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Abstract

The regulation of class II gene expression requires a complex interplay
of stimulatory and inhibitory factors. Transcription initiation in yeast
involves the recruitment of the RNA polymerase II holoenzyme, which
contains RNA polymerase II, general transcription factors, and SRB proteins.
Genetic suppression analysis of the yeast SRB4 gene, which plays a positive
and essential role in transcription, led to the identification of several general
negative regulators. Mutations in either subunit of the yeast homologue of
the human negative regulator NC2 suppress mutations in SRB4. Global
defects in mRNA synthesis caused by the defective yeast holoenzyme are
alleviated by an NC2 suppressing mutation in vivo, indicating that yeast NC2
is a global negative regulator of class II transcription. Mutations in the
negative regulators NOT1 and NOT3 also alleviate the srb4 defect. These
results imply that relief from repression at class II promoters is a general
feature of gene activation in vivo. To begin extending this work into
mammalian cells, a mammalian SRB7 homologue was identified and used as
a marker in the purification of a mammalian RNA polymerase II
holoenzyme.
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Chapter 1

Introduction: Transcription Initiation and General Negative Regulators



Overview

In this chapter, I review the factors involved in transcription initiation,

and focus on general negative regulators in the yeast S. cerevisiae. I also

explain my specific contributions to the projects described in this thesis.

Regulation of transcription

The phenotype of an organism is determined largely by its pattern of

gene expression. Gene expression is regulated by elements within promoters

that are bound by proteins which can activate or repress transcription

[reviewed in (1-3)]. Activators are composed of two domains: a DNA-binding

domain and an activation domain [reviewed in (4)]. The DNA-binding region

binds to specific sequences within promoters called upstream activating

sequences (UASs) in yeast and enhancers in higher eukaryotes. The activation

domain contacts components of the general transcription apparatus. These

interactions are postulated to result in the recruitment of the transcription

machinery to promoters, the stabilization of the initiation apparatus, and the

stimulation of post-initiation events. Repression of transcription is not as

well understood, due in part to more interest in activation and difficulties in

studying negative regulation.

Early studies of gene expression in the lac operon demonstrate the

importance of negative regulation in prokaryotes (5). Recent studies in yeast

reveal that individual gene expression varies from 0.3 to 200 transcripts per

cell, with 20% of protein-encoding genes not expressed at detectable levels

under standard laboratory conditions (6, 7). In higher eukaryotes, an even

larger percentage of the genome is repressed (8). In order to understand how

this widespread gene repression in achieved, we must consider the functions



of the general transcription factors and how they are influenced by the general

negative regulators of the cell.

Transcription initiation

A central component of the general transcription apparatus is a large

multisubunit complex called the RNA polymerase II holoenzyme. The S.

cerevisiae holoenzyme contains RNA polymerase II; the general transcription

factors TFIIB, TFIIE, TFIIF, and TFIIH; and a subcomplex containing SRBs,

Swi/Snf proteins, and other regulatory factors (Fig. 1). The holoenzyme binds

to the TATA-binding protein TBP at promoter elements and initiates mRNA

synthesis. Described below are the components of the general transcription

initiation apparatus and characteristics of the RNA polymerase II

holoenzyme.

RNA polymerase II. Three different RNA polymerases catalyze gene

expression in eukaryotes. RNA polymerase I transcribes the class I genes

encoding large ribosomal RNA, RNA polymerase II transcribes the class II

protein-encoding genes, and RNA polymerase III transcribes the class III genes

encoding tRNA and the 5S ribosomal RNA (9).

In yeast, core RNA polymerase II is a 500 kDa complex containing 12

protein subunits [reviewed in (10)]. All but two of the genes encoding these

subunits are essential for cell viability (10-13). Two of the subunits, Rpb4 and

Rpb7, appear to form a subcomplex that can dissociate from the other

subunits (14). The relative amounts of Rpb4 and Rpb7 increase during

physiological stress conditions (15).

The subunits of RNA polymerases show strong evolutionary

conservation. Five of the yeast RNA polymerase II subunits are also found in

RNA polymerases I and III (16, 17). The 2 largest subunits of yeast RNA
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polymerase II, Rpbl and Rpb2, have significant homology to the 2 largest

subunits of RNA polymerase II in other eukaryotes and to the E.coli RNA

polymerase core subunits 10' and P (10). The core E.coli RNA polymerase

enzyme requires a a subunit for selective promoter recognition (18). RNA

polymerase II also requires additional components, the general transcription

factors, for selective transcription initiation in vitro.

The carboxy-terminal repeat domain (CTD) of the largest subunit of

eukaryotic RNA polymerase II is an intriguing and conserved domain

[reviewed in (19, 20)]. The CTD contains the consensus heptapeptide sequence

YSPTSPS, which is repeated 26 to 52 times depending on the organism (21-23).

The number of repeats within the CTD increases with the genomic

complexity of the organism. The CTD is essential for cell viability in several

organisms (24-26). Partial truncations of the CTD cause general defects in cell

growth (24) and transcription initiation (27). Similar mutations reduce the

response to transcriptional activators at a subset of genes in yeast (28, 29) and

mammalian cells (30). The requirement for the CTD in in vitro transcription

assays varies by promoter (27, 31-33). Thus, the CTD appears to be involved in

transcription and the response to activators at a subset of promoters.

A population of the RNA polymerase II in yeast and mammalian cells

is highly phosphorylated at the CTD (34, 35). Phosphorylation has been

reported to occur at the second and fifth serine residues (36), and also at the

tyrosine residues (37). Phosphorylation causes the CTD to adopt an extended

structure in vitro (38). Correlative evidence suggests that CTD

phosphorylation is involved in promoter clearance. RNA polymerase II

containing an unphosphorylated CTD is preferentially recruited to promoters

(39, 40). The form of polymerase that has initiated transcription or is engaged

in elongation contains a phosphorylated CTD (34, 41). However,



phosphorylation of the CTD is not required for transcription in one highly

purified system (42). This may be due to the absence of negative factors which

are normally overcome by CTD phosphorylation. Indeed, a crude yeast

transcription system is sensitive to a kinase inhibitor while a highly purified

system is not (43).

Several different kinases directly phosphorylate the CTD in vitro or

affect CTD phosphorylation in vivo. The RNA polymerase II holoenzyme

contains two CTD kinases: the general transcription factor TFIIH and the

CTD-associated SRB10 protein. TFIIH phosphorylates the CTD in vitro (44,

45), but the physiological relevance of the reaction is not known. RNA

polymerase II holoenzyme containing a mutant form of SRB10 has a 10-fold

lower kinase activity in vitro (46), but no effect on CTD phosphorylation in

vivo has yet been demonstrated. The yeast Ctkl kinase phosphorylates the

CTD in vitro (47), and a CTK1 deletion shows a slight decrease in the levels of

phosphorylated CTD in vivo (48). A mammalian Cdc2 (49), and Drosophila

elongation factor (50) also phosphorylate the CTD in vitro. Although it is not

clear how the CTD becomes phosphorylated in vivo, this data suggests that

there may be several kinases involved.

The general transcription factors.

Early reconstitution experiments of transcription with RNA

polymerase II identified a group of general transcription factors required for

selective transcription initiation in vitro. These factors include TFIIA, TFIIB,

TFIID (containing TBP), TFIIE, TFIIF, and TFIIH [reviewed in (51)]. Most of the

general transcription factors show high amino acid sequence homology

between different eukaryotic organisms. In vitro studies demonstrate that the

factors can assemble sequentially onto promoter elements [reviewed in (52,

53)]. In these experiments, TFIID or TBP binds to the TATA element of the



promoter, then TFIIA and TFIIB each bind to TBP-DNA, an RNA polymerase

II-TFIIF complex is next recruited (partly through TFIIB contacts), and finally

TFIIE and TFIIH join the preinitiation complex. While this sequential

assembly may occur at some promoters in vivo, general factors can be found

associated with RNA polymerase II in the absence of DNA as an RNA

polymerase II holoenzyme.

TBP. The initiating event in class II transcription is the binding of TBP

to a weakly conserved promoter element called the TATA box (54). TBP itself,

like RNA polymerase II, is highly conserved throughout evolution (55).

Human and yeast TBP are interchangeable in in vitro transcription reactions

(56, 57), and a human TBP derivative functions in yeast cells (58). TBP is also a

component of the RNA polymerase I factor SL1 (59) and the RNA polymerase

III factor TFIIIB (60).

Crystal structures of TBP provide insight into TBP function. The TBP

protein has a symmetrical saddle shape (61, 62). TBP contacts the minor

groove of the TATA element and severely bends the DNA (63, 64). Co-crystal

structures reveal that TFIIA (65) and TFIIB (66) bind to opposite surfaces on

TBP and have fairly small interaction surfaces. Whereas TBP is relatively

small (27 kDa in yeast, 37 kDa in humans), it contacts a large number of

transcription factors. Substoichiometric amounts of TBP are found in highly

purified yeast RNA polymerase II holoenzyme (67), suggesting that TBP

loosely associates with the holoenzyme.

TFIID. TBP can be purified in association with a set of proteins called

TBP-associated factors (TAFIIs) in a complex called TFIID [reviewed in (68,

69)]. TFIID complexes have been isolated from yeast (70, 71), Drosophila (72),

and human cells (73-75). In several Drosophila (72, 76, 77) and human (78) in

vitro transcription systems, the response to activators is lost if TBP is



substituted for TFIID. A large number of activators directly interact with

components of TFIID in vitro (79-83). These in vitro results suggest that TFIID

plays an important role in activation of transcription.

In vivo analysis of TAFIIs reveals a different picture of TFIID function.

Conditional TAFII mutations and depletion of TAFII proteins in yeast do not

show global defects in class II transcription activation (84-86). Instead, TAFII

depletion affects the basal transcription of a small number of promoters.

Interestingly, particular conditional TAFII mutations show cell cycle arrest

phenotypes (84, 86, 87). Consistent with this observation, a conditional

mutation in mammalian TAFII250 affects the transcription of several cyclin

genes (88, 89). These results suggest that TAFjIs play a role in transcription at a

limited number of genes that include cell-cycle regulators.

Some of the promoters affected by TAF11s lack classical TATA

elements. Mammalian promoters with no apparent TATA elements direct

transcription with start site elements called initiators (90). Several initiator-

directed in vitro transcription systems require TFIID and cannot utilize TBP

(78, 91, 92). Similarly, a Drosophila gene with multiple promoter elements

requires TFIID for selective promoter utilization (93). In vivo transcription of

several yeast genes containing non-consensus TATA elements decreases

when TAFIIs are depleted (85). TAFIIs may have repressive functions as well

as stimulatory ones. Drosophila TAFII230 inhibits the binding of TBP to DNA

(94) and competes with the viral activator VP16 for TBP-binding (95).

TBP can also be purified in several other complexes that are involved

in class II transcription. The TBP-Motl and B-TFIID complexes are discussed

later in the context of negative regulation. Other TBP-interacting proteins

include Spt3 and topoisomerase I. Mutations in SPT3 suppress Ty

transposable element insertion at several class II promoters (96), indicating



the involvement of Spt3 in transcription initiation. spt3 alleles also suppress

a mutation in the gene encoding TBP (97). Consistent with that result, Spt3

and TBP can be co-immunoprecipitated (97). Still, it is not clear how Spt3

affects TBP function. Topoisomerase I also interacts with TBP and represses

basal transcription while stimulating activated transcription (98, 99). It is not

known whether this activity occurs in vivo, and no genetic data links

topoisomerase I to TBP.

TFIIB. TFIIB is composed of a single subunit (52). In yeast, the 38 kD

TFIIB protein (100) is encoded by an essential gene (101). TFIIB binds to TBP-

DNA complexes (102) and to RNA polymerase II in the absence of DNA (100,

103). TFIIB and RNA polymerase II are both involved in transcriptional start

site selection, as shown by analysis of transcription start sites in mutants (101,

104, 105) and experiments combining transcription factors from different

species in vitro (106).

The activator protein VP16 binds directly to TFIIB in vitro (107).

Transcriptional activation by VP16 is dependent on its interaction with TFIIB

(108), which results in increased recruitment of pre-initiation complexes (109)

and a conformational change in TFIIB (110). Thus, TFIIB is involved in

multiple steps of transcription initiation.

TFIIF. Mammalian TFIIF is composed of two subunits (111). Yeast TFIIF

contains homologues of the mammalian subunits, and the genes encoding

them are essential for viability (112, 113). Yeast TFIIF also contains an

additional weakly associated subunit that is encoded by a nonessential gene

(112), and is a shared subunit with the Swi/Snf complex (114) and TFIID (112).

TFIIF binds tightly to RNA polymerase II and reduces the affinity of

polymerase for free DNA (115). It has limited homology to the bacterial a

factors (116) which also function in promoter selection (18). TFIIF can confer



responsiveness to a transcriptional activator in vitro (117). Besides its

function in initiation, TFIIF stimulates elongation by RNA polymerase II in

vitro (118, 119).

TFIIH. TFIIH is one of the more complex general transcription factors.

It contains DNA repair, DNA helicase, and CTD kinase activities [reviewed in

(120)]. Yeast TFIIH includes a subcomplex containing proteins involved in

nucleotide excision repair and the TFIIK subcomplex, which contains a

kinase/cyclin pair (121-123). Different forms of TFIIH may be utilized for

different functions: the TFIIK subcomplex is required for transcription in

vitro, while a form of TFIIH lacking TFIIK is active in DNA repair (121).

The TFIIK component of yeast TFIIH contains the kinase Kin28 (123)

and the cyclin Ccll (124). Similarly, mammalian TFIIH contains the kinase-

cyclin pair Cdk7 (MO15)/cyclin H, which has Cdk-activating kinase (CAK)

activity in vitro (125-127). This activity suggests a link between the cell cycle

and transcription. However, CAK activity in yeast is found in a complex

distinct from yeast Kin28/Ccll (128-130). Neither biochemical nor genetic

experiments support a role for yeast Kin28/Cc11 involvement in the cell cycle

(131).
There are several in vitro substrates for the TFIIH kinase activity, but it

is not clear if any are physiologically relevant. Mammalian (45) and yeast (44)

TFIIH, as well as the yeast TFIIK subcomplex (123), can phosphorylate the CTD

in vitro. TFIIH can phosphorylate other components of the transcription

apparatus as well (132). Whatever the target, the kinase activity of TFIIH is

required for transcription in crude in vitro systems (133), possibly to

overcome negative regulation.

Numerous activators that stimulate transcriptional elongation bind to

TFIIH (134, 135). The HIV activator Tat stimulates CTD phosphorylation by



TFIIH and elongation by the transcriptional apparatus in vitro (136). This

correlation provides additional support for the involvement of CTD

phosphorylation in promoter clearance.

TFIIE. This factor is a two-subunit complex in both yeast (137) and

mammalian cells (138). Some of the known functions of TFIIE involve the

regulation of TFIIH. TFIIE interacts with TFIIH (103), stimulates the CTD-

kinase activity of TFIIH (45, 139), and inhibits TFIIH helicase activity (140).

TFIIE appears to have independent functions; TFIIE, but not TFIIH, is

required for in vitro transcription of a viral promoter (141). TFIIE is also

important for transcriptional inhibition by the Drosophila Kruppel repressor

(142).

TFIIA. Yeast TFIIA is composed of 14 and 32 kDa subunits (143)

encoded by essential genes (144). Human TFIIA contains three subunits (145),

with the larger two derived from a single precursor (146-148). TFIIA binds to

TBP (143, 149) and stabilizes the TBP-DNA interaction (145, 150) TFIIA can

overcome repression in vitro by a variety of TBP-binding negative regulators

(99, 151-153). Like other general factors, TFIIA enhances the activity of many

activator proteins (154-157). Fusing an activation-deficient TBP mutant to

TFIIA restores activation in vivo (158). Mutations in TFIIA are synthetically

lethal with the TBP-binding protein Spt3 (159).

There is a variable requirement for TFIIA among different in vitro

transcription systems. Highly purified yeast (160) and mammalian (161)

systems do not require TFIIA whereas nuclear extracts depleted for TFIIA

show significantly reduced transcription (146, 155, 162). One system is

stimulated by TFIIA in the presence of TFIID, but not TBP (145). The systems

which require TFIIA may include negative regulators that are overcome by

TFIIA function.



SRB proteins. The SRBs are a group of regulatory proteins which are

involved in CTD function. The SRB (suppressors of RNA polymerase B or II)

genes were cloned as allele-specific suppressors of the cold-sensitive

phenotype of a CTD truncation mutation (46, 163-165). This genetic link is

supported by biochemistry; the SRBs bind to a CTD affinity column (164) and

are dissociated from RNA polymerase II by antibodies against the CTD (165,

166).

Individual SRBs can be described as either positive or negative

regulators of transcription. The CTD-suppressing alleles of SRB2, 4, 5, and 6

include dominant, gain-of-function alleles (164), while srb8, 9, 10, and 11

suppressing alleles are all recessive, loss-of-function mutations (165). SRB10

and 11 encode a kinase-cyclin pair (46).

Mutations in SRB2, 4,5, or 6 cause severe transcriptional defects. SRB2

and SRB5 are required for preinitiation complex formation and efficient basal

and activated transcription in crude nuclear extracts (164). Conditional

mutations in the essential SRB4 and SRB6 genes result in rapid and global

decreases of class II mRNA synthesis (167). These similarities are reflected in

protein interactions: SRB2, 4, 5, and 6 form a complex in vitro (S. Koh,

unpublished data). SRB2 and 5 interact with each other, as do SRB4 and 6.

These pairs may be brought together by the interaction of SRB2 and 4. In vivo,

SRB2 protein levels are greatly reduced in an SRB5 deletion strain (164).

Strains containing deletions of SRB8, 9, 10, or 11 all exhibit similar

slow-growth and flocculence phenotypes. Mutations in any of these SRBs

suppress a mutation in Snfl (168, 169), a kinase involved in release from

glucose repression. Mutations in SRB8 and SRBIO suppress a mutation in the

gene encoding the ox2 repressor of MATa-specific genes (170). SRB10 is also

required for meiotic mRNA stability in glucose-containing media (171). It is



not clear whether these effects are due to direct repression of transcription by

SRBs. Although SRB10 is an attractive candidate for a CTD kinase and an

srblO mutant allele reduces holoenzyme CTD kinase activity, srblO mutant

alleles do not show defects in basal or activated transcription in vitro (46).

RNA polymerase II holoenzyme. Attempts to purify a complex of SRB

proteins led to the purification of a >1 mDa complex called the RNA

polymerase II holoenzyme (67). The most complete form of yeast holoenzyme

contains RNA polymerase II; TFIIB, TFIIH; and a separable subcomplex

containing all of the SRBs, Swi/Snf proteins, TFIIF, and other regulatory

proteins [reviewed in (172, 173)]. TFIIE co-immunoprecipitates with the yeast

holoenzyme in early fractions of the purification, suggesting that TFIIE is also

a component (C. Wilson, unpublished data). The content of general

transcription factors varies among different purifications of yeast holoenzyme

(166, 174). This may be due to the existence of multiple forms of holoenzyme

and differences in purification techniques. All reported forms of

holoenzymes contain an SRB protein and RNA polymerase II.

SRBs are a hallmark of the holoenzyme, as the majority of the cellular

SRB protein is present in a yeast holoenzyme preparation (67). In contrast,

only 20% of RNA polymerase II is estimated to exist in an SRB-containing

holoenzyme (67). However, the holoenzyme appears to be the functional

form of yeast RNA polymerase II for class II transcription initiation, since srb4

and srb6 conditional mutant alleles show general decreases in mRNA

transcription (167). Perhaps the other 80% of RNA polymerase II exists in

elongating complexes lacking SRBs.

The RNA polymerase II holoenzyme is responsive to the acidic

activator Gal4-VP16 in yeast in vitro transcription systems (67, 166). A

reconstituted system containing general transcription factors and RNA



polymerase II does not respond to activators unless supplemented with an

SRB-containing holoenzyme subcomplex (166). This SRB subcomplex

interacts with directly with Gal4-VP16 in vitro (165), as does the SRB4 protein

(S. Koh, unpublished data).

A number of other regulatory proteins are present in the SRB-

containing subcomplex of the holoenzyme. These include the 11 Swi/Snf

chromatin remodeling proteins (175). Both the RNA polymerase II

holoenzyme and a separately purified Swi/Snf complex exhibit ATP-

dependent nucleosome disruption activities (175-178). SWI/SNF genes are

required for the normal expression of a number of genes in vivo [reviewed in

(179)].

Other SRB subcomplex components include Gall1 (166), Sin4 and Rgrl

(180), and Rox3 (181). Gall is required for the proper expression of a broad

spectrum of genes in vivo (182), and a mutation in GALl11 suppresses a

mutation in the GAL4 activator (183). Sin4 has both positive and negative

effects on a number of genes in vivo (169, 170, 184-188), which could result

from its proposed role as a modifier of chromatin structure (189). RGR1

interacts genetically with the SIN4 gene and rgrl and sin4 mutants show

similar defects (186, 188). Rox3 also has differential effects and appears to play

a role in stress responses (169, 190-192). In summary, the yeast RNA

polymerase II holoenzyme is composed of a diverse group of regulators

which allow for sophisticated regulation of a complex genome.

Mammalian RNA polymerase II holoenzymes have recently been

purified, but are less well characterized than the yeast versions (193-196). An

SRB7 mammalian homologue has been identified (194) and is present in all

of the mammalian holoenzymes (193-196). One of the holoenzymes was

purified by immunoprecipitation directly from a nuclear extract and contains



all of the general transcription factors, including TFIID (193). This suggests

that other holoenzyme purifications have partially disrupted an even larger

complex of general transcription factors.

General negative regulators

A variety of negative regulators or effecters of class II gene expression

exist in eukaryotic cells [reviewed in (197)]. Several of these factors influence

the expression of a large number of genes so they are often referred to as

global or general negative regulators. Among the most studied of these factors

in yeast are NC2, Mot1, Nots, and chromatin components (Fig. 1). NC2, Mot1,

and the Nots all have physical or genetic interactions with TBP. These factors

are introduced here and are further discussed in Chapter 4. Since these factors

are not fully understood, the use of the term "regulator" here does not

necessarily imply that the primary role of these proteins is to regulate

transcription, but could instead be the indirect effect of a different function,

such as chromatin modulation.

NC2. NC2 (Drl.DRAP1) is a negative regulator of transcription that

binds TBP on promoter DNA and represses transcription in vitro [reviewed

in (3)]. The factor was originally purified from mammalian cell extracts by two

independent groups. A group led by Robert Roeder named the factor NC2 and

identified two subunits, NC2ac and NC20, of 20 and 31 kDa (198). Another

group led by Danny Reinberg purified a factor they named Drl (199), which is

identical to NC20. The Reinberg group later found an associated protein,

DRAP1 (200), which is identical to NC2a. For the purposes of this review, I

will refer to the complex as NC2. Both NC2 subunits are required for maximal

binding of NC2 to TBP and repression of transcription in vitro (200-202). A

yeast form of NC2 was recently identified (203-206) and is a general negative



regulator of class II transcription (204). The human NC2 genes can replace the

yeast genes in vivo (205), demonstrating the high conservation of both the

general transcription apparatus and NC2.

NC2 represses basal, and to varying degrees, activated transcription in

vitro at a wide variety of mammalian, viral, and yeast promoters (151, 198,

200, 201, 203, 204, 207-209) The repression is most likely due to the ability of

NC2 to inhibit TFIIA and TFIIB binding to TBP at promoter DNA (198-201,

209). NC2 binds to the basic repeat domain of TBP, which overlaps with the

TFIIA recognition site (209). Increased levels of TFIIA displace NC2 from TBP-

promoter complexes, suggesting a competitive relationship based on steric

exclusion between the factors (209). TFIIA also relieves NC2 repression to

various degrees at different promoters in vitro (151). This relief from

repression correlates with the ability of TFIIA to alter the DNase I footprint of

NC2-TBP on promoter DNA. TFIIB binds to a region of TBP that is opposite

the TFIIA/NC2 binding surface (209) so it is not clear how NC2 blocks TFIIB-

TBP binding.

NC2a and NC20 contain histone fold structural motifs and dimerize

through these domains (200, 201). Purified NC2 is the size predicted for a

heterotetramer composed of two NC2a/p3 dimers (151, 201). Histone folds

were originally characterized in the core histone proteins (210) but are also

present in regulatory proteins including TAFjjIIs, TFIIB, and the HAP or CBF

activator proteins (211, 212). The fold consists of an extended helix-strand-

helix-strand-helix motif, which dimerizes in a head-to-tail orientation

[reviewed in (213)]. Mutational analysis of the histone fold region of yeast

NC2(x shows that it is critical for NC2 activity, while other domains are

dispensable (206). A C-terminal truncation of the last helix in the histone fold

of yeast NC2a causes a partial loss-of-function mutation that compensates for



a mutation in the RNA polymerase II holoenzyme (204). A similar C-

terminal truncation in yeast NC2a (G. Prelich, personal communication) can

compensate for the loss of an activator at the SUC2 gene (206). The yeast and

human NC2 homologues show the strongest similarity in the histone fold

region, further emphasizing the importance of the region. The genes

encoding NC2a and NC213 are both essential for cell viability (204, 205).

NC2 functions as a transcriptional repressor at the majority of class II

genes in vivo (204). The ability of an NC2 mutation to compensate for a

mutation in the SRB4 component of the yeast RNA polymerase II

holoenzyme, combined with mRNA analysis of the NC2 mutant, indicates

that overcoming negative regulation is a general requirement for class II

transcription initiation (204). NC2 can affect class III gene expression as well

(205, 214).

Little is known about the regulation of NC2 activity. While both NC2

subunits are phosphorylated at serine residues in yeast (C. Wilson,

unpublished data), individual serine to alanine mutations in the NC2a

subunit have no apparent effect in vivo (C. Wilson and H. Causton,

unpublished data). Various double and triple mutations also have no effect.

Recombinant human and yeast NC2 repress transcription by human general

transcription factors in vitro (200, 201, 203, 205). Both purified and

recombinant yeast NC2 repress transcription by the RNA polymerase II

holoenzyme in vitro (V. Myer and C. Wilson, unpublished data). Thus, no

role for NC2 phosphorylation has emerged.

MOT1. The 175 kDa Mot1 protein is another effecter of RNA

polymerase II transcription which targets TBP. MOT1 is an essential gene that

was cloned as a negative effecter of pheromone-responsive genes (215). The

mot1-1 mutation suppresses a deletion of the STE12 activator of pheromone-



responsive genes (215). The Mot1 protein was independently isolated during a

purification of yeast TBP (153). Mot1 binds to DNA-bound TBP and releases

TBP in an ATP-dependent manner (153, 216). Mot1 inhibits transcription in

an in vitro transcription system composed of mammalian general

transcription factors and yeast TBP (153). Mot1 decreases the commitment of

general transcription factors to a particular template in template challenge

experiments (153). TFIIA alleviates the effects of Mot1 on TBP binding,

transcription, and template commitment (153), suggesting that Mot1, like

NC2, competes with TFIIA for TBP. Mot1 contains the characteristic ATPase

domain of the Snf2/Swi2 family of conserved nuclear regulatory factors

[reviewed in (217)]. Mot1 immunoprecipitates with TBP in a complex distinct

from yeast TFIID (218). Mot1 mutations have been alternatively reported to

have primarily positive (159) or primarily negative (215, 216, 219, 220) effects

on transcription in vivo. The reason for this discrepancy is not clear. Since

the transcription of a relatively small number of genes have been analyzed in

Mot1 mutants, examining total mRNA levels or a larger number of

individual genes would be helpful. In the reports proposing a negative role

for Mot1, mot1 mutations increase the basal transcription of a number of

genes but have less effect on more highly expressed genes. As is seen with

NC2, a mutation in MOT1 suppresses a UAS-deletion at the SUC2 promoter

(206).

Genetic studies suggest an antagonistic relationship between Mot1 and

TBP. The overexpression of TBP is toxic in a recessive mutant, motl-1,

presumably because Mot1 is not regulating the increased pool of TBP properly

(216). An ATPase-defective dominant mot1 mutant is suppressed by the

overexpression of TBP (216). Because Mot1 remains stably bound to TBP in

the absence of ATP, excess TBP may titrate out the mutant Motl-TBP



complex. Like TFIIA, a mot1 mutant is synthetically lethal with an spt3

mutant (159).

B-TFIID. One of several forms of TBP purified from mammalian cells

is called B-TFIID. B-TFIID is a 300 kDa complex composed of TBP and a 170

kDa protein (221, 222). Like TFIID, B-TFIID supports RNA polymerase II

transcription in a reconstituted in vitro system, although B-TFIID is not

responsive to several activator proteins (221). Compared to TFIID,

transcription with B-TFIID from a subset of promoters shows less stimulation

by the addition of TFIIE and TFIIH (223). B-TFIID has ATPase activity (222),

reminiscent of the yeast Motl-TBP complex. However, B-TFIID does not

repress any of the promoters that have been tested in vitro, although several

have very low expression levels when B-TFIID is used instead of TFIID (221,

223). The preincubation of B-TFIID and DNA does not result in stable

transcription initiation complexes as measured by template commitment

assays (221). This data suggests that B-TFIID, like Mot1, may have a

destabilizing effect on TBP at some promoters.

NOTs. A genetic selection for negative effecters of the yeast HIS3

promoter identified four genes named NOT1-4 (224, 225). The HIS3 promoter

contains two TATA elements, TC and TR, which direct activation from two

different transcription start sites, and a binding site for the activator protein

Gcn4 (Fig. 2A). TC supports constitutive expression and does not contain a

consensus TATA element whereas TR contains a canonical TATA element

and supports both basal and Gcn4-activated transcription (226). The recessive

mutation notl-2 results in increased transcription from the TC element,

suggesting that Not1 differentially represses that element (Fig. 2B) (224). The

not1-2 mutation also increases the basal and activated expression of a variety
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of class II genes. Mutations in NOT2, NOT3, and NOT4 have similar effects,

although several not2 and not3 mutations show equal derepression of both

TC and TR in the presence of Gcn4 (Fig. 2B) (225). The Not1 and Not2 proteins

are nuclear and cofractionate on a gel-filtration column (225). Each Not

protein interacts with at least one other Not protein by two-hybrid analysis,

lending support to the idea of a Not complex (225). Additional evidence of

functional interactions comes from genetics; overexpression of NOT3 or

NOT4 can compensate for not1 and not2 mutations (225, 227), a not2

mutation can suppress a not1 mutation (225), and a not4 mutation is

synthetically lethal with not1 or not2 mutations (227).

NOTI and NOT2 were previously cloned as the cell division cycle

genes CDC39 and CDC36 required for progression through Start (228, 229).

cdc36 and cdc39 temperature-sensitive mutant strains arrest at the same point

in G1 as cells treated with pheromone (228). The mutant strains show

increased expression of the pheromone-inducible FUS1 gene, while other G1

arrest mutants do not (230, 231). The cell cycle arrest and FUS1 induction

phenotypes are dependent on components of the pheromone response signal

transduction pathway (230, 231). Diploid cells homozygous for the cdc36 or

cdc39 mutation arrest asynchronously with respect to the cell cycle, unlike

other G1 mutants which show cell cycle arrests regardless of ploidy (228).

Altogether, these data indicate the cell cycle arrest phenotype of the mutant

cdc36 or cdc39 alleles is due to induction of the pheromone response and is

dependent on haploid-specific factors.

It is not clear how induction of the pheromone pathway occurs in cdc36

and cdc39 mutants. Epistasis experiments suggest that Cdc36 and Cdc39

proteins act at the level of the G protein involved in the pheromone signal

transduction pathway (230, 231). The mutant strains have slightly increased



levels of STE4 mRNA (230), encoding the GP subunit of the heterotrimeric G

protein (232). Increased Ste4 protein constitutively activates the pheromone

pathway (233). However, mutant strains also show increased expression of

GPA1, encoding the Ga subunit (230). Overexpressed Ga decreases the

pheromone response in otherwise wild-type cells (233). This suggests that

increases in G protein gene expression is not the cause of the pheromone

induction seen in the cdc36 and cdc39 mutants.

Similar phenotypes are seen in not4 mutations. Mutant alleles of

NOT4 (also called MOT2 (227) and SIG1 (234)) were cloned as suppressers of

ste4 mutations in two independent genetic screens. Like not1 and not2, not4

mutations induce FUS1 in the absence of pheromone, and epistasis

experiments place Not4 function at the level of the G protein (227, 234). Since

there is little biochemical data about the Nots, it is unclear whether the

mechanism of Not action is the same in the pheromone signal transduction

pathway and the transcriptional regulation seen at HIS3 and other genes.

A role for Nots in transcription is supported by genetic interactions

with other regulators of transcription. An SPT3 deletion suppresses the not1-2

mutation (235). At the HIS3 promoter, the mot1-1 mutation leads to a

decrease in transcription from the TC element, indicating that Mot1 plays a

positive role at the same promoter element where Not1 plays a negative role

(Fig. 2B) (235). These data suggest that Spt3 and Mot1 oppose Not1 function in

transcriptional regulation, and that TBP is at the center of the battle.

One model proposed to explain the HIS3 results suggests that a Not-

containing protein complex sequesters Spt3, which otherwise binds and

stabilizes TBP at the TC element (235). In the model, Mot1 indirectly boosts TC

expression by increasing the available pool of TBP from elsewhere

(presumably canonical TATA elements). But while there is some differential
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regulation by these factors at the HIS3 locus, it may be misleading to

generalize from this example. Yeast NC2, which is quite general in its

repression of class II genes, shows a strong differential effect on the HIS3

TATA elements (E. Gadbois, unpublished data) (Fig. 2B). Other regulators,

such as Spt6 and histone H4, also show striking differential effects (Fig. 2B)

(225).

Recent genetic data suggest that Nots play a more general role in

negative regulation than might be concluded from the HIS3 differential

repression studies. Like the general negative regulator NC2, Not1 and Not3

mutants compensate for a mutant SRB4 component of the RNA polymerase

II holoenzyme (Chapter 3). Similarly, Not1 and Not2 mutants compensate for

a mutant Rpb2 subunit of RNA polymerase II (Chapter 3). The transcriptional

defect seen in the rpb2 mutant is alleviated by the not2 mutation. These

results suggest that Nots negatively regulate a large proportion of class II

genes.

Chromatin. Besides the TBP-regulators, there is another class of

regulators which is global in activity. This group includes the components

and regulators of chromatin structure. The histone proteins assemble

chromosomal DNA into nucleosomes, which are bound by other factors and

further packaged into higher order chromatin structure [reviewed in (236)].

Several lines of evidence demonstrate the negative effects that

nucleosomes can have on transcription. Nucleosome depletion increases the

level of transcription of multiple promoters in vivo (237, 238). Nucleosomal

templates significantly decrease the affinity of activators and TBP for their

promoter binding sites and repress transcription initiation in vitro (239). The

presence of nucleosomes also inhibits the elongation rate of RNA polymerase

II in vitro (240). While it is hardly surprising that nucleosomes can repress



transcription, there are also cases of transcriptional stimulation by histones

(241, 242). Nucleosome positioning at some promoters may bring widely

dispersed regulatory elements closer together to activate transcription (243,

244).

Histone and chromatin effects on gene expression are modulated by

multiple mechanisms [reviewed in (245-247)]. These mechanisms include the

remodeling of chromatin structure, the assembly of chromatin, the

acetylation of histones, and regulation through non-histone chromatin

components.

There are several ATP-dependent chromatin remodeling activities. As

mentioned previously, the Swi/Snf complex within the RNA polymerase II

holoenzyme is capable of disrupting nucleosome structure. Other factors

which remodel chromatin include the GAGA activator protein and NURF

complex in Drosophila (248) and the yeast RSC complex (249). Both NURF

and RSC contain subunits related to Swi/Snf proteins (249, 250). Genetic data

reinforces the link between Swi/Snf proteins and histones; mutations in

histones H3 or H4 (251), or decreased levels of the histones H2A or H2B (252),

partially alleviate defects caused by swi/snf mutations.

Mutations in the SPT4, SPT5, and SPT6 genes also suppress swi/snf

mutations (179). Spt6 interacts with histones, primarily histones H3 and H4,

and assembles nucleosomes in vitro (253). These results suggest that

removing factors which normally assemble nucleosome structure alleviates

the need for nucleosome remodeling by Swi/Snf proteins.

The amino termini of the core histones can be acetylated at lysine

residues. Histone acetylation correlates with transcriptional activity (254),

possibly because the reduction of positive charges in the amino termini

weakens DNA interactions. Numerous histone acetyltransferases have



recently been identified (255-261). Several are proteins previously implicated

in transcription: human TAF11250 (256) and the transcriptional adaptors

p300/CBP (258) and GCN5 (255, 260, 261). Differences in histone acetylase

specificities may explain why certain mutations in the N-terminal histone

tails only affect the expression of a subset of genes (262).

It has recently been shown by multiple groups that several histone

deacetylases form complexes with mammalian proteins homologous to the

yeast Sin3 protein (263-268). Sin3, in concert with the histone deacetylase

Rpd3, is involved in transcriptional repression of multiple yeast genes (269-

272). Mammalian Sin3-histone deacetylase complexes repress transcription

through their interactions with hormone receptors (264, 273) and the Mad-

Max complex (274). These results reveal mechanisms for transcriptional

repression via deacteylation.

Chromatin itself is composed of both histone and non-histone

proteins. The non-histone components include factors involved in

transcriptional silencing and architectural factors which also influence gene

expression. The silent mating loci in yeast (HML and HMR) and regions

adjacent to telomeres are transcriptionally repressed and show similarity to

heterochromatin in higher eukaryotes [reviewed in (245)]. Silencing in yeast

requires the histones H3 and H4 as well as the Sir3, Sir4, and Rap1 regulators.

Sir3 is present at repressed chromosomal regions in vivo, and overexpression

causes it to spread into neighboring areas (275). The N-termini of the H3 and

H4 interact with Sir3 and Sir4 in vitro and are necessary for Sir3 positioning

on chromosomes (276). Deletions in sir3 that disrupt the histone interaction

lead to loss of silencing in vivo (276). Sir3 interacts with Sir4 and Rap1,

suggesting that all are structural components of yeast heterochromatin (275,

277). The origin recognition complex (ORC) is also involved in silencing



[reviewed in (278)], possibly indicating a link between replication and

silencing. In multicellular organisms, factors such as the Drosophila

Polycomb-group establish chromatin repression during development

[reviewed in (279)].

The high mobility group (HMG) proteins compose a family of

architectural chromatin components which affect gene expression. HMG

proteins bind and distort DNA, possibly bringing regulatory elements into

closer proximity [reviewed in (280)]. Mutations in two yeast HMG

homologues, NHPSA/B, result in decreased activation of several inducible

genes (281). NHPSA binds to TBP on promoter DNA and stimulates activated

transcription in vitro (281). Mammalian HMG-1 and HMG-2 also coactivate

transcription in an in vitro system (282). In a different in vitro system, HMG-1

binds to TBP-DNA complexes and inhibits transcription (152). Both TBP-

binding and transcriptional repression by HMG-1 in this system can be

reversed by increasing amounts of TFIIA (152). Different HMG proteins can

have opposing effects through the same factor: in Drosophila, HMG1(Y)

stimulates activation by NF-icB (283), while another HMG-1 protein, DSP1,

converts NF-KB to a repressor (284).

These studies of NC2, MOT1, Nots, and chromatin structure indicate

that negative regulation is a general component of the landscape that

transcription factors must navigate in order to activate gene expression.



My contributions to these projects

Negative regulation. When I began studying transcription in 1994, the

yeast RNA polymerase II holoenzyme had recently been purified by Tony

Koleske. Other members of the lab were identifying holoenzyme components

and characterizing holoenzyme in vitro and in vivo activities. Craig

Thompson had generated conditional alleles of SRB4 and SRB6 to

demonstrate that the holoenzyme transcribed the majority of class II genes in

vivo. To identify regulators of holoenzyme activity, I isolated a large

collection of spontaneous suppressors of a conditional phenotype of the srb4-

138 allele. My genetic analysis demonstrated that recessive suppressors

included alleles of the genes encoding yeast NC2 and Not1 and Not3. I

focused on characterizing NC2, while other members of the lab began

studying the dominant suppressors, the remaining recessive suppressors, and

the NOT genes.

The first SRB4 suppressor that I cloned was NCB1 (which encodes the

NC2a subunit of NC2). I generated a complete deletion of the gene,

demonstrating that NCB1 is essential for cell viability. I recovered the

suppressing allele by gap-repair and sequenced the mutant and wild type

alleles. Sequence analysis of NCB1 showed weak homology to histone H2A. I

contacted Fred Winston to investigate the possibility that NCB1 might be one

of the SPT genes with phenotypes similar to histones. Winston informed me

that NCB1 had not been cloned as an SPT, but had recently been cloned by his

former postdoc, Greg Prelich, as a bypass suppressor of an upstream activating

sequence. To check whether NC2(x bound to TBP, I collaborated with Joe

Reese, who had previously purified the yeast TAFIIs by GST-TBP affinity

chromatography. Joe Reese checked his eluate fractions with antibodies

against NC2a(. Indeed, NC2x did bind to TBP, and eluted separately from the



peak of the TAFIIs. Soon afterwards, Danny Reinberg reported that a TBP-

associated negative regulator of transcription, Drl, was associated with a

corepressor, DRAP1. Sequence comparison showed significant homology

between DRAP1 and NC2a. I searched for homologues with the Drl amino

acid sequence and found a homologous uncharacterized yeast open reading

frame. The DRAP1/Drl complex had been originally purified by the Roeder

lab as NC2, so I named the yeast subunits NC2x (encoded by NCBI) and NC2P3

(encoded by NCB2). I have since found that an ncb2 mutant is among the

other recessive suppressors of srb4-138.

To biochemically characterize yeast NC2, David Chao and I further

purified the complex from the TBP column eluate. I confirmed that the two

subunits were NC2a and NC2P by Western analysis with my antibodies

against the NCB1 and NCB2 gene products. The yield from this purification

was quite low, so I constructed a yeast strain with a flag-tagged NC2a that

David Chao used to purify more NC2. David Chao used this preparation to

show that NC2 inhibited transcription by RNA polymerase II holoenzyme in

an in vitro transcription system.

The in vitro experiments with mammalian and yeast NC2

demonstrated its ability to repress transcription, but did not address its in

vivo relevance. Therefore, I analyzed mRNA levels and specific class II

messages in strains containing srb4-138 and ncbl-1 mutations. This analysis

demonstrated that NC2 is a global repressor of class II gene transcription.

After the identification of ncbl-1 as a suppressor of srb4-138 , I assayed a

variety of other genes which had been implicated in negative regulation for

their presence among my other recessive suppressors. By this method I

identified mutant alleles of NOT1 and NOT3 genes as additional srb4-138

suppressors. I confirmed these results by genetic linkage analysis. Tony Lee



found that mutant alleles of NOTI and NOT2 also suppressed a mutation in

the Rpb2 subunit of RNA polymerase II, and showed that the defect in

mRNA synthesis in the rpb2 mutant was restored by the not2 suppressing

mutation.

Isolation of a mammalian SRB gene and RNA polymerase II

holoenzyme. Soon after the yeast holoenzyme was purified, David Chao

became interested in identifying a mammalian holoenzyme. Since a distinct

hallmark of the yeast holoenzyme is the presence of SRBs, his discovery of a

human EST in the database with homology to yeast SRB7 promised to be a

useful marker in a mammalian holoenzyme purification. I isolated the EST

fragment from a human cDNA library, which David Chao and Peter Murray

then used to clone the entire human gene. To determine whether the human

gene was a functional SRB7 homologue, I tested the human gene for its

ability to complement an SRB7 deletion in yeast. When this was

unsuccessful, David Chao and I made chimaeras of the human and yeast

genes which proved to be functional in yeast. I raised antibodies against the

human protein which David Chao used in a successful purification of a

mammalian holoenzyme. A characterization of the holoenzyme preparation

by David Chao, Stephen Anderson, and Jeff Parvin showed that it contains

TFIIE and TFIIH and can be responsive to activators.
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Chapter 2

Functional antagonism between RNA polymerase II holoenzyme and global

negative regulator NC2 in vivo



Summary

Activation of eukaryotic class II gene expression involves the

formation of a transcription initiation complex that includes RNA

polymerase II, general transcription factors, and SRB components of the

holoenzyme. Negative effecters of transcription have been described, but it is

not clear whether any are general repressors of class II genes in vivo. We

reasoned that defects in truly global negative regulators should compensate

for deficiencies in SRB4 because SRB4 plays a positive role in holoenzyme

function. Genetic experiments reveal that this is indeed the case: a defect in

the yeast homologue of the human negative regulator NC2 (Drl-DRAP1)

suppresses a mutation in SRB4. Global defects in mRNA synthesis caused by

the defective yeast holoenzyme are alleviated by the NC2 suppressing

mutation in vivo, indicating that yeast NC2 is a global negative regulator of

class II transcription. These results imply that relief from repression at class II

promoters is a general feature of gene activation in vivo.



Introduction

Activation of class II gene transcription in eukaryotes involves the

recruitment of a transcription initiation complex which includes the RNA

polymerase II holoenzyme (1-6). The yeast RNA polymerase II holoenzyme is

a large multisubunit complex containing RNA polymerase II, a subset of the

general transcription factors, and SRB regulatory proteins (7-11). Mammalian

RNA polymerase II holoenzymes have also been purified, and an SRB7

homologue has been identified as a component of those complexes (12-14).

For some class II genes, regulation appears to involve both positive and

negative transcriptional regulators. The negative regulators that have been

described include proteins purified for their ability to inhibit transcription in

vitro (15-21) and genes identified because their products repress transcription

from a subset of class II genes in vivo (21-29). For example, the human

proteins NC1 (15, 16), NC2 or Drl-DRAP1 (16, 17, 20), and DNA topoisomerase

I (18, 19) repress basal transcription in vitro. The products of the yeast genes

MOT1 (21-24), NOT1-4 (25-27), and SIN4 (28-29) negatively regulate at least a

subset of yeast genes in vivo. Whether any of these negative regulators are

generally employed for class II gene regulation in vivo is not yet clear.

The RNA polymerase II C-terminal domain (CTD) and the associated

SRB complex have been implicated in the response to transcriptional

activators (7-9, 30, 31). Two holoenzyme components, SRB4 and SRB6, have

been shown to play essential and positive roles in transcription at the

majority of class II genes in S. cerevisiae (32). We reasoned that a defect in

SRB4 might be alleviated by defects in general negative regulators, and that

knowledge of such regulators could contribute to our understanding of the

mechanisms involved in gene regulation in vivo. Here we show that a
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deficiency in yeast NC2 can compensate for the global transcriptional defects

caused by mutations in the SRB4 and SRB6 subunits of the RNA polymerase

II holoenzyme and that NC2 is a global negative regulator of class II

transcription in vivo.



Results

Yeast ncbl-1 is an extragenic suppressor of the srb4-138 mutation. Since

SRB4 plays an essential and positive role in class II transcription, we reasoned

that a defect in SRB4 might be alleviated by defects in general negative

regulators (Fig. 1A). To identify mutations that compensate for a defect in

SRB4, 76 spontaneous extragenic suppressors of the temperature sensitive

phenotype of the srb4-138 allele were isolated. Fifteen of the suppressors were

dominant and 61 were recessive. Seven complementation groups were

established among the recessive suppressors. One of the recessive suppressing

genes was cloned by complementation using a wild-type genomic DNA

library and sequenced. The sequence is identical to the open reading frame

YER159c, which predicts a 142-amino acid protein with a molecular mass of

15,500 (15.5 K) (Fig. 1B). A search of sequence databases revealed that the

predicted protein has 39% identity over 99 amino acids to the NC2a (DRAP1)

subunit of human NC2 (Drl-DRAP1), which binds to TBP and represses

transcription in vitro (16, 17, 20, 33-39). The gene encoding the putative yeast

NC2a protein was named NCB1. Deletion analysis revealed that NCB1 is

essential for cell viability (data not shown). The mutation present in the

suppressing allele, ncbl-1, produces a 27 residue C-terminal truncation in the

yeast NC2(z protein (Fig. 1B). Since NCB1 is an essential gene, the truncation

mutation must cause a partial functional defect in the NC2u protein.

Human NC2 consists of two subunits, NC2a and NC203, both of which

are necessary for maximal TBP binding and repression of transcription in

vitro (37, 38). To determine if there is a yeast homologue of the NC2P subunit,

the yeast database was searched with the human NC2P amino acid
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Figure 1. Isolation of putative global negative regulators

(A) Schematic of genetic selection for suppressors of the temperature

sensitive srb4 mutant RNA polymerase II holoenzyme. (B) Sequence of NCB1

(open reading frame (ORF) YER159c on chromosome V, GenBank accession

number U18917). The suppressing allele, ncbl-1, was isolated by gap-repair

techniques and sequenced. The suppressing mutation, a single base pair

deletion at nt 340, is noted in boldfaced type. The deletion results in a

frameshift causing a translational stop at nt 347-349, also noted in boldfaced

type. Underlined regions indicate homology to a-helices in the histone H2A

histone fold (37-39). (C) Sequence of NCB2 (open reading frame (ORF)

D9509.16 on chromosome IV, GenBank accession number U32274) with the

first and last nt of the intron sequence noted in boldfaced type. Underlined

regions indicate homology to a-helices in the histone H2B histone fold (37-

41).



sequence. An open reading frame, D9509.16, was identified that predicts a 146-

amino acid protein with a molecular mass of 16,700 (16.7 K) (Fig. 1C). The

predicted protein has 37% identity to human NC2P. The gene, named NCB2,

contains consensus sequence predicting an intron. Both DNA and cDNA

clones containing the coding sequence for NCB2 were isolated and sequenced,

and the intron structure produces a somewhat different amino acid sequence

than that predicted by GenBank (Fig. IC). A mutant allele of NCB2 was

identified as one of the other recessive suppressors of srb4-138 (Chapter 3).

The human NC2 subunits each contain sequence predicting a histone

fold structure (37, 38, 42, 43); the yeast NC2 subunits also exhibit this sequence

relationship (Fig. 1B,C) (39). Interestingly, the C-terminal truncation in the

ncbl-1 suppressing allele removes part of the histone fold in the yeast NC2a

subunit (Fig. 1B). Deletions in the human NC2 histone folds have been

shown to decrease subunit association, TBP binding, and transcriptional

repression (37, 38).

Yeast NC2 binds to TBP and can be purified as a two subunit complex. If

the two yeast gene products are genuine homologues of human NC2, they

would be expected to copurify as a complex and bind to TBP. To determine

whether this is the case, a yeast whole cell extract was subjected to GST and

GST-TBP affinity chromatography (Fig. 2A). Western analyses of the column

eluates confirmed that both yeast NC2a and NC20 proteins were specifically

retained on the GST-TBP column. The eluate from the GST-TBP column was

further purified over two ion-exchange columns. Silver staining and

Western analyses showed that yeast NC2a and NC21 coeluted over both

columns, and that the proteins appear to be in equal stoichiometry (Fig. 2B

and data not shown). Yeast NC2a is not present in a purified RNA
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Figure 2. Yeast NC2 binds to TBP and can be purified as a two subunit

complex.

(A) Western analyses of TBP column onput and eluates with antibodies

against yNC2a and yNC23. Bound proteins were eluted with 2 M KC1. (B)

Silver stained SDS polyacrylamide gel and Western analyses of fractions from

the final step of the purification (DEAE 5PW).



polymerase II holoenzyme preparation, so NC2 is unlikely to be a component

of the holoenzyme (Appendix A). These data confirm that the yeast NC2a

and NC213 proteins are stoichiometric subunits of a complex which can bind

specifically to TBP.

Highly purified yeast NC2 inhibits transcription by RNA polymerase II

holoenzyme in vitro. The observation that a defective form of yeast NC2 can

compensate for a weakened RNA polymerase II holoenzyme suggests that

yeast NC2 normally functions to repress holoenzyme activity. We tested the

ability of purified yeast NC2 to repress transcription by yeast RNA polymerase

II holoenzyme in vitro. A preparation of yeast NC2 from a strain containing

an epitope-tagged NC2a subunit (Fig. 3A,B) gave us material of higher yield

and purity than from the TBP-affinity column. In vitro transcription

reactions were performed with a yeast CYC1 promoter template, holoenzyme,

and fractions from the final column of this yeast NC2 purification (Fig. 3C,D).

Repression of transcription correlated with the peak of yeast NC2 protein.

50% of the maximal inhibition was observed when an equimolar amount of

NC2 was added to RNA polymerase II holoenzyme and TBP (Fig. 3D). The

repression of RNA polymerase II holoenzyme transcription by yeast NC2 is

consistent with the ability of a partial loss-of-function NC2 mutation to

suppress a holoenzyme mutation.

NC2 functions at the majority of class II promoters in vivo. The

observation that loss of NC2 function in yeast cells can compensate for a

defect in the SRB4 component of the holoenzyme, together with previous

evidence that SRB4 functions globally at class II promoters (32), suggests that

NC2 may repress transcription at class II promoters in general. To determine

whether yeast NC2 functions at the majority of class II promoters in vivo, we

investigated whether the shutdown of mRNA synthesis observed in cells
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Figure 3. Highly purified yeast NC2 inhibits transcription by RNA polymerase

II holoenzyme in vitro.

(A) Analysis of NC2 Mono Q fractions by SDS-PAGE and silver staining. (B)

Western analyses of Mono Q fractions. (C) Influence of Mono Q fractions on

in vitro transcription by RNA polymerase II holoenzyme. (D) Inhibition of in

vitro transcription by RNA polymerase II holoenzyme with increasing

amounts of purified yeast NC2. Assuming a molecular weight of 64 kDa for

NC2, 0.5 pmol was required for 50% inhibition of an equimolar amount of

RNA polymerase II holoenzyme (estimated molecular weight 2,000 kDa) and

TBP.



with the temperature sensitive mutant allele srb4-138 is reversed by the loss

of NC2 function (Fig. 4). Upon shifting cells to the restrictive temperature, the

growth rate of the srb4-138 strain was severely reduced, whereas the srb4-138

ncbl-1 suppressor strain was only modestly affected (Fig. 4A). The levels of

poly(A)+ mRNA in these cells were measured immediately before and at

several times after the shift to the restrictive temperature (Fig. 4B). There was

a significant decrease in the mRNA population in the srb4-138 strain, as

observed previously (32). In contrast, there was only a modest decrease in

mRNA levels in the srb4-138 ncbl-1 strain after the temperature shift. Thus,

the ncbl-1 mutation suppresses the general defect in transcription of class II

messages caused by the srb4-138 mutation. Furthermore, the ncbl-1 mutant in

an otherwise wild type background showed 27% higher levels of poly(A)+

mRNA compared to the wild type strain under normal conditions (Fig. 4C).

This result is consistent with the partial loss-of-function of a class II global

negative regulator. S1 analysis of individual class II transcripts confirmed that

the decline in specific mRNAs in the srb4-138 strain is reversed in the srb4-

138 ncbl-1 strain (Fig. 4D). These results, together with previous evidence that

NC2 functions as a repressor of multiple promoters tested in vitro, argue that

NC2 is a general negative regulator of class II gene transcription.
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Figure 4. Loss of yeast NC2 function compensates for the global defect in class

II gene expression caused by the SRB4 mutant holoenzyme.

(A) ncbl-1 mutation suppresses the growth defect of the srb4-138 mutant

strain at the restrictive temperature. Growth of wild type (Z579), srb4-138

(Z628), srb4-138 ncbl-1 (Z804), and ncbl-1 (Z805) strains in YPD medium at

300C and after shifting to the restrictive temperature of 35.50C. (B) The global

decline in mRNA levels at the restrictive temperature in srb4-138 mutant

strain is alleviated by the ncbl-1 mutation. (C) Global levels of mRNA are

increased in the ncbl-1 strain relative to the wild type strain. (D) The decrease

in synthesis of individual class II messages at the restrictive temperature in

the srb4-138 mutant strain is reversed by the ncbl-1 mutation.



Discussion

Our results indicate that NC2 is an essential and conserved negative

regulator of class II gene transcription. These results extend the known

negative regulatory effects of NC2 on core RNA polymerase II in vitro (16, 17,

20, 33-39) and confirm that this regulator can inhibit transcription by RNA

polymerase II in vivo.

Since SRB4 has an essential and positive role in transcription at the

majority of class II genes in yeast (32), we reasoned that suppressors of a

temperature sensitive SRB4 mutant should include negative regulators. In

principle, such regulators could repress most class II genes or they could

repress SRB4 specifically. Several lines of evidence argue that NC2 acts

globally as a repressor of most, if not all, class II genes. NC2 can repress

transcription in vitro from a wide variety of mammalian, viral, and yeast

promoters (16, 20, 36-39). The NC2 suppressor mutation that compensates for

reduced class II gene transcription in vivo due to loss of SRB4 also

compensates for the global defect due to loss of SRB6 (see Appendix A). Loss

of function of NC2 in otherwise wild type cells results in increased levels of

poly(A) + mRNA. These data do not prove that NC2 regulates all class II genes,

but are most consistent with a global role for this repressor.

Mechanism of yeast NC2 repression. Much is already known about the

biochemistry of NC2 repression: NC2 binds to TBP on promoter DNA and

subsequently inhibits the binding of TFIIA and TFIIB in vitro (16, 17, 36-38).

NC2 binds to the same basic region of TBP as TFIIA (36), suggesting that NC2

physically blocks TFIIA from binding to TBP.

The other proteins known to have global negative regulatory

properties are the histones (44,45), which share notable structural features



with NC2/Drl-DRAP1. The presence of the histone fold motif in NC2 raises

the intriguing possibility of interactions with other histone fold-containing

proteins. Histones H2A, H2B, H3 and H4 all contain histone folds (42), as do

the yeast HAP3 and HAP5 activator proteins (CBF proteins in mammals) (43)

and several TAFjIIs (40, 41). These TAFIIs and histones are able to interact

with each other in vitro through their histone fold regions (40). Thus, NC2

might introduce a nucleosome-like structure at the promoter, either by itself

or with other histone fold-containing proteins.

Transcription activation and relief from repression. The SRB

components of the RNA polymerase II holoenzyme contribute to the

response to transcriptional activators (7-9). We have shown that a partial loss

in NC2 function compensates for deficiencies in SRB4 and SRB6 functions.

These results indicate that relief from NC2 inhibition is a required step

during transcription initiation at most class II promoters in vivo. Evidence

consistent with this view has recently emerged from a study of SUC2 gene

regulation. Prelich and Winston (46) isolated yeast mutations that suppress a

deletion of the upstream activating sequence in the SUC2 promoter. The

mutant genes that compensated for the absence of SUC2 activator function

included several histones, certain SPTs, and other unidentified genes called

BURs (Bypass UAS Requirement). The bur6 mutant allele was recently found

to be a partial loss-of-function mutation in NCB1 (47). The observation that

BUR6 is identical to NCB1 indicates that a loss in NC2 function can

compensate for the loss of an activator. These data support the model that

activators function to recruit the transcription apparatus, which must

overcome negative regulation by NC2 in order to initiate transcription.



Experimental Procedures

Genetic Manipulations. Yeast strains and plasmids are listed in tables I

and II, respectively. Details of strain and plasmid constructions are available

upon request. Yeast media and manipulation were as described (9). Extragenic

suppressors of the temperature-sensitive phenotype of Z628 capable of growth

at the restrictive temperature of 360C were isolated. Dominant and recessive

suppressors were identified by mating to Z811 and assaying growth at 360 C on

YPD. Complementation groups were established as described (9).

To determine whether the NCB1 gene is essential for cell viability, the

entire coding region was deleted on one of the two chromosomes of a diploid

cell, using a single step disruption method (48) and the plasmid RY7136,

which carries the deletion allele ncblAl. Southern analysis was used to

confirm that a single copy of the NCB1 gene had been deleted. These

heterozygous diploid cells were sporulated, and tetrad analysis performed on

YPD plates and scored for growth at a variety of temperatures. Spores with the

ncblA1 allele did not produce colonies, indicating that NCB1 is essential for

cell viability.

DNA Methods. DNA manipulations were performed as described (49).

PCR amplifications to produce RY7133, RY7134, RY7136, RY7137 and RY7138

were performed with Vent DNA polymerase (New England Biolabs) as

described by the manufacturer. The GST fusions were constructed as described

(13), and the ncblA1 allele was constructed as described (50).

Cloning and Sequence Analysis. The genomic clone of NCB1 was

isolated by complementation of Z804 with a wild-type genomic library (50).

The wild-type gene was further localized by subcloning fragments of the

genomic insert and repeating the screen. The clone with the smallest insert,



RY7135, was sequenced. The genomic clone of NCB1 was used to confirm the

identity of each member of the complementation group and to identify

additional members. RY7138 was created from RY7135 in vivo by

transforming Z804 with linearized RY7135 lacking NCB1 coding DNA and

then isolating the plasmid from a transformant which had repaired the

plasmid with the mutant ncbl-1 sequence from the chromosome (48). NCB1

and ncbl-1 were completely sequenced on each strand using DNA from

RY7135 and RY7138, respectively. Double stranded sequencing with

dideoxynucleotides and Sequenase (US Biochemical) was carried out as

described by the manufacturer using T3 and T7 promoter primers and

internal oligonucleotide primers. Sequence comparison analysis was

performed at the National Center for Biotechnology Information using the

BLAST network service (51). The ncbl-1 mutant allele contained a single base

pair deletion at nt (nucleotide) 340, causing a frameshift and a translational

stop at nt 347-349 (Fig. 1B). Unlike the RY7135 plasmid, RY7138 did not

prevent growth at 360 C when transformed into Z804, indicating that the

correct gene was cloned.

Antibodies. Recombinant yNC2a and yNC203 proteins were purified for

generating polyclonal antibodies in rabbits. Recombinant proteins were

derived from E. coli containing pGEX-4T-3 (Pharmacia) constructs RY7133 and

RY7134 as described (52). The antibodies were used to detect yNC20 and

yNC203 in Western blots at a dilution of 1:250 or 1:500.

Purification of Yeast NC2. TBP (TATA-binding protein) affinity

chromatography was performed as described (53) starting with 1.2 kg of cell

pellet. Approximately 60% of the total cellular amount of each NC2 subunit

was eluted in 1 M KOAc. 80 ml (3.3 mg) of the 1 M KOAc eluate was dialyzed

against buffer T plus 0.003% NP40. The dialyzed sample was applied to a 1 ml



HiTrap SP cartridge (Pharmacia) at 1 ml/min, which was washed with 10 ml

of buffer A (20 mM K-HEPES pH 7.6 1 mM EDTA 10% glycerol protease

inhibitors) + 100 mM KOAc. Bound proteins were eluted with a 10 ml

gradient of Buffer A from 100 mM to 1000 mM KOAc at 0.25 ml/min. Peak

NC2 fractions were pooled, frozen in liquid nitrogen and stored at -701C until

use. One half of the peak NC2 fractions (1 ml, 80 ug) was diluted with 2.7 ml

Buffer B (20 mM TrisOAc pH 7.8 1 mM EDTA 10% glycerol) and applied to a

DEAE 5PW 5/5 column (Toso Haas) at 0.5 ml/min. The column was washed

with 5 ml of Buffer B + 100 mM KOAc, and bound proteins were eluted with

a 12 ml gradient of Buffer B from 100 to 1000 mM KOAc. The peak of NC2

contained 50 ug total protein. SDS PAGE and silver staining were performed

as described (8).

Construction of FLAG-tagged NC2a Yeast Strain. Plasmid RY7137 was

constructed by amplifying the NCB1 gene (including regulatory sequences)

with two sets of overlapping primers to add a FLAG epitope (IBI) to the N-

terminus of yNC2a. The two PCR products were gel purified, combined, and

the entire FLAG-tagged NCB1 gene was amplified with primers adding 5'

HindIII and 3' BamHI cloning sites. The final PCR product was cloned into

plasmid pUN105 (54). RY7137 was transformed into a Z806, a yeast strain

containing the ncblA1 deletion, by plasmid-shuffle techniques (55) to produce

Z807. The FLAG-tagged NCB1 was fully functional and able to complement

the ncblA1 deletion.

Purification of FLAG-tagged Yeast NC2 and in vitro Transcription

Assays. Yeast strain Z807 was grown in YPD to late log phase and harvested by

centrifugation. 500 g of cell pellet was resuspended in 500 ml of 150 mM KOAc

60 mM K-HEPES pH 7.6 3 mM EDTA and protease inhibitors. The mixture

was poured slowly into a bath of liquid nitrogen, excess liquid nitrogen was



decanted, and the frozen cells were blended for 4 min. in a Waring blender.

The blended cells were stored at -700 C until use. The frozen mixture was

thawed at 55 0 C and centrifuged at 12,000 r.p.m. for 30 min. in a GSA (Sorvall)

rotor. One volume (600 ml) of Buffer A + 100 mM KOAc and 300 g of damp-

dry BioRex 70 (BioRad) resin were added to the supernatant. After stirring for

2 hours, the BioRex 70 was washed with 11 of buffer A + 0.1 M KOAc on a

Buchner funnel. The washed resin was packed into a 5 cm i.d. column and

washed with 0.5 1 of buffer A + 0.1 M KOAc at a flow rate of 10 ml/min.

Bound proteins were eluted with buffer A + 1 M KOAc. Fractions containing

protein (115 ml at 4.1 mg/ml) were pooled, frozen in liquid nitrogen and

stored at -70'C until use. 32 ml of BioRex 70 eluate was thawed and mixed

with 160 ml of Buffer B + protease inhibitors. The diluted eluate was

centrifuged at 12,000 r.p.m. for 30 min. in a GSA rotor. The supernatant was

applied to a 2 ml FLAG antibody M2 affinity column (IBI), the column was

washed with 100 ml of Buffer B + 150 mM KOAc and 10 ml Buffer B + 50 mM

KOAc, and bound proteins were eluted with Buffer B + 50 mM KOAc + 50

mM FLAG peptide. The eluate (8 ml) was filtered through a 0.2 m filter and

applied to a Mono Q PC 1.6/5 column (Pharmacia) at a flow rate of 0.1

ml/min, the column was washed with 1 ml Buffer B + 50 mM KOAc + 1 mM

DTT, and bound proteins were eluted with a 2 ml gradient of Buffer B + 1

mM DTT from 50 mM to 2000 mM KOAc. SDS-PAGE, silver staining and

Western analysis was as described in Fig. 2 legend. In vitro transcription

reactions were performed with a yeast CYC1 promoter template as described

(56) except that 3' O-MeGTP was added to 40 mM, T1 RNase was omitted, and

ethanol precipitations were performed with 400 instead of 600 ml.

Poly(A)+ Blots and S1 Analyses. Aliquots of cells were removed from

culture at the times indicated, total RNA was prepared, and poly(A)+ blots,
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quantitation, and S1 protection analysis were carried out as described (32).



Table I. Yeast Strains

Strain Genotype

Z579

Z628

Z804

Z805

Z806

Z807

Z811

Mat a ura3-52 his3A200 leu2-3,112 srb4A2::HIS3

[pCT127 (SRB4 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112 srb4A2::HIS3

[pCT181 (srb4-138 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112 srb4A2::HIS3

[pCT181 (srb4-138 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112 srb4A2::HIS3

[pCT15 (SRB4 URA3 CEN)]

Mat a ura3-52 his3A200 leu2-3,112 ncblAl::HIS3

[RY7136 (NCB1 URA3 CEN)]

Mat a ura3-52 his3A200 leu2-3,112 ncblAl::HIS3

[RY7136 (NCB1 5' FLAG tag LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112 srb4A2::HIS3

[RY7215 (srb4-138 URA3 CEN)]

Table II. Plasmids

Plasmid Description

RY7133 NCB1 in pGEX-4T-3 (Pharmacia)

RY7134 NCB2 (amino acids 13-146) in pGEX-4T-3

RY7135 NCB1 (1.3 kb) URA3 CEN

RY7136 ncblAl::HIS3 in pBluescript II SK(+)

RY7137 NCB1 5' FLAG tag (IBI) in pUN105

RY7138 ncbl-1 (1.3 kb) URA3 CEN

icbl-1

ncbl-1
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Chapter 3

Functional antagonism between RNA polymerase II holoenzyme and NOT

proteins in vivo



Summary

A general feature of gene activation at class II promoters is the relief

from repression by negative regulators. We have shown previously that the

global negative regulator NC2 antagonizes the RNA polymerase II

holoenzyme and that a mutation in the NC2ax subunit alleviates defects in

the holoenzyme. We now report that mutations in the NC23 subunit and in

the Not1, Not2, and Not3 proteins can also compensate for holoenzyme

mutations. The global defects in mRNA synthesis caused by a defective

holoenzyme are reversed by not mutations, indicating that Not proteins, like

NC2, are global negative regulators. These results demonstrate that there are

multiple global negative regulators which must be overcome by the class II

transcription machinery.



Introduction

The regulation of class II gene expression requires both positive and

negative factors. Transcription initiation in yeast involves the recruitment of

the RNA polymerase II holoenzyme, which contains RNA polymerase II,

general transcription factors, and SRB proteins [reviewed in (1, 2)]. A

conditional mutation in SRB4 results in a rapid and general decrease in class

II transcription (3). A partial loss-of-function mutation in the NC2a subunit

of yeast NC2 (Drl.DRAP1) suppresses the conditional phenotype of the srb4

mutation and alleviates the decrease in transcription (4). These results

indicate that NC2 is a global negative regulator of class II transcription, and

imply that relief of repression is a general feature of gene activation.

Other negative regulators of transcription have been identified

through in vivo and in vitro experiments [reviewed in (5)]. While many of

these factors have been shown to repress the transcription of a number of

genes, it is not yet clear whether any are truly global in nature. In order to

identify other factors likely to be global negative regulators of class II

expression, additional suppressors of the srb4 mutation were identified. One

of the suppressing mutations is in the gene encoding the NC23 subunit of

yeast NC2, indicating that mutations in either subunit of NC2 can alleviate

the holoenzyme defect. We also show that mutations in NOT1 and NOT3

similarly suppress the srb4 mutation. Mutations in NOT1 and NOT2 suppress

a mutation in another holoenzyme component, the second largest subunit of

RNA polymerase II. These results suggest that the Nots represent another

class of global negative regulators of transcription.



Results

ncb2-1 is an extragenic suppressor of the srb4-138 mutation. The

recessive suppressors of the srb4-138 mutation include at least six different

complementation groups (Fig. 1A; Appendix A, Fig. 3). We tested whether

NCB2, which encodes the NC213 subunit of yeast NC2, was among the other

suppressors. Indeed, complementation group B was determined to represent a

suppressing allele of NCB2 (Fig. 1A, B) by complementation with the wild-

type NCB2 gene. The identity of the suppressing allele was confirmed by

plasmid gap repair (data not shown) (6). Thus, mutations in the genes

encoding either subunit of NC2 can suppress the srb4-138 mutation.

not1-10 and not3-10 are extragenic suppressors of the srb4-138

mutation. Numerous factors in addition to NC2 have been described as

negative regulators of transcription. We tested a variety of genes by

complementation to ascertain whether they were among the remaining

suppressors of the srb4-138 allele (Appendix A, Fig. 3, 4). Complementation

groups C and D were determined to represent suppressing alleles of NOT1

and NOT3 (Fig. 1A, B). The NOT genes, NOT1-NOT4, have been previously

implicated in transcriptional repression (7-9) and NOT1 was originally cloned

as CDC39 (10). The identities of both suppressors were confirmed by genetic

linkage experiments (data not shown) (11). A disruption (6) of the NOT3 gene

also suppressed srb4-138, indicating that a loss-of-function mutation in NOT3

could alleviate the holoenzyme defect (data not shown). Interestingly, the

not1 and not3 complementation groups showed a high degree of unlinked

noncomplementation (12), indicating a close functional relationship between

the genes (Appendix A, Fig. 3).
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Figure 1. Mutations in multiple negative regulators of transcription

compensate for RNA polymerase II holoenzyme mutations.

(A) Recessive suppressors of the srb4-138 mutation include multiple

complementation groups and four known negative regulators of

transcription. (B). Growth phenotypes of cells containing the srb4-138

mutation (Z628) and srb4-138 ncbl-1 (Z804), srb4-138 ncb2-1 (Z828), srb4-138

noti-lO (Z829), and srb4-138 not3-10 (Z830) mutations compared to wild-type

cells (Z579). Cells were spotted on YEPD medium and incubated at 30 0C and

36oC for 2 days. (C). Growth phenotypes of cells containing the rpb2-3

mutation (Z832) and rpb2-3 not1-11 (Z833) and rpb2-3 not2-10 (Z834)

mutations compared to wild-type cells (Z831). Cells were spotted on YEPD

medium and incubated at 300C and 370C for 2 days.



not1-11 and not2-10 are extragenic suppressors of the rpb2-2 mutation.

Since RNA polymerase II is a critical component of the transcriptional

machinery (13), we reasoned that defects in polymerase itself might be

alleviated by mutations in global negative regulators of class II promoters.

The temperature-sensitive phenotype of a mutation in the second largest

subunit of yeast RNA polymerase II, rpb2-3 (14), was used to isolate 173

extragenic suppressors. Thirty-seven were dominant and 136 were recessive.

Five complementation groups were established among the recessive

suppressors. The suppressing gene from one group was cloned by

complementation using a wild-type genomic library, sequenced, and shown

to be NOT2 (Fig. 1C). NOT2 was originally cloned as CDC36 (10). Testing of

other NOT genes revealed that another complementation group contains a

mutant not1 (Fig. 1C). These results, in combination with the identification of

not1 and not3 as suppressors of srb4-138, make a powerful argument for Not

proteins as global negative regulators of class II transcription.

Not2 functions at many class II promoters in vivo. The genetic

suppression of srb4 and rpb2 mutant alleles by not mutant alleles suggests

that Nots, like NC2, may repress transcription at class II promoters in general.

We investigated whether the decrease in mRNA synthesis observed in cells

with the rpb2-3 mutation was reversed by the not2-10 suppressing mutation

(Fig. 2). Upon shifting cells to the restrictive temperature, the growth rate of

the rpb2-3 strain was reduced, whereas the rpb2-3 not2-10 strain was only

modestly affected (data not shown). The levels of poly(A)+ mRNA in these

cells were measured immediately before and at several times after the shift to

the restrictive temperature (Fig. 2). There was a significant decrease in the

mRNA population in the rpb2-3 strain. In contrast, there was no apparent

decrease in mRNA levels in the rpb2-3 not2-10 strain after the temperature
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Figure 2. A Not2 mutant compensates for the defect in class II gene expression

caused by the Rpb2 mutant holoenzyme.

The decline in mRNA levels at the restrictive temperature in the

rpb2-3 mutant strain is alleviated by the not2-10 mutation. The levels of

poly(A)+ mRNA were measured in wild type (Z831), rpb2-3 (Z832), rpb2-3

not2-10 (Z834), and not2-10 (Z835) cells grown in YEPD medium at 300C and

370C.



shift. Thus, the not2-10 mutation suppresses the defect in transcription of

class II messages caused by the rpb2-3 mutation. These results support the

model of Nots as general negative regulators of class II gene transcription.

Our results indicate that several global negative regulators of

transcription antagonize the RNA polymerase II holoenzyme. Mutations in

either subunit of yeast NC2 or in Not1, Not2, or Not3 proteins compensate for

mutations in RNA polymerase II holoenzyme components. Like NC2, the

mutant Not2 alleviates the class II transcription defect seen in a holoenzyme

mutation. Several of the Nots have significant homology with putative

proteins from other eukaryotic organisms (T. Lee, unpublished data),

suggesting that the Nots are conserved throughout evolution.

Previous genetic data suggests that the Nots are involved in

transcription, possibly through some effect on TBP (9). However, other

experiments demonstrate a role for Nots in the pheromone response (15-18).

Whether the involvement of Nots in signal transduction is an indirect result

of alterations in gene repression by Nots is unknown. There have been no

mechanistic studies of Not protein activity, and it is unclear how Nots might

affect transcription on a global level. The genetic interactions of NOT1, NOT2,

and NOT3 with RNA polymerase II holoenzyme components supports a

central role for Nots in transcription. Biochemical analysis of a purified Not-

containing protein complex (V. Myer, unpublished data) may help reveal the

mechanism of class II gene repression by the Nots.



Experimental Procedures

Genetic Manipulations. Yeast strains and plasmids are listed in tables I

and II, respectively. Details of strain and plasmid constructions are available

upon request. Yeast media and manipulation were as described (19).

Extragenic suppressors of the temperature sensitive phenotypes of srb4-138

and rpb2-3 were isolated and dominant and recessive suppressors identified

as described (4). Complementation groups were established as described (19).

DNA Methods. DNA manipulations were performed as described (20).

PCR amplification to produce RY7212 was performed with Vent DNA

polymerase (New England Biolabs) as described by the manufacturer.

Complementation analysis. Complementation groups containing

mutant alleles of NCB2, NOT1, and NOT3 were identified by transforming

Z828 with RY7212; Z829 and Z833 with a YCP50 plasmid containing wild-type

NOT1 (gift of M. Collart); and Z830 with a pRS316 plasmid containing wild-

type NOT3 (gift of M. Collart). The resulting strains no longer grew at the

nonpermissive temperatures, indicating that the suppression phenotype was

reversed by the wild-type NCB2 and NOT genes. The genomic clone of NOT2

was isolated by complementation of Z834 with a wild-type genomic library

(21) as described (4). The clone with the smallest insert, RY7213, was

sequenced.

Plasmid gap repair. RY7211 was created from RY7212 lacking NCB2

coding DNA in Z828 as described (4). RY7214 was created from RY7213 lacking

NOT2 coding DNA in Z834 as described (4).

Genetic linkage analysis. The identities of not1 and not3 alleles as

suppressors of srb4-138 were confirmed by genetic linkage analysis. The URA3

gene was integrated next to the NOT1 gene in Z836 using Sacl-digested



pES183 (gift of E. Shuster). The resulting strain, Z837 was mated to Z829. The

resulting diploid strain was sporulated and 20 tetrads were dissected. Analysis

of the resulting spores showed that temperature-sensitive phenotype always

co-segregated with the Ura + phenotype, indicating that the suppressing allele

was tightly linked to the NOT1 gene. For NOT3, the URA3 gene was

integrated next to the NOT3 gene in Z836 using Eagl-digested pRS306 with

NOT3 (gift of M. Collart). The resulting strain, Z838 was mated to Z830. The

resulting diploid strain was sporulated and 20 tetrads were dissected. Analysis

of the resulting spores showed that temperature-sensitive phenotype always

co-segregated with the Ura + phenotype, indicating that the suppressing allele

was tightly linked to the NOT3 gene.

Poly(A)+ Blots and S1 Analyses. Aliquots of cells were removed from

culture at the times indicated, total RNA was prepared, and poly(A) + blots

were carried out as described (3).



Table I. Yeast Strains

Strain Genotype

Z579 srb4A2::HIS3

Z628

Z804

Z828

Z829

Z830

Z831

Z832

Z833

Z834

Z835

Z836

Mat a ura3-52 his3A200 leu2-3,112

[RY2844 (SRB4 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112

[RY2882 (srb4-138 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112

[RY2882 (srb4-138 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112

[RY2882 (srb4-138 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112

[RY2882 (srb4-138 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112

[RY2882 (srb4-138 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112

[RY2129 (RPB2 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112

[RY2349 (rpb2-3 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112

[RY2349 (rpb2-3 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112

[RY2349 (rpb2-3 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112

[RY2129 (RPB2 LEU2 CEN)]

Mat a ura3-52 his3A200 leu2-3,112

[RY2882 (srb4-138 LEU2 CEN)]

srb4A2::HIS3

srb4A2::HIS3 ncbl-1

srb4A2::HIS3 ncb2-1

srb4A2::HIS3 notl-lO

srb4A2::HIS3 not3-10

rpb2A297::HIS3

rpb2A297::HIS3

rpb2A297::HIS3 not1-11

rpb2A297::HIS3 not2-10

rpb2A297::HIS3 not2-10

srb4A2::HIS3



Table I. Yeast Strains

Z837 Mat a ura3-52 his3A200 leu2-3,112 srb4A2::HIS3 notl/URA3

[RY2882 (srb4-138 LEU2 CEN)]

Z838 Mat a ura3-52 his3A200 leu2-3,112 srb4A2::HIS3 not3/URA3

[RY2882 (srb4-138 LEU2 CEN)]

Table II. Plasmids

Plasmid Description

RY7211 ncb2-1 (1.3 kb) URA3 CEN

RY7212 NCB2 (1.3 kb) URA3 CEN

RY7213 NOT2 (7.9 kb) URA3 CEN

RY7214 not2-10 (7.9 kb) URA3 CEN
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Chapter 4

Discussion: General negative regulation



The number and variety of negative regulators of transcription raises

two interesting questions. Why does the cell require so many levels of

negative regulation? How do the regulators function in relation to each

other?

These questions are especially relevant for the negative regulators that

function more or less directly through TBP. In spite of the relatively small

size of TBP, it is a common target of both positive and negative regulators.

NC2 and Mot1 bind to TBP, and NOT1 and MOT1 genes show genetic

interactions with TBP. These repressors are important factors in gene

expression since they are widespread in their repression of class II genes.

NCB1, NCB2, NOT1, and MOTI are all essential genes, indicating that the

proteins are not functionally redundant. Below we consider models for the

functions of the individual factors and the relationships between them.

NC2. Extensive biochemistry in yeast and mammalian systems has

established that NC2 binds to promoter-TBP complexes and inhibits the

binding of TFIIA and/or TFIIB. While this is a plausible model for its in vivo

repression of many promoters, it does not exclude other possibilities. One

alternative model is that NC2 is a specificity factor which binds to TBP bound

at non-promoter DNA, thereby blocking improper transcription initiation

events. This model seems improbable as a primary function of NC2 since an

NC2 mutation, which would increase unblocked TBP bound to non-promoter

sites, seems unlikely to suppress an srb4 mutation. Another possible model is

that NC2 regulates a pool of TBP that is not bound to DNA. Although

recombinant NC2 can bind TBP in solution in the absence of DNA (V. Myer

and C. Wilson, unpublished data), the model of binding TBP on promoter

DNA is more attractive for several reason.



First, NC2 subunits contain histone folds. While it may be coincidental,

histone folds have been identified predominantly in transcriptional

regulatory proteins, many of which bind to DNA. NC2 is able to bind DNA

weakly in vitro through its histone fold domains (1), and NC2 extends the

DNase I footprint of TBP on promoter DNA (2). Histone fold-containing

TAFiIs can interact with histones in vitro (3), raising the possibility that NC2

also interacts with histones while bound to TBP. Interactions of histone-fold

containing proteins like NC2, TAFIIs, and HAPs with histones can be

imagined to affect gene expression.

The two genetic selections that produced NC2 also support the model

of NC2 binding to TBP on the promoter. Mutations in either NCB1 or NCB2

suppress the srb4-138 mutation in the RNA polymerase II holoenzyme. A

mutation in NCB1 (BUR6) suppresses a UAS-deletion at the SUC2 promoter.

It is useful to consider these results together with the connection between

SRB4 and activation. SRBs were originally identified as suppressors of a CTD

truncation (4). The transcriptional defect in the CTD truncation mutant maps

to the UAS regions within several class II genes, including the Gal4 binding

site of the GALIO UAS (5). The SRB subcomplex of the holoenzyme binds to

Gal4-VP16 (6). Analysis of individual SRBs shows that SRB4 physically and

genetically interacts with Gal4 (S. Koh, unpublished data). Altogether, this

data suggests that SRB4 plays an important role in the response to activators.

The fact that defects in activation or SRB4 can be suppressed by NC2

mutations implies that NC2 normally antagonizes the activation process.

Activators function in part to recruit holoenzyme (7), which must then

overcome repression by NC2, most likely at promoters. Consistent with this

view, other suppressors of the SUC2 UAS-deletion include histones H2A-

H2B and H3 (8).
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Finally, an NC213-Gal4 fusion protein represses transcription in vitro

from a promoter containing Gal4 binding sites (9). Repression is maximal

when NC20a is present. While this is not a physiologically normal situation, it

demonstrates that the presence of NC2 at a promoter can repress

transcription.

NOTs. Much less is understood about the function of Not proteins. The

differential effects of Not repression at the promoter elements of HIS3 has led

to a model in which Nots are primarily repressors of TATA-less promoters.

However, the ability of not mutants to suppress srb4-138 and rpb2-3

holoenzyme mutations suggests that Nots are global repressors of class II

genes. The identification of Not1, Not2, and Not4 as negative effecters of the

pheromone response pathway raises the possibility that Nots affect

transcription indirectly through a signal transduction pathway. Interestingly,

the MOT1 gene was also cloned as a negative regulator of the pheromone

response, yet Mot1 negatively regulates pheromone non-responsive genes

and has a defined mechanism of action at promoters. Analysis of a purified

Not complex in an in vitro transcription system may address whether Nots

can repress transcription by directly interfering with the general transcription

machinery.

MOT1. Mot1, like NC2, has a straightforward biochemical activity. Most

in vivo analyses are consistent with the demonstrated ability of Mot1 to

remove TBP from promoter DNA and repress transcription in vitro. The

effect of Mot1 on total mRNA synthesis or a large number of individual

genes has not been examined, so it is not clear whether Motl-mediated

repression is widespread among promoters. mot1 mutants are not among the

recessive suppressors of the srb4-138 mutation (Appendix A, Fig. 4). Likewise,

the motl-1 mutation does not suppress srb4-138 (Appendix A). These
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negative results do not eliminate the possibility that Mot1 has a general effect

on class II transcription, but may reflect mechanistic differences between Mot1

and NC2 or Not proteins.

Mot1 and NC2 are similar in their abilities to bind to TBP on promoter

DNA, but their mechanisms of repression are different. NC2 appears to block

to transcription initiation while Mot1 apparently removes TBP before

initiation can occur. The ability of Mot1 to remove promoter-bound TBP

suggests that Mot1 might prevent unregulated reinitiation of the

transcription apparatus. This model is consistent with data indicating that

mutations in MOT1 have the greatest effect on genes that are normally

expressed at lower levels. Because Mot1 has only been tested in a mammalian

in vitro transcription system with general transcription factors, it is not

known how Mot1 affects yeast general transcription factors or the

holoenzyme. It is also not known whether Mot1 can remove TBP from TFIID

or NC2-TBP promoter complexes.

A better understanding of Mot1 function might be gained from further

analysis of B-TFIID. B-TFIID may represent a significant TBP repository as it

was purified from an initial fraction containing >75% of the total cellular TBP

(10). While several features of the B-TFIID large subunit make it a likely Mot1

homologue, there are important differences between their in vitro activities.

Unlike Mot1, B-TFIID supports basal transcription in an in vitro system. Since

several promoters are only weakly transcribed by B-TFIID, further analysis

might reveal promoters which are actually repressed by B-TFIID. As is seen

with Mot1, B-TFIID does not promote stable initiation complex formation in

template commitment assays.

Interactions of negative regulators. The analysis of HIS3 gene

expression has led others to propose that the Nots, Spt3, and Mot1 have
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promoter specificity based on TATA elements. However, the HIS3 TATA

elements do not appear to function independently. The not1-2 mutant strain

requires the presence of the Gcn4 activator protein to show a strong increase

in transcription from the TC element at the permissive temperature,

although the TC element is not Gcn4 responsive in a wild type strain (11). The

decrease of transcription from the TC element in a motl-1 mutant requires a

wild-type TR element, yet transcription from the TR element is not affected by

the motl-1 mutation (12). Thus, the HIS3 TATA elements appear to have

some influence on each other, making the interpretation of the effects of

regulatory mutations difficult. Analysis of additional promoters which are

jointly regulated by the Nots, Spt3, Mot1, and NC2 may clarify their respective

roles in the cell. The genetic interactions between these factors also highlight

the necessity of combining negative regulators for in vitro analyses.

Problems in studying negative regulation. There are several problems

inherent to the study of negative factors. The isolation of repressors by their

ability to inhibit transcription risks identifying non-physiological factors. In

addition, genetic approaches can be insufficient for elucidating mechanisms

of action. Another problem emerges when trying to define the population of

genes affected by a negative effecter. The srb4-138 mutation affects global class

II transcription, so it was possible to demonstrate that the ncbl-1 mutation

alleviates that effect. However, only a small increase in class II transcription is

detected in an ncbl-1 mutant in an otherwise wild type cell. It is possible that

there is little excess transcriptional machinery available so the loss of a global

factor would not result in a larger increase of class II transcription. We were

unable to isolate a conditional allele of NCB1 or rapidly shut down NCB1

expression, but had we been successful, it could still be argued that the effects

of NC2 were not global and that NC2 specifically repressed SRB4 or some
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other gene critical for transcription. Advances in genomic chip technology or

current differential display techniques could allow genome-wide of surveys of

the effects of mutations in transcriptional regulators. These approaches might

also be valuable in the identification of promoters that are regulated by

individual factors or different combinations of factors. These promoters could

then be useful tools for dissecting the interactions and possible specificities of

negative regulators both in vivo and in vitro.

Importance of negative regulation. The complexity of gene regulation

reflects the necessity to tailor the expression levels of individual genes to

meet different needs in changing environments. Therefore it is not suprising

that activators and repressors have intricate relationships and that their

relative balances are critical for cell viability. Future genetic and biochemical

analyses should help reveal how these factors work in concert in achieve

proper gene expression.
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Chapter 5

A mammalian SRB protein associated with an RNA polymerase II

holoenzyme



106

Summary

A large multisubunit complex containing RNA polymerase II, general

transcription factors, and SRB regulatory proteins initiates transcription of

class II genes in yeast cells 1-4. The SRB proteins are a hallmark of this RNA

polymerase II holoenzyme, as they are found only in this complex, where

they contribute to the response to regulators 4-8. We have isolated a human

homologue of the yeast SRB7 gene and used antibodies against human SRB7

protein to purify and characterize a mammalian RNA polymerase II

holoenzyme containing the general transcription factors TFIIE and TFIIH.

This holoenzyme is more responsive to transcriptional activators than core

RNA polymerase II when assayed in the presence of coactivators.
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Results

A human cDNA clone encoding a protein similar to Saccharomyces

cerevisiae SRB7 was isolated from a lymphocyte cDNA library by using

information derived from expressed sequence tags. The sequence of this

human cDNA clone (hSRB7) predicts a 144 amino acid protein with a

molecular weight of 15.7 kD (Figure 1A). The predicted protein is 35%

identical to yeast SRB7 (ySRB7) (Figure 1B). We tested hSRB7's ability to

functionally substitute for ySRB7 by determining whether hSRB7 could

complement a complete deletion of the yeast gene. Although full length

hSRB7 failed to complement a ySRB7 deletion, several chimaeras containing

the N-terminus of the human protein and the C-terminus of the yeast

protein were able to do so (Figure 1C and D). The complementing chimaera

with the largest amount of hSRB7 contains 57% human sequence.

The yeast SRBs have functional and physical interactions with the

RNA polymerase II carboxyl terminal repeat domain, or CTD (reviewed in

ref. 4). If the protein encoded by hSRB7 is a genuine homologue of yeast

SRB7, then it should be among a small subset of cellular proteins capable of

binding to a recombinant CTD column 6. Extracts were prepared from yeast,

HeLa, and calf thymus and subjected to CTD affinity chromatography (Figure

2A). Western blots of the column eluates confirmed that yeast SRB7 was

retained on a CTD column and demonstrated that mammalian SRB7 from

HeLa cells and calf thymus was also retained on the CTD column (Figure 2B).

Because the yeast RNA polymerase II holoenzyme can be

immunoprecipitated with anti-SRB antibodies, similar experiments were

used to investigate whether mammalian SRB7 associates with components of

the transcriptional apparatus in crude extracts. Indeed, RNA polymerase II



AA hSRB7
GGTAGGAACATGGCGGATCGGCTCACGCAGCTTCAGGACGCTCTGAATTCGCTTGCAGATCAGTTTTGTAATGCC

MA DR L T Q LQ D A V N S L A D Q F C NA
ATTGGAGTATTGCAGCAATGTGGTCCTCCTGCCTCTTTCAATAATATTCAGACAGCAATTAACAAAGACCACCCA

I G V L Q Q C G P PA S F NN I Q TA I N K D Q P
GCTAACCCTACAGAGAGTATGCCCAGCTTTTTGCAGCACTGATTGCACGAACAGCAAAAGACATTGATGTTTTG
AN PT E E Y AQ L F A A L I A R T AK D I DVL
ATAGATTCCTTACCCAGTGAAGAATCTACAGCTGCTTTACAGGCTGCTAGCTTGTATAAGCTAGAAGAAGAAAAC

ID S L PS E ES T A A L Q A A S L Y K L E E E N
CATGAAGCTGCTACATGTCTGGAGGATGTTGTTTATCGAGGAGACATGCTTCTGGAGAAGATACAAAGCGCACTT
H E A A T CL ED V V Y R G D M L L E K I Q SAL
GCTGATATTGCACAGTCACAGCTGAAGACAAGAAGTGGTACCCATAGCCAGTCTCTTCCAGACTCATAGCATCAG
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Figure 1.

(A) Human SRB7 sequence.

(B) Human and yeast SRB7 alignment. "I" = identity; ":" = comparison value

greater than or equal to 0.5; and "." = comparison value greater than or equal

to 0.1. as defined by the program BESTFIT.

(C) Complementation of yeast SRB7 deletion mutant by hSRB7-ySRB7

chimaera. Control: Yeast containing SRB7 deletion covered by ySRB7 plasmid

and indicated construct. Test: Yeast containing SRB7 deletion and indicated

construct.

(D) Complementation by hSRB7-ySRB7 chimaeras. Chimaeras are

represented by normalized bars displaying human SRB7 sequences in black

and yeast sequences in white.
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Figure 2.

(A) CTD affinity chromatography procedure

(B) Western blots of CTD column eluates. Onputs and eluates were probed

with anti-ySRB7 or anti-hSRB7.

(C) Immunoprecipitation procedure

(D) Western blots of anti-hSRB7 immunoprecipitates. Onput and

immunoprecipitates were probed with the indicated antibodies.

(E) In vitro transcription assays with anti-SRB7 immunoprecipitates.

Complete = reaction containing holoenzyme (aSRB7 IP), TBP, TFIIB, TFIIE,

TFIIF, and TFIIH (upper panel) or the same reaction except that core

polymerase replaced holoenzyme and a control IP (blocked by peptide)

replaced the aSRB7 IP (lower panel). For subsequent lanes, the indicated

general factor was omitted from the corresponding complete reaction.
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was specifically immunoprecipitated by anti-hSRB7 antibody (Figure 2C and

D). In vitro transcription assays confirmed the presence of RNA polymerase II

and revealed the presence of TFIIE and TFIIH activities in the anti-SRB7

immunoprecipitates (Figure 2E). These experiments provide evidence for a

mammalian holoenzyme complex containing at a minimum SRB7, RNA

polymerase II, TFIIE, and TFIIH.

The complex containing mammalian SRB7 and RNA polymerase II

was purified over six columns (Figure 3A). As determined by Western

blotting, RNA polymerase II and SRB7 coeluted precisely from the last three

columns of the purification. Analysis of material from the last column

revealed that SRB7 and RNA polymerase II coeluted with subunits of TFIIE

(p56) and TFIIH (p89) (Figures 3B, C and D). The number of coeluting

polypeptides present in the SRB7-RNA polymerase II complex is consistent

with the complex's estimated size of 2 mDa, as determined by gel filtration

chromatography of crude extracts (data not shown). The preparation appears

close to purity as defined by coelution of the same set of proteins over two

columns. However, in vitro transcription results indicate that TFIIE and

TFIIH are substoichiometric (Figure 4A), suggesting that a portion of their

activities was lost by dissociation or inactivation during purification.

We next compared the responses of purified mammalian holoenzyme

and core RNA polymerase II to the activator Gal4-VP16 and the coactivators

HMG2 9, 10 and PC4 11, 12. In four independent experiments, the

holoenzyme was more strongly inhibited by PC4 and HMG2 in the absence of

activator and exhibited a modestly enhanced response to activator in the

presence of these coactivators (Figure 4B). Transcription by core RNA

polymerase II was mildly inhibited by PC4 and HMG2 (compare lanes 1 and 3)

and was stimulated approximately 2-fold by activator (compare ratio of upper



B

Calf thymusI
Amm. sulfate

I
0-30%

Phosphoceflulose1

0.075 0.25 M

Amm. sulfate
6-60%

HITrap O

0.075 0.6 M

Source 150
0.07!.ý40.7M

HITrap Heparin
0.075VM

DEA W

00O7! ý4 75MLo __

Mono 0, PC

SRB7 complexSRB7 complex

MW

200-

97-

55-

31-

21-
14-

Silver Stain
6 7 8 9 10 11 12 13

N i

D

MW
200 -

97-

TFIIE
55-- p56

31 - p3

C Western

RNAPII (p210) *i *
TFIIH (p89) - '

SRB7IE (p56) , O: --SRB7 (p16) 1 .• • . ..... .- ...

21 -

14-

Silver Stain
RNAPII I

p210 -

p145 -
_p89
-p80

-p62

-p50

p36 =p41/44
-- _p34/38

p25 -

p19/20 SRB7
p15/16 - -p16

A

TF

-

IIH
--



114

Figure 3.

(A) Procedure for purifying SRB7.

(B) Silver staining of fractions eluted from Mono Q.

(C) Western blotting of fractions eluted from Mono Q. Fractions were probed

with the indicated antibodies.

(D) Proposed identities of holoenzyme polypeptides. Bands that correspond in

size to RNA polymerase II, TFIIE and TFIIH subunits and mammalian SRB7

are shown.
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Figure 4.

A). In vitro transcription assays. Reactions contained column purified

holoenzyme, the indicated general factors, and the Adenovirus Major Late

promoter with linear topology.

(B) Response of core RNA polymerase II and column purified holoenzyme to

coactivators and activators. Reactions contained core polymerase or

holoenzyme, general transcription factors and/or coactivators and Gal4-VP16.

The upper transcript is derived from a template containing the Adenovirus

Major Late promoter and 3 Gal4 binding sites; the lower transcript is derived

from a control template containing the same promoter with no Gal4 binding

sites.
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and lower bands in lanes 3 and 4). Transcription by holoenzyme was more

strongly inhibited by PC4 and HMG2 (compare lanes 5 and 7) and was

stimulated approximately 5-fold by the activator (compare ratio of upper and

lower bands in lanes 7 and 8). It will be interesting to study the holoenzyme's

response to other coactivators and cofactors, such as TBP-associated factors

(reviewed in ref. 13), topoisomerase 114, Drl/NC2 15, 16 and PC2 17.

We have shown that hSRB7 shares sequence homology with its yeast

counterpart, that hSRB7-ySRB7 chimaeras functionally complement a yeast

SRB7 deletion, that hSRB7 is specifically retained by a CTD column, and most

importantly, that hSRB7 associates with a transcriptionally active 2

megadalton complex containing RNA polymerase II and general

transcription factors. These results lead us to conclude that hSRB7 is a

genuine homologue of a yeast SRB gene and that hSRB7 is a hallmark

component of a mammalian RNA polymerase II holoenzyme. We believe

that the yeast RNA polymerase II holoenzyme contains RNA polymerase II,

SRB proteins and the general factors TFIIB, E, F, and H in vivo. Because

different holoenzyme purification procedures cause the loss of different

subsets of the general transcription factors 1,2,18, it is possible that the forms

of holoenzyme purified so far are subcomplexes of a larger entity. In this

context, it is not yet clear whether the yeast holoenzyme contains TBP in

vivo. Similarly, it remains to be determined whether the in vivo form of the

mammalian RNA polymerase II holoenzyme contains some or all 19 of the

general transcription factors. The isolation of a human SRB gene and a

mammalian RNA polymerase II holoenzyme provides new tools for

investigating these and other issues in transcriptional regulation and extends

the holoenzyme paradigm from yeast to mammals.
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Experimental Procedures

Cloning of hSRB7. dbEST was screened with XREFdb for expressed

sequence tags similar to ySRB7 20. Overlapping sequences (Genbank accession

numbers H08048, R19473, and F13227) were identified as encoding a potential

ySRB7 homologue. An hSRB7 probe was amplified from a human peripheral

blood lymphocyte cDNA library (gift of S. Elledge) constructed in ,YES 21 by

PCR with primers derived from the sequence tags. Vent DNA polymerase

(New England Biolabs) was used according to manufacturer's directions for

all PCR procedures in this paper. hSRB7 cDNA was cloned and sequenced 22

with the initiating ATG assigned based on homology to ySRB7. ySRB7 and

hSRB7 were aligned with BESTFIT (Genetics Computer Group, Inc.).

Construction of chimaeras. Portions of ySRB7 and hSRB7 were

amplified by PCR. 18 nt hybridizing to the appropriate region of ySRB7 were

added to the C-term. hSRB7 primer 5' end. The hSRB7 N-term. primer and

ySRB7 C-term. primer contained 5' Bgl II sites. PCR products were gel

purified, combined, amplified with hSRB7 N-term. and ySRB7 C-term.

primers, gel purified, and cloned into vector DB20LBglII's Bgl II site (yeast

shuttle vector with 2m, LEU2, ADH1 promoter and terminator, gift of L.

Guarente). Plasmids RY7023-RY7031 contain full length ySRB7 (residues 1-

140), hSRB7(1-20)-ySRB7(21-140), hSRB7(1-53)-ySRB7(55-140), (hSRB7(1-77)-

ySRB7(82-140), hSRB7(1-96)-ySRB7(95-140), (hSRB7(1-117)-ySRB7(129-140), full

length hSRB7(1-144), hSRB7(1-77) with stop after residue 77, ySRB7(82-140)

with ATG before residue 82.

Complementation by chimaeras. Plasmids containg chimaeras were

shuffled into yeast strain Z704 (MATa ura3-52, his3A200, leu2-3,112, srb7A1
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(pCH7: SRB7 URA3 CEN) 23. Several representative clones of each strain

were tested by streaking or spotting.

Preparation of anti-hSRB7 for Western blotting. Plasmid RY7032 was

constructed by amplifying hSRB7 (residues 65-92) with primers adding a 5'

Bam HI site and a 3' Sal I site and inserting the PCR product into the

corresponding sites of pGEX-4T-3 (Pharmacia). GST-hSRB7 was purified as

described 24 and used to immunize female New Zealand white rabbits with

RIBI adjuvant (RIBI ImmunoChem Research, Inc.) according to

manufacturer's directions. Anti-hSRB7 was used to detect SRB7 in Western

blots at a dilution of 1:250 or 1:500. Monoclonal antibody 8WG16 was used to

detect the largest subunit of RNA polymerase II in Western blots 25.

CTD chromatography with yeast SRB7. All subsequent purification

procedures in this paper were performed at 4°C. 20 ml BioRex 70 fraction 26

was mixed with 9 vol. Buffer A (20 mM K-HEPES pH 7.6, 1 mM EDTA, 20%

glycerol, 1 mM DTT, 0.5 mM PMSF, 1 mM benzamidine, 0.5 mM pepstatin,

0.15 mM leupeptin, and 1 mg/ml chymostatin + 300 mM KOAc )+ 1% Triton

X-100. All subsequent buffers contained the same protease inhibitors. The

diluted fraction was precleared with a 1 ml GST column and applied to a 1 ml

GST or GST-CTD column 27 . Columns were washed first with Buffer A + 1%

Triton X-100, then Buffer A, and eluted with Buffer A + 4 M urea. 10 ml

onput and 100 ml each eluate (from 3 ml pool) were TCA precipitated and

analyzed by SDS-polyacrylamide gel electrophoresis on 4-20% gradient gels

(BioRad) and Western blotting 28 .

CTD chromatography with human SRB7. 3 ml HeLa whole cell

extract 29 was chromatographed as above. 25 ml onput was analyzed as above

except without TCA precipitation. 0.5 ml each eluate (3 ml total) was analyzed

as above.
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CTD chromatography with bovine SRB7. An unpublished procedure

(L. Strasheim and R. Burgess) was modified extensively. 1 kg frozen calf

thymus (Pel-Freez) was placed in a nylon bag (The North Face) and broken

with a hammer. Broken pieces were added to 2 1 50 mM Tris-OAc pH 7.8, 10

mM EDTA, 10 mM EGTA, 5% glycerol, 0.2 mM DTT. 300 ml batches were

mixed in a Waring blender for 2 min. Batches were pooled, blended for an

additional 2 min., and centrifuged (5K, 30 min., RC3B centrifuge (Sorvall)).

The supernatant was decanted through Miracloth (CalBiochem), centrifuged

and decanted through Miracloth again. After the addition of 29.1 g

ammonium sulfate (AS) /100 ml, the extract was stirred for 15 min. and

centrifuged (5K, 30 min., RC3B). The supernatant was decanted, and the pellet

was resuspended in Buffer D (50 mM Tris-OAc pH 7.8, 0.1 mM EDTA, 5 %

glycerol) to a conductivity of 300 mM AS. After the addition of 5.5 ml of 10%

polyethylenimine per liter, the extract was stirred for 10 min. and centrifuged

(8K, 30 min., GS3 rotor (Sorvall)). The supernatant was decanted, and Buffer

D was added to a conductivity of 150 mM AS. 200 ml DEAE Sepharose CL6B

(Pharmacia) was added, and the slurry was stirred for 1 hr. The resin was

collected by filtration, washed with Buffer D + 150 mM AS and packed into a

column (5 cm diam.). Bound proteins were eluted with Buffer D + 400 mM

AS. The DEAE eluate, as well as all subsequent column eluates, was frozen in

liquid nitrogen and stored at -70'C until use. 15 ml DEAE eluate was

chromatographed as above. 10 ml onput and 0.8 ml each eluate (from 3 ml

pool) were analyzed as above.

Preparation of anti-hSRB7 antibodies for immunoprecipitations.

Because antisera raised against GST-hSRB7 failed to immunoprecipitate SRB7

from crude extracts, antisera was raised against an anti-hSRB7 peptide. A

MAP peptide (QTAINKDQPANPTEEYAQLF, hSRB7 residues 39-58, Research
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Genetics) was used to prepare rabbit polyclonal antisera. Antibody was affinity

purified according to the manufacturer's directions, except that 1 vol. 1 M

NaBorate pH 8.5 was used to neutralize the eluate, which was concentrated in

a Centriprep 30 ultrafiltration unit (Amicon).

Preparation of phosphocellulose fraction. Extract from 1 kg calf thymus

was prepared as above except that the disruption buffer was 50 mM Tris-SO4

pH 7.6, 10 mM EDTA, 10 mM EGTA, 5% glycerol, 0.1 mM DTT. After the

second centrifugation, AS was added to 30% saturation. The suspension was

stirred for 15 min. and centrifuged (5K, 1 hr., RC3B). The supernatant was

decanted, and the pellet resuspended in Buffer B (20 mM K-HEPES pH 7.6, 0.1

mM EDTA, 10% glycerol, 0.1 mM DTT) to a conductivity of 75 mM AS and

centrifuged (5K, 10 min., RC3B). The supernatant was decanted and incubated

with 0.5 1 phosphocellulose (Whatman), precycled according to the

manufacturer's directions and equilibrated in Buffer B + 75 mM AS. The

slurry was stirred for 1 hr., collected by filtration, washed with Buffer B + 75

mM AS, and packed into a column (5 cm. diam.). Bound proteins were eluted

with Buffer B + 250 mM AS.

Immunoprecipitations and in vitro transcription. 100 ml

phosphocellulose eluate was mixed with 200 ml Buffer B + 0.1% NP-40,

incubated with 5 ml protein A-Sepharose (Pharmacia) for 1 hr, and

centrifuged (5 min., microcentrifuge). For anti-SRB7 immunoprecipitations,

the supernatant was removed and incubated with 5 ml protein A-Sepharose,

10 mg irrelevant MAP peptide, and 1.5 mg affinity purified anti-SRB7 peptide

antibody for 2 hr. In control immunoprecipitations, 10 mg hSRB7 blocking

peptide was substituted for irrelevant peptide. Immunoprecipitates were

washed four times with 0.5 ml Buffer B + 50 mM AS + 0.1% NP-40 and
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analyzed as above. In vitro transcription assays were performed as described

23

Purification of mammalian holoenzyme. Preparation of

phosphocellulose fraction from 1 kg calf thymus was as described for

immunoprecipitations. After adding AS to 70% saturation and 15 min.

stirring, the suspension was centrifuged (15K, 15 min., GSA (Sorvall)). The

supernatant was decanted, and the pellet was resuspended in Buffer C to a

conductivity of 75 mM AS and centrifuged (10K, 10 min., GSA). The

supernatant was decanted and loaded at 1 ml/min. to three 5 ml HiTrap Q

columns (Pharmacia) connected in series. The column was washed at 2

ml/min. with 100 ml Buffer C + 75 mM AS. Bound proteins were eluted with

Buffer C + 600 mM AS. Pooled fractions were diluted with 10 vol. Buffer C,

centrifuged (10K, 10 min., GSA), and applied at 2 ml/min. to a 25 ml Source

15Q column. The column was washed with 75 ml Buffer C + 75 mM AS.

Bound proteins were eluted with a 180 ml gradient (75 to 1000 mM AS).

Fractions containing SRB7 were diluted with Buffer B to a conductivity of 75

mM AS and centrifuged (10K, 10 min., GSA). The supernatant was applied at

1 ml/min. to two 5 ml Heparin HiTrap columns (Pharmacia) connected in

series. The column was washed with 20 ml Buffer B + 75 mM AS. Bound

proteins were eluted with a 90 ml gradient (75 to 1000 mM AS). Fractions

containing SRB7 were dialyzed against 11 of Buffer C + 25 mM AS + 0.01%

NP-40 in a Spectra/Por CE 100 kD MWCO dialysis bag (Spectrum) for 2.5 hr.

After Buffer C+0.01% NP-40 was added to a conductivity of 75 mM AS, the

sample was centrifuged (8K, 10 min., SS-34 rotor (Sorvall)). The supernatant

was decanted and applied at 0.25 ml/min. to a DEAE-5PW 7.5X7.5 column

(Toso Haas). The column was washed with 10 ml Buffer C + 75 mM AS.

Bound proteins were eluted with a 20 ml gradient (75 to 1000 mM AS).
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Fractions containing SRB7 were pooled and dialyzed against 1 1 of Buffer C +

0.01% NP-40 for 4 hr. After Buffer C + 0.01% NP-40 was added to a

conductivity of 75 mM AS, the sample was filtered through a 0.2 mm filter.

The filtrate was applied at 0.2 ml/min. to a Mono Q PC 1.6/5 column

(Pharmacia). The column was washed with 2 ml Buffer C + 75 mM AS +

0.01% NP-40. Bound proteins were eluted at 25 ml/min. with a 2 ml gradient

(75 to 1000 mM AS).

Silver staining and Western analysis of purified holoenzyme. Silver

staining of purified holoenzyme was performed as described 6. For Western

blotting, rabbit polyclonal anti-TFIIH p89 and anti-TFIIE p56 (gifts of J. Kim, B.

Shykind, P. Sharp) were used at a dilution of 1:500. 3 ml each fraction was

analyzed. Identities of holoenzyme polypeptides were assigned based on

published compositions of core RNA polymerase II 31, TFIIH 32, and TFIIE 33.

In vitro transcription with purified holoenzyme. Transcription

reactions containing TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH were

performed as described 30. Holoenzyme was the peak fraction from the Mono

Q column. Protein preparations for all of the basal factors used here have

been shown to be free of cross-contamination 34. HMG2 (30 ng/reaction) and

PC4 (50 ng/reaction) were titrated for optimal activation.
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Appendix A

Extragenic suppressors of an srb4 conditional mutation
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Summary

This appendix provides additional details about the suppressors of the

srb4-138 conditional phenotype.
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Figure 1. Categorization of srb4-138 Suppressors

* 185 Original isolates:
68 from day 2
95 from day 3
22 from day 4

* 106 Strong
70 Weak
9 Petite

* Among strong suppressors:
76 Extragenic
17 Intragenic
13 Intermediate phenotype

* Among extragenic suppressors:
15 Dominant
61 Recessive

* Recessive complementation groups:

Complementation group: Number of isolates:

Group A: ncbl 6
Group B: ncb2 1
Group C: not1 18
Group D: not3 19
Group E: 1
Group F: 4

Non-complementers 19
Untested 4

Experimental Procedures

Selection for srb4-138 suppressors. 200 2 ml YPD cultures of the yeast strain

Z628 were grown overnight at 300C and plated at a density of 3 x 106

cells/plate and placed at 360C. Suppressors arose at a frequency of 1 in 2 x 106

cells. Only one suppressor was picked from each plate. Petite suppressors were

identified by their inability to grow on 3% glycerol.
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Figure 2. srb4-138 Dominant Suppressor Identification Numbers:

2
11
19
21
23
31
33
36*+
43*+
49*+
56
65
76*+
91
135
162

* Indicates most dominant suppressors

+ Can not bypass requirement for srb4-138
(John Wyrick, unpublished data)
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Figure 3. srb4-138 Recessive Suppressor Identification Numbers:

Group B:
ncb2
115*

Noncomple
25
57
78
79
82
96
97
106
107
113
116
124
131
138
143
145
159
160
173

Group A:
ncbl
73
88*+
114
121
174
67

menters

Group C:
not1
4
13
14
21
(22)
61
62
66
74
80*
86
102
108
(109)
122
153
177

Group E:
?

14

(74)
(83)
(90)
100*
102
153
(177)

Group F:

95*

* Indicates founding member of group
Groups E and G: switched mating type and used to
establish complementation groups. Groups A, B, C,
D, F: used for cloning or testing genes

Bold type indicates unlinked noncomplementation
between group

() Weakly complements

+ Cannot bypass requirement for srb4-138

Group G:
75
92
93*
(118)

----

Group D:
not3
1
4
13
14
22
61
62
66
(70)
71
74
83
86
90
94*
102
109
153
177

Untested
63
85
104
171

•menters
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Figure 4. Genes not represented among recessive suppressors.

Grou E: Grou F: Grou G: Noncomplementers
Untested

ncbl
ncb2
not1
not2
not3
sin1
spt4
spt6
sptlO
sptl6
htal-htbl
hhtl-hhfl
mot1
sgvl

ncbl
ncb2
not2
htal-htbl
hhtl-hhfl
motl
sgvl

ncb2
not2
htal-htbl
hhtl1-hhfl
motl
sgvl

75 63 
70 

143:

ncbl
ncb2
not2
htal-htbl
hhtl-hhfl
mot1
sgvl

143:

rpbl,2
tbp
adal-4
sin1
swi2
gall1

57.63.70:

srb2-11

Experimental Procedures

Testing recessive suppressors with candidate genes. A variety of candidate

genes were transformed on plasmids into srb4-138 suppressor strains and

tested for their ability to reverse the suppression phenotype at 36 0 C.

ncbl
ncb2
not1
not2
not3
srb2-1 1
rpbl,2
tbp
sin1
sgvl
adal-4
swi2
gall1

ncbl
ncb2
not1
not2
not3
sin1
spt4
spt5
spt6
sptlO
sptl6
htal-htbl
hhtl-hhfl
motl
sgvl
ubrl
tfgl

G roup E: .. ..... r- .. .... r G :. N . . .. .. ........Uteste

1;7 ,,
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Additional ncbl-1 Suppression Information

ncbl truncation mutations suppress srb6-107 and AUAS deletion

mutations, but do not suppress an rpbl-1 mutation. The conditional srb4-138,

srb6-107, and rpbl-1 mutant strains cause similar global transcriptional

phenotypes1 . To determine whether ncbl-1 is able to suppress srb6-107 or

rpbl-1 mutations, ncbl-1 on plasmid RY7138 was introduced into cells

containing srb6-107 or rpbl-1 and the chromosomal copy of NCB1 was deleted

using standard procedures 2. The ncbl- 1 srb6-107 strain, Z808, grew at the

restrictive temperature of 36 0C, demonstrating that ncbl-1 suppresses the

srb6-107 mutation. The ncbl- 1 rpbl-1 strain, Z809, did not grow at 360C,

demonstrating that ncbl-1 does not suppress the rpbl-1 mutation. Thus,

suppression of these holoenzyme mutations by ncbl-1 is limited to srb4-138

and srb6-107.

not1 and mot1 mutant alleles which do not suppress srb4-138. The Not

proteins and Mot1 negatively regulate a subset of yeast genes in vivo3-6. To

test whether certain mutant alleles in NOT1 and MOT1 are able to suppress

the srb4-138 mutation, the conditional alleles not1-1 and mot1-1 were

introduced into the srb4-138 strain Z628. Plasmid pES183 (a gift from E.

Shuster) containing the not1-1 allele was integrated using standard

procedures 2 into Z628, creating Z810. Z810 was unable to grow at the

restrictive temperature of 360C, demonstrating that not1-1 does not suppress

the ncbl-1 mutation. Yeast strain JMY298 (a gift from J. Madison) containing a

mot1-1 mutation was mated to the srb4-138 strain Z628. The heterozygous

diploid cells were sporulated, and tetrad analysis performed. The resulting

haploid cells containing mot1-1 and srb4-138 alleles were unable to grow at



134

the restrictive temperature of 360C, demonstrating that mot1-1 does not

suppress the srb4-138 mutation.

ncbl-1 suppression of srb4-138 is not allele-specific. Additional

conditional mutant alleles of SRB4 (C. Thompson, thesis) were introduced

into Z804 by plasmid shuffle7 to test ncbl-1 suppression. ncbl-1 was able to

suppress the conditional phenotypes of all mutants tested, which included

srb4-127, srb4-134, and srb4-143. Sequence analysis of 60% of srb4-127, srb4-134,

and srb4-143 revealed 6, 11, and 4 amino acid changes respectively. Sequence

analysis of 95% of srb4-138 revealed 9 amino acid changes. Thus, ncbl-1

suppression of srb4-138 in not allele-specific and all conditional alleles are

heavily mutagenized.

ncbl-1 does not bypass the requirement for srb4-138. NCB1 and SRB4

are both essential genes. To determine whether the mutant NC20C alleviated

the need for the mutant SRB4 protein, the yeast strain Z839 was constructed.

Z839 was unable grow without the plasmid containing the srb4-138 gene, as

assayed on SC 5-FOA 8 media at both the permissive and restrictive

temperatures. Thus, the ncbl-1 allele does not bypass the need for the srb4-138

allele.



Quantitative Western Analysis

anti-SRB5:

Holoenzyme SRB5
(pmol) (pmol)

1.0 0.1 1.0

anti-yNC2a:

Holoenzyme NC2a
(pmol) (pmol)

1.0 0.01 0.1 1.0

I
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Figure 6. Yeast NC2x is not a subunit of the RNA polymerase II holoenzyme.

The identification of ncbl-1 as a suppressor of an SRB mutation

indicates a functional interaction between yeast NC2c and the RNA

polymerase II holoenzyme. Since it is formally possible that yeast NC2a is a

subunit of the holoenzyme, we used quantitative Western analysis to

determine whether yNC2x could be detected in purified holoenzyme. Known

amounts of purified RNA polymerase II holoenzyme 9 and recombinant

yNC2cx and SRB5 proteins were probed with anti-yNC2x and anti-SRB5

antibodies. SRB5 is a standard we have used previously to quantitate

holoenzyme subunits10 ,11. We did not detect any yNC2c in purified RNA

polymerase II holoenzyme.
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Table I. Yeast Strains

............................................................................................................

Strain Genotype

Z628 Mat a ura3-52 his3A200 leu2-3,112 srb4A2::HIS3

[pCT181 (srb4-138 LEU2 CEN)]

Z804 Mat a ura3-52 his3A200 leu2-3,112 srb4A2::HIS3 ncbl-1

[pCT181 (srb4-138 LEU2 CEN)]

Z808 Mat a ura3-52 his3A200 leu2-3,112 srb6AI::hisG ncblAl::HIS3

[pCT206 (srb6-107 LEU2 CEN)] [RY7138 (ncbl-1 URA3 CEN)]

Z809 Mat a ura3-52 his3A200 leu2-3,112 rpbl-1 ncblAl::HIS3

[RY7138 (ncbl-1 URA3 CEN)]

Z810 Mat a ura3-52 his3A200 leu2-3,112 notl-1 srb4A2::HIS3

[pCT181 (srb4-138 LEU2 CEN)]

Z839 Mat a ura3-52 his3A200 leu2-3,112 srb4A2::HIS3 ncbl-1

[RY7215(srb4-138 URA3 CEN)]

Table II. Plasmids

Plasmid Description

RY7138 ncbl-1 (1.3 kb) URA3 CEN

RY7215 srb4-138 URA3 CEN
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