
Towards an Understanding of the Role of
COPII Subunits in Vesicle Coat Assembly

by

David A. Shaywitz

A.B., Biochemical Sciences
Harvard College, 1989

Submitted to the Department of Biology in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

at the Massachusetts Institute of Technology
August 1997

© David A. Shaywitz, 1997. All rights reserved.

The author hereby grants to MIT permission to reproduce and
copies of this thesis document in whole or in part.

to distribute

Signature of
Author

Pepartment of Biology
I4ugust 1997

Certified
by

Chris A. Kaiser
Thesis Supervisor

Accepted
by

Frank Solomon
Chairperson, Departmental
Committee on Graduate Studies

SEP 251 1
-1-



Towards an Understanding of the Role of
COPII Subunits in Vesicle Coat Assembly

by David A. Shaywitz

Submitted to the Department of Biology in August 1997
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract:

In eukaryotic cells, proteins traversing the secretory pathway are
transported from the endoplasmic reticulum (ER) to the Golgi apparatus by
membrane-bounded vesicles formed by the recruitment and assembly of
cytosolic coat components upon the ER membrane. Three cytosolic factors,
collectively termed COPII, have been shown to be required for vesicle formation
in the yeast S. cerevisiae: the Sec23p/Sec24p protein complex, the
Secl3p/Sec31p protein complex, and the small GTP-binding protein Sarilp.
Recent evidence suggests that the membrane-associated protein Secl 6p also
participates in the formation of the vesicle coat, and may be considered an
additional component of the COPII complex.

To better understand the role of COPII subunits, we have adopted two
different approaches:

1. Identification of yeast proteins that are associated with COPII subunits.
We have found that Sec31p binds not only Secl3p, but also Secl6p, Sec23p,
and Sec24p. A different region of Sec31 p appears to mediate each of these
interactions. In addition, we have shown that the binding of Sec31 p to Secl 6p
is necessary for ER to Golgi transport. We propose that Secl6p organizes the
assembly of a coat which is stabilized both by the interaction of Sec3l p with
Sec23p and Sec24p, as well as by the interaction of all three of these
components with Secl6p.

2. Identification and characterization of COPII homologs in mammalian
cells. We have shown that although the mammalian homolog of SEC13,
Sec 13R, does not complement a secl3-1 mutant, chimeric constructs
representing the N-terminal half of either Secl3p or Secl3Rp, and the C-
terminal half of the other protein, are able to complement the sec13-1 secretion
defect. We have also demonstrated that in mammalian cells, Sec13Rp is
localized to the cisternae and vesicles in the region of the transitional ER. In
addition, we have shown that yeast Secl3p and human Sec13Rp both interact
with the same region of yeast Sec31 p. Collectively, these results suggest that
the function of Secl3p -- and of the COPII coat as a whole -- has been
evolutionarily conserved.
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Title: Associate Professor of Biology
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PREFACE

Portions of this chapter are in press in "The Molecular and Cellular

Biology of the Yeast Saccharomyces." Vol. 3. Broach, J.R., Pringle, J., and E.

Jones, Eds. Cold Spring Harbor Laboratory Press, as:

Chris A. Kaiser, Ruth E. Gimeno, and David A. Shaywitz. Protein Secretion,

Membrane Biogenesis, and Endocytosis. Pp. 1 - 137.
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Overview

A defining characteristic of eukaryotic cells is the presence of organelles

-- distinct, membrane-enclosed compartments evolved to host a specific set of

biochemical reactions. The ability to create enclosed intracellular spaces

presumably affords the eukaryotic cell greater opportunity to utilize processes

that would be difficult to carry out in a less specialized biochemical

environment. Thus, while proteins synthesized by bacteria are compelled to

mature under essentially identical conditions -- the chemical environment of

the bacterial cytoplasm - proteins synthesized by eukaryotic cells are afforded

two potential pathways: they can either fold in the cytoplasm or enter the

specialized organelles comprising the secretory pathway. These organelles --

and the mechanism of transport between them -- will be the focus of this

discussion.

Almost every eukaryotic protein destined either for release into the

extracellular space or for residence in the plasma membrane or the lysosome

(vacuole in yeast) travels through a defined series of organelles, starting with

the endoplasmic reticulum (ER), and continuing through the cis-, medial-,

and trans-Golgi. Travel from one compartment to another is mediated by

membrane-bounded vesicles which bud from the donor compartment and

later fuse with the target organelle (Palade, 1975). In the most fully

understood examples of protein transport between organelles, vesicle

budding is accompanied by the assembly upon the membrane of a coat that is

derived from soluble cytosolic proteins. The coat is thought to contribute to

both the formation of the vesicle and the selection of its cargo; this dual role

is particularly important because it implies that coat proteins are information-
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rich. Consequently, the study of coat proteins is likely to yield important

insights into both the biomechanics of vesicle formation as well as the

regulation of cargo transport.

Three different types of coated vesicles have been well-characterized in

yeast and mammalian cells. The first class of coated vesicles to be discovered

has a cytosolic coat composed of an outer lattice of clathrin and four

additional proteins that constitute the adaptor protein (AP) complex (Pearse

and Robinson, 1990). Clathrin-coated vesicles in mammalian cells are

responsible for transport steps directed to the lysosome either from the

plasma membrane or from the trans-Golgi compartment. A second type of

vesicle coat, known as COPI, was discovered by cell-free reconstitution of

transport between Golgi compartments. These vesicles are coated with a

complex of seven proteins known as coatomer (Rothman 1994). The

involvement of COPI vesicles in transport through the Golgi has yet to be

established definitively in vivo. Experiments in yeast have shown that COPI

vesicles are involved in retrograde transport from the Golgi to ER

(Letourneur et al., 1994) and in budding from the ER (Bednarek et al, 1995).

The third vesicle type carries proteins from the ER to the Golgi and is coated

with a set of proteins known as COPII (Barlowe et al., 1994).

ER to Golgi Transport I: Role of the ER

The ER is the first compartment of the secretory pathway, and

facilitates at least three processes critical for secretion: (1) folding of secretory

proteins; (2) oligmerization of secretory proteins; (3) initial glycosylation of

secretory proteins. Secretory proteins entering the ER encounter an

environment very different than that of the cytosol; perhaps most
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significantly, the ER is an oxidizing environment and facilitates the

formation of disulfide bonds, while the cytoplasm is a reducing environment,

and is not conducive to disulfide bond formation. The folding of secretory

proteins in the ER is also facilitated by a number of resident ER proteins,

including protein disulfide isomerase, which is thought to mediate disulfide

bond rearrangement, and BiP, which appears to stabilize partially-folded

intermediates (Freedman, 1984; Bole et al., 1986).

The oligomerization of many protein complexes also occurs in the ER;

examples include the viral hemagglutinin trimer, the yeast V-ATPase protein

complex, and the mammalian T-cell receptor complex (Doms et al., 1993;

Bauerle et al., 1993; Bonifacino et al., 1989). Many proteins also receive

glycolytic modifications en route through the secretory pathway,

modifications which are usually initiated in the ER. Glycosylation has been

shown to be important for intracellular protein folding and targeting, as well

as for the stabilization of secreted proteins in the extracellular environment

(Gahmberg and Tolvanen, 1996).

Following proper folding, oligomerization (if appropriate), and initial

glycosylation in the ER, secretory proteins are transported to the cis-Golgi via

membrane-enclosed vesicles, approximately 60 nm in diameter. Considerable

evidence has accumulated indicating that the entry of cargo molecules into

ER-derived secretory vesicles reflects an important sorting decision made by

the cell. For example, although discrete retention signals (which allow

resident ER proteins to be retrieved from the Golgi) have been characterized

(Pelham, 1995), resident ER proteins lacking these signals still exit the ER at a

rate much slower than that of actual secreted proteins (Munro and Pelham,

1987; Hardwick et al., 1990). Furthermore, careful immuno-electron

microscopy (EM) studies suggest that in mammalian cells, at least some
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secretory proteins are concentrated during ER to Golgi transport (Mizuno and

Singer, 1993; Balch et al., 1994). Finally, COPII vesicles formed in vitro from

either microsomes or from nuclear envelope preparations are enriched for

proteins known to enter the secretory pathway, and seem to lack resident ER

proteins (Barlowe et al., 1994; Bednarek et al., 1995). These data suggest that a

distinction between resident and transported protein is made in the ER, at the

level of packaging into transport vesicles.

ER to Golgi Transport II: Experimental approaches

The dissection of ER to Golgi transport in yeast has been facilitated by

both the discovery of conditional mutants that are defective in either vesicle

formation or vesicle fusion, and by in vitro reconstitution studies which

have helped to define the essential components of the assembly and fusion

machinery.

The first genetic screen for secretory (sec) mutants identified twenty-

three complementation groups; analysis of the maturation of a marker

protein revealed that a subset of the sec mutants were defective in ER to Golgi

transport (Novick et al., 1981). Careful morphological analysis further

divided the ER to Golgi transport-defective mutants into a class required for

the formation of vesicles and a class required for the consumption of vesicles;

vesicle consumption mutants (including secl7, sec18, and sec22) accumulated

50nm transport vesicles, while vesicle formation mutants (including secl2,

secl3, secl6, and sec23) did not (Kaiser and Schekman, 1990). Epistasis analysis

confirmed that vesicle formation mutants function at an earlier stage than

vesicle consumption mutants (Kaiser and Schekman, 1990).
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The second approach to dissection of ER to Golgi transport is based on

the in vitro reconstitution of this transport step (Baker et al., 1988; Ruohola et

al., 1988). In its simplest form, in vitro ER to Golgi transport assays measure

addition of Golgi-specific carbohydrate modifications to radiolabeled prepro-

a-factor that has been post-translationally translocated into the ER. Gently-

lysed cells or partially purified ER membranes can serve as a donor

compartment, while the acceptor compartment is generally supplied by a

membrane fraction enriched in Golgi membrane by differential

centrifugation. In the presence of exogenously added cytosolic proteins and

ATP, typically 25 to 50% of the input a-factor is modified in this system.

The basic in vitro assay has been modified to allow vesicle formation to

be evaluated independently of vesicle fusion. The assay for vesicle budding

begins with a-factor within rapidly sedimenting ER membranes, and follows

its conversion to a slowly sedimenting fraction that corresponds to free

vesicles (Groesch et al., 1990; Rexach et al., 1991; Rexach et al., 1994; Barlowe et

al., 1994; Oka and Nakano, 1994). In this assay, mutants required for vesicle

formation in vivo (such as secl2 and sec23 ) were also found to be defective

for vesicle budding in vitro. Similarly, the vesicle accumulating mutant

secl8 was shown to be defective for vesicle fusion in vitro (Rexach et al., 1991;

Rexach et al., 1994; Oka and Nakano, 1994). Importantly, these studies of

mutants establish a faithful correspondence between the in vitro transport

assay and the events that occur in vivo.

Attempts to purify ER to Golgi transport vesicles from whole cells have

failed probably because of the low abundance of these organelles. Pure ER to

Golgi transport vesicles can be produced in quantity by in vitro budding

reactions under conditions where vesicle fusion with an acceptor

compartment is inhibited by mutation, antibody, or the absence of fusion
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factors (Groesch et al., 1990; Rexach et al., 1994; Barlowe et al., 1994; Oka and

Nakano, 1994). Purified ER-derived vesicles thus produced are functional

transport intermediates since they are competent to fuse with Golgi

membranes (Groesch et al., 1990; Rexach et al., 1994; Barlowe et al., 1994; Oka

and Nakano, 1994). ER-derived vesicles produced in vitro have uniform

morphology (-60 nm diameter), and when formed under the appropriate

conditions are encapsulated in a protein coat that can be visualized by

electron microscopy after fixation and staining with tannic acid. This coat

consists of a subset of the proteins required for vesicle formation in vivo and

in vitro, and has been termed COPII (Barlowe et al., 1994). Vesicle production

in vitro appears to reproduce the normal selectivity in segregation of vesicle

proteins from ER proteins that occurs before or during vesicle formation,

since the vesicles that bud in vitro contain known vesicle docking factors,

such as Sec22, and Bos1p, but do not contain resident ER proteins (Barlowe et

al., 1994; Rexach et al., 1994; Lian and Ferro-Novick, 1993). In addition, these

vesicles have a characteristic set of twelve membrane proteins, termed ERV

(ER-vesicle associated) proteins, one of which has been shown to be

Emp24p/Bst2p (Rexach et al., 1994; Schimm611er et al., 1995).

ER to Golgi Transport III: COPII coat components

A. Overview

Vesicle formation from the ER in vitro requires both ER membranes

and concentrated cytosolic protein. Five polypeptides - two heteromeric

protein complexes, the Sec23p/Sec24p complex and the Secl3p/Sec31p

complex, and a small GTP-binding protein, Sarlp - in pure form will satisfy

this requirement for cytosolic protein in vesicle budding (Salama et al., 1993;
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Barlowe et al., 1994). These five proteins are present on completed vesicles

and are abundant components of the COPII coat (Barlowe et al., 1994). The

COPII coat is morphologically distinct from the clathrin coat, and does not

contain components of the coatomer (COPI) coats (Barlowe et al., 1994;

Bednarek et al., 1994). In addition to these cytosolic factors, two additional

proteins -- Secl6p and Secl2p -- are also involved in COPII vesicle formation.

Secl6p is a protein that is tightly associated with the ER membrane and is also

present on ER-derived vesicles produced in vitro (Espenshade et al., 1995).

Secl6p binds to three cytosolic COPII coat components, Sec23p, Sec24p and

Sec31p, and may be a foundation upon which these proteins assemble

(Espenshade et al., 1995; Gimeno et al., 1996; Shaywitz et al., 1997). The

integral ER membrane proteins Secl2p may regulate COPII vesicle formation,

but is not incorporated into completed vesicles (Barlowe et al., 1994; Gimeno

et al., 1995).

It is important to note that the distinction between cytosolic and

membrane-associated COPII coat components is defined by the behavior of

the in vitro assay as carried out on ER membranes that have been extracted

with urea to remove peripheral proteins, and may not accurately reflect the

distribution of these proteins in living cells. For example, Sec23p and Sarlp

have been defined as cytosolic COPII coat components in the context of the in

vitro assay, yet depending upon the lysis conditions, these proteins can also be

found associated with membranes in crude cell extracts. It is also noteworthy

that the in vitro budding assay has been most useful for study of essential

factors that can be depleted from the starting ER membranes and then be

added back in soluble form. Additional peripheral membrane proteins like

Secl6p that are not easily extracted from ER membranes may have initially

escaped detection by the budding assay.
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B. Sec23p/Sec24p

SEC23 was initially isolated as an ER to Golgi mutant in the original sec

screen, and was subsequently determined to participate in vesicle formation

(Novick et al., 1981; Kaiser and Schekman, 1990). The conservation of the

temperature sensitive phenotype under in vitro conditions facilitated the

biochemical isolation of Sec23p activity from wild-type cytosol (Baker et al.,

1988; Hicke et al., 1989). Functional Sec23p was purified as a 300-400 kD

complex that contains both the 85 kD Sec23p and a 105 kD protein designated

Sec24p (Hicke et al., 1992; Yoshihisa et al., 1993); the precise stoichiometry of

these two protein partners has not yet been established. Sec24p, like Sec23p, is

essential, and is required for ER to Golgi transport both in vitro (Barlowe et

al., 1994) and in vivo (R. Gimeno, A. Frand, and C. Kaiser, unpublished

observations). Furthermore, the Sec23p/Sec24p complex represents one of

the major components of the COPII vesicle coat, and is required for its

formation (Barlowe et al., 1995; Bednarek et al., 1995).

Not only do Sec23p and Sec24p interact with each other, both

biochemically and genetically, but they also each exhibit genetic interactions

with the genes encoding the other COPII components -- SEC13, SEC31, SEC16,

and SAR1. Secl6p has been shown to bind directly to both Sec23p and Sec24p;

the two protein partners bind to different sites on Secl6p, and the binding of

one subunit can occur in the absence of the other (Gimeno et al., 1996).

Sec31p also has been shown to bind directly to both Sec23p and Sec24p; for

these interactions as well, the binding of one subunit to Sec31p does not

require the presence of the other (Shaywitz et al., 1997). Sec23p has also been

shown to function as a GTPase-activating protein (GAP) for Sarlp,

stimulating its GTPase activity by a factor of ten; Sec24p does not appear to
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affect the GAP activity of Sec23p (Yoshihisa et al., 1993). While the GAP

activity of Sec23p has also stimulated the generation of several different

hypothesis regarding Sec23p function (Oka and Nakano, 1994; Schekman and

Orci, 1996), the role of the Sec23p/Sec24p complex in the formation of COPII

vesicles still remains to be established.

Two human Sec23 homologs have been identified, hSec23Ap and

hSec23Bp (Paccaud et al., 1996). The hSec23A protein complements a yeast

sec23 temperature sensitive mutant, and in mammalian cells, has been

localized to the cisternae and vesicles in the region of the transitional ER. Gel

filtration analysis of HepG2 cytosol suggests that hSec23Ap (like yeast Sec23p)

fractionates as a 350 kD complex. Immunoprecipitation of hSec23A from

clarified cytosol identifies a prominent band with an apparent molecular

weight of 110 kD; this is approximately the molecular weight of yeast Sec24p.

Although a mammalian Sec24p homolog has not yet been cloned, a cDNA

encoding a protein with significant homolog to Sec24p has been reported

(D38555; KIAA0079 gene product; Nomura et al., 1994).

C. Secl3p /Sec31p

SEC13 was isolated in the original screen for secretion mutants and was

shown to be required for the vesicle formation step of ER to Golgi transport

(Novick et al., 1981; Kaiser and Schekman, 1990). Immunodepletion

experiments revealed a requirement for Secl3p in the in vitro transport assay

(Pryer et al., 1993; Salama et al, 1993). Purification of Secl3p activity from

wild-type cytosol revealed that Secl3p exists as a complex with the 150 kD

Sec31p protein (Pryer et al., 1993; Salama et al, 1993; Salama et al., 1997).

Although the size of the Sec31p/Secl3p complex was initially estimated to be

approximately 700 kD, based on gel-filtration chromatography (Salama et al.,
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1993), more recent studies using sedimentation through a glycerol gradient

resulted in a size determination of 166 kD, approximately the predicted size of

a Secl3p/Sec31p dimer (Salama et al., 1997). Both SEC13 and SEC31 are

essential genes, required for vesicle transport in vivo and in vitro (Kaiser and

Schekman, 1990; Salama et al., 1993; Barlowe et al, 1994; Wuestehube et al.,

1996). The Secl3p/Sec31p complex, like the Sec23p/Sec24p complex,

represents a major component of the COPII coat and is required for its

formation (Barlowe et al., 1994; Bednarek et al, 1995).

Both SEC13 and SEC31 exhibit genetic interactions with the other COPII

genes (SEC23, SEC24, SAR1, SEC16) (Kaiser and Schekman, 1990; Gimeno et

al, 1995; Salama et al., 1997; A. Frand and C. Kaiser, unpublished

observations). Structurally, Secl3p appears to consist almost entirely of six

WD-40 repeats, a motif first described in the 3-subunit of trimeric G-proteins,

and subsequently shown to specify a P-propeller structure (Neer and Smith,

1996). Secl3p interacts with a WD-40-containing domain of Sec31p, raising

the possibility of a homotypic interaction (Shaywitz et al., 1997). Secl3p also

appears to interact with Secl6p (Appendix II), consistent with the proposed

role for Secl6p in organizing COPII coat assembly (vide infra).

Further analysis of Sec31p has demonstrated that in addition to binding

Secl3p, it can also bind Sec23p, Sec24p, and Secl6p (Shaywitz et al., 1997).

While the N-terminal (WD-40) region of Sec31p appears to mediate binding

to Secl3p, the extreme C-terminal region is required for binding to Secl6p. A

Sec31p mutant lacking the final 127 amino acids of the 1273-amino acid

protein can bind Secl3p, Sec23p, and Sec24p, but not Secl6p; this mutant also

fails to complement a sec31A mutant, and cannot rescue the ER to Golgi

transport defect of the temperature-sensitive sec31-2 mutant. These data
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suggest that the binding of Sec31p to Secl6p is essential, and required for ER to

Golgi transport.

The precise function of the Secl3p/Sec31p complex in the formation of

COPII vesicles remains incompletely understood, a conclusion emphasized by

recent data which suggests that Secl3p may not always be required for ER to

Golgi transport (vide infra). In particular, loss of function mutations in at

least three genes (BST1, BST2/EMP24, and BST3) have been isolated that

bypass the requirement for Secl3p in ER to Golgi transport (Elrod-Erickson

and Kaiser, 1996). These mutants have only subtle phenotypes on their own:

mutations in bstl-3 slow transport of a subset of secreted proteins from the ER

to the Golgi apparatus and increase the rate at which ER-resident proteins

Kar2p and Pdilp reach the Golgi apparatus (Schimm611er et al., 1995; Stamnes

et al., 1995; Elrod-Erickson and Kaiser, 1996). This phenotype is consistent

with a decrease in the fidelity of cargo sorting at the ER that could be

explained if BSTI-3 encode components of a checkpoint that monitors fidelity

of cargo sorting and prevents the budding of immature or improperly coated

vesicles (Elrod-Erickson and Kaiser, 1996). Alternatively, since Bst2p/Emp24p

is a major integral membrane component of ER-derived transport vesicles, it

has been suggested that Emp24p/Bst2p is a sorting receptor for a subset of

cargo molecules (Schimm6ller et al., 1995).

Secl3p may also have functions apart from vesicle formation at the ER

that are not shared by other COPII coat components. A role for Secl3p in the

regulated transport of proteins from the Golgi to the plasma membrane was

suggested by the sorting defect of the amino acid permease Gap1p observed in

secl3 mutant strains grown at temperatures permissive for ER to Golgi

transport (Roberg et al., 1997). In addition, Secl3p and a Secl3p homologue,

Seh1p, but not Sec31p are present in a subcomplex of the nuclear pore
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(Siniossoglou et al., 1996). However, secl3 mutants are not defective in

nuclear import suggesting that the association of Secl3p with the pore may

not be important for pore function. In contrast, Seh1p does appear to be

involved in nuclear pore function, since sehl mutations genetically interact

with other nuclear pore complex components (Siniossoglou et al., 1996).

A mammalian homolog of Secl3p, Secl3Rp, was discovered

serendiptously (Swaroop et al., 1994). Although SEC13R itself could not

complement a secl3-1 mutant, chimeric constructs representing the N-

terminal half of either Secl3p or Secl3Rp, and the C-terminal half of the

other protein, could complement the secl3-1 secretion defect (Shaywitz et al.,

1995). Secl3p has also been shown to localize to the area of the transitional

ER, in a distribution indistinguishable from that of mammalian Sec23 and

Sarl. The localization of Secl3 was not affected by treatment with brefeldin A

(BFA; an antibiotic that inhibits the nucleotide exchange activity required for

the binding of ARF to membranes), in contrast to the localization of coatomer

subunits; this insensitivity to BFA was shared by Sec23, and placed these two

proteins in a different category from the proteins of the COPI complex.

Finally, the ER to Golgi transport of the marker protein VSV-G was inhibited

by anti-Secl3Rp antibodies in a semi-intact cell assay, providing further

evidence that the function of Secl3 has been evolutionarily conserved (Tang

et al., 1997). Although a mammalian homolog of Sec31p has not been

identified, the finding that human Secl3Rp exhibits a strong and specific

interaction with the N-terminal region of yeast Sec31p implies the existence

of a mammalian Sec31 protein (Shaywitz et al., 1997).

D. Secl6p
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SEC16 encodes an essential, 240 kD hydrophilic protein required for the

formation of ER to Golgi transport vesicles in vivo (Kaiser and Schekman,

1990; Espenshade et al., 1995). Secl6p is tightly associated with the periphery

of the ER, and is also found on ER-derived transport vesicles that are

produced in vitro (Espenshade et al., 1995). In contrast to other COPII

components, Secl6p cannot be extracted from membranes by urea, explaining

why it has not needed to be added as a cytosolic factor to the in vitro transport

assay (Espenshade et al., 1995). SEC16 exhibits genetic interactions with the

five other COPII genes (Nakano and Muramatsu, 1989; Kaiser and Schekman,

1990; Gimeno et al., 1995) and Secl6p has been shown to bind directly to the

COPII subunits Sec23p, Sec24p, and Sec31p (Espenshade et al., 1995; Gimeno et

al., 1996; Shaywitz et al., 1997). In addition, membranes prepared from sec16

mutant strains are defective for the formation of COPII vesicles in vitro

(Cambell and Schekman, 1997); the in vitro formation of COPII vesicles is also

inhibited by the addition of Secl6p-specific antibodies to the budding reaction

(P. Espenshade, unpublished results). An attractive hypothesis is that Secl6p

on the ER membrane serves as a COPII foundation, and organizes the

recruitment and assembly of COPII coat components. This structure might be

stabilized not only by the interaction of the two COPII complexes with Secl6p,

but also by their interaction with each other (Shaywitz et al., 1997).

Furthermore, the genetic interactions between SEC16 and SAR1 suggest that

Sarlp could regulate the Secl6p-mediated coat assembly process (Nakano and

Muramatsu, 1989, Gimeno et al., 1995).

A mammalian homolog of Secl6p has not been identified; a two-

hybrid screen for such a protein is described in Chapter 3.

E. Sarlp

- 20-



SAR1 was identified as a high-copy suppressor of mutations in SEC12

and SEC16 (Nakano and Muramatsu, 1989). SAR1 is an essential gene

required for ER to Golgi transport, encodes a small GTP-binding protein most

closely related to ARF, a GTP-binding protein that regulates assembly of the

coatomer (COPI) coat (Oka et al., 1991; Barlowe et al., 1993). Sarlp is a

component of the COPII vesicle coat, and is required for its formation

(Barlowe et al., 1994; Bednarek et al., 1995).

SAR1 exhibits genetic interactions with the five other COPII

components. In addition, the activity of Sarlp has been shown to be modified

by the COPII subunit Sec23p, which functions as a Sarlp-GAP, and by Sec12p,

which functions to increase the rate of guanine nucleotide exchange by Sarlp.

Sarlp has an intrinsic guanine-nucleotide off-rate (0.07 min - 1) and GTPase

activity (0.0011 min - 1) similar to those of other small GTP-binding proteins

(Barlowe et al., 1993). Secl2p and Sec23p increase these rates (respectively) by

about an order of magnitude and Secl2p and Sec23p together increase the rate

of GTP hydrolysis by approximately 50-fold (Barlowe and Schekman, 1993;

Yoshihisa et al., 1993). Like Arflp, Sarlp requires the presence of detergents or

phospholipids for GTP binding (Barlowe et al., 1993), however, unlike other

small GTP-binding proteins, including ARF, Sarlp does not appear to require

lipid modifications for its function (Oka et al., 1991; Barlowe et al., 1993).

In vitro studies suggest that vesicle budding requires Sarlp in its GTP-

bound form (Rexach and Schekman, 1991; Oka et al., 1991; Barlowe et al. 1993;

Barlowe et al., 1994; Oka and Nakano, 1994). GTP-hydrolysis is not required

for vesicle formation since budding still occurs when nonhydrolyzable

analogs of GTP, are used, although under these conditions greater quantities

of Sec23p/Sec24p and Secl3p/Sec31p are needed (Barlowe et al., 1994). GTP-

hydrolysis by Sarlp is required for the overall transport process as the vesicle
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fusion step is sensitive to nonhydrolyzable GTP analogs (Barlowe et al., 1994;

Oka and Nakano, 1994).

Sarlp is thought to function by regulating assembly and disassembly of

the cytosolic COPII coat components. A simple model is that Sarlp in its GTP-

bound state promotes assembly of the COPII coat, while GTP-hydrolysis by

Sarlp promotes disassembly of the COPII coat (Barlowe et al., 1994). This

hypothesis is supported by in vitro data demonstrating that the COPII vesicle

coat produced in the presence of GTP is unstable, and readily dissociates from

budded vesicles, but when non-hydrolyzable analogs of GTP are substituted in

the budding reaction, the resulting COPII coat is stabilized (Barlowe et al.,

1994). These in vitro studies also indicate that COPII coat disassembly occurs

in two distinct steps: first, Sarlp rapidly hydrolyzes GTP and dissociates from

the vesicle, leaving a coat of Sec23p/Sec24p, Secl3p/Sec31p and possibly

Secl6p (Barlowe et al., 1994). Second, Sec23p/Sec24p and Secl3p/Sec31p

dissociate from the vesicle (Barlowe et al., 1994). It has not been established

whether dissociation of Secl6p from the vesicle membrane ever occurs.

A mammalian homolog of Sarlp was identified using degenerate PCR

(Kuge et al., 1995). Two clones, Sarla and Sarlb were isolated; these clones

are 91% identical to each other at the amino acid level, and are 61-67%

identical to Sarlp. Immunoelectronmicroscopy using antibodies raised

against Sarla (and also reactive with Sarlb) demonstrated that Sarl, like

mammalian Secl3 and Sec23, is found in the region of the transitional ER.

Inhibition of the ER to Golgi transport of the marker protein VSV-G in vivo

and in vitro using a deliberately designed dominant negative Sarl mutant

demonstrated the requirement for Sarl in mammalian ER to Golgi transport.

F. Secl2p
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Secl2p is an integral membrane protein that influences vesicle budding

at the ER, but is not itself incorporated into vesicles. SEC12, an essential gene

required for the formation of ER-derived vesicles, encodes a type II

transmembrane protein that localizes to the ER, but is absent from vesicles

produced in vitro (Nakano et al., 1988; Kaiser and Schekman, 1990;

Nishikawa and Nakano, 1993; Barlowe et al., 1994). The cytosolic domain of

Secl2p is essential and stimulates guanine-nucleotide exchange by Sarlp,

whereas the luminal domain appears to be less important since truncation of

this domain does not greatly interfere with SEC12 function (d'Enfert et al.,

1991a; Barlowe and Schekman, 1993). The cytosolic domain of Secl2p may

also function to recruit Sarlp to the ER membrane since overexpression of

Secl2p depletes Sarlp from the cytosol and increases the membrane-

associated pool of Sarlp (d'Enfert et al., 1991b; Barlowe et al., 1993).

Recruitment may not involve direct binding between Secl2p and Sarlp since

a stable association between these proteins has not been observed. However,

if Sarlp in its GTP-bound state has a high affinity for the ER membrane,

Secl2p may effect recruitment simply by stimulating nucleotide exchange. It

appears that for Sarlp to be properly activated, the exchange activity of Secl2p

must be in proximity to the ER membrane since truncations of Secl2p that

liberate a soluble exchange activity inhibits vesicle budding from the ER. This

inhibition can be overcome by the addition of increased amounts of Sarlp

(Barlowe and Schekman, 1993).

ER to Golgi Transport IV: Cargo sorting during COPII vesicle formation

If important sorting decisions occur during the formation of COPII

vesicles, as suggested above, it is likely that the COPII proteins themselves
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participate in the selection process, and communicate critical information

about the selection of cargo to the budding vesicles, possibly through

interactions with transmembrane proteins. Coat-mediated sorting is well

documented during the formation of clathrin and COPI-mediated vesicles in

mammalian cells (Schekman and Orci, 1996). In these coats, sorting is

mediated by binding of integral membrane cargo proteins or sorting receptors

to subunits of the clathrin or the COPI coat (Ohno et al., 1996; Cosson and

Letourneur, 1994). Thus far, no binding between a COPII subunit and a cargo

protein has been demonstrated, although it has been suggested that Sec23p

may sample cargo proteins at the ER during the initial steps of vesicle

formation (Schekman and Orci, 1996).

The analysis of sorting during vesicle formation at the ER is

complicated by the absence of a defined sorting signal or sorting receptor. No

common signal required for exit from the ER has been defined and mutants

blocked in ER to Golgi transport did not reveal a candidate sorting receptor.

One attractive hypothesis is that the sorting of integral membrane proteins is

mediated by the interaction of these proteins with the COPII coat. In this

scheme, the coat complex would collectively function as a "receptor surface,"

with many potential sites available for interaction with cargo membrane

proteins. The sorting of soluble cargo molecules requires additional

assumptions; one possibility is that soluble cargo binds to integral plasma

membrane proteins, and follows them through the secretory pathway.

Alternatively, there may be a family of integral membrane proteins that

function as "sorting receptors," binding on the one hand to COPII proteins,

and on the other, to soluble cargo molecules. Emp24p/Bst2p, an integral ER

membrane protein, has been suggested to be such a receptor. Emp24p was

cloned because it is also a prominent component of ER-derived vesicles
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(Schimm6ller et al., 1994); a chromosomal deletion of EMP24 does not impair

growth but slows ER to Golgi transport of a subset of cargo proteins (invertase

and Gas1p), consistent with a role in segregating particular cargo molecules

into the vesicles. However, direct binding of Emp24p to cargo proteins has

not been observed.

Emp24p/Bst2p and a second ER membrane protein, Bstlp, were also

identified because their deletion allows cells to grow in the absence of Secl3p

(Elrod-Erickson and Kaiser, 1996; vide supra, "Sec31p/Secl3p"). Strains

deleted for Bstlp or Emp24p/Bst2p have a decreased fidelity of cargo protein

sorting, evidenced by a kinetic defect in the export of a secreted protein

(invertase) from the ER, and secretion of the normally ER-retained proteins

Kar2p, Pdilp, and an invertase mutant defective in signal sequence cleavage

(Elrod-Erickson and Kaiser, 1996). Since bstl and bst2 mutants affect both

protein sorting and the requirement for a COPII coat component, Bstlp and

Emp24p/Bst2p may constitute part of a checkpoint that monitors both protein

sorting and COPII coat assembly, before allowing vesicle formation to proceed

(Elrod-Erickson and Kaiser, 1996).

ER to Golgi Transport V: Towards a model for COPII vesicle formation

Biochemical and molecular analysis of the proteins required for vesicle

formation suggest an outline for the pathway for COPII coat assembly. The

first step in vesicle formation at the ER is thought to be guanine-nucleotide-

exchange by Sarlp and recruitment of Sarlp to the ER membrane. This step is

probably stimulated by Secl2p. Next, Sarlp in its GTP-bound, membrane-

associated form may recruit the coat components Sec23p/Sec24p and

Secl3p/Sec31p to Secl6p. This complex could then nucleate further
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polymerization of coat subunits to eventually form a vesicle bud. This model

is developed further in Chapter V.

ER to Golgi Transport VI: Future directions

The process of vesicle formation at the ER remains incompletely

understood, and many fundamental questions remain. For example, how is

the site of budding determined? What is the order of component assembly

on the ER membrane? How is this assembly process regulated? Are there

other factors required for vesicle assembly in vivo that, like Secl6p, have

escaped detection by the in vitro assay? What is the relationship between the

assembly of the coat structure and the deformation of the ER membrane from

a flat surface into a vesicle bud? What is the mechanism of vesicle scission?

What is the basis for cargo selection? What regulates dissociation of the coat?

Resolution of these questions will require both the refinement of the in vitro

assay as well as the isolation of additional mutants.
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Chapter II

Human SEC13Rp functions in yeast and is located on
transport vesicles budding from the endoplasmic reticulum
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PREFACE

This chapter has been published in its entirety in the Journal of Cell

Biology as: David A. Shaywitz, Lelio Orci, Mariella Ravazzola, Anand

Swaroop, and Chris A. Kaiser (1995): Human SEC13Rp functions in yeast and

is located on transport vesicles budding from the endoplasmic reticulum. J.

Cell Biol. 128:769-777.

A. Swaroop provided the human SEC13R clone; L. Orci and M.

Ravazzola performed the immunoelectronmicroscopy.
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ABSTRACT

In the yeast S. cerevisiae, Secl3p is required for intracellular protein

transport from the endoplasmic reticulum (ER) to the Golgi, and has also

been identified as a component of the COPII vesicle coat structure. Recently, a

human cDNA encoding a protein 53% identical to yeast Secl3p has been

isolated. In this report, we apply the genetic assays of complementation and

synthetic lethality to demonstrate the conservation of function between this

human protein, designated SEC13Rp, and yeast Secl3p. We show that two

reciprocal human/yeast fusion constructs, encoding the N-terminal half of

one protein and the C-terminal half of the other, can each complement the

secretion defect of a secl3-1 mutant at 360 C. The chimera encoding the N-

terminal half of the yeast protein and the C-terminal half of the human

protein is also able to complement a SEC13 deletion. Overexpression of either

the entire human SEC13Rp protein or the chimera encoding the N-terminal

half of the human protein and the C-terminal half of the yeast protein

inhibits the growth of a secl3-1 mutant at 24°C; this growth inhibition is not

seen in a wild-type strain nor in other sec mutants, suggesting that the N-

terminal half of SEC13Rp may compete with Secl3-1p for a common target.

We show by immunoelectronmicroscopy of mammalian cells that SEC13Rp

-- like the putative mammalian homologues of the COPII subunits Sarlp and

Sec23p -- resides in the region of the transitional ER. We also show that the

distribution of SEC13Rp is not affected by brefeldin A treatment. This report

presents the first demonstration of a putative mammalian COPII component

functioning in yeast, and highlights a potentially useful approach for the

study of conserved mammalian proteins in a genetically tractible system.
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INTRODUCTION

Proteins secreted by eukaryotic cells are vectorially transported from

the ER through the Golgi apparatus to the cell surface in a series of steps

mediated by membrane-bounded vesicles (Palade, 1975). The ability to study

vesicle budding and fusion events in both yeast and mammalian systems has

greatly facilitated the detailed molecular study of intracellular protein

transport (Pryer et al., 1992; Rothman and Orci, 1992; Kaiser, 1993).

Vesicular transport between adjacent Golgi stacks has been extensively

investigated in mammalian systems, and a clear model has now emerged

(Ostermann et al., 1993). In this scheme, transport is initiated by the

attachment of the small molecular weight GTP-binding protein, ADP-

ribosylation factor (ARF), to the donor compartment (Donaldson et al., 1992;

Helms and Rothman, 1992; Helms et al., 1993). Bound ARF-GTP stimulates

the recruitment of coatomer, a seven-subunit protein complex, from the

cytosol, and budding occurs when coatomer binds (Donaldson et al., 1992; Orci

et al., 1993b,c; Palmer et al., 1993; Hara-Kuge et al., 1994). Finally, the

hydrolysis of ARF-GTP, presumably at the target membrane, results in coat

disassembly, and permits the vesicle to fuse (Tanigawa et al., 1993; Elazar et

al., 1994).

Both ARF and the P-COP subunit of coatomer have also been

implicated in ER to Golgi transport. Transport of the vesicular stomatitis

virus glycoprotein (VSV-G) from the ER is inhibited by the overexpression of

a dominant negative ARF mutant (T31N) in cultured cells (Dascher and

Balch, 1994). VSV-G transport from the ER is also inhibited by 3-COP-specific

antibodies in both microinjected (Pepperkok et al., 1993) and digitonin-
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permeabilized (Peter et al., 1993) cells. These data suggest a possible role for

coatomer in ER to Golgi transport.

Vesicular transport from the ER to the Golgi has been extensively

studied in the yeast S. cerevisiae, and more than 20 genes have been

implicated in this process (Kaiser, 1993). One of these genes, SEC21, is

homologous to the y-subunit of coatomer (Hosobuchi et al., 1992). However,

purification of S. cerevisiae transport-competent vesicles synthesized in vitro

has revealed a coat complex containing five proteins previously implicated in

vesicle-formation - Secl3p, Sec23p, Sec24p, Sec31p and Sarlp -- but not Sec21p

(Barlowe et al., 1994). Secl3p and Sec23p were initially identified by

temperature-sensitive mutations which block vesicle formation at the non-

permissive temperature (Novick et al., 1980; Kaiser and Schekman, 1990).

Sec24p and Sec31p were identified by the physical association with Sec23p and

Secl3p, respectively (Hicke et al., 1992; Salama et al., 1993). Sarlp was initially

isolated as a suppressor of a mutation in the vesicle formation gene SEC12

(Nakano and Muramatsu, 1989). Since none of these proteins show any

apparent homology to subunits of the mammalian coatomer, the yeast coat

complex has been designated COP II (Barlowe et al., 1994).

Mammalian genes showing significant sequence similarity to three

COPII proteins have now been identified. Using degenerate PCR, Kuge et al.

(1994) isolated two different mammalian clones encoding proteins with

predicted amino acid sequences 61% identical to the sequence of the yeast

Sarlp protein. The export of VSV-G protein from the ER is inhibited by

overexpression of a dominant negative Sarlp mutant (T39N), as well as by

the incubation of semi-intact cells with Sarlp-specific antibody. Immuno-

electronmicroscopy (EM) analysis reveals that Sarlp is highly enriched on

vesicular carriers in the transitional region of the ER, consistent with a role in
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ER to Golgi transport. A similar distribution was also seen in mammalian

cells for Sec23p, using cross-reacting antibodies raised against the yeast Sec23p

protein (Orci et al., 1991). A mouse Sec23p homologue, encoding a product

40% identical to Sec23p, was recently discovered (Wadhwa et al., 1993); the

relationship between this protein and the protein that cross-reacts with the

anti-yeast-Sec23p antibody has not yet been established. Finally,

Swaroop et al. (1994) have identified a human gene, SEC13R, that encodes a

protein with 53% identity and 70% similarity to the amino acid sequence of

the yeast COPII protein Secl3p.

The extensive genetic study of secretion provides us with the tools to

explore the relationship between the function of a yeast COPII component

and the function of a potential mammalian homolog. Perhaps the most

direct way to study this relationship is to examine the behavior of the human

protein in yeast -- particularly yeast bearing a mutation in the corresponding

endogenous gene. Not only is this approach useful in helping us understand

and compare the process of vesicular transport in yeast and mammalian cells,

but evidence of interchangability is also required for the rigorous

demonstration of homology (Tugendreich et al., 1994).

To investigate the functional relationship between the human protein

SEC13Rp and yeast Secl3p, we examined the effect of human SEC13R

expression in mutant and wild-type yeast. Through the application of two

different genetic criteria -- complementation (Benzer, 1962) and synthetic

lethality (Dobzhansky, 1946; Sturtevant, 1956; Huffaker, 1987) -- we have been

able to show that SEC13R exhibits SEC13 function, and may therefore be

designated a mammalian homolog of SEC13. Although SEC13R itself does

not complement the temperature-sensitive yeast mutant secl3-1, two

reciprocal human/yeast chimeras, encoding the N-terminal of one protein
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and the C-terminal half of the other, are each able to rescue the secl3-1

secretion defect at 36°C; one of the chimeras can also complement a SEC13

deletion. Furthermore, overexpression of the entire mammalian gene

exhibited a negative effect in secl3-1 mutants but not in either wild-type yeast

or in other sec mutants; this result, an example of the genetic phenomenon of

synthetic lethality, strongly suggests that in yeast, Secl3p and SEC13Rp

participate in the same pathway. Together, the genetic data provide

compelling evidence that human SEC13Rp can function in yeast; SEC13Rp

thus represents the first putative mammalian homolog of a yeast COPII

component to fulfill this criterion.

Immuno-EM analysis of pancreatic cells using antibodies raised against

SEC13Rp demonstrate that SEC13Rp is concentrated in the transitional ER, in

a distribution indistinguishable from that previously observed for Sec23 in

the same cell type (Orci et al., 1991; Orci et al., 1993a). The distribution of

SEC13Rp is not affected by brefeldin A treatment, in contrast to the result seen

for coatomer (Orci et al., 1993a).

As a whole, our data not only support the existence of a mammalian

COPII structure, but also emphasize the utility of heterologous gene

expression as tool to study conserved proteins (Whiteway et al., 1993; Thukral

et al. 1993).
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MATERIALS AND METHODS

Strains, Materials, and General Methods

Yeast strains used in this study are CKY8 (MATa leu2-3,112 ura3-52), RHY305

(MATa leu2-3,112 ura3-52 secl3-1 GAL), DSY174 (MATa leu2-3,112 ura3-52

GAL [pRS315, pGAL-SEC13R]), DSY223 (MATa secl2-4 leu2-3,112 ura3-52 GAL

[pRS315, pGAL-SEC13R]), DSY216 (MATa secl3-1 leu2-3,112 ura3-52

GAL[pRS315, pGAL-SEC13R]), DSY228 (MATa sec16-2 leu2-3,112 ura3-52

GAL[pRS315, pGAL-SEC13R]), DSY232 (MATa secl7-1 leu2-3,112 ura3-52 GAL

[pRS315, pGAL-SEC13R]), DSY236 (MATa secl8-1 leu2-3,112 ura3-52 GAL

[pRS315, pGAL-SEC13R]).

Yeast culture, genetic manipulations, and molecular techniques were

as described (Sambrook et al., 1989; Rose et al., 1990). Mammalian cell extracts

were prepared by standard methods (Harlow and Lane, 1988). Materials were

obtained from Sigma Chemical Company (St. Louis, MO) unless stated

otherwise.

Gel electrophoresis was performed according to the Laemmli SDS-

PAGE method using 10% polyacrylamide (Laemmli, 1970). Affinity purified

anti-SEC13Rp antibody was used at 1:10,000 dilution. Secondary antibody was

goat-anti-rabbit IgG, conjugated to HRP (Amersham Corp., Arlington Heights,

IL), at a 1:10,000 dilution. Filter-bound antibodies were then detected by

peroxidase-catalyzed chemiluminescence (ECL kit, Amersham Corp.).

The monkey fibroblast cell line COS was grown in complete medium

consisting of Dulbecco's modified Eagle's medium with 10% fetal bovine

serum, 2 mM glutamine, 100 U/ml penicillin, and 100 U/ml streptomycin.

The chinese hamster ovary cell line CHO was grown in complete medium

consisting of Ham's F12 medium with 5% fetal bovine serum, 2 mM

-41 -



glutamine, 100 U/ml penicillin, and 100 U/ml streptomycin. Both cells lines

were maintained at 370 C in a 5% CO2 cell incubator.

Generation of Chimeric Constructs

The cloning of the SEC13R gene has been previously described (Swaroop et

al., 1994). A Clal site was introduced at nucleotide 449 in the SEC13R cDNA,

corresponding to the Clal site present in SEC13 at nucleotide 488 (Pryer et al.,

1993), using the oligonucleotide-directed mutagenesis method of Kunkle et al.

(1987). The (antisense) primer used for this mutagenesis was: 5'-

GGCAATGGTGTGAGCATCGATGATCTTCTTTACTTC-3'; altered

nucleotides are underlined. In addition to introducing a restriction site, this

procedure also altered two amino acids, changing Asnl46 -> Ile and Asnl47 ->

Asp (Fig. 1). Both mutagenized and wild-type forms were cloned into the

vector pCD43 directly downstream of the GAL10 promoter. Since both forms

behaved identically in all assays described, only the strain containing the

mutagenized form (designated pGAL-SEC13R) is shown. pCD43 is a modified

pRS316 (ARS CEN URA3) vector (Sikorski and Hieter, 1989) in which

divergent GALl and GALIO promoters have been introduced between the

BamHI and EcoRI sites in the polylinker. The N-terminal Secl3p/C-terminal

SEC13Rp chimera was constructed by linking a BamHI/ClaI SEC13 5'

fragment with a Clal-HindIII SEC13R 3' fragment. The reciprocal chimera

was constructed by linking a 5' RI-Clal SEC13R fragment with a ClaI-KpnI

SEC13 fragment. The SEC13 plasmid was generated by first introducing a

BamHI site immediately 5' to the initial ATG by PCR, using pCK1313 as a

template (Pryer et al., 1993) and 5'-

GCGGATCCAACCATGGTCGTCATAGCTAATGC-3' as the (sense) primer.
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The resulting BamHI/SacI fragment was cloned into pCD43, and was able to

rescue secl3-1 mutants at the restrictive temperature.

Chimera Complementation/Inhibition Assays

All constructs were transformed into RHY305. The vector pRS315 (Sikorski

and Hieter, 1989) was co-transformed in all experiments, rendering all strains

effectively prototrophic. Transformants were then assayed at

36 0(complementation) or at 24°(inhibition) on synthetic minimal media

(Difco) supplemented with either 2% glucose or 2% galactose.

Radiolabelling and Immunoprecipitations

Cells were pre-grown at 24°C in selective SC medium containing 2%

raffinose, and were induced by the addition of 2% galactose three hours prior

to the start of labeling. One hour before labelling, cells were shifted to 36°C.

8x10 7 exponentially growing cells (4 OD600 units) were radiolabelled in

supplemented SD medium by incubating with 30 gCi 3 5S-methionine per

OD600 unit (Express protein labelling mix [NEN, Boston, MA], spec. activity

1200 Ci/mmol). Samples were chased by the addition of 1/100 volume of a

solution containing 0.1M ammonium sulfate, 0.3% cysteine, 0.4%

methionine. Labelled samples of 1 OD600 unit of cells were collected into

chilled tubed containing one volume of 40 mM sodium azide. Protein

extracts were prepared in 30 ul ESB by vigorous agitation with glass beads.

Extracts were diluted with 1 ml IP buffer (50 mM Tris-C1, pH 7.5, 150 mM

NaC1, 1% Triton X-100, 0.2% SDS), absorbed for 20 minutes with 50 ul 10% S.

aureus cells (Sigma), and cleared by centrifugation at 12,000 g for five minutes.

0.5 ul anti-CPY antibody was added, and extracts were rotated for one hour at

room temperature. Immune complexes were collected by adding 25 ul 50%
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Protein A/Sepharose (Pharmacia, Piscataway, NJ) per sample, and incubating

an additional hour at room temperature. Protein A/Sepharose pellets were

washed twice with IP buffer, and twice with detergent-free IP buffer (50 mM

Tris-C1, pH 7.5, 150 mM NaC1). Protein was released into 30 ul ESB by heating

to 1000C for 2 minutes. 12 ul of the supernatant were separated by SDS-PAGE

and visualized by fluorography (Harlow and Lane, 1989).

Generation of SEC13-deletion strain

RHY297 (MATa secl3-A1 ura3-52 leu2-3,112 ade2-101 ade3-24 [pKR4 (ARS

CEN LEU2 ADE3 SEC13)]) carries a secl3 allele (secl3-A1) in which the entire

SEC13 coding sequence is deleted. RHY297 was constructed by R. Hammer as

follows. A 50-nucleotide oligomer (SEC13-N1: 5'-CAT TTT AAA TTC TTG

ATA CTC TTC ACG GAT CCG TAT GCT GAT ATA AAA TTA TCT GTT

ATC-3') consisting of 28 and 26 nucleotides complementary to the 5' and 3'

untranslated region of SEC13 respectively and 6 nucleotides creating a BamHI

site (underlined) was used to mutagenize pKR1 (CEN SEC13 URA3) (K.

Roberg, unpublished) using the protocol of Kunkel et al. (1987). pRH102 is a

mutagenesis product that lacks the entire SEC13 coding region as judged by

restriction mapping, but retains SEC13 flanking DNA. A 5 kb hisG-URA3-

hisG marker cassette (modified Alani et al. [1987]); S. Elledge, unpublished)

was inserted into the BamHI site of pRH102 to make pRH104. The 6kb EcoRI-

SacI fragment of pRH104 was transformed into KRY5p4 (MATa secl3-1 ura3-

52 leu2-3,112 ade2-101 ade3-24 [pKR4 (ARS CEN LEU2 ADE3 SEC13 )]) (K.

Roberg unpublished). Ura+ transformants that are unable to sector at 24°C

were selected. RHY297 is a non-sectoring, Ura- derivative, selected by plating

transformants on medium containing 5-fluoro-orotic acid (Boeke et al., 1984).
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The chimera-suppressed SEC13-deletion strain was obtained by

transformation of RHY297 using the construct encoding the N-terminal

Secl3p/C-terminal SEC13Rp chimera, described above, and then isolating

white (pKR4-) colonies.

Generation of Antibodies to the SEC13Rp Protein

SEC13Rp antiserum was elicited against a hybrid protein composed of the

entire SEC13R coding region fused to Staphylococcal protein A, using the

pRIT33 vector (Nilsson and Abrahmsen, 1990). Hybrid protein was prepared

from E. coli extracts and antibody to this protein produced in rabbits, as

described previously (Griff et al., 1992). Antiserum was affinity purified using

a :B-galactosidase-SEC13Rp hybrid protein constructed by fusing the entire

coding sequence of SEC13R to the lacZ gene in the pEX2 vector (Stanley and

Luzio, 1984). The hybrid protein was isolated and used for affinity

purification of the antibody as described (Pryer et al., 1993). The affinity-

purified anti-sera was concentrated using a centricon-30 microconcentrator

(Amicon).

Immunofluorescence

COS cells or CHO cells were grown in complete medium on 12 mm glass

coverslips for 2 days prior to recovery. Cells were fixed in 2%

paraformaldehyde, and permeabilized in 0.1% Triton X-100, 0.02% SDS.

Affinity-purified anti-SEC13Rp was used at a dilution of 1:50 in PBS/10% FBS

in the presence of 0.2% saponin; 20 antibody (FITC-conjugated goat-anti-rabbit;

Boehringer) was added at a concentration of 1:250, using the same buffer

composition. Coverslips were viewed by epifluorescence with a Zeiss

Axioskop.
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Immunoelectronmicroscopy

Rat pancreatic acinar tissue and isolated islets of Langerhans fixed in 1%,

phosphate-buffered glutaraldehyde were processed for cryoultramicryotomy

according to Tokuyasu (Tokuyasu, 1986). SEC13Rp was localized by the

protein A-gold method (Roth et al., 1978). Antibody dilution = 1:50; gold

particle size = 10 nm. After immunolabeling, the cryosections were stained

with uranyl acetate. Brefeldin A (BFA) treatment of insulin cells was

performed as previously described (Orci et al., 1993a).
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RESULTS

Complementation of secl3-1 defect by humanlyeast chimeras

The high degree of sequence similarity between Secl3p and SEC13Rp

(Fig. 1), distributed along the length of the two proteins, encouraged us to ask

whether SEC13R could functionally substitute for a defective SEC13 gene.

The secl3-1 allele represents a single point mutation in SEC13, and cannot

support growth at temperatures above 300 C (Pryer et al., 1993). The

overexpression of SEC13R cDNA from a galactose-inducible promoter in a

secl3-1 strains did not restore viability at 360 C (Fig. 2a). However, significant

growth was observed at 360C upon the galactose-induced overexpression of a

chimeric construct encoding the N-terminal half of yeast Secl3p and the C-

terminal half of human SEC13Rp. This chimera was constructed by first

creating a Clal restriction site at nucleotide 449 of the human cDNA,

corresponding to a naturally occurring Clal site in nucleotide 488 of the yeast

gene; each Clal site occurs roughly in the middle of the protein coding

sequence. The N-terminal-encoding half of yeast SEC13 was then fused to the

C-terminal-encoding half of human SEC13R, using the Clal site as a junction

(Fig. 1). Induction of a construct encoding only the N-terminal half of yeast

Secl3p was unable to complement a secl3-1 defect (data not shown; Pryer et

al., 1993), suggesting that the C-terminal region of Secl3p is functionally

required, and is not dispensable (see Discussion). The galactose-induced

overexpression of the reciprocal chimeric construct, encoding the N-terminal

half of human SEC13Rp and the C-terminal half of yeast Secl3p, also

complemented the secl3-1 defect, though somewhat less efficiently (Fig. 2a).
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To demonstrate that both chimeras correct the secl3 secretion defect,

the transport of the marker protein carboxypeptidase Y (CPY) was monitored

by pulse-chase analysis. CPY is targeted to the vacuole via the ER and Golgi.

The core-glycosylated pl form of the enzyme can be resolved from the form

that has received Golgi-specific modification (p2) and the mature form (M)

that has been proteolytically cleaved in the vacuole (Stevens et al. 1982).

Cells were grown in exponential phase at 24°C in media containing raffinose,

induced for 2 hours with galactose, then shifted to 36 0C for one hour. Cells

were next pulse-labeled for 10 minutes, then chased with excess methionine

and cysteine. Lysates were prepared, and immunoprecipitated with anti-CPY

antibodies. In secl3-1 mutants, at 360 C, CPY is unable to exit the ER, and exists

almost exclusively in the pl form (Fig. 3). However, upon the galactose-

induced overexpression of either the N-terminal yeast Secl3p/C-terminal

human SEC13Rp chimera or the N-terminal human SEC13Rp/C-terminal

yeast Secl3p chimera, CPY is able to exit the ER, progress through the Golgi,

and arrive in the vacuole (Fig. 3). The observation that either half of

SEC13Rp can supply sufficient Secl3p activity to permit a yeast/human

chimeric protein to complement the temperature-sensitive secretion defect of

a secl3-1 mutant suggests that SEC13Rp and Secl3p are functionally similar.

The ability of SEC13Rp to exhibit Secl3p function was illustrated

further by the viability of a yeast strain expressing an N-terminal yeast

Secl3p/C-terminal human SEC13Rp chimeric protein, but containing no

endogenous Secl3p (Fig. 4). To determine whether a yeast/human chimera

could complement a SEC13 deletion, the N-terminal Secl3p/C-terminal

SEC13Rp construct was transformed into the indicator strain RHY297.

RHY297 is an ade2- ade3- strain in which the entire SEC13 coding sequence

has been deleted; the strain carries a plasmid bearing SEC13, LEU2 and ADE3.
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The strain is normally dependent upon the plasmid-encoded SEC13, and is

also colored, reflecting the accumulation of a red intermediate resulting from

ade2-blocked adenine biosynthesis (Jones and Fink, 1981; Koshland et al.,

1985). However, upon transformation with a plasmid capable of

complementing the SEC13 deletion, the SEC13, ADE3, LEU2 plasmid is no

longer required, and can be lost during colony growth. Plasmid loss is

detected by the appearance of white sectors; in the absence of the ADE3 gene

product, the adenine biosynthetic pathway is blocked at an earlier stage, prior

to the ade2 block, and the red-colored intermediate is not produced.

RHY297 was transformed with the construct encoding the N-terminal

Secl3p/C-terminal SEC13Rp chimeric protein, grown on plates containing

galactose but not leucine (to maintain selection for the LEU2 marker), and

analyzed by western blot using affinity-purified anti-Secl3p antibodies as a

probe (Pryer et al., 1993). Yeast Secl3p itself has a predicted molecular weight

of approximately 33 kD. The yeast/human chimera, however, has a slightly

heavier predicted molecular weight, since the human C-terminal region is 20

amino acids longer than the corresponding region of the yeast protein.

Extracts from wild-type cells revealed a single band at 33 kD, representing

endogenous Secl3p (Fig. 3). Extracts from RHY297 cells transformed with the

yeast/human chimeric construct revealed two bands: a 33 kD band

representing Secl3p, and a slower-migrating band representing the chimeric

construct.

When the RHY297 strain containing the chimeric construct was then

grown on plates containing galactose plus rich media (thus no longer

maintaining selection for the LEU marker on the SEC13 plasmid), white

sectors appeared, indicating that in the presence of the chimeric construct, the

Secl3p-encoding plasmid was no longer necessary. When colonies from the
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white sectors were isolated and analyzed by western blot, a single band

appeared at the location expected for the chimeric protein (Fig. 4). These data

demonstrate that the N-terminal Secl3p/C-terminal SEC13Rp chimeric

protein can functionally substitute for an absent Secl3p protein.

Furthermore, since the chimeric product can functionally replace the

endogenous protein, the SEC13R-encoded C-terminal region must exhibit

activity similar to that found in the C-terminal region of Secl3p.

Complementation of a SEC13 deletion was not noticeably detected in a yeast

strain transformed with the reciprocal chimera, a result consistent with the

weaker activity exhibited by this construct in the suppression of a secl3-1

growth defect (Fig. 2a).

Human SEC13R specifically inhibits growth of a secl3-1 mutant

In the course of the complementation experiments, we discovered that

the galactose-induced overexpression of SEC13Rp inhibited the growth of a

secl3-1 mutant strain at permissive temperatures. Although this strain

normally grows well at 24°C, cell growth was dramatically inhibited by the

induction of SEC13Rp (Fig 2b). Galactose-induced overexpression of SEC13Rp

produced no evident phenotype in a wild-type strain or in strains carrying

temperature-sensitive alleles of SEC12, SEC16, SEC17, or SEC18, suggesting

that the observed effect was specific for the secl3-1 strain (Fig. 5).

Overexpression of the chimera encoding the N-terminal half of SEC13Rp and

the C-terminal half of Secl3p also inhibited growth of the secl3-1 strain at

24°C (Fig. 2b), implying that the N-terminal half of SEC13Rp was responsible

for this growth inhibition. Consistent with this interpretation, the N-

terminal Secl3p/C-terminal SEC13Rp chimera produced no obvious

phenotype at 24°C. The inhibitory effect of SEC13Rp expression on the
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growth of a secl3-1 strain at 24°C suggests that both SEC13Rp and Secl3-1p

may interact with the same protein or substrate, and thus may participate in

the same step or pathway. For example, SEC13Rp may titrate out a Secl3p

target by binding to it unproductively.

Subcellular localization of SEC13Rp

To explore further the function of SEC13Rp in mammalian cells, we

raised rabbit serum against a hybrid protein of Staphylococcus protein A fused

to SEC13Rp. Antibodies specific for SEC13Rp were affinity purified using a

hybrid protein composed of E. coli D-galactosidase fused to SEC13Rp. Purified

antibodies recognized a single prominent band with the expected molecular

weight of approximately 36 kD on immunoblots of lysates from wild-type

yeast overexpressing SEC13Rp or from CHO or COS cells (Fig. 6).

Immunoblots of wild-type yeast lysates did not show any pronounced bands;

this shows that the affinity-purified anti-SEC13Rp antibodies do not cross-

react with the yeast Secl3p protein.

The affinity-purified antibody was used to determine the subcellular

localization of SEC13Rp. By indirect immunofluorescence, SEC13Rp

exhibited a "diamond ring" appearance, encircling the nucleus in both CHO

and COS cells (Fig. 7a, b). To determine more precisely the subcellular

distribution of SEC13Rp, we used immunoelectronmicroscopy, and focused

on two cell types with well-developed secretory compartments, the insulin

and the acinar cells of the pancreas (Fig. 8a, b). In both of these cell types,

SEC13Rp was found concentrated in the transitional area of the ER (Table 1),

in a distribution indistinguishable from that previously observed for

mammalian Sec23p in the same cells (Orci et al., 1991). Furthermore, as

previously observed for mammalian Sec23p (Orci et al., 1993a), the
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distribution of SEC13Rp was not altered by brefeldin A treatment, and

remained excluded from coatomer-rich areas of "BFA-bodies" (Fig. 9). These

data are consistent with the view that SEC13Rp and mammalian Sec23p are

not constituents of the coatomer, but rather are both components of a

different structure -- most likely, mammalian COPII -- involved in ER to

Golgi transport.
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DISCUSSION

This report provides strong evidence that the function of Secl3p has

been highly conserved through evolution. In yeast, Secl3p is required for

vesicle budding from the ER, and has been identified as a constituent of the

vesicle-coating protein complex designated COPH (Pryer et al., 1993; Barlowe

et al., 1994). We have shown that two reciprocal human/yeast chimeric Secl3

constructs can each complement a secl3-1 mutant, and can rescue both the

growth defect and the secretion defect. We have also shown that one of these

chimeric constructs can complement a deletion of SEC13. In addition, we

have demonstrated that the human SEC13Rp protein itself inhibits the

growth of a secl3-1 mutant, but not of either wild-type yeast or mutants in

SEC12, SEC16, SEC17, or SEC18. We also show that SEC13Rp is located in the

transitional ER, in a distribution identical to that previously observed for

mammalian Sec23. Finally, we show that the cellular distribution of

SEC13Rp is insensitive to BFA treatment, consistent with the behavior

previously observed for mammalian Sec23, but not for coatomer

components.

Complementation of the growth defect of a secl3-1 mutant at 360 C

represents a stringent assay that requires no presumptions about the specific

function of Secl3p. The ability of both yeast/human chimeric proteins to

complement a secl3-1 mutant implies that in both cases, the human region of

the chimeric protein is fulfilling the function or functions normally

performed by the corresponding region of the yeast protein. The ability of

both chimeras to restore CPY transport in a secl3-1 strain specifically
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demonstrates complementation of the ER to Golgi secretion defect

characteristic of secl3-1 mutants.

If the two reciprocal chimeras complement both the growth defect and

the secretion defect of a secl3-1 mutant, then why does the entire SEC13R

cDNA not complement either defect? We believe that there are at least two

contributing factors. First, we would suggest that although both halves of

human SEC13Rp can function in yeast, they do not function at quite the same

level of wild-type Secl3p; this would explain why the full-length SEC13Rp

protein, representing the sum of two sub-optimal halves, cannot rescue the

secl3-1 secretion defect. Second, we would propose that in a secl3-1 strain, the

N-terminal region of SEC13Rp is toxic, resulting in the growth defect

observed at 24°C in strains expressing either the full length SEC13Rp protein

or the N-terminal SEC13Rp/C-terminal Secl3p protein. Although the

precise reason for this toxicity is not known, the observation that it is only

seen in a secl3 mutant, and not in either a wild-type strain or in other sec

mutants, suggests a synthetic lethal interaction between SEC13R and secl3-1,

and implies that secl3-1p and SEC13Rp participate in the same pathway, and

perhaps compete for a common target. The ability of the N-terminal

SEC13Rp/C-terminal Secl3p protein to rescue a secl3-1 secretion defect at 360 C

suggests that the toxicity associated with the N-terminal region of SEC13Rp

develops over a period of time longer than that encompassed by the pulse-

chase assay.

Localization of SEC13Rp to the transitional ER and associated transport

vesicles represents an important observation. These data not only situate

SEC13Rp in precisely the area expected for a mammalian protein involved in

ER to Golgi transport, but also emphasize that SEC13Rp is concentrated at this

level. This is strong evidence that SEC13Rp is specifically involved in ER to
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Golgi transport. If SEC13Rp is in fact a component of a mammalian COPII

complex, then these data would suggest that COPII is involved solely in

transport between the ER and the Golgi, and, unlike coatomer, is not

involved in intra-Golgi transport.

The observation that SEC13Rp does not redistribute upon BFA

treatment is encouraging because it places SEC13Rp and mammalian Sec23p

in a different category from all the known coatomer components.

Furthermore, since BFA is known to inhibit the binding of ARF to donor

membranes, it is tempting to speculate that ARF is not involved in the

recruitment of SEC13Rp and mammalian Sec23p; perhaps this function is

fulfilled by Sarlp.

Functional complementation of a yeast mutant by a human/yeast

chimera has been reported for a number of different genes. Mutants in yeast

genes encoding the transcription factor SWI2p (Khavari et al., 1993), the

nucleotide exchange factor CDC25p (Wei et al., 1992), the RNA-binding

protein SNP1p (Smith and Barrell, 1991), and the ABC-transporter STE6p

(Teem et al., 1993) have all been complemented by chimeric constructs

consisting of fused regions of the wild-type yeast gene and its putative

mammalian homologue. Not only does such complementation demonstrate

the conservation of function between yeast and human gene products, but it

can also allow for the detailed study of the mammalian protein, as is

illustrated by the work by Teem et al. (1993) on the cystic fibrosis

transmembrane conductance regulator.

Together, the data presented in this report argue that the function of

Secl3p has been conserved from yeast to humans, and also support the

existence of a mammalian COPII complex. More generally, our results

emphasize that chimera studies represent a useful, easily-adaptable approach
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for applying the tools of yeast genetics to the study of conserved mammalian

proteins.
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Table I

SEC13Rp immunogold labeling of transitional area, ER, and Golgi of
pancreatic acinar and insulin cells

No. of gold particles per gm 2 + SEM

Acinar cell Insulin cell

ER (n=10) 0.34 0.18

Transitional 61± 13 110 23
area* (n=10)

(54 ±6 vesicles per pm2; 28% ± 4% (105 ±15 vesicles per pm2; 48% ±7%
of vesicles labeled) of vesicles labeled)

Golgi (n=10) 1±0.7 2±1

n = number of pictures evaluated. Quantitation was performed as described previously
(Orci et al., 1991).

* Including the budding front of the transitional ER, vesicles, and intervening
cytosol.
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Figure 1

Sequence comparison of yeast Secl3p and human SEC13Rp. Identities

are indicated by solid lines, similarities are indicated by dotted lines. The two

amino acids altered during site-directed mutagenesis, corresponding to the

junction site for chimera construction (see Methods), are indicated by carats.

The Secl3p amino acids altered in the three known SEC13 temperature-

sensitive alleles (secl3-1, secl3-4, secl3-5) are underlined (Pryer et al., 1993).
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Figure 2

Effect of human/yeast chimeras in a secl3-1 mutant strain. (a)

Chimeras between human SEC13R and yeast SEC13 can complement a secl3-1

temperature-sensitive allele at the non-permissive temperature (360 C).

SEC13R, SEC13, or chimeric constructs were cloned downstream of a

galactose-inducible promoter in a centromeric vector, transformed into a

secl3-1 mutant, and assayed for growth in the presence of galactose (induced)

or glucose (uninduced) at non-permissive conditions (36 0 C). (b) SEC13Rp

overexpression inhibits the growth of a secl3-1 strain. Assay performed at

240, but otherwise conditions identical to (a).
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Figure 3

Complementation of the secl3-1 secretion defect by both

Secl3p/SEC13Rp and SEC13Rp/Secl3p chimeras. secl3-1 cells carrying the

indicated plasmid were induced for 2 hours in galactose at 240C, shifted to

360 C for one hour, pulse-labeled with Tran3 5S-label for 10 minutes, then

chased by the addition of excess cysteine and methionine. Glass-bead extracts

corresponding to the indicated time points were prepared;

immunoprecipitation was performed using anti-CPY antibodies, and the

precipitates subjected to SDS-PAGE and fluorography. Positions of the pl, p2,

and mature forms of CPY are indicated.
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Figure 3
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Figure 4

Complementation of a SEC13-deletion by the Secl3p/SEC13Rp

chimera. 50 ug of protein extract from the indicated yeast strains was

analyzed by western blotting using affinity-purified anti-Secl3p antibody, as

described previously (Pryer et al., 1993). Lane 1, extracts from wild-type yeast;

lane 2, from wild-type yeast expressing the Secl3p/SEC13Rp chimera; lane 3,

from a SEC13-deletion strain expressing the Secl3p/SEC13Rp chimera.
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Figure 5

Specificity of SEC13Rp-induced growth inhibition. Indicated yeast

strains containing a galactose-inducible SEC13Rp construct were incubated at

24°C in the presence of glucose or galactose. Strains used were: DSY174 (wild-

type), DSY223 (secl2), DSY216 (secl3), DSY228 (secl6), DSY232 (secl7), DSY236

(secl8).
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Figure 6

Specificity of antisera to the SEC13Rp protein. 50 ug of the indicated

cell extracts were subjected to Western analysis and probed using the affinity-

purified anti-SEC13Rp antibody. Lane 1, wild-type yeast; lane 2, wild-type

yeast+pGAL-SEC13Rp; lane 3, CHO cells; lane 4, COS cells. The anti-SEC13Rp

antibody recognizes a single predominant species of the predicted molecular

weight, 36 kD.
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Figure 7

Localization of SEC13Rp by immunofluorescence. SEC13Rp appears in

a perinuclear distribution in (a) CHO and (b) COS cells. Immunofluorescence

performed using affinity-purified anti-SEC13Rp antibodies. Magnification:

x700.
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Figure 8

By electron microscope immunolabeling of (a) insulin or (b) acinar rat

pancreatic cells, SEC13Rp is restricted to the transitional area of the ER.

TE=transitional elements of the ER with associated transfer vesicles

(asterisks); the arrow in the inset indicates a labeled bud on a transitional

cisterna; G=Golgi complex; CV = condensing vacuole in the Golgi region.

Note that the dense cytosolic matrix in the transitional area of Fig. 8b is also

labeled in addition to transfer vesicles. See Table 1 for the quantitation of the

immunogold labeling. Magnifications: a) x53,000 (inset x72,000); b) x54,000.
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Figure 9

SEC13Rp labeling of a BFA body. Immunogold particles are present on

the buds (arrows) and vesicles associated with the transitional endoplasmic

reticulum cisterna (TE), but are absent from the dense bands of cytosol

(arrowheads) enriched in coatomer (Orci et al., 1993a), situated between

transitional and non-transitional ER cisternae. BFA-treated insulin cell.

Magnification: x47,600.
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Chapter III

Development of a two-hybrid approach for the identification
of a mammalian homolog of the yeast Secl6p protein
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ABSTRACT

The identification of mammalian homologs of the yeast COPII proteins

Secl3p, Sec23p, and Sarlp suggests that the COPII coat assembly process has

been evolutionarily conserved. Convergent evidence (reviewed in Chapter I)

suggests that in yeast, Secl6p -- an essential protein tightly bound to the

cytoplasmic face of the ER -- may also participate in the assembly of the COPII

coat. This chapter describes the development and implementation of an

approach to clone a mammalian homolog of Secl6p. This strategy was

prompted by the observation that yeast Secl6p can interact with yeast Sec23p

in a two-hybrid system. The cloning project involved three steps: first, a full-

length mammalian Sec23 clone was isolated by hybridization using a partial

Sec23 clone as a probe. Second, since the overexpression of both yeast and

mammalian Sec23 was found to be toxic to cells, a two-hybrid vector was

constructed that would allow for the inducible expression of LexA-fusion

proteins; this allowed the screening a library of activation-domain fusion

proteins capable of interacting with Sec23. Finally, an interaction-trap screen

was performed; 5x10 6 transformants were screened, and 59 positives were

isolated and sequenced. None of the clones analyzed appear to represent a

mammalian Secl6p homolog. Potential explanations for these results are

discussed.
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INTRODUCTION

In eukaryotic cells, the transport of proteins from the endoplasmic

reticulum (ER) to the Golgi is mediated by membrane-bounded vesicles

(Palade, 1975). In vitro analysis of vesicle formation in the yeast S. cerevisiae

has demonstrated the requirement for three cytoplasmic factors: the

Secl3p/Sec31p complex; the Sec23p/Sec24p complex; and the small

molecular-weight GTP-binding protein, Sarlp (Salama et al., 1993; Barlowe et

al., 1994). Convergent evidence also suggests that Secl6p may be involved

intimately in the vesicle formation process. SEC16, an essential gene which

exhibits synthetic lethal interactions with all five COPII genes, encodes a 240

kD protein tightly associated with the cytoplasmic face of the ER (Nakano et

al., 1989; Kaiser and Schekman, 1990; Espenshade et al., 1995; Gimeno et al.,

1995; Salama et al., 1997). Secl6p is required for ER to Golgi transport, and is

found on ER-derived transport vesicles (Espenshade et al., 1995). In addition,

Secl6p has been shown to bind Sec23p (Espenshade et al., 1995). (Since the

work described in this chapter was performed, Secl6p has also been shown to

bind Sec24p and Sec31p [Gimeno et al., 1996; Shaywitz et al., 1997]).

Mammalian homologs of three COPII genes have been characterized.

A mammalian homolog of Sarlp was identified using degenerate PCR (Kuge

et al., 1995). Two clones, Sarla and Sarlb were isolated; these clones are 91%

identical to each other at the amino acid level, and are 61-67% identical to

Sarlp. Immunoelectronmicroscopy using antibodies raised against Sarla (and

also reactive with Sarlb) demonstrated that Sarl is found on the cisternae of

the transitional ER, on the proximal Golgi, and on the intervening vesicles.

Inhibition of the ER to Golgi transport of the marker protein VSV-G in vivo
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and in vitro using a deliberately designed dominant negative Sarl mutant

demonstrated the requirement for Sarl in mammalian ER to Golgi transport.

A mammalian homolog of Secl3p, Secl3Rp, was discovered

serendiptiously (Swaroop et al., 1994). Although SEC13R itself could not

complement the temperature-sensitive secl3-1 mutant, chimeric constructs

representing the N-terminal half of either Secl3p or Sec13Rp, and the C-

terminal half of the other protein, could both complement the secl3-1

secretion defect (Shaywitz et al., 1995). Secl3p was also shown to localize to

the cisternae and vesicles in the region of the transitional ER (Shaywitz et al.,

1995). The localization of Secl3Rp was not affected by BFA treatment, in

contrast to the localization of coatomer subunits; this insensitivity to BFA

was shared by Sec23, and placed these two proteins in a different category

from the proteins of the COPI complex. A recent study of Sec13Rp both

confirmed these localization data and demonstrated that the addition of anti-

Secl3Rp antibodies disrupted the ER to Golgi transport of the marker protein

VSV-G in a semi-intact cell assay, further supporting the notion that the

function of COPII has been evolutionarily conserved (Tang et al., 1997).

At the time the experiments in this chapter were performed, a murine

cDNA sequence strongly homologous to the first 637 amino acids of the yeast

Sec23p protein had been identified (Wadhawa et al., 1993). In addition,

antibody raised against the yeast Sec23p protein appeared to cross-react with a

mammalian Sec23p homolog, which was found to exhibit a subcellular

localization pattern indistinguishable from that of Sarl and Secl3 (Orci et al.,

1991). More recently, two human Sec23 homologs have been identified,

hSec23Ap and hSec23Bp (Paccaud et al., 1996). Antibodies were raised against

the N-terminal region of hSec23A; these antibodies did not react with either

hSec23B or Sec23p. The hSec23A protein complemented a yeast sec23
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temperature sensitive mutant, and was localized, in mammalian cells, to the

transitional ER region. Gel filtration analysis of HepG2 cytosol indicated that

hSec23Ap (like yeast Sec23p) fractionated as a 350 kDa complex.

Immunoprecipitation of hSec23A from clarified cytosol identified a

prominent band with an apparent molecular weight of 110 kD; this is

approximately the molecular weight of yeast Sec24p, the binding partner of

Sec23p. Although a mammalian Sec24p homolog has not as yet been cloned,

a cDNA encoding a protein with significant homolog to Sec24p has been

reported (D38555; KIAA0079 gene product; Nomura et al., 1994).

Two-hybrid analysis using a constitutively-expressed LexA-Secl6p

(amino acids 1645-2194) fusion and a galactose-induced activation domain-

Sec23p fusion demonstrated that these two proteins could interact strongly

(Espenshade et al., 1995). The association between Sec23p and the C-terminal

region of Sec16p has also been observed in vitro (Gimeno et al., 1996).

Attempts to perform the two-hybrid analysis using reciprocal constructs were

unsuccessful; the constitutive overproduction of a LexA-Sec23p fusion was

found to be toxic to the cell.

The strong association of Sec23p and Secl6p in a two-hybrid system,

together with the availability of a mouse cDNA sequence representing a large

region of Sec23, suggested an approach for the identification of a mammalian

Secl6p homolog. First, the partial cDNA would be used to isolate a cDNA

encoding the entire mammalian Sec23 gene. Then, a vector allowing the

expression of Sec23 as an inducible LexA-fusion would be constructed; this

was important because the available two-hybrid libraries were in activation-

domain fusion vectors. Finally, a two-hybrid screen using the inducible

LexA-Sec23 construct would be employed to isolate mammalian Secl6. This

approach was also expected to isolate mammalian Sec24.
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RESULTS

Inspection of the published sequence for a mammalian Sec23 homolog

(Wadhawa et al., 1993) revealed the appearance of a frame-shift; in particular,

the apparent loss of a thymine nucleotide at position 1699 of the mouse

sequence disrupted the strong homology to Sec23p, homology which

continued in a different frame. We elected to use this partial Sec23 sequence

to probe a murine adipocyte library (generously provided by H. Lodish) in an

effort to recover a full-length clone. 800,000 transformants were screened, and

five positive clones were identified, representing two different full-length

inserts. One of these clones was amplified by PCR to insert a convenient 5'

restriction site. This PCR product was then cloned into the galactose-

inducible expression vector pCD43, and complementation of the temperature-

sensitive allele sec23-1 (DSY245 [MATa sec23-1 ura3-52 leu2,3-112 Gal+]) was

assessed over a range of galactose concentrations (Table 1); for comparison, a

galactose-promoted yeast SEC23 expression plasmid (pPE118) was also

evaluated. Although DSY245 cannot grow at 300 C in the presence of vector,

complementation was observed using the full-length mammalian Sec23

clone. This clone was also placed into the pEG202 LexA-fusion vector, to

examine whether the constitutive expression of the full-length mammalian

clone would be toxic. Although transformants grew extremely poorly, the

LexA-Sec23p fusion protein was detectable in extracts prepared from these

transformants by immunoblotting using anti-Sec23p antibody (data not

shown). These results encouraged us to engineer a galactose-inducible LexA-

fusion vector which would permit the regulated expression of the full-length
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Sec23 protein. The construction of this plasmid, designated pGilda, is detailed

in the "Experimental Methods" section of this chapter, below.

To identify human cDNA clones that interact with mammalian Sec23,

a human brain cDNA library (kindly provided by D. Krainc and R. Brent) was

transformed into DSY259, representing the EGY48 strain carrying the

Sec23/pGilda plasmid pDS73 and the indicator plasmid pSH18-34. Since

expression of Sec23 is toxic to cells, we could not identify interacting clones by

a selection process, and were compelled instead to utilize a screen. 5x10 6

transformants were obtained on 120 plates; this represents a density of

approximately 42,000 colonies/plate. Following growth of colonies,

transformants were replica plated to media containing galactose and Xgal.

Blue colonies were identified on these plates after 1-2 days of growth.

Generally, the blue colonies were not well-isolated, and sequential

purification steps were required to obtain a single, positive clone. Yeast in the

vicinity of the blue colony were selected with a toothpick and streaked on a

glucose-containing plate, in effort to isolate single colonies; following growth

of colonies, the plates were replica-plated to plates containing galactose and

Xgal. This process was iterated until pure blue colonies were obtained.

The library plasmid was recovered from the purified yeast by

performing a yeast mini-prep and transforming the DNA into the KC8 strain

of bacteria cells (kindly provided by R. Brent). This strain contains a genetic

lesion complemented by the TRP1 gene on the library plasmid. Thus, by

growing KC8 transformants on plates lacking tryptophan, bacteria containing

the library plasmid were selected. Initially, the library clones were

transformed into the strain RFY206 (Finley and Brent, 1994) and tested by

mating assay against a panel of different LexA-fusion proteins, including

Sed4p, Secl2p, Secl3p, Secl3Rp, four different Secl6p fragments, Isslp (R.
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Gimeno, 1996), as well as both yeast and mouse Sec23; the vectors pEG202 and

pGilda were also included as negative controls. Approximately half of the

clones interacting with mammalian Sec23 also interacted with yeast Sec23p;

several clones interacted with Iss1p; other interactions were not detected. The

clones interacting with Sec23p or Isslp did not seem to define a useful

subclass. For example, two clones which interacted with both Iss1p and yeast

Sec23p were identified as S100B, a 91 amino acid calcium binding protein, and

p68, an RNA helicase; these proteins bear no obvious homology to Secl6p or

Sec24p. The balance of the library clones were retransformed into DSY257,

and assayed for interaction with mammalian Sec23.

Of the 240 blue colonies identified, 186 were successfully isolated. Fifty

of these were an identical false-positive (which produced a characteristic

pattern upon the EcoRI/XhoI restriction digest used to determined the size of

the library insert) that would activate transcription of the reporter gene even

in the absence of the Sec23p plasmid; these were not considered further. 66

clones successfully retested by either mating assay or direct transformation

into DSY257; preliminary sequencing was performed on 59 clones.

The results of this analysis are shown in Tables II and III. Of the 59

clones sequenced, 45 corresponded to either known genes or homologs of

known genes, while 14 corresponded to expressed sequence tags (ESTs) in the

database. None of the known genes identified are homologous to either

Sec24p or Secl6p. In particular, although a mammalian homolog of Sec24p is

present in the database (D38555; KIAA0079 gene product; Nomura et al., 1994),

it was not identified in this screen.

The failure to identify overtly the Secl6p gene in the database was not

surprising, since sequences corresponding to Secl6p had never been identified

by BLAST. However, the expectation was that we might either identify a
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novel sequence, corresponding to Secl6p, or else identify candidate EST's that

might not appear to encode a Secl6p fragment as a result of a sequencing

error. By aligning a candidate EST with both the library clone and with

overlapping ESTs, we hoped to generate consensus sequences that might

encode Secl6p. We applied this approach to the eight different ESTs

identified by our screen. In each case, we were able to determine an in-frame

protein sequence corresponding to both our library clone and to a collection of

overlapping ESTs. Each of the protein sequences in Table III represents the

consensus determined from 2-7 aligned sequences. These sequences were

tested against the database (by BLAST) and were individually evaluated

against the Secl6p protein sequence (by ALIGN). Extensive homology was

not detected in any of the comparisons.
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DISCUSSION

This paper describes our attempt to identify a mammalian homolog of

the yeast Secl6p protein by a two-hybrid interaction screen. First, a full-length

mammalian homolog of the yeast Sec23p was isolated by hybridization using

as a probe a partial cDNA clone of the mammalian sequence. Second, a LexA-

fusion vector, pGilda, was constructed to allow for the inducible expression of

toxic proteins such as Sec23. Finally, a two-hybrid screen was performed

using the full-length mammalian clone in the pGilda vector. Fifty-nine

clones were sequenced, but a clone with extensive homology to Secl6p was

not obtained. Potential reasons for this result will be considered

systematically.

1. A mammalian homolog of Secl6p does not exist. This represents the

null hypothesis, and remains in force until disproven. Nevertheless, the

identification of mammalian homologs of Secl3p, Sec23p, Sec24p, and Sarlp

strongly suggests that the process of COPII coat assembly has been

evolutionarily conserved. Given the strong evidence that Secl6p is also

involved in the process of COPII vesicle formation (reviewed in Chapter 1), it

seems likely that a mammalian Secl6p exists.

2. Mammalian Secl6p exists but was not present in this library. This

remains a possibility. Although the level of Secl6p mRNA expression has

not been investigated, such a long transcript may be expressed at a low level,

leading to underrepresentation of the clone in this cDNA library. It should be

noted that the source of this library was human fetal brain, and all of the

COPII proteins which have been examined to date are expressed in this organ

(Shen et al., 1993; Swaroop et al., 1994; Paccaud et al., 1996).
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3. The required region of mammalian Secl6p was not present in this

library. The two-hybrid library used has an average insert size of 1.5 kb.

Sec23p has been shown to interact with the extreme C-terminal region of

Secl6p, and thus, it seemed reasonable to expect this region to be represented

in this library, which was constructed by selection of poly (A)+ RNA followed

by first-strand synthesis primed by oligo-dT. However, it is possible that the

in-frame clone was not present in this library. It should be noted that our

failure to identify mammalian Sec24 in this screen may result from the

requirement for the N-terminal region of Sec24p for Sec23p interaction

(Gimeno et al., 1996); thus, a library clone representing only the C-terminal

region of Sec24p would not be expected to interact with the LexA-Sec23p

protein.

4. The required region of mammalian Secl6p was present but failed to

interact with mouse Sec23p. While it is possible that the murine Sec23p

protein is unable to interact with human Secl6, this seems unlikely. Given

the interactions demonstrated between mammalian Secl3 and yeast Sec31, as

well as the cross-species reactivity seen for antibodies raised against human

Sec23, human Secl3, and yeast Sec23, it seems reasonable to expect the mouse

and human proteins to interact (Paccaud et al., 1996; Shaywitz et al., 1995; Orci

et al., 1991).

5. Mammalian Secl6p was identified in this screen but we are not able

to recognize its identity. This remains a concern. On the one hand, the

mammalian homologs of Secl3p, Sec23p, Sec24p, and Sarlp are

approximately 50% identical to the yeast protein at the amino acid level

(Swaroop et al., 1994; Paccaud et al., 1996; Nomura et al., 1994; Kuge et al.,

1995). Thus, if a similar homolog with mammalian Secl6 exists, we should

easily be able to detect it. However, Secl6p appears to be an extremely
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unusual protein, and in particular, it seems to consist of alternating proline-

rich domains and highly-charged domains (Espenshade et al., 1995). It is

possible that Secl6p could experience significant changes at the amino-acid

level while still retaining its general function; for example, as pointed out by

Gerhart and Kirschner (1997), structural similarity does not necessarily imply

sequence similarity; while the amino-terminal 30 amino acid region of

human and yeast histone H4 are identical between yeast and human, there

are on average 13 differences in this sequence between Tetrahymena and

human; nevertheless, a Tetrahymena protein differing by 25 amino acid

substitutions can functionally replace the corresponding yeast protein in

yeast, emphasizing that conservation of function does not necessarily require

extensive conservation of amino acid sequence.

In summary, it is not possible to determine with precision exactly why

a clone with homology to yeast Secl6p was not isolated in our screen. The

identification of a mammalian Sec31p homolog (suggested by data presented

in Chapter IV), together with the construction of a randomly-primed

mammalian cDNA library, would offer another opportunity for the

identification of a mammalian Secl6p homolog by a two-hybrid approach.
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MATERIALS AND METHODS

General Techniques

Unless otherwise noted, yeast manipulations were performed as described

(Kaiser et al., 1994). DNA manipulations were performed using standard

techniques (Sambrook et al., 1989). PCR was performed using Vent

polymerase according the manufacturer's specifications (NEB, Beverly, MA).

DNA sequencing was performed using the Sequenase kit (United States

Biochemical Corp., Cleveland, OH).

Library screening (identification of full-length murine Sec23 clone)

3T3-L1 cDNA library from differentiated day 8 adipocytes was

generously provided by H. Lodish. Library colonies were screened by

hybridization using the Genius digoxigenin-based system (Behringer),

according to the manufacturer's instructions. Briefly, the partial mouse Sec23

cDNA clone (generously provided by M. Wadhawa) was labeled by random-

primed labeling with digoxigenin-derivitivized-dUTP. Filter lifts (using

Hybond-N nylon membranes [Amersham]) were performed on bacterial

colonies, and DNA was immobilized to the filter by UV crosslinking

following the alkaline lysis of the cells. Hybridization was performed at 650C

using 4 ng/ml of probe. The hybridized probes were immunodetected using

alkaline-phosphatase-conjugated anti-digoxigenin antibody, and the

colorometric substrates NBT (nitroblue tetrazolium) and X-phosphate (5-

bromo-4-chloro-3-indolyl phosphate toluidium salt).

Two-hybrid assay
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Potential protein-protein interactions were investigated using the two-

hybrid protein interaction assay and the plasmids pEG202 (constitutive

expression of LexA-fusion), pJG4-5 (galactose-regulated expression of

activation domain-fusion), and pSH18-34 (lacZ reporter) (Gyuris et al., 1993).

Interactions were evaluated in the strain EGY48 (Zervos et al., 1993); positive

interactions were scored as blue colonies on SC medium (pH 7.0) containing

2% galactose and 40 mg/1 X-gal.

Mating assays were performed by transforming the activation-domain

fusion plasmids into EGY48, and transforming the LexA-fusion plasmids

together with the indicator plasmid pSH18-34 into RFY206 (Finley and Brent,

1994). The strains were mated, and lacZ expression was tested by replica

plating diploids on X-gal medium, as above. The following LexA-fusion

plasmids were used in the mating assay: pRH108 (Sed4p); pRH102 (Secl2p);

pRH157 (Sedl3p); pAA35 (Secl3Rp); pPE59 (Secl6p [aal-824]); pPE62p (Secl6

[447-1235]); pPE58 (Secl6p [1645-2194]); pPE74 (Secl6p [447-1737]); pPE249 (Iss1p)

(R. Gimeno, 1996). The KC8 E. coli strain (pyrF, leuB600, trpC, hisB463) was

kindly provided by R. Brent.

pGilda construction

The inducible LexA-fusion vector pGilda (named after the self-

sacrificial Verdi heroine) was constructed as follows: first, the 0.7 kb

BamHI/EcoRI fragment containing the bi-directional GAL1/GALIO

promoters was subcloned from pCD43 (Shaywitz et al., 1995) into the

polylinker of the ARS/CEN, HIS3-marked pRS313 vector (Sikorski and

Heiter, 1989). This construct was then digested with EcoRI and XhoI; these

sites were filled-in using klenow fragment, and the vector religated; this

removed all the restriction sites in the polylinker between EcoR1 and XhoI
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(inclusive). The resulting construct was then digested with BamHI and SacI,

in preparation for the insert constructed as follows.

First, a PCR reaction was performed using pEG202 as the template, and

the following primers: (a) sense: 5'-AACAATCGATATGAAAGCGTTAACG

-3'. (b) antisense: 5'- AACAGAGCTCGGACGGATTACAACA -3'. Primer (a)

inserts a Clal site just prior to the LexA coding region, and primer (b) inserts a

SacI site after the 3' region of the ADH-terminator sequence (basepairs 1745-

1756). The product of this PCR was digested with Clal and Sacl. Next, the

following two oligos were obtained and annealed: (1) 5' - GATCAAGGGTG

-3'; (2) 5'- CGCACCCTT -3'. The 5' end of this adaptor is BamHI-compatible

but corrupts the BamHI site; the 3' end is Clal compatible, but corrupts the

Clal site. A three-way ligation was then performed, using the vector construct

described above (digested with BamHI and Sacl), the PCR fragment (digested

with Clal and Sacl) and the adaptor (compatible with BamHI and ClaI). The

resulting construct has been designated pGilda.

The full-length mammalian Sec23 construct was inserted into pGilda,

to generate pDS73; the LexA-Sec23 fusion protein was specifically detected

after galatose induction, and was not observed in extracts prepared from cells

grown in glucose.

To demonstrate that pGilda could function in two-hybrid analysis, the

gene encoding Sed4p (originally identified as a protein which interacts with

Secl6p) was inserted into this vector, and tested against two different Secl6p

activation-domain fusion constructs, pPE78 and pPE79. Sed4p specifically

interacted with pPE79, and not with either pPE78 or with the vector alone.

This same pattern of interaction was observed when Sed4p was expressed in

pEG202; these data suggested that pGilda could substitute for pEG202 in the

two-hybrid system.

-97-



Two-hybrid cDNA Library

cDNA library from human fetal brain was constructed in the activation

domain fusion plasmid pJG4-5 (Gyuris et al., 1993) by D. Krainc (Mass. General

Hospital), and represents 3.5 x 106 independent transformants. Average

insert size is 1.5 kb.
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TABLES
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Table I: Complementation of sec23-1 by mammalian Sec23

Temperature:

% Galactose:

360C

0.002 0.02 0.2

300C

2 0.002 0.02 0.2

GAL 10-SEC23 (yeast)
GAL 10-Sec23 (mouse)
vector only

- + S M a +
- - - + ++ +

Growth assessed on synthetic complete medium lacking uracil and supplemented with 2% raffinose
and the indicated concentration of galactose.
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Table II: Known Genes Identified in Screen for Mammalian-Sec23 Interactors

Nae # clones Remarks % Proline Accession #
Human heat-shock protein
TFG
Threonyl tRNA synthetase
Pirin
S100B
Proteosome subunit C9
Translation Initiation Factor
p68
p72
Desmoplakin
Rbophorin
DAD-1
snRNP protein B
methylene-THF-reductase
TB2 (FAP locus)
Cyt. C oxidase subunit IV
KIAAO266
hENT1I
signal peptidase subunit
KIAA0069
heat-shock protein
MeCP1

DnaJ homolog
400 aa; present as Trk-fusion in thyroid cancer

nuclear protein
91 aa calcium binding protein

similar to 4AII
RNA helicase; DEAD-box protein; related to p72
DEAD-box protein; related to p68
2677 aa; desmosome associated
631 aa; oligosac.-prot. transferse subunit; ER Ioc.
cell-death protein; subunit of olig.-prot. transferase

cytoplasmic enzyme
gene deleted in familial adenomatous polyposis

homologous to yeast YMLO93w ORF
nucleoside transporter in pm
12 kD; canine gene in database
unknown function
DnaJ homolog; different from above
transcription factor

Secl6p (yeast)

Total number of clones represented: 45- ----------------

4.5
12.2
4.2
7.2
0
1.9
2.7
5.0
6.6
1.9
4.0
3.5
17.2
5.8
4.1
3.6
6.0
4.8
6.9
3.5
5.1
11.3

L08069
Y07968
M63180
Y07867
P02638
T60816
X79538
P17844
U59321
MT/77830
Y00282
D15057
J04564
J04031
M74090
X54802
D87455
U81375
L38852
D31885
004960
Y10746----------- ------------------------------------------- ---



Table III: Composite ESTs Identified in Screen for Mammalian-Sec23 Interactors

AA305793 (4)
VYVKPGNKERGWNDPPQFSYGLQTQAGGPRRSLLTKRVAAPQDGSPRVPASETSPGPPPMG
PPPPSSKAPRSPPVGSGPASGVEPTSFPVESEARLMEDVLRPLEQALEDCRGHTRKQVCDDI
SR

R18915 (3)
AQAAVQGPVGTDFKPLNSTPATTTEPPKPTFPAYTQSTASTTSTTNSTAAKPAASITSKPATLT
TTSATSKLIH

AA043465 (2)
VKNMSSLEISSSCFSLETKLPLSPPLVEDSAFEPSRKDMDEVEEKSKDVINFTAEKLSVDEVSQL
VISPLCGAISLFVGTTRNNFEGEKSH*

AA295402 (2)
PPGAPPFLRPPGMPGLRGPLPRLLPPGPPPGRPPGPPPGPPPGLPPGPPPRGPPPRLPPPAP
PGIPPTRPGMMRPPLVPPLGPAP

AA313126 (1)
RDHRRYFYVNEQSGESQWEFPDGEEEEEESQAQENRDETLAKQTLKDKTGTDSNSTESSETS
TGSLCKESFSGQVSSSSLMPLTPFWTLL

H90481 (1)
NRGSEVIAAGMVVNDWCAFCGLDTTSTELSVVESVFKLNEAQPSTIATSMRDSLIDSLT*

AA315015 (1)
TNNTPMNQSVPRYPNAVGFPSNSGQGLMHQQPIHPSGSLNQMNTQTMHPSQPQGTYASPPP
MS

N49984 (1)
GACTSRPIHPSKAPNYPTEGNHRVEFNVNYTQDLDKVMSGSERN

Composite ESTs assembled from 2-7 overlapping sequences;
Accession number of representative EST is indicated;
Number of library clones corresponding to each composite sequence is indicated;
Total number of clones represented: 15"*": STOP codon
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Chapter IV

COPII subunit interactions in the assembly of the vesicle coat
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PREFACE

This chapter has been submitted for publication as: David A. Shaywitz,

Peter J. Espenshade, Ruth E. Gimeno, and Chris A. Kaiser (1997): COPII

subunit interactions in the assembly of the vesicle coat.

Peter Espenshade provided the recombinant Sec23p and Sec24p, and

was instrumental in the development of the in vitro binding assays used in

this study. Ruth Gimeno contributed to informative pilot experiments that

first suggested an interaction between Sec24p and Sec31p.
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Summary

In vitro analysis of COPII vesicle formation in the yeast S. cerevisiae

has demonstrated the requirement for three cytosolic factors: Sec31p/Secl3p,

Sec23p/Sec24p, and Sarlp. Convergent evidence suggests that the peripheral

endoplasmic reticulum (ER) membrane protein Secl6p also represents an

important component of the vesicle assembly apparatus: SEC16 interacts

genetically with all five COPII genes; Secl6p binds to Sec23p and Sec24p, is

found on ER-derived transport vesicles, and is required in vitro for the

efficient release of ER-derived vesicle cargo. In this report, we demonstrate

an important functional interaction between Secl6p and Sec31p. First, we

map onto Sec31p binding regions for Secl6p, Sec23p, Sec24p, and Secl3p.

Second, we show that a truncation mutant of Sec31p specifically defective for

Secl6p binding is unable to complement a sec31A mutant and cannot rescue

the secretion defect of a temperature-sensitive sec31 mutant at non-

permissive temperatures. We propose that Secl6p organizes the assembly of

a coat which is stabilized both by the interaction of Sec31p with Sec23p and

Sec24p, as well as by the interaction of all three of these components with

Secl6p.
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Introduction

In eukaryotic cells, proteins which enter the secretory pathway are

synthesized in the endoplasmic reticulum (ER)1, then transported to the

Golgi apparatus via membrane-bounded vesicles (1). Vesicles are formed by

the recruitment and assembly of cytosolic coat components upon the donor

ER membrane (2, 3). Dissection of vesicle formation in the yeast S. cerevisiae

has been facilitated by both the discovery of conditional mutants that are

defective in vesicle formation, and by in vitro reconstitution studies which

have helped define the essential components of the vesicle assembly

machine. In particular, three cytoplasmic factors, collectively termed COPII,

have been shown to be required for vesicle formation: the Sec31p/Secl3p

protein complex, the Sec23p/Sec24p protein complex, and the small GTP-

binding protein Sarlp (4, 5). The addition of these three factors to urea-

washed ER membranes stimulates the formation of coated, fusion-competent

vesicles (4).

While in vitro analysis has been able to define soluble components

required for vesicle assembly, membrane-associated factors have remained

less accessible to biochemical study. Thus, the mechanism of COPII

recruitment and assembly onto the membrane is still unknown. However,

converging genetic and biochemical evidence suggests that Secl6p, an

essential 240 kD multidomain protein, may be involved intimately in this

process. SEC16 is required for transport vesicle formation (6, 7), and exhibits

genetic interactions with all five COPII genes (7-10). Secl6p is tightly

associated with the periphery of the ER, and is also found on ER-derived

transport vesicles (6); furthermore, Secl6p cannot be extracted from

membranes by urea (6). Secl6p has been shown to physically associate with

the COPII subunits Sec23p and Sec24p (6, 11). In addition, membranes
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prepared from secl6 mutant strains exhibit a marked deficit in the release of

vesicle cargo molecules when assayed in vitro (12). Finally, the addition of

antibody against Secl6p to the in vitro budding reaction inhibits the

formation of COPII vesicles. 2

To define more precisely the role of Secl6p, we employed a yeast two-

hybrid interaction screen. We found that the COPII protein Sec31p interacts

with Secl6p, Sec23p, and Sec24p, as well as showing an expected interaction

with Secl3p. These results were confirmed by in vitro binding studies using

full-length Sec31p or truncations of Sec31p, expressed and purified from yeast

extracts as glutathione S-transferase (GST) fusion proteins. The in vivo

significance of the binding of Sec31p to Secl6p was explored using a Sec31p

truncation mutant specifically defective for Secl6p binding. This mutant

could not complement a sec31-null mutant nor rescue the secretion defect of

the temperature-sensitive sec31-2 mutant at non-permissive temperatures.

These findings support the hypothesis that Secl6p functions as a foundation

for the assembly of the COPII coat on the ER membrane.

-110-



Experimental Procedures

General Techniques -- Yeast manipulations were performed by standard

methods (13). Western blotting was performed using the following

antibodies: anti-HA (12CA5; 1/1000; BAbCO); anti-Sec23 (1/250) (14); anti-

Sec24p (1/250) (14); anti-Secl3p (1/250) (15); anti-Sec31p (1/10,000) (5). The

antibodies against Sec23p, Sec24p, and Sec31p were generously provided by R.

Schekman.

Two-hybrid Analysis -- The two-hybrid screen was performed in the indicator

strain L40 (16); subsequent analysis utilized CKY556, representing the strain

EGY40 (17) transformed with the indicator plasmid pSH18-24 (18). The L40

strain was initially transformed with the LexA-Secl6p fusion plasmid, pDS99,

representing the coding sequence for Secl6p amino acids 447-1235 inserted

into the pBTM116 vector (19); this new strain, designed CKY554, was then

transformed with an activation-domain fusion library (generously provided

by M. White) in the pGADGH vector (20). Interactions were tested as

described (18, 21). Sec31p truncation constructs in pGADGH were

subsequently constructed using the cloned SEC31 locus (10), generously

provided by R. Schekman. LexA-fusion constructs were made in pBTM116,

and represent the entire coding sequence of yeast Secl3p (pDS138) (15) and

human Secl3Rp (pDS168) (22, 23), and amino acids 666-926 of Sec24p (pDS272)

(8) and amino acids 447-1043 of Secl6p (pDS116) (6). The entire coding

sequence of yeast Sec23p (14) was inserted into pGilda, to generate pDS72.

pGilda represents a derivative of the pEG202 lexA fusion vector (18) that

retains the multiple cloning sites of pEG202 but which utilizes the GALl

promoter instead of the ADH1 promoter; the vector backbone of pGilda is

from pRS313 (24). To assay quantitatively production of the lacZ reporter

gene, the CKY556 strain was co-transformed with LexA- and activation
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domain-fusion plasmids. Transformants containing a pBTM116-derived

LexA-fusion plasmid were grown to exponential phase in selective medium

containing glucose. Transformants containing a pGilda-derived LexA-fusion

plasmid were grown to exponential phase in selective medium containing

2% raffinose; then galactose was added to 2%, and growth continued for

another 4 hours. At least three independent transformants were assayed for

13-galactosidase activity (13). The mean activity of the transformants is given,

and expressed in Miller units (1000 x OD420/[reaction time x OD600 units

assayed]) (25). All values above background were within 35% of the mean

value.

In vitro Binding Studies -- Recombinant Sec23p and Sec24p were prepared as

previously described (11). Recombinant Secl3p (26) was generously provided

by K. Saxena and E. Neer. The Secl6 protein utilized in these experiment was

prepared as follows: a DNA fragment encoding amino acids 447-1043 of

Secl6p was cloned into the GAL1O-promoted HA expression vector pRH165

(R. Gimeno, unpublished), to generate pDS216. This plasmid was

transformed into the S. cerevisiae strain CKY557 (MATa ura3-52 trpl::hisG

GAL+). Cells were grown to exponential phase in selective medium

containing 2% raffinose, then supplemented with 2% galactose for 4-6 hours

to induce expression of the epitope-tagged protein. These cells were then

washed in LBB-100 (20 mM HEPES-KOH, pH 6.8,80 mM KOAc, 5 mM

MgOAc, 0.02% Triton X-100, 0.1M NaC1) supplemented with protease

inhibitors PMSF (1 mM), leupeptin (0.5 ug/ml), pepstatin (0.7 ug/ml) as well

as EDTA (0.5 mM), then frozen by drops in liquid nitrogen. Frozen cell pellets

were lysed using a mortar and pestle and resuspended in LBB-100. The lysate

was cleared by centriguation at 3,000 x g for 5 min, followed by centrifugation

at 100,000 x g for 40 min.
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DNA regions encoding the entire Sec31p protein, a fragment of Sec31p

lacking the initial 490 amino acids, or a fragment of Sec31p lacking the final 98

amino acids were fused to the 3' end of the glutathione S-transferase (GST)

coding sequence under the control of the GALl promoter in the expression

vector pPE127, a vector identical to pRD56 but in a different reading frame (6).

Clarified cytosolic extracts were prepared as described above, except that the

concentration of NaCl used was 0.6 M; this buffer is referred to as LBB-600.

Glutathione-Sepharose 4B beads (Pharmacia) were incubated with the extracts

for 30 min at 25 0C, then washed three times with LBB-600. Beads prepared in

this fashion were decorated with 2-5 pmol of the fusion protein. For the

binding reactions involving Sec23p, Sec24p, and Secl3p, the decorated beads

were washed twice with binding buffer (25 mM K-Hepes pH 6.8, 0.1% Triton

X-100, 1 mM MgCl2, 0.25 mg/ml BSA). The beads were then resuspended in

45 p.l of salt-supplemented binding buffer, and 5 p1 of the relevant

recombinant protein was then added. Binding of Sec23p (2 pmol) and Sec24p

(1 pmol) was carried out in 50 mM NaC1, while binding of Secl3p (3 pmol)

was carried out in 150 mM NaC1. After incubation for 1 hour at 250 C, the

beads were washed 2-3 times with binding buffer (no additional salt), then

resuspended in extract sample buffer (ESB; ref. 11). For the reactions

involving Secl6p, the beads were washed twice with LBB-100, then incubated

with a yeast cytosolic extract prepared as described. These binding reactions

were carried out in a volume of 100 p.l, and utilized extract containing 126 pg

total protein; NaC1 was added to a final concentration of 0.2 M. Following a

one hour incubation at 25 0C, the beads were washed twice with LBB-100, then

resuspended in ESB. All proteins were subjected to SDS-PAGE followed by

Western blot analysis.
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In vivo Complementation Studies -- Both the SEC31-deletion strain RSY1109

(MAT a ade2-1 ura3-1 leu2-3,112 his3-11,15 trpl-A1 sec31::TRP1 [pNS3111-

SEC31-URA3-CEN]), kindly provided by R. Schekman, and the temperature-

sensitive sec31-2 strain CKY555 (MATa sec31-2 ura3-52 leu2-3,112), kindly

provided by A. Frand, were transformed with pDS321, pDS327, pDS328, or

pRS415 (Stratagene). sec31-2 was identified by A. Frand in a screen for new

mutants temperature-sensitive for ER to Golgi transport; the mutation in

sec31-2 was mapped by marker-rescue of gapped plasmids to a region

corresponding to amino acids 850-1175 (data not shown). pDS321 contains the

full SEC31 genomic locus (6.2 kb BamHI/PstI fragment) inserted into the CEN,

LEU2-marked pRS415 vector. pDS327 and pDS328 both contain a 5.0 kb Sal-

Sall genomic SEC31 fragment which represents a truncation that removes the

coding sequence for the C-terminal 98 amino acids of the protein. pDS327 is a

CEN-based plasmid, derived from pRS415, and pDS328 is a 2p-based plasmid,

derived from pRS425 (27). For the pulse-chase analysis, strains were grown to

exponential phase at permissive temperature (24°C), then shifted to non-

permissive temperature (360 C) for 20 min. Pulse-labeling of cells and

immunoprecipitation of CPY were performed as previously described (23).
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Results and Discussion

Portions of the Secl6p coding sequence were surveyed for regions that

would not by themselves act as transciptional activators when fused to a

DNA-binding domain, and would therefore be suitable for two-hybrid

analysis. pDS99, representing the coding sequence for amino acids 447-1235

of Secl6p inserted into the pBTM116 LexA-fusion vector (19), was one of the

constructs that fulfilled this criterion. This fragment of Secl6p includes the

region known to bind Sec24p (Secl6p amino acids 565-1235), and is distinct

from the region known to bind Sec23p (Secl6p amino acids 1638-2194) (6).

The L40 reporter strain (16) was transformed with both pDS99 and a S.

cerevisiae cDNA library constructed in the activation domain-fusion vector

pGADGH (20). Library plasmids were recovered from strains positive for

expression of both the HIS3 and lacZ reporter genes. A screen of 8x105 S.

cerevisiae cDNA clones yielded seven positives whose activation of lacZ

reporter expression depended upon the presence of the LexA-Secl6p fusion

protein. Six of the positive clones contained overlapping cDNA segments

derived from the 3' region of the SEC31 gene (10). The smallest of these

clones, 2a8, encodes a peptide of 127 amino acids, representing the extreme C-

terminus of the 1273 amino-acid Sec31p molecule.

In an effort to define the functional domains of Sec31p, a series of

Sec31p deletions were constructed in pGADGH and evaluated by two-hybrid

analysis against a series of potential interactors constitutively expressed as

LexA-fusion proteins in the pBTM116 vector (Fig. 1). From this study, the

Secl3p-binding region of Sec31p mapped to the N-terminal third of the

Sec31p protein, a region which contains six WD-40 repeats (28, 29). Constructs

expressing at least the first 490 amino acids of Sec31p, such as pDS131 (Fig. 1),

interacted strongly with Secl3p, while constructs lacking this region failed to
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interact. Since Secl3p itself consists almost entirely of WD-40 repeats (26), the

interaction of Secl3p with the N-terminal region of Sec31p indicates that

these regions of WD-40 repeats associate in a homotypic fashion.

We also examined the interactions of the human Secl3p homolog,

Secl3Rp (22, 23). Secl3Rp can function in yeast (23); in mammalian cells, it is

required for ER to Golgi transport (30), and has been localized to the cisternae

and vesicles in the region of the transitional ER (23, 30). Human Secl3Rp

exhibited a two-hybrid interaction profile identical to that of yeast Sec31p,

interacting specifically with pDS131. These results emphasize the degree of

conservation between yeast and mammalian COPII structures (23, 30-32), and

strongly imply the existence of a mammalian Sec31 protein.

We next asked whether Sec31p could interact with either Sec23p or

Sec24p. Utilizing a domain of Sec24p that does not interact with Sec23p (11),

we determined that Sec24p interacts with the central region of Sec31p

(pDS134), a region that does not interact with either Secl3p or Secl6p. The

evaluation of Sec23p binding to Sec31p required the use of an inducible LexA-

Sec23p fusion protein, since the constitutive overexpression of fusions to

SEC23 fusion was lethal (data not shown). We constructed the vector pGilda,

which allows for the galactose-inducible expression of toxic LexA-Sec23 fusion

proteins, and found that Sec23p interacted specifically with a central, 325-

amino acid region of Sec31p (pDS135). Since the analysis of pGilda-expressed

fusion proteins requires different growth conditions than the analysis of

pBTM116-expressed fusion proteins, the f3-galactosidase activity observed in

strains transformed with the different plasmids, while internally consistent,

are not directly comparable. Both the background t-galactosidase activity and

the B-galactosidase activity in strains containing interacting plasmids were

slightly higher in strains carrying pGilda-derived plasmids.
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To confirm the interactions detected by two-hybrid analysis, we asked

whether Secl6p, Sec23p, Sec24p, and Secl3p could bind to different GST-

Sec31p fusion proteins isolated from yeast. This approach has been used

previously to demonstrate the direct binding of Sec23 and Sec24p to different

regions of Secl6p (11). We evaluated three different GST-fusion proteins:

full-length Sec31p, Sec31p lacking the N-terminal 490 amino acids

(Sec31ANp), and Sec31p lacking the C-terminal 98 amino acids (Sec31ACp).

Sec23p and Sec24p were expressed as GST-fusion proteins in E. coli, purified

by affinity chromotography, then released by thrombin cleavage of the GST

moiety (11). Secl3p (kindly provided by K. Saxena and E. Neer) was purifed as

a hexa-His-fusion protein from E. coli (26). Clarified extracts of yeast

overexpressing the central-domain of Secl6p (amino acids 447-1043) which

had been tagged with a hemagglutinin (HA) eptitope provided the source of

Secl6p for this experiment. This fragment contains the putative Sec31p-

interacting region but is more soluble than the full-length protein.

The results from these binding experiments (Fig. 2) were in complete

agreement with the two-hybrid data. Full-length Sec31p was able to bind

Secl3p, Sec23p, Sec24p, and Secl6p. However, Sec31ANp was specifically

defective for Secl3 binding, while Sec31ACp was specifically defective for

Secl6 binding. Sec23p and Sec24p bound to both of the truncated proteins, but

not to GST alone.

The identification of Sec31ACp, which is specifically defective for

Secl6p binding, allowed us to investigate the in vivo significance of this

interaction (Fig. 3). First, we asked whether sec31-AC could functionally

substitute for wild-type SEC31. A sec31-null strain bearing wild-type SEC31 on

a URA3-marked plasmid was transformed with LEU2-marked plasmids

carrying either SEC31 or sec31-AC. Transformants were grown with selection
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for the LEU2-marked plasmid and then plated on medium containing 5-

fluoroorotic acid (5-FOA). Only yeast capable of growing in the absence of the

URA3-marked plasmid would be expected to grow under these conditions.

The strains carrying the plasmid with sec31-AC did not produce segregants

that could grow on 5-FOA (Fig. 3A), showing that the truncated protein lacks

an essential function of Sec31p.

As a control for protein expression levels, the wild-type yeast strain

CKY8 (6) was transformed with either a CEN-plasmid carrying sec31-AC or

with vector alone. Extracts from both strains were examined by

immunoblotting using anti-Sec31p antibody (Fig. 3D) (5). Sec31ACp was

present in equivalent amounts to the endogenous Sec31p, indicating

significant production of the truncated protein.

To address more directly the role of the C-terminal region of Sec31p in

secretion, we utilized a temperature-sensitive allele of SEC31, designated

sec31-2, which was isolated in a screen for new mutants defective for ER to

Golgi transport. By testing whether Sec31ACp could rescue the secretion

defect of sec31-2 observed at non-permissive temperatures, the ability of

Sec31ACp to fulfill the function of Sec31p in ER to Golgi transport could be

assessed. The sec31-2 mutant was transformed with plasmids encoding either

Sec31p or Sec31ACp; growth of the transformants at the non-permissive

temperature of 360 C was then evaluated. While mutants transformed with

the SEC31 plasmid grew at 360 C, mutants transformed with the sec31-AC

plasmid remained temperature-sensitive for growth (Fig. 3B); these results

were observed in mutants transformed with either a CEN-based or a 2M-based

sec31-AC plasmid. The kinetics of ER to Golgi transport of the marker cargo

protein carboxypeptidase Y (CPY) was followed by pulse-chase analysis of the

transformants at 360 C. The sec31-AC plasmid did not rescue the CPY transport
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defect (Fig. 3D). Because the binding studies showed that the only apparent

defect of Sec31ACp is in binding to Secl6p, the transport defect exhibited by the

truncated allele of SEC31 argues that the binding of Sec31p to Secl6p is

required for ER to Golgi transport. However, we cannot eliminate the

possibility that the C-terminal region of Sec31p performs an additional

function which has not yet been defined that is necessary for secretion.

Reconstitution studies in both yeast and mammalian cells demonstrate

that vesicle coat formation can be stimulated by the addition of a defined set

of cytosolic factors to washed donor membranes (4, 5, 33). For transport

between Golgi cisternae in mammalian cells, these factors are the small GTP-

binding protein ARF and the coatomer protein complex, consisting of seven

subunits which coassemble in the cytosol and bind en bloc to the donor

membrane (34). For transport between yeast ER and Golgi, two different

cytosolic protein complexes in addition to the small GTP-binding protein

Sarlp are needed to form the COPII vesicle coat (3, 14,15). The interaction that

we have detected between purified components of the Sec31p/Secl3p protein

complex and the Sec23p/Sec24p protein complex suggested that these two

complexes may pre-assemble in the cytosol. To examine this possibility, we

expressed a GST-Sec31p fusion protein in yeast and asked whether Sec23p or

Sec24p could could be found associated with this fusion protein in a cytosolic

extract prepared under conditions of the in vitro transport assay (4, 15). We

were unable to detect either of these proteins in the bound fraction. This

observation is consistent with our measurements of the stability of the

interactions between isolated proteins: binding of GST-Sec31p to recombinant

Sec23p and Sec24p was detected at 50 mM NaC1, but was not seen at 150 mM

NaC1, a salt concentration equivalent to that used for the in vitro assay (data

not shown). Under the same conditions, binding of GST-Sec31p to Secl3p or
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Secl6p was stable (Fig. 2). Consequently, it is likely that the physiological

association between the two COPII complexes requires the context of the ER

membrane.

Conditional mutants of SEC16 exhibit synthetic lethal interactions with

conditional mutants of SEC13, SEC23 (7), SAR1 (8), SEC31 (10), and SEC243.

Given that SEC16 interacts genetically with all five COPII genes and encodes a

peripheral ER membrane protein that is present on ER-derived transport

vesicles, required for vesicle formation, and binds directly to Sec23p, Sec24p,

and Sec31p, we propose that Secl6p functions as a foundation for the

construction of the COPII coat from soluble protein complexes (Fig. 4). The

demonstration that Sec31p binds directly to both Sec23p and Sec24p suggests

that the assembling COPII subunits are stabilized not only by interactions with

Secl6p but also by interactions with each other. Progress in understanding

the stepwise mechanism of COPII recruitment and assembly may come from

more precise definition of how the individual protein-protein interactions

between COPII subunits that we describe here are controlled.

-120-



Acknowledgments: We thank R. Schekman, M. White, E. Golemis, R. Brent,

A. Frand, K. Saxena, and E. Neer for generously providing valuable reagents;

F. Solomon, J. Pomerantz, D. Sodickson, P. Kirschner, C. Tsien, J. and A.

Shaywitz, and the members of the Kaiser lab for advice and encouragement.

This work was supported by the NSF Division of Education and Centers, the

National Institutes of Health (National Institutes of General Medical

Sciences), and the Searle Scholars Program (to C.K.).

- 121 -



Footnotes:

1. Abbreviations: ER, endoplasmic reticulum; GST, glutathione S-transferase;

HA, hemagglutinin. PAGE, polyacrylamide gel electrophoresis. CPY,

carboxypeptidase Y; 5-FOA, 5-fluoroorotic acid

2. P. Espenshade and C. Kaiser, unpublished results.
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Figure 1.

Dissection of Sec31p binding domains through the use of two-hybrid analysis.

The clone 2a8, a cDNA expressed in the activation-domain fusion pGADGH

and encoding the C-terminal 127 amino acids of Sec31p, was identified in a

two-hybrid screen for proteins that interact with the central region of Secl6p

(amino acids 447-1235), expressed from the LexA-Secl6p fusion plasmid

pBTM116. To define more precisely the domain structure of Sec31p, a series

of Sec31p truncations were constructed in pGADGH. The peptide fragments

represented by the activation-domain fusions are: pDS131 (1-490); pDS134

(570-1175); pDS135 (850-1175). These plasmids were evaluated against a series

of LexA-fusions to SEC13, SEC24 (coding sequence for amino acids 666-926),

SEC23, and SEC16 (coding sequence for amino acids 447-1043) for expression of

a lacZ reporter. Analysis of Sec23p interactions required the inducible

expression of the LexA-Sec23p fusion protein with GALl-regulated vector

pGilda. The regions of Sec31p that contain WD-40 repeats and proline-rich

sequences are indicated in the diagram.
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Figure 2.

Binding of COPII subunits to Sec31p in vitro. (A) GST-fusion proteins

representing full-length Sec31 (1273 amino acids), a N-terminal truncation

lacking the first 490 amino acids (Sec31AN), a C-terminal truncation lacking

the final 98 amino acids (Sec31AC), or GST alone were immobilized on

gluthathione agarose and incubated with recombinant Sec23p, Sec24p, Secl3p,

or clarified extract from yeast overexpressing the central domain of Secl6p

(amino acids 447-1043) tagged with a hemagglutinin (HA) epitope. The bound

fraction was resolved by SDS-PAGE, and proteins were detected by Western

blotting. A sample representing the total amount of protein added to the

reaction was also included for each protein analyzed; ratio of total to bound

loaded is 1:1 for the three recombinant proteins, and 1:10 for the Secl6p

extract. The recombinant Secl3p migrates slightly slower than endogenous

Secl3p, and the doublet in the Secl3p lanes indicates that both proteins co-

purify with Sec31p and Sec31ACp. (B) The affinity-purified GST-Sec31 fusion

proteins used in the binding reactions were separated by SDS-PAGE on a 10%

gel and stained with Coomassie brilliant blue.
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Figure 3

Secl6p-binding region of Sec31p is essential and required for ER to Golgi

transport. Plasmids expressing either Sec31p (CEN- plasmid) or Sec31pAC

(both CEN- and 2p-plasmids) were transformed along with a vector-only

control into either RSY1109, which carries a chromosomal deletion of the

entire coding sequence of SEC31 covered by SEC31 on a ULIRA3-containing

plasmid, or CKY555, which carries the temperature-sensitive allele sec31-2.

(A) RSY1109 transformants were plated on medium containing 0.1% 5-

fluoroorotic acid (5-FOA) to assay for complentation of the null allele. (B)

CKY555 transformants were plated at both permissive (24°C) and non-

permissive (360 C) temperatures, to assay complementation of the sec31-2

allele. (C) The transport of the vacuolar protein carboxypeptidase Y (CPY) in

the CKY555 transformants at non-permissive temperatures was examined by

pulse-chase analysis. Exit of CPY from the ER is observed only in the strain

expressing the full-length wild-type Sec31p protein. Positions of the pl (ER),

p2 (Golgi), and mature (vacuole) forms of CPY are indicated, as is the time in

minutes of chase. (D) Expression of Sec31ACp. Extracts were prepared from

the wild-type yeast strain CKY8 (6) transformed with either sec31-AC on a

CEN-plasmid (lane 1) or vector only (lane 2); samples were resolved by SDS-

PAGE and transfered to nitrocellulose. Proteins were detected by Western

blotting using anti-Sec31p antibodies.
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Figure 4.

Proposed role of Secl6p in the organization of the COPII coat. Formation of

COPII vesicles in vitro requires the presence of three cytosolic components:

the Sec31p/Secl3p complex, the Sec23p/Sec24p complex, and the GTP-binding

protein Sarlp. Secl6p, which is tightly associated with the cytosolic face of the

ER membrane, is proposed to organize the assembly of the COPII coat, binding

directly to Sec31p, Sec23p (6), and Sec24p (11). The interaction of Sec31p with

Sec23p and Sec24p is also expected to contribute to the assembly and stability

of the COPH coat. No attempt at correct stoichiometry has been made. Direct

interaction of Sarlp with Secl6p has not been demonstrated.
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Chapter V

Prospectus
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The work presented in this dissertation represents an attempt to

further our understanding of the proteins responsible for the formation of

COPII coated vesicles. In yeast, each of the COPII proteins has been shown to

be required for ER to Golgi transport. Homologs of three COPII proteins --

Secl3p, Sec23p, and Sarlp - have been discovered in mammalian cells; each

of these homologs has been localized to the cisternae and vesicles in the

region of the transitional ER. Mammalian Secl3 and Sarl have been shown

to be required for ER to Golgi transport (mammalian Sec23 was not

examined). Collectively, these data emphasize the extent to which the process

of COPII-mediated protein transport has been evolutionarily conserved.

Although the individual steps leading to the formation of COPII

vesicles remain incompletely understood, we are beginning to define many of

the interactions involved in this process. One possible mechanism leading to

the formation of the COPII coat is described below.

In this model, the first step in vesicle formation is the recruitment of

the small molecular weight GTP-binding protein, Sarlp. This is presumably

mediated by Secl2p, an ER membrane protein known to function as a

nucleotide exchange factor for Sarlp. Although Secl2p itself is not found in

transport vesicles, it has recently been found to associate with Secl6p (P.

Espenshade, unpublished results). Given the relatively weak nucleotide

exchange activity which has been demonstrated for Secl2p, the existence of a

co-factor which would enhance this activity seems a reasonable possiblility,

and Secl6p would be well-situated to perform this function.

Although the Secl3p/Sec31p and Sec23p/Sec24p complexes are usually

considered to be cytosolic factors, their intracellular location has not been

definitively established. For example, Sec23p was initially thought to be a

membrane-associated protein, and its release into the cytosolic fraction was
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only accomplished by both vigorous lysis and specific pH conditions (Hicke et

al., 1989). In our hands, only a very small amount of either of these

complexes is present in the cytosolic fraction of cells lysed vigorously in the

presence of 50 mM NaCl; increasing the salt concentration to 150 mM

increases the recovery of these proteins. Thus, while it is common to speak of

the recruitment of the Secl3p/Sec31p and Sec23p/Sec24p proteins from the

cytosol (e.g. Schekman and Orci, 1996), these factors may exist as loosely-

associated peripheral ER membrane proteins, possibly bound to either

transmembrane cargo proteins or cargo adaptors (vide infra). Thus, the role

of Sarlp may be to initiate the lateral recruitment of the COPII sub-complexes

(along with their bound cargo) to Secl6p. Alternatively, the COPII molecules

may exist loosely associated with Secl6p itself; perhaps Sarlp alters the

conformation of pre-bound complex molecules to a more stable

configuration.

A central feature of our model of COPII vesicle formation is the

proposed function of Secl6p as a foundation for COPII coat assembly.

Evidence in support of this model include:

* SEC16 interacts genetically with SEC12, SEC13, SEC31, SEC23, SEC24,

and SAR1;

* SEC16 is essential, and is required for ER to Golgi transport;

* Secl6p is tightly associated with the ER membrane, and is found on

ER-derived transport vesicles;

* Secl6p binds Sec31p, Sec23p, Sec24p, and Secl3p (see Appendix II);

* secl6 mutant membranes are impaired for COPII vesicle formation in

vitro;

* antibodies to Secl6p inhibit vesicle formation in vitro (P.

Espenshade, unpublsihed results).
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Assembly of the COPII coat might be facilitated by homotypic

interactions between Secl6p molecules (P. Espenshade, unpublished results);

the molecules of the COPII sub-complexes might also serve a cross-linking

function: for example, Sec23p bound to one Secl6p molecule might be

associated with Sec24p bound to a different Secl6p molecule. Similarly,

Sec31p bound to one Secl6p molecule could interact with either Sec23p or

Sec24p associated with a different Secl6p molecule.

The role of the COPII coat proteins in cargo selection remains an

important question. It seems reasonable to envision that the COPII coat

might participate in the selection of vesicle cargo, and function as a large

"sorting receptor." In the case of transmembrane cargo, this might be

accomplished by direct interactions with the COPII coat; the two-hybrid

interaction between Secl6p and Chslp (Appendix I) might represent one

example of this type of association. Soluble cargo would require association

with an adapter molecule, a transmembrane protein that might interact both

with the COPII coat on the cytosolic face of the ER as well as with specific

cargo molecules within the ER lumen. Emp24p/Bst2p might function in this

capacity, although the direct binding of cargo to this protein has yet to be

demonstrated. The possibility that a transmembrane cargo protein might

function as an adaptor for soluble cargo should also be considered.

The evolutionary conservation of COPII function affords the

opportunity to study a fundamental biological process in several different

systems. For example, different, highly-specialized cell-types might employ

slightly different COPII proteins; the COPII coat used by a cell devoted to the

secretion of insulin might well differ slightly from the coat used by a cell

devoted to the secretion of vasopressin. Alternatively, the coats might be

identical, but the (proposed) adaptor molecules different. The determination

- 139-



of the core components involved in this process allows us to examine how

this basic theme has been developed and modified in different biological

systems; in turn, this knowledge provides a us with a more nuanced

understanding of the essential process under investigation.

Our knowledge of ER to Golgi transport has advanced considerably in

the seventeen years since the initial sec screen was performed. The

combination of genetic and biochemical approaches have enabled us to define

and purify the proteins required for the in vitro reconstitution of vesicle

formation at the ER. However, many unresolved questions remain,

including:

* Are there additional proteins (either soluble or membrane-

associated) reguired for vesicle formation in vivo? Does Iss20p (Appendix I)

represent an example of such a protein?

* What is the step-wise sequence of events leading to the formation of

the vesicle coat?

* What is the role played by membrane lipids in both vesicle formation

and cargo selection?

* What is the structure of membrane-associated Secl6p?

* What is the role (if any) of Secl6p in the selection of the site of vesicle

budding? If Secl6p is involved in this process, how is its recruitment

regulated?

* What is the role (if any) of the COPII coat in either initiating

membrane deformation or in the scission of the completed vesicle?

Having defined the critical components of COPII vesicle formation

machinery, we are now challenged to understand how these components

collaborate, and how their function is regulated physiologically.
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PREFACE

Appendix I and Appendix II extend upon the experiments presented in

Chapter IV; the reagent descriptions and reference lists appearing in these

sections are intended to complement the information included in the

chapter.
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Appendix I

Preliminary characterization of the
Secl6p-interacting protein Iss20p
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OVERVIEW

Three two-hybrid screens were performed in effort to identify proteins

that would interact with Secl6p. One of these screens, described in Chapter

IV, identified Sec31p as a candidate interactor. Three additional genes were

identified by these screens. CHS1 and OLE1 were identified in screens for

proteins that interact with the C-terminal region of Secl6p (amino acids 1645-

2194); ORF YPPO49c (also yp9499.07c, and here designated ISS20 [Interacts with

Sec Sixteen]) was identified in a screen for proteins that would interact with

the central region of Secl6p (amino acids 447-1235). Both Chslp and Olelp

have been described previously, and both are associated with the organelles of

the secretory pathway. Chslp encodes a chitin synthase, and has three

transmembrane domains; the protein has been localized to both the plasma

membrane and to intracellular membrane-bound particles known as

chitosomes (Leal-Morales et al., 1994). Chslp thus represents an example of a

cargo protein which transits through the secretory pathway, and might

interact with Secl6p during packaging into transport vesicles at the ER.

Olelp, a fatty acid desaturase, has seven potential transmembrane domains,

and resides in the ER (Stukey et al., 1990). As such, it might contribute to the

anchoring of Secl6p to the ER membrane. Although we have not further

pursued the study of these proteins, the role of Olelp and particularly Chslp

in the recruitment of the COPII coat bears further investigation.

ISS20 represents a novel gene, predicted to encode a 1178 amino acid

protein that contains a prominent coiled-coil domain (Fig. 1). Regions within

this domain of Iss20p exhibit 17-25% identity to regions within the extensive

coiled-coil domain of the general fusion factor Usolp; this homology thus

seems to reflect a shared structural motif, and need not imply a shared
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function. The balance of this section describes preliminary attempts to

determine the whether ISS20 is involved in ER to Golgi transport.

PRELIMINARY CHARACTERIZATION OF ISS20

ISS20 was isolated in the same screen which identified Sec31p as an

interactor with the central region of Secl6p (Chapter IV). The region of

Secl6p which binds to Iss20p was subsequently mapped to a 165-amino acid

region of Secl6p (amino acids 660-824). This region by itself does not exhibit

interactions with Sec23, Sec24p, or Sec31p. The ISS20 clone isolated represents

the C-terminal 812 amino acids of the 1178 amino acid full-length protein

identified as the open reading frame YPRO49c in the database. The partial

ISS20 clone was used as a probe to identify by hybridization and then isolate

the complete genomic locus from a library in pCT3 (Thompson, 1993). Two

different pCT3 clones containing the entire ISS20 ORF were identified,

pDS158 (containg 1.5 kb upstream sequence and 6.4 kb downstream sequence)

and pDS161 (4.3 kb upstream sequence and 1.0 kb downstream) (see Fig. 1).

This determination was based on the sequence analysis of the insert ends, and

comparison with the yeast genome database.

To determine if ISS20 is essential, the genomic locus was disrupted by

one-step gene replacement (Rothstein, 1991). Two independent

transformation constructs were made. In the first approach (outlined in Fig.

2), fragments representing the 5' and 3' ends of the ISS20 gene were isolated

by restriction digest and cloned into the integrating vector pRS306 in the

appropriate orientation, to generate pDS178. The wild-type yeast strains CKY8

and CKY10 were mated, and the resulting diploid strain (MATa/a ura3-

52/ura3-52 leu2,3-112/leu2-3,112) was transformed with pDS178 that had been
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linearized by digestion with NotI. Transformants were selected on media

lacking uracil; two transformants were then sporulated; 16 of 20 tetrads

exhibited a 2:2 (live:dead) segregation pattern, 3 tetrads had one live spore,

and 1 had no live spores. The dead spores in tetrads exhibiting a 2:2 pattern

seemed to double 3-4 times before arresting, as 7-15 microcolonies were

observed under the microscope. These data were most consistent with the

disruption of an essential gene.

To investigate whether ISS20 was required for ER to Golgi transport,

we wanted to generate a strain carrying a chromosomal deletion of ISS20

covered by a plasmid expressing Iss20p from a galactose-regulated promoter.

By examing the transport of the marker cargo protein CPY following the

transfer of cells from medium containing galactose to medium containing

glucose, the involvement of Iss20p in ER to Golgi transport might be

determined. To conduct this experiment, we first needed to construct a ISS20-

deletion heterozygote that was both Gal+ and which retained the uracil

auxotrophy. To accomplish this, we mated strains CKY263 and CKY264 to

generate the diploid strain DSY388 (MAT a/a ura3-52/ura3-52 leu2,3-

112/leu2,3-112 Gal+/Gal+). Next, we designed an integration fragment that

utilized the 5' and 3' regions of ISS20 (generated by PCR) and a hisG-URA3-

hisG fragment as the selectable marker (see Fig. 3). Growth of strains

containing this fragment (obtained by digesting pDS285 with KpnI and NotI)

on 5-FOA results in recombination between the hisG regions, and loss of the

URA3 gene, thus regenerating the original uracil auxotrophy. Transformants

of DSY388 were initially plated on media lacking uracil. Sporulation of two

randomly-chosen transformants resulted in a 2:2 (live:dead) segregation

pattern. One of these transformants (DSY388) was then grown in the presence

of 5-FOA. Segregants were then selected, and found to be Ura-, as expected.
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One of these segregants (DSY389) was then spoulated, and again, a 2:2

segregation pattern was observed.

To verify that disruption of the ISS20 gene was responsible for the

observed lethality, pDS161 was transformed into DSY389. Surprisingly,

sporulation of the segregants revealed a 2:2 pattern, in 10/10 tetrads

examined. These results are discussed below.

We also attempted to demonstrate a role for Iss20p in secretion using

an approach recently developed by the laboratory of K. Struhl (Moqtaderi et

al., 1996). In this "double-shutoff" system (Fig. 4), the gene to be studied is

expressed as a fusion with ubiquitin and the hemagglutin (HA) epitope, and

is placed under the control of a Rox1p-repressible promoter (Zitomer and

Lowry, 1992). Integration of this fusion constructed is directed to the locus of

the gene to be studied, thus disrupting it, and ensuring that the only source of

the gene is the integrated fusion construct. A strain is utilized in which both

UBR1 and ROX1 are placed under the control of a promoter regulated by

Acelp (Furst and Hamer, 1989). Addition of copper to the growth medium

results in the rapid expression of both UBR1 and ROX1, and the subsquent

repression of the target gene as well the ubiquitin-mediated degradation of its

protein product (Johnson et al., 1992). As a result of the addition of copper,

the gene under examination is transcriptionally repressed and the protein

product is degraded. In tests of this system transcription factors have been

shown to be reduced to only 1% of their steady-state level in two hours. After

Iss20p depletion, pulse-chase analysis of CPY transport could then be used to

evaluate the effect on secretion.

Generation of the integration plasmid required a 5' region of ISS20 that

containing a unique site which could be used to linearize the integration

plasmid. A 120 bp 5' region of ISS20 was amplifed by PCR; this fragment,
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which contained a centrally-located PstI, was inserted into pZM168, to

generate pDS240. This plasmid was linearized with PstI, and transformed

into ZMY60 (equivalent to DSY373). The transformation efficiency appeared

to be quite low, possibly reflecting the small size of the regions (approximately

60 bp each) required for recombination. However, several transformants

were obtained. All the transformants were able to grow on selective media

containing copper, suggesting that if the fusion construct was functioning as

designed, then the fusion protein was not essential for cell viability.

In an attempt to increase the transformation efficiency, another fusion

plasmid (pDS264) was constructed that utilized a longer fragment of ISS20,

also generated by PCR. Again, the transformation efficiency of ZMY60

appeared quite low, but several transformants were obtained. All the

transformants tested were again able to grow on selective media containing

copper. To test for the expression of the fusion protein, extracts were prepared

from either ZMY60 transformants or from the orginal ZMY60 strain. Proteins

were separated by SDS-PAGE, and analyzed by immunoblotting using anti-

HA antibodies. A protein of the predicted size was present in the

transformant extracts, but not the control ZMY60 extracts, suggesting that the

construct had integrated in the expected location. The effect of copper

induction on the expression of the fusion protein has not yet been

investigated.

The simplest explanation for these results is that ISS20 is not an

essential gene, and that the disruption of ISS20 is lethal because it disrupts an

important regulatory region of a neighboring gene. Presumably, this

neighboring gene is not entirely represented on the pCT3 clone used to assess

complementation. The best candidate gene is ORF YPRO48W (also

yp9499.06w). The 3' end of this ORF (predicted to encode a NADPH-
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cytochrome p450 reductase) is less than 100 bp away from the 3' end of the

Iss20p coding sequence, and thus, it is possible that disruption of the ISS20

locus might also corrupt regulatory elements required for proper expression

of the YPRO48W gene. Since this gene is approximately 2 kb in length, it

would not be encompassed by the pDS161 clone, explaining why this clone

did not complement the ISS20 disruption. If this explanation is correct, then

transformation with pDS158, which contains 6.4 kb of sequence 3' of the ISS20

gene, should rescue the lethality. Southern blot analysis could also be

performed to confirm disruption of the ISS20 gene.

In summary, while the interaction of Iss20p with Secl6p raises the

possibility that Iss20p is involved in ER to Golgi transport, as yet we have not

been able to obtain confirmatory evidence to support this hypothesis, and

further studies will be required to clarify the role of this novel protein.

MATERIALS AND METHODS: construct generation

pDS178. pDS161 was digested with KpnI and Bam to liberate a 5.6 kb fragment

spanning the ISS20 locus. This fragment was inserted into pKS(+) to generate

pDS167. pDS167 was then digested with PstI, followed by reaction with

klenow fragment to generate a blunt end. The DNA was then digested with

SpeI to generate a 640 bp fragment representing the 121 bp of the ISS20 coding

sequence. This fragment was cloned into pKS(+) that had been digested with

Clal, reacted with klenow to blunt the end, then digested with Spel; the

resulting plasmid, designated pDS177, was then digested with NotI and XhoI,

and the insert (representing the extreme 5' region of ISS20) recovered.

pDS167 was digested with SacI and NotI to obtain a fragment representing the

extreme 3' region of ISS20. A three-part ligation was then performed using
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these two inserts and a fragment obtained by digesting pRS306 with SacI and

XhoI. The resulting plasmid, designated pDS178, was linearized with NotI

prior to transformation.

pDS285. pDS226 represents the 5.6 kb BamHI/KpnI ISS20 fragment cloned

into the pRS316 vector. To generate fragments reprsenting the 5' and 3'

regions of ISS20, PCR reactions were performed using pDS226 as the template,

and the following primers: Reaction I: sense primer: Stratagene T3 sequence;

anti-sense primer: 5'-AAAGATCTTTAATCAGCGTCTGCCATGATG-3'.

Reaction II: sense primer: 5'-AAAGATCTGGAGTTTGAACAGTGCTAAAC-

3'; antisense primer: Stratagene T7 sequence. Reaction I fragment was

digested with KpnI/BglII, reaction II fragment was digested with Bglll/NotI,

and pKS(+) was digested with KpnI/NotI; a three-part ligation was then

performed to generate pDS284. A 3.8 kb BamHI/BglII fragment containing

the hisG-URA3-hisG sequence was recovered by digestion of pNKY51 (Alani

et al., 1987), generously provided by N. Kleckner. This fragment was inserted

into pDS284 that had been digested with BglII, to generate pDS285. The 6 kb

KpnI/NotI insert was used for transformation.

pDS240. pDS161 was used as a template for a PCR reaction using the

following primers: sense: 5'-AAGAATTCCATGGCAGACGCTGATG-3';

antisense: 5'-AAGCGGCCGCAAATCAACATTCGTAG-3'. This PCR fragment

was digested with R1/NotI, and inserted into pZM168 (digested with the same

enzymes). The resulting plasmid was then digested with KpnI/NotI, and the

recovered 1kb fragment was inserted into pRS404, to generate pDS240. This

plasmid was linearized with PstI prior to transformation.
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pDS264. pDS167 was used as a template for a two PCR reactions using the

following primers: reaction I, sense: 5'-

AAGAATTCCATGGCAGACGCTGATG-3'; antisense: 5'-

GGTCTAGAGTAAAAGACCTATTA-3'; reaction II, sense: 5'-

GGTCTAGATGATTTTTACGTTTAC-3'; antisense: 5'-

GGCGGCCGGATATATGACTATTC-3'. These PCR fragments were digested,

respectively, with EcoRI/XbaI and XbaI/EagI, and inserted into pZM168

(digested with EcoR1 and EagI), to generate pDS263. This plasmid was then

digested with KpnI/SacI, and the 1.3 kb recovered fragment was inserted into

pRS306. This plasmid was linearized with XbaI prior to transformation.
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Figure 1

(A) Map of ISS20 (YPRO49C) genomic locus. Arrows indicate

orientation of ORFs. YPRO48W represents a neighboring ORF encoding a

protein with homology to the NADPH-cytochrome p450 reductase. MAK3

encodes an N-acetyltransferase required for the propogation of the L-A

doubled-stranded RNA virus (Tercero and Wickner, 1992). pDS158 and

pDS161 represent pCT3 clones (Thompson et al., 1993) containing the

indicated genomic regions.

(B) Diagram of Iss20p, indicating the location of the coiled-coil domain

(Paircoil sequence analysis program, Berger et al., 1995). The region of Iss20p

encoded by the library clone isolated in the two-hybrid screen for Secl6p

(amino acids 447-1235)-interactors is also shown.
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Figure 2

Gene disruption of ISS20 using pDS178. See text for details.
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Figure 3

Gene disruption of ISS20 using fragment excised from pDS285; see text

for details.
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Figure 4

Outline of double-shutoff system. The system consists of two parts: (1)

a parent strain (ZMY60) containing copper-inducible alleles of ROX1 and

ULIBR1; (2) a short 5' region of ISS20 fused in frame with a ubiquitin-arginine-

lacI-HA ("URLF") cassette, and regulated by the ANB1 promoter; this fusion

construct is inserted into an integrating vector. The resulting "disruption

plasmid" -- in this case, either pDS240 or pDS264 -- is linearized at a site

within the ISS20 fragment, and integrated by homolgous recombination as

shown. (Note that full-length HA-tagged Iss20p will only be produced if the

disruption plasmid integrates in the proper location.) When the strain

containing the correctly-integrated plasmid is induced with copper,

transcription of the fusion product is repressed by Rox1p, while Ubrlp

mediates the degradation of the residual URLF-Iss20p protein. See text for

details.
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Appendix II

Two-hybrid interactions of Secl6p with Sec31p, Sec24p, and Secl3p
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SUMMARY

Sec31p and Sec24p have both been shown to bind to the central region

of Secl6p (amino acids 447-1293). In an attempt to map the binding sites more

precisely, the interaction of Sec31p, Sec24p, and Secl3p with different regions

of Secl6p was evaluated by two-hybrid analysis. We report the identification

of regions of Secl6p that interact specifically with each of the three proteins

investigated.

RESULTS AND DISCUSSION

Sec24p and Sec31p were both previously shown to bind the central

region of Secl6p (amino acids 447-1235). In an effort to determine more

precisely where Sec24p and Sec31p bound Secl6p, protein fragments

representing different regions within the central domain of Secl6p were

expressed as LexA-fusions. These constructs were transformed into CKY556

and evaluated by two-hybrid analysis against the following proteins,

represented as activation domain-fusions: Sec24p (C-terminal region, amino

acids 666-926); Sec31p (C-terminal region, amino acids 1147-1273); and Secl3p.

The results of this analysis (Fig. 1) suggest that specific regions within

the central domain of Secl6p interact with Sec31p, Sec24p, and Secl3p.

Interpretation of these data is complicated both by the high background

associated with the pDS293-transformants, and by the weak association

observed between pDS143 and the Sec24p constructs (though this association

was consistently found to be above background).
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These data represent the first evidence that Secl3p directly associates

with Secl6p, and lend additional support to our hypothesis that Secl6p serves

as a foundation for the assembly of the COPII coat (Fig. 2).

MATERIALS AND METHODS: plasmids used in two-hybrid analysis

LexA-fusion plasmids (vector: pBTM116):

pDS293 (Secl6p, amino acids 447-700).

pDS143 (Secl6p, amino acids 661-824).

pDS144 (Secl6p, amino acids 877-1235).

Activation domain-fusion plasmids (vector: pGADGH):

2a8 (Sec31p, amino acids 1147-1273).

pDS271 (Sec24p, amino acids 666-926).

pDS141 (Secl3p).

pDS102 (vector only).
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Figures
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Figure 1

Dissection of Secl6p binding domains through the use of two-hybrid

analysis. To define more precisely the binding domains within the central

region of Secl6p (amino acids 447-1235), a series of Secl6p truncations were

constructed in the LexA-fusion vector pBTM116: pDS293 (Secl6p amino acids

447-700); pDS143 (amino acids 661-824); pDS144 (amino acids 877-1235). These

plasmids were evaluated against a series of activation domain-fusions to

SEC31 (coding sequence for amino acids 1147-1273), SEC24 (coding sequence

for amino acids 666-926), and SEC13 for expression of a lacZ reporter. Regions

of the central domain of Secl6p that contain charge-rich and proline-rich

sequences are indicated in the diagram, as is the region containing the known

secl 6 ts mutations.
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Figure 1
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Figure 2

Two models of COPII assembly upon Secl6p, reflecting all interactions

detected by two-hybrid analysis. See text for details.
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Figure 2a
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Figure 2b
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