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Ure2p which is C-terminally tagged
out of yeast, but it is likely that this
To purify Ure2p in its [URE31 form,

with a 6His-FLAG epitope, can be easily purified
Ure2p can not be converted into its [URE3] form.
one may have to avoid tags.

To detect untagged Ure2p during purification, one must use polyclonal a-URE2
antibodies. Our antibodies cross-reacted with many other proteins, so we wanted to
purify them. This necessitated the production of tagged Ure2p in E. coli, which was
attempted but not accomplished, apparently because Ure2p was proteolyzed.

Both the chemical synthesis and the purification of the N-terminal 65 amino acids
of Ure2p were very difficult. Finally, attempts to electroporate protein into yeast
failed because conditions could not be found which permitted both the detectable
uptake of protein and the survival of an appreciable number of cells.
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ABSTRACT

This project's first goal was to express and purify Ure2p in both its [ure3-0] and
[URE3] conformations. To this end, a S. cerevisiae strain and galactose-inducible
URE2 expression vectors were made, and by all tests they seemed suitable for this
purpose.



The prion model of disease states that PrPSc proteins, whether spontaneously

formed or introduced from the outside, cause neurodegenerative disorders,

including scrapie, bovine spongiform encephalopathy, and Creutzfeld-Jacob disease

(reviewed in Brown et al, 1991; Prusiner, 1991). The prion model also maintains

that the mammalian PrP protein can exist in two forms: a normal form (PrPc) and a

prion form (PrPSc, see Figure 1). The PrPSc proteins are infectious because they

convert the PrPc proteins into more PrPScs.

The existence of prions has been controversial for decades. Most evidence

supports the model, but a few critical experiments have not been successfully

performed, presumably because working with the PrP system is difficult.

In 1994, Wickner showed that prions might also exist in S. cerevisiae. The

yeast genetic phenomena [PSI+ ] and [URE31 could be explained if [PSI+] and

[URE3] were prion forms of the proteins Sup35 and Ure2 (Wickner, 1994). If yeast do

have prions, then working with them might be easier than working with PrP

prions. Through [PSI+] or [URE31, it might be possible to establish beyond reasonable

doubt that prions exist.

Mammalian prion research, to date, has several weak points. For instance,

critics worry that the infectivity associated with purified PrPSc might be due to a

contaminating nucleic acid. The only way to satisfy these critics is to make the PrP

synthetically (or in an unrelated organism like E. coli), to purify it, convert it to its

prion form, and then demonstrate its infectivity. For PrP, every step in this process

has proved difficult.

The PrP protein is too large to make synthetically. For unknown reasons,

expressing it at reasonable levels has been hard (Mehlhorn et al., 1996), and has only

recently been achieved (Riek et al., 1996). Converting the normal form of the protein
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to its prion form has also been challenging, and the best effort to date has produced

so little putatively infectious protein that researchers can not detect a difference in

infectivity after the conversion (Kocisco et al., 1994).

In my work, I hoped to use S. cerevisiae, both to learn about yeast prions and

to address some of the issues that remained unresolved with PrP. First of all, I

wanted to purify the hypothetical yeast prion protein, Ure2p, in its prion and non-

prion forms. In mammals, infectivity is assayed by injecting infectious material into

an animal and waiting for it to get sick. I wanted to find a way of "injecting"

possibly infectious Ure2 protein into yeast cells, and assay whether they were

converted into prion strains. I also hoped to convert normal Ure2 protein to its

prion form in vitro. Using either in vitro--converted Ure2p or synthetic Ure2-N

terminus, I hoped to "infect" normal yeast cells, thus showing that pure protein is

sufficient to convert the cells to their prion form.

About URE2. Roughly twenty-five years ago, Francois Lacroute was

investigating S. cerevisiae's uridine biosynthesis pathway (see Figure 2).

Surprisingly, his ura2- URA3 + cells failed to grown on ureidosuccinate (USA).

Consequentially, he looked for mutations which would allow the cells to grow, and

he discovered several. One type, he called ure2-. These cells had a single, recessive,

nuclear mutation which permitted growth on USA. A second "mutation" was

[URE31, a dominant, non-nuclear trait (Lacroute, 1971). Thus, [URE3] and ure2 cells

have the same phenotype with regard to USA use, but the traits are genetically

distinct.

Later work by Coschigano and Magasanik (1991) resulted in the identification and

cloning of URE2. By sequence, the Ure2 protein (Ure2p) is a 40 kD protein with C-

terminal homology to glutathione-S-transferases. The protein's N-terminal 64

amino acids consist of 40% asparagine, and 20% serine and threonine.



URE2 is involved in the regulation of S. cerevisiae's nitrogen metabolism;

specifically, it is responsible for repression of Gln3p in response to a good nitrogen

source, such as glutamine or ammonium (Coschigano and Magasanik, 1991, see

Figure 3). Gln3p activates the transcription of a variety of genes, including DAL5,

the allantoate permease (reviewed in Magasanik, 1992). This permease is USA's

means of entry into the yeast cell (Magasanik, 1992). Therefore, non-functional

URE2 permits growth on USA because its absence permits Gln3p to activate

transcription of the USA permease.

The prion connection. Wickner's groundbreaking paper (Wickner, 1994)

proposed that the [PSI+] is a prion form of Sup35p, and that [URE31 is a prion form of

Ure2p. To support this hypothesis, he used cytoduction to confirm the dominant,

cytoplasmically-inherited nature of [URE31, and he demonstrated that the URE2

gene was necessary for [URE3] maintenance. He also showed that growing

[URE31 cells on 5 mM guanidine hydrochloride effectively and reversibly cured cells

of their [URE31 phenotype.

In a second paper, Masison and Wickner (1995) showed that URE2's N-terminus

is necessary for prion formation, while its C-terminus is necessary and sufficient for

complementation. Consistent with the hypothesis that prion formation is a

stochastic event whose probability depends on the amount of Ure2p, overexpression

of URE2 increased the frequency at which cells "went prion" by 20-200 fold.

Overexpression of the N-terminus increased the frequency to 3000 times the

background level.

Recent research on [PSI+] has, by analogy, yielded some exciting clues on a

possible mechanism of [URE31 formation. Work by Chernoff et al., (1995), Paushkin

et al. (1996), and Patino et al., (1996) strongly suggests that the prion form of Sup35p

is an insoluble aggregate, with the N-terminal domain mediating aggregation.

Certainly the prion form of PrP is an insoluble aggregate (Meyer et al., 1986, Gabizon



et al., 1988), and aggregation could explain the increases in protease resistance for

PrPSC and for Ure2p in [URE3] strains (Masison and Wickner, 1995). Come et al.

(1993) suggested that prion formation might involve a nucleation-dependent, self-

assembly mechanism. Consistent with this model is Glover and coworkers' (1997)

finding that purified Sup35p precipitates into fibers with nucleation-propagation-

like kinetics.

MATERIALS and METHODS

Vector construction.

(a) Galactose-inducible expression vectors. I PCR-amplified URE2 with

primers which gave it a 5' BamHI site, eliminated its stop codon, and gave it a 3'

BspEI site followed by a SacI site. I inserted this fragment into the vector pBl-UASG

(courtesy of Dr. Thomas Oehler, then in Dr. Leonard Guarente's lab, MIT), between

its BamHI and SacI sites. This placed URE2 behind the galactose-inducible Gall-

10 promoter, producing pUASG-URE2. Just upstream of the UASG was a XhoI site

from pBl-UASG's polylinker.

I synthesized the oligo 5'-

GGTCCGGAGGTGGTGACTACAAGGACGACGATGA

CAAGCACCATCATCACCATCACTGTTGAGTGACTGAGAGCTCGG-3' and its

complement. This oligo encodes the FLAG epitope (Eastman Kodak Co., Rochester,

NY), six histidines, and a C-terminal cysteine. I annealed and digested the oligos

with BspEI and SacI. I ligated this fragment to the XmnI-BspEI portion of pUASG-

URE2 and the XmnI-SacI portion of pUASG-URE2. This triple ligation produced

pUASG-URE2e.



I inserted the XhoI-SacI fragment from pUASG-URE2e into pRS424 (Sikorski

and Hieter, 1989), producing ET-URE2e. To make ET-URE2, I excised the tagged

URE2 gene with BamHI and SacI, and replaced it with a PCR-amplified, untagged

URE2 gene.

(b) Other expression vectors. I synthesized the oligo 5-

CGCCTCGAGGTCCCCGGGTAGC TGCAGGAAGGATCCCGC-3' and its

complement, and I annealed these to make a multiple cloning site. I digested this

fragment with XhoI and BamHI, and inserted it into ET-URE2 and ET-URE2e,

replacing their UASG regions. These vectors were CS-URE2 and CS-URE2e.

I digested pDB20 (Dr. Leonard Guarente, MIT) with SmaI and PstI to obtain a

fragment containing the ADHi promoter. I inserted this into similarly-digested CS-

URE2 and CS-URE2e to produce pADH-URE2 and pADH-URE2e.

I PCR-amplified the copper-inducible promoter of YIp5-Sc3451 (Klein and

Struhl, 1994), using primers which put at SmaI site on its 5' end, and a PstI site on its

3' end. I inserted this fragment into CS-URE2 and CS-URE2e, digested with Smal

and PstI, to make Sc3451-URE2 and Sc3451-URE2e.

To make tagged Ure2p in E. coli, I digested ET-URE2e with BamHI and SacI,

and inserted the URE2- containing fragment into similarly digested pAED4 (Dr. Paul

Matsudaira, Whitehead Institute, Cambridge, MA). This produced pAED4-URE2e, a

construct which is IPTG-inducible in E. coli strains containing the DE3

element (IPTG-inducible T7 RNA polymerase).

(c) URE2 deletion construct. I digested pJLZ113 (Dr. Leonard Guarente, MIT)

with EcoRI and isolated the smaller fragment which contained URE2's ORF and

some surrounding genomic DNA. I inserted this fragment into pUC18 (Boehringer

Mannheim Co., Indianapolis, IN), producing pUC-URE2. I PCR-amplified

LEU2 with primers which added a 5' XhoI site and a 3' SacII site. I inserted this

fragment into similarly digested pUC-URE2, producing pAU. All of the coding



region of URE2, except for several hundred base pairs at the C-terminus, were

deleted. A partial EcoRI digest of this construct produced a fragment containing

Aure2::LEU2, which I inserted into pBl-SK- (Stratagene, La Jolla, CA) a fragment

usable to transform yeast and knock out URE2.

Strain Construction.

See Table 1 for a complete list of strains. Mating and sporulating STX21-4A

and PSY316 Atrp produced strains AvG1 and AvG3. I disrupted these strains'

PEP4 genes with a pep4::HIS3 disruption construct (BJ3287, Dr. Elizbeth Jones,

Carnegie Mellon University), producing AvG4 and AvG5. I then knocked out these

strains' URE2 genes with pAU2 to make AvG8 and AvG9. Deleting the URE2 gene

in strain 4445-27D produced AvG10. All gene disruptions were confirmed both by

growth assays and by Southern blots.

Strain 3383 [URE31 #19 was isolated by plating 3383 onto a USA plate.

Strains 3385 c8Y and 3385 c5U are [URE31 variants of strain 3385, which

became [URE3] by cytoduction.

Growth and media. Standard growth conditions (YPD or SD-based media,

30'C growth) were used unless otherwise indicated. All [URE3] strain plates were

stored at room temperature, after they were grown up. The ureidosuccinate, or

USA, (Sigma Chemical Company, St. Louis, MO) stock solution was 1% (w/v), pH

6.2-6.4. It was kept dark and at 4 'C. I used USA at a final concentration of 100 Etg/ml.

To avoid possible heat degradation, I added USA to plate media after allowing the

agar to cool somewhat. [URE31 strains were cured by growing them on SD plus

minimal amino and nucleic acid supplements, and 5 mM guanidine hydrochloride.

Plating for [URE3]s. Overnight cultures were grown in appropriate media. 1

ml of these cultures was spun down, washed, and resuspended in sterile water. 100

dtl of 1:104 dilutions were plated onto YPD to calculate the concentration of viable

cells, and 100 dtl of undiluted, washed culture was plated onto USA-plates to



calculate the concentration of [URE3] cells. When testing the effect of

overexpressing URE2, all media contained 2% galactose and 1% raffinose instead of

the usual 2% glucose.

Expression and purification of tagged Ure2p.

I inoculated AvG8, containing ET-URE2e, into 5 mL SD media supplemented

with casamino acids, uridine, adenine, and 2% galactose. This culture was used as

an inoculum for a 50 ml culture, which was in turn used to inoculate a 1 L culture,

which was used to inoculate a 10 L fermenter run (Microferm Fermenter, New

Brunswick Scientific Co., Inc., Edison, NJ). At each point, the cultures were checked

under a microscope for contaminants.

I harvested the culture just before stationary phase, after about 26 hours. I

resuspended the cell pellets in 0.5 ml of 3x lysis buffer per gram of wet cells (450 mM

HEPES, pH 7.8, 3 mM EDTA, 30% glycerol, plus 3 mM DTT and 3x protease

inhibitors added directly before use). I added the following (lx) protease inhibitors

to all buffers, except dialysis buffers, directly before use: 100 mM PMSF, 200 mM

benzamidine, 100 [gg/ml pepstatin A, and 100 tgg/ ml bacitracin. Dialysis buffers

contained only PMSF and benzamidine.

I lysed the cells on ice with 0.5 mm glass beads, beating them about 12 times,

for 30 seconds each, with 2 minute rest-periods in between. The cell lysate was then

centrifuged for 5 minutes at 5,000 rpm in a Sorvall RC-5B centrifuge (SA-600 rotor,

Sorvall, Inc. Newton, CT). The supernatant was centrifuged in a SWTi rotor, in a

Beckman ultracentrifuge, at 41,000 rpm, for 30 minutes. The lipid layer and the

pellet were discarded.

I precipitated the majority of the Ure2p by adding ammonium sulfate to 40%

of saturation, mixing the lysate for 5 minutes at 4 oC. Centrifugation in the Sorvall

SA-600 rotor for 15 minutes at 15,000 rpm pelleted the protein.



I resuspended the ammonium sulfate pellet into lx nickel loading buffer (50

mM HEPES, pH 7.8, 300 mM NaC1, 10% glycerol, 10 mM imidazole, 10 mM p-

mercaptoethanol), plus 1x protease mix, and dialyzed this sample into nickel

loading buffer. Any precipitate was removed by centrifugation.

I used 5 mL of Qiagens's Ni-NTA agarose resin (Qiagen, Inc. Santa Clarita,

CA) per liter of original cell culture. I washed the resin with 10 column-volumes of

nickel loading buffer, and added the dialyzed lysate. The lysate and the resin were

mixed, in batch form, for 1 hour at 4 'C. I washed the resin once with a 3x-column

volume of nickel column loading buffer, and twice with the same amount of a

similar buffer which had 50 mM imidizole. I eluted the tagged Ure2p by mixing the

resin twice, each time with one column volume of elution buffer (50 mM HEPES,

pH 7.8, 300 mM NaC1, 10% glycerol, 500 mM imidazole, 10 mM p-mercaptoethanol,

1x protease mix), for 30 minutes at 4 'C.

The eluate was dialyzed into Buffer A (50 mM Tris, pH 7.5, 50 mM NaC1, 1

mM EDTA) and applied to the anion exchange column, Mono Q HR 5/5 (Pharmacia

Biotech Inc., Piscataway, NJ). An increasing concentration of Buffer B (50 mM Tris,

pH 7.5, 1 M NaCl, 1 mM EDTA), 29 mM/ml gradient, was used to elute Ure2p.

Electroporation. A single colony was inoculated into 100, 300, or 500 mL of

YPD media and grown overnight. The culture with an A600 of 0.3-1.0 was used.

During all the pre-electroporation steps, the cells were kept on ice.

I spun down a sufficient amount of the overnight culture, washed it twice in

1 ml of cold 1 M sorbitol, and resuspended it in enough 2 M cold sorbitol to yield a

"2x" concentration of 1.5 x 108 cells/ml. I mixed these cells with an equal volume of

cold sterile water, containing, if appropriate, 100 CtM fluorescein-lactalbumin (final

concentration, 50 EtM). Stock solutions of fluorescein-lactalbumin were 1.25 mM,

were kept at 4 'C, and protected from light. I used these stocks for 2-3 weeks.



I used 40 RL of cells per electroporation, in pre-chilled 2 mm cuvettes.

Standard electroporation conditions were: 2.5 kV, 25 RF, and 800 Q. Immediately

after electroporating, I added about 1 ml of a 0.5x YPD, 1 M sorbitol solution. The

cells were rocked gently at 300 for 30-60 minutes. After this point, they were again

kept cold. I combined identical samples, and gently washed them twice with a cold,

1M sorbitol/ saline (7.3 g NaC1/L) solution; the microfuge was set at 7,000 rpm.

Samples were then resuspended in 300-400 ul of cold sorbitol/ saline per

electroporation. 5 pl of propidium iodide (10 [g/ml) were added, per

electroporation.

Samples were analyzed with a FACScan analyzer (Becton Dickinson, San Jose,

CA) or a FACS Vantage cell-sorter (Becton Dickinson). If the cells were sorted, they

were gently centrifuged and resuspended into cold sorbitol/saline before being

appropriately diluted and plated.

RESULTS and DISCUSSION

Working with [URE3] strains.

In the course of these experiments, I have learned several important lessons

about the intricacies of handling [URE3] strains. Before describing my own

experiments, I will summarize what I learned here, in hopes that it may be useful to

others.

First of all, not all [URE31 strains are stable on YPD. Wickner reported on one

strain which remained [URE3] after many generations of growth on YPD (Wickner,

1994), and in my experience, some [URE3] strains are stable on YPD for one or two

streaks (maybe more). However, the [URE31 strain 3687, provided to me by Dr.



Wickner (National Institute of Health, Bethesda, MD), was very unstable on YPD.

Streaking it out once onto YPD plates was sufficient for it to largely, if not entirely,

lose its [URE31 character. Without thorough testing, I would not recommend

growing [URE3] strains on YPD.

[URE3] strains should not to be repeatedly restruck onto USA plates. If they

are, the strains tend to become ure2-. As these are distinguishable from [URE3]s only

by laborious cytoduction or curing experiments, it's best to reduce the probability of

getting ure2-s in the first place. Instead, researchers should have several frozen

stocks of their [URE31 strains, and streak out from these stocks onto a USA plate.

When the plate gets old, they should re-streak from the frozen stock.

I discovered that curing cells on guanidium chloride works best with

minimal media, supplemented as needed. Curing candidate [URE31 strains is less

than 100% efficient on rich media, but it is 100% efficient on minimal. I do not

know why this is the case.

From my own experience, and according to Dr. Reed Wickner (personal

communication), yeast do not grow on USA in the presence of a complete

complement of amino acids, e.g. casamino acids. I have not investigated which

amino acids are responsible for this, nor do I know why the yeast fail to grow.

Twice I tested whether keeping [URE31 strains at 4 oC, rather than at room

temperature, had any effect on [URE31 's stability. The first time it seemed that

keeping the plate at 4 oC completely cured the candidate [URE31s, while an identical

plate kept at room temperature was not cured. However, the second time, I did this

experiment using known [URE31 strains, and I found no difference. Dr. Wickner

routinely keeps all his plates at room temperature and has not investigated possible

effects of storing them at 4 'C (personal communication). I advise researchers to

keep their [URE31 plates on their bench unless they first test whether their strains

are stable at other temperatures.



Lastly, researchers should beware of cross-feeding. In this system, it seems to

happen more efficiently than with simpler auxotrophies. Researchers should make

sure that their colonies or streaks are really growing and not simply feeding off their

neighbors.

Developing Reagents.

My first goal was to purify Ure2p from isogenic wildtype ([ure3-ol) and prion

([URE3]) strains. To do this, I needed appropriate yeast strains and a URE2-

expression vector.

First of all, the appropriate strain had to be ura2-, URA3 +. I wanted it to be

pep4- to facilitate protein purification. To avoid purifying genomic Ure2p along

with the tagged Ure2p, the strain also had to be ure2-. It had to have a marker for

the expression vector, and it had to be capable of becoming [URE31. I eventually

made three candidate strains which met these criteria. The first two were AvG8 and

AvG9, which seemed suitable for expression and purification of Ure2p.

I made the 2[t, galactose-inducible expression vectors ET-URE2 and ET-

URE2e. In ET-URE2e, the URE2 gene has a C-terminal tag, with the sequence Ser-

Gly-Gly-Gly, the FLAG epitope, six histidines, and an additional C-terminal cysteine.

The untagged construct was a control, in case the tag interfered with the

[URE3] phenomenon. Sequencing the URE2-regions of ET-URE2 and ET-URE2e

revealed no mutations. Both vectors also complement the Aure2. in AvG8 and

AvG9, and complementation depended both on the presence of the URE2 gene and

on its induction.

Unfortunately, data from another set of experiments made me doubt whether

AvG8 and AvG9 could produce [URE3] variants. After making strains AvG4 and

AvG5, I repeatedly tried to identify [URE31 variants by plating them onto USA

plates. I even tried overexpressing URE2, using ET-URE2 and ET-URE2e, expecting

an increase in the frequency of [URE31s, as reported by Masison and Wickner (1995).



I found ure2- strains and some UR A+ strains, but I found no candidate [URE3]

strains. I began to suspect that something about my strains made it impossible for

them to become [URE3]. If this was true for AvG4 and AvG5, it would also be true

for AvG8 and AvG9. This would make them unsuitable for purification of Ure2p; I

would have to find another strain.

I asked Wickner for his strain, 4445-27D, which he had published was capable

of becoming [URE3] (Masison and Wickner, 1995). He provided it, and I deleted its

URE2 gene, producing AvG10, a third strain which seemed suitable for production

of URE2-protein, However, a problem arose when I tested ET-URE2 and ET-URE2e's

abilities to complement AvG10's Aure2.

The vector-only control failed to grow on inducing plates containing USA.

AvG10 with ET-URE2, ET-URE2e, or pRS424 grew on plates containing glucose plus

USA, and they all grew on plates containing galactose plus uridine. In other words,

strain AvG1O grows very poorly on galactose. In the presence of uridine, it can grow

sufficiently, but if it is only offered USA, it can not grow at all (see Table 2). I could

not, therefore, determine if my vectors complemented AvG10's Aure2. More

importantly, I realized it would be impossible to identify [URE3] variants of AvG10

with a galactose-inducible URE2 expression vector. Identifying these variants would

require the strain to grow on galactose plus USA.

To overcome this obstacle, I decided to try using other promoters in my

expression vectors. I replaced the Gal-lO -10 promoter with the strong, constitutive

ADH1 promoter (from pDM20, courtesy of Dr. Leonard Guarente, MIT) and with a

copper-inducible promoter (from YIp5-Sc3451, courtesy of Dr. Kevin Struhl, Harvard

Medical School). I tested these constructs for their ability to complement in strains

AvG9 and AvG10, and I compared their expression levels to those of ET-URE2 and

ET-URE2e.



The ADHI-promoter constructs did not complement a deletion in URE2, and

by Western, they produced very little protein. These data are consistent, but they do

not explain why the ADHI promoter performed so poorly. The copper-inducible

constructs produced large quantities of Ure2p, but they failed to complement the

Aure2. in both AvG10 and AvG9. There were no mutations in the URE2 genes in

these constructs, so the reason for their non-complementation is unclear. The

failures of these promoters meant that I could not use AvG10 as a strain for

purification of Ure2p.

At this point, there was only way that I could obtain a suitable strain. I had to

hope that AvG8 or AvG9 could, despite my fears, become [URE3]. Although I had

not been able to isolate spontaneous [URE31 variants in these strains, perhaps I could

induce them to become [URE31 by cytoducing them with a known [URE31 strain.

This I did, as explained below.

Production of [URE3] Strains.

I asked Dr. Wickner for several strains to use in my search for [URE31

versions of AvG4, AvG5, AvG8 and AvG9. He gave me 3383, a strain from which

he had obtained [URE3]s, the [URE3] strain 3687, and a supposedly [URE31 variant of

4445-27D. I tested these strains to see whether they behaved as expected.

By the standard tests, Wickner's strain 3687 was [URE31, but his[URE31 variant

of 4445-27D was suspect. It grew on USA plates, and this growth was curable by

exposure to 5 mM guanidine hydrochloride, but it also grew on "-ura" plates. Oddly,

I demonstrated that this "-ura" growth was also curable by exposure to 5 mM

guanidine hydrochloride. I have no explanation for this effect, nor did Dr. Wickner,

when I told him about it. I later found that similar variants could arise in AvG5 as

well, so this phenomenon is not unique to one yeast strain. I did not explore these

odd strains any further.



I attempted to find my own [URE3] variants of strains 3383 and 4445-27D. I

thought that if I was successful, at least I could be sure that the plating technique

worked, and that the problems I'd been having with AvG4 and AvG5 were

particular to those strains. Amongst the usual background of ure2-s and URA+s, I

did obtain some candidate [URE3] strains. Because of problems handling [URE31

strains which I had not then resolved, I lost most of these candidates. However, I

did not lose strain 3383 [URE31 #19. This strain grows on USA, does not grow on "-

ura" plates, and is curable by growth on 5 mM guanidine hydrochloride.

Now that I had strains which I was reasonably sure were [URE31, I decided to

see whether they could cytoduce other strains. However, before trying to cytoduce

my own strains, I decided to work out the protocol with strains which I was sure

could become [URE3].

Initially, I used the classic Rose protocol for cytoduction (Rose et al., 1990). I

used this method several times, but I never obtained any cytoductee candidates.

Next I tried Wickner's protocol (Ridley et al., 1984). This protocol has more steps,

and because it uses auxotrophic markers to identify cytoductees, it restricts the

possible pairings of donor and recipient more than the Rose protocol does.

However, it had the advantage of working. I found that the frequency of [URE31

transfer ranges from 30%-80%.

Once I knew how to cytoduce strains, I tried cytoducing AvG5 with strains

3383 [URE3] #19 and 3687. In both cases, I obtained cytoductee AvG5 strains which

behaved as [URE31s: they grew on USA, were curable by growth on 5 mM guanidine

hydrochloride, and they introduced [URE31 to other strains by cytoduction. It

seemed likely I would be able to cytoduce AvG5's derivative strain, AvG9, while

expressing Ure2p from an expression vector.

I used [URE3] strains 3687, 3385 c8Y, and 3385 c5U to cytoduce AvG9

containing ET-URE2 or ET-URE2e, while inducing. I only obtained 11 cytoductee



candidates from the ET-URE2e crosses, while the ET-URE2 crosses produced more

than 30. Replica-plating patches of these candidates suggested that 6 of the ET-

URE2e recipients and 27 of the ET-URE2 recipients were ura- but USA +. I restreaked

six candidates from each recipient type onto inducing media containing USA, and

onto inducing media containing guanidium hydrochloride. Four of the ET-URE2

recipients grew well on USA, but all of the ET-URE2e recipients grew minimally--

similarly to the negative controls.

The four ET-URE2 recipients lost their ability to grow on USA after being

cured. Uncured ET-URE2 recipients grew well. Curing the ET-URE2e

[URE31 candidates reduced their growth on USA from marginal to zero; the uncured

controls grew very slightly.

This result suggests that the untagged, inducible Ure2p can be converted into

a[URE3] form, but that the tagged Ure2 protein can not. The tagged protein may be

partly converted, as evidenced by the marginal growth on USA. However, it is likely

either that not all of it is converted, or that its converted form is slightly different

from the untagged protein's form, such that the tagged protein is still partly

functional. This result, if confirmed by future experiments, would make

purification of Ure2p in its [URE3] form substantially more difficult, as one would

not be able to use the 6His-M2 tag.

Overexpression of URE2.

I wanted to reproduce Masison and Wickner's (1995) result that

overexpression of Ure2p increased the frequency at which a strain generated

[URE3] variants. Initially, I used ET-URE2 and ET-URE2e in strains AvG4, AvG5,

and 4445-27D. I compared the frequency of [URE31 variants for these overexpressors

with the frequencies for these strains containing the empty vector, pRS424. I did not

see a reproducible change in the frequency of [URE3]s.



I obtained the materials with which the original observation had been made:

strain 3469, and the vectors p554, p642, or p680. These vectors contained,

respectively, no URE2, full-length URE2, and the N-terminus of URE2, all

galactose-inducible. In strain 3469, I did observe an increase in the frequency of

[URE3] variants when the full-length gene was expressed (see Table 3), and I saw a

larger increase when the N-terminus was expressed. When I put these vectors in

AvG4 ,AvG5, and 4445-27D I did not see an increase for the full-length URE2 clone,

but I did observe a large increase when I used the N-terminal fragment. From these

results, I suspect that some strains may be more sensitive to levels of URE2-protein

than others. In this case, only 3469 responded to full-length Ure2p, a less potent

inducer of [URE31s, but all strains responded to overexpression of the truncated

protein. This may be due to some difference in the strains' genetic backgrounds.

Expression and Purification of Tagged Ure2p from S. cerevisiae and E. coli.

I purified Ure2p, expressed from ET-URE2e, in AvG8 [ure3-ol cells. I grew the

cells in media containing casamino acids; other researchers should use minimally

supplemented media if they want to purify Ure2p from identically-grown

[URE31 cells.

After growing and lysing the cells, I ultracentrifuged the extract to remove cell

debris and lipids. A 40% ammonium sulfate cut precipitated almost all of the

Ure2p. After resuspending and dialyzing the protein pellet, I purified it using nickel

resin. This step of the purification, as described in materials and methods, may not

have been optimal in several ways. I used a batch format, but a column format

might have been better. Also, two of the resin washes used 50 mM imidazole,

which resulted in significant elution of Ure2p. It might be better to use 10 mM

imidazole in all three washes, although perhaps the higher imidazole was effective

in removing additional contaminants. Third, I eluted the Ure2p in two washes of
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one column-volume each; some Ure2p might still have remained on the resin.

Further elutions or larger volumes might have released it.

I dialyzed the nickel column eluate and applied it to a MonoQ (anion-

exchange) column. Ure2p eluted from this column at approximately 700 mM NaC1,

in a peak with a substantial shoulder. Combining and concentrating these fractions

tenfold produced a Ure2p solution that showed a doublet band on a Coomassie-

stained gel. A Western blot using a-FLAG-M2 antibodies revealed the same

doublet, plus a number of degradation products. Because I did not N-terminal

sequence the bands, I am not sure whether one or both were N-terminally degraded.

I did not attempt to perfect this procedure because it became evident that the

C-terminal tag was interfering with the protein's ability to become [URE31, and any

further purification should be done with untagged Ure2p.

Without the M2 epitope tag, for purposes of detection, I would have to use

some polyclonal aURE2 antibodies, kindly given me by Boris Magasanik of MIT.

As these antibodies were not very clean, I decided to produce a small amount of

Ure2p in E. coli to purify them. To this end, I tried to express tagged Ure2p using

pAED4-URE2e in strain BB101 (Robert Sauer, MIT), but I did not see any induction

on a Coomassie-stained gel. By Western, I saw many degradation products, but no

full-length protein. I tried expressing the protein in the protease-deficient strain,

BL21-DE3 (Novagen, Inc., Madison, WI), using induction times of 15 minutes to 2

1/2 hours, inducing in minimal media, and inducing at 300 C or room temperature,

but by Coomassie staining, I never saw any induction. It is possible that the odd

amino-acid composition of Ure2p gives it an ill-defined structure in E. coli, which

makes it prone to proteolysis.

N-terminal Peptide.

Possessing a quantity of pure, N-terminal Ure2p might be useful in several

ways. For example, one could use this peptide to make antibodies specific to the N-



terminus of URE2. These antibodies might help determine whether the N-

terminus was involved in various protein-protein interactions. Also, if obtaining

Ure2p in its [URE3J form proved difficult, the N-terminus might substitute for it in

certain experiments. For instance, in establishing an assay for the infectivity of a

protein, the N-terminus might serve as a positive control.

I asked David King of the University of California at Berkeley to synthesize

and purify this 65-residue peptide. Unfortunately, he found that purification was

extremely difficult. He did provide me with about 1 mg of pure peptide, in

lyophilized form. This was only enough to do a few pilot experiments, experiments

which failed for other reasons. However, I did make some potentially interesting

observations about this peptide in solution. I had divided up the lyophilized

peptide into three parts, only dissolving one part at a time. These solutions'

concentrations ranged up to 0.7 mM, as determined by amino acid analysis.

In one case out of three, the entire sample dissolved easily into water, but in

the other two cases, there was a small amount of viscous residue which did not

dissolve. I stored the peptide solutions at 4 °C, and over the course of several weeks,

I noticed that in all cases, the amount of residue increased. In light of Glover and

coworkers' (1997) results, I would not be surprised if this precipitate were fibrous, or

if its structure was similar to that of Ure2p from [URE3] cells.

Electroporation.

Electroporation is a highly efficient method of introducing molecules like

DNA or FITC-dextran into yeast (Becker and Guarente, 1991; Bartoletti et al., 1989). It

might also possible to introduce proteins into yeast, allowing electroporation to be

used as a way to detect [URE31 protein. If a sample contained [URE3] protein, and if I

efficiently introduced it into a collection of cells, some percentage of the cells should

be converted from [ure3-o] to [URE3]. This percentage should be higher than the

percentage obtained using normal Ure2p.



Other methods of introducing protein into yeast might include polyethylene

glycol transformation, or spheroplast fusion. I decided against PEG transformation

because I expected it would require much more protein than electroporation, which

uses smaller volumes (40 uL compared to 1 mL or more). To my knowledge,

spheroplast fusion has never been tried with yeast.

Before electroporating cells with Ure2p, I wanted to identify optimal

electroporation conditions. Ideal conditions would maximize the number of cells

which took up protein while killing as few as possible. I needed to assay both uptake

of protein and cell death. To assay for the uptake of protein, I chose to electroporate

fluorescein-tagged a-lactalbumin. This protein's size is 14 kD. If it was able to enter

the cell, monomeric or dimeric N-terminal peptide should also be able to enter, as

its molecular weight is under 7 kD. The fluorescent tag would allow cells which

took up the lactalbumin to be distinguished from the rest, using flow cytometry.

Propidium iodide is a small molecule, often used in electroporation studies. It

enters cells whose plasma membranes have been compromised, binds to a cell's

DNA and fluoresces red (Krishan, 1975; Weaver et al, 1988). Thus, a flow cytometer

can use a cell's red and green fluorescence, compared to controls, to estimate the

fraction of cells which has both survived electroporation and which have taken up

protein. In every experiment, I included two negative controls: non-electroporated

cells which were exposed to the fluorescent protein, and electroporated cells which

were not exposed to it.

First, I had to find optimal electroporation conditions. I tried altering a

number of parameters, including the voltage, the time constant, and the number of

pulses. I chose to use the diploid strain 3687 for the electroporation experiments

because it seemed more sensitive to Ure2p levels. After electroporation, I was

careful to treat the cells as gently as possible.



At voltages lower than 1 kV, I found that the yeast did not detectably take up

protein. At voltages higher than 1 kV, the number of viable cells fell to under 10%

(see Figure 4), as measured both by propidium iodide staining and by plating.

Similarly, for time constants below 5 msec, the cells did not take up protein. For

time constants above 5 msec, an increasing percent of cells took up protein, but only

about 5% took it up and survived (data not shown). Using a lower time constant

(2.4 msec) with various voltages, did not help, neither did using up to seven low-

voltage, low-time constant pulses (2.4 msec, 0.5 kV). The cells did not take up any

protein (data not shown). Overall, the best conditions seemed to use a high

theoretical time constant (20 msec) and high voltage (2.5 kV). With these

conditions, 85-95% of cells took up protein; about 5-10% of the cells lived, and about

5% of the total lived and took up protein.

Given the speed of flow cytometry and fluorescence-assisted cell sorting, the

5% result ought to have been enough. Therefore, I tried a co-electroporation

experiment. I attempted to co-electroporate fluorescently-labeled lactalbumin with

N-terminal peptide. Using a cell-sorter, I collected cells which fluoresced green but

not red. These cells should be alive and should have taken up protein. I also

collected cells which were alive but which had not taken up protein, as one negative

control. Another negative control consisted of living, green cells that had been

electroporated with the lactalbumin only. These two controls should have a

background levels of [URE3]'s. Those cells which received N-terminal peptide might

have a higher level, if the peptide induces some fraction of them to become [URE31.

Unfortunately, I found that virtually all of the cells that had taken up protein,

and were supposedly alive, were actually dead. They failed to produce colonies on

YPD plates. I repeated this experiment without the N-terminal peptide, fearing that

it was killing the cells, but the results did not change. The supposedly alive, green

cells were actually dead. I conclude that propidium iodide is less than 100% efficient



at labeling dead cells. My attempts to establish an assay for [URE31 protein failed

because I could not electroporate protein into cells without killing them.

It is possible that the fluorescein-lactalbumin was responsible for the cells'

death, but I think it unlikely. The overall percentage of viable cells was as low in

the negative controls, when the cells were electroporated in the absence of the

protein (data not shown).

CONCLUSIONS

Investigating prions by examining the [URE31 phenomenon in S.

cerevisiae may produce results of interest to the prion community. It is, however,

not a completely straightforward system, and it has several unexplained aspects. In

particular, the meaning of curably ura+ strains is unclear, as is the reason why yeast

strains can not grow on USA in the presence of a full complement of amino acids. It

is also unclear why some [URE31 yeast strains seem stable on YPD, while at least one

[URE3] strain is not. It may be that there is more than one type of [URE3] particle.

Difficulties in expressing Ure2p in E. coli suggest that it might be easiest to

purify tagged Ure2p from yeast, and use that protein to purify polyclonal cc-URE2

antibodies. Alternately, one might try the expression system which was used to

express PrP to high levels (Riek et al., 1996; Melhorn et al., 1996).

Working with purified N-terminal peptide is also likely to be challenging as

the peptide is difficult to produce synthetically and is very hard to purify away from

synthesis by-products. One might attempt to make the peptide recombinantly, but

given the difficulties in expressing full-length recombinant Ure2p, it might not be

easy to express this peptide, either.



Once pure, the peptide is soluble in pure water, but it seems to precipitate

from solution. This insolubility over time makes the peptide difficult to work with,

but on the other hand, the precipitation reaction and the form of the precipitate

might be interesting, as Sup35p was (Glover et al., 1997). Perhaps the aggregated N-

terminus has a similar structure to Ure2p from [URE3] cells.

It seems likely that C-terminally tagged Ure2p is immune to becoming

[URE31. This is a somewhat surprising result, as it was the N-terminus which was

necessary for conversion to [URE31 (Masison and Wickner, 1995). However, if a

conversion system in vitro is ever developed, tagged Ure2p may be a useful reagent

as a negative control.

Electroporation of protein into yeast, without killing the yeast, may be

impossible. It could be that another yeast strain would be hardier, but failing that,

researchers interested in introducing protein into yeast might want to explore other

methods of doing so.
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APPENDIX: FIGURES AND TABLES

Figure 1. Basic prion model. XA is the normally-folded form of protein X, while XB is the
prion form. Wildtype XA can, at some low frequency, spontaneously convert into XB. XB
can induce more XA to become XB and is therefore "infectious".

Gln, CO2  . Ureidosuccinate .... Uridine
2ATP, H9) URA2 (USA) URA3

Figure 2. The uridine biosynthesis pathway in S. cerevisiae. The names of the genes
whose products catalyze particular steps appear below the arrow representing the relevant
step. Only certain steps in the pathway are shown; the figure is derived from Jones and
Fink, 1992).
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Figure 4. (a) Percentage of cells taking up fluorescein-labeled a-lactalbumin as a function of
electroporation voltage. (b) Percentage of cells surviving the electroporation, as assayed by
plating, as a function of electroporation voltage.
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Figure 3. In the presence of a good nitrogen source, such as NH4+, Ure2p is active. It
represses the transcriptional activator, Gln3p, preventing the expression of a handful of
nitrogen-regulated genes, including DAL5. In the absence of Dal5p, cells can not take up
USA.
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STRAIN GENOTYPE SOURCE

3383 MA Ta, karl, ura2, leu2, his3 Wickner, 1994.

3383 [URE31 #19 MA Ta, karl, ura2, leu2, his3, This paper.
[URE31

3385 MA Ta, karl, ura2, leu2, his- Wickner, 1994.

3385 c8Y MA Ta, karl, ura2, leu2, his-, This paper.
[URE31

3385 c5U MA Ta, karl, ura2, leu2, his-, This paper.
[URE31

3469 Mata/Mata, karl, ura2, leu2, Wickner, 1994.
trpl/TRP1,

his- IHIS+

3687 MA Ta, karl, ura2, leu2, his- R. Wickner, isogenic to
[URE31 3385.

4445-27D MA Ta, leu2, ura2, trpl, pep4 Masison and Wickner,
1995.

AvG1 MATa, ura2, leu2, trpl, his3, This paper.
ade2-101

AvG3 MA Ta, ura2, leu2, lys2, trpl, This paper.
his3, ade2-101

AvG4 MA Ta, ura2, leu2, trpl, his3, This paper.
ade2-101, pep4::HIS3

AvG5 MA Ta, ura2, leu2, lys2, trpl, This paper.
his3, ade2-101, pep4::HIS3

AvG8 MA Ta, ura2, leu2, trpl, his3, This paper.
ade2-101, pep4::HIS3,
Aure2::LE U2

AvG9 MA Ta, ura2, leu2, lys2, trpl, This paper.
his3, ade2-101, pep4::HIS3,

Aure2::LE U2

AvG10 MA Ta, leu2, ura2, trpl, pep4, This paper.
Aure2::LE U2

PSY316 Atrp MA Ta, ura3, leu2, lys2-801, L. Guarente (MIT).
his3, ade2-101

STX21-4A MA Ta, ura2, his6, arg4, thrl, Yeast Genetic Stock Center,
met1, gal2 University of California at

Berkeley.

!

Table 1: Strain List



Table 2: Difficulty in assaying complementation of the Aure2 in strain AvG10

Growth on USA

Expected Result Actual Result

Vector Glu Gal Glu Gal

pRS424 + + +

ET-URE2 or +ETRE
ET-URE2e

ET-URE2 or
ET-URE2e in + + N/A N/A
a[URE31
AvG10 strain

Table 3: Overexpression of URE2 a

Vector

Strain p64 2  p6 8 0  ET-URE2(e)b

3469 20-200xc not reported

3720 N7xd ~800xd

3469 -38x >100x

4445-27D N.C.e  substantial increase f  N.C.

AvG4, AvG5 -2-6x -40-100x N.C.

(a) Numbers refer to fold-increases in the frequency of [URE3]s, when Ure2p is
overexpressed, compared to the frequency of [URE3Is when Ure2p is normally expressed.
(b) As the results were identical for ET-URE2 and ET-URE2e, they were combined into one
column.
(c) Wickner, 1994.
(d)Masison and Wickner, 1995. This number was derived by comparing the frequency of
[URE3] colonies in this strain, when URE2 is overexpressed, to the frequency of [URE31
colonies in strain 3469, when not URE2 is not overexpressed. The frequency of [URE31s in
strain 3720, when Ure2p is not overexpressed, was not reported.
(e) N.C. means no change.
(f) There were too many cells on the plates to count and give a more accurate estimate.
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