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ABSTRACT

Design and development of large-scale engineering projects involve
participants with various interests and expertise collaborating to produce an
artifact. Such diversity is believed to cause conflicts during the decision making
process; part of the problem is due to misrepresentation and miscommunication
of information between peers with dissimilar preferences, the other part due to
incompatible implementation of different objectives. This thesis presents an
approach to decrease the problem of misrepresentation and miscommunication
by using a framework: 1) for capturing knowledge about users, their preferences
and the problems they tackle; and 2) for adapting the presentation of relevant
information to those users. The proposed framework focuses on the issues of
relevancy and adaptation within the context of information being retrieved by
users. Based on the functional observations from this framework, a methodology
and a system called ANGELO was built. ANGELO achieves user modeling by
pro-actively observing user interactions with distinct project information. It then
uses this model to adapt the presentation of relevant information according to its
interpretation of the user's interests. This methodology and system combine the
use of agent-based learning with information-retrieval techniques. Such
methodology and system acts as a support tool for collaborative meeting
environments where users need relevant presentation and recommendation of
information, in order to avoid or resolve conflicts.

Thesis Supervisor: Feniosky Pefia-Mora.
Title: Assistant Professor of Civil Engineering.
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GLOSSARY

Adaptation. The capability given to a system to be able to learn new rules that reflect
actions to be taken in an environment.

Agent. a computational system, that has long-lived states, with goals that act from
sensors and effectors. It is autonomous, therefore giving it the capability to decide
which actions to take in its current situation to maximize progress and outcome.

Information Filtering. A system that helps the user by eliminating the irrelevant
information and by bringing the relevant to the user's attention.

Information Retrieval. A system that retrieves documents from an indexed database
requested by the user using a query of terms or boolean logic.

Programming By Demonstration. Agents that get instructed by the user through a
visual programming or macro recording approach.

Software agents. A particular type of agents, inhabiting computers and networks,
assisting users with computer-based tasks. Most of these agents co-exist as a front end
to software applications that users need help either automating repetitive tasks or
filtering information.

User Modeling. A system component that records information about the user in a
profile for later usage by the system to adapt some feature or functionality.



1 Introduction

In large-scale engineering projects, the collaboration of experts in different

specialties is an important characteristic of the design process and/or project

development. Since these specialists have different interests and perspectives, conflict

is inevitable be it over design process, product change or simple miscommunication.

These conflicts, if not resolved early, create projects that are more costly, take longer

to design and manufacture, and are functionally sub-optimal.

1.1 Example Scenario

In order to clarify and understand the problem at hand, an example scenario of a

construction project will be described. The example is meant to depict the project

elements, and interactions that originates conflicts among peers in that project.

The project involves the construction of a building in Sydney, Australia. The

team is composed of an architecture (AR), a structural engineer (SE), and a

contracting company (CC). The architect sketches initial designs of the

building based on site location and customer's specifications. The structural

engineer gives his recommendations on the material to be used and the

construction process according to the design. Finally, the contractor executes

the project according to a schedule under a reasonable budget. A typical life

cycle of the project includes the three following phases: 1) design and

specifications of the building infrastructure, 2) development and construction

of the building, and 3) project and change management which cycles between

phases 1 and 2. During each cycle, project members engage in various

interactions and activities most of which is collaborative. The main

characteristic of such a project include:

* Individuals with diverse experience, preferences, and interest:



- AR is mostly interested in the aesthetic and comfort concepts with

respect to the site. AR would recommend that "the building by the

ocean should have wide windows" and "it should be of a color with

small saturation; e.g., light blue".

- SE focuses on structures and materials that will form the building. For

example, he recommends "the material to be concrete" and "five

caisson base structures to support the building".

- CC is mostly interested in the project control aspect. They

continuously evaluate budget, schedule and resources. For example,

they might recommend that "a specific kind of concrete need to be

used" and "testing phase should only be one month".

* Documentation and Information shared have multiple formats:

- AR sketches design concepts on drawings. In addition, he continually

generates CAD plots of the site from different views.

- SE is mostly interested in graphical data on material and stress used.

- CC would like to record project schedules on tables and spreadsheets.

* Communication and Interaction Dynamics:

Being part of a team effort, peers are in continuous communication of

diverse information according to their own interest and negotiation style.

There are two main forms of communication (Hussein, '96) in our

scenario example: asynchronous and synchronous.

- Asynchronous communication occurs when there is an exchange of

technical reports and memorandum. For example, the AR might

submit a memo concerning a proposal for a change in the design.

- Synchronous communication includes individual and group meetings.

Such meetings are held to discuss design and recommendations to

apply in the project. For example, the SE might suggest a

recommendation to consider a certain amount of load on the surface.



To reach a decision on any recommendation or change, the

designated team would meet and negotiate such opinions.

1.2 Problem Description

There are three leading factors for conflicts to occur within large-scale project

cycles. The first one is related to the diverse nature of the participants' expertise and

objectives. Professionals involved in collaborative efforts tend to bring to the table

individual preferences and needs that when attempted to be translated into a specific

artifact may be a source of conflict during the project development.

On the other hand, a second factor contributing to initiating conflicts is reflected in

the communication aspect of information. In communicating their ideas, peers from

different areas of expertise may use different terminologies that represent the same

concept. This will create an overhead on the communication aspect of collaboration,

since extra time needs to be spent to clear such misconceptions. In our example above,

AR uses terms as 'model' or 'architecture style', while SE talks about 'structure' and

'load'. Such diversity in vocabulary was proven by Furnas (Furnas, 87) to negatively

affect the human-to-human communication.

A third factor leading to conflict is related to misrepresentation of information (e.g.,

meeting documentation or technical reports which reflect decision making, technical

procedures and design details). Most of such information is presented in single format

with no consideration for the various participants preferences. It has been shown

(Bodker and Gronbae, 91) that information structured according to specific

preferences (data formatting, technical terminologies and design methods) would help

users effectively focus on what is most relevant to their interest and would also help

them communicate with their peers better.

The three factors presented define the core problem that this thesis is tackling. The

next Section will describe the issues that a solution to such problem would have to

take into consideration.



1.3 Towards a framework: Issues

To address the problem of conflicts in collaborative environments due to diversity

and miscommunication, this thesis proposes a framework that focuses on capturing

knowledge about the users, their preferences and the problems they tackle. All of this

information is an essential component of a framework since traditional collaborative

techniques relied mostly on the exchange of information, without references to the

initiators or to the domain of interest. The proposed framework will be the basis for

the development of a methodology that will give a system the capability to enhance

the communication and sharing of documents between peers by adapting the

presentation of relevant information to each individual preferences.

The framework identifies two main issues to be resolved: relevancy and presentation

of information.

* Relevancy of Information

In order to support a good communication channel across peers, a

methodology implementing such framework would need to deliver the right

information needed to make a decision; thus, avoiding conflicts. Here, a

definition of what makes a document relevant to someone's interests need to

be explored. In other words, the question would be "what are the measures

that constitutes information as relevant?". The framework needs to determine

a basis to find relevant information in the context of collaborative engineering

projects. To do so, it needs to have knowledge about users' expertise and the

problem domain. Such requirement is further explored below.

* Presentation of Information

To address the problems of misrepresentation and overload of information,

the framework considers two modes for the presentation of documents

according to preferences. The filtering mode deals with extracting out

(filtering) irrelevant information that the user may not want to see. The



second mode is to adapt the presentation of relevant information. By

presentation here, it is meant to be the format and layout of data. In an

engineering application, formats include the diverse ways one would show

information. This can be either in paragraphs, tables, figures, graphical charts,

3D models, simulations, pictures, audio or videos clips.

Within the issue of presentation of information, the methodology based on the

framework needs to have knowledge about such formats and a mechanism to

allow the user express his/her preferences concerning such presentation

formats.

Having identified these two main issues, the framework would need to implement

several requirements towards achieving such goals. The most important requirements

for the kind of knowledge that the methodology is expected to capture are both user

and problem domain knowledge. Both types of knowledge are needed to resolve the

issues of relevancy and presentation of information. Knowledge about the user will

contain specifications on the interests and expertise which the methodology will use to

find relevant information. On the other hand, the methodology will employ knowledge

about the problem domain to represent specific characteristics related to the

terminologies used for decision making and the artifacts being developed. Such

approach will help define user-independent representations that can be used to adapt

and translate information during collaboration between peers. Other requirements that

revolve around the issues presented in this thesis also include considerations for

modes of interactions, information sharing and collaboration support.

Based on the above requirements, this thesis describes a methodology, a model and

a prototype system, called ANGELO (Adaptive iNtelligent aGEent for

coLlabOratation). The system was built and modeled as a software agent assistant for

adaptive retrieval and presentation of information. The World Wide Web was chosen

to be the test-bed collaborative publication mechanism and repository where the agent

pro-actively learns from the user about his/her preferences. ANGELO uses a statistical



machine learning paradigm to learn knowledge about the user's interests. It then uses

such knowledge to adapt the presentation of information through the usage of

information retrieval (IR) functionality and format layouts. Built as such, ANGELO

will allow users to clearly specify their preferences and to provide a mechanism for

locating documents of interest. It then adapts those documents to the user's

presentation preferences (this includes layout as well as the removal of "uninteresting"

information). All the tasks will be performed on the user's interface without an

increased workload over his/her normal operations.

The following chapters provide more details on the proposed framework and the

methodology implemented. Chapter 2 defines the problem requirements and

functionality needed to be satisfied by the proposed methodology. Chapter 3 gives a

background summary on related research in the fields of user modeling, software

agents and information filtering. In Chapter 4, a description of the methodology and

the internal workings of the model are presented. In addition, that Section gives an

overview of the diverse dimensions of the machine learning paradigm used by the

system. Chapter 5 describes the architecture of the ANGELO agent. Chapter 6 gives

details on the implementation with a scenario of the system at work. The thesis

concludes by suggesting issues to be explored in future research efforts.

1.4 Conclusion

This chapter presented a general overview of the problem being tackled here. It was

shown that miscommunication and lack of standard technical terminologies caused

conflicts and delays in project management. The research presented is this thesis is an

attempt to address such issue.

In addition, two main issues were identified as important component of the problem

domain to be considered as a solution. Relevancy of information help defines the

essential issue of enabling the system find information retrieved according to user

preferences and expertise. On the other hand, the presentation of information



addresses the issue of filtering and adaptation of project data and content formats to

various user preferences.



2 Framework Requirements and Approach

As explained previously, the research presented in this thesis tackles the problem of

reducing conflict among collaborative peers. A framework is proposed that focus on

reducing problems of misrepresentation and miscommunication of information by

addressing the issues of information relevancy and presentation according to

preferences. This chapter discusses the necessary requirements that need to be met by

the methodology and the system in order to implement a solution to theses issues.

To identify the requirements needed, the framework considers a model for

collaborative interaction with focus on participants and information. Figure 2.1

illustrates a model that is composed of four entities including user and problem

domain information, collaboration dynamics and information presentation. Each entity

represents an essential component of the decision making process within large scale

engineering projects.

The user entity includes knowledge about the participant's profile, their domain of

expertise and the way he/she would want to view information and manipulate it. This

module would act as the unique source for information about a particular user or team

member. The problem domain component comprises of project interaction,
documentation and other specific information (design rationale, or terminologies).

The collaborative component deals with the nature of communication and

negotiation style used by peers during the life span of the project. Collaboration varies

between problem domains, for example, the contractor might have tendency to be

more authoritative and make his/her opinion most dominant during any meeting. Such

meetings might take more of a chairman style interaction.

Finally, the information presentation entity is inclusive of all information generated

during the course of interaction and the format that it took. It also considers the

diverse modes of user interactions (manipulation or searching) with such information.
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Figure 2.1. Functional Model of Collaboration with Information.

Based on the above observations from the functional model of collaboration, the

next sections present requirements that constitutes the basis for the methodology

implemented. Five requirements will be described which take into consideration the

four entities of collaboration with information as identified at the beginning of this

Chapter. Section 2.1 describes the approach needed to capture knowledge about the

user preference (interests and expertise). Section 2.2 shows the effect of problem

domain knowledge on improving the adaptation of information. Section 2.3 discusses

how modes of presentation and interactions play a role in enhancing the capture of

User User



knowledge about the user behavior, especially during decision making. Section 2.4

shows how the methodology could be used as a support tool for collaboration. In this

case the functionality would include knowledge sharing and seamless integration

within electronic collaborative interactions.

2.1 Knowledge about the User Preference

In order to resolve misinformation conflicting interactions between participants in

collaborative environment, one would need to "understand" the individuals and know

the characteristics that make them diverse. To achieve such goal, the methodology and

the system needs to allow for the capture, storage and generalization of knowledge

about the users. The system has to decide which knowledge to observe, in what form

to represent it and how to manipulate it. This raises the two main issues of modeling

information about the user, and learning over time new and modified information.

Section 2.1.1 below describes the issues of representation and storage of information

about users. Section 2.1.2 presents the requirements needed to be satisfied in order for

the system to capture and learn information about the user.

2.1.1 User Modeling

User modeling refers to the capability of the methodology and the system to record a

profile that captures information about the user pertaining to the context of

collaboration during project development. The main features of a user model include:

Knowledge Representation

This defines the internal structure and functionality of the user model. A

knowledge representation helps the designer of the system to put constraints

on which user data it needs to be captured and in what format it should be

stored. With good knowledge representation, one could build a system that

generalizes rules about the user and therefore acts as an assistant to the user.

For example, in the context of a project development in civil engineering, the

knowledge to be represented is constrained to a profile of users' specific



preference in the field of expertise (whether construction management, geo-

technical, or structure engineering). In this case, the methodology would

represent such preference in the system in the form of concepts learned from

the user.

Persistent profiling

In order to re-use a user model over time and across applications, a necessary

requirement would be to have a persistent representation of the profile. This is

a critical component for collaborative environments applications where the

system needs to distinguish user models across diverse information. Such

information can be the repository of long project cycles, which need to be

shared later among participants and among other projects.

An example of a situation where this feature is useful is in the process of

human resource management during a project cycle. New comers would like

to get a quick start on the project. In this case, the persistent profiling of a

previous members within similar department would help the new member to

be up-to-date on the issues involved in the project and the nature of the

information required in each design/development phase.

2.1.2 Learning about the user

To better fine tune and automate the development of the user model, a method for

machine capturing and generalizing of data about the user is required. To achieve that,

one needs to take into account the following considerations:

* Data observed and learned

To capture a good user profile, the system needs to learn diverse data about

the user, which includes personal and login information, interests, expertise

and decision making. Most of such data need to be observed while the user is

interacting with the documents. The system would act as an observant of the

user, capturing data needed for its learning engine as the user interact with the

19



system.

* Generalization Scheme

For the user model to be complete, the methodology has to consider

generalizing knowledge about the user. The system would create rules that

will govern common user interests. It is expected that the system will use its

learned rules about the user preferences to adapt the interface and customize

the presentation of information. Due to the diverse paradigms in machine

learning techniques, and in order to capture both statistical and rule-based

knowledge about the user, the best approach to effective learning is to use a

combination of various techniques. In the proposed framework, there is need

to have a hybrid paradigm where a front-end supervised learning algorithm

would capture user's hints/examples and a back-end unsupervised engine

working as a "clearing house" by applying computational functions to cluster

and generalize the data.

* Memory model

Due to the dynamic structure of projects over time, one would need a form of

memory to track participants' interests and involvement in different stages of

the project. In order to capture preference and expertise within current

interactions or project, the methodology should use a short-term memory

model. In addition, a long-term memory model will need to be used for a

more generalized rule set about user's decision making and preference that

can be used across projects.

2.2 Knowledge about the Problem Domain

Participants collaborating in a project still do have common grounds and purpose.

They meet or negotiate to design or develop a solution to a certain problem. To

understand any conflict or deficiency in the collaboration, one needs to capture

knowledge about the problem, its domain and its technical components. An approach

20



would be to put constraints on such knowledge and give the system a model

representation of a project domain. This would give the agent the capability to relate

user actions and decisions with the problem at hand. The sections below describe the

types of problem knowledge that can be modeled and used by the methodology.

Section 2.2.1 discusses the modeling of design rationale and its impact on problem

definition. Section 2.2.2 describes other domain-specific knowledge that the

methodology need to integrate.

2.2.1 Modeling Design Rationale

As discussed earlier (Section 2, Figure 2.1), the problem domain level of

collaborative large-scale engineering projects involves mostly a interrelated set of

decision making components. Figure 2.2 below shows the DRIM model (Pefia-Mora,

95) which offers a good modeling of design rationales and recommendations.

DRIM main concepts include:

* Designer

This data structure represents the entity engaged in the decision making. Such

entity in the problem domain proposed is a project participant which can be

an engineer, such as structural engineer or it can be an architect.

* Proposal

This refers to the recommendation or information suggested by the

participant. The proposal is a rich representation which includes alternative

opinions, component description (what the proposal consists of), reactions to

other proposals and versioning.

* Intent

Such information refers to what the designer's goal or purpose of the

recommendation made. An intent maybe either an objective to be reached

(e.g., to protect concrete from damage), a constraints to apply on an artifact

(e.g., specific standard measurements for ensuring compliance of a bridge), a

function to show a behavior or a goal to be reached by designers (e.g., to

21



construct support for a bridge).

Figure 2.2 Functional Model of Collaboration with Information.

Recommendation

This represents the result of selecting an artifact, applying modifications on

artifacts or for the suggestion of new plans.

Legend

O -- sub-part - zero or more

-- sub-class -- one to one

...................... derived



* Justification

A justification is the reason why a certain recommendation will satisfy a

recommendation. This would refer to the initiative taken by the source

(engineer or designer) to take a decision (recommendation). An example of

such reasons of initiatives include either an authority level, a design rule, or a

certain standard.

* Context

This represents the information generated during the design process. DRIM

models that in two forms. One being as an evidence that is based on some

facts, while the other called assumption is based on data quality and its

presentation.

It is suggested for the DRIM methodology to be used in coordination with the

ANGELO methodology to provide design rational and intent information. Such

information will help improve the system widen the scope of learned user preferences

to include recommendations and intent.

2.2.2 Other domain knowledge

Looking at a large-scale project as a problem with specific domain, one would need

specific information about the terminologies and concepts expected to be used in that

domain. For example, in a bridge construction project, one would expect the system to

recognize terms like "slab" or "pier". In addition, the methodology need to have

knowledge of high-level constructs from such concepts. This information will include

the physical objects dealt with in the problem. For example, there has be a definition

of a "bridge" as "a formation of a slab supported by two or more pier".

In order for the system to adapt the presentation of problem information to the

individual use, it should also have knowledge about those data formats and how to

translate them. For example, if a construction manager have preference to look at

bridge information as tabulated data that includes material and cost, the system should

translate a graphical information and extracts the data relevant and then present them

23



in another format. The knowledge needed in this case would be a rule to map from one

artifact information that contains geometric and material data to another tabulated

format. On the other hand, the object representing the budget may have different

views that could be called depending on the user preferences. These views may be one

of a graphical nature while another can be of a tabulated form.

2.3 Modes of Information Presentation and Interaction

2.3.1 Modes of Interaction

Another dimension to this requirement is the need to consider not only interest, but

also modes of operations and interactions that the user might be engaged in. In each

case, the system would need to adjust the relevance according to the context and the

level of interest expressed by the user.

* Skimming Mode

In this mode, users might express interest in certain topics that may not have

the same importance since this will be more of exploring and searching mode.

The system will consider every document read as related and rate such

document according to interest expressed.

* Meeting Mode

During a collaborative meeting, the user is either receiving recommended

information or suggesting it to others. The system would not rate any

document received (recommended by others) as relevant until the engineer

rate it as so.

* Authoring Mode

In this case, the system would mark the authored information as relevant since

the user had some level of authority and interest.



2.3.2 Other presentation observations

Based on the two main issues of relevancy and presentation of information (as

described in Chapter 1), there are two modes of information presentation. The first is

basic filtering of information, where the methodology extracts irrelevant documents or

entities within documents. Secondly, in addition to looking at information content,

format is an essential element for adaptation. The system should be able to apply the

rules learnt from the user model and the problem domain knowledge to adapt the

documents in a format that is of interest to the user.

In addition, the system could consider patterns in user's interactions with other peers

and/or with documentation. For example, the system can detect time spent on a page,

number of private messages to certain peer, or user interface actions (e.g. printing,

cut/paste). Such features would help the agent enhance its learning over time and

generalize better.

2.4 Collaboration Support and Seamless Integration

Since the nature of the problem presented in large-scale civil engineering projects

involves collaboration among peers in order to reach decisions or to exchange

recommendations, the methodology and system presented should be applied within a

computer-supported collaborative environments. The requirements that need to be

considered include the ability to share knowledge across, and integrate the adaptation

of presentation with the communication channel. Both such issues are detailed below.

2.4.1 Knowledge Sharing Among Peers

Individual expertise and recommendations produce the knowledge that users would

like to share across with other peers. In addition, newcomers to the project would need

to get a quick status and information on the project cycle and the individuals involved.

The system should be able to use the persistency of user model and allow different

clients to coordinate and communicate the shared data. Such requirement calls for the

need of an inter-system collaborative protocol.



2.4.2 Support Tool for Electronic Collaboration

The methodology developed will act as a user-centered support tool, aiding users in

adaptive retrieval of their own relevant information. In order to provide the

collaborative component, the system should be integrated with current electronic

systems. Such integration should be seamless in a sense it will not distract the

available communication paradigm. The methodology presented here would need to

integrate with such system to offer users the capability to present recommendations of

relevant documents. For example, during a design brainstorm session, one engineer

would suggest a recommendation and back it up by facts from previous

documentation. The engineer would send the document to an architect and the project

manager who in turn would get an adapted view according to their own perspective on

such recommendations. To be more specific, a construction engineer might present a

graphical plot of stress load on some structure. In this case, the architect will get a

filtered document (removing the information on stress) but still the project manager

would get an adapted tabular form of the project resources indicating a certain

problem.

2.5 Conclusion

This chapter discussed the necessary requirements that need to be met by the

methodology and the system in order to implement a solution for the two main issues

presented earlier in Section 1.3. Such requirements included capturing user and

problem knowledge, observing modes of information presentation and supporting

collaboration and knowledge sharing. The requirements analysis was based on a

model of collaboration among engineers.

To better understand the area of research that this thesis belongs to, the next chapter

gives an overview on the general area of software agents and on related research to the

requirements presented above.



3 Survey of Related Research

Having presented issues and requirements to address the problem, this Chapter

describes current research in the areas related to the functional requirements described

in chapter 2.

3.1 Learning Interface Agents

3.1.1 What's an Agent?

An agent can be considered as a computational system that has long-lived states

with goals that acts from sensors and effectors. It is autonomous, therefore giving it

the capability to decide which actions to take in its current situation to maximize

progress and outcome (Russell, 95).

3.1.2 Software Agents

Software agents are particular type of agents, inhabiting computers and networks,

assisting users with computer-based tasks. Most of these agents co-exist as a front end

to software applications in which users need help either automating repetitive tasks or

filtering information (Maes, 94).

The basic characteristics that distinguishes software agents from other programs are

the following:

* Pro-active

Agents have the capability to take initiative on some actions. For example, an

e-mail agent can delete unwanted e-mail on the behalf of the user.

* Long-lived and autonomous

The autonomous behavior is achieved by the fact that software agents should

work independently from the user most of the time, and should decide which

next step to take. User input is only considered as examples for the learning

process but not instructions on which action to take next. An agent is long-
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lived since it is designed in a way that it can sustain itself over a long period

of time.

* Adaptive

Agents are encoded with learning algorithms in order to adapt to a certain

environment or in order to influence its autonomous behavior to do the right

thing (Maes, 94). Machine learning theory is used to reach the adaptive

behavior, which generally can mean that the agent while observing its

environment it is learning new concepts and generalizing rules of behavior.

* Personalized and customized

The adaptive behavior can also have a more broader sense, it can also mean

that the agent is adapting to the user, and therefore making itself personalized

to a specific user.

3.1.3 Kinds of Software Agents

Software agents can be categorized in three dimensions. Figure 3.1 shows such

classification. The X scale represents the measure of user interaction that the software

requires. On one hand, the low level of interaction means that the program is designed

to assist the user and automates a lot of task. On the other hand, the high level of

interaction means either the user is programming an application or the software has a

graphical interface that needs a lot of input from the user (e.g. direct-manipulation

visual programming or navigating in a hypermedia space).

The Y axis reflects how much agent technology (as defined in Section 2.1.2) is used

in the application and the scale of the involvement in automating software tasks.

Example of these tasks might consist of a database query, or a graphical interface to a

CAD system. The more the agent is involved in the software, the more it automates

software tasks and learns about the user, and therefore achieves more adaptation.



Programming By Instructable none
Demonstration (example/hints) (automation)

Learning Interface

Figure 3.1. The Software Agent Research.
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The Z axis shows the level of agent to agent communication or exchange of

information (between two or more agents). Moving from the lowest level on this axis

to the highest, different categories of agents with more distributed capability and

agent-to-agent communication are found. For example, agent on the Web are highly

communicative in nature, while an interface agent running local on a desktop is on the

low scale. In between, are the agents who have some local and network based

capabilities. The most common agents in this category are the social filtering agents

like HOMR (Maes, 95) and FireFly (Maes, 96).

3.1.4 Learning in Software Agents

Learning in a software agent varies and depends on the application used, level of

user involvement and complexity of tasks. For most interface agents, there are at least

three categories of techniques or approaches used: programming by demonstration ,

memory-based and machine learning. Based on the categorization in Figure 3.1, a
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description of each approach will be given along with examples of the systems using

such techniques.

* Programming By Demonstration Agents

Figure 3.1 includes agents that get instructed by the user through a programming by

the demonstration approach. They use ad-hoc learning techniques (such as simple

look-up tables with a matching algorithm) to create simple rules governing the user's

actions. In addition, they use hard-coded knowledge about the domain, but lack the

capability of adapting to the user. Examples of such systems are Cypher's Eager

system (Cypher, 91), Lieberman's Mondrian (Lieberman, 93) and Metamouse

(Maulsby, 93).

* Example-Based Learning Agents

Such agents memorize situations in their environment (user interface) and compute

the predictions accurately after a good amount of training. For example, Maxims, an

e-mail agent for Eudora (Maes, 94), uses Memory-Based Reasoning (Stanfill and

Waltz, 86) to capture all the user's e-mail actions. These user patterns are stored in a

table that can be used by the agent for predictions of future actions. Maxims does not

generalize or build rules about the user. It just records observed data as items in the

look-up table. In order to adapt well in the longer run, Maxims needs a lot of training.

This affects its performance. It uses a lot of memory and operates slowly.

* Knowledge-based Agents

Some interface agents are built using classical behavior-based machine learning

algorithms like genetic programming (Koster 94), or rule-matching techniques

(Winston 93). Other agents use rule-based learning. Most of these systems in this

category use symbolic-based reasoning that generates rules to be evaluated through

predicates. They tend to do better adaptation and generalization than the techniques

mentioned earlier. Example of such systems is Cima (Maulsby, 96) and Bergman's

(Bergman 94) manifest causal agent which uses a combination of computational

learning (Schema mechanism) and rule-based representation.



* Information Filtering and Retrieval

IF and IR are two techquines used for document browsing. There are several

similarities and differences (Belkin and Croft, 92) between the two. Although they

both process documents in similar matter (indexing), one applies filtering on a

dynamic stream of information and the other relies more on a static database (IR). The

amount of data involved in IF is mostly large and unstructured, while with IR it is

structured and pre-indexed most of the time.

Information retrieval have three main paradigms: (i) statistical, (ii) semantic and (iii)

contextual. The first approach emphasize statistical correlations of word counts in

documents and document collections (Salton, 83). Semantic indexing is another

example of statistical approach but used to capture the term associations in documents,

so offering a closer meaning to the text. The last paradigm is a boolean logic one,

where one encodes structural relationships among terms (Gauch, 89). A simple

example of commercial IR systems are the search engines that exist on the World

Wide Web.

Information filtering (IF) can help the user by eliminating the irrelevant information

and by bringing the relevant to the user's attention. Filters are mediators between the

sources of information and their end-users. Users can build their own filters from

rules. Social filtering is a recent approach (Liang, 96) where IF selects documents

based on the ratings that other users assign to them.

* Towards better Personalized Information Agents
Personalized Information Agents (PIA) refers to software agents that aim to assist

the user find the right information that suits his/her interest. Such agents employ

information filtering techniques and adaptive behavior. FireFly

(http://www.firefly.com) is a social filtering information agent but lack the adaptive

behavior and needs lot of instruction to become personalized to a particular user (see

Figure 3.1). NetAngels (www.netangels.com) employs a good neural net-based IF



algorithm, where users can train the agent to find the right information. It lacks the

personalization aspect and the pro-activeness characteristic.

Another kind of PIA is Letizia Web-agent (Lieberman, 95) which uses pure

observation-based techniques, where it monitors the user's web browsing patterns and

indexes those entries for a "look-ahead" search. It does not use any machine learning

at this stage. Compared to the suggested requirements, Letizia lacks the user profiling

capability and the agent-agent communication. However, it does offer a good

feedback, whereby a window shows the agent a view of Web pages being browsed to

assist the user.

The Newt system (Sheth & Maes, 93) is a truly PIA and it uses genetic algorithms to

dynamically adapt the agent to the user most readable documents. It sill lacked a user

instructed feedback and does not adapt the actual presentation of the information. The

focus is more to have a good user profile.

The research proposed in this thesis is the development of a software agent that is

similar to a personalized information agent but offers more adaptation and better user-

centered information filtering and retrieval. It captures a user profile, and maps its

adaptation to a new presentation of the interface with the closest information matching

user's interest and in the desired form. The sections below give a more detailed

description of the model, the algorithm and an early implementation of the system.

3.2 Work on Knowledge Modeling and Sharing

Chapter 2 presented issues and requirements to address the problem of conflict and

user preferences, this Chapter describes current research in the areas related to the

functional requirements described in Chapter 2. The research described in this thesis

draws on the intersection among three areas of research: knowledge collaboration,

user and problem modeling and interaction context. Figure 3.2 below shows a three

dimensional chart where each axis represents a grouping criterion and the research

related to it. The first grouping (i.e., X-axis) covers research in knowledge



collaboration and sharing. The second grouping (i.e., Y-axis) is focused more on the

work related to knowledge modeling research, which includes user and problem

modeling. Finally, the last grouping (i.e., Z-axis) is on the interaction context, when

systems take into consideration diverse mode of user operation and the nature of the

adapted presentation. Below, each subsection describes the different approaches of

related research efforts and evaluates them according to the requirements presented

earlier in Chapter 2. The survey also emphasis the offerings of the ANGELO

methodology in comparison with the other related research.

3.2.1 Work on Knowledge Modeling (Users and Domains)

This category includes systems that acquire knowledge about the user or the

problem domain of concern. Such acquisition can have an element of learning in it or

it could be pre-defined or pre-coded knowledge in the system.

In term of user modeling, two major issues research are whether the systems use

learning or just simple knowledge. Earlier attempts on building user models did not

use machine learning, but focused on building a good knowledge base about the

application as well as the user and the problem domain (Kay, 93). In this case, user

interaction styles were mostly predefined in the system (Shneiderman, 95). For

example, in intelligent tutoring systems, the user model focused on a student model.

Thus, it is difficult to use that same model for another type of user such as an

instructor or even use it in other systems that may not have the same heavy bend on

tutoring. Another example of a system with pre-coded knowledge is the Lumiere

project' (Horvitz, 97). Hard coded heuristic rules were used for the agent, greatly

limiting the ability of the agent to memorize or generalize. The system was built using

a one-year worth of knowledge collected by 30 people observing users individual

interactions with Microsoft Office applications. Thus, the agent relies mainly on a
"unified" user's model built using Baysian network as the description for the

' The Lumiere project was integrated in Microsoft R's Office 97TM product as the "Office Assistant".
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Figure 3.2. Research in Knowledge Modeling,Collaboration and Interaction.

Other systems avoided the "hard-coding" of knowledge and used machine learning

to model the user in order to allow for the individual record of user interactions. Some

of these systems include Maxims (Maes, 94), Eager (Cyhper, 91) and MetaMouse

(Mauslby, 93). Maxims is an e-mail agent for the Eudora mail system, it uses

Memory-Based Reasoning (Stanfill and Waltz, 86) to capture all the user's e-mail

knowledge. The agent does well in prediction the user's goal, but lacks any learning

about specific users.
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actions. These user patterns are stored in a table that can be used by the agent for

predictions of future actions. Maxims combines user/problem domain since it has pre-

defined rules about e-mail domain (sort, read, delete e-mail) and it observes user

action. It also have a bulletin-board option where users can share their agent's

knowledge to improve the learning of their assistants. However, Maxims does not

generalize or build rules about the user. It just records observed data as items in the

look-up table. In order to adapt well in the longer run, Maxims needs a lot of training.

Doppelgdinger (Orwant, 93) also combines problem domain and user modeling. It

uses a simple "like/dislike" interface where the agent stores user data and clusters

them according to a utility function. The design lacked a good design to allow such

information to be shared among users. Another system that combined problem domain

and user modeling is Cima (Maulsby, 96). Cima is considered a more advanced

system since it uses a rule-based approach to learn from user's hints to the agent. In

this case, the agent builds rules for generalization while observing hints from the user.

The hints observed are considered as instances of basic features, which combined, will

form rules. With that implementation of Cima, the level of problem domain associated

with the user model was minimal. The agent learnt low level tasks (like move object

on screen or edit text) that were not mapped to a higher level problem driven

representation (like interest in bridges, or recommend a rationale).

Bergman's LMCE (Bergman, 94) was an agent that had little knowledge about the

user or the domain but was programmed to explore its environment (i.e., Macintosh

Windowing system), and learn in an unsupervised and generalized way. The system

generated rules based on Action/Selection pairs, trying to learn an action from a

certain world selection. Generalization was possible by combining several rules into a

higher level one. However, such system lacked any user input, so it took long cycles

to learn a small concept as "how to iconize a window". It also didn't have an option

for it to tackle hints or examples from the user that would help it perform better.



3.2.2 Knowledge Collaboration

Being in a collaborative environment with repository data, a user/problem-centered

system would need at times to communicate with other agents. This is done in order to

exchange recommendations on documents, or to cooperate on certain tasks. Such

interchange of information is implemented in some systems that employ inter-agent

communication. It was also shown (Maes 95, Liang 96) that such kind of information

exchange would improve the learning and adaptation performance of the agent.

There has been several approaches to implementing distributed communication

among agents to gain more learning. We describe two main approaches below: social

filtering, and collaborative meeting environments.

An example of such social filtering approach is FireFly (Maes, 95), which automates

the word-of-mouth process, and learns about the user's taste or opinion in the world of

entertainment. It uses that information to best serve the user's needs. FireFly uses

nearest neighbor calculation in order to suggest new music that might interest the user.

The system finds a close match to someone else's taste in music and recommends the

items. Thus, FireFly is applicable and feasible in collaborative recommendation-based

interaction, where the system would build a pattern of users' opinion clustered

together. Still, FireFly lacks the capability to capture knowledge about the relevancy

and presentation of the data recommended, since it solely relies on statistical

recommendation of other users, with no integration with knowledge about the

problem.

Another way for systems to share information is through a collaborative process of

defining such information (Pefia-Mora, 96). This takes another twist, in that the

systems negotiate the knowledge and exchange artifacts. This can be done either by

human users or computer-assisted agents. CAIRO and M-RAM (Pefia-Mora et. al.,

96) uses such paradigm.



3.2.3 Interaction Modes

There has been little work on considering different modes of operation that users

might engage in. A mode of operation is defined as the cognitive and perceptive state

that the user is in while engaging in a collaborative design process. For example,

Maxims (Maes, 94) looks at user's actions and is able to detect different reading styles

since the user's interactions patterns are captured and clustered in memory. Another

example, the Lumiere agent (Horvitz, 97) has knowledge about a large amount of

possibilities that a user might be doing. It uses this information to give to the user-

filtered information and the most relevant one.

3.3 Conclusion

Having examined the related research in the area of software agents for information

retrieval and collaboration, one can draw some conclusive remarks regarding the

deficiency of such systems. It is notable that the area of applying problem knowledge

with a user profile have not been explored. In addition, the issues of presentation and

modes of user interaction are not totally investigate by most related research.



Figure 4.1. Architecture of ANGELO.

4 A Framework For A Software Agent To Assist in the
Adaptation of Information Retrieval

As proposed, the requirements and research issues, presented in the previous

Chapter, point to the problem of capturing, memorizing and presenting user-based

preference- influenced documentation. The methodology developed in this thesis is an

attempt to address such a problem. The implementation is an interface agent that

learns from the user and adapts its document retrieval to specific preferences and

styles. This Chapter explores and describes the architecture and the components that

constitute the system.

4.1 Architecture

The proposed architecture is based on the requirements discussed in Chapter 2, and

it is shown in Figure 4.1. The system consists of three main sub-modules: Learning

Engine, User Model, and Information Filtering algorithm. Each module provides a

functionality towards achieving one of the agent's goals of assisting the user. A more

detailed description of each module is provided below.



The client side of the system consists of two components - one for capturing user

preferences and another for displaying the user-model, filtered page, and further

suggestions. The server side consists primarily of the tagged documents as well as a

savant engine (Rhodes & Sterner, 96) server that performs the relevance calculations

on text information. The server also maintains files that contain the user profile. The

Information filtering/retrieval engine operates on a separate server, which indexes and

tags documents. Thus, the actual site data and the persistent user model reside on

another server.

4.2 Learning Engine

Based on the necessary requirements laid out in Chapter 2, ANGELO was designed

an instructable agent that is user-centered. It learns by observing user's actions, and

taking hints/concepts from the user. ANGELO also uses clustering techniques to

assemble the rules/concept pairs that will be stored in the user model. This Chapter

describes the learning engine.

4.2.1 Instructing the Agent while browsing

In order for ANGELO to capture knowledge and update the user model, the user

needs to instruct the agent on his/her interests. In addition, the system should be able

to communicate with the user and report its status. For example, it should tell its user

how much it has learned so far, and why it is taking these decisions. ANGELO

employs a "learning by example" methodology (Maulsby 96) that gives the user an

active involvement in teaching the agent new concepts and the user interest associated

with those concepts. This technique will be defined here as "teaching while browsing"

(TWB), since the interface is seamlessly integrated with the content of information.

TWB's functionality includes:

* User teaches the agent some semantic concepts behind HTML objects and
expresses his/her interest associated with those concepts.

* The TWB interface is integrated seamless within the browser, therefore
allowing the user to teach the agent most document objects while browsing.
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TWB records concepts from the user and the associated action. It then
generates a feature vector for later processing by the clustering engine (see
Section 4.1.2).

The image in Figure 4.2 below shows the user interface of the TWB functionality

that ANGELO employs. The system added extra HTML tags in order to provide a

minor interface that the user can use to choose a particular object to teach the agent

about. For a text element, the user can click on a red button attached to the paragraph.

As for an image, the user can click on the image itself.

The actual Angelo interface consists of a text field for the user to enter his/her own

concept definition of that object. However, ANGELO provides a predefined concept

that has been obtained by the Savant engine from the caption of the object or the text

surrounding the object. It also has an "interest" scale (Low to High on a scale of 5)

from which the user can choose. The algorithm used in ANGELO to apply the TWB

methodology is presented in Figure 4.3 below:

4.2.2 Clustering Algorithm

The learning algorithm for the ANGELO agent is based on a simple statistical

clustering technique using C4.5 (Quinlan, '93). The methodology defines an HTML

document as a set of features on two levels: both page-wide features and local object-

based features. Page features takes into account content and layout styles that

distinguish an HTML-based document from another. For example, a main page for a

Web site would have more images than the actual content. Such observations are

mapped into coded rules. This is shown in Figure 4.4 below.



Figure 4.2. "Teaching While Browsing" Interface.
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Action: User clicks on an HTML object (image or bullet next to text)

If Text element:

Angelo queries the Learning Engine for previous occurrence of that object's concept and
interest.

If no previous occurrence then
The Savant algorithm returns a keyword index of the paragraph.

Update UI

If User enters a new concept or expresses interest then Angelo updates the savant engine
memory.

If Image element:

Angelo queries the User Model for previous occurrence of that object's concept and interest.

If User enters a new concept and interest
Angelo creates a new record in the UM history.

Angelo adjusts the interest.

Figure 4.3. Basic ANGELO TBW algorithm.

4.3 User Modeling

In an effort to personalize the skimming process, the system uses a user model to

dynamically store the learned interests and behavior about the user. ANGELO's User

Model (UM) includes a history-like record of the concepts that the user expressed

interest to while skimming. For example, the user might choose an image and instruct

the agent that this is a picture of a house. In this case, the system captures the concept

house, and puts it as an interest to the user.



Figure 4.4. Feature Vector for the learning engine in ANGELO.

While continuously observing the user, ANGELO updates the User Model with the

concepts and the interest frequency that the user chose. In order to provide a feedback

on the user model, the user has the option of displaying a visual window with the

concepts that the agent is learning (see Figure 4.5 above). The concepts display each

instance of data that the user categorized as such concept and sorted in order of

preference. Such a visual representation acts like an agent feedback that is helpful for

the users to realize the status of the agent's learning.

In reference to short term versus long term memory issue (discussed in Section 2.2),
the user model in ANGELO's current methodology implements the idea of short term,

since it stores most recent user interactions and interest. On the other hand, clustered

information (using C4.5 as described above in Section 4.2.2) that the user commit to is

stored in a second stage as a long term memory.

1) Page Features:

* Title
* Type: (layout description - currently only two rules)

Rulel: If there is a map then Main Site Page
Rule2: If there are many links then Site Index Page

* Concept: Word vector generated by Savant engine as well as a
neighboring documents.

2) Object Features:

* Name
* Type: IMG, TXT, URL, MAP.
* Attributes: (Length/Size),Width, Height, Aspect Ratio
* Concept Vector: Hand coded for Images, Savant generated for
paragraph.



Figure 4.5. User Model Display Window.

4.3.1 Representation in the User Model

The internal representation of the user model is a classified list of user concepts

coupled with document keywords and level of interest. The list is a set of vectors (Vi),

where each vector is composed of a list of user concepts (UC) correlated with a
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document keyword list (W) and an interest (i) which is a scalar from -2 to 2. The

scalar is an indication of how much the user is interested in a document entity. A

scalar of 2 indicates high interest, a zero means no opinion and -2 means don't show

ever.

Vi UC W i

User Model = Classified List of Vi

Figure 4.6. Representation in the User Model.

4.4 Information Filtering/Retrieval (Savant)

The Savant engine was adopted from the Remembrance Agent (Rhodes and Sterner,

96) to generate a vector of key words from textual information. Such vector is used to

generate the set of concepts on paragraphs, figures, captions and page levels. These

features are stored in component structures. These structures are then loaded into the

classifier database and clustered. After clustering, C4.5 (Quinlan 93) provides a

certainty measure that is also recorded in the component structure. Each component

also has a value of the interest the user has in the component.

The interest values (weighted by the certainty measure) of all the components in a

given cluster are summed and the result is placed in the interest field of the cluster

object. New components can then be easily classified into the clusters and their user

interest level can be determined for the filtering and suggestion mechanisms.

4.5 Modes of Operation

Based on the methodology described above, ANGELO has three main modes of

operation. The Savant engine feeds ANGELO with the relevant results from both a



filtering and a retrieval perspective. This gives ANGELO the capability to have both

Presentation and Look-Ahead modes.

* User observation

The agent will act as an observer in the beginning to collect as much data

needed about the user. This observation is carried out in the background,

where the agent captures most of the interface events, keystrokes, and

concepts learned from the TWB interface. The observed data is stored by the

agent and passed to other modules.

* Presentation and Adaptation

Having a good knowledge about the user, the agent will be able to adapt the

presentation of documents to fit the user's interests. This is accomplished by

filtering a document according to rules generated from the user model. This is

the agent's capability of generating human-readable text output (such as

HTML) from its memory.

The presentation mode is the filtering out unwanted concepts or data. The

Adapter module serves to assemble a decision based on the learned concepts

in the user model, and the output of relevant documents from the Savant

engine. It then generates a recommendation document that contains only the

relevant objects that the user might be interested in.

* Look-Ahead recommendations

Knowing the user's interests and preferences, the agent can suggest other

relevant documents that the user might have seen in the past or that might

exist in the hyperspace of related documents. The Look-Ahead window serves

as a recommendation to what other documents that exists in the same

repository have related concepts of interest. This is done by applying a query

to the Savant engine on all the documents.



4.6 ANGELO's Object-Oriented Model

Based on the previous analysis given in Chapter 2 of the requirements of knowledge

capturing and presentation of user and problem knowledge, and the description of the

methodology given earlier (see Sections 4.1 to 4.5), an object oriented model for the

ANGELO system was designed. The model encapsulates information about a user and

the problem concepts as well as interaction with the system and its operation. The

model also shows the relations and associations that user and problem knowledge

models can have (e.g., ANGELO/DRIM interchange) and between shareable

knowledge (short and long term memory). Below is a description of the ANGELO

model illustrated in Figure 4.7.

4.6.1 User Modeling

The User class acts as the user model which includes personal information (name),

system information (id, password, last time logged on, time spent on system) and the

concepts that the user expressed interest in. The User class gets updated by Angelo

module while the agent is observing the user.

4.6.2 User/Problem integration
4.6.2.1 Problem domain as Concepts

A Concept is a class encapsulating high-level information learnt from the problem

domain. The name of a concept acts like a semantic label or tag for the set of HTML

objects which belongs to that category of a specific concept learned. In addition, the

Concept class includes information concerning the user interaction and interest to that

concept. Frequency reflects the number of interactions and "interest_level" is a

measure set by the user. In ANGELO, a set of Concept instance objects gets initiated

by an automatic generation from the Savant engine, through the keywords extraction

algorithm. As will be explained further later in Section 4.6.4, the Concept class

updates the memory module with the appropriate information satisfying the correct

conditions of short/long term memory models.



4.6.2.2 User/Concept Interaction

Chapter 2 showed the importance and novelty of this thesis approach in combining

both user and problem knowledge in order for the ANGELO system to learn and adapt

the information according to both user interests and problem domain specification.

The model designed is based on such observation. As Figure 4.7 shows, The Concept

classes is manipulated by the User directly and indirectly. The former is when the user

expresses a specific concept for a certain interaction. For example, the user might

choose to rename a previously assigned concept "site" to a certain map image and call

it "map location". The indirect or explicit interaction is when ANGELO presents a

concept for a text or image, and the user would confirm the validity of such

association (see "Validates" relationship in Figure 4.7).

4.6.2.3 ANGELO/DRIM Integration

Another feature that ANGELO was designed to accomplish is the use of a Design

Rational and Intent Model (see Section 2.2) as the problem domain model of

collaborative engineering. Figure 4.7 shows a portion of the DRIM model (colored in

gray, and placed on the top of that figure) that maps or relates to some classes in the

ANGELO model. Such an approach is useful to establish an integrated solution for

collaborative design and negotiation by including a system to adapt presentation of

documentation.

4.6.3 Sharing Knowledge

For ANGELO to be a support tool for distributed collaborative environments, the

model needs to offer an extension to a multiple user model and shared memory space.

figure 4.7, the model includes a "Shared_With" attribute for an association between

one user to another.
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Figure 4.7. A Model of ANGELO
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4.6.4 Memory Model

Memory Model is one essential time component of the ANGELO model. It

encapsulates the short tem and long term memory of a user or a group project. Each

short/long term memory will get updated by Angelo according the constraints of time,

project cycle and project type. For example, when the project is in a transition from

design to implementation and the team changing, ANGELO should get an update

message either from one or multiple users. In that case, ANGELO would transfer the

conclusive, and generalized recommendations to the long term memory. The short tem

memory is continuously updated with the current state of user/system interactions and

currently observed concepts.

4.6.5 HTMLObject Class

The HTMLObject class refers to the set of basic representational entities that the

system need to capture and model as a concept instance. There are two types that

ANGELO supports ; text and image objects. Each are subclasses of the HTMLObject,

and gets instantiated when the browser loads the HTML document referring to those

objects.

4.6.6 ANGELO Class

The ANGELO class acts like the kernel of the system, holding all instances of the

above classes. In addition, the learning and retrieval methods are implemented in that

class.

4.7 Conclusion

This chapter gave a description of ANGELO's design elements that form an object-

oriented methodology. The architecture and the components that constitute the system

were explored. Such architecture included several modules that captures user

information and adapts the content by filtering out non-relevant information. The

object-oriented model described in section 4.6 showed ANGELO's design as a set of

interconnected classes encapsulate information about a user, problem concepts as well



as interaction with the system and its operation. The model also showed the relations

and associations that the user class and a problem knowledge models (like DRIM) can

have and between shareable knowledge (short and long term memory).



5 ANGELO's dimensions of Machine Learning

This Chapter explores various dimensions of the machine learning methodology

presented in the previous Chapter. According to (Grecu & Brown, 96), machine

learning in design have seven basic elements that need to be explored. Such

dimensions offers a framework for the employment of a machine learning in an agent-

based collaborative design environments such as the one envisioned to be used in

conjunctions with ANGELO. The following sub-sections describe the dimensions of

learning in the system presented and offer further criticism and extension for such

framework.

5.1 What can trigger learning?

The problem being addressed here (see Chapter 2) focuses on improving conflict

during the design process, by capturing users' preferences and expertise so that

conflicts due to misrepresentation of data could be minimized. The ANGELO system

is designed to continuously observe user input while interacting with design

documents. In other words, the user has indirect control over the learning process, and

learning is triggered by user interactions with a document presentation system such as

a browser. Thus, the more the user interacts with the system (which include document

skimming, object/concept selection and communication with other users), the better

the system learns specific user preferences and extends the user model.

5.2 What are the elements supporting learning?

After defining the situations that trigger learning, one would need to define the

problem domain elements and forms that the learning engine would have to analyze

for possible learning (Grecu & Brown, 96). Chapter 2 presented the user and problem

domain requirements which the system has to take into consider in its learning

process. Such knowledge include user preferences (concepts of interest, graphical



representations, and expertise) and problem specific information (for example, design

rationale and recommendation information).

5.3 What might be learned?

The previous sub-Section identified domain elements that is supported by the

learning process. Still to be defined are the entities that need to be learned by the

engine. Such entities come from different levels of the problem domain. From a high

level (meta-level) information about the design, designers and communication aspect

(e.g., negotiation, and meetings) to a lower level like design and project data (e.g.,

charts, schedule, and maps).

In ANGELO the learning engine focuses on resolving the specific problem of

conflict among peers by capturing and learning user information (preferences,

recommendations and negotiation style). Such information is of a high-level form

(based on concepts and knowledge representation of the problem at hand, see Chapter

4). In addition, ANGELO's learning engine learns low level data about the design

documentation at hand which includes document layouts, design data and content (see

Section 4.4).

5.4 Availability of knowledge for learning

Since design involves communication and collaboration components among peers, it

is important for user-centered agents (such as ANGELO) to share their knowledge

learnt about the problem domain at hand. Availability of such knowledge is

determined by the amount of interaction as user has with the system. However , more

knowledge can be obtained by using knowledge from other users interacting with the

system. It was shown by (Bergman, 96) that agents can achieve better learning by

sharing their knowledge in those cases. Defining how and in what form such agents

will communicate and/or transfer the learnt data becomes of great importance.



In order for ANGELO to act as a collaborative support environment (see Section

2.4), it shares its knowledge in diverse manners, which includes:

* Direct transfer of knowledge between the agent and the user model.

* Indirect communication between two ANGELO agents with the assistance of an
inter-mediate CAIRO (Hussein, 96) agent, within a design session..

* Through persistent storage of user model, agents can share such model with other
agent using a query mechanism..

5.5 Methods of learning

There are various methods of learning that agent-based systems can use. The

specific choice depends on the problem requirements, elements supporting the

learning and the type of data to be learnt (Grecu & Brown 96). In the domain of

support tool for collaborative design process, in one hand, the learning method uses

knowledge-base learning approach for high level concepts like design rationale and on

the other hand it employs numerical and statistical methods for low level data

manipulation.

As was shown in Section 2.2, ANGELO uses a model that combines both high-level

and low-level learning methodology. It is actually designed around the idea of long

and short memory. Long term memory intended for a more generalized and persistent

mode of learning. It uses C4.5 algorithm that extracts features from the user/problem

interaction to generalize on the user model. Short term memory is meant to include the

most recent concepts learnt. The current method for this purpose is based "learning by

example" paradigm and works a front-end to the long-term memory learning engine

(see Section 4.2).

5.6 Local vs. Global Learning

Learning in an agent-based system can occur in a centralized or distributed

collective fashion. In other words, an agent can learn its own set of data and share that

with other agent who compete to adapt and learn better. A decentralized learning is



where a collective outcome of learnt small data from each agent forms a global learnt

model of the problem. ANGELO uses only a local learning approach for each user and

a distributed learning within a agent society where each has a specific role as a support

tool for the collaborative design process. The DaVinci paradigm (Pefia-Mora et al,

'96) is formed of various agents allowing for distributed learning; one for the

communication and meeting coordination (CAIRO), another for the multi-reasoning

on design cases (M-RAM) and for user preference and profiling (ANGELO).

5.7 Consequences of learning

Learning and adaptation of an agent improves on the design process by playing the

role of a support tool. Therefore, it would assist, automate and recommend during the

design process. Specifically, ANGELO assists with the management and presentation

of information by learning about user's preferences and exercise. It can also act on the

behalf of the user during redundant design meetings, once it formed a generalized and

significant memory and user profile.

5.8 Other dimensions of ML in Design

The described dimensions based on (Grecu & Brown, 96) do not cover all aspect of

applying machine learning in collaborative design. The following are some points and

dimensions that this research has identified as very important and absent from the

original framework:

* The Agent should have the capability to evaluate and measure its performance
according to the problem solution required.

* The dimensions proposed does not take into consideration change of design, data
and peers across time. Such radical and rapid changes will have negative impact
on the learning if it was not dealt with before.

* The dimensions also don't propose how agents can communicate and what type of
information they can share. ANGELO is designed in mind to offer a level of
protocols among agents in order to give the users the option to choose which
information they want their agent to share with other agents.



* There is the question of how the learning method can deal with better
generalization and expansion. There is a narrowing effect that happens when the
agent is solely learning from user interaction over similar document without
spanned explorations.

* The framework of Grecu and Brown does not take into consideration design cycles
dynamics and how it would affect learning. This thesis proposes the long/short
term memory model with different learning methods in order to handle recent un-
clustered user information learned (short term) versus high level, problem related
knowledge (long term).

5.9 Conclusion

In order to place the use of machine learning (ML) in ANGLEO within the area of

Machine Learning in Design, this chapter explored various dimensions of the machine

learning methodologies which ANGELO uses.

This chapter endorsed the MLinD model (Grecu & Brown, 96) for the basis to

evaluate the user of ML in ANGELO. The chapter also pointed at several deficiencies

in that model which did not capture all the ANGELO's features.



6 Implementation

Based on the previous observations and requirements for the problem, ANGELO

was built as a software agent that co-exists within a Web browser. The Internet was

chosen as the medium for collaboration and distributed information. ANGELO is

implemented as a Java Applet coupled with a set of JavaScript routines that interact

with the Netscape browser. The major difficulties in the design of the system were the

integration and communication between the browser and the agent. In this Chapter, we

present details on the implementation of the system, and describe a scenario

demonstrating ANGELO's capability.

6.1 A Java-based Agent Implementation

ANGELO is implemented as a set of Java classes with a main applet that interfaces

within the Netscape browser. It uses Netscape ONE technology to communicate with

the Web browser.

6.1.1 AngeloApplet class

The applet called AngeloApplet is loaded by an HTML start-up file. The applet

initializes the learning interface and adds a button to launch the User Model

component. AngeloApplet class uses the Netscape Internet Foundation Classes to call

upon Javascript function that would open two windows (recommendation and

lookahead window). Figure 6.1 shows the three windows open. The window on the

upper left contains the main AngeloApplet interface running within an HTML frame

in the browser.

When the user clicks on the User Model button, AngeloApplet launches a separate

thread for the UserModel class, which in turn get displayed as a Frame. On the other

hand, the user will choose the "Teach Me" when he/she wants to express interest in a

certain HTMLObject in the lower browser window which is displaying the site

content.



Figure 6.1. The ANGELO agent integrated with a Web browser.

6.1.2 UserModel class

The UserModel class play the role of a memory profile of the user's interest and as a

visual display of such memory. While the user is teaching the agent, the UserModel

updates its window with the set of concepts learned and the User's interest about those

concepts. Internally the UserModel class also stores choices and frequencies about

those concepts for later use by the agent to apply C4.5 algorithm or any other heuristic

measures in order to adapt the interface and retrieve relevant information.

6.1.3 Engine class

The Engine class is the interface to the Savant information retrieval program as

described in Section 4.4. The latter is C-program that runs as a cgi executable on the



same HTTP server that launched the AngeloApplet applet. The Engine class sends a

query string to the Savant program in the form of a URL. Upon receiving the query

result in the form of a list of keywords and documents found, the Engine class would

parse this stream and extract relevant documents and their frequency. It would then

update the look-ahead window accordingly.

6.2 System Description

The main window shows the user input frame as well as the main browsing frame.

The user-model (see Figure 6.2) shows images that have been selected in the past and

their relative rating by category. The filtering window (see Figure 6.1) shows the

current document with text that is not considered interesting by ANGELO removed

(the text and images retained are accompanied with a user weighting.). Finally the

suggestion window (see Figure 6.6), provides a summary of interesting document

segments from those provided by the server that not on the document requested by the

user but on other documents on the same server. Those are also rated according to

relevance to the current user interests.

6.3 Scenario

This section describes a scenario using ANGELO for a collaborative project on the

construction of a building in Sydney, Australia. Data were presented through a Web

site (S.Wu, '95), where users can browse and look at the design process so far. The

scenario presented here is of a geo-technical engineer who just started getting

involved with the project. The engineer has expertise in identifying problems with site

location, and was given the task to judge on the location and give some opinion on the

initial design of the architect. One might expect that the user's interests will be in the

site location and documents about the design. Thus, media of interest to him/her

would be maps and photos.



Figure 6.2. User Model Display Window.

Initially, the user would browse the project data, starting from the first document

called "Site Analysis & Site Model." User expresses interest in the second paragraph

describing the site, and a map showing the geographic location (see Figure 6.3 below).
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To express his/her interest, the user clicks on site photo and gives the agent a rating

of "High". After clicking on the "Teach Me" button, the User Model (UM) learns a

new concept "Photo" and gets an icon representation of such concept (see Figure 6.5

below).

Figure 6.3. Text info on Site location and map picture of the Icoation.



Figure 6.4. User expresses interest in Map concept which gets initiated
in the user model.

As a result of the new addition in the UM, the agent will update the adaptation

window by filtering out irrelevant information to the concept Photo, and therefore



showing only pictures of maps and text related to the site both from the original

document and other documents on the same server (see Figure 6.5).

To recommend other relevant objects that the user might have interest in, the Engine

module calls upon the Savant program with a query that includes the most recent

concept user interacted or expressed interest in. Upon getting a result back from

Savant, the Engine would update the look-ahead window with actual documents, and

images that appeared to have close match to what the user might be interested in. In

this case, when the user choose to look at site photo information, ANGELO would

display (as shown in Figure 6.6) all relevant images and documents existing within the

repository.

Figure 6.5. ANGELO adapts current page showing only maps.



Figure 6.6. ANGELO look-ahead window.



7 Conclusions and Future Work

The thesis presented ANGELO as a contribution to the field of collaborative

environments using software agents for assisting users with information overload and

customizable information search. It builds a user profile in such environments in order

to adapt and present the content according to the user's interest. Its functionality

includes the usage of a combination of learning by example algorithm and information

filtering/retrieval. In addition, the agent will assist in the documentation and the

adaptation of presentation. Application of such system is to act as a front-end assistant

for collaborative meeting documentation, assisting users to collaborate and negotiate

better by presenting information from collaboration and meetings according to their

preferences and view points.

The effectiveness of ANGELO still needs to be tested further with a larger database

and vigorous user testing. Still, the implementation presented offered an initial

prototype of how such a tool would help in collaboration process among professionals

by giving individuals a better personalized and adapted interfaces to meetings.

Several open issues remain unanswered by our approach and several technical

hurdles that will be subjects of future work. As expressed in Chapter 2, there are two

requirements that the current implementation of ANGELO did not cover. The issue of

modes of information presentation and the collaboration of knowledge learnt.

In taking the modes of information presentation in consideration, ANGELO would

need to manage multiple user contexts and adapt the presentation accordingly.

Depending on the time of the interaction, the user may be in a research mode, or a

discussion mode, which would imply very different user models. Modeling these

modes and allowing simple switching and combination of these user contexts is an

important research issue for future work. The work can also be extended to allow the

agent creates group memory and collaborate with other meeting agents in a computer-

enabled collaborative environment.



Other extension of this work includes the automation of feature extraction from

documents. This includes the concept extraction from images and other media. In

addition, a better semantic understanding of the text is needed. Such latter extension to

the Savant engine is to combine Word-Net (Miller, 95) as a back-end.
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