JO(2 D~/) J de-2, 2() YO(2 )

12 = -7r j dxe~2 x [8(1 + V )x - (8\f3 + 12)] J0 (2 D) Lx
3= -i*r L dxe 2x [8(1 + \/3)x - (8v V+ 12)] Jo(2Dvr) 100

#4 = r dxe-2x [8(1 + -v)x - (8v V+ 12)] Yo(2D x) j cd

with co = V,3 + 1. Refer to (4.30) for the generic form of solution G2. Constant O's

are given in Table 4.5.

Table 4.5: Coefficients of 3's by numerical integration.

131 32 13 34

-1.8068 -3.4395 0.6988i -5.2475

[Ep-3]. From (4.42),

C2 1

- L= dxFp(x) i 1e-,

=i dxe -2x __2

dx (L

dX2}

d 2G3 Lp+2G3 (4L'' -4LP')

177

= L0

12)] G2 }

(4.79)

where

die-2g 2 ( ) Yo (2D N/)

d~e -2 q2 ( )Jo (2C )

(e-2 g2( ) JO(2CD /)

}

+ 4 (-F + 1) G,



S dG 3 (O) + 4G 3(0)- 8j dxe-2xG 3

= i {93(0) - 8'y} = -0.2302 + 0.5618i

The integral y can be evaluated as

1 = jdxe-2xG3 = E 7j = 0.1798 - 0.0288i
j=1

where

^1 = Ir dxe- 2 x Jo(2D Vx-) de-2 g3( )YO(2 )

72 = -7r j dxe 2xJo(2CD,) jde--23()Yo(20 )

73 = -i7r dxe 2 Jo(2Ii) j de~g3( )Jo(20 )

74 = Ir d7e-2xYo(20 )) j d~e2g3( )Jo(20 )

with C = 2. Refer to (4.30) for the generic form of solution G3. Constant y's are

given in Table 4.6.

Table 4.6: Coefficients of 1's by numerical integration.

71 72 Y3 74

0.0454 0.0445 -0.0288i 0.0899

[Sp-4]. From (4.43),

00 dx Fp(x)e- Lq fnxx +

-{ - LWqWq WP (4L" - 4L' + 4Lq)fii]

up(2L'- Lq)flix

- z1 -2x v3(I- 2x)fllxx + (2x - 3)fllx - 4(,r3- - 1) (1

- 2 {-fix(0) - (20' - 3)fii (0)

+±I dxe 2 x [(2V'3 - 4) + 8(,,r3 - 1)x] fiu} = -0. 1830i

- xVfii

(4.82)
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[EJ-5]. From (4.44),

C3 4

j c dxFp(x) iwx (2L' - Lq)f12x - "Lqf12xx

+ (4L" - 4L' + 4Lq)f12

3

3

x)f12

v/2 fl2x (0) + (2v 3 + 3)f12(0)

[S-6]. From (4.45),

C2 2

+ j dxe- 2 (-2V3 - 4)f2 = 1.30501

(4.83)

Sj dx F(x

= i dxe-2

= i fI13x (0)

i-e-W f13x(2L' - L)

{--f3x
- f13xx +

- 4L' + 4Lp)]

4f13}

+ 2fi3 (0) = 0

[Ep-7]. From (4.46),

C2 3

= dxFp(x){

+ -(2L' - L )2L +
2 -P

= -i dxe-4x j 2

= -3i dxe-4x

_ 3i

4

[ES-8]. From (4.47),

C3 5

= j -i 2 e-3

-i I-3x 27(4L" - 4L' + Lp)(2L'
Wp3 8

3(4L"

9
8

- 4L' + Lp)L2 -

3
2

4 3(AL" - 4L'

8L]

- LP) 2 
- 9(2L' - LP) 2LP

}

+ Lp)(2L' - Lq)2 - (2L' - Lq )2 Lp
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}

- Lpf13xx + f 1 3(4L"

(4.84)

(4.85)

COdxe -2x (1 - 2x)flnxx + (2x - 3)fl, + 4(v/3 + 1) (1 -

3- 9



+ 6(4L'' - 4L/ + Lq)(2L- Lq)(2L' - Lp) - 2Lq (2L' - Lp)(2L' - Lq)

+ I [8(2L/ - Lp)(2L' - Lq)Lq +4(2L' - Lq) 2 Lp

9L Le2 + (4L" - 4L' + Lp)L + 2(4L' - 4L/ + Lq) Lp Lq}F(x)dx

f dxe-4x {6L2 + 4 0Lq + 46}

- 00 dxe-4x {24x2 - 104x + 92}

23i
4

Therefore,

C2 = C21 + C22 + C23 = -0.2302 - 0.1882i,

C3 C3 1 + C3 2 + C3 3 + C3 4 + C3 5 = -0.2393 - 0.1207i.

Other d's from £q:

[Eq-1]. From (4.48),

dxFq(x) { -x

4qLp

+(wq - op)G 1(4L' - 4L') }
dxe 2

i dG(0)
- 3 dx(0

-2 3(1- 2x) d

LP) + W7p dx 2 LP

+ (1 - 2x) d }
- (4 - 2V-3)G 1 (0) + J dxe-2 [(12 - 8-'F) + 8(V - 1)x] G1

= {-g(0) - a} = 0.0109 + 0.5268i
f3

where a is defined in (4.77) and evaluated in (4.78).

form of solution G1 .

[Sq-2]. From (4.49),

J 00

= dx Fq(x )
{ ie-x dG 2

WqWL [2 Wq dx (2' -

+(wp + Wq)G2(4L" - 4L')] }
= - 0dxe

2 x 2-2, (1 - 2x) G
v310i dx

180

Refer to (4.30) for the generic

(4.86)

=1

}
(4.87)

L d 2G2LP) - W dx2 P

- (1 - 2x) d2
2

2wq dx, (2L'/ -



= - G2 (0)+

= --- {92(0) + 0}

(4 + 2 v')G 2 (0)+ Io00

= -0.4035 + 1.4055i

dxe-2 [8(v'3 + 1)x - (12 + 8x/3)] G2

(4.88)

where / is defined in (4.79) and evaluated in (4.80). Refer to (4.30) for the generic

form of solution G2 .

[Sq-3]. From (4.50),

dxFq(x) { e-

00Idxe-2x

[2 (2L' -

- 8x 2 - 6)(16x

- &{4(0) + 12G 4 (0)

Lq) - d2 Lq + 2G 4(4L' -

- (1 - 2x) 2  + 8(1
dx X

+ 00 dXe-2 [16x -48- 32x2] G4

= {g4(0) + K} = -0.0501 + 1.6654i

The integral n can be evaluated as

dxe 2x [16x - 48 - 32x2]
4

G4 =
j=1

Ki = -9.1154 + 0.0869i

where

Ki = ir 00 dxe- 2x [16x - 48 - 32x2] Jo(2CD,) f -00 g4( )Yo(26 )

K2 = -W dxe-2x

K3 = -i7r dxe-2x

116x

116x -

- 48 - 32x2] Jo(2Cu./x) IdJe~g4( )YO(20 )

48- 32X2] Jo(2Cv /) j d~e~2 g4 ( ) Jo (20 )

K4 = T J dxe~2x 16x - 48 - 32x2] Yo(26VG) I <ed-2C~g 4 ()Jo(20 f)

with CD = 2/3. Refer to (4.30) for the generic form of solution G4. Constant K's are

given in Table 4.7.

[Eq-4]. From (4.51),

= 0 dz Fq(x) Wq X [ P-~L-fP xx + Wq(2IL' - L)fiix
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=

4L'q] }
- 2x)G 4

S= 00
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Table 4.7: Coefficients of rK's by numerical integration.

-0.3945 -4.1671 0.0869i -4.5538

+ wq fn(4L" - 4L' + 4Lp)

Lde -2 <{(1 - 2x)fllxx - v3(10 2

-2flIx (0) -- (2 - V-3) f,1(0) + J

- 2x)flx + 2(v 3 - 1)(1 - 2x)fii}

dxe- 2x(4 - 2 3)fii} -0.1830i

(4.90)

[q-5]. From (4.52),

d3 4

00 dxFq (x) j g [Wq(2L' - Lp)f12x

+ fl( 4 L" - 4L' + 4Lp)

-2 Lpf12xx

I dxe 2 x (12x)fl 2 x 1 - 2x)fl2x+ 2(W/+1)(1 - 2x)l12
0 2

{ f12x(0) + (2 + 3)f12(0) - J dxe- 2x(4 + 2 3)f2 = 0.6830i (4.91)

(2L' - Lq)fl4x - Lqflxx +(4L' - 4L/ + 4Lq)f14

- 4X2 - 3)fl4x -

{1f14x(0) + 6f14 (0) + 00 dxe- 2x

-(1 - 2x) 2 f14xx + 8(1 - 3x
2

[24x - 201 f14} 1.0392i

+ 2x2)f14}

(4.92)

[Sq-7]. From (4.54),

L' ( - 4L' + Lq)(2L' - Lq) 2 - 9(2L' - Lq)2 Lq

182

v3
i

3

v/5

---3

[8-6]. From (4.53),

d22

j00dxFq(xj) 
e-x

--- de-2x t(8x

-3

wq

d23



+ [(2L' - Lq) 2 Lq + (4L" - 4L' + Lq)Lq - L] Fq(x)dx

00Jdxe-4x (156 - 276x + 156x 2 - 24x3) (1 - 2x)

= _3_ f dxe-4x 48x4 - 336x 3 + 708x 2 - 588x + 156}

47i

[Eq-8]. From (4.55),

= - i ej3{ [3(4L' - 4LV + Lq) (2L' - - (2L'

+ 6(41 - 4L' + Lp)(2L' - Lp)(2L/ - Lq) - 2Lp(2L' - Lq)(2L' - Lp)]

+ [8(2L' - Lq)(2L' - Lp)Lp + 4(2L' - Lp) 2Lq

9Lq L + (4L' - 4L' + Lq)L + 2(4L'' - 4L' + Lp)LqLp] } Fq(x)dx

= dxe~-4x {6 L, + 20} (1 - 2x)
V30

dxe~4x { 24x2 - 64x + 26}

= 3i (4.94)

Therefore,

d2 = d21 + d22 + d23 = -0.0501 - 0.6873i,

d3 = d31 + d32 + d33 + d34 + d35 = -0.3925 + 0.5558i

Case (2): p = 0, q = 2 and case (3): p = 1, q = 2 can be treated similarly and

details are given in Appendix I. For convenience, we summarized the coefficients in

Table 4.8.

4.8 Nonlinear dynamics of Stuart-Landau equations

Recalling from (4.70) and (4.71), we have a pair of coupled equations to deal with:

= ic1B* + c2B BB* + C3BpBq B ; (4.95)
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OBq = id1B* + d2 BqBqB* +d 3 BBpB*.
&T qqqP

(4.96)

Coefficients c's and d's are summarized in Table 4.8 for several (p, q) combinations.

Table 4.8: Coefficients of c's and d's for w = wq + wp.

4.8.1 Effects of detuning

Instead of perfect resonance, i.e. w = Wq +w, we now consider the effects of detuning,

i.e. some sorts of frequency mismatch may come from the incident/reflected wave:

This amounts to making replacements

A - 4. ) m

Therefore the evolution equations (4.70) and (4.71) become

- = icie-iBrB* + c2 IBP12BPor 
q + c3 Bq2BP (4.97)

(4.98)Bq - idie~ B* + d2|Bq12 Bq + d3jBp1 2 Bq
,9T
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Cl C2 C3

(0,1) 0.1410 -0.2302-0.1882i -0.2393-0.1207i

(p,q) (0,2) 0.1056 -0.2302-0.1882i -0.1969+0.2098i

(1,2) 0.0970 -0.0903-0.0478i -0. 1352-0.0318i

d1 d2 d3

(0,1) 0.2441 -0.0501-0.6873i -0.3925+0.5558i

(p,q) (0,2) 0.2360 -0.0626-0.0121i -0.3796+0.8419i

(1,2) 0.1524 -0.0626-0.0121i -0.1720+1.2832i



Let us make the change of variables

Bj = Bje-in'i, j = p, q (4.99)

where we require that Qp + Qq = Q. Then

aB- !3 8 - ij- -O

Therefore, Equation (4.97) and (4.98) become

Bp = iQpBP + CiBq* + c2 |BJ 2Bp + c|_3 q| 2 BAp (4.100)

aT

= ijQ qq + idiB* + d2|Bq|2 Bq + d3 jBp12 q (4.101)

The detuning adds another new term to the evolution equation as in the classical

edge wave theory. Note that only one of Qp or Qq is arbitrary, since

Qp+ Qq = Q. (4.102)

where ( is the detuning from the incident wave. Physical meaning of B3 and Bq is as

follows: By definition, Bp and Bq are the amplitude of the edge waves. For constant

O, and Qq With Qp + Qq = Q, a fixed point solution 5,0 and 5qo means that they are

time-independent. However, it corresponds to limit cycles for Bp and Bq, since

Bp (T) = BPe-ip and Bq (T) = Bq -
pq

are circular trajectories in the phase plane as time increases. Later on we shall show

that Q, and Qq must take the particular value 00 and QO in order for B5 and Bq to

have a fixed point solution f3' and DO.

4.8.2 Initial growth rate from infinitesimal disturbance with

effect of detuning

Consider the initial stage of evolution from Bp - Bq ~ 0. Nonlinear terms are ignored

and Equation (4.100) and (4.101) become

2 = iG + iciBq and = iQqBq + id1,B*. (4.103)
O9T (9 p T
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which can be manipulated to get

a2 = IBp +ic1a 5

__7_2 
___ 

q

== iQp (iQD+ ici3) + ic1 (-iQqfgq* - idi p)

= [cid1 - ] p + cI (Qq - Qp) q

= [cidi - Qq] Bp - i (Qq - Qp) T (4.104)

Similarly, we can get

a92 Bq = A aBq + _daP

2* =i~a+id1 "aTr2  qT 09

= i~q (iQqfAq + id1iB;*) + id1 (-iQGp,* - ic1Bq)

= [cd -2q + di (Qp - Qq) *

= cid - Q,0q] P - i (a - q) B (4.105)

We move all the terms to one side of equation and get

2 + i (q - ) + Bp-c= 0 (4.106)

2 f+i(Qp ) 2 +(QQq- cid
6,T2 +i9(T 4 ) =( - c0d1 )Bq= (4.107)

We assume that the eigen solutions to the above equations are

Bj = bje"i', j = p, q

Upon substitution into (4.106), we get the eigen value condition

up, + (Qq - Qp)U, + (cpd - QPCq) = 0

which gives the eigen values

-(Q - Qp) k (Qq - QP) 2 - 4(cidi - QpQq)
2

If

(Qq - QP)2 - 4(cidi - £pq) > 0
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or

q2 > 4c1di =- Q < -2 cidi, or Q > 2 cidl, (4.108)

then UPI are real. Use has been made of the relation in (4.102). If this is the case,

the edge wave perturbation does not grow and hence is neutrally stable. Otherwise,

one of the eigen value u- has a positive real part and hence the small edge wave

perturbation is unstable.

Similarly we get the eigen value condition for uq from (4.107)

-q2 + (Qp - Qq)O-q +(cidi- ,Qq) = 0

which gives the eigen values

U -(Qp - Qq) t V(Q, - Qq) 2 - 4(cidi - QpQq)

q 2

Therefore the edge wave perturbation is neutrally stable when Q < -2vfcd or Q >

2vf-d. Otherwise it is unstable.

4.8.3 Energy equation

Multiplying B* on both sides of Equation (4.100), we get

* B + iC1P* + C2|5,| 4 + cicp|p 23; (4.109)

Added to its complex conjugate, the above equation becomes

- 2c 1Im{**} + 2Re {c2}IBPI4 + 2Re {c3}j5p| 2 j5qj2  (4.110)

which describes the evolution of energy of p-mode edge wave. Similar result can be

obtained for mode q:

I q 2d1Im {_,**} + 2Re {d2}t5q|4 + 2Re {d 3}[P12 1 Bq12  (4.111)

From Equation (4.110) the nonlinear terms always cause radiation damping for

p-mode edge wave due to the fact that the real part of c2 and c3 are both negative

(See Table 4.8.). Detuning does not affect the energy balance since it is not present in

the energy equations. Similar results happen to mode q. The edge waves draw energy

from the interaction with the incident wave, if Im {B*B*} < 0.
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4.9 Analysis of nonlinear dynamical system for Bp

and Bq

Replacing Bj with its polar form

BF= Iei03,

odfi

= (2 Ij

j = p, q (4.112)

+ i ) ei

(4.113)

where Ij = Ij 12 is the action variable and 93 is the angle variable. Also we introduce

the new forms for the complex parameters

C2 = - - ici; d2 = -d - id';2 C3 = -C, - ic ; d3= -dr +idi.

so that all cr, c), dj and dj are real and positive.

Dividing both sides of Eq. (4.100) by BP, we get

L.H.S
= 1 aB~

Bie T
Bp 1 -

VII-e op

1 
/P

2 Ip
+i I p e'P

= Ip+ itp2p

= iQ,+ ic1l 9  + c2IpB12 + C3|Bq12

fp

= ip + icjI e--i(0e )

= ci - sin(6 + Oq) -'p

+i{QP + C

+ C2Ip + C3Iq

crIP - CrIq}

-COS(OP +q) -C2I -PCi Iq}
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we get

R.H.S.

(4.114)

(4.115)



Separating the real and imaginary parts, we get

I = c1 -sin(Op + Oq) - CIp - C3Iq (4.116)
2 p 'p p2

=cos(9p + Oq) - c Iq (4.117)

Similarly we get from Equation (4.101)

Iq = d1 sin(p + q) - dIIq - d3Ip (4.118)

9q = Qq+ di ecos(Op+ Oq) -d2Iq +d3Ip (4.119)

For initial evolution, we ignore the nonlinear terms of the above equations and get

Ip = c- sin(Op + Oq) (4.120)
2 p 'p

P =Qp + Ci cos(Op + Oq) (4.121)

Iq= di sin(Op+ q) (4.122)

q = 1+ d1 cos(Op+ Oq) (4.123)

Introducing

R=- , e=op+oq
Iq

we get
d (!P-) 2 P1p (11 iq

=d =Iq '2 Ip 21q

09p+Oq.

Therefore, from (4.120) and (4.122) we get

=2R ($ -di Vi)sinE

and from (4.121) and (4.123) we get

e = + Q+ + d1 )o .

189



The dynamical system can be reduced to 2-dimensional at the initial stage of evolution.

One of the equilibrium is

-- di = 0 - Ro = = = 0.5776, (4.124)

which is independent of detuning Q.

4.9.1 Fixed point of Bp and Bq

After sufficiently long time evolution the dynamic system reaches its equilibrium, i.e.

= 0. (Bp, Bq) = (0, 0) is obviously one fixed point to Equation (4.100) and (4.101).

Let us assume that there exists another fixed point (If, I1) other than the origin (0, 0).

Let the L.H.S. of Equation (4.116) to (4.119) equal to zero, we get

ci 0 Sin(00 + 00) = c6r cI"(415

GC1 21s0, 0 =cI+c I (4.125)
JO 

(4.125)

I0

, + c1  cos(0 + 00) = d +I, - d I (4.128)

Eliminating sin(0 + 00) from (4.125) and (4.127), we obtain

di -(di + Cr 0) = C1 - (q0 + d (4.129)+i c0I- (C cP 3(dr I +c 0I)(419

\ Iq \ Ip3

which can be rewritten as

R+c5 - dr Ro - cdr =(4.130)

which is independent of Q, and Qq, hence of Q. We have introduced the amplitude

ratio

Ro = . (4.131)
Iq
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The above quadratic equation can be solved to get

2c5

For example, in case p = 0, q = 1,

Ro = -0.3829, or Ro = 0.3283.

Obviously, only the positive Ro = 0.3283 is the acceptable root. Thus detuning does

not affect the ratio of the two edge wave amplitudes. Similarly, in Case (2): p = 0,

q = 2, Ro = 0.2950 is the acceptable root. And in Case (3): p = 1, q = 2, Ro = 0.5369

is the acceptable root.

For a complete solution of the fixed point, we need another equation with respect

to I0 and I0 besides (4.130). We add (4.125) to (4.127) to get

I0 jcL +d sin(60 + 00) = cI + crIo + drIO + drI

and add (4.126) to (4.128) to get

I0 10c1 + -+d 1 J

(4.132)

(4.133)

Eliminating the trigonometric functions sin(0,0 + 0) and cos(90 + 0) from (4.132)

and (4.133), we get

- - 2

[Io +d J
cI + c I? + dI, - d4I, - Q) (cIo + c2I, + d I, +

(4.134)

which can be manipulated to get a quadratic equation for I0 in standard form

a(I 0 )2+bIo+c= 0

with the coefficients depending on R0,

a = ( - d') Ro + c+ + [c +d) Ro +c +dr]2

b = -2Q (ci - d3) Ro + c3 + d2]
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(4.136)

(4.137)

adr - Ci k dr3)2 + 4a6r2dr2d 1 di

cos(0 + 00) = c I0 + c I0 + d2IO - d I," - Q



IIq

A
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0.5-
focus
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-0.386 -0.2 0 0.2 0.386 0.54 0.66

center saddle center

Figure 4-2: Equilibrium branches of I0 v.s. Q-p = 0, q =1.

c = 2 -c/ + dir (4.138)

Therefore, at dynamic equilibrium

0 -b ± b2 -4ac (4.139)
q 2a

Only the positive IqO is of our interest. From (4.139) we see that I = 0 if and only if

C = 0, i.e.

/ )+ d, =2 =(ci/ Q+ di Ro) (4.140)

For Case (1): p = 0, q = 1, substituting Ro = 0.3283 along with the known

coefficients c's and d's from Table 4.8, into (4.136), (4.137) and (4.138), we get

a = 0.7163, b = -1.3746Q, c = Q2 -0.1490

Therefore, I0 = 0 when Q = ±0.386 from (4.140) and the equilibrium branches of

finite Iqo v.s. Q are plotted in Figure 4-2. Similar feature is observed for Case (2):

p = 0, q = 2 and Case (3): p = 1, q = 2, whose equilibrium branches are plotted in

Figure 4-3 and Figure 4-4 respectively. The inclination of the curve depends on the

sign of the coefficient in b. In case p = 0, q = 2, b = 0.7811Q . In case p = 1, q = 2,

b = 1.2388Q.
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Figure 4-3: Equilibrium branches of IgO v.s. Q-p = 0, q =2.
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Figure 4-4: Equilibrium branches of I0 v.s. Q-p = 1, q =2.
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Figure 4-5: Equilibrium branches of E0 v.s. Q. The solid line represents the stable

equilibrium branch and the dot line represents the unstable branch.

Notice that (4.133) can be manipulated to obtain

ci IvO + cI0 + diIpO - d I -
0,0 + 00 = arcco 2 - (4.141)

Fci T+ d F )
After I, and are found, we can substitute them into (4.141) to get e0 =OP + 00.

The curve of 6 0 v.s. Q is shown in Figure 4-5.

Upon substitution of (Ip, IqO, 6 0) into (4.126) and (4.128), we obtain Q0 and 0

respectively
IO

Q, = cI, + cI, - Ci cOs(0 + 00) (4.142)

d2I -'310 +di Cos( V + 9 (.13
Iq

The curves of Q' and Q0 v.s. Q are plotted in Figure 4-6. These two values are the

angular speed of the limit cycles. The corresponding edge waves are

B0 =d e'Ioe-(wP'±2002)t; B0 
- e (4.144)
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Figure 4-6: Detuning of the two edge wave modes Q' and Q' v.s. Q, i.e. the detuning

of the incident wave. The solid lines represent the stable equilibrium branch and the

dot lines represent the unstable branch.
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due to the change of variables in (4.99).

From the above analysis we see that Q, and Qq must take particular values 00

and Q0 according to (4.142) and (4.143) so that a fixed point for B, and Bq can exist.

Particularly under perfect resonance, i.e. Q = 0, we get Q0 = -0.1166 from (4.142)

and -' = 0.1166 from (4.143). From (4.144) we know that

d = -%, j = p, q. (4.145)d-r

Therefore, the fixed point of B, and Bq corresponds to two limit cycles for B, and

Bq, rotating at the speed of -. 0 and -QO respectively.

The only thing uncertain is about the equilibrium phase angle 0 and 0. We only

know the sum of the two, i.e. 6 0 = Op + 0. A direct numerical simulation shows that

at equilibrium OP and 0 are not fixed and vary with initial condition. For instance,

when detuning Q = 0, we choose Q, = QP' = -0.1166 and (q = Q0 = 0.1166 so that

a fixed point exists. For this special choice, we allow the dynamical system (4.116)

to (4.119) to evolute enough time to reach the steady state. With different initial

conditions, we can observe the phase angle 0 and 90. Listed in Table 4.9 are several

of our records. And the corresponding curves are plotted in Figure 4-7.

Table 4.9: The steady state phase angles 0 and 0-- (p = 0, q = 1).

(Ip(O), 9,(0), Iq(0), 0q(0)) 00 q4 80 =0 0 + 0 Line in Figure 4-7

(0.01,0.01,0.01,0.01) -1.6760 2.2990 0.6230 dash-dot

(0.21,0.01,0.21,0.01) -1.1347 1.7576 0.6229 solid

(0.01,0.21,0.01,0.21) -1.5274 2.1505 0.6230 dash

4.9.2 Numerical verification for the existence of limit cycles

We define limit cycle by 1, = , = 0, and ,+ = 0 rather than , = 0 and #q = 0 as

in the fixed point solution. One of the simplest solution to O,+Oq = 0 is 9p = q= n,
which means that two phase variables change at constant rate, but in the opposite

way. With I, and Iq being constant, two limit cycles are formed.
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Figure 4-7: Phase angles evolution curves for Q = 0. Qp = -0.1166 and Qq = 0.1166.
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Figure 4-8: Flow map (Ip,Iq) for fixed point (I,0,I0)=(0.1497, 0.4560) - (p = 0, q = 1).

For the perfect resonance case Q = 0, we do not introduce Q, or Qq, i.e. B B3 ,

j = p, q. A simple numerical simulation of the full nonlinear ODE's (4.116) to (4.119)

with Q, = Qq = 0 confirms that the dynamical system is attracted to two stable

limit cycles, which correspond to the two edge waves amplitudes Bp and Bq. Shown

in Figure 4-8 is the flow map projected on the (Ip,Iq) plane with a starting point

(Ip, Op, Iq, Oq)=(0.01,0.01,0.01,0.01) with Q = 0. It converges to equilibrium point

(10,Ig0)=(0.1497, 0.4560).

From (4.112), we get

Re{Bj} = I cos 6, Im{B,} = i sin Oj

In the complex plane, we plot in Figure 4-9 the trajectories of (Re{Bp}, Im{Bp}) and

(Re{Bq}, Im{Bq}) respectively. Two limit cycles are revealed, where BO = r =

0.387 and B 0 = T = 0.675

From Figure 4-9 we can see that the trajectories rotate in opposite direction as they

approach the two limit cycle, meaning that two phase variables vary in opposite way,

one increases, another decreases (In this case, , is increasing, while 9q is decreasing!).

When they vary in the same rate so that 9p + 9q = 0, the steady state is reached and

00 + -0 = 8' = Const. (See Figure 4-10.). In this case, we detected a steady state
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Figure 4-9: Two limit cycles corresponding to two edge wave amplitudes with Q = 0

(p = 0, q = 1). The inner circle is Bp, the outer is Bq.

rotation speed O, = 0.1166 and 0q = -0.1166, which confirm that 0,P = -0.1166 and

0 = 0.1166 in (4.145) are the condition for the dynamical system B,, Bq having a

non-trivial fixed point. We also found that e0 = 0.6230, which is identical to the one

listed in Table 4.9.

Similarly, we carry out the analysis for Case (2): p = 0, q = 2 and Case (3):

p = 1, q = 2. The two limit cycles with Q = 0 are plotted in Figure 4-11 and 4-12

respectively.

4.9.3 Physical implication of the equilibrium

In order to see the effect of the two edge wave modes competition, we substitute the

steady state B, back into (4.23)

Oj = j i i (eiO- qe'-Lj(2x) cos y = -i__ ei9 ie2 t e-x Lj(2x) cosy, j = p, q.
Wj Wj

(4.146)

where 9j = -Qj is the constant rate of the phase variation of the edge wave at

equilibrium. Note that phase of Bj varies with slow time r with r = O2t. Therefore

the two edge waves have slight amount of frequency shift O29 like detuning. In order
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Figure 4-10: Phase angles evolution curves for 9 = 0. Q, = Qq = 0.
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Figure 4-11: Two limit cycles corresponding to two edge wave amplitudes with Q = 0

(p = 0, q = 2). The inner circle is Bp, the outer is Bq.
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Figure 4-12: Two limit cycles corresponding to two edge wave amplitudes with Q = 0

(p = 1, q = 2). The inner circle is Bp, the outer is Bq.

to see the visual picture of the free surface elevation as steady state is reached, we

add the two edge wave modes together and take the real part to get

(tot

= e- cosy {|puLp(2x) cos (w A + i2p2)] +|q ILq(2x) cos [(wq + E
2Q)t - 8]

(4.147)

where we have set 0 = 0 without loss of generality. Hence 0' = 8 0. Use has been

made of the free surface boundary condition (4.15).

Recall at the equilibrium for case p = 0, q = 1 with zero detuning, the two am-

plitudes of the edge waves are IP-01 = 0.387 and ID0| = 0.675. The phases of the

two modes are interlocked in the way that -P = -0.1166 while Q0 = 0.1166, so that

GO = 0 + 00 = 0.623. Then the instantaneous surface profile is plotted according to

(4.147) as shown in Figure 4-13, where wp,= 1, wq =v'5, L(2x) = 1, Lq(2x) = 1-2x

and we have discarded the detuning Q and q
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Figure 4-13: The instantaneous surface elevation by addition of two edge wave modes

as steady state is reached (p = 0, q = 1).
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4.9.4 Local stability of limit cycles

The stability of the limit cycles for Bp, Bq is the stability of the fixed point for Bp,

Bq. In order to analyze the stability of the fixed point, we rearrange the equation

(4.116) to (4.119) as follows

i, = 2ci ''qsin e - 2crI,2 - 2CrIIq (4.148)

iq= 2d 1 'p'qsin e - 2d2 I2 - 2d3IpIq (4.149)

=Q+ Ici -+di cose+ (d% - c') Ip - (c + d)Iq (4.150)

where we have introduced E = 0 ,+ 9 and added together two equations (4.117) and

(4.119). The dynamical system is now reduced to 3-D and its equilibrium (If0, IqO, 8 0)

is obtained in the last section.

Linearizing the above equations near the fixed point (I,0, I,0, 60), we obtain

X = A (X - Xo)

with

XT = [ I J , E) -X 0, I0, E8

and the coefficient matrix A equal to

ci sin 8 0 - 4c&I, - 2crI ci sin 6 0 - 2crI 0  2c1 IIcos 80

d1 sin e0 - 2dr I0 d1 sin e0 - 4d2Iq0 - 2d IT0  2d 1  T0Tcos 80

di  -ci f ci -di1
Vq 2 cosVe0 -pc + 3 2-- in2 cos 0 - d 2 I q cos 8 0 - ct - dc -(c 1  O + d1 )sin 0

Therefore, by solving the characteristic equation

det(A - AI) = 0

which is a cubic polynomial, we get the eigen value A.

In order to see the stability of the fixed point, we need to compute the eigen

value of above matrix A for each fixed point. For case p = 0, q = 1, our numerical

computation shows that all the fixed points on branch AD in Figure 4-2 and Figure
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4-5 have three real negative eigen values. Therefore, they are stable nodes. The fixed

points on branch AB have one real negative eigen value and one pair of imaginary eigen

values, whose real parts are also negative. Therefore, this equilibrium branch is stable

focus. On the other hand, the fixed points on branch CD have two real negative

eigen values and one real positive eigen value, meaning they are unstable saddle

nodes. For example, when Q = 0.54, the stable equilibrium (I0, I, 8 0)=(0.2566,

0.7815, 1.5782) (point S in Figure 4-14 and 4-15) on branch AD has eigen values

A1 = -0.1739, A2 = -0.4204 and A3 = -0.3740. While the unstable equilibrium (I,

I ,0)=(0.0837, 0.2548, 2.8096) (point U in Figure 4-14 and 4-15) on branch CD has

eigen values A1 = 0.1387, A2 = -0.1075 and A3 = -0.3468. Theoretically, there exist

a stable plane spanned by the two stable eigen vectors of the unstable fixed point U.

This surface further expands nonlinearly away from U and demarcates the attraction

domains of the two stable fixed points: the nontrivial fixed point S and the trivial

fixed point at origin. For Q = 0.54, this surface is plotted in Figure 4-16. The details

are given as follows:

For Q = 0.54, the unstable equilibrium U is located at

0.0837

Xo= 0.2548 -

2.8096

This fixed point has three eigen values A1 = 0.1378, A2 -

The corresponding eigen vectors are:

0.1300 0.7527

V1 = 0.2686 ; V2 = 0.5225 ; v3 =

-0.9544 -0.4004

Therefore, near U a stable plane is spanned by two stable eig

chose dozens of starting points on this surface by different q

-0.1075, A3 = -0.3468.

0.1777

0.2706

0.9461

en vectors v2 and V3. We

j according to

XS = X0 + E(r 2 v2 + r3v3)

where r 2 = cos 0j, r3 = sin Oj, and refer to Table 4.10 for the 0i we used in our

numerical simulations. We chose small e = 0.0008 to ensure the starting point on

204



Table 4.10: Parameter 9i for the starting point and the corresponding backward

evolution time t.

Oj 0.74 0.79 0.795 0.797 0.798 0.7983 0.7984 0.79847

t -43 -47.5 -49 -50 -50.8 -51 -51 -51

Oj 0.7985 0.79852 0.798535 0.79855 0.7986 0.7987 0.8 0.85

t -51 -51 -50.5 -48.7 -46.2 -44.6 -40.3 -31

Oj 1.5 2.5 3.5 3.78 3.79 3.80 3.81 3.83

t -23.3 -22.5 -27.3 -39.8 -42 -44 -45 -44.7

6 3.9 4.1 4.5 5.6 0.5 0.738

t -41.9 -38.33 -35.4 -33.6 -38 -43

the stable plane. Then we run the numerical simulation of the nonlinear dynamical

system. When we set the evolution time forward (positive t), trajectories diverge along

the unstable eigen direction after the confluence at point U, forming the unstable

subspace (the heavy line in Figure 4-16). When we set the evolution time backward

(negative t), the trajectories diverge and further expand to form a stable subspace (the

surface in Figure 4-16). Refer to Table 4.10 for the truncation time of the backward

evolution.

More flow maps for several Q by numerical simulations are plotted in Figure 4-17

to 4-21.

Table 4.11 and Table 4.12 give the full list of the eigen values on the two equilibrium

branches.

The point Ip = Iq= 0 corresponds to trivial equilibrium, it is convenient to turn

to Cartesian coordinate system. Let B, = x, + iyi and 3q = x 2 + iy2 , then (4.100)

and (4.101) can be converted to four real ODEs

= -(0, - ~)y1 + c1y 2 + (c'y 1 - c~x1)(xi + y) + (clyi - c~x1)(xi + y?) (4.151)

= (Q - Q)X 1 + clx 2 - (c+X1 + Y)(X+ cy 1)(+ y) (4.152)

X2 = -(q +n)Y2 + diyi + (d'y 2 - dix2)(xl + y?) - (diy2 + dr3X)( + y ) (4.153)
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Figure 4-14: Projection of eigen directions of the unstable fixed point U on (I,, Iq)

plane for Q = 0.54.

206

S

-004 025

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

I
q

C(
0.3 0.35

a I



3.5-

3- U

.-

2

1.5

-. 0.3 0.4 0 q
P

Figure 4-15: The 3D view of the eigen directions of the unstable point U for Q = 0.54.
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Figure 4-18: Flow map of the nonlinear dynamical system for Q = 0.
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Table 4.11: Eigen values for upper nontrivial equilibrium branch BD.

Q A A2  1 23

-0.3800 -0.0004 -0.0052 - 0.1128i -0.0052 + 0.1128i

-0.3600 -0.0050 -0.0205 - 0.1322i -0.0205 + 0.1322i

-0.3000 -0.0286 -0.0592 - 0.1746i -0.0592 + 0.1746i

-0.2400 -0.0545 -0.0933 - 0.2037i -0.0933 + 0.2037i

-0.1800 -0.0800 -0.1249 - 0.2246i -0.1249 + 0.2246i

-0.1200 -0.1044 -0.1543 - 0.2395i -0.1543 + 0.2395i

-0.0600 -0.1275 -0.1819 - 0.2493i -0.1819 + 0.2493i

0 -0.1493 -0.2079 - 0.2545i -0.2079 + 0.2545i

0.1000 -0.1823 -0.2475 - 0.2536i -0.2475 + 0.2536i

0.2000 -0.2105 -0.2829 - 0.2403i -0.2829 + 0.2403i

0.3000 -0.2317 -0.3143 - 0.2121i -0.3143 + 0.2121i

0.4000 -0.2385 -0.3435 - 0.1626i -0.3435 + 0.1626i

0.5000 -0.2043 -0.3800 - 0.0779i -0.3800 + 0.0779i

0.5200 -0.1900 -0.3887 - 0.0513i -0.3887 + 0.0513i

0.5300 -0.1821 -0.3930 - 0.0319i -0.3930 + 0.0319i

0.5360 -0.1772 -0.3955 - 0.0086i -0.3955 + 0.0086i

0.5400 -0.1739 -0.4204 -0.3740

0.5500 -0.1653 -0.3561 -0.4464

0.5600 -0.1563 -0.3460 -0.4642

0.5800 -0.1373 -0.3326 -0.4914

0.6000 -0.1164 -0.3224 -0.5124

0.6200 -0.0929 -0.3125 -0.5285

0.6400 -0.0643 -0.3002 -0.5390

0.6540 -0.0364 -0.2862 -0.5396

0.6560 -0.0308 -0.2831 -0.5384

0.6580 -0.0243 -0.2792 -0.5365

0.6600 -0.0155 -0.2736 -0.5330
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Table 4.12: Eigen values for lower nontrivial equilibrium branch CD.

Q A, A2  A3

0.4000 0.1425 -0.0103 -0.1578

0.4200 0.1466 -0.0242 -0.1852

0.4400 0.1488 -0.0377 -0.2124

0.4600 0.1495 -0.0511 -0.2393

0.4800 0.1488 -0.0646 -0.2660

0.4900 0.1479 -0.0715 -0.2795

0.4920 0.1478 -0.0729 -0.2821

0.4960 0.1473 -0.0757 -0.2875

0.5000 0.1468 -0.0785 -0.2928

0.5200 0.1435 -0.0927 -0.3197

0.5400 0.1387 -0.1075 -0.3468

0.5600 0.1323 -0.1231 -0.3743

0.5800 0.1241 -0.1397 -0.4023

0.6000 0.1133 -0.1577 -0.4312

0.6200 0.0990 -0.1779 -0.4613

0.6400 0.0782 -0.2022 -0.4942

0.6500 0.0625 -0.2179 -0.5128

0.6540 0.0539 -0.2257 -0.5212

0.6560 0.0486 -0.2303 -0.5258

0.6580 0.0421 -0.2358 -0.5310

0.6600 0.0329 -0.2430 -0.5373
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Figure 4-21: Flow map of the nonlinear dynamical system for Q = 0.54.

y2 = (Qq + A)X 2 + dizx - (d2X 2 + dry2 )(x2 + y2) + (d3x 2 - drY2)(xi + y1) (4.154)

The linearized dynamical system around fixed point (XO, 0 , yO) = (0, 0, 0, 0) is

Y 2

0 -(Q, - Q)
-f 0
0

di

0

Ci

Cl

0

0 -(Qq+f)

0 Q9+ 0

xl

Y1

X 2

Y2

(4.155)

The characteristic equation det(A - AI) = 0 leads to

7
-A 0

-A

0

Ci

Cl

0

-A -(Qq + f)

0 Qq + A -A

= 0 (4.156)

i.e.

Q) 2 + (Qq + 2 - 2cid] A2 + [(Q - Q) (Qq + Q) - cid1 = 0

which is a quadratic equation for A2 and can be rewritten as

A4 + BA2 + C = 0
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with abbreviation

B = Q- )2 + (Qq + -)2 _ 2cid1

C = [(, - Q) (Qq + 0)- cid ] 2

Therefore,

A2 =-B B 2 -4C
2

* If B 2 - 4C > 0, then lB2 - 4C < BI since C > 0. Therefore,

i) when B > 0, vB 2 - 4C < B and hence -B± B 2 -4C < 0. We have two

pair pure imaginary A's;

ii) when B < 0, VB 2 - 4C < -B and hence -B ± VB 2 -4C > 0. We have

two real and positive A's and two real and negative A's;

" If B 2 - 4C < 0, then we have one pair complex A2 's and hence we always have

A with positive real part.

Therefore, we have neutrally stable equilibrium I, = I = 0 if and only if B > 0 and

B 2 -4C > 0.

* For B 2 - 4C > 0, we require that

-2 + (Q, + n )2 - 2cidi] - 4 [( - f2) (Qq + Q) - cid1 2 > 0

- 4cidi} > 0

or

Q2 - 4cidi > 0 -:> > 2

* For B > 0, we require that

+ (Qq + A)2 - 2cidi > 0

which leads to

v2 + (Q _ V)2cd > 0 =: - QV + I Q2 d
2
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Since v = Qp - Q is arbitrary, we require that

2 -4 (Q - cid) < 0
2

i.e.

Q2 > 4cidi => JQJ >2 cid1

Therefore, we draw exactly the same conclusions as in Section 4.8.2.

When considering both branches of equilibrium, we found small domains of Q

where both equilibria are stable. In order to see how the dynamical system behaves

within that domain, we did some direct numerical simulations. For instance in case

p = 0, q = 1, we have two small domains at -0.386 < Q < -0.371 and 0.371 < Q <

0.386.

Shown in Figure 4-22 is the flow map projected on (I,, Iq) plane for Q = 0.376. In

this simulation, although we chose the starting point (I, Iq, 6)=(0.001, 0.001, 0.01)

very close to one of the equilibrium (If, Iqo)-(0, 0), the trajectory is attracted by the

other equilibrium (IO, I0)=(0.2416, 0.7360) right away. The temporal evolution of I

and Iq v.s. r are plotted in Figure 4-23. When we choose a starting point (I,, Iq,

E)=(0.00001, 0.00001, 0.1), which is closer to the trivial fixed point than the previous

starting point, the trajectory stays close to (I0, IO)=(0, 0) for longer time. But the

trajectory is finally attracted by the nontrivial equilibrium as shown in Figure 4-24

and 4-25, where we plot the temporal evolution of I, and Iq v.s. r.

For Q = -0.380 the trajectory shown in Figure 4-26 in the (I,, Iq) plane stays

close to the trivial equilibrium (I,0, I4)=(0, 0) with a starting point (Ip, Iq, e)=(0.001,

0.001, 0.01). As an alternative, Figure 4-27 and 4-28 show the temporal evolution of

I, and Iq v.s. r. Since the trivial equilibrium is neutrally stable, the flow map is not

attracted to Iq = 0, but oscillates at a small distance. In this case the other equilibrium

is (I,0, I0)=(0.0028, 0.0086). On the other hand, when we choose a starting point (I,,

Iq, 6)=(0.003, 0.007, 0.1), which is close to the nontrivial fixed point, the trajectory

is attracted to (Iv0, I40)=(0.0028, 0.0086) as shown in Figure 4-29. The numerical

simulation also shows a constant slope of 0.58 for the initial development of the two

edge wave amplitudes, which confirms the equilibrium state Ro = 0.5776 from (4.124)
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Figure 4-22: Flow map of the nonlinear dynamical system for Q = 0.376 with a

starting point (I,, Iq, 6)=(0.001, 0.001, 0.01).
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Figure 4-23: Temporal evolution of I, and Iq v.s.

point (I,, Iq, ')=(0.001, 0.001, 0.01).
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Figure 4-24: Temporal evolution of I, v.s. r for Q = 0.376 with a starting point (Ia,

Iq, E)=(0.00001, 0.00001, 0.1).
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Figure 4-25: Temporal evolution of Iq v.s. r for Q = -0.380 with a starting point (In,

Iq, E)=(0.00001, 0.00001, 0.1).
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Figure 4-26: Flow map of the nonlinear dynamical system for Q = -0.380 with a

starting point (Ip, Iq, 6)=(0.001, 0.001, 0.01).

for the initial evolution. Alternatively, we plot the temporal evolution of I4 and Iq

v.s. r in Figure 4-30.

Comparing what happens at Q = 0.376 and Q = -0.380, we found that when

the nontrivial stable fixed point is far from zero, the attraction is strong. When the

nontrivial equilibrium is close to the trivial, the attraction is weak and only shows up

when the trajectory is close to it.

Figure 4-31 shows the trajectory in the (Ip, Iq) plane for Q = -0.370. The flow

map is attracted by the only stable equilibrium (I0, 10)=(0.0038, 0.0090) with a

starting point (Ip, Iq, 6)=(0.001, 0.001, 0.01). In this case the trivial equilibrium is

unstable.

4.10 Conclusion

1. We dealt with the lower order resonance in this chapter and developed the nonlinear

evolution equations governing the two edge wave amplitudes at the third order;

2. We have considered the two edge wave modes sharing same y eigen function,

218



9 X103

1.8

1.6

1.4

p 1.2

1

0.8

0.6

0.4

0.2

r~I

'0 1000 2000 3000 4000
-C

5000 6000 7000 8000

Figure 4-27: Temporal evolution of I, v.s. r for Q = -0.380 with a starting point (I,

Iq, 6)=(0.001, 0.001, 0.01).
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Figure 4-28: Temporal evolution of Iq V.s. T for Q = -0.380 with a starting point (I,

Iq, E)=(0.001, 0.001, 0.01).
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Figure 4-31: Flow map of the nonlinear dynamical system for Q = -0.370.

which makes the cross resonance possible. The choice of eigen frequency of the inci-

dent/reflected wave play a key role in the dynamical system: Unstable under the high

frequency incident wave attack, whereas stable under the low frequency attack;

3. Fixed point of the nonlinear system for Bp & Bq is equivalent to two limit cycles

for Bp & Bq. But using a rotation frame as the reference enable us to reduce the four

real ODEs to three under the polar coordinate system. The stability of limit cycles

is easily analyzed;

4. Detuning of the incident wave does not affect the ratio of the two edge wave

amplitudes at equilibrium. But it does change the rotation speed of the limit cycle.

Detuning of the incident wave detunes the frequencies of the two edge waves;

5. From the subharmonic resonance analysis we knew that the lower mode of edge

wave has a faster initial growth rate. But the two edge waves we considered in this

chapter share the same rate of initial growth.
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Chapter 5

Other considerations and future

works

Other than the nonlinear resonance mechanism discussed in the previous chapters, we

have considered two other possibilities for the nonlinear resonance of multiple edge

waves. We give the basic idea and some preliminary results in the following two

sections. Further work is needed to complete the investigation.

5.1 Competition between two subharmonic edge

waves driven by two smaller incident and re-

flected waves

When we consider two incident/reflected waves, two subharmonic resonance can hap-

pen simultaneously. Even though at the initial stage, the two incident waves drive the

two edge wave modes separately, nonlinear interaction plays a role soon after either

one of them reaches a finite amplitude. Therefore, it is interesting to know what new

features these nonlinear terms will provide to the dynamical system. We propose that

two edge wave modes are ultimately excited at the first order, by two normally inci-

dent waves with eigen frequencies twice those of the two edge waves. The two edge

waves are coupled by the third-order nonlinear interaction and therefore it is weak

223



coupling compared with the cross resonance case in Chapter 4, where the coupling is

at both the first-order linear terms and third-order nonlinear terms.

The eigen value condition for edge wave is

Wnm = (2n + 1)mkgs, n = 0, 1, 2... ; m=1,2,3... (5.1)

where k is the lowest longshore wave number

k 7r

W'

with m representing the longshore wave number and n representing the cross-shore

mode number, i.e. the corresponding edge wave is

_nm igBnm e -mkx Ln(2mkx) cos(mky)einm'+ (5.2)
Wnm

Please refer to (1.3) and (1.4) for details. Instead of two edge waves having the same

y-mode as in classical subharmonic resonance, let's consider two edge waves with

different y-mode Op and Oq simultaneously, i.e. (n, m) = (0, p) and (n, m) = (0, q)

tOj = - igB e-jkx cos(jky)eiwoit + *, j = p, q. (5.3)
woj

The eigen value conditions for these two modes are

woj = Vjksg, j = p,q.

After normalization by the lowest mode eigen frequency wo, = Vkg-, we get woj/woi =

!/, j = 1, 2,3.... In this chapter we consider only the lowest x-mode, i.e. n = 0. We

assume without loss of generality that q > p.

5.1.1 Governing equations

The full version of the nonlinear shallow-water equation is as (2.2) and we use following

scales for nondimensionalization:

X = kx',I y = ky',I t = WOit', (= -- = ,0 V-- '
JAI |A~g
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where

JAI = A + A 2  (5.4)2

and A' = EIAi|e 2 P" and A' = cIA 2jei2P2 are one half of the two incident waves

amplitudes at shoreline and are taken to be constants. Note that here the definition

of A is different from the previous cases. Then the same set of dimensionless governing

equation as (4.8) is obtained, as well as the small parameter K.

- 4 tt + (x~4), + X4YY = KQ(ID) + #2C(4) (5.5)

with
_ kIAI

and quadratic and cubic nonlinear terms

Q(1) = 2 (IA42 + 4yIyt) + 4D (IDx + Dyv) (5.6)

C( () = 2 + 4) (D + G) + D2( + + 2A' (5.7)

The normalized free surface boundary condition becomes

+ &D + C 2 = 0. (5.8)

Using multiple scale expansion similar to the previous chapters, we can derive to get

the governing evolution equations

OT= iQ1Bp + ia1IA1IB* + a2 Bp |2BP - ia3|Bq12BP (5.9)

=Bq i_2Bq+ ibIA 2 Bq* + b2IBq|2 Bq - ib3JBp|2 Bq (5.10)

where A1 and A2 are the normalized incident waves amplitudes and Q1 and Q2 are

their detuning respectively. For example, if p = 1, q = 2, we get a, = 0.27067,

a 2 = -0.23016 - 0.18821i, a3 = 0.51753, b1 = 0.76557, b2 = -1.3020 - 1.0647i,

b3= 1.4638i.

Initially, the two edge waves amplitudes are both small and they grow in different

rate independently because they are coupled only by the higher order terms. We
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distinguish this weak coupling from the strong coupling as the cross resonance case

in Chapter 4, where the two edge wave modes share the same initial growth rate.

Replacing Bp and Bq with their polar forms

Bp = iOei, Bq = 12 e8 2

and further making change of variables

I- c

we can rewrite Eqs. (5.9) and (5.9) as

-- ' j=1, 2
|A-j|'

= 21AIJ, [ai sin 291 - acJi] (5.11)

J A1 | Iai cos291 + si - acJ 1 - a3 J2  (5.12)

2= 2|A 21J2 [b 1 sin 202 - brJ 2] (5.13)

62 = A2 1 [b1 cos 292 + S2 - b J2 - b3 J1 (5.14)

5.1.2 Fixed points

After sufficiently long time evolution, the dynamic system reaches its equilibrium, i.e.

= 0. Let the L.H.S. of Equation (5.11) to (5.12) equal to zero, we get

J1 =0, or aIsin2O1 =arJ1

and

a, cos 20, = a'Ji + a3J 2 - s1

If Ji # 0, we can eliminate the 01 by recalling the trigonometric identity to get

(a Ji)2 + (a2Ji + a3J 2 - S1) = a2 (5.15)

Similarly, for J2 $ 0 we can get

(b;J 2)2 + (b'J2 + b3 J1 - S2 = (5.16)

Since it is trivial to have both J1 = 0 and J2 = 0 , three equilibrium are identified:
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Figure 5-1: Equilibrium branch for J2 = 0- Equilibrium of the first kind.

1. Equilibrium of the first kind:

J2 = 0, and (a Ji)2 + (i J1- s) 2 = a2

which can be solved to get

J10 =
a2s1 ± a 1 a2

2 - (arsi)2

la2|2

The equilibrium branch for J20 = 0 is plotted in Figure 5-1.

2. Equilibrium of the second kind:

Ji = 0, and (b J2 )2 + (bJ 2

which can be solved to get

bs 2 ± bb 212 - (brs2)
2

2 = |b2  2

The equilibrium branch for J1 = 0 is plotted in Figure 5-2.

3. Equilibrium of the third kind:

Both J, 4 0 and J2 - 0;

In this case, we need solve two equations (5.15) and (5.16) (two ellipses) to obtain

the equilibrium points (J0, 00, J2, 00). In principle, we can eliminate either one of the
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Figure 5-2: Equilibrium branch for J1 = 0- Equilibrium of the second kind.

two variables from the two quadratic equations to obtain a quartic equation of only

one variable.

In order to discuss the dynamics of the nonlinear system, please refer to Figure 5-3

for the conceptual bifurcation diagram. The straight lines demarcate the equilibrium

of first (denoted by I) and second kind (denoted by II). The equilibrium of the third

kind (denoted by III) is plotted on top of the first and second kind. The three zero

zone are the trivial domains where the dynamical system is at rest.

1. When s, < -0.271, we have no equilibrium branch drops in the first quadrant of

(Ji, J2 ) plane. The only fixed point will be (Jr, J2)=(0, J2). Therefore, the dynamics

of the system is totally governed by the second kind of equilibrium Jf1 = 0 (Refer to

Figure 5-2 for the bifurcation diagram.);

2. When -0.271 < s, < 0.271, we have only one branch of equilibrium in the first

quadrant. When 0.271 < si < 0.35, we have two branches of equilibrium in the first

quadrant. As long as si drops in the domain (-0.271, 0.35), we at least have one

equilibrium of the first kind. In this case,

i) As S2 < -0.766, the dynamical system is governed by the equilibrium of the

first kind;
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Figure 5-3: The bifurcation diagram.

=0.99

s2=-0. 766

ii) As S2 > 0.99, the dynamical system is governed by the equilibrium of the first

kind and the third kind (if any);

iii) As -0.766 < s2 < 0.99, the dynamical system is governed by the equilibrium

of the first kind, the second kind and the third kind (if any);

3. When s, > 0.35, the two equilibrium branches merge to one in the first quadrant

of (J1 , J2 ) plane. Because the absence of the first kind equilibrium, the dynamical

system is dominated by the equilibrium of second and third kind (if any).

Although the equilibrium branches are obvious by above discussion, the global

picture are not clear when co-existence of two fixed points occurs at certain values for

parameters s, and s2. How the dynamical system behaves at these parametric values

and why it is so. To answer these questions, further study is needed.

229

3

2.5

2

1.5
S2

Pol,-

1

0.5 -

0

-0.5

-0.4
0

-0.2

s1=-0.271 s1=0.35

II II



5.2 Simultaneous resonance of two subharmonic

edge waves of the same eigen frequency by one

incident/reflected wave

We study two edge wave modes, sharing the same eigen frequency w (degeneracy)

but different x and y eigen function dependences, excited by one normally inci-

dent/reflected wave of twice the frequency. Initially, the two edge wave modes develop

separately and one edge wave mode (low) outgrows another (high) mode as in the sub-

harmonic resonance. But as soon as one of the edge wave reaches a finite amplitude,

nonlinear effects come into play. The two modes are not independent any more. Since

the two edge waves share the same frequency, steady flow could be generated by their

interaction at the second order. The eigen frequency of edge wave satisfies

Wnm = (2n + 1)mkgs , n = 0, 1, 2... ; m=1,2,3... (5.17)

where k is the lowest longshore wave number

k =7
W'

We use (m, n) to denote the edge wave mode, where n is the cross-shore modal number

and m is the longshore modal number. For simplicity, we limit our study to cases

that only one pair of (n, m) can exist, i.e. (0, q) and (p, 1) with q = 2p + 1. Hence the

normalized eigen frequency

Wpi = (2p + 1), WOq = (5.18)

Therefore, wpI = WOq. The corresponding edge waves are

<1= -igB keL(2kx) cos ky e-"6 " + *. (5.19)
wp1

and

<1POq igBq e-qkx cos(qky) e -iWoqi + (5.20)
WOq
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We have derived the evolution equations for the edge waves amplitudes by multiple-

scale expansion

= ifBP + ic1B* + C2BBB*+ iC3BpBqBq* + ic4BBBq* + iC5BpB*Bq + C6Bp*BqBq;

(5.21)
Bq iBq + id1B* + d2BqBB* + + id4BpBpB* + d5BpBBq*. (5.22)(9 -r BqiQqB iidBqB(5.22

where Q is the detuning of the incident wave. For case p = 1, q = 3, the numerically

computed coefficients are summarized in Table 5.1 and Table 5.2 below:

Table 5.1: Coefficients cj's for case p = 1, q = 3.

C1  C2  C3  C4  C5  C6

0.1288 -0.0903-0.0478i -2.6018 0.0256 0.0513 -0.3286-0.1657i

Table 5.2: Coefficients dj's for case p = 1, q = 3.

d1 d2 d3 d4 d5

1.4064 -0.9857-8.2701i -7.8054 0.0769 -3.5879+4.8391i

Initially, the two edge waves evolve independently due to the weak coupling as in

the last section. Mode q possesses a lower x mode and has a much larger growth rate

(ten times that of the mode p). Therefore, mode q outgrows mode p during the initial

evolution. But soon after it reaches a finite amplitude, the nonlinear terms take effect.

In Cartesian coordinate system, we let

BP = x, + iyi, Bq = X2+ iY2,

then Eqs. (5.21) and (5.22) become

i1 = (c1 - Q)y1 + (cXi - c2y 1 - c5y2)(4l + y1)

-c 3y1(x2 + y?) + c4y2(xi - y1) - 2c 4x 1y 1x 2

+(c6yi + cXl)(XI - y2) + 2(c~y1 - c8Xi)X 2y 2 (5.23)
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Figure 5-4: Flow map (xj,yj), j = 1, 2 for Q = 0.5 - (p = 1, q= 3).

1= (ci + Q)Xi + (ciX1 + c'y 1 + c5X2)(4 + y1)

+c 3x1(x2 + y2) + c4 x 2 (x! - y1) + 2c4x 1y1y2

I- cYi1)(X2 - y2) + 2(clyi + c6Xi)X 2Y2  (5.24)

2= (di - Q)y 2 + (dX2 -dy 2)( +y2)

-(day2 + d4yi)(X2 + y)

+(diy 2 + d5X 2)(xi - yI) + 2(d&y2 - dix2)xly1 (5.25)

y2 = (di+Q)X2 +(dix 2 +ddy 2)(X+ y )

+(d 3x2 + d4 x1)(X1 + y1)

+(di'2- cdJy 2)(4 - y1) + 2(d5y 2 + d5X 2)Xiy1 (5.26)

Direct numerical simulation shows that the two modes converge to two equilibrium

points (see Figure 5-4) (xi, yi)= (-0.0114, 0.2367) and (x 2 , Y2)= (0.3853, -0.0129) for

Q = 0.5 . For mode p it is easy to see the equilibrium, whereas it is difficult for mode

q. We plot another Figure 5-5 showing the evolution of X2 and Y2. The analysis on
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Figure 5-5: Temporal evolution of X2 and Y2 for Q = 0.5 - (p = 1, q = 3).

the dynamical system in this case is far from completion. Where is the equilibrium

branch for different Q? How the dynamical system behaves near these equilibrium?

Which fixed point to choose when several fixed points coexist? We left these works

for the future.

Our study of nonlinear resonance of edge waves originated from Venice gate project,

where people found wave energy trapped near the slanted gates in the channel. Due

to the similarity of the two problems, it is not difficult to extend the new theory of

edge waves to Venice gates. For example, in the past only subharmonic resonance

was studied for Venice gates. But nonlinear synchronous resonance could happen too

according to the edge wave study. Therefore, the extension of the new developed edge

wave theory to Venice gate problem is of industrial interest and demonstrates a direct

application.

233



234



Appendix A

Analytical solution by Guza and

Davis, Rockliff

In their study of subharmonic resonance, Guza and Davis [14], Rockliff [26] have

solved the inhomogeneous equation

g( (x) =2 dJo(2VG) 
2

+ Jo(2 G) d2Jo(2 (A.1)

to obtain the following simple solution:

1(x) = Jo(2f)J,(2 x)

The forcing is just the second part of R.H.S. of (2.36), i.e., gi(x). Let's first verify

that this solution is correct!

By the change of variable p = 2,Fi we can rewrite the solution as

01(p) = 2p~1Jo(p)J1(p) (A.3)

Let us calculate both sides of (C.1) by evaluating the derivatives

d Jo(2/55)
dx

d2j (2V/x) =
dX2 ( 2

p

1x = -1p

dp 2 p
dx p

dp
dx

= 2p- 1 (4p-2 - _ 2p-1 J)

S 1-
V7-X1p
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(xod1 ) = ( X1P)x =2 (Pip) p p1 (pOIP

Use has been made of

J, = Jo - p 1 Ji,

With these results, Eq. (A.3) becomes

4 1 + p-' (php)p
2J

p
(P)

Ji =

+ 4p-2 Jo(p) (2p IJ1 - JO) .

Let us see whether two sides are equal.

By substituting (A.3) into L.H.S. of (A.4), we get

O1p = -2p-2Jo Ji + 2p-1(JO Ji + Jo Ji)

(pi)n = 2(JOJ 1 + JoJ( - p 1 JoJ1 )p = 4(-2JOJ1 - p-JS + 2p- 2 J0 J + 2p- 1 J)

Therefore, L.H.S. of (A.4) becomes

L.H.S. = 8p- 1 Jo(p) J1(p) + 4p-1 '( -2 Jo J1 - p-1 J2 + 2pJJ 1 + 2p-J?)

which is equal to R.H.S. of (A.4). Therefore, 0i(x) is the inhomogeneous solution of

(A.4).

This solution can be used to check the correctness of the solution by variation of

parameters. By following the procedure in §2.5, we get the general solution

' CJo(4 x) + C2Yo(4 V/) + u'(x)Jo(4 V/) + u' (x)Yo(4 fi) (A.5)

where

(x) = -

x(x) = [ J(4 V) d()w2 th =amlaW(JrYO)(s)

with the familiar Wronskian

W(Jo,Yo)(x) = Jo -Yo
dx dx

-71 Yo(4 )g {()d

- ir x Jo(4 )g ()d

(JOYO - YOJ)d(4 x1) 2 2
dx w 4x 1x

1
7rx

From the analysis in last section, C2 = 0 by the boundary condition at the shore

and C' = -u'(oc) - iut(oo) by the radiation condition at infinity. In particular,
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Table A.1: Confirmation for the numerical integral of u'(oo) = -1, ui(oo) = 0.

L 104 101 2 x 10 6  107 2 x 10 8

(u(oo) + 1) x 10, -28.256 -4.9839 -0.48347 -0.15213 0.010019

u (oo) x 105 28.307 5.2859 0.83997 0.47902 0.33788

U'(oo) = -1, u'(oo) = 0, as plotted in Figure 2-1 for u'(x) and ui(x). In order to

confirm that u'(oo) = -1, u'(oo) = 0, we list in Table A.1 the numerical integral at

high accuracy (10-9) for different truncation of upper limit L.

In summary our solution of (C.1) by variation of parameters is

1 = Jo(4x) + u'(x)Jo(4rx/) + u'(x)Yo(4x) (A.6)

which is plotted in Figure A-1 by crosses, and compared with q 1(x) (solid line). The

agreement is perfect. The following paragraph is to confirm that ui(oo) = 0 since

ui(oo)Ho(4VY) is the radiation condition in our method of variation of parameter,

whereas Guza & Davies' solution gives no radiation!

For large x, we can approximate Bessel function of the nth order by following

asymptotic form

Jo~) ~ cos [z - (2n + 1) ,Yz) ~~ sin z - (2n+1) .

Therefore, Guza & Davies' solution behaves at large z as

1 2 7 2 3r
Jo(2Vb5)J1(2iJx) - -- cos z - - Cos z

- z rz 4 7rz 4)

- 2 cos 2z

where z = 2r. Note that the energy flux rate is

P = puh ~ 2  h ~ h

Since at large x
cos 2z 1

z x
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by variation of parameters
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Analytical formula - solid line; Solution

crosses.
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ao sin 2z dz 1 1
ax z 2 dx x l

h ~ x

we have
11 1 1

P~ x~ 

Thus, quadratic forcing by the incident/reflected wave does not lead to radiation. Our

numerical computation of u'(oo) shown in Figure 2-1 confirms this result.
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Appendix B

Confirmation of C2 = 0 by the

no-flux boundary condition at

shoreline

Alternatively, let's apply the no-flux boundary condition at the shoreline, i.e.

xOpu --+ 0 as x -+ 0

As x -+ 0, Bessel functions of the zeroth order can be approximated by the following

ascending series

Ioz - 1-4 2  (jZ 2 ) 2JO 4 +± 0(z 6 ),
(1!)2 (2!)2

Yo(z) = In + _Y Jo(z) + 0(z 2)

For later use in (2.93), we first work out the constant g(O) as follows. From (B.1)

we see that

dJo(2 x) -1 + 1X - 2 d2 Jo(2 x)
dx 2 dx 2  2

as x --+ 0. Upon substitution into (2.36), we get

g(0) = 2iB 2 + zeiep (2 + 1)=2iB2 +

- O(x)

5i ei2
2

(B.2)

From (B.1) we also get

dJo(4x) -4 + 8x - 0(x 2 ),dx
dYo x4) I -0 (ln( x))
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The first term in solution (2.40) becomes

Cix (Jo(4vl4) ) = C1 (-4x + O(x2))

and the second term becomes

C2x (Yo(4V)) -0 (x In(1) ))

For the third and fourth terms, Yo(4y'x)g(x) ~ g(0) ln(2v/x) as x -+ 0. Making use

of (B.2) we get

g(0) ln( )d ~ g(0)x In vx + O(x)

and Jo(4V/-)g(x) --+ g(0) as x -+ 0 so that

U2(X) = 7r J [g(0) + O( )] d = ir [xg(o) + O(x2)]

The third and fourth term becomes

x [(u1(x)Jo(4Vi)) + (u2 (x)Yo(4 v'))]

= x ui (x )d Jod(4 ) dYo(4 )
dx dx

~ x (-4g(0)x ln(Vl) + g(0)) ~ g(0)x

where use has been made of

u1,Jo(4Ji) + u2xYo(4v/x) = -7rYog(x)Jo + 7rjog(x)Yo = 0

Collecting all four terms, we get at x = 0

x1X - + 0 (x) as x -+ 0

Therefore, C2 = 0 in order that #1 satisfies the no-flux condition at the shoreline.
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Appendix C

Analytical solution similar to Guza

and Davis

For later use in the next chapter, we extend the simple solution of Guza & Davies [14]

to solve the following equation with a modified forcing term

4q 1 + (xoig = 9(x). (C.1)

= dJo(2wi /) dJo(2w2 /f)
dx dx

+w2Jo(2W2) () dX2

with wi + W2 = 2. We try (by guessing) the following solution

01(x) = - [Jo(2w1 VG)/)Ji(2w2 VX) + Jo(2w2VF)Ji(2wiiG)

Refer to (C.5) for the definition of i1.

In principle one can check the correctness by direct substitution. We verify instead

by comparing with the solution by the method of variation of parameters:

1= iJo(4Vf5) + C2Yo(4 V) + ft1(x)Jo(4 V) + ft 2 (x)Yo(4 V) (C.4)

where

(C.5)) = O - ( = -7r Y ( J Yo(4V ) (6)d
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0)

Figure C-1: ^I(oo) and u2(oo) v.s. w1 .

(x Jo (4-\g y)
U2(X) = -= f Jo(4 )P()d (C.6)

W(Jo, Y)(W )

with Wronskian

dYo dJo d(4\ft) 2 2 1
SoO)kX - Adx dx dx 7r4x/ fi rx

From the analysis in last section, 02 = 0 by the boundary condition at shore and

C1 = -fi 1 (oo) - ifi 2(oo) by the radiation condition at infinity. For a prescribed w,

and w2 = 2 - wi, we can evaluate i1(oo), u2 (oo) numerically. In Figure C-I the

computed fil (oo) and 62(oo) are displayed for different wl.

Clearly, fi 2 (oo) is zero irrespective of wi. The solution by variation of parameters

is

01 = -it(oo)Jo(4Vx-) + fi(x)Jo(4v/-) + fi2(x)Yo(4V/x) (C.7)

which is plotted in Figure C-2, C-3, and C-4 for different w,. Our guess solution (C.3)

is also plotted for comparison.
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Figure C-2: Comparison of the two solutions for w, = 0.5: Solid line - Eq. (C.3);

Crosses -- Eq. (C.7).

245



1.

1-

0.8

0.6

0.4-

0.2-

0-

-0.2
0 5 10 15 20

x

Figure C-3: Comparison of the two solutions for w, = 0.25: Solid line - Eq. (C.3);

Crosses - Eq. (C.7).
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Figure C-4: Comparison of the two solutions for w, = 0.75: Solid line - Eq. (C.3);

Crosses - Eq. (C.7).
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In our numerical work, the following recursive formulas are used:

dJo(2wn Vlf) _ wn
=x Ji(2wnV3i)

dx _

d 2 Jo (2Wn X) W Jo(2wn fV) + Ji(2w V/Y)
dx2 x x 
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Appendix D

Convergence of integrals

In order to check the convergence of the integrals at the lower (0) and upper limits

(oc), we use series expansions around zero and the asymptotic forms at infinity to

approximate the integrand.

As x -+ 0, we can approximate Bessel functions of the zeroth order by following

ascending series

1Z2
Jo(z) =1 - + (Iz2)2

(2!)2 - 0(z 6 ), YO(Z) = 2 
z

Y 7rz = 2 n + "Y Jo(z) + O(z 2)

and their first derivatives

dJo(z) I _ + ± 3 )7
dz 2

dYo(z)
dz

2
7Tz

-0 In)

As x -+ oc, we can approximate Bessel functions of the zeroth order by following

asymptotic form

Jo(z) 2 Cos Z Yo(z) ~ sin

and their first derivatives

dJo(z) r -/2
~z - + O(Zdz xZ

dYo(z) 2+ (Z3/2)

dz 7Fz

We can make use of these approximations to evaluate the integrals efficiently. Thus

in u1 , we divide the integration domain into three segments as follows

( JO+ jL + 0 d<Yo(4 %) dJo(2V/ ) dJo(2 V)
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Figure D-1: Behavior of the integrand C

where e is small but L is large. Therefore at the two ends, the integration can be

approximated by

[00 d66- 1-3 4 6-3 4 ~- ~3/4 00 ~ -- 3 /4 -- 0 as L -+ oo
L L

and

dcln(f-) ~ ln(v/) ~ ln(v/E) -+ 0 as e -* 0
0 0

This assures us that the integral ui is finite at both limits 0 and oo. Also the anal-

ysis above tells us the truncation error for our numerical evaluation of the integration.

For example, if we use L = 10000 as the upper limit to approximate ui(oo) in (2.41),

the numerical result is only accurate up to the third digit behind the decimal point.

To give some quantitative ideas, we plot a typical integrand defined by

d Jo(2J/6) d Jo(2V/6)
= =Y 0 (4J ) d6 d6

versus the argument 6 in Figure D-1. It can be seen that it is easy to evaluate the

integral by the normal trapezoidal rule.
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Appendix E

Numerical solution by finite

element method for synchronous

resonance

In Section 2.5.2 and 2.5.4 we have found that the boundary-value problems for both

the forced trapped wave and the steady potential flow are governed by an equation of

the form

[ X X) - -Wl2]f =g(X) (E. 1)
dx

with the boundary conditions

xfx = 0 as x -+ 0 (E.2)

f = 0 as x -* oo. (E.3)

The parameter w is w = 2 in (2.56), and w = 0 in (2.70).

It is easy to show that the boundary-value problem above is equivalent to the

stationarity of the following functional

1 00 df )2 -2d +0
(f)= P W - + q(x)f2 dx+ gfdx (E.4)

12
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where

p(x) = x, q(x) = x - w2

To prove the stationarity we calculate the first variation:

6T(f) = 100 p(x)f d' + q(x)f6f] dx + g6fdx

d

= P(x) d )
00
if + Jf H

((x) ) 6f + q(x)f f + gof] dx

d
dx (x) + q(x)f + g] dx6f

Obviously, 6.F(f) = 0 if f satisfies the conditions (E.1), (E.2) and (E.3). The necessity

can also be proven.

We discretize a large but finite region by standard 2-node elements with piece-wise

linear potentials :

Within each element x E [x1i, x 2]
2

(E.6)f = ZfiNi(x)
i=1

where fi is an unknown nodal potential and Ni(x) is a interpolation function

N = x 2  N2
h h

and h is the element length, i.e. h = x 2 - X1.

(E.7)

In matrix form,

N1

therefore,

df_
dx

[d~iV
dx [

N2 ]

f 1
fAI

[f2f2 IN If}

- 1 [f2

Now we can evaluate the two integrals of functional F:

e Integral I,

2 fli p(x)() + q(x)f2]

I= B (f}

dx = { }T [K]eI {f}2
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f2

flf

x1 x2 x

Figure E-1: Local coordinate system for 1-D linear element

where [K]el is the element stiffness matrix

[K]l = X pd
i h2 X1

+ JX 2qNiNdx
X1

with
(-1)i+i X2 X1 zi + X2

h2 =- 2h

1

1

1 X4
4

14e

2 3

3

2
3

w2

h2

S2

2

1 ]x2]
+ 2 X1

1 2 X

+ x z2

I 3

ix13

[~3

X2

X2 + X2

X2

qN1N 2dx
122

X4 X1 + X2 3
3

_ X 2X X2 -

After assemblage and using the global j, we can get

1 = { f} T[K] {f}

* Integral '2

g f dx = {f }T [G]e'

where [G]"e is the element load vector

[G] = f 2 gNdx,
1

i= 1,2
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After assemblage and using the global f, we can get

I2 = (jT [G]

In summary, the stationary functional becomes

F({f}) = ({)}[KI}f } T II [G]

(E.10)

By extremizing the functional, the first derivative of F with respect to unknowns

fi vanishes,

[K] {f} + [G] = 0 (E.11)

which is an algebraic equation system for the nodal coefficients. At the distant bound-

ary x >> 1, f = 0 is imposed as the essential boundary condition.

As a simple check, let us consider an analytical solution: f(x) = -e-x which is

the exact solution to forcing g(x) = e-x, i.e.

xfxx + fx - xf = g(x) = e-'

Plotted in Fig. E-2 is the comparison of our numerical solution (solid line) and the

exact solution (crosses). The numerical values are listed in Table E.1.

Shown in Figure E-3 are the solutions of fu(x) and f 2 (x) by FEM computations.

We also show in Figure E-3 for comparison the series expansion solutions (refer to

Figure 2-3 and Figure 2-4). In addition, they are compared in Table E.2, which shows

very good agreement. It may be concluded that the solution for fii by Rockliff and

Smith is in error.
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Figure E-2: Numerical solution of f(x) (solid line) and exact solution (dots) for special

force g(x) = e-".
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Table E.1: Comparison of FEM solution with the exact solution for g(x) = e-. Error

is defined by 100 x f(EXACT)-f (FEM)
f (EXACT)

x f(x), FEM f(x) = -e~', EXACT Error (%)

0.000000000 -0.999993871 -1.000000000 0.000612926

0.000012167 -0.999981704 -0.999987833 0.000612934

0.000039138 -0.999954733 -0.999960863 0.000612950

0.000098926 -0.999894950 -0.999901079 0.000612987

0.000231457 -0.999762441 -0.999768570 0.000613068

0.000525241 -0.999468767 -0.999474897 0.000613248

0.001176477 -0.998818085 -0.998824215 0.000613648

0.002620082 -0.997377218 -0.997383347 0.000614533

0.005820143 -0.994190632 -0.994196761 0.000616495

0.012913767 -0.987163129 -0.987169258 0.000620850

0.028638311 -0.971761751 -0.971767878 0.000630521

0.063495147 -0.938472554 -0.938478673 0.000652064

0.140762827 -0.868689234 -0.868695319 0.000700465

0.312043267 -0.731943912 -0.731949858 0.000812354

0.691723226 -0.500706984 -0.500712484 0.001098466

1.533365568 -0.215803620 -0.215808127 0.002088555

3.399046955 -0.033402462 -0.033405091 0.007869709

7.534731277 -0.000533893 -0.000534205 0.058322591
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Figure E-3: The numerical solution for fi (solid line) and f12 (dashed line). The circles

and crosses are their series expansion solutions respectively.
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Table E.2: Comparison of FEM solution with the series solution of fli(x) and f1 2 (x).

x fii (FEM) fii (SERIES) f12 (FEM) f12 (SERIES)

0.0000000000 -1.8501992842 -1.8501654620 -0.4495540068 -0.4495565083

0.0000121672 -1.8501639900 -1.8501301679 -0.4495479232 -0.4495504248

0.0000391383 -1.8500857546 -1.8500519327 -0.4495344381 -0.4495369398

0.0000989255 -1.8499123379 -1.8498785165 -0.4495045467 -0.4495070487

0.0002314569 -1.8495279656 -1.8494941454 -0.4494382933 -0.4494407959

0.0005252412 -1.8486761341 -1.8486423166 -0.4492914631 -0.4492939671

0.0011764773 -1.8467889099 -1.8467550985 -0.4489661542 -0.4489686611

0.0026200822 -1.8426105950 -1.8425767982 -0.4482458795 -0.4482483929

0.0058201432 -1.8333735959 -1.8333398360 -0.4466533675 -0.4466558950

0.0129137671 -1.8130208417 -1.8129871864 -0.4431434368 -0.4431459948

0.0286383112 -1.7685041395 -1.7684708218 -0.4354612938 -0.4354639143

0.0634951474 -1.6727150220 -1.6726829210 -0.4189052933 -0.4189080304

0.1407628267 -1.4740101149 -1.4739825075 -0.3844224787 -0.3844253822

0.3120432672 -1.0945953876 -1.0945823218 -0.3177983332 -0.3178012981

0.6917232259 -0.4970469865 -0.4970635773 -0.2085137651 -0.2085163053

1.5333655681 0.0837485636 0.0837246300 -0.0821327162 -0.0821346097

3.3990469554 0.1552896131 0.1552837448 -0.0105514550 -0.0105524706

7.5347312771 0.0101678930 0.0101729218 -0.0001199001 -0.0001200686

16.7023656466 0.0000038205 0.0000039386 -0.0000000081 -0.0000000107
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Appendix F

Evaluation of the integral in (2.66)

Let us introduce

f() = e~

for brevity. Therefore, integration by part gives

o d*n
j0 ked (dn-) d

-j~kdd)

J "100 ( )
The first term on the R.H.S. is zero since the lowest order term in the brackets would

be n! k+le-C. The second term can be rewritten as

dgk = -k 0k-1 (dnlf
dg n-i )d = -k

1 00
k- 'd ( dn-2)

Then we can repeat the first step to obtain

~0 d dg
= 00d

= -k M k-1d dn-2
J0 kn-2

= k(k - 1){ 10k-2 d (

259

-3 )
(F.1)

- fo(dt"-I )

k 0

0 .o



If k < n, this procedure would stop at

1) k k 00 d d-k--1 f
-10"k ( dn-k-l

= (-1)kk! d n-k--1 0 (F.2)

The lowest order term in the brackets would be (k+le--. Therefore the integral

is equal to zero.

If k > n, we can proceed until

(--1)"k(k - 1)...(k - n + 1) j0k-f<

(- )n(k k!n)! (on0 d

(k - r n )! o

k!k! (F.3)
whichlead(k - n)!(F

which leads to (2.67).
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Appendix G

Low-frequency incident wave

case of w=wq-wp

Now let us consider the case that incident wave has a frequency equal to the difference

of the two edge wave eigen frequencies, i.e. w = wq - Wp = V2q + 1 - V2p + 1.

G.1 Governing equations

We still use the same multiple-scale expansion of the solution as in (4.21) except that

the known incident and reflected wave will be incorporated in 51, (instead of 01, as in

the " + " sign case) as part of the homogeneous solution. Therefore at second order,

the radiated wave solutions become

i) 01 = -i(' Jo(2w V) + iBPB Gi(x), with g(x) = e-2xg 1(x) and = Wq - Wp;Ld WpWq

ii) &12 =iBPG 2 (), with g(x) = e- 2xg 2(x) and cD = wq + w,;
WPWq

iii) 0 13 = i-G 3 (X), with g(x) = e-2Tg3(x) and D = 2w,;

iV) 014 = i G4 (x), with g(x) = e-2 g4(x) and C = 2wq.

where G1, G2, G3 and G 4 are given by (4.30). We have incorporated the incident

wave in the solution 0 11(x), where A' = EIAle 2 W is the known incident and reflected

wave amplitude at the shoreline and w = wq - wp is its frequency.

The solutions to the four trapped harmonics fii, f12, fh3 and f14 are the same:

i) 4'Ii = jqB f 1 (x) cos 2 y, g(x) = e 2xf(x), Wq - wp;W~pWq
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ii) 4b12 = BPq f 2 (X) cos 2y, g(x) = e- 2 xf 2 (x),

iii) b13 = iB f 3 () cos 2y,

iv) V)14 = i 'fi 4 (x) cos 2y

g(x) = e- 2xf 3 (X),

g(x) = e-2xf4(X),

where fii to f14 can be solved by Finite Element

S= Wq + WP;

= 2wq;

Method as described in Appendix

H.

At the third order, the forcing terms related to #1, and #12 change accordingly:

[Sp-1]. Instead of (4.40), we now have

(*1, 4"oq)

= 2{*1X3 /oqx [i(Wq - Wp) - iwq)]} - iZ q/ IqqjXX + i(wq - wp)#*1j(4oqxx + 0oqyy)

= -i2wp*?1/oqx - iWq#OqO1xx + i(wq - W)0I(

-ie-X cosy (-i - 2 w dx (2L'
= ~WpWq )q x q G

(wq - wp)G 1 (4Lq - 4Lq)}

-ie~x cos y (e--2L)( .B ) { 2 Jo (2L
dx

Oqxx + Oqyy)

- Lq) + d2G1 Lq

x2 Lq

Lq) +Wq d 2 j0 Ldx2 L

-(gq - wu) Jo(4Lq - 4L)}

= iBpBqB* -X

ie i 2  Bq e-
-2-

WLL4q

2L i, (2L'~d

2w- (2L' - Lq)dx q - (Wq - 4) Jo(4L'q

hp=(x)BpBq* + ie zfp(x)B*

[ES-2]. Instead of (4.41), we now have

( 12, [ q)*q)

= {12x~b*qx [--(LJP +g W) + iWq)] + iLwq *q012xx- + )#2@q

- AL')} cosy

- 4L') cos y

(G.1)

+ VO*gqyy)

-12wp12x@b*qx + Wq'V*q#12xx - i(w4 + L-)-q)12(V)O4qxx + ?/*qyy)

- e- cosy
f~ dG(,L\ 2G2

2wp (2L' - Lq) -Wq d 2 Lq( dG d

+(wp -+ wq)G 2(4 Lq- 4Lq)}

_ BpBqB
p q e 2wd (2L'qdx

- Lq) - Wq d2G 2Lq+ (Li

= hp2(x)BpBqB*

+wq)G2(4L< - 4L') cosy

(G.2)
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[Cp-3], [Ep-4], [E,-5], [Ep-6], [Eg-7] and [Ep-8] do not change. Similarly,

[4-1]. Instead of (4.48), we now have

(0#1,00op)

= 2{#Oixoop [-i(wq - Wp) - iwL)]} - iWp)opebOxx - i(wq - wp)q#i('o00xx + V/ovy,)

= -i2wq~xOOpx - iWpO/Op xx - i(wq - Wp)#1(00pxx + lOpyy)

(B;*Bq (_B' dG1  )wd2G1L
= -i-C7Cosy i -i 2wq (2L, - Ld)+ p 2 L

WpLwq WP dx dx

+(wq - wp)G,(4L" - 4L')}
is)

-ie-x cosy ( B,\){2d Jo
2wqdX (2L', L)+Lpd 2 jo L- L,) +w4 d 2 L

+(wq - wp) Jo(4L" - 4L',)}

BqBpB* -x
Wq WP

= W -i 2 e p +
d2G1

+WTJ dx21 Lp +

+i e~"
eX {

2wq fG (2L,- L )
dx

(We - wp) G,(4L',' - 4L') ICos y

dJo2wqdX (2L' - Lp)
d2 J0

+ W dx2 Lp + (wq -wp) Jo(4L"

= hq(x)BqBpB* + ie'2 fq(x)Bp

- 4L') cosy

(G.3)

[Eq-2]. Instead of (4.49), we now have

(0 12, 0*)

= 2 {175124I*)p [-i(w, + wq) + iwp)]} + iwpI)* 012xx - i(wp + Wq)#12(2 x + 0*)

= -i2wq12A2b*, + iWpO*#12xx - i(wp + Wq)012(/*)2x + 0 )

, ( BpBq .( B* \ dG 2  , d2G2= -iexcosy i2 '-- 2Wqd 2L- L,)- w, d 2 L
WpWq ) k dx dx

+(wp + Wq)G 2 (4L" - 4L') }I
BqBpB*= p p e--

=2 e~p{
= hq2(x)BqBpB*

dG22wq d (2 LP
d2 G 2

- LP) -4 dx2 + (wp + Wq)G2(4L" - 4L') Cos y

(G.4)

But [E&-3], [Sq-4], [Eq-5], [Sq-6], [Eq-7] and [Sq-8] do not change.

Then we recall the solvability condition and obtain the governing equations:

= ia1e-2t Bl + a2BpBpB* -+ a3BpBqB*; (G.5)
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Bq = ible 2 WBP + b2BqBqB* + b3BqBpB,*. (G.6)

Referring to (4.62) and (4.63) we found that the differences are in the linear terms

since they are related to the incident/reflected wave. Therefore, we have different

coefficients a1 and b, for different combinations with Bp and Bq. Change of variable

from B3 to Byew eliminates the phase of incident wave from the evolution equation

and we get
OBp

= ia1Bq + a2BpBpB* + a3BpB,,Bq*; (G.7)

9Bq
a__ = ib1B, + b2BqBqB* + b3BqBpB*. (G.8)

G.2 Initial growth

Due to the difference of the linear terms, we expect a different initial evolution of the

two edge waves. Ignoring nonlinear terms, Eq. (G.12) and (G.13) becomes

= iaiBq and 4 = ibiB,. (G.9)09r (9r

which can be manipulated to get

&2B-
= ibi (ia1B ) = -a biB j

(G.10)

The above equation has an eigen solution

Bj = Bj(O)e ± iVa-7, j =p,q

(G.11)

We now give a1 and b1 for several pairs of (p, q), which can be excited by one

incident/reflected wave:

* Case (1). p = 0, q = 1;

Wp =l, Wq = i, V3IW = W - = V3-1, Lp(2x) = 1; Lq(2x) = 1 - 2x
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Therefore from [S,-1] we get

2a1

I 
d x

= dxFp(x){ 1 -
-i e-

WWq
2wJo (2L/

24dx 2q

(Wq - wp) Jo(4L'' - 4L')] }
- d_ '-2x (4x - 6) dJo(2w /Y)

- wVI d dx

-4c Jo(2w x)} = 0.0866i

And from [Sq-1]

d2 jo
- Lq)+wq d2 Lq

dx 2 q

+ V-3(1 - 2x) d2 Jo(2w )
dx2

ibi

/dxFq(x) i-e~x 2wq dj (2L'j - Lp)

+(wq - wp) Jo (4L'' - 4L') }

-i j'dx e-2 (I - 2x) 2v/dJo(2w cc)
0o W dx

d2 jo

d2 Jo(2w c)

dx2

= 0.1500i

. Case (2). p = 0, q = 2;

oqV , V5 = -W\ - W = 1, Lp(2x) = 1; Lq(2x) = 1 - 4x + 2X 2

Therefore from [Sp-1] we get

= dxFp(x) -i Ie- 2W

(Wq - wu) Jo (4L' - 41q)] }
- -ij dx 2x(16x - 10 -

d Jo
dx(Lq

4x2) dJo(2 x)
dcc

+5(1 -- 4x + 2X2) d2 Jo(2wlc) - 4c(3 - 2x)Jo(2w cc)}

= 0.0751i

And from [8q-1]

ibi
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- dxF(x) i Ie-
J o wwLp

L2 4q

+(wq - Ap)Jo(4L" - 4L') }
/O e-2x-i ndx (I - 4x + 2x

(Jo d2 jo
dx pL - ) L,+ C dx 2 P,

2 d Jo(2w ) - d2 Jo(2w wf)

dx dx2

= 0.1680i

* Case (3). p = 1, q = 2;

Wp = V3, Wq V5, W = L) -WWp = 5-v/3, Lp(2x) = 1-2x; Lq(2x) = 1-4x+2X2

Therefore from [Ep-1] we get

0 1 _x dJo= dx F(x) -WWq e- 2 dx (2 Lq

(Wq - wp) Jo(4Lq' - 4L')]}

-Zijdx6-2x (1-
0o w/5

2x) - (16x - 10 -

+ 5(1-4x + 2X2 ) d w2Jo 2I vx)

- 0.0647i

And from [Sq-1]

ibi

dw ( 1
= 00 dxFq(x) i I -

-Lq)+ wq d oLq
dX

2

4X2)
dJo(2w wx)

dx

- 4c(3 - 2x)Jo(2wv'G)

2wqo (2L/
24dx 2'

d2 jo
LL)+p dx2 LP

+(wq - wLp)Jo(4L" - 4L' }
-i fdx (1 - 4x + 2X2){

0 w V3
d Jo(2w wx)

dx

- v3(1 - 2x) d2 Jo (2w w) + 4c Jo(2w wx)

- 0.0671i

* Case (4). p = 0, q = 3;

43
Wp 1, Wq =/i, W =Wq-op = v7-1, L,(2x) =1; Lq (2w) = 1--6w+6_2 ___
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Therefore from [Ep-1] we get

I d Jo{i e - 2wp dx (2Lq
- Lq) +Wq d2 jo

dx 2

-(wq - ci) Jo(4Lq- 4L]

-if dx
0 v 7

(36x - 14- 20x2 + -x3)
3

dJo(2w x)
dx

+ 7(1 - 6x + 6x 2 - 4x3) d2 Jo (2w )
3 dX2 - 8c(3 - 4x + x2 ) Jo(2w x)

= 0.0665i

And from [Sq-1 1

ibi

= jdxF(x) -_ x 2, dJo 20I.wwp L dx '

d 2 j+
LP) + w~ dx 2

+(wq - wp) Jo(4L'' - 4L')] }
o -2

= -i Jdx e(

= 0.1759i

. Case (5). p = 1, q = 3;

6x+6x2
-

4 3)
3

2 dJo(2w x)
2V5 dx

d2Jo(2wL )'Ik

dx2

L2 = 1 - 2Wq L

Lp(2x) 1 - 2x; L1

W =Lq -Wp\/b- r3,

q(2x) = 1 - 6x + 6X2

Therefore from [S-1] we get

0
=dx Fp(x)

1 1 _
WW e

d Jo I2w dx (2L'q
d2 jo

- Lq) +Wq dx2 Lq

(wq - wp) Jo(4L' - 4LQ)]

= -i dx (1 - 2x) {3-(36x - 14 - 20x2 + 8 x dJo(2w x)
3 dx

+7(1 - 6x + 6x2 x3) d2 Jo (2w F) - 8c(3 - 4x + x 2 ) Jo(2w x)
3 dX2

=0.0607i
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And from [Eq-1]

ibi

= cdzFq(x) i- e-x 2w do (2L'

+(wq - wp) Jo(4L" - 4L')
0 ~2x 2 4

=-if dx (1 -6x +62 _ _ V, I
0 wV3 3

-v(I - 2x) d2 Jo 2w ) + 4cJo(2w x)

0.0743i

. Case (6). p = 2, q = 3;

d2 jP
-- Lu)+w dx2 L

(6

Wp - 5, Wq -N7, L) W q -Wp _v7 - 5,

Lp(2x) = 1 - 4x + 2X2;

Therefore from [Sp-1] we get

ia1

- J dxFp(x) -i e- 2

-(wq - wp)Jo(4Lq' - 4LQ)]

-i j dx (1 - 4x + 22
0 LLY V

43
Lq (2x) =1 --6x +6x 2 -- 3

SdJo (2Lq
dx (L

) 5(36x

+v7(4 - 6x + 6X2 3 d2Jo(2w) x)
3 dX2

- 0.0543i

And from [Sq-1]

d2 jo
- Lq) +Wq dx2 Lq

83
-14-20x 2 + -x 3)3

- 8c(3 - 4x + x 2 )Jo

ibi

SJdxFq(x) i e- 2Wq dJo (2L'
dx (2L

d2 j
-- L) +w4 dx2 L

+(wq - wp)Jo(4LP - 4L')]

-ij dx2 (1 -- 6x + 6X 2 _ x3)
0 w v/53 { 7(10 - 16x + 4x2) dxo(2w )

-- ( -- 4x + 2 x2) dJo +2w x) + 4c(2x - 3)Jo(2w x)

= O.0643i
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The results for all six cases are summarized in Table G.1:

Table G. 1: Coefficients pairs (ai, bi) for different edge wave modes combinations. Low

frequency incident wave.

From Table G.1 we see that, all a1 and b1 are positive real numbers, which makes

a1 b, positive and real for w = wq - wp. Solution to amplitudes of the two edge wave

modes must be periodic, instead of growing or decaying exponentially. Therefore,

there is no linear instability of the edge wave perturbations to the incident/reflected

wave system.

The nonlinear terms for case w = Wq - w, is exactly the same as in case w = Wq+Wp.

Therefore, we have a pair of coupled equations to deal with:

= iaBq + a2BBB,* + a3 BpBqBqq; (G.12)

OBq
= ib1Bp + b2BqBBq* + b3BqBpB*. (G.13)

Coefficients a's and b's are summarized in Table G.2.

G.3 Effects of Detuning

When we consider the effects of detuning, i.e. some sorts of frequency mismatch

coming from the incident/reflected wave:

we can always make replacements

A-- e -
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q

1 2 3

0 (0.0866, 0.1500) (0.0751,0.1680) (0.0665,0.1759)

p 1 (0.0647,0.0671) (0.0607,0.743)

2 (0.0543,0.643)



Table G.2: Coefficients of a's and b's for w = wq -W p.

a, a 2  a3

(0,1) 0.0866 -0.2302-0.1882i -0.2393-0.1207i

(p,q) (0,2) 0.0751 -0.2302-0.1882i -0.1969+0.2098i

(1,2) 0.0647 -0.0903-0.0478i -0. 1352-0.0318i

b1 b2 b3

(0,1) 0.1500 -0.0501-0.6873i -0.3925+0.5558i

(p,q) (0,2) 0.1680 -0.0626-0.0121i -0.3796+0.8419i

(1,2) 0.0671 -0.0626-0.0121i -0.1720+1.2832i

then all the analysis is still the same as in the perfect resonance case. When we look

at the evolution equations, (G.12) and (G.13) become

a9B- ialeiQ-rBq + a2 |By|2 BP + a3 |Bq12BP
£9T

aBq = ible-rBp + b2|Bq12Bq + b3jBp12 Bqa-F

(G.14)

(G.15)

Change of variables B3 = Bje~- , j = p, q gives

T rT

where we require that f2q - QP= Q. Therefore, equations (G.14) and (G-15) become

= z p + ia1A*Bq + a2 |Bp|2 Bp + a3jB|, IBp

= iQq q + ib1 ABp + b2|I'qj2 Bq + b3IPp|2 _qaTF

(G.16)

(G.17)

The detuning adds another new term to the evolution equation as in the classical

edge wave theory. As in the synchronous resonance analysis, a change of variable will

eliminate the phase of incident wave from the evolution equation. For example, we

can replace D, by Bpes' and Bq by Be2qe 2 , where 'p is the phase angle of the incident

wave.
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G.4 Analysis of nonlinear dynamical system

Replacing B, with its polar form

B= fI eo, j = pq

we get

O5T
ij+i b) eiO7

where I, = 5j 12 is action variable and 9, is phase variable.

new forms for the complex parameters

Also we introduce the

a2 = -a 2 - ia'; a3 = -ar - ia'; b3 = -b + ib.

Divided by Bp on both sides, Equation (G.16) becomes

1 a5,

= 1
v/ieieP 2 1

+ iop, e"

= iOp + ia1-=- + a2|jpB2 + a3Iq12

= iQF+iai -i(Op-Oq)

= ai -ysin(p - Oq)-

+a 2Ip+a3Iq

alI, - aiIq}

+i Qp + a1 T_ cos(Op - 9q) - a'IP - aiI}

Separating the real and imaginary parts, we get

1 = a1  sin(9, - Og) - a'Ip - a Iqe
27P
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(G.19)

(G.20)

2 rI-

b2 = -br - ib';



6p = Q, + a, I cos(Op - Oq) - a'lp - a'Iq (G.21)

Similarly we can get from Equation (G.13)

jq = -b 1  sin(Op - Oq)- b'Iq - b'Ip (G.22)

6q = Qq + b1  cos(Op - Oq) - biIq + b'Ip (G.23)

G.5 Fixed point - the equilibrium state

After sufficiently long time evolution, assumes that the dynamic system reaches its

equilibrium, i.e. [ = 0. (Bp, Bq) = (0, 0) is obviously a fixed point to Equation

(G.16) and (G.17). In order to find equilibrium point other than the origin, let the

L.H.S. of Equation (G.20) to (G.23) equal to zero. Then we have

a1 T sin(Op - Oq) = a2I, + a3I (G.24)

QP + a, I cos(Op - Oq) = a2IP + a3Iq (G.25)

-b1 sin(Op - Oq) = brIq + brIp (G.26)

Qq + b1  - cos(Op - Oq) = b'Iq - b'Ip (G.27)

Then we try to eliminate two phase variables and obtain two equations for Ip and

Iq:

We can eliminate the phase parts and obtain two equations for I0 and Iqo:

Eliminating the sin(Op - Oq) function from (G.24) and (G.26), we obtain

arRo + (ar + a'b) R, + b =0 (G.28)

where we have introduced
1O

Ro =#.
'q
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The above equation can be solved to get

-ab' - ak ar

2a2

For example, in Case (1). p = 0, q = 1,

Ro = -1.9598, or Ro = -0.0641.

Obviously, none of them is the root we want. Therefore, we don't expect fixed points

other than zero. Similar situation holds for the other two cases. In Case (2). p = 0,

q = 2,

Ro = -1.5121, or Ro = -0.0804.

And in Case (3). p = 1, q= 2,

Ro = -3.1196, or Ro = -0.2143.

This tells us that there is no more fixed points other than (Bp, Bq)=(0, 0).

Can we have limit cycle as equilibrium?

variables

Bp --+ bpe M4 ,

If so, we can always make change of

P, -Bq AgqeT

Then Eq. (G.16) and (G.17) become

B! = i(O, - Qp)B, + iaiBq + a2 IB1 2BP + a3 Bq12BP

9Bq = i(Qq - Qq)Bq + ib1 Bp + b2|BqI2 Bq + b3jBp\2Bq
OT

(G.29)

(G.30)

As a result, this change of variable will affect (G.25) and (G.25) only. Like detuning

wouldn't affect the ratio of the two edge wave amplitudes, we don't expect limit cycle

as the equilibrium either.
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Appendix H

Numerical solution by finite

element method for cross resonance

From the analysis of Section 4.4.2, we found that the 4 harmonics of trapped waves

share the same form of BVP as follows:

d
-- (p(x)fx) + q(x)f = -g(x)

with the boundary conditions

xf = 0 as x- 0

xf. = 0 as x- L

and

p(x) = x, q(x) = 4x - 02

The parameter & takes different values according to the harmonics.

It is easy to show that the boundary-value problem above is equivalent to the

stationarity of the following functional

'1

1 L 2f 
L

2 ) p(x) () +q(x)f2 dx+jgfdx (H.1)

12
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Please refer to Appendix E for proof of the equivalence. Notice that we have different

definition for q(x) in this problem. We still need develop the finite element formula

in order to account for this difference.

We discretize a large but finite region by standard 2-node elements (see Figure E)

with piece-wise linear potentials :

Within each element x E (x1, X2]

2

f = fiNi(x) (H.2)

where fi is an unknown nodal potential and Ni(x) is a interpolation function

X2_-X_ £- X
N = _; N 2  (H.3)

h' h

and h is the element length, i.e. h = X2 - x 1.

In matrix form,

f =[N N2  N f (H.4)
f2

therefore,

df d f =Bfil (H.5)
dx [dx dx 2[ ][ 1]fj i H5

Now we can evaluate the two integrals of functional F:

S)( 2 q(x)f2 dx ={f} [K]e {f}

where [K]el is the element stiffness matrix

[Kl = (2)i+i [2 pdx + qN Njdx

with
(-1)i+j X2 ( i+ x1 + X2

h2  j pdx 2h

X2 4 1 4 2 3 1 2 2 X2_ - 1X2i + X2XX
qN1Ndx = x- - x2X+ _X2 -

2 [ 3 - x2 2

X24 1 22 + 3x2 - h2 3 X2

1 2qN2N2dx = 41X 4 - XIX 3 + x X2]2 _, 02 [X 2+X ]X
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qN1N 2dx

4 X1 -+-x2 3
3 - 2

- 1 2[3

After assemblage and using the global I, we can get

I1 = I T [K] (fj

' 12

Sgfdx ={}'I [G]e'

where [G]l is the element load vector

[G] = gNidx,
X1

i 1,2

After assemblage and using the global f, we can get

I2={=f [G]

In summary, the stationary functional becomes

.F({f}) [K] y I + y [G]

(H.6)

By Rayleigh-Ritz principle, the first derivative of F with respect to unknowns fi
vanishes. Therefore

[K] jf + [G] = 0 (H.7)

which can be solved to get the numerical solution of f = {f = - [K]- 1 [G] within

the range of x E [0, L]. Beyond L, f = 0 uniformly.
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Appendix I

The coefficients

other two

I.1

c's and d's for

cases

Case (2). p = 0, q =2

Now we have

W = 1, wq = V5,w =0pWq+ = / +1, Lp(2x) = 1; L(2x) = (1 - 4x + 2x2)

We already knew from Table 4.2 that c, = 0.1056 and di = 0.2360 from previous

discussion.

fi r)

(wp - wq)(4ILIq - 2L'L - 2-JLq) -+ ±[wpLp(4Lq -4/) - wqLq (4I- 4L')]

= (-8+ 4v)x + 10 - 4v/,

91(x) = fi(x) + 2(wp - Wq)LpLq =(4 - 4v)X2 + (-16 + 12\)x + 12 - 6 5;

f2 (X)

= (wp ± wq)(4LLI - 2I Lp - 2ILIq)+

= (--4'5-8)x + V45+10,

I [wPLP (4LIj'' - 41')+wqLq(4I - 4A )]
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Al

1 -

-2-

"J 1 2 3 4 5 6
x

Figure I-1: Numerical solutions to fi1- solid line, f12- dash line, and fi4- dash-dot

line for Case (2). p = 0, q = 2.

g2 (x) = f 2 (x) + 2(wp + wq)LpLq = (4v + 4)X2 + (-12 v' - 16)x + 6v + 12;

f 3(x) = 2L - 6 Ll + 2L L" = 0,

g3 (x) = f 3 (x) + 2L2 = 2;

f 4 (x) = 2L'2 - 6LqL' + 2LqL' = -24x 3 + 92x 2 - 100x + 30,

g4 (x) = f 4(x) + 2L 2 = 8x 4 - 56x 3 + 132x 2 - 116x + 32.

Numerical solutions to fii, fL2 and f14 are plotted in Figure I-1. Again, f13 = 0

due to the forcing f3 (x) = 0 in this case. Our numerical results show that all of them

are close to zero after x > 6.

Other c's from Sp:
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C3 1

= dxFp(x) ie- 2wp d (2L' - Lq)+wqG Lq
dX2

(Wq - wp)G,(4Lq - 4L')]}

5 dxe- 2 2 (-4x2 + 16x -

_(V - 1)(12 - 8x)GI

+5

10) dx + v5(1 - 4x + 2 x 2)dG,dX2

-v 5g (0) - (6V - 10)G 1 (0)
dx

de-2x [(8v5 - 8)X 2 + (32 - 24vf5)x + 12v5 - 24] G1

-V'5-g(0) + a = -0.0135 + 0.5504i (1.1)

where use has been made of relation (4.33). And the generic form for the integral by

part is

j dxf(x)e-2x = -f(0)G(0) - j dx(f' - 2f)e- 2xG.

The integral a can be evaluated as

a = dxe- 2x [(8V5 - 8)X2 +

4

=E a = -0.4150 + 0.0677i
j=1

(32 - 24V5)x + 12v5 - 24] G1

(1.2)

where

a, = 7r J dxe 2x [(8v5 - 8)X 2 + (32 - 24'5-)x + 12v5 - 24] J0 (2Cv6/)

j d e-2 g1 ( )Yo(20 f) = -0.3023

a 2 = -7r dxe- 2x [(8vf5 - 8)2 + (32 - 24V'5)x + 12 vf5 - 24] Jo(2CD/f)

jde- 2gi( )Yo(2CDf) = 0.0948

a 3 = -iVr dxe- 2 x [(8v5 - 8)X2 + (32 - 24V5)x + 12V5 - 24] Jo(20\/-)

j <e -2g( )Jo(2D/) = 0.0677i

281

[kE-1].



a4 = T1r

fdx

dxe7-x [(8 v'5 - 8)X 2 + (32 - 24v,5)x + 12- 5 - 24] Y(2L/ x)

e-2 g1( )Jo(2Z i) = -0.2075

with D = v/5 - 1. Refer to (4.30) for the generic form of solution G1.

[Sp-2].

fdx Fp(x) i1 2 e 2wp dx (2L'q - Lq) - Wq L
dX2

+ wp +Wq)G 2(4L -- 4LQ)}

(-4X2 + 16x - - V5(l - 4x + 2X2)dG2
dX2

+( 5+1)(12 -8x)G 2}

5 (0) + (6 5 + 10)G 2(0)
dx

+ 'di

V592

e-2x [(-8V 5- 8)X2 + (32 + 24v/5)x - 12v 5 -

(0) + 13 = -0.1833 + 7.0219i

The integral 0 can be evaluated as

O = 0 dxe- 2x [(-8V/5 - 8)X 2 + (32 + 24v/5)x -

4

= 1 Z3= -21.7234 + 0.9166i
j=1

12v/5 - 24] G2

(1.4)

- O jr dxe-2 [(--8V/5 - 8)X2 + (32 + 24v/5)x - 12V5 - 24] Jo(2' vx)

de-2 g 2 ( )Yo(2A f) = -3.0316

- -j dxe-2x [(-8v 5 - 8)x 2 + (32 + 24V 5)x

jde- 2 g 2 ( )Yo(2 D ) = -7.8277

03 -Z7jdxe -2x

- 12V5 - 24] J(2cD x )

[(-8V/5- _8)X 2 +(32 + 24,5)x -12-,- 5-24] Jo(2DI' x)

0 <~e 2 , 2( )Jo(2cD j) - 0.9166i
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where
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00
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34 = 7r j dxe- 2x [(-8v5 - 8)x 2 + (32 + 24Vf)x - 12vfg - 24 Yo(2Colx'-)

j e-2Cg2 ()Jo(2CD ) = -10.8641

with D = v + 1. Refer to (4.30) for the generic form of solution G 2 .

[E-3].

C21

00
= jdxF(x)

= i Jdxe~2x

1i
I e~

-2 
G

2dG3 (2p
d2 (2L'

dx 2

d2 G3LP) -dx2 Lp+2G3 (4L" -4L)] }
= i{ (0) + 4G 3(0) -8j dxe-2G 3

- i {93(0) - 8&} = -0.2302 + 0.5618i

The integral y can be evaluated as

~00 4
= ] dxe- 2 G3 = EZ'x 1 = 0. 1798

j=1

where

71 = fr dxe-2xJo(2C/f) Jo
72= - Ijdxe-2x Jo(20 -2x)j

Y3 = -i7r dxe-2xJo(2J VG) j

y4 = rJ dx 2Xe-Yo(2 /)

d~e-2 3( ) YO(26 ) = 0.0454

de-2 ) = 0.0445

dce-293( )Jo(26)xJ ) = -0.0288i

d<e-2 g3( ) JO (20 )= 0.0899

with C = 2. Refer to (4.30) for the generic form of solution G 3.

[E,-4].

C33

= dxFp(x) W q-Lqfiixx +wp(2L' - Lq)fiix

Wq WP( 4 L'" - 4L + 4L)fln12f q

i5- f x(5 ') 2 1I

+ J0 dxe-2x

0) - (3,r - 5)f1(0)

[(-4V5 + 8)x + 4V5-- 10] fi I = -0.0587i
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[Ep-51.

dxFj(x) W(2L' - Lq)f 2x -

+ q (4L// - 4L' + 4L)f12

2 q qqi)iL2jj

5{ 2
5 f2()i(

'qLqf12xx2~~

+ Jdxe-2x ±- 8)x - 4v5 - 101 f12} =2.7587i

[S-6].

{1 e ' - L) LJnfI3xx + fi3(4L" - 4L' + 4Lp)

+ 4f3}I

2f13 (0)} =0

[Sp-7].

C23

= 0dxF(x) iie

+ 3p2L' -Lp)2Lp +

= -ifdxe -4x

- -3i dxe-x

3i

[8P-81.

-3x 27(4L"

34L

9 3
2

3
8

-4L' + Lp)(2L' - LP)2_

9L 3

9 1

- 1 e3x { [(" - 4L' + Lp)(2L' -
J kpL42 4[(4

Lq) 2 - (2L' - Lq) 2 Lp

+6(4L' q- 4Lq + Lq)(2L' - Lq)(2L' - L)- 2Lq(2L/ - Lp)(2L' - Lq)
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dxFp(x) X [fi3x(21

- /f13xxdxe- 2 x {-f13x

9(2L'

- 4L' +L)L -

00

0

fl3x (0) +
2

- L P2 Lp



+ 8(2L', - L,)(2L'/ - Lq) Lq + 4(2L' - Lq ) 2Lp

9 L 2 + (4 L" - 4L'/ + L ±)L + 2(4L'' - 4L' + Lq) LpLq] } F(x) dx

= - dxe

161i

16

Therefore,

4x {24x 4 -256X3 + 824x2 - 968x + 362}

C2  C2 1 + C22 + c23 = -0.2302 - 0.1882i;

C3 c31 + c32 + c33 + c34 + c35 = -0.1969 + 0.2098i.

Other d's from &q:

[q- 1].

d31

S0 ie- " dG 1
0dxFq (x) ww2 2wq dx (2L'

+(wq - wp)G1 (4L'' - 4L')]}

-d (0) - (6 - 2 5)G 1 (0)

d2G1-Lp)+w dx2 L,

+ jdxe-2x [(8 - 8,/'5)x 2 + (24-v5 - 32)x + 24

= {-gi(0) - a} = 0.0303 + 0.8190i

a is defined in (1.1) and evaluated in (1.2).

[(Eq-2].

d3 2

dFx ( ie-x wdG2 ( 2 L-L) d2 G2xx p24 dx2L L dx 2 L

+(wp + Wq)G 2(4L" - 4L')]}

= - (0)+(6+2,5)G2(0)

+ f dxe 2x [(8V 5 - 8).9 + (245 + 32)x -

{92(0) + 03} - -0.4099 +~ 1.6516i
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/ is defined in (1.3) and evaluated in (1.4).

[Sq-3].

- dxFq(x)

- i dG4(O

{ e [2 G4( 2 L'q- Lq) - Lq+ 2G 4 (4L' -

)+ 20G4 (0)

+ j dxe-2 [-32X4 + 224X3 - 528X2 + 464x - 128 G4

- {9 4 (0) + } = -0.0626 + 4.7096i

The integral r, can be evaluated as

K= j de-2x [-32x4 + 224x 3 - 528X2 + 464x - 128] G4

4

=E - = -21.4691 + 0.1400i
j=1

where

Ki= jr de-2x [-32X4 + 224x 3 - 528X2 +

fd e- g4 ( )Yo(2D 1) = -1.0838

464x - 128] Jo(2&' w)

2 -7r j dwe- 2x [-32X4 + 224X3 - 528X2 + 464x - 128] Jo(2cD w)

jde-2 g 4 ( )Yo(2 ) = -9.6430

3 -i7 j dxe 2 x 32x4 A224X3 - 528X2 + 464x - 128] Jo(2D9 )

J00 de-g 4(()Jo(2ID ) = 0.1400i

K4 = (0f dxe- 2x -32X4 + 224X3 - 528X2 + 464x - 128] Y(2cD) w)

J<e2-g 4 ( ) Jo(2D ) = -10.7423

with Co = 2 5. Refer to (4.30) for the generic form of solution G 4.
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Sq-4].

d3 3

= dxF Wq i- f +wq(2L' - Lp)fix

+ fI(4L" - 4L' + 4Lp)]

- -{ fiix(0) - (3 - 5)fi,(0)

"0j dXe-2 x 5(v - 8)x + 10 - 4v'5- fii } -0.6326i

[Sq-5].

d34

= 0 dxFq(x)x qw(2L'-Jo wqWU) L 1W
L f12x -- L f12xx

+ W fi 2(4L" - 4L' + 4Lp)]

- l{fi(2x() + (3 + Vf)f 12(O)

+ j dxe-2 x [(4V5- + 8)x - 4f- io0] f12} 0.9326i

Eq-6].

jdxFq(x) { e-x (2L' - Lq) fax -Lfl4x +(4L -- 4L' + 4Lq)f4

=--- f4x(0) + 10f4(0)

+0 dxe- 2x 148x 3 - 184X2 + 200x - 60] f14} 2.2695i

[Sq-7].

-Z-e { (4L" - 4L' Lq)(2L' - Lq)2-(2L' - L)2Ll
f qq 8 q qq

+ [3(2L' - Lq) 2 Lq + 3(4L't - 4L' + Lq)L -- L 3Fq(x)dx

-e-f {488 -- 864x7 + 5832x6 - 2011225
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+39180x 4 - 44184x 3 + 28038x 2 - 9060x + 1110}

2001i

128V.F

[Eq-8].

d35

S100 2 e 3 x0 WqWp
{4 [3(4L' - 4L' + Lq)(2L' - - (2L' - Lp)2Lq

+6(4L - 4L' + L)(2LP - L)(2- Lq) - 2L(2L' Lq) (2L' - L)]

+ [8(2q- Lq) (2L' - Lp)Lp + 4(2L'- Lp) 2Lq

9LqLp + (4L' - 4L' + Lq)L2 + 2(4L" - 414 + Lp)LqLp] } Fq(x)dx
=- dxe-4x {24x4 - 176x 3 + 380x 2 - 288x + 56}

69i

Therefore,

d2= d21 + d2 2 + d2 3 = -0.0626 - 0.0121i;

d3 =d 1i + d32 + d33 + d34 + d35 = -0.3796 + 0.8419i.

1.2 Case (3). p=l, q=2

Now we have

Wp= VF~i WqV 5 W=Lp + Wq =/5-+ V3-7

Lp(2x) = 1 - 2x; Lq(2x) = (1 - 4x + 2x 2)

We already knew from Table 4.2 that c1 = 0.0970 and d, = 0.1524 from previous

discussion.

fi(x)

= (wp - wq) (4 - 2IL/'I - 2ILq) + [wqLs (I' - 4LIq) - wqLq (4I4 - 4L4)]

= (20V'3 - 16vs/)X2 + (-44v'3 + 36v )x + 20v3 - 16Vf,
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gi()

= fi(x) + 2(wp - Wq)LpLq

= (-8 + 8 V')X 3 + (-36v5 + 40vf3)X2 + (-56V3- + 48v'5)x + 22,V - 18V/5;

f2 (X)

= (wp+wg)(4LL' - 2L' Lp - 2LLq) + [wpLp (4L' - 4L/') + wqL, (4L" - 4L)]

= (20x + 16V')X 2 + (-44'A - 36\'-)x + 20V3- + 16\'5,

92(X)

= f 2 (x) + 2(wp + wq)LpLq

= 843- 85)X3 + (36/5 + 40V3)X2 + (-56V3 - 48'/5)x + 22x/3 + 18,5;

f 3(x) = 2L'/2 - 6LpL' + 2LpL" = 10 - 12x,

g3 (x) = f 3(x) + 2L = 8x 2 - 20x + 12;

f 4 (x) = 2L'2 - 6LqL' + 2LqL' = -24x 3 + 92x 2 - 100x + 30,

g4 (x) = f 4(x) + 2L 2 = 8X4 - 56X3 + 132x 2 - 116x + 32.

Numerical solutions to fi, f12, fi3 and f14 are plotted in Figure 1-2. Our numerical

results show that all of them become pretty close to zero after x > 6.

Other c's from S,:

[EP-1].

C3 1

= jdxFp(x) S1 2 -
{i e 2w, (2L',

d2G1- Lq)+wq d2 Lq
dX2

-(wq - wp)G(4L' - 4Lq)]}

{ - d, (0) - (8A - 10v/)G 1 (0) +
dxe-

2 x [(16V3 -

+(72,/5 - 80V3)X2 + (-96 A+ 112vf/)x + 36 v5 - 44-,3 GI

{-'gi(0) + al = -0.0010 + 0.5793i
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7

6 1 1-

51

4 --

33-

2

01

o 1 2 3 4 5 6
x

Figure 1-2: Numerical solutions to fi- solid line, f12- dash line, f13- dot line, and

f14- dash-dot line for Case (3): p = 1, q = 2.
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where use has been made of relation (J.6). And the general form for the integral by

part is

dxf(x)e-2, = -f(0)G(0) - j dx(f' - 2f)e~2xG.

The integral a can be evaluated as

a = dxe 2x [(16v'3 - 16V5)X3 + (72V5 - 80v'3)X2

4

+(-96V + 112V )x + 3605 - 44if5] G1 = a = 0.2223 + 0.0084i
j=1

(1.6)

where

a, = 7r f dxe 2 [(16v'3 - 16v5)X3 + (72,'5 - 80Vf3)X 2 + (-96-V' + 112V3-)x

+36V5 - 44v"3] JO(2Cv/r) j de-2C1( )Yo(20 ) = -0.0749

a 2 = -7r de-2x [(16V3 - 16 5)X3 + (725 - 80V3)X2 + (-96V' + 112 v)x

+36-5 - 44V/5 J0 (2Co/x) j xde~21( )Yo(20 j) = 0.1861

a3 = -i7r dxe-2 [(16V'F - 16V'5)X3 + (72-V5 - 80VF)X2 + (-96-'F + 112 ,/F)x

+36V5 - 44V' ] Jo(2cL'V7 ) j d~e-2Cg1()Jo(20 f) = 0.0084i

a 4 = 7r J dxe [(16V'F - 16/5)3 + (72v5 - 80,v)x 2 + (-96 F5 + 112 V3)x

+36v'5 - 44v/3] Yo(2Cv0l) de-2Cg1( )Jo(20V ) = 0.1112

with D = -5 - V3-. Refer to (4.30) for the generic form of solution G 1.

[ep-2].

C320dF0 f ~ [dG2(L d 2G2 L
= F (x) i e-- 2wp (2L' - Lq) -Wqd L

+(wp + Wq)G2(4L' - 4L')] }
- - V5- (0) + (8v/5+ 10v/3)G 2 (0) + j dXe-2 [(16/3+ 16V5)X3

+(-72v5 - 80V )X2 + (96V5 + 112V/3)x - 36/5 - 44v'-] G2}

V592(0) + 3} = -0.1342 + 8.5220i (1.7)
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The integral 3 can be evaluated as

13 = dxe2x[ (-8 5
4

-8)x 2 + (32 + 24v5)x - 12v - 24 G2

= 1: = -101.40 + 1.1625i
j=1

where

= Tj dx-2x[(16 3+165)x3 +(-72 --80 )x2 +(96V5+112 3)x

-36-5 - 44V3] Jo(2cQ dx) j de -2g9 2( )Yo(DQ ) = -6.8783

-7r j dxe 2 x [(16,r + 16V5)x 3 + (-72V5 - 80 3)x 2 + (96V5 + 112 3)x

-36- -- 44V3-] Jo(2CD' x) j dg 2( )Yo(2Co ) =-43.8005

/33 = -i7 dx [(16/3- + 165)x3 -+ (-72v/ - 803) + (96V5 + 112 3)x

-36 V- 44v'3] Jo(2D 4x) f d~e-2g 2( )Jo(2CDV ) = 1.1625i

34 = jF dxe 2 [(16vf + 16V05)x 3 + (-72 5- 803)X2 + (96V5 +

-36v5 - 44V3] Yo(2D0 x) jdIex 2 g2 (()Jo(20 f) = -50.7244

with D = V5 + v/3. Refer to (4.30) for the generic form of solution G2.

[Ep-3].

C2 1

-j dx F(x) {i e,

/3
dG3 (0) + 12G
dx

[2 d 3 (2L' -

3(0) -8 j dx ,-2x 2 - 10x + 6) G,

{g3(0) - 8y} = -0.0903 + 2.3049i

The integral -y can be evaluated as

= dxe-2x (4x2 - lOx +
4

6) G3 = E-j= 1.0010 - 0.0195i
j=1
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where

71 = r dxe-2x (4 - lOx + 6) J,(20 x) j

72 dxe-2x (42 - lOx + 6) Jo(2,D x) j

3 = -i7 dxe- 2x (4x2 - 10x + 6) J0 (2,D x) j

4= ir j dxe-2x

de-2 g3 ( )Yo(2c D ) = 0.0888

de-2 g3( )Yo(2D ) = 0.4116

de-2g 3( )Jo(2 /) = -0.0195i

(4X2 - lOx + 6) Yo(2C x) j dxe-g 3 ( )Jo(2cD V) = 0.5006

with C = 2v3. Refer to (4.30) for the generic form of solution G 3.

[&E-4].

C3 3

j dxFp(x) W qLfxx + wp(2L' - Lq)fiix

Wq 2 (4L', - 4L' + 4Lq)fii]}

(4V5 - 5xv3)fi1(0) + dxe-2x [(16V5 - 203)2

+(-365+ 44V/-)x + 16v'g - 20/ fii 0.1505i

3.

C3 4

= dxF,(x) 2e4Wp(2L/ - L)f12x

+ (4L" - 4L' +4L2 q q )f12f

- wqLqf12xx

-f12x(O) + (4 5+ 5v'3)f 1 2 (0) + I dxe -2x [(-16V - 203)X2

+(365+ 44x/3)x - 16v5 - 20 3] f12} = 3.9558i

[8p-6].

C2 2

1 00 dxFp (x) W1

3 j fi32x(0) + 6f,

[f13x(2L' - Lp)

3(0) + 10 dxe- 2x

- ILpf13xx + f13(4 L'-

[24x - 20] f12 = 1.0392i
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[Ep-71.

C2 3

= j dxFp(x) {i Ie-3x 2 A(4L" - 4L' + L)(2L' -- LP2

+ 3(2L' - L ±)2 Lp + (4L" - 4L' + L)L -_ L}

dxe-4 x{48x4 - 336x 3 + 708X2 - 588x + 156}

47i

83

[ ,-8 ].

C35

- -i3x
2

f3 [3A(L" - 4L' + Lp)(2L' - Lq) 2 - (2L'{4 L pq

+6(4L' - 4L/ + Lq)(2L' - Lq) (2L' - Lp) - 2Lq(2L' - Lp)(2L'- - Lq)

+ 8(2L'/ - Lp)(2L/1 - Lq) Lq + 4(2L'/ - Lq) 2 Lp

- 9LL 2 + (4L" - 4L' + Lp)L + 2(4L' - 4L/ + Lq)LpLq] } F(x)dx

= -i Io 00dxe-4x {96x6 - 1280x 5 + 5800x 4

-12128X3 + 12616x2 - 6280x + 1178 3669i

160 3

Therefore,

C2  C21 + c2 2 + c23 =-0.0903 - 0.0478i;

C3 = C31 + C32 + c33 + c34 + c35 = -0.1352 - 0.0318i.

Other d's from 8 q:

[Sq-1].

( -xdxFq (W~ WqW 2 wq d~i (2L' - L) + W, L

+(wq - 4p)G,(4L'' 4L') }
O-3g1(0) - al = 0.0012 + 0.5205i
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a is defined in (1.5) and evaluated in (I.6).

[Eq-2].

j- dxFq(x) 2 dG (2L'
- IWqWp L dx "

+(wp + wq)G 2 (4L" - 4L')] }
= /(V{ 3g2(0) + = -0.1733 +

3 is defined in (1.7) and evaluated in (1.8).

[Sq-3].

j dxFq (x) { Cex 2 dG4(2L'

- LP) - d2G2 LP

5.1147i

- Lq) - d 2G4 Lq
dx2 q

- dG4(o) + 20G4(0)

+ j dxe--2x [-32x4 + 224x 3 - 528x 2 + 464x -

= - {4(0) + s} = -0.0626 + 4.7096i

- 4L')

128] G4

The integral r, can be evaluated as

= j dxe-2x [ 32x4 + 224x 3 - 528x 2 + 464x - 1281 G4

4

E j - -21.4691 +0.1400i
j=1

where

Ki= 7r dxe- 2x [-32x4 + 224x 3 - 528x2 +

cke-2
4 ()Yo(2w-N ) = -1.0838

K2 -7r j dxe-2x
I- 32X4 + 224X3 - 5289 + 464x - 128] Jo(2w' Vx)

jc d2e g4() Yo (22 C)

Io DO

464x - 128] JO(22 x-)

- -9.6430
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13= -i7r0 de~2x -32x4 + 224x - 528x + 464x - 128 JO(2wj/-)

d<e 2g 4 ()Jo(2CDx/) = 0.1400i

K4= 7F j dxe-2x -32x4 + 224x 3 - 528x 2 + 464x -

Sde--2 g4 ( )Jo(2%/v) = -10.7423

with C = 2V5-. Refer to (4.30) for the generic form of solution G4 .

[6q-4].

d33

= dxFq(x) (x Wq -Lfnxx+wq(2L' - Lp)fiix

+ fn(4L" - 4L' + 4Lp)]

- fix(0) - (4,r3 - 3vf5)f1 (0) + J de-2x (20V3

+(-44f+ 36V )x + 20v/r - 16v5 fiI = 0.1417i

[Eq-5].

= 00 dxF 
ie

WqWp
[wq(2L' - Lp)f12x

+ W f 1 2 (4L" - 4L' + 4Lp)]

3ivF -f12x(0) + (4\3 + 3V5)fi2(0) +{2 0 ~ [(-20\/3

+(44Vf + 36V5)x - 20V3 - 16/5] f2} = 2.4615i

[Sq-6.

= 00 dxFq(x){ e-"x
[(2L'q - Lq)f14x - SLqf14xx + (4L' - 4L' + 4Lq)f14 }

{ fi4x(0) + 10f14(0)

+ j00 dxe-2 x [48X3- 184X2 + 200x - 60] f14} J= 2.2695i
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[q-7].

d23

-- e- (L/A'' - 4L/ + Lq)(2L'j - Lq)2 - (2L' - Lq)2Lq

+ (2L/ - Lq) 2 Lq + (4L'/ - 4L' + Lq)L[3 - L } Fq(x)dx

- f]00 dxe4x {48x8 - 864x 7 +5832x 6 - 20112x5

+39180x 4 - 44184x 3 + 28038X2 - 9060x + 1110}
2001i

128v/

[&q-8].

d35

S1 3
- e2 _ 3x - [3(4L'/ - +Lq)(2' - -_ (2L' - Lp) 2 Lq.0 qwP2 (

+ 6(4L" - 4L' + Lp)(2L'I - Lp)(2L' - Lq) - 2Lp(2L' - Lq)(2L' - LP)]
1

+ [8(2' -- Lq)(2L' - Lp)Lp + 4(2L' - Lp) 2 Lq

9LqLp +(4L'/ -4'+ Lq)Lp + 2(4L"< -4L' + Lp)LqLp] Fq(x)dx

= 3 5 dxe-4x {96x6 - 1120x5 + 4608x4 - 8976x3 + 8788x2 - 4008x + 614}
1493i

96V5

Therefore,

d2= d2l + d2 2 + d2 3 = -0.0626 - 0.0121i;

d3= d31 + d32 + d33 + d34 + d35 = -0.1720 + 1.2832i.
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Appendix J

Subharmonic resonance as a special

case

A special case is the two edge waves have same period, which is twice that of the

incident wave. It turns out to be the classical subharmonic resonance [22]. For

simplicity, we consider the edge wave with the lowest x-mode, which produces the

quadratic nonlinear forcing for second order outgoing wave only. Assume the incident

and reflected wave has a normalized frequency 2, the multiple-scale expansion of the

solution is

< [V)o(x,y,)e~i + *1 + E [1(x,T)e-i2 +*

+ 2 [ 2(x, y, )e-" + *1 ... (J.1)

where the known incident and reflected wave will be incorporated in solution #1 as

part of the homogeneous solution. We have two time scales in the system, fast time

t and slow time T = O2t. Change of variable will give

9 a a2  
_2 2

+t 49T at~at OtT

Plugging J.1 into Eq. (4.8) and separate different orders, we get

{ [4o + (xkox)_ + x/oyy] e-t +

+ { ([220, + (Xq#x)x] e-i2t + *I
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+ 2 {[? 2 + (X02x)x + xV/2Vy] eit +

= I (0o, 4o)e i2t + *}

+ 22 {[(41, "*) + (0o, 0o, 0*)] e-it +

+ 2 2i oe-it + *}... (J.2)

At 0(1), we have homogeneous equation

00 + (x0o0X)X + xbo)yy = 0

With the no flux boundary condition at shoreline and exponential decay at infinity,

the first order equation allow the edge wave eigen solution

o = -iB(T)e- cosy. (J.3)

B()'s are the slowly varying dimensionless amplitudes of the edge wave at shore. As

always the evolution equations governing B'(r) are to be obtained at higher order. We

fit in the coefficients for amplitude B so that the normalized boundary condition

+D = 0.

For later uses note that the factor F = e-x, which describe the x dependence of

the edge wave modes, satisfies

F + [(xFx)x - xF] = 0,

xFx=0 at x=0; F -+0, x~ oo.

At 0(i), we are going to combine the input wave with a local nonlinearly generated

wave component to form the whole solution #1(x)e- 2 . It can be obtained totally by

analytical method.

22#, + (x#1x)x = (o,@ 0o)

Nonlinear local forcing

(Vo, IV) = -2i (02+ , - io (VboXX + O"y)

= -i(-iB) 2,-2x {2 [cos2 y + sin 2 y] + cosy (cosy - cos y)}

= 2iB 2 e--2x
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Therefore, the inhomogeneous solution corresponding to the local forcing g(x) = e~2m

is

G(x) = [-U1(00) - iu2 (00)] Jo(4v/F) + ui(x)Jo(4Vx) + U2 (x)Y(4 V)

-iu 2 (oo)Jo(4V) + [ui(x) - u1(oo)] Jo(4V-) + U2 (x)Yo(4 VG-)

u1(x) = -

u2 (x) =

J x Y (4VT)gd( = 0 (J I O)-

J(d = (4

lr Yo(4 )e-2d<

nJo(4vije-2gd

The whole solution for second order wave #1(x)e i2 including the input wave is

$1(x) = -Jo(4x/i) + 2iB 2 G(x)
2

For later uses, we now work out some constants as follows. From (4.29) we get

dG(x)
dx x=o

= -4(-u1(oo) - iU2 (oo)) + g(0)

= 4 (ui(oo) + iu2 (oo)) + g(0)

where g(O) is the exciting force at x = 0, which is 1 here. And

G(0) = -u1(oo) - iU2 (oo)

From (J.4) and (J.5) we can see that

dG(x)
dx x=O

(J.4)

(J.5)

(J.6)= -4G(0) + g(0).

At O(2), the governing equations become

LH = -2 aBF(x) + E(x) (J.7)

where we have introduced

2 = H(x) cosy

and linear operators

LF = F + [(xF,)x -xF].
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And 6(x) denotes all the third-order quadratic and cubic resonance forces for the edge

wave Oo.

E(x) cos y = (#1, b*) + (o,/ o, 0*)

1.

( 1, 2 *)

= {4xO*x (-2i + i)} + iV)*O1xx

= -2i1x I*I + iO*O1xx

= ie * cos y (iB*)

i
= B*e-x

2
( dJo

dx

{
2iB2 2 + d2 G

d2 J0+ dx2 j

d2jo]

+dx2
tdG

cosy - 2iB 2B*e-x - 2G
(dx

}
d2 G )

+ Ix cos y.

(00, 7o 00 *)

- $oxx2?kx/*o,+ * + "0oyy20oyV0y + ?*o0y0y?)Y

+2 (0ox4oyi*/, + ox'*voXy + ?*)oIOoy )x)

= (-iB)2 iB*e-3, {3 cos 3 y - 3 cos y sin 2 y + 6 cos y sin2 yj

-iB 2B*e 3x3 [cos2 y + sin 2 y] cos y

-3iB 2 B*e--3x cos y

Homogeneous equation J.7 has nontrivial solutions F = e~x as described at first

order.

J(HLF - FLH)dx = j [H(xFx)x - F(xHx)x] dx

= j [(xHFx)x - (xFHx).] dx = 0

by the boundary conditions both at shoreline and at infinity. Therefore

FIJHdx = 0 since LF = 0

Solvability condition gives

J 000
dxF(x) (-2 F(x) + S(x) =0

aT
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which can be rewritten as follows:

= i aB* - 2ibB 2B* - 3icB 2B*.
o9Tr 2

(J.8)

This is the equation governing the evolution of the edge wave amplitude B. a, b and

c are constants obtained through numerical integrals. Use has been made of

F 2 (x)dx = f e-2dx = 1

1.

00
a = je-x

= 100
,ex Jx d x(2 dx d 2 dx

( dJo
dx

d2 J0 \
dx2 / dx

dJo -4Jo(0) + 8j e 2xJodx
dx x=o

4- 4+8fe2xJodx

= 8je 2xJo(4i5)dx
8

2e 2 = 8 x 0.06767 = 0.5413

b = je~- [-

00 e-2x 2
Jo (jdx

( dG
2-

d2 G'\~
+ d 2 dx

d2G
+ d ) dx

dG
dx x=o

- -1+8j

4G(0)+8 fj

e- 2x G(x)dx

e- 2xG(x)dx

3

= -1+87r bj = -1+81r x (0.028612 -
j=1

0.0045789i) = -0.28089 - 0.11508i

bo ( x o -Z
b1 = -i e-2xJo(44)dx 1 Jo(4f)e2dt = 4 = -0.0045789i

b2 = j 2x Jo(4 I)dx (0 Yo(4/)e2Cdt -

= e~ 2xJo(4Vr)dx Yo(4/)e~2 dg = 0.014306
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Jo(4v/)e-2Cd = 0.014306

Actually b2 = b3 by property of double integral:

Sf (x)d g(y)dy =
a x

b x

g(x)d f

C = e-- (e-3x) dx

.00=f je4x dx

1

Plugging these coefficients back into (J.8) we get

OB = iaB* - (Q + i-y)B 2 B* (J.9)

with

a = 0.2707, 0 = 0.2302, y = 0.1882

J.1 Initial growth rate

The edge wave amplitudes are much smaller compared to the standing waves, i.e.

B << 1. Therefore, only the linear terms come into play. Equation (J.9) becomes

aB
= aB*. (J.10)

which can be manipulated to get

a2B 
2= ia (-iaB) = a

aDr2

(J.11)

which has a solution

B = B(0)ea"

(J.12)
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i.e. the growth rate is 0.2707. Notice that

_2 t _ k|Aj , w3|A' t, 1w 31A' ,
s gs 2  8 gs2

where w is the incident wave frequency and wo is the edge wave frequency. For the

subharmonic resonance in our study, w = 2wo.

J.2 Equilibrium state - mature edge wave ampli-

tude

When equilibrium state is reached after a certain time of evolution, 2- = 0, then

iaB* - (0 + i7)B2B* = 0 => B 2 ica
-_> |B| = 0.954

03+ -Y

where we have discarded the trivial fixed point B = 0. Returning back to the physical

amplitude,

IB'I = 0.954 S 1/2
k )

= 0.954- (gjA')1/ 2 = 0.9542 (gjA')1/2 =
W

1.908s (|A' L /2

The maximum excursion at the shoreline

XR= 21B'I
S

3 8/g2A' ) 2

3.816 
.2

Stability analysis around the fixed point will be similar to the synchronous resonance

case.
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