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Abstract

Linear edge waves were first found mathematically by Stokes (1846). It has long been
a topic of interest, since edge waves are believed to be responsible for the formation
of beach cusps. Galvin (1965) was the first to observe in the laboratory that edge
wave mode of frequency w can be excited by incident waves of frequency 2w. Guza
and Bowen (1976) gave a theoretical explanation of the nonlinear mechanism of sub-
harmonic resonance. This type of theory has been extended by Minzoni & Whitham
(1977), Rockliff (1978), and Rockliff & Smith (1985), among others. Rockliff also
initiated a theory whereby subharmonic resonance can be achieved by an incident
wave of frequency w, which leads to second harmonic at the second order to excite
the edge wave. Their theory was however incomplete.

The goal of this thesis is to extend the existing theories in order to show other paths
to resonance. The'nearshore region is a plane beach of small slope. For all cases we
shall derive the evolution equations governing the edge wave amplitudes and analyze
the stability of the equilibrium (static or dynamic) state. We first study in Chapter
2 synchronous resonance as a special case. We shall show that interaction between
the edge wave and the incident/reflected wave also generates circulation cells on the
beach. Comparison is made between our theoretical results and the experiments by
Bowen & Inman. We then give a corrected version of the work of Rockliff and Rockliff
& Smith. Next, in Chapter 3 we generalize the idea of Chapter 2 and examine the
excitation of an edge wave by a pair of incident waves of magnitudes comparable
to the saturated edge wave but the sum of their frequencies can cause subharmonic
resonance nonlinearly. In the development of theory, singularities were discovered
at certain incident wave frequencies, each of which coincides with the difference of
natural frequencies of two edge wave modes. Hence lower-order resonance happens.
To remove this singularity we consider in Chapter 4 the simultaneous excitation of
two modes of edge waves by one incident wave. The two edge waves are shown to be
coupled by both linear and nonlinear terms. Instead of a fixed point, the dynamical
system has two limit cycles as dynamic equilibria. Nonlinear numerical simulation
and linear instability are analyzed.
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Chapter 1

Introduction

Rhythmic or periodic features such as rip currents, beach cusps and crescentic bars,
are often found among many plane sandy beaches. The photograph (Figure 1-1) by
Steve Elgar [33] clearly shows beach cusps running down the shoreline.

Since the nineteen sixties (Eckart [7] and Ursell [31]), the formation of beach cusps
has been attributed to edge-waves (e.g. Galvin [10], Bowen and Inman (3], Komar
[21], Guza and Bowen [13]). There is increasing evidence from field observations (Coco
et al. [5]) that these edge waves are often excited subharmonically by waves incident
upon the beach, i.e., edge waves of frequency w is excited by incoming wind waves of
frequency 2w. For these edge waves, sandy horns coincide with the edge-wave nodes,
where swash excursion is the minimum, and bays coincide with the antinodes, where
swash excursion is the maximum. Different edge wave modes have different node and
antinode structures, in both longshore and cross-shore directions. These edge-wave
modes are believed to be responsible for the formation of beach cusps and longshore
bars. Multiple edge wave modes can also be excited simultaneously, implying that
several length scales may coexist on one beach. A striking feature of beach cusps is
their regular or quasi-regular spacing along-shore, even in the random sea condition.
To explain this, theories that beach cusps are evolving features resulting from self-
organizing feedback processes have been proposed by Werner and Fink [32], Coco et
al. [6]. Recent field work in this direction has been focused mainly in two areas.

Firstly high resolution beach experiments have been conducted in order to discern the
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Figure 1-1: Reflective beach and beach cusps at Duck, North Carolina (photo by Steve
Elgar).

nearshore dynamics and to identify harmonic forcing signals. Secondly mathematical
models are used to test features of self-organizing processes. Such computational
models have shown that with a simple grid on a beach and using irregular chaotic
waves as forcing, cuspate patterns can begin to evolve, if an initial edge wave signal
is introduced into the model.

Edge waves are first found mathematically by Stokes [29] (1846), and extended by
Ursell [30] (1951). They can be excited linearly by a moving storm (Greenspan [11],
1956) but not by incident waves of the same frequency. Galvin [10] (1965) was the
first to observe in the laboratory that edge wave mode of frequency w can be excited
by incident waves of frequency 2w. Guza & Bowen [12] gave a theoretical explanation
of the nonlinear mechanism of subharmonic resonance. This type of theory has been
extended by Minzoni & Whitham [23] (1977), Rockliff [26] (1978), and Rockliff &
Smith [27] (1985), among others. Rockliff also initiated a theory whereby subharmonic
resonance can be achieved by an incident wave of frequency w, whose second harmonic

at the second order excites the edge wave. Their theory was however incomplete.

20



The goal of this thesis is to extend the existing theories where subharmonic reso-
nance of one edge wave mode is achieved by a single incident /reflected wave system of
much smaller amplitude and twice the frequency. Throughout the thesis, we treat the
incident wave as the energy source of the dynamical system and its amplitude is always
considered as a constant. The nearshore region is assumed to consist of many natural
modes of longshore oscillation, i.e. the edge waves. We first study synchronous reso-
nance as a special case. In this part, we shall show that interaction between the edge
wave and the incident/reflected wave also generates circulation cells on the beach. To
check the correctness of the theory, we make a comparison between our theoretical
results and the experiments by Bowen and Inman [3]. While somewhat similar to
the work of Rockliff [26] and Rockliff & Smith [27], our theory clears the errors in
Rockliff & Smith. The technique solving second-order problem are typical and will be
used in the rest of chapters. Next, we generalize the idea of synchronous resonance to
the excitation of an edge wave by a pair of incident waves of magnitudes comparable
to the final edge wave. Then we consider the simultaneous excitation of two modes
of edge waves by one incident wave. The two edge waves are selected so that cross
resonance can happen. Next, we study the generation of two edge wave modes by two
incident /reflected wave systems subharmonically. The initial growth of the two waves
are independent, whereas the nonlinear interaction adds new features to the nonlinear
dynamical system as soon as one of the edge wave reaches a finite amplitude. In the
last case, we choose two edge wave modes sharing same eigen frequency and let them
compete under the excitation of one incident wave of frequency twice of theirs. In
particular we shall find if it is possible that only one of the eigen mode finally survives
the competition. The nodal structure of the dominant mode should be relevant to
beach cusps and bars observed in field and laboratory experiments. Otherwise the

interaction of the two edge waves would generate a steady circulation on the beach.
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Figure 1-2: Wedge-like water body on a confined plane sloping beach
1.1 Basic linearized theory

As an introduction, we first recall the solutions of the edge waves and the inci-
dent /reflected waves on a sloping beach, according to the linearized theory.

An idealized plane beach of constant slope s is chosen, as shown in Figure 1-2.
The sloping beach is infinitely long in the z (cross-shore) direction, while bounded
by vertical walls laterally in the y (longshore) direction. The width of the bay is W,
which can be taken as an integral multiple of the wave length on an infinitely long
beach. The origin of the coordinate system is located at the intersection of the still
water beach line and one of the walls.

The linearized Airy’s shallow-water equation for the velocity potential is [22]
L= ~Dy + sg[(zP;), + 2Py =0 (1.1)

where L is a linear operator. And the corresponding boundary conditions are
i) No flux on the channel walls, i.e. &, =0ony=0andy=W.
ii) No flux at shore, i.e. &, =0 at z = 0.
iii) The edge wave must diminish to zero as £ — oo.

Along the free surface, vanishing of surface pressure requires,

00

9(+ 5 =0. (1.2)
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Two kinds of eigen solutions to the linearized equation (1.1) are of our interest.

1) Edge wave of frequency w:
®, = o(x) cos kye ™" + *
The longshore wave number & is related to the bay width by the eigenvalue condition

in y:

k= -”vaf m=1,2,3.. (1.3)

The cross-shore factor ¥o(z) satisfies
2
w
T — — Kz =0
(zv0z)e + (gs > Yo
which is a confluent hypergeometric equation and has two homogeneous solutions

e *M(a,1,2kz), or e *U(a,1,2kz)

a—-1 1_w2
2 gks /|’

Of the two the first is bounded at the beach and is of physical interest. To satisfy the

with

condition at infinity M must satisfy the eigenvalue condition
w:=(2n+1)gks, n=0,1,2... (1.4)

Note that the lowest mode has the eigen frequency w2 = kgs.
With this eigen value condition, the confluent hypergeometric function M becomes

the Laguerre polynomials Ly, i.e.

—1)» 2 2 -1 2
M(-n,1,€) = Ly(£) = % & — %g(n—l) + 7_‘_(%%5(%2) — e (=)
(1.5)
with £ = 2kz. The final solution for the edge wave is
B '
o, = —%—e”kan@kx) cos kye ¥t + x (1.6)

where B is half of the edge wave amplitude at the shoreline.

2) Normally incident/reflected wave:
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Considering the long-crested wave without y-dependence:
Py = qﬁo(x)e—i“’t + *

Then ¢o(z) satisfies
2

($¢Oa:)m + %Qﬁo =0

which is a Bessel equation and has solutions of the form

Jo (2w1/£ ’, or Yy <2w1/—$—'
gs gs

The Bessel function Y, has a logarithmic singularity at £ = 0, which must be discarded

for boundedness. The solution for the standing wave is

L |
o, = 194, (gw‘ /1) oty (.7
w gs

where A is half of the incident/reflected wave amplitude at the shoreline.
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Chapter 2

Synchronous excitation of edge
wave by incident wave of

comparable magnitude

It is known that an edge wave of frequency w and amplitude of order O(e) can be
excited by incident wave of frequency 2w and amplitude (e?)[14]. Their quadratic
interaction at the third order, combining with the cubic interaction of the first-order
edge wave, generates a forcing of frequency w, which resonates the edge wave at the
order O(e®). If there are both an incident wave of frequency w and an edge wave
of the same frequency at the same order O(e), then the quadratic self-interaction of
the incident/reflected wave system will generate harmonic of 2w frequency at order
O(€?), which can trigger subharmonic resonance of the edge wave at the third order.
This idea has been recognized by Rockliff [26]. Her theory is however incomplete and
contain algebraic errors, as will be pointed out later. For simplicity, we consider an

edge wave of the lowest cross-shore mode. Therefore the eigen frequency is

w=uwp = /kgs (2.1)

Airy’s theory is the leading order approximation for very long waves of finite
amplitude in shallow water. Its validity requires that kh <« 1 and A/h ~ O(1). Edge

waves are appreciable only near the shore because of their exponentially decaying
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eigenfunctions as in (1.6). Hence any interactions with incident/reflected waves can be
regarded as taking place within a distance comparable with the longshore wavelength.
As a plane wave approaches a sloping plane beach, its incidence becomes increasingly
normal to the shoreline due to refraction. We treat it absolutely normal when it enters
the interaction domain. The mathematical infinity for x refers only to the nearshore
shallow-water region, where it is appropriate to apply Airy’s theory as in [12] by Guza
and Bowen. Using primes to denote physical variables, we cite below the nonlinear

shallow-water equation of Airy [22]:
L(DI = —@;Itl + sg [(mI@;/)x, + xlé;ry/] = Q(@I) + C((p’) (2.2)

where L is the same linear operator in Eq. (1.1). Q(®') and C(®') are the quadratic

and cubic nonlinear forcing terms defined below
Q) = 2 (P @ur + By Byprr) + B (Bl + Byy) (2.3)
1
C@) =3 (2 + @) (Thrar + By ) + B2V + 8,20, + 20,0, Ty, (2.4)

The corresponding nonlinear free surface condition is

09’
ot’

1
¢+ + §lV<I>’Iz =0. (2.5)

2.1 Normalization

We use the following nondimensionalized variables:

¢’ w
"E:kzl, y:ky” tth,) = o d=—9
|A’| |A'lg

where |A’| is one-half the absolute amplitude of the incident wave at shoreline. The
complex amplitude A’ = |A’|e'” contains the phase angle p. Upon substitution into
Eq. (2.2) we get

—®y + (28;), + 2Py = €Q(P) + C(P) (2.6)

where we have introduced the small parameter

€= k_l?’_l < 1. (2.7)
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The quadratic and cubic nonlinear terms remain the same
Q(P) = 2(2, Pyt + D, Pye) + B, (P + D) (2.8)
1
C@® =3 (2 + ®2) (Tuz + Byy) + P20y + B2By, + 20,8, P (2.9)

Use has been made of the eigenvalue condition for the edge wave (2.1). We also
normalize the free surface boundary condition (2.5) to get

c+%§+-§]v¢|2=0. (2.10)

The parameter defined in (2.7) implies that the wave slope must be much less than
the bed slope. It is known empirically that standing wave breaks when the following

surf parameter exceeds a critical value [22]

T \1/2
§=3<kmAb) ‘

This critical value roughly implies the following incident wave slope

2
o (5

Since breaking waves are beyond the scope of present theory, we require that

CHA| R e

Notice that k is the edge wave number, ky is the incident wave number in deep
water, A’ is one-half the incident/reflected wave amplitude at the shoreline and A, is

the breaking wave amplitude. We have replaced A, with 2|A’| in (2.11).

2.2 Harmonics and nonlinear forcing terms

We represent the solution as a perturbation expansion:
® =00 +ed; + Dy +--- (2.12)

At the leading order we assume the co-existence of one edge wave and one normally

incident and reflected wave of the same frequency (unity because of normalization):
Oy =D, + P; (2.13)
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where

B, =1hp e + %;  with 9o = —iB(7T)e " cosy; (2.14)

is the edge wave, and
;= o e +x  with ¢y = —ie®Jy(2V/7) (2.15)

is the normally incident and reflected waves.
Quadratic interaction at the second order O(e) leads to forcing terms with the

following time-harmonics :
(@e, @e), (@e, @i), ((Dz, (Dz) I 0, +2. (216)

We shall use the spatial parts of the first order solutions to symbolize the nonlinear
forcing (2.8) and (2.9), where their complex conjugate counterparts are implied. For
example, (1o, ¢o) represents the quadratic terms due to the interaction of edge wave
and the incident wave, and gives rise to a second harmonic. From the same interaction,

(vo, ¢5) produces zero harmonic. We now give the details:
Second harmonic

[Q-1]. (%o, o) and its complex conjugate:

(Wo,%0) = 2 [oathoa(—6) + Yoythoy (—4)] = —2i (v, + v
= -2 (—Z'Be“’”)2 (0052 y + sin? y) = 2iB% ™% (2.17)

after using

"ibOzz + ¢0yy = 0.

[Q-2]. (¢o, ¢o) and its complex conjugate:

($0.d0) = 2[dosos(—4)] + Po(—4)Pozz
= —ie" (~ic¥) {"% <4JO—(2$@) - iJo(Z\/E)dzJ‘(’i_(j;/@}

= e {2 (ﬂ%@) +Jo (2f)d2j°(2f)} (2.18)
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[Q-3]. (%o, ¢o) and its complex conjugate:

(1/}0, (;ZSO) = 2 {@bOszOx(—Z) + ¢Oz¢0z(_7/)] + ( .)"/)0¢0xz
= —ie" (—iB)e " cosy { (—2i)(-1) dJO(z\/_) d2J°(2\/_) }

dx?
_ _,L-eisoBe—z{ dJ0(2\/_) dZJO(Q\/_)} cosy

dx dx?
—ie*’ Bgy1(x) cos y (2.19)

where we introduced

dJo(2\/_) _ dJo(2V7)
gu(ﬂ?) e { dr dz? (220)
for brevity.
Zeroth harmonic
[Q-4]. (v, ¢§) and its complex conjugate:
(11’0, ¢3) = ['ll)Oa:QS()x(z + %mww( z)w0¢0mz
2
= e % (—iB)e “cosy [ J(:if;/_)}
oy, -2 Jo(2V/T)
= —ie "YBe g3 oSy
= —ie *Bgys(z)cosy (2.21)
where we introduced
P2V
gia(z) = ——‘(’i—;zl——) (2.22)
for brevity.
There are two terms that do not give any forcing:
[Q-5].
(o, ¥5) = 2 [tost3(8) + Wiutbos(—5) + Yoy thly (5) + ¥, %0u(—)]
it (Yiae + Yiyy) + 195 (Yoaz + Yoyy) = 0. (2.23)
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[Q-6].

(60,65) = 2 [Poadhali) + Ghtoz(—1) + Goydly (i) + Ehyboy(—1)]
_i¢0 (¢3mx + ¢(’§yy) + Z¢(’; (¢0xz + ¢Oyy) =0. (224)

Therefore, we have four pairs of effective forcing terms producing zeroth and second
harmonics. In response to these forcing terms, the following types of second-order
solutions will be excited:

i) (%0, %0) + (do, o) — ¢1(z)e %,

ii) (4o, ¢0) = P12(,y, 7)e ™,

i) (Yo, #5) — 1oz, , 7).

With these first- and second-order solutions, we can work out all the effective
resonance-forcing terms at the third order, guided by two rules : 1) Only the first
harmonic (frequency 1) will force resonance and is of interest; and 2) The forcing
first harmonic must be proportional to cosy. It follows immediately that the edge
wave @, can appear once or three times, but not twice, in each combination (since all
combinations of the incident/reflected waves do not depend on y.). The cubic nonlin-
ear terms which can produce first harmonics are [C-1]:(¥§, ¥, ¥o), [C-2]:(¥§, do, do),
[C-3]: (%o, do, #5), [C-4]:(¥5, Yo, $o) and [C-5]:(tho, o, ¢5)-
~ Among these first harmonics, both [C-4] and [C-5], where the edge wave appears
twice, produces quadratic terms of the form sinysiny, cosycosy or sinycosy. By
recalling the trigonometric identities that all these products do not give rise to cosy.
The number of effective cubic-nonlinear resonance terms reduces to three. From (2.9),

(2.14) and (2.15), we now calculate the three effective forcing terms in detail:

[C-1].

("/)Ba ,‘/}Oa ?ﬁo )
= ¢Ozz2¢0z¢3z + ngac'waz/)Oz + "/)Oyy2'¢0y"/}zy + wgny/JwaOy
+ 2 (%x%y‘/ifmy + Yoz Yoy Y1zy + ¢Sz¢0y¢1zy)

(—iB)?iB*e™%" {3 cos®y — 2cosysin®y — cosysin’y

+ 2 [— cosy (— sin?y — sin? y) + cos y sin? y] }
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= —iB’B*e™3® {3 cos® y + 3 cosy sin? y}
= —3iB2B*¢ % cosy = hey(z)B2B* cosy (2.25)

[C-2].

(15, %o, o)

2
= Bli(ie®) (~ie¥) e cosy [(———d%%ﬁ)) ~ 3d2JO(2ﬁ) dJ°(2‘/E)}

d dz? dz
i - dlo(2vz)\? 3d (do(2y7T)\’
—  _ipt2p - _ *
= e cosy [( dz 2dzx dz B
= ie"®jcy(z)B* cosy (2.26)
[C-3].
(2/)0,¢0a ¢8)

= ¢Oma~¢(§z'¢’0x + ¢(’;x:p¢0x¢0x + 2¢Oz¢(§z¢0xz + 2w0x¢(§z¢0xx + 2¢0x¢0¢n¢(’;¢z
= 2¢0zvm¢3z¢0m + 3 (¢0mm¢5z + d);a:beOz) "Z)Oa:

) ) J 2 2 d
= —i (—z’e“”) (z‘e‘“ﬁ) e “cosy {2 (——-——d 02213\/5)) - 6d J(()i(;\/i) JoEle\/E) B
2 2
= —ie “cosy [2 (—————dJOE;ﬁ)) - 33% (-———djofjiﬁ)) B
= ifcsBcosy (2.27)

Additional contributions will come from quadratic interactions of the pairs (¢1, ¢3),
(Y12, 9%)s (Y10, ¢0), and (Y3, ¢o). Details of these forcing terms will be given after the

second-order solutions ¢, 919, ¥1p are derived.

2.3 Multiple-scale expansions

With these preparations, we now proceed with the solution via multiple-scale expan-

sions

d = [wo(g;, y, T)e ™ + *} + [¢0(07)6_it + *]
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+ € {[451(:3, 7)e "% 4 *} + [1/)12(:1:, y,T)e 2 4 *] + [¢o(z,y, T) + *]}
+ € [z,{)z(x,y,’r)e"it + *] + ... (2.28)

where two time variables are introduced: fast time ¢ and slow time 7 = ¢%t. Accord-

ingly time derivatives will be changed as follows

2___)2_'_626 _0_2__-)_8_2_*_262_3__6__‘_ 4__61
ot ot “ar 8z o ator | © o972

Substituting (2.28) into Eq. (2.2) and separating different orders, we get

{[% + (Zthos), + Thoyy €74 + *} + {[¢0 + (zdoz) e + *}
e {[461 + (2h10),] ™ + #}
+e {[4?/)12 + (zt192) 5 + TW124] €7 + *}
+e{[(zv105), + TW104y] + *}
+2 {2 + (292e), + o] € + 5}

— {[(40,90) + (0, o)l + ¢}

+e {(1/)0, go)e % + *} + e {(%o, #3) + *}
+é€® {[(¢1, ) + (12, 85) + (10, do) + (¥, do)] e~ + x}
+ {15, Yo, Bo) + (Yo, 90, 88) + (45, do, do)] €™ + 5}
+e {_%%/;36_u + *} o (2.29)

2.4 The leading-order solution

For convenience we repeat the leading order solution here. The governing equations

are

Yo + (2or), + Toyy =0
¢0 + (xqbo-‘t)x =0

The homogeneous solutions to the first is an edge wave,

o = —iB(1)e " cosy (2.30)
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and to the second is the incident /reflected wave

do = —ie’Jo(2V/x) (2.31)

Note that B(r) is the slowly varying, dimensionless, complex amplitude of the

edge wave at the shore. The physical amplitude of edge wave is
B’ =2|A'|B. (2.32)

For later use note that the function ' = e™* which describes the z dependence of
the edge wave satisfies

F+((zF,), — oF] =0, (2.33)

and the boundary conditions

zF,=0, x2z=0;, and F—0, z~ oc. (2.34)

2.5 The second-order solution

At O(e), there are two harmonics, but three components : ¢1(z)e™, 919z, y, 7)e "%

and ¢10(x,y, 7). They are solved separately.

2.5.1 ¢ — Radiated second-harmonic

From previous discussion we know that both (g,%0) and (o, ¢o) contribute to the

excitation force for this harmonic. From (2.29), we have

4¢1 + (T¢12), = (Yo, %o) + (o, o) (2.35)

The details of the two quadratic forcing terms are given in (2.17) and (2.18). Let us

introduce the abbreviation

g(z) = 2iB%g, +ie®g; = 2iB%"
+oie {2 (iu_o%/ﬁ) (2\/—)d JO(Q\/_)} (2.36)
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where
ge=e ¥ (2.37)

represents the self-interaction of edge wave and

o= {2 (LAY oy 2HE| 239

the self-interaction of incident/reflected wave. With these we can rewrite the inho-

mogeneous Eq. (2.35) as
1 4 z
Przz + ;d’lz + 5451 = g___(x ) (2.39)

We shall solve the inhomogeneous equation by method of variation of parameters. To
ensure correctness, we compare our solution with others in Appendix A.
By the method of variation of parameters, the general solution of this inhomoge-

neous equation takes the form

1 = C1Jo(4v/T) + CaYo(dV/T) + ur(2) Jo(4v/T) + us(2)Yo(4V/T) (2.40)
where
@) =~ [ u g~ —n [“viaypotss 4
)= [ g Goge = ) e /oat (242
where the Wronskian W is
W, Yo)(e) = WG %52 = (g Yoy B - 2T

The constant coefficients Cy, Cs are to be determined by boundary conditions. Use

has been made of the properties
Jo=—N, Y5 =-Y1, J(2)Yo(2) - Jo(2)Y1(2) = —

Here primes “’ ” denote derivatives with respect to the argument z, which is equal

to 44/T.

At the shoreline z = 0, boundedness of the solution (2.40) requires that Cy = 0.

For detailed confirmation please refer to Appendix B.
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At large z, we shall require that ¢; behaves as an outgoing wave. To impose this
condition, we need the asymptotic behavior of both the forcing g(x) and the solution.

Using the facts that
2 T 2 . b
sz)rv”;;cos(z—z), Yb(z)w\/ﬁsm(z—z)

d-]()(2\/5) —3/4 _: TN d2J0(2\/E) —5/4 7‘-)
dz z Sm(w— 4)’ Tz O F COS(N— 1

we find

g(z) ~ 2iB% % 4+ 2732 {sin(-) sin(-), cos(-) cos(-)} (2.43)

The sinusoidal factors inside the curly brackets {} oscillate fast at large z and
do not affect the magnitude. When integrated, these fast oscillatory terms make the
integral converge fast due to cancelations. Even without accounting for the oscillatory
factor,

Yo(4/€)9(6) ~ Jo(4y/€)g(€) ~ 27"

~3/4 at infinity. Therefore, u;(z) and

The integral u;(z) and uy(z) diminish like z
uz(x) converge to constants as £ — oo. Finally, the solution ¢; ~ z7/4 like Jo(41/7)
and Yo(44/z) at z = 0.

By comparison we can see that at large z, the forcing function g(z) diminishes
faster than the solution ¢;(x) ( 2732 versus z7'/4), i.e. relative to the solution ¢;(x),

the forcing g(z) is a local disturbance. Therefore, we impose the radiation condition

that ¢;(z) should appear as outgoing wave at infinity. It is easy to see that

. . 2 i(4ym-x
$1 ~ —ita(00) HS" (4/z) ~ _WZ(OO)\/47T\/56 +2-%) 4s z— o0

representing the propagating wave if we let

Ci = —u1(00) — tuz(00).

We recall from (2.36) that g(z) = 2iB%g. + ie**#g;, where g, and g; are defined in
(2.37) and (2.38). Let us denote

ui(z) = 2iB*uE(z) + iePul (z), wua(z) = 26B%ug(z) + ie™ub(x) (2.44)
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The coefficients have contributions from the edge wave through

Yo(4 A z
ile) = - 7RO o e B e
=~ — /0 Yo(4/€) —2fd§ (2.45)
e _ Jo 4\/_ ge
4@ = ey = A0
_ /0 Jo(4:/2) —2€d§ (2.46)
and from the incident and reflected waves through
i _ z Yo 4\/— gz(& _
50 = = o™ PR

_ __71_/0 ]/0(4\/2){ (dJo(Q\/—> 2\/‘ dzj(zl;z\/_ } (2.47)

i N Jo(4v/€)gi(€) _ £ .
up(z) = md -—7T/ Jo 4\/E)Qz(§)df

_ / 7o 4\/’ { (d.]o 2\/_) + o 2\/’ d2J(;(§22\/_} (2.48)

By numerical integration, the variations of u!(z) and u}(x) are shown in Figure 2-1.

Note that ub{oco) = 0.

In Figure 2-2 we show the calculated variations of u$(z) and u§(z). Note that
u$(00) is finite, implying finite radiation to infinity.
In summary, the final solution for the second-harmonic forced by self-interactions
is
¢1 = 2iB%¢% + i (2.49)
with
¢1 = [~ui(00) — iu3(00)] Jo(4v/z) + uf () Jo(4V/x) + u3(z)Yo(4v7) (2.50)
and
$ = [~ui(o0) — iuh(00)] Jo(4vZ) + ui () Jo(4v/Z) + uh(2)Yo(4v/T)
= Jo(4vz) + u;(2) Jo(4v/z) + up(2)Yo(4V/x) (2.51)
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Figure 2-2: Curves for u$(z) and u$(z). To be filled in.
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Use has been made of u}(00) = —1, uh(oo) = 0 as discussed in Appendix A. Note

that ¢¢ is complex, whereas ¢} is real.

For later use in (2.93), we record that

%ﬂ = Cu(=4) +9(0) = 4 (us(00) + tuz(00)) + 9(0) (2.52)

$1(0) = C1 = —uy(00) — iuy(00) (2.53)

2.5.2 ;3 — Forced second-harmonic trapped wave

From (2.29), this harmonic is governed by

412 + (2125), + TV129y = (Y0, Po) (2.54)

The details of the quadratic forcing term (1, ¢o) are given in (2.19), which suggests

a solution of the form

P12 = —ie¥ B fi1() cosy (2.55)
where fi1(z) satisfies
T fi1zz + f11z — [ — 4] fir = gu(x) (2.56)
with the abbreviation
L f,dREVE) | RR(yE)
gu(z)=e {4 x4z (2.57)

Let us first study the differential operator. By the change of variables
_£
§=2z, fu=e:f(§)
(2.56) reduces to the confluent hypergeometric equation,
1-4 1
Eff+(1-86f - ‘—2——f = 391 (g) et
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The left-hand-side possesses non-trivial eigen-solutions only if the third coefficient is
an integer n. Since

g#n, n=0,1,2..,
the inhomogeneous equation can always be solved uniquely provided that the bound-
ary conditions are well posed. For this, let us first examine the property of this
equation.

A solution of an inhomogeneous ODE consists of two parts: the homogeneous
solution and the particular one. In our problem, the forcing g;;(z) decays exponen-
tially as z increases. As z — 00, Eq. (2.56) becomes a homogeneous modified Bessel
equation

T f11zz + fi1e —Tfr1 =0
which has the general solution in terms of zeroth-order modified Bessel function of
the first and second kind

f11 = Cilo(z) + CaKo(x)
For boundedness at z = 0, I is excluded. Therefore, the solution of our problem
behaves like Ky, which vanishes as e at oo. Because of this property of i1 is
localized and trapped.

Now we can impose the boundary condition at a large distance
fu—0 at z— 00 (2.58)
and the no flux condition on the shore:
zfi1. =0 as z—0 (2.59)

This problem can be solve analytically as well as numerically by the standard

Finite Element Method (See Appendix E.).

2.5.3 Series solution

In their study of topographic effects on nonlinear edge waves, Rockliff and Smith [27]

solved the inhomogeneous equation

2
2 fuise t e — (@ — 4) fiy = € {4””" COREL O
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by Fourier-Laguerre series expansion:

fii=¢€" i CnLn(2z)

n=0

Co=d1—e 23 [ L (1 g 1 (2.61)
" »p! " nl\2 3—2n '

with

p=0
Refer to Case 5 in [26] for their inhomogeneous forcing and (5.4a, b) in [27] for the

solution. For convenience of comparison, we isolated this problem from others and
changed it to the normalized form. By repeating their analysis we found a different
solution. For later comparison the first 10 coefficients obtained from the formula

above are listed in Table 2.1.

Table 2.1: Coefficients C, from (2.61) by Rockliff and Smith.

Co Ch Cy Cs Cy
0.37483560608 | -0.02159839480 | 0.09823948189 | 0.01417411203 | 0.00250133241
Cs Ce & Cs Cy
0.00041345924 | 0.00006138948 | 0.00000812875 | 0.00000096328 | 0.00000010287

A correct calculation is given below which will be checked by an independent
method of finite elements.
Let us first carry out the differentiations on the right of (2.56 ):
dho(2v7) _  (2/7)
dz N

ChVE) L sy o) - g [JO(Z\/E) - %m"l/z,]l(Z\/a—c)]

= —-117_'1/2.]1 (2\/5)

dx? 2
Therefore, R.H.S. of Eq. (2.60) becomes

1 1
gu(z) = e° [—4x‘1/2J1 - ix”‘q’/le +z7 - Em—s/le]

= e° [—4x‘1/2J1 — 2732, 4 x_lJo} (2.62)
By the change of variables
§=2, fu=edf(E)
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we get

e a-ar -5 = 1o (5) (2:63)

We now construct the inhomogeneous solution by series of Laguerre polynomials, i.e.

£€) = 3 Cala(®

where L, (£) is the Laguerre polynomial. Substituting the series into the equation, we

get the L.H.S.
=0
= S CulEL 4 (1)L, + L]+ S Co (g - n) L. (2.64)
n=0 n=0

The first summation on the right of above equation is equal to zero and only the

second series of Laguerre polynomial remains on the left of (2.63). The R.H.S. is

L8 ¢
SACIA

1
= 5 [—45[,‘_1/2J1 — IL'_3/2J1 + QI—lJ()]

- 5 (F(lﬁ ) ﬁ) 3 [kz'(r—(li)r;) T ;@Iik;' <P<k1+ 2) ~ P(lir?)))J i

2 k=0
o 1 1 (—1)k+1
- ,Z;) {2 HTCEY) (1 Tkt 2)} KT (k + 2)"”}c
&)k +9/2)
N 1;:'6 ENk + 2)!
& (=1)*1(2k +9/2)
B ,g 2kl (k + 2)! &
Use has been made of
B 00 (_1)k(z./2)n+2k
Jnle) = ;) KT(n+k+1)
and
& (Y
Jo(2vz) = ,; KT(k + 1)
_ o0 (_1)kzk+1/2
H(2Vr) = ,;2 kKIT(k + 2)
I'n+1)=n!



Equating the left and right-hand sides, we get
© (=1)F(2k +9/2)

ks 3
n\5 Ln = k
2C <2 ") ,g PRk ©
Invoking orthogonality :
| e La©)Ln(€) = Sum, (265)

we find the coefficient

Clz=n)= [ e {g (—12):;!1((: i;ﬁﬂ) Ek} %

Replacing L, by Rodrigue’s formula

L©) = S ()

we get

3 & ()M (2K +9/2) o d g,
Cn (i "”) —,§ PHRIE + 2)nl /0 5k2.z'§? (€me) de (2.66)

For k < n, the right-hand-side integral becomes zero (Refer to Appendix F for detail.).

Otherwise, we can evaluate it by partial integration and get

3 e (—1)¥+1(2k + 9/2)k!(—1)"k!
Ca (2 n) - k; XK1k + 2)Inl(k — n)! (2.67)
Evaluation of the integral can be found in Appendix F. Therefore,
> — 1)kl (2k 4+ 9/2)k!

= (3 —2n)251(k +2)Inl(k — n)!
By truncating the series at k = 15, 20, 30, the first 10 coefficients are computed as
listed in Table 2.2. It is obvious that after truncation at k = 15 the computed C,, do
not change anymore. The results listed here are different from those in Table 2.1 by
Rockliff & Smith.

For numerical computation we only need to compute the first N + 1 Laguerre
polynomials and rewrite the the solution as

fm@)=e?) anz" (2.69)

n=0
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Table 2.2: Coefficients C,, for the Fourier-Laguerre series expansion of fi;(z) by ana-

lytical formula (2.68).

k Co Ci Cs Cs Cy

15 | -1.1912924537 | -0.7869386806 | 0.1228573090 | 0.0049207918 | 0.0002875715
20 | -1.1912924537 | -0.7869386806 | 0.1228573090 | 0.0049207918 | 0.0002875715
30 | -1.1912924537 { -0.7869386806 | 0.1228573090 | 0.0049207918 | 0.0002875715
k Cs Cs Cr Cs Cy

15 | 1.67989x107° | 9.20254x 1077 | 4.6548x107® | 2.169x10~° | 9.3x10™
20 | 1.67989x 1075 | 9.20254x 1077 | 4.6548x1078 | 2.169x10~° 9.3x1071!
30 | 1.67989x 1075 | 9.20254x 1077 | 4.6548%x1078 | 2.169x10~° 9.3x1071

Table 2.3: Coeflicients a, for the final solution of fi;.

N ao a1 as as a4

4 | -1.8501654620 | 1.0506228021 | 0.2786902271 | -0.0080947705 | 0.0001917143
9 | -1.8501476940 | 1.0504430821 | 0.2790558959 | -0.0083456405 | 0.0002581084
N as as ar ag a9

9 | -6.2483x107° | 1.16860x10~7 | -1.708x10~° 1.9x1071! -1.3x 1078

The coefficients a, for N = 4 and N = 9 are listed in Table 2.3, suggesting that five
terms are sufficient.

The computed solution fi3(z) by different N is plotted in Figure 2-3 and the nu-
merical values are listed in Table 2.4 as well. The analytical solution will be confirmed
by a numerical solution later. For later comparison we use only the first 5 Laguerre

polynomials.
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Table 2.4: Computed fi;(x) using different truncation number N. Error is defined by
[ (N=9)-f1,(N=4)

100 x

f11(N=9)
x | fu(z),N=4| fu(z),N=9| Error (%)
0 | -1.850165462 | -1.850147694 | -0.000960354
0.5 | -0.761912514 | -0.761917413 | 0.000643013
1 | -0.194518274 | -0.194513452 | -0.002478997
1.5 | 0.072845851 | 0.072849027 | 0.004358618
2 0.176497552 | 0.176495342 | -0.001252441
2.5 | 0.196939438 | 0.196934915 | -0.002296632
3 0.179576232 0.17957311 | -0.001738616
3.5 | 0.148651919 | 0.148651856 | -0.000042421
4 0.116164796 0.11616744 | 0.002276656
4.5 | 0.087339966 | 0.087343951 | 0.00456297
5 0.06386347 | 0.063867325 | 0.006035813
5.5 | 0.045719948 | 0.045722606 | 0.00581237
6 0.032190094 | 0.032191037 | 0.002927422
6.5 | 0.022360261 | 0.022359445 | -0.003650993
7 | 0.015359571 | 0.015357266 | -0.015009274
7.5 | 0.010451882 | 0.010448509 | -0.032278513
8 0.00705536 0.007051367 | -0.056626681
8.5 | 0.004729634 | 0.004725416 | -0.089252263
9 0.003151405 0.00314727 | -0.131379004
9.5 | 0.002088652 0.00208481 | -0.184251502
10 | 0.001377772 | 0.001374349 | -0.249131465
10.5 | 0.000905028 | 0.000902076 | -0.327294501
11 | 0.000592258 | 0.000589781 | -0.420027319
11.5 | 0.000386268 | 0.000384237 | -0.52862529
12 | 0.000251153 0.00024952 | -0.654390276
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Figure 2-3: f11(z) reconstructed using first 5(N = 4, solid line) and 10(N = 9, crosses)

Laguerre polynomials.
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2.5.4 ;0 — zeroth harmonic and steady circulation

Collecting the coefficient of zeroth harmonic in (2.29) we get

(z¢102), + TWr04y = (Y0, D) (2.70)

In (2.21) the details of the quadratic nonlinear forcing (v, #5) are given. We propose
a solution of the following form

P10 = —ie ¥ B fia(z) cosy (2.71)
where fi2(x) satisfies

T fioze + f12e ~ Tfi2 = g12(x), (2.72)
with the abbreviation
d*Jo(2\/x
gia{z) =e’" [———‘;(x;/—):l )

subject to the boundary conditions
Tfioo =0 as z—0

fiez =0 as z— o

To solve this boundary value problem, the standard Finite Element Method can be
applied as described in Appendix E. Again, an analytical solution can be constructed
by a Fourier-Laguerre series.

Recalling the recurrence relation of Bessel function, we have

VT _ OV gy o)

dz N
ff?(%‘@ - %x’3/2JI(2\/E) _ g [JO(Q\/E) - %x“l/le(%/E)] .
the R.H.S. of Eq. (2.72) can be written as
glx)=e* %m”:”/le —z Vo + %x’3/2J1] =e® [:v’3/2J1 — :1:_1]0]
By the change of variables

§=2z, fi2= C—gf(f)

46



we get the Laguerre differential equation

£

1 1 (€
" ' _ S
eF+(1-9)f - 5f = 29(2>ez
Note again the left-hand side does not possess eigen solutions since
1 #n n=01,2
2 - ) bl reo

By assuming a series of Laguerrc polynomials as the inhomogeneous solution, i.e.

= i CnLn (‘S)

n=0

we get

g% Ca €54+ (1 - L, - 5L)

i CnléL, + (1 =&)L, + nL,] + i Cn <~-1- — n> Ly, (2.73)
n=0 n=0 2

Again the first summation is equal to zero, leaving only the second series of Laguerre
polynomial on the right. The R.H.S. is

1(8) s _
2912 -

[ 3/2J1 —1J0]

B | =

= gﬂkvé(_klfz) k'IE(_klr 1)}“’16_1
- g[r k+2) k1+1)} (;;?k’:k_l
- g;ﬁi;@v o

Use has been made of
( 1 (1./2)n+2k

=3

o Kl'(n+k+1)
and
Jo(2 =
(2v3) ,g) kIT(k + 1)

L(2vE) =) m



I'(n+1)=n!

In order for the coefficients C,, to satisfy

S (4-r)o-

n=0

)k lk

s 12 k:+1'k'

we require

Ch (—% - n) = [T etLae) {E 2,572:“—;,%5’“} dg

by orthogonality of Laguerre polynomials. Therefore,

_ — (=1)*(k+1) —E gk
Cn = 1+2n:4:02k+1 k+1)!(k+2) / e Ln(8)de
_ 2 & (=D*(k+1) . _
N 1+2nz2k+l(k+1 k+2'n‘/ §d§n E)d§
1 o0 ( 1)k+n+1

T3 o 2= FEF (6 + DallE =) (274)

Listed in Table 2.5 are the first 10 coefficients of the series computed by above

formula with truncation of £ = 20. After that, the computed C,, shows no difference

anymore.

Table 2.5: Coefficients C,, for the Fourier-Laguerre series expansion of fia(z).

Co Cy C Cs Cy
-0.4261226389 | -0.0217688657 | -0.0015511771 -0.0001070564 | -0.0000067703
Cs Ce Cr Cs Cy
—3.884 x 1077 | —2.025 x 1078 | —9.6388 x 1071 | —4.213 x 107! | —1.70 x 10~12

Similar to fi1, we can use the first N 4+ 1 Laguerre polynomials and rewrite the

the solution as

fra(z) =e* Z anz" (2.75)

n=0

The coefficients a,, for N = 4 and N = 9 are listed in Table 2.6.
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Table 2.6: Coefficients a, for the final solution of fis.

aq a1 ao as a4
-0.4495565083 0.0504389405 -0.0038259361 | 0.0001788501 | -4.5135x 1076
-0.4495569180 0.0504430820 -0.0038343552 | 0.0001846175 | -6.0354 x107°

as dg ar as ag

1.4207 x 1077 | —2.51726 x 107° | 3.459 x 107! | —3.6 x 10713 0x 107

O lZ]le|in|Z

The computed solution fio(z) by different N is plotted in Figure 2-4 and the nu-
merical values are listed in Table 2.7 as well. The analytical solution will be confirmed
by a numerical solution later. For later comparison we use only the first 5 Laguerre

polynomials.

2.5.5 Wave set-up/set-down at equilibrium

In terms of the first-order waves the steady component of the second-order free surface
displacement, i.e., the wave set-up and set-down, can be determined by taking the

time-average of Bernoulli equation over a period T' = 27

— 0P e———
C = - (; -+ EIV(PIZ)
= == {{(Woce™ + %) + (Joae= + )] + (thoye + 4’}

= 22 (outs + Vg, + Gy + et + Guutls)

2
= —¢|BB* ™% (0032 y + sin® y) + (%gx—@) - (B + B") e"mé%@ cos y]

= —¢ |BB'e™™ + (M>2 —(B+B") 6"”(-1—‘%1—\/5—) cos y] (2.76)

dz

Please refer to (2.10) for the normalized free surface boundary condition, (2.28) for
the total solution ®, (2.30) and (2.31) for ¢ and ¢o. We have replaced B in (2.30)
with Be' due to change of variable in (2.91).
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Table 2.7: Computed fi2(x) using different truncation number N. Error is defined by

100 % fi2(N=9)—fio(N=4) )

f12(N=9)

x | fiao(z), N =4 fi2(2),N=9| Error (%)
0 | -0.449556508 | -0.449556918 | 0.000091132
0.5 | -0.257940172 | -0.257940059 | -0.000043855
1 | -0.148170496 | -0.148170607 | 0.000075019
1.5 | -0.085219139 | -0.085219213 | 0.000086181
2 | -0.049075793 | -0.049075742 | -0.000103575
2.5 | -0.028299052 | -0.028298948 | -0.000368948
3 1 -0.016340601 | -0.016340529 | -0.000442258
3.5 | -0.009448672 | -0.009448670 | -0.000017909
4 | -0.005471335 | -0.005471396 | 0.001113502
4.5 | -0.003172836 | -0.003172928 | 0.002901020
5 | -0.001842659 | -0.001842749 | 0.004839700
5.5 | -0.001071759 | -0.001071821 | 0.005749068
6 | -0.000624334 | -0.000624356 | 0.003526254
6.5 | -0.000364267 | -0.000364249 | -0.005122848
7 | -0.000212875 | -0.000212822 | -0.024970259
7.5 | -0.000124611 | -0.000124533 | -0.062565908
8 | -0.000073071 | -0.000072978 | -0.126546139
8.5 | -0.000042927 | -0.000042829 | -0.227946019
9 | -0.000025267 | -0.000025171 | -0.380510884
9.5 | -0.000014903 | -0.000014814 | -0.601003198
10 | -0.000008810 | -0.000008730 | -0.909501667
10.5 | -0.000005220 | -0.000005152 | -1.329689118
11 { -0.000003101 | -0.000003044 | -1.889129913
11.5 | -0.000001848 | -0.000001801 | -2.619532843
12 } -0.000001105 | -0.000001067 | -3.557000336
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Figure 2-4: fi2(z) reconstructed using first 5(/NV = 4, solid line) and 10(N = 9, crosses)

Laguerre polynomials.
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Physical implications will be discussed later after the edge-wave amplitude B is

found.

2.6 The third-order problem

2.6.1 Governing equation and forcing

From (2.29) the governing equation for the first harmonic at O(e?) is

B
P2 + (xhog)z + Ty = —-2—6—6_“c cosy + &(z) cosy (2.77)

or

where £(z) denotes all the resonance-forcing terms from quadratic interactions of
first and second-order solutions, and from cubic interactions of first-order solution, of

frequency 1. Noticing that all of these forcing terms are proportional to cosy, we get

8(2}) cosy = (¢57 wo, 1/10) + (1/)87 ¢Oa ¢0) + (1/)07 ¢0a ¢S)
+ (¢1,%5) + (12, #g) + (Y10, $o) + (Yigs $o) (2.78)

The first three terms on the right have been labeled as [C-1], [C-2] and [C-3] re-
spectively. The last four will be labeled as [C-4], [C-5], [C-6] and [C-7] respectively.
It is obvious that [C-2] to [C-7] are proportional to cosy since only one edge wave
component is present in each of the forces. For [C-1], refer to (2.25) for the detail.

We now propose the solution to be

Yo = H(x)cosy (2.79)
so that
0B _
H+[(zH;), —zH] = -—25}—3 4+ E(x) (2.80)

Details of the nonlinear forcing terms involving cubic interaction of the leading-order
contributions ([C-1], [C-2] and [C-3]) are given in (2.25), (2.26) and (2.27). We shall
now work out the third-order forcing terms due to quadratic interactions of first- and

second-order solutions:
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(@1,95) = 2[¢129%6, (1) + Yo Pro(—20)] + 95 (1) P12a

= —2i¢1xw(§x + Z¢lw$w6
&2
= e * cosy{ Qzﬂ B*(-1)+ d;;lzB*}
d2
= —B*e"cosy ( dd)l + ds?)
— ihcyB2B* cosy + ie*? gy B cosy (2.81)
where use has been made of
wgzz + wSyy =

and we have recalled that ¢ = 2iB%¢¢ + ie*®?¢! with ¢¢ and ¢! defined in (2.50) and
(2.51). Therefore, gy is real due to real ¢}, whereas izc,l is complex due to complex
-
[C-5].
(112, &%)
= 219005, (8) — 1200, ¥120] — 12012005, + 195 (V1220 + Y124y)
= —ie¥B(ie™¥)cosy {_igfmw _ Z.zflld?Jo(Q\/_)

d 2
EZ_JO%\_/E_) +2f 1d2‘](;(22\/_) — Jo(2v) (fr1ze — fll)}

= ifosBoosy (2.82)

Jo(2Vz) (frize ~ fll)]

= —iBcosy {ana:

where f11 is given by (2.56) and plotted in Figure E-3
[C-6].

(?/)10, Q50)
= 2[P10eP0:(—1)] — i (V1022 + Y10yy)
= —ie "B(—ie"¥) cosy [—iQflzzfi—JOEZEﬂ — iJo(2vx) ( fizee — f12)}

= iBcosy [Qflgwdjo(2f> + Jo(2v/x) (fr2ze — flz)}
= :EfC5B cosy (2.83)
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[C-7).

(?ﬁfo, ¢0)

= 2 [’wIOm(pOfE(_Z)] — 1o (d);()zm + wTOyy)
= iei‘pB*(—iei‘p) cos Yy {—Z’Zflzxﬂ@ — ZJ()(Z\/E) (flza:m - f12)]

d
= —ie?B* cosy [2f121%%@ + Jo(2v) (f1200 — le)}

= e §orB* cosy (2.84)

where fio is given by (2.72) and plotted in Figure E-3.

In summary, we group the terms according to B, B* and B?B*, and get
E(z) = if(z)B+1iey(z)B* + h(z)B2B* (2.85)

where if,e2#§, h are the sum of coefficients of B, B* and | B|B respectively. Specif-

ically
e if(z) is collected from [C-3] in (2.27),[C-5] in (2.82) and [C-6] in (2.83), i.e.,
if = i(fos + fos + fos). (2.86)
o §(z) is collected from [C-2] in (2.26), [C-4] in (2.81) and [C-7] in (2.84), i.e.,

205 = i (§ca + fou + dor) (2.87)

ie

e h(z) is collected from [C-1] in (2.25) and [C-4] in (2.81), i.e.

h(z) = her () + hoa(x). (2.88)

Obviously, f and § are real while / is complex.

2.6.2 Solvability and evolution equation

Since the homogeneous version of (2.80) has nontrivial solution F = ™%, as described

in (2.33) and (2.34), H must satisfy a solvability condition which is found by Green’s
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formula

| HLF - Feiydo = [T [H@ ), - Fh,)) da

— /O " (¢HF,)s — @FH,),]dz =0

The last equality follows after integration and applying the boundary conditions.

Since LF = 0, we must have

/0°° FLHdz =0

which gives the solvability condition

/d:c (2—6_’”+8( )) 0

or, the evolution of the edge wave amplitude

0B © . . 2 120 % 2 o+
E:/O dre™"E(z) = iaB 4 ife'**B* + kB°B

where
o 8,4 = [ e [f(2), 4(a), ha)ldo

By the change of variable

B=Be¥ = B=-— B
ew

(2.89)

(2.90)

(2.91)

the phase of the incident wave ¢ can be eliminated from the governing equation (2.89):

B _ _ o
— =iaB+iBB*+xkB%*B*
or

(2.92)

This shows that the phase ¢ is of no consequence dynamically and will be taken to

be zero from here on.

2.6.3 The coupling coefficients

We now derive the coefficients «, 3 and & explicitly.
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[C-1]. From (¢, Yo, %) in (2.25):

37
/ dre™ T 43xB2B*____ATZBQB*

[C-2]. From (4)q, ¢, ¢§) in (2.27), we perform partial integration to get

/ dze™ (—i [(d«fo(w—)) a4 (dJO(Q\/“)>

d dr d
_ _Z/ dre _zx{ (dJo 2\f)> Bd(i <dJ0512$\/_)>
= —i(3-4a))B

with

2
o1 =/O dre™%* <%—§§E—\/@>
{0—3] From (’lpg, (150, ¢0) in (226)

[ (e (S22 (10203

B ES
dx dzx

= —ie' P - 2&,} B*
2
with

—\ 2
fo =1 = /o dre™ <—~——d°]0 ((;\/E)>

[C-4]. From (¢1, %) in (2.81), we perform partial integration to get :
-2 (_B") o001 d*¢:
/ dze™ (— ( I + 772 >
—2s (o001 47
2r
B / de ( dx * da"2>
_ * dd)l( -2z
- -B (-4@(0) o N 8/ dze™ " ¢1(z)

- _p (—g(O) +8 /O * dre4, (:c))
= g(0)B* -8B’ /0 " dre 2y (x) (2.93)




Use has been made of (2.52) and (2.53). We recall that g(0) = 2082+ 3ie'® from (B.2)
and ¢ = 2iB?¢$ + ie'?¢¢t with ¢ and ¢! defined in (2.50) and (2.51). Therefore,

5
g(0)B* = %B2?B* + giezsz*
and

—8B* /Ooo dze ¢ (z)

= —16iB*B" [ dee g — 8ie B [ dueg)

— _16iB?B"* /0 " dze {[—uS (00) — if(00)] Jo(4v/3)
+u§ (2) Jo(4v/z) + u(2)Yo(4V/z) }
—8ie?* B* ./OOO dze " { [—ull(oo) - zu;(oo)] Jo(4/7)
i (2) Jo(4v/Z) + () Yo(4v/z) }

— 16 /O " dwe? Jo(4y/T)us (00) B2B® + 8iei? /0 ” dwe 2 Jy(4y/T)i (00) B*
—164 /OOO dze " Jo(4v/x)us (2) B*B* — 8ie'? /DOO dze™** Jo(4v/z )l (z) B*
16 /0 ~ dre " Jy(4y/T)us(00) B2 B* — 862 /O ~ dwe Jo(4y/T )l (00) B

—16i /0 dre~ Yy (4/T)us(2) BEB® — 8ie'? / dze Yy (4y/Z )i (z) B*
0

(2.94)
Therefore, the R.H.S. of (2.93)
g(0)B* — 8B*/0 dre ¢ (z)
= 2B?B* + gz’@”‘pB*

—16imk; B*B* — 8ie"** 1 (26, + f3,) B*

+16imKo B*B* + 8ie™*¢w (283 + ;) B*

—16mk3 B*B* — 8¢™%1 (285 + () B*

—16imk4 B*B* — 8ie***rr (26, + f3s) B* (2.95)

with

oy = /0 ~ dwe 2 Jo(4+/7) | /O " dee %Y, (4,/2)
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fr= [ dee a4y ) [ dexi(ao (dJo m)

po= [ e n(ave) [T agvo(4y) D20 e

iy = /0 * dre Jo(4/T) /0 " e XYy (4,¢)

B, = / dre=2 Jo(44/7) / 4o 4[ (dJo \/€)>2

By = / dze2 Jo(4v/T) / deYo(44/€)Jo(21/€) dQ‘]‘zl;\/_)

K3 = /OOO dze 2 Jo(4V/T) /OOO d56*2£J0(4\/g)

o= [ dwe > a(avE) ) [ denae) (dJo 2f))

B = [ doe™Jo(4v) ) [ dean(a/E) To2y/€) dz‘]‘;gz

mi= [ deeYo(avE) [ deeaye)

pr = f dze > Yo( 4\/_/d§J0 (4/6) (‘“0 2\”)

Bs = / doe™*7Yo(4/7) / dE Jo(44/€) To(2y/€) d2]‘;€22f

Use has been made of (2.45) through (2.48). The numerical values of all the integrals

are evaluated later.

[C-5]. From (112, ¢f) in (2.82):

_z/ dze™® |:2f11xd«]0(2\/—> zflldzj(;(j;/i) — .]0(2\/5) (f11ze — fll):\ B

= —iasB

with

= 2
az = f112(0) + 4f11(0) +/0 dze™® f11 [4dJ0512:1,~\/5) = JZSQ\/E)}
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[C-6]. From (410, ¢o) in (2.83):

/ dze™™ [medjo( v2) + Jo(2vVx) (fi2ee — f12)| B

= iazB

with ,
— —f12x(0 / dr —a:flzd J0(2\/—)
[C-7]. From (¥},, ¢o) in (2.84):
—iei? / * dze® [2}”1 deo(2\/—
0

= —’&'622%8103*

+ Jo(2vZ) (fr2ze — f12)| B

with ,
Bro = a3 = —f12:(0) — / dre ™ f 2M

All the integrals are evaluated numerically by adaptive Lobatto quadrature within
an error of 107%. To ensure the accuracy of the numerical integration, we did some

asymptotic analysis near the two ends 0 and oo in Appendix D. The numerical values

are list in Table 2.8.

Table 2.8: All the numerically evaluated coeflicients for the governing equation.

= By e a3z = P B B2
0.326330 | -2.069132 | -0.408492 | 0.008322 | 0.004901

Bs Ba Bs Bs B
-0.009742 | -0.004169 | 0.000003 | -0.000008 | 0.016142

Bs K1 K2 K3 Kq
0.007550 | 0.007221 | -0.007085 | 0.004579 | 0.014306

In summary, we get

ia =i(da; —
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6 = 3 8im (26, + Ba) + 8im (264 + B0) — 8 (265 + ) = 8ir (267 + o)

NE .
~ [5 - 2[39] — if10 = 0.000065 — 0.0760i (2.97)

Referring to (2.94) and (2.95) and comparing with (2.48), we observe that the Re{i3} =
—87(20s + Gs) = —8 J5° dze™2* Jy(44/z)ub(00), where ub(o0) is equal to zero as dis-
cussed in Appendix A. Here the sum is practically zero (=0.000065) so that i8 =
—0.0760:.

K = 2i—16imK; + 16imKy — 16mKs — 16iTK, — 3712- = —0.2302 — 0.1882:

We point out that the constant x = —0.2302 — 0.1882¢ is identical to that in the
subharmonic resonance [22].

Let us return to physical variables by making following replacements

_ B kA2
B— —, T=€2t=(—l——l> wt'
A s

in (2.92). Hence we get the physical evolution equation

, 2 2 2
%ﬁ _ i (‘E‘) W APB +iB (g) wA’zB’*+n(§) w|B'2B’ (2.98)

In the following analysis we shall use the simpler equation (2.92) and drop the
overbar for brevity. Note that B is the ratio of complex amplitude (including the
phase) of edge wave to that of incident wave, i.e. phase of B is the phase difference

of the two waves.

2.7 Initial growth

In the initial stage the edge-wave amplitude is infinitesimally small so that only the

linear terms come into play. Eq. (2.92) becomes

0B | s
5 =iaB +ifB (2.99)
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It follows that
2
2 ial2 1ig o (g )5

Since from (2.96) and (2.97), 8 = —0.0760 and a = —0.0340, |3| > |a|. Therefore,

solution to the above equation is
B(r) = B(0)exVF* =" 7 = B(0)eX0-0670 (2.100)

The dimensionless growth rate of unstable disturbances is 0.0679!. Note that

! 21 A/ 3 A
|A| EwOIAIth,=€w |A|t/

2
T=€¢l=€6——
gs? gs?

where wyp is the edge-wave frequency.  This time scale is much longer than that
%Lj;ﬂt' for subharmonic resonance (See Appendix J.) if ¢ « 1. This means that

subharmonic resonance has a faster initial growth than the synchronous resonance

since 0.2707/8 = 0.0338 ~ O(0.0679).

2.8 Effects of detuning

Instead of perfectly synchronous resonance, we now consider the effects of detuning,

i.e. the incident wave has a frequency
o =1+€Q
The incident wave becomes
By = goe ISV (2.101)
This amounts to a replacement
do = =19 Jo(2v/T) — o = —ie¥e ™Y J4(21/T).

i.e., the incident wave amplitude changes from A’ to A’e~*®. This replacement does
not affect the coefficient « since it is related to |A’|> (Refer to Eq. (2.98).). But it

does alter the coefficient 3 to Se=27,

In the classical case of subharmonic resonance the growth rate is 0.2707. See Appendix J.
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The evolution equation (2.92) becomes

dB :
57 =B+ iBe ¥ B* + kB2B* (2.102)

After the change of variable B = Be ™", we get

Hence Eq. (2.102) becomes

B _ _ o
—‘27 =i(a+ Q)B +iBB* + k|B|*B (2.103)

Comparing the above equation with Eq. (2.92) we found that detuning only changes
the first coefficient from the constant « to o + 2, which is a linear function of the
bifurcation parameter €.

An energy relation can be derived by multiplying (2.103) by B*,

B*%{f. — i(a+Q)BB* +iBB'B" + x|BBB" (2.104)

The complex conjugate of the preceding equation is

_9B* _ _ S
B aaT = —i(a+ Q)BB* ~ ifBB + k*|B|*)BB* (2.105)

The sum of (2.104) and (2.105) is a statement of energy evolution

8| B|? _ _
—|a;|— = 28Im{BB} + 2Re{x}|B|* (2.106)
Since Re{x} = —0.230160 is negative, the cubic nonlinear term in (2.103) gives rise
to damping by radiation of waves.

For simplicity, we drop the overbar from now on.

2.9 Analysis of nonlinear dynamical system

Consider the dynamical system

‘Z—f = iaB — ibB* — (0 + 1v)|B|’B (2.107)
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where
a=+a=0-0.0340 (2.108)

and b = 0.0760 , o = 0.2302, v = 0.1882. We make a replacement of b = —/ so that
b is real and positive. Refer to (2.96) and (2.97) for the value of « and .
Replacing B by its polar form

B = \/Teig
we get from (2.103)

0B 1 . AN
it 7 . 0
57 (2\/7 —H\/TB) e
= iaVIe® — ibVIe ™ — (0 + i) IVIe®

where I = |B|? is the action variable and 6 the phase variable. Separating the real

and imaginary parts, we obtain

I =—201% - 2bIsin20 (2.109)

6 =a—~I—bcos26 (2.110)

Now we seek the equilibrium points (I, 6p) by requiring I (Io,80) = 0 and (I, 6o) =

0.
2Io (O'I() + bsin 290) =0 (2111)
a—~yly—bcos20, =0 (2.112)
It is obvious that
14
(Io, 60) = (0, = “) (2.113)
is a fixed point, where
. Q-a
a= 2 (2.114)

is the bifurcation parameter through 2. Another fixed point is

a— vl
b

Iy = - sin26g, cos26y = (2.115)



By eliminating 6, we obtain a relation between I, and the detuning parameter a,

o_\? a— 7]0)2 _
(blo) +(20) =1 (2.116)
or,
G2+ (a—AL) =1 (2.117)
where
b= % —3.0284, 4= % — 2.4765.

are numerical constants and @ is defined in (2.114). The solutions to this quadratic

equation are

% =3
[i=_7__ G+ /1 g 1 — 42 )
0 = 35 52 [a \/ + ,?2( a?) (2.118)

Since Iy must be real, we require that

Since Iy must also be positive, there is one finite fixed point I§ when |a| < 1, and two
finite fixed points IF when 1 < @ < 1.292. For & > 1.292 only the trivial fixed point
Iy = 0 exists.

The equilibrium branches are plotted in Figure 2-5. After Iy is known, we can get

6o from (2.115)
cos™ (& — 4lp)
2

b0 = (2.119)

2.9.1 Equilibrium state — mature edge wave and the second-
order steady flow

In this section, we discuss some implications of equilibrium state of the dynamical

system.

e First-order
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Figure 2-5: Bifurcation diagram of equilibrium branches.

At perfectly synchronous resonance, = 0 and a = o = —0.0340 by definition
(2.108). Therefore, & = § = —0.4479 from (2.114). Therefore, we can compute the
corresponding fixed point from (2.118) and (2.119) to obtain

Io=0.1673, 6= —1.3052 (2.120)
which implies that the mature edge wave amplitude By = |Byle % with
|Bo| = \/Io = 0.409. (2.121)

Returning to physical variables, B{ = 0.409e~13%2 A’ or, |Bj| = 0.409|4’| 2 and
the phase difference between the edge wave and the incident wave is 1.3052, which is
closed to 7 /2.

To visualize what happens at the shoreline at this steady state, we rewrite the two

first-order solutions (2.30) and (2.31) in physical variables

A ; i, A’ /
Yy = —il——w—lgBoe"Pe’k’” cosky' = —IBO|e‘6'°z'%‘ge’kz cosky' (2.122)
Al . /
by = —il—z)|—ge“"Jo(2\/ kz') = —i%Jg@V kx') (2.123)

where we have replaced B in (2.30) by Be® due to (2.91). Refer to (2.121) and (2.120)
for the value of |Bg| and 6.

2In subharmonic resonance, |B'| = 0.9542¢ (g]A’])l/ 2. See Appendix J.
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Figure 2-6: The normalized surface elevation {'(0,y,t) along shore line at different

time ¢ = 7%, n=1, 2, 3,..., 12, which are labeled on corresponding curves.

Applying the surface boundary condition (1.2), we get from (2.122) and (2.123)
¢! = | Bo|A'e™* cos ky'e Wt =00) 1y = 2| By||A'le ™ cos ky' cos(wt’ — 6p)  (2.124)

and

¢ = AT 2VEx)e ™ + x = 2|A'|Jo(2Vkz') cos(wt). (2.125)

where we have set ¢ = 0 without loss of generality. The sum of the two elevations along
the shoreline ¢’ = ¢} + (] is plotted for different times during one period T' = 27 /w in

dimensionless form in Figure 2-6.
e Second order

In their lab experiment [3], Bowen and Inman generated edge waves with exactly
the same period as the input wave and rip currents were observed. The test were
performed in a wave basin with W = 24 feet = 731.5 em wide working area and a

bottom slope s = 0.075. Two kinds of waves were used: In the nonbreaking surge
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case, they used incident wave of period equal to 6.4 seconds. For a 5.0 second period,
the incident wave broke. There was no record in their paper about the incident wave
amplitudes. But for 5.0-second incident wave, they recorded the longshore variation
of breaker height in Table 2 of their paper. For convenience, we quoted part of the
records in Table 2.9. In the nonbreaking case, they observed longshore period which
they interpreted as edge waves and rip currents appeared to grow simultaneously and
quite rapidly. The pattern was established a few wave periods after the first wave
reached the beach. In their test with incident waves of period 6.4 seconds (w ~ 1
rad /s ) rip currents were clearly present at such spacing as seen in Fig. 3 from their
paper [3]. We cite the photo in Figure 2-7 for convenience. In the breaking case, they
claimed that no edge waves were visible inside the breaker, although the rip currents
occurred at the theoretical positions of the alternate antinodes of edge waves having
the input frequency. Measurements outside the breakers showed that edge waves were
present there.

In their test with incident wave of 5.00 seconds period, Bowen and Inman [3]
reported in their Table 2, a breaker height Hy, = 2.41 em at the distance z, = 34 cm
from SWL. This measurement was taken at the node of the edge wave, where edge
wave makes no contribution to the total wave height. From their Table 1, it can be
identified that the edge wave mode m = 5 was generated with 4.96 sec eigen period.
The longshore wave number should be k = 3% = 0.0215/cm. From these data, we can

W
infer the incident wave amplitude at the shoreline ap = 2|A’| through (2.125) that

ag - Hb
2Jo(2vEkxy)  4Jo(2vkzxy)

Although the incident wave amplitude of the nonbreaking wave of period 6.4 sec was

ap = apJo(2v/kzp) = |A'| = = 1.536 cm.

not reported, we assume it to be the same as in the 5.00 sec test. With the amplitude
|A’| known, the perturbation parameter in this experiment can be estimated as

_ KA
===

0.44.

€

which is not small. Therefore, the experimental condition is outside the scope of our

theory. Nevertheless we use this value for further comparisons.
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With the inferred |A’|, the mature edge wave amplitude at shoreline should be
|By| = 2|Bo||4’| = 2 x 0.409 x 1.536cm = 1.256cm according to (2.32) in our theory
(wave height H = 2.51em). Projected onto the sloping beach, this wave height creates
an runup of 2.51 ¢m/0.075 = 33.5¢cm. From their Figure 3 (see Figure 2-7) of the 6.4
sec test, the waterline variation on the beach is roughly 731.5em x 0.6cm/11.8cm =

37.2 em, which is close to our theoretical prediction despite the large difference in e.

Table 2.9: Quoted records of the longshore variation of breaker height from Bowen

and Inman [3].

Antinode(Rip) | Node | Antinode(No Rip)
Longshore distance(cm) 0 144 288
Breaker height(cm) 2.05 2.41 3.18
Distance of breaker from SWL(cm) 34 34 40

From (2.71) the steady flow generated by interaction of the incident wave and the
edge wave is

1o = —ie ¥ Be* fio(z) cosy = —iBf(z,y) (2.126)

where we have introduced an abbreviation

f(z,y) = fiz(z) cosy

The normalized velocity (u,v) = (gﬁ, %{7) is shown in Figure 2-8. Note that the
length of the arrow is proportional to the strength of the velocity. The local mass
flux is equal to the product of local velocity and water depth. Therefore, the flux at
shoreline is zero due to the zero water depth at z = 0. Returning to physical variables

we have at equilibrium

) A
Yo = —|Bo|€w°i[-;|gf12(kw’)cosky'

/
= — |Bo|6i(%+6°) -—-——‘/ngf12(k$,) CcOS ky,
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Fig. 3. Edge waves and rip currents in the wave tank for an input wave of period 640
seconds. The antinodes A and nodes N of the edge wave are visible at the water line on the
beach.

Figure 2-7: Photo cited from Bowen & Inman’s 6.4 sec test.
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Figure 2-8: The normalized steady flow velocity (u,v) = (%ﬁ, %5). The two lines in the
bottom figure represent the instantaneous edge wave surface elevation and the solid

line is half period away from the dashed line. AN— Antinode, N— Node.

Adding to its complex conjugate, the total potential for the steady flow

!
o = —2|Bo|cos (g + 90> IAw|gf12(km') cos ky'
Al
= 0.789'—Z}Qf(k:c', ky') (2.127)

Again, we recall the value of |By| and 6y from (2.121) and (2.120). Note that the
coefficient in front of f(kz',ky') in (2.127) is positive. Starting from the second
antinode from the wall at y = 0, seaward rip currents are predicted at alternate
antinodes (see Figure 2-8) according to (2.127). Comparing Figure 2-8 with Figure
2-7 we can see that our theory predicts an identical circulation pattern as in Bowen

& Inman’s experiment.

From (2.75) and Table 2.6 we can get
flgw(O) = k(a1 - ao) = 0.5%.
The maximum cross-shore velocity occured at the antinodes, where cosy = =1 and

!
409 _ .304% 14
W S

|¥,.| = 10.789 x 0.5k
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Therefore, the velocity must be
w /

As a speculative check, we compute the rip current velocity upon substitution of the

incident wave amplitude |A'| = 1.536 c¢m into (2.128)

Umaz = 0.394 x 0.44 x % 1.536 cm = 4.46¢cm/ sec.

27
bsec x 0.075

Thus a 4.46 ¢m/s maximum rip current should occur at the shoreline in the exper-
iment. In the breaking wave (5sec) experiment, they reported a 5cm/sec maximum
rip current velocity. We should remark that breaking was observed in this particu-
lar experiments of Bowen and Inman, which may enhance the surf zone circulation.
That may explain why our theory, based on non-breaking wave assumption, predicts
a smaller velocity. Although the two results are close, the crude agreement is not a
confirmation of our theory.

With the small parameter ¢ known, we can compare the initial growth rate of
synchronous resonance with that of subharmonic resonance. From Section 2.7 the
growth rate of synchronous resonance is
°| ’l

3|A/|

0.0679¢ 2121 — g.030 121 et for €=0.44.

where the coefficient 0.0679 is from (2.100). On the other hand, according to the
classical theory of subharmonic resonance, the initial growth rate is
9 3 A W31 AY
o ;’07wg|sA| 0.034 g's |
Thus numerically, the synchronous resonance and subharmonic resonance have almost
the same rate of initial growth.
At equilibrium, we recall the edge-wave amplitude By = 0.409¢713%52, Substi-
tuting this result along with € = 0.44 in (2.76), we get the second-order wave set-
up/setdown

{ = —

dJo(2vz)\* dJo(2
| Bo|%e™ %" + <—9$) - 2|Bo|cos6’oe"'”OST\/§) cosy | (2.129)
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Figure 2-9: Normalized wave set-up on the beach. The two curves at z = 0 represent
the instantaneous edge wave surface elevation at shoreline and the solid line is half

period away from the dashed line.
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Figure 2-10: Normalized wave set-up at the shoreline x = 0. The dashed curves
represent the instantaneous edge wave surface elevation at shoreline and the two

curves are half period away from each other.

with | By| = 0.409, 6 = —1.3052. Figure 2-9 shows the normalized wave set-up on the
beach according to (2.129).

At the shoreline z = 0, this set-up is equal to

Go = —0.44 (11673 + 0.2147 cos y) (2.130)

which is plotted in Figure 2-10. Use has been made of %‘%@ =—1at £ =0. The
dashed curves in the figure shows the node and antinode position of the edge wave. It
is actually a set-down due to the negative value. Asin Bowen and Inman’s experiment,

the incident wave has an amplitude |A’| = 1.536¢m. Therefore, the physical set-up is
Co = |A'|Co = —0.676 (1.1673 + 0.2147 cos )

From the first anti-node of the edge wave at y = 0, the wave set-down increases

from its lowest level to reach the maximum at the second anti-node.
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2.9.2 Local dynamics around the fixed point

In order to analyze the stability of the equilibrium state, we add some infinitesimal

disturbances to both Iy and 8y so that
I=L+1I, 6=0,+¢

Substituting these into (2.109) and (2.110)and linearizing both equations, we get
I —401, — 2bsin(26p) —4bI,cos(26 r
| = ’ (260)  —4blo cos(200) (2.131)
4 — 2bsin(26p) ¢

Making use of (2.115) we can further simplify the coefficient matrix to

A= —20’]0 4[0(—a+710)

- —-20‘[0

o)-(e)

into (2.131) we get the characteristic equation

Substituting

—20l5— A 4]0(-—0, + ’)/Io)
-y -—20’[0 - A

det(A — AI) = l —0

This quadratic equation gives two eigenvalues
—20ly +i2/—vIo(a — ko), if (a—l) <0

Ar =
{ —20ly £ 2¢/vIo(a — vLp), if (a—~Ilp)>0.

There are two possibilities:

(2.132)

e Two complex-conjugate eigen values,

This happens when (a—~1Ip) < 0. For this to happen we require a < vl = Iy >
%d. In this case, we have Re (A\) = —20y < 0, meaning that the fixed points
are asymptotically stable foci. These equilibria correspond to the branch AB
of the bifurcation diagram in Figure 2-5 and 2-12. The equilibrium of perfect
synchronous resonance is on this branch. All orbits spiral to this fixed point. A

sample phase portrait near this equilibrium is shown in Figure 2-11.
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Figure 2-11: Phase portrait near the perfect resonance stable equilibrium (o, 6y) =

(0.1673, —1.3052).
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¢ Two real eigen values,

This happens when (a — vIp) > 0, or a > vy = I < %d, which corresponds
to branch AC of the bifurcation diagram. Within this branch, we have two
possibilities:

a) One positive and one negative eigen value, i.e. one of the eigen value A, > 0.
This happens when —201y + 24/vIo(a — vIp) > 0, which requires

.
72+02_72+02a'

Iy <
Therefore, the fix points I < ;5?_,—02'& are unstable saddle, which correspond to
branch CD of the bifurcation diagram in Figure 2-5 and 2-12.
b) Both the eigen values are negative.

These fix points are asymptotically stable nodes, corresponding to branch AD

of the bifurcation diagram in Figure 2-5.

All points with Iy = 0 are trivial equilibrium points, around each we have double

zero eigen value A = 0 and

cos 20 = —%
Linearization leads to
[ = 9bI'sin20 = +26I/1 — (%)2
which gives the solution
I = 1(0)e2 V(8 (2.133)

Hence the fixed point Iy = 0 is unstable when b > |a| (i.e. |@| < 1). In order to see
what happens beyond ¢ = £1, we turn to the Cartesian coordinate system and let

B = z +1iy. Then (2.107) can be transfered to two real ODEs
= —(a+by— (> +v*)(oz — ) (2.134)

y=(a—0bx— (" +y*)(oy +7z) (2.135)
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center _ saddle 1 1.29 center

Figure 2-12: Bifurcation diagram.

The linearized dynamical system around fixed point (zo, %) = (0,0) is

I 0 —(a+? z
= (a+?) (2.136)
U a—b 0 Y
With (z,y) o e*, the eigen value condition is
-\ —(a+b) z
a—>b -A Y

=0

There is a pair of eigen values A = ++1/b% — a2, which are purely imaginary if b < |a]
(i.e. |a] > 1), corresponding to neutrally stable centers along Iy = 0. Obviously,
la| = b (i.e. & ==%1) are two critical points of bifurcation.

Let us examine the whole bifurcation diagram in Figure 2-12.

Starting from point E, the lower end of @, we have only one trivial stable center
until B, i.e. @ = —1, where the dynamical system start to develop a stable focus
besides the trivial unstable saddle. Therefore, the system will jump to this static
equilibrium with arbitrarily small perturbation. This jump becomes greater along
the branch BA as a increases until it reaches its maximum at A, where Iy = 0.33
and a = 0.82. After that the system jumps to the stable node along section AH.
The jump height decreases with the increase of 4. After passing through point H,

the system enters a complicated domain of motion. It has two choices, node branch
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HD or center branch CF, depending on the initial perturbation. Suggested by the
bifurcation diagram, this dependence on initial condition should be closely related
to the saddle branch CD. Referring to Figure 2-13 for the separation of the two
different motions by a saddle separatix. As an example, we take @ = 1.15. Therefore,
the unstable saddle is located at (Ip, ) = (0.0697, —0.106) and the stable node is at
(Iy, 60) = (0.303,—0.579). PQ denotes the stable eigen direction of the saddle, while
MN is the unstable direction. All the orbits starting from points on the right-hand
side of PQ will be attracted to the stable node, whereas those starting from points in
between the periodic PQ curves will be suppressed by M N and finally go to Iy = 0.
Here we denote the periodic repetition of PQ curve by (P)(Q), as well as for MN
curve in Figure 2-14. Figure 2-14 shows this process. The equivalent phase portrait
under Cartesian coordinate system is shown in Figure 2-15 and Figure 2-16, where

z = +Tcos, y=+Isinf. After F, the system dies on the trivial equilibrium again.

In a laboratory experiment, the edge wave has a frequency w. Let the incoming
waves have a frequency ¢ # w by controlling the wave maker. The detuning frequency

is
o-w 2o —w
we2  k2w|Al2

As Q is varied, the dynamical system approaches its critical bifurcation points ei-

Q=

ther along EB or GF, depending on whether ¢ < w or ¢ > w. As soon as the

incoming wave amplitude |A| reaches a critical value so that & = 2384 > —1 or

g = 92003404 199, the system response grows continuously to a finite value (for

EB branch) or discontinuously with a sudden jump (for GF' branch). Under either

situation, an edge wave is observed.

2.10 Summary

In this chapter we have found the following:
1. For a given incident wave with frequency equal to the eigenfrequency of an

edge wave, the edge wave can be excited by the second harmonic resulting from the
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure 2-13: Attraction domain demarcation by the saddle separatix for 4 = 1.15.

79



0 0.05 0.1 0.15 0.2 0.25 0.3
I

Figure 2-14: A trajectory starting from (I(0),6(0)) = (0.25,0.2) in between the PQ
curve is suppressed by the M N branch.
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0.1 0.2 0.3 0.4 node

—0_3 L L L 1
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Figure 2-15: Attraction domain demarcation by the saddle separatix for a = 1.15.

0.3

| node
0.2
0.1
saddle
Y ook
saddle

0.1
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0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 node
X

Figure 2-16: A trajectory with a starting point in between the PQ curve is suppressed

by the M N branch.
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self-interaction of the incident wave. At the first order linear sum of the edge wave
and incident /reflected wave creates a periodic pattern of waterline excursion;

2. The nonlinear interaction of the two waves produces second-order circulation
cells on the beach. The relative phase between the two waves determines the sign of
the flow velocity field, and further determines the location of the rip currents;

3. The rip current velocity can be calculated after both incident and edge wave
amplitudes are known;

4. We have studied the synchronous resonance in this chapter as a special case.
The ideas here can be generalized to the excitation of one edge wave by an incident

wave pair, which can be a part of a broadbanded sea.
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Chapter 3

Edge wave generation by a pair of
incident waves of comparable

magnitude

Instead of the synchronous or subharmonic resonance, we examine how a pair of
incident waves can excite one edge wave mode. All the three components are assumed
to be present at the first order. Nonlinear interaction of the two incident waves
generates harmonics twice of the frequency of the edge wave (w). This requires that

the frequency pair (w}, wh) from the two incident waves satisfy
wy £ wy = 2w. (3.1)

so that an excitation similar to subharmonic resonance follows at the third order.
Generally speaking, here w] # wj # w # 0. For simplicity of analysis, we consider an
edge wave with eigen function cos ky (i.e. longshore wave number k) and the lowest

cross-shore mode. Therefore the eigen value condition (1.4) gives

w=wy = \/@ (3.2)

For other z modes of the edge wave, similar procedure should be followed.

The full version of the nonlinear shallow-water equation is as (2.2) and we use the
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following nondimensionalized variables:

z=kx', y=ky, t=uwt, Cz—g——, o= @
|AY| |A'g

where |A’| is one-half of the average of the two incident waves amplitudes at shoreline

and taken to be a constant, i.e.

[41] + [45]

A/
4 =22

(3.3)

with A} and A}, are half of the amplitude of the two incident waves respectively. Then
the same set of dimensionless governing equation as (2.6) is obtained, as well as the
small parameter €. Note that here the definition of A’ is different from the one in the
synchronous resonance case.
—~&y + (2D,), + 1Dy = €Q(®) + €2C(D) (3.4)

with

_ kA

s

and quadratic and cubic nonlinear terms
QD) = 2(D, Pyt + PyPyt) + D4 (Pup + D) (3.5)
1
0(®) = (22 + %) (@a + Byy) + Vo + Oy + 28,8, B,y (3.6)
The normalized free surface boundary condition becomes

<+ ‘% —|V<I>|2 =0, (3.7)

3.1 Harmonics and nonlinear forcing terms

Let the perturbation expansion solution be
O =+ ed; + Py + -+ (3.8)

At the leading order we assume the co-existence of one edge wave and two normally

incident and reflected waves of frequency w; and wo:
Dy = @, + Po1 + o2 (3.9)
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where

O, = Yo e +%; with ey = —iB(7)e ™ cosy; (3.10)

is the edge wave, and

: A
Qg1 = o1 €M + x;  with @ = —-iw—lJo(2w1\/5); (3.11)
1

: A
Bz = o2 € + %, with @o2 = —iw—2J0(2w2\/a§ (3.12)
2

are the two incident and totally reflected waves. Please refer to (1.6) and (1.7) for
dimensional form of the two kinds of wave solutions. B, A; and A, are one half of
the normalized amplitudes of those waves at the shoreline x = 0. Therefore, their

physical amplitudes are
B' = |A'|B, A|=|AA;, A, =|A|A,. (3.13)

Therefore, |A;| + |Az] = 2 according to the definition of the nondimensionalization
scale |A] in (3.3). w; and w, are the normalized frequencies of the two incident and
reflected waves, i.e. w; = wj/w, (j =1, 2). Note also that the edge wave solution
depends on z and y and is 2-dimensional, whereas the two incident and reflected waves
are longcrested 1-dimensional and have no y dependence.

In order to find out what are the harmonics excited by nonlinear interaction at
second order O(e) and consequently contributing to resonance forcing at the third
order O(e?), we need to look at the quadratic nonlinear forcing terms first. Out of
the three first order wave solutions, there are totally six possible combinations, which
give different harmonics as follows:

Q-L. (&, ®.)—0, £2

Q-IL (®., ®p1)— (1 4+ wy), £(1 —wy)

Q-IIL. (®e, Po2)— £(1 + wo), £(1 — ws)

Q-IV. (®y1, o1)— 0, £2w;

Q-V. (Pg2, Pg2)— 0, +2ws

Q-VIL (®o1, Bo2)— (w1 +w2), (w1 — wy)

Similar to the classical edge wave theory [22], we try to find all the possible reso-

nance forces for the edge wave, i.e. only those with unit frequency and y-dependence
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of cosy are of our ultimate concern. Obviously, the first three combinations will not
give harmonic of frequency 1 (For the time being, only one mode of the edge wave
is considered and those with frequencies other than 1 are not of interest.). The re-
maining three combinations can give the right frequency 1. But they only involve
incident and reflected waves and there is no y dependence in the forcing term, which
is necessary in order to resonate the edge wave. Therefore, resonance of the edge wave
of frequency 1 is not expected to happen until the third order.

Now let us look at the third order cubic nonlinear terms. We require that at
least one edge wave P, is involved in each combination. Then the remaining two
components can come from any of the three first order components and the possible
combinations are reduces to 6 (Q-I to Q-VI) as in the quadratic combinations. Fur-
thermore, from the quadratic combination Q-II and Q-III we can see that combination
(®e, ®e, Po1) and (Pe, De, Po2) do not give rise to harmonic of frequency 1. Only
combinations with one ®, or three @, is possible to resonate the edge wave. From now
on, we use the spatial part of the first order solutions to symbolize the combinations,
where their complex conjugate counterparts are implied.

C-L (4%, Yo, o)— *1

C-11. (%o, Po1, P81)— %1

C-IIL. (%o, do2, ¢52)— E1

CIV. (¥, o1, o2)— (w1 + w2 — 1)

C-V. (¥, do1, Po)— £(w1 —wa — 1)

Among these combinations, w; in C-II and w, in C-III can be arbitrary in order
for them to give harmonic of 1. The interaction of the two incident and reflected
waves lead to combination C-IV and C-V, which are the excitation force we want to
see. Notice that if and only if wi + wy = 2 in C-IV or w; ~ws = 2 in C-V, then C-IV
or C-V can give rise to harmonic of 1. Depending on where the natural frequency of
the edge wave w is located in the spectrum of the incident waves, we can pick either
C-IV or C-V in our analysis. Finally, the total number of effective cubic nonlinear
combinations are reduced to 4.

Among the quadratic terms at second order, any pair out of the three components
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Table 3.1: Effective second-order harmonics and their further interactions.

2nd-order harmonics Further interaction with | 3rd-order harmonic
[Q-1] (%5, Yo)— 0 Po(+1) — 1
(Q-2] (o, Yo)— 2 P5(-1) — 1
(Q-3] (o1, $51)— 0 Po(+1) — 1
[Q-4] (tho, Po1)— 1+ wr 01(-w1) — 1
[Q-5] (o, ¢51)— 1 — w1 Gor(+wr) — 1
[Q-6] (¢o2, $p2)— 0 Yo(+1) — 1
[Q-7] (%o, Po2)— 1 + wo Pla(-wr) — 1
[Q-8] (tho, Poo)— 1 — w2 Poa(+ws) —1
[Q-9] | (¢o1, ¢o2)— w1 + wy = 2 ¥5(-1) — 1
(Q-10] (%5, ¢o1)— w1 — 1 poa(+wa) — 1
(Q-11] (15, do2)— wp — 1 bo1(+wr) — 1
[Q-12] | (o1, B0)— w1 ~ w2 =2 ¥5(-1) — 1
[Q-13] (¥, $o1)— wi — 1 $ha(-w2) — 1
[Q-14] | (45, ¢fe)— —w2 — 1 do1(+wi) — 1

in each of the 4 effective cubic combinations might generate a certain harmonic and
further interact with the third one at the third order to resonate the edge wave. For
example, both combinations (1o, %) and (¢o1, ¢o2) give rise to a harmonic of 2. Later
on we will see that the y dependence will disappear in combination (i, 1g). Q-I and
Q-VI will excite the incident and reflected kind of wave ¢, of frequency 2 at second
order. Subsequently ¢; will interact with ¢, at the third order to resonate the edge
wave. All the effective nonlinear forcing and the corresponding harmonics excited at
second order are listed in Table 3.1.

First let us deal with the case
w1 +wy = 2.
Then combination [Q-1] to [Q-11] are of our concern at the second order. Only when

87



w; —wy = 2, [Q-12] to [Q-14] are of interest instead of [Q-9] to [Q-11], hence they

will be excluded here. Let’s derive from (3.5) the details of these forces one by one in

order to determine the effective harmonics at second order for case w; + wy = 2:

[Q-1].

(W5, 00) = 2 [0satbou(=6) + Yostia(d) + Yiythoy (—1) + Yoy, ()]

+ i (Yoo + You) — it (Ve + Vi) = 0.

(o, 10) = 2 [Yoaor(—1) + Yoythoy(—1)] = —2i (Tﬁgx + wé’,,)

= —2i (—z’Be—””)2 (cos2 y + sin’ y) = 2iB% %" (3.14)

after noting that

[Q-3].

(¢017 ¢81)

[Q-4]-
(%o, $o1)

[Q-5].
(o, b51)

'wOm: + ",bOyy = 0.

= 2[dp1s0012(—iw1) + PorePt1, (iw1)] + iwiPg Porzz — W1001Po1z
=0

2 [thozPo1z(—iwr) + do1ztboz(—1)] + (—%)Yodoiee
2
—z‘i4—1 (—iB) e~ cosy {—2i(l +wy)(-1) dJO(z;:; V) _ 4 ']"(;;";ﬁ) }

2
—iélB 214w )dJO(ZUIﬁ) _ Lo(2w1 ) cosy
dz dz?

—iZ2Bgi3(z) cosy (3.15)
Wi

[¢02¢81x(iw1) + ¢31z¢0¢(_z)] + ( )¢0¢81xx

zﬂ( —iB)e " cosy {Qi(wl - (-1 >dJ0(2w1\/—) dzjog;d;ﬁ)}
f{Be—x{ (w1 — 1)dJ0(2du;1\/a_;) + dzjoij;ﬁ) } cosy
—z'?Bgn(a:) cosy (3.16)
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[Q-6].

(o2, y) = 2[dh0,Po2z(—iwa) + Go2e@on(twa)] + iwadhyPoree — iWado2Phozs

= 0
[Q-7].

(o, Po2) = 2 [WoaPooz(—iws) + PooetPor(—1)] + (—1)odo2ea )
= —i— (—iB)e cosy {—2@'(1 + u)g)(—l)dJO(QwQﬁ) - z'd Jo(2wa /) }

woy dzx dxz?
A dJo(2 d?Jp(2
= _i22Be" 2(1 + wo) o(2w2/2) — o(202y/7) cos Yy
wo dz dx?
Ay
= —i—Bgis(z)cosy (3.17)
wa

(woa Q%Z) = 2 [¢0$¢32m(iw2) + ¢82x¢01‘(—2>] + (_Z)¢0¢32zm

B A; i _z . dJ0(2(U2\/E> ,d2j()(2(x)2\/§)
- zw—2 (—iB)e " cosy {ZZ(wg - 1)(—1) T i 7
x 2
_ —iégBe_z 2(w2 _ 1>dJ0(2w2\/:_5) 4 d Jo(QLUQ\/E) cosy
Wo dz dx?
A
= —i—=Bgio(z) cosy (3.18)
Wa

[Q-9].

(fo1,902) = 2[Po12Po2e(—twa) + Po2sPo1s(—1w1)] + Po1(—1w1)Pozes + Po2(—tw2)Po1e
- =i (=) {“%1 +uy) Do2VE) Ao y)

w1 Wo dx dz

- ileO(le\/E)T - Z-C()QJ()(ZWQ\/E)—dTT—“

Zéé 4dJ0(2w1\/E) dJO(ZCUQ\/E)
W1 Wo dx dx

dQJo(QuJQ\/EE—) d2J0(2w1\/§) }

b wndo(2w ) ey WQJO(zwz\/E)M} (3.19)

dz? dz?
[Q-10].
(5, bo1) = (Yo, Po1)"

is the complex conjugate of [Q-5].
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Q1]
(%5, b02) = (2o, Gp2)"

is the complex conjugate of [Q-§].
Therefore, we have total 6 effective forcing terms, i.e. [Q-2], [Q-4], [Q-5], [Q-T],
[Q-8] and [Q-9]. [Q-1], [Q-3] and [Q-6] are identically zero. In response to these forcing

terms, the following types of second-order waves will be excited:

(10, %0) + (do1, Poz2) — 1 (z)e ™
(1o, 9%1) — hr1(z, y, T)e HI—wn)t
(Yo, por) — Vra(z, y, )e~ ATt
(Yo, Bty) — h1a(x, y, T)e HLmw)E
(o, o2) — Y1a(z, vy, T)e——i(l-Huz)t

3.2 Multiple-scale expansions

We demonstrate the mathematical derivation of the evolution equation governing the

edge wave amplitude using case (The case w; — ws = 2 can be treated similarly but

omitted.)

Wy | Wy
— 4+ —==w;twy =2
w w

Let us assume the multiple-scale expansion

- [y e+ *] [don(a)e™ 4] + [dua(o)e™ 5 4]

+e [¢1 z,y,7)e ¥t *] +e[ 13(z, y, T)e et *]
+e€ [z/)l z,y,T)e 1wt 4 *] +€ [¢14(x y, T)e ATt *]
+€ [451 z,T)e "% } + € [%(m,y, 7)e ™ + *] +... (3.20)

where two temporal variables are used: fast time ¢ and slow time 7 = €%, implying

0 8+25 0? 82+288+ 0?
ot 3t ar’ ot 3t2 ot or or2

Plugging 3.20 into Eq. 3.4 and separate different orders, we get
{0 + (vos), + zoml e + 5} + { [olgn + (@6ose). | €7 4 4}

90



* { [w2¢02 + (z02) ] ™ + *} +e { [44: + (z15),] e *}
€ { _(1 — w1)* P11 + (TP112), + :mﬁuyy_ e~ il-w)t 4 *}
e{[(1+w0) %13 + (@sa), + Tz e 44}
([ = @)1z + (z000),
{ (1 + wo)?1s + (T142), + $¢14yy: pi(lw)t *}
+€2 { {2 + (zt0),, + TPl e + x)
= {[( 0, %0) + (o1, poz)] €7 + *}
‘*f{(wo,d) e imwnt 4 *} +€{ o, dor)e— IOt 4 *}
e { (o B)e O £ 4} + € (U Br)em " 1)
€ {[(¢1’ W) + (5, o, o) + (Yo, dor, $51) + (Yo, doz, dog)] €™ + *}
e {10, do1, doz) + (11, Go1) + (13, 851) + (Y12, bo2)] €7 + %
e {[($10, %) + (V51 02) + (¥, $on)] €7 + %

4 { w“ e 4 *} +.. (3.21)

+

+

+

€ + wwlzyy- e_i(l_w)t + *}

4

-€

3.3 The leading order

At O(1) we separate different harmonics (1, wy and ws) to get
Yo + (#or), + TWoyy =0

wior + (Tdo1z), =0
wadoz + (Zdo2s), = 0

which give the homogeneous solutions of one edge wave (So far the lowest mode is our

concern. )
Yo = —iB(T)e " cosy (3.22)

and two normally incident and reflected waves

$o1 = —Z':j—llJo (2w1V/x) (3.23)
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b =~ 2 (22/2) (3.24)

B(r) is the slowly varying dimensionless amplitude of the edge wave at shore, whose
evolution equation is to be obtained at the third order.
For later uses note that the factor F' = e™* which describes the z dependence of

the edge wave satisfies

F+[(zF;), —2F] =0,

zFp=0at =0, F —0, z~ 0.

3.4 The second order solutions

At O(e), there are totally five harmonics— 911 (z, y, 7)e ™" 19Dt 4hy5(x, y, 7)e i1+t
Pro(z, y, T)e 192t a4 (z,y, 7)e 1w and ¢ (z)e 2. We solve them individually.

3.4.1 ¢, — Radiated wave of frequency 2

From previous discussion we know that both (%, %0) and (¢o1, ¢o2) contribute to the
excitation force for this harmonic. Referring to (3.21), we have

41 + (zd12), = (Yo, Yo) + (do1, do2) (3.25)

The details of the two quadratic terms are given in (3.14) and (3.19). Introducing an

abbreviation for the total force

o(@) = 2iB%, +i22 = giprere A1t {4‘1‘]0(2“’”/5) dJo(2w3y'z)
W

w1 W Wo dx dx
A2 Jo(2we+/T A2 Jo(2wi/x
+ w1J0(2WI\/E)-—O(d_$—22_\/——2 + LU2J0(2{J)2\/IE)——O—2—:L‘T1£)—} (326)
where
ge =€ (3.27)

represents the self-interaction of edge wave and

4dJo(2w1 \/L_C-) dJo (2(4)2\/5)
{ dz dz
dQJ()(sz\/E)

dz?

il

Gi

+ waJo(2wa /)

£ wrdo(2wiE) d——"@—“’@} (3.28)

dx?
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the self-interaction of incident/reflected wave. With these we can rewrite the inho-

mogeneous Eq. (3.25) as the standard form

T z T

By the method of variation of parameters, the general solution to this inhomogeneous

equation takes the form

¢1 = CrJo(4VT) + CoYo(4VT) + w1 (2) Jo(4vT) + ue(2)Yo(4v/T) (3.30)
where
@)= [ %(%dﬁ = - [ Yolay/O)g(€)dg
wle) = [ o I e [ sy Ba(erde

with the Wronskian

Y% ol YR 2 2 1
W{Jo, Yo)(z) = Jo z Yo z (Jo¥o — Yo.Jp) dr  m/z\ /T T=I

and C, C; are the constants to be determined by boundary conditions. Use has been
made of
2

o=—J1, Yo ==Y, J(2)Yo(z) = Jo(2)Yi(z) = "

“ I »

Also notice that prime is the derivative with respect to argument z, which is

equal to 44/T.

Following the same argument as in last chapter, we can obtain the solution
¢1 = [—u1(00) — uz(00)] Jo(4v/'z) + us(2) Jo(4v/T) + ua(x)Yo(4V/x). (3.31)

which is the same in form as the synchronous resonance case except the definition of
the forcing function g(z) is different, hence the ui(z) and uy(z). We recall from (3.26)
that g(z) = 2iB%, + i%%gi, where g, and g; are defined in (3.27) and (3.28). Let

us denote

A1 A, | A, .
w (x) = 26B%u () + i— 2 (z), u2(x)=2¢32ug(z)+iﬂ—2ug(x) (3.32)
W1 Wy w1 Wy
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The coefficients have contributions from the edge wave through

z Yo(4 e z
o) = - [ I e o "oy Da(0)

- /0 Yo(4//€) -2€d§ (3.33)

J0(4\/_)ge(€ T
0o @ =™y DaVE)se(6)d

- /OJO (44/€)e %t (3.34)

and from the incident and reflected waves through

i) = - [ AR [ YitayBe

_ / Y0(4\/’ { d.]o 2w1\/— dJ0(2d<22\/—)

2 2
+ W1J0(2w1\/g)§—%%§—);i- + W2J0(2w2\/E)M%A—/—§)-} df (3.35)

i J0(4\/_ £)gi(€)
o) = | Eih s =" BonEE
dJo (/Jl dJo W9
_ /J04\[{ 2f (Ziigf)

+ w1 Jo(2w \/@ﬁ%ﬁ[) + wzJo(sz\/g)fJL(d?g}T—lm

} de (3.36)

In summary, the final solution for the second-harmonic forced by self-interactions

is
b1 = 2%B%S + zéA? o (3.37)

with
¢5 = [—uf(o0) — iug(00)] Jo(4v/x) + uf(z) Jo(4v'z) + u3(2)Yo(4v/T) (3.38)
and

¢i = [—uf(oo) —ius(00)] Jo(4v/'z) + ui(z) Jo(4v'x) + up(2)Yo(4v/)
= —uf(00)Jo(4v/z) + u () Jo(4v/7) + uy(2)Yo(4v/7) (3.39)
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Use has been made of ui(co) = 0 as discussed in Appendix C for the last chapter.

Note that ¢¢ is complex, whereas ¢! is real.

For later uses in (3.68), we now work out the constant ¢(0) as follows. From (D.2)

we see that

dJo(2cnvz) _ 5 14 oy Cho(2envT) 1,
—'T = —C, + §Cn1? — O(.’E ), T = -Z—Cn O(Z’)

as £ — 0. Upon substitution into (2.36), we get

A A 4 4
g(0) = 2%B*+i—=22 {4(—wf)(—w§)+w1ﬁ+w2ﬂ}

W1 Wo 2 2

Al A w?:  w?

— 9;B2 4 ;172 2 2 X2 1
= 2B*+ zw1 o wiwy {4 + o + 2w2} (3.40)

And also
doy(x) .
28— w4+ 40)

= 4(u1(00) + fuz(o0)) + g(0) (3.41)
$1(0) = C1 = —uy(00) — duy(00) (3.42)

A guessed partial solution similar to Guza and Davis [14] can be found in Appendix

C for the last chapter.

3.4.2 1;; — Trapped wave of frequency (1 —wi)

Referring to (3.21), we have for this particular harmonic

(1 —wi)®11 + (Z¥112), + T¥119y = (0, $01)

The quadratic nonlinear forcing (1o, ¢3;) is given in (3.16), which suggests a solu-
tion
A}
Y1 = —i—Bfi(r)cosy
wy
with fi1(z) satisfying
T fi1zz + fi1z — [33 -(1- w1)2] f11 = gul(x) (3.43)
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Change of variables
£=2z, fu=e3f(€)

leads to the Laguerre differential equation, which belongs to the class of confluent

hypergeometric equation.

— _ 2
L U

Generally speaking, w; is within the range of (0, 2), which does not satisfy the eigen

value condition, i.e.
1—(1—w)?

5 7"

since

wi=1£v1+2n, n=012.

is not possible. As in the last chapter, we can apply the standard Finite Element

Method. For this, equation (3.43) can be rewritten as

_% (zf11s) + [x -{- wl)z} fir=—gu(z)

with the boundary conditions
zfl1:.=0 as z—0

xf11$=0 as z — L.

It is easy to show that the boundary-value problem above is equivalent to the

stationarity of the following functional

F(fu) = %/OL [p(w) (%)2 + q(:r)fflj| dz + /OL gufindz (3.44)

where
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3.4.3 ;2 — Trapped wave of frequency (1 —ws)
Referring to (3.21), we have for this particular harmonic
(1 - w2)21/)12 + (ﬁbum)z + 33¢12yy = (wo, ¢62)
The quadratic nonlinear forcing (vo, ¢3,) is given in (3.18), which suggests a solution
LAS
Yo = —i—2Bfia(z) cosy
W2
where f1o(z) satisfies
T f12zz + froo — [33 —(1- w2)2} fiz = gao(z) (3.45)

We rewrite (3.45) as

—% (zfr2z) + ["3 -(1- WQ)Z] fi2 = =g12(z)

And the corresponding boundary conditions are

Zf1o: =0 as x—0

Tfioo =0 as z— L

Similar to %1, we in the range of (0,2) is not an eigen value.

3.4.4 113 — Trapped wave of frequency (1 + w;)

Referring to (3.21), we have for this harmonic

(1+ w1)21//13 + (fﬂ%sx)z + Y13y = (Yo, Po1)

The quadratic nonlinear forcing (o, ¢o1) is given in (3.15), which suggests a solution

A
Y13 = —Z—le]Q.(ZE) cos Yy
w1

with fis(x) satisfies

Tfisae + fize — [2 = (1 +w1)? fis = g13(2) (3.46)

97



which can be rewritten as

d

~ g (@hu) + [z = 1+ @)’ fis = ~gus@) (3.47)

And the corresponding boundary conditions are

Tfize =0 as z—0

2fi3., =0 as z—L

The eigen value condition can be satisfied, i.e.

_1—(1+w1)2
2

when

w=—-1£v1+2n, n=0,12..

For example, within the range of w; € (0, 2), the possible values are
w=v3-1, v5-1, V7-1.

corresponding to n = 1,2 and 3 respectively. Therefore, the eigen function are La-

guerre polynomials L,, more specifically
Ly=1-&, L2:1—2§+§§, L3=1_3§+§§_g§’ £ = 2.

which are mode 1, 2 and 3 of the edge waves. By direct substitution, it is easy to

check that they are the eigen solutions to the homogeneous version of (3.47), i.e.

$f13a::1: + f13g; — [CL' - (2n + 1)] f13 = O

When the eigen value condition is satisfied, a new eigen mode is resonated. A
quadratic interaction between one mode of edge wave and one incident/reflected wave
can resonate another mode of edge wave, and vice versa. This kind of cross resonance
will be discussed in the next chapter. In this chapter, we exclude this situation and

simply require that w; is not equal to any of these three values: vV3—1, V65—

1, V7-1.
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3.4.5 14 — Trapped wave of frequency (1 + w»)

Referring to (3.21), we have for this harmonic

(1 + w2) Y14 + (TWP142), + TW1ayy = (Y0, Po2)

The quadratic nonlinear forcing (o, doa) is given in (3.17), which suggests a solution

A
2Bf14(33) cosy

Wa

Y1y = —1
with fi4(z) satisfies
Thiaze + frie — [ — (1+wn)?| fra = gua() (3.48)

, which can be rewritten as

_C% (% f14z) + {:1; - (1 +w2)2] f1a = —gu(z)

And the corresponding boundary conditions are

2fi4.=0 as z—0

Tfiez =0 as z— L

Similar to 13, the eigen value condition can be satisfied when
wr=v3—-1, V5-1, V7-1.

within the range of ws € (0, 2).

3.4.6 1-D Finite element formulation

From the analysis of the previous four sections we can see that, except for a few special
frequencies, the four harmonics of trapped waves share the same generic form of BVP

as follows:
& (o)~ [~ w?] £ = gla)

with the boundary conditions
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zf,=0 as z—0

zfe=0 as z— L

Therefore, the Finite Element formula is exactly the same as in the previous chap-

ter (see Appendix E of last chapter.), although we have different definition for w and

g(z) in this chapter. For convenience, we summarize the solution to the four trapped

harmonics as follows:

with

w=1-—uw,
with

w=1—wy,
with

w=14w,
with

w=14ws,
3.5

A*
i—l-Bfu(x) cosy,
w1

Y= —

dJo (2(.01\/5) n d2J0(2w1 \/E)

o) = e {2<w1 -1

I

dz dz?
P12 = —i—2B f15(z) cosy,
W
" dJo(ZU)z\/E) dzJ()(QWQ\/E) .
ole) = e~ {on - ) Z2LE/E)  LROVD,
A
P13 = —z—l—Bf13(m) cosy,
W

dJo(2u1/7) d2J0(2w1ﬁ>} .

glz)=e" {2(1 + wy) -

A

Y14 = —i— B f14(x) cos y,
)

dz?

g(z) = e® {2(1 +w)

dz

The third order

At O(e?) the governing equation for 1, can be reduced to

0B

H+ [(zH,), —zH]) = —2—e " + &(x)

or
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after the introduction of

s = H(z)cosy
by separation of variables. £(z) denotes all the quadratic and cubic nonlinear terms
of frequency 1 and with y-dependence of cosy. Except one of the forcing (v§, 1o, ¥o),
each of these forcing terms has only one edge wave as its component, which makes
them all proportional to cosy. Later on we will show in (3.52) that even (g, o, ¢o)

is only proportional to cosy. Therefore we get

E(x)cosy = (¢1,%5) + (W5, %o, o) + (%o, o1, G51) + (Yo, do2, ¥32) + (V5 do1, Po2)
+ (Y11, P01) + (%13, G51) + (Y12, bo2) + (Y14, B3a) + (W11, do2) + (¥1g, do1)
(3.50)

We shall recall from (3.5) and (3.6) and work out all above nonlinear forcing terms as

follows:

[c-1].

(¢1,9%5) = 2[612%0,(8) + YouP12(—20)] + $1 () P1ze
= _2i¢1x¢gz + Z¢1xm¢;‘
do . d*¢y

= e *cosy {—22'—523*(—1) + ZWZB*}

= —B'¢ *cosy (2k% + ——)
= hcB2B* cosy + Jo1 A1 AsB* cosy (3.51)

where use has been made of
Yooz T+ Qpayy =0.
We have recalled that ¢; = 2iB%¢¢ + z'%ll fgqb‘i with ¢¢ and ¢! defined in (3.38) and

(3.39). Therefore, je is real because ¢ is real, whereas hey is complex because ¢S is
complex.

[C-2).

(45, Yo, o)
= "»[)OzzQ"ybOa:d]Sz + d’Szwax¢0z + Q/JOnywaway + "pSyyd’Oydjﬂy
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+ 2 (Gostoyhly + YouthlyYiay + Viatoytiay)

= (—iB)*iB*e™® {3cos3y — 2cosysin?y — cosysin?y

+ 2 [— cos Yy <— sin?y — sin® y) + cosy sin® y} }

= —iB’B*e™ {3 cos®y + SCosysinZy}

= —3iB’B*e¢ **cosy

= heyB?B*cosy (3.52)
[C-3] & [C-4].

with n =

(d)O) d)()n? qun)
¢Onxm ¢Snz 1/)02 + q%nwm ¢Onz Qr/)Oz + 2¢0nz 4587“; waz
+ 2¢Oz ¢Sn:1: ¢Onz:c + 2'LbO:zc ¢Ona: ¢8nza:

2¢Ozm¢6m¢¢0nx +3 (¢0"$$¢8nz =+ ¢6nmm¢0m~) sz
2
i (=4) (~4) (~1)e™* cosy {2 (w)

dx
d? Jo(2wn /) dJo(2wn/T) | An AL
-6 ——"B
dx? dz W, Wy,
. 2 2
= —iéﬁéﬂBe"” cosy |2 dho(2wny/e) )" 3—d— dJo(20n/3) (3.53)
Wn W dx dz dzx

1,2. For brevity, we introduce

fog = O L (o2ava)\* o d (dd(2evD)]]
@ L2 dz dx dz

_2<@Qd%g[@>2_3% (Q‘WY

L e

e—IE

w3

foa =

. Similarly,

(45, do1, doz2)

200, P0120022 + 3 (Po12eP022 + Po20cPo1z) Yo
B*i (—zél> <—2&> e *cosy {QdJO(Zwl V) do(22VT)

w1 wo dx dzx

d2J0(2w1\/5) dJo(ngﬁ) d2Jo(2w2\/E) dJo(ZWl \/_3?)
-3 +
dz? dz dx? dx

)
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_ __«[él_ éB*e"w cos y 2dJ0(2w1 vV k,'iL') dJo(2(U2\/EL")
W1 Ws dx dzx
d dJo(Zwl \/5) dJo(ng\/E)
—3—
dx dz dx
= gosA1A2B" cosy
(¢, do1)

= 2[¥11a012(—twr) — (1 — w1)dore¥114)

—i(1 — w1)P11G0120 — w1001 (Y1120 + Yr1yy)
A*
= —L (—zé) cosy [—iqux———dJO(Qdu;l V)

w1 W
Q%ir—wé@ — ileo(an/E) (fllxa: - fll)}

dJo(2w1v/z)
dzx

M —+ wljo(Zwl\/ﬂ_f) (fll:cw - fll)}

dz?

—i(1 —wi)fu

Ay At
= i—l——chosnyllm
w1 Wy

+(1 —wy) f11

i

—ifcsl A1 B cosy

where fi; is defined by Eq. (3.43).

7).

(Y12, do2)
= 2 [Yr120P022(—iwz) — i(1 — wa)Pozeth124]

—i(1 — w2)Y12¢02e0 — iwadoz (V1220 + Y12yy)

A*
= —Z-—QB(—Z'42> Cos Yy l:—ZQflﬁer
Wo Wo dx

2 ¢
—i(l — wz)fud—%%?—\/—@ — iwp Jo(2wav/T) (fr2ez — f12)]
== Zéé—;B Cosy [zflgxh——dJO(ZWQﬁ)
We Wy dzx
2
+(1— wz)flmd—@(dQ;TQ\/@ + waJo(2we ) (fizee — f12)J

i

—ifC7IA2|2B COS Yy
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where fio is defined by Eq. (3.45).

[C-8].

where fi3 1S

(C-9].

(77[}137 ¢61)
2 [W13ar, (iwr) — 11+ wi) g1, Pise]
—Z(l + W1)¢13¢51m + iw1¢31 (wl&cx + wISyy)

A} dJo(2 :
—7éB(z——) cosy \:_ZQfl?:z'_i(—dC;l—\/;l

Wi Wi
M -+ zw1 JO(QUJl \/_) (fl?n::z fl3):l

dr?
dJo(2w1 \/_CE)
dz

—2(1 -+ wl)flg

A A}
el cosy [Zflgg-
W1 w1

+(1+ wl)f13%@ — w1 o (2w V) (f1sez — f13)}

—ifes|A1?B cosy (3.57)

defined by Eq. (3.46).

(11[)14a ¢32)

2 (Y140 Pl (i) — i(1 + w2) Phar 14z

—i(1 + wa)P14P2,e + iwadhs (V14ze + 1/114yy)
dJy(2
-—zéEB(zA—) cosy [—iQfo———————JO( (Zfﬁ)

Wo Wo
2
—i(1+ w2)f14fl—M + dwy Jo(2w2/T) (fraee — f14)}

dx?
dJo (2w2 \/—.’,E)
dzx

Wy Wo

—zé—A—B cosy {2f14x

dz?
—ifeolAg|?B cosy (3.58)

+(1+ w2)f14w — wyJo(2wa /) (fraee — f14)}

where fi4 is defined by Eq. (3.48).

[C-10).

(wrla ¢02)
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= 2[9Y]1, P02 (—iwa) +i(1 — w1 )Po22Y11,]

+i(1 = w1) P, Po2ze — iwador (d)fuz + w?lyy)

_ iéB*(—i&)cosy{—z‘QfmgM
w1 W dz
. d? Jo(2warn/Z) |
+i(1 — wl)fn—%ﬁ — iwsJo(2wa/T) (fr1ae — fll)}
A ;
= ——Z—léB* Cos Y I:Qfllx“'dJO(QWQﬁ)
W1 Wo dzx
d%Jo(2wor/T
-(1- w1)f11L(d$2M—) + w2 Jo(2wa/T) (friee — fn)}
= JowA1AsB* cosy (3.59)

where fi1 is defined by Eq. (3.43).
[C-11].

(77/);27 ¢Ol)
= 2 [wTngbOlz(—Z.uJ]) + Z(l - w2>¢01$¢;<2z]

+i(1 — W)Y oPo12e — iwiPor (?/)ikzm + wfzyy>

— iéB*(—zé—l) cosy {_igfmw
, d®Jo(2 .
+i(1 — WQ>f12—————O(d;)21 vI) w1 Jo(2w1v/) (froze — f12)}

_Zfl_léB* cosy !:2f12x d‘]o(zwl \/5)
Wy Wo dx

2 W
—(1 — w2>f12d—(]£(5ﬁ@ + W1J0(2w1\/5) (lezac - f12)jl

gor1A1AaB* cosy (3.60)

Il

where fi5 is defined by Eq. (3.45).

In summary, we group the terms according to B, B* and B2B*, and get
E(@) = —i (Ai(2)| 41 + fol@)|422) B + §(2) A1 A, B* + h(z) B*B* (3.61)
where —i (fl(:c)[AllZ + f2(x)|A2|2> , 3, b are the sum of coefficients of B, B* and |B|*B

respectively. Specifically
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e ifi(z) is collected from [C-3], [C-6] and [C-§], i.e.,
fr = fes + fos + fos.

ifa(z) is collected from [C-4], [C-7] and [C-9], i.e

fz = f04 + fc7 + fcg-

d(z) is collected from [C-1}, [C-5], [C-10] and [C-11], i.e
G = gc1 + ges + Geio + e
e h(z) is collected from [C-1] and [C-2], i.e

h(z) = hei(z) + hea(z)

3.5.1 Solvability and evolution equation

The homogeneous version of Eq. (3.49) has nontrivial solution F' = e~

at the first order. By Green’s formula,

/O (HLF — FLH)dz = 0°° [H(zF,)s — F(zH,),] dz

= [ lcHF.). - (FH.).) dz =

Therefore

/wFLde=o since LF =10
0

This gives the solvability condition

/ dze~ (2—Te—z+£(x)>

which can be rewritten as

0B
)
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(3.65)
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governing the evolution of the edge wave amplitude B for given A; and A;. By
collection of the similar terms with respect to B, the evolution equation of the edge

wave amplitude can be written as

0B

5 = /0 dze ™"E(z)

= —i (a1(wr)| A1 + ax(wn)| Asf*) B + as(wr, wn) A1 42 B* + | BJ2B (3.66)

where a1, ag, a3 and k are constants obtained by numerical integrations

~ A A

(a1, a2,0,8] = [ 7[f1(2), fo(0), §(a), h(@)]ds, (367)

3.5.2 The coupling coefficients

We now derive the coefficient a1, a3 and a3 from the integral of [C-1] to [C-11] explicitly.
[C-1]. From (¢1,%¢) in (3.51):

o0 —z ¥\ _—2 d¢ d2¢
/0 dze ™ (—B*)e ( _d?l-*_ﬁ;)
— * * —2z d¢1 d2¢1
= —B 5 d.’E (221;— =+ W)
d oo
= —B* (—-4¢1(0) qﬁ;ix) L + 8/0 dxe_zsz)l(l”))
= -~B* (—-g(O) + 8/000 dxe—zmqﬁl(m))
— 9B 85" [ " dre ¢, (z) (3.68)

Use has been made of (3.41) and (3.42). We recall that

A A 2 2
9(0) = 2B2 + i1 22,22 {4 o2y —“i}
W1 Wa

from (3.40) and ¢y = 2iB%¢¢ + ie?¢, with ¢¢ and ¢! defined in (3.38) and (3.39).

Therefore,
2 2 A A
0)B* = 2iB2B* + iwu? YW | A1
g(0) 73 + iwiw; {4+ o + 20 [ o sz
and

—8B* /:o dze ¢, ()
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_16iB2B" /0 " dwe g - 8ic™B" /0 ” dre¥g!

_16iB°B" /0 ™ dwe { [~ (00) — iu5(00)] Jo(4V/E)

1o () Jo (1) + () Vo (4vD)

_giei?%B* /0 ™ dre { [~u (00) — it(00)] Jo(4v/7)

i (2) (/) + () Yo(4v/7) }

16i /0 % dme 2 Jo(4y/T)us (00) B2B" + 8ie'? /O % dpe 2 Jo(4/T )i (00) BY

—164 /Oo dze™% Jo(4v/z)us(z) B2 B* — 8ie™? /Oo dze™ 2 Jo(4y/z)u} (z) B*
0 0

—16/ dre™ Jo(4y/T)ué(o0) B> B — 86’2‘9/ dre % Jo(4y/z)ub(00) B
0 0

164 / ~ dpe Yy (4 (x) B2B® — 8ie'? / % dre Y (4T ub(z) B
0 0

(3.69)

Therefore, the R.H.S. of (3.68)

with

g(0)B* — 8B* /OOO dre **¢1(z)

m:/f

2 2 A A
2%B2B" + iwlw? {4 T R ﬁ‘l} 2122 p

2(.<)1 2&)2 Wi Wo
. 2 * . Al A2 *
16imk, B*B* — 8im (46 + w1f2 + wafls) ——B
w1 Wa
. 2 D* . Al A2 *
16imhko B2B* + 8im (484 + w105 + waffs) ——B
W1 We
A A
167(%3323* — 8 (4ﬁ7 + wlﬁg + UJQﬁg) —1—23*
Wi Wa
Ai Ao

16imk4 B*B* — 8im (4810 + w111 + w2lr2) Uw—B*
1 Wy

K = /0 * dre Jo(4y/) /O " dge % Yo(4/6)
dze % Jo(4v/x) /Ooo d§Yo(4\/g) d']o(zd? V&) dJofZryt)

d§
&2 Jo(2wr\/%)

62 _ /Ooo dxe~2m']0(4\/5) [)wd€Y0(4\/E)JO(2w1\/E) d§2

dzJo@M\/Z)

o= [ doema(av) [ de¥ (402 O g
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ko= [ deea(4va) [ de ¥ Yo(4/0)
00 o x dJo(Quh \/E) dJO(2W2\/E)
o= [ due aaye) [ devo(a/e) =

dg
Bs = /O‘X’da:e—%l]o(ll\/i) /0 dEYo(44/€) Jo (20, \/@%@2\@
Bs = /000 dxe‘2xJo(4\/5) /05” dg}{)(él\/g)JO(QwQ\/g)%@

K = /0 ” dze® Jo(4/7) /0 " dge Jo(4/6)
0 o 00 d:]o(le\/g) dJ, (2&)2\/&1)
Br= [ dweafava) [ dedo(ay o) T YR

d¢
Bs = /O " dwe™ Jy(4y/7) /O " g Jo(44/) Jo(2wn ﬁ)%@
b= [ dze 0 av/E) [ dedo(ayfE) o2 ﬁ)éh(jgﬂ

Ky = /Ooo dze™ Yy (4y/2) /Oz dfe_2§J0(4\/g)

Bro = ./OOO dze **Yy(4+/7) /om dfjo(él\/g) dJo(QdCZl VE) dJo(Qdu;\/g)

fu = /OOO dze™*"Yo(4v/x) /Ox 015Jo(4\/g)t]0(2°"1\/g)dz(]$;2\/Q

B = [ dze o iav) [ d%(zlﬁ)%@wﬁ)%g—)
[C-2]. From (45, %o, ¢o) in (3.52):

/ dre ™ ( _3’"B2B*

3z
—RB%p*
4

[C-3]. & [C-4]. From (v, ¢o1, ¢f;) and (w0,¢02,¢32) in (3.53):

/ dre—? —Z o= dJO(an\/_) _3% d dJo(2u)n\/E) A A;B
dz dx dzx Wh, Wr,
. —Z/ dze_Qz dJ() 2wn\/_) _34 d dJ0(2wn\/§) A A;B
B dzx dzx dx Wn W
_ dJo 2(4)”\/_ B 4/00 dxe'm dJ()(an\/E) A A;B
-0 0 dx Wn Wy
= —i (3w} — don) A—ﬂB

Wn Wn
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with

o o dJy (Qua/T)\’
. 2z 0
On = /0 dze ( dz )
withn=1,2.
[0—5] From (‘lﬁa, (1501,(2502) in (354)

/ " dve® (—i) e [2 dJo(2u1y/7) dJo(205v/)

dx d:z:
_3}1 d.]o(2w1\/_) dJo(sz\/—) A B*
dz dzx dx w1
Al A
W1 Wo

with

o [t ) 0
0 dx dx

[C-6]. From (11, ¢be1) in (3.55):
i/o‘oo dxe_z [2]‘,1 sz0(2w1\/_ 1_ )f d2J0(2w1\/—)

dx dx?
A1 A}
+w1Jo(2w1VE) (frize — fll)] 1B
= zag-{l—lé—B
Wy Wy
(3.70)
with
o — ng(Zwl\/E) d2J0(2w1\/—)
Q3 = /0 dze {2]011;57 + (1 - wl)f T
+w1Jo(21V7) (frize — fu1)]
= —wif11z(0) —wi(1 - w1)2f11(0)
® dJo(2w1v/z) & Jo(2w1/T)
+ /0 dze™ fiy [2(1 — ) PRV S (3.71)
Use has been made of the generic form of the partial integral

[ daf@e T = 000 ~ [ dals - )G,

[C-7] From (?,012, (boz) in (356)

* 2
i/() dze™* {2f12zﬂ0—(%;;—2'@ + (1 — ws) fra d_ﬁ%‘%\/___)
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+woJo(2wev/T) (fr200 — f12)} éﬁB

Wa Wa

with
o'} » 2
(g = /o dre™ {Qfmx“—djo(z;ﬁ) +(1— w2)f12‘—“d Jof:;m/i)
+wy Jo(2we/T) ( froze — flz)}

= —wafi2:(0) —wa(l — w2)2f12(0)

oo —r dJo(2(d2\/5) dzJO(QWQ\/E)
+./o dze 7 fiq [2(1 — wy) T - s

[C-8]. From (413, ¢5,) in (3.57):

O o
——2'/ dre™® {Qfmw +(1 +w1)f13d_M
0

dzx dx?
A, A
—w1Jo(2wiVT) (f1320 — f13)J jw‘llB
= —ZCXs,—A—léB
Wy Wy

with
o0 2 .
a5 = /0 dxe™™ {mexhd(]o@dzl Vz) +(1+ wl)fla——d JO(;; V)
—w1Jo(2w1v'z) (fi3z0 — flS)}

= w1f131-<0) + wl(l + W1)2f13(0)

S dJo(2wiv/z)  d*Jo(2wy/7)

[C-9]. From (¢14, ¢},) in (3.58):

o 2
i || doe {%%M (14 ) frg D 22vD)

dz dz?
Ay A
~wyJo(2w2v/T) (fraze — f14)] ;;2;);23
= — Sé%éB
Wa Wa

111

(3.72)

(3.73)
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with

g = dr da?
—wyJo(2wa/T) (fiaes — f14)}
= wof1az(0) 4+ w1 + wy)?f14(0)

+ /OOO dre ™ fi4 [2(1 + wg)djo(mzﬁ) _ £ (s3]

/ooo dee™ {Qfmzw +(1+ m)fmw

dz dxz?

[C-10]. From (¥, ¢o2) in (3.59):

B /Ooo e {anzw —(1- wl)fuw

dzx dz?
A A
FwaJo(2we/T) (fiize — fn)} Sl pe
Wi We
A; A
= "2'1614——1——23’k
Wi Way

with

fra = /000 dre™” {anzg_«]o(_?;f_@ — (I —wi)fn

twaJo(2war/T) (fiize — fll)}

= —waf112(0) — wa(l — w2)*f11(0)

OO 2
+/ dre™ fi1 |2(ws — 1)dJo(2w2\/5) _d Jo(2wa /)
0 dzx dz2

dz?

[C-11]. From (¢35, ¢o1) in (3.60):

—1 /OOO dre™™ {Qflzx—————‘djo(leﬁ) —(1- w2)f11________d2J0(2w1\/a?)

dx dz?
AlA
+w1 Jo(21 V) (froes — le)} g
Wi W2
A
- il
Wi Wy
with
oo dJo(2 d? Jp(2
Bis = f dxe™ ™ 2f12x___9g_wl_\/_.§_) —(1— wQ)fu__i(—u%\/_il
0 dx dz
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(3.77)

(3.78)

(3.79)

(3.80)



+w1Jo(2w1 V) (frozz — f12)]

= —w1f12m(0) — w1 (1 - w1)2f12(0)

+ /0 ” dze® fia [2(w1 - 1)dJ°(2d‘*;“/E> - dz‘]"(dz;";ﬁ)} (3.81)

Collecting the similar terms with respect to B according to (3.67), we get

1
= — (3w - 4a; — 3.82
ax o ( Wy — 40y — a3 +065) (3.82)
1 4
as = ZE (3w2 —4ay — oy + aa) (3.83)
1 2 2
az = iwiws (4 + Y2 + s W 8im (401 + w1B2 + waf3)
wWiWo 2w 2ws

+8im (484 + w1 Ps + wafs) — 8 (407 + w1 fs + w2 )

—8im (4B10 + w111 + wafhr2) — % <3wfw§ —4P13 + Pus + 515)] (3.84)

kK = 2i—16irk; + 16iwky — 16mKs — 16imRg — ?’f (3.85)

Substituting ai, a2, as and « into (3.66) we get

0B

o - ! (ar(w)| A1) + a3(ws)| Aa[*) B + az(wy, wp) A1A;B* + k| B|*B

—iaB — ibe'** B* + k|B|*B (3.86)

where @ = a;(w1)]A1]* + aa(w2)|As|?, b = |as(w:,w2)A1A2| and 2y is the sum of the
two incident waves phases, i.e. A1As = |A;A2|e*?. b is a real number after noticing
that a3 is negative and pure imaginary since R(a3) o 407 + w10s + w2fs = 0 due to

Giz(00) = 0 (See Appendix E of last chapter). Change of variable

B=Be¢=B=2 (3.87)

e
will eliminate the phase of the two incident waves 2y from the governing equation
(3.86):
— = —iaB — ibB* + kB?B* (3.88)
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Therefore, the phase ¢ is immaterial to the dynamics. In the following discussion, we

will use

aa—f = —igB — ibB* + kB*B* (3.89)

where we omit the overbar for simplicity.

The normalized integrals are summarized as follows:

e In a; and a3, we have

_/ v (dJo 2wn\/—))’ n=12

d
g = /0°° dze™ fu1 i2(1 - wl)dJO(ilu;l\/_) : Jog::‘;n/—)]
L /0°° . —2(1 o Jo(gdu;m/—) d2Jo(2w2\/— )}
o /Ooo U w1)dJo(2dU;1\/_ z)  d*Jo 2w1\/— ]
. /Ow . }2(1 v Jo(zu:\/a) dZJO(zwzf )}

e In a3, we have

B = /0°° dre % Jo(44/T) /000 d§Yo(4\/E) dJo (321 \/E) dJo (ZZ\/E)

fo= [ dae5o(ava) [ deYo(ayE) o (20n/e) 5{2']"(55%

By = / dze % Jo(4/7) / devo( 4\/_ (2w2\/_) d?Jo (d?;’l\/@

0o T dJo (2 dJo (2
fu= [ deeso(av/E) [ devoay) of d‘?‘/g) d d“:\@

By = /0 doe™ Jo(4v/7) /0 deYo(44/8) g (le\/Z) —3%‘2}2@

Bs = /Ooo dze™* Jo(4v/7) /Om dgyb(zl\/g)JO (sz\/a {PJOS#)_
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Br = /O " dre 2 Jo(4y/7) /0 ™ deTo(d /o dJ (2;1\/5) dJ, (Zzﬂ/g)
Bs = fo ™ dee= Jo(4y/7) /0 " dedo(4,/€)Jo <2w1 \/§> %@
o= [ daeaava) [ deu(a/E)y (222) 52‘]_0(;;’__@
Bro = /0 ” dre Y, (4y/7) /0 : deJo(44/€) dJo (zzl\/g) dJo (Z“;Q‘/g)
B = [ dee Y (a) | e /e), (zwl\@ MJZ_W_MQ
Prz = /:o dze™*"Yy(4/x) /0 " deJo(ay/E) (;zwg) f‘fog‘)‘;““@

©0 _ dJ() (2(.4)1 \/E) d.]o (2&)2\/5)
— d 2z
bra /0 e dz dz

Bra = /OOO dze™™ fy; [Z(uig — 1)dJO(2w2\/E) _ d2‘]0(2w2\/5)}

dzx dx?

0o dJo(2wi /)  d%Jo(2wi/T

615 — / d:re—z]cm 2(0)1 _ 1) 0( ]\/_) . 0( 21\/_)
0 dzx dz

All integrals above depend on w; or ws.

¢ In k we have,
(e o] >0
Ky = / dre™* Jo(4+/7) / dge Yy (4,/€) = 0.007221
Q 0

kg = /0 ~ dze? Jy(4/7) /O " dee %Y (4,/€) = —0.007085
K3 = /0 ” dre™** Jo(4y/x) /0 - dge % J0(4\/E) = 0.004579
Ky = /O ~ dre2Y,(4y/7) /O " dge 2 J(4y/2) = 0.014306
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Note that the constant
k= —0.2302 — 0.1882: (3.90)

is identical to the one in the synchronous resonance case. The coefficients a1, as and
the absolute value of a3 for different w; are plotted in Figure 3-1. Singularities occur
at w; =0 (wp = 2, i.e. twice the frequency of the edge wave, and hence subharmonic
resonance is the case. as singularity), w; = v/3 — 1 = 0.732 (a, singularity) , w; = 2 —
(V55— 1) = 0.764 (ws = V/5—1, hence a; singularity.) and w; = 2— (V7 1) = 0.354
(we = V7 =1, hence as singularity.) . The last three cases will be studied later. For
example, when w; = V3-1= 0.732, this incident wave will interact with the edge
wave (mode 0) of eigen frequency 1 to generate harmonic of v/3, which is the eigen
frequency of another edge wave (mode 1). Compared with the synchronous resonance,
all these singularities indicate a lower-order resonance.

The special case of w; = 1, wy = 1 corresponds to the synchronous resonance case
except here we count the excitation force contribution from the two identical incident
waves. Refer to Eq. (3.86) for the detail of the corresponding coefficients. For this
special case, a; = ag = 0.034 and a3 = —0.152i. Comparison with « in (2.96) and 3
in (2.97) from Eq. (2.89) shows that the value of the coefficients in front of the same

term is precisely doubled.

3.6 Effects of detuning

Instead of perfect subharmonic resonance, i.e. w;+ws = 2, we now consider the effects

of detuning, i.e.

@1 + @ = 2(1 + €2Q)
This frequency mismatch may come from both incident/reflected waves:
Doy = Pore HIFTEME L g Boy = PpewrTERI (3.91)
This amounts to making replacement
Ay — A €nt A,y Ayemie (3.92)
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Figure 3-1: Coefficients a; (solid lines), as (dash lines) and absolute value of a3 (dash-

dot line) v.s. w;. The three vertical dot lines indicate positions of discontinuities at

wy = 0.354,0.732 and 0.764, where resonance occurs.

117



with

0+ Oy =20
Recall the evolution equation (3.89)

0B

— = —iaB—ibB* +k|B|*’B
or

This replacement (3.92) does not change the value of coefficient @ since it is related
to |A;|? and |As|%. But A;A; will be changed to

. . 2 _ .
A1A26 212t — A1A26 2iQ0T

Then the evolution equation (3.89) becomes

g—f = —idB — ibe”*¥" B* + k| B|*B (3.93)
Change of variables B = Be *¥" gives
%g = (%f_z - iQB) ol
and (3.93) becomes B
%’;3 — _i(a—Q)B - ibB" + x| BB (3.94)

The detuning merely changes the coefficient of one term as in the synchronous

resonance theory. In the following analysis, we omit the overbar for simplicity of the

notation, i.e. considering the dynamical system

%—? = iaB — ibB* — (0 + v)|B|*B (3.95)

where kK = —(o + i), with o = 0.230160, v = 0.188212 from (3.90) and

a=8— [15] (w1)|A1|2 — a2(w2)’A2'2, b= |a3(w1, wg)AlAgl

Due to the normalization, |A;| + |As| = 2. Therefore, the maximum of |A;||As| is

1 when |A;| = |As]. With zero detuning, we can plot curves of ag = —a;i(w1)|A1]? —

as(ws)|Ag|? v.s. wi and b v.s. wy for several combination of (|A;],|As|) in Figure 3-2
and Figure 3-3.
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Figure 3-2: Coefficients ag v.s. w; for zero detuning Q@ = 0 and (JA1],]|A42]) = (3, 3)—

dash lines, (JA1],|As2|) = (1,1)— solid lines, (J4,],|As]) = (,%)— dash-dot lines.
Note the singularities at w; = 0.354, 0.732 and 0.764.
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Figure 3-3: Coefficients b v.s. w; for zero detuning = 0 and (|44}, |4e]) = (§, I)—
dash-dot line, (|41, |As|) = (3, 2)— dash line, (|41, |A2]) = (1, 1)— solid line.
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3.7 Initial growth

If the initial edge wave amplitude is much smaller compared to the standing waves, i.e.

|B| << 1. Therefore, only the linear terms come into play. Equation (3.95) becomes

0B . .
5 = iaB — ibB (3.96)

&*B 0B  OB*
G —iag, —ibgo = (¥ -d') B

The solution to the above equation is

B(r) = B(0)e*V¥=* 7

With zero detuning,

A |Aa| 2
2—b2_ 2—A2A2 a2_<a|__1_+ ___) .
= a —‘ 1|*| Az {l 3] 1,42| a2|41|

We plot curves of 72 v.s. w; for several combination of (|A4;|/|A2|) in Figure 3-4.
From Figure 3-4 we can see that most of parts of the curves are positive, meaning
unstable response of dynamical system to the perturbation. The stable response to
the perturbation only occurs near the singularities. The growth rate decreases with
the increase of w; under the three combinations of (|A:|/|Az2|). For a certain wi,
the growth rate is the largest when the two incident waves have almost the same
amplitude. The plot suggests a largest growth rate in this case r = /0.9 = 0.95
at w; = 0.18 around (refer to Figure 3-5). A refined search shows the maximum
r = /0.93 = 0.964 occurs at |A;| = 1.15 when w; = 0.14. Compared with the growth
rate of 0.0679 for the synchronous resonance, 0.964 is closed to unity and is a much
faster initial growth. Refer to Figure 3-6 for curve of 72 v.s. |A,| with different w;. In

this plot, it is confirmed that the maximum growth rate occurs at |A;| = 1.15.

3.8 Amnalysis of nonlinear dynamical system

The dynamical system (3.95) has exactly the same form as (2.107) in the synchronous

resonance case. Therefore the analysis is the same, except the coefficients a and b
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Figure 3-4: Growth rate r? v.s. w; for zero detuning Q@ = 0 and (|4, |42)) = (3, %)—
dash lines, (|Ai],|Az2]) = (1,1)— solid lines, (|Ai],|4s]) = (2, 3)—dash-dot lines.

Singularities occur at w; = 0.354,0.732 and 0.764.
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Figure 3-5: A closer look of growth rate r? v.s. w; for zero detuning Q = 0 and
(141],|42]) = (3,8)— dash lines, (JAi],|A2]) = (1,1)— solid lines, (JAf,|42]) =
(2, 1)—dash-dot lines. Singularities occur at w; = 0.354,0.732 and 0.764.
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Figure 3-6: Growth rate 72 v.s. |A,| for zero detuning Q2 = 0 and w; = 0.1— dash-dot

line, w; = 0.14— solid line, w; = 0.18— dash line.
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have different meanings for the two cases.

0B . - : 2
H—T-—zaB*sz — (0 +iv)|BI*B

with ¢ = 0.230160, v = 0.188212 and
a=—- aq (w1)|A1|2 - a2(w2)|A2|2, b= la3(w1, wg)A1A2| (397)
At equilibrium we denote B = /Tpe*, then

F=—" _la+t1+Z0a-a)=-"la+x,1+Z(1—-a
0 :),2_1_&2[& \f,?z( a?) V2 + o2 a +,),2( a?)

Therefore, I « b as

Iy v [ o2
T=m [ai\/1+;§(1—a2)}
A single curve of equilibrium branch Ip/b v.s. @ can be drawn and shown in Figure
3-7, where
a

& = T (3.98)

From the plot we can see that the equilibrium branch curve has exact feature as
Figure 2-5 in the synchronous resonance case. Larger b simply means larger mature
edge wave amplitude. The four critical points are at a = —1, 0.82, 1, 1.29, which
are four surfaces in the parameterized space (w1, |41, 2). From (3.98) and (3.97) we
can get

Q= &|a3(w1,w2)A1A2| -+ al(wl)]A1|2 + (L2((.d2)|A2’2. (399)

For each of the four critical a, we compute € for different w; and A; and plot them
in Figure 3-8 to Figure 3-11.
Alternatively, (3.99) can be rewritten as

Q — a3 (w1)|A1]2 — az(w2)|Aa|?
|as(w1, w2) A1 Ag|

a (3.100)

For given w; and A;, a is linearly proportional to Q. Therefore a straight line can be
drawn on the (€2, ) plane. The slope of the line is determined by b = |az(w, wq) A1 As|

and the d-intercept is determined by

Qo0 (—a1(wi)|A1]* — as(w2)|A2]?)
b las(wl,wz)AlAzl )
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7: Equilibrium branches Ip/b with respect to

Figure 3-

-1.

Figure 3-8: Parametrized surface a
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Figure 3-9: Parametrized surface a = 0.82.
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Figure 3-10: Parametrized surface a = 1.
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Figure 3-12: & v.s. ) curves for critical value of wy with A; = 0.25, Ay = 1.75— First

branch of ayp.

Refer to Figure 3-2 and Figure 3-3 for the property of ag and b. Basically, b is
monotonic with w;. But ag is only monotonic on the first and the last branches. We
also found that different (A;, Ag) combinations do not affect the features of ag too
much. Plotted in Figure 3-12 to Figure 3-15 are the a v.s. {2 curves for critical value of
w; with A; = 0.25, Ay = 1.75. We add some intermediate values of w; on the figures,
which are plotted in dash lines.

On the other hand, we plot the & v.s. w; curve with fixed €2 and A; in Figure 3-16,
3-17 and 3-18. Note the singularities at w; = 0.354,0.732 and 0.764.
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Figure 3-13: a v.s. € curves for critical value of w; with A; = 0.25, 4, = 1.75—

Second branch of ag.
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Figure 3-14: a v.s. §2 curves for critical value of w; with A; = 0.25, As = 1.75— Third
branch of ay. The dashed line in the middle is for w; = 0.749.
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Figure 3-15: a v.s. €2 curves for critical value of w; with A; = 0.25, A5 = 1.75— Forth

branch of qg
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Figure 3-16: & v.s. w; curves for A; = 1 and several 's: ) = 0— solid lines, 2 = —2—
dash lines, ) = 2— dash-dot lines. Note the singularities at w; = 0.354,0.732 and
0.764.
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Figure 3-17: a v.s. w; curves for A; = 0.5 and several 0's: Q = 0— solid lines, =
—2— dash lines, {2 = 2— dash-dot lines. Note the singularities at w; = 0.354, 0.732
and 0.764.

135



Figure 3-18: a v.s. w; curves for A; = 1.5 and several {2’s: )} = 0— solid lines, ) =
—2— dash lines, 2 = 2— dash-dot lines. Note the singularities at w; = 0.354,0.732
and 0.764.

136



3.9 Conclusion

1. Although we require that w; + ws = 2, the generation of one edge wave by a pair
of incident waves allows a continuous spectrum of frequency within (0, 1);

2. At specific value of wy, lower-order resonance occur, which is not appealing for
this study, but intriguing a new topic of cross-resonance;

3. The equilibrium of the dynamical system depends on the frequency w, amplitude
A and detuning € of the incident waves. Otherwise, it shares the same features of

dynamics with the synchronous resonance.
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Chapter 4

Resonance of two edge waves by

one incident /reflected wave system

In the last chapter, we found that unbounded resonance of two edge waves happens
when the eigen frequency of the incident wave and the two edge waves takes some
special values. In order to deal with this situation properly, the following multiple
scale scheme is proposed: Two edge wave modes are present at leading order, whereas
one normally incident/reflected wave exists at one order higher. It is expected that
nonlinear interaction of the incident wave and one of the edge wave modes resonates
the other edge wave mode. This cross resonance requires that the two edge wave
modes share the same longshore dependence cos ky while the normally incident wave
has only z-dependence in the cross-shore direction. Also the incident wave frequency

w must be related to the two edge wave frequencies w, and w, by
W = wy £ Wp. (4.1)

Later study will show that the choices for different signs on the right hand side of (4.1)
make the dynamics of the whole system quite different. Only the plus sign will lead
linear instability of the dynamical system, hence is of interest. This resonance triad has
been recognized by Guza and Davis [14]. But they only limited their discussion to the
initial stage of growth and did not allow the saturation of the edge wave amplitudes.

Therefore they did not obtain the complete evolution equations governing the two
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edge wave amplitudes.
We consider two general edge wave modes p and ¢ of (1.6) sharing the same eigen

function in y:
i9B; i , .
oj = e Lj(2ka)cosky',  j=p,q
7
where we use prime “’ ” to represent the physical variables in order to distinguish

them from the normalized ones to be defined. The two edge waves have the same
wave number k, which is related to the channel width W by the eigenvalue condition
in y:

mm

k:W, m=1,2,3

Their eigen frequencies are different according to the eigenvalue condition in x:

wh,=+v(@2n+1kgs, n=0,12,.. (4.2)

In normalized form the eigen frequencies for these two modes satisfy

wj=wifwy=14/21+1, j=pq. (4.3)
with the scale
wy = y/kgs (4.4)
which is the eigen frequency for the lowest 0 mode of edge wave. We assume without
loss of generality that g > p.

Refer to (2.2) for Airy’s nonlinear shallow-water equation and (2.3) and (2.4) for
the quadratic and cubic nonlinear terms in physical variables. We introduce the
following nondimensionalized variables:

¢ Wo_
r=ki', y=ky, t=uwit, (==, &=
’ 4| |Alg

where the scale |A| is defined by

| = (?‘—’k“'—l)w. (4.5)

where A’ = |A’[e*?% is one-half the physical amplitude of the incident/reflected wave

at the shoreline. Let us define the small parameter

f=— K1 (4.6)



Then
A =g Ale™® (4.7)

and
' =1 A k s 2
|4 = &lA] = T14)
Physically, |A] is the scale of the edge waves when fully resonated.

Upon the substitution into equation (2.2), we obtain
—®y + (29,), + 28y, = €Q(D) + EC(D) (4.8)
where the quadratic and cubic nonlinear terms are

Q(®) = 2 (BBt + By®yr) + B; Bz + Byy) (4.9)

1
C@) =3 (82 + ®2) (Ruz + Byy) + B2Bag + BBy, + 20,8, Dy (4.10)

We also normalized the surface boundary condition to get

0 €

C+—a—t—+—2-|v<1>|2=0. (4.11)

As confirmation, a typical linear term is normalized as follows:

2 |Alg o,

—Qf‘/t’ - - (w(l)) CU(I)

and a typical quadratic nonlinear term as follows:

A 2
@;:@;/ﬂ — k2w0 (jz‘)!_g) (Dx(bzt
0

The ratio of quadratic nonlinear term to the linear term is the small parameter

|Algk®  sgk k|A] _ k|A|
@)* (W) s s

=

where use has been made of the eigenvalue condition for the lowest 0 mode of edge

wave (4.4).
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4.1 Harmonics and the nonlinear forcing terms
The proposed perturbation expansion is:
® =Py + &P, +EPy + - (4.12)

At the leading order we assume the co-existence of two edge waves of frequencies wy
and wy:

®y = (Dop -+ QOq (413)
where

, B.
Do = tho; €7 + %, with ;= —i Z)(T)e*zLj(%) cosy; j=p, q (414)

J

are the two edge wave modes with normalized eigen frequencies w; = 1/2j + 1. Here
L; is the jth order Laguerre polynomial by

L;(¢) = (—‘ﬁi & - %s”*” + m—zjlﬁs‘j-” — o (1)
with £ = 2z (With this definition, %’;1 = L;% = 2L} since the prime “’” denotes the
derivative with respect to argument £.). B;(7)’s are the slowly varying dimensionless
amplitudes of the edge waves at the shoreline in accordance with the linearized free
surface boundary condition
0P,

5t +¢=0. (4.15)

Besides the incident and reflected waves at the second order O(€), there are in
total ten harmonics generated by the quadratic interaction of the four first-order
wave harmonics (+w, and fwy). In order to see which of these harmonics are of our
interest, we first gives the details as follows:

[Q-0]. Zeroth harmonic:

(¢0j7 TﬁSJ )
= 2 [%/)ij?/féjx(iwj) + Yojatoje (—iws) + Pojythosy(tw;) + ¢3jy?/10jy(—iwj)]

—iw;tho (Z/)Sjm + %‘jyy) + iwjYg; (Yojee + Yojy) =0, j=p,¢.  (4.16)
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[Q-1]. Harmonic e~#*a—«#)* and its complex conjugate:

(T/)Spa og)
= 2 [Yioga Wi (10p) + Vi Woga( —itig) + You gy (1) + Yy hogy(—icvy)|
—iwgtog (wo*pxw + wgpyy) + iwpwgp (Yogzz + Q/)quy)
= 2wy — wg)i [YeWogs + Yy Wous]
~iwgtfoq (Wapee + Vipyy) + iwpthiy (Yogas + Poguy)
= z’—iz (—z%) je™ % {Z(wp ~ W) [(2[/;, — Lp)(2L, — Ly) cos’y + L, Lg sin’ y]
p q
+ {—qu <4Lg - 4L;,) + wyLy ( 4L] — 4[/)} cos® y}
BB

- wpwq‘-’ 7 {2, — wy) [(41}, Ly = 2L, L, — 2L, Ly) cos”y + Ly L]
+ [wpLp (ALY — 4LL) — wyLg (4L — 4L, )] cos?y |
B3
= 22172 f (1) cos 2y + g1 (2))] (4.17)
wpwq

with
filz) = (wp—wq)(4L;,L;——2L;L,,—2L;Lq)+% (wpLy (4Ly — 4Ly) — wyLg (AL — 4L})]
91(z) = fi(z) + 2(wp — wg) LpLy
[Q-2]. Harmonic e~ #“»*wa)t and its complex conjugate:
(%op, Yoq)
= 2[Yogtops(—iwp) + Yopethoge(—iwg) + YogyPopy(—iwp) + YopyPogy (=]
—iwgtog (Yopes + Yopyy) — wwpop (Vogae + Yogyy)
= —2(wp + wy)i [Yopatoge + YopyLogy]

—iwqwﬂq <w0pzz + "/)Opyy) - iwp¢0p (¢qux + @Dquy)

B,( B
= —-z’—jz (—7w—q) (—i)e > {Z(wp + wy) [(ZL; — L) (2L, — Ly) cos’y + Ly Lg sin® y}
P q
+ [quq (4L;,’ — 4L;) + wyLy (4L;’ - 4L;)} cos® y}
BZ)B ~2z ! ! ’
~ zz)@‘ie {2(wp +wg) (4L, L, — 2L, L, — 21, Ly) cos® y + Ly L]

+ |wpLy (4LY — AL,) + woLg (415 — 414,)| cos® y}

= DBa 2 1) cos 2y + gala) (4.18)

Wply
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with
oy ]
Fo(®) = (wptwq) AL Ly~ 2L Ly~2Ly Le) +5 [wpLp (417 — 4L4) + wqL (4L; — 413}

92(z) = fo(z) + 2(wp + wy) LpLg
Use has been made of trigonometric identity

1+ cos2y

cos’y = 5

—i2wpt

[Q-3]. Harmonic e and its complex conjugate:

("pOpy ¢0p)
= 2(—iwp) (w(g)px + w?)p’y) — iwythop (Yopez + Yopyy)
2
= (—z’%—’-) (—iw,)e™2 {2 [(2L;, — Ly)?cos’y + L2 sin’ y] + L, (4LZ - 4L1’D) cos? y}
2
= z'—f—pe—z'” [fs(z) cos 2y + gs(z)] (4.19)
2

with
f3(z) = 2L} — 6L,L, + 2L, L,

g3(z) = fa(z) + 2L;27

[Q-4]. Harmonic e*2*e* and its complex conjugate:

('z»qu: qu)
= 2(—iwq) (wgqm + ?Z)gqy) — iwgWoq (Yoges + Yogyy)

B\?
(—zw—q) (—iw,)e™ {2 [(QL; — L,)? cos’y + L2 sin® y] + L, (4L;’ - 4L;) cos? y}
g
B2
= z’;‘l—e‘2m [fa(z) cos 2y + ga(z)] (4.20)
7

with
fa(z) = 27 — 6L Ly, + 2L, L]
g4($) = f4($) + 2L§

In summary, there are 4 effective harmonics with their complex conjugates [Q-1]

to [Q-4], each of which consists of two parts, the forcing with y dependence and the
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one without. They will excite two kinds of waves, one trapped and one radiated. We
treat the two kinds of responses differently and therefore have eight wave components
at the second order besides the known incident and reflected wave. We distinguish
the two kinds of responses by different notations — v for the trapped wave and ¢ for
the radiated wave:

1) (W5 Yog) = [Y11(z,y) + dui(z)]e”

ii) (Yop, Yog) = [12(2, ) + ¢ra(z)] e~ Hortealt;

iii) (Yops Yop) — [Y13(z, y) + dr13(x)] e~ 2,

iv) (tog, oq) — [t14(,y) + pra(z)] €72t

where 111, Y12, Y13 and 114 are proportional to cos 2y.

4.2 Multiple-scale expansion

Let the incident and reflected wave have the normalized frequency w = w; + w, =

V2g+1++/2p+1. Case of w = wg —wp = /2¢+1— +/2p+1 can be treated

similarly and the details are given in the Appendix G. The multiple-scale expansion

of the solution is

@ = [boole,,7e™ " + ] + [doalz, vy 1) 4]
+€ (¢ (2, 7) + Y (e, y, 7)) e T 44
+E[pra(z, 7) + P12z, y, 7)

+& 3z, T) + 13(z, 9, T)
+€[pra(z, 7) + Yua(z, y, 7)
+& [ap (@, y, 7)™ 4 x| + & [thag(,y, TV 4 1] . (421)

e—i(wp—{-wq)t 1%

]
]e—iprt + %
]e—iqut + %

where the known incident and reflected wave will be incorporated in ¢15 as part of
the homogeneous solution. We have two time scales in the system, fast time ¢ and

slow time 7 = &¢. Change of variable will give

0 0, 28 22———+32+2“"2£+€48—2
at ot ar’ o2 ot? ot or or?
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Substituting 4.21 into Eq. (4.8) and separating different orders, we get

{[wzz,%p + (Z%ope), + xzpopyy} e~ wpt 4 *}
+ {[“’2%(1 (ztogz), + m/)oqyy} et 4 *}

+&{ [(wg — wp) s + (2112),] €@ 45}
+€{ (wg — wp)*¥11 + (2¥110), + :m/)nyy] e iwa—wplt 4 *}
+e{[(Wp + wg)?b12 + (wr22),| €70 4 )

( )?

(
Wp + Wy ¢12 + (’Z¢12$)z + x'(/)myy} e_i(wp‘*'wq)t + *}

{l
{l
+€{ 4wldis + ($¢13x)x] —ipt 4 *}
{l
{
{

4w 1/)13 + (xwl&l:) + $1/)13yy] ~i2wpt + *}

(wwzpz)x + 22 ] —iont 1 )
2‘”24 (T20z), + Thagyy| €74 + )
= {(%p,%q “ieen i} 1+ & { (Yop, Yog)e T + 1)
+¢€ {(%p, Pop)e 2Pt + *} + E{(%q, Wog)e 2t + *}
46 {[(B1200) + (W) + (B ) + (12, 03] €7+ )
12 {[(B13,%5,) + (s, Y3)] €7 + %}
+2{ [(Wop: ops i) + (ops Yog, Y3)| €77 +
+&2 { (P11, %op) + (11, Yop) + (P12, ¥5p) + (Y12, 1/J3p)] e "t 4 *}
+& { [(¢14, Vog) + (Y14, %‘q)} e~wat 4 *}
22 { [ oy Yops Vi) + (g, Yooy )] €70 + %}

+E2{ —2iwp,—= %oy '“‘"’t-l—*}—l—E { —2iwg—— O _“"qt—{—*}—{—... (4.22)

ot a7

4.3 The leading-order solution
At O(1), we separate different harmonics to get
w?%j + (2v0jz), + TPojy =0, =0, ¢.
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With the boundary conditions of no flux at shore and exponential decay at infinity,
the first order equations allow the edge wave eigen solutions (Modes with the same y
dependence, but different « dependence are of our concern.)

B.
z‘ J(T)

J

toj = — e‘“’Lj(Qac) cosy, Jj=0p, q. (4.23)

Bj(t)’s are the slowly varying dimensionless amplitudes of the edge waves at the
shoreline (The physical amplitudes of the edge waves are B} = |A|B;. The evolution
equations governing the complex amplitudes B;(7) are to be obtained at higher order.

For later use note that the functions F; = e *L;(2z), which describe the z de-
pendence of the edge wave modes, are eigen functions of the homogeneous boundary
value problems

WiF; + [(@Fy), — 2F) =0,

zFjp =0 at z=0; F;—0, z~ oo

4.4 The second-order solution

At O(E), there are eight locally generated wave components as mentioned at the end
of section 4.1. These harmonics fall into two categories: 1-D outgoing radiated waves
(denoted by ¢1; to ¢14) and 2-D trapped waves (denoted by %11 to 714). The known
incident and reflected wave is contained in ¢,2 as its homogeneous part. We now

pursue the inhomogeneous solutions.

4.4.1 ¢1; to ¢4 — Radiated harmonics

Collecting the second-order terms from (4.22) according to their harmonics, we get

four equations governing the four radiated wave components

BB
(wq - wp)2¢11 + ($¢11$)z = Z'_a)_puj_qe‘—z.‘l‘gl (:L')
fad’]
B,B, _
(Wq + wp)2¢12 + (IL‘Q{)DZ)Z = z_;p;_q_e Zzgz(x)
pq
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B
4w2¢13 + (T¢132), = i—Le > g3(z)

2
Po
Wp
2
4

-2z

4w3¢14 + (T¢14z), = 1—€ “ga(2)

Wq
where we chose the part independent of y from forcing [Q-1] to [Q-4]. Refer to (4.17)
~ (4.20) for the detail of those forcings.

The generic equation governing these four waves can be summarized as

%+ (x¢z), = 9(z) (4.24)

where @ is the generic frequency of the harmonic and g(xz) is the corresponding forcing
out of the quadratic interaction.

We first rewrite the inhomogeneous Eq. (4.24) in the form
1 ng z
¢:c:c + _¢:1: + ——(]5 = g(—z (425)
x z x
Then the particular solution of the inhomogeneous equation will be
¢ = C1Jo(20Vz) + CoY0(20v/z) + w1 (2) Jo(20v') + ua(2) Yo (20V/7) (4.26)

where

—n [ Yol2a/E)g(6)de

0

 Yo(2vVB)o(E) . _
0 EW (o, %o)(€)

z Jo(20v/€)g(§) T
us(z) = Wdf W/O Jo(2w\/g)9(§)d§

with Wronskian

Yo , dJ o d2evE) 2 2% 1
W (Jo, Yo)(z) = Jo Yo = (hoYo — Yodo) =~ T 20T 2T T

dz dx
and Ci, (5 are the constants to be determined by boundary conditions. Use has been

made of

2
Jo=—J1, Yo ==Y, Ji(2)Yo(z) — Jo(2)Y1(2) = o

The prime “’” denotes the derivative with respect to argument z = 2@./z.
First, for boundedness at the shoreline we require Cy = 0. For confirmation, let

us examine the no flux condition at shoreline, i.e.
¢ —0 as z—0 (4.27)
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As x — 0, we can approximate Bessel functions of the zeroth order by the following

ascending series

i, Gy
(anz = @)

and their first derivatives by

0
dh2oye) oz Loa, O(z?),
dx 2

-.]0(2) =

_O(5), V() = % finZ 44} ie) + 0()

Wo(2ova) 1, (n@va)) (4.28)

dzx L

Upon substitution into (4.27), the first term in solution (4.26) becomes
Crz (Jo(20v/E)) = C1 (=% + O(a?))
and the second term becomes

Cox (Yo(%\/i))m = Cy (— -0z ln(\/i?))>

1
For the third and fourth terms, Y5(2&4/z)g(z) ~ ¢(0) In(@+/z) as z — 0 so that
w (@) ~ 7 /Ox In(@1/€)dg ~ /Oﬁfln(f)df ~ zlnv/z + O(z)
and Jo(20+/x)g(z) — ¢(0) as z — 0 so that
us(a) = 7 [ [9(0) + ()] d€ = 7 [29(0) + O(a?)]

The third and fourth term become

z | (ui(2) Jo(20v7)) + (w2(2)Ys(20V/7)) |
<u1 () Pol20V) d%(Q@ﬁ))

8

LNV () BT

dz dz
~ 2 (-2’2 In(Va) +¢(0) ~ g(0)z

where use has been made of
u11J0(2<I)\/5) -+ UQ;,:YO(Q(D\/Z'_) = —’/TYZ)g(iL')J() + WJog(ﬁC)}/o =0
Collecting all four terms, we get at z = 0
02 _9
Ty ~ — +9(0)z - Cio*z +o(z) as z—0 (4.29)

149



Therefore, C5 must be 0 in order for ¢ to satisfy the no-flux condition at the
shoreline.

Secondly, a boundary condition at infinity is required for a semi-infinite domain
problem. In order to find out what is this boundary, we need study the asymptotic

behavior for both the forcing g(z) and the particular solution ¢ at large z.

Jo(2) ~ \/gcos (z - %) ;o Yo(z) ~ \/::zsin (z — g)

— 2 —
do(22VE) |, e gy (251\/5 - zr_) ; Fh(20vz) | s cos (2@\/— - E)
dz 4 dz? 4

Since
g(z) ~e

it follows that
Yo(20/€)9(€) ~ Jo(21/€)g(€) ~ z~/4e~2=

i.e. the integrand of u;(z) and ug(z) diminish exponentially at infinity, which guar-
antees that the integral u;(z) and us(x) converge to a constant as x — co. Finally,
the solution ¢ ~ 27/ like Jy(24/Z) and Yy(2w+/7) at = oo.

By comparison we can see that at large z, the forcing g(z) diminishes faster than
solution ¢(x) (exponential versus 71/4), i.e. relative to the solution ¢(z), forcing g(z)
can be treated as local disturbance. Therefore, the radiation condition applies so that
the inhomogeneous solution ¢(z) should appear as an outgoing wave at infinity. It is

easy to see that

2
207+\/T

¢ ~ —iu(00) HSY (20+/Z) ~ —iun(00) eVe-%) 45 200
representing the propagating wave if we let
C1 = —uy(00) — ug(00).
Therefore, the particular solution corresponding to the local forcing g(z) is
G(z) = [~ur(00) ~ ius(00)] Jo(25v/z) + u1(2)Jo(20v/z) + ua(z)Yo(20v/x)  (4.30)
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For later uses, we work out some constants as follows. From (4.29) we get

TE) = aa)+o0)

=0

= ®* (u1(00) + iuz(00)) + g(0) (4.31)

where g(0) is the excitation force at = 0. And

G(0) = Cy = —uy(00) — Fua(oo) (4.32)
From (4.31) and (4.32) we can see that

dG(z)

% |, = G0 +9(0). (4.33)

Solutions to the four outgoing waves are summarized as follows:
B*
¢11 = Z—

"o B,B,
12 = — J0(2w\/—) +¢

G’1 (z), with g(z) =€ *gi(z) and © = w, — wp;

- LGy(z), with g(z) = e *gs(z) and @ = wy + wy;
WpWq
2

B
¢13 = i;‘p—G;;(iE), with g(z) = e **g3(z) and @ = 2wy;
B2
b1 = z'ag-G4(a:), with g(z) = e7**g4(z) and @ = 2w,. (4.34)
q

where G;, Ga, G3 and G, are given by (4.30). We have incorporated the incident
wave in the solution ¢12(z) , where A’ = & A|e? is the known incident and reflected

wave amplitude at the shoreline and w = w, 4w, is its frequency.

4.4.2 1 to ¢y — Trapped harmonics

Collecting the second-order terms from (4.22) according to their harmonics, we get
four equations governing the four trapped wave components

B’ B,
(g — wp) b1 + (2112), + L1y = 8 wpw e f1(z) cos 2y
p

) .B,B, _
(wg + wp)?th1a + (z122), + TP114y = =22 2 fo(z) cos 2y

Wplq
2 B _,
4wz + (TP130), + TP119y = i—&}fe” * f3(x) cos 2y
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Bj
Awithrs + (Th1a), + TP11yy = z—;}ie*”ﬂ;(ﬂ?) Cos 2y
g
where we chose the part with y-dependence from forcing [Q-1] to [Q-4]. Refer to (4.17)
~ (4.20) for the detail of those forcings.

The generic equation governing these four waves can be summarized as

D*Y + (2hy), + TPy = g(z) cos 2y

where @ is the generic frequency of the harmonic and g(z) cos 2y is the corresponding
forcing out of the quadratic interaction. Since each of the four forcing [Q-1] to [Q-4]

has a y dependence of cos 2y, we adopt a solution
¥ = f(z)cos2y
with f(z) satisfying
Tfoe+ [zt [@2 - 4:1:] f=gx) (4.35)
Change of variables
_£
=4z, f=e2f(§)
leads to the Laguerre differential equation, which belongs to the class of confluent
hypergeometric equation.
w21 1 (€N ¢
1 1 _ ! w_ = _ >
e+ -0+ (5-1) 1= (5)
Notice that, for the homogeneous equation,
2
@

” 1
Z—E#n, ’l’l=0,1,2

where @ is one of the four values

O=120+1£/2p+1

or

0=2/27+1, j=pgq

Therefore, there is no question of solvability. For @ = 24/27 4+ 1,

@ 1 i1 Logiy
4 =4 5 =

1
5"

N b=
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Therefore, it is obvious that inequality

o2
4

#n

DD |

holds since both n and j are integers;

For @ = /29 + 1 £ +/2p + 1, the eigen value condition is satisfied if

@ 1 2p+g+)E2/(2+ 1)+ 1 _
12 4 2
or
(p+q)+ /(20 +1)(2p+1) = 2n,
or

2¢+1)2p+1) = [(p+q) — 2n]’

which does not hold for the several cases we will study (see Table 4.1).

(0, )
(0,1) (0,2 (0,3 (1,2 (1, 3) (2, 3)

w [V3+1 VB+1 V7+1 V513 VTEV3 VTEVE

1£v3 245 37 3+v/15 4421 5+4/35
2 2 2 2 2 2

w?
4

b =

Table 4.1: Check for the eigen value condition for several combinations of (p, ¢).

The no-flux boundary condition applies at the shoreline, i.e. zf, = 0 asz — 0.
Since the forcing g(z) exponentially decays as z increases, only the homogeneous
solution survives at a large distance. As z — o0, the equation becomes the modified
Bessel equation

Lo+ fo—V2f =0, v=2
which has the general solution in terms of zeroth-order modified Bessel function of

the first and second kind
f = Cily(vz) + C2Ko(vx)

Since Iy grows exponentially in z, whereas Ky exponentially decays at z ~ oo.

1
I(z) — %, Ko(z) — T e * as z— oo.

e’ —
V22 2z
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Iy must be excluded from our solution and the solution of our problem behaves like
Ky, which diminishes like e=2® at co. v is therefore trapped..

Now we impose a boundary condition at a large distance for our problem as follows:
f—0 at z=1L

with L is large enough so that both forcing g(z) and the homogeneous solution Ky (z)

vanish there. Eq. (4.35) can be rewritten as

—% (zfe)+ [4$ — a‘;z] fi1 = —g(z)

with the corresponding boundary conditions
zfe=0 as z—0

zfr=0 as z—L

In Appendix H the numerical formula of the finite element method is given and
is used to compute the solutions to the four trapped harmonics fi1, fi2, fis and fig,

which are summarized as follows:

B*B,
P = i—2— fiy(z) cos2y, g(z) =€ fi(z), @ =wy—wp;
Wplg
,‘/} . -BPB(I 2 _ =2z - .
12=1 fia(z) cos2y, g(z) =e * folz), ©=wz+wp;
Wplg
B2
P13 = Z'b—pfw(-’l?) cos2y, g(z)=eFfi(x), @ =y
B
Y1a = i-&)ifm(a:) cos2y, g(z)=efi(z), ©=2w, (4.36)
q

Now fi1 to fi4 can be solved by Finite Element Method as described in Appendix
H.

4.5 The third-order problem

4.5.1 Governing equations and forcing

At O(e?), we collect terms of same harmonic and get the governing equations for two

edge waves
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w§¢2p + (‘Td)?pz)w + xd’Zpyy —2iw. Wp ;;DOp + (c:p (iL') Cosy

qu
or

where we introduced &,(z) to denote the resonance forces with y-dependence of cosy

w31/12q + (ZV2gz) , + TWagyy = —2iwg—— + E;(z) cosy

from the contribution of all the following terms

(11, Pog) + (Y11, og) + (f12, ¥5g) + (Y12, ¥5,)
+(¢137 7/13;;) + (¢13a lbap) + (¢0pa w()pa 1/)81)) + (w()pa d)()qv 1/]8(1) (437)
and & (z) from

(¢117 '(pOp) + (¢11, ¢0p) + (¢12) 'w(,;p) + (11)12’ wgp)
+(P14, Yoq) + (Y14, Yog) + (Pogs Yops Yop) + (Yog, Yog, Yog) (4.38)

Let 99; = Hj(z)cosy and recall the first-order solution from (4.23), then the

governing equation becomes

L= 22D R @) g0, 5= (439)

where the linear operators are defined by
EjHj = waj + [(ZL‘H]m)x - xHj]

Details of forcing &,(z) and &,(z) are given below:

In &,, we have
[£-1].
(115 %oq)
= 2{¢T1o%0qe [t{wg — wp) — iwy)]} — twgWog]1ss + i (wq — wp)dT1(Yoger + Yogyy)
= —12p$11,Y0gr — WeYogPi1zs T H(Wg — W) P11 (Yogzz + Yogyy)

B,B;
= —ie "cosy (—i—p—i) (—z’—l—;ﬂ) {2 ddGl (2L, — L)

Wplg Wy

d*G
+wq—d—d—qu — (wq - wp)Gl (4Lg — 41 )}
BuBuB; [, dG &G ,
= wpw2 - {2 b 1(2L' Lq) + wq o 21L ~ (wg — wp)G1(4L7 — 4Lq)} cosy

= hp(2)B,B,B; (4.40)
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)

(¢12, wéq)
= 2 {d)lhwgw [—i(wp + wq) + iwq)]} + iwquqd)lZz‘x - i(wp + Wq)¢12(¢3qm + quyy>
- _izwp(bl?zwgqm + iwqwgq(blhx - i(wp + wl])(bl‘z(d)gqmz T ¢quy)

B,B,\ (.B; Gy -,
= —9 2 2L — L
“ COSy( wpwq) < wq>{ P dz ( 2

d*Gs

—w ————
¢ dx?

20\ ( B dJ
—ie” cosy( i ) (zﬁ) {pr 0(2L’ Ly)
w Wgq dx

Lg + (wp + wq)Ga(4L] — 4L;)}

4o ALl — 4L,
—Wy e Lg+ (wp + wq)Jo( ¢ q)
? d2G " /
_]_i@_B_ 200,22 dGy (2L, - Lg) - wq——;Lq + (wp + wq)Ga(4L, — 4Lq)} cosy
Wpw? dz dz
eB; dJo ., 2T P }
—i—r" - —wyg——L + wy)Jo(4L, —4L,) ¢ cos
i o, {2‘% ar <2Lq Ly) — wq a2 1 + (wp wq)Jo( q q) Y
hoa(2) B, By By + i€ f, () B; (4.41)
[€5-3]-
(¢13a wgp)

= 2 {qblewgpx [_izwp + iwp]} + iwp¢8p¢l3zx - 7;2(*J27¢11’> (djgpxx + wgpyy)
= _i2wp¢1393¢8px + iwprpd)Bmw - i2wp¢13(¢6pxaz + ¢8pyy)

B2\ (.B; dGs . -,
= —ie” cosy( p) ( ){pr (2L — Ly)
Wp Wp dx

d G " !
—wy i 3L + prG3(4L 4Lp)}

_ 2-5’19?—3—%—2{ 1Cs oy 1)~ CCe, +2G3<4L"’4L’)}cosy
Wp dz dz
= §u(z)B2B; (4.42)
[€5-4]
(wa?pOQ)

= 2 {wflmwoqm [—iwg + i(wq — wp)] + P11y Yoy [—iwg +i(wq — wp)]}
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—iwgPog (wflm + ’d)rlyy) + #(wg — wp) 1) (Yogez + 'K,Dquy)
= —i2uwp [whx%qx + d’fly%qy} ~ twyPog (¢T1m + ‘/fflyy)

+i{wg — wp)¥7; (Yogae + 1/)qu:z/)
B,B* B
= —je % (._z'_p_‘i) (—z’w—q) [2wpf11z(2L; — L,) cos2ycosy
q

Wplg
+2wp f11(—2) Lg(—1) sin 2y siny + wyLg(f1122 — 4f11) cos 2y cos y
—(wg — wp) fu1 (4L — AL;) cos 2y cos y]
B,B,B;}

N i i W L -
———* wpwg [wpfux(Z ) + 2wpf11Lq
w Wy — W
+Equ(f11wa: - 4f11) e pf11(4L;/ - 4L;):| cosy
.B,B.B; _z [We
= ’l'?p;g-le [7qu11xx +wp(2Ly, — Ly) f110

— P (4L — 4L+ 4Lq)fn] cosy
= hys(z)B,B,B; (4.43)

where terms not proportional to cosy are discarded. Use has been made of the trigono-

metric identities

i -1 —1) - t
cos(s + )-;cos(s ), G ssing — cos(s )2 cos(s +t)

cosscost =
[£5-5)-

(12, ¥o,)

= 2 {W12eWiys liwg — i(wp + wy)] + Y12y, liwy — i(wp +w)] }
+iwgWhly (Yraze + Yiayy) — 1(wp + W) W12 (Vigew + Vigyy)

= —i2p (Y1295 + ViaWiy] + 1wy (Yrzee + Yiagy)

_i(wp + wl])zplZ (¢;qxx + ’wgqyy)
. _.{.B,B B;
= —je ¥ (zﬁ) ( wq) [2wpf12z(2L — Lg)cos2ycosy
+2wp fr2(—2) Ly(—1) sin 2y siny — wy Ly( fiz2ze — 4f12) OS2y cosy

+(wp + wy) fra(4Ly — 4Ly) cos 2y cos y]

B,B,B; _, /
= ’L-—'———z—-e [wpf12x(2Lq — Lg) + 2wp froLg
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W, Wy + W
0 o — 4hi0) + P 4T 41;)] cosy
BpBB; - Wy o,
= it [ Bl = ke

Wy + W, "
P 4Ly — L) 1 aly) flg} cosy

= hy(z)B,B,B;
[£5-6]-

(113, Yap)

= 2 {wl?’ﬂ”%px [iwy, — 12wp] + Y13y Py [iwp — i2wp]}
tiwphy (Yisee + Piayy) — 120p¢P13 (ngpm + w;pyy)

= —i2wp [?/Jlsx?/)gpm + ¢13y1/18py} + iwpg, (Y13ze + Y13yy)

_izwpwlfj (wgpmz + wSpyy)
o (BN (.Bs /
= —je " li—2)|iE [prflgx( Ly, — Lp) cos 2y cosy

Wp Wp
+2wpf13(—2)Lp(—1) sin 2y siny — wpLp(fi3ee — 4f13) cos 2y cosy

+2uwp f13(4L — 4L;,) cos 2y cos y}

B B,B;

= ——r —w [fl3:t(2Ll p) -+ 2f13Lp
Wp
1

**L o(Fiaes — 4f13) + fra(dLy — 4L;)} cos Y

B B,B; o 1 , /
= wp . [fl3z(2Ll Ly) — §L;Df13a:x + f13(4Lp - 4Lp + 4Lp)} cosy
= _@pz(l‘)BzB;

where only terms proportional to cosy are kept.
[£-T7].
(Yop, Yops Vop)
= g (d)OP-Tl’szPicwépm + VopaePopsopz + Vopyy2WPopyVopy T ¢Spyywopy¢opy)
1 (o2 + iy Vopes28migy & Viporston)
+2 (wOpszpywSpmy + YopeWopyPopey + w&;wapywOpm'y)

2
B B> 9 9 .
= (—i;}—:) ic—dfe*?”” {—2—(4[/; — AL+ Lp)(2L, — L) cos’y — §L13, cosysin’y
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3 3
- ‘2‘( Ly)*Lycos®y + 2(4LZ—4L;+LP)L§cosysin2y
+ 2 [3(2[/ — L,)*L, cosy sin® y}}
BB 9 3
= —i- nge ~3z {[5(4[,; - 4L1’D + Lp)(QL; — L,,)Z _ 5(2% _Lp)sz} cos3y
p

3

9
+ {6(2[/ — L,)’L, + 5(4L;,' — 4L, + Lp)L; — —Lg} cosysin2y}

BB* 2
- ik pe“3“{[—7(4Lg—4L;+L)(2L’ L)~ 21 - L)Lp}

u,’g 8 8
3 / / 2 3 " ’ 9
+ [5(\2@, L)Ly + Sy — 4Ly + )T - 21 Hcosy
= (@) B, By (4.46)

where terms not proportional to cosy are discarded. Use has been made of

1 1 1
cos’y = Zcosy-i— ZcosSy, cosysin’y = 1°0SY — ZcosBy

[£:-8]-

(Yop, Wog: 15,)
=2 (wom:zwoqxw;qm g2t + Vs 2opetions)
(dJOpnyQ/Jqu%qy + ¢0qyy2¢opywoqy + ¢0qyy2¢0py¢04y)
Yopy 2000 Wgn + Pogu 2opatiiye + Wiy Wopetbogs )
Voprz2P0qyPogy + Voger2Wopy Wiy, + quz12¢0py¢0qy>
(Voretoagey + Yopeligy Yousy + VoartopyPigey)

2 (Ys gy Yoney + VogaWomWogsy + Bigelonyopsy )
= (—z—— (—z—) qu 3 {3(4L" — 4L, + Ly)(2L;, — Lg)* cos® y

Wy Wy
+6(4Ly — 4L + Ly)(2Ly — Lg)(2L, — Ly) cos® y — 9L, L2 cos y sin’ y

_+_

+
b l\DH—*l\DI’—‘l\D
L

-+

— (2L, = Ly)’Lycos®y — 2L4(2L;, — L,)(2L, — L,) cos®y
+ (4L, — 4L, + Ly) L2 cosysin®y + 2(4Ly — 4L, + Lg)L,Lg cosysin®y
+2[4(2L, — L,) (2L}, — Lo) L, + 2(2L), — Ly)*Ly| cosysiny

=~ L™ 3L — L] + L) (2L, — L) — (2L, — Ly)*L,
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+ 6(AL! — AL, + L)(2L, — Lg)(2L, — Ly) — 2Ly(2L}, — Ly)(2Li, — Ly)] cos’y
+ [8(2L), — L) (2L, — Lo)Ly + 4(2L; — Ly)*Ly

— OL,L2 + (ALY — 4L, + Ly)L* + 2(4LY — 4Ly + Lg) LyLy| cosy siny }
B,B,B: _,_ (3 .
= L 4e7? {Z [3(4L; — 4L, + L,)(2L}, — Ly)* — (2L, — Lg)* Ly

+ 6(AL! — 4L, + Lo) (2L, — Ly)(2L), — Ly) — 2Lg(2L}, — Ly)(2L}, = Ly)]

2
wpw

1
+7 [8(2L;, — Ly)(2L, — Lg)Lg +4(2L; — Lo)*Ly
— OL,L? + (4L — AL, + L,)L2 + 2L} — 4L}, + Lg) L, Ly } cosy
= hys(2)ByB,B; (4.47)

There is no need to consider terms not proportional to cosy.

In &;, we have the following terms

(€1

(¢117 7~p0p)
= 2 {Ql)llachpz [_i(wq - wp) - iwp)]} - iprz)Op(bllzm - i(wq - wp)¢11(¢0pmx + wOpyy)

= —i2wq¢11mw0pm Z.prOstllzx - i(w wp)¢11(¢0pzz + wOpyy>
BB, By dG
= —ie " cosy ( L ) ( ) {qu . I(ZL; — L)

Wpldg Wp
oy 2GlL + (wy — )G1(4L”—4L’)}
d 2 4q p 14
_ _ByB,B; hiles
= L P {2

, &G
o (2L, - Lp) + Wy Ly

+(wg — wp)G1(4L; — 4L;,)} cosy

2
Wew2

= hq(z)B.B,B;} (4.48)
[£4-2).

(¢127 Z/)gp)
= 2 {¢12m¢8px [_i(wp + wg) + pr)]} + iwpw(’)kp(bmzz - i(wp + wé})¢12(w8pzm + wgpyy)

= —i2w0¢12xw(§px + iwpw8p¢12xa: - Z(WP + wq)¢12(¢3pm + wgpyy>
B*
= —ie *cosy ( %) ( ) {qudng (2L, — Ly)

Wplg Wp
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d*G
—wp— ;L + (wp + wg) G2 (4L, — 4L;,)}

i2¢ B; dlo ..,
—ie” cosy( ew ) (zw—> {qu o O(2Lp — L)
P

Lk (w4 )L - 4L;,)}
%? Bp - {2 qdd% (2L, — L,) — wp%Lp + (wp + wq)Go(4LY — 4L;>}cosy
— Zi-?ée_“’ {qu%{t—o(ZL; —L,) - wp%]gljp + (wp + wq) Jo(4L, — 4L;)} cosy
haa(2) By B, By, + i fo() By (4.49)
[£,-3].
(P14, qu)

= 2 {¢14x’d}ng [—z2wq + iwq]} + iwqw6q¢14am - i2wq¢14(¢8qzx + ’l/)gqyy)

= "—i2wq¢14x'€[)5qx + iwq¢3q¢l4x:v - Z.2(")q(7514 (wa‘qacz + quyy)

| B2\ [ B dG,4
= —ie” cosy( WZ) ( wq) {qu - (2L, — L)

wqddG24L + 2w, Gy (4L — 4L;)}
BiBiB; ., [,dGs o1 d*Gy ,
= Z_EZZ—_qe { 7 —— (2L, — Ly) — T ——L, +2G4(4 L’—4L;) cosy
= dq(z)B}B, (4.50)
[€e-4]
(Y11, %op)

= 2{Y110%0pe [—iwp — t{wy — wp)] + Yr1y¥opy [—iwp — i(wg — wp)1}
'_iwprp (wllzz + ¢11yy) - i(‘uq - Wp)wll (wOpm: + 1/)0pyy)
= -izwq [wllwapx + wllyw()py] “ iwp"/]Op (wllxm + ?buyy)

—1(wg — wWp) Y11 (Yogze + Yogyy)
B*B B
= —je " (z'l’_q) <_z'__p) [qufnz(QL; — L,)cos2ycosy

Wpldg Wp
+2wy f11(—2) Ly(—1) sin 2y siny + wpLp(f11ze — 4f11) cos 2y cosy

+(wq — wp) f11(4L;, — 4L}) cos 2y cos y]
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B,B,B;
— ___——Be_ac [wqu(QL; — Lp) + 2qulle

Waw?
Wy — Wp " /
‘—L p(flize — 4f11) + fi(4L; — 4Lp)} cosy
B B,B* ., [w,
= —O_J;Z)E“ [ 7 Ly fiies + we(2L;, — Lp) f110
+w pf11(4Lg — 4L, + 4Lp)} cosy
= hgs(z)B,B,B; (4.51)

where terms not proportional to cosy have been discarded.

[£4-5)-
(%2, 1/’3;;)
= 2 {1/)121’77Z)8p1' [iwy — i(wp + wg)] + leywOpy [iwp — i(wp + wq)]}
+iwp¢8p (wlhz + z;[)12yy> - i(‘*)p + wq)lﬁm <w8pzx + %/)Spyy)
= —‘izwq leaﬂl}gm + 1/112y'l/)8py1‘ + Z‘wp'l/)();p (77[]121’.'1) + ¢l2yy)
_i(wp + wq)?pm (¢8pxm + wgpyy)
.. [.BpB By
= —ic™® (z—i—&f> ( wp) [2WQf12x( — L) cos 2y cos y
+9wq fra(—2) Lp(=1) sin 2y siny — wp Ly ( froee — 4 f1) cos 2y cos y
+(wp + wg) f12(4L;, — 4L;,) cos 2y cos yJ
ByBpB; .
- —waﬁ_pe |wa froe(2Ly, = Lp) + 2w fra Ly
w -{—w
L (fraee — 4fi2) + 2 qf12(4LZ ~ 41;)) cosy
B, B B o
- —Jq?ﬁ_ {wq(ZL;, Lp) fioe — = Lpfi2ea
LY + Wy fi2(4Ly — 4L, + 4Lp)} cosy
= he(z)ByB,B; (4.52)
[£4-6].
(¢147 w;q)

= 2 {asigs iy — 120] + Vrayhiy, lisy — 2]
Wy, (V14zz + V1ayy) — 12wg14 (wéqm + zb{)‘qyy)
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= —i2w, [¢14x¢8qz + wl4y1/)6qy] + iwgto, (V1aee + Y1ayy)

—12wq14 (@!}Sqm + wgaw)

(. BIN (. B] ,
= —je "2 {4 [qufMI(QLq—Lq) COS 2y cos Y

Wq Wy
+2wy f1a(—2)Ly(—1) sin 2y sin y — wy Ly ( fraze — 4/14) cOs 2y cosy

+2uw, fr4(4L; — 4L;,) cos 2y cos y}

_ B i}B* [fm(m: — Ly) + 2ful,
*.}L o(Fraze — 4f14) + fra(4L! — 41:;)} cosy
= B—f;B—* [(2[] — Lg) f1ae — %qumm + (4L] — 4L, + 4Ly) f14| cos y
= §p(z)B.B, (4.53)

where only terms proportional to cosy are kept.

[£,-7).
(qua Q/)()qa Qr/)a(q)
3 * * *

= 5 (¢()qxw2w0qz¢ng + woqzz?qux?/JOqz + quyyZQquywoqy + ¢quy¢0qy¢0qy)

1 : * * * *
+§ (d)quyQQquxwoqx + quyyqux¢Oqz + "'Z}quwaquwoqy + woqzﬂquyquy)

+2 (’w0qxw0qyw8qzy + ¢quw6qyw0qzy + ¢3qz¢0qy¢0qu)

-B‘q 2~B; -3z 9 1 ! ! 2 3 9 3 1.2
= |mi) e {5(4Lq — 4L, + Ly) (2L, — Lyg)* cos”y — iLq cos y sin” y
q g
3 3 .
- —2—(2[1; — Lg)*L,cos® y + 5(4L;’ — 4L}, + L) L2 cosysin®y
+ 2 [‘S(ZL' — L)L, cosysin® y}}
BZZB* —J3x 9 / 3 /
- it 3 {[5(4@; AL+ L)L, — L) — S(2L, - Lq)QLq} cos®y
+ {6(2L’ — Lg)? Ly + 3(4L” AL, + Ly) L% - ng} cosysi112y}
B( Br ., (27 9
= it H S (AL — AL+ L) (2L, — L) — 221, - Lq)qu]

> 3 / 9
+ [-Q—(ZL,] — L)Ly + §(4Lq’ — 4L, + L,) L2 — ng} } cosy

= gp3(z)B’B; (4.54)

99
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[€,-8].

(,l/JOQa wOPa 77[)61))
3 x " .
= 5 (w0q$1’2wopzw0pz + wopwx2¢0ql‘w0px + ¢Opmm2¢0qx,¢}0px>

3 * * *

+§ <¢0qyy2¢0pywopy + Yopyy2%0qyPopy + Vopyy 2¢0qy¢0py)
1 F'3 * *

5 (Wouy 205 ¥ + Yopuy 2boaeVipe + Vipyy 2000

1 3 * %*
+'2_ (¢0qwx2¢0pywopy + 1r/)Opacav21/)0qywopy + wopszQquywOpy)
+2 <w0qzw0pyw8pzy + @quxwgpyq/}Opzy + w()pxw0qy7/)6pzy>
+2 (2/10pz7/}8py¢0qu + ngpx?/}(lqy@bopzy + ¢szw0py¢0qzy)

= (—i%) <—i~§pﬂ> z'gfe—“ {3(4L:; — 4L, + Ly)(2L, — Ly)* cos’ y
+ 6(4L;, — 4Ly, + Ly) (2L, — Lp)(2L;, — Lg) cos® y — 9L, L2 cos ysin® y
— (2L, — Ly)?Lgcos’ y — 2Ly (2L, — Lg)(2L;, — Ly) cos® y

+ (4Ly — AL, + Ly)L; cosysin®y + 2(4L} — 4L, + Ly)LyL, cosysin® y
+ 2 [4(2L), — Ly)(2L}, — Lp)Ly + 2(2L}, — Ly)*Ly] cosysin®y }
—i%ﬁf}—?e“&” {341y — 4L, + L)(2L;, — Ly)* — (2L, — L,)*L,
+ 6(ALy — ALy, + Ly)(2L;, — Ly)(2L; — Lq) — 2L,p(2L} — Lg)(2L;, — Ly)] cos®y
+ [8(2L, — Ly)(2L}, - Ly) Ly + 4(2L, - L)L,

— 9Ly Ly + (4L — 4Ly + Lg) L} + 2(4Ly — 4L, + L) Ly Ly cosysin’ y }
ByB,B: . (3 :
S it i JB {Zi [84Z) — 4L, + L)(2L, — L,)* — (2L, — L,)*L,

W
+ 6(4Ly — 4L, + Ly)(2L;, — Ly) (2L, — L) — 2L, (2L, — Ly)(2L, — Ly)|
1
+7 (8(2L, — Ly)(2L, — L) Ly + 4(2L}, — L)’ L,
— 9Ly L} + (4Ly — 4L} + Lg) L3 + 2(4Ly — 4Ly, + L) LoLy | } cosy

= hys(z)ByB,B; (4.55)

Again, terms not proportional to cosy have been discarded.
Homogeneous equation 4.39 has nontrivial solutions F; = e *L;(2z), j=p,q as

described at the first order. H; must satisfy a solvability condition which is found by
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Green’s formula

|5 F; = FitHy)de = [ Hy(@F), ~ FylaH;s)] do

= [ (@HF)e - @FHyo)e] do =0

The last equality follows after integration and applying the boundary conditions both

at the shoreline and at infinity. Since £;F; = 0, we must have
/ FiL;H;dz = 0
0

which gives the solvability condition

| daFy) (—2%%5@) + gj(g,,-)) ~ 0

In summary, we group the terms in &y(z) according to B}, B2B; and B,B,B;,

and get
E(x) = €™ f(2)B} + Gp(2) BB} + hy(z) B, B, B; (4.56)

where ie'* f,,, 3, h, are the sum of coefficients of B}, B2B; and B, B, B respectively.

Specifically
o if,(z) is found in (4.41);
e §y(z) is collected from (4.42), (4.45) and (4.46), i.e.,
9p(Z) = Gp1 + Gp2 + O3 (4.57)

o hy(x) is collected from (4.40), (4.41), (4.43), (4.44) and (4.47), i.e.

A A

ho() = by (2) + (@) + iy (2) + pa(@) + ps () (4.58)

Obviously, f, is real while g, and h,, are complex.
Similarly, we group the terms in &,(z) according to By, BB} and B,B,B;, and
get

E/(z) = €™ fo()B} + 34(z) BIB; + hy(z)B, B, B; (4.59)
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where i€ f,, 3., h, are the sum of coefficients of B,, B}B; and BB, B; respectively.

Specifically
e if,(z) is found in (4.49);

o G,(z) is collected from (4.50), (4.53) and (4.54), i.e

Qq = gql + qu + gq3

o hy(z) is collected from (4.48), (4.49), (4.51), (4.52) and (4.55), i.e

~

ho(@) = ha1(@) + haa(@) + hea(2) + haa(z) + hgs(2)

Again, f, is real while j, and h, are complex.

Therefore, two complex nonlinear ODE’s

%i; =0 6’2“’3* + 2By By B, + ¢3B, By By;
B,
687 = id1*¥ B} + dyB,B,B; + d3 B,B,B;.

(4.60)

(4.61)

(4.62)

(4.63)

governs the two edge wave amplitudes B, and B;. We have collected terms from the

integral of £,(z) and &,(z) according to their B, and B, dependence and defined the

coefficients as follows

o0

[e1, ¢, c3) A Fp(z)[fo(z), Gp(z), fzp(ac)]dm,
o ~
[di,ds,d3] = A Fy(z ), §q(z), he(z)|dz.

More specifically, we introduce
Cy = Cg1 + C2+Ca3, €3 = C31+C32+C33 +C34 +C35

with
/ gPJ CE, ] = 17 2’ 3

._/ (z)dz, j=1,2,3,4,5
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and

dy = doy + doa +da3, d3 = d31 + dzg + d3z + dzg + dss
with
dy = | " F(2)ig(2)de, j=1,2,3 (4.68)
ds; = /0 " Fa)hy(@)dz, j=1,2,3,4,5 (4.69)

These coefficients ¢’s and d’s are constants obtained by numerical integration, to be

given later. Use also has been made of the property of Laguerre polynomial

oo 00 1 oo 1
[ Fie)as = [ e rienan = 5 [T eerkede =

As in the case of synchronous resonance, we replace B; by B;e* to eliminate the phase
of incident wave,i.e. ¢'2*, from the evolution equation. Without loss of generality we

drop €% from Eq. (4.62) and Eq. (4.63) to obtain the evolution equation:

0B Lk . *
.2 =ic.B} + 2B, B,B; + 3B, B, By; (4.70)
0B, ., .. x *
—671‘2 = Zdpr + dquBqu + ngquBp. (471)

These two nonlinear equations are coupled.

4.6 Initial evolution

The edge wave amplitudes are much smaller than the incident/reflected wave, i.e.
By, B; << 1. Therefore, the linear terms on the right-hand side of Eq. (4.70) and
Eq. (4.71) dominate. The following discussion shows how governing equations behave
with different choices of the modes combinations (p, q).
Ignoring nonlinear terms, Eq. (4.70) and (4.71) becomes
0B, 0B,

o * q __ . *
5 = ic1B, and B = id, B;. (4.72)
which can be manipulated to yield
0’B , - .
87_2” = ic1 (—id} By) = c1d; B,

(4.73)
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The solution to the above equation is

B, = By(0)e=Vo T *

(4.74)
Similarly,
82B ) .
572 = =idy (—ic;B,) = ¢jd1 B,
(4.75)
The solution is
Bq - Bq(O)ei‘/cIdl T
(4.76)

We now give a; and b; for several pairs of (p,q), which can be excited by one

incident /reflected wave:
o Case (1). p=0, ¢ =1;
wp=1, w=V3, w=w+w,=V3+1, Ly(22)=1; Ly(2z)=(1—2z)
Therefore from [£,-2] we get

Z'CI

_ o0 ! —z dJy ’
= /0 szp(m){ i [m 29(aL! — L)

d?Jy
L
dx

Wo o e
+(w,, + wq)Jo(4L" —4L)]}

{4 _G)dJo(j:\/—) V31— )dzJoc(i&;)\/—)

= —i

w\/_
-|—4c.]0(2w\/5)}

= 0.1410¢
And from [£,-2]
idy
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d d*J;
= / deF,(z {~z———e {qu dJO(QL;—Lp)—wp—CFQOLp

Wwp,
+(wp + wg)Jo(4L — 4L,)] }

_ /°° g (1 - 20) {2 32wvE) dQJO(Qw\/E)}
0 W dx

dz?
= ().2441:

e Case (2). p=0, ¢ =2;
wp=1, wy=V5, w=w,+wy=V+1, L,(2z)=1; L,(22)=1-4z+2z

Therefore from [£,-2] we get

dJ 4 J
- / dzFy(a {—zw—c‘;;e {2% =2 (2L - Ly) - w7 Ly
+(wp + wg) Jo(4Ly — 4L,) |}
G_Qm dJo(QuJ\/E)
= —i 167 — 10 — 4g%) 0V
i w\/g{( z ) T
2
—/5(1 — 4z + 2x2)d—go—£l2%@ +4¢(3 — 23:)J0(2w\/5)}
T
= 0.1056i
And from [£,-2]
dJo d2J0
- / daF,(z {—z;}—(;;e {2% 220 ~ L) ~ wp gy Ly

+(wp + wq)Jo(4L" —4r)]}

:/d

= ().23602

4z + 22%) {2\/5‘1‘]0(3‘;\/5) N ngo;ic;\/E)}

e Case 3). p=1, ¢g=2

=3, wy = VB, w=wytw, = VBE+V3, L,(2z) = 1-2z; L,(22) = 1—4a+22>
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Therefore from [£,-2] we get

dJo d2J,
= / dZEF {—Zw————%(’ {2(4)10 dr (2Lq - Lq) — wq—@Z—Lq

+wp + wg) Jo(4Ly —ALY)| }

oo 6‘211:
dzx

o wVb

—V/5(1 — 4z + 22%) JOC(ZQ“;‘N 4¢(3 — 2z)J 2wf)}

dJ0(2W\/—.’E_)
dz

= — (1 —2x){\/§(16x— 10 — 4z?%)
= 0.0970i

And from [£,-2]

~ o ., 2 Jy
- / doFy { zwwpe [2 2Ly~ L)~ w3 L
+(wp + wy) Jo(4Ly — 4L,)] }

I e e~ 9 dJo(Qw\/ZE_)
= z/o d w\/?;( 43:+2a:){\/g(6—4x)————d$——

+V3(1 - Qx)f%%;@ + 4cJ0(2w\/E)}

= (.1524¢

e Case (4). p=0, ¢=3;
4 .
wy =1, wy= V7, w=wytwy = VT+1, Ly(2z)=1; Ly(2z) = 1—6x+6x2—§x“

Therefore from [£,-2] we get

2
= / drFy(z {—7———6 e {pr%@l&; - L) — wq%Lq

+(wp + wq) Jo(4Ly — ALy)| }
_ 2z dJ()(Qu)\/_)
_ ~z/ da:wf{(%x—lél 2022 + ) SEVE

)M—) 8c(3 — 4z + :CQ)JO(Qw\/E)}

dz?

—7(1 — 62 + 62°
= (.0876:

3
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And from [£,-2]

d 2
- / deFy(x {—z——e [qu dJO(QL;—Lp)—wp%Lp
z

Wwp
+(wp + wq)Jo(4L;’ - 4L;)]}
61 + 622 3 ) {2\/—d‘]0(2w\/—) d? J0(2w\/5)}

dz dx?

= 0.231&

wp=\/§, qu\/f W=wpt+wy= \/_—l-\[
4
Ly(2z) =1~ 2z; Lq(2x):1—6z+612—§x3

Therefore from [£,-2] we get

¢
dJ d?J
- / dz Fy(z {—z—e [prdo(QLg—Lq)~wq—CE2£Lq

+(wp + wg) Jo(4Ly — 4L,)] }

8 5 dJo(2wy/x)
) e Ansad B2
3 dzx

= —i [ d 2 3(36z — 14 — 2022
2/0 A x){\/_( z 2 +

dz?

4 2J0(2
—V7(1 — 62 + 62° — 3 3)M+80(3—4x+12)J0(2w\/5)}
= 0.08072

And from [£,-2]

d?J,
- / dzF,(z {—z——e {quiljo (2L, — Lp) - wP?d—xTOLp

Wy

+(wp + wy) Jo(4Ly — 4[’;’)]}

o e s 4 4 dJo(Qw\/CE)

= w\/g( 6z + 6z ‘§m>{ﬁ(6‘4‘”)T
+V/3(1 - 23:)@%{';—@ + 4CJO(2w\/§)}

= (.14662
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o Case (6). p=2, g=3;
wp=\/5, wq=ﬁ W =Wwpt+wg= VT +5,

Lp(2z) = 1 -4z + 2% L,(2z) = 1 — 6z + 6c” — gar”

Therefore from [£,-2] we get

I dd d2J,
= / dzF,(z {—z—e {2wpd—$o(2L; Ly) — Wogg —2L,
+{wp + wg) Jo(4Ly — 4L,)] }
8 3
3"

)dJo(ZW V)
dz

= —1

-2z
zﬁ(1—4x+2x2){\/5_)(36z—14 20z + -

—V7(1 ~ 6z + 622 — g 3)% + 8¢(3 — 4z + x2)J0(2w\/5)}
= 0.0787
And from [£,-2]
idy
- /0 ” dzFy(z) {—z'wi%e—x [2% ‘2‘]" (2L, — L) — wp%Lp

+(wp + wg) Jo(4Ly — 4L)] }
-2z

L[, € _ 24 3 _ 2y 8J0(2w/T)
2/0 dww\/g(l 6z + 6z Bx){\ﬁ(lo 16z + 4z°) y

4y

+\/5(1~4m+2x2)£%§%—\1—x—) 4¢(2z ~ )J0(2w\/_)}

= 0.0931:

The results for all six cases are summarized in Table 4.2:

From Table 4.2 we see that, ¢; and d; are all positive real numbers, which makes
cidy = c1d; = c1d; real and positive. Amplitudes of the two edge wave modes grow
or decay exponentially in the rate proportional to v/cid;. Therefore, there is linear
instability of the edge wave to the incident /reflected wave system so that the nonlinear
terms come into play at large t. In Table 4.3 we list the growth rate factor v/c;d; for

different combination of p and q.
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Table 4.2: Coefficients pairs (c;,d;) for different edge wave modes combinations.

q
1 2 3

0 | (0.1410, 0.2441) (0.1056,0.2360) (0.0876,0.2318)

p 1 (0.0970,0.1524)  (0.0807,0.1466)

2 (0.0787,0.0931)

Table 4.3: The growth rate factor v/c1d; for different edge wave modes combinations.

q

1 2 3
0]0.1855 0.1579 0.1425
p 1 0.1216 0.1088
2 0.0856

4.7 Nonlinear evolution equations

In order to see the nonlinear effects of the dynamical system, we work out all the
coefficients in the evolution equations. Three specific cases of p, ¢ combination will be
discussed. In these cases, we try to make various combinations from different x-modes

of the edge wave until some sort of pattern is revealed.

4.7.1 Nonlinear term coefficients for case (1): p=0, ¢=1

Now we have
wpy=1, w=V3 w=wtw,=v3+1, L,(2z)=1 L,(2z)=(1-21)

We already knew from Table 4.2 that ¢; = 0.1410 and d; = 0.2441 from previous

discussion.
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fi(z)
I 1! [ ! 1 1 / 1 !
= (wp —wq)(4Lp Ly — 2Ly Ly — 2L Lg) + 5 [wpLp (ALY — AL}) — wyLq (4L — AL,)]
= 4—2V3,

(z) = fr(z) + 2wy — wg) LpLy = 6 — 4v/3 — 4(1 — V3)z;

fa(z)
I r? 7 / 1 " ! n 7
= (wp +wg) (4L, Ly — 2Ly Ly~ 2L Lg) + 5 [wp Ly (4L ~ ALL) +wyLy (4L — 4L,

= 4+ 2V3,

92(2) = fo@) + 2(wp + wy) LpLy = 6 + 4v/3 — 4(1 + V/3)z;

fa(z) = 202 ~ 6L, L, + 2L, L = 0,

95(z) = fs(z) +2L; = 2;

fa(x) = 20" — 6L L}, + 2L,L! = 10 — 12,
q 9q qHq

94(z) = fa(z) + 2L2 = 82% — 20z + 12.

Referring to (4.36), the numerical solutions to fi1, fi2 and fi4 are plotted in Figure
4-1. Note that f3(z) = 0 identically, hence fi3 = 0 in this case. Our numerical results
by finite element method (Appendix H) show that all of them are close to zero after
z > 4 (See Figure 4-1.).

Other ¢’s from &;:

[€p-1]. From (4.40),

C31
00 1 [ day ., PGy
= /0 dIEFp(iL') {prwge {pr:i—x—(ZLq — Lq) + wq—&x—2Lq

—(wg — wp)Gr (4L — 4L,)] }
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Figure 4-1: Numerical solutions to fi;;— solid line, f;o— dash line, and f;4— dash-dot

line for Case (1): p=0, ¢=1.
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= %/Ow dre™2 {(435 - 6)%% +V3(1 - zx)ddzxc’;l —4(V3 - 1)G1}
_ % {_ 3‘%(0) - (@3-6)Gi(0) + [ " doe™ [(8v/3 — 12) + 8(1 - v3)a] Gl}
= -;- {~v3:(0) + &} = —0.0063 + 05412 (4.77)

where use has been made of relation (4.33). And the generic form for the partial
integral is

/ ¥ dz f(:v)e_h% — _F(0)G(0) - /o Y dz(f — 2f)e G

0

The integral a can be evaluated as

[e's) 4
a= /O dze > [(8v/3 —12) +8(1 — V3)z] Gy = 3" o = 0.0158 + 0.0190¢  (4.78)

=1

where
a=n /0 " dze™ [(8V3 — 12) + 8(1 — V3)a] Jo(25v/2) /O " dge% g, (€)Yo(20/€)

Q= —7T /Ooo dre™* [(8\/5 —12) +8(1 - \/g)x] Jo(20/x) /Ow dfe‘zegl(g)Yo(.‘ZG}\/g)
Qa3 = —iw /Ooo dze™® [(8\/§ —12)+8(1 - \/g)a:] Jo(204/x) /Ooo dée % g, (§)Jo(2cb\/§-")
ag=7 /0 " doe™ [(8v/3 — 12) + 8(1 - V3)e] Yo(20V/7) /0 " dee % g1 (€)Jo(2\/8)

with @ = /3 — 1. Refer to (4.30) for the generic form of solution Gy. Constant o’s

are given in Table 4.4.

Table 4.4: Coefficients of o’s by numerical integration.

o (62} as 474

-0.0777 | 0.0856 | 0.0190i | 0.0079

[€-2]. From (4.41),

C32
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d2Gsy

w——-——
7 dx2

oy (2L~ L) — L,

- / de:c){ >

+(wp + wg) G2 (4L — 4L, )}}
= / dxe2{4$— )d_G2—‘/—(1_ ) G }
- HB20+ @B+ 060 + [ [8“ RO NIy

= % {V392(0) + B} = —0.2329 + 3.9662; (4.79)

[ dGs

The integral 4 can be evaluated as
/ dze™ [8(1+ V3)z — (8v3 +12)] Gz = Z;,BJ —10.4938 + 0.6988; (4.80)
where )

Bi=n /0 " doe ™ [8(1+ V3)z — (8V3 +12)] Jo(26v/2) /0 " dee % gy (€)Y (204/€)
By = - /O " doe™ [8(1+ V3)z — (8V3 + 12)] Jo(20/3) /0 " dge % 5(6)Yo(28/6)
By = —in fo " doe™ [8(1+ V3)z — (83 + 12)] Jo(20v/7) /0 "~ dee gy (€)Jo(21/€)
Bi=m /0 " doe [8(1 + V) — (8v/3 + 12)] Yo(20V/2) /0 " dee % g5(€) Jo(21/£)

with @ = /3 + 1. Refer to (4.30) for the generic form of solution G,. Constant 8’s

are given in Table 4.5.

Table 4.5: Coeflicients of 4’s by numerical integration.

ﬂl )82 ﬂ3 ,84
-1.8068 | -3.4395 | 0.6988i | -5.2475

[£p-3]. From (4.42),

2
_ / dzF,(z { e {2‘%(%’ L) - dde’L 129Gy (4L — 4L;)”

. dGs d°Gs
= /dme {2——— dxz}
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dG
= Z{dm3(>+4G3 0) - 8/ dze” 2”’(}'3}

i{g3(0) — 87} = —0.2302 + 0.5618; (4.81)

The integral v can be evaluated as

y= / dre Gy = Zyj = 0.1798 — 0.02884
j=1

where

n=r [ due = o(20vE) [ deegu(6)Yo(20/6)
=~ [ dee 2 (20v3) [ dee % go(€)Yo(20/€)
g = —i /O * dwe=" Jy(2+/T) /O " dee% gs(£) Jo (21/8)
w=r [ doe ™ Yo(26V3) [ dee0n(6)o(208)

with @ = 2. Refer to (4.30) for the generic form of solution G3. Constant v’s are

given in Table 4.6.

Table 4.6: Coeflicients of v’s by numerical integration.

84! Y2 Y3 Y4
0.0454 | 0.0445 | -0.02881 { 0.0899

[€5-4]. From (4.43),

/ diIIF { [a;q L fllzz + wp(2L q)fll:c

_w—2———(4L” — 4LI -+ 4Lq)f11] }

/ dre % { (1 —2z) fi122 + (22 — 3) fr1z — 4(\/5 -1 - x)fll}

Lo oo,

= ; {——z—fuz(ﬂ) — (2v3 - 3)fu1(0)
+ /0 ” dre [(2V3 - 4) + 8(V3 — 1)a fu} = —0.1830¢ (4.82)
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[&-

5]. From (4.44),

/ drFy(z { [wp(QL’ Ly) fro0 — qfl?a::c

wp + Wy

Ay 4L;+4Lq) me

= j - d(L'e‘Qz {—\/75(1 - 2$)f12xz + (2.1‘ — )fl2:c + 4(\/:_3- + 1)(1 — .Z’)flg}

= % {‘*“flzz 2\/_-5- 3) f12(0 +/ da:e_%( 23— 4)f12} = 1.3050i

[&-

[£-

(&

(4.83)
6]. From (4.45),

C22

/ deF,(zx ){ ;pe_z [f13x(2L; —Ly) -
/ dze {—f13x - %flSzz + 4f13}

Z{ f132(0) + 2f13<0)} =0 (4.84)

1
S Lpfisee + Fis(4L] — 4L, + 4L,,>}}

7]. From (4.46),

C23
e . 1 27 " 1 / 2 9 / 2
dnFy(2) { ~i—e” [ (4]~ 4L + L) (2L, — L) — 2L, — L)L,

p

3, 3, 9
+ 5(zL’ — L)L, + §(4Lp — AL, + L)L — —Lg]}

v 8
s 27 9 3 3 9
AR
b ¥ 1% T8 2T TR
~31 dre **
0
3
- (4.85)
8]. From (4.47),
C3s
— /Oo it 6-3’5{% [3(4L) — 4L, + L,)(2L, — Ly)? — (2L, — L)L
0 wpwg 4 P P P a ? a 4
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+ 6(4Ly — 4Ly + Ly)(2L, — Ly)(2L}, — Ly) — 2Ly(2L}, — Ly)(2L, — Ly)]
+ 211- [8(2L}, — L,)(2L}, — Lq) Ly + 4(2Ly — Ly)*L,
— 9Ly L + (ALy — 4L, + L) Ly + 241y — 4L, + Lg) Ly Ly } Fy(x)dz
- _é: / " dre™* {612 + 40L, + 46
- —é- /0 " dre {240” — 1040 + 92)
23i

Therefore,
Co = Co1 + Cog + Co3 = —0.2302 — 018822,
C3 = C31 + €3 + €33 + C3a + c35 = —0.2393 — 0.12074.
Other d’s from &
[£4-1]. From (4.48),
e~® dGy ., d2G
= / dzFy(x { { o (2L — Ly) + w,,%z—le
+(wg — wp)G1 (4L — 4L3) |}
1 o0 _ dG, d2G1
= — [ dze ®{-2V3(1 -2z 1-2
\/5/0 ze { V3( )d + ( a:)de}
= I i ayme (o) + [ dmee [(12 - 8v3) + 8(3 ~ 1)) &,
V3 dx 0
- % {—g1(0) — &} = 0.0109 + 0.5268i (4.87)

where « is defined in (4.77) and evaluated in (4.78). Refer to (4.30) for the generic
form of solution Gj.

[€4-2]. From (4.49),

d3z
o0 e " dGo , d*G,
= d.IFq(.T) {-—qzj‘g [2wqd—x(2LP — Lp) — prLp

+(wp + wg)Ga(4Ly — 4L) |}
= :/i—g/oooda:eﬁzx{ 2v/3(1 — 22 )dng (1—2x)d—G2}

dx?
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- {0+ 4 2/HG0) + [ s [5(V5 + - (12+8V5)] 6o

V3 |
‘\;—g {92(0) + B} = —0.4035 + 1.4055i (4.88)
where (3 is defined in (4.79) and evaluated in (4.80). Refer to (4.30) for the generic

form of solution Gs.

[€4-3]. From (4.50),
) dG d?G
= / dzFy(z { : { T 4(2L' L) - o 24L + 2G4(4L; —4L;)”

= 75/ dre™? {(16m— x —6)%—(1— )ddG24+8(1—2m)G}

i [dGy oe ,
= \/;{ ——(0) + 12G4(0 +/ dze” [16:c~48—32;c}G4}

= \/_ {94(0) + &} = —0.0501 + 1.66547 (4.89)
The integral k can be evaluated as
k= / dze™? 162 — 48 — 32| Gy = Sk — ~9.1154 + 0.08691
j=1
where

P /0 " doe™ [16z — 48 — 3207 Jo(25/3) /0 " dee%g,(6)Yo(20,/8)

Ko = —T /ooo dze™* [1620 — 48 — 32332} Jo(20+/7) /om dee % g, (g)Y;)(zw\/E)
Ky = —ix /O " dre™* (167 — 48 — 322°] Jo(20+/3) fo " dee%g4(£) Jo(20/€)

Ka=T /0 " e [162 — 48 — 320°] Yo(26/3) /0 " dge % g4 (€)Jo(21/€)

with @ = 2v/3. Refer to (4.30) for the generic form of solution G,;. Constant x’s are
given in Table 4.7.
[£4-4]. From (4.51),

d33

= /000 dz Fy(x) {;e; [prpfllxm + wy (2L, — Ly) fi1z

2
9%p 2
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Table 4.7: Coefficients of «’s by numerical integration.

K1 Ko 3 K4 '

-0.3945 | -4.1671 | 0.08691 —4.5538‘

T “’p fu(4L! — AL, + 4Lp)} }

_ % / e {5 (1 = 20) fros = V3(1 = 20) fre + 23 = (1 = 20)fur}
= —\—/Z—_{——fng« (2= v/3)f11(0) +/ dre (4 — 2f)f11}:—0.1830i
(4.90)

[£,-5]. From (4.52),

o0 e’ w
= ]0 dzF,(z) {@ [wq(ZL;; — Lyp)fr2z — Eprle:cz

Wy + W
+p q

fia(4L! — 4L, + 4LP)H

_ / dze™? {—— (1= 22) fraze — V3(1 — 20) fize +2(V3+1)(1 = Zx)fm}
_ '\/‘g {5 F12(0) + (2 4+ V3) f12(0) — /0 * dre2(4 + 2V/3) flz} — 0.6830i (4.91)
[£,-6]. From (4.53),

0o 3 , 1 " / :
= / diIJFq(-’E) {—L“e_z \:(QLq - Lq)f14z - —qu14271‘ + (4Lq - 4Lq + 4LQ)f14]}

= / dre™* { (8z — 42* — 3) fiae — %(1 — 22)? flaze + 8(1 — 3z + 22 )f14}

— 5 {3fu0 600+ [ dwe 24 = 20 ) = 103928 (4.92)
(£,-7]. From (4.54),
do3
R - 27 I / ’ 9
== /0 ——’I,u—)ge 3 {{—8—(4.[1(] - 4Lq + Lq)(QLq - Lq)2 - 'é(QL:] - LQ)QLQ}

q
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3 3 9
+ [5(2L; — L)L+ (4L — 4Ty + LI - ng] } Fy(x)dz

_ "_?)ZW /0 " doe™* (156 — 276z + 1562° — 240%) (1 - 20)

2‘ oo
= ——— | dre *®{48z* — 33623 + 70822 — 588z + 15
3\/5/0 re { T z° T 88x + 6}

aTi
= ih (4.93)

[£4-8]. From (4.55),

d35

ST | —32 3 " 2 2
_ /O ni {Z [8(4L — 4L, + Ly)(2L), — Ly)* — (2L, — L,)’L,

+ 6(4Ly — 4L, + Ly)(2Ly, — Ly) (2L, — Ly) — 2Ly (2L}, — Lg)(2L,, — Ly)|
1
+ 7 [82Zg — Lo) 2L, — Ly) Ly + (2L, — L)L,

— 9L, L2 + (ALj — 4L} + L) L} + 2(4L, — AL}, + Ly) Lo Ly| } Fy(z)dz
i [oe]
= ———= | dze™*{6L,+20}(1 -2z
75 ), dwe (6L, +20} (1~ 20)

2

_ ot [T 4 2
- -7 /O dze™ {24a” — 64z + 26

13
= -7 (4.94)

Therefore,

dy = doy + dag + doz = —0.0501 — 0.68731,
ds = ds3y + d3g + d3z + dzg + d3zs = —0.3925 + 0.55584¢

Case (2): p=0, ¢ =2 and case (3): p =1, ¢ = 2 can be treated similarly and
details are given in Appendix I. For convenience, we summarized the coefficients in

Table 4.8.

4.8 Nonlinear dynamics of Stuart-Landau equations

Recalling from (4.70) and (4.71), we have a pair of coupled equations to deal with:

aB . * * *
6—: =ic1By + cuBy By B, + c3B,B,By; (4.95)
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BB . * * %
% = idiB; + dyB,B,B; + ds B, B, B;. (4.96)

Coefficients ¢'s and d’s are summarized in Table 4.8 for several (p, ¢) combinations.

Table 4.8: Coefficients of ¢’s and d’s for w = wg + wp.

C1 C2 C3
(0,1) | 0.1410 -0.2302-0.1882i -0.2393-0.1207i
(p,q) (0,2) | 0.1056 -0.2302-0.1882i -0.1969+0.2098i
(1,2) | 0.0970 -0.0903-0.0478i -0.1352-0.0318i

d dy ds
(0,1) | 0.2441 -0.0501-0.6873i -0.3925+0.55581

(p,a) (0,2) | 0.2360 -0.0626-0.0121i -0.3796--0.8419i
(1,2) | 0.1524 -0.0626-0.01211 -0.1720+1.2832i

4.8.1 Effects of detuning

Instead of perfect resonance, i.e. w = wy+wy, we now consider the effects of detuning,

i.e. some sorts of frequency mismatch may come from the incident/reflected wave:
w— w+EQ

This amounts to making replacements
A — Ae7EM,

Therefore the evolution equations (4.70) and (4.71) become

OB ,

8—: = ic1e B} + ca| Bp|*Bp + c3| By|* B, (4.97)
984 _ e Br 44 |B,|2B, + d3| Bp|*B (4.98)
or = 1 p 2|1Pq1 Pq 31Pp1 Ly :
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Let us make the change of variables
Bj = Bje™%", j=p,q (4.99)

where we require that €, + Q, = Q. Then

6B BB . — —iQ. T
()
Therefore, Equation (4.97) and (4.98) become
8—3”—1'95 +ic1BE + co| Bp|2B, + c3| B,|*B (4.100)
or 0P 124 2{Ppl Pp T3] 5q| Dp ’
OBy _ 10,8, +idyB: + do|B,[*B, + ds| B, (4.101)
o  ave 1&p 21291 Mg 312pl Dy :

The detuning adds another new term to the evolution equation as in the classical

edge wave theory. Note that only one of €, or €, is arbitrary, since
O, +Q, =0 (4.102)

where  is the detuning from the incident wave. Physical meaning of B, and B, is as
follows: By definition, B, and B, are the amplitude of the edge waves. For constant
{1, and (2 with 2, + Q, = Q, a fixed point solution Bg and Bg means that they are

time-independent. However, it corresponds to limit cycles for B, and By, since

Bp(1) = Bge_mgT and By(T) = Bge_mgr

are circular trajectories in the phase plane as time increases. Later on we shall show
that Q, and Qg must take the particular value QS and QY in order for B, and B, to

have a fixed point solution BY and BY.

4.8.2 Initial growth rate from infinitesimal disturbance with

effect of detuning

Consider the initial stage of evolution from B, ~ B, ~ 0. Nonlinear terms are ignored

and Equation (4.100) and (4.101) become

OB, . - . =, 0By .5 .. o
#:zﬂpo—Hcqu and a—:=quBq+zdpr. (4.103)
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which can be manipulated to get

5B, . 0B, . 0B;
or?2 Zﬂpa—'r_Hcl or

= if), (1B, +ic\B}) + ic (i, B — id, By)

= [Cldl — 9121] Bp + ¢ (Qq - Qp) B;

: 05,

= [Cldl — Qpﬂq] Bp —1 (Qq - Qp) 7 (4104)
Similarly, we can get
0%B, . 0B, . 35’;
or: ly or T id; or
= iQ (iQ,B, + id1 B} ) + idy (—i€% B} ~ ic1 By)
= [aadi — Q] By + i (% — Q) B;
. 9B,
= [01d1 - Qqu] Bq —1 (Qp - Qq) —57_— (4105)
We move all the terms to one side of equation and get
B, . 0B _
6sz +3(Qq — ) —87” + (2,8 —1d)) B, =0 (4.106)
0*B, | 0B _
aTzq +1 (Qp - Qq) -8—7_—(1 + (Qqu - Cldl) Bq =0 (4107)

We assume that the eigen solutions to the above equations are
Bj = bjeij’ i=n4q
Upon substitution into (4.106), we get the eigen value condition

0'12) + (Qq — Qp)dp + (Cldl — Qqu) =0

which gives the eigen values

ot — —(Q— ) £ \ﬂﬂq — )2 — 4(crds — D)

P 2

If
(Qq — Qp)2 — 4(610!1 — Qqu) >0
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or
Q% > deidy = Q < —24/erd, or Q > 24/eds, (4.108)

then o are real. Use has been made of the relation in (4.102). If this is the case,

the edge wave perturbation does not grow and hence is neutrally stable. Otherwise,
one of the eigen value o, has a positive real part and hence the small edge wave
perturbation is unstable.

Similarly we get the eigen value condition for o, from (4.107)

which gives the eigen values

ot = —(p — Q) = \/(Qp — Q)% — 4(erdy — 2,Q2)
L 2

Therefore the edge wave perturbation is neutrally stable when ) < —2+/¢1d; or Q >
2¢y/c1dy. Otherwise it is unstable.

4.8.3 Energy equation

Multiplying .B; on both sides of Equation (4.100), we get

0B.

—6—7_33; = i | Bp|* + iclB;B;' + 2| By|* + c3| Byl?| Byl (4.109)

Added to its complex conjugate, the above equation becomes
d B ]2 D* % P, 7 5 \
| 87’_’— = —2¢,Im {B;B}} + 2Re {c2}| By|* + 2Re {c3}| By |*| By [* (4.110)

which describes the evolution of energy of p-mode edge wave. Similar result can be

obtained for mode ¢:

0| B,I? — _ _
—'(;’—'-— = —2d,Im { B} B;} + 2Re {d2}| B,|* + 2Re {ds}|B,|’| By|* (4.111)

From Equation (4.110) the nonlinear terms always cause radiation damping for
p-mode edge wave due to the fact that the real part of ¢z and ¢z are both negative
(See Table 4.8.). Detuning does not affect the energy balance since it is not present in
the energy equations. Similar results happen to mode ¢q. The edge waves draw energy

from the interaction with the incident wave, if Im {B}B;} < 0.
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4.9 Analysis of nonlinear dynamical system for B,
and B,
Replacing B; with its polar form
By =/L;¢%, j=pyq (4.112)

we get

BBJ _ 1 e . A 10
5 = (2\/I_jfj+z\/ljej)e i

(4.113)

where I; = | B;|? is the action variable and 6; is the angle variable. Also we introduce

the new forms for the complex parameters
ey = —ch—ichy; dy=—dy—idy; cg=—cy—icy; dz=—d3+id.

so that all ¢}, ¢, df and d are real and positive.

Dividing both sides of Eq. (4.100) by B,, we get

1 8B
LHS = ——2
S B, or
1 1 . . .
= I, +iyJLg, | e
N (2 L, VT ”)
1. .

2%

B _ _
R.HS. = Z'Qp'{"iCl*B‘l'i'Cleplz‘f—CﬂBqlz
p

I, .
= ?:Qp +icy I_qe—z(0p+6q) + CQIp + Cglq
p

= {cl\/?sin(ﬁp +64) — 51, — chq}
P

+i {Qp + cl\/?cos(ep +8,) — I, — cglq} (4.115)
p
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Separating the real and imaginary parts, we get

1. I
pr = cl\/%sin(Bp +6,) — I, — 31, (4.116)
P P
) I i i
bp = +c1 A cos(Op + 0,) — cyIp, — 51, (4.117)
Similarly we get from Equation (4.101)
1. I, .
-27-1(1 = dl I— sm(ﬁp + Hq) - d;Iq — dg.[p (4118)
g q
. I, . .
O, =Q,+dy T cos(bp + 0,) — dy 1y + d3 1, (4.119)
g
For initial evolution, we ignore the nonlinear terms of the above equations and get
L i = e /M singg, +6,) (4.120)
2Ip p Ip p q
. I
bp = + cl\/;cos(Bp +6y) (4.121)
P
L =g sin(6, + 6,) (4.122)
2Iq g— W Iq p q .
. I
0,=Qy+ dl\/I:p cos(6, + 6,) (4.123)
q
Introducing
R= j_-—p, ©=10,4+10,
g
we get

Therefore, from (4.120) and (4.122) we get
: C1 .
R=2R|{—= —d;VR|sin®
(\/ﬁ 1 )
and from (4.121) and (4.123) we get

O=0+ (% +d1\/}_?) cos ©.
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The dynamical system can be reduced to 2-dimensional at the initial stage of evolution.

One of the equilibrium is

C1

v Ro

which is independent of detuning 2.

[0
—dRy=0= Ry =2 = = 05778, (4.124)
0 d

4.9.1 Fixed point of B, and B,

After sufficiently long time evolution the dynamic system reaches its equilibrium, i.e.
2 =0. (B, By) = (0,0) is obviously one fixed point to Equation (4.100) and (4.101).
Let us assume that there exists another fixed point (12, ] g) other than the origin (0, 0).
Let the L.H.S. of Equation (4.116) to (4.119) equal to zero, we get

0
I—% sin(69 + 69) = 4 I + ;I3 (4.125)
P
IO . .
QB+ 10 L cos(89 + 67) = I + 417 (4.126)
0
da I—’; sin(09 + 67) = dy I + d3 I3 (4.127)
i q
L 0 g0 i 70 _ i 70
Qg+ di I° 2 cos(b, +06,) = dyI, — d31, (4.128)

Eliminating sin(#) 4 69) from (4.125) and (4.127), we obtain

2 2

di (ch° +I) = 10 (dyI) + d3 1) (4.129)

which can be rewritten as
SR+ (3 24 )RO——d’—O (4.130)

which is independent of €2, and €, hence of 2. We have introduced the amplitude

ratio

Ry= 2. (4.131)



The above quadratic equation can be solved to get

R —c3i\/ cs dg +4§’1~c§d§
0= 262

For example, in case p =0, ¢ =1,
Ry = —0.3829, or R, =10.3283.

Obviously, only the positive Ry = 0.3283 is the acceptable root. Thus detuning does
not affect the ratio of the two edge wave amplitudes. Similarly, in Case (2): p = 0,
q = 2, Ry = 0.2950 is the acceptable root. And in Case (3): p=1, ¢ =2, Ry = 0.5369
is the acceptable root.

For a complete solution of the fixed point, we need another equation with respect

to I9 and I besides (4.130). We add (4.125) to (4.127) to get

[ «{ o0 + dhl ' sin(6) + 90) = I} + &I] +d§I8 +d§I£ (4.132)

and add (4.126) to (4.128) to get

F J0 . . . .
[ J 75+, l 1—25’ cos(60 + 60) = I + &I+ dyI0 — diI0 — (4.133)

Eliminating the trigonometric functions sin(69 + 69) and cos(9 + 67) from (4.132)
and (4.133), we get
[ ) )
[CIJ;Z) +dy TZ) = (10 + AI0 + dbI0 — dy 10 — Q) +(G I + 510 + dy 10 + d310)
(4.134)

which can be manipulated to get a quadratic equation for J 3 in standard form
a(I)? +bI)+c=0 (4.135)
with the coefficients depending on Ry,
a= [(cé—dg)Ro+c§+d§}2+[(c§+d§)Ro+c§+d§]2 (4.136)
b=—20[(ch - d}) Ro+c +di) (4.137)
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0.2 ~0.386 054 01;6 ()

center

Figure 4-2: Equilibrium branches of I v.s. Q-p=0,¢=1.

c=Q2 — (Cl/\/R—O-ydl\/I?o)z (4.138)

Therefore, at dynamic equilibrium

—b+ V=4
= —— (4.139)

Only the positive I{ is of our interest. From (4.139) we see that I) = 0 if and only if

c=0, i.e.

2= (af Ro+d1\/1?0>2:>9=i(c1/ Ro+diy/Ro ) (4.140)

For Case (1): p = 0, ¢ = 1, substituting Ry = 0.3283 along with the known
coefficients c¢’s and d’s from Table 4.8, into (4.136), (4.137) and (4.138), we get

a=0.7163, b= —1.3746Q, c=0%—0.1490

Therefore, I = 0 when Q = £0.386 from (4.140) and the equilibrium branches of
finite I? v.s. Q are plotted in Figure 4-2. Similar feature is observed for Case (2):
p=20,q=2and Case (3): p=1, ¢ = 2, whose equilibrium branches are plotted in
Figure 4-3 and Figure 4-4 respectively. The inclination of the curve depends on the
sign of the coefficient in 8. In case p =10, ¢ =2, b=0.7811Q2 . Incase p =1, ¢ = 2,
b = 1.2388(.
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___:J\_E'_’Z_g.l.____.l._..__.L__B Q
-0.43.0.322 -0.2 0 0.2 0.322

center saddle center

Figure 4-3: Equilibrium branches of Ig vs. Qp=0,g9=2

P C\ | B
- [ -
-0.51 -0.45 -0.244 -0.2 0 0.2 0.244

center saddle center

Figure 4-4: Equilibrium branches of Ig vs. Qp=149g=2.
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- £

038 02 0 0.2 0.38605 06
Figure 4-5: Equilibrium branches of 8° v.s. . The solid line represents the stable
equilibrium branch and the dot line represents the unstable branch.
Notice that (4.133) can be manipulated to obtain

i 70 i 70 i 70 i 70
80 4 0° — arccos eIy + &I + dy 1) — dyl) — Q2
p q 0 10
c 7§ +d1\/%

After I9 and I? are found, we can substitute them into (4.141) to get ©° = 67 + 67

(4.141)

The curve of @° v.s. ) is shown in Figure 4-5.

Upon substitution of (I2, I9, ©°) into (4.126) and (4.128), we obtain Q) and Q)

pr tg»
respectively

, . IY
W=aD+&I)— o I—‘f) cos( + 69) (4.142)

p

0 i 70 __ i 70 I 0 g0

Qq = d;Iq - d%Ip + d1 }ECOS(HP + Bq) (4143)

q

The curves of 2) and 0 v.s. Q are plotted in Figure 4-6. These two values are the

angular speed of the limit cycles. The corresponding edge waves are

BY = [T {orr®)t;  pO _ [Thihei{unto8)e (4.144)
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0.320.386, , . 0.386, L1066

0.4 0.2 0 0.2 a 0.4 0.6 0.8 1

Figure 4-6: Detuning of the two edge wave modes Qg and Qg v.s. ), i.e. the detuning
of the incident wave. The solid lines represent the stable equilibrium branch and the

dot lines represent the unstable branch.
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due to the change of variables in (4.99).

From the above analysis we see that (2, and €, must take particular values
and €2 according to (4.142) and (4.143) so that a fixed point for B, and B, can exist.
Particularly under perfect resonance, i.e. Q = 0, we get Q) = —0.1166 from (4.142)

and Q) = 0.1166 from (4.143). From (4.144) we know that

dg;
dT

Therefore, the fixed point of B, and Bq corresponds to two limit cycles for B, and

By, rotating at the speed of —Qg and —€)) respectively.

The only thing uncertain is about the equilibrium phase angle 90 and 00. We only
know the sum of the two, i.e. ©° =63+ 69. A direct numerical simulation shows that
at equilibrium 6 and 6 are not fixed and vary with initial condition. For instance,
when detuning € = 0, we choose O, = Qf = —0.1166 and €, = Q) = 0.1166 so that
a fixed point exists. For this special choice, we allow the dynamical system (4.116)
to (4.119) to evolute enough time to reach the steady state. With different initial
conditions, we can observe the phase angle 63 and 6). Listed in Table 4.9 are several

of our records. And the corresponding curves are plotted in Figure 4-7.

Table 4.9: The steady state phase angles 6 and 60— (p = 0,¢ = 1).

(1p(0), 65(0), 1,(0), 6,(0)) | 63 6y | ©°=6)+6) | Line in Figure 4-7
(0.01,0.01,0.01,0.01) -1.6760 | 2.2990 0.6230 dash-dot
(0.21,0.01,0.21,0.01) -1.1347 | 1.7576 0.6229 solid
(0.01,0.21,0.01,0.21) -1.5274 | 2.1505 0.6230 dash

4.9.2 Numerical verification for the existence of limit cycles

We define limit cycle by I, = I, = 0, and 8, +6, = 0 rather than 6, = 0 and 6, =0as
in the fixed point solution. One of the simplest solution to §,+6, = 0is , = —, = Q,
which means that two phase variables change at constant rate, but in the opposite

way. With I, and I, being constant, two limit cycles are formed.
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Figure 4-7: Phase angles evolution curves for 2 = 0. 0, = —0.1166 and €, = 0.1166.
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Iq 0.3f
0.25F
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0 0.05 0.1 I 0.15 0.2 0.25
4

Figure 4-8: Flow map (Iy,I,) for fixed point (I),I7)=(0.1497, 0.4560) — (p = 0,q = 1).

For the perfect resonance case {2 = 0, we do not introduce €, or £, i.e. B; = B;,
j = p,q. A simple numerical simulation of the full nonlinear ODE’s (4.116) to (4.119)
with ©, = Q, = 0 confirms that the dynamical system is attracted to two stable
limit cycles, which correspond to the two edge waves amplitudes B, and B,. Shown
in Figure 4-8 is the flow map projected on the (I,,1,) plane with a starting point
(Ip, Op, 14, 64)=(0.01,0.01,0.01,0.01) with @ = 0. It converges to equilibrium point
(13,19)=(0.1497, 0.4560).

From (4.112), we get

Re{B;} = \/_I;cos 6;, Im{B;}= \/Tjsinﬁj

In the complex plane, we plot in Figure 4-9 the trajectories of (Re{B,}, Im{B,}) and
(Re{By}, Im{B,}) respectively. Two limit cycles are revealed, where B) = \/E =
0.387 and B{ = /I? = 0.675

From Figure 4-9 we can see that the trajectories rotate in opposite direction as they
approach the two limit cycle, meaning that two phase variables vary in opposite way,
one increases, another decreases (In this case, 6, is increasing, while 8, is decreasing!).
When they vary in the same rate so that 9,, + éq = 0, the steady state is reached and
92 + 62 = ©Y = Const. (See Figure 4-10.). In this case, we detected a steady state
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-0.6f
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Re(B}

Figure 4-9: T'wo limit cycles corresponding to two edge wave amplitudes with 2 =0

(p = 0,9 = 1). The inner circle is By, the outer is B,.

rotation speed 6, = 0.1166 and 6, = —0.1166, which confirm that Q2 = —0.1166 and
Q0 = 0.1166 in (4.145) are the condition for the dynamical system B,, B, having a
non-trivial fixed point. We also found that ©° = 0.6230, which is identical to the one
listed in Table 4.9.

Similarly, we carry out the analysis for Case (2): p = 0,¢ = 2 and Case (3):
p = 1,¢ = 2. The two limit cycles with 2 = 0 are plotted in Figure 4-11 and 4-12

respectively.

4.9.3 Physical implication of the equilibrium

In order to see the effect of the two edge wave modes competition, we substitute the

steady state B; back into (4.23)

BY| . BY .o ..
toj = —iITui,-eZ(G?_Q?T)e“’”Lj(Zm) cosy = —z'-——l wJ Iew?e‘“m?te"”Lj(Zm) cosy, j=p, q.
J J
(4.146)
where 9j = —Qg-’ is the constant rate of the phase variation of the edge wave at

equilibrium. Note that phase of B; varies with slow time 7 with 7 = &2t. Therefore

the two edge waves have slight amount of frequency shift €0 like detuning. In order
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Figure 4-10: Phase angles evolution curves for = 0. 2, = Q, = 0.

-08 -06 -04 02 O 02 04 06 08
Re{B}

Figure 4-11: Two limit cycles corresponding to two edge wave amplitudes with Q = 0

(p = 0,9 = 2). The inner circle is B, the outer is B,,.
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Figure 4-12: Two limit cycles corresponding to two edge wave amplitudes with Q = 0

(p =1,q = 2). The inner circle is B,, the outer is B,.

to see the visual picture of the free surface elevation as steady state is reached, we

add the two edge wave modes together and take the real part to get

Ctot
= G+
= ¢ " cosy {|Bp|Ly(2x) cos [(wp + EPQP)E] + | BY|L(2x) cos [(wg + E209)t — €°] }
(4.147)

where we have set 6 = 0 without loss of generality. Hence 9 = ©°. Use has been
made of the free surface boundary condition (4.15).

Recall at the equilibrium for case p = 0,¢ = 1 with zero detuning, the two am-
plitudes of the edge waves are |BJ| = 0.387 and |BY| = 0.675. The phases of the
two modes are interlocked in the way that Qg = —(.1166 while Qg = 0.1166, so that
©° = 6 4 62 = 0.623. Then the instantaneous surface profile is plotted according to
(4.147) as shown in Figure 4-13, where w, = 1, wy = V3, L,(21) = 1, Ly(2z) = 1— 2z

and we have discarded the detuning 2 and €.
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1=1.5387

t=3.0775

1=6.1550

Figure 4-13: The instantaneous surface elevation by addition of two edge wave modes

as steady state is reached (p=0,9g=1).
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4.9.4 Local stability of limit cycles

The stability of the limit cycles for B,, B, is the stability of the fixed point for B,,
B,. In order to analyze the stability of the fixed point, we rearrange the equation
(4.116) to (4.119) as follows

I, = 2¢1/ 1,180 © — 26,12 — 23 L1, (4.148)
Iy = 2d1\/I,1,5in© — 2d5I% — 2d5 1, I, (4.149)

. T T o D
0=0+ (cl\/g—i—dl\/%) cos© + (d§ - cz) I, - (03 +d’2) I, (4.150)

where we have introduced © = 6, + 6, and added together two equations (4.117) and
(4.119). The dynamical system is now reduced to 3-D and its equilibrium (I}, I?, €°)
is obtained in the last section.

Linearizing the above equations near the fixed point (Ig, I g, 0°), we obtain

X = A (X - Xo)

with
X" =1, 1,,0], X{=[I51 @0]

P T

and the coefficient matrix A equal to

0 . 0 .

_1 0 _ 470 _ 970 1 0_or70 070 0
c14/ i sin®" — 4y I} — 2¢4 1) c1y/ 7 sin®° — 2¢; I, 2c14/II0 cos©

9 . o 0 . 0

dulésm@ — 24317 du/ﬁ];—sm@o — 4d3 19 — 2d3 1D 2d; /D10 cos ©°

19 10 19 10
& }g_cl Tp 0 _ i ;O é_dl }fzj 0_ i _ g 12 BN i @0

570 cos©’ — ¢} + d} ST cosO” —cy —dy —(c14/7% +diy/F)sin®©
P q P Iq

Therefore, by solving the characteristic equation
det(A — M) =0

which is a cubic polynomial, we get the eigen value .
In order to see the stability of the fixed point, we need to compute the eigen
value of above matrix A for each fixed point. For case p = 0, ¢ = 1, our numerical

computation shows that all the fixed points on branch AD in Figure 4-2 and Figure
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4-5 have three real negative eigen values. Therefore, they are stable nodes. The fixed
points on branch AB have one real negative eigen value and one pair of imaginary eigen
values, whose real parts are also negative. Therefore, this equilibrium branch is stable
focus. On the other hand, the fixed points on branch CD have two real negative
eigen values and one real positive eigen value, meaning they are unstable saddle
nodes. For example, when Q = 0.54, the stable equilibrium (I, I?, ©°)=(0.2566,
0.7815, 1.5782) (point S in Figure 4-14 and 4-15) on branch AD has eigen values
Ay = —0.1739, Ay = —0.4204 and A3 = —0.3740. While the unstable equilibrium (Ig,
12, ©°)=(0.0837, 0.2548, 2.8096) (point U in Figure 4-14 and 4-15) on branch CD has
eigen values \; = 0.1387, Ay = —0.1075 and A3 = —0.3468. Theoretically, there exist
a stable plane spanned by the two stable eigen vectors of the unstable fixed point U.
This surface further expands nonlinearly away from U and demarcates the attraction
domains of the two stable fixed points: the nontrivial fixed point S and the trivial
fixed point at origin. For 2 = 0.54, this surface is plotted in Figure 4-16. The details
are given as follows:

For 2 = 0.54, the unstable equilibrium U is located at

0.0837
Xo=| 0.2548
2.8096
This fixed point has three eigen values A\ = 0.1378, A2 = —0.1075, A3 = —0.3468.

The corresponding eigen vectors are:

0.1300 0.7527 0.1777
vi=| 0.268 |; va= | 05226 |; wv3= (0.2706
—0.9544 —0.4004 0.9461

Therefore, near U a stable plane is spanned by two stable eigen vectors v, and vs. We

chose dozens of starting points on this surface by different 8; according to
X, =Xp+ 6(7‘2’112 + ’I”3’l.)3)

where 7, = cosfj, r3 = sinf;, and refer to Table 4.10 for the 6; we used in our

numerical simulations. We chose small ¢ = 0.0008 to ensure the starting point on
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evolution time ¢.

Table 4.10: Parameter 6; for the starting point and the corresponding backward

6; | 0.74 0.79 0.795 0.797 | 0.798 | 0.7983 | 0.7984 | 0.79847
¢ -43 -47.5 -49 -50 -50.8 -0l -31 -31

6; 1 0.7985 | 0.79852 | 0.798535 | 0.79855 | 0.7986 | 0.7987 | 0.8 0.85

t -51 -51 -50.5 -48.7 | -46.2 | -44.6 | -40.3 -31
6;1 15 2.5 3.5 3.78 3.79 3.80 3.81 3.83

t | -23.3 | -225 -27.3 -39.8 -42 -44 -45 -44.7
6; | 3.9 4.1 4.5 5.6 0.5 0.738

t | -41.9 | -38.33 -35.4 -33.6 -38 -43

the stable plane. Then we run the numerical simulation of the nonlinear dynamical
system. When we set the evolution time forward (positive t), trajectories diverge along
the unstable eigen direction after the confluence at point U, forming the unstable
subspace (the heavy line in Figure 4-16). When we set the evolution time backward
(negative t), the trajectories diverge and further expand to form a stable subspace (the
surface in Figure 4-16). Refer to Table 4.10 for the truncation time of the backward
evolution.
More flow maps for several {2 by numerical simulations are plotted in Figure 4-17
to 4-21.
Table 4.11 and Table 4.12 give the full list of the eigen values on the two equilibrium
branches.
The point I, = I, = 0 corresponds to trivial equilibrium, it is convenient to turn
to Cartesian coordinate system. Let B,, = z1 +1y; and Bq = T3 + iYa, then (4.100)
and (4.101) can be converted to four real ODEs
1= —(Q — Qy1 + age + (G — o)} +47) + (yr — Goa)(ad +13) (4.151)
91 = (D — Wz + a1z — (a1 + ) (@} +vd) — (o + Gun)(eh +48)  (4.152)
G = —(Qg + Ny + diyn + (dyys — d5z2) (a3 + 13) — (dhge + dizs) (@ +97) (4.153)
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Figure 4-14: Projection of eigen directions of the unstable fixed point U on (I, I;)
plane for {2 = 0.54.

206



Figure 4-15: The 3D view of the eigen directions of the unstable point U for 2 = 0.54.
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Figure 4-16: The 3D view of the separatix by the unstable fixed point U for {2 = 0.54.
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Figure 4-17: Flow map of the nonlinear dynamical system for {2 = —0.2.

Figure 4-18: Flow map of the nonlinear dynamical system for 2 = 0.
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Figure 4-19: Flow map of the nonlinear dynamical system for {2 = 0.2.

25"

—_

Figure 4-20: Flow map of the nonlinear dynamical system for {2 = 0.54.
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Table 4.11: Eigen values for upper nontrivial equilibrium branch BD.

Q A1 A2 A
-0.3800 | -0.0004 | -0.0052 - 0.1128i | -0.0052 + 0.1128i
-0.3600 | -0.0050 | -0.0205 - 0.1322i | -0.0205 + 0.1322i
-0.3000 | -0.0286 | -0.0592 - 0.17461 | -0.0592 4+ (.1746i
-0.2400 | -0.0545 | -0.0933 - 0.20371 | -0.0933 4 0.20371
-0.1800 | -0.0800 | -0.1249 - 0.22461 | -0.1249 + 0.22461
-0.1200 | -0.1044 | -0.1543 - 0.23951 | -0.1543 + 0.23951
-0.0600 | -0.1275 | -0.1819 - 0.2493i | -0.1819 + 0.2493i

0 -0.1493 | -0.2079 - 0.2545i | -0.2079 + 0.25451
0.1000 | -0.1823 | -0.2475 - 0.25361 | -0.2475 + 0.2536i
0.2000 | -0.2105 | -0.2829 - 0.2403i | -0.2829 + 0.2403i
0.3000 | -0.2317 | -0.3143 - 0.2121i | -0.3143 + 0.2121i
0.4000 | -0.2385 | -0.3435 - 0.16261 | -0.3435 + 0.1626i
0.5000 | -0.2043 | -0.3800 - 0.0779i | -0.3800 + 0.07791
0.5200 | -0.1900 | -0.3887 - 0.0513i | -0.3887 + 0.05131
0.5300 | -0.1821 | -0.3930 - 0.03191 | -0.3930 + 0.03191
0.5360 | -0.1772 | -0.3955 - 0.00861 | -0.3955 + 0.00861
0.5400 | -0.1739 -0.4204 -0.3740
0.5500 | -0.1653 -0.3561 -0.4464
0.5600 | -0.1563 -0.3460 -0.4642
0.5800 | -0.1373 -0.3326 -0.4914
0.6000 | -0.1164 -0.3224 -0.5124
0.6200 | -0.0929 -0.3125 -0.5285
0.6400 | -0.0643 -0.3002 -0.9390
0.6540 | -0.0364 -0.2862 -0.5396
0.6560 | -0.0308 -0.2831 -0.5384
0.6580 | -0.0243 -0.2792 -0.5365
0.6600 | -0.0155 -0.2736 -0.5330

211




Table 4.12: Eigen values for lower nontrivial equilibrium branch CD.

Q A A2 A3
0.4000 | 0.1425 | -0.0103 | -0.1578
0.4200 | 0.1466 | -0.0242 | -0.1852
0.4400 | 0.1488 | -0.0377 | -0.2124
0.4600 | 0.1495 | -0.0511 | -0.2393
0.4800 | 0.1488 | -0.0646 | -0.2660
0.4900 | 0.1479 | -0.0715 | -0.2795
0.4920 | 0.1478 | -0.0729 | -0.2821
0.4960 | 0.1473 | -0.0757 | -0.2875
0.5000 | 0.1468 | -0.0785 | -0.2928
0.5200 | 0.1435 | -0.0927 | -0.3197
0.5400 | 0.1387 | -0.1075 | -0.3468
0.5600 | 0.1323 | -0.1231 | -0.3743
0.5800 | 0.1241 | -0.1397 | -0.4023
0.6000 | 0.1133 | -0.1577 | -0.4312
0.6200 | 0.0990 | -0.1779 | -0.4613
0.6400 | 0.0782 | -0.2022 | -0.4942
0.6500 | 0.0625 | -0.2179 | -0.5128
0.6540 | 0.0539 | -0.2257 | -0.5212
0.6560 | 0.0486 | -0.2303 | -0.5258
0.6580 | 0.0421 | -0.2358 | -0.5310
0.6600 | 0.0329 | -0.2430 | -0.5373
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Figure 4-21: Flow map of the nonlinear dynamical system for 2 = 0.54.

o = (g + N2y + diz1 — (dbz2 + dyy2) (23 + y3) + (diz — d5y0) (2} +y7)  (4.154)

The linearized dynamical system around fixed point (z?,¢?, z9,32) = (0,0,0,0) is

T1
%
T

Y2

—(Q, — Q) 0 1
0 ¢y 0
d 0 —(Q+N0
0 Q,+Q 0

The characteristic equation det(A — AI) = 0 leads to

ie.

—(Q,-9) 0 c1
- c1 0
dy -2 (2, +D)
0 Q+0Q =

8

I
u (4.155)
T2
Y2
=0 (4.156)

N (0 = 9)° + (2 + ) — 200 | X2+ [(0 - 0) (2 + ) — ] =0

which is a quadratic equation for A% and can be rewritten as

M+BNX+C=0
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with abbreviation

o= (0~ >< >—cld4
~B++/B?-4C

2
o If B2~ 4C > 0, then v/ B2 — 4C < |B| since C > 0. Therefore,

i) when B > 0, vVB? —4C < B and hence —B + v B? — 4C < 0. We have two

pair pure imaginary \’s;

ii) when B < 0, vB?2 —4C < —B and hence —~B & v/ B? —4C > 0. We have

two real and positive A’s and two real and negative \’s;

Therefore,

X =

e If B2 — 4C < 0, then we have one pair complex A?’s and hence we always have

A with positive real part.

Therefore, we have neutrally stable equilibrium I, = I, = 0 if and only if B > 0 and
~4C > 0.

e For B? — 4C > 0, we require that
[(Qp — Q)Z + (Qq + Q)2 — 201d1]2 —4 [(Qp - Q) (Qq + Q) - Cld1]2 >0

{[(20=0) + (0 + D))" - 1} [(2 - ) - (2 + )" >0

Q% —deidi > 0= Q] > 2¢/ady
e For B > 0, we require that
A2 -\ 2
(% —Q) +(%+Q) —201d: >0
which leads to
2

’U2+(Q—’U)2—261d1>0=>’U2—Q’U+%—C1d1>0
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Since v = €, — () is arbitrary, we require that

2
Q2—4(%—61d1> <0

i.e.

0? > 4c,d; = !Ql > 2\/c1d1

Therefore, we draw exactly the same conclusions as in Section 4.8.2.

When considering both branches of equilibrium, we found small domains of ©
where both equilibria are stable. In order to see how the dynamical system behaves
within that domain, we did some direct numerical simulations. For instance in case
p=0,q =1, we have two small domains at —0.386 < 2 < —0.371 and 0.371 < Q <
0.386.

Shown in Figure 4-22 is the flow map projected on (I, I;) plane for Q@ = 0.376. In
this simulation, although we chose the starting point (I,, I, ©)=(0.001, 0.001, 0.01)
very close to one of the equilibrium (I3, I?)=(0, 0), the trajectory is attracted by the
other equilibrium (I2, I?)=(0.2416, 0.7360) right away. The temporal evolution of I,
and I, v.s. 7 are plotted in Figure 4-23. When we choose a starting point (I, I,,
©)=(0.00001, 0.00001, 0.1), which is closer to the trivial fixed point than the previous
starting point, the trajectory stays close to (I, Ig)=(0, 0) for longer time. But the
trajectory is finally attracted by the nontrivial equilibrium as shown in Figure 4-24
and 4-25, where we plot the temporal evolution of I, and I v.s. T.

For €2 = —0.380 the trajectory shown in Figure 4-26 in the (I,, I,) plane stays
close to the trivial equilibrium (I, I9)=(0, 0) with a starting point (Ip, I, ©)=(0.001,
0.001, 0.01). As an alternative, Figure 4-27 and 4-28 show the temporal evolution of
I, and I, v.s. 7. Since the trivial equilibrium is neutrally stable, the flow map is not
attracted to J; = 0, but oscillates at a small distance. In this case the other equilibrium
is (I, I9)=(0.0028, 0.0086). On the other hand, when we choose a starting point (I,
1,, ©)=(0.003, 0.007, 0.1), which is close to the nontrivial fixed point, the trajectory
is attracted to (I3, I7)=(0.0028, 0.0086) as shown in Figure 4-29. The numerical

simulation also shows a constant slope of 0.58 for the initial development of the two

edge wave amplitudes, which confirms the equilibrium state Ry = 0.5776 from (4.124)
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Figure 4-22: Flow map of the nonlinear dynamical system for Q = 0.376 with a
starting point (I,, I, ©)=(0.001, 0.001, 0.01).

80 100

Figure 4-23: Temporal evolution of I, and I, v.s. 7 for Q = 0.376 with a starting
point (I, I,, ©)=(0.001, 0.001, 0.01).
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Figure 4-24: Temporal evolution of I, v.s. T for = 0.376 with a starting point (I,
I,, ©)=(0.00001, 0.00001, 0.1).
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Figure 4-25: Temporal evolution of I, v.s. 7 for 2 = —0.380 with a starting point (I,
1,, ©)=(0.00001, 0.00001, 0.1).

217



2 4 6 L8 10 12 14
P x 107

Figure 4-26: Flow map of the nonlinear dynamical system for @ = —0.380 with a
starting point (I, I, ©)=(0.001, 0.001, 0.01).

for the initial evolution. Alternatively, we plot the temporal evolution of I, and I,
v.s. T in Figure 4-30.

Comparing what happens at 2 = 0.376 and Q = —0.380, we found that when
the nontrivial stable fixed point is far from zero, the attraction is strong. When the
nontrivial equilibrium is close to the trivial, the attraction is weak and only shows up
when the trajectory is close to it.

Figure 4-31 shows the trajectory in the (I,, I,) plane for @ = —0.370. The flow
map is attracted by the only stable equilibrium (Ig, Ig)=(0.0038, 0.0090) with a
starting point (I, I,, ©)=(0.001, 0.001, 0.01). In this case the trivial equilibrium is

unstable.

4.10 Conclusion

1. We dealt with the lower order resonance in this chapter and developed the nonlinear
evolution equations governing the two edge wave amplitudes at the third order;

2. We have considered the two edge wave modes sharing same y eigen function,
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Figure 4-27: Temporal evolution of I, v.s. 7 for Q = —0.380 with a starting point (Ip,
I,, ©)=(0.001, 0.001, 0.01).
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Figure 4-28: Temporal evolution of I; v.s. 7 for 2 = —0.380 with a starting point (I,
I1,, ©)=(0.001, 0.001, 0.01).
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Figure 4-29: Flow map of the nonlinear dynamical system for } = —0.380 with a
starting point (I, I;, ©)=(0.003, 0.007, 0.1).
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Figure 4-30: Temporal evolution of I, (dash line) and I, (solid line) v.s. 7 for Q =
—0.380 with a starting point (I,, I;, ©)=(0.003, 0.007, 0.1).
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Figure 4-31: Flow map of the nonlinear dynamical system for 2 = —0.370.

which makes the cross resonance possible. The choice of eigen frequency of the inci-
dent /reflected wave play a key role in the dynamical system: Unstable under the high
frequency incident wave attack, whereas stable under the low frequency attack;

3. Fixed point of the nonlinear system for B, & B, is equivalent to two limit cycles
for B, & B,. But using a rotation frame as the reference enable us to reduce the four
real ODEs to three under the polar coordinate system. The stability of limit cycles
is easily analyzed;

4. Detuning of the incident wave does not affect the ratio of the two edge wave
amplitudes at equilibrium. But it does change the rotation speed of the limit cycle.
Detuning of the incident wave detunes the frequencies of the two edge waves;

5. From the subharmonic resonance analysis we knew that the lower mode of edge
wave has a faster initial growth rate. But the two edge waves we considered in this

chapter share the same rate of initial growth.
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Chapter 5

Other considerations and future

works

Other than the nonlinear resonance mechanism discussed in the previous chapters, we
have considered two other possibilities for the nonlinear resonance of multiple edge
waves. We give the basic idea and some preliminary results in the following two

sections. Further work is needed to complete the investigation.

5.1 Competition between two subharmonic edge
waves driven by two smaller incident and re-
flected waves

When we consider two incident/reflected waves, two subharmonic resonance can hap-
pen simultaneously. Even though at the initial stage, the two incident waves drive the
two edge wave modes separately, nonlinear interaction plays a role soon after either
one of them reaches a finite amplitude. Therefore, it is interesting to know what new
features these nonlinear terms will provide to the dynamical system. We propose that
two edge wave modes are ultimately excited at the first order, by two normally inci-
dent waves with eigen frequencies twice those of the two edge waves. The two edge

waves are coupled by the third-order nonlinear interaction and therefore it is weak
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coupling compared with the cross resonance case in Chapter 4, where the coupling is
at both the first-order linear terms and third-order nonlinear terms.

The eigen value condition for edge wave is

Wam =/ (2n+ 1)mkgs, n=0,1,2...; m=1,23.. (5.1)

where k is the lowest longshore wave number

k=

with m representing the longshore wave number and n representing the cross-shore

mode number, i.e. the corresponding edge wave is

(0B, }
@, = —z—g—'i—e_""“’Ln@mkz) cos(mky)e “rmt 4 x, (5.2)

Wnm
Please refer to (1.3) and (1.4) for details. Instead of two edge waves having the same
y-mode as in classical subharmonic resonance, let’s consider two edge waves with

different y-mode Op and 0Og simultaneously, i.e. (n,m) = (0,p) and (n,m) = (0, q)

7 .
®gj = —zz—oje"’kz cos(jky)e ™%t +x, j=p,q. (5.3)

The eigen value conditions for these two modes are

woj = \/Jksg, J=p,q.

After normalization by the lowest mode eigen frequency wo = /kgs, we get wo;/wn =

V7, 7 =1,2,3.... In this chapter we consider only the lowest x-mode, i.e. n =0. We

assume without loss of generality that ¢ > p.

5.1.1 Governing equations

The full version of the nonlinear shallow-water equation is as (2.2) and we use following
scales for nondimensionalization:

¢ o= Yol g

z=kx', y=ky, t=wut, (==, — Wor
|A| |Alg
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where B ~
|A1| + |A2|
2

and A} = €|A;]e?®” and A) = €|A;]e?*? are one half of the two incident waves

|A] = (5.4)
amplitudes at shoreline and are taken to be constants. Note that here the definition

of A is different from the previous cases. Then the same set of dimensionless governing

equation as (4.8) is obtained, as well as the small parameter €.
—®y + (D), + 1Dy, = €Q(D) + EC (D) (5.5)
with

kAl
S

=
and quadratic and cubic nonlinear terms

1
C@®) =3 (B2 + @2) (D + Byy) + B2Pag + D2y + 20,y Dy (5.7)

The normalized free surface boundary condition becomes

0]
C+%Z+%W¢F=O (5.8)

Using multiple scale expansion similar to the previous chapters, we can derive to get

the governing evolution equations

0B .
"8—: = inBp + ZallAllB; + a2|Bp|2Bp - zangq|2Bp (59)
0B, _, : : 2p _am 2

or = ZQqu + ZbllAngq + b2|Bq| Bq Zb3|Bp| Bq (510)

where A; and A, are the normalized incident waves amplitudes and ©; and §, are
their detuning respectively. For example, if p = 1, ¢ = 2, we get a; = 0.27067,
ay = —0.23016 — 0.18821¢, as = 0.51753, by = 0.76557, by = —1.3020 — 1.0647%,
by = 1.4638.

Initially, the two edge waves amplitudes are both small and they grow in different
rate independently because they are coupled only by the higher order terms. We
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distinguish this weak coupling from the strong coupling as the cross resonance case
in Chapter 4, where the two edge wave modes share the same initial growth rate.

Replacing B, and B, with their polar forms

B, = \/jl‘eial, B, = \/I—geioz
and further making change of variables

I; €2 )
=rjﬂ, 8j=—i ]=1,2

% |4;]°

we can rewrite Egs. (5.9) and (5.9) as

Ji = 2|A;|J1 [a; sin 26; — abJ] (5.11)
f; = |Ai] [al cos 20, + 51 — abJ; — a3J2] (5.12)
Jo = 2| Ag|Jy [by sin 20, — b5, (5.13)
62 = | Aa| [b1 c05 2603 + 52 — by Jp — b3y (5.14)

5.1.2 Fixed points

After sufficiently long time evolution, the dynamic system reaches its equilibrium, i.e.

5‘?1—, = (. Let the L.H.S. of Equation (5.11) to (5.12) equal to zero, we get

J1 = 0, or ai sin 291 = ang

aycos 20; = asJ1 + azJy — 81

If J; # 0, we can eliminate the 6, by recalling the trigonometric identity to get
. 2
(a§J1)2 + (a§J1 + azJs — 51) = af (5.15)
Similarly, for J2 # 0 we can get
r 2 i 2 2
(b2J2) + (b2J2 + b3 Jy — 82) = bl (516)
Since it is trivial to have both J; = 0 and J; = 0, three equilibrium are identified:

226



______ .E. L’. S
-0.271 0 0.22(0.271 0.35 !

center saddle center

Figure 5-1: Equilibrium branch for J§ = 0— Equilibrium of the first kind.
1. Equilibrium of the first kind:
) 2
Jo =0, and (ang)z + (a‘2J1 — 81) = af

which can be solved to get

o ahsi T \Ja?|ag]? — (a5s1)?

J) =

lag(?

The equilibrium branch for J? = 0 is plotted in Figure 5-1.
2. Equilibrium of the second kind:

Ji=0, and (b;J2)2+(b;J2_52)2=bg

which can be solved to get

9 bsp £ 1/63]ba]? — (bs,)2
? |b2[?

The equilibrium branch for J? = 0 is plotted in Figure 5-2.
3. Equilibrium of the third kind:
Both J; # 0 and J; # 0;
In this case, we need solve two equations (5.15) and (5.16) (two ellipses) to obtain

the equilibrium points (J?, 6%, J2,69). In principle, we can eliminate either one of the
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center saddle center

Figure 5-2: Equilibrium branch for J? = 0— Equilibrium of the second kind.

two variables from the two quadratic equations to obtain a quartic equation of only
one variable.

In order to discuss the dynamics of the nonlinear system, please refer to Figure 5-3
for the conceptual bifurcation diagram. The straight lines demarcate the equilibrium
of first (denoted by I) and second kind (denoted by II). The equilibrium of the third
kind (denoted by III) is plotted on top of the first and second kind. The three zero
zone are the trivial domains where the dynamical system is at rest.

1. When s; < —0.271, we have no equilibrium branch drops in the first quadrant of
(J1, J2) plane. The only fixed point will be (J?, J§)=(0, J9). Therefore, the dynamics
of the system is totally governed by the second kind of equilibrium J? = 0 (Refer to
Figure 5-2 for the bifurcation diagram.);

2. When —0.271 < s; < 0.271, we have only one branch of equilibrium in the first
quadrant. When 0.271 < s; < 0.35, we have two branches of equilibrium in the first
quadrant. As long as s; drops in the domain (—0.271, 0.35), we at least have one
equilibrium of the first kind. In this case,

i) As sy < —0.766, the dynamical system is governed by the equilibrium of the
first kind;

228



I1

0.8 1

Figure 5-3: The bifurcation diagram.

ii) As s2 > 0.99, the dynamical system is governed by the equilibrium of the first
kind and the third kind (if any);

iii) As —0.766 < s < 0.99, the dynamical system is governed by the equilibrium
of the first kind, the second kind and the third kind (if any);

3. When s; > 0.35, the two equilibrium branches merge to one in the first quadrant
of (J1,J2) plane. Because the absence of the first kind equilibrium, the dynamical
system is dominated by the equilibrium of second and third kind (if any).

Although the equilibrium branches are obvious by above discussion, the global
picture are not clear when co-existence of two fixed points occurs at certain values for
parameters s; and ss. How the dynamical system behaves at these parametric values

and why it is so. To answer these questions, further study is needed.

229



5.2 Simultaneous resonance of two subharmonic
edge waves of the same eigen frequency by one
incident /reflected wave

We study two edge wave modes, sharing the same eigen frequency w (degeneracy)
but different x and y eigen function dependences, excited by one normally inci-
dent /reflected wave of twice the frequency. Initially, the two edge wave modes develop
separately and one edge wave mode (low) outgrows another (high) mode as in the sub-
harmonic resonance. But as soon as one of the edge wave reaches a finite amplitude,
nonlinear effects come into play. The two modes are not independent any more. Since
the two edge waves share the same frequency, steady flow could be generated by their

interaction at the second order. The eigen frequency of edge wave satisfies

Wam =/ (2n+1)mkgs, n=0,1,2...; m=1,23.. (5.17)

where k is the lowest longshore wave number

m
k_W'

We use (m, n) to denote the edge wave mode, where n is the cross-shore modal number
and m is the longshore modal number. For simplicity, we limit our study to cases
that only one pair of (n, m) can exist, i.e. (0,¢) and (p, 1) with ¢ = 2p+ 1. Hence the

normalized eigen frequency

wpr = /(2P +1), woq=+/q- (5.18)

Therefore, wy; = wyq. The corresponding edge waves are

0B .
D, = —Zi—pe—’”Lp(ka) cos ky e ™1t 4 x, (5.19)
pl
and
Do, = _%Ege—qu cos(gky) e™™odt 4 x, (5.20)
0Og
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We have derived the evolution equations for the edge waves amplitudes by multiple-

scale expansion

0B, . o . . ¥ . "
# = 2By +ic1 B, + 2B, B, B, +ics By By By +ica By By By +ics By By By +cs B, By By;
(5.21)
8B . . * * . * . * *
3_7'(1 = iQBy + id1 B} + d2 By By B} + id3 By B, B, +idy By By B, + ds B, B, B;.  (5.22)

where € is the detuning of the incident wave. For case p = 1, g = 3, the numerically

computed coeflicients are summarized in Table 5.1 and Table 5.2 below:

Table 5.1: Coefficients ¢;’s for case p=1, ¢ = 3.

C1 Co C3 Cq Cx Cg

0.1288 | -0.0903-0.0478i | -2.6018 | 0.0256 | 0.0513 | -0.3286-0.165Ti

Table 5.2: Coeflicients d;’s for case p=1, ¢ = 3.

dl dz d3 d4 d5
1.4064 | -0.9857-8.2701i | -7.8054 | 0.0769 | -3.5879+4.8391i

Initially, the two edge waves evolve independently due to the weak coupling as in
the last section. Mode g possesses a lower £ mode and has a much larger growth rate
(ten times that of the mode p). Therefore, mode g outgrows mode p during the initial
evolution. But soon after it reaches a finite amplitude, the nonlinear terms take effect.

In Cartesian coordinate system, we let
Bp =r + z'yl, Bq =ZIg+ iy21
then Egs. (5.21) and (5.22) become

1 = {1~y + (hzy — y1 — csya) (23 + yP)
—csy1 (75 + Y2) + caya (7 — ¥2) — 2e4T101 T2

+(ckyr + cgz1) (@3 — v3) + 2(chy1 — chz1)Tays (5.23)
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Figure 5-4: Flow map (z;,y;), j = 1,2 for @ =05 — (p=1,¢=3).

9 o= (a1 +Qzy + (o1 + yr + csz2) (2] + 47)
+03a:1(:v§ + y%) + C4x2(mf — 42) 4 2e4T1Y192

-}—(cf;xl - cgyl)(xg - y%) + Z(Cém + C§T1) T2y (5.24)

T2 = (di — Qye + (dhza — dbyn)(z5 + 1)
—(d3ys + dgtn) (2 + ¥2)
+(diys + dizs) (22 — 1) + 2(d5ys — dizs) Ty (5.25)

g = (di +Q)za+ (dhza + dyy2) (23 + 13)
+(d3272 + d4.’171)(.’15% + yf)
+(dgz2 — diys) (2] — ¥3) + 2(diys + diz2) T (5.26)

Direct numerical simulation shows that the two modes converge to two equilibrium
points (see Figure 5-4) (z1, y1)= (-0.0114, 0.2367) and (z2, y2)= (0.3853, -0.0129) for
Q = 0.5 . For mode p it is easy to see the equilibrium, whereas it is difficult for mode

g. We plot another Figure 5-5 showing the evolution of 3 and y;. The analysis on
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Figure 5-5: Temporal evolution of z; and y2 for @ = 0.5 — (p=1,¢ = 3).

the dynamical system in this case is far from completion. Where is the equilibrium
branch for different 2?7 How the dynamical system behaves near these equilibrium?
Which fixed point to choose when several fixed points coexist? We left these works
for the future.

Our study of nonlinear resonance of edge waves originated from Venice gate project,
where people found wave energy trapped near the slanted gates in the channel. Due
to the similarity of the two problems, it is not difficult to extend the new theory of
edge waves to Venice gates. For example, in the past only subharmonic resonance
was studied for Venice gates. But nonlinear synchronous resonance could happen too
according to the edge wave study. Therefore, the extension of the new developed edge
wave theory to Venice gate problem is of industrial interest and demonstrates a direct

application.
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Appendix A

Analytical solution by Guza and
Davis, Rockliff

In their study of subharmonic resonance, Guza and Davis [14], Rockliff [26] have

solved the inhomogeneous equation
- - dJo(2/z d?Jy(2
461+ (2b1s)_ = ailz) =2 (—"—(d?\f—)) DoavE) TR )
to obtain the following simple solution:

Hi(z) = —j—EJo(zﬁ)Jl(zﬁ) (A2)

The forcing is just the second part of R.H.S. of (2.36), i.e., gi(z). Let’s first verify
that this solution is correct!

By the change of variable p = 2,/ we can rewrite the solution as

é1(p) = 207 Jo(p) J1(p) (A.3)

Let us calculate both sides of (C.1) by evaluating the derivatives

das dm o Jl ()

d2J5(24/x) 2 "dp 1/ o i
Sa - () Zo e

_ - d _
b1z = ¢1p£ = —\/—;051;7
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(/)qﬁlp)p% =" (pés),

[SeR

(eh), = (V). =

Use has been made of

Ji=Jdo—ph, Ji=-J

With these results, Eq. (A.3) becomes

2
4y +p ! (pgfnp)p =2 (—%Jl (p)) +4p 2 o(p) (207101 = o) - (A.4)

Let us see whether two sides are equal.

By substituting (A.3) into L.H.S. of (A.4), we get
lep = —20_2J0J1 + 20_1(J6J1 + JQJ{)

(pq_ﬁlp>p = Sy Ty + Jody — p o dy), = A(~2JoJy — pHIE + 2072 Jod1 + 2071 TF)

Therefore, L.H.S. of (A.4) becomes
L.H.S. = 8p ' Jo(p)Ji(p) + dp~ (=20 J1 — pHJE+ 2072 Doy + 2071 TD)

which is equal to R.H.S. of (A.4). Therefore, ¢,(z) is the inhomogeneous solution of
(A.4).
This solution can be used to check the correctness of the solution by variation of

parameters. By following the procedure in §2.5, we get the general solution
$1 = Cido(4v/x) + CoYo(4v/x) + ui(2) Jo(4Vx) + up(2)Yo(dv/T)  (A5)

where

_ " Yo(4vE)ai(§)
o EW(Jo, Yo)(€)

R Jo(4v/€)g:(€) _ ¥ ‘
i) = [ G =7, HyDued

with the familiar Wronskian

d = - [ Yola\[O)g()de

W dd o dayE) 2 21
W(JO,YO)(I)*JOM Yodx“(JOYO YoJo) de w4z /T TI

From the analysis in last section, C§ = 0 by the boundary condition at the shore

and C! = —ui(o0) — iub(oo) by the radiation condition at infinity. In particular,
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Table A.1: Confirmation for the numerical integral of u}(o0) = —1, ub(c0) = 0.

L 10 10° | 2x 108 107 2 x 108
(ui(o0) +1) x 10° | -28.256 | —4.9839 | —0.48347 | —0.15213 | 0.010019
ub(oo) x 10° | 28.307 | 5.2859 | 0.83997 | 0.47902 | 0.33788

ui(00) = —1, wub(oo) =0, as plotted in Figure 2-1 for ui(z) and ui(z). In order to
confirm that u%(oo) = —1, u4(co) = 0, we list in Table A.1 the numerical integral at
high accuracy (10~°) for different truncation of upper limit L.

In summary our solution of (C.1) by variation of parameters is

¢t = Jo(4vT) + vk (2) Jo(4v/T) + ub(z)Yo(4V/7) (A.6)

which is plotted in Figure A-1 by crosses, and compared with ¢,(z) (solid line). The
agreement is perfect. The following paragraph is to confirm that ub(co) = 0 since
ub(00) Hp(4+4/Z) is the radiation condition in our method of variation of parameter,
whereas Guza & Davies’ solution gives no radiation!

For large =, we can approximate Bessel function of the nth order by following

asymptotic form

Jo(2) ~ \/—gcos [z - (2n+ 1)%] , Yp(z)~ \/;ésin [z —(2n+ 1)%] .

Therefore, Guza & Davies’ solution behaves at large z as

1 2 /2 T 2 3r
—-\/—J_;Jo(2\/5)J1(2\/5) ~ ;\(;Z— cos (z - Z) ”;r_z— cos (z — —4—)
= —;2;5 cos 2z

where z = 2./z. Note that the energy flux rate is

0
P=puhn (Ooh g

9¢
pi

Since at large x
cos2z 1

~y —

22 T

¢~
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Figure A-1: Comparison of two solutions: Analytical formula — solid line; Solution

by variation of parameters — crosses.
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(_9? sin2zdz 11

Oz 22 ENQI\/.’E

h~z
we have
111 1
P~ ———
crvz. . 732 0

Thus, quadratic forcing by the incident /reflected wave does not lead to radiation. Our

numerical computation of u}(oo) shown in Figure 2-1 confirms this result.
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Appendix B

Confirmation of (5 =0 by the
no-flux boundary condition at

shoreline

Alternatively, let’s apply the no-flux boundary condition at the shoreline, i.e.
TP — 0 as z—0

As z — 0, Bessel functions of the zeroth order can be approximated by the following

ascending series
2 ( 1 2)2

42
HCHE

1z
(1)

For later use in (2.93), we first work out the constant g(0) as follows. From (B.1)

Jo(z) = 1 — _ 0, Yo() = ; {m% + 7} Jo(2) + 0(z2)  (B.1)

we see that

dJo(Q\/E) 14 ix . O(:L‘2), dQJO(Q\/E) 1 B O(Jj)

dzx 2 dz? 2

as ¢ — 0. Upon substitution into (2.36), we get

. 1 7 .
g(0) = 2iB? + ie**¥ (2 + 5) = 2iB% + %6’2“’ (B.2)

From (B.1) we also get

VT _yyse—opn), TEND L _onnym) (B3

dz dz L
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The first term in solution (2.40) becomes
Ciz (Jo(4va)) = C1 (—42 + O(c?))
and the second term becomes
Gz (Yo(4v/D), = G (= = O (s1n(vE))

For the third and fourth terms, Y3(4y/z)g(z) ~ ¢(0)1n(24/z) as z — 0. Making use
of (B.2) we get

u(z) ~ / 0) In(24/2)d¢ ~ / 0)¢ In(€)dE ~ g(0)z lnv/Z + O(x)
and Jo(44/7)g(z) — g(0) as z — 0 so that
ua(@) = [ [9(0) + O()} dg = [z9(0) + Oa?)]
The third and fourth term becomes

z [(w(2)Do(4Vm)), + (ua(2)Yo(4VD)) ]
dJo(4v/7) )dmm))
dr

=z (ul(x)T + ug(z
~ 2 (~49(0)21n(va) + 9(0)) ~ g(0)
where use has been made of
U1z Jo(AVT) + Uz Yo(4VT) = —7Yog(z)Jo + mJog(z)Yo =0
Collecting all four terms, we get at z = 0

m¢>1z~%+0($) as z—0

Therefore, Cy = 0 in order that ¢, satisfies the no-flux condition at the shoreline.
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Appendix C

Analytical solution similar to (Guza

and Davis

For later use in the next chapter, we extend the simple solution of Guza & Davies [14]

to solve the following equation with a modified forcing term

141 + (2612, = §(2)- (C.1)
where
o) = aZ02avD) d""@d‘fﬁ) + o (2un y7) LT22vE) JOS;";\/@
+uono(uny3) LR EANT) (©2)

with w; +wy = 2. We try (by guessing) the following solution

2y —ti1(o0)

(@) = =5 = [H@aVE)h(2VE) + W@V D A @eE)] (G

Refer to (C.5) for the definition of 4;.
In principle one can check the correctness by direct substitution. We verify instead

by comparing with the solution by the method of variation of parameters:
$1 = Crlo(4vT) + CoYo(4v/T) + i (2) Jo(4VT) + da(z)Yo(4vE)  (C.4)

where

MRS £1C2Y,3 ) N L
@)=~ [ oy €= " ), /o (C.5)
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Figure C-1: 1;(00) and @s(00) v.5. wy.

PR L VAL I .
lp(z) = A mfﬁ = 7T/0 J0(4\/E)g(§)d§ (C.6)
with Wronskian
dY; dJ; d(4 2 2
W(Jo, Yo)(z) = Jo =2 = Yool = (Jo¥y — Yo} ) _ S L

From the analysis in last section, Cy =0 by the boundary condition at shore and
¢ = —11(00) — ti2(00) by the radiation condition at infinity. For a prescribed w;
and wy = 2 — wy, we can evaluate 4;(00), Uz(c0) numerically. In Figure C-1 the
computed 13 (00) and @a(0c0) are displayed for different w.
Clearly, 1i5(00) is zero irrespective of wy. The solution by variation of parameters
is
b1 = ~1i1(00) Jo(4v/Z) + 1 (2) Jo(4v/Z) + ia(2) Yo(4/Z) (C.7)
which is plotted in Figure C-2, C-3, and C-4 for different w;. Our guess solution (C.3)

is also plotted for comparison.
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Figure C-2: Comparison of the two solutions for w; = 0.5: Solid line — Eq. (C.3);
Crosses — Eq. (C.7).
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Figure C-3: Comparison of the two solutions for w; = 0.25: Solid line — Eq. (C.3);
Crosses — Eq. (C.7).
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Figure C-4: Comparison of the two solutions for w; = 0.75: Solid line — Eq. (C.3);
Crosses — Eq. (C.7).
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In our numerical work, the following recursive formulas are used:

dJo(2uny/T)  wn
— "ﬁﬁ@wnﬁ)
d2Jo(2wn\/_I_)

dx?

Wn

zVz

- _%?‘-JO(an\/E) + —=J1 (2wn /)
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Appendix D

Convergence of integrals

In order to check the convergence of the integrals at the lower (0) and upper limits
(00), we use series expansions around zero and the asymptotic forms at infinity to
approximate the integrand.

As x — 0, we can approximate Bessel functions of the zeroth order by following

ascending series

122 (lz2)2 9 .
To(z) =1— 42 — 0 _z { z } 2
(2) = (11 + EIE 0(z%), Yo(z) - In 5+ Jo(z) + O(z%)
and their first derivatives
dJo(2) 1 5 dYo(z) 2 z
7 —2—2 + 0(z%), 7 — 0 (ln 2) (D.1)

As x — o0, we can approximate Bessel functions of the zeroth order by following

asymptotic form

Jo(z) ~ \/%cos (z - Z—) , Yo(z) ~ \/gsin (z - %)

and their first derivatives

dJo(z) > e dYa(2) 2 .
A —\/;JFO(Z I \/;+O(Z ") (D-2)

We can make use of these approximations to evaluate the integrals efficiently. Thus

in u;, we divide the integration domain into three segments as follows

([ o]+ ) derotayp 22/ 020
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Figure D-1: Behavior of the integrand {

where € is small but L is large. Therefore at the two ends, the integration can be

approximated by

/ e deg—14g=3/4¢=3/4 , ¢~3/4 ®
L L

~—L3 50as L — o0

and
€

[ demfe) ~ emiy/6)|

This assures us that the integral u; is finite at both limits 0 and oo. Also the anal-

~eln(y/e) > 0ase— 0

ysis above tells us the truncation error for our numerical evaluation of the integration.
For example, if we use L = 10000 as the upper limit to approximate u1(00) in (2.41),
the numerical result is only accurate up to the third digit behind the decimal point.

To give some quantitative ideas, we plot a typical integrand defined by

C=Y, 4\/— dJo(2\/_ dJoEi2§\/_)

versus the argument £ in Figure D-1. It can be seen that it is easy to evaluate the

integral by the normal trapezoidal rule.
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Appendix E

Numerical solution by finite
element method for synchronous

resonarce

In Section 2.5.2 and 2.5.4 we have found that the boundary-value problems for both
the forced trapped wave and the steady potential flow are governed by an equation of

the form
2 (@)~ [ - w7 = @ (E1)

with the boundary conditions
zfr=0 as z—0 (E.2)

f=0 as z— oo (E.3)

The parameter w is w = 2 in (2.56), and w = 0 in (2.70).
It is easy to show that the boundary-value problem above is equivalent to the
stationarity of the following functional

I

A
-~ ~~

Fp=3 [ [pm (L) +aws| av+ [osie (®.4)
—— —
I
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where

To prove the stationarity we calculate the first variation:

57 = [ [p(z)fli—d—’f+ ()faf} o+ [ gbfds

_ 0 [%( ) ( )6f+q f6f+g(5f}dx
= ( gf—)l 5+ [ [—~ (p( 3—’1)+q<x)f+g} dzdf

Obviously, 6 F(f) = 0 if f satisfies the conditions (E.1), (E.2) and (E.3). The necessity

(E.5)

can also be proven.
We discretize a large but finite region by standard 2-node elements with piece-wise
linear potentials :

Within each element z € [z, 2] :

2
f=> fiNi(z) (E.6)
i=1
where f; is an unknown nodal potential and N;(z) is a interpolation function
Ty —T T — I
Ny = ; = .
1 h ) N2 h (E 7)
and h is the element length, i.e. h = 29 — ;.
In matrix form,
h ;
f={mow || =N{F (E8)
fa
therefore,
df d h h :
£=[% %z][ﬁ =[_% %][h =B{f} (E.9)

Now we can evaluate the two integrals of functional F:

e Integral I

3o (£) o= sunion
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2

fi

Figure E-1: Local coordinate system for 1-D linear element

where [K]% is the element stiffness matrix

ij

el (—I)H-j 2 72
(K] =" / " pde /z " oNiNyda

with .
(=1 /zz i T1+ T2
dz = (1) ———=
@ 171, 2 1, ,]% w1 &
N N+d _____[__4__ 3 _22] __[_3__ 2 2}
/ﬂc1 g1 N ax 7 4:r 3m2m +2x2:c o B 3x T2T" + T5T N
o2 _ 1l . 2 3 122r2 w2[13 2 2]”
- QN2N2d$—h2 1% T35 +2:c1x LR 3%~ T + ziT .
z3
[ aNiNada
z1
1 2t zi4z0 3 120 5|7 [ 28 294720, i
= iﬁ{'Z’L 3 z° — 2 z xl——h—z —§+ 5 L —xlmzxml

After assemblage and using the global f, we can get
1T n
n=2{f} K{f}

o Integral I,
| ofdz =y i

where [G]% is the element load vector

(Gl = [~ gNidz, i=1,2

1
1
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After assemblage and using the global f , we can get
T
L= {f } [G]

In summary, the stationary functional becomes

AR = S K+ () @
(E.10)

By extremizing the functional, the first derivative of F with respect to unknowns

f; vanishes,

K] {f}+1G1=0 (E.11)

which is an algebraic equation system for the nodal coefficients. At the distant bound-
ary z > 1, f = 0 is imposed as the essential boundary condition.
As a simple check, let us consider an analytical solution: f(z) = —e™® which is

the exact solution to forcing g(z) = e™, i.e.

Tfer+ fo—2f =g(z) ="

Plotted in Fig. E-2 is the comparison of our numerical solution (solid line) and the
exact solution (crosses). The numerical values are listed in Table E.1.

Shown in Figure E-3 are the solutions of fi1(z) and fi2(z) by FEM computations.
We also show in Figure E-3 for comparison the series expansion solutions (refer to
Figure 2-3 and Figure 2-4). In addition, they are compared in Table E.2, which shows
very good agreement. It may be concluded that the solution for fi; by Rockliff and

Smith is in error.
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3

Figure E-2: Numerical solution of f(z) (solid line) and exact solution (dots) for special

force g(z) = e™*.
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F(EXACT)—f(FEM)

Table E.1: Comparison of FEM solution with the exact solution for g(z) = e™*. Error

is defined by 100 x

F(EXACT)

x f(z), FEM | f(z) = —e~*, EXACT | Error (%) |
0.000000000 | -0.999993871 -1.000000000 0.000612926
0.000012167 | -0.999981704 -0.999987833 0.000612934
0.000039138 | -0.999954733 -0.999960863 0.000612950
0.000098926 | -0.999894950 -0.999901079 0.000612987
0.000231457 | -0.999762441 -0.999768570 0.000613068
0.000525241 | -0.999468767 -0.999474897 0.000613248
0.001176477 | -0.998818085 -0.998824215 0.000613648
0.002620082 | -0.997377218 -0.997383347 0.000614533
0.005820143 | -0.994190632 -0.994196761 0.000616495
0.012913767 | -0.987163129 -0.987169258 0.000620850
0.028638311 | -0.971761751 -0.971767878 0.000630521
0.063495147 | -0.938472554 -0.938478673 0.000652064
0.140762827 | -0.868689234 -0.868695319 0.000700465
0.312043267 | -0.731943912 -0.731949858 0.000812354
0.691723226 | -0.500706984 -0.500712484 0.001098466
1.533365568 | -0.215803620 -0.215808127 0.002088555
3.399046955 | -0.033402462 -0.033405091 0.007869709
7.534731277 | -0.000533893 -0.000534205 0.058322591
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0.5 ~ T T

Figure E-3: The numerical solution for fi;(solid line) and f;3(dashed line). The circles

and crosses are their series expansion solutions respectively.
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Table E.2: Comparison of FEM solution with the series solution of fi;(z) and fia(x).

X fu (FEM) fu1 (SERIES) fi2 (FEM) fi2 (SERIES)
0.0000000000 | -1.8501992842 | -1.8501654620 | -0.4495540068 | -0.4495565083
0.0000121672 | -1.8501639900 | -1.8501301679 | -0.4495479232 | -0.4495504248

-0.0000391383 | -1.8500857546 | -1.8500519327 | -0.4495344381 | -0.4495369398
0.0000989255 | -1.8499123379 | -1.8498785165 | -0.4495045467 | -0.4495070487
0.0002314569 | -1.8495279656 | -1.8494941454 | -0.4494382933 | -0.4494407959
0.0005252412 | -1.8486761341 | -1.8486423166 | -0.4492914631 | -0.4492939671
0.0011764773 | -1.8467889099 | -1.8467550985 | -0.4489661542 | -0.4489686611
0.0026200822 | -1.8426105950 | -1.8425767982 | -0.4482458795 | -0.4482483929
0.0058201432 | -1.8333735959 | -1.8333398360 | -0.4466533675 | -0.4466558950
0.0129137671 | -1.8130208417 | -1.8129871864 | -0.4431434368 | -0.4431459948
0.0286383112 | -1.7685041395 | -1.7684708218 | -0.4354612938 | -0.4354639143
0.0634951474 | -1.6727150220 | -1.6726829210 | -0.4189052933 | -0.4189080304
0.1407628267 | -1.4740101149 | -1.4739825075 | -0.3844224787 | -0.3844253822
0.3120432672 | -1.0945953876 | -1.0945823218 | -0.3177983332 | -0.3178012981
0.6917232259 | -0.4970469865 | -0.4970635773 | -0.2085137651 | -0.2085163053
1.5333655681 | 0.0837485636 | 0.0837246300 | -0.0821327162 | -0.0821346097
3.3990469554 | 0.1552896131 | 0.1552837448 | -0.0105514550 | -0.0105524706
7.5347312771 | 0.0101678930 | 0.0101729218 | -0.0001199001 | -0.0001200686

16.7023656466 | 0.0000038205 | 0.0000039386 | -0.0000000081 | -0.0000000107
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Appendix F

Evaluation of the integral in (2.66)

Let us introduce
f§) =¢ret
for brevity. Therefore, integration by part gives
k ) —5
[ e ()

e

relzn
- e (&), - 1 ()

The first term on the R.H.S. is zero since the lowest order term in the brackets would

be n!gF+t1e~¢. The second term can be rewritten as
() e = e (Gt e (5
Then we can repeat the first step to obtain
[em e = [Teo( )
- —k/ £1d (a—;;i)

2 d" 3
= k(k—1) ["¢- (E"‘{:)
= . (F.1)
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If k£ < n, this procedure would stop at

o0 dn—k——l
(—1>kk'L é‘od (dfn—k—f)

dn—k—l - o0
- (_1)kk! {dgn—k—{:lo

(F.2)

The lowest order term in the brackets would be (kfl)! £F1e=¢, Therefore the integral
is equal to zero.

If £ > n, we can proceed until

(=1)%k(k - 1)..(k =71+ 1) /OOO £ fde

k! o k—n n,—
= (“Dnmfo & (gret) de
R o,
= (=1 (k—n)!/o greTd
Elk!
(k —mn)!

= (=1)"

(F.3)

which leads to (2.67).
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Appendix G

Low-frequency incident wave —

case of w = wy — wy

Now let us consider the case that incident wave has a frequency equal to the difference

of the two edge wave eigen frequencies, i.e. w =w; —wp, =/2¢+1—-+2p+1.

G.1 Governing equations

We still use the same multiple-scale expansion of the solution as in (4.21) except that
the known incident and reflected wave will be incorporated in ¢, (instead of ¢;; as in
the “ + ” sign case) as part of the homogeneous solution. Therefore at second order,
the radiated wave solutions become

i) ¢11 = —ie'jp Jo(2w+/T) + i%:%Gl (z), with g(z) = e *gi1(z) and @ = w, — wy;

ii) g12 = i5202Ga(x), with g(z) = € ¥ gy(x) and & = wg + wy;

iii) ¢13 = z'ggGg(:c), with g(z) = e *°g3(z) and @ = 2wy;

iv) ¢4 = i—ggG‘;(m), with g(z) = e **g4(z) and @ = 2uw,.

where G1, G, Gs and G4 are given by (4.30). We have incorporated the incident
wave in the solution ¢1;(z), where A’ = € Ale?® is the known incident and reflected
wave amplitude at the shoreline and w = w, — w, is its frequency.

The solutions to the four trapped harmonics fi1, fie, fiz and fi4 are the same:

i) Yu = 1220 fu(z) cos2y, g(a) = efi(z), @ =w, —wp;
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i) P12 = —ufm( yeos2y, glz) = e fao(z), ©=wy+ wp

iii) 13 = z;f)—fm( z)cos2y, g(z)=efa(z), @ = 2wy

iv) ¢4 = z’%ifm(a:) cos2y, g(z)=e*fu(z), ©= 2w,

where f11 to fi4 can be solved by Finite Element Method as described in Appendix

At the third order, the forcing terms related to ¢1; and ¢12 change accordingly:
[£,-1]. Instead of (4.40), we now have

((Zs){lu qu)
= 2{¢11,%0g [i(wg — wp) — iwq)]} — 1w 0gPl1ze + i(wg — Wp)qsil(woqm + ?/Jquy)

= —Z’QWPQSlequz iwquQ¢Tlmm + i(wy — wp)¢>{1(¢0qx$ + @Z’quy)
: B, B, B, dG d*G
= —ie T cosy ( > ( ) {pr = 1(2L; —L,) + wqd—xQLLq

Wpg Wy
(g — wp)Gr(4LY — ALY)

L, e\ [ B, dJo &0
—ie cosy(z » )(—z———) {prd (2L — Lq)+wq—d;—2—Lq

Wy

—(w, — wp)Jo(4L1 — 4L}

B B B* o dG1 ) d2G1 .
—_‘—‘wpwg {2&) d (2L Lq) + wq d 5 Lq - (wq — wp)G1(4Lq — 4L;) cosy
e B, dJo ., 42T, / /
- Ze {prd—x(%q Ly) +wg—s Ly = (@ ¢ — wp)Jo(4L; —4Lq)}cosy
= fip1(2)ByB,B: + i€ f(z)B; (G.1)

[£,-2]. Tnstead of (4.41), we now have

(¢127 wéq)
= 2 {12ty [y + wq) + )] | + il Braee — 8 W) S12(Vlgza + Vo)

= —Z.2wp¢12$’d)8qx + iwqwéqﬁblhz - Z(wp + wq)¢12(wéqm + wéqyy)

B ?
= —ie” cosy( BBy ) (z—i> {prddG2 (2L, — Lg) — wq%:%—Lq

Wplq Wy

+(wp + wg)Ga(4Ly — 4L}

B B, B* dGs d2G, /
wpw2 - {20} —d_.’,C—<2L; - Lq) - UJq _d_’L'Q Lq + ((A)p + wq)G2(4qu _— 4L;> COS’y
— hp?( /)BquB;; (GQ)
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[€:-3], [Ep4], [E-5], [E5-6), [Ep-T] and [E,-8] do not change. Similarly,
[€5-1]. Instead of (4.48), we now have

(¢11a r(;/)Op)
= 2{p112%0pe [~i(wg — wp) — iwp)]} — iwpthopdrize — H(wWq — Wp)P11(Yopzz + Yopyy)

= —i2wq¢11:cw0p:c - iwpw0p¢11xz - i(wq - wp)(;bll(wOpmx + r‘r[)()pz,yy)
B*B d
= —ie” cosy( q> ( B ) {qu dGl (2L, - L )+wpd;G21Lp

Wplg Wp
+(wg — wp)G1 (4L} — AL,) }
I _e'%e B dJi d2J;
—ie " cosy (—z - ) (—z——’—’){ 0(2L’ p)+wpd 20L

Wp

+(wg — wp)Jo(4Ll — 4L! )}
_BiBoBy

2
Wewy

&G
+wp—(ﬁ—2le + (wq — wp)G1(4L;,' - 4L;)} cosy

e?¥B dJ, d2J
+4 wpre—z { 0(2L’ Ly) +wp—— - 2oL + (wg = wp)Jo(4L, — 4L;,)} cosy
= ha(2)BByB; + zeﬂw f4(z)B, @3

[€4-2]. Instead of (4.49), we now have

(¢12a d’&,)
= 2 {¢12z"/)3px [_i(wp + w’]) + ZWP)]} + iwp'(/)a‘quwxx - i(wp + wg)¢12(¢5pxm + wgpyy)

= —_izwq¢12$¢6pm + iwpwapd)lhz - i(wp + wq)¢12(¢3pzm + ¢3pyy)
B*
= —ie” cosy( 5,5, ) ( ) {2wqddG2 (2L, — Ly) — i‘z_c_;?_Lp

w
p 2
Wpq Wp dx

+(wp + wy) Ga(4L]) — 4L) }
B,B,B:

= a8y Pz {2 dG,

*da

= hgp(2)ByB,B; (G.4)

2
2 ——(2L,, — Lp) ~ wp——- ddcizL + (wp + wy)Go(4L, — 4L;,)} cosy
a%p

But [£4-3], [£4-4], [£4-5], [£4-6], [E4-T) and [£,-8] do not change.
Then we recall the solvability condition and obtain the governing equations:

B, )
%:F—E = ia1e B, + 03B, B, B; + a3B,B,B;; (G.5)

263



%%:mﬂwﬁ@&mx+@@@q. (G.6)

Referring to (4.62) and (4.63) we found that the differences are in the linear terms
since they are related to the incident/reflected wave. Therefore, we have different
coefficients a; and b; for different combinations with B, and B,. Change of variable

from B; to B;e" eliminates the phase of incident wave from the evolution equation

and we get
0B . * *
—a_: = 1018y + a2 Bp By B, + a3 By By By; (G.7)
OB
5 = ih1B, + byByB, B; + bsB;B, B;. (G.8)

G.2 Initial growth

Due to the difference of the linear terms, we expect a different initial evolution of the

two edge waves. Ignoring nonlinear terms, Eq. (G.12) and (G.13) becomes

. 0B .
= zaqu and —8_7'2 = Zbpr. (Gg)

05,
or

which can be manipulated to get

0’B;, .. .
67'2] = Zb1 (zalBj) = —alblB]’
(G.10)
The above equation has an eigen solution
B; = Bj(0)e*Vahh T, j=p,q
(G.11)

We now give a; and b; for several pairs of (p,q), which can be excited by one

incident /reflected wave:
e Case (1). p=0, ¢ =1;

wpo=1, wy=V3, w=w;~wp=vV3—-1, L,(2t)=1 L(2r)=1-2z
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Therefore from [£,-1] we get

z'a1
d*J,

wq EZQ—L(I

%0 1 dJo ...,
- da;Fp(a:){—z~—e {pr dO(QLq—Lq)+

—(wy —wpwo( 4Ly — 4Ly}

{(4 _6) dJo(zﬁ;)\/_) N Qx)d”oé?:;}ﬁ)

= —i

wf
—4cJ0(2w\/g‘:)} = 0.0866:

And from [£,-1]

- / deFy(x {z;w—e @ [2 ‘fijo(zL' L )+wp‘§J§L
+(wg — wp) Jo(4Ly — 4L3)|}
) {2\/§dJo(2w\/§) 3 dQJO(Zw\/E)}

dz dz?

wp=1, w=V5, w=w,—w,=V5-1, Ly(2zr)=1; L,(2z) =142+ 22"

Therefore from [£,-1] we get

2
- / dzFy(z {—z—e {pri}o(?ﬂ L)+wqcf1JQOL

~(wy = wp) Jo(4L}, — 4L}
dJ0(2w\/5)
dx

= —1

e—2z
16z — 10 — 422
s {( : %)
2
+v/5(1 — 4z + 29:2)9—‘%3“—;[3”—) —4¢(3 — Qx)JO(Qw\/E)}
X
= 0.07517

And from [E,-1]
iby
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dJo d*Jy
— / deFy(z {wwp {qu - (2L;—Lp)+wp—dx—2Lp

+wy = wp) Jo(4Lj) — AL,)]}

o -2
= =i [ Aot
JO w

= 0.1680:

4z + 2a:2) {2\/561‘]0(2:\/5) _ d2J06(12$c;7\/§)}

o Case (3). p=1, ¢=2;
wy = V3w, = V5,w = wy—w, = VB5—V3, L,(2z) = 1-2x; Ly(2z) = 1—4z+22"

Therefore from [£,-1] we get

dJ, 2
= / dzFy(x {z——e [2wpd0(2L;—L)+wq(fiJQOL

—(wg — wp)Jo(4L” —4L)]}

dJ() (2(4)\/5)
dz

= —

o) {\/5(1693 — 10 — 42%)

d%Jo(2w+\/T)
dz?

+v/5(1 — 4z + 2:(;2) — 4c(3 — Qx)Jo(zw\/E)}

= 0.0647

And from [£4-1]

2
- / deFy(z {z——e [2%‘2‘]0(%' L)+wp(zj20L

+(wg — wp)Jo(4Ly — 4Ly)) }
—2x

[ e 9 dJo(2w\/)
- —Z/O d:cw\/g(l—4x+2:n ){\/6(6—4x)_0_d.x___

—V3(1 - Qx)ft]—o—%;—@ + 4cJ0(2w\/5)}

= 0.06712
o Case (4). p=0, q=3;
4
wp =1, w, = V7, w=wg—w, = V71, Ly(2z) = 1; L,(2x) = 1—6z+6z —gscS
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Therefore from [£,-1] we get

B dJo .., a2 J
= / dLEF {—z;;;e [pr dz (2[/ — L )—i—wq dr 5 L
~(wg — wp) Jo(4Ly — 4L)]}
2z dJ0(2LU\/—)

- ——z/ d:cw\/.{(36:c—14 2022 +3 7)o
V(L b+ 6r® - o) TRV 8(3—4:c+x2>Jo<zwﬁ>}

dx?
= (.06657

And from [£,-1]

o ddo,,, &y
_ / doFy(x {zw——w;e {2wq%—(2Lp—L)+wpd2L

+(wg — wp)JO( L;’ - 4L;/o>”

6z + 627 —

){QfdJo(Zw\/—) dQJO(Zw\/_:i)}

dz?

wp =3, wa=VT, w=w,—w,=V7-V3,
24 3
L,(22) =1-2x; Ly2z)=1-6x+6z" — 37

Therefore from [E,-1] we get

o0 d2
- [ dpr(a:){—i——l—e‘z {2 N0 L) e,
0

Wy Pdz Y 2
—(wy — wp) Jo(4L] — 4L;)J}

Y M _ 2, 80 dh(20v/3)
_ Z/O de ){\/§(3Gx 14 - 202° + 2o®) =

+V7(1 — 6z + 622 —

%x‘?)%‘;@ — 80(3 —4x + 1‘2)]0(2LU\/5)}

= 0.0607:
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And from [£,-1]

dJ d*Ji
- / dzFy(z {z———e [qudO(QL;—L )+wpd 20L
+(wy — wp) (4L — AL |}

—2x
I R 24 _ 4 o(20vT)
= Z/o d:cw\/g(l 6z + 6 37 ){ﬁ(6 4z) T

—V/3(1 - 2x)fjo—z°;—‘@ + 4cJo(2w\/5)}

= 0.0743¢

o Case (6). p=2, ¢=3;
wp:\/gv qu\/?a W=Wg—Wp = \/_ \/—
4
Lp(22) = 1 — 42 +22%  Ly(2z) =1— 6z + 62° — §x3
Therefore from [£p-1] we get
d*Jo

dJo
= / dl‘F {—z—~—e [2 d (2L Lq)“f-wqga‘:?[/q

wwq
—(wy — wp)Jo(4Ly — 4L}

= —i :}_}7( 4x+2x2){\/’5'(36x—14 202° +3 )dJ“(?i:f)
VA6t S TR oy (20

= 0.0543¢

And from [£,-1]

dx Wr dz?

+(wy — wp) Jo(4Ly — 4L }

d?J;
= / drFy(x {z——e e [qu%@% — L)+ wp—rz Ly

—2x

= —i /oo dz < (1 -6z + 62% — f‘—333) V7(10 — 162 + 412)-—————d']0(2wﬁ)
0 w5 3

dz

—/5(1 — 4z + 21:2)@%@ + 4c(2x — 3)J0(2w\/5)}

= (.0643:
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The results for all six cases are summarized in Table G.1:

Table G.1: Coeflicients pairs (a1, b;) for different edge wave modes combinations. Low

frequency incident wave.

q

1 2 3
0 | (0.0866, 0.1500) (0.0751,0.1680) (0.0665,0.1759)
p 1 (0.0647,0.0671)  (0.0607,0.743)
2 (0.0543,0.643)

From Table G.1 we see that, all a; and b; are positive real numbers, which makes
a;b, positive and real for w = w; — w,. Solution to amplitudes of the two edge wave
modes must be periodic, instead of growing or decaying exponentially. Therefore,
there is no linear instability of the edge wave perturbations to the incident/reflected
wave system.

The nonlinear terms for case w = wy—wy is exactly the same as in case w = wy+wp.

Therefore, we have a pair of coupled equations to deal with:

0B

_87Tp =10, By + G'ZBPBPB; + a3BquB;; (G.12)
B

%;q' = ibpr + b2BquB; + b3BquB;. (G13)

Coefficients a’s and b’s are summarized in Table G.2.

G.3 Effects of Detuning

When we consider the effects of detuning, i.e. some sorts of frequency mismatch

coming from the incident/reflected wave:
w— w+&Q

we can always make replacements

—_ »_2_
A__)Ae—ze Qt
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Table G.2: Coefficients of a’s and b’s for w = wy — w.

a1 as as
(0,1) | 0.0866 -0.2302-0.1882i -0.2393-0.1207i
(pa) (0,2) | 0.0751 -0.2302-0.1882i -0.1969-+0.2098i
(1,2) | 0.0647 -0.0903-0.0478i -0.1352-0.0318i

b bs bs
(0,1) { 0.1500 -0.0501-0.6873i -0.3925+0.55581
(p,a) (0,2) | 0.1680 -0.0626-0.0121i -0.3796+0.8419i
(1,2) | 0.0671 -0.0626-0.0121i -0.1720+1.2832i

then all the analysis is still the same as in the perfect resonance case. When we look

at the evolution equations, (G.12) and (G.13) become

9B,

222 = 0,6 B, + ay| B,|*B, + as| By|*B,

or
0B,

=4 = ibye " B, + by| B, B, + bs| B,|*B,

or

Change of variables B; = Bje“mﬂ, J = p,q gives

8B; (0B, .~ 5\ i
or —_(87 zQ]B])e

where we require that Q — Q, = Q. Therefore, equations (G.14) and (G.15) become

dB o = - o o
—a—Tﬁ =i, B, + 101 A* By + a|By|* B, + a3 B,|* B, (G.16)
63«1 ‘A D 2 AD 512D B 12D

The detuning adds another new term to the evolution equation as in the classical
edge wave theory. As in the synchronous resonance analysis, a change of variable will
eliminate the phase of incident wave from the evolution equation. For example, we
can replace B, by Bpe® and B, by B,e'?#, where ¢ is the phase angle of the incident

wave.
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G.4 Analysis of nonlinear dynamical system

Replacing B; with its polar form

Bj = \/};ewj1 .7: D, q

we get

0B, 1 .\
20 o =1+ 0L ) ¢
ot (2 /_Ij J 2 J)

where I; = |B;|? is action variable and 6; is phase variable. Also we introduce the

(G.18)

new forms for the complex parameters
ag = —aj —iay; by = —by —ibh; as = —aj —iay; by = —b} + ib5.

Divided by B, on both sides, Equation (G.16) becomes

1 0B,
37‘

_ \/_}eza,, (2\/_1 +z\/_0p)e

1

B _ _
= iﬂp + ia1-=q— + a2|Bp|2 + angq|2
By
/I
= i), +ia; e U0—0a) 4 axl, + azl,
Ip
Iq : T r
= qayy/ = sin(b, — 0,) — asl, — a3l
IP
: Iy i i
+i 48 + a1 A cos(0, — ;) — asl, — a%l,
»

(G.19)
Separating the real and imaginary parts, we get
1 I‘I . T T
—1I, = a1,/ Zsin(d, — 8,) — a5I, — a3l, (G.20)
21, I,

271



6, = Qp + ary /I—q cos(Bp — 0,) — ayl, — a}l, (G.21)
P

Similarly we can get from Equation (G.13)

1. [I
—quIq = —b fsin(@,) —0,) ~ by1, ~ b1, (G.22)
2 IP % i
q

G.5 Fixed point — the equilibrium state

After sufficiently long time evolution, assumes that the dynamic system reaches its
equilibrium, i.e. 53; = 0. (B, B;) = (0,0) is obviously a fixed point to Equation
(G.16) and (G.17). In order to find equilibrium point other than the origin, let the
L.H.S. of Equation (G.20) to (G.23) equal to zero. Then we have

al\/‘lrv:qsin(ep —0,) = agl, + a3l (G.24)
P
I . .
Qp+ a1 ?3 cos(fp — 84) = ayl, + azl, (G.25)
P
Ip : T T
—by 1, sin(6, — 6,) = byl, + b1, (G.26)
Ip i i
q

Then we try to eliminate two phase variables and obtain two equations for I, and
I
We can eliminate the phase parts and obtain two equations for IS and [ fl):

Eliminating the sin(6, — 8,) function from (G.24) and (G.26), we obtain

GRE+ (ag + %lbg) Ro+ 2285 =0 (G.28)
1 1
where we have introduced .
I
Ry =-E.
I3
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The above equation

can be solved to get

2
a1 hr r T a A a
—81pr — of £ \/ (a5 + 2205)" — 42258

Ry =
0 2a5

For example, in Case (1). p=0, ¢ =1,

Ro=—1.9598, or Ry= —0.064L.

Obviously, none of them is the root we want. Therefore, we don’t expect fixed points

other than zero. Similar situation holds for the other two cases. In Case (2). p =0,

q =2,

Ry =—-1.5121, or Ry, = —0.0804.

And in Case (3). p=1,¢g=2,

Ry = —3.1196, or Ry, = —0.2143.

This tells us that there is no more fixed points other than (B,, B,)=(0, 0).

Can we have limit cycle as equilibrium? If so, we can always make change of

variables

Bp — Bpem”T, B’q N quzﬂq'r

Then Eq. (G.16) and (G.17) become

o5,
or
o,
or

= i(Qy — () B, + ia1 B, + aa| Byl B, + as| By2B, (G.29)

=i(Qy — Q) B, + ib1 B, + bs| B,)? B, + b3 B,|* B, (G.30)

As a result, this change of variable will affect (G.25) and (G.25) only. Like detuning

wouldn’t affect the ratio of the two edge wave amplitudes, we don’t expect limit cycle

as the equilibrium either.
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Appendix H

Numerical solution by finite

element method for cross resonance

From the analysis of Section 4.4.2, we found that the 4 harmonics of trapped waves

share the same form of BVP as follows:
d
7 (p(z)fe) + a(z) f = —9g(x)
4
with the boundary conditions
zf;=0 as z—0

Tfe=0 a x— L

and

The parameter @ takes different values according to the harmonics.
It is easy to show that the boundary-value problem above is equivalent to the
stationarity of the following functional

I

N

~

F(f) = -;—/OL [p(w) (%)2 +q(w)f2} dsc+/0Lgfd:v (H.1)

I
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Please refer to Appendix E for proof of the equivalence. Notice that we have different

definition for g(z) in this problem. We still need develop the finite element formula

in order to account for this difference.

We discretize a large but finite region by standard 2-node elements (see Figure E)

with piece-wise linear potentials :

Within each element z € [z, 22 :

2
f= Z: fiNi(z)

where f; is an unknown nodal potential and N;(z) is a interpolation function

o9 — X
h ;

r—nn

N = 7

Ny =

and h is the element length, i.e. h = 29 — z3.

In matrix form,
fi

fa

-x{7)

f=[N1 NQ]

therefore,

-5{7)

ilf_:[aﬂx ﬂ_\,z][fl

dz Az dr f, 2[_% %]

Now we can evaluate the two integrals of functional F:

o I;
-;- / l [p@;) (%) +q(:v)f2] de = -;-{f}T (K1 {/f}

where [K]? is the element stiffness matrix

—_1\Yi+ x
K12 _ ! }1; / * pde + / * ¢NiN;dz
zy X
with
1.+J T1 + To
d 2 1
/ pot = 2h

@ 1, 2 1, o172 @
/2(1N1N1d$= [—$4~—$2x3+—x§x2] ——uf—[l 3

4 3 27 |, w213

4
h?
z 4711 2 1 2 211
/ * gNo Nodzz = 7z [ z* — Szt + x%a?] 2 [§z3 — ,2° +x%x]
Il

47 73 2 ., T h2
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(H.2)

(H.3)

(H.4)

(H.5)

]xz
T
T2
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z2

3 1+ I 4
I Y Y

/ * N, Nydz
x
4 [ 28 zi+me 5 T |7 @[ 2
_hQ[WLJr 3 T2 TR 3T 2
After assemblage and using the global f, we can get
1T .
n=s{f} K{f}

| 9t = {F}" )"

o I

where [G]% is the element load vector
! o2

G); :/ gNdz, i=1,2
51

After assemblage and using the global f , we can get
T
I = {f jE

In summary, the stationary functional becomes
T
f} Q)

FARD = U {7} +{
(H.6)

By Rayleigh-Ritz principle, the first derivative of F with respect to unknowns f;
(H.7)

vanishes. Therefore
K1 {7} + (61 =0
— [K] 1 [G] within

which can be solved to get the numerical solution of f = { f } =

the range of z € [0, L]. Beyond L, f = 0 uniformly.
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Appendix I

The coefficients ¢’s and d’s for

other two cases

I.1  Case (2). p=0, ¢=2
Now we have
wp=1, wg=V5, w=wy+wy=V5+1, L,(2z) =1; L,(2z) = (1 — 4z + 22?)

We already knew from Table 4.2 that ¢; = 0.1056 and d; = 0.2360 from previous

discussion.

fi(z)
!l / / ]‘ " / " /
= (wp — wq) 4Ly Ly = 2L Ly — 2L, Lg) + 5 [wpLy (417 — 4L;) — woly (4L — 4L, )|
= (~8+4vB)z + 10 — 4v/5,

a1(z) = filz) + 2wy — wo)LpLy = (4 — 4V5)2? + (=16 + 12v5)z + 12 — 6v/5;

folz)
/ 7 1 V4 ! 7 4
= (wp+wg) 4L, L, ~ 2Ly Ly — 2L, Ly) + 5 wpLy (4L — AL,) +wy Ly (4L — 4L})]
= (=4V5 = 8)z + 4/5 + 10,
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~F
[8)]
[0)]

3
X
Figure I-1: Numerical solutions to fi;— solid line, f;o— dash line, and f14— dash-dot

line for Case (2). p=0, ¢ =2.

62(z) = fo() + 2w, + wg) LyLy = (4V5 + 4)2? + (—=12V/5 — 16)z + 6V/5 + 12;

falx) =20} — 6L, L, + 2L, L, = 0,

g3(x) = fa(z) +2L% = 2;

fa(z) = 2L — 6L, L, + 2L, L) = —24z° + 922® — 100z + 30,

94(z) = fa(z) + 2L% = 82" — 562° + 132z” — 1162 + 32.

Numerical solutions to fi1, fi2 and fi4 are plotted in Figure I-1. Again, fi3 =0
due to the forcing f3(z) = 0 in this case. Our numerical results show that all of them
are close to zero after x > 6.

Other ¢’s from &:
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[6,-1].

C31

= /Ooo dzFy(x) {z’w "
—(wg — wp) G (4L — 4L})| }

2
[2% dfl (2L, — Ly) + wqddG;L

042Gy
dz?

= %/oodxe_zx{ —4z? +16x—10)%+\/_(1—41:+2 %)
0

~(vV5—1)(12 - 82)G: }
= { -5 d—Gl(o) (6v5 — 10)G1(0)
+ / doe™ [(8v/5 — 8)a” + (32 — 24V/5)z + 12V5 — 24 Gl}
= { v5g1(0) + a} = —0.0135 + 0.5504i (L.1)

where use has been made of relation (4.33). And the generic form for the integral by

part is
/0 dof(@)e 22 = ~F(0)G(0) - /0 dz(f' — 2f)e~G.

The integral o can be evaluated as

a = / dxe™> 8\/_ 8)z? + (32 — 24v/5)z + 12v/5 — 24] Gy

= Z a; = —0.4150 + 0.0677 (1.2)
j=1

where

— /0 " doe™ [(8v/5 - 8)a + (32 — 24v/5)z + 12v/5 — 24] Jo(20/7)

/0 " dee gy (£)Yo(201/€) = —0.3023

ay = —nx /0 ~ doe% |(8v/5 — 8)2” + (32 — 24v/5) + 12V/5 — 24] Jo(20+/2)
[ dee ™ ga(6)¥o(20,/2) = 0.0948

3 = —im /0°° dre™™ [(8v/5 — 8)z? + (32 — 24V/B)z + 12V/5 — 24 Jo(20/7)
/Ooo dée™ g1(€) Jo(204/€) = 0.0677
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ap = /0 " dre™ [(8V5 — 8)a® + (32 24v/5)z + 12v/5 — 24] Yo(20/7)
| /0 " dee™ g, (€) Jo(20,/€) = —0.2075

with @ = v/5 — 1. Refer to (4.30) for the generic form of solution G;.
[Sp'Q]'

€32
00 . 1 —x dG2 , d2G2
= /0 dzFy(z) {prwge [2‘%%(2[@ — L) - Wq-dp“[’q
+(wp + wq)G2(4Lg — 4L;)]}
i > —2z 2 dGQ 9 d2G2
= - ; —4 162 — 10)—— — -
: /O dze {( 2+ 167 = 10)—= — V5(1 — 4o + 22%) —

+(V5+1)(12 - 82)Gs }
= % { 55%’-(0) + (6v/5 + 10)G4(0)
+ /OOO dre™® {(—8\/5 — 8)x% + (32 + 24v/5)z — 125 — 24} G2}
- % [VBg2(0) + B} = —0.1833 + 7.0219i (L3)
The integral 8 can be evaluated as
g = /O " dwe > [(~8V5 ~ 8)2% + (32 + 4VE)z — 12v5 — 4] G,

4
= Y8 = —21.7234 + 0.9166i (L4)
j=1

where
B = /OOO dze”™ [(~8v/5 — 8)2° + (32 + 24v/B)z — 12v/5 — 24] Jo(20/2)
/0 ~ dge—%gg(g)yo(m\/g) = —3.0316

By = - /0 " dee™ [(8v/5 — 8)a” + (32 + 24vV5)z — 12V/5 — 24] Jo(251/3)
/0 " dge g, (6)Yo(201/) = —7.8277

By = —in /0 " dne ™ [(~8V5 — 8)2% + (32 + 24v/5)z — 125 — 24] Jo(20/2)
/ " dge % gy(€) o (29 f€) = 0.9166i
4]
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By = = /0 doe™ [(~8v/5 — 8)2% + (32 + 24V/B)z — 12v/5 — 24] Yo(25/7)
fo dee™% g5 (£) Jo(20/€) = —10.8641
with @ = v/5 4+ 1. Refer to (4.30) for the generic form of solution Gs.

[€5-3].

C21

o0 1, [.dGs ., *G " )
= / d(L’Fp(iL‘) {2—6 |:2d_3(2L Lp) dr 23L + 2G3(4Lp - 4Lp):l}

Wp

_ dGs d°Gs
= / dze? { -2 da:2}

_ {dG3(O)+4G3 ©) -8 [~ dee” 2203}

d
= i{gs(0) — 8y} = —0.2302 + 0.5618;

The integral v can be evaluated as

0 4
y= /O dre~ Gy = zlyj — 0.1798 — 0.0288
J:

where
o= /0 ” dwe® Jy(20+/7) /0 ™ dge % g4 (€)Yo(24/) = 0.0454

B /0 " dze Jo(20y/7) /0 " dge% g5 £)Yo(2/€) = 0.0445
—— /O ” dwe® Jo(20+/7) /0 " dee % gy(€)Jo(20/E) = ~0.02883

= /O ” dze Y, (204/7) /0 " dge % gy (€)Jo(204/€) = 0.0899
with @ = 2. Refer to (4.30) for the generic form of solution Gs.

[£,-4].

—E

W, !
= / d.’L'F { w2 !: 2quf11xx + wp(2Lq - LQ)fllz'
Wp

Wy

_ z{_V_g f12(0) — (3V5 — 5) fu(0)

+ / dze™ [(~4v/5 + 8)z + 4V/5 - 10] fn} ~ —0.0587i
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[£5-5].

= /OOO dl’Fp(CU) {i%;—g [ ( )lez — qlezx
p tw " ]
N 4Lq>f12} }
= “{[—fmx (0) + (3v/5 + 5) f12(0)

+ /0 dze? [(4v/5 + 8)z — 4v/5 — 10] fu} = 2.7587i

1£,-6].

/ drFp(z {z——e [f13z<2L, L,) - _Lpf13a:3: + fi3(4L, — AL, + 4LP)H
= i/o dre” m{—f13x*%f131z+4f13}
= i a0+ 2£1a(0)} = 0

1£,-7).

o 1 27, 9.,
- /0 dzFy(z) {—zw { Ly — 4L, + L) (2L, - L,)? — =(2L, — Lp)*Ly
P

8
3 I 2 3 " ' 2 9 3
b oI, ~ Ly Ly+ SALy — 4L+ L)L - ng]}
_ _i/oodxe—‘u{g_g_'_%_}_%_g}
B 0 g 8 2 8 8
[e.¢]
= —371/ dre™"
0
T Ty
[£-8].
C3s
o0 . 1 -3z 3 " / ! 2 ’ 2
_ /0 i {Zi 3L — 4L, + L)Ly — L)* = (2L — Ly Ly

+ B(AL! — 4L, + Lg)(2L}, — L) (2L, — Ly) — 2Lg (2L, — Ly)(2L = L)
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1
+3 (8(2L}, — L,)(2L, — Ly) Ly + 4(2L, — L,)L,
~ 9L, L2 + (4L — 4L, + L)L} + 2(4Ly — 4L, + Ly)LyLy| } Fy(z)dz

2' o0
= ! / dwe™" {242* — 2562° + 8240 — 968x + 362

1612
16

Therefore,

Co = Co1 + Coo + Co3 = —0.2302 — 0.18824;
C3 = C31 + C32 + €33 + €34 + C3s = —0.1969 + 0.2098:.

Other d’s from &

[£-1].
- / deFy(z { ¢ [qu ddGl (2L, ~ L) +wpd;G21 L,
H{wy — wp)Gy (4 Lp ~41)]}
i [ dG,
= ﬁ{ ——(0) = (6—2V5)G1(0)
+/ dre2 [(8 — 8v/5)a? + (24V/5 — 32)z + 24 — 125 Gl}
= ﬁ {—=1(0) = &} = 0.0303 + 0.8190;
« is defined in (I.1) and evaluated in (I.2).
(£,-2].

e T d 2
- / doF(x { {qu 52(2L;—Lp)—wpdd—f§Lp

+(wp + wg)Ga (4L — 4L,)| }
i {ng

V5 | dz

+ /Ooo dre™” [(—8v/5 — 8)2” + (24v/5 + 32)z — 12v/5 — 24] GQ}

(0) + (6 4 2v/5)G5(0)

1
— 0) + = —0.4099 + 1.6516:
\/5 {92( ) /6} + {4
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(3 is defined in (I.3) and evaluated in (1.4).

[£,-3].
dGy ., d*G " )
— / dzFy(z { {zgxi(uq — L) — E2—4Lq+2G4(4Lq —4Lq)”
i (dG
= f{ d;( ) 4+ 20G4(0)

+ / doe™ [~320* + 2240° — 5282° + 464z — 128 G4}
0

71—5 {94(0) + k} = —0.0626 + 4.7096i

The integral x can be evaluated as

K = f de™>* [~32* + 2245° — 5282 + 464x — 128] G4
0

4
= Z/{j = —21.4691 + 0.1400¢

where
K1 / dze™ [ 320" +2240° — 528¢° + 464c — 128] Jo(201/2)
|7 deeau(€)¥o 2y /e) = ~1.0838
Ky = —7 /O * dpe [—32x4 + 2247° — 52812 + 464z — 128] Jo(20+/)
/0 " dge g, (€)Y (20/€) = —9.6430
Ky = —im /0 ” dze 2 [—32:04 + 2242° — 52822 + 4641 — 128} Jo(20+/x)

/0 " dge™ gy (€) Jo(201/€) = 0.1400i

o0
ki = T / dre™ [ 320" + 2242° ~ 5282 + 464 — 128 Yo(2v/7)
0
/ dge g4(6)Jo(20\/€) = —10.7423
0

with @ = 2v/5. Refer to (4.30) for the generic form of solution Gy.
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[€4].

= / dCL‘F {wqw2 [ 2p Lpfll:cz + wq(zL; - LP)fUﬂ?

Wg — W

+

= % {—lfmc(o) ~ (3= V5)fu(0)

-i—/ dze™* 4\/— 8)x + 10 — 4\/_] f11} = —0.6326¢

L fy (412 — 4L + 4LP)J}

[€4-5)
- / dzF,(x { [wq(:zL’ Ly) fr2a — 2Ly frozs
LY ; 9104 L'p'—4L;,+4L,,)”
= {340+ 3+ V)00
+ [ dwe [(4v/5 + 8)a — 4v5 - 10] fia} = 093261
[£,-6].

d22
oo 1 ’ 1 " /
= /0 dzFy(z) {whe_x [(2Lq L) frae — qfl4:cac + (4L, — 4L + 4Lq)f14J}
q

= == {50) +1070)
+ / dre™ [482° ~ 1842® + 200z — 60] f14} = 2.2695
£,7).
d23
- /OOO —io%e {{287(4_0’-45 + Lg)(2L] — Ly)? — §(2L’ Ly)’L,

q
3., 3 9
+ [5(2@, ~ L)’L, + g(4lg — 4Ly + Lg) Ly — gL"’} } Fy(z)de

- v / dre—4e {48358 — 86427 + 58322° — 2011245
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+39180z% — 441847° + 2803822 ~ 9060z + 1110}

2001
128v/5
£,-8].
d3s
- /Ooo —%qlwf, e~ {% [3(aLy — 4Ly + L)L, — L,)* — (2L}, — Ly)* L,

+ 6(4Ly — 4L, + L,)(2L}, — L,)(2L, — Lg) — 2Ly(2L} — Lq)(2Lj, — Ly))]
1
+1 [8(2L;, — L)(2L;, — Ly) Ly + 4(2L, — Ly)*L,
— OL, L} + (ALy — 4L} + Lo) L} + 2(4Ly — 4L, + Ly)LyLy) } Fy(z)da
= —-\;—5 [ dze™ {240* - 1762° + 3802 — 2882 + 56}
69i

T 16v5

Therefore,

dy = do1 + doo + dog = —0.0626 — 0.01213;

ds = d31 + d3o + dz3z + dsg + d3s = —0.3796 + 0.8419i.

I.2 Case (3). p=1, ¢=2
Now we have
wp=V3, w,=V5 w=uw,+uw;=V5+V3,
Ly(2z) =1 —2x; L,(22) = (1 — 4z + 2z?)
We already knew from Table 4.2 that ¢; = 0.0970 and d; = 0.1524 from previous
discussion.
filz)
! ! / ! 1 " ! " I
= (wp —wy) (4L, Ly — 2Ly Ly — 2Ly Lg) + 5 [wpLp (4L — 4Ly) — wely (4L — 4L, )]
= (20v3 — 16v/5)z® + (—44v/3 + 36V/5)z + 20v/3 — 16V/5,
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g1(z)
= f1(x) + 2(wp — wy) Ly,
= (=83 +8v5)z® + (—36v/5 + 40v/3)2? + (—56v/3 + 48V/5)z + 22v/3 — 18v/5;

fa(z)
1
= (wp +wa) 4Ly Ly ~ 2Ly Ly — 2Ly Lg) + 5 [wnlp (4L — 4Ly) + wyLy (415 — 4L; )|
= (20V3+16v5)z? + (—44V/3 - 36v/5)z + 20v/3 + 16V/5,

g2(z)
= fo(x) + 2(wp + wy) Ly L,
= (—8V3 —8V5)z® + (36V/5 + 40v/3)z? + (—56v/3 — 48v/5)z + 22v/3 + 18V/5;

fa(x) = 2L} — 6L, Ly, + 2L, Ly = 10 — 12z,

g9s(z) = fs(z) + 2L, = 8z® — 20z + 12;

fa(x) = 2L} — 6L L}, + 2L, L = —24z® + 92z* — 100z + 30,

94(z) = fa(z) + 2L2 = 82" — 562° + 132z% — 116z + 32.

Numerical solutions to fi1, fi2, f13 and fi4 are plotted in Figure I-2. Our numerical
results show that all of them become pretty close to zero after z > 6.
Other ¢’s from &,:

&,-1].

Ca1
% .1, dG, d*Gy
= /0 dzF,(z) {zwpwge {prEE—(QL; — L) + wq—dEZ—Lq

—(wg — wp)G1 (4L — ALy) |}

?

_ {-JE‘%(O) — (85 — 10v/3)G1(0) + /O " dze™* [(16V/3 — 16v/5)z?

5v/3
+(72v/5 — 80v/3)z® + (—96V/5 + 112v3)x + 36v/5 — 44v/3] G1 }
= 5—2\/—5 {~V541(0) + o} = —0.0010 + 0.5793 (1.5)
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Figure I-2: Numerical solutions to fi;— solid line, fio— dash line, fi3— dot line, and

f14— dash-dot line for Case (3): p=1, ¢=2.
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where use has been made of relation (J.6). And the general form for the integral by

part is

/Ooo dxf(:v)e‘z‘”%g = —f(0)G(0) — /Ooo dz(f - 2f)e”*G.

The integral o can be evaluated as
oG
~ / dze™? [(16v/3 — 16v/5)s° + (72v/5 — 80v/3)a?
0
4
+(—96v5 + 112V3)c + 36v/5 — 44v/3| Gy = 3 0 = 0.2223 + 0.0084i

- (L6)
where
~ /O " dze™® [(16v/3 — 16V3)2° + (72v/5 — 80V3)z? + (—96v/5 + 112V3)z
+36v/5 — 44v/3] Jo(20v/7) /0 "~ dge g, (€)Yo(2/) = —0.0749

o = —x /0 ~ dze % [(16\/§ ~ 16v/5)2® + (72v/5 — 80v/3)z? + (—96v/5 + 112v/3)z
+36v/5 — 44v/3] Jo(20V/Z) /0 " dge g, (€)Yo(21/€) = 0.1861

o3 = —im /0 ” dze (16v/3 — 16v5)a® + (72v5 — 80v3)a” + (—96v5 + 112v/3)z
+36v/5 — 44v/3] Jo(20V/%) /0 " dee % gy (€) Jo(20/E) = 0.0084i

- / " doe= [(16V3 ~ 16v/5)a® + (712v/5 — 80v3)a? + (~96v/5 + 1123)a
+36v/5 — 44v/3] Yo(2@ / dee™% g1 (€)Jo(21/€) = 0.1112

with @ = v/5 — v/3. Refer to (4.30) for the generic form of solution G.
[gp_2].

C32
o0 . 1
= / dzFp(x) {z
0 wpwq

+(wp + wg)Ga(4Ly — 4L,)]}

d’G,
g e

[ dCs ——(2Lg — Ly) -

1

dGz —2z
= 5\/_{ ( 0) + (8v/5 + 10v/3) G2(0)+/ dze 16\/—+16\/_)
+(_72\/_*80\/_ 3)2° + (96V/5 + 112v/3)z — 36v/5 — 44v/3] G}
- g% {V/3gx(0) + B} = —0.1342 + 8.52204 (L7)

291



The integral 3 can be evaluated as
B = / dre™ [(—8v5 — 8)2* + (32 + 24v/B)z — 12V5 — 24| G
0

4
= 3 B =—101.40 + 1.1625 (1.8)
=1

where

— / " dee™ [(16v3 + 16v5)a® + (~72v/5 — 80v3)a® + (96v/5 + 112v3)a
~36v/5 - 44v/3] Jo(20v/E) [ dee % ga(€)¥6(20,/6) = ~6.5783

B = —n / " oo [(16v/3 + 16V5)® + (~72v/5 — 80v3)a” + (96V5 + 112v3)a
~36v/5 — 44v/3] Jo(2 / dge % g (€)Yo(21/£) = —43.8005

B = —m/ dre™ [(16v3 + 16v/5)2® + (—72V/5 — 80v/3)2® + (96V/5 + 112V/3)z
~36v/5 — 443 }JO / dee g5 (€) Jo(2a1/€) = 1.16251

— / " doe > [(16v/3 + 16v/5)a® + (—72\/5 — 80v/3)2? + (96v/5 + 112v/3)z
~36v/5 — 44\f 3] Yo(2 / dée? (201/€) = —50.7244

with @ = /5 + /3. Refer to (4.30) for the generic form of solution Gs.
[€p-3)]-

* 1, dGs / dQG?) I /

= —\;—g {d(gS( ) +12G5(0 —8/ dze ™ (42” — 10z +6) G3}
= —={g:(0) — 8y} = —0.0903 + 2.3049i

V3

The integral v can be evaluated as

oo 4
y= [ dze™™ (42° = 10z + 6) Gj Z = 1.0010 — 0.0195i

0 -
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where
v = W/ dre™ (42 = 10z +6) Jo(2 / dge ™ gy(€) Yo (2/2) = 0.0888
0

——— /0 ~ dpe (427 — 102 + 6) Jo(20/7) /O " dee % gy (€)Y (20,/€) = 0.4116

Y= —ir [ dee ™ (422 - 105 + 6) Jo(25V/z) /0 " dge % gy(€) Jo(23\E) = ~0.01951

4]
= /O " dre 2 (42* — 102 + 6) Yo(2uy/) /O ’ dee™ g3(€) Jo(201/€) = 0.5006

with @ = 2v/3. Refer to (4.30) for the generic form of solution Gs.
[Ep-4].

g
/ dzFy(x { [ Lo fi1es + wp(QL; = Lg) furz

wpwz | 2
U SR (ary - 4L + 4L,) fn”
Z { \/gfux — (4V/5 ~ 5V3) f11(0) + /oo dze " [(16\/5 —201/3)z?
5v/3 2 0
+(=36V/5 + 44v/3)z + 16V5 — 20v/3] fu, } = 0.1505

/ dzFy(z { [wp(QL' Lg) fi2z — qf12m

wp + wq " /
2 4ry 4L 1 aL) fm]}
_ 5\2[ { VB (0) (4v/5 + 5v3) f12(0) + /O " dre > [(~16V/5 - 20V/3)2?
+(36v/5 + 44v/3)z — 16v/5 — 20\/§} fi2} = 3.9558
[£0-6].
_ / deFy(z { { frsa(2L} — L) — & Lo fusms + fis(4L} — 4L} + 4LP)J }

= 75 {§f139:( )+ 6f15(0 / dre ™ [242 — 20] flg} = 1.0392;
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£,-7).

27 1" / ! 9 /
- / dzF,(z { { o (AL — 4Ly + Ly)(2L;, — L,)* ~ 2(2L, - L,)*L,

3 , 9
SOL, ~ LY L+ SUL - AL+ 1)L~ -z}

Z’ oo
= ——— | dze *148z" — 3362° + 70822 — 588z -+ 156
3\/§/0 xe { T X x X + }

4T
8v/3
(£-8].
€35
o 1 —-3z 3 " ’ l l
- [ it {2 Ly - a1, + L)CL, - L)* - 2L, - L)L,
+ 6(4Ly — 4Ly + Lg)(2Ly — Ly)(2L}, — Ly) — 2Lg(2L;, — Ly)(2L}, — L]
1
+4 (8(2L;, — L,)(2L}, — Ly)Ly + 4(2L; — L,)*L,
— 9L, Ly + (4L — 4Ly, + Ly) L2 + 2(4Ly — 4Ly + Lq) LyLa) } Fy(z)de
_ "5—2\/—5 /0 dwe™* {962° — 1280¢° + 58002
—121282% + 126162 — 62807 + 1178} 3869
160v/3
Therefore,

€y = €91 + Co9 + co3 = —0.0903 — 0.04783;
€3 = C31 + C32 + C33 + C34 + C35 = —0.1352 — 0.0318&s.

Other d’s from &;:
[Ee-1].

= dGh e
= / drFy(z {wqw2 [2 i 2Ly = L)+ w,— Ly
+(wy — wp)Gr (LY — 4L) ]}

- S\Zf{ v/3g1(0) — o} = 0.0012 + 0.5205i
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« is defined in (1.5) and evaluated in (L.6).
1€,-2).

dsa
oo e " dGo
= dz F, — 2w, —= (2L — L) —
€ q(x){ww‘ {wq dz (2L )

0 Wy

+(wp + wg)Ga (4L — 4L}

i .
= 57 {VB3g2(0) + B} = —0.1733 + 5.1147i

B is defined in (I.7) and evaluated in (1.8).
[€4-3].

: 2
= / dzFy(z {Z [dG‘l(ZL’ Lq)—dG4L + 2G4 (4L — 4L;)H

dz dz?
i (dG,
NeAWT
+ / dwe™?" [~32* + 2240° — 528 + 464 — 12§] G4}
0

——(0) + 20G4(0)

1
— 0) +x} = —0.0626 + 4.70967
\/’5 {94( ) }

The integral  can be evaluated as

K = / dre™ [ 322" + 2240° — 5280° + 464z — 128] Gy

- Z kj = —21.4691 + 0.1400i

where
Ky / dze™ 23”[ 3221 + 2242° — 5282 + 464z — 128] Jo(20/7)
/ dge % gy(€) Yo (2 /€) = ~1.0838
Ky = —m / dze” “[ 320* + 2240% — 5282% + 464z — 128] Jo(20/7)

/ dge gy(€) Yo (204/€) = —9.6430
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Ky = —ir / dwe™? [~325* + 2242° — 52827 + 464z — 128] Jo(2v/7)
0

/0 " dee% g (€)Jo(20/2) = 0.1400i

ke = w [ dwe [~32* + 2242° — 5282° + 464z — 128] Yo(26/3)
0
| deeg4(6)Jo(2fE) = —10.7423
0

with @ = 2v/5. Refer to (4.30) for the generic form of solution Gy.
[€4].

= /Ooo dzFy(z) {%—2- [%L fiiee + wq(2L;, — Ly) f11e
+wq - Wpf11(4L;’ — 4L1’D 4 4Lp)}}
i V3
- 1% {“3—f11m( ) — (4v/3 — 3VE) f11(0 +/ dze™ [(20V3 - 16V/5)a?
+(—44V/3 + 36v/B)z + 20V3 — 16V/5] fu1} = 0.1417;
[£4-5].
= /000 dzFy(z) {% [ ¢(2L, — Lyp) froz — plea::z:
+wp + wqf12(4L” . 4L;, + 4Lp)]}
V3 . o 2
= 3 f { L2 f120(0) + (43 + 3v5) f12(0) + /O dze™ |(—20v/3 - 16v5)z
+(44v/3 + 36v/5)z — 20V/3 — 16V5] fi2} = 2.4615i
[£4-6].
dao

= / dl‘F IL') {—6 [(ZL; - Lq)f14m - ‘;‘qul4zz + (4L;l - 4L’q + 4Lq)f14:|}

= N { J142(0) + 10f14(0)

+ / dwe™? [482° — 1842” + 200z — 60] f14} — 2.2695
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[€4-7].

d23
© 1 . (127, ., 9.,
- /0 ~i—e 8 {[—8—(4Lq—4L;+Lq)(2L;—Lq)2—§(2Lq—Lq)2Lq}
q
3 ’ 2 3 L// L/ L L2 9L3 F d
+{§(2Lq—Lq) Lo+ S(ALG — 4L + Ly)LG ~ 2Ly § Fy(a)da

= /oo dre 4" {48:E8 — 864x" + 58322% — 201122°
5v'5 Jo

+391807% — 441847° + 2803822 — 9060z + 1110}

o
128V
1£,8).
d35
- [ —z'w;ge—“ {2 [pary - 4z, + L)L, ~ 1) — (21, ~ L)L,

+ 6(4Zy — 4L, + Ly) (2L, — L) (2L — Ly) — 2Ly (2L, — Ly)(2L;, - L,)]
1
+ 7 [8(2L; — Lg)(2L, — L)L, + 4(2L, — Ly)*L,

— 9L, Ly + (ALy — 4Ly + Lg) L} + 2(4L) — 4L, + L,) L, Lp” Fy(2)de
—_ _L 0 —4x 6 _ 5 4 . 3 9 _

= /O dzre {96x 11202° + 4608z* — 89762° + 8788z — 4008z + 614}
1493i

T 96v5

Therefore,

do = day + doo + doz = —0.0626 — 0.0121z;

dz = ds; + dsa + d3z + dsq + dss = —0.1720 + 1.2832;.
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Appendix J

Subharmonic resonance as a special

case

A special case is the two edge waves have same period, which is twice that of the
incident wave. It turns out to be the classical subharmonic resonance [22]. For
simplicity, we consider the edge wave with the lowest x-mode, which produces the
quadratic nonlinear forcing for second order outgoing wave only. Assume the incident
and reflected wave has a normalized frequency 2, the multiple-scale expansion of the

solution is

d = [z/Jo(x, y,7)e % + *} +e [451(:1:, T)e % 4 *]
+ & [1/12(x,y, T)e % + *} (J.1)

where the known incident and reflected wave will be incorporated in solution ¢; as
part of the homogeneous solution. We have two time scales in the system, fast time

t and slow time 7 = €%. Change of variable will give

0 0 L0 & F ,00 L&
ot~ ot “or o o ““ator - or

Plugging J.1 into Eq. (4.8) and separate different orders, we get

{WO + (2%0z), + TPoyy) €7 + *}
+ #{[2% + (zg10),) e + %}
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+ & {[’91)2 + xd/Zz + z¢2yy] e + *}
= {(%,%)e 2 +*}
+ 2 {[(81,9) + (o, Yo, ¥3)] ™ + x}
Mo i
+ { ~2—— 5 € 4 } (J.2)
At O(1), we have homogeneous equation

Yo + (T%0s), + TPoyy =0

With the no flux boundary condition at shoreline and exponential decay at infinity,

the first order equation allow the edge wave eigen solution
o = —iB(T)e " cos y. (J.3)

B(7)’s are the slowly varying dimensionless amplitudes of the edge wave at shore. As
always the evolution equations governing B(7) are to be obtained at higher order. We

fit in the coeflicients for amplitude B so that the normalized boundary condition

For later uses note that the factor F' = e¢~*, which describe the z dependence of

the edge wave modes, satisfies
F+ [(zF;), —2F] =0,
zF,=0at =0, F—0, x~o0.

At O(€), we are going to combine the input wave with a local nonlinearly generated
wave component to form the whole solution ¢;(z)e™*?. It can be obtained totally by

analytical method.

2%¢1 + (T¢12), = (o, Yo)

Nonlinear local forcing

(o,%0) = —2i (5, +v5,) — itho (Yoor + Yopy)
= —i(—iB)% ™™ {2 [cos2 y + sin? y] + cosy (cosy — cos y)}
= 2iB% >
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Therefore, the inhomogeneous solution corresponding to the local forcing g(x) = e™2*
is
= —1up(00)Jo(4v/Z) + [ur(z) — ur(00)] Jo(4v') + uz(2)Yo(4V/x)

AR e
)= a/V'(Jo,Yo)(&)d5 / Pt /O)e " dg
Jo(4\/—

—12t

The whole solution for second order wave ¢1(x)e including the input wave is

$1(z) = ~3 Jo(4V/E) + 2 B°G(z)

For later uses, we now work out some constants as follows. From (4.29) we get

dG(z)

—4(—u1(00) — tusz(c0)) + 9(0)
= 4(u1(00) + tuz(00)) + 9(0) (J.4)

where g(0) is the exciting force at z = 0, which is 1 here. And

G(0) = —uy(00) — iug(00) (J.5)
From (J.4) and (J.5) we can see that
dG(z)

d.’I) =0

= —4G(0) + ¢(0). (J.6)

At O(&2), the governing equations become

CH = -z-gg (z) + £(z) (3.7)

where we have introduced
Y2 = H(z)cosy
and linear operators

LF =F+|[(zF;), —zF].
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And £(z) denotes all the third-order quadratic and cubic resonance forces for the edge

wave .
E(x)cosy = (¢1,%5) + (Yo, Yo, ¥5)
1.
(¢17¢5)
= 2 {(blx'(ﬁgx (—2'l + Z)} + Zw6¢lmx
= —2i¢1z¢3m+i¢5¢1m
_ , G  ¢G]_i[,d) 4
_ —z * 21907 T —
= e cosy(zB){2zB [2d d2J 2[2d;v dz}}
I A G d?J, 2px —z [ 4dG d*G
= §B e (2—c§a7+:iz—2> cosy — 2iB*“B*e 23——0— o cos Y.
2.
(o, 1o, ¥g)

= Y02e2%02 V5, T Vore¥oaPoz + Yoyy2¢0y Y5, + Yoy, Yoy Yoy
+2 (Yoo, iay + PouthlyYomy + Yietoytoay )
= (—iB)*iB*e ™ {3 cos® y — 3cosy sin® y + 6 cos y sin® y}
= —iB*B*e~%3 [0052 y + sin? y] cosy
= —3iB?B*e¢ 3 cosy
Homogeneous equation J.7 has nontrivial solutions F' = e™® as described at first

order.
/ (HCF — FLH)dz = /0 1 — F(zH,),) dz
= /0 [(zHFz)cc — (zF )z] dr =0

by the boundary conditions both at shoreline and at infinity. Therefore
o
/ FLHdx =0 since LF =0
0
Solvability condition gives

/dwF(z)( 9B by + £(x )) 0
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which can be rewritten as follows:

6B _Z % . 2 x . 2 n*
5 = EaB 2ibB*B* — 3icB“B*. (J.8)

This is the equation governing the evolution of the edge wave amplitude B. a, b and

c are constants obtained through numerical integrals. Use has been made of

/Oo F(z)dz = /oo e ¥dr = L
0 0 2

L.
Xl dJyp dQJb
o = [ e [ (2% d:c2)Jd
o _, [ dly &
— 2z bl
o /0 (2 dr  dx? ) d
_ _%ﬂ’_ —~400(0)+8 [ e Jode
ZT =0 0
- 4—4+8/0 e~ Joda
— 8 / e Jo(4/3)ds = o5 = § x 0.06767 = 0.5413
)

©° dG &G

b = /0 e [e (2d:c +dx2)] dx
B /00 dG+d2G p
=/ e~ 7x T g 5

G\ 4G(0) + 8/00 e *G(z)dz

dz |z=0
= —1+8/ ~20(z)dz

= —-1+4+8rm Z b; = —1+ 8m x (0.028612 — 0.0045789%:) = —0.28089 — 0.11508¢
j=1

b= =i [ e ao(ava)d [ Jo(dy/E)ede = — = ~0.0045789i

/Ooo e Jo(4v/z)dz (/Ooo Y0(4\/E)e_25d§ N /0””1/(,(4\/2)(:‘2%&)
= /Ooo e Jo(4/z)dz /z ” Yo(4y/2)e % de = 0.014306

be
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by = /0 ~ Y, (44/3)dx /0 " Jo(ay/E)e%de = 0.014306

Actually by = b3 by property of double integral:

/a ’ f(o)dw /z " o(y)dy = /a ’ g(z)dz /0 " fly)dy

3.
o0
_ -z 3z d
c /0 e (e ) z
= / e *dz
0
-1
T4
Plugging these coefficients back into (J.8) we get
0B
— =iaB* — (§ +iy)B*B* (J.9)
or
with

a= 02707, B=0.2302, ~=0.1882

J.1 Initial growth rate

The edge wave amplitudes are much smaller compared to the standing waves, i.e.

B << 1. Therefore, only the linear terms come into play. Equation (J.9) becomes

0B . _,
—a—T——zozB. (J.10)

which can be manipulated to get

B

'5;_—2' = jx (—ZOAB) = (12B

(J.11)

which has a solution

B = B(0)e**"
(3.12)
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i.e. the growth rate is 0.2707. Notice that

IAI _ wlAl, _ 1A,

2
T=€t=€——
gs2 8 gs2

where w is the incident wave frequency and wy is the edge wave frequency. For the

subharmonic resonance in our study, w = 2wy.

J.2 Equilibrium state — mature edge wave ampli-
tude
When equilibrium state is reached after a certain time of evolution, %—f = 0, then

iaB* — (B+iy)B’B*=0= B’ = = 0.954

ia
B+
where we have discarded the trivial fixed point B = 0. Returning back to the physical

amplitude,

s|A'|
k

4
B'| = 0.954 _0954 glANY? = 0954 glANY? = 1.908s 914
w2

The maximum excursion at the shoreline

Xp= Q'B,| 3816( IAII)

s w?

Stability analysis around the fixed point will be similar to the synchronous resonance

case.
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