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Abstract

High-speed motor-alternators are required in flywheel energy storage systems for hybrid

electric vehicles (HEVs). Recent advances in permanent magnet materials and power

electronics have stimulated research into the development of permanent-magnet

synchronous machines (PMSMs) for this application. Flywheel systems have the potential

to replace chemical batteries as HEV energy storage elements, but there are numerous

design requirements that must be met before such systems become viable. The primary

electromagnetic design challenge and the key contribution of this thesis is the analysis and

characterization of eddy current losses in the permanent magnets arrayed around the rotor

of the motor-alternator. Models of the relevant electromagnetic and electromechanical

attributes of this type of machine, including power rating and electrical losses, are

developed. The Ansoft Maxwell finite element software package is used to verify the

torque and rotor loss models of the PMSM. A Monte-Carlo based integrated design

process is then used to select the frontier of machine designs best suited for this

application. The design frontier provides intuition into the design trends and tradeoffs

inherent in this system, and investigates the viability of developing high-performance

PMSMs with acceptably low rotor eddy current losses.
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Chapter 1

Introduction

1.1 Overview

High-speed, high-efficiency motor-alternators are required in flywheel energy storage

systems for use in hybrid electric vehicles (HEVs). These systems are referred to as

"electromechanical batteries" (EMBs) and can provide power at very high efficiencies and

with zero emissions [1]. This thesis presents a design of the motor-alternator that performs

electromechanical energy conversion in the EMB system. A permanent-magnet

synchronous machine (PMSM) is analyzed and an optimal design for this application is

selected by using an integrated design approach.

1.2 Research Background

Flywheels, disks spinning about a fixed axis, have been used as energy-storage

elements for hundreds of years. They are used in modern devices such as "wind-up" toy

cars and rowing ergometers. These two examples illustrate the use of flywheels as power

sources and as "load-levellers," or mechanical low-pass filters.

In recent years, these has been increasing interest in using high-speed (up to 100,000

RPM) flywheels as energy storage systems in electric vehicles. These systems can be used

either as the primary source of energy in a vehicle, or to supplement a conventional

internal combustion engine or chemical battery. In a hybrid system, the flywheel is

designed to provide power levels comparable to an internal combustion engine, and is

commonly used in parallel with an internal combustion or gas turbine engine. The

flywheel is activated in drive situations requiring large power response, such as peak

acceleration or regenerative braking. The latter concept could improve the overall



efficiency of a vehicle by transferring energy normally consumed in braking friction back

into the flywheel.

Flywheels hold promise in the development of HEVs because they outperform

conventional chemical batteries in a number of important areas. A performance

comparison was obtained from SatCon Technology Corp. [2] and is presented in

Table 1.1. The flywheel system has the potential of eliminating some of the drawbacks of

conventual battery arrays, most notably long recharge time, low driving range, frequent

maintenance and low acceleration. The drawback of the flywheel system is its higher cost,

but the potential for technological development can be expected to significantly reduce the

cost over time. An article by Post [1] outlines recent developments in composite flywheel

materials that have increased their potential energy density (stored energy per unit mass)

and hold the potential for lower cost flywheel systems.

A number of researchers have investigated EMB systems and constructed feasible

prototypes. Post [1], Schaible [3], and Lashley [4] have considered some of the material

Attribute Chemical Battery Flywheel System

Operating Life 2-8 yrs. 20+ yrs.

Reliability low high

Recharge Time 10-15 hrs, 3 hrs.

Environmental Issues Pollution from disposal none

Maintenance Requirement 6 mos. 7 yrs.

Technological development mature promising

Cost $0.30/W.hr $1.00/W-hr

Power Density (W/kg) 150 5000

Energy Density (W-hr/kg) 10-30 >50

Table 1.1: Chemical battery and flywheel energy storage system comparison



and mechanical challenges presented in this system. Among these are the development of

very high tensile strength flywheel materials, lamination of the flywheel to prevent

centrifugal forces from tearing the rotor apart, bearing control and stability, and

containment in the event of machine failure.

Due to the high speed and high efficiency requirements of the EMB system, the

flywheel is housed in a vacuum to greatly reduce windage losses. A key design challenge

is that the evacuated environment prohibits conductive and particularly convective heat

transfer, limiting heat dissipated in the rotor to radiative transfer and severely constraining

rotor power losses. The electric machine that couples energy in and out of the flywheel

must be carefully chosen and designed to keep these losses at an acceptable level.

This machine functions as a motor when power is transferred into the flywheel and a

generator when power is transferred out of it-a composite motor-alternator. A variety of

electric machines are candidates for this application, including induction machines,

conventional wound-field synchronous machines, and permanent magnet synchronous

machines [5]. Induction machines produce torque by inducing eddy currents on the rotor,

producing large eddy current losses during energy transfer and eliminating them from

consideration. Conventional synchronous machines require current-carrying rotor field

windings that also produce large heating losses, even in the steady state, and are also

considered too lossy for this application. Permanent-magnet synchronous machines are

more expensive due to the cost of high-performance magnets, but do not require currents

to flow in the rotor to convert energy, and are selected for this application.

1.3 Permanent-Magnet Synchronous Motor-Alternator

Recent advances in magnet technologies and power electronics have led to the

development of permanent-magnet synchronous motors for EMB applications [6]. These



are rotating machines with wound armatures, and rotors with permanent magnets arrayed

around the circumference, eliminating the brushes or slip rings found in wound-rotor

machines. PMSMs require extensive power electronics, usually consisting of an inverter

and a boost or buck converter, to supply appropriate time-varying armature waveforms.

The power electronics are supplied by a DC voltage bus, so these machines are often

referred to as "brushless DC" machines. Rotor position sensors, utilizing the Hall effect or

sensing back emf, allow the power electronics to place the waveforms in space to produce

the required power. For high speed PMSMs, the flywheel is housed in an evacuated

chamber to reduce windage losses, and is supported by magnetic frictionless bearings to

eliminate friction losses and preclude mechanical bearing failure.

As mentioned in the previous section, the machine uses the permanent magnets rather

than currents to produce the rotor field, which tends to greatly reduce rotor losses. High-

performance permanent magnet materials can effectively eliminate hysteresis losses, and

properly designed and laminated stator cores can greatly reduce core losses. The primary

source of rotor losses is the heat created by eddy currents that flow in the magnets on the

surface of the rotor. Thermal analysis by engineers at SatCon has determined that these

losses cannot exceed a few watts. In this thesis, a conservative upper bound of 1 W is used

as a design constraint. Maintaining these losses at an acceptable level is a primary

engineering challenge in the design of the motor-alternator, and represents a predominate

goal and contribution of this thesis to the research effort.

1.4 Thesis Objectives and Scope

This thesis will focus on the electromechanical and electromagnetic subsystems of a

PMSM and will develop a design of a 30 kW, 30,000 RPM machine specified for use in an

EMB. The models will be verified by comparing finite element analysis software results to



the theoretical models. The predominate goals of the thesis are to determine whether a

high-performance PMSM can be developed with sustainably low eddy current losses, and

if so to investigate the design trends that arise in the optimal machine.

Because this is a preliminary investigation into the viability of a PMSM, non-electrical

subsystems of the EMB are not explicitly developed. Structural issues such as bearing

stability and containment are not addressed in this thesis. Heat transfer is not modeled but,

as mentioned above, a limit on rotor heating was obtained and integrated into the design.

The design of power electronics is also not within the scope of this thesis, but has been

investigated by Srinivasan [7]. For purposes of machine design, a perfectly efficient power

system supplying polyphase sinusoidally time-varying waveforms will be assumed.

A thorough design would certainly require an integration of the all of these

subsystems, but modeling them would substantially increase the complexity of this thesis

and will not be attempted. Insofar as the electrical characteristics of the motor-alternator

place important constraints on EMB design, this design process will provide insight into

the trends in optimal flywheel motor-alternator design.

1.5 Integrated Design Approach

Once an analytical model of a system has been developed, a process for finding the

optimal design must be developed. If the model is nonlinear and involves more than a few

variables, it will be difficult or impossible to find the optimal design by solving the model

analytically [8]. One solution is to break the system up into smaller, less complex

subsystems that can be solved independently of one another. The entire system can be then

be reassembled and, by some measure, an optimal design will be produced. This is known

as a non-integrated approach, and while it may provide some indication of design trends, it

ignores interactions between subsystems that may be of critical importance to optimal



performance.

To better optimize system performance, an integrated design process is employed. In

this approach, all system interactions are integrated into a single model and all parameters

are optimized concurrently. If the process is properly constructed and executed, it will

produce better overall designs than a non-integrated approach. However, improved

optimization comes at the expense of an increase in model and design process complexity.

Therefore, careful consideration must be given to the depth of analysis to assure the proper

balance between model accuracy and mathematical complexity. Because analytical

optimization is precluded, finding the optimal designs in an integrated design approach

requires searching the design space and using some measure of performance to pick out

superior designs. This search can be random or systematic, and may include iterative

measures to accelerate design convergence.

This thesis utilizes a design process called the Novice Design Assistant [9, 10, 11, 12],

which uses a Monte-Carlo synthesis approach to randomly create designs within specified

constraints, and does not use iterative methods to accelerate the design. The results of the

design demonstrate that rotor losses for high-performance motor-alternator can indeed be

contained to about 100 mW, well below the heat transfer constraint of 1 W.

1.6 Thesis Outline

The design of the motor-alternator proceeds in three stages. First, analytical models of

motor-alternator performance, including torque rating, electrical losses, weight, cost, and

machine length are developed in Chapter 2. Computational finite element methods are

used to verify the analytical models in Chapter 3. A "Monte-Carlo" based integrated

design approach is presented in Chapter 4 and a frontier of superior designs is created.

Chapter 5 summarizes and concludes the thesis, and offers suggestions for future research.



Chapter 2

Development of Analytical Models

2.1 Introduction

This chapter describes the modeling of the various subsystems of the permanent-magnet

synchronous motor-alternator. First, design requirements and objectives are outlined, and

then an appropriate machine configuration is chosen and analytical models of its

performance are developed. In all aspects of design formulation, careful consideration is

given to the appropriate balance between accuracy of performance evaluation and

simplicity of analytical models.

The analysis of a permanent-magnet synchronous machine very closely follows that of

a conventional synchronous machine with a wound field on the rotor. Classical methods

for analyzing the steady-state behavior of synchronous electric machines have been

thoroughly developed and are well understood [5]. Expressions for machine rating and

armature losses are first derived using these common models. Rotor eddy current losses

are negligible in the analysis of wound field machines, because Ohmic losses in the field

windings are typically much larger. In PMSMs, however, they are the critical constraint on

machine losses and the development of accurate eddy current models is vital. A model that

builds upon current research and introduces three-dimensional analysis is developed and

represents the key contribution of this thesis. Finally, models of weight, cost, and machine

length are developed to complete the analysis of motor performance.

2.2 Design Specification and Objectives

The objective of this design process is to find the machine (or set of machines) that meets

performance specifications while demonstrating superior attributes. The design



specifications for the permanent-magnet synchronous machine are given below.

* Power (Pmech) The motor must deliver a fixed amount of mechanical power,

reflecting the machine's capacity for energy transfer from the electrical system to the

flywheel. In this design the power requirement is 30 kW.

* Rotor speed (com ) The speed of the flywheel will change as it is discharged and

recharged. The model analyzes machine performance as a typical operating point. Note

that this specification, in conjunction with the power requirement, determines the amount

of torque that the machine must produce. A typical operating point for this design was

chosen to be 3142 rad/sec (30,000 RPM).

* Terminal voltage (V) The motor-alternator will be powered from the vehicle's DC

bus and the RMS value of the line-to-neutral terminal voltage must exceed than this

voltage. In this design, the terminal voltage will be fixed at the bus voltage. Choosing a

specific voltage may appear to constrain the design, but as the models will demonstrate,

this does not place any restrictions on optimal machine selection. The terminal voltage of

a motor can be changed to any arbitrary value without changing the relevant design

attributes. A terminal voltage of 155 V was used in this thesis.

The objective of the design is to find a machine that meets these performance

requirements, and also exhibits the most desirable performance in the following attributes.

* Rotor eddy current loss (Pr) Eddy current will flow in the permanent magnets

because of armature space harmonics, causing power loss. This dissipation must be

contained or heat buildup will cause the flywheel system to fail.

* Material cost (Ct) This includes the cost of the copper and magnets in the

machine. Other machine costs such as manufacturing will add to the total machine cost,



but they are not likely to depend significantly on design parameters and are neglected.

* Material weight (wt)

* Electrical efficiency (Effj The predominate electrical losses in the machine are

Ohmic and eddy current losses in the armature wires. Rotor losses, though an important

attribute, are negligible in the efficiency calculation.

* Total machine length (1o) This dimension includes the length of the armature as

well as the end turn height.

2.3 Scope of Design Consideration

In order to avoid an unnecessarily complex and time-consuming design process, several

reasonable restrictions were placed on the scope of this design framework.

2.3.1 Selection of Machine Configuration

There are several feasible geometric configurations for a PMSM. Analytical comparison

of these configurations would require the integration of the various machine models into a

larger design process. This would increase the degrees of freedom in design and would be

time-consuming. Consequently, engineering intuition led to the a priori selection of a

machine configuration judged to be best suited for high-speed, low rotor loss performance:

a three-phase, "inside-out," ironless machine with air-gap windings and surface mounted

Neodynium Iron Boron magnets in a Halbach array configuration. This machine

configuration is illustrated in Fig. 2.1.

* Three-phase power The drive for this machine was chosen to provide three-phase

balanced armature currents. Such systems are almost universally applied in commercial

synchronous machines because they produce output torque that is nearly constant in time.

In contrast, single-phase systems produce torques varying sinusoidally in time that can



Figure 2.1: Selected machine configuration

produce destructive mechanical vibrations. In addition, polyphase systems produce

armature fields that are more sinusoidal in space and which will tend to reduce space

harmonics and associated rotor losses. In this design framework, reducing rotor losses will

tend to indicate using the maximum number of phases possible to reduce space harmonics.

In a broader design framework, the number of phases will be limited by the cost of the

associated power electronics. The power electronics model is outside the scope of this

thesis, however, so standard three-phase power was chosen to provide a framework for

machine design.

NeFeB magnets Because of the large power requirement of the motor-alternator,



high performance magnets with strong magnetization are required. The strongest magnet

material on the market is Samarium Cobalt (SmCo), but because cobalt is a rare earth

element mined in politically sensitive countries, SmCo will not be considered in this

application. Neodynium Iron Boron (NeFeB) magnets [13] were selected because they

have a relatively strong residual flux density and are magnetically hard. However, a

drawback to the high-performance magnets is that they have relatively high conductivity,

which will contribute to rotor eddy current losses. One option is to use plastic bonded

NeFeB magnets, in which the magnetic material is suspended in a plastic matrix rather

than sintered, with no increase in cost. This reduces conductivity by more than an order of

magnitude, but the residual flux density is reduced by half. Because rotor losses are a key

design constraint, the NeFeB magnets will be considered with both bonded and sintered

fabrication. Table 2.1 summarizes the relevant characteristics of each material.

Fabrication Residual Flux Conductivity Relative
Class Density (T) (S/m) Permeability

Sintered 1.2 7.0x10 5  1.05 7500 kg/m 3  $72/kg

Bonded 0.6 2.5x10 4  1.05 5950 kg/m 3  $72/kg

Table 2.1: Characteristics of Neodynium Iron Boron permanent magnets

Surface-mounted magnets The permanent magnets must be arrayed in such a way

as to produce roughly sinusoidally varying flux that crosses the air gap. Typically, they are

placed in a ring around the outside of the rotor. However, in high-speed applications,

centrifugal forces act to pull the magnets away from the rotor, possibly resulting in

catastrophic machine failure. One way of addressing this is to "bury" the magnets in the

interior of the rotor to provide structural support. However, this configuration is very

difficult to manufacture and is avoided. The surface-mounted magnet array was chosen



and the problem of structural support was addressed by the choice of stator/rotor geometry

described next.

* Inside-out stator/rotor Synchronous machines are commonly constructed with

the rotor in the interior of the stator, as illustrated in Fig. 2.2(a). The reversed or "inside-

out" configuration shown in Fig. 2.2(b) has essentially identical energy conversion

mechanisms, but is typically avoided because of the need to construct a hub connecting

the rotor to the shaft. In high-speed PMSM applications, however, placing the magnet

array on the inside of the rotor can provide structural support against centrifugal forces

and prevent the magnets from tearing off of the rotor. This eliminates the added cost and

complexity of installing a retaining ring.

* Halbach magnet array Conventionally, surface-mounted magnets are arrayed in a

ring with their magnetization alternating between radially inward and radially outward, as

Air Go

Magni

(a) (b)

Figure 2.2: Comparison of (a) conventional and (b) "inside-out"

stator/rotor configurations



Conventional Array

Figure 2.3: Finite element analysis of magnetic field and radial air gap flux for

(a) conventional and (b) Halbach permanent magnet arrays

shown in Fig. 2.3(a). This produces magnetic flux that is equally distributed between the

interior and the exterior of the ring. Alternatively, the flux can be concentrated inside the

ring by using an array developed by Halbach [14, 15] and illustrated in Fig. 2.3(b). The

field produced by the azimuthal magnets tends to cancel the field produced by the radial

magnets outside of the array, but reinforces it inside the array. This places nearly all of the

magnetic flux in the interior of the magnets and produces a field that is roughly 4 22 times

as strong at the interior edge of the array. A plot of the radial magnetic flux inside each

Halbach Array



magnet array is pictured in Fig. 2.3.

* Ironless machine Magnetic steel is commonly placed behind the field and

armature windings as "back iron" to serve as a high-permeability channel for magnetic

flux, increasing air gap flux and the torque rating of the machine. However, if steel is

exposed to time-varying magnetic fields, heat is produced by eddy current and hysteresis

losses. In this application, these losses are eliminated by replacing the iron in the stator

and rotor with a non-conducting material like plastic. This will reduce air gap flux, but the

use of a Halbach array can restore some of it. A further advantage of the ironless

configuration is that the machine weight will be significantly reduced, which is beneficial

in automotive applications.

* Air-gap windings The armature can be wound either with or without slots. The

chief advantage of steel slots is that they reduce the effective air gap by providing a high

permeability path directly to the physical air gap. However, this PMSM is ironless so a

slotless winding was chosen. Air-gap windings tend to be more difficult to construct, but

the increase in cost is modest and is accepted in this application. Another important

benefit is that air-gap windings have smaller higher-order field harmonics due to the

absence of slot harmonics. As outlined in Sec. 2.5.3.2, higher-order harmonics give rise to

eddy currents that drive the critical loss mechanism in the rotor.

This choice of machine configuration was based on design intuition rather than

mathematical analysis, so a more broad integrated design is necessary to verify the

validity of this selection. However, the a priori choice reasonably limits the scope of

design consideration and model complexity, allowing for a simpler design process but



producing insight into important design issues and trends in optimized machine

characteristics.

2.3.2 Depth of Analysis

In order to further simplify the models, several assumptions were adopted. These

assumptions must be relaxed before a thorough design process is developed, but they are

necessary to create models of necessary simplicity at this stage of machine design.

* Power electronics This thesis does not address the design of the power electronics

that provide the drive for the motor-alternator. Models of machine drives such as inverters

introduce a host of associated constraints, as demonstrated by Srinivasan [7]. It is assumed

that the drive functions as an infinite voltage bus, with a power factor of unity and current

and voltage waveforms that are perfectly sinusoidal in time.

* Dynamic analysis The models developed in this thesis are for steady state

synchronous operation only. Dynamic situations like the charging and discharging of the

rotor will have significant effects particularly on rotor losses, because the fundamental

armature field will vary in time in the stationary frame of the rotor and produce eddy

currents.

* Material properties In this model all materials have linear and anisotropic

conductivity, magnetization, and permeability. A more thorough analysis would consider

the effect of temperature on magnet conductivity and magnetization, and explore the

possibility of demagnetizing fields under terminal fault conditions. In addition, the

nonlinearity of the magnet B-H curve will cause hysteresis losses that might become

significant for strong, high frequency field excitation. However, high performance NeFeB

magnets are very hard magnets, meaning that the demagnitizing force is very large and



Figure 2.4: Motor geometry for a two-pole machine

-H curve is nearly linear in the operating range. To a first approximation, all of

inearities can be ignored, but a more thorough design process should consider

a priori parameter selections and assumptions simplify the model to within

: scope, yet provide enough accuracy that insight into the feasibility and design

i flywheel PMSM is maintained.

Dr Parameters

n of the selected motor configuration illustrating its physical dimensions is

in Fig. 2.4. The parameters in the machine are as follows.



* Machine Dimensions (Rai, ta, g, and tm) These dimensions will establish the

machine radii

Rao = Rai + ta

Rm = Rao + go (2.1)

Rs = Rm + tm

* Machine length (L) This refers to the length of the axial portion of the armature,

i.e., excluding the length of the end turns. Field perturbations arising from end turn

currents are negligible in this analysis.

* Armature turns per phase (Na) This is the total number of turns in all poles of a

phase winding. A small number of turns will require a large amount of terminal current,

while many turns create a large terminal voltage. Hence, the number of turns tends to fall

at an intermediate value.

* Parallel strands per turn (Npar) The armature is exposed to a time-changing

magnetic field produced by the rotor, causing eddy current losses in the armature wires. To

reduce this effect the armature turns are divided into smaller insulated strands, producing

lower losses.

* Terminal current (I) This is the RMS value of the current into each armature

phase.

* Wire strand diameter (dw) As outlined above, smaller strands in the armature

turns will reduce eddy current losses.

* Magnet material properties (B, a, rm, Pm, and Cm)



The requirements, attributes, constants, and parameters in the PMSM model are

summarized in Table 2.2.

2.5 Analytical Machine Models

In the following sections, models of the electrical and electromechanical behavior, loss

mechanisms, and geometry of a permanent-magnet synchronous machine will be

developed. Models for rating the output torque and terminal electrical behavior of the

machine are based on classical synchronous machine theory. Models of armature eddy

current and Ohmic losses are also well understood, along with techniques for analyzing

end turn geometry. Rotor eddy current models contain some original methods and are

developed in more detail.

2.5.1 Machine Terminal Characteristics

The terminal behavior of one phase of a synchronous electric machine can be

summarized by the equivalent circuit of Fig. 2.5. V is the line-to-neutral terminal voltage, I

is the terminal current, Eaf is the back emf (the time derivative of flux linked by the

armature winding), Xd is the synchronous reactance of the armature winding, and Ra is the

resistance of the armature winding. The armature is wound in a wye-connected

Ld Ra ,

V

Figure 2.5: Synchronous motor equivalent circuit for one phase

Eaf



Requirements

Parameters

Constants

Attributes

Symbol

Pmech

Com

V

Rai

ta

g

tm

P

L

Na

Npar

I

dw
Br

Rr

Pm

Cm
go
(Tc

-c

Pc

Cc
Pr

Eff
Ct

wt

Mechanical power

Mechanical rotational speed

Terminal Voltage

Armature inner radius

Armature thickness

Physical air gap

Magnet thickness

Number of pole pairs

Machine length (excluding end turns)

Armature turns per phase

Parallel strands per turn

Armature current per turn

Wire strand diameter

Magnet residual flux density

Magnet conductivity

Magnet relative permeability

Magnet density

Magnet cost

Permeability of free space

Copper conductivity

Copper permeability

Copper density

Copper cost

Rotor eddy current losses

Electrical Efficiency

Material cost

Material weight

Machine length (including end turns)

Table 2.2: Model variables

Description 
Units

W

rad/sec

V

cm

cm

cm

cm

unitless

cm

unitless

unitless

A

cm

T

S/m

unitless

kg/m
3

US$/kg

H/m

S/m

H/m

kg/m
3

US$/kg

W

US$
kg

cm

Description Units
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Figure 2.6: Synchronous motor phasor diagrams for (a) arbitrary Xy and (b) I = 0

configuration in this machine. Because the machine is operating synchronously, voltage,

current, and back emf will have the same frequency oe, the electrical frequency of

excitation. Assigning arbitrary phase differences, these quantities can be expressed as

V(t) = F2Vcos(oet)

I(t) = F2Icos((oet - y) (2.2)

Eaf(t) = J2Eafcos((Oet + 8)

where the magnitudes are RMS values.

In motor operation, current flows into the terminals and the machine can be described

by the phasor diagram of Fig. 2.6(a). In this thesis, the motor drive is an infinite bus that

supplies current and voltage in phase, so that V is 00 and cos N, the power factor, is unity.

Under these operating conditions, the machine can be described by the phasor diagram in

Fig. 2.6(b), and the electrical power into the machine is given by

Pelec = 3 VI (2.3)

dI



To determine the terminal behavior of the machine, then, the synchronous armature

reactance, back emf, and armature resistance must be calculated. The synchronous

reactance is

Xd = OeLd (2.4)

where the armature self-inductance, derived in Appendix A, is given by

3 41o(Na)2 (k,) 2 L
Ld =-- ks  (2.5)

The coefficient kw is a winding factor related to the number of machine phases and ks is a

coefficient incorporating the armature geometry.

Lastly, back emf is given by

Eaf = COea (2.6)

The armature flux Xa, derived in Appendix B, has RMS value

42BrNaRaiLkwkmkt
1 = (2.7)=; p

where kt is a coefficient that includes the effect of the radial thickness of the winding, and

km is a coefficient that represents the relationship of the radial field produced by the

magnets to machine geometry.

Armature resistance is given by

2Na(L + t ) (2.8)
Rw =ae (2.8)

a ocAt

where At is the cross sectional area of the copper in one armature turn:



At = Npar7I•f2  (2.9)

The turn length It depends on the end turn configuration and is derived in Appendix C.

2.5.2 Electromagnetic Torque Model

PMSMs operate just like conventional synchronous machines, except that the field

windings are replaced by permanent magnets. The magnets are mounted on the rotor and

the stator has a conventional armature winding. In motor operation, the magnetic fields

produced by the magnets interact with the fields produced by current in the armature

windings to produce torque on the shaft, and associated mechanical power, which can be

expressed as

PPmech = TOm = T  (2.10)

where cm.is the mechanical rotational speed.

Alternatively, torque applied to the shaft will cause an induced voltage in the armature

winding, and create electrical power. Hence the PMSM, like any electric machine, can

serve as either a motor or a generator. The analysis presented in this section will consider

motor operation, though generator operation can be analyzed using identical concepts and

models.

* Torque rating Instantaneous electromagnetic torque results from J x B forces and

can be derived from conservation of power:

Pelec = Pmech + loss (2.11)

In this model Ploss encompasses only Ohmic armature loss, while system losses such as

windage loss and rotor eddy current loss are comparatively small and have been neglected.



Using Eqs. 2.3 and 2.10, along with the definition of Ohmic loss gives

3 VI = To)m + 3 2 Ra (2.12)

which can be solved for torque to give

3(VI- I2 Ra)
T = (2.13)

tO
m

From the phasor diagram in Fig. 2.6(b) it is evident that

V- IRa = Eafcos8 (2.14)

Using this relation along with the definition of back emf

Eaf = a = =Oe = P(Omxa (2.15)

gives

T = 3pXalcos8 (2.16)

Because of its relationship to machine torque, 8 is called the torque angle.

* Calculation of armature amp-turns In this design, the torque is specified and the

machine must be rated for current and torque angle. A useful intermediate quantity in this

calculation is the total cross sectional current flowing in each phase of the armature. This

quantity is referred to as the number of amp-turns NI, where

NI = Nal (2.17)

The amp-turn rating can be determined by starting with the relationship between

voltage, current, and back emf indicated by the phasor diagram in Fig. 2.6,



(V - Ra ) 2 + (IXd) 2 = (Eaf)2

From conservation of power it is evident that

Pmech
V- Ral mech (2.19)

31

so that Eq. 2.18 can be rewritten

P + (IXd)2 = (Eaf)2  (2.20)

This equation can be solved for I to yield

_ 1
I-( (2.21)

Now consider that Eafj given by Eq. 2.6, is proportional to Na, while Xd, given by

Eq. 2.4, is proportional to (Na)2. This will cause I to be proportional to 1/Na, geometric

parameters, and the power rating. Hence the product I-Na, the number of amp-turns

necessary to produce the rated power, can be calculated. This is given by

12(RaiLB kwmm) 2 - 2 ](RaiLB kw-Om) 4 - (PmechlRO(kw) 2 ksLOm) 2

NI = I- (2.22)
6momgo(k,)2ks L

where B1 is a shorthand quantity that represents the RMS fundamental flux averaged over

the winding thickness

B1 = -Brkmkt (2.23)

* Calculation of terminal current and torque angle To solve for the number of

(2.18)



armature turns and terminal current, a further constraint must be placed on the system. A

straightforward approach is to choose the number of turns and solve for current directly

with Eq. 2.17.

The alternative method used in this design is to choose the terminal voltage. Note that

NI is independent of V, so that for a given power rating and machine geometry, production

of a desired torque will require a given number of amp-turns for any terminal voltage.

This is because flux linkage (and hence terminal voltage) is proportional to armature turns

according to Eq. 2.7, so that power is independent of armature turns. Hence, any number

of armature turns can be chosen to produce the required power at a specified voltage,

provided that the required number of amp-turns is supplied. To illustrate, a machine with

large current and a few armature turns can produce the same torque as a machine with a

small current and many armature turns, but at a lower terminal voltage.

To find I and Na, start with Eq. 2.12, which can be rearranged to find

Tom Pmech
V 31 + I R a  m31 + I R a  (2.24)

Substituting for Ra and I by using Eqs. 2.8 and 2.17 gives

v = mecha (N) Nalt - PmechNa (NI)t(2.25)
3(NI) Na Nparw() 2  3(NI) 2Npar(2

Now, noting that the total number of conductors in each armature belt, Nac, is

Nac = NaNpar (2.26)

Eq. 2.25 can be rewritten and solved for Na to give



NV (2.27)Na = Pmech (NI)lt

3(NI) +N w(2
gac 2

This represents the unique number of armature turns that will both link enough flux to

create the appropriate terminal voltage and supply enough amp-turns to produce the rated

mechanical power.

The armature current per turn and the torque angle can now be found from, the number

of parallel wire strands and the torque angle will then be given exogenously by

I (NI) (2.28)
Na

and

8 = acos (2.29)

The number of parallel strands is given exogenously by

Nac
N par ac (2.30)

Na

Hence the current rating and torque angle can be determined, for a given power and

terminal voltage, with only Nac as an input to the machine model. The armature current

will then give rise to the electrical losses in the machine.

2.5.3 Loss Models

The primary loss mechanisms in the permanent-magnet synchronous machine will be

armature and rotor heating. The armature losses arise from Ohmic heating in the current-

carrying wires as well as eddy current losses in these wires. There are no rotor source



currents so the rotor losses will be entirely due to eddy current losses. The magnet

material of choice, NeFeB, is magnetically hard so hysteresis losses can be neglected. The

are no core losses in the machine because of the absence of iron.

The rotor losses will tend to be such smaller than the stator losses, but because the

rotor is in an evacuated chamber, heat transfer is limited to radiation and is estimated to be

limited to only 1 watt. The armature is not necessarily relegated to the vacuum, and can be

outside of it if the evacuated chamber runs through the air gap. Even if the stator is in the

vacuum, active armature cooling schemes such as water circulation are

available. Consequently, minimizing rotor losses is the critical issue in machine viability

and models of these losses are accordingly detailed. Armature losses must still be modeled

and contained, however, because they will decrease electrical efficiency, increase terminal

voltage, and add to the cost of armature cooling.

2.5.3.1 Armature Loss

Losses in the armature winding will be caused by Ohmic heating arising from both

terminal current and induced eddy current in the wires.

* Terminal current Ohmic loss Current flowing in the armature winding will give

rise to losses

Pohm = 312Ra (2.31)

I is the current in each phase, and Ra is the resistance of each armature phase, as given by

Eq. 2.8. Note that this expression can be rewritten using Eqs. 2.8, 2.9 and 2.17 to give

Poh NI ' 2 (Na)2 (L + 1t )  3(NI)2 (L + I (2.32)
ohm (2.32)

•c(a C)I 2 m c a oc(AC)(o,

This indicates that for a machine with a given torque rating, the Ohmic losses are



independent of the terminal voltage for a given number of armature conductors.

* Armature eddy current loss Losses will also occur in the armature because it is

immersed in the rotating field produced by the rotor magnets. These time changing fields

will produce eddy currents in the armature wires and associated heat loss. A reasonable

approximation of these losses is derived in Appendix D as

61tNacL(o)e)2 (B 1)2
c(d w)4

P = (2.33)
ec 128

B 1 is the space average RMS value of the fundamental radial magnetic flux density in the

armature winding,

B1 = -Brkmkt (2.34)

which provides a good measure of the average flux density seen by an armature wire. Pec

is also independent of the terminal voltage because it is determined only by the magnet

fields and the number of armature conductors.

* Electrical efficiency The total loss of electrical origin in the armature is

Pa = Pohm + Pec (2.35)

The overall electrical efficiency is then given by

P P
Eff = 1 a = 1 (2.36)

Pe 3VI

2.5.3.2 Rotor Eddy Current Losses

This section presents a detailed three-dimensional model of the losses in the rotor,

which are entirely due to eddy currents induced by the armature magnetic field. The



machine is analyzed in synchronous operation, so that the fundamental component of

armature field as seen by the rotor is stationary. Hence, only higher order-harmonics will

produce these losses. The loss analysis will proceed in three stages: (1) derivation of the

magnitude of the armature space harmonics; (2) derivation of a 2D model of power losses

due to these harmonics; and (3) addition of a "correction factor" for losses in machines

with short axial length. These will together form a 3D model of losses on the rotor.

* Armature space harmonics Several assumptions are made about the currents

flowing in the armature winding. First, the current density is constant over space in each

phase belt. Second, the currents are three-phase, balanced in time, and have no time

harmonics. Lastly, the currents are assumed to flow only in the z-direction for now, but this

assumption will be relaxed when the 3D model is developed. The current distribution can

then be expressed as

J(t, 0)2 = JA(t, B0) + JB(t, 0)2 + Jc(t, 0)2 (2.37)

where

Ja(t, O) = Jcos(npO)cos(oet)

JB(t, O) = Jcos(np0)cos(Oet - 120 0 ) (2.38)

Jc(t, 0) = Jcos(np0)cos(oet + 120')

These expressions apply to the unprimed phase belts in Fig. 2.4. The primed belts are the

return paths of the unprimed belts, so their current densities will have equal magnitude and

opposite sign. When combined, the belts will produce an approximation to a travelling

sinusoidal wave, as the "snapshots" in Fig. 2.7 illustrate.

The magnitude J of the current density in each phase belt can be found by taking the

ratio of the total cross sectional armature current to the armature area:



(3) (4)

Figure 2.7: "Snapshots" of three-phase air gap armature current

J 2q(NI) (2.39)
7t((Rao)2 - (Rai) 2 )

Note that this voltage is dependent only on the number of amp-turns and not terminal

voltage, so as with armature losses in Sec. 2.5.3.1, the terminal voltage does not affect this

machine attribute.

This current waveform can be Fourier analyzed to produce a series of positive and

negative travelling waves of the form
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J(t, 0) = XJnsin(npe - ot) + 1J- sin(np6 + cet) (2.40)
n n

where

+ q (4 q-
Jn = J  cos ) n = 1, 2q + 1, 4q + 1,...2nn q 2

-Jn (2.41)

q4 C qols nn = 2q - 1, 4q - 1, ...
S 2nt q 2

A given armature harmonic can then be expressed as

Jan = Jnsin(npOFoet) = Jnsin(npOpoMWmt) (2.42)

The total eddy current losses will be the superposition of the losses produced by each

harmonic term. For the purposes of design, only the first two higher order harmonics will

be considered. This approximation is valid because, as Eq. 2.41 shows, current density is

inversely proportion to n, and eddy current losses are proportional to J2 and hence 1/n2.

Furthermore, losses for a given current density fall off very rapidly as n increases because

the excitation wavelength falls and less field crosses the air gap and penetrates the

magnets. Consequently, losses were observed to fall off by about an order of magnitude

for each succeeding harmonic, so this approximation is nearly exact.

Note that the higher harmonic waves are travelling more slowly than the rotor, and will

be time-varying in the frame of the rotor. In order to model the eddy current losses, the

harmonics must be transformed into the stationary frame of the rotor. In the stator frame,

the rotor is spinning with a rotational speed c0 m , so a stationary point on the rotor will

appear at angle

0' = O- mt (2.43)



Substituting this expression into Eq. 2.42 gives

Jan = Jnsin(np(O' + 0mt)FPOmt) = Jnsin(np0' + p(n F 1)Omt) (2.44)

and from this point forward the rotor frame angle 0' will be noted as 0 to simplify

notation. Note that for the fundamental armature space harmonic, n is 1, so the armature

wave appears stationary in the frame of the rotor, as we would expect.

This expression indicates that the higher order harmonics will be travelling backwards

in space in the rotor frame, half at time harmonic order (n + 1) and the other half at time

harmonic order (n - 1). If the higher order harmonics are paired in the form

{2mq - 1, 2mq + 1}

where m is an integer, as shown in Eq. 2.41, the time harmonic order as seen by the stator

will be

n t = (n• 1) = 2mq (2.45)

for both harmonics in that pair. Eq. 2.44 can now be written

Jan = Jnsin(np0 + pnt()mt) = Jnsin(np0 + nt et) (2.46)

For a three-phase machine, then, the first two higher order harmonics will be the 5th

and 7th harmonics in space, and both will be 6th order harmonics in time. In the rotor

frame, the lower order harmonic will appear to be travelling backwards at a rotational

speed of speed of m' and the higher order harmonic will also be going backwards, at a speed of

6
7 mco. These time-varying waves will drive eddy currents in the magnets.

* Eddy current loss model If a stationary, magnetically permeable material is

exposed to a time-changing magnetic field, Faraday's Law



VEVxE = -C

indicates that an electric field will be induced. If the material is also conducting, Ohm's

Law

J = E (2.48)

will give rise to currents in the material. These are called eddy currents and produce

instantaneous Ohmic losses given by

Pi = fjJdV
V

(2.49)

The most straightforward way to calculate the eddy losses is to solve for the bulk

current everywhere in the material and carry out this volume integral. The current can be

found by combining Ampere's Law

VxH = J

with Eqs. 2.47 and 2.48 to obtain

(2.50)

DHVxVxH = -go t

Using the vector identity

Vx(VxH) = V(V -H) - V2H

and the fact that H is divergenceless, or

V.H=O

gives the diffusion equation

(2.51)

(2.52)

(2.53)

(2.47)



DH
V2H = -g3H- (2.54)

This partial differential equation describes the behavior of magnetic fields in the presence

of permeable conductors.

Given appropriate boundary conditions, the diffusion equation can be solved for the

magnetic fields in a conductor, and Ampere's Law can then be applied to give the current

density in the conductor, which can be integrated to find the power loss. In practice, the

mathematical complexity of this approach becomes prohibitive in a problem with more

than one or two regions. The magnetic fields can be found in this manner, but for only

slightly complicated problems a closed form solution to Eq. 2.49 may not exist, so the

integration must be done numerically. This is very time-consuming and impractical for

repeated design evaluations.

Fortunately, there is a much simpler method of solving the loss problem. This

technique does not require solving for the bulk fields, but only those at the material

boundaries. This analysis uses the Poynting vector

S = ExH (2.55)

which describes the magnitude and direction of power flow in a region. Poynting's

theorem

Pi = ff(V. S)dV = fS. dA = f(ExH). -dA (2.56)
V A A

indicates that instantaneous power into or out of a volume V is given by the flow of S

across the surface A enclosing the region.

In this model, the eddy current loss can be found by assigning V to the rotor volume.

Because the problem is formulated in the stationary frame of the rotor, there is no



mechanical power associated with rotor motion. Hence, all of the power captured in

Poynting's vector is the power dissipated by Ohmic loss. If we assign the surface A to be

the inside of the rotor and measure the power flowing radially into the rotor, this will give

the rotor loss. If we define a cylindrical coordinate system, the component of interest is

Sr = -EzHo (2.57)

It is then necessary to find the axial electric field and the azimuthal magnetic field at the

inner surface of the rotor.

The fields Ez and H0 will be induced by the current density of Eq. 2.46. They will

time-varying at frequency nteo, and will be phase shifted in space. In complex notation,

they can be expressed as

Ez = { ,zej(npO + ntet) } Ho = 9( { eej(npO + ntoaet)} (2.58)

where Ez and He are complex quantities.

A method for finding these boundary fields in a problem with an arbitrary number of

coupled regions has been thoroughly developed by Melcher [16] and is presented in

Appendix E. It finds H0 and the vector potential Az at the material boundaries, given the

armature current density, machine geometry and material properties.

Az, like Ez and H0 , will be of the form

Az = •{Azej(npO+n,t,t)} (2.59)

The relevant field Ez can be readily obtained from Az by using Faraday's Law and

substituting the definition of vector potential

Vxt (VxA) = V×x (2.60)



which can be applied termwise to give

Ez  - -iAz = -jnt eAz  (2.61)

Substituting this expression into Eq. 2.57 gives

Sr = jntfOeAzH 0  (2.62)

2D
To find the total time average 2D rotor power loss Pr , Sr can be integrated over the

surface area of the inside of the rotor and averaged in time to give

P 2 0D 'T. 7SrrdOdzdt (2.63)Pr f r = Rm

This can be combined with Eqs. 2.58, 2.59, and 2.62 to yield

P2D = t Oen  ýze(npO + ntOet)} He(npO + ntOet)} rddzdt (2.64)

r = R m

which integrates to

2D
Pr LA(H = trLMi{jntoeAz(no) 1 (2.65)

where (HO)* denotes the complex conjugate of le0 . This expression allows for

computationally efficient evaluation of rotor eddy current losses.

* 3D effect of machine length The 2D loss model assumes that the machine is

infinitely long in the z direction, so that eddy currents are only z directed. In actuality,

these currents must terminate at the end of the rotor and "turn around", forming current
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loops like those illustrated in Fig. 2.8. As the axial length of the machine decreases, this

effect will become more pronounced and will tend to impede current flow, reducing losses.

This is the same principle that motivates the axial lamination of iron cores in electric

machines. To further develop the accuracy of the loss model, and allow for a wide range of

machine dimensions, a machine length coefficient ki is derived in Appendix F. This

coefficient approaches unity as the machine becomes infinitely long, and begins to
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attenuate the losses when the machine length is comparable to the wavelength of

excitation, reaching zero when the length is zero. The expression for kl is

k= 8(np ) 1 1 (2.66)kl - - 2g- M-2+ ( np 2(2.66)
m odd Ravg m 2  2+

L Ravg

where Ravg is the average magnet radius

R + R
Ravg - 2 S (2.67)

2

The complete expression for rotor eddy current losses is then

Pr = Pr Dk = 7rrLk9{jntceAz(H)* Ir = R (2.68)

2.5.4 Other Machine Attributes

In addition to power rating and losses, there are three other machine attributes:

material weight, material cost and length.

* Material weight The material weight wt will be the sum of the copper weight wc

and the magnet weight wm, which can be expressed

d (2.69)

Wm = PmLn[(Rs)2 -(Rm) 2]

* Material cost The cost of the materials will then be

Ct = wcCc + wmCm (2.70)

* Length The overall machine length is



10o = L + 2h t
(2.71)

where ht is the end turn height derived in Appendix C.

This completes the analytical models of the permanent-magnet synchronous machine.

In the next chapter, these analytical models will be verified using finite element analysis.



Chapter 3

Model Verification by Finite Element Analysis

3.1 Introduction

In this chapter, the Ansoft Maxwell 2D finite element analysis (FEA) software

package [17] is used to verify the analytic models derived in the previous chapter. This

software allows input of a machine geometry as well as material properties (including

magnetization), current sources, and boundary conditions. Finite element analysis breaks

up the geometry of the problem into adjacent triangles, and solves for the field in each

element. The number of elements can be increased to allow for the desired model

accuracy. The software produces graphical field plots, as well as numerical calculation of

torque and eddy current loss.

The objective is to use FEA to verify the models of magnet- and armature-produced

magnetic fields, machine torque, and 2D eddy current losses in a PMSM machine. This

software package did not offer 3D analysis, so no attempt was made to verify the 3D eddy

current loss model.

Two representative machines were chosen and their attributes calculated with the

analytical models. The relevant results are summarized in Table 3.1. These designs are not

optimized for performance, but they are reasonable machines that meet all of the design

requirements. The choice of only 1 or 2 pole pairs reflects a desire to increase the accuracy

of the finite element analysis by decreasing the resolution of machine geometry.

Experiments with the software found that accuracy began to erode for more than 3 or 4

pole pairs. As the following results demonstrate, analytical model predictions agreed with

FEA results to within about 1% error for all measured attributes. Relevant graphs and

figures are collected at the end of this chapter.



Specifications

Parameters

Attributes

Variable

Pmech

RPMmin

V

Rai

ta

g

tm

p

L

Nac

Br

IPr

OTr

Na
I

P 2D

p3Dr

Machine A

10,000

20,000

100

3.5

1.0

0.15

0.5

1

10

1250

1.2

1.14

7.0x105

75

37.7

26.9

12.98

10.52

Machine B

35,000

30,000

155

8.0

2.0

0.2

0.75

2

3

5000

1.2

2.00

2.5x104

106

80.1

28.9

5.00

1.94

Table 3.1: Sample machines for finite element analysis

3.2 Stationary Field Analysis

To analyze the stationary magnetic fields in the machine, Maxwell's magnetostatic module

was used. This package analyzes field phenomena that result from stationary field

properties, including electromechanical torque. The machine geometries were rendered in

the Maxwell environment and are pictured in Figs. 3.1 and 3.14. The angle 0 indicates the

rotation of the rotor around the stationary armature. The arrows indicate the direction of

permanent magnetization for each magnet in the Halbach array, and the letters A, B, and C

Units

W
RPM

V

cm

cm

cm

cm

pole pairs

cm

conductors

T

unitless

S/m

turns

A

degrees

W
W



indicate the armature phases. The software was versatile enough to accommodate radial

and azimuthal magnetization with a llr dependence, as specified in the magnet field model

outlined in Appendix B.

Figs. 3.2 and 3.15 illustrate the element mesh that Maxwell automatically generated

for each machine. The solution process is iterative, so that regions with intense magnetic

fields are more densely modeled in each succeeding solution step. Calculation of field

quantities and machine parameters tends to stabilize after about 5,000 triangles are

generated, but for more complex geometries more triangles are needed to ensure accuracy.

In this problem, calculations and plots for the two-pole Machine A used about 5,000

triangles, while the four-pole Machine B required about 8,000 triangles.

* Magnet-produced magnetic field and flux density Figs. 3.3 and 3.16 are

Maxwell contour plots of the magnetic flux density in the two machines. To verify the

magnet-produced magnetic field model derived in Appendix B, the symbolic analysis

package Maple [18] was used to produce a plot of the Fourier series for magnetic flux

density summarized by Eq. B.32. Figs. 3.4(a) and 3.17(a) are plots of this field at the inner

armature radius for each machine. Figs. 3.4(b) and 3.17(b) are Maxwell plots of the flux

density at the same radius.

* Armature magnetic field and flux density Figs. 3.5 and 3.18 illustrate the FEA

plot of armature-produced magnetic fields for both machines. In these graphs, note that the

axis of magnetic field is offset (0 = 8), reflecting the torque angle of each machine.

Figs. 3.6(a) and 3.19(a) are Maple plots of the analytical expressions for armature flux

density derived in Appendix A and summarized by Eq. A.32. In these plots, the field is

evaluated at the armature inner radius, with the current vector aligned with the center of

phase A. Figs. 3.6(b) and 3.19(b) are FEA calculations of the same quantity. For both field



plots, analytical predictions match nearly exactly with FEA results. The superposition of

these two fields gives the complete machine magnetic field, which is pictured in Figs. 3.7

and 3.20.

3.3 Torque Analysis

Torque, unlike eddy currents, results from static interaction of fields and is independent of

material motion, so magnetostatic time-stationary methods can be applied. Maxwell has a

torque calculation module that allows for the direct computation of torque per unit depth

produced by a two-dimensional geometry. However, the magnetostatic package only finds

instantaneous quantities, while the torque expressions presented in Sec. 2.5.2 are time-

average quantities. While time-average, nonzero constant torque will be produced by the

fundamental magnet field, the higher order terms will give rise to a time-varying, zero

time-average torque that causes a ripple in the torque characteristic.

To correct for this, an expression for time-varying torque can be constructed by

starting with the expression for the magnet field Fourier series, Eq. B.32, and then finding

the flux linked by each armature phase for each Fourier term, following the method of

Sec. B.2. The torque produced by the entire machine is then the sum of the Fourier series

for each armature phase. Plots of this quantity were obtained with Maple and are pictured

for each machine in Figs. 3.8(a) and 3.21(a). Note that the torque ripple is periodic in the

number of phase belts, as would be expected from the symmetry of the machine. More

detailed plots of the torque ripple over one cycle are presented in Figs. 3.8(b) and 3.21 (b).

To test the model, the instantaneous torque was computed with the calculated torque

angle at seven rotor angles spaced over one phase belt. The results matched the predictions

very closely, with errors of less than 1 percent, and are summarized in Table 3.2 as well as



Table 3.2: Comparison of analytical torque predictions and FEA calculations

illustrated by the data points on Figs. 3.8(b) and 3.21(b). These accurate results for both

machines reasonably verify the machine rating model.

3.4 Eddy Current Loss Analysis

In this section the Maxwell eddy current module is used to predict the time varying fields

and eddy current losses in the problem. Because only the 5th and 7th armature space

harmonics will produce significant eddy current losses, the armature was constructed as

the superposition of these current density waves, with magnitudes given by Eq. 2.41.

Maxwell only allows for one frequency of excitation, but these harmonics have the same

Machine Rotor Angle Model Torque FEA Torque Error
(0) (N-m) (N-m)

A 00 4.28 4.27 0.2%

A 100 4.72 4.71 0.2%

A 200 5.28 5.31 0.6%

A 300 5.16 5.23 1.4%

A 400 4.83 4.83 0.0%

A 500 4.36 4.38 0.5%

A 600 4.28 4.28 0.0%

Average 4.77 4.72 0.4%

B 00 10.34 10.28 0.6%

B 50 11.10 11.16 0.5%

B 100 11.98 12.03 0.4%

B 150 11.82 11.91 0.8%

B 200 11.19 11.24 0.4%

B 250 10.42 10.32 1.0%

B 300 10.34 10.37 0.3%

Average 11.17 11.04 0.6%



time frequency so can be superimposed in this way.

The software only allows for standing waves of current density, but travelling waves

are the sum of two standing waves, each with the same amplitude as the travelling wave,

and which each produce half of the time-average eddy current losses. Hence, in the FEA

current densities were specified as standing waves with the same amplitude as the

travelling wave being analyzed, and the corresponding time-average losses were doubled

to compensate.

Plots of the finite element mesh for this simulation are picture in Figs. 3.9 and 3.22.

Again, more triangles were included in the four-pole machine analysis to ensure accurate

results. The calculated magnetic fields are shown in Figs. 3.10 and 3.23, and the resulting

eddy current contours are pictured in Figs. 3.11 and 3.24. As indicated by Eq. 2.65, the

eddy current losses can be characterized by H0 and Az at the inner radius of the magnets.

These quantities were computed analytically using the most accurate of the four methods

described in Appendix E (Model IV in Table E.1) and the results plotted with Maple.

These quantities were also calculated with FEA and a comparison of the results is pictured

in Figs. 3.12 and 3.13 for Machine A, and Figs. 3.25 and 3.26 for Machine B. Again, the

calculated fields are very nearly the same as the analytically derived fields.

Maxwell also computes total eddy current power loss, and the results are presented in

Table 3.3 along with the model predictions. The errors are again acceptably small, so the

finite element analysis verification of the motor alternator analytical models is complete.

Table 3.3: Comparison of analytical eddy current loss predictions and FEA calculations



Figure 3.1: Machine A geometry generated in Maxwell
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Figure 3.2: Machine A finite element mesh for torque analysis
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Figure 3.3: Machine A magnet-produced magnetic fields
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(a)

(b)

Figure 3.4: Comparison of (a) Maple plot of analytical model and

(b) Maxwell finite element analysis of magnet-produced magnetic flux density

at inner armature radius of Machine A
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Figure 3.5: Machine A armature magnetic field
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(a)

(b)

Figure 3.6: Comparison of (a) Maple plot of analytical model and

(b) Maxwell finite element analysis of armature magnetic flux density

at inner armature radius of Machine A
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Figure 3.7: Machine A complete magnetic field
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(a)

(b)

Figure 3.8: Time-varying and time-average torque of Machine A over (a) one full rotor

rotation and (b) one cycle. The * marks in plot (b) indicate FEA calculations.
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Figure 3.9: Machine A finite element mesh for eddy current analysis

65



Figure 3.10: 5th and 7th harmonics of Machine A time-varying magnetic field
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Figure 3.11: 5th and 7th harmonics of Machine A eddy currents
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(a)

(b)

Figure 3.12: Comparison of (a) Maple plot of analytical model and

(b) Maxwell finite element analysis of time-varying magnetic field intensity

at inner magnet radius of Machine A
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Figure 3.13: Comparison of (a) Maple plot of analytical model and

(b) Maxwell finite element analysis of time-varying magnetic vector potential

at inner magnet radius of Machine A
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Figure 3.14: Machine B geometry generated in Maxwell
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Figure 3.15: Machine B finite element mesh for torque analysis
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Figure 3.16: Machine B magnet-produced magnetic fields
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Figure 3.17: Comparison of (a) Maple plot of analytical model and

(b) Maxwell finite element analysis of magnet-produced magnetic flux density

at inner armature radius of Machine B
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Figure 3.18: Machine B armature magnetic field
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Figure 3.19: Comparison of (a) Maple plot of analytical model and

(b) Maxwell finite element analysis of magnet-produced magnetic flux density

at inner armature radius of Machine B
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Figure 3.20: Machine B complete magnetic field
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Figure 3.21: Time-varying and time-average torque of Machine B over (a) one full rotor

rotation and (b) one cycle. The * marks in plot (b) indicate FEA calculations.
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Figure 3.22: Machine B finite element mesh for eddy current analysis
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Figure 3.23: 5th and 7th harmonics of Machine B time-varying magnetic field
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Figure 3.24: 5th and 7th harmonics of Machine B eddy currents
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(a)

(b)

Figure 3.25: Comparison of (a) Maple plot of analytical model and

(b) Maxwell finite element analysis of time-varying magnetic field intensity

at inner magnet radius of Machine B
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Figure 3.26: Comparison of (a) Maple plot of analytical model and

(b) Maxwell finite element analysis of time-varying magnetic vector potential

at inner magnet radius of Machine B
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Chapter 4

Motor-Alternator Design Process

4.1 Overview

In this chapter, the design process for the flywheel motor-alternator is developed and

executed, and the results are analyzed. An integrated, numerical design approach is used

in which machines are synthesized, analyzed, and evaluated with computational methods.

The approach employed is called the Novice Design Assistant and was developed by

Moses [9]. It uses Monte-Carlo synthesis to generate designs, and analyzes them with the

models developed in Chapter 2. The NDA saves of all of the non-dominated designs, valid

designs that are not surpassed by another design in all performance attributes, creating a

multi-dimensional "design frontier" of perhaps a few dozen designs. The designer can

then select the design best suited for the application.

An integrated design was chosen because the various electromechanical and

electromagnetic phenomena in the motor-alternator demonstrate complex interactions

with each other and with the external constraints. For example, increasing the number of

magnetic poles reduces end turn Ohmic losses, but increases the electrical frequency of

excitation. This reduces the skin depth of the permanent magnets, but causes larger eddy

currents to flow in that skin depth. The nonlinearity and complexity of the system model

make it impossible to analytically maximize a performance function of the attributes.

The model complexity also precludes the use of a non-integrated design process in

which the system is divided into subsystems and each subsystem is optimized

independently. While this approach may simplify the design process by allowing closed-

form solution of optimal parameters, it will fail to fully capture subsystem interactions and

the overall design may not be optimal.



The approach taken is an integrated approach in which all aspects of performance are

optimized simultaneously. This entails searching the design space, within constraints set

by the designer, to find areas of optimal machine performance. While integrated design is

more capable of finding optimal designs, it requires proper interaction from the designer

to ensure that it converges on the optimal designs correctly. If the wrong area of the design

space is searched, the optimal design cannot be found. On the other hand, if the constraints

are set too broadly, excessive computation time will be exhausted evaluating poor designs.

Hence, the design process must be carefully constructed to provide the proper balance

between design creativity and speed of convergence.

4.2 Construction of the Integrated Design Process

The operating procedure for a general integrated design approach is illustrated by the

block diagram in Fig. 4.1 Because the process must be iterated for many designs, the

blocks inside the dashed box are automated with computational methods. The user is

required to provided 4 sets of inputs to the design software: (1) performance requirements

that the design must meet; (2) performance constraints, or ranges that the attributes must

r ----- -----------------------------------------------

tem

Figure 4.1: Integrated design process



be in; (3) constraints on the parameters, determined by external system limitations or

designer intuition about design optimality; and (4) physical and material constants. Once

the process is initialized with these inputs, it can begin the process of searching the design

space.

4.2.1 Performance Requirements and Constraints

The PMSM operates in a larger system that will determine the requirements and

constraints on several of the attributes and parameters. The selected values and ranges for

this design were obtained by consulting with engineers familiar with EMB design issues

and are summarized in Table 4.1. In this design problem, the performance requirement is a

typical steady state power rating and rotational speed of a permanent-magnet synchronous

machine in an HEV flywheel system.

Variable Description Required Value or Range

Pmech Mechanical power 30 kW

COm Rotational speed 3142 rad/sec (30,000 RPM)

V Terminal voltage < 155 V
(line-to-neutral RMS)

Jc Copper current density < 6x10 6 A/m 2

um  Magnet tip speed < 300 m/sec

tm  Magnetic Radial Thickness 0.3 in (0.76 cm)

g Air gap 1 mm

Pr Rotor eddy current loss < 1 W

Table 4.1: PMSM performance requirements and constraints

There are four design constraints determined by external thermal, structural, and

electronic design considerations not explicitly integrated into the model:

e Terminal voltage The EMB is powered by the DC voltage bus of the vehicle. The



RMS line-to-neutral terminal voltage of the PMSM cannot exceed this bus voltage or it

will overload the power electronics.

* Copper current density Too much current density in the armature wires can

overheat the armature and cause machine failure. The copper current density is given by

J
Jc =  (4.1)

where J is the armature current density, given by Eq 2.39, and Xa is the armature packing

factor, given by Eq. C. 1.

* Magnet tip speed The tip speed is the maximum speed of the magnets at their

outer radius. In units of m/sec, this is

RPMmax
Um = 2Rs 60max (4.2)

Excessively high speed will place undesirable stress on the permanent magnets. RPMmax

is estimated to be 50,000 RPM for this application. Note that this effectively limits the

outer radius of the machine to

Rs < (60 s)(300 m/s) = 5.73 cm (4.3)
- 27(50000 RPM)

* Air gap To allow sufficient rotor clearance, the air gap must be at least 1 mm.

* Rotor eddy current losses As discussed in Sec. 1.3, rotor losses are constrained

by radiative heat transfer out of the vacuum. A conservative upper bound on these losses

was chosen to be 1 W.



If a parameter is chosen outside of the allowable range, the synthesis module discards

the design. If a valid synthesized design is unable to meet the performance requirements, it

is discarded during the analysis stage.

4.2.2 Selection of Independent and Dependent Variables

The number of iterations required to thoroughly search the design space is strongly

dependent on the number of independent parameters. If there are N independent variables,

the design space will be N-dimensional. If we consider M evenly spaced values of each

parameter and systematically analyze each design, MN iterations are required. The

addition of an additional parameter increases the number of iterations needed by a factor

of M. Hence, the designer should take steps to ensure that every variable chosen to be

independent is constraining the system in a relevant manner.

There are several that a variable could be removed from the independent parameters,

as discussed below.

* A parameter may not constrain the design performance at all. In the PMSM, the

terminal voltage does not affect the machine attributes. This is because the terminal

voltage of a given machine can be arbitrarily chosen by selecting the number of armature

turns, as discussed in Sec 2.5.2. Furthermore, the machine losses will be independent of

terminal voltage, as outlined in Sec 2.5.3. In this design the terminal voltage was required

to be equal to the 155 V bus voltage. However, when the best designs are selected, they

can be scaled to any desired voltage without changing their performance.

* A parameter can be constrained by the choice of another parameter. The model will

have a certain number of degrees of freedom, so if too many variables are synthesized

independently, the model will be overconstrained. In the PMSM design, Eq. 2.27

indicates that only 2 of the 3 parameters Vt, Na, and Npar can be specified independently,



so if Vt is fixed, selecting Na and Npar independently will overconstrain the system. A

valid choice for an independent parameter is the product of Na and Npar, which is the

number of armature conductors Nac. Na and Npar will then become dependent variables in

the design process.

* A parameter may be selected a priori based on intuition or test design runs. If a

parameter value is only constrained in one direction by the model, it will tend to be as

large or as small as allowed by the design. If this is the case its optimal value is the

boundary value and it should be changed to a constant.

To test for these cases, an experimental design run was conducted with the parameter

constraints set as broadly as possible. On the design frontier, the wire diameter d, tended

to be as small as is allowed, because eddy current losses go as (d,) 4 according to Eq. D.8.

Because of this the wire diameter was set to a reasonably small value of 0.5 mm.

Similarly, the rotor tip speed tended towards its maximum, indicating that overall

performance increases with diameter. Following Eq. 4.3, the outer magnet radius Rs was

then constrained to be 5.73 cm. Rs is not a parameter, but it is the sum of 4 parameters as

shown in Eq. 2.1. To account for this, ta, g, and tm are kept as independent parameters and

Rai is then a dependent variable with value

Rai = 5.73 cm - ta - g - tm  (4.4)

It was also observed that bonded NeFeB magnets were not strong enough to produce

viable machines without making the machine very long (30-40 cm), as compared to

lengths of about 15 cm for machines with the sintered NeFeB magnets. Because the

magnet eddy current losses were sustainable (about 100 mW) for sintered magnet

machines, the sintered magnets were chosen as the superior material. This established the



magnet conductivity, permeability, density, and cost as constants equal to the values given

in Table 2.1.

This completes the formulation of the inputs to the integrated design process, which

are summarized in Table 4.2.

4.2.3 Design Synthesis

The first step in the automated design process is design synthesis, which can be done

either systematically or randomly, and may be accelerated by iterative methods. Numerous

methods for improving the speed of design convergence have been developed. Grid-

gradient methods break up the design space into an equally spaced grid and search every

point systematically, then use gradient analysis to determine the location of the optimal

designs. Probability distribution function (PDF) shading [7] iteratively redefines the

function specifying where in the design space the designs tend to be synthesized. These

and other methods tend to accelerate the design process and allow for some measure of

convergence, but their major drawback is that they require a priori information about

design optimality. This is usually provided in a cost function, which assigns weightings to

each attribute to give a total measure of machine performance. Hence the use of

accelerators tends to be limited to design problems in which the application requirements

are well understood.

The design process uses a Monte-Carlo simulation approach in which machines are

randomly synthesized within a specified design space. The designer must specify the

median, maximum, and minimum values of each parameter, as well as the standard

deviation of the normal distribution from which the parameter is randomly chosen. This

approach is termed a "novice" approach because it does not attempt to iteratively pinpoint

the best designs, but merely "rolls the dice" many times over the entire design space,



Requirements

Parameters

Dependent
Variables

Attributes

Constants

Symbol

Pmech

Com

V

ta

g

tm

L

Nac

Na

Npar

I

Rai

Eff

Pr

Ct

wt

10

glo

GcC

dw

Pc

Cc
Br

tr

Pm

Cm

Mechanical power

Rotational speed

Terminal voltage

Armature thickness

Air gap

Magnet thickness

Machine length (without end turns)

Armature conductors

Armature turns per phase

Parallel strands per turn

Terminal current

Armature inner radius

Electrical efficiency

Rotor eddy current losses

Total cost

Total material weight

Machine length (including end turns)

Permeability of free space

Copper conductivity

Wire diameter

Copper permeability

Copper density

Copper cost

Magnet residual flux density

Magnet conductivity

Magnet relative permeability

Magnet density

Magnet cost

30 kW

3142 rad/sec

155 V

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

47cx10 - 7 H/m

4.5 x107

0.5 mm

go

8500 kg/m 3

$10/kg

1.2 T

7x10 5 S/m

1.05

7500 kg/m 3

$82/kg

requirements, parameters, dependent variables and attributes

Description Value

Table 4.2: Design process



eliminating the need for a cost function. Computationally, this approach is less efficient

than an accelerated process, but with increasing computational speed this becomes less of

a limitation.

The NDA is well suited for design applications that seek to explore viability of a

design concept or establish overall performance trends rather than design for a specific

customer application. In this thesis, information about attribute weights, such as the

relative performance of cost to weight, is not available at this time, and will require

integration of the flywheel system into a larger HEV model. Before that can happen, the

NDA design thus provides a vehicle for the investigation of the viability and design trends

of a flywheel motor-alternator.

4.2.4 Design Analysis

If a design is generated within the parameter constraints, it is passed to the analysis

module and its attributes are calculated by using the analytical expressions from

Chapter 2. As noted in the previous section, machines that are unable to meet the

performance requirements and constraints are flagged and eliminated from consideration.

In this design, this will happen when the machine is too small to generate sufficient torque,

when the copper current density is too large, or when the rotor eddy current losses are too

large.

4.2.5 Design Evaluation

If a design is valid it proceeds to the evaluation stage, where it is compared against

each machine on the design frontier. If it dominates one or more machines, i.e., has a

higher efficiency, lower cost, lower weight and shorter total length, the dominated

machines are discarded and the new machine is added to the frontier; otherwise the

candidate design is discarded. This concludes one iteration, and the design process returns

to the synthesis stage.



4.3 Results of the Integrated Design

With the integrated design process constructed, it was coded in Matlab [19] and a

design run was executed with 1.5 million iterations. This was chosen because it took only

a few hours and because only 2 or 3 machines tended to be added to the design frontier

between 1 and 1.5 million iterations. A design frontier of 50 machines was generated and

the results are presented in Fig. 4.3.

4.3.1 Selection of the Optimal Design

Although a cost function is not available for this application, some evaluation of

performance was needed to pick designs that tended to perform best. The method chosen

is to evaluate each machine attribute by calculating its deviation from the mean for the

entire frontier. Each machine is then assigned a "performance score" equal to the average

number of standard deviations above or below the mean for each of the 4 attributes.

Fig. 4.3 is sorted according to this performance score.

The overall "best" design is summarized in Table 4.4. Note that the top five machines

have similar attributes, indicating there is a single region of performance maxima around 6

pole pairs for this cost function. In a more thorough design process, the process could be

rerun with parameter constraints tightened around the mean of the first few optimal

machines. This will search the neighborhood of best designs to pinpoint the absolute peak

performance of the machine.

4.3.2 Design Trends

The key results of the design are as follows.

* Rotor losses for the optimal machine are on the order of 100 mW, well below the

conservative maximum of 1 W. This establishes the viability of the PMSM for use in this

application and is the key result of the thesis. Furthermore, none of the top 20 machines

has an eddy current loss exceeding 350 mW. This indicates that, if loss capacity estimates



M

CD0
CD-t

CD

CD©C1

C(D

C€5

CDk)to
cD

p Na Npar Rai ta g tm L Pm length pack eff weight cost rank:
Rank (pairs) (turns) (strands, (cm) (cm) (cm) (cm) (cm) (mW) (cm) (%) (%) (kg) ($) eff weight cost length score

1 6 33 55 4.090 1.144 0.105 0.390 10.62 112.40 14.11 81.88 96.06 3.753 199.60 33 17 14 5 0.583
2 5 25 56 4.127 0.961 0.108 0.533 10.45 154.90 13.81 75.71 96.61 3.497 250.20 27 10 35 4 0.552
3 5 26 57 4.020 1.049 0.120 0.540 10.35 128.50 13.49 73.98 96.57 3.578 251.50 28 12 36 3 0.534
4 6 31 56 4.051 1.115 0.142 0.421 10.77 68.77 14.14 81.31 96.05 3.740 214.20 34 16 20 6 0.509

5 7 28 56 4.380 0.870 0.103 0.376 10.77 75.72 14.93 88.76 95.08 3.456 193.10 40 8 9 9 0.499
6 6 24 55 4.418 0.794 0.101 0.417 11.69 129.00 15.38 82.62 96.00 3.378 223.80 35 6 24 11 0.488
7 4 32 55 33.912 1.117 0.113 0.587 8.75 331.90 14.32 84.59 97.30 3.985 237.10 21 20 31 7 0.482
8 7 23 56 14.494 0.748 0.1041 0.384 12.01 73.97 15.56 85.15 95.07 3.266 213.30 41 4 19 13 0.415
9 7 23 56 4.333 0.778 0.105 0.513 9.96 49.09 13.30 84.40 93.81 3.093 228.80 49 2 28 2 0.406
10  8 26 55 4.453 0.827 0.103 0.347 11.90 44.57 14.97 84.88 94.09 3.277 195.00 48 5 11 10 0.394
11 7 26 56 [4.419 0.803 0.115 0.393 10.94 64.76 15.55 90.53 94.97 3.4 31 202.50 43 7 15 12 0.385
12 6 24 54 4.463 0.785 0.112 0.369 13.05 131.70 16.67 81.86 96.36 3.500 223.80 30 11 23 21 0.378
13 6 26 54 4.444 0.773 0.117 0.397 11.41 127.90 16.69 90.19 96.09 3.579 212.70 31 13 18 24 0.354
14 6 32 55 4.253 1.016 0.124 0.337 11.84 121.90 16.32 87.37 96.45 4.000 196.80 29 21 12 17 0.353

15 5 23 55 4.405 0.786 0.107 0.432 12.58 242.80 16.62 80.13 97.07 3.618 248.00 24 14 34 19 0.329
16 6 [ 24 57 4.400 0.760 0.106 0.463 10.75 113.20 15.69 89.19 95.49 3.493 228.20 38 9 27 14 0.302

17 8 25 55 4.250 0.851 0.107 0.520 9.51 24.60 12.24 82.94 92.07 3.018 221.60 50 1 22 1 0.279
18 5 28 56 [4.168 1.107 0.102 0.353 13.64 246.90 16.73 72.18 97.32 4.041 229.40 20 24 29 25 0.278
19 7 20 56 4.612 0.623 0.106 0.388 12.84 79.50 16.68 86.66 94.98 3.214 227.20 42 3 26 23 0.247
20 6 33 57 14.084 1.232 0.110 0.303 13.36 130.80 16.33 76.91 96.62 4.270 202.60 26 30 16 18 0.238
21 5 40 56 3.875 1.412 0.110 0.332 11.50 257.80 15.81 83.14 97.08 4.698 197.00 23 41 13 15 0.212
22 4 30 56 4.143 1.041 0.102 0.443 11.36 522.40 16.67 82.29 97.70 4.269 238.80 16 28 32 22 0.203

23 8 26 55 4.536 0.781 0.127 0.286 13.95 42.63 17.75 89.11 94.91 3.628 193.80 44 15 10 31 0.132
24 7 31 58 4.295 1.069 0.105 0.260 14.54 92.55 17.75 82.93 96.07 4.272 192.10 32 31 7 32 0.066
25 9 33 55 4.351 1.028 0.101 0.250 13.62 36.64 16.66 87.36 94.14 3.971 174.50 47 19 1 20 0.058

Avg 5.50 27.52 56.02 4.248 0.967 0.118 0.397 13.22 330.98 17.48 81.46 96.57 4.125 238.24

StDevi 1.89 4.48 1.05 0.253 0.195 0.017 0.121 2.53 312.6 2.69 6.58 1.48 0.593 48.69
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p Na Npar Rai ta g tm L Pm length pack eff weight cost rank:

Rank (pairs) (turns) (strands) (cm) (cm) (cm) (cm) (cm) (mW) (cm) (%) (%) (kg) ($) eff weight cost length score

26 4 35 55 4.011 1.190 0.133 0.396 11.62 461.70 17.21 83.96 97.66 4.682 226.70 17 40 25 27 0.034

27 4 31 57 4.079 1.134 0.130 0.386 12.85 466.20 17.66 79.63 97.82 4.596 239.90 15 38 33 30 -0(i.012

28 6 32 56 4.389 0.970 0.104 0.266 13.72 205.00 19.33 91.03 96.81 4.486 188.90 25 35 6 38 A 0.030

29 3 30 55 3.841 1.212 0.113 0.564 11.27 874.60 16.18 72.58 98.15 4.575 290.30 8 37 40 16 .0.069

30 4 28 57 4.126 1.100 0.118 0.386 14.02 476.40 18.00 73.52 97.88 4.482 256.50 14 34 38 33 -0.07i

31 3 25 55 3.717 1.147 0.123 0.743 10.65 511.70 14.70 66.93 98.02 4.269 342.30 11 29 49 8 -0.091

32 8 30 55 4.439 0.969 0.109 0.212 16.85 63.36 19.70 82.70 95.73 4.262 184.90 36 27 4 40 0 0.132

33 4 21 55 4.442 0.742 0.103 0.442 14.57 582.40 19.23 77.69 97.95 4.022 290.80 13 23 41 37 -0.155

34 3 32 57 3.821 1.265 0.120 0.524 11.16 948.20 16.86 77.37 98.15 4.851 274.60 9 45 39 26 -0.168

35 8 25 55 4.652 0.741 0.115 0.221 17.41 65.62 21.17 88.55 95.56 3.965 192.40 37 18 8 45 -0.210

36 5 36 57 4.140 1.200 0.120 0.270 14.28 317.50 19.19 85.48 97.36 5.081 203.30 19 48 17 36 -.-0.249

37 3 23 56 4.099 0.869 0.118 0.643 11.69 872.90 17.62 78.05 98.27 4.374 331.10 4 33 48 29 -0.A3 7

38 9 25 58 4.615 0.801 0.105 0.208 17.82 42.65 20.86 86.63 94.79 4.045 188.10 45 25 5 43 -0.3324

39 3 28 56 3.828 1.269 0.126 0.507 13.27 830.90 17.41 66.27 98.25 4.764 308.10 6 43 44 28 -0.337

40 9 28 56 4.5901 0.799 0.121 0.219 15.79 35.67 20.76 94.37 94.64 4.185 179.40 46 26 2 42 -0.354
41 3 26 56 4.062 0.977 0.133 0.557 12.21 929.50 18.30 78.76 98.27 4.620 308.20 5 39 45 34 -0-.356

42 6 20 57 4.726 0.636 0.110 0.257 19.08 224.40 23.33 84.92 97.12 4.012 234.40 22 22 30 49 -0.383

43 4 27 58 4.311 0.990 0.110 0.319 16.36 681.80 21.15 78.56 98.01 4.849 253.80 12 44 37 44 -0.482

44 9 29 58 4.533 0.891 0.116 0.190 17.80 40.34 21.46 90.33 95.13 4.537 180.40 39 36 3 46 -0.490

45 3 25 57 3.985 1.112 0.127 0.506 14.17 887.30 18.44 66.86 98.35 4.749 324.90 2 42 47 35 -0.496

46 5 32 55 4.250 1.090 0.144 0.245 17.57 273.90 21.56 79.82 97.48 5.071 221.50 18 47 21 47 0.538

47 4 19 56 4.587 0.659 0.106 0.377 17.801723.20 22.73 78.71 98.12 4.285 305.60 10 32 43 48 -D0.639
48 3 31 57 3.808 1.333 0.169 0.420 14.76 838.50 19.45 70.75 98.21 5.352 295.30 7 50 42 39 -0.716

49 3 26 58 4.051 1.045 0.171 0.463 14.93 859.10 20.33 74.87 98.33 5.095 319.50 3 49 46 41 -0. 7i93

50 3 20 57 4.327 0.737 0.177 0.488 17.17 931.50 23.43 78.63 98.45 5.003 375.30 1 46 50 50 -1.309
Avg 5.50 27.52 56.02 4.248 0.967 0.118 0.397 13.22 330.98 17.48 81.46 96.57 4.125 238.24

StDev 1.89 4.48 1.05 0.253 0.195 0.017 0.121 2.53 312.65 2.69 6.58 1.48 0.593 48.69



Characteristic Value Attribute Value

mechanical power 30 kW electrical efficiency 96.1%

rotational speed 30000 RPM material cost $199.60

magnet material sintered NdFeB material weight 3.75 kg

pole pairs 6 total length 14.1 cm

armature turns 33 Pa (eddy) 930 W

parallel strands 55 Pa (Ohmic) 252 W

armature inner radius 4.09 cm Pr2 D 116.9 mW

armature thickness 1.14 cm Pr3D 112.8 mW

air gap 1.05 mm

magnet thickness 3.90 mm

armature length 10.62 cm

terminal current 64.6 A

terminal voltage 155 V

Table 4.4: Characteristics and attributes of the optimal PMSM

are accurate, the eddy current losses do not constrain a machine that is maximized for the

other 4 attributes.

* The optimal five machines have between 5 and 7 pole pairs. This was a key result of

the integrated design because no parameter has as varied an effect on machine attributes

and could be as hard to intuitively predict as pole pairs. Consider that increasing the pole

pairs tends to decrease the efficiency because armature eddy current losses increase, but

also tends to decrease the weight, cost, and length of the machine. For each of these 3

attributes, the best machines have between 7 and 9 pole pairs. This can be explained by

considering the fact that the Halbach array produces more sinusoidal flux as the number as

the number of poles increases, which can be seen by comparing Figs. 3.4 and 3.17 (see

also [14] for Halbach's theoretical treatment). However, the flux linked by the armature



Armature filux linkage vs pole pairs
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Figure 4.2: Armature flux linkage

decreases as the number of poles increases, because the flux wavelength falls. Hence, the

maximum flux linked will occur at an intermediate number of pole pairs. Fig.4.2 plots

total armature flux linked versus the number of pole pairs for a typical geometry and

demonstrates that the flux linkage is maximized at around 7 or 8 pole pairs. The optimal

machine, with 6 pole pairs, then represents a balance between efficiency and low weight

and cost.

* The highest efficiency achieved is 98.5% for a 3-pole pair machine. This machine is

the costliest and longest machine in the design frontier, however. This reflects the inherent

tradeoff between weight/cost and efficiency, as illustrated in Fig. 4.3. This confirms

intuition that the most efficient machine will tend to have few poles to reduce eddy current

losses, and a relatively low resistance rotor. This is achieved by using a very thick magnet

and a very long machine to create the maximum magnet flux. Then fewer armature turns

are required, reducing armature resistance.

* The lightest machine is a 3.0 kg, 7-pole pair machine. This also makes sense because

the machine with maximum flux linkage will tend to require the least amount of materials
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to produce rated torque. Similarly, the least expensive machine, at $174.50, and also the

shortest machine, at 12.24 cm, has the most pole pairs at 9.

4.3.3 Summary

Taken collectively, the results of the integrated design tend to closely match engineering

intuition. This, coupled with the FEA analysis in Chapter 3, verifies the validity of the

analytical models. This design process has not produced the "best" overall machine, but it

provides insight into the various tradeoffs that the electromagnetic system presents. It also

indicates that eddy current losses on the rotor, a key concern for flywheel development,

can be contained for high performance motor-alternators. Hence the results can provide

intuition to the designers of other HEV subsystems that interact with the flywheel energy

storage system.
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Figure 4.3: Weight/cost vs. efficiency
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Chapter 5

Summary, Conclusion and Suggestions for Future
Research

5.1 Summary of Thesis Results

This predominate goal of this thesis has been the analysis and characterization of eddy

current losses arising on the rotor of a high-speed permanent-magnet synchronous

machines. Because the rotor of the machine is housed in a vacuum, heat transfer is

severely limited, and keeping these losses to a sustainable level of less than 1 W represents

a key design challenge in this application. Chapter 2 develops analytical models for the

relevant electromagnetic and electromechanical phenomena in this machine, including

electromagnetic torque, stator losses, and two- and three-dimensional rotor eddy current

losses. In Chapter 3, the torque and 2D rotor eddy current loss models are tested against

computational finite element analysis. In Chapter 4, an integrated, computational Monte-

Carlo design process is constructed and used to develop a design frontier of machines best

suited for this application.

The key results of the thesis are presented below.

* The design results demonstrate that for high-performance machines, rotor eddy

current losses are on the order of 100 mW in the steady state, well below the conservative

maximum sustainable value of 1 W. This confirms the viability of 30 kW, 30,000 RPM

PMSMs in flywheel energy storage applications. This represents the key contribution of

this thesis toward the ongoing research into the development of flywheel motor-

alternators.

* Analytical torque and 2D rotor loss models are developed analytically and



successfully verified with the Ansoft Maxwell finite element analysis package. Computed

values of torque and rotor power dissipation agrees with analytical results to within

about 1%.

* The 3D eddy current loss model contributes original analysis to the nature of eddy

currents flowing in an axially-limited machine and is integrated into the design process.

However, this model has not been tested with finite element analysis software.

* Optimal machines designs confirm intuition about fundamental tradeoffs and design

trends inherent in these types of machines. In particular, the most important tradeoff is low

cost/weight versus electrical efficiency. The design process also indicates that optimal

machines tend toward 5 to 7 pole pairs. This reflects a fundamental tradeoff between

electrical efficiency, which is high for machines with between 3 and 5 pole pairs; and cost,

weight, and machine length, which tend to be a minimum for machines with between 7

and 9 pole pairs. This result demonstrates the ability of the integrated design approach to

balance the effect of a parameter on interrelated, highly complex subsystems.

To summarize, this thesis has established the potential viability of PMSMs in the EMB

application, and has contributed relevant models and design trends that can be considered

by engineers developing a larger integrated energy storage system.

5.2 Suggestions for Future Research

This thesis represents just a start toward a thorough and interdisciplinary

characterization of the motor-alternator behavior. Suggestions for future investigation are

given below.

* The integrated design approach should be broadened to include other PMSM
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configurations. Specifically, slotted machines with back iron have higher air-gap flux and

could demonstrate higher performance in this application.

* The analytical models should be integrated into a larger EMB system including the

power electronics. This will have two predominate effects on motor-alternator design.

First, increasing the number of pole pairs increases the electrical frequency of armature

waveforms supplied by the power electronics. This will require higher switching

frequencies in the electronics, producing higher losses and lowering the overall system

electrical efficiency. Second, power electronics are unable to supply waveforms that are

perfectly sinusoidal in time, as this thesis assumes. Actual systems use inverters to fit step

waves to sinusoids, producing time harmonics. These will in turn affect the higher-order

field harmonics seen by the magnets and will increase eddy current losses. A thorough

analysis of these effects is warranted.

* A finite element analysis should be performed to verify the validity of the 3D eddy

current model. This could be performed with a 2D package following the surface

impedance model constructed in Appendix F, but a thorough analysis would require use of

3D FEA software such as the Ansoft 3D package [20].

* A thorough model of the heat transfer characteristics of the system should be

developed to gain a more precise estimate of maximum allowable power loss in the rotor.

* Structural analysis of the effect of high-speed rotation on the optimal motor-

alternators should be performed.

* A model of the dynamic effects of flywheel charging and discharging is needed to

determine the maximum amount of heat generated and the maximum temperature of the

rotor. A power demand cycle such as a standard urban or highway driving cycle could be
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used as an input to this system.

* The behavior of the motor-alternator under terminal fault conditions should also be

studied. In particular, the field intensity should be assessed to determine if it will

demagnetize the permanent magnets and destroy the machine.

When this work is carried out, a complete assessment can be made of the viability of

permanent-magnet synchronous motor-alternators in hybrid electrical vehicle flywheel

energy storage systems.
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Appendix A

Air Gap Armature Self-Inductance

As discussed in Sec. 2.5.1, the armature winding affects the behavior of the permanent-

magnet synchronous machine in two ways. The first is its linkage of the magnetic flux

produced by the magnets, which is characterized by the winding factor kw in the

expression for back emf. The second is the armature linkage of its own magnetic field,

giving rise to the synchronous armature self-inductance Ld. This appendix derives

analytical expressions for k, and Ld.

A.1 Armature Winding Factor

In this section a winding factor, relating the geometry of the armature winding to the flux

linked by it, is derived. The winding factor is the ratio of the flux linked by a distributed

winding to that linked by full-pitched coil. Consider an armature where the turns in each

phase belt are distributed along an arc of the stator circumference spanning a mechanical

angle Owm, as shown for a two-pole polyphase machine in Fig. A. 1. If there are q phases in

the machine, this angle is

= (A.1)
wm (2q)p qp

Now consider a single coil in this winding, offset from a diameter by a mechanical

angle 0, represented by the solid line in Fig. A. 1. If the radial magnetic flux at the

armature radius R is the nth harmonic term

Brn = Bsin(npO) (A.2)

then the flux linked by the single coil is given by



we

Figure A.1: Distributed armature winding

sn =  Bsin(npO)RdO - 2BRcos(npo)
np

Note that a single full-pitched coil (4 = 0) links flux

2BR
Sfn p

np

(A.3)

(A.4)

Xsn can be integrated and averaged over the entire winding to give the average flux

linked by each winding in the distributed armature

1
dn = 0wm

wm

2

2

1
ksndO =

wm

it
2qpJf 2BRcos(npo) d

np
2 qp

_ 4qBR2 .(2
n2 pi Y2q)

Now we can define an armature winding factor kwn that is the ratio of the average flux
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linked by the distributed winding to the flux linked by a single full pitched coil:

sin nrr

2q

The fundamental winding coefficient

sin
\2q

k = 2q
nir
2q

sin

2q

(A.6)

(A.7)

will occur frequently in flux linkage calculations.

A.2 Armature Magnetic Field

To determine the armature self-inductance, first the fields produced by the armature

currents must be analyzed. This model is developed in a cylindrical coordinate system, as

illustrated in Fig. A.2. In this model, the magnetic fields are assumed to have no 2

rj

Figure A.2: Armature magnetic field model geometry for one phase
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Figure A.3: Current distribution for a single armature phase

component. This will sacrifice a small bit of accuracy in exchange for a great deal of

mathematical simplification.

The permeability is assumed to be L0o everywhere, so that there are no finite

ferromagnetic boundaries. The armature windings in a single phase carry a current density

J that is assumed to be z-directed and uniform throughout the armature, giving rise to a

current density of magnitude

Nal Na (A.8)
J (A.8)0 ... . . • •• . ..• .

we(R 2 o - R2 )
2 ao

q(Kao -Kai )2q a

The resulting current distribution for a single phase, illustrated in Fig. A.3, can be Fourier

analyzed to give

(A.9)Jz =  z Jzcos(npO)
n odd

where

J JJzn =  4nit, sin( n7
(2q)

4 4 Nalkwn
Jk

2q wn 7R 2 -R2ao ai
(A.10)
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Each of these terms will produce a magnetic field, and the contribution to armature

inductance of each of these fields can be summed to find the total armature self-inductance

of one phase.

To solve this field problem, first define a magnetic vector potential A, such that

VxA = B (A.11)

Next, consider Ampere's Law

VxH = J (A.12)

In a material where the permeability is divergence-free and equal to o0,

(A.13)

so that Ampere's Law can be rewritten as

VxB = Vx(VxA) = ~0oJ

Using the vector identity

Vx(VxA) = V(V -A) - V2A

and the Coulomb gage

V.A =0

Eq. A. 14 can be expressed as the differential equation

V2A = -t01J

which fully characterizes the magnetic field behavior in the problem.
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Using the assumption that J is only z directed, this equation can be written in

cylindrical coordinates as

r1rrAz(r, 0) +
7rr r zr

1 2AI aAz(r, 0) = -goJz(O)
r2ý-02

(A.18)

Az will have the same 0 dependence as Jz and can be expressed as

Az = A(r)cos(npO) (A.19)

so that Eq. A. 18 can be rewritten

rr ar A(r) + 2 A(r) = -90J (A.20)
rar ar r2

The problem can now be divided into three sections (i), (w), and (o) as labeled in

Fig. A.2. In each region, A(r) can be expressed as the sum of a homogeneous and a

particular solution. The homogeneous solution will be of the form

A(r) = A+rnp + A_r-np (A.21)

For the fields inside the magnets, A(r) must vanish at r = 0, establishing

A = U (A.22)

Similarly, A(r) must vanish at r = oo, so

A = 0 (A.23)

The particular solution is also zero in these regions, because there is no current density.

In the winding region, the particular solution has the form
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CtoJr 2
r np 2

4 - (np)2  (A.24)
A (A.24)

Pnr - - np = 2

The vector potential in each region can now be expressed as

1 1
A z = A rnpz +

AW = ArnP + AWr - n p + A (A.25)

A = AOr-np

This system of equations has four unknowns, so there are four boundary conditions:

* Br is continuous at Rai and Rao, which is equivalent to Az continuous at these

boundaries.

* H0 is continuous at Rai and Rao, and can be obtained from

H0 = I A (A.26)

This establishes a system of four equations in four variables:

A+(Rai)np = A~(Rai)np + A(Rai)-np + Ap

AZ(Rao)np + AW(Rao)-nP + A = A 0 (Rao)-nP

Sw•- (A.27)
npA+(Rai)np- 1 = npA+(Ri)np - npApA(Rai)(- np- 1) + (A.27)

+ -A + o

npA(Rao)np-1 npA(Rao)-np- + A = -npA (Rao)-np- 1

which can be solved to yield
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1 9OJ(Rao)
2 - np _ (Rai)2 - np

2 np 2 - np
A i 4 RRao

•gJI a---

1I oJ(Rao)
2 - np

+ 2 np 2-np
Aw ={

1
4I1oJlnRao4

A, w
1 90J (Rai )2 + np

2 np 2 +np

16-l9J(Rai)4

I ROJ(Rao) 2 + np _ (Rai)2 + np

A = 2 np 2 + np

1•
16{oJ((Rai)4 - (Rao)4)2

np 2

np = 2

np 2

np = 2

np 2

np = 2

np 2

np = 2

(A.28)

(A.29)

(A.30)

(A.31)

In the inductance calculation the relevant expression is Az in the winding, which is

(Rai) 2 Rai npn
+ I-i
np +2' r J

+ 2npr2 ] cos(np0 )
4- (np)2j

E[r2(ln(- - + (R )4 cos(np)Rao 4 4 r2 np = 2

This expression completely characterizes the fields in the winding, which give rise to the

armature self-inductance.
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A.3 Armature Self-Inductance

The fields produced by the armature will in turn be linked by the armature, producing a

synchronous inductance Ld, which is related to armature flux by

Xd = LdI (A.33)

The flux linked by a single full pitched coil in the middle of the phase belt is

LRa p

S= f fBr(r, O)rdOdrdz (A.34)
0Rai 0

Recognizing that

Br = (VxA)r = A (A.35)

this expression can be rewritten

Rao p Raop Rao

i= L f -Az(r, O)rd0dr = L f f d(A(r)cos(npO))dr = 2L f A(r)dr (A.36)

Rai 0 Rai 0 Rai

To find the flux linked by a distributed winding, this expression can by multiplied by

the winding factor kwn derived in Sec. A. 1. Also, each armature turn will link flux so the

flux linkage must be multiplied by a radial turns function N(r) before integrating over r.

Assuming that the density of the armature turns is uniform, this function is

2NarN(r) = (A.37)
R2 - R2.ao ai

where the r dependence indicates that there is more room for turns as the radius increases.

Note that this expression integrates to Na over the armature radius. The nth component of



total flux linked is then

R
4NaLknRa

,n R- 2_-R. f A(r)rdr
ao at Ra

i

(A.38)

Carrying out this integration using the expression for Az'(r) given by Eq. A.32, and

substituting for J by using Eq. A.9 gives the nth component of flux linked by a single

armature phase

4 go(Na)2(kwn) 2L

nC np
(A.39)

where ksn, the self inductance coefficient, is given by

(R2 np+2
np - 2 + 4ai np

(Rao)
- __R . 4- (np +2) Rai(Rao)

np 2

(A.40)

1 + 41n Rai)( (R Rao
4 URai\2  2

(Rao)

np = 2

For a q-phase armature winding, a good approximation to the nth component of total

armature inductance is

L= qLsn (A.41)
- 2 Sn

The total armature inductance Ldt is then

Ldt = Ln
n odd

(A.42)

R 2 2 np)2 -4)
1)(Ra,/4Rao



For purposes of three-phase machine design the fundamental component

3 4 10 (Na)2 (kwn )2 LLd = - k p
2n: np In= 1

4 R ai p+2

(Rao

((Roia 

2

C Rai"2
1 + 41n• ai'

3 4 to(Na) 2(kw) 2L

2T -- P kS
2rt p

-(p+ 2) Rai 4

(Rao)

(A.44)

4 ( Rai 2 2 I V

gives a good approximation to the air gap armature self-inductance.
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Appendix B

Armature Flux Linkage of Magnet-Produced Field

As outlined in Sec. 2.5.2, the magnet flux linked by the armature winding is related to the

torque rating of the machine as well as terminal electrical characteristics. In this section,

an expression for the magnetic flux produced by a Halbach permanent magnet array is

derived, and then the total flux linked by each phase of the winding is calculated.

B.1 Magnet-Produced Magnetic Field

In this section, analytical methods are used to derive the magnetic fields arising from a

Halbach magnet array. In particular, an expression is obtained for the fields in the interior

of the array, which will in turn be linked by the armature and produce back emf and

torque. The model is constructed in cylindrical coordinates and is picture in Fig. B. 1.

Figure B.1: Magnet field model geometry
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The magnets are assumed to have a magnetization field M that is divergence free and

oriented either in the azimuthal or radial direction. For the radially oriented magnets,

MoRs^
M = r

and for the azimuthally magnetized magnets,

M = MoRsr

M0 is the magnetization of the magnet material and is given by

Mo = 9rLoBr

(B.1)

(B.2)

(B.3)

where Br is the residual flux density of the magnets and gtr is the relative permeability of

the magnets.

The azimuthal variation of the magnetization is illustrated in Fig. B.2. These

magnetization functions Mr and Me can be Fourier analyzed to yield

Mr = I Mrncos(npO) =
n odd

Mr sin n- cos (np) =
n odd

A

= cos(np 0 )
n odd

and

Mo = Men sin(np0) =
n odd

where we have defined

4 nr cos 4
nodd

sin (np0) = m sin (npO)
n odd

4MoRs . nnc
tr n sin 4

m = - M°Rs cos(4)
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7 3p3

p 4 p

Mr(r)

MoRs

r

0

ALýI7

0

(b)

Figure B.2: Magnetization distribution in a Halbach magnet array for the

(a) radially magnetized and (b) azimuthally magnetized magnets

There are no currents in the problem, so we can define a scalar magnetic potential yj

that characterizes the magnetic field, where

(B.7)

Taking the divergence of both sides of this equation and rearranging yields

V2 V = -V H
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Now using the fact that magnetic flux density is divergenceless,

V B = gV.(H+M) = 0 (B.9)

rearranging,

-V-H = V-M (B.10)

and combining this with Eq. B.8 yields

V2 = VM. (B.11)

This equation characterizes the magnet-produced fields everywhere in the machine.

The concept of superposition is now applied to divide the problem into two

subproblems, one involving the radially oriented magnets and another involving the

azimuthally oriented magnets. Because

M = Mri + M 0 (B.12)

the resulting magnetic potential will be a superposition the of potential distributions

resulting from each magnetization:

(B.13)V• = Vr + WO

where

V2 lr = V.Mr

Using the definition of divergence

V-M = (r
r3r

V2•W = V.M o (B.14)

M1
Mr) + r MO (B.15)

and applying this to Eqs. B.4 and B.5 on a termwise basis gives
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V Mr =0 V -M r2 M0 cos (np0)
r

The radial magnets, then, will produce a Laplacian field, but the azimuthal magnet

potential will have a particular solution that solves

V2 np Mcos(np) (B.17)

The solution to this equation is

=e - cos(np0)
np

(B.18)

The problem can now be divided into three regions (i), (m), and (o) and shown in

Fig. B. 1. Each region will have a homogeneous solution for vector potential that satisfies

Laplace's equation

V2Wh = 0 (B.19)

In both regions, the solution to this equation will be of the form

VIh = (V+rnp+ -r-np)cos(npO) (B.20)

The vector potential must vanish at r = 0 and r = o, establishing

+ - +

-r,i = r,o = O, i = ,, o= 0 (B.21)

The form of the total solution for vector potential in each region is then, for the radial

magnets,
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r, i = r, irnPcos(npO)

r, (V + mr n p + W, mr - n p ) cos (npO)

r, o = fr,or-npcos(npO)

and for the azimuthal magnets,

oe, i = o, irnpcos(npO)

np- cos(np0)e, m = (0, mrnp + •Y, mr - n p

We, 0 = •-, or-npcos(npO)

In both subproblems there are four free variables, and the four appropriate boundary

conditions are

* Hm is continuous at Rm and Rs, which is equivalent to x

boundaries.

* Br is continuous at Rm and Rs, and can be obtained from

Br = go(Hr + Mr) =go -

continuous at these

+MrI (B.24)

This establishes a set of four equations in four variables for each subproblem:

0

N+ (Rm) np = n+ (Rm)np + NVm(Rm)-np + •Me

np

Wo(Rs)-np = Vm(Rs)np + rmn(Rs)-np + M{I0

np

radial

azimuthal

radial

azimuthal
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(B.23)
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(B.26)



+ + ir
npli (R,)np- 1 = npNm(Rm)np- 1 _ nplm-(R,)-np- 1 + Rm

-npVo(Rs)-np-1 = npym(Rs)np-1 _ np-m(Rs)-np- 1 + Rmr

These equations can be solved to give

+ I 1Mr(( 1 np 1 np
r, 2 np Rs R,

+ l Ir(1 np
Wr,m 2np Rs(

I Mr( l - n p

Wr, m  
2 np RM, R

_ MWor(( I -n p  1 -np

r, 2 np Rs R-(

+ Mo( 1M )np np

+ 1MO lnp
,m -2 np R s

We, m 2 np R,Rm

So 2 np- MO -np .- np

2e, oRs Rn

Note that for the fundamental term, Mr = MM0 , and so the fields reinforce inside the

magnets and cancel outside of the magnets. This field concentration produces a field

intensity that is approximately F2 times greater than the field produced by a conventional

array with only radially oriented magnets.

In calculating the armature flux linkage, the magnetic potential inside the magnets is

the relevant expression. It is the superposition of the potential produced by the radial and

azimuthal magnets:
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2i n 2np n 4
nos i4C)f( r Jnp

+ cos 4J(,

Cr nP

Rs
- (r) cos (np)

The armature will link radial magnetic flux, which can be obtained from

Brn = RoHr = •R(-VW)r

Carrying this out gives

Bn = 4 cos(n
rn CO ( -

Rs( r )np-

Ren RMn4 2 n

t) I
Time-average torque will only be produced by the fundamental component of the

radial flux

Brf = 4 2Brkm(r)cos(pO) (B.33)

where the magnet coefficient km(r) is

(B.34)m(r) l • Rs( r ) P - 1  (r )P-1]
km(r) = 1Rm -2LRmn Rm) R

B.2 Armature Flux Linkage

The radial magnetic flux density derived in the previous section will be linked by the

armature winding to produce a back emf and an accompanying torque. The flux density

must be integrated over the volume of the armature winding to find the flux linkage k.

Because the number of turns at a given radius increases with radius, as captured in

Eq. A.37, the flux must be multiplied by the turns function

S(m)nP)cos (np )

-RM)n
(B.30)

(B.31)

_ r np-- -n

RS

1)cos(np0) (B.32)

4 2 ,MAs4 2 n2 p
4 (

= - COS (n --
('

= -0oa



2Nar
N(r) = (B.35)

(Rao)2 - (Rai) 2

before the integration is carried out. Also, the effect of the distributed nature of the

winding is captured by the winding factor

kw =- (B.36)

2q

derived in Section A. 1.

The RMS value of flux linkage is then given by

LRaop

ka = f f Brf (r, O)N(r)kwrdedrdz
0 Rai 0

To simplify the calculation, define

Brf(r, 8) = Brf rp - cos(np6)

where

A 4 1 Rs 1 p- 1 p-i
Brf T = - 2 Bfi i

Brf r 2 Rm Rm Rs

Substituting Eqs. B.35 and B.38 into Eq. B.37 gives

(B.37)

(B.38)

(B.39)

122



2Na Br L
a = ao)B-(Rai fkLf rp+1 cos(pO)dOdr

S (Rao)2 - (Ri2 Rai 0 (B.40)R,, 0 (B.40)

2Na Brf 2kwL=a Brf ((Rao)P + 2 - (R)p + 2)
(Rao) 2 - (Rai) 2 AJ2P(P + 2) ((Ra)P ai

To express the flux in a more compact manner, we can derive an armature thickness

coefficient kt that is the ratio of the flux linked by a radially distributed winding to the flux

linked by a winding concentrated at the inner armature radius Rai. The RMS flux kc linked

by this concentrated winding would be

PB 2NaBrfkL(Rai)P
c = Na---- kwL(Rai) cos(pO)dO = (B.41)

0

The armature thickness coefficient is then

2(Rai)-P( _R p +2

kt = [a Rao ao (B.42)

Combining Eqs. B.41 and B.42, and substituting for Brf from Eq. B.39 gives

4 2BrN RaiLkwkt 1 R Rai P -  RaiP 4 2BrN RaiLkwkmkt (B.43)
a p 2 -Rm R m R ss 7 P

where we have defined

km = km(r) r = Rai  (B.44)

As indicated in Eq. 2.15, the back emf of the motor is the time derivative of the

armature flux, so
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d
Eaf adt a

4
= mea = 42BrN RaiLk kmktR aa m

The flux also acts in accordance with Eq. 2.16 to produce the torque

T = 3palcos8
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Appendix C

End Turn Analysis

As described in Secs. 2.5.1 and 2.5.4, the length of the end turns in the motor-alternator

will have an effect on the armature resistance as well as the overall machine length. This

appendix develops a simple model for the length of the end turns in each armature phase.

To construct the model, the armature phase belts are unrolled to produce the geometry

illustrated in Fig C.1 The end turns are then modeled as triangular and the wires are

packed to their maximum capacity in the end turns. This requires that there be some extra

room in the axial wires to accommodate bending the wires to form end turns. We can then

7cR

P
'.dIn,

Figure C.1: End turn geometry for one pole
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specify a packing factor Xp that relates the actual cross sectional wire area to the maximum

area obtainable. The percentage of the armature occupied by conductors is given by

(dw
2

6Nac 2
a =  (C.1)

ac (R2 - R2)

The maximum ratio can be approximated by considering the ratio of the area of a circle to

a square surrounding and tangent to it, which is

It
max = 4 (C.2)

The packing factor is then

kc

P max-

6Nac(dwj4 2
7(R2 -R2i)

In Fig. C.2, the geometry of one phase belt is illustrated. CE is the coil span of each

phase, given by

k (CE)

-ht[

2pR

2p

Figure C.2: Detailed view of end turn geometry
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CE =-R

where R is the average radius of the armature winding. The wires are packed to the

maximum in the end turns, so the width of the end turns is pCE. This establishes the

angle 0 as

0 = asin (tj = asin k (C.5)

The length of the one end turn It is then given by

2CE
It = 2CEcos0 2

J1- 2
p2

4 tR

pqJ1lX2
p

(C.6)

Similarly the height of one end turn ht is given by

h t = CEtan0 = 2RX2 (C.7)
pqVI P

The end turn length and height are then inversely proportional to the number of pole pairs,

which will play a part in the integrated motor-alternator design.

127

(C.4)



Appendix D

Armature Eddy Current Loss

As outlined in Sec. 2.5.3.1, eddy current losses in the armature wires contribute to

armature losses and reduce electrical efficiency. These losses arise because the armature is

immersed in the time-varying magnetic field of the rotor. This appendix develops an

expression for these losses.

The model geometry showing one wire is illustrated in Fig D. 1 It is assumed that the

magnetic field is crosses the wire in only one direction. A further assumption is that the

azimuthal field contributes a negligible amount to average flux density in the armature, so

the field is considered to be entirely the radial magnetic field. The Fourier series for the

magnet-produced radial magnetic flux density is given by Eq. B.32.

d dw4 4 4 4 4 4 4 4 44A A
a a a a

Figure D.1: Armature wire exposed to time-varying magnetic field
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In this model only the fundamental term in this series will be considered. This is an

approximation, because the electrical frequency is proportional to harmonic number,

while the magnitude of the field harmonics is inversely proportional to harmonic number.

It is assumed that for the higher order harmonics the skin depth of the copper becomes

small enough that the fields are attenuated significantly and can be neglected.

For the fundamental harmonic, the magnetic field is assumed to fully penetrate the

wire, eliminating the need to solve the diffusion equation. Following Eq. B.33, the

fundamental rotor flux density harmonic is given by

Brf = 4-2Brkm(r)cos(pO) (D.1)

This can be averaged over the radius of the armature by multiplying by the armature

thickness coefficient kt derived in Sec. B.2, and averaged azimuthally by taking the RMS

value. If we define B1 to be the magnitude of this wave

4
B 1 = -Brkmkt (D.2)

the space average, time-varying flux-density is then

B = 1{BzleJWet }} = {BleJIW t(cosor- sin44)} (D.3)

The electric field in the wire can be found applying Faraday's Law

aB
VxE - (D.4)

to Eq. D.3 to obtain

E z = {jI(jeBleJ'etrsino} (D.5)
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The time-average power loss can be found by integrating this field over the volume of the

wire and over time to give

dw

P, = f- y 2cjEzj2rdrdOdz (D.6)

where cc is the conductivity of the copper wire. This integral evaluates to

(D.7)
128

There are 6 Nac wires in the armature, so the total time-average eddy current loss will be

given by

67NacL(oe)2 (B1 )2kc(dw) 4

128

cL(0e)2(B 1)2c(dw)4

Pec (D.8)



Appendix E

2D Rotor Eddy Current Loss Model

As discussed in Section 2.5.3.2, eddy currents will arise in the conducting magnets

because they are exposed to time-changing magnetic fields produced by armature space

harmonics. This appendix presents a method of characterizing the losses arising from

these eddy currents. Because this model is the primary research focus of this thesis, the

model will be developed in a high degree of complexity to assure the accuracy of results.

E.1 Transfer Relation Equations

As Eq. 2.65 indicates, the power loss in a 2D element can be completely characterized by

the fields Az (or equivalently Ez) and tangential H at the boundary of the object. The eddy

current loss model then reduces to a model of these two boundary fields. A plausible

approach to finding these fields is to solve the diffusion equation, Eq. 2.54, for the

distributed magnetic fields, and then apply Faraday's Law to find the electric field. This

approach is unnecessarily complex, however, because it involves obtaining quantities like

the radial magnetic field and the fields inside the element. These are not needed in the loss

model, so an approach that finds the fields at the boundaries is sufficient.

Such a method for characterizing boundaries has been developed by Melcher [16]. It

relates tangential H to z-directed A at the boundaries of a region, and can be used in either

rectangular or cylindrical coordinates, as shown in Fig. E. 1. The region has some constant

depth, and is assumed to extend infinitely in the lateral direction in rectangular

coordinates, or join itself to form an annulus in cylindrical coordinates. Each region can

have any permeability and conductivity, provided that it is linear.
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Figure E.1: Rotor eddy current loss model geometries in (a) rectangular and

(b) cylindrical coordinates

Note that for the rectangular model, R is not distinctly specified by the machine

geometry, because the radii of the regions in the machine vary. In this design it was set

equal to the magnet inner Rm, but for machines where the wavelength of excitation is

comparable to this radius, the rectangular model will begin to lose accuracy. This

represents the major limitation of the rectangular model. For this reason a more accurate

model in cylindrical coordinates is also developed.

The field transfer relations can be obtained by solving the diffusion equation inside the

region. The diffusion equation in A is

V2A = go a-A (E.1)

and because A is only Z-directed this can be written
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(E.2)V2A z = [t l Az

In this problem, Az in each coordinate system will be of the form

Az = 9ý {Az(y)e
R}px +ntwt

A z = 91{Az(r)ej(npe+nt ,t)}

These expression can be substituted into Eq. E.2 and the definition of the Laplacian used

to give

Az(x, y)+ 2 Az(x, ) =
in rectangular coordinates,2 and

in rectangular coordinates, and

Ay2 - (n)2Az(y) = IW(YP(OeAz (Y)

+ I Az(r, - n )2Az(r)=jopmeoAz(r) (E.5)

in cylindrical coordinates.

* Rectangular coordinates Eq. E.4 is a linear differential

homogeneous solution

Az(y) = k,

where k+ and k_ are constants and

The magnetic field can now be found from

et y + k e - ay

2
+ jIgflnto0e

(E.3)

(E.4)

r Az(r, 6))

equation with

(E.6)

(E.7)

0)= (ra Arar arz



1 1 1A 1Hx = = - (VxA) = -- [A k+,eay - ake-ay]

If the tangential magnetic fields at the boundaries are

Hxly = o
1

= Hx Hxly = A
^,2

=Hx

this creates a system of 2 equations in k+ and k_ that can be solved to give

k ( = e - A  H1 + , 1 H_2
k+= - ea - e-aA x eaA - e-a x

k = H12( 1
aea - e-a ead _ e-aA x

Substituting these

transfer relation

back into Eq. E.6 and evaluating at the boundaries gives the complete

-coth(aA)

-1

sinh (aA)

sinh(aA) Hx

coth(aA) LHJ

* Cylindrical coordinates Transfer relations can be similarly constructed for a

region in cylindrical coordinates. This analysis will not be carried out here because, in

general, there is no closed form solution to Eq. E.5. The solutions to this equation are

combinations of the Besselfunctions, which are infinite series that can be approximated by

polynomials. The transfer relation is

Az F(RO, Ri, Y, np)

A^ G(Ro, Ri, Y, np)

G(Ri, Ro,W , np) fl

F(Ri, Ro,y, np) HoLH41
(E.12)

(E.8)

(E.9)

(E.10)

1 I

Az2 cc
^Lz A z

(E.11)



where

S= Jg tontO e (E.13)

Note that y = 0 for non-conducting regions, including air. The functions F and G are

similar to the hypertrigonometric functions of Eq. E. 11, and are given by

F(Ra, Rb, , m) =

(Ra m +(Rb, 
m

Rb R b  Ra

m (Ra,)m _ (Rb)m

(Rb R Ra

1 Jm'(jyRa)Hm(jyRb) - Hm'(jyRa)Jm(jyRb)
jJYm' (jyRb)Hm'(jyRa) - Jm'(jyRa)Hm'(jyRb)

7=0
m (Ra)m_ (Rb )m

G(Ra, Rb, , m) =

jxty(yRa)Jm'(jyRb)Hm'(jyRa) - Jm'(jyRa)Hm'(jyRb)
yO0

Jm and Hm are the Bessel function of the first and second kind, respectively. The primes

indicate their derivatives, which are given by

d
J,'(yR) d(R)Jm(yR)dt(yR)

Hm'(yR) =
d

d(R)Hm(yR)

m
+ Jm(yR)yR

m
-Hm+I(yR)+ MRHm(yR )yR

E.2 Coupling Equations and Boundary Conditions

Any number of these regions described by the above transfer relations can be coupled

together to form a complete electromagnetic system. For a problem with N regions, there

will be 2N transfer relation equations in 4N independent variables. To complete the
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(E.15)

= -Jm+l(yR)



system, an additional 2N equations can be obtained from the coupling between the regions

and the boundary conditions.

* Coupling equations Tangential H and Az must be continuous at any boundary, in

the absence of surface current. For an N region problem, there will be N-1 boundaries

coupling regions, establishing 2N-2 coupling equations.

* Boundary conditions There will be two regions on the "ends" of the problem that

will either be bounded by a very high permeability material like steel, or whose boundary

will go to zero or infinity. In either case the boundary conditions at these surfaces require

that tangential H and Az go to zero. There will be 2 of these boundary conditions which,

combined with the coupling equations, provide the 2N equations necessary to specify the

electromagnetic system.

To complete the model, a method for introducing source currents, like the armature

current, must be integrated into this framework.

E.3 Effect of Current on Boundary Fields

As Eq. 2.46 indicates, the armature current will consist of travelling wave harmonics,

which expressed in the two coordinate systems as

Jan = 9 {Je( et Jan = 91{Jne(npO +tntet)} (E.16)

This current density must be integrated into the transfer relation framework to characterize

the eddy current losses. This can by accomplished by modeling the armature as a surface

current at a boundary, or as a current-carrying region.

E.3.1 Boundary Surface Current

One approach to the introduction of source current is to place a surface current at a
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boundary. Tangential magnetic fields terminate on surface currents, so this will simply

modify the coupling equation describing tangential H. If there is a surface current K at a

boundary, the appropriate coupling equation are

^,a ^,b ^,a b
x = Hx + K Ho = Ho + K (E.17)

For a problem where the source current is specified as a current density J, a reasonable

approximation is

K = JA (E. 18)

where A is the width of the current density. Placing the surface current in the middle of the

current density region and accordingly increasing the width of the adjoining regions, is a

further approximation to the actual effect of the current density.

When modeling the PMSM eddy current losses, this approximation breaks down when

there is a thick armature and a small air gap. In that case the current in placed much farther

away from the magnets than the edge of the current density. Hence, the surface current

approach tends to underestimate eddy current losses. To produce more accurate results and

allow for more general machine designs, a second, more accurate, model can be used.

E.3.2 Current Density in a Region

The transfer relations derived in Section E. 1 assumed that there was no current density in

the region. Now we allow for a current density Jz that is a travelling wave and constant

across the armature thickness. To introduce this into the region, start with Ampere's Law

VxH = J (E.19)

with can be written in terms of the magnetic vector potential as

V 2 A = -gJ (E.20)
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Because A and J are only z-directed, this can be expressed

V 2A z = -gJ z (E.21)

In rectangular and cylindrical coordinates, respectively, this is

y2 Az(y) -  Az() = -gJz (E.22)

and

(r-Az(r)j - (p 2Az(r) = -gJz (E.23)

Note that these equations resemble Eqs. E.4 and E.5 for a region with no conductivity and

a driving term. Hence, the homogeneous solution will be identical, and there will now be a

particular solution.

* Rectangular coordinates The particular solution to Eq. E.22 is simply the

constant

p gJzR 2

A z - (E.24)
z (np)2

This expression is independent of y, so Hx, as given by Eq. E.8, will be unchanged.

Consequently the expressions given in Eq. E. 10 will still be valid, so the transfer relation,

Eq. E. 11, will simply have the particular solution A P added to it to give the transfer

relation for a region with a current density:
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-1
sinh(uA)

-coth (aA)

1+ 02
2 J2

LHj L- Ui-

where

np
R

(E.26)

* Cylindrical coordinates The solutions to Eq. E.23, unlike those of Eq. E.5, can be

obtained in closed form. The solutions to the diffusion equation will, in general, involve

Bessel functions embedded in the functions F and G given by Eq. E. 14. However, in the

specific case of a region with current density, y = 0, and F and G reduce to closed form

expressions.

The particular solution to Eq. E.23 is

t r2

p= (np)
2 - 4

z gJr2 - Inr
4 (

np • 2

np = 2

(E.27)

The homogeneous solution will satisfy Laplace's

particular solution to give

equation and can be combined with the

A z = A + A = k r nP + k r - np + A

The tangential magnetic field can be found from
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1 1
He =Be = -(VxA)

= -[k,(np)rnp - k
Ii

If we set the boundary conditions

HO
r = R i

= He

we can solve for k+ and k_. These expressions are extremely complex and will not be

reproduced here, but they can be substituted into Eq. E.28 to yield, at the boundaries,

(E.31)

A" J,o+A zz

where A ,i and Az O capture the effect of the surface current, and are given by
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+1-_(np)r - np]

2J
(np) 2 - 4

Jr(

np • 2

np = 2+ Inr)

(E.29)

He r=R, (E.30)

I

^i Ri
A z =np



4
np[(np)2 -4]

gJ(R )21+4
8

np[(np)2 -4]

Ri 5 2  (Ri-
+ (RO In R

Ro RoI + 4 {' -) l• °(R o- 2

Comparing Eq. E.31 to the definition of F and G in Eq. E. 14 allows the transfer relation to

be written

F(R o, Ri , 0, np)
G(R o, Ri, O, np)

This completes the transfer relation

G(Ri, Ro, 0, np)Il + [A'Ji

F(Ri, Ro, o, np)t ar A J,o

for a current-carrying region in

coordinates.

J,i
z

= <

np • 2

(E.32)

and

np = 2

J,o
z

np # 2

(E.33)

np = 2

(E.34)

cylindrical
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E.4 Summary of Models

This appendix has presented 4 models for determining the tangential H and axial B fields

at the material boundaries. These approaches can be classified as follows, in order of

increasing complexity:

Model Coordinate System Armature Model

I rectangular surface current

II rectangular current-carrying region

III cylindrical surface current

IV cylindrical current-carrying region

Table E.1: Classification of boundary field models

To test these models, the total eddy current power loss for two sample machines in

Chapter 3 is calculated using each of the four models. The results are presented in

Table E.2. As expected, the models that use the surface current approximation predict

lower losses than the accompanying current-carrying region models, as discussed in

Sec. E.3.1. Model IV is used in the design process because it produces accurate results and

does not require excessive computation time.

Model Loss FEA Loss
Machine Model Error

Prediction (W) Calculation (W)

I 15.83 12.87 23.0%

II 17.60 12.87 36.8%
A

III 10.98 12.87 14.7%

IV 12.98 12.87 0.9%

I 4.62 5.00 7.6%

II 6.48 5.00 29.6%
B

III 3.17 5.00 36.6%

IV 4.94 5.00 1.2%

Table E.2: Accuracy of eddy current loss models
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Appendix F

Effect of Machine Length on Rotor Eddy Current Loss

In this appendix, a model that allows for an axial length of the machine when finding eddy

current losses is developed. It builds upon the 2D model developed in Appendix E by

introducing an attenuation factor ki that accounts for the reduction in losses due to the

finite machine length.

F.1 Construction of Model

Extension to a full three-dimensional analysis of machine fields would require solving the

three-dimensional magnetic diffusion equation. Given the complexity of the two-

dimensional solution, this approach was considered overly complicated and was avoided.

A simpler approach was constructed using a two-dimensional coordinate system.

In this model the rotor is "unrolled," creating the Cartesian coordinate system

illustrated in Fig. F. 1. The radius R is the average radius of the magnets

R m + R s
R = Ravg m s (F.1)

avg 2

This is an approximation and as demonstrated in Appendix E it will reduce model

accuracy, but it simplifies the problem to the degree that it can be solved in closed form.

The entire machine is then considered to be a current-carrying sheet in the x-z plane,

which can be characterized by a surface impedance Zs given by

E
Zs - Z (F.2)

The driving current in this problem is assumed to be a travelling wave surface current
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Figure F.1: Axially limited rotor eddy current loss model geometry

adjacent to the sheet, so that

Hx = (F.3)

Note that in the 2D framework the expression for eddy current losses given in Eq. 2.56,

the losses will be then given by

P2D = 2 K 2s (E4)

F.2 Derivation of Machine Length Coefficient

Now assuming a finite machine length L, we take the radial magnetic flux density to be

a constant B0 over the axial length of the machine (0 < z < L), and zero outside of it. It will

also be a travelling wave in x, so
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R eJ x -n° t
B= 9 BeR (F.5)

This ignores effects such as end turn current but again provides a reasonable

approximation to machine behavior. This magnetic flux will drive circulating eddy

currents in the x-z plane, producing a current distribution

K = KxI + Kz (F.6)

Using the fact that K is divergenceless,

V K = 0 (F.7)

the surface current can be expressed as the curl of a vector potential

VxA = K (F.8)

Now applying Faraday's Law,

VxE = 2sVxK - (F.9)

with Eqs. F.5 and F.8 gives

jnltOe
V2Ay By (F.10)

Ay will also be a travelling wave, so this equation can be written

z-2 A -(R A( - = z By (F.11)

Because the radial flux density is discontinuous, A will take the form of a Fourier

series
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Ay = Amisin(amz)
m

(F. 12)

The vector potential must vanish at the ends of the machine (z = 0 and z = L), establishing

m7W
a =(1

Now By can be decomposed into a Fourier series with terms given by

4
By= mnBosin(amz)

m odd
(F. 14)

Eq. F. 11 can now be used to find

4BojntmOe

Am = zsmn[( ) 2 + ()2]

0

m odd

(F.15)

m even

This expression can be simplified by using Faraday's Law

(F.16)Ez = jntmOe z

where Az is the magnetic vector potential, along with the definition of magnetic vector

potential

- jRAz np
np Y

jR
np

0p
(.17)

(E 18)

and the definition of surface impedance to find

Snpk
Rn toe
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The resulting surface current is then found from Eq. F.8. The instantaneous eddy

current loss will be the integral of the surface currents over x and z, which is

P•D = ~{z,)oj oR [{/Kx2 + IlKz} 2] dx dz

This can be time-averaged to give

1 L2P3D = 9 12 2cR [ Kx K ]d

The current magnitudes are given by

npR
4 RCx = cOmmI - 2 COS ((mZ)

m odd + (m) 2

and

n pkI np 4 •sin(z)
m odd Rm+ ( m)2

The integral in Eq. F.20 can now be carried out to give

4 2(R 1
P3D 2 2  2

n m odd R)2+ (atm)

If we now define the machine length coefficient k, to be

S= (np)2 1
S2 R modd m 2

nRp)2 +(am)2
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the power loss can be written

1
P3D = 2 {Zs}kl (F.25)

Comparing this to Eq. F.4 it is evident that

P3D = klP 2 D (E26)

so that the coefficient kl serves as a 3D correction factor for power losses computed with

2D methods. It can be shown that

lim kI = 1 (F.27)
L - *

and

lim k I = 0 (F.28)
L-O0

which satisfies the requirement that the 2D and 3D models are equivalent for very long

machines, and that the losses go to zero as the machine becomes very short.

This 3D eddy current loss model is by no means the most accurate model that could be

developed. Certainly it can be extended to cylindrical coordinates and the effect of

machine length on the surface impedance investigated. But it provides a good starting

point for the effect of short machines and will be integrated into the machine design.
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