
A Digital Physics Method for Two Phase Flow

by

David M. Freed

B.S. Double, Nuclear Engineering and Chemical Engineering,
University of California at Berkeley (1991)

Submitted to the Department of Nuclear Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Nuclear Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1997

@ Massachusetts Institute of Technology 1997. All rights reserved.

A uthor.............. .... ......... ... ....
Depart e of Nucl r n ering

Certified by.................
k/ .- Kim olvig

Associate Pr essor
Thesis Spvisor

Accepted by ..............
/ /'' / Jeffrey P. Frei'dberg

Professor
Reader

Accepted by ....................
/ /' /Jeffrey P. Frdidberg

Chairman, Departmental Committee on Graduate Students



A Digital Physics Method for Two Phase Flow
by

David M. Freed

Submitted to the Department of Nuclear Engineering
on April 1, 1997, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

ABSTRACT

Digital Physics refers to a fully discrete, microdynamical system whose mean be-
havior recovers real continuum physics. The purpose of this project is to develop
a Digital Physics method by which to model the flow of single-component fluids
with a non-ideal-gas equation of state, such as liquids and two-phase mixtures.
The new system, called the multiphase system, is built upon the framework of
a previously developed Digital Physics system. This original Digital Physics
system, the standard system, is used to simulate low Mach number flow of an
ideal gas.

Previously, substantial performance improvements (compared to CFD nu-
merical solvers) have been achieved with the standard system for hydrodynamic
simulations of ideal gas flows. Hence the underlying motivation of this work is
the development of a more efficient simulation tool for detailed two-phase flow
investigation as compared to current numerical methods. Specifically, the mul-
tiphase system simulates the local instantaneous flow field including explicit
representation of the interfaces.

The multiphase system contains significant extensions of the standard sys-
tem, particularly a non-local operation allowing microscopic interactions at a
distance, loosely mimicking a real liquid, while preserving exact (global) con-
servation of mass, momentum, and energy. It retains the advantages of Digi-
tal Physics compared to other lattice gas methods for flow modeling, such as
Galilean invariance, elimination of the dynamic pressure anomaly, and a mean-
ingful energy transport equation. In the multiphase system the energy degree
of freedom has been extended to allow a consistent empirical thermodynamics
suitable for a system with liquid-vapor coexistence. Thus in addition to correct
hydrodynamic transport, the multiphase system achieves appropriate equations
of state for the liquid and vapor phases; the current implementation employs a
van der Waals thermodynamical system. The multiphase system does not model
heat transfer, although heat transfer capability is anticipated to be a possible
extension.

Results are presented for a variety of simulations using a 2D implementation
of the multiphase system created as part of this thesis. These include measure-
ments of shearwave decay, liquid soundspeed, and the equilibrium coexistence



curve. Two independent measurements of surface tension are made and found to
be in agreement. Dynamical two phase experiments performed are spontaneous
phase separation, Rayleigh-Taylor instability, and single bubble rise in a liquid
column. It is found that the simulation results for the multiphase system agree
well with theoretical and experimental results, and it is concluded that the key
physical mechanisms are correctly captured. Furthermore, it is predicted that
a 3D version of the multiphase system would be straightforward to implement,
and could be used to investigate bubbly and slug flow for water at Reynolds
numbers on order 104 .

Thesis Supervisor: Kim Molvig
Title: Associate Professor, Nuclear Engineering Department
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Chapter 1

Introduction

This thesis presents a lattice gas method for detailed simulation of two phase hydrodynamics.

The method is an example of the "Digital Physics" approach to the simulation of physical

systems governed by continuum mechanics. This multiphase Digital Physics system will be

referred to as the "multiphase system" for short.

This chapter provides a brief introduction to two phase flow, lattice gases, and where the

current method is thought to fit into each of these expansive fields. A summational outline

of the thesis is provided as well.



1.1 Applications and Current Methods of Two Phase

Flow Modeling

Two phase flows of a gas-liquid mixture are extremely common, both in industrial processes

and in nature. Chemical processes such as reaction or mass transfer are often carried out by

contact of a liquid phase and a gas phase in a "chemical reactor." Over 60% of heat exchange

equipment used in industrial processes involves two phase flow of one kind or another [1].

Large power production operations typically rely on boiling heat transfer, which results

in a flowing two phase mixture of a liquid and its vapor. Study of the atmospheric and

geohydrologic transport of materials often involves two phase flow. An important example

is prediction of the fate of radioactive substances when evaluating disposal options. Another

example is the petroleum industry, since methods of oil recovery typically involve multiphase

flows.

One of the most active areas and important driving forces of two phase flow research for

several decades has been the thermal-hydraulic design of nuclear reactors [2]. Safety and

efficiency (in both the thermodynamic and economic sense) during normal operation require

accurate prediction of two phase flow behavior. In addition, modeling of transient two phase

flow is needed for safety analyses of possible accident conditions [3]. Especially in the latter

case there is a diverse set of two phase flow problems that may come into play.

The most important feature of a two phase mixture is the presence of interfaces separating

regions of one phase from regions of the other. Hence the flow has an internal structure,

and the overall pattern characterizing the spatial distribution of the two phases is known

13



as the flow regime. For example, in vertical upflow through a conduit, the flow pattern is

commonly regarded as belonging to one of the following flow regimes: bubbly flow, slug flow,

churn (or froth) flow, or annular flow [4].

A basic problem in two phase flow modeling is that the important transfer mechanisms,

between fluid and structure as well as between the two phases of the fluid, depend heavily

on the flow regime. In turn it is often difficult to reliably predict the flow regime for a given

system without direct experimental evidence. The fact that fluid properties, flow parameters,

and system geometry are all influential in determining flow regime provides uncertainty in

attempts to extrapolate from existing information [3].

In principle a two phase flow problem may be formulated in terms of the usual trans-

port equations of single phase flow, with appropriate matching boundary conditions at the

interfaces. With enough resolution this would allow direct computational prediction of the

detailed flow dynamics, including the flow regime. Unfortunately this is far too computa-

tionally burdensome to be practical, except for the very smallest of systems. Indeed the

resolution needed for an explicit calculation of this nature is currently achieved only for a

very limited range of single phase systems, which of course do not have the added complexity

of spatially and temporally varying internal boundary conditions.

Practical two phase flow modeling (say for a nuclear reactor core) therefore requires a

"macroscopic" approach where the interfaces are not explicitly modeled at all, but their

influence on local transfers is accounted for by somehow adjusting the parameters and prop-

erties of a simplified model. This is analogous to turbulence modeling in single phase flow,

where the effects of turbulence are reflected in quantities such as the eddy viscosity. The

14



simplest and most common two phase flow model is the homogeneous equilibrium model

(HEM), where the transport equations are solved for a single pseudo-fluid whose properties

represent a mixture average of the two phases. The other approach is the separated flow

model, in which each fluid is considered individually to some degree.

A very simple separated flow model is the drift flux model, which focuses mainly on the

relative velocity difference (or slip velocity) between the two phases [5]. The drift flux model

is especially useful because it requires modest computational work over that of the HEM,

but can approximate flows where the fluids may have very different mean velocities. An

example is annular flow, where an upflowing vapor core is surrounded by a liquid film whose

net flow may be downward; here the homogeneous equilibrium model is clearly inadequate.

A more sophisticated separated flow model is the two fluid model, where the transport

equations are written for each phase separately. Additional equations then describe interac-

tions (such as rates of mass, momentum, and energy transfer) between the two phases and

between each phase and the solid boundaries. Many forms of the two fluid concept exist,

for example the energy transport equation may be written for the mixture while mass and

momentum transport remain separate for each phase. The two fluid approach is common in

current thermal hydraulics codes in the nuclear industry (e.g. [6]).

The choice of a model for a given system must strike a balance between computational

speed and various degrees of accuracy and resolution. In all cases some level of fine grain

detail is sacrificed, and the necessary approximations use information obtained empirically

or semi-empirically. Most important in the choice and application of such information is

knowledge of the flow regime. In correlating or theoretically formulating information used

15



in the parameters of the large-scale models, it is very useful to understand the physical

mechanisms which govern the behavior in a certain flow regime and the transitions between

flow regimes. It is in this capacity that modeling of smaller scale phenomena through theory,

experiment, and fine grain computer simulation can play a valuable role. For example,

correlations used in modeling bubbly or slug flow typically rely on prediction of the relative

rise velocity of a single bubble.

Computational flow simulation in which the exact equations are solved as described above

would offer a way, in compliment with experimental results, to intimately probe assumptions

about basic physical mechanisms. To date the use of such simulations to investigate even

relatively simple, small-scale two phase systems is quite limited because they are so com-

putationally demanding. Progress in this direction has been made with the volume-of-fluid

method [7, 8, 9] and the front tracking method [10] in the investigation of the motions of

rising bubbles. Here the local instantaneous field equations (for incompressible fluids with no

heat or mass transfer) are numerically solved, including an explicit dynamical representation

of the interface as a discontinuity existing within specific volume elements. In one instance

of recent work by Tomiyama, Sou, Zun, and Sakaguchi [11], 3D bubbly flow is simulated

in a duct composed of - 2(104) cells. However, the flow is strictly laminar (Re < 100),

and values of certain relevant dimensionless quantities, particularly the Morton number, are

far different than those representative of water. Nevertheless interesting phenomena have

been studied with these methods, such as bubble deformation, lateral bubble migration, and

patterns of bubble distribution resulting from the interaction of bubbles with the velocity

profile of a shear flow.



The method presented here, the Digital Physics "multiphase system," recovers the exact

equations for isothermal, compressible two phase flow. Its main usefulness, like any detailed

simulation method, is expected to be found in the context of (a) providing insight into funda-

mental physical mechanisms important in two phase flow behavior, and (b) better resolving

the fine grain details of subsystems whose effects must ultimately be incorporated in an ap-

proximate fashion into the coarse grain model for a large system. Moreover, the multiphase

system is predicted to expand the range of two phase flow problems accessible to direct

simulation of the detailed flow field including interfaces. This greater range refers to both

the system size and the fluid properties, as represented through appropriate dimensionless

quantities. The source of this optimism is an estimate of the computational performance of

the multiphase system based on current commercial Digital Physics capabilities'. Simulation

Reynolds numbers on order 104 are anticipated, which would allow study of, for example,

effects of turbulence on bubble dynamics. At the same time Morton numbers appropriate

for water can be achieved. In addition, it may be possible to extend the multiphase system

to allow simulation of non-isothermal flows (with very little additional computational work).

1.2 Lattice Gases and Fluid Flow Simulation

What is the multiphase system, indeed what is Digital Physics? The term Digital Physics

refers to a fully discrete microdynamical system where mass, momentum, and energy are

exactly conserved, entropy production is assured by a local H-Theorem, and the mean be-

'A specific estimate is detailed in Section 5.2.



havior recovers real continuum physics. A Digital Physics system capable of simulating low

Mach number, ideal gas hydrodynamics is the multispeed lattice gas automata introduced

by Molvig, Donis, Myczkowski, and Vichniac [12], and further developed by Teixeira [13],

Chen [14], and others [15, 16, 17, 18, 19]. This ideal gas Digital Physics method will be

referred to throughout this thesis as the "standard system." The multiphase system is an

extension of the standard system which supports a non-ideal-gas thermodynamics appropri-

ate for two phase coexistence; hence it is essentially a type of lattice gas automata.

In its most basic form, a lattice gas automata consists of identical particles which move

about with unit speed from node to node on a fixed regular lattice. Associated with each par-

ticle at any given time is a discrete velocity, also considered its microstate, which determines

its direction of movement during the current step. Each complete update step consists of

two events, a collision phase and a propagation (also called advection) phase. In the collision

phase, particles have their velocities adjusted according to a set of collision rules; then the

actual hopping to a new site comprises the propagation phase. At most one particle may

exist at a given site with a given velocity, which is the "exclusion rule" of the lattice gas;

hence a microstate is either occupied or unoccupied.

The collision rules are carefully constructed such that mass, momentum, and energy (and

nothing else) are conserved for every collision. Of course when all particles have equivalent

speed, then mass and energy are redundant. Collisions serve to randomize the local particle

distributions, monotonically generating entropy such that the ensemble average occupation

probability of any microstate has a value given by the local thermodynamic equilibrium2 .

2In a system with an exclusion rule it is a Fermi-Dirac equilibrium.



The fate of the (average) occupation probability of a given microstate during a complete

update step can be expressed as a difference equation, called the lattice update equation. The

lattice update equation is Taylor expanded in space and time to give the microkinetic equation

of the lattice gas. Then the mass, momentum, and energy moments of the microkinetic

equation may be expressed as differential equations containing local macroscopic quantities,

such as density and velocity, varying in space and time. These are the mass, momentum,

and energy transport equations which describe the long-wavelength, low frequency dynamical

behavior of the system.

This is analogous to the derivation of the real transport equations of continuum fluid

mechanics from the Boltzmann equation. The first order Knudsen number expansion of the

kinetic equation gives the Euler equations, and the second order expansion gives the Navier-

Stokes equations. However, due to the presence of only a finite set of discrete velocities

on the lattice, the transport equations of the lattice system will be different than those of

true continuum mechanics. These differences are referred to as discreteness artifacts. In

particular, the momentum flux tensor is generally anisotropic in a fashion related to the

structure of the lattice.

In 1986 it was recognized by Frisch, Hasslacher, and Pomeau [20] that a 2D hexagonal

lattice results in an isotropic momentum flux tensor for the lattice gas. This gives a momen-

tum transport equation for the basic lattice gas just described which is similar to that of

real hydrodynamics, but which still retains certain other discreteness artifacts. Nonetheless

the discovery of the isotropic momentum flux tensor touched off a flurry of research into

extensions of the original system [21, 22, 23, 24, 25, 26], the general theory of lattice gas sys-



tems [27, 28, 29, 30], and the potential to use them for hydrodynamic simulation [31, 32, 33].

Immediately investigated, for example, was the opportunity to exploit inherent computa-

tional advantages of the lattice gas system [34], since each microstate could be represented by

a single bit as the system evolved via simple logical and highly parallel operations. Shortly

after the 2D hexagonal system was introduced, Frisch, Hasslacher, Lallemand, Pomeau,

d'Humieres, and Rivet [35] showed that the face-centered hypercube (FCHC) lattice also

results in an isotropic momentum flux tensor, and moreover could be used to represent a 3D

system. A concept inspired by lattice gas automata called the "lattice-Boltzmann method"

was developed [36, 37, 38], where the discrete particles are replaced with floating-point

numbers, resulting in a kind of hybrid between a lattice gas and an explicit finite-difference

scheme. In the decade or so since the landmark paper of Frisch, Hasslacher, and Pomeau [20],

many other interesting and important developments have been made3

Most of the resulting lattice gas models, it turns out, suffer from the additional dis-

creteness artifacts, limiting their usefulness as flow simulation methods. In 1988, however,

Molvig, Donis, Myczkowski, and Vichniac [12] showed that a lattice gas composed of parti-

cles with three different speeds, instead of just a single speed, could be designed to eliminate

all discreteness artifacts from the momentum transport equation. By manipulating the dis-

tribution of particles amongst the different available speeds (or energies) in a particular way,

correct momentum transport is recovered exactly. In addition, this multispeed model, where

mass and energy are no longer redundant, has a well-defined energy transport equation, with

an ideal gas relationship between internal energy and pressure. This is the standard system

3Many of the key early works can be found in collections edited by Doolen [39] and Monaco [40].



referred to above; certain discreteness artifacts remain in the energy transport equation,

hence it is appropriate for simulating flows where heat transfer is not important.

The first demonstrations of the ability of the three-speed standard system to simulate

quantitatively accurate 3D hydrodynamic behavior were presented in 1991 by Mujica [41] for

flow past a flat plate, and in 1992 by Teixeira [13] for Poiseuille flow and flow past a circular

cylinder. Teixeira [13] also showed that additional, higher particle speeds can be used to

remove the energy transport artifacts, and that the FCHC lattice has the necessary symmetry

properties to allow the inclusion of these higher speed particles4 . Certain other extensions

to the multispeed lattice gas have been made, including the use of multi-bit microstate

populations [16] (hence no exclusion rule). Larger populations drastically reduce the noisiness

of the method, allowing a much crisper realization of the local instantaneous field equations

of hydrodynamics. In order to equilibrate the multi-bit population distributions, the collision

process [42, 18] at each site is carried out as a series of bilinear scattering events, in which

each event drives the distributions closer to equilibrium5 . Moreover, this collision process

can be modified in a way that alters the shear viscosity of the lattice gas from its nominal

value, hence the viscosity may be "dialed in" within a certain allowable range [17]. These and

certain other developments6 have enabled the Digital Physics standard system to become a

powerful tool for simulation of low Mach number flows7 where it is acceptable to represent

the fluid as an ideal gas.

4In fact he proves that the momentum flux tensor remains isotropic for any particle speed of integer value
on the FCHC lattice.

5Which now has the usual Maxwell-Boltzmann form.
6In particular developments related to high Reynolds number flow are not discussed here as they are

proprietary to EXA Corporation.
7For example state of the art simulations of automobile aerodynamics [43] and cavity flows [44].



The presence of interfaces is the difference between a simple fluid and a complex one,

such as a multiphase or multicomponent fluid. Several ideas for lattice gas models of com-

plex flows have been put forth. A two component model called the "immiscible lattice

gas" (ILG) was introduced by Rothman and Keller [45] in 1988, and recently another two

component model using a lattice Boltzmann method was conceived by Swift, Osborn, and

Yeomans [46]. A lattice gas exhibiting a liquid-vapor transition was formulated by Appert

and Zaleski [47]. Various implementations and extensions of these, particularly of the ILG,

have been explored[26, 48]. Generally, however, these methods not only retain the discrete-

ness artifacts of single speed models, they also tend to have a very limited range of fluid-fluid

density ratio and other key two phase properties. Recent work based on the ILG explores

the use of "stopped particles" (particles of zero velocity) as a degree of freedom by which to

remove one of the artifacts [49], or to increase the density of one component relative to the

other [50]. The result, however, is that large amounts of stopped particles severely limit the

fluid velocity. Furthermore, the equation of state in such systems (i.e. the pressure-density

relation) is quite unphysical, in fact the liquid is actually more compressible than the gas.

A particularly interesting concept was introduced by Shan and Chen [51] in 1993 in

their multiphase lattice Boltzmann model. They formulated a non-local, nearest-neighbor

interaction that mimics an interparticle "potential," and in the macroscopic limit yields a

non-ideal-gas equation of state. The interaction alters the local value of momentum at a site

in a way that reflects its neighborhood, but does so in a fashion that conserves momentum

globally (i.e. over the lattice as a whole). The equation of state can be tuned by adjusting a

parameter central to the non-local interaction, and two phase coexistence occurs when the



pressure-density relation exhibits a hysteresis such that two different densities are stable at

the same pressure. This concept was used with a single speed lattice Boltzmann method,

where discreteness artifacts in the momentum equation can be eliminated, but there is still no

energy degree of freedom; hence any connection with two phase thermodynamics is hindered.

Also, lattice Boltzmann methods are subject to numerical instabilities [52] because they use

floating point values rather than discrete particles.

In the present work a discrete adaptation of the non-local interaction concept of Shan

and Chen is developed as an extension to the Digital Physics standard system. This requires

construction of an exact-integer version of the sitewise momentum adjustment process, the

addition of a new microphysical feature to account for the energy associated with phase

change, and several other developments which are detailed herein. The result is the first

lattice gas method with correct momentum transport, two phase capability, a realistic equa-

tion of state for the gas and liquid phases, and the ability to achieve liquid-vapor density

ratios sufficient for simulation of practical systems. Furthermore, the independent energy

transport equation provides the potential to extend the method to include heat transfer.

This work also contains the first application of a lattice gas method to the investigation of

two phase bubble dynamics.

1.3 Outline of Analysis

The goals of this thesis are as follows. The first is to present the fundamental extensions which

allow the multiphase system to obey a more general equation of state than that of an ideal gas,



specifically one which exhibits a region of two phase coexistence. The second is to show how

to recover correct hydrodynamical behavior for the resulting individual bulk fluid phases.

The third is to outline the potential for the multiphase system to provide quantitatively

accurate simulation of real fluids, particularly water, in two phase flow situations of practical

interest. The fourth is to present experimental results for a 2D version of the multiphase

system which verify the theoretical predictions for the properties of the multiphase system,

and demonstrate its ability to capture certain key physical mechanisms of two phase flow.

The content of this thesis is intended to introduce the fundamental advances leading

to development of the multiphase system, and to investigate its properties primarily from

the perspective of achieving correct two phase hydrodynamics. The multiphase system is in

principle capable of modeling a variety of substances over a range of (equilibrium) thermody-

namic conditions. The specific implementation presented here is intended to be as simple as

possible but nonetheless suitable for an approximate representation of water. It is also a 2D

version, but the extension of the multiphase system to 3D is entirely straightforward; 2D was

used only to speed development of the fundamental algorithms by reducing computational

requirements as much as possible.

A key limitation of the multiphase system at present is a maximum liquid to vapor

density ratio of about 200. Another important limitation in the present implementation is the

required use of an "isothermal condition", where all of the material in the system is imagined

to be in immediate and instantaneous contact with a constant temperature reservoir. These

restrictions are likely associated with the need for additional microphysics within the finite

interfacial region. While heat transfer issues are beyond the scope of this project, the ability



to include heat transfer in the multiphase system is feasible if a way to eliminate the need

for the isothermal condition can be found. The multiphase system does take important

steps towards heat transfer capability. It includes a physically consistent representation

of thermodynamical quantities, emphasized for example by the large difference in internal

energy per unit mass between the vapor and liquid phases. Furthermore, it is believed that

the energy transport analysiss provided in this thesis is sufficient to construct a method for

single phase flow of a non-ideal-gas vapor or liquid including heat transfer, although this

task has not been undertaken here.

The remainder of this document is organized as follows. In Chapter 2 a new operator,

named the interaction operator, is introduced into the Digital Physics microsystem. The

interaction operator is shown to provide a non-local interaction, in the form of a sitewise

momentum and energy adjustment, which mimics the intermolecular forces in a real liquid.

Chapter 3 discusses how the momentum piece of the interaction operator gives rise to non-

ideal-gas behavior, and in particular can be used to achieve a thermodynamical system, such

as a van der Waals system, appropriate for modeling two-phase coexistence. It also introduces

the "microscopic internal energy" as a means to address the internal energy dependence in

the multiphase system, which must account for the latent heat of the liquid-vapor phase

transition. In Chapter 4, the moments of the resulting microkinetic equation are evaluated

at the Euler level to provide constraints by which to remove discreteness artifacts. Correct

momentum transport requires the same constraints as in the standard system. On the other

hand the energy transport equation contains new artifacts, one of which must be removed

8The energy transport analysis for the standard system was done by Teixeria [13].



using the energy piece of the interaction operator. Although it is shown how to recover

correct adiabatic energy transport for the multiphase system, in practice the isothermal

condition is needed in the two phase simulation experiments.

Chapter 5 looks at the important thermodynamic and flow properties involved in modeling

two-phase flow of water, and describes the relationship between macroscopic quantities in

the lattice system and those of the real world. It also discusses predictions of the capabilities

and limitations of a 3D, "engineering-scale" multiphase system for simulating flow systems

of practical interest, and bubbly flow is identified as a promising application. Chapter 6

addresses key issues in selecting and implementing a specific multiphase system. These

include solution of the system of constraints needed to remove artifacts, and a modified

advection scheme required to stabilize the liquid phase due to its elevated soundspeed. Also

included is a description of the algorithm used in the 2D simulations presented in this

thesis. These experiments and the results are described in Chapters 7 and 8. In Chapter 7,

the more basic behavior of the multiphase system is observed and compared to theoretical

prediction. This includes single phase shearwave decay and soundwave propagation tests,

spontaneous phase separation, and experiments which probe the equilibrium properties of

two-phase systems at rest. Chapter 8 looks at simulations of two dynamic liquid-vapor

systems: Rayleigh-Taylor instability, and single bubble rise in a column of liquid. Chapter 9

presents conclusions and further discussion of a few key issues.



Chapter 2

The Multiphase Microsystem

2.1 A Non-Local Interaction

This chapter begins the theoretical description of the multiphase system by introducing and

describing its microdynamical nature. In particular, the goal is to show how the set of

microscopic rules which constitute the standard system can be extended so as to achieve

multiphase behavior in the macroscopic limit. The thermodynamics of the standard system

are consistent with those of an ideal gas. The fundamental advance by which multiphase

behavior will be brought about for the new system may be viewed as the existence of non-

ideal-gas thermodynamics, which is a physically consistent basis. However, rather than

imitating the highly complex molecular interactions which result in the real non-ideal-gas

behavior of a substance, a simple, discrete microscopic procedure in the usual Digital Physics



fashion is desired. This chapter will be concerned with motivating and formulating such a

microscopic procedure.

In a real fluid, the departure from ideal gas behavior is a result of the forces exerted on

the fluid molecules by other fluid molecules. Due to these forces, at any instant in time

the motion of a particular molecule is influenced by the relative types and positions of the

molecules around it. In a gas, the molecules are far apart, and intermolecular forces are weak

relative to the mean molecular kinetic energy. On the other hand the molecules of a liquid

are held close together by attractive intermolecular forces and very short range repulsive

ones, and these interparticle forces dominate the instantaneous molecular motions.

This physical picture points to the idea that to achieve a Digital Physics representation

of a fluid with non-ideal-gas behavior, such as a liquid, an interaction should be introduced

through which a lattice gas particle "feels" the other particles around it. Particularly within

a liquid phase the interparticle interaction should be very strong. There is a fundamental

difficulty with such a concept, which is illustrated in Figure 2.1. Consider the collection of

particles drawn on the left-hand side. If these were the molecules of a real material, then

the influence of one particle on another would depend on the distance between them. In

a lattice gas, however, the system is spatially discrete; one can imagine drawing control

volumes (shown by dashed lines) which fill space, and every particle belongs to exactly one

of these unit cell microvolumes. Most significantly, all the particles of a cell are represented

as existing at a central node, hence all information is lost concerning the precise locations

of particles within a cell. Naturally the set of control volumes forms the lattice, and their

central nodes are just the lattice sites, as shown on the right side of Figure 2.1.
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In the lattice gas, precise particle locations by which interparticle distances could be

determined are not available, instead there is only the discrete distances between lattice sites.

This suggests replacing interactions between particles with interactions between sites, where

now one site "feels" the other sites around it through their local macroscopic properties such

as density. A conceptual illustration is provided in Figure 2.2; the first part shows forces

between molecules of a liquid, the second shows momentum exchange between sites with

different densities (indicated by the patterns). In particular, one can imagine momentum

exchanges between pairs of sites which increase with the product of the densities of the pair.

However when that product becomes very large (such as between the two highest density sites

in Figure 2.2), the amount of momentum exchange begins to decrease, essentially representing

repulsive forces at very high density. The physical interpretation is that a mean interparticle

distance in a local neighborhood of lattice sites is found by examining the densities of those

sites. Then variations over its neighborhood give rise to the forces experienced by a given site.

In this way one can hope to capture the physics of a liquid through a mean-field approach

in a spatially discrete system.

A distinguishing feature of such a lattice gas is the presence of a non-local interaction, since

in carrying out the microdynamics at one site, information about other sites is employed.

The implementation of such an interaction must be some new operation or set of operations

which alters the microscopic population distribution of a site in response to the influence of

its neighbors. Moreover, it is believed that in general such operations must locally alter one

or more of the fundamentally conserved quantities - mass, momentum, and energy. A simple

argument may be made for why this should be true. Consider the nature of the standard
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system, which consists of two operations, a propagation step and a collision step. The

purpose of collisions is to force the distribution of particles at each site to be the Boltzmann

distribution. This maximizes the local entropy for a given mass, momentum, and energy,

which must be the only invariants of the collision process. At the completion of a successful

collision process, the distributions are at (or very near) equilibrium, and the propagation

step must act on these equilibrium distributions in order to recover hydrodynamics at the

macroscopic level. Thus any other operation must act after the propagation step but prior to

the collision step. However, if an operation acting at this time were to alter the distributions

in some way but did not affect the invariants, there would be no net effect at all, since

the following collision step would destroy any trace of the operation when it restores the

equilibrium distributions.

Thus the purpose of the non-local interaction, indeed the only way it can be meaningful,

is to break sitewise conservation of some combination of mass, momentum, and energy. In

keeping with the principles of Digital Physics, however, exact integer conservation is required

in a global sense, that is to say the total mass, momentum, and energy of the whole system

must be constant in the absence of external influences. In order to ensure this, it is desirable

to design the new operations to represent some sequence of events, each of which conserves

mass, momentum, and energy individually. This implies that each hypothetical event is some

sort of exact exchange process of one or more of these quantities. This concept is employed in

Section 2.3 (and 4.2) when the precise nature of how to implement the non-local operations

of the multiphase system is explored.



2.2 The Interaction Operator

In this section a general formalism for a Digital Physics system which can include the ex-

change of mass, momentum, and energy amongst neighboring sites will be developed. This

formalism must provide a microscopic description of the system from which its macroscopic

behavior can be derived. It is useful to first recall briefly some basic properties of the stan-

dard system, which forms the framework for the multiphase system. The underlying lattice

is the 4D face-centered-hypercube (FCHC) lattice, which possesses certain necessary sym-

metry properties [27]. Particles move from one lattice site to another according to their

discrete microscopic velocities during the propagation phase. Then particles at the same

site exchange momentum and energy during the collision phase, where each collision event

conserves mass, momentum, and energy exactly. For each site, the collisions cause the

distribution of particles amongst the available velocities to be that representing local ther-

modynamic equilibrium1. The system evolves by repeated updates of propagation followed

by collision. It is not very difficult to imagine that the system just described represents a

discrete version of an ideal gas.

At least three different speeds of particles are required in order to recover correct momen-

tum transport. The nominal (three-speed) version of the standard system contains particles

of speed 0, 1, and 2. The speed of a particle is actually its microscopic kinetic energy

ej = mcy/2, where m is microscopic mass and cj is the microscopic velocity magnitude. The

microscopic velocity vector cji gives the direction and distance that a particle travels during

'A theoretical description of the original lattice gas collision operator is given by Frisch, Hasslacher,
Lallemand, Pomeau, d'HumiBres, and Rivet [35]; the collision process developed for the multi-bit states of
Digital Physics is discussed by Chen, Teixeira, and Molvig [19].
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the propagation phase. The notation of Molvig, Donis, Myczkowski, and Vichniac [12] is

continued here, using j to refer to the particle speed (or more generally species) and i to

refer to a specific velocity available for that speed. The vectors representing the possible

velocities for speed 0, 1, and 2 particles are shown in Figure 2.3 for a 2D mapping of the

FCHC lattice. This set of vectors is the one actually used in the 2D implementation of the

multiphase system for this thesis. The numbers by the arrows indicate the degeneracy or

"weight" associated with a velocity; weights occur due to the representation of a 4D system

in 2D.

The basic mathematical description of a lattice gas microsystem is its lattice update

equation. The lattice update equation of the Digital Physics standard system2 is

Nji (x + cs, , t + 1) - Nj; (x, t) = Cjj (2.1)

where Nji is the population of microstate ji at site x and time t, alternatively referred to as

the microscopic distribution of state ji. As noted above cji is the velocity vector associated

with microstate ji. Cji represents the collision operator C acting on the population at

microstate ji, which causes that population to take its equilibrium value NjE Q.

A new operator, the interaction operator I, is introduced as the formal representation of

some non-local interaction within the Digital Physics microsystem. The interaction operator

2Which has the same basic form as the update equation for the original FHP lattice gas.
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is included in the above equation to generate a new lattice update equation:

Nji (x + cji, t + 1) - Nji (x, t) = Cjj + Zi; (2.2)

where Zji is the interaction operator acting on the microscopic distribution Nji. Unlike the

collision operator, which is purely local since it depends only on the distributions at site x,

the interaction operator must somehow take into account information about the distributions

at other sites in the vicinity.

To proceed it is helpful to get an idea of how the presence of this additional operator will

affect the macroscopic dynamics of the system. A first order expansion (in Knudsen number,

i.e. a small mean free path expansion) of the new lattice update equation gives

8,Nji + cji - VNj; = Cj; + ji; (2.3)

where Nj; (x, t) is abbreviated as Nj;, and then taking the mass, momentum, and energy

moments:

Z m [oNji + cj, . VNj, = Cji + Zji] (2.4)

Z mcj, [atNji + cj,. VNji = Cjj + Zji] (2.5)
ji

Z Ej [atNj, + cj,- VNj, = Cj0 + Ij,] (2.6)
ji

which go over to

8tp + V. pu = + Zi;, (2.7)
ji



0tpu + V -H• = ZTjicji (2.8)ji

~w + V -Qk = Z•Zij (2.9)
ii

after employing the following definitions and relations:

m = microscopic mass (hereafter taken to be unity)

ej = 1 mcj = microscopic kinetic energy

p = mNji = macroscopic mass (per unit volume)
ji

pu = ZmcjiNji = macroscopic momentum (per unit volume)
ji

IIk = mcjicjiNji = PkI + gpuu = momentum flux tensor

Ji (2.10)
Pk = isotropic pressure

W = • jN; = E + 2plul2 = total macroscopic energy (per unit volume)

E = internal energy (per unit volume)

Qk = _jcjiNji = energy flux

mCji = > mcjiCji = EjCji = 0
ii i ji

Equations (2.7 - 2.9) express the "lattice Euler equations" for the multiphase system.

They naturally look like those of the standard system, except for the terms involving the

interaction operator I. For the moment let us assume that the momentum flux tensor IIk has

the indicated form3 which is identical to that of the standard system (as derived by Molvig,

Donis, Myczkowski, and Vichniac [12]). The subscript "k" used with the momentum flux

3 Actually the form given is for the zeroth order momentum flux tensor with Nji = N E Q .



tensor, scalar pressure, and energy flux is meant to indicate that the given expressions for

these quantities really represent only the "kinetic" contributions. Kinetic contribution or

kinetic part denotes that part which is due to the conventional (ideal gas) part of the system

and does not include the effects of the non-local interaction, which are entirely represented by

the moments of the interaction operator written on the right-hand sides of these equations.

This is an important distinction since the non-local interaction is expected to provide

a significant contribution to these quantities, indeed that is its function. Therefore the

subscript "n" is used to indicate the so-called non-local contributions. The total quantities

are the sums of the kinetic and non-local parts and will simply be written with no subscript,

thus momentum flux II = ]Ik + I , scalar pressure P = Pk + P,, and energy flux Q =

Qk + Qn. By definition these total quantities must satisfy the Euler equations written as

tp + V -pu = 0 (2.11)

atpu + V - H = 0 (2.12)

atW + V . Q = 0 (2.13)

Subtracting equations (2.11 - 2.13) from equations (2.7 - 2.9) gives

• i-j = 0 (2.14)

E jij7 = V - k - V-I = V o-II (2.15)



Elij= V. Qk - V-Q = -V -Qn (2.16)
ji

These equations show that the mass moment of the interaction operator should vanish, and

relate the momentum and energy moments to specific macroscopic quantities. It is therefore

expected that local changes in momentum and energy, but not mass, will be required to occur

between the propagation and collision steps. The way in which the amounts of these local

changes in momentum and energy are calculated depends on the nature of the quantities

V -H , the divergence of the non-local part of the momentum flux tensor, and V - Q,, the

divergence of the non-local part of the energy flux. This analysis is dealt with mainly in the

next two chapters.

For now the formal description of the interaction operator is continued by looking at how

to implement the desired changes in local momentum and energy once they have been deter-

mined. In the Digital Physics system, with its discrete particles and discrete velocity states,

it is natural to think of "pushing" a particle from one state to another. The momentum and

energy of a site will be altered by sequences of pushes at that site, where each individual

push provides a small, discrete change in momentum and/or energy. Given the large state

space associated with multiple speeds on a FCHC lattice, there are generally going to be a

very large number of ways to push particles around so as to cause a given total change in

momentum and energy. It is therefore useful to define a set of pushes P(A,pu, AnW) as

any set that provides a momentum change of Apu and an energy change of A,W (where

the subscript "n" denotes an effect of the non-local interaction). It is found then that Iji,



the interaction operator acting on the particles in state ji, can be written as

ji = AP [~iu(p) - (P)] (2.17)

where a push of type p flips a particle from direction ji' to direction ji", Ap is the number of

pushes of type p, and 6(P) is a Kr6necker delta function which is equal to one if ji = ji"(p),

and zero otherwise (and likewise for S• •(P)). Substituting into equation (2.14),

> i 2L = ji A ) -- [1 ji(l(p
ji ji J P (2.18)

= A~~ j, - bj, =E(P)] A(1 - 1) = 0
P ji p

and it is seen that the mass moment vanishes as expected, since for every type of push the

particles corresponding to direction ji' are subtracted and an equal number corresponding

to direction ji" are added. The total momentum change is found by substituting into the

momentum moment of the interaction operator,

S'(p) C= 5 ApC AE [&(P) -c, = z[(p) -

ji ji P P ji (2.19)

= ACjiI(,) - cji'(P= E Ac, = A pu
p p

where c, = cj;i,,() - cji,(p) is the microscopic change in momentum due to push p. Likewise,

the energy moment of the interaction operator gives

5 eji = E E A, [ - ' Ej = - Ape, = A,W (2.20)
ji ji P P



where e, is the microscopic change in energy due to a push of type p.

The interaction operator as written in equation (2.17) has the appropriate form since its

momentum and energy moments can be described as pushing operations which alter the

momentum and energy at a site by specific amounts, while leaving the density unchanged.

At this point it is useful to consider these new momentum and energy pushing operations as

two separate entities, partly because they yield distinct macroscopic signatures, and partly

because it is convenient to implement them as separate algorithms. In the following chapters,

attention is turned towards the macroscopic considerations which govern the dynamically

determined local instantaneous sitewise momentum and energy adjustments. First, this

chapter further explores the formulation of the momentum pushing operation, which is the

natural starting point of the non-local interaction.

2.3 The Interaction Force

This section addresses the concept of how to perform a sitewise momentum adjustment which

inherently provides exact integer conservation of this quantity globally. It is useful to return

to the idea of a sequence of hypothetical exchange events, each of which conserves momentum

exactly. To make this concept more concrete, imagine that the particles throughout the

lattice emit imaginary subparticles called "interactons" at each time step, and that the

interactons emitted at one site are absorbed by the particles at other sites during the same

time step. These particular interactons are massless and carry quanta of momentum. It

is required that an equal number of these momentum-carrying subparticles are exchanged



between any pair of sites, where this number may depend on the local properties of those

two sites such as density p and internal energy per unit volume E.

This construction suggests a pairwise "potential" Vpair between any two sites xl and x 2 ,

Vpair, (X, X 2 )= GO" (xi) I (X2 ) (2.21)

where 0 = O(x) will be referred to as the "interaction parameter," and G = G (Xl - x 2) is

a coupling coefficient which in general is a function of separation distance. Equation (2.21)

has essentially the same form given by Shan and Chen [51] in describing their interparticle

potential (they refer to 0 as the "effective mass"). The pairwise potential Vpair indicates

the number of interactons exchanged between two sites. This number depends on the local

properties of the two sites in a fashion determined by the functional form of the interac-

tion parameter b; the macroscopic considerations which determine this functional form are

addressed in the next chapter.

Naturally the pairwise potential should decrease with separation distance. This can be ac-

complished by allowing the coupling constant G to decrease with increased distance between

the sites. For simplicity and to minimize the range of the interaction (and corresponding

computational effort), momentum exchange is allowed only between nearest neighbors, i.e.

sites separated by a single velocity vector cji, and G is treated as a constant that is absorbed

into the interaction parameter 0. It is further proposed that the momentum exchange be-

tween a site x and its neighbor at x + cji is the pairwise potential Vp,,.i (i.e. the number

of interactons exchanged) multiplied by the velocity vector cji which separates them. This
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Figure 2.4: Illustration of non-local momentum adjustment process - the net momentum
change of the center site is the neighborhood sum of the individual exact integer momentum
exchanges.

implies that the total momentum change Aspu at site x may be calculated as the sum over

the neighborhood,

Anpu = >j Vpair (x, x + c;) cji = Z (x)b (x + c;i) ci; = F(x)At (2.22)

where the "interaction force" F has been introduced as equivalent to the local momentum

change (which takes place over a time step At, thus F has units of force).

The interaction parameter b is a local macroscopic quantity determined dynamically for

each site, then the momentum change at each site is calculated via the summation in equation

(2.22). Figure 2.4 illustrates the momentum adjustment process, where it is pretended that



the nearest neighborhood for the site in the center consists of just the four other sites shown.4

This scheme, using the interaction parameter b to represent local properties, is the specific

implementation of the concept pictured in Figure 2.2. The way in which the momentum at a

particular site is influenced by its neighborhood has now been precisely specified. The form

of the interaction force F given in equation (2.22) is the same as that introduced by Shan

and Chen [51], except that the Digital Physics version involves exact integer quantities.

It is straightforward to show that, as expected from its construction based on an exact

exchange process, the interaction force conserves momentum globally. That is to say, the

sum over all lattice sites of the momentum remains constant, because the sum over the lattice

of the interaction force vanishes,

ZF(x) = 0 (2.23)
x

Following Shan and Chen, this is verified by writing

E F(x) = E 1 b(x)b (x + cji) cji (2.24)
x x ji

or, summing over -cji instead of cji,

- E F(x) = E E b(x)b (x - cj,) cji (2.25)
x x ji

but one may equivalently sum over x' = x - cji, which is indistinguishable from summing

4 The algorithm actually used in the multiphase system involves the 12 nearest neighbors representing
speed 1 and 2 directions on the 2D mapping of the FCHC lattice, as described in Section 6.4.



over x, thus

- F(x') = E j (x' + cj,) I(x')cji
x' x' ji (2.26)

= 1 , (x + cji) b(x)cji = Z F(x)
x ji x

and therefore equation (2.23) must be true.

Combining equations (2.19) and (2.22) gives an important result:

E Apc = y ¢(x)O (x + cji) cji (2.27)
p ji

This equation indicates that the presence of the non-local interaction is felt through the

pushing of particles on each lattice site at every time step, causing sitewise changes in

momentum which nonetheless conserve momentum globally. The same approach will be

used later (Section 4.2) for the energy part of the non-local interaction. The next chapter

begins to look in detail at the macroscopic behavior this method needs to achieve through

the microdynamics of the multiphase system.



Chapter 3

Thermodynamics of the Multiphase

System

3.1 A van der Waals Equation of State

An equation of state is formally defined as a relationship which expresses an intensive param-

eter, such as temperature T or pressure P, in terms of the independent extensive parameters

of a system. It is often convenient to formulate from such relationships an expression which

gives the dependence of the pressure P on the two properties density p (or volume V) and

temperature T, and such an expression is commonly referred to as the equation of state.

This practice will be followed, such that the equation of state refers to an expression for the

pressure P = P(p, T). As such, the equation of state is only defined for a substance in a



single phase.

We are interested in modeling a substance which can exist as a vapor, a liquid, or a

mixture of these two phases in equilibrium. Part of a hypothetical equation of state for such

a substance, the pressure-density curve along an isotherm, is shown in Figure 3.1. The left

part of the curve represents the pure vapor; traveling along the curve in the direction of

increasing density, the pressure increases approximately linearly. At point A a discontinuity

occurs as the system becomes a two phase mixture of liquid and vapor. From point B the

pressure once more increases, but much more sharply than before; this part of the curve

represents the liquid, which is much less compressible than the vapor. Points A and B give

the vapor and liquid densities and pressure of the equilibrium two phase mixture.

The real behavior over the two phase region between A and B is shown by the solid

constant-pressure line, since phase transitions occur at constant temperature and pressure.

However the pure vapor and liquid curves can be extended in an imaginary fashion, shown

as the dashed line through the two-phase region. The point C on this line represents a

non-equilibrium (and therefore unstable) state of intermediate density. The line containing

C is a plot of a single continuous expression which describes both the liquid and vapor in the

single phase regions, and corresponds to some important properties of the two-phase system.

The van der Waals equation of state (used to draw Figure 3.1) is the classic example of this

concept, and has proven to be useful in describing many aspects of the liquid-vapor phase

transition [53]. An interesting property of the van der Waals equation is that in addition to

being a simple empirical curve fit for a liquid-vapor system, it may be derived from a very

simple molecular model.
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Figure 3.1: Example of a pressure-density isotherm for a substance which can exist as a
vapor, a liquid, or a two-phase mixture.

This section shows how the momentum piece of the non-local interaction introduced in

the previous chapter gives rise to a non-ideal-gas equation of state. In fact a great deal

of flexibility over the equation of state results, and one which has the behavior illustrated

in Figure 3.1 can be chosen. In this case it is expected that (for temperatures below the

critical point) a first order phase transition will yield the coexistence of a high density region

and a low density region, representing liquid and vapor phases. Fundamentally, two-phase

coexistence occurs when it minimizes the total free energy of the system'.

'It has yet to be proven, however, that a true free energy in the sense of a thermodynamic potential exists
for this lattice gas system, hence terms such as "entropy" and "free energy" are used rather loosely in this
work to represent local hydrodynamic quantities.



To begin the analysis the relevant relations just derived in Chapter 2 are restated:

E Zjicj, = E Apc = -V- _H = Anpu = F (3.1)
ji p

which equates the momentum moment of the interaction operator, the explicit form of the

momentum pushing operation, the divergence of the non-local part of the momentum flux

tensor, the local momentum change due to the non-local interaction, and the interaction

force. The correct form of the total momentum flux tensor H in a bulk phase (i.e. far from

an interface) is

S=PI + puu = II + H (3.2)

As shown in equation (2.10), the kinetic part of the momentum flux tensor, which is expected

to be equivalent to the momentum flux tensor of the standard system [12], is

IIk PkI + gpuu (3.3)

It is also expected that, as in the standard system, the Galilean factor g can be set to unity

through the "rate coefficients" which govern the energy dependent part of the distributions

(this is proved in Section 4.1). Combining the last two equations therefore yields

I = PI - PkI = PiI (3.4)

for the non-local contribution to the momentum flux in a bulk phase region, and in view of



equation (3.1),

- V -PnI = F = -VP, (3.5)

This is consistent with the goal of using the non-local interaction to alter the pressure, and

therefore the equation of state, while leaving the velocity-dependent terms of the momentum

transport equation intact.

Returning to the form given for the interaction force F in equation (2.22), and using a

first order Taylor expansion to substitute for the value of the interaction parameter b at

neighbor x + cji,

b (x + Cji) = O(x) + Cji -V (x) + ... (3.6)

gives

F = C [ + cj- V]c = i • v C ocjcj,

,i cd (3.7)
D 2

where the "interaction coefficient" F is defined as

I7 - cjcj, (3.8)

and the following property of the FCHC lattice was used:

Scicji = I -- (3.9)

where dj is the number of velocities states available to particles of type j, and D is the

dimension of the lattice (D = 4 for the FCHC lattice, required in Digital Physics). From



equations (3.5) and (3.7),

Pn= 2 2 (3.10)

is the contribution to the scalar pressure from the non-local interaction. Thus the total

pressure in a bulk phase will be

P = Pk - 2r, (3.11)

This expression gives the equation of state of the multiphase system in terms of the interac-

tion parameter 0.

The well-known van der Waals equation of state,

pRT
Pvdw(p, T) pRT ap2  (3.12)

1 - pb

is chosen as a simple (if crude) means by which to model a pure substance which can undergo

a phase transition. The van der Waals equation of state is imposed on the multiphase system

by combining equations (3.11) and (3.12) to solve for the interaction parameter b:

r = _ 1 - pb + (3.13)

This is the functional form of V) required to determine the interaction force and implement

the momentum pushing operation. The explicit form of the kinetic pressure Pk will be found

in the next chapter, but for now it can be viewed with little error as the true ideal gas

pressure, Pk = pT, in which case the interaction parameter may be written as 0 = 0(p, T).

However, while the density p has a straightforward interpretation as the number of particles



at a given location, a meaningful definition of the temperature T must still be established.

This will be addressed in the next section.

The van der Waals constants a and b must also be specified. These parameters play a

role in many of the thermodynamic properties of the system, because they in part determine

the so-called fundamental equation (also discussed in the next section). Values of the van

der Waals constants have been determined for many substances, and they generally reflect a

"best fit" of the van der Waals equation to various experimental data over a wide range of (for

example) temperature and pressure conditions. Such empirical fits are typically fairly crude,

since there are only two adjustable parameters in the van der Waals equation of state. For

the purposes of this project, however, a van der Waals system is suitable to demonstrate key

aspects of a two phase system. A more sophisticated equation of state, P,,,o(p, T), could be

used to improve agreement of the thermodynamic properties of the model with the properties

of a real substance, and in general the interaction parameter Ib would be found as

b(p, T) = 2 (Pk - Peos(p, T)) (3.14)

This method breaks down if the argument of the root is negative, which may occur when

the pressure in the liquid is very large. This has not been found to be a limitation of

any consequence for two-phase systems, since the kinetic pressure Pk - pT in the liquid is

inevitably much larger than the saturation pressure Psat towards which the system is driven.

As mentioned, the equation of state provides a relationship between the pressure, density

(or volume), and temperature of a substance. There is no such thing as an equation of



state for a two-phase mixture, however; in this case there is only one independent intensive

thermodynamic property of the system, for example either pressure or temperature (an

intensive property is one which does not depend on the size of the system). This is a result

of the Gibbs Phase Rule, which states that the number of degrees of freedom is two plus

the number of components minus the number of phases present. An equation of state can

still be written for each phase individually; furthermore both phases must (at equilibrium)

coexist at the same temperature and pressure, known as the saturation temperature T,at and

saturation pressure P,,t. The resulting pair of equations is

Psat = gRTt ap = p ap (315)
1 - pgb 1 - pfb(3.15)

where pg and pf are the equilibrium vapor and liquid densities, respectively. These are also

thermodynamic properties of a two-phase mixture and must therefore depend on only one

independent property. This leaves three unknowns in equations (3.15); for example when

the saturation temperature Tsat is chosen as the independent property, the unknowns are the

saturation pressure Psat, the equilibrium vapor density pg, and the equilibrium liquid density

pf. An additional equation is needed, and it comes from the equilibrium condition that the

chemical potentials of each phase must be equal. This leads to the well known Maxwell equal

area rule, which may be written as

JPf P(p, Tsat) - Psat dp= (3.16)
g 2 dp = (3.16)

Equations (3.15) and (3.16) allow any three of the identified properties of a two-phase mixture



to be found as functions of the fourth.

3.2 The Internal Energy Relation

Calculation of the interaction parameter b so as to achieve a desired empirical equation of

state is a key part of the multiphase system. However, the hydrodynamic system is not

closed with just an equation of state. The set of independent hydrodynamic variables which

are local properties on the lattice can be identified as follows: density p, velocity u, pressure

P, temperature T, and internal energy per unit volume E. Relationships between these

variables are given, in general, by the mass, momentum, and energy transport equations, an

equation of state, and another constitutive relation describing (for example) the dependence

of the internal energy on density and temperature. The latter is the missing ingredient;

an appropriate internal energy relation is needed. Moreover, a method by which it can be

achieved in the Digital Physics framework must be developed.

It is clear that internal energy in the multiphase system cannot in general be that of the

standard system, for which the internal energy per unit volume is

D
E= DpT (3.17)

which is correct for a monatomic 4D ideal gas and which provides the definition of the

temperature T for the standard system. Consider a two-phase mixture in equilibrium: the

vapor and liquid regions, while at the same temperature Tsa, have vastly different specific



internal energies (far from the critical point), that of the liquid being much lower than that

of the vapor.

An important goal of this work is to build into the method a consistent empirical thermo-

dynamics at the macroscopic level which captures the correct dependencies of the internal

energy and related quantities. A complete thermodynamical description of a system is given

by its fundamental equation, one form of which is the Helmholtz free energy as a function of

temperature T, volume V, and particle number N, F = F(T, V, N). To derive a fundamental

equation consistent with a van der Waals equation of state, the well known thermodynamic

relations known as the Maxwell Relations are employed, beginning with one involving the

Helmholtz free energy:

P ===- F =- PdV (3.18)
aV T

Using N = pV to rewrite the van der Waals equation of state (3.12) in terms of particle

number N and volume V,

V V (T) (3.19)F(N,VT) = -jdV V- bN - V = -NRTln(V-bN) - V + (T) (3.19)

where the constant of integration is some function of temperature, U(T). For convenience

another function of temperature O(T) is defined such that ý(T) = NRT Iln [NW(T)], which

allows equation (3.19) to be written as

F(N VT) = -NRTlnV - bN N2a - Na (3.20)F(N, V, T) = -NRT In - -= _NRT In P Npa (3.20)1NO(T) V O(T)



Dividing by particle number N gives the Helmholtz free energy per unit mass f,

f(p, T) = -RTln
1 -b]P - pa

(T)

Another of the Maxwell Relations gives the entropy S from the Helmholtz free energy F:

[aFp
S [= I b (3.22)

Thus the entropy per unit mass s can be found from equation (3.21),

RTd'(T)
O(T)

(T)
O(T)r.b (3.23)s(p, T) =

where 0'(T) = aT¢(T) = d¢(T)/dT. The definition of the Helmholtz free energy F is

F - U - TS, where U is the total internal energy. Thus the internal energy per unit mass

u is given by u = f + Ts, which yields

-RT In (-b(T)- pa + T RT-'(T)[ (T)

where

u(p, T) = -pa - Rx(T)

T2¢'(T)
x(T) =

O(T)

(3.25)

(3.26)

Equations (3.21), (3.23), and (3.25) give expressions for useful thermodynamic quantities

(3.21)

u(p, T) = + Rln ( ( (T) (3.24)



as functions of the van der Waals constants and an arbitrary function of temperature. Ex-

pressions for other quantities such as enthalpy and Gibbs free energy could be similarly

obtained.

As identified earlier, the internal energy per unit mass u(p, T) is of primary interest.

Clearly its temperature behavior is determined by the function x(T); to proceed this function

must be specified. It is related to the constant volume heat capacity per unit mass c,:

[au 1_ dX_(T)c, a R dX= R (T) c (T)coJ- T dT
(3.27)

(T) = - c(T)dT

and it is apparent that one of the consequences of the van der Waals equation of state is

that the constant volume heat capacity per unit mass does not depend on density. This

necessarily introduces the assumption that the heat capacity of the liquid will be equal to

the heat capacity of the vapor on a unit mass basis. For water, the constant volume heat

capacity per unit mass of the saturated liquid, cf, is on order twice that of the saturated

vapor, cvg, over a fair range of temperatures. This need not concern us at the moment,

however, since heat transfer is beyond the scope of this work. On the other hand complete

flexibility exists regarding the temperature dependence of the constant volume heat capacity.

It is convenient to assume that it is constant, which is often an acceptable approximation

for small temperature changes. Then equation (3.27) gives

x(T) cdT = + A =T 2 '(T)
R R (T) (3.28)

c, A
==• dln q(T) = -dln T + dT

R T2



where A is an integration constant. Integrating once more,

c, T A
In O(T) - In -(3.29)

R B T

where B is another integration constant.

The above expressions for the functions X(T) and O(T) can now be used in equations

(3.21), (3.23), and (3.25) to get explicit forms for the Helmholtz free energy per unit mass

f(p,T) = -RTln - b - pa - cTln - AR (3.30)

the entropy per unit mass s,

s(p, T) = R In b -(T) + c, (3.31)[(P B

and the internal energy per unit mass u,

u(p, T) = cT - pa - AR (3.32)

Equation (3.30) is essentially the fundamental equation of a van der Waals system with a

temperature-independent constant-volume heat capacity, and will serve as the fundamental

equation of the multiphase system. The analysis used to derive equations (3.30-3.32) is

essentially the same as the treatment given by Fermi [54] for a van der Waals system. An

analogous method could in principle be applied to any equation of state (supplemented by

a heat capacity equation).



The formulation of the internal energy relation is completed by specifying the values of

the constant volume heat capacity per unit mass c, and the arbitrary constant A. The value

of A sets the absolute energy scale of the system2 ; this could be done in such a way as to

reflect the absolute scale used in the steam tables, which is set such that the internal energy

of liquid water at the triple point is zero. It is more convenient and physically appealing

to instead allow the multiphase system to collapse to the ideal gas physics of the standard

system in the limit of zero density. This suggests A = 0, such that

u(p, T) = c,T - pa (3.33)

which gives

lim u(p, T) = c,T (3.34)
p-- 0

which is the correct internal energy per unit mass for an ideal gas. Also, to force the internal

energy relation to collapse to that of the standard system at zero density, the constant

volume heat capacity is taken to be

D
cv = -2 = 2R (3.35)

which gives

u(p, T) = 2RT - pa (3.36)

Equation (3.36) will be referred to as the internal energy relation for the multiphase sys-

2 The arbitrary constant B, which sets the absolute entropy scale, can be ignored for the current purposes.



tem. It was derived from an equation of state, the form of the constant volume heat capacity,

and the absolute energy scale of the system. The hydrodynamic system is now complete,

because the internal energy relation provides a meaningful definition of the temperature T

in terms of fundamental local properties p and u = E/p:

1
RT = -(u + ap) (3.37)

3.3 Properties of the Interface

Equations (3.30)-(3.32) each express one intensive thermodynamic property as a function

of two others, as appropriate for a single phase substance. For an equilibrium two-phase

mixture, however, there can be only one independent intensive property. This brings up

the important issue that in the Digital Physics multiphase system, continuous relationships

between macroscopic properties analogous to those for a single phase substance are required,

even if the overall system happens to represent two-phase coexistence. Consider a site at

some instant located somewhere in a bulk phase region, say within the liquid phase. The site

does not know it is supposed to be liquid, nor does it have any immediate information as to

whether or not a vapor phase exists somewhere else in the system; the particle distributions

at the site are simply evolving according the microdynamical rules of the algorithm. The

microdynamics depend upon the calculation of local quantities, particularly temperature

T = T(p, u) and kinetic pressure Pk = Pk(p, u) such that the interaction parameter 0

can be determined from equation (3.13). Hence for any site at any instant, relationships



of this nature using two locally independent variables are necessary, whether or not the

overall system is a two phase mixture. The Gibbs phase rule allowing a single independent

parameter for a two phase system will be recovered in the equilibrium behavior of the system

in a macroscopic (i.e. time and space averaged) sense.

Moreover, such relationships between local thermodynamic quantities must exist within

the highly non-equilibrium interfacial region, which will have finite size and occupy some

number of lattice sites. Non-equilibrium conditions will also occur due to fluctuations and

transient behavior. In this version of the multiphase system, the thermodynamical relations

derived above are simply followed in a continuous fashion even for non-equilibrium conditions,

including highly inhomogeneous regions like that of the interface. This treatment3 ignores

the additional free energy associated with such a region, which within the interface is referred

to as the surface excess free energy [56]. One might expect the fact that this free energy

contribution is not explicitly included in the microdynamics to have consequences for the

behavior of the interface; this point is discussed further in Section 5.2. It is nevertheless

predicted that homogeneous liquid and vapor phase regions will exist, and will be driven

towards the equilibrium thermodynamic properties close to those predicted for a van der

Waals thermodynamic system.

A key property of a two phase system (or any system with a fluid-fluid interface) is the

coefficient of surface tension4 o-. The phenomena often called surface tension or interfacial

tension is really a manifestation of the additional free energy just mentioned that exists

3Known as the point-thermodynamic approximation [55].
4 Throughout this thesis, the coefficient of surface tension a will be taken as the usual quantity divided

by the liquid density pf. This convention simplifies ensuing dimensionless analyses because surface tension
scales directly with the liquid density.



within the interface [56, 55]. The source of the excess free energy is the intermolecular

forces, or more precisely the variations in intermolecular forces that occur as the density

varies continuously through the interface from its liquid value to its vapor value. The mean

molecular spacing is larger in the interface than in the bulk liquid, and energy is required to

move the molecules father apart. In the direction normal to the interfacial surface, a density

gradient is established which maintains a balance of forces continuously from the liquid side

to the vapor side. In the direction parallel to the interface, however, the density does not

vary, and the increased molecular spacing results in a net tension force [56].

Consequently, the pressure tensor P (which is the zero-velocity part of the momentum

flux tensor II) is not isotropic within the interface, because the "tension" contributes to

the tangential components but not to the normal component. It is useful to consider a flat

interface in the x - y plane, hence normal to the z-direction. The pressure tensor P is purely

diagonal, and the tangential components are P.,(z) = P,,(z) = PT(z), while the normal

component is P,_ = PN = Po, where Po is the scalar pressure in either of the bulk phases.

Then the coefficient of surface tension a can be written in terms of these quantities [55],

ap = NT(PN - PT)dz (3.38)

where the integration is performed over at least the width of the interface, or beyond since

PN = PT outside of the interface. This equation results from calculating the total work done,

and hence the increase in free energy F, per unit area A, during an isothermal and reversible



change in the volume of the interface, and using the formal definition of surface tension [55]

6F
ap = A (3.39)

It is possible to use equation (3.38) to understand the existence of surface tension in the

multiphase system by finding expressions for the normal and tangential components of the

pressure tensor. From equations (2.22) and (3.5), the form of the interaction force is

F = E b(x)b(x + cji)cji = -V -P,I (3.40)
ji

which implies that the total pressure tensor can be written as

P = C jicjicji - 201(x)(x + cji)cjicji (3.41)
ji 3t

where the first term is the usual kinetic part and the second is the contribution due to the

non-local interaction. A second order Taylor expansion in space yields

1
(x + cj) = i(x) + cji . V(x) + 1cjicji : VVb(x) (3.42)

which gives for the non-local term

Sc - cjicjicjicjiS1 (3.43)
1 1

- -- 4 'J --P(bV2 0I - 201 VVO)2 4



where F is given by equation (3.8) and F' is defined as

E'( c.icJScjicji = D( 2 ( 4) (3.44)

Neglecting velocity terms, the kinetic part of the pressure tensor is PkI, thus equation (3.41)

becomes

S= (Pk 2 2 1 2) 1VV (3.45)

Note that in the bulk regions where the properties are uniform and the derivatives vanish,

equation (3.11) for scalar pressure P is recovered.

Local values of the pressure components for an arbitrary (2D) interface are PN = if i: P

and PT = tt : P, where fi and t are unit normal and tangent vectors. Hence for the flat

interface normal to the z-direction, the normal pressure component is

PN = Pk _ 1 2r zt (3.46)2 4 dz2

and the tangential pressure component is

PT = Pk - 1 2 _ (3.47)2 4 dz 2

Thus the difference between them is

1 d2 3
PN - PT = -- F d2 (3.48)2 dZ2



Finally, equation (3.38) gives

1 d2
pf = -,--d 2 dz (3.49)

or in general (for a non-planar 2D interface)

1 a20aOpf = -- F'INT 2dn (3.50)

where n is the local coordinate normal to the interface. Hence the surface tension in the

multiphase system is related to the interaction parameter , and its spatial derivatives, which

in turn depend on the imposed equation of state and the steady state density and energy

profiles through the interface.

It is also possible to evaluate the effect of surface tension on the momentum transport

equation within an interfacial region. As shown in equation (2.12), the time rate of change

of momentum is equal (and opposite) to the divergence of the momentum flux tensor I =

P + velocity terms. Hence the zero-velocity part of the momentum transport equation is

V. P = V. (PNfifi + PTtA)

(3.51)
= VPN - ifi + PNfi Vfi + PNfiv i + VPT .· + PTt .Vt + PTtV -

Noting that the curvature tc = V - fi and i . Vi = -=ci, and that when the curvature is small



Vii = V. t = VPT -~ 0, equation (3.51) becomes

V P an + PN K i- PrT = + K (PN - Pr) n (3.52)

The first term on the right-hand side is the usual pressure gradient term. The other term is

proportional to the curvature K and results in a force related to surface tension, F,. Using

equation (3.48) it may be written

1 8*,
Fo = K(PN - PT)i = - Pr'al n (3.53)

When the interface is treated as a discontinuity, which is almost invariably the case, the

interface curvature and coefficient of surface tension do not appear explicitly in the transport

equations. Instead they occur as part of the "jump conditions" obeyed at the discontinuity,

as discussed in Section 5.1 (where it is shown that in the limit of vanishing interface thickness,

equation (3.53) gives the usual jump condition involving surface tension).

3.4 Microscopic Internal Energy

Despite the simplicity of the internal energy relation (3.36), it captures an essential phys-

ical feature, namely the large difference between the internal energy per unit mass of the

saturated liquid, u1 = 2RTsat - pfa, and that of the vapor, u. = 2RTat - pga (hence the

difference is Au = -aAp.) The multiphase system must be able to represent not only these



two different internal energies at the same temperature, but also the whole range in between,

within which will exist the values of internal energy for interfacial regions. This cannot be

achieved with the standard system, where the internal energy per unit mass is always pro-

portional to the temperature, u = 2RT. This is natural because the particles of the standard

system are like ideal gas molecules which contribute only their energy of motion to the local

energy moment.

In order to have a range of internal energies for a given temperature, an internal degree of

freedom must be provided. This is addressed by introducing a microscopic internal energy5 ,

f, a discrete amount of energy carried by a particle of type j in addition to its kinetic energy

eF. Thus the total microscopic energy T is

E = E (3.54)

The total local internal energy moment will now be the sum of a kinetic term and a non-

kinetic term, similar to the way the total pressure is the sum of kinetic and a non-local pieces.

It is shown later how the relative contributions to the energy moment can be adjusted to

achieve the correct macroscopic values of internal energy as required by equation (3.36).

The absolute energy scale of the multiphase system has been specified by the decision to

let the internal energy relation collapse to that of an ideal gas in the limit of zero density. The

benefit of this choice is that in the ideal gas limit no microscopic internal energy contribution

5 The original concept of microscopic internal energy in a multispeed lattice gas is due to Teixeira and
Molvig [57], where it was developed in the context of altering the ratio of specific heats of an ideal gas in
the standard system.



is required, and the multiphase system reverts to the standard system. It happens that any

non-kinetic contribution to the internal energy must always be negative, since an ideal gas has

the maximum internal energy for a given temperature (this also clear from the internal energy

relation (3.36)). Therefore, negative microscopic internal energies are needed, in order to

lower the macroscopic internal energy from that of the ideal gas. The physical interpretation

of a negative internal energy contribution is the presence of attractive intermolecular bonds.

Intermolecular forces are very strong in liquids compared to gases, and the resulting bonds

can be thought of as storing negative energy, since energy is required to break the bonds while

energy is given up when the bonds are formed. In the multiphase system, a site with higher

density will have a higher fraction of particles with negative microscopic internal energy.

An interesting result of the choice of absolute energy scale is that for water at conditions

far from the critical point, the latent energy of vaporization is greater than the energy of

the saturated vapor taken in an absolute sense: ugf > u- - 2RT. This means that the

internal energy per unit mass of the saturated liquid, uf, will be negative. There is nothing

unphysical about a negative internal energy; it is a consequence of the fact that the absolute

energy scale is lower for the multiphase system compared to that of the steam tables.

In Section 5.6 the van der Waals thermodynamical system will be compared to the prop-

erties of water, and in Section 6.1 particular choices of new species with both internal and

kinetic microscopic energies are explored. The next chapter looks in detail at how the pres-

ence of microscopic internal energy, a fundamental property needed to achieve the desired

thermodynamics of the multiphase system, affects the macroscopic transport equations of

the multispeed lattice gas.



Chapter 4

The Multiphase Euler Equations and

Artifact Removal

4.1 The Mass and Momentum Moment Equations

The equations of motion of a fluid result from the mass, momentum, and energy moments

of the kinetic equation where the distributions of the fluid particles are maintained in local

thermal equilibrium at all times. The Euler equations describe the motion of an ideal (i.e.

non-viscous) fluid, and result from the moments of the kinetic equation expanded to first

order in Knudsen number, , coc A/L, where A is the mean free path and L is a macroscopic

scale length. This is the meaning of the expansion used to generate equation (2.3) from the

lattice update equation (2.2). The moments of equation (2.3), shown in microscopic form as



equations (2.4-2.6) and in rough macroscopic form as equations (2.7-2.9), give the so-called

lattice Euler equations for the multiphase system.

To begin, the lattice moment equations are rewritten:

SE N Q + V cjiNfE Q = 0 (4.1)

t Z> cjiNf7EQ  + V. y• c ciNIEQ = -V- l (4.2)

ji ji

a E _TQEQ +•T J TEQ = -V Qn (4.3)
ji i

where the moments of the interaction operator were substituted for via equations (2.14)-

(2.16). Also, the microscopic energy Ej of the standard system has been replaced by the

total microscopic energy eT = eý + e• because of the inclusion of a microscopic internal

energy. It should also be noted that for simplicity the particle mass m has been taken to be

always unity.

In this section and the next, each of the moment terms in the lattice Euler equations will

be carefully evaluated. By comparing the results to the true Euler equations, the coefficients

in the expansion of the equilibrium microscopic distribution function, N'EQ (shown below),

will be found. Moreover, the conditions required to remove artifacts will be identified, where

artifacts are any unphysical attributes of the equations of motion, which arise due to the

discreteness of the system.

The equilibrium microscopic distribution function NfQ expanded to third order in velocity

(actually Mach number) contains all of the terms relevant to the transport equations and



has the following form [13]:

NEQ = NJ[1 - -yo(c, -u) + 12(ji - u)2 - (0 2 + 2T

1 2 (4.4)
-- _ (ci , u)3 + 70 (c," -u) (a2 + + T26) - 72 (c , u) + O(u 4)]

The Lagrange multipliers for mass, momentum, and energy have been expanded as a =

ao + a 2, 7 = 7o + 72 , and / = /o + /2, respectively, where coefficients with subscript "O"

are constant with respect to velocity and those with subscript "2" are proportional to the

square of the velocity. The zero-velocity or isotropic distribution function, Nj, is given by

Nj = rj exp (-ao - 0ET) (4.5)

where rj is the rate coefficient associated with species j. These rate coefficients, plus co-

efficients a0 and 3o (which will hereafter be considered part of the set of rate coefficients

as well), are adjusted to achieve the desired energy-exchange behavior of the system, as

shown in Section 4.3. The four remaining coefficients, 0o, 72, a 2 , and /2, are associated

with the velocity dependence of the equilibrium microscopic distribution function Njý,, and

(as mentioned) will be solved for by comparing the lattice Euler equations to the real Euler

equations.

It is useful at this point to define the isotropic moment (where isotropic is meant to imply

no velocity dependence) of a microscopic parameter xj:

(x) =Zx jdNj (4.6)
I



where dj is the number of lattice velocities available to a particle of species j. It is also useful

to note three identities of the FCHC lattice:

x j = x jdj (4.7)

sor. Combining the last two of these with equation (4.6) gives the following useful relations:

xdycNj 1  xdy2eK _ 
2

xsciciN = = (K)I (4.10)4

SccjiN = Cj N)i A (4) (xeK)A(4) (4.11)Xccc, jl = D(D 2 )D(D + 2)

To proceed, the expanded form of Nnei given above is substituted into the lattice moment

equations, beginning with the mass moment,

N = e Nj + = N• c : EI uu - NJ (a2 + 2e) (4.12)

3jiN j3 ji

Note that moments over odd powers of the velocity vector cji vanish. From the definition of



the density, p =- ji Nji, and application of the above relations,

p = EN = (1) + •y(eK) >I 2 - a2(1) - P2(ET)

Grouping terms by velocity order yields two equations,

p = (1) = ENjdj
J

S2(6K) 2 - 2P - E = 0D

where the definition of the internal energy per unit volume was used,

E eTdjN = (eT)

Equation (4.15) requires that all the mass is retained in the zero order term.

Moving on to the mass flux (i.e. momentum) term,

pu E cji NjQ
ji

= - Nj•ocjici, •
ji

u - NJ cjicjicjicji u u u

+ Z Nj -o(a2+ ,2eT)cCj, . U - Nj,-CCji -u

2 1 4

Do(KC)U -6 'Y6 D(D + 2) (31uI2U)

+ 'a2(EK)U + y2 (EKET)U - 72 .K>u

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)



where the relation A(4)(uuu) = 31u12u has been used. Again this gives two equations,

2
pu )uo(K)U (4.18)

1 3 4 2 2 213 4 (eKK)(31uI2u) + ya2 eK + • Y2 • K TU - •72( K)U = 0
6y D(D + 2) D D D

--= -D+2 -y~(e• ~ ")u L + 7oC2("2 ) + 7o/#2(e 6~ ) - 72(6) = 0

(4.19)

Equation (4.18) gives, as in the standard system,

pD
70 - 2 ( (4.20)

Proceeding to the kinetic part of the momentum flux in the momentum transport equa-

tion,

ScjicJi

E Q

jj

1"- E j C jCjiCjiCji " UU

2-y (6KEK)
D(D + 2)

(2uu + jul 2)

- Nj cici (a 2 + 2T
*ji

2
a2(eK)D -

2

2 2K TD
= PkI + gpuu

where the relation A(4)(uu) = 2uu + lu12I has been used. The last line, as shown in equation

(3.3), matches the form of the kinetic part of the momentum flux which was claimed to be

expected (in Section 2.2) by analogy with the standard system, and that assumption is now

SENjcjicji

2 (EK) I+D

(4.21)

v. . v.



seen to be correct. Equating uu terms gives

4P y(e (4.22)
D(D + 2)

where the Galilean coefficient g must be equal to unity in order to recover correct hydrody-

namics. This requirement gives the Galilean invariance constraint,

(6 K K) D(D + 2)p _ D+2 (eK)2 (4.23)
2(4.23)

4yo2  D p

which is identical to the result for the three-speed standard system. Thus the presence of a

microscopic internal energy has no effect on the formal condition for Galilean invariance.

Equation (4.21) gives the kinetic part of the isotropic pressure Pk:

Pk = (EK) (4.24)

In order for the pressure to be retained in the zero order velocity term (thereby avoiding a

"dynamic pressure anomaly"), the following relation must also be satisfied:

Iplul2 - 2a2( K)- _2 2(6 KCT) = 0 (4.25)
2 D D

and the Galilean invariance condition (4.23) was used to substitute for the isotropic moment



From equations (4.20) and (4.23) and a little manipulation, equation (4.15) becomes

1 2  2 (eK)
puI2  (  •_- 2u -K p 2E = 0 (4.26)

and equation(4.19) becomes

1 2 2 2 K 4plul2 ( a2• K- _2 K T72 (K)2 (4.27)2 D D pD2

Comparing the last equation to equation (4.25) indicates that they can only be nontrivially

satisfied if 72 vanishes, thus

72 = 0 (4.28)

Subtraction of equation (4.26) from equation (4.25) gives

2 (EK) 2 T)-2E - -2P KT) = 0D p .D (4.29)

==, 2 ((K)E - p(eKET)) = 0

The two solutions to this equation are (EKET) = (CK)E/p or 02 = 0. It is expected that,

at most, only one of these at a time may be physically consistent. In the limit of the

standard system, (eK) = (JT) = (e) = E, and the first solution reduces to (E2) = E2/p. This

contradicts the Galilean invariance condition (4.23), which reduces to (62) = (1+2/D)(E2/p).

The multiphase system should collapse to the standard system in the low density limit, and

it is therefore necessary to throw out the first solution and choose the /2 = 0 solution. In



this case equations (4.26) and (4.25) both reduce to

1 2
2p uI2 - a2((K) = 0 (4.30)

which may be solved for the last remaining expansion coefficient,

SpluI 2  (431)
2 4 (K) (4.31)

The forms of the solutions for the velocity dependent expansion coefficients are analogous

to those found for the standard system, except that it is no longer as convenient to write

them as functions of temperature T. Having evaluated the terms in the mass and momentum

transport equations, energy transport is considered in the next section, where the presence

of microscopic internal energy plays a more explicit role.



4.2 The Energy Moment Equation

Many of the above results will be used in evaluating the terms in the energy transport

equation, beginning with the moment over total microscopic energy ET:

W _ ZCENEQ
•j Vii

.TNj + E I NNjc :uu -
iii ji

+ ( 1T) + (CnKeKeT) IU12 - a2 (J)D

eTNj E2 i 2 JT3 \(Ia2+
(4.32)

Dp IuI2(sKET)
=4E+

4(eK 2
Dplu 2E

4(CK)

The total energy per unit volume is W = E + (1/2)pjuj 2 , which implies

Dp2 lul2( K T)
4(eK)2

Dplul2E 1
4(cK) 2pu|

which may be rearranged to give

Dp(EKET) = DE(EK) + 2 (EK)2

Using the identities (eKKT) = (EKCK) + ( I6K6 ) and E = (EK) + (e'), this becomes

(D + 2 (CK)2
SD p (E6 K1)) = D(eK) 2 + D(EK)(EI) + 2 (eK)2

-=: (D + 2 )(EK)2 + Dp(EKeI) = (D + 2 )(EK)2 + D (K) (I) (4.35)

_ K)(eI)
P

ji

(4.33)

(4.34)

=='ý (CK.EI)

-026T 6 e T



Here another constraint has been derived, which will be referred to as the mechanical

energy condition. The physical interpretation of this constraint is that all of the mechanical

energy, (1/2)pulJ2, originates from the microscopic kinetic energy, eK, with no contribu-

tion from the microscopic internal energy ef. This is seen most clearly by evaluating their

moments:

eEN = (6K) + Dp2 JUI2(eKEK) DpIuI2(EK)
ji 4(EK)2 4(CK) (4.36)

= (K) + D + 2 (eK)2 Dp 2|U12  D 2 K 1
D p 4(eK)2 4 pu = ( ~K) + 2

e = (e) + Dp2U1 2 (K eI) DpluI 2(eI)
ii 4(EK)2 4 (EK)

(CK (eI)DpluI2  D 2 (&)= (z) + ()plu = (e')4(eK) 2  4 (EK)

It is interesting but not altogether surprising that the velocity dependence of the total energy

per unit volume should be completely associated with the kinetic energy moment, while the

distribution of microscopic internal energy must be constrained to be isotropic.

Finally, the last remaining moment is the kinetic part of the energy flux:

Q k --~ Y•Cj T EQ
Qk 3 N7'j

g^oyeTccj, u -- 1• gcjcjic:uuu
.i JI (4.38)

+ Njyoe (az+ ( 26) C,) Ci *u - Nj2eTCjiCji * U

p(EK&T) D2p3 (eK eKT) 2 Dp2 (EKT)
(EK)u+ 4u U u- D(K) 2( uK) 4(D + 2)(eK) 3 4(eK)2 lul



Using equation (4.34) to substitute for isotropic moment ( EKET),

( 2 KD2p3(_KeK_ 
T )  pDE p

Qk = E + (e K) u + D 4(2K) u IU 2 uD 4(D + 2)(CK)3 4(EK) 2 (4.39)
(E + Pk + g pIu2 )

where the term g' is the energy Galilean invariance coefficient. It was given for the standard

system by Molvig, Donis, Myczkowski, and Vichniac [12], and in the multiphase system (i.e.

in the presence of microscopic internal energy) it takes the form

= D2p2(eKeKeT) DE
g D 1 (4.40)2(D + 2 )(eK)3 2(K) 1 (4.40)

This implies the following constraint in order to achieve the physically correct condition of

g' = 1:

(eKK KT) = (6  K) (E + 2Pk) (4.41)
P

Although the condition by which to eliminate the g' artifact has been derived, it will not be

used in this work, mainly because this artifact is third order in velocity and should be small at

low Mach number. In order to design a Digital Physics system with correct energy transport

at Mach numbers of order unity, the constraint which removes the g' artifact would have to

be satisfied via additional particle speeds and rate coefficients, as shown for the standard

system by Teixeira [13].

Of greater concern for the current multiphase system is the potential artifact associated

with the first order velocity part of the energy transport, namely the presence of the kinetic

pressure instead of the total pressure in equation (4.39). In the liquid phase, the kinetic



pressure is much greater than the total pressure, and would dominate the energy flux in an

unphysical way. There is no obvious constraint that can be satisfied via rate coefficients

by which to remove this "kinetic pressure artifact." Instead, it is observed that the total

pressure P includes a contribution from the momentum moment of the interaction operator.

The removal of the kinetic pressure artifact must involve the energy moment of the interaction

operator.

The construction of the energy piece of the non-local interaction proceeds in a fashion

completely analogous to that of the momentum piece presented in Sections 2.3 and 3.1.

Recalling the relevant relations derived in Chapter 2,

ZjieT = Apep = -V Qn = AnW = Ob (4.42)
ji p

where the interaction rate of work c4 has been introduced (which, like the interaction force

F, is named for its units). The correct form of the total energy flux in a bulk phase is

Q = (E + P)u + O(u 3) = Qk + Qn (4.43)

and in light of equation (4.39),

Qn = (E + P)u - (E + Pk)u = Pnu (4.44)



Using equation (3.10) to substitute for the non-local contribution to the pressure P,,

S=V- 0 2u· (4.45)

An energy pushing operation must be constructed such that equation (4.45) is satisfied.

As with the interaction force, allowing the interaction rate of work 4 to be non-vanishing

means breaking sitewise energy conservation. It is required, however, that energy is conserved

globally for an adiabatic system. For this reason a scheme based on the exchange of imaginary

subparticles is once again employed. It is imagined that there is another type of interacton,

which carries only energy quanta instead of momentum quanta. A direction dependent scalar

quantity Yji(x) is defined as the interaction energy parameter, and represents the number

of energy interactons given off by the particles at site x in direction ji. The number of

interactons received by the particles at site x with direction ji must then be Yji(x - c-;),

and the net number of energy interactons accrued at site x for all directions is therefore

1 [1,(x - cji) - Y3i(x)]
j, (4.46)

= -c,. V•,ji(x) = -V. ZcjYi,(x)

where a first order Taylor expansion in space was used to obtain the gradient. Comparing

this expression to equation (4.45) suggests letting Yji take the form

r V)2N EQ
Yji= 2 pN (4.47)

.1 2 p



and taking the net energy gain to be the negative of the net number of interactons. The

local change in energy is then

1 F2NvEQ 2 Q 2 r
V. c 2 = V . -V 2 p cjNEQ = r2 V 2 u (4.48)

which matches the desired result. Thus a means by which to calculate the energy change at

a site due to the non-local interaction has been formulated:

I(x) = Z [Yji(x) - Yji(x - cji)] = > Ape~ (4.49)
ji P

where the interaction energy parameter Yji is a local quantity given by equation (4.47),

and is analogous to the interaction parameter 4. Physically, the change in sign used to

derive equation (4.48) implies that an energy interacton carries a quanta of work done on

the particle emitting it, and work done by the particle receiving it, due to the non-local

interaction; therefore the arrival of an interacton provides an energy reduction.

Equation (4.49) summarizes the calculation and implementation of the energy part of

the non-local interaction needed to remove the kinetic pressure artifact and restore correct

adiabatic energy transport. It is necessary to show that the sitewise energy adjustment

calculated in this fashion conserves energy globally. The total energy of the system must be

constant if the sum over the lattice of the interaction rate of work 14 vanishes, and this is

verified by writing

E N(x) = j [Yi,(x) - Yj,(x - cj,)] (4.50)
x x ji



but summing over -cji instead of cji, and substituting x - cji for x, gives for the right-hand

side

Z Z [Y _j(x - ci) - Yji(x)] = [Yji(x - cji) - Yji(x)] = - 4 ý(x) (4.51)
x-ji -ji x ji x

and therefore

4 )(x) = - E D(x) = 0 (4.52)
x x

As discussed in the next chapter, it turns out that interfacial regions in the multiphase system

require an isothermal condition in order to remain intact. This means that in general the

ability to restore correct energy transport cannot be taken advantage of, except in the case

of a single phase fluid. The derivation of the energy component of the non-local interaction is

nevertheless an important result because it will serve to allow correct energy transport, and

therefore heat transfer capability, in future extensions of the current system which eliminate

the need for the isothermal restriction. Furthermore, in Section 7.2 the validity of the energy

adjustment scheme is demonstrated by measuring the soundspeed of a pure liquid, which is

a function of the form of the energy flux.

4.3 Constraints and Rate Coefficients

This section looks at the last remaining expansion coefficients, those associated with the

zero-velocity part of the equilibrium distribution function NfQ , namely a0o, go, and the

other rate coefficients rj. These parameters are functions of density p and internal energy



per unit volume E only, and determine the distribution of particles amongst the available

species.

The number of coefficients needed is equal to the number of constraints imposed upon the

energy-exchange part of the distribution function. There are four such constraints for the

multiphase system as developed here: mass conservation, energy conservation, the Galilean

invariance condition (4.23), and the mechanical energy condition (4.35). These four con-

straints can be expressed in terms of the zero-velocity distributions Nj:

p = (1) = ZN j d3  (4.53)

E = (T)= ENjdjeT (4.54)

K D + 2 (K) NjdjE KE (4.55)
D p j

(eK) - dj - Nde (4.56)

The true unknowns, ao, 8o, and the r1 's, are introduced via equation (4.5), which may

be rewritten as

SNj exp(-cao)nj - rj exp -(_fo = rjyz (4.57)
P P

which includes the useful parameters y - exp(-ao)/p and z = exp(-f0o). Dividing equations

(4.53)-(4.56) by density p, and using the internal energy per unit mass u = E/p, they can



be rewritten explicitly in terms of the true unknowns:

1 = djrjyzeT (4.58)

S= djeTrjyzeT (4.59)

D+2 ( deKryzjr dj~ 2 rjyz (4.60)

( d YZ)( deriyzeT)= dj3e 'ejyzeT (4.61)

The key observation gleaned from this form of the system of constraints is that the rates,

and therefore the zero-velocity distributions, depend only on the internal energy per unit

mass u. The total number of unknowns must be four, of course, and therefore two inde-

pendent rate coefficients are needed (along with y and z) to close this system. A minimum

of four different species are needed, and in principle one may choose any two of these with

which to associate the independent rates, although a physically acceptable solution to the

system is not guaranteed and must be checked for. If there were less than four species, there

would be no way to adjust the distributions to satisfy the four constraints; however there

may be more than four species, indeed it is found that this is preferred. It is also apparent

that at least one of the species must have both kinetic and internal microscopic energies, or

equation (4.56) cannot be nontrivially satisfied. The choice of species and the solution to

this system of equations will be discussed in detail in Section 6.1.

The theoretical development of the multiphase system so far is now briefly summarized. A



momentum pushing step and an energy pushing step representative of a non-local interaction

have been introduced, and are to be included in the lattice update algorithm along with the

usual propagation and collision steps of the standard system. The new steps break sitewise

momentum and energy conservation but conserve these quantities globally. The relationship

of these new steps to a new operator, the interaction operator, included in the lattice update

equation has been formally derived. It was shown how the momentum and energy pushing

steps influence the mean dynamical behavior of the Digital Physics system; specifically,

how their presence allows the multiphase system to behave with a non-ideal-gas equation of

state and an accompanying thermodynamically consistent relation for the internal energy.

These attributes allow the system, in principle, to represent a vapor, a liquid, or a two-phase

mixture. Calculation procedures were specified for the amount of momentum pushing needed

to achieve a particular equation of state, such as a Van der Waals equation of state, and the

amount of energy pushing needed to recover correct adiabatic energy transport. Finally, a

system of equations for the rate coefficients was derived, which must be satisfied to eliminate

artifacts and achieve correct hydrodynamics.



Chapter 5

Application to Real Flow Systems

5.1 Two Phase Flow Equations

The purpose of the method introduced here, the multiphase system, is to provide detailed

simulation of two phase flow, including explicit representation of interfaces. This is achieved

by recovering the local instantaneous field equations of two phase flow, where each lattice

site represents a control volume within the flow system. Assuming there are no external

influences except a body force g due to gravity, the standard form of these equations on a

control volume basis is as follows [58]:

tp + V -pu = 0 (5.1)

dt(pu) + V - (puu) = -VP - pg + V .r (5.2)



at (u+ lu2) + V [(h+ Ju2) pu] = (53)

where h = u + P/p is the enthalpy per unit mass, and ý represents the viscous energy

dissipation term (note that u is internal energy per unit mass whereas u is velocity). The

viscous stress tensor r is given by

_ = [Vu + (Vu)T] + (- P) (V -u)I (5.4)

where y and 77 are the usual transport coefficients of shear and bulk viscosity. To form a

closed system the transport equations must be accompanied by appropriate thermodynamic

relations involving pressure and temperature, for example P = P(p, T) and T = T(p, e).

The set of equations just described is identical to that for single phase flow, because each

individual phase of the two phase mixture obeys the standard fluid mechanics equations.

There are, however, key attributes which distinguish two phase flow. The required ther-

modynamic relations must span a much wider range of conditions because the two phases

coexist with very different densities and internal energies. The interfaces between phases

are typically represented as boundaries of discontinuity, across which exist certain matching

conditions. These "jump" conditions involve the local velocity and stress components of the

fluids on either side of the interface, and may be written as Au = 0 and AP = nrcpf,' where

K is the local curvature of the interface, and apf is the surface tension of the liquid.

When the interface is of finite volume rather than a discontinuity, the transport equations

are explicitly different for two phase flow, because the zero-velocity pressure tensor P is non-

'The shear stress jump condition is usually zero as well, unless there are gradients in the surface tension.
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isotropic in the interface, as shown in Section 3.3. Hence there are terms due to interfacial

tension which vanish in the bulk phase regions but are non-zero within the interface. Replac-

ing VP in equation (5.2) with V -P, and using equations (3.52) and (3.53), the momentum

transport equation in the presence of a finite-volume interface can be rewritten as

(pu) + V -(pu) = i - pg + V (5.5)an 2 an2

In the limit that the interface thickness dn becomes small, the velocity components within

the interface become equal, and the jump condition Au = 0 is recovered. Moreover, the

divergence of the pressure tensor V P within the interface vanishes, thus

OPN 1 , a2
On-2n'x 2- (5.6)

On 2 On 2

Integrating across the interface and using equation (3.50),

AP = I -r' dn = corpf (5.7)

where P = PN is the scalar pressure in a bulk phase. Hence the correct jump condition

for the normal stress at the interface is also recovered as expected. If the profile of the

interaction parameter through the interface, O(n) = b[p(n), u(n)], is a function only of the

thermodynamic state of the system and not the flow conditions, then equation (5.7) predicts

a material surface tension coefficient. Terms related to the interfacial tension must also be

included in the energy transport equation for a finite-volume interface (the analysis is beyond



the scope of this work).

The ability of the current method to recover the equations of two phase flow is now sum-

marized. The Euler (non-viscous) portions of the transport equations for the bulk phases of

the multiphase system were detailed in Chapter 4, where it was shown how correct hydro-

dynamic transport is obtained at the Euler level (first order expansion in Knudsen number).

At present an isothermal condition, discussed in the next section, is used whenever interfaces

are present. Section 6.3 shows that the multiphase system recovers the correct form of the

viscous stress tensor. Section 3.1 showed how an empirical thermodynamic relation for the

pressure of each phase is achieved in the multiphase system by dynamically calculating the

interaction parameter 4 used in the non-local momentum exchanges between nearest neigh-

bors. The other necessary thermodynamic relation, derived in Section 3.2 and referred to as

the internal energy relation, is achieved by dynamically adjusting the particle distributions

through energy-exchange collisions, detailed in Sections 6.1 and 6.4.

Despite the fact that the interface will have finite volume, an important question is

whether the physics of the jump conditions normally employed for interfaces is properly

captured. The velocity jump condition appears trivial; however, it has been found that gen-

erally it is not met, instead there are so-called spurious velocities which can also influence

the dynamics of the vapor phase. As it happens this is not important for simulations where

the vapor may be considered essentially void space; then the interface is a free surface and

the velocity matching conditions are meaningless. On the other hand the matching condition

for the normal stress component (which is the scalar pressure P) involving surface tension is

critical. The existence of interfacial tension due to the non-local interaction and its effect on



momentum transport was discussed in Section 3.3. In Section 7.7 it is verified that surface

tension is observed and has the correct effect on pressure.

As noted repeatedly the interface in the multiphase system is not a discontinuity, instead

it is a region of lattice sites over which there is a steep variation in local density. It is

desirable to have the thickness of this interfacial region as small as possible, since physically

this length should be small compared to any other characteristic length in the flow system.

When this is achieved, the density gradient through the interface is necessarily very large,

particularly if the ratio of densities between the phases is large. In the presence of such

gradients the basic assumptions of slowly varying macroscopic quantities used in deriving the

lattice transport equations are not necessarily valid. There are, therefore, some fundamental

issues concerning the prediction of local properties within the interfacial region. From the

viewpoint of hydrodynamic simulation this may have limited relevance, since the interface

will typically be a very small fraction of the system volume.

5.2 Basic Limitations

There are many applications for two-phase flow modeling, involving a wide range of flow

systems, fluid substances, and physical phenomena. As just described, the bulk phases of a

two-phase flow obey the Navier-Stokes equations just like single-phase flow, but the interface

position is in general a complicated function of space and time. Hence many physical features

in addition to those of single phase flow may come into play. These include buoyancy forces

on the low density phase, surface tension effects, mass transfer between phases, nucleation



of one phase from the other, a host of heat transfer phenomena, and different interactions

of each phase with solid boundaries. The spatial distribution of the phases in the two phase

mixture, which in flow through a conduit is known as the flow regime, heavily influences the

relative importance of and interactions between all of these effects.

A benefit of using a microdynamical system to model complex flows such as a liquid/vapor

mixture is that the interface evolves naturally, and may become arbitrarily complex in shape

without extreme degradation of accuracy or computational performance. The same benefit

applies to arbitrary geometry of solid boundaries. By building upon the concepts introduced

in this project, there is the potential for developing Digital Physics methods which can

correctly capture the fluid flow phenomena essential for the study and modeling of important

problems, such as two-phase pressure drop and heat transfer behavior in various flow regimes,

and prediction of flow regime transitions. However, the multiphase system as introduced in

this work is not yet suitable for accurately reproducing all of the behavior in two-phase flow

systems of practical interest. This is due to several limitations of the current implementation.

First is the isothermal condition, and thus the inability to properly model heat transfer.

Second is an upper limit of liquid to vapor density ratio of about 200. Third is the over-

simplified boundary condition at fluid-solid interfaces. Fourth is practical limits on system

size and simulation time, which provide upper limits to the fundamental dimensionless flow

quantities such as the Reynolds number.

The isothermal requirement stems from the observation that the interface tends to dis-

solve in the presence of normal (adiabatic) energy transport. This is a strong indication that

the microdynamics of the interface are not correct, and that the theory relating the macro-



scopic bulk phase properties to the non-local microdynamical operations is not adequate

within the interfacial region. The most likely source of the problem is that the additional

free energy which should exist in the interface due to the presence of a density gradient is

being ignored (as mentioned in Section 3.2). Providing this excess free energy may require

some sort of simultaneous mass, momentum, and energy diffusion process in the interface,

essentially a further generalization of the non-local momentum and energy exchange oper-

ations introduced in this work. Some observations which suggest this conjecture have been

made in the course of this work. For now it is noted that, as seen in the results of the

experiments presented in Chapters 7 and 8, the bulk phases appear to be well behaved and

to have macroscopic properties close to those predicted by the preceding analyses. Thus

the multiphase system has been relegated to a constant temperature condition, for which

the precise algorithm is described in Section 6.4, and one must proceed with caution when

measuring macroscopic quantities such as velocity in and near the interface.

The liquid to vapor density ratio limit exists because one begins to observe steady-state

"flip failure" in the interfacial region when the density ratio is greater than about 200. Flip

failure means that the required momentum (and/or energy) adjustment at a given site cannot

be accomplished; the way in which flip failure is handled microdynamically is discussed in

Section 6.4. The presence of a sufficient fraction of flip failure is observed to alter the pressure

of the system, and therefore the density ratio and all other properties. Persistent flip failure

threatens to sabotage the flow dynamics, even beyond any thermodynamic effects, because

the amount of flip failure will be a function of local velocity and interface orientation. It is

thought that flip failure at large density ratio could be avoided by manipulating the structure



of the vapor side of the interface so as to provide a smoother transition in density between

the bulk vapor and the interior of the interface, but a suitable means by which to do this has

not been devised2 . The solution to this problem is likely related to the previous one - the

additional piece of microdynamics with which to include and adjust the excess free energy

of the interface should also allow adjustment of the interfacial density profile.

The solid boundary issue refers to the fact that no attempt has been made to account

for the physics of the interactions of the separate phases with a solid surface. This would

be an important influence in, for example, flow of a two-phase mixture through a porous

medium. It is likely that issues involving liquid-solid versus vapor-solid interactions, such as

wettability and contact angle, could be approached through a further theoretical treatment

of the non-local operations near a solid. For example, the interaction parameter 4 attributed

to a solid site during the calculations for a fluid site could be somehow adjusted to properly

account for true energies of interaction between particular solid and fluid phases.

As regards system size, the code used in this thesis is a 2D version of the method, meant

for proof-of-principle, not large simulations. Indeed the performance of the present "lab-

scale" code is vastly slower than what would be possible with an optimized version running

on a commercial-strength computer. Instead it is worthwhile to consider the simulations that

could be done with an "engineering-scale" multiphase system, defined as a 3D, optimized

implementation of the algorithms introduced here. Based on current commercial Digital

Physics capabilities [59], it is estimated that a single 300 MHz processor would provide a

2Schemes such as altering the size of the neighborhood over which the non-local interactions are calculated
have been attempted.



performance of 5(104) voxel - time steps per second. This assumes that a voxel - time step in

the multiphase system takes twice as long as for the standard system; this is based mainly

on the increased size of the collision list. It is interesting that the non-local momentum and

energy exchange steps of the multiphase system, detailed in Section 6.4, are typically very

fast relative to the rest of the update procedure. The reason is that at any given time, most

of the system consists of bulk phases with uniform properties, where the instantaneous values

of the interaction force are very small (indeed they arise only through the fluctuations), hence

very few momentum (and energy) exchanges are required. Apparently this is an advantage

of the mean field theory approach of this method.

Returning to the issue of practical system sizes, let us assume a 32 processor machine.

Then if one is willing to wait one week for simulation results which require 10000 time steps

(a generous number), then the system size can be on order 108 voxels (i.e. lattice sites).

This would allow, for example, a tube of diameter D = 200 and length L = 3000, or one

with b = L = 500 lattice sites.

5.3 Multiphase Fluid Properties

This section describes the ranges of fluid properties which may exist in the multiphase system,

which eventually must be related to the physical world through the dimensionless quantities

which govern a particular two-phase flow system. The fluid properties and flow parameters

generally of interest are shown in Table 5.1. Also given for each is the approximate range

of values attainable in the multiphase system (in lattice units); these ranges apply to both



Table 5.1: Fluid and flow properties in the multiphase system.

liquid and vapor. Their meaning in terms of standard dimensionless numbers will be explored

shortly.

The lower limit on density of (105) was determined experimentally and assures equilibra-

tion of the state populations through the collision process (particularly for the vapor where

some microstates carry only a small fraction of the particles at a site). The upper limit

of (10)10 corresponds (roughly) to 32-bit microstates. Macroscopically the absolute lattice

densities are unimportant because they cancel out of relevant dimensionless quantities. The

maximum flow speed of 0.3 is based on the low Mach number requirement (for the vapor)

and on stability (for the liquid). The lower limit of 0.005 for the kinematic viscosity, achieved

by collisional over-relaxation (a microdynamical process discussed later), is based practically

on stability, but more fundamentally on the notion that it is undesirable to have a viscosity

so small that the system attempts to form flow structures within a single cell which cannot

be realized. The upper viscosity limit of 0.2 just reflects the natural value of the system, in

the absence of over-relaxation; it could be raised if desired by collisional under-relaxation.

Each of the above constraints is a property only of the microdynamics; the next chapter

Property Symbol Approx. Range
(lattice units)

density p 105-1010
velocity magnitude lul 0-0.3
kinematic viscosity v 0.005-0.2
gravitational constant g 0-1
liquid soundspeed c8  1-3
surface tension coefficient a 0.07-0.23
(divided by liquid density)



looks in detail at the collision operation and issues of stability.

From a microdynamical view the gravitational constant, an external body force, could

range from zero to order unity. However, there is also an important macroscopic consideration

- the action of gravity should not cause unphysically large density variation with height due to

compression. This restriction will be quantified later, but it essentially introduces the liquid

soundspeed c, as another important property. Details of soundspeed calculation are given in

Section 7.2; the range listed (1-3) corresponds to systems with liquid to vapor density ratios

10-100. The last property is the coefficient of surface tension (divided by liquid density) o,

which is a function of the equation of state of the system through the interaction parameter

b. The range given, 0.07 - 0.23, corresponds to the observations presented in Section 7.7,

again for systems with density ratios 10-100. In the multiphase system the surface tension

increases with equilirium density ratio (i.e. decreases with temperature) which is physically

correct.

In the conversion from lattice units to real units, one employs the concept that the

behavior of a system depends entirely on a particular set of dimensionless quantities. The

required set of dimensionless quantities varies for different physical systems, or may even vary

for different values of quantities within the same system. The idea is that for some cases of

interest, the simulation method can correctly reproduce all of the necessary dimensionless

quantities, thereby accurately mimicking the dimensionlessly equivalent physical system.



5.4 Motion of a Rising Bubble

The ability of the multiphase system to achieve the correct values for a set of dimensionless

quantities must be discussed in the context of a specific flow scenario. Given the various

constraints and limitations discussed above, an application for which the engineering-scale

multiphase system would be particularly suitable is the study of bubbles rising in a column

of liquid. Furthermore, bubble dynamics may be studied qualitatively with the present 2D

implementation. One advantage of this system is the existence of a substantial amount of

experimental work and analysis3 . Another advantage is that a lot of interesting physics takes

place even at low and moderate bubble Reynolds numbers, due to the interaction between

drag and deformation of the bubble, and the interactions between bubbles.

The dynamics of a rising bubble are governed by the locally varying competition between

inertial forces, viscous forces, buoyancy forces, and surface tension forces. The problem of

interest is to determine for a single bubble, in an infinite medium with no net flow, how

the terminal bubble velocity Ub varies with bubble volume Vb, and with fluid properties

such as surface tension per unit density o and liquid kinematic viscosity v. The physical

mechanisms at work may be described as the buoyancy of the bubble, the inertia of the

bubble, the drag on the bubble, and the deformation of the bubble as controlled by surface

tension. A sufficient set of dimensionless quantities which characterize this system are the

bubble Reynolds number Re, the Eotvos number Eo, and the Morton number (or property

3In two phase flow experiments, most investigators use a two component two phase system such as air and
water, and these results are typically applied to single component two phase systems, under the assumption
that the only difference in the flow mechanics will be due to differences in fluid properties. The same
assumption will be made here, though in the other direction.



group) M, defined as:

UbdeRe Ude (5.8)
V

Eo = (5.9)

M v 4

M - (5.10)

where the equivalent bubble diameter d, is used,

d,-- (5.11)

It has been assumed that the liquid to vapor density ratio is sufficiently large that the vapor

density may be neglected in the buoyancy terms. There are several other dimensionless

numbers commonly employed to describe bubble rise, including bubble drag coefficient CD,

Weber number We, and Froude number Fr, all of which may be formed by combinations of

the above three quantities. In particular the drag coefficient is often useful, and is given by

CD =--4 (5.12)

which is obtained by equating the buoyancy force to the drag force for a bubble at terminal

velocity,

1
Vbg = 2 AbUb CD (5.13)

where the projected area of the bubble is taken to be Ab = 7rd2/4.

The following is a brief summary of bubble rise velocity behavior based on a survey of
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Temp. (C) I v a M = gv4/a 3

20 1.0(10-6) 7 .3 (1 0 -s) 2.5(10-")
250 1.3(10-7) 3.3(10-s) 7.8(10- 1 4 )

Table 5.2: Key properties of low and high temperature water.

the literature [60, 61, 62, 63, 64]. In order to provide quantitative illustrations, the "wave

analogy" correlation proposed by Mendelson [65] and extended by Jamialahmadi, Branch,

and Miiller-Steinhagen [66] has been adopted, because it is simple and fits experimental

data in the literature quite well (details of the wave analogy are given in Appendix B). The

correlation gives the rise velocity as a function of equivalent diameter and fluid properties.

With some manipulation this essentially allows determination of one dimensionless quantity,

such as bubble Reynolds number, as a function of two others, such as Morton number and

Eotvos number.

Two systems of practical interest are considered, water at low temperature (20 C) and

high temperature (250 C). The significant differences between them for purposes of this

analysis are that the high temperature water has a smaller viscosity by about a factor of

eight and and smaller surface tension by about a factor of two. Table 5.2 lists values from

the standard Steam Tables of kinematic viscosity v and surface tension over density a for

water at these two temperatures; it also lists the resulting Morton numbers. The predicted

terminal bubble rise velocity in a liquid of infinite extent, Ub, as a function of equivalent

diameter de, calculated from the wave analogy correlation, is plotted in Figure 5.1 for water

at 20 C and 250 C. Also shown are corresponding Reynolds numbers. The rise curve for 20

C water is replotted in Figure 5.2 with some additional details explained below.
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Figure 5.1: Bubble rise behavior for low-temperature water (20 C) and high-temperature
water (250 C) based on the wave analogy correlation.

When a bubble is very small it is spherical and rises slowly, and buoyancy and viscous

forces dominate the behavior. For a "solid" bubble where the surface is not free to move,

the drag is equivalent to that of Stokes flow past a sphere [67], CD = 24/Re, whereas for

a "fluid" bubble internal circulation requires a correction (due to Hadamard [68]). Most

systems contain contaminants which accumulate at the surface, resulting in solid bubbles.

The range of small spherical bubbles will be called region I; this region is defined as obeying

Stokes equation (to within five percent), shown as the light dashed line in Figure 5.2. For

low temperature water, region I includes bubbles with diameters of up to about 0.5 mm, for

which Re r 70. For high temperature water region I extends only to bubble diameters of
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Figure 5.2: Bubble rise behavior for 20 C water showing various regions of the characteristic
rise curve.

about 0.2 mm, for which Re - 250.

For somewhat larger bubbles, increased velocity leads to increased drag and the bubble

deforms to become an oblate ellipsoid. The amount of deformation depends on the relative

strength of the surface tension forces to the other forces. For still larger bubbles, the drag

becomes controlled entirely by bubble shape. At this point viscous forces no longer play a

role, so the behavior is essentially independent of Reynolds number. The heavy dashed line

in Figure 5.2 is the "wave" piece of the correlation, and indicates the part of the curve where
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viscous forces are not significant.

The range of bubble diameters where all of the forces are important, in between the

purely Stokes and purely wave pieces of the velocity plot, will be called region II. The

boundary between region II and region III is calculated based on five percent error between

the total velocity and just the wave piece. In the low temperature system region II is (in

mm) 0.5 < de < 1.4, with Reynolds number in the range 70 < Re < 450; for the high

temperature system region II is 0.2 < de < 0.5 and 250 < Re < 1300. Within region II, the

velocity reaches a maximum and then decreases with bubble diameter; for a fluid with lower

viscosity this maximum is more pronounced, whereas a much more viscous fluid would not

exhibit the maximum at all.

For very large bubbles, the ellipsoid shape gives way to a spherical cap. The drag becomes

constant, and the velocity increases as the square root of the equivalent diameter. That

surface tension no longer plays a role can be understood physically to mean that the bubble

cannot deform any further. The transition from region III to region IV is taken to occur when

the Ub ~ V relationship is realized to within five percent error. For low temperature water,

region III is 1.4 < d, < 16.8 and 450 < Re < 5100, while for high temperature water the

ranges are 0.5 < d, < 11 and 1300 < Re < 20000. In region III the bubble velocity passes

through a minimum, then begins to increase once again with bubble size as deformation

becomes more difficult and the shape approaches a spherical cap. The dependence of velocity

on volume to the one sixth power in region IV is the well known result of Davies and

Taylor [69].

To summarize the analysis given above, Table 5.3 lists the values of equivalent bubble
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region 20 C water 250 C water
boundary: I-II II-III III-IV I-II II-III III-IV
de (mm) 0.50 1.4 17 0.20 0.5 11

Re 70 450 5100 250 1300 20000
Eo 0.034 0.26 38 0.012 0.074 36

Table 5.3: Summary of bubble size regions.

diameter, Reynolds number, and Eotvos number which occur at the boundaries between the

four identified regions, for both 20 C and 250 C water. These regions are also identified in

Figure 5.2, along with the forces that control the bubble rise velocity within each region. An

important conclusion is that except for very small bubbles, rise velocity does not depend on

Reynolds number, since viscous forces do not have a significant effect in regions III and IV.

More specifically, the behavior of bubbles in these regions is determined by a relationship

between just two dimensionless quantities, neither of which contain viscosity, such as Eotvos

number Eo and drag coefficient CD. Indeed the wave piece of the wave analogy correlation,

which describes regions III and IV, can be written explicitly as a relationship between Eo

and CD (as shown in Appendix B).

Some additional comments about rising bubbles are in order. It is commonly observed

that they tend to develop a horizontal velocity component and trace out a zigzag or helical

path, even in the absence of net liquid flow. This is surmised to be due to the influence of the

wake, which experiences Karman vortex shedding [70]. A steam bubble in water is actually

at a slightly higher temperature than the surrounding liquid, even when the liquid is at the

saturation temperature, because the pressure of the steam is higher than that of the liquid

due to surface tension. This is important in understanding the nucleation of bubbles at a
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hot surface, and is not accounted for in the multiphase system with its isothermal condition.

Of course for air bubbles in water there is no such temperature difference, and in any case

it should not directly affect the bubble velocity. It is shown later (Section 7.7) that vapor

bubbles in the multiphase system are in fact at an elevated pressure compared to the liquid,

and the pressure difference is used to measure the surface tension according to Laplace's

Law.

For bubbles rising in a container such as a tube of diameter D, there is the additional

physical mechanism of wall shear, the effect of which will depend on the dimensionless

quantity delD. As this ratio increases, the shear causes the bubble to rise more slowly; for

(de/D) > 0.6 [5] it becomes a "Taylor bubble," and slug flow exists4 . When many bubbles

are present, they will affect each others motion in complicated ways and tend to coalesce.

The influence of the presence of many bubbles is often expressed using the void fraction

a, which is the time-averaged fraction of cross-sectional area occupied by vapor. As void

fraction increases, bubble agglomeration occurs more quickly, and for a > 0.25 [4] slug flow

occurs.

Finally, for vapor bubbles rising in a flowing liquid, the velocity profile of the liquid

is important in determining the behavior of a single bubble and the "phase distribution"

when many bubbles are present. If the flow is vigorous enough then turbulent forces become

important as well because they cause breakup of large bubbles, allowing a "dispersed bubble"

flow regime to exist with void fractions up to a " 0.5 [4]. Therefore the Reynolds number

4In slug flow, bullet nosed cylindrical bubbles which nearly fill the tube rise along with slugs of liquid
between them, while a thin layer of liquid flows down around them.
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of the liquid is very important for general two-phase bubbly flow.

5.5 The Multiphase System Applied to Bubbles Ris-

ing in Water

Returning to the problem of just a single bubble rising in a stagnant liquid, one can attempt

to find sets of simulation parameters which are dimensionlessly equivalent to the low and high

temperature water systems. In the process of matching the relevant dimensionless quantities,

it is often necessary to refer to dimensional quantities which have both a "lattice" and a "real

world" representation. When needed to avoid ambiguity, the notation ; will be used to refer

to a variable in the lattice world, as opposed to just x for the real world. The dimensions of

the former are always lattice cells, time steps, and particle mass. Naturally these correspond

to length, time, and mass5 . Unless otherwise noted the dimensions of real world quantities

are always in SI units (meters, seconds, and kilograms).

The purpose of this analysis is to find values of lattice gravitational constant g, liquid

viscosity P, and surface tension per unit density & which will give a lattice bubble velocity

Ub and a lattice equivalent bubble diameter d, that are within acceptable ranges for the

multiphase system. The first three of these are properties which are fixed for a specified

system, while the latter two are the dependent and independent variables of interest in a

bubble rise experiment.

5 Explicit lattice temperature units are not needed, since the lattice temperature may always be scaled by
the universal gas constant R to give !RT, which has units of (length/time)2 .
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It is convenient to introduce the following formalism: a starred quantity z* is the ratio of a

lattice variable i in lattice units to a real variable x in SI units. Then for any dimensionless

number that is to be matched for the real and lattice systems, the same combination of

starred quantities must be equal to unity. Taking the Eotvos number for example,

E gd _ j2 g*(d )2
Eo - -- - 1 (5.14)

The Morton number M is often used in correlating bubble rise data [62, 63] because it

involves only the fluid properties. From the form of the Morton number, one may write

g*(v*)4/(a*)3 = 1 (5.15)

which may be combined with equation (5.14) and solved for d* to give

d* = (v*)2 /a* (5.16)

From the form of the Reynolds number,

Ub* = v*/d = a*/v* (5.17)

The quantities d* and Ub* may be written simply as d* and U*, since they represent the

length and velocity conversions applicable to any length and velocity comparison between

the lattice system and the real system it is intended to represent. Another useful quantity

is the time conversion t* = d*/U*.
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For the high temperature water system, the information from Tables 5.1 and 5.2 implies

that the possible ranges of v* and a* are 3.8(104) < v* < 1.5(106) and 2.1(103) < oa <

7.0(103) for water at 250 C. From equation (5.16) this gives a range of length conversions of

1.1(109) < d* < 2.1(10s), which means that the largest real value a lattice unit can represent

is 1/[2.1(105)] meters or about 5 microns! Surely a requirement of 2000 cells per centimeter

prohibits a practical bubble rise system. Moreover, the time conversion for this system would

be t* = d*/ = = (v*)3/(a*)2 - 106 time steps per second, which is prohibitively slow. Hence

it is quite troublesome to match all three dimensionless quantities (Re, M, Eo) for the case

of water at 250 C.

The situation improves considerably for water at 20 C. Taking ~ = 0.17 (which cor-

responds to the nominal system with density ratio rp = 40), and the minimum viscosity

f = 0.005, gives a* = 2.3(103) and v* = 5.0(103). Hence g* = 2.0(10-5), and the lattice

gravity must be set to § = 2.0(10 - 4 ) (which is within acceptable range). The length conver-

sion is now d* = 1.1(104), or about 110 cells per cm, which is quite reasonable. The velocity

conversion is U* = a*/v* = 0.46 (or U* = v g* which gives the same result). This implies

that the maximum lattice velocity of 0.3 corresponds to a real velocity of 0.65 m/s. Also,

the time conversion is t* = 1.1(104)/0.46 = 2.4(104) time steps per second.

Figure 5.1 shows that the rise velocity does not exceed about 0.3 m/s until the bubble

is greater than 2 cm; for large bubbles Ub 1- gv/d [69]. Thus the largest bubble that could

be represented without exceeding the maximum lattice velocity of 0.3 (when there is no net

liquid flow) is d, = U2/g = 4.3 cm; this bubble has an equivalent diameter of about 500

cells. Assuming a simulated tube of D = L = 500, the bubble would fill the tube and would
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therefore be a "Taylor bubble" and rise with a slug flow velocity that is substantially smaller

than the infinite media velocity. Therefore even larger tubes and Taylor bubbles could be

used without exceeding the maximum lattice velocity.

On the other end of the size scale, very small bubbles in the multiphase system cannot

support the interface, which tends to be about 4-5 cells thick. The minimum lattice bubble

diameter was found experimentally to be about 12 lattice units, which is about 1.1 mm

according to the above length conversion. It is therefore expected that the engineering-scale

multiphase system could simulate single bubbles rising in low temperature water with a range

of equivalent diameters 1.1 < de < 43 mm. The preceding analysis shows that to adjust this

range towards simulation of smaller bubbles, one merely needs to raise the lattice viscosity

from its minimum value.

The fact that the identified range of bubble sizes is nearly beyond region II for low

temperature water, and well beyond it for high temperature water, suggests a reevaluation

of the high temperature water case in such a way as to neglect the viscous forces. Ignoring v*

(i.e. not matching Reynolds number) provides an additional degree of freedom, for example

the length scale conversion can now be set to that of the low temperature water system:

110 cells per cm, or d* = 1.1(104). Again using ~r = 0.17 gives o* = 5.2(103), and equation

(5.14) leads to g* = 4.3(10-s). The conversion from lattice to real velocity is found to be

U* = = 0.69, so the maximum real velocity is 0.3/0.69 = 0.44 m/s. This occurs for a

bubble with de = 1.9 cm; hence the expected simulation range for high temperature water

is 1.1 < de < 19 mm.

The minimum bubble size, due once more to the minimum lattice bubble diameter of
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12 cells, is large enough to justify the assumption that viscous forces can be neglected

(see Table 5.3). The real viscosity represented by this system can still be determined. From

equation (5.17), v* = d*U* = 7.6(103), and assuming the "best" lattice viscosity of I = 0.005,

the real viscosity is v = 6.6(10- 7) m 2/s. According to Table 5.2 this is five times too high

for water at 250 C. Thus the Reynolds number of the simulation in this formulation will be

too low by a factor of five, but it will not affect the (no flow) single bubble rise simulations.

On the other hand the Reynolds number will matter for simulation of a system with many

bubbles, or one where the liquid is flowing (or both). Viscous forces will be important in

bubble interactions, because now the behavior of the wakes of the bubbles is very significant.

When there is net flow of the system through a tube, the liquid velocity profile depends on the

Reynolds number of the liquid and strongly affects the trajectories and shapes of bubbles,

and hence the phase distribution (e.g. wall-peak or core-peak bubble pattern). Viscous

stresses will also be of primary importance in the breakup of bubbles due to turbulence at

high enough Reynolds numbers6 .

Some conclusions can be drawn from the above discussion. For high temperature water,

the multiphase system can achieve the correct density ratio, but cannot achieve the cor-

rect dimensionless representation of inertial, viscous, surface tension, and buoyancy forces

simultaneously with a practical system size. Basically the reason is that the Morton number

M = gv4/Or3 of water at 250 C is very small, M = 7.8(10-14), and to achieve this in a

simulation the strength of gravity must be lowered so much that the length and velocity

6The liquid Reynolds number is typically incorporated into a mixture Reynolds number [4], ReM =
DUM/v, where mixture velocity UM = UL(1 - a)+ UG a, UL is the mean liquid velocity, and UG is the mean
vapor velocity (which will be the mean liquid velocity plus the mean bubble rise velocity).
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scales are sacrificed. One approach is to compromise the viscosity, which is appropriate for a

bubble with diameter greater than a half millimeter rising in infinite media. Another possi-

bility would be to find a way to increase the lattice surface tension (or lower lattice viscosity,

which may not be desirable for other reasons).

For low temperature water, the multiphase system can achieve all three correct dimension-

less quantities (Re, Eo, and M), with a length scaling of about a hundred cells per centimeter,

which is appropriate for rising bubbles and perhaps other flow scenarios as well. Moreover,

when the bubble Reynolds number is correct then the liquid (and mixture) Reynolds num-

bers must also be correct. Naturally the quantities de/D and void fraction a must be correct

as well since length and velocity scale linearly. This implies that the engineering-scale mul-

tiphase system can be expected to accurately capture many of the key physical mechanisms

that govern bubbly two-phase flow of water at room temperature. However, several caveats

must be mentioned.

First, the density ratio is incorrect; fortunately this is not important for flow systems

where the vapor may be represented as void space, and the density ratio need only be large

enough to provide this approximation. This certainly is not the case when the stresses of the

vapor on the liquid at the interface are important. Second, Reynolds number is limited by

available computational power, as in any simulation method. The largest achievable value in

the multiphase system is Re = D(0.3)/(0.005) = 60D, and D will depend on the system size

that can be simulated in a reasonable amount of time. Third, the thickness of the interface

is not negligible, especially for small bubbles, which could influence void fraction dependent

processes. Lastly, there are (as mentioned) the spurious velocities near the interface, which
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could cause unphysical effects.

Returning for a moment to the issue of maximum Reynolds number, Re = 60D, it is worth

noting that one of the most important features of the engineering-scale multiphase system

is the possibility for simulating turbulent bubbly flow. This claim is based on the previous

estimate (Section 5.2) of a system size of 108 lattice cells. One may wish, for example, to

simulate flow in a tube with a large enough length to diameter ratio LID to allow some

development of the flow regime. A tube with D = 200 and L = 3000 cells can be used,

giving L/D = 15, and a Reynolds number Re = 12000 (although this is still a relatively

small L/D, the boundary conditions at the flow entrance and exit can be set up in such a

way as to enhance the development of fully turbulent flow). In some cases perhaps a much

squatter tube could be used for simulations of flow that does not require much development,

for example D = L = 500; then the maximum Reynolds number is Re = 30000. These

Reynolds numbers would allow investigation of the complex effects of turbulent forces on

bubble dynamics.

Some final thoughts are in order regarding the issue of converting from lattice units to

real units. It is instructive to introduce the Mach number M, = juj/cs, where u is a velocity

of interest. The fundamental properties that determine the kinematic viscosity v are the

soundspeed c, and the mean free path A, v 2 c,A. The Reynolds number may therefore be

rewritten as

Re = M( - (5.18)

where L is some appropriate length. Water at 20 C has a mean free path A " 7(10-10)
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meters. The lattice system has some minimum allowable kinematic viscosity, which was

specified as 0.005, and the liquid phase has (typical) soundspeed c, r 2, giving a mean free

path of A " 2.5(10 - 3) lattice cells. Thus the length conversion on the basis of mean free path

would be about 3(10 - ') meters per lattice cell. This would, of course, restrict the method

to simulation of very small flow systems - a system on the scale of millimeters would exceed

the most generous plausible computational limits. Consequently the basic dimensionless

quantity L/A must be much smaller in the lattice system than in the real world. In order

to achieve the correct Reynolds number, therefore, it is necessary to make the lattice Mach

number much higher than the real Mach number. This is also necessary from the point of

view of simulation time, since the higher lattice flow velocity allows proportionally fewer

time steps.

The bubble drag coefficient (equation (5.12)) is basically just a Froude number, which

may be written in general as Fr = gL/lul2. Using the Mach number to recast the Froude

number,

gL D9Fr - D9  (5.19)c2 2M2  M2

where another dimensionless quantity has been defined, D, = Lg/c , which will be referred

to as the dimensionless gravitational compression. Physically it represents the fractional

density change of a substance due to gravity acting over a height L. Since the Mach number

of the lattice system is typically elevated as much as possible to maximize Reynolds number,

a consequence when attempting to achieve a certain Froude number at the same time is

that the dimensionless gravitational compression of the lattice system must be much higher

than that of the real world. This is acceptable so long as it does not become so large that
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it causes strong density variations in a system where they should be negligible. This is the

source of an additional macroscopic restriction on lattice gravitational constant g, referred

to earlier. The choice of criterion depends on the system; if for example no more than five

percent change in density over a column of liquid of height L = 500 is acceptable, then

§ < (0.05)(2)2/500 = 4(10 - 4) is required.

5.6 Van der Waals Thermodynamics

This section describes how the choice of a system based on the van der Waals equation of

state affects the ability to model water from a thermodynamic viewpoint. It is a property

of a van der Waals system (detailed in Appendix A) that the dimensionless thermodynamic

quantities related to two-phase coexistence depend on a single dimensionless parameter,

which will be referred to as the universal van der Waals parameter Z,

aZ = a (5.20)
bRT

The quantities that depend only on the universal parameter Z include the following:

* density ratio rp, Pf/P9

* reduced temperature T* - RT/RT1 it

* reduced pressure P* - P/Peit

* dimensionless latent energy of vaporization u* = (ug - uf)/RT
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* dimensionless latent entropy of vaporization s* = (sg - sf)/R

* dimensionless volume-work of vaporization w* H (P/RT)(1/pg - l/pf) = PAv/RT

* dimensionless liquid and vapor soundspeeds c,/V"TP

where Av = v, - vf is the volume change of vaporization. In this section the temperature

and pressure are always taken to be the saturation values corresponding to a two-phase

mixture.

Once any one of the dimensionless quantities listed above is specified, all of the others

are determined, hence a single parameter governs all of the important two-phase thermody-

namical behavior of this system. The van der Waals system is therefore likely to provide a

rather crude approximation to the thermodynamic properties of any real substance. Since

the focus of the project is on water, it is worthwhile to examine how the properties of sat-

urated water compare, in dimensionless fashion, to those of a van der Waals system. The

basis of comparison is chosen to be the liquid to vapor density ratio rp. Figure 5.3 shows

the parameter Z as a function of equilibrium liquid to vapor density ratio for the van der

Waals system, and also gives the saturation temperature of water for which a given density

ratio exists. Figures 5.4-5.9 compare the van der Waals system to water 7 by showing each

of the above dimensionless quantities plotted as a function of density ratio. The agreements

are not quantitatively correct, with some quantities differing consistently by a factor of two

or more. Nevertheless the correct trends are captured over a wide range of conditions.

7All data for water was taken from the Steam Tables. Values of quantities for the van der Waals system
were found by numerical solution of equations (3.15) and (3.16).
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Figure 5.3: Universal van der Waals parameter Z = a/bRT, and saturation temperature of
water, versus equilibrium liquid to vapor density ratio.

The lack of quantitative agreement is not a concern in this work. The example of a van

der Waals thermodynamical system used in this project is sufficient to show the important

features which characterize the multiphase system. In practice a much more accurate empir-

ical thermodynamical model for a specific substance, such as one based on the fundamental

equation for water given in the Steam Tables, could be used (as noted in Chapter 3). The

present goal is just to demonstrate that the multiphase system is in fact able to represent a

consistent two phase thermodynamical system, especially since this is crucial for eventually

including heat transfer capability.

The key point of this analysis is that, along with the density ratio, a very significant

requirement imposed by thermodynamics on the multiphase system involves the dynamic

range of the internal energy per unit mass ii. This is because the system must be able to
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Figure 5.6: Dimensionless latent internal energy of vaporization u* vs. density ratio, com-
parison between water and van der Waals system.
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Figure 5.7: Dimensionless latent entropy of vaporization s* vs. density ratio, comparison
between water and van der Waals system.
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Figure 5.9: Dimensionless liquid and vapor soundspeeds, comparison between water and
van der Waals system. Isothermal soundspeeds are used for the latter, calculated as in
Section 7.2.
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represent the full range of this quantity as it varies from the equilibrium vapor value ii, to

that of the liquid if. Thus the system must be designed to accommodate the dimensionless

latent energy of vaporization u* associated with the desired range of simulation conditions.

For example, a system with a density ratio rp = 40, which matches that of water at 250

degrees C, will have a dimensionless latent energy of vaporization u* = 4.3 (as seen in Figure

5.6). Recalling that the equilibrium vapor internal energy per unit mass is fiig 2RT, then

that of the liquid must be iif - -2.3RT.

Clearly the required dynamic range of ii increases linearly with temperature /fT, for

a given value of u*. From the point of view of designing a system with adequate dynamic

range, it is therefore desirable to have a small value of lattice temperature RT7. An important

consequence of the general dependence of the two-phase properties of a van der Waals system

on a single parameter is that it puts no constraint on the choice of the lattice temperature

RT. This is because for any value of the parameter Z = a/bRT, one may always choose

van der Waals constants a and b to accommodate any value of fT, even while additionally

specifying some other (non-dimensionless) property such as the absolute value of the liquid

density.

A criterion that can be used in the choice of lattice temperature iRT is that the multiphase

system should approach the standard system at low density, and the standard system has

a dynamic range of 1/3 < RT < 2/3. It turns out that, in the multiphase system as

implemented it in this work, there is an upper limit on temperature RTT due to the nature of

the solution of the system of constraints. In Section 6.1 it is shown that there is a requirement

ii < 1 (see equation (6.18)). This means that for the vapor, ui = fiLg 2RT < 1, hence there
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is an approximate upper limit of RT - 1/2. There is, however, no corresponding lower limit

on temperature. The lattice temperature will therefore be considered an arbitrary parameter

in the range 1/3 < RT < 1/2, and the usual value will be RT = 0.4. Physically the absolute

value of the lattice temperature has little meaning as an isolated quantity, its relevance is

its role as a scaling parameter for the other thermodynamic quantities as shown above. Of

key significance, however, is that once a lattice temperature RT and the maximum desired

density ratio are chosen, the required range of internal energy per unit mass ii is essentially

determined. In Section 6.1 it is shown that this in turn determines the amounts of negative

microscopic internal energy which need to be included in the choice of particle species.

The liquid to vapor density ratio, as opposed to say the reduced temperature, will continue

to be chosen as the basic quantity by which to specify the thermodynamic conditions of the

multiphase system. This is done for several reasons. First, the density ratio is important to

the flow dynamics, although in cases such as bubbly flow where the vapor can be thought

of as void space, it is only necessary to be sure that the density ratio is large. Second, it

is a simple but important equilibrium property of a two-phase mixture. Third, there is the

upper limit of about 200 discussed above.

In this chapter important thermodynamic and flow properties have been identified, and

the means by which to relate the multiphase system to a real fluid has been outlined, particu-

larly for the case of water. The capabilities and limitations for an estimated engineering-scale

version of the multiphase system were described, and the potential to accurately simulate

bubbly flow for low and high temperature water systems was discussed. In the process the

physical mechanisms and dimensionless quantities which are important to the bubbly (and
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to some extent slug) flow regime were examined, along with the ranges of these quantities

that are accessible to the multiphase system. In Section 8.2, results of 2D single bubble rise

simulations are presented which demonstrate the ability of the multiphase system to cap-

ture the key physical mechanisms. The next chapter deals with additional theoretical and

practical issues involved in arriving at a working implementation of the multiphase system.
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Chapter 6

Implementation of the Method

6.1 Solution of the System of Constraints

A specific implementation of the multiphase system requires the selection of particle species.

It was previously established that at least four species are needed, and at least one with

both kinetic and internal microscopic energy. Specifying a set of particle species allows us,

in principle, to attempt to find a solution of the system of constraints (4.58-4.61) as written.

Instead, a way to simplify that system so as to make it more tractable is now presented.

While an analytical solution will not be found, the system of equations will be more easily

solved numerically, and along the way some additional insight will be gained.

The goal is to see how the choice of species affects the dynamic range of the system, i.e.

the range of internal energy per unit mass u for which a solution exists. It must be noted
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that a solution is only valid if it gives a positive real value for each rate coefficient (including

Lagrange multipliers a0o and /0 defined previously). While many possible combinations

of exotic energy species might be tried, a prudent guiding principle is to minimize the

departure from the well-tested standard system. Essentially this means limiting the values

of microscopic kinetic energy to zero, one, or two. It was found that using only four different

species leads to an undesirable property of the solution that two of the species populations

are fixed. Since it is desirable to minimize the number of states and the size of the collision

list, a system consisting of five different types of particles will be used1 .

To remain somewhat general, a set of species of the form (0, 0), (1,0), (2, 0), (1, -v), and

(0, -w) is considered, where the notation (er, e/) is used to indicate a particle of microscopic

kinetic energy ef and microscopic internal energy 4e. The first three are "purely kinetic"

species and are those of the three-speed standard system. The last two are "mixed energy"

species, and this combination has been found to yield a favorable solution, one which imparts

a substantial range of internal energy per unit mass u. That range will tend to be from an

upper value umax of about unity to a lower value umi, which scales with the magnitudes of

the negative microscopic internal energies. The above species set also lends itself favorably

to finding suitable energy exchange collisions.

Recalling the system of constraints written in terms of the zero-velocity distributions,

equations (4.53-4.56), it is useful to define the total population of species j per unit mass,

Pj -- Njdj/p = njdj. Then expanding the sums, putting in values for the microscopic

'Systems of six or more types of particles have been investigated with no discernible advantage.
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energies, and dividing through by density yields

1 = Po+P 1 + P2 +P3 + P4 (6.1)

u = P1 + 2P2 + (1 - v)P 3 - wP 4

(3/2)(Pi + 2P 2 + P3 )2 = P1 + 4P 2 + P3

(Pi + 2P2 + P3 )(-vP3 - wP 4) = -vP 3

(6.2)

(6.3)

(6.4)

There are five species and only four constraints, but an additional equation will be introduced

by defining the rate coefficients.

It is convenient to take advantage of the common appearance of the zero-velocity kinetic

and internal energy moments (eK) and (el). Defining them per unit mass as K and I,

((EK)K e' -= P_ + 2P 2 + P3
P

I - - vP3 - wP4P

and substituting into the above equations gives

I = K + Po - P2 + P4

u = K + I

(3/2)1(K2 = K + 2P2
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KI = -vP 3  (6.10)

The following relationships are immediately seen:

1 3P2 = ·K -(K - 1) (6.11)

1 1
P3 = -- KI = -K(u - K) (6.12)

V V

1 1
P4 = -1I(1 - K) = (u- K)(1 - K) (6.13)

w w

and substituting into equation (6.7),

1 3 1
1 = K + Po - K K - 1) (u - K)(1 - K) (6.14)

Completing the solution requires specifying the "rate structure" of the system, that is

to say one must write out explicitly the relationships expressed by equation (4.57). As

mentioned, only two of the rates can be independently adjusted. The following rate structure

has been found to yield a favorable solution:

Po = roy

P1 = dyz

P2 = dyz 2  (6.15)

P3 = dryz(1-v)

P4 = ryz -W
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where it has been noted that dj happens to be the same number of directions, d = 24, for

each of the moving species, and unity for the two non-moving species. In this formulation,

r and ro are the independent rates, where r3 = r4 = r and rl = r2 = 1. An important

result of assigning the same rate coefficient to both of the mixed energy species is that their

populations tend to vanish together at low density.

By taking the ratios P 2/P1 and P3 /P 4, equations (6.15) may be rearranged to give

z = P2  P3  (6.16)

Pi P4

Using equations (6.5) and (6.11-6.13) to substitute for the populations per unit mass P1 , P 2 ,

P3 , and P4, yields
1

3K -2 (w K1 )-+ (6.17)

8-6K + 4(u - K)/v vdlK

and this equation can be solved numerically for its single unknown K. All of the populations

per unit mass may then be solved for directly, and they are strictly functions only of the

internal energy per unit mass u.

A solution is only valid when all of the associated equilibrium populations have real,

positive values; this condition will only be met for some finite range of isotropic kinetic

energy moment K corresponding to some finite range of the internal energy per unit mass

u, known as the dynamic range. This positivity condition can be applied separately to each

species population in order to make some observations about the behavior of the dynamic

range of the system.
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From equation (6.12),

P3 = I K(u - K) > 0

(6.18)
== u < K

where the fact that K > 0 was used, since there are no negative values of microscopic kinetic

energy eC. Equation (6.13) gives

1
P4 = -(u - K)(1 - K) > 0w

(6.19)

and equation (6.11) gives

P2

From equations (6.5), (6.11), and (6.12),

Pi = 2K -

K( 2 K - 1) > 0
(6.20)

* K > 2/3

3 1
-K 2 + -K(u - K) > 0
2 v
3
-vK - 2v =
2

2
u > - -v

3

(6.21)

where K > 2/3 from above was used to get the last relation. Thus the dynamic range of the

system will be at most 2/3 - v < u < 1.

A final condition is derived from equation (6.14) by solving for Po and setting the result

to be greater than zero, which may then be rearranged to give

u>
4K - 4K' - 4w + 6wK - 3wK2

4(1 - K) (6.22)

129



w\v 1 2 3 4 5
1 0.980 ,-0.080 0.993 ,-1.16 0.997 , -1.54 0.998 , -1.88
2 0.568 , -0.333 0.973 ,-0.648 0.990 , -2.22 0.996 , -2.61
3 0.583 , -0.333 0.205 , -1.33 0.970 , -1.21 0.988 , -3.24

Table 6.1: Dynamic range (max,min) of internal energy per unit mass u for combinations of
microscopic internal energy parameters v and w in the (0, 1, 2, l-v, -w) 5-species system.

This condition tends to have a very small effect on the upper end of the range, but has a

substantial effect on the lower bound u, especially as w becomes small.

The exact dynamic range of internal energy per unit mass u for several sets of parameters

v and w, is displayed in Table 6.1. It appears to be desirable to have v > w. However,

combinations which give w = v - 1 are excluded as they lead to solutions which require that

two of the species populations are fixed. The values in this table were found by numerically

solving equation (6.17) for K(u) and noting the range over which all the populations per unit

mass Pj remain positive. Typically the upper bound is limited by P3 and P4, which both

become negative as the rate coefficient r becomes negative; this is physically consistent as it

is expected that the relative fractions of these mixed energy species will dwindle as internal

energy per unit mass u increases. The other species populations decline as u decreases, and

the lower bound tends to be reached when Po becomes negative (as the rate coefficient ro

goes negative).

For the multiphase system implemented in this thesis, v = 4 and w = 2 were chosen, which

gives a dynamic range -2.22 < u < 0.990, and allows a favorable set of interspecies collisions

(discussed in Section 6.4). For a lattice temperature RTý = 0.4, this implies a maximum

dimensionless latent energy of vaporization u* = Ail/RT • 7.5, which is sufficient to model
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Figure 6.1: Fractional species populations Pj and isotropic kinetic energy moment per unit
mass K = P1 + 2P 2 + P3 vs. internal energy per unit mass u, for the (0, 1, 2, -3, -2) 5-species
multiphase system.

a density ratio of up to r, p 700. This is quite suitable since, as discussed in Section 5.2,

there is already an upper limit on density ratio of about 200. The values of the species

populations per unit mass Pj in the v = 4, w = 2 system are plotted as a function of internal

energy per unit mass u in Figure 6.1. The isotropic kinetic energy moment per unit mass

K = P1 + 2P 2 + P3 is also shown; it will be seen later that K plays a significant role in

certain aspects of system behavior, such as the value of the kinematic viscosity v.
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6.2 Stability of the Dense Phase

It was found that when the multiphase system is implemented in a straightforward manner,

the dense phase is not stable with respect to density fluctuations. The amplitude of the

fluctuations grows with time, causing a uniform region to rapidly break up into local spots

of very high density surrounded by regions of lower density. The pattern itself fluctuates

wildly, and the high densities can reach values of several times the expected value of the

liquid density. This instability has been observed in the liquid phase of a two phase mixture

and for a pure single phase liquid. The rheology of the instability is typically fairly distinct,

and different than that observed, for example, in the standard system [71] in the presence

of large flow velocities in combination with a high degree of over-relaxation2 . Indeed, the

liquid phase instability is observed even for a system with no flow, no over-relaxation, and

fixed rates3

The instability is believed to occur because the elevated soundspeed of the liquid violates

a kind of Courant condition. The soundspeed is the velocity at which density perturbations

are propagated, and thereby represents a rate of travel of information. In a lattice gas,

however, the fastest rate of information propagation is the speed of the fastest particles.

In this implementation of the multiphase system, the fastest particle speed is two. It is

therefore impossible for the system to move mass around in response to fluctuations quickly

enough to match the desired rate for a liquid phase with a soundspeed above two. Thus a

2Collisional over-relaxation [17, 19] is a technique for reducing the viscosity of the lattice gas, and is
detailed further in Sections 6.3 and 6.4.

S"Fixed rates" refers to a scheme where the rate coefficients for the energy-exchange collisions are constant
for the duration of a simulation, as opposed to dynamic rates which are updated at each time step.
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soundspeed of two is expected to be the absolute maximum supported by the multiphase

system, although in practice the threshold may be lower, due to other operations which

exacerbate the instability, or to the presence of a relatively small fraction of the species

which have particle speed two.

Such a limitation would severely hamper the usefulness of the multiphase system. This is

apparent from Figure 5.9, which shows the (isothermal) liquid soundspeed of the multiphase

system as a function of density ratio. At a density ratio of forty the liquid soundspeed is

already above two, and in practice even lower density ratios result in an unstable liquid

phase. Also, soundspeed increases with density and pressure, so that liquids at pressures

above their saturation pressures have higher soundspeeds. The Courant stability condition

is not a problem for the vapor phase, in which the soundspeed is never greater than unity.

The adopted solution is to implement the multiphase system with a reduced time step.

The liquid soundspeed will scale with the effective time step, while the actual particle speeds

do not change. In this way arbitrarily high liquid soundspeeds can be achieved if one is willing

to endure correspondingly small time steps. It turns out that typically only a modest time

step reduction is required to achieve a stable bulk liquid phase in the systems of interest in

this project. A rough criterion for the expected maximum reduced time step, wmax, is simply

that the effective soundspeed, w,c., should be no greater than the maximum particle speed

of two. Hence the theoretical maximum reduced time step Wmax,th is

wpmax•h = 2/c, (6.23)
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The modification of the advection scheme used to achieve a reduced time step is discussed

in the next section.

Another important feature of the instability is its sensitivity to collisional over-relaxation.

Basically, the problem gets worse as the amount of over-relaxation is increased. This is

unfortunate since over-relaxation is typically used in order to reduce the liquid kinematic

viscosity. A theoretical analysis of the effect of over-relaxation on the onset of instability is

approximate and cumbersome at best, yet some sort of guide is needed by which to choose

optimum values of the reduced time step w,. An optimum exists because wp should be as

large as possible to limit the number of steps needed for a given simulation, while allowing

a stable liquid phase for a given set of conditions.

Stability tests were conducted by which to determine the maximum allowable value of the

reduced time step, wn a", for a given liquid soundspeed and a given amount of over-relaxation.

In these tests, a 30x30 lattice was seeded with uniform density and velocity, with each state

population set to the corresponding equilibrium value, plus a small fluctuation. The level

of fluctuation was larger than that due to dithering the populations to integer values, and

was even larger than that normally observed in a steady state liquid phase; it was present to

help induce unstable behavior for purposes of the test. The lattice velocity components were

fixed at u, = 0.15 and uY = 0.13, giving a flow speed Jul ' 0.2. The instability has been

observed to become more severe with increasing velocity; this flow speed value was chosen

to give a practical, though not extreme, example of typical operating conditions.

The lattice soundspeed was varied4 either by adjusting the universal van der Waals param-

4Calculation of the soundspeed is detailed in Section 7.2.

134



1.0

04
1)
Z 0.8

a)

-H-

a 0.6
-H

0d

0.4

0.2

1 2 3 4

soundspeed (lattice units)

Figure 6.2: Results of liquid phase stability tests to determine maximum allowable par-
tial time step w'"ax as a function of liquid soundspeed c,. The proposed theoretical value
is w'ma = 2/c,; however wpm x is also strongly affected by the collisional over-relaxation
parameter w,.

eter Z = a/bRT, or by increasing the density for a given value of Z; the lattice temperature

was kept constant at RT = 0.4. The results are shown in Figure 6.2, where the maximum

value of the partial time step Wlna- is plotted against soundspeed c, for several values of the

over-relaxation parameter w,. The given value of Wuma indicates the largest partial time step,

measured in increments of 0.01, for which the system remained stable. Thus the area to the

upper right of a curve represents an unstable region for that value of we. Also plotted is the

theoretical maximum partial time step wax,i'th = 2/c,; with no over-relaxation (w, = 1) it
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is in fact a good prediction, and supports the conjecture regarding the Courant condition

as the source of the instability. It is clear from the results that over-relaxation contributes

significantly to the instability condition.

For purposes of this test the criteria for a system to be considered stable was that the mean

square density fluctuations averaged over the lattice had to continually decrease or remain

at a constant minimum value for at least 1000 time steps. Growth of the mean density

fluctuations in the absence of some external agent is strictly unphysical and is essentially

the definition of the instability. While the results of this experiment by no means provide

a guarantee that a given set of conditions are stable, it has been found to be a useful

guide, especially when a margin of safety is included, such as using a partial time step

of w, = 0.8wam". In different situations the liquid phase may require less than twenty or

more than a thousand steps to become unstable; however, the onset of instability is always

observed to occur faster for increased partial time step or degree of over-relaxation.

6.3 Probabilistic Advection and Recovery of Low Vis-

cosity

A modified advection scheme is now presented by which to reduce the effective time step

while preserving the viscosity reduction available through collisional over-relaxation. The

new scheme will be referred to as the "probabilistic advection" method5 , and allows a reduced

5The concept of probabilistic advection is due originally to Chen, Teixeira, Gang, and Molvig [72], and
has been adapted here to create the reduced time step method.
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time step wp, 0 < wp < 1, without introducing artifacts into the resulting macroscopic

dynamics. In the process of describing probabilistic advection, essential elements of transport

theory for the multiphase system will be derived.

A reduced time step has been found to stabilize the dense phase of the multiphase system,

as described above. The meaning of a reduced time step is that particles travel, on average,

only the fraction w, of the distance they normally would based on their current speed. Thus

the usual definition of velocity u,

cjiNIEQ = pu (6.24)

becomes

Z c =jNL, O = (6.25)
ji

Microscopically, however, particles can only travel discrete distances on the lattice. Thus the

above condition can be brought about most simply by allowing only wpN]EQ particles to move

for each state ji at each time step. This rule will be referred to as the "partial advection"

scheme, and it introduces an extraneous diffusive term which leads to undesirable artifacts.

The probabilistic advection scheme, on the other hand, achieves the reduced time step but

also introduces an antidiffusive component into the advection process which eliminates these

artifacts. It will be shown that partial advection dramatically weakens the ability of over-

relaxation to lower the lattice viscosity; it is especially important that the probabilistic

advection process does not have this disadvantage, since it usually desirable to lower the

lattice viscosity as much as possible in order to boost the accessible range of Reynolds
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numbers.

Probabilistic advection is invoked by using a generalized advection process, represented

by the following lattice update equation:

Ni(x,t +w ) = ) G'Ni'(x - c,, t) + wp (6.26)
n

Here n refers to a nearest neighbor, and G' is a transition probability, such that for a state

i it is the fraction of the population Ni at site x which is advected to neighbor x + cn (or

equivalently from neighbor x - cn to site x). Note the species index j has been dropped for

this discussion, so state ji will just be written as state i. As given, equation (6.26) indicates

that the population of state i which ends up at site x is the sum over the neighborhood of the

preadvection state i populations of each neighbor multiplied by a transition probability which

depends on the relative location of that neighbor. A single complete update is considered to

advance the system from time t to time t + wp. Note that in the presence of the reduced time

step, the interaction operator must be scaled by w,, and this is accounted for in practice in

the calculation of the interaction parameter 0.

The preadvection population NJ is the post-collision population, which normally is the

equilibrium distribution, thus NJ' = NEQ. This is also true for the multiphase system since,

as previously discussed, the momentum and energy pushing operations occur after advection

but prior to collision. However when over-relaxation is present, the distributions are driven

138



beyond equilibrium in the collision process, and the post-collision population is given by

N" = Ni - wc(Ni - NEQ) (6.27)

where w, is the over-relaxation parameter, and 1 < we < 2. The above equation indicates

that, for wc > 1, the distributions are driven to equilibrium and then beyond by a factor of

(wP - 1). We are particularly concerned by the interaction between over-relaxation and the

reduced time step.

The mean dynamics of the system are derived in the usual fashion via a Chapman-

Enskog type of procedure. Expanding the update equation (6.26) to second order in Knudsen

number,

N, + aN 1 + W N= L Gi Ni - VN' +1 cc : VVNj + wPzi (6.28)
n

Continuity requires that, for each state i, the set of transition probabilities G' obey

G' = 1 (6.29)
n

and, in light of equation (6.25), the required velocity moment is

SG'c,n = wpci (6.30)
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Using these conditions in equation (6.28) gives

-W2 aOtN; = N" - wc; VN" + -2 2
Gcncnc) : VVN" + w,Z,

It is also useful to define the transition probability matrix T i for state i,

T' G= n CnC (6.32)

Applying the usual Chapman-Enskog formalism, the distributions and the derivatives are

expanded by order such that

N, = NEQ + Ni() + •2)+ ...

Ot = EOt1 + '2t2 + ... (6.33)

V = eV

and the order subscript is dropped for the spatial derivative since no second or higher order

gradient terms survive the expansion. Equation (6.31) becomes

w,(eCat + 28t2)(NgEQ + N ~i(1) ) + -1w2tlatl~ 2 N E Q

=-w(Ni1) + 2 N2))- wc . EV [NEQ + (1 - w0)N( 1)] : VE 2N +

(6.34)

where substitution was made for NJ using the relation

Nj = NNQ+ e(1 - wc)N,( ) + E2(1 - (2)
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which is just the expanded form of equation (6.27).

The first order terms from equation (6.34) give

WpOtlN; Q = -wcNi ) - wpci. VN E Q + wpI

(6.36)
==o atNEQ + c¢. VNýQ Wp) +WP

By inspection the mass and momentum moments of this kinetic equation are

9tip + V -pu = 0 (6.37)

8t 1pu + V -l(0 ) = 0 (6.38)

where (O0) is the zeroth order momentum flux tensor, which includes the non-local contri-

bution,

V . ccN, _E ciZi=V'(puu+PkI) +VPnI

- j(0O) = puu + PI
(6.39)

and substitution was made for the momentum moment of the first order piece of the inter-

action operator via equations (3.1) and (3.4). As expected the correct mass and momentum

transport equations are recovered at the Euler level.

The second order terms in equation (6.34) give

wvOt2NEQ + pWtlNi() + 1 tl tl NEQP ~ 2W
o.40u)

=-wcN2  - wic; . V[(1 -Wc)N 1) 1] + : VVNEQ2
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and now the contribution of the interaction operator has been neglected. It is believed that

this will not affect the analysis of the coefficient of shear viscosity, though it will affect

the bulk viscosity coefficient. Shear viscosity corresponds to the mean free path of the

particles, which will be determined by the "kinetic" part of the microdynamics and should

be independent of the "non-local" part. On the other hand, the presence of the interaction

operator should affect the bulk viscosity, in analogy to the dependence of this property on

the internal structure of molecules in a real fluid. However, evaluation of the second order

part of the interaction operator is complex and bulk viscosity is unimportant to the flow

dynamics of systems of interest in this work. The results of shearwave tests and soundwave

tests (Sections 7.1 and 7.2) will bear out the above assumptions.

Substituting for Nj1) via equation (6.36) gives

W w( 2N (6.41)
= N2) W c)Ci _t VEQ E C iEQ i

- -wcN 2 - w(1 -V -Oc c. VN s Q) + -T' : VVNEQ
Pz We c 2

and dividing by w, and rearranging,

t2N Q + l tl -Q 2 W  ci " VA tNEQC 2 ) W (6.42)
( wc3,) 1 Ti.VNEQ_ NN (2)

+ - cic : VVN 2- - ': VV - 2
The 2transition probability matrix T can be written strictly as a function of state i by

The transition probability matrix T' can be written strictly as a function of state i by
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defining a coefficient qi such that

T_ = G'ic,c, - qi cici (6.43)
n

It is also assumed that, since a sum over all directions will eventually be taken, the coefficient

qi may as well be a constant, q. Combining the last two terms on the left-hand side of equation

(6.42), it may be rewritten as

at2 N, E ý + aa1 tN\ + 2'- ci -Vat N EQ(t)e 2 P) V tiNLQWe (6.44)

+ w p --- - cici : VVN = " N(2)
we, 2wL

It is straightforward to take the mass moment of equation (6.44):

t2P + 1p + at1ai + - 2ý) V - .tipu
cW 2 We (6.45)

2+ -w ) VV : 11(0)
WW 2w, k -

Substituting in for 'tip from equation (6.37), and noting that in the absence of the

interaction operator the zeroth order momentum flux tensor I(O) can be replaced with the

kinetic part IIo ) in equation (6.38), some additional manipulation gives

1q
8 t2P + q _- p)7 tlpu = 0 (6.46)

2wp

or

Ot2p + AoV " atipu = 0 (6.47)
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where Ao = (q - w )/2wp is an "artifact coefficient." Equation (6.47) shows that the second

order mass flux does not vanish unless Ao vanishes. The condition to avoid this artifact is

q = 2 (6.48)

Note that the partial advection scheme, in which only a fraction wp particles in each state

move while the rest stay still, is equivalent to having q = w,. This can be seen by observing

that in this scheme there are only two non-zero transition probabilities, Gj = w, and GO =

(1 - wp), thus T' = w cici. For partial advection, therefore, Ao = (1 - w,)/2, indicating a

second order mass flux artifact which goes as (1 - wp).

Taking the momentum moment of equation (6.44) gives

t2PU + + W) •1a,ýpu + (w ,- 2 • 1V .t4l9o
( 2 Wqe ' (6.49)

+ p w, 2w

where the third order tensor B is defined as

B = cicic;N E  (6.50)

Using equation (6.38) once again, and defining the coefficient A1 as

A1 = W W (6.51)
2 we
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equation (6.49) becomes

Ot2pu + AiV O atil,( 0 ) + (A 1 - Ao)VV B: = 0 (6.52)

or

9t2pu + V. ___a ) = 0 (6.53)

where the kinetic part of the first order momentum flux tensor 1( 1) has been defined as

=nl ) = AI,,ti] °0 ) + (A, - Ao)V - B (6.54)

When q = wý, as required to remove the second order mass flux artifact,

H(1) = A, (AnH(°) + V -B) (6.55)
-k -k -

This is identical to the usual form of the first order momentum flux tensor in the collisional

over-relaxation scheme, save for the scaling factor w,. Indeed the presence of wp is advanta-

geous as it further lowers the value of the lattice viscosity. At this point it can be concluded

that the condition q = w; is the desired one for the probabilistic advection scheme, as it

restores the correct forms of the second order mass and momentum transport. It is still

useful to find the viscosity as a function of q in general, to see for example how it behaves

for partial advection.

In evaluating the first order momentum flux, only terms through first order in velocity
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need to kept. Recalling equation (4.24) for the kinetic pressure Pk,

Ht:oIII ) - tl P I = atl (EK )

k 2 (6.56)
1 1 1 1 (

~-Ki p = KV -pul -KpV - ul = -Kpu,,p
2 2 2 2

The fact that the isotropic kinetic energy moment per unit mass K is approximately constant

has been used. Also the density gradient is of the same order as the velocity, so terms like

u -Vp are second order in velocity and may be ignored. The term B must be evaluated using

the form of the equilibrium distribution Ni Q shown in Section 4.1,

NiE N 1 + (•cK -u) + ... (6.57)

which gives

B = cici;Nj 1 + c -u) = Njc i cicici . u
+(-1)(c 1 (• K) (6.58)

2 p 4 (eKeK) A(4). = 1(K)(4) . U
-(K) D(D + 2) 2

The divergence of B can now be written as

V.B = V (1(,K)A(4) . U) a, [E(K)(6baU_ + 6aUi3 + 6P0yUa)]

2 2 (6.59)
= (ik(.K)U,) S.6 + a. ('(EK)U'3) + a6' ! >)U

Terms like u,68(EK) will be second order in velocity, because the isotropic kinetic energy

moment (eK) is essentially proportional to density p. Thus approximations like Oa((eK)u 3 ) c
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(eK)au,3 are made, and equation (6.59) becomes

V -B l(• )(a,Up + 9aUp + Pua))2 (6.60)

A complete expression for the kinetic first order momentum flux tensor may now be

written out:

il ) 1 1
= 1) - -AxKpyu,6,p + (EK)(A, - AO)(,yu-yS,6 + 0.up + 0pua)ýk 2 2 (6.61)

which may be rearranged slightly to give

1 2 (AI•() (=IK) 2(A
k 2 LD - Ao) - Ao] yu,6af

+ (EK)(A1 - Ao) (,u" + aOuac
2- 2 us)y

The transport coefficients, dynamic shear viscosity y and bulk viscosity i7, are defined by

I'() = -87,•~ - i (0,u + apua -
2 a )u,6b (6.63)

Comparing these last two expressions,

77 = pK(A - 3Ao)
4

1
= 1 pK(Aj - Ao)2

(6.64)

(6.65)

As discussed this qi does not include the anticipated influence of the interaction operator,
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and could be thought of as just the kinetic contribution to the bulk viscosity. The general

expression for the kinematic viscosity v = u/p is

p 1 1 1q wP )

V K(Ao - A 1) = -K + - W (6.66)
p 2 2 2 p w,

When artifact coefficient Ao vanishes (i.e. q = w),

1 11
V=- Kw (6.67)

2 (wC 2

and the full effect of over-relaxation is recovered. On the other hand for partial advection,

when q = w,, kinematic viscosity v' is

v' = K + w(668)

and v' > v for any combination of wC > 1 and w, < 1. In particular, as wc approaches the

limit w, = 2, v becomes very small whereas v' goes to K(1 - wp)/4.

A method for achieving equation (6.43), with a constant q, subject to conditions (6.29)

and (6.30), has been adapted from a technique worked out by Chen, Teixeira, Gang, and

Molvig [72] (they applied it to irregular lattice geometries rather than a reduced time step).

The individual transition probabilities G' are broken into two parts,

Gn = G1 + G' (6.69)
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where G~ represents the expected mean values in the absence of a diffusive term, which

corresponds exactly to the partial advection transition probabilities, while Gn is the diffusive

component (which may be positive or negative). Therefore the following system must be

solved for the set of unknown G'~:

dGX =O (6.70)
n

WP, Cn = Ci

G= (1 - w), c,=0

0, all else

(6.71)

E i ca = 0 (6.72)
n

ZGcc + 0c - qc i cc' = 0 (6.73)
n n

where a and a' are dimension indices. Clearly this system is highly under-determined, so a

Lagrange minimum principle is applied to the set of G'. The result for the 2D FCHC lattice

is

A c ca C cý r + D(c )2 7 (c)a2 -30o (6.74)
S1040 [ ) II
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6.4 The Multiphase Algorithm

6.4.1 Introduction and System Setup

The multiphase algorithm may be thought of as consisting of three sections: system setup,

the main loop, and calculated output. The main loop of course is the heart of the code

and contains the major operations performed for each time step: collision, advection, mo-

mentum pushing, and energy pushing, in that order. The main loop also contains sitewise

measurement of macroscopic variables such as density, temperature, x- and y-components

of the velocity, and scalar pressure, and checks on global conservation of mass, momentum,

and energy. A flow chart illustrating the overall structure of the algorithm is shown in Fig-

ure 6.3; the location of the "measurement" operation is meant indicate that many quantities

are monitored dynamically; however, some measurements occur at additional places in the

loop.

The present code uses a 31-bit word to represent the population Nji(x) of a state ji at

a site x. There are 29 different states for the 2D FCHC lattice with the five species used

in the multiphase system. These five different species of particles will be denoted as Sj,
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Figure 6.3: Flowchart of algorithm used in implementation of multiphase system.
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j = 0, 1, ... , 4, and can be thought of in the following way:

So = (0, 0)

S1 = (1, 0)

S2 = (2, 0) (6.75)

S3 = (1, -4)

S4 = (0, -2)

where Sj = (er, e/) means that particles of type j have microscopic kinetic energy of eK and

microscopic internal energy of eC. Species S3 and S4 are the new types of species introduced

in the multiphase system. There is one state associated with each of the non-moving species

So and S4 , and nine states (in 2D) associated with each of the moving species S1, S2, and

S3 , for a total of 29.

The presence of these species requires six classes of collision rules: one for self-collisions

of each of the three moving species, and three energy exchange collisions by which to achieve

the desired "rates" governing the relative distribution of particles amongst the five species.

The classes of collisions will be denoted as C " , where C 1, C 2, and C3 indicate self-collisions of

species S1, S2 , and S3 , respectively, while CO, C4, and C5 indicate energy exchange collisions

which will be described momentarily.

In setting up the system, the first step is to use information read from input files to set

the microscopic velocity components, weights, and energies of each state, and to form the

rule lists for the collision, momentum pushing, and energy pushing operations. Data for

determination of the rates is also read in. Key operating variables such as lattice size and
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run length are prescribed in a header file.

The matrix G (i.e. the set of G') used for the probabilistic advection scheme is con-

structed, as described in Section 6.3, from the values of the reduced time step w, and the

collisional over-relaxation parameter w,. The geometry of the system is set up in some user

specified fashion such that the solid sites are marked as distinct from open (non-solid) sites.

Walls are each represented by two rows of solid sites, e.g. at the top and bottom of the

lattice.

The next step is the seeding of the lattice, i.e. assigning initial values of the state popula-

tions. Seeding is performed by determining the local equilibrium (Boltzmann) distributions

Nj , according to equation (4.4), for each site based on assigned values of the following

macroscopic properties: density p, temperature T, and velocity u. It is also possible to

impose a specific level of fluctuations in the initial seeding, and each actual state population

is determined from the following algorithm:

Nji = N',Q(1 - A1 + 2AfAr) (6.76)

where AX is a random number of linear distribution from zero to one. The resulting value is in

the range Nji = Nf(1 - A), and is then dithered to an integer; the fluctuation parameter

A1 is typically set to Af = 0.01.

The most obvious configuration to begin with is uniform density, temperature, and ve-

locity throughout the lattice. Often it is more useful to begin with separate regions of

liquid and vapor with densities near the expected equilibrium values. In the shearwave test
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(Section 7.1), the initial configuration is uniform density and a sinusoidally varying velocity

field. Once the lattice is seeded, initial measurements are made of sitewise properties, and

of global properties such as the total system mass, momentum, and energy. System setup is

then complete, and the main loop begins.

6.4.2 Collisions

In general, the form of the zero-velocity equilibrium distribution per unit mass nj = Nj/p

for species Sj is

nj = rjyz z (6.77)

where rj is a rate coefficient, y -- e-"o/p, and z - e-PO, as shown in Section 4.3. Following

equations (6.15), the rate structure may be written in full as

no = roy

nl = yz

n2 = 2  (6.78)

n3 = ryz - 3

n4 = ryz-2

where the microscopic internal energy parameters are v = 4 and w = 2. The rates are

implemented through the chemical equilibrium constants, Ka, a = 0, 1, ..., 5 (of which again

only two can be independently adjusted). There are three energy exchange equilibrium

constants, Ko, K 4 , and K5 , one for each class of energy exchange collisions. These three
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classes of energy exchange collisions are as follows:

C O : Sim + Sin = S2 + SO

C4 : S2 + S = S1 + S4  (6.79)

C 5 : Sim + Sin + So = S2m + S2n + S4

which may written in terms of the total microscopic energies of each species as

CO: 1+1 = 2 +0

C4 : 2 + -3 = 1+ -2 (6.80)

Cs :1 + 1+0= 2+2+-2

where Sjm and Si in collisions CO and C5 indicate the use of two different states of the

same species Sj. The corresponding chemical equilibrium constants are

KO n2n ro (6.81)
(n1)

2

K 4 -i4=1 (6.82)
n2n3

K 5  (n2 )2 n4  r (6.83)
(ni)2 no ro

Thus the independent equilibrium constants turn out to be Ko and K5 . Note that the values

of equilibrium constants K1 , K 2, and K3 for the three classes of self-collisions are always

unity.

While it is preferable to use bi-linear collisions whenever possible, the tri-linear collision
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C5 is needed in order to introduce the rate r; for the current choice of species, there is no

bi-linear collision which will do so. Indeed collision classes CO and C4 are the only binary

energy exchange collisions that exist for this species set, save for the one which may be

obtained by "adding" these two collisions to produce the collision C*:

C* : 1 + -3 = 0 + -2 (6.84)

The chemical equilibrium constant for this collision is, however, just ro once again, thus

collision class C* is redundant. Any two of the three available bi-linear collisions could

be chosen, but another, higher-order collision must be used to complete the set of energy

exchange collisions. Collision class C5 is in fact the only available tri-linear collision whose

equilibrium constant contains the rate r.

Each of the zero-velocity equilibrium distributions nj depends only on the internal energy

per unit mass u = E/p. The system of constraints is solved numerically for many values

of u which span the range where a solution exists; in this particular system the range is

-2.2 < u < 0.99. The result is a set of values of nj for each species, or alternatively the

species populations Pj = djnj, as a function of u, as displayed in Figure 6.1. Values of nj

are determined dynamically from this set of values by linear interpolation; if u is somehow

out of bounds the values for the near boundary is used. The chemical equilibrium constants

are then determined as shown above.

The number of collisions performed for each site was nominally 300, or higher (e.g. 600)

for low viscosity simulations (v < 0.04). There are 157 different collision rules: 14 of class
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CO, 22 each of classes C 1 , C 2 , and C', 33 of class C4 , and 44 of class C'. For each collision

event, a collision rule is chosen at random from the list of 157. Based on the rule selected,

and the populations {N,, Nb, ... , Nf} of the states involved in that rule, an Nc,,t is calculated.

Nacat is the amount of mass pushed out of each of the reactant states and into each of the

product states, for the collision "reactions" as written above. For self-collisions [42],

NaNb - NdNe,
Nscat(C) (6.85)

where Nj still denotes the isotropic distribution (rather than an actual state population).

For the energy exchange collisions,

N (C)Nb - NdN= (6.86)
N 2 + No + 2KoN1

= K4 NaNb - NdNe
Nsc + N 4 + K 4 (N 2 + N 3)

S K5NaNbNc - NdNeNf
N•(t - (N 2) 2 + 2N2N4 + Ks [(N) 2 + 2N 1N0No]

where individual reactant state populations are indicated by Na, Nb, and (for collision C5 )

Nc, while individual product state populations are indicated by Nd, Ne, and (for collision C5 )

Nf. Again the Nj's in the denominators are the isotropic distributions. The first of these

energy exchange collisions (C o) is identical to the one used in the (three speed) standard

system [42]. The other two are new, and in particular C5 is the first use of a tri-linear

collision rule. All three are multi-linear processes6 of the form needed to satisfy a local

6Specifically of a type called "smart sandpaper" [18].
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H-Theorem [14] and a shot noise theorem [13].

For each chosen rule of the collision process, an Ncat is calculated and dithered to integer

value, and the corresponding amounts of mass are exchanged between states. If the desired

pushing would result in a negative population for one of the states, the rule is skipped. For

collisional over-relaxation [17, 19] (i.e. over-relaxation parameter w, > 1), the entire cycle of

rules for a site is repeated, but with new values of N,,,at which are just the previous (floating

point) Nscat values multiplied by (wc - 1) and dithered.

6.4.3 Advection

The traditional advection operation simply rearranges the lattice populations such that

Nj,(x) === Nj,(x + cj,) (6.89)

The more involved but necessary probabilistic advection scheme moves particles such that

E G' NNj,(x - c.) -=> Nj,(x) (6.90)

which may be written in terms of individual events as

G'"Nj,(x) -== Nj;(x + c.) (6.91)
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where the set of velocity indices n uniquely defines the advection neighborhood. The coeffi-

cient G7, an element of the probabilistic advection matrix G, gives the fraction of particles

in state ji which are moved in direction n. The set of Gji are calculated from equation

(6.74). In the case that Gj' is negative, particles are to be moved into state ji at site x from

state ji at site x + c,. The set of n is not generally the same as the set of all particle states

ji; in the current system they differ because several sets of states ji have redundant velocity

components.

Probabilistic advection is implemented at each site by performing all of the individual

scattering events indicated by equation (6.90). However, for each event, it is first determined

whether or not that event is eligible for the diffusive component of the probabilistic advection

scheme. An event is eligible if both the current site x and the neighbor site x + cn are non-

solid and not part of an interface. A site is considered part of an interface (i.e. not part of a

bulk phase) if the density ratio between the site and any of its neighbors is larger than some

preset threshold. If the event is eligible, scattering proceeds according to the coefficient Gj . ,

such that the dithered value of GNji;(x) particles are transferred. If not, then the transfer

is determined instead by the "partial advection scheme," such that

wpNji(x) ==- Nji(x + cji), (6.92)

(1 - wp)Nj;(x) ==> Nj;(x)

Partial advection lacks the diffusive component of probabilistic advection, and is imple-
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mented by substituting for the usual value of the coefficient Gji in the following way:

WOp, Cn = Cji

S (1 - ), = 0

0, all else

(6.93)

Each pair of neighbors is considered twice during an advection update; determining the

eligibility of each scattering event according to both sites assures that the exchange follows

the same advection scheme both times. When the update as described is complete, the

desired change in population of each state at each site has been recorded. If for any such

state the calculated change in population would result in a negative value, the population

Nji(x) of that state is set to zero. The remaining difference is then subtracted from the

neighboring populations Nji(x + cn) in randomly chosen scattering events which distribute

the burden evenly. This process is continued iteratively until exact mass conservation is

recovered without any negative population values.

The final part of advection involves the action taken at solid sites. A "reflection" routine,

for example, invokes a simple bounce back rule. The bounce back is implemented by reversing

the velocity of each particle at all solid sites in the first layer of a wall, which is adjacent to

non-solid sites. Solid sites in the second layer of a wall may be reached by particles of species

S2 which start out next to a wall; these particles are placed back where they started out

prior to advection with their velocities reversed. This works because only particles of speed

2 headed directly into the wall can reach the second layer of the wall, and their momentum

must carry them a distance of two lattice spacings, which are counted as one to get to the
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adjacent solid site and one to get back. In this way the momenta of the solid sites and the

mass of the second layer vanish macroscopically, although the solid sites in the first layer

do contain finite mass. There are many other possible solid site advection algorithms which

could be used to invoke various boundary conditions.

6.4.4 Momentum Pushing

The momentum pushing operation is performed at all open sites. First, all sites are assigned

a (floating point) value of the interaction parameter O(x), calculated as in equation (3.13).

Then for each neighbor pair or "link", the pairwise product of their interaction parameters

is calculated and dithered. Finally, a momentum adjustment for each site is calculated and

performed according to equation (2.22). The exact integer calculation of the components F,

and F, of the interaction force at site x is therefore given by

Fx = [0k(x)k(x + cm)]cm.
m (6.94)

F, = -E[(x)4(x + cm)]cmy
m

where the sum is taken over all the sites in the "interaction neighborhood," and the quantities

in square braces are first calculated as floating point numbers and then dithered to integer

values. In the case that a neighbor x + cm is a solid site, the value of k(x + cm) is replaced

by that of O(x).

The next step is an estimation of the amount of x- and y-momentum which is available

for pushing, based on the current populations at site x. If for either component the desired
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momentum adjustment cannot be achieved, the amount available is performed, and the

remainder is considered the "momentum flip failure" Ff"il or Fa if '. This amount is passed

along to the neighbor directly adjacent to x in the direction of the momentum change, to

be performed in a subsequent iteration. That is to say, if F,(x) is positive, for example,

but only an x-momentum change of Fx(x) can be achieved, then the value of the burden

FX ai(x) = F,(x) - Fa(x) is stored as a momentum adjustment associated with the neighbor

directly to the right of site x, but to be carried out in a subsequent run through the lattice

which cleans up such momentum flip failures. This procedure is continued iteratively until all

momentum flip failures throughout the lattice have been eliminated; in this way momentum

is conserved exactly at each time step, even when the desired local momentum change cannot

be entirely accomplished.

Finally, the momentum pushing itself is implemented through a sequence of individual

scattering events which continues until the calculated momentum adjustments for the current

site and current iteration are achieved. These events each alter either x- or y-momentum,

thus separate x-pushes and y-pushes are used. In each event, first a random choice is made

between an x-push or a y-push, if both are still needed. Then a pushing rule is chosen

randomly from a list; there are 23 different x-pushes and the same number of y-pushes.

Each push is a unary or binary event in which particles are transferred from one state or

pair of states to another state or pair of states of the same species, which is a simple way

of automatically conserving energy. The number of particles transferred in each event is

determined by an algorithm which attempts to strike a balance between completing the

total adjustment quickly and spreading it evenly amongst the available types of pushes.
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6.4.5 Energy Pushing

There are two types of energy pushing operations. The first represents contact of the system

with a constant temperature reservoir. The second implements the energy adjustment pro-

cess derived in Section 4.2 by which to eliminate the kinetic pressure artifact for an adiabatic

system. All of the two phase simulations in this work were run using the constant temper-

ature algorithm, for the reasons discussed in Section 5.2. However, some of the soundwave

tests (Section 7.2) used the adiabatic energy transport algorithm.

In the constant temperature case, each site x at every time step undergoes an energy

change required to set its temperature to that of the reservoir, TR. This is accomplished by

changing the internal energy per unit volume E(x) by an amount

AE(x) = C,[T(x) - TR] = 2p[T(x) - TR] (6.95)

The value of the energy change AE(x) is dithered to an integer, and a sequence of energy

pushing events continues until this integer energy adjustment is complete. During the se-

quence, a pushing rule is chosen randomly from a list. All of the energy pushing rules are

binary scattering events which involve pairs of parity states from two different species (a

simple way to choose rules which conserve momentum since the momenta of parity states

sum to zero); there are 80 of these rules. The number of particles involved in each event

is again determined in a way which attempts to minimize the number of events without

drastically skewing the resulting distributions.

The other type of energy pushing, used for adiabatic energy transport, requires initial
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calculation for each site x of the value of the interaction energy parameter Yji(x):

IF i 2(X)Nji(x)
Yi(x) = 2 p(x) (6.96)2 p(x)

as given by equation (4.47); this value is dithered to an integer. Once the complete set of

integer Yji's is known, an integer energy change is calculated for each site x by taking the

following sum:

AE(x) = [Yji(x) - Yj,(x - cj,)] (6.97)
ji

as given by equation (4.49). In this operation the sum is taken over the same set of veloc-

ity states ji that define the populations Nji, thus the notation is consistent. This energy

change AE(x) is now achieved in identical fashion to the method described for the constant

temperature case, i.e. via a sequence of energy pushes which are each binary scattering

events.
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Chapter 7

Basic Simulation Experiments

This chapter presents results of simulation experiments which investigate the basic behavior

of the multiphase system and verify the theoretical predictions of the previous chapters. Basic

behavior refers to fundamental macroscopic properties which must be properly recovered by

the method if it is to be used for simulations of complex flow systems. The key macroscopic

properties of a pure fluid (in the context of the current use of the method) are the Galilean

invariance coefficient g, the kinematic viscosity v, the soundspeed c,, and the pressure P =

P(p, u) (i.e. the equation of state), while for a phase separated system they also include the

equilibrium liquid and vapor densities pf and pg, and the surface tension a. Additionally

there is the gravitational constant, g (this symbol is also used for the Galilean invariance

coefficient as they rarely appear together). The following experiments use relatively simple

simulation systems to directly or indirectly observe all of these properties for comparison to

prediction.
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7.1 Momentum Shearwave Decay

The purpose of the "shearwave test"' is to measure the Galilean coefficient g and the kine-

matic viscosity v. This single phase test verifies that momentum transport has the correct

basic form. The Galilean coefficient g should be constant and equal to unity, which implies

Galilean invariance and elimination of the dynamic pressure artifact, as shown in Section 4.1.

The kinematic viscosity v should be constant and equal to the predicted value given by the

analyses of Section 6.3. Achieving these indications of correct hydrodynamic behavior verifies

that the type and number of collisions performed during the collision operation is sufficient

to drive the distributions close to equilibrium. In the case of probabilistic advection it also

demonstrates the validity of this scheme and its ability to take advantage of collisional over-

relaxation to achieve low values of kinematic viscosity. Shearwave test results for both the

vapor and liquid phases are presented.

The shearwave test takes advantage of the fact that there is a simple analytical solution to

the momentum transport equation for incompressible, isothermal flow with an initial velocity

field given by

u(x, t = 0) = uyoey + u.O sin(ky)e. (7.1)

Here k = 27rn,,/L is the wavenumber of the sinusoidal velocity perturbation, which contains

an integer n, wavelengths. The amplitude of the velocity perturbation is u,o, while uyp is the

transverse velocity. The lattice momentum transport equation in this case may be written

1The methodology used here follows that of Teixeria [13] who presented shearwave tests for the standard
system.
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Otu + gu Vu = vV 2 u (7.2)

and the solution is

u(x, t) = uyoey + uxo exp(-vk 2t) sin[k(y - guyot)]e. (7.3)

The shearwave decays exponentially with a time constant that depends on kinematic

viscosity v, and it propagates in the transverse direction at a rate which depends on the

Galilean coefficient g. These parameters are solved for by observing that upon taking the

Fourier transform of the spatial part of the solution, the modulus is given by

In (2 F +u L y  = -vk 2t (7.4)

while the phase is given by

arctan F = kguot + 7r/2 (7.5)

where

Fe - u(y, t) cos (LY (7.6)

(2 rky

Fim - .' (Yy,t)sin 2n(Y) (7.7)

are the real and imaginary components of a discrete version of the transform. The sums

are also averaged over the x-direction, in which all behavior should be uniform. Both the
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modulus and phase should vary linearly with time. Kinematic viscosity v is taken from the

slope of the best fit line of measured values of the modulus versus time, and the Galilean

coefficient g is taken from the slope of the best fit line of measured values of the phase versus

time.

Results are presented for the nominal system, over a range of kinematic viscosities, for

both the pure liquid and pure vapor, and for both partial and probabilistic advection schemes.

The parameters chosen were a perturbation wavelength n, = 1, velocity components u,o =

0.15 and uy0 = 0.13, and lattice size 50 by 50. The nominal multiphase system uses a lattice

temperature of RT = 0.4, with a van der Waals parameter Z = 5.66, corresponding to a

two-phase mixture of density ratio 40 (although these experiments are strictly single phase).

For liquid systems an equilibrium liquid density pf - 4(105) was used, and for the vapor

systems an equilibrium vapor density p9 
- 105 was used. Hence different van der Waals

constants were used for liquid and vapor, though temperature and parameter Z were the

same.

Table 7.1 summarizes the shearwave decay results. Tests were performed for partial time

step w, equal to 0.5 or 0.2, and over-relaxation parameter w, equal to 1, 1.7, or 1.85. Care

was taken to avoid regions of liquid phase instability indicated in Figure 6.2 (the liquid

soundspeed for this system is c, = 2.06). Advection type "0" means partial advection, while

"1" indicates the probabilistic advection scheme was used. The theoretical values of viscosity

Vth are calculated from equation (6.68) for the former and equation (6.67) in the latter case.

The theoretical value of the Galilean coefficient g is unity. Normally the number of collisions

performed during the collision process was Ncot = 300, but to achieve low viscosities a
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case liquid vapor

Lp IwC Adv Ncol vth Vexp I ge Vth vexp I 9ex
0.5 1 0 300 0.239 0.244 0.990 0.248 0.255 0.993
0.5 1 1 300 0.119 0.123 0.989 0.123 0.130 0.991
0.5 1.7 0 300 0.140 0.145 0.991 0.145 0.152 0.992
0.5 1.7 1 300 0.0210 0.0248 0.987 0.0218 0.0273 0.988
0.5 1.7 1 1000 0.0210 0.0214 0.985 0.0218 0.0224 0.986
0.2 1.7 0 300 0.199 0.204 0.987 0.206 0.210 0.988
0.2 1.7 1 300 0.00842 0.0104 0.985 0.00873 0.0158 0.985
0.2 1.85 1 1000 0.00387 0.00461 0.985 unstable

Table 7.1: Shearwave test results.

greater number may be desired.

The results show that the Galilean coefficient g tends to be slightly less than unity, but

never by more than two percent. In fact additional tests showed that for the standard system

or for a vapor in the multiphase system where the time step could be set to w, = 1, the

deviation in g becomes substantially smaller (- ±0.5%). The 1 - 2% deviations seen here,

particularly in the presence of the probabilistic advection scheme, were similarly observed

for a related probabilistic advection method used to implement the standard system on an

irregular (parallelepiped) lattice geometry [72]. Moreover, the deviations were substantially

reduced in the irregular lattice geometry case by adding a small empirical correction factor

to the advection transition probabilities (see Section 6.3), which could similarly be done for

the current method.

Strong agreement between the measured and predicted values of the viscosity for v > 0.03,

for both partial and probabilistic advection, indicate that the analysis of Section 6.3 is valid

and that these schemes have been properly implemented. The degradation of viscosity at low
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values indicates that too few collisions are being performed to achieve the desired degree of

over-relaxation. This is verified by the improvement shown for the test cases where a greater

numbers of collisions were used. In every case, even when v,,p deviated quite a bit from Vth,

the correct Galilean coefficient (to within acceptable error) was achieved and the slope of

the modulus and phase were both observed to remain linear. These are key indications that

the system is behaving hydrodynamically. An example of the experimental results is given

in Figure 7.1, which shows the modulus and phase versus time, along with the best fit lines,

for the fairly low viscosity case of the liquid with w, = 1.7, N,,ou = 1000, wp = 0.2 (and

probabilistic advection).

Also of primary importance is that even when there is some viscosity degradation, vis-

cosities below v = 0.01 are still achieved by using probabilistic advection in conjunction with

over-relaxation. This is a reduction in viscosity by a factor of 10-20, or more, compared to

cases without probabilistic advection or without over-relaxation. This viscosity reduction is

important because it increases the value of the Reynolds number which can be achieved by

the system, and therefore the range of flow conditions which can be simulated for a given

system size.

Shearwave tests for the vapor with w, = 1.85 were not be performed because of an insta-

bility that occurs in this case. The instability is not the Courant condition violation shown

for the liquid; rather it is a well-known phenomenon observed for the standard system [71]

in the presence of aggressive flow velocities, a high degree of over-relaxation, and dynamic

updating of the energy-exchange collision rate coefficients (also called "dynamic rates"). The

use of "advected rates," [71], in which local values of the rate coefficients propagate with the
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Figure 7.1: Example of shearwave test results - modulus and phase of decaying shearwave
vs. time. Slopes of best fit lines indicate lattice viscosity v = 0.0214 and Galilean coefficient
g = 0.985; theoretical values are v = 0.210 and g = 1.

flow velocity, has been shown to greatly extend the parameter ranges for which the standard

system is stable. Indeed the above case (we = 1.85, lul ' 0.2, dynamic rates) for the stan-

dard system is known to be stable when advected rates are used, and this scheme would be

simple to include in the multiphase system.

It is interesting that the liquid phase remains stable for high flow velocity and low viscosity

conditions even in the absence of advected rates. The reason for the apparent stability
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improvement associated with the liquid compared to the vapor (and the standard system) is

most likely that the momentum and energy pushing operations of the non-local interaction

tend to disrupt the feedback mechanism that leads to the growth of a regular spatial pattern

through which this type of instability manifests itself. One could take advantage of the fact

that the liquid is less prone to instability by using different amounts of over-relaxation in

the liquid and vapor phases, especially in situations where the viscosity of the vapor phase is

not important to the flow behavior. This will be true when the vapor may be treated as void

space, in which case the dynamic viscosity of the vapor should merely be much smaller than

that of the liquid (thus the density ratio must be much larger than the kinematic viscosity

ratio of the two phases).

7.2 Soundwave Propagation

An important fluid property is the soundspeed. The speed of sound reflects the compress-

ibility of a substance, and is the rate at which small disturbances are propagated through a

fluid. A basic general property of liquids is that they have greater soundspeeds than gases.

For example, the soundspeed of saturated liquid water at 250 C is 2.3 times as great as that

of its equilibrium vapor, and this ratio increases to 3.5 at 20 C.

The speed of sound for a fluid in the multiphase system can be measured by simulation. A

simple "soundwave test" consists of perturbing an otherwise uniform system in a particular

fashion and observing the response, similar to the "shearwave test." Since the soundspeed is

easily derived from the equation of state and the energy transport equation, the soundwave
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test provides a convenient way to verify that the multiphase system behaves in agreement

with the predicted forms of these relations. The following analysis will focus on the liquid

soundspeed, which plays an important role in the experimental observations presented in

this chapter and the next.

Soundspeeds can be predicted and measured for the three different lattice energy transport

equations identified previously. These energy transport equations and the types of systems

they result in will be referred to as: (1) isothermal, (2) adiabatic, and (3) kinetic pressure

artifact. The isothermal condition is required to stabilize an interface, as already noted,

and is therefore a necessary approximation generally used in the multiphase system; it is

not necessary when only a single phase is present. The adiabatic condition, obtained by

implementing the local energy adjustment procedure described in Section 4.2, gives the true

behavior of a fluid. The adiabatic condition may be used in the soundwave test since there

is a single phase fluid and therefore no interface. When neither of these conditions are

used to adjust the local macroscopic energy, the system has the kinetic pressure artifact, as

described in Section 4.2, where the true pressure is replaced by the kinetic pressure in the

energy transport equation.

The soundwave test involves initializing a system with a slightly nonuniform density,

which gives rise to soundwaves or "waves of expansion." The nonuniformity, and all resulting

variations, may be restricted to one dimension for simplicity, and will be taken to occur in

the x-direction. It is convenient to define the fractional density variation s(x, t) from the the

constant mean density po:

p(x, t) = Poll + s(x, t)] (7.8)
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Denoting the velocity in the x-direction as v, and neglecting second and higher order terms

in the perturbative quantities, the mass and momentum transport equations take a 1D

linearized form,

Os Ov
t +  = 0 (7.9)

Bv 1 P . 2v
t + b2 (7.10)

Ot Po Ox O22

The coefficient b of the viscous damping term should depend on both the shear viscosity

and the bulk viscosity; although a theoretical prediction for the bulk viscosity has not been

derived (see Section 6.3), b is expected to be of the same order as the kinematic shear

viscosity2 v, and it has the same units.

Taking the time derivative of equation (7.9) and the spatial derivative of equation (7.10)

and combining them to eliminate the cross-derivative of the velocity v gives

O2s 1 02P 303v
t o O b-= 0 (7.11)Wt2 Po ax2 X3=

The variation in pressure P with respect to density p is the square of the soundspeed c, :

OP = dPp = c2p (7.12)
dp

Thus equation (7.11) becomes a 1D damped wave equation,

02s 2 s ,3
•

2  c2 a b = 0 (7.13)
at2 aX 2 Ox2 Ot
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where equation (7.9) has been used to substitute into the viscous term. Alternatively the

time derivative of equation (7.10) may be taken, and replacing the pressure via equation

(7.12) gives

92v 2 32s 0
- -c2xt + b xt (7.14)

and once again using equation (7.9),

&2 v 2 2v .3_
-2 c2 b x2= 0at2 -1 a2 aX2at (7.15)

The soundspeed c, is a strong

was assumed that the density

approximated as constant.

function of density, but in equations (7.13) and (7.15) it

variations are small enough that the soundspeed may be

To conduct the experiment a system of length L is initialized in such a way that it

evolves according to a single dominant eigenmode. To proceed a solution is assumed which

corresponds to a traveling wave,

s(x, t) = so exp(-ikz - iwt) (7.16)

and likewise for the velocity,

v0v(x, t) = vo exp(-ikx - iwt) = -s(x, t), = = -S•X, 0 (7.17)
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If one initial condition is a sinusoidal density perturbation of one complete wavelength, then

s(x, 0) = so cos(27rx/L) (7.18)

which is consistent with equation (7.16) if so is real and k = 21r/L. The latter is consistent

with the periodic boundary conditions s(O, t) = s(L, t) and v(O, t) = v(L, t). From equation

(7.9),

- iws = ikv = ik-s ==-- vo - so (7.19)
so k~

Substituting the assumed solution, equation (7.16), back into the governing equation (7.13),

gives

- w2 + ck 2 - ibwk 2 = 0 -4 w = -- ibk 2 ± kc, (7.20)
2

The real part of the density variation is then

s(x, t) = so exp (- bk2t) cos k(x ± c~t) (7.21)

and the real part of the solution for the velocity is

v(x, t) = -s(x, t) = -so exp - bk2t) - bk sin k(x ± c,t) + c cos k(x + c,t) (7.22)

where k = 2r/L. It is expected, however, that the condition bk << c, will always hold, thus

the first term in the square brackets is small compared to the second, which gives

v(x,t) = Tcs(x, t) (7.23)
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where the sign indicates the direction of the traveling wave. The velocity field must therefore

be initialized according to

2rx(
v(x, 0) = Tcs(x, 0) = Tcso cos (7.24)

which forms another initial condition of the soundwave system.

So far energy transport has been ignored, since it need not be considered for the isothermal

system. For the non-isothermal systems the temperature field will also evolve and must be

initialized properly to yield the desired single eigenmode solution. The temperature variation

z(x, t) from the constant mean temperature To can be defined as

T(x, t) = To[i + z(x, t)] (7.25)

Let Eo and Po be the internal energy per unit volume and pressure corresponding to mean

density po and mean temperature To, where P is the true pressure P for the adiabatic system,

and is the kinetic pressure Pk in the artifact system. The 1D linearized energy transport

equation may be written as

aE 8v
S+ (Eo + o) = 0 (7.26)

Dissipative terms, which should only contribute to damping of the temperature variations,

have been ignored. Recalling that internal energy per volume in the multiphase system is

E = p(2T - ap),

E = 2poTo(1 + s + z) - apo(1 + 2s) (7.27)
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for small perturbations, and

Eo = 2poTo - ap

Dividing through by Po, equation (7.26) becomes

2To •- Oz
t

os
- 2apo

at
+ 2Toa x

and noting from above that Os/Ot = -iws and Ou/Ox = iws,

Oz Po
2To + apoiws + -iws = 0

Ot Po

2- ~oapo

Direct integration gives

z(x,t) - z(x, 0) =
iw

2To apo + /PO
1 )[s(x, t) - s(x,0)]zw

or, defining the coefficient ( = (apo + Po/po)/2To,

z(xt) - Z(X, 0) = e[S(X('t) - S(X,0)] (7.33)

Thus the temperature variation z(x, t) will follow the density variation s(x, t) if the initial

temperature variation is

z(x, 0) = (s(x, 0) = (so cos 2rx/L (7.34)
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When the above analysis holds the values of the soundspeed c, (and the viscous damping

coefficient b) can be extracted from measurements of the perturbed quantities, by taking

the Fourier transform of the spatial component of the solution (as in the shearwave test

analysis). Using the density variation s(x, t), the real and imaginary parts of the transform

are defined as

According to the predicted solut

L

Fre = s(x, t) cos 2rx/L
X-=O

L

Fim = , s(x, t)sin 2rx/L
=0O

ion (7.21), the modulus will be

In IFr, + Fi•) =--bk2t
SO 2 (7.37)

and the phase will be

( -F re (7.38)

Thus a plot of the modulus versus time should be a straight line with slope (-bk2/2), and a

plot of the phase versus time should be a straight line with slope (±kc,).

So far a general soundspeed c, and temperature variation coefficient (, which depend

on the nature of the energy transport equation, have been used. These quantities are now

derived for each of the three systems identified above. The physical significance of the energy

equation with regard to soundspeed is that local density variations are accompanied by local

variations in energy, and thus variations in temperature. In principle this provides a driving

force for heat transfer between neighboring fluid regions. In a real fluid, however, density
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fluctuations occur much too quickly for local thermal equilibrium to be established [73],

and instead almost no such heat transfer has a chance to take place. Hence the process is

essentially adiabatic, and therefore isentropic; this is found to be an excellent assumption for

real materials, and the soundspeed of a fluid is normally defined according to the isentropic

variation of pressure with respect to density,

caa - [dP] (7.39)

and csa will be referred to as the adiabatic soundspeed. If one could somehow find a way to

cause very slow perturbations of a fluid, such that local thermal equilibrium always existed,

the fluid would behave with what will be referred to as the isothermal soundspeed c,i,

[dP
c2= = (7.40)

Finally, the soundspeed corresponding to the energy transport equation which includes the

kinetic pressure artifact will be referred to as cak; it is the adiabatic soundspeed when the real

pressure is replaced by the kinetic pressure of the lattice gas, and has no physical significance.

It is interesting to predict and measure this quantity for the sake of showing that the system

does indeed behave with the expected artifact.

In the isothermal system, temperature variations vanish and so does the temperature

variation coefficient ý; the soundspeed c8i is found simply from the van der Waals equation,

s a 18RTc (1 -pb) 2 - 2ap (7.41)
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More generally the soundspeed may be derived by considering the total variation in the

pressure P = P(p, T):

dP = a
ap T

dp + [
pT

dT (7.42)

The internal energy per unit volume is E = E(p, T), thus

[ OE 1dE 6 i

p IP Tdp + []IT

which gives

aP 1
dP= Op1 a

dp + [] [T](dE - ]
TT aE Tp

To proceed a relationship between dp and dE is required which, as mentioned, comes

from the energy transport equation. Using P as in equation (7.26), the energy transport

equation may be written in terms of total differentials as

E+P
dE = dp

P
(7.45)

Hence the soundspeed may be written in general as

C [dP dp
I ap T p p

E+P
p

[ E
p T)

(7.46)

where only the first term on the right hand side survives if the system is isothermal.

Using the van der Waals forms for the pressure P and internal energy per unit volume E
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energy transport theoretical soundspeed temperature variation
mode cS coefficient

RT
isothermal - 2ap 0

(1 - pb)2

3 RT 1
adiabatic 3 RT - 2ap2 (1 - pb)2  2(1 - pb)

kin. P artifact RT ap + K/2 ap + K/2kin. P artifact - 2ap +(1 - pb)2  2(1 - pb) 2T

Table 7.2: Analytical form of parameters needed in soundwave test.

to evaluate the partial derivatives, equation (7.46) becomes

S RT - 2ap + pb) ap + (7.47)
(1 - pb)2  2(1 - pb) P

(the subscript "0" has been dropped and it is understood that mean quantities are being

used). The last term is similar to that in the definition of the coefficient ý, and depends

on whether the adiabatic or kinetic pressure artifact system is present. For the former,

P = P(p, T) gives

3 RT RT
c2 2ap - 2 (7.48)
c a2 (1 - pb)2 

- 2(1 - pb)2

and

1= (7.49)
2(1 - pb)

In the latter case, P = Pk = (K)/2 = pK/2, where K is the isotropic kinetic energy

moment per unit density, as defined in Chapter 6. The parameter K is a function of the

internal energy per unit mass u, and can have values in the range 0.82-0.99 (see Figure 6.1,
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density energy transport
ratio mode L Wp Cs,th Cs,exp
10 isothermal 50 0.65 1.13 1.12
10* isothermal 50 0.65 1.54 1.54
40 isothermal 50 0.65 2.06 2.05
40* isothermal 50 0.65 2.37 2.36
100 isothermal 50 0.65 2.72 2.71
100* isothermal 50 0.4 3.17 3.18
400 isothermal 50 0.4 3.72 3.73
10* isothermal 100 0.65 1.54 1.55
100 isothermal 100 0.65 2.72 2.71
10 adiabatic 50 0.5 1.76 1.82
40 adiabatic 50 0.5 2.85 2.95
100 adiabatic 50 0.5 3.64 3.80
40 kin. P artifact 50 0.4 3.02 3.03
40 kin. P artifact 100 0.4 3.02 3.03

Table 7.3: Soundwave test results for liquid soundspeed. Density was equal to the equilibrium
liquid density for a system with the given density ratio, except * indicates somewhat higher
density (and hence greater soundspeed). System size L, partial time step wp, and energy
transport mode were varied as well.

but it is approximately constant for small density variations. Hence the kinetic pressure

soundspeed is

2 RT ap + K/2
sk (1 - pb)2 2(1 - bp)

ap + K/2
c2i +

2(1 - bp)
(7.50)

and for the temperature variation coefficient,

ap + K/2
2T

(7.51)

Table 7.2 summarizes the theoretical results needed for the soundwave test.

The measured soundspeeds and comparison to theory for a number of soundwave tests

are given in Table 7.3. Systems of size L = 50 and L = 100 were used to verify the correct
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Figure 7.2: Examples of soundwave test results - phase vs. time for four of the cases in
Table 7.3, with L = 50 and equation of state as indicated by density ratio r. Slopes of best
fit lines (solid) equal to kcs,exp.

dependence on L; the number of cells in the inert direction was 20. The equation of state

was adjusted and is characterized by the varying equilibrium liquid to density ratio, in order

to test a range of soundspeeds. To accomplish this the lattice temperature remained fixed at

RT = 0.4, while the van der Waals constants a and b were varied. The resulting equilibrium

liquid density was used in some cases, while in others the liquid density was increased above

the equilibrium value in order to further vary the soundspeed. The latter cases are indicated

by a * next to the density ratio in Table 7.3.
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Excellent agreement between the results and the theory presented in this section is seen

for the isothermal and kinetic pressure artifact systems. Good agreement is also seen for

the adiabatic system. The noticeable discrepancy there is believed to be due to errors in

the calculation of local quantities during the energy adjustment process, because there is a

certain subtlety involved in how to properly evaluate the instantaneous particle distributions.

It was observed that plots of the modulus versus time had significant nonlinearity, which is

to be expected since soundwaves of finite amplitude become distorted due to the variation

in soundspeed within the wave itself. Nevertheless the behavior of the phase, from which the

soundspeed is calculated, was observed to be quite linear. This can be seen in Figure 7.2,

where the simulation results for four of the isothermal, L = 50 cases are plotted, along with

the best fit lines.

7.3 Liquid Column with Gravity

Another simple but compelling demonstration that the fluids of the multiphase system obey

the expected equation of state can be made by measuring the vertical density profile for a

column of fluid in a gravitational field. The fluid at the bottom of the column must be at a

higher density and pressure due to the weight of the fluid above it. For a liquid the density

gradient will be very small relative to that of a vapor, but the experiment can be still be

conducted for a liquid column of moderate height because there is a great deal of flexibility

in setting the gravitational constant ý of the lattice system. The approximate fractional

change in density over the total height of the column L, is (for small values) given by the
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dimensionless quantity D, = gLy/c .

The theoretical density profile for a fluid at rest is obtained from the differential force

balance,

dP = pgdy (7.52)

Integrating from the bottom ho to a height h, and using the van der Waals equation to

substitute for dP, gives (for an isothermal fluid)

P dP r RT 1
-= g(h - ho) = 1- 2a dp (7.53)

Po p opp(1 - pb) J

where Po and po are the pressure and density at the bottom of the column. Direct integration

gives

RT In P -Pb + 1 +2a (p o - p ) = g ( h - h o) = g L y  (7.54)
1 (Po 1 - pb I - pb 1 - pob

An experiment was conducted for a liquid column, with solid top and bottom boundaries

and periodic boundaries at the sides. The initial density was uniform and very close to

that of the saturated liquid, and the nominal thermodynamic system with van der Waals

parameter Z = 5.66 was used. The height of the column was _, = 200, with gravitational

constant g = 0.0002. The system was allowed to relax for 2500 steps, and measurements

were taken and averaged for the final 500 steps. Initially there is a pair of small pressure

waves formed when the system readjusts the densities at the top and bottom boundaries

(which occurs due to imperfect seeding), and the waves travel up and down the column at
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Figure 7.3: Density profile of liquid compressed by gravity (column height was L = 200
cells).

the soundspeed until they dissipate away. The reason for waiting a couple thousand steps

to begin measurements is both to allow the system time to adjust to the presence of gravity,

and to allow the pressure waves to dissipate enough so that they don't affect the results (a

relaxation period of this nature was used with many of the other experiments as well).

The results are shown in Figure 7.3. The circles show the height as a function of the

measured density, and the solid line represents equation (7.54). The value of height is

expressed in the dimensionless form of Dg given above, and density is normalized by the

initial uniform value. The strong agreement of the density profile with prediction indicates

that the liquid has the correct isothermal compressibility, and verifies that the algorithm
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implementing gravity works properly. Measurements were averaged over the width of the

column, L. = 100, although it has been found that much smaller widths, as low as L. = 6,

may be used with no significant loss in experimental accuracy. Since the soundspeed of

this system is predicted to be c, = 2.06, the estimated fractional density change is D9 =

gL,/c = 0.00943. This compares well to the measured fractional density change over the

column of AP/Po = 0.00962.

The quantities of this experiment can be converted to real units for a column of water. For

example, Figure 5.3 indicates that on the basis of density ratio, the saturation temperature

of water corresponding to Z = 5.66 is 250 C, and the system is essentially saturated liquid,

which at that temperature has a soundspeed of 1145 m/s. Thus with g = 9.8 m/s 2 , the

height of the column can be calculated in meters,

D9c2L, = -" 1253 (7.55)
g

which indicates a length conversion of 1253/200 or about 6 meters per lattice cell. This is

not surprising since it should take a considerable head of water to produce a density change

on order of one percent. If this experiment were to represent a smaller real column, it

would have to correspond to a proportionally larger real gravitational field. The relationship

between the lattice system and the "real world" is especially simple to establish in this case

because there is only one relevant dimensionless quantity, D,.
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7.4 Spontaneous Phase Separation

The experiments described so far were used to observe behavior and verify theory for a single

pure phase. The rest of the results are concerned with systems which involve the presence of

a liquid region and a vapor region, and a distinct, explicit interface which separates them.

Perhaps the most natural starting point is to try to observe the evolution of two phases

from a single phase system. If one were working with real materials, they might begin

with a liquid, heat it to the saturation point, and then beyond to cause the formation of

some amount of vapor. Given the current capabilities of the multiphase system, a similar

but more convenient experiment is to initialize the lattice in such a way that it represents a

thermodynamically metastable state, then watch it evolve. The system is seeded at a uniform

density which lies somewhere on the negative-slope part of the theoretical P - p isotherm.

This initial metastable density is represented, for example, by point C in Figure 3.1. The

thermodynamic conditions are constant temperature and volume, so in order to minimize

its free energy, the system should spontaneously separate into a vapor region represented by

point A and a liquid one represented by point B (as determined from equations (3.15) and

(3.16)). The isothermal condition ensures that evolution of the system will proceed along the

given isotherm, adding heat to or removing it from the "temperature reservoir" as needed. If

the system were adiabatic instead of isothermal, it would have to be seeded with the correct

total energy (rather than temperature) for a given equilibrium state.

An experiment was performed on a 200 square lattice for the nominal thermodynamic

system (Z = 5.66, equilibrium density ratio rp = 40), with an initial uniform density Po =
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0.75pf, where pf is the predicted equilibrium density of the liquid. The results are shown as

a series of snapshots in Figure 7.4. At time t = 0 only tiny density variations due to seeding

exist. The system quickly breaks up into distinct regions of high and low density. The small

regions coalesce and larger, circular vapor bubbles are formed. These coalesce further into

very large bubbles, since the vapor volume fraction is about 0.25. The interfaces appear

sharp; they are actually about four cells thick. Figure 7.5 shows the evolution of the average

bulk phase densities. The liquid reaches a density very close to the predicted equilibrium

value almost immediately. A vapor value does not appear right away because it takes some

time for enough vapor to accumulate such that it is recognized by the phase identification

algorithm. After a couple hundred steps the vapor also reaches a density very close to its

predicted equilibrium value.

7.5 Oscillations of the Initially Phase Separated Sys-

tem

As seen from the spontaneous phase separation results it is possible to initialize a system

far from thermodynamic equilibrium and allow it to approach equilibrium spontaneously.

In many simulations, however, it is desirable to save time by starting out with two regions

in a particular spatial configuration which already have the expected equilibrium liquid and

vapor densities for the given conditions. We have found this approach to work well, but

there are some aspects of it that deserve discussion.
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Figure 7.4: Spontaneous phase separation.
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Figure 7.5: Liquid and vapor phase average densities during spontaneous phase separation.

In the first place, even when the equilibrium densities of the bulk phases are successfully

predicted, it is difficult to precisely predict the "steady state" interfacial density profiles,

especially for arbitrary interface shape. It has been found, however, that even when regions

of uniform density representing liquid and vapor are initialized directly adjacent to each

other, an interface forms quickly and the regions remain generally intact. Within about ten

update steps the presence of an interfacial region of about 3-4 lattice cells in width is clearly

visible, and the interface appears to take about 30-50 steps to become fully formed. Judging

by density alone the steady state interface is typically about 4-5 cells in width, for liquid to

vapor density ratios of about 10 and above3 .

3At low density ratio such as 2, the interface thickness is about 6 cells.
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Also visible during this early stage is a substantial deficit in the density of the liquid in the

region immediately adjacent to the new interface, which apparently borrows mass as needed

while forming. The depleted liquid region recovers quickly, becoming uniform right up to

the interface within a few tens of time steps. It is believed that the recovery of the depleted

region contributes to the formation of a pressure wave. This wave then propagates about the

system and causes apparent oscillations in the measured values of the bulk average pressures

and densities of each phase. The values of these quantities, which are spatially averaged

over the entire regions comprising each phase, appear to undergo damped oscillations about

their eventual steady state values. This is always observed, even when the initial bulk phase

densities are very close to their final steady state values, but the initial oscillation amplitudes

are larger when they are not as close. These oscillations are small to moderate in magnitude,

except in the case of the liquid phase pressure because of its sensitivity to density. They

may persist for several thousand time steps, before dissipating to magnitudes on the order

of noise.

The soundwaves caused by the formation of the liquid-vapor interface, like the soundwaves

generated at solid boundaries (mentioned in Section 7.3), are created due to imperfect seeding

at locations where a large density gradient exists. When the system relaxes the resulting

pressure waves cause time or space averaged quantities such as average phase density to

oscillate. This is physically correct since any pressure disturbance should be propagated at

the soundspeed and rattle around until it dissipates due to viscosity. It is therefore expected

that the frequency of the bulk phase density oscillations should correspond to the soundspeed

and the system size. This was investigated for a system configured as equal sized regions of
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Figure 7.6: Configuration of planar two phase system, consisting of flat interfaces and ap-
proximately equal phase volumes.

liquid and vapor separated by a pair of parallel flat interfaces, as shown in Figure 7.6; this

will be referred to as a "planar" two phase system. The system was initialized with the top

half at the equilibrium liquid density and the bottom half at the equilibrium vapor density

(and no gravity force). A single layer of cells with density half the value of the liquid was

included in between the phases; it was hoped that this sandwich layer would reduce the size

of the initial perturbation, but in fact it did not seem to help much.

It is thought that the soundwaves essentially come to form a standing wave with a wave-

length equal to the system size L, causing the liquid density and pressure to oscillate out
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of phase with those of the vapor. The liquid phase contains almost all of the mass, and

it is therefore expected that the liquid soundspeed will control the oscillation frequency.

Defining sL(t) - [pL(t) - Pol/Po to be the fractional departure of the bulk average liquid

phase density PL(t) from its constant steady state value po, it should be given by integrat-

ing the density variation due to a soundwave over the liquid portion of the system (in the

x-direction). Equation (7.21) gives the appropriate form of the density variation s(x, t) for

a 1D soundwave, and assuming the liquid occupies exactly half the system,

L = L/2 so exp -bk 2t cos k(x ct)dx = F2 so exp - bk2t sin kct (7.56)

where so is the initial perturbation amplitude, k = 27r/L is the wavenumber, b is the viscous

damping coefficient, and c, is the liquid soundspeed.

Experiments were conducted in which density oscillations were observed for systems with

density ratios rp = 10,40, 100 and system sizes L = 100, 200. An example of the behavior

of the fractional liquid density variation sL(t) is shown in Figure 7.7 for the system with

r, = 40 and L = 100. Also shown is the corresponding fractional vapor density variation

SG(t). After some initial nonlinearity the phase averaged density clearly varies with time in

a damped sinusoidal fashion.

From the form of the right-hand side of equation (7.56) we predict an oscillation frequency

fth = kc, = 2rc,/L. The measured oscillation frequency fe,p was determined in each case by

consecutively numbering each wave peak, plotting the peak number versus the time at which

it occurred, and finding the slope of the best fit line. Examples are shown in Figure 7.8,
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Figure 7.8: Examples of oscillation frequency results - extremum (crests and troughs), vs.
time, of phase average liquid density oscillations for the L = 100 cases in Table 7.4. Slopes of
best fit lines (solid lines) give twice the frequency. Symbols indicate results, r is equilibrium
density ratio.

where the results from the three L = 100 systems are plotted. Since both crests and troughs

were included, the slope is twice the frequency.

Results of these experiments are given in Table 7.4. The measured frequencies f,,p agree

well with the theoretical values fth = kcs. The isothermal liquid soundspeed c, is predicted

as described in Section 7.2 (where it was verified that the soundspeeds in the simulation

agree with prediction). Thus the oscillations, though unwanted, are a manifestation of the

physically realistic nature of the system.
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r, L fth = 27cr/L fex
10 100 0.0722 0.0727
40 100 0.129 0.129
100 100 0.170 0.180
10 200 0.0361 0.0366
40 200 0.0647 0.0649
100 200 0.0851 0.0897

Table 7.4: Results of oscillation frequency measurement in initially phase separated planar
systems of equilibrium density ratio rp and length L.

7.6 Two Phase Equilibrium Pressure and Density

Once the soundwave-induced oscillations presumably due to interface formation have died

down, the planar two phase system is a convenient way to measure the equilibrium (i.e.

steady state) properties of the multiphase system. Specifically, the densities and pressures

of the liquid and vapor phases can be measured and compared to the theoretically predicted

values. Since the interface is flat, there should be no effect of surface tension on pressure,

thus the pressures of the two phases should be equal.

A common way to represent two phase equilibrium data is a P-V diagram in which pressure

versus volume is plotted for several isotherms which extend from the liquid to the vapor

region. The equilibrium values of pressure and density (or specific volume) for the various

isotherms form the coexistence curve of the substance. Within the two phase coexistence

region bounded by the coexistence curve, the pressure along an isotherm is constant. The

peak of the coexistence region is the critical point.

A P-V diagram including the coexistence curve is shown in Figure 7.9. The lines on

the diagram represent isotherms for a van der Waals system with van der Waals constants
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(squares) for equilibrium liquid and vapor densities and pressures for several isotherms.
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a = 4.37(10- 7 ) and b = 1.93(10- 7 ) in lattice units. These are commonly used values for

the multiphase system, where the densities in terms of particles per site are large, hence the

specific volumes are small in these units. The isotherms represent several values of lattice

temperature RT; a discussion of lattice temperature and its physical meaning was given

in Section 5.6. The isotherms are calculated from the equation of state and the Maxwell

construction, as discussed in Section 3.1 (and also in Appendix A). Hence they represent the

predicted behavior of the multiphase system. The critical temperature for the above van der

Waals constants happens to be RT = 0.671, and this isotherm is also plotted in Figure 7.9.

Simulations were performed on a 200x200 lattice initialized as a planar two phase system,

with w, = 1 in each case, and w, = 1 for RT = 0.651, w, = 0.7 for RT = 0.515, and wp = 0.4

for RT = 0.4 and RT = 0.342. Different reduced time steps were used due to the different

soundspeeds for these systems. The simulation results are plotted in Figure 7.9 as squares;

they should be compared to the circles, which denote the equilibrium values bounding the

predicted coexistence curve for each given temperature below the critical point. Agreement

is quite good; however, some deviation from theory is seen for the vapor phase density and

equilibrium pressure in two cases. Indeed it was generally observed in experiments of this

nature that the steady state pressure reached by the simulation depends weakly on the

over-relaxation parameter w, and the partial time step wp.

It is likely that these parameters affect the balance maintained within the interface be-

tween the advection step, in which there is a net flux of particles towards the vapor, and the

momentum-flipping step, in which there is a net change in momentum towards the liquid.

This in turn influences the structure of the interface, and therefore the 0b(d2 b/on2 ) term in
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equation 3.53 for the force due to interfacial tension F,. Therefore it is conjectured that

the equilibrium pressure has some dependence on this interfacial property, causing the small

deviations from thermodynamic prediction. In all cases, however, the pressures of the two

phases were equal to each other (to well within experimental error), as physically required

by the condition of mechanical equilibrium. Furthermore, the agreement of the results with

theory is quite adequate from the viewpoint of hydrodynamic simulation.

7.7 Surface Tension

Two methods were employed for measuring the coefficient of surface tension in the multiphase

system, based on two common formulas for surface tension. The first is Laplace's Law, which

states that the coefficient of surface tension gives the relationship between the pressure

difference AP inside and outside of a bubble and the radius of the bubble Rb. For a 2D

bubble4, AP = apf/Rb, where a is the coefficient of surface tension divided by the liquid

density.

To measure the surface tension via Laplace's law, the system was initialized in the con-

figuration of a vapor bubble and allowed to relax for several thousand time steps to avoid

measurement error due to pressure oscillations. Bubbles of radii 15, 20, 25, and 30 were each

used in three different systems with density ratios 10, 40, and 100. System size varied but

the volume fraction of vapor was never allowed to exceed 0.25. The steady state phase aver-

age pressures of vapor and liquid were measured (using equation (3.41)), and the results are

4 This is just a special case of the Young-Laplace equation, AP = tcrpf, and K is 1/R for a circle.
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Figure 7.10: Verification of Laplace's Law for vapor bubbles (of radius R) in three systems
with density ratios r = 10, 40, and 100. Symbols are simulation results, lines are best fits,
slopes give coefficients of surface tension (per unit liquid density) of 0.078, 0.17, and 0.23 (in
lattice units) respectively.

shown in Figure 7.10 as a plot of AP versus 1/Rb. The linear relationship verifies Laplace's

law, and the slopes of the best fit lines indicate surface tensions of 0.078, 0.17, and 0.23 (in

lattice units) for systems with density ratio 10, 40 and 100 respectively.

The other method for determining the coefficient of surface tension employs the rela-

tion [55],

P, = z(PN - PT)dz
zg

(7.57)

which is the difference between the normal and tangential components of the pressure tensor,

PN and PT (see Section 3.3), integrated over a flat interface. The pressure components are
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defined as PN = fifi : P and PT = it : P, where the zero-velocity pressure tensor P is

determined according to equation (3.41), and ii and t are the unit normal and tangent

vectors. Taking the z-direction as normal to the interface and the y-direction as parallel, the

vapor and liquid boundaries of the flat interface are z9 and zj respectively. These are the

z-locations on either side of the interface at which the density gradient essentially vanishes

and PN = PT.

Noting the form of equation (3.41), the pressure components at a site x(y, z) in the flat

interface can be written as

1
PN = Pzz = E Nji(x)c - 2 Z (x)'(x + cji)cýi, (7.58)

and 1
PT = Pyy = Nj,(x)c, - 2 1E (x)O(x + ci,)c • (7.59)

where cjiz and cjy, are the z and y components of velocity vector cji. Then the formula for

surface tension appropriate for this experiment can be written in discrete form as

1 Z- N r 1 1 r2 2
Orpf = ZNji(x) - b(x)b(x + cx) [ciz - c(

z=Zg y=1 ji

where N, is the number of sites (width of the system) in the direction parallel to the interface.

Surface tension was measured in this fashion by setting up planar systems (Figure 7.6),

once more with density ratios of 10, 40, and 100, and again they were allowed to relax

for several thousand time steps. System size was Lz = 100 (normal to the flat interfaces)
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and LY = 10. The resulting steady state profiles of the quantity (PN - PT) across an

interface are shown in Figure 7.11 (where the axis labeled "x" is in fact the z-axis). The

pressure components are equal as expected in the bulk regions, but are significantly different

through the interface. Theoretically the normal pressure component PN should be constant

(due to the requirement of mechanical equilibrium), while the tangential pressure component

decreases substantially. This was observed to be approximately true in the simulation results;

some deviation from uniformity occurred for PN, while nearly all of the difference (PN -

PT) was due to a large decrease in PT. The fluctuations in PN are mainly responsible

for the structure which is observable several nodes into the liquid region (to the right of the

interface). Values of surface tension calculated from equation (7.60)" were found to be 0.079,

0.18, and 0.22 for systems with density ratio 10, 40, and 100 respectively. These are in fine

agreement with the values obtained from Laplace's Law. The corresponding density profiles

for the interfaces in these systems are shown in Figure 7.12. It is interesting that in all three

cases most of the density change occurs over about four cells.

5 0Or by taking the areas under the curves in Figure 7.11.
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Chapter 8

Dynamic Two Phase Experiments

This chapter presents results of simulation experiments for two common dynamic systems

in which the interface evolves in space and time. The first involves the Rayleigh-Taylor

instability, and the second is a single vapor bubble rising in an otherwise stagnant liquid.

These two experiments were chosen because they are compatible with relatively small lattice

sizes and very simple boundary conditions, but at the same time involve interactions between

some of the key forces which influence two phase flow. They are also systems which are

actively investigated in order to better understand the complex dynamics which take place.

In the case of Rayleigh-Taylor instability, simulation results may be directly compared with

the analytical results of small perturbation theory for the instability threshold of a 2D

interface. For the bubble rise system, qualitative comparisons can be made to experimentally

known behavior, and major features such as variations in bubble shape can be probed.
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8.1 Rayleigh-Taylor Instability

As described by Sharp [74], "The Rayleigh-Taylor instability is a fingering instability of

an interface between two fluids of different densities, which occurs when the light fluid is

pushing the heavy fluid." For example imagine a tube, closed at the top, and open to the

atmosphere at the bottom, with a slug of water occupying all the space between the top

and the midpoint. The tube is wide enough such that surface effects are negligible. The

water may fall out of the tube, but not because of its weight, which is easily supported by

atmospheric pressure. Rather, the air-water interface is unstable to perturbations, such that

a small deviation from flatness is able to grow with time into fingers of upward flowing air

and downward flowing water. However not all perturbation wavelengths are unstable, only

those greater than a threshold size determined by the fluid properties (and the strength of

gravity). Hence if the tube is small enough, perturbations of wavelength above the threshold

cannot exist, and the water will not fall.

For an inviscid fluid resting on a fluid of much lower density, the threshold or critical

wavelength is [56]

A = 27r 0 (8.1)

where a is once again the usual coefficient of surface tension divided by density. For a

one-dimensional interface, its length L is equal to the maximum wavelength it can support.

Thus for a given fluid there is a critical system size L, = Ac, for which the interface is

Taylor unstable. The situation can be represented non-dimensionally with the Bond number,
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Bo = gL2 /a. Then the instability condition is simply

Bo > 4r2 (8.2)

The Bond number is essentially the ratio of gravity forces to surface tension forces; the critical

Bond number for this system may be defined as Bo,, = 4r 2. The above relations show that

gravity drives the instability, while surface tension acts as a restoring force, because it tends

to flatten out the interface.

The Rayleigh-Taylor instability was explored for an interface in the 2D multiphase system.

The main purpose was to compare the observed critical Bond number for onset of instability

to the theoretical value. Systems of fixed size and constant fluid properties were used, and

the gravitational constant was altered in order to vary the Bond number. Lattice systems

with top and bottom walls and periodic boundaries at the sides were initialized in a planar

configuration (see Figure 7.6) with the liquid occupying the top half and the vapor on the

bottom half. The initial densities of each phase were uniform and set to their theoretical

equilibrium values.

As expected, the presence of gravity caused the density of each phase to vary with height,

and the weight of the liquid increased the average density of the vapor phase. However, it

was found that the initially perfectly flat interface that formed between the liquid and vapor

would remain so, even for Bond numbers well above Bo,,. This was not true if a very small

disturbance, such as a brief density or velocity perturbation, was provided somewhere along

the interface. Once an irregularity existed it was observed to damp out or grow with time
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depending on whether or not the interface was Rayleigh-Taylor unstable.

A set of experiments was performed on a lattice of 100 cells in width (i.e. L=100)

and 120 cells in height (hence each phase was only about 60 cells deep). The nominal

thermodynamic parameters were used, so the predicted density ratio was 40 (large enough

to justify the assumption pf >> p,) and the surface tension was a = 0.17. The predicted

threshold value of the gravitational constant was therefore g, = 47r2a/L 2 = 0.00067. This

prediction assumes a perfectly inviscid liquid; the fluids in the simulation must have finite

viscosity, and it was set to v • 0.1. This is low enough to make viscous effects small, as can

be seen through the relevant dimensionless combinations, for example, the ratio of viscous

to buoyancy forces, v2/[gcr(L/27)3 ] " 10- 3 .

In the first experiment the gravitational constant was set to g = 0.0008. A perturbation

was applied to a small region of the interface; this region was 6 cells wide (in the direction

parallel to the interface) by 8 cells high (centered on the interface), and for the first 20 time

steps of the simulation, gravity at these sites was increased to g = 0.005. The results of

this experiment are shown in Figure 8.1 as a series of snapshots of the system as it evolves

in time. Initially the perturbation is barely detectable, only the slightest irregularity at the

center of the interface is visible. This is still true at time step t = 200, as seen in the first

frame. The perturbation was observed to spread, eventually forming a sinusoidal shape of

wavelength A = L. The lower hanging part of the interface then grew until it became a large

column of liquid which pushed the vapor out of the way and splashed onto the bottom wall.

Almost all of the liquid drained through the column, which became thinner as the top layer

of liquid depleted. A small amount of liquid remained on the top wall, first as a thin film,
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then as two small hanging droplets. The rest of the liquid settled on the bottom with the

vapor now on top and a wavy surface separating them.

The experiment was repeated with gravitational constant g set to 0.0007, 0.0006, 0.0005,

and 0.0004. Everything else was identical in each case, including the initial perturbation.

The g = 0.0007 system was also observed to be Rayleigh-Taylor unstable, while the other

three cases were not. These results agree with the prediction of the critical value of the

gravitational constant gr = 0.00067. The entire set of experiments was repeated for an even

smaller amplitude initial sinusoidal perturbation of one wavelength. Again the g = 0.0008

and g = 0.0007 cases exhibited the instability, while for the lower g cases the perturbation

died out and the interface remained flat. Based on these results the critical Bond number for

the system must have been somewhere between 35 and 41, and hence matches the predicted

value of about 39 to within 10% or better.

8.2 2D Bubble Rise Simulations

The theory of a single bubble rising in a column of liquid was discussed in detail in

Chapter 5. Here the results of bubble rise simulations performed with the multiphase system

are presented. The experiments used systems with top and bottom walls and periodic left

and right boundaries. A system was initialized with a uniform density set to the predicted

equilibrium value of the liquid, except for a circular region near the bottom where the density

was set to the predicted equilibrium value of the vapor. The system was then allowed to

relax, in the absence of gravity, to reduce initial pressure oscillations. Once steady state was
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Figure 8.2: Example of 2D bubble rise simulation (corresponds to case J in Table 8.1).
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well established, gravity was turned on, the liquid pressure became non-uniform with height,

and the vapor bubble began to rise. The position of the center of mass of the bubble was

recorded as a function of time, as was the area and horizontal cross-sectional width of the

2D bubble. Snapshots (i.e. density maps) of the evolution of one of these experiments is

shown in Figure 8.2. In this example the bubble, which began as a perfect circle, became

ellipsoidal as its velocity and drag increased, until a steady state (terminal) rise velocity and

shape were reached.

Before discussing the results at length, some key experimental details are described. Due

to the finite thickness of the interface, measurement of the bubble size is not trivial. The

area of the bubble Ab was taken to be the number of sites occupied by vapor, AG, plus half

the number of sites occupied by the interface, AI; this is illustrated in Figure 8.3 (in which

the size of the interfacial region is exaggerated). Hence the equivalent bubble diameter was

calculated as

de = Ab= A + ( A (8.3)

In order to have a quantitative indication of shape, the width of the bubble projected onto the

horizontal plane, dh, was also measured. Again an average was used, this time between the

distance separating the leftmost and rightmost vapor sites, dhG, and the distance separating

the leftmost and rightmost interfacial sites, dhl. Hence dh = dhG + 0.5 dhl; these quantities

are also diagrammed in Figure 8.3. The distinction between vapor, interface, and liquid is

accomplished by the phase-identification algorithm discussed in Section 6.41.

'The phase-identification algorithm checks to see that the ratio of the density of a site to that of each of
its neighbors is within a threshold range; typically the maximum neighbor-pair density ratio allowed to be
considered a member of either phase was 0.9.
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Figure 8.3: Illustration of bubble size determination - calculation of bubble area, and hori-
zontal cross-sectional width.

The purpose of these experiments is to find the terminal velocity of a bubble as a function

of its size and the properties of the liquid. When the density and viscosity of the vapor are

small relative to those of the liquid, it may be thought of essentially as void space and its

properties do not affect the rise velocity. The theoretical equilibrium density ratio in all of

the bubble rise simulations was 40, and the actual densities were measured in each case and

found to give a density ratio between 36 and 40. Hence the low vapor density approximation

was always a good one. Other investigators [10] note that increasing liquid to vapor density

ratio above 40 has no significant effect.

The heights of the liquid columns varied with initial bubble size and were chosen so as to
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minimize simulation time while still allowing the bubble an opportunity to reach terminal

velocity. Typically experiments were run until a reasonably steady velocity was observed,

as measured by the slope of the plot of height versus time. Eventually the bubble would

approach the top wall and slow down; a significant decrease in velocity could be seen when

the top of the bubble was about one to one and a half bubble diameters from the top of the

column. The widths of the liquid columns were chosen to be five times the equivalent bubble

diameter; hence the nominal blockage was always 20%, but actually more for bubbles which

became non-circular. This is a significant amount of blockage, but was necessary to keep

simulation times manageable.

Results were obtained for many bubble rise simulations, with bubbles of several sizes,

liquids with varying kinematic viscosity, and different values of the gravitational constant.

Values of initial bubble diameter were 20, 30, 40, 50, or 60 lattice cells, for which the column

sizes were 100x150, 150x150, 200x200, 250x200, and 300x300, respectively. Bubbles smaller

than 20 cells in diameter were considered to have too large a ratio of mean bubble diameter

to interface thickness, while bubbles larger than 60 cells required correspondingly larger

system size and simulation time. The predicted equilibrium values of the liquid and vapor

phase densities were always 4(106) and 1(10') particles per lattice site, respectively. This

corresponds to the "nominal" thermodynamic system, where the van der Waals constants

are a = 4.37(10 - 7 ) and b = 1.93(10-7), and the lattice temperature is 1T = 0.4. Therefore,

as shown in Section 7.7, the surface tension coefficient was always taken to be oa = 0.17.

For a given simulation the predicted lattice viscosity i of the liquid is basically a function

of the collisional over-relaxation parameter w, and the partial time step w,, as shown in
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Section 6.3. It was seen in Section 7.1, however, that the actual viscosity could deviate

somewhat from the theoretical value, and the amount of deviation depends on the number of

collisions used in the collision process. Therefore for cases with low lattice viscosity (p < 0.1),

a shearwave test was conducted where the viscosity was measured using precisely the same

values of we, wp, and number of collisions as in the bubble rise simulation. This viscosity

was then used when determining the Reynolds and Morton numbers for the simulation.

Values of the important parameters used in each experiment are given in Table 8.1 (in

lattice units, and the ~ is dropped for the moment). These are the gravitational constant g,

kinematic viscosity v, and nominal initial bubble diameter do (i.e. the diameter of the circle

initially seeded with the equilibrium vapor density). The next columns give the results in

the form of the measured quantities mentioned above. These are the equivalent diameter d.,

horizontal cross-section dh, and terminal rise velocity Ub of the bubble (also in lattice units).

The terminal velocity was taken to be the slope of the best fit line for the height of the

bubble (based on its center of mass) plotted against time, taken over a region of the plot

which was very linear. This is illustrated in Figure 8.4, which contains the height versus

time results for the simulation pictured in Figure 8.2, and which corresponds to case J in

Table 8.1. The linear region was selected by eye, and typically there was no discernible

deviation from the best fit line for small bubbles (larger bubbles tended to wobble in shape

and velocity, as shown below). The time span used in the calculation of the terminal velocity

for each case was also used in determining the time-averaged values of d, and dh.

Table 8.1 also shows for each case the key dimensionless quantities of the bubble rise

problem: Eotvos number Eo = gde/a, Morton number M = gV4/a, and Reynolds number
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and terminal velocity

Re = deUblv. Another interesting quantity is the aspect ratio, defined here as dh/de, also

plotted in Figure 8.4. It was decided that the bubbles began to look ellipsoidal rather than

circular when the aspect ratio was greater than 1.03. Hence the distinction between these

shapes as given in Table 8.1 has a quantitative basis (of course the threshold of 1.03 is sub-

jective). The shape was determined to be spherical cap if the bubble became hemispherical

for at least part of its journey. Eotvos numbers large enough to achieve true spherical caps

were not reached, but there was still a clear distinction between the hemisphere-cap and the

ellipsoid shapes.

The results of cases H, K, M, and P are displayed in more detail in Figures 8.5, 8.6, 8.7,
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case g v do de dh Ub M Eo Re dh/de shape
A 5(10 - 5) 0.147 20 16.3 16.1 0.0079 5(10-6) 0.078 0.88 0.988 sph
B 5(10- 5) 0.147 40 36.9 37.2 0.0210 5(10-6) 0.40 5.3 1.008 sph
C 5(10-s) 0.147 50 47.5 49.3 0.0289 5(10-6) 0.66 9.3 1.038 elp
D 5(10-s) 0.147 60 58.0 62.5 0.0342 5(10-6) 0.99 14 1.078 elp
E 2(10- 4 ) 0.147 20 15.8 16.1 0.0266 2(10- 5 ) 0.29 2.9 1.019 sph
F 2(10- 4 ) 0.147 40 39.2 47.0 0.0587 2(10- 5 ) 1.8 16 1.199 elp
G 2(10- 4 ) 0.147 50 49.4 64.5 0.0537 2(10-s) 2.9 18 1.306 elp
H 2(10- 4 ) 0.0521 20 16.5 17.0 0.0375 3(10 - 7 ) 0.32 12 1.030 sph
I 2(10 - 4 ) 0.0521 40 38.0 42.0 0.0689 3(10-7) 1.7 50 1.105 elp
J 2(10 - 4 ) 0.0521 50 48.4 63.8 0.0698 3(10- 7 ) 2.8 65 1.318 elp
K 2(10- 4 ) 0.0521 60 58.6 82.3 0.0719 3(10- 7 ) 4.0 81 1.404 elp
L 1(10- 4 ) 0.0616 20 16.4 16.6 0.0221 3(10- 7 ) 0.16 5.9 1.012 sph
M 4(10- 4 ) 0.0442 60 57.6 83.8 0.0870 3(10-7) 7.8 113 1.455 cap
N 2(10- 4 ) 0.0144 30 27.5 29.0 0.0554 2(10- 9 ) 0.89 106 1.055 elp
O 2(10- 4 ) 0.0144 50 47.5 60.0 0.0669 2(10- 9 ) 2.7 221 1.263 elp
P 4(10- 4 ) 0.0126 50 47.6 71.1 0.0767 2(10- 9 ) 5.3 290 1.494 cap
Q 2(10- 4 ) 0.0220 20 16.5 17.5 0.0420 1(10-8) 0.32 32 1.061 elp
R 3(10 - 4 ) 0.0200 60 58.0 82.2 0.0651 1(10 - 8 ) 5.9 189 1.417 cap

Table 8.1: 2D bubble rise simulation results.

and 8.8, respectively. The left side of each figure shows bubble height versus time results,

where the length and time scales have also been converted to real units (the conversion

procedure will be described momentarily). The right side shows density contours for several

simulation times, which are indicated by the symbols on the height-time plots. The contours

indicate density equal to half that of the liquid phase (thus midway through the interface)

and show the evolution of the bubble shape over the course of the simulation. We see that a

bubble starts off at rest and accelerates due to buoyancy. As its velocity increases it may or

may not deform due to drag, depending on Eotvos number and Morton number. The bubble

in Figure 8.5 remains spherical, while that in Figure 8.6 becomes ellipsoidal, in fact it could

be called a "wobbling" ellipsoid. Perhaps a better example of an ellipsoidal bubble (i.e.
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more symmetrical about its horizontal axis) is the one shown in Figure 8.2. The bubbles in

Figures 8.7 and 8.8 are cap shaped, or at least they are part of the time. It is apparent that

the shapes of the bubbles in the latter three simulations underwent substantial variation,

even after a fairly steady velocity was attained. This is quite consistent with experimental

observations of large bubbles.

The conversion from lattice units to real units in presenting the simulation results can be

done in a straightforward manner by choosing a real liquid with the same Morton number

as that of a given simulation. The formalism introduced in Chapter 5 is revisited, where

x* = -/x, i.e. the starred quantity gives the lattice value of a quantity x in lattice units

divided by the real world value in SI units. By specifying a liquid based on Morton number,

real values of surface tension and viscosity are identified; o*, v*, and g* are therefore known,

and the length, time, and velocity conversions d*, t*, and U* may be calculated. Take for

example case P (Figure 8.8). In this simulation the lattice values were i = 0.0126, § = 0.0004,

and (as for all the cases) & = 0.17. These give a Morton number M = 2(10-9), which is

the same as that of turpentine (at room temperature). The real values for turpentine are

then used: v = 1.6(10-6), a = 3.2(10-5), and of course g = 9.8. These give v* = 7.9(103),

a* = 5.3(103), and g* = 4.1(10-5). Since g*(d*)2/a * = 1 (as shown in Section 5.5), the length

conversion is d* = y-*/g* = 1.1(104) lattice cells / meters, or about 11 cells/mm. Another

dimensionless combination gives U*v*/a* = 1, hence U* = 0.67 (cells/step) / (meters/sec).

The time conversion is then found simply as t* = d*/U* = 1.6(104) time steps per second.

Due to their Morton number, cases H, K, and M (Figures 8.5, 8.6, and 8.7) were assumed to

be isoamyl alcohol, for which v " 5.4(10 - 6 ) and a o 3.0(10 - 5 ) (hence M " 3(10-7)). Unit
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Figure 8.6: Contour snapshots and bubble height vs. time results for case K, where M =
3(10-7), Eo = 4.0, and Re = 81 at terminal velocity. Symbols indicate snapshot times.
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3(10-7), Eo = 7.8, and Re = 113 at terminal velocity. Symbols indicate snapshot times.
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conversions were then determined in the manner just outline.

Although these simulations are 2D, the results may be compared to real bubble rise data

with the intent of verifying that the correct trends are present for bubble shape and rise

velocity. There are two common ways of presenting the data graphically. The first is to

plot the terminal rise velocity against the bubble size; this is common for experiments with

a single fluid, where properties such as surface tension and viscosity are constant. When a

variety of fluids are employed it is convenient to use a dimensionless analysis by plotting the

Reynolds number as a function of the Eotvos and Morton numbers, as exemplified by the

graphical correlations of Grace [62] and Bhaga and Weber [63]. One of the useful features of

these "dimensionless maps" of bubble rise behavior is that regions of expected bubble shape

are identified. A dimensionless characterization is especially useful for the present simulation

results as not only are the fluid properties varied but the strength of gravity is varied as well.

A plot of the first kind, velocity Ub versus equivalent diameter de in lattice units, is shown

in Figure 8.9 for two sets of constant fluid properties (and gravity). The symbols indicate

simulation results, while the lines are constructed using the semi-empirical wave analogy

correlation introduced in Section 5.4 and detailed in Appendix B. The solid line and square

symbols correspond to cases where the lattice gravitational constant was j = 5(10 - 5 ) and the

lattice viscosity was P = 0.147, hence the Morton number was M ' 5(10-6). The dashed line

and circle symbols correspond to g = 2(10 - 4 ) and i = 0.0521, and thus a Morton number

M E 3(10-7). Near each symbol is the letter of the case it represents. Agreement with the

predictions of the correlation is quite good, despite the fact that the simulation was 2D. The

deviation for small spherical bubbles is expected, because the correlation goes over to Stokes
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equation for flow past a sphere in this limit, but the drag on a 2D bubble (i.e. a cylinder)

of equivalent diameter will be smaller and yield a higher velocity [75]. These results are

replotted in Figure 8.10 with real units instead of lattice units.

In Figure 8.11, all of the results in Table 8.1 are plotted in the form of a dimensionless

map. Lines are again calculated from the wave analogy correlation; each line gives Reynolds

number versus Eotvos number for a constant value of Morton number (thus representing a

particular fluid). Predictions and results for five different Morton numbers are shown. The

shape of a symbol indicates the Morton number for that simulation. Near each data point

is a letter indicating the observed shape of the bubble: "s" for spherical, "e" for ellipsoidal,

and "c" for cap. Regions of the map corresponding to each of the three main shapes can be

identified on the basis of the simulation results. These regions are demarcated in Figure 8.11

via thick dashed lines. The agreement of the results with the correlation again appears

quite reasonable. At low Eo, the positive deviation of the simulation Reynolds numbers

corresponds to the lower drag on a cylinder compared to a sphere, as mentioned.

Of main importance is the correct variation in bubble shape with bubble size and fluid

properties. The simulation results verify that small bubbles tend to be spherical, intermediate

bubbles are ellipsoidal, and large bubbles become caps. Moreover, it is seen that certain key

trends are obeyed. For example: bubbles with the same Eotvos number, Eo - 0.3, are

spherical at higher Morton numbers and ellipsoidal at lower Morton numbers; bubbles with

Reynolds number on order 100 are ellipsoidal at lower Eo but form caps at higher Eo.

These observations agree with experimental data [62]. The positions of the lines separating

regions of bubble shape are not the same in Figure 8.11 as in the literature [62, 63]. For
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the spherical-ellipsoidal transition there is a slight difference, while for the ellipsoidal-cap

transition there is a larger difference. These are due, at least in part, to the subjectivity

involved in identifying the shape of a bubble.

A few additional comments are in order. A possible source of error in the simulation

results (besides its 2D nature) involves the blockage correction. The blockage due to finite

column width in the simulations was accounted for in the predictions of the wave-analogy

correlation in a fashion suggested by Maneri [76]; details are supplied in Appendix B. Maneri

also investigated plane bubbles, i.e. flat bubbles rising between closely spaced plates, ap-

proximating a 2D situation. He found that terminal velocity versus bubble volume behavior

for plane bubbles was very similar to that of 3D bubbles, and concluded that the wave anal-

ogy correlation is also directly applicable to 2D media. In light of this finding it is not as

surprising that strong agreement was obtained between the 2D bubble rise simulations of

this thesis and a correlation for real 3D bubbles.
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Chapter 9

Conclusions

Digital Physics, an outgrowth of lattice gas automata, has already advanced the state of the

art for accurate and efficient hydrodynamic simulation of an isothermal ideal gas, appro-

priate for applications such as the flow of air around a moving automobile. The success of

Digital Physics raises the question of whether similar gains can be achieved for hydrodynamic

simulation of complex fluids such as multiphase flows.

In this work, an extension to the current Digital Physics method has been developed which

allows flow simulation of non-ideal-gas fluids and, most significantly, liquid-vapor mixtures.

The resulting method, referred to as the Digital Physics multiphase system, provides detailed

flow simulation including the explicit presence of interfaces. The present implementation is

particularly suitable for applications where the dynamics of the liquid phase are dominant,

such as in the bubbly and slug flow regimes.
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The heart of the multiphase system is a non-local interaction step, which occurs in addition

to the usual propagation and collision steps of the multispeed lattice gas, and the addition

of microscopic internal energy to the microphysical system. The general theory describing

these features has been developed. It includes the procedure for removing artifacts from

the lattice transport equations, such that correct hydrodynamics is recovered. It also shows

how a suitable empirical thermodynamical system, governing the two phase equilibrium

properties and the equations of state of each phase, is obtained.

A two dimensional implementation of the multiphase system following a van der Waals

thermodynamics was created. This "lab-scale" version of the method was used to verify the

basic theoretical predicitions for the behavior of the system. It was then used to perform

simulations of Rayleigh-Taylor instability and single vapor bubbles rising in liquid. These

experiments demonstrated the ability of the multiphase system to capture the dynamical

interplay between viscous forces, inertial forces, bouyancy forces, and surface tension forces,

which are some of the key physical mechanisms of two phase flow in general.

It is estimated that the multiphase system can improve upon the range of flow systems

accessible to detailed flow simulation. An "engineering-scale" version of the method would

be a 3D simulation code with optimized algorithms running in a high performance computing

environment. Based on current Digital Physics capabilities, it is predicted that bubbly flow

simulations of a 100 cubic centimeter test section with Reynolds numbers on order 104 and

Morton numbers on order 10-11 could be performed. Thus the effects of turbulence could

be investigated, and at Morton numbers representative of water. Both of these conditions

are currently unattainable in detailed numerical simulations of bubbly flow.
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The extension to three dimensional simulations is quite straightforward. No additional

theory is required, only a few specific changes to the implementation, such as additional

velocity states and collision rules for those states. Heat transfer, on the other hand, cannot

be included in the present multiphase system due to an isothermal requirement related to the

microdynamics of the interface. There is also an upper limit on the liquid to vapor density

ratio of about 200, above which the exact-integer algorithms for the non-local interaction

begin to fail at the interface. Hence the multiphase system can achieve the correct density

ratio for pressurized water, i.e. P > 9 atm., but not for water at atmospheric conditions,

where the density ratio is about 1000. However, in systems such as bubbly flow where the

dynamics of the vapor phase are not a significant influence, it is sufficient to merely have

a simulation density ratio much larger than unity, which was demonstrated to be easily

achieved in the multiphase system.

I believe it may be possible to improve upon the Digital Physics multiphase system de-

veloped here through further extensions of the non-local microdynamics. One idea is to

develop an interaction algorithm which recovers a non-ideal-gas equation of state and cor-

rect adiabatic energy transport, simultaneously, through the lower order gradient expansion

terms. The higher order terms would then be used to control the effects of interfacial tension,

providing direct representation of the surface excess free energy which is thermodynamically

predicted to exist within the interfacial region of a two phase mixture. Another possible

approach would be to construct an algorithm allowing simultaneous exchange of mass, mo-

mentum, and energy, such that the net non-local mass exchange is only non-vanishing in the

interfacial region, where it would effectively provide a surface excess free energy. It is hoped
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that such concepts will, in the near future, lead to removal of the isothermal requirement,

control of the surface tension coefficient, and manipulation of the interfacial density profile,

which would allow heat transfer, greater ranges of key dimensionless quantities, and very

large densities ratios, respectively.
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Appendix A

Dimensionless Analysis of van der

Waals Thermodynamics

We wish to show that specification of one dimensionless quantity, such as the density ratio

rp, determines the others in a van der Waals system. To begin, the thermodynamic rela-

tions which determine the two-phase equilibrium properties, equations (3.15) and (3.16), are

rewritten:

pgRT a 2 pfRT 2ap
S1- pgb 9 1 - pfb

P pRT dp

p( P(1 - pb) p2P

(A.1)

(A.2)
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where the van der Waals equation (3.12) was used for P(p, T) in the expression for the

Maxwell equal area rule. Direct integration and division by RT gives

In p1 -pb +  ( + ) (p, - P) = 0 (A.3)
P 9 1 - pfb RT pf pg /

Recalling the entropy relation (3.31), the first term in the above equation is just the

dimensionless latent entropy of vaporization s* defined in Section 5.6. The second term is

the dimensionless volume-work of vaporization w*, and the third term is the dimensionless

latent energy of vaporization u*. Thus equation (A.3) is identical to the requirement that

the chemical potentials of the coexisting phases are equal, and may be rewritten simply as

Ts* - Pv* - u* = 0 (A.4)

Rearranging equation (A.1) gives

Pf 1 - pb apf ( p P(
Pg 1 - pfb RTp Pf (A.5)

Substituting for the entropy term in equation (A.3), and employing the definitions of u* and

rp, gives

u* = In 1 + (1 - pg b) r (A.6)
RT RT Pf pg)

We are generally interested in systems with a large density ratio, rp >> 1, and it is most

straightforward to continue the exercise with this assumption. In this case, the vapor phase
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behaves like an ideal gas, and the ideal gas law P - pgRT can be used. Also, the van der

Waals constant b is of order l/pf, which implies pb << 1. Noting that u* - apf/RT and

1/pg >> 1/pf, equation (A.6) becomes

u* = In (1 + u*rp) - 1 (A.7)

or using the fact that ru* >> 1,

u* = In (rpu*) - 1 (A.8)

Thus u* = u*(rp), hence the dimensionless latent energy of vaporization may indeed be writ-

ten as a function solely of the density ratio. The same may also be said for the dimensionless

latent entropy of vaporization and the dimensionless volume-work of vaporization:

s In rpu* = s*(r,) (A.9)

w* 1 (A.10)

and in fact w* is exactly unity in the limit of large density ratio.

Returning once more to the entropy term in equation (A.3), and noting equation (A.9),

(A.11)

s In r 1 - pfb In rpU*

1
U* -u* pb

1 - pfb
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which means that even the dimensionless quantity pfb is specified for a given density ratio.

Therefore

U* apf au* ap = = Z(rp)
pfb RTpyb bRT

(A.12)

which combined with equation (A.11) gives

(u*)2
u* - 1

(A.13)

This equation can be solved explicitly for u*(Z), and combined with an explicit solution of

equation (A.8) for r,(u*), to give an expression for rp(Z):

exp [1 + (Z + VZ(Z - 4))]
p (Z +Z(Z-4) (A.14)

It is also well known that for a van der Waals system the critical temperature and pressure

are

8a
RTr =

27 b
(A.15)

(A.16)
1 a

Pcrit =-
27 b2

which may be derived from the conditions defining the critical point:

["p , [p2
=0 (A.17)
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Thus the reduced temperature T* is

RT
RT*

RTcrit

27bRT

8a
27 1
8 Z

(A.18)

and for the reduced pressure P*,

P 27b2pRT

Pcrit a
(A.19)

U*

rZ
2

It necessarily follows that T* = T*(rp) and P* = P*(rp).

Finally the soundspeed, essentially the isentropic compressibility, is

c2 aP
3 RT

- 2ap
2 (1 - pb)2 (A.20)

This is the adiabatic soundspeed; however, for the isothermal version of the multiphase

system, the relevant soundspeed will be

Cs -[

r Bp ,T

RT
1 - - 2ap

(1 - pb)2

and this isothermal soundspeed is somewhat smaller than the corresponding adiabatic sound-

speed. The dimensionless soundspeed of the liquid (squared) is

=cf 1
RT (1 - pfb)2

- 2aP u*(u* - 2)
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and that of the gas is

c2,_ 1 2 1 - 2 * (A.23)
RT (1 - pgb)2  RT rp

Also, the liquid to vapor soundspeed ratio rc

_ cS,_ N u*(u* - 2)rc - 2) (A.24)
-cs,g 1 - 2u*/r

Thus the set of dimensionless quantities relevant to to the thermodynamics of a two phase

system (as listed in Section 5.6) is fully determined by specifying any one of them. While

this has been shown for the high liquid to vapor density ratio approximation, it is in fact

rigorously true for the van der Waals system, but much more tedious to prove analytically

without the approximation.
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Appendix B

The Wave-Analogy Correlation for

Prediction of Terminal Velocities of

Rising Bubbles

The wave analogy is a simple, elegant, physically motivated theory of bubble dynamics. It

was originally proposed by Mendelson [65], who suggested that due to the "inviscid nature

of the motion of large bubbles," they "may be thought of as merely interfacial disturbances,

whose dynamic behavior should be similar to those of waves on an ideal fluid." When the

depth of the liquid is large compared to the wavelength A of the surface wave, its wave

velocity c, is given by

27a gA
c A = + (B.1)
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As usual oa is taken to be the coefficient of surface tension divided by the density of the liquid.

Mendelson suggested using the equivalent circumference of the bubble as the wavelength,

A = 7rde, in equation (B.1) to give the terminal velocity of the bubble Ubw:

U,'= • +• (B.2)

This equation is for single bubbles rising in infinite media, and which are large enough

to be non-spherical such that viscous drag is small compared to inertial drag. These are

bubbles corresponding to regions III and IV in the discussion of bubble rise behavior given

in Section 5.4. Note that squaring equation (B.2) and dividing through by the last term

gives

8/3 4
- + 1 (B.3)

CD Eo

where drag coefficient CD and Eotvos number Eo are given by equations (5.12) and (5.9).

Hence the wave analogy for the rise of large bubbles is essentially a relationship between the

two relevant dimensionless parameters of this system.

A method to extend the wave analogy to include small bubbles was given by Jamialah-

madi, Branch, and Miiller-Steinhagen [66]. They propose that the terminal velocity Ub of a

bubble of any size is

UUU=Ub= Us(B.4)
(Us)2 + (Ub l )2

where UQ is the terminal velocity of a small spherical bubble. Ubs is found by equating the
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buoyancy force to Stokes equation for drag force on a sphere, and may be written as

1 gd (B.5)
Ub -18 v

Hadamard [68] showed that for a non-rigid interface where internal circulation of the bubble

occurs, a correction is needed. When the vapor viscosity is much smaller than that of the

liquid, the rise velocity is 3/2 larger than that given by equation (B.5). Most real systems,

however, contain surface active agents (especially aqueous systems) which cause the interface

to be rigid, so the small bubbles tend to obey equation (B.5).

Equation (B.4) is the wave analogy correlation (for infinite media) referred to in Chap-

ters 5 and 8. It asymptotically approaches the original wave analogy velocity Ub for large

bubbles, and goes over to the Stokes velocity Ub in the limit of small bubbles. In applying the

wave analogy correlation, equation (B.5) was used without Hadamard's correction because

it is suspected that the interface of the multiphase system is rigid with respect to internal

slip. It is interesting to note that the characteristic rise curves of Figures 5.1 and 5.2, which

plot equation (B.4) for water at 20 C and 250 C, follow the Stokes equation far beyond

Reb = 1. This represents an approximation due to the form of the wave analogy correlation

for the range of Reynolds numbers greater than that of true Stokes flow (Re < 1), but less

than that required for surface tension forces to have a strong affect. Nevertheless Jamialah-

madi, Branch, and Miiller-Steinhagen [66] showed that equation (B.4) agrees favorably with

experimental data for a wide range of fluids and bubble sizes.

When the motion of a rising bubble is influenced by the walls of a container, the infinite
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media approximation is invalid. Let the characteristic length of the width of the container

be D. As the fractional blockage / = de/D due to the presence of the boundaries increases,

the drag effectively increases and the terminal velocity decreases for a bubble of given size.

Maneri [76] recognized the existence of a wave analogy for finite media due to the general

expression for the velocity of a wave on an interface between two fluids (e.g. vapor and

liquid) of different depths hi and h2 and different densities pi and p2:

[ gA(p 2 - pi) + p / 1/2
cC=y[P1 coth(h-/X) + p2 coth(h2/A)J- (B.6)

where A = A/27r. Hence equation (B.1) is a special case for hl/A, h2/A >> 1 and P2 >> pl.

When the liquid to vapor density ratio remains large but the depth of the liquid is finite

(and the depth of the vapor is not very small), equation (B.6) becomes

cW = +thh/A J (B.7)

where h is the depth of the liquid. Replacing wavelength as above, the finite media terminal

bubble velocity Ub is

gd 2a 2h an2h (B.8)

U = 2 d tanh de U anh d

Now an assumption must be made to determine h in a bubble rise system. For application

to plane bubbles, Maneri takes h to be proportional to the channel half-width b, h = c1 b, and

determines the constant c, essentially from the condition that in the limit of large bubbles,
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the slug terminal velocity U, is reached. That is to say, when de/2 = 3flb, then Ub = U,,

where 3, is the fractional blockage at which the bubble becomes a slug. Thus

Ub(de = 2#,b) = Us = Uw tanh (B.9)

which may be solved for cl,

c = /,tanh-' ) 2  (B.10)

Maneri goes on to give an empirical expression for the slug rise velocity U,, and estimates

S, = 0.235, based on results for large plane bubbles rising in low viscosity fluid (i.e. water).

These are not likely to be valid over the whole range of parameters used in the present

bubble rise simulations, and in any case the expression for U, involves the thickness of

the duct spacing, the effect of which cannot be estimated for the 2D multiphase system.

Instead it is assumed that the ratio of slug velocity to infinite media velocity is about a

half, and occurs at a blockage of about 40%; these are rough estimates based on relatively

few simulation results, but are quite plausible. Thus US/Uw = 0.5 and /, = 0.4, which

substituted into equation (B.10) gives cl = 0.10. Noting that # = delD = d,/2b = cld,/2h,

equation (B.8) becomes

0.1Ur = Uwtanh (B.11)

In all of the simulations for which results are presented in Chapter 8, the blockage was

# = 0.2, which yields Ub = 0.68Ubw. It is further assumed that this constant blockage

correction can applied to the general velocity Ub rather than just the "wave" part of the
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correlation, since a small bubble with velocity Ub is also affected by containing walls. This

implies

Ubf = 0.68Ub = 0.68 U Ub (B.12)
(U:) 2 + ( Ub

where Us is determined from equation (B.5) and UbW is determined from equation (B.2). The

curves of predicted bubble rise behavior in Figures 8.9-8.11 for comparison to the simulation

results were plotted via equation (B.12).
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