
/,

View-Based Abstraction
Enhancing Maintainability and Modularity

in the Presence of Implementation Dependencies

by
Luis H. Rodriguez Jr.

S.M., S.B. C.S., Massachusetts Institute of Technology (1993)

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science
at the

Massachusetts Institute of Technology
September 1997

Copyright © Luis H. Rodriguez Jr., 1997.
All rights reserved.

Signature of Author 4/ A " I

Department of Electrical Engineering and Computer Science
August 29, 1997

Certified by - ,

Hal Abelson
Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

OCT 2 91997 m

/ V/ V ..

-

View-Based Abstraction
Enhancing Maintainability and Modularity

in the Presence of Implementation Dependencies

by
Luis H. Rodriguez Jr.

Submitted to the Department of Electrical Engineering and Computer Science on

August 29, 1997 in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Computer Science

Abstract
This dissertation presents a new, backwards compatible, language independent, and incremental
programming methodology called view-based abstraction. Unlike the well-known black-box ab-
straction approach, view-based abstraction enables programmers to maintain program modular-
ity even in the presence of implementation couplings, i.e., dependencies among the code modules
that rely on otherwise "hidden" implementation details not specified in the module interfaces.
This dissertation also presents a transformation-based implementation of view-based abstraction,
called ViewForm. ViewForm acts as a source-to-source preprocessor that automatically performs
an implementation coupling expressed by the programmer. When the original code is later up-
dated, ViewForm automatically attempts to reapply the implementation coupling to the updated
code. ViewForm will modify the updated source code only if the coupling is still valid. In this
way, by performing some extra work up front, the programmer performing an implementation
coupling saves future programmers from having to pay for the consequences of broken modu-
larity. To aid in writing this up-front ViewForm code, this dissertation presents a structured ap-
proach for using view-based abstraction and writing ViewForm transformations constructs.

To demonstrate view-based abstraction, ViewForm is used to produce automated, performance-
based implementation couplings in three example programs: an amorphous computing simula-
tor, a conditional-probability pedigree computation, and ViewForm itself. Unlike other ap-
proaches that also use interprocedural program analyses, the results indicate that view-based ab-
straction is practical and scales gracefully - the extra automation increased compilation time from
a typical 34%, to 40% in the worst case, despite a less than fully optimized ViewForm implemen-
tation. Each optimization required the programmer to write only 65 to 137 lines of ViewForm
code for programs of size 167 lines to 7,616 lines. This work is amortized as time saved by pro-
grammers modifying the original program in the future. In all three examples, ViewForm main-
tained modularity by regenerating correct code when the original modules were modified - even
when those modifications were to the optimization-dependent sections of the original code.

Thesis Supervisor: Hal Abelson

Title: Professor of Computer Science and Engineering

Notice of Copyright and Terms of Limited License
This thesis document, including all figures, tables, and code fragments, is Copyright
© Luis H. Rodriguez Jr., 1997. Country of first publication: United States of Amer-
ica. All rights granted to the author in accordance with 17 Usc §§101 et. seq. are
hereby reserved. This notice supersedes any other notice of copyright and terms of
limited license for this document.

Pursuant to 17 USC §201(d)(2), the author hereby grants to the Massachusetts Insti-
tute of Technology (hereinafter "MIT" or "the Institute") certain non-exclusive, non-
transferable, limited rights related to the copyright of this document:

1. MIT may reproduce paper copies of this thesis document for use within the
MIT community for educational or research purposes (an action that is an ex-
clusive right of the copyright holder under 17 Use §106(1)).

2. MIT may reproduce paper and microfiche copies of this thesis document for
archival purposes within the MIT Library system (an action that is an exclu-
sive right of the copyright holder under 17 Use §106(1), notwithstanding the
provisions of 17 Usc §108).

3. MIT may reproduce paper and electronic copies of the abstract page of this
thesis (the page immediately preceding this page) and distribute such copies
to the public (an action that is an exclusive right of the copyright holder un-
der 17 Usc §106(1) and 17 USC §106(3)), so long as no fee is charged for
such copies.

4. MIT may reproduce paper copies of this thesis document and distribute such
copies to the public (an action that is an exclusive right of the copyright
holder under 17 Use §106(1) and 17 use §106(3)) so long as no fee is
charged for such copies in excess of the actual cost of making the copy.

5. All copies of this thesis document made by MIT under this license must in-
clude a copy of this license and the copyright notice on the title page.

6. All other uses of this thesis document within the scope of the exclusive rights
of the copyright holder as specified in 17 Usc §106 are reserved by the
author, and any action by the Institute that infringes any of those exclusive
rights, except as explicitly granted above, requires the expressed written
consent of the author. In particular, MIT may not create an electronic version
of this thesis document nor distribute an electronic version of this thesis
document without the expressed written consent of the author.

7. Placement of this thesis within the collections of the MIT Library system con-
stitutes acceptance of the terms of this license by MIT. MIT may cancel its
agreement to the terms of this license by destroying all copies of this docu-
ment made under the terms of this license and providing written notice to
the author of this action.

Acknowledgments
A great number of people have contributed to the development of this work, both directly, and with equal
importance, indirectly.

The simulator and pedigree examples in the dissertation are from Michael "Ziggy" Blair's thesis work. In
addition, Blair's Scheme profiler was crucial for making ViewForm's performance practical. Stephen Adams
provided hand-tailored x86-specific lap code that dramatically increased ViewForm's performance. Many
thanks go to those who have built and supported MIT Scheme, especially the win32 port. Special thanks go
to Alan Bawden, for a great discussion that led to insights on how Mini-ViewForm's views were intimately
linked with abstraction.

Many thanks to Hal Abelson, Michael Blair, and John Guttag, for providing quick, honest, constructive,
and detailed feedback on drafts of this dissertation. Thanks to Brian LaMacchia for the copyright notice on
this dissertation.

Stephen Adams, Web Beebee, Michael Blair, Daniel Coore, Elmer Hung, Rajeev Surati, and Ron Weiss
provided invaluable feedback for the thesis defense talk. Your support and feedback are deeply appreciated.

I am indebted to Gregor Kiczales, who took me under his wing while I was at Xerox PARC, and opened
doors to places I might not otherwise have entered. Also at PARC, John Lamping's intellectual prowess gave
me a high standard to which to strive. All the members of PARC's ECA group made my experiences there
quite enjoyable, and contributed to where I am now.

Thanks to Todd Cass, for making the last five years of VI-A recruitment for PARC so enjoyable, and for ex-
emplifying the kind of cool management style that is so easy to like.

Rajeev Surati has always been there. I will miss his recurring presence and his interesting and varied con-
versational topics. I will not miss the evil hack he played on me...

Daniel Coore was a great and genuine office mate who loved to enthusiastically discuss anything, anytime,
anywhere. Thanks for the great discussions.

Many thanks to Ziggy, for diligently reading my writing throughout my graduate years at MIT, for feedback
on my practice talks, and for freely providing me with code he spent countless months hacking. Ziggy also
introduced me to high-quality beer. Yum!

Hal Abelson took me into MIT graduate school and Project MAC five years ago. That started me on the
road to this dissertation. Thanks, Hal.

John Guttag set high standards and provided direct and honest feedback on my work and progress. The
self-imposed "will Guttag like this?" litmus test helped me to better evaluate, focus, and direct my work. It
was a pleasure having him on my thesis committee.

Special thanks to Dick Waters. His advice, perspective, and encouragement were crucial, instructive, and
supportive. Correspondingly, thanks to Lyn Turback for recommending Dick Waters as a great person to
have on my thesis committee.

Project MAC at MIT was an interesting place to do my research. The students and staff in the group leave
with me a plethora of good memories, a few high-testosterone hobbies, and an invaluably thick shell.
Thanks.

Certain MIT administrators (or those acting in an administrative context) made a significant impact on my
stay at MIT. Among them are Tony Canchola-Flores and Eddie Grado. They demonstrated genuine interest

in me succeeding at MIT and acted on that interest. Instead of rhetoric, they reached out. Instead of excuses
for why it could not be done, they produced results. Thank you for setting an example of what it should
mean for students - all students - to receive "support".

My undergraduate academic advisor, Professor Joel Moses, pushed me to my academic limits early on; I'm
thankful he acted, too. Lisa Bella in the Course Six office never ceased to provide a friendly smile and ear to
a weary and tired 6.001 head lab TA, and thereafter.

Many people were instrumental and supportive in helping me work up the 6.001 ladder from student to
recitation instructor. I enjoyed 6.001 at all these levels; it was some of the most fun I had at MIT. These
people include Hal Abelson, Lou Braida, Arthur Gleckler, Eric Grimson, and Jim Miller.

Thanks to Mev, and the group at HP's MLL in Chelmsford for an interesting summer. Thanks also to Xuan
Bui, Bob French, and Tor Ekqvist (from Hewlett Packard) for the industrial perspective and for discussing
real examples of the implementation coupling problem in industry.

Kate and Editha - thanks for all the Melrose nights, the blading adventures, and for the reality checks. TYB!
WWWWTG!

Yonald Chery and Chuck Rosenberg have been great confidants over the past ten years. I always feel better
after seeing them. Thanks.

My late father and my mother taught me the joys of believing in myself instead of believing in image. By
example, they taught me that giving to those you love and care for can be much more satisfying and fruitful
than taking. This, their demanding work ethic, and their unconditional love and support have made them
extraordinary role models, and the parents I will eternally be thankful for.

I do not know how to thank Christine Moore for all her help and support. She never hinted any com-
plaints about the amount of time I devoted to this work. Instead, she supported me in every way (including
plenty of outstanding gourmet meals!). She did what needed to be done, and then some. Rather than stand-
ing behind me, it was her shoulders that held me up high.

DARPA/NSF Acknowledgment

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute

of Technology. Support for this research is provided in part by the Advanced Research Projects Agency of

the Department of Defense under Office of Naval Research contract N00014-92-J-4097 and by the Na-

tional Science Foundation under grant number MIP-9001651.

NSF Disclaimer
This material is based, in part, upon work supported under a National Science Foundation Graduate Fel-

lowship. Any opinions, findings, conclusions or recommendations expressed in this publication are those

of the author and do not necessarily reflect the views of the National Science Foundation.

Table of Contents
Abstract... 3

Notice of Copyright and Term s of Lim ited License .. 4

Acknowledgments... 5

C hapter 1 Introduction .. 15
1.1 Overview...15

1.2 Black Box Abstraction...................... ... 17

1.3 View-Based Abstraction ... 21

1.4 ViewForm .. 23

1.5 Three Examples 24

1.6 Thesis Organization 26

Chapter 2 The Implementation Coupling Problem ... 27
2.1 The Dispatch Example..27

2.2 Black Box Abstraction... 29

2.3 Desiderata .. 32

2.3.1 Backwards Compatibility... 33

2.3.2 Increm entality 34

2.3.3 Language Independence 34

2.3.4 Ease of Understanding and Usability.. .. 34

2.3.5 Am ortizable Tim e Savings 35

2.4 Influential Research Efforts 35

2.4.1 Reflection 35

2.4.2 Object Oriented Programm ing and M OPs 36

2.4.3 Program Slicing 37

2.4.4 Aspect-Oriented Programm ing 38

2.5 A Solution...38

Chapter 3 View-Based Abstraction... 39
3.1 The Implem entation Coupling Process 39

3.2 The Implem entation-Coupling Steps 40

3.2.1 Step I - Boundary Identification .. 41

3.2.2 Step II - Precondition Developm ent ... 41

3.2.3 Step III - Code Analysis.. 43

3.2.4 Step IV - M odification Developm ent .. 44

3.2.5 Step V - Coupling Production...44

3.2.6 Step VI - Recoupling 45

3.3 Two Critical Ideas ... 45

3.4 V iew-Based Abstraction 46

3.5 Sum m ary of the View-Based Abstraction M odel 47

3.6 Summary of View-Based Abstraction Methodology .. 47

3.7 V iew-Based Abstraction Com ponents 48

3.7.1 View s .. 48

3.7.2 Contexts 50

3.7.3 Coupling Language 50

3.7.3.1 Predicates 50

3.7.3.2 A ctions................................... .. 51

3.7.3.3 Dispatchers 51

3.7.3.4 Rules 52

3.7.3.5 Couplers 53

3.7.3.6 V iew Invalidation/Recoupler... ... 53

3.8 V iew-Based Abstraction M ethodology 54

3.8.1 Step i - Context Identification... 54

3.8.2 Step ii - Predicate Developm ent 54

3.8.3 Step iii - V iew D evelopm ent... 54

3.8.4 Step iv - A ction D evelopm ent.. ... 55

3.8.5 Step v - Coupler Developm ent.. .. 55

3.8.6 Step vi - Invalidation/Recoupling 55

C hapter 4 V iew Fo rm ... 57
4.1 V iewForm Overview Scenario.. 57

4.2 V iew code ... 59

4.3 Contexts 60

4.4 V iewForm Coupling Constructs............. .. 62

4.4.1 Characteristic Vform Interface 62

4.4.2 Predicates .. 62

4.4.3 Actions .. 64

4.4.4 D ispatchers 64

4.4.5 Rules and Couplers.. 65

4.4.5.1 Couplers 66

4.5 Vform s ... 67

4.6 V iew s .. 69

4.6.1 V iewcode V iew 71

8

4.6.2 A lpha V iew 72

4.6.3 Liar V iew .. 73

4.6.4 H igher-Order V iews 75

4.7 Explanations ... 77

4.8 V iew Invalidation/Recoupler 78

4.9 D ispatcher Exam ple 79

4.9.1 Boundary/Context Identification 79

4.9.2 Precondition/Predicate Developm ent 79

4.9.3 Code Analysis/View Development ... 81

4.9.4 M odification/A ction D evelopm ent 82

4.9.5 Coupling/Coupler Production 83

4.9.6 Invalidation/Recoupling................. 84

4.10 U ser Interaction 85

4.11 Com plexity Layering 85

Chapter 5 Examples and Analysis ... 87
5.1 Testing M ethodology .. 87

5.1.1 Testing Process and Evaluation M etrics 88

5.2 Am orphous Com puting Sim ulation... .. 91

5.2.1 Amorphous Computing Simulator Background.. 91

5.2.2 Building the Coupling.. 92

5.2.3 Preconditions and Predicates 93

5.2.4 A ctions..97

5.2.5 D ispatcher and Coupler 99

5.2.6 Invoking the V iew Invalidation/Recoupler ... 101

5.2.7 D iscussion...102

5.2.8 Quantitative M easurem ents 103

5.3 Pedigree Exam ple 104

5.3.1 Short-Circuiting M ultiplication ... 105

5.3.2 Function Inlining 107

5.3.3 Implementing the Short-Circuiting Multiplication Rule 107

5.3.3.1 M odules/Contexts... .. 107

5.3.3.2 Preconditions/Predicates.. ... 108

5.3.3.3 V iew s... 108

5.3.3.4 M odifications/A ctions 108
5.3.3.5 A D ispatcher...................................... 109

5.3.3.6 A Rule... 109

5.3.4 Com b V iew ... 110

5.3.5 Function Inlining .. 112

5.3.5.1 M odules/Contexts... 113

5.3.5.2 Preconditions/Predicates... 113

5.3.5.3 A M odification and A ction... 115

5.3.5.4 A D ispatcher................ .. 115

5.3.5.5 A Rule.. 115

5.3.6 Com bining the Rules into a Coupler.. 16

5.3.7 V iewForm Generated Code .. 117

5.3.8 M odifying the Pedigree Code .. 118

5.3.9 Quantitative M easurem ents 118

5.4 V iewForm Exam ple ... 119

5.4.1 M odules/Contexts .. 122

5.4.2 Preconditions/Predicates... .. 122

5.4.3 V iews .. 123

5.4.4 M odifications/Actions 124

5.4.5 D ispatchers and Couplers 125

5.4.6 Platform V iew .. 127

5.4.7 V iewForm Output 128

5.4.8 Quantitative M easurem ents 130

5.5 Analysis and Evaluation.. 131

5.5.1 The Desired Couplings M etric.. .. 131

5.5.1.1 The Sim ulator Exam ple .. 131

5.5.1.2 The Pedigree Exam ple.. 132

5.5.1.3 The ViewForm Exam ple... 133

5.5.2 The Desiderata M etric 133

5.5.2.1 Backwards Com patibility 133

5.5.2.2 Increm entality.. 133

5.5.2.3 Language Independence 134

5.5.2.4 Ease of Understanding and U sability................................ 135

5.5.2.5 Am ortizable Tim e Savings 136

5.6 Lessons Learned ... 138

5.6.1 Determining Preconditions and Program Modifications 138

5.6.2 Conservative Program Analyses 138

5.6.3 D efault Program Analyses .. 139

5.6.4 D efault Coupling Library.. 139

10

5.6.5 View Selection and Computation ... 139

5.7 V iew U pdates.. 140

5.7.1 View Consistency During Rule Invocations ... 140

5.8 Source Code M aintenance .. 141

5.8.1 Interface N on-Preserving .. 14 1

5.8.2 Interface Preserving .. 142

5.9 U ser Interaction 142

5.9.0.1 User Interaction Reduces Fragility ... 144

5.10 Source Code Availability .. 144

5.10.1 Source Code Somewhat Available but Partially Hidden............................144

5.10.2 Not Available and Not Hidden .. 145

5.11 Fundamental Insights 145

Chapter 6 Related and Future Work 147
6. 1 Views .. 147

6.1.1 The View Oriented M odel 147

6.1.2 PE C A N 148

6.1.3 Semantic Program Graphs ... 149

6.1.4 Documenting Programs Through Views ... 150

6.2 Special-Purpose Languages via Transformations ... 150

6.2.1 TXL ... 150.........150

6.2.2 A SC EN T 151

6.2.3 Proxac .. 151

6.2.4 Elaborations .. 151

6.2.5 Darlington's User-Interactive Transformation System ... 151

6.2.6 PECOS and LIBRA 152

6.2.7 Cheatham's Transformation System for Reuse ... 152

6.2.8 CIP............. 152

6.3 Open Implementations 153

6.3.1 Intrigue .. 153

6.3.2 Anibus... 154

6.3.3 Data Path M acros 154

6.4 Optimizing Programs via Transformations ... 155

6.4.1 D ora................................ 155

6.4.2 GENesis .. 155

6.4.3 Program Optimization and Derivation via Transformations 156

6.5 Interactive Program Design and Construction ... 156

11

6.5.1 KBEmacs .. 156

6.5.2 A Program Verifier Assistant.. 156

6.5.3 CCEL.. 157

6.6 Future W ork..157

6.6.1 Reusability .. 157

6.6.2 Symmetry in Couplings 158

6.6.3 Other Programming Paradigms.. ... 158

6.6.4 An Experiment... 159

C hapter 7 Conclusion .. 161
7.1 Summary 161

7.2 Contributions 162

7.3 Conclusion 164

Appendix A Selected Aspects of the ViewForm Interface 165
A. 1 ViewForm Expression Type Testers .. 165

A.2 Viewcode Expression Return Types 165

A.3 M iscellaneous ViewForm Functions .. 166

A.4 Viewcode Canonicalization 166

Appendix B Implementation of Selected ViewForm Functions 167

Bibliography .. 173

12

Table of Figures
Figure 1-1 - Black-Box Abstraction .. 17..........17

Figure 1-2 - Uncoupled dispatch-expression............................ 18

Figure 1-3 - Coupling Im plem entation... 18

Figure 1-4 - Desired Coupled Implementation... 19

Figure 1-5 - Invalidating Im plem entation .. 19

Figure 1-6 - Black-Box Abstraction Implementation Coupling 20

Figure 1-7 - V iew -B ased A bstraction .. 20

Figure 1-8 - Actual Coupled Code Generated by ViewForm 23

Figure 2-1 - Formalized Implementation Coupling..32

Figure 3-1 - Implementation-Coupling Steps .. 40

Figure 3-2 - Partial Data Flow Analysis on f..49

Figure 3-3 - Conditional Rewrite Rule .. 52

Figure 4-1 - V iewForm 58

Figure 5-1 - Particle Data Abstraction Implementation, adapted by Blair from code by Abelson 90

Figure 5-2 - Optimized Particle Value Implementation ... 91

Figure 5-3 - ViewForm Output .. 92

Figure 5-4 - Sim ulator Exam ple Predicates 93

Figure 5-5 - Sim ulator Exam ple A ctions..98

Figure 5-6 - Simulator Example Dispatchers and Other Rules 100

Figure 5-7 - Pedigree Computation Code 104

Figure 5-8 - Pedigree Data Abstraction Implementation... .. 105

Figure 5-9 - Desired P_pedigree Implementation 106

13

Chapter 1

Introduction

This dissertation is for programmers on software development teams who want to improve per-

formance by using implementation dependencies that break modularity. View-based abstraction

is a new abstraction model that otherwise preserves modularity in the presence of implementa-

tion dependencies. Unlike meta-level or transformation-based approaches, view-based abstrac-

tion is practical, is backwards compatible with black-box abstraction, is independent of the

source language and its implementation, and supports non-local program analysis, non-

semantics-preserving modifications, and user interaction.

1.1 Overview

Black-box abstraction is a well-known and principled mechanism for designing, maintaining
and implementing software.[20] Under black-box abstraction, an application is reasoned about

as a combination of modules (i.e., black boxes). Each module hides its implementation under an

interface. A module's implementation can depend only on another module's interface, and can-

not depend on another module's implementation. This simple rule gives rise to modularity, the

ability to replace any module with any other module that implements an identical interface.

Modularity, in turn, helps reduce the number of dependencies within an application, thereby

enhancing software maintainability. It does not take much programming experience to realize,

however, that violating this rule can lead to gains in performance[52,69,33,59,53] and extensibil-

ity[90]. Such gains are realized by modifying module implementations to depend directly upon

otherwise hidden implementation details. This results in what I term implementation coupling; a

dependency from one module's implementation to another's. Unfortunately, implementation

coupling is a kind of abstraction violation and breaks modularity, thereby resulting in an appli-

cation that is substantially more difficult to maintain, port, extend, and debug in the future. The

programmer who performs such an implementation coupling (and breaks modularity) is there-

fore not necessarily the programmer who must pay for the consequences of broken modularity.

The programmers who must pay for consequences of broken modularity are future program-

mers who would have been able to otherwise update and modify the code in a modular way.

This dissertation's goal is to address this problem of enhancing modularity and maintain-

ability in the presence of implementation couplings, in a practical setting. The approach used to

solve the problem is to have the programmer who produces an implementation coupling per-

form some extra work. This extra work will provide effective modularity for future maintenance

programmers, and will thus save them from having to deduce the existence of any implementa-

tion couplings, the modules the couplings affect, the way the couplings interact with the code,
and a way of patching or reverting the couplings if necessary.

To solve the implementation coupling problem using this approach, the implementation-

coupling problem is first formalized. Then, a six-step model of the implementation-coupling

process is developed. This dissertation then demonstrates how the implementation-coupling

problem can be reduced to the problem of automating the six steps (more specifically, automat-

ing the final step). This reduction is the crux of the dissertation, and leads to view-based abstrac-

tion. Under view-based abstraction, a programmer automates an implementation coupling by

expressing the coupling in terms of a set of coupling constructs. Each construct corresponds to a

step in the six-step model. These constructs are concretely provided by ViewForm, a transforma-

tion-based implementation of view-based abstraction. Once an implementation coupling is ex-

pressed, ViewForm can automatically generate the coupled code from the original source code

(the results of which can then be passed immediately to the compiler). Of more importance,

when the original source code is later updated, ViewForm will attempt to regenerate the imple-

mentation coupling on the updated source code. ViewForm will regenerate the coupling only if

it is still valid with respect to the updated source code. This regeneration step effectively pre-

serves modularity by hiding (i.e., abstracting) implementation couplings from future program-

mers.

As discussed in Chapter 2, view-based abstraction provides backwards compatibility, incre-

mentality, language independence, ease of use, and amortizable time savings. To demonstrate

view-based abstraction and these properties, ViewForm is used to express performance-based

implementation couplings (i.e., modularity-breaking optimizations) on three example programs:

an amorphous computation simulator, a conditional-probability pedigree computation, and

ViewForm itself. The results show how view-based abstraction permits implementation coupling

without precluding modularity, while attaining the five properties listed above. The results also

indicate that view-based abstraction, unlike other approaches, is practical in three respects. The

first is that the extra automation increased the overall compilation time from a typical 34%, up to

40% in the worst case. This worst-case time was despite the use of a full interprocedural data-flow

analysis and a less than fully optimized ViewForm implementation. A second indication of prac-

ticality is that each optimization required only 65 to 137 lines of ViewForm code, in the form of

8 to 13 "rules". These rules included code templates describing each respective optimization.

The ability to scale gracefully is a third concern for practicality. The results demonstrate that

scaling issues can be addressed in three ways. First, by limiting interprocedural analysis to only

relevant modules, the amount of code that must be analyzed is reduced. Second, by building

views with varying computational resource needs, a ViewForm rule can make the most of the

available resources. Third, user interaction can provide views with assumptions not decidable or

otherwise computable given a practical amount of resources. Even in the worst case, ViewForm

will still generate correct code, though not necessarily coupled code (in which case ViewForm

can automatically alert the programmer). This worst case is far better than what can happen un-

der black-box abstraction. The worst case for implementation coupling under black-box abstrac-

tion is incorrect code and no automatic notification to the programmer.

In all three examples, ViewForm was able to maintain modularity by regenerating correct

code when the original, dependent modules were modified, even when those modifications were

to the optimization-dependent sections of the original code. The remainder of this chapter ex-

pands on this summary of the implementation-coupling problem, the solution, the implementa-

tion, and the results.

Module Inte rface
I Interface

Client Code Coupling

Module iModule Interface
2 Implementation

Figure 1- 1 -Black-Box Abstraction

1.2 Black Box Abstraction
Figure 1-1 illustrates a typical use of black-box abstraction. M2's implementation is hidden

under its interface, which is simply a collection of names and specifications. M,'s implementation
depends upon this interface, meaning M, is interface coupled to M2 (i.e., M, refers to at least one

(define dispatch-expression
(lambda (exp)

(cond ((type? 'literal exp)
((type? 'java-name exp)
((type? 'new exp)
((type? 'dot exp)
((type? 'call exp)
((type? 'cast exp)
((type? 'instanceof exp)
((type? 'built-in-expr exp)
((type? 'assignment exp)
(else (error "Unknown Type:

(define (process-literal exp)
(define (process-java-name exp)
(define (process-new exp)
(define (process-dot exp)
(define (process-call exp)
(define (process-cast exp)
(define (process-instanceof exp)
(define (process-built-in-expr exp)
(define (process-assignment exp)

(process-literal
(process-java-name
(process-new
(process-dot
(process-call
(process-cast
(process-instanceof
(process-built-in-expr
(process-assignment
" exp)))))

.)

Figure 1-2 - Uncoupled di spatch-expressi on

type? is an interface function

(define-integrable type?
(lambda (type-keyword exp)

(eq? type-keyword (exp-type exp))))

Nothing below this line is exported

(define (exp-type exp)
(let ((result (assq exp *exp-type*)))
(if result

(cdr result)I t-)))

of the names specified in M2's interface). M 1 does

not, however, depend on M2's implementation.

Black-box abstraction provides modularity precisely

because M,'s implementation does not depend on

M2's hidden implementation details. Accordingly,

M2's implementation can be modified without affect-

ing MI's interface, so long as M2's interface remains

valid. Modularity makes it easier for current and fu-

ture programmers to maintain, extend, port, and de-

bug code.

Modularity does not, however, always make it
(define *exp-type* ... easier to optimize code. This can be exemplified by

Figure 1-3 - Coupling Implementation the code in Figure 1-2, a linear-time dispatch on de-

caf-java expressions[65] (this code has been simpli-

fied to illustrate the problem; substantial examples are presented later in Chapter 5). This dis-

patch code, which is in a module corresponding to M, above, calls the type? function. type? is in

a different module whose code is partially given Figure 1-3. type?'s module corresponds to M2

above. As a result of modularity, a programmer can change type?'s implementation without

even knowing about dispatch-expressi on, and can change dispatch-expression without having to

know how type? is implemented. Now, suppose we want to optimize dispatch-expression. In par-

exp))
exp))
exp))
exp))
exp))
exp))
exp))
exp))
exp))

(define dispatch-expression
(let ((dispatch-table (make-symbol-hash-table)))

(for-each (lambda (symbol proc)
(hash-table/put! dispatch-table symbol proc))

(list 'literal 'java-name 'new 'dot 'call
'cast 'instanceof 'built-in-expr 'assignment)

(list process-literal process-java-name process-new
process-dot process-call process-cast
process-instanceof process-built-in-expr
process-assignment))

(lambda (exp)
(let ((proc (hash-table/get dispatch-table (exp-type exp) #f)))
(if proc

(proc exp)
(error "Unknown Type: " exp))))))

Figure 1-4 - Desired Coupled Implementation

ticular, instead of a linear-time dispatch, we want an expected constant-time dispatch. This can
be accomplished using hash tables, as shown in Figure 1-4. Therein, however, lies a problem.

While dispatch-expression in Figure 1-4 meets the optimization criteria we set out, it does so
at the expense of modularity. Instead of calling type?, dispatch-expression now calls exp-type, an
otherwise hidden part of type?'s implementation. Since Scheme[49] has no module interface
checking (like a variety of other languages), the reference to exp-type goes unchecked.* The re-
sult is an additional dependency that consequently increases the program's complexity. This de-
pendency means that dispatch-expression's module (Md) is now implementation coupled to type?'s
module (M,). Even so, dispatch-expression's interface is still valid, and is now faster. The prob-
lem introduced by the implementation coupling will not rear itself until either Md or M, is sub-
sequently modified.

To demonstrate how the implementation coupling precludes modularity, let us suppose that
a maintenance programmer is now told to optimize type?. This programmer would likely notice
that exp-type uses a linear search. This search can be optimized by using an expected constant-
time search instead. The code in Figure 1-5 demonstrates an implementation of this criterion us-
(define-integrable (type? type-keyword expression) ing hash tables. The problem with the

(eq? type-keyword (fast-exp-type expression)))
code in Figure 1-5 is that it invalidates the

(define (fast-exp-type exp)
(hash-table/get *exp-type* exp #f)) optimized di spatch-expressi on in Figure

(define *exp-type* ...) 1-4. Since the optimized dispatch-

expression uses exp-type (which no longer
Figure 1-5 - Invalidating Implementation

exists), dispatch-expression will not be

In languages that do have module interface checking, exp-type would have to be added to the module's interface, even though
it is not part of the original module's interface specification. Nevertheless, requiring module interface checking is neither back-
wards compatible nor necessary to solve the problem.

Coupling
Module M

Figure 1-6 - Black-Box Abstraction Implementation Coupling

able to predictably determine an expression's type. The maintenance programmer working

solely on making type? faster will be disappointed to learn that somewhere in the application,

one or more pieces of code in different modules depend on exp-type (a function not in M,'s in-

terface). With modularity precluded, the programmer must either find and deal with these de-

pendencies, or try looking for some other way to optimize Mt.

While simple, the dispatch example demonstrates the essence of the implementation-

coupling problem. Instead of corresponding to M, and M2 in Figure 1-1, Md and M, respectively

correspond to M, and M2 in Figure 1-6. This figure illustrates a programmer using knowledge of

M,'s implementation (i.e., the function exp-type) to build the optimized dispatch-expression from

the unoptimized version. The result is an implementation-coupled version of dispatch-expression

that can easily be invalidated by a future modification, such as that in Figure 1-5.

A solution to the implementation-coupling problem will permit implementation coupling

without precluding modularity. For the dispatch example, this means that when type? is changed

Selected
Implementation

Details

Figure 1-7 - View-Based Abstraction

to use the optimized fast-exp-type, the solution must notice the change and determine that the
change invalidates the implementation-coupled dispatch-expression. The invalid dispatch-
expressi on must then be replaced with either the original version or with a version that uses
fast-exp-type. The latter outcome is more desirable than the former, as is an automatic solution
that performs these steps when type? is modified.

Chapter 2 describes this problem in more detail, presents a formalization of the problem,
and discusses influential related work.

1.3 View-Based Abstraction

This dissertation proposes view-based abstraction as a solution to the implementation-
coupling problem. View-based abstraction is based on a model I developed that describes im-
plementation coupling as a six-step process. View-based abstraction provides a methodology for
imperatively expressing three of these steps. By doing so, the other three steps can be auto-
mated. It is this automation that enables view-based abstraction to provide modularity in the
presence of implementation coupling. These six coupling steps, given below, are explained in
greater detail in Chapter 3.

I. Boundary Identification - Identify the abstraction boundaries in the code

II. Precondition Development - Develop the preconditions under which the desired coupling is
valid

III. Code Analysis - Analyze the code, to gather the program properties needed to validate the
preconditions

IV. Modification Development - Develop code modifications for changing the uncoupled code
into the desired code

V. Coupling Production - If the preconditions are valid, carry out the code modifications to
produce coupled code

VI. Recoupling - Whenever the coupling code or the uncoupled code is modified in the future,
redo the coupling steps to produce a new, valid piece of coupled code

The first five steps correspond to the process by which the dispatch example was implementa-
tion coupled (see Figure 1-6).

From this process-based model of implementation coupling, I developed two critical ideas
that led to view-based abstraction. The first is given below:

* Modularity is precluded by an implementation coupling only if that coupling is allowed
to persist through future code modifications that render the coupling invalid

For instance, in the dispatch example, modularity is precluded only if dispatch-expression's use

of exp-type is allowed to persist after Mt is modified to use fast-exp-type. Black-box abstraction

does not require this persistence check, most likely because it is impractical to require a pro-

grammer to perform the necessary examinations each time a module is modified. From this

idea, one can conclude that being able to automatically carry out the recoupling step would pro-

vide the guarantee needed to maintain modularity. This is because the recoupling step ensures

that a coupling persists through a future code modification only if the coupling is valid in the

context of that modification. A maintenance programmer would thus be free to modularly mod-

ify a program in the presence of implementation couplings, leaving the work of ensuring every

coupling's subsequent validity to the computer.

The real power of this six-step implementation-coupling model and the first idea drawn

from it is that together, they allow the implementation-coupling problem to be reduced to the

problem of automating the recoupling step. This is now a tangible problem, and leads to the

second critical idea underlying view-based abstraction:

The recoupling step can be automated if the code analysis and coupling production
steps are automated, and these steps can be automated if the boundary identification,
precondition development, and modification development steps are expressed in an im-
perative programming language.

Providing this automation and a language for expressing implementation couplings leads to

view-based abstraction.

View-based abstraction consists of a model and a methodology mirroring the six-step im-

plementation process. The model introduces various components: contexts (for representing ab-

straction boundaries), predicates (for expressing preconditions), actions (for expressing program

modifications), dispatchers (correspond to rewrite rules), rules (combinations of these constructs),

couplers (for automatically generating a coupling), and views (mappings between program ex-

pressions and program properties). The model also requires a view invalidation/recoupler, respon-

sible for automatically carrying out the recoupling step. The view-based abstraction methodol-

ogy is a process that is layered over the six-step implementation-coupling process. By mirroring

the six-step process, the methodology provides a structured approach to using the view-based

abstraction model (including its constructs) to produce implementation couplings.

View-based abstraction is illustrated in Figure 1-7. The programmer is replaced by a cou-

pler, and the recoupling step is performed by the view invalidation/recoupler. For the dispatch

example, the implementation coupling from Md to Mt would be registered with the view invali-

dation/recoupler. If M, was subsequently modified to use fast-exp-type, the view invalida-

tion/recoupler would recognize this change, take the original implementation of dispatch-

expressi on, and produce a new version that used fast-exp-type instead of exp-type.

The above is a summary of the view-based abstraction model and methodology, which are

presented in detail in Chapter 3.

(define dispatch-expression
(let ((exp-type-symbol (lambda (exp) (exp-type exp)))

(dispatch-table (make-symbol-hash-table)))
(for-each (lambda (symbol process-exp)

(hash-table/put! dispatch-table symbol process-exp))
(list (quote literal) (quote java-name)

(quote new) (quote dot)
(quote call) (quote cast)
(quote instanceof) (quote built-in-expr)
(quote assignment))

(list process-literal process-java-name
process-new process-dot
process-call process-cast
process-instanceof process-built-in-expr
process-assignment))

(lambda (exp)
(let ((process-exp (hash-table/get dispatch-table (exp-type-symbol exp) ())))
(if process-exp

(process-exp exp)
(begin (error "Unknown Type: " exp)))))))

Figure 1-8 -Actual Coupled Code Generated by ViewForm

1.4 ViewForm

ViewForm is my implementation of view-based abstraction, and was developed to experi-

ment with the view-based abstraction model and methodology. ViewForm is an imperative,
transformation-based language layered over Scheme[49]. ViewForm performs source-to-source

transformations on Scheme code augmented with various Mrr Scheme[42] constructs. ViewForm
also introduces a novel construct, the vform. Vforms are combinable, delegation-based constructs
that operate on program expressions, with respect to a context. Vforms are the basis for con-

structing predicates, actions, dispatchers, rules, couplers, and views.

In addition to the view-based abstraction coupling constructs, ViewForm implements vari-
ous default views, including a data-flow view and variable naming view. ViewForm also imple-
ments a simple but fully functioning view invalidation/recoupler. Within ViewForm, complexity
layering makes more common types of implementation couplings easier to implement. View-
Form maintains backwards compatibility with current software engineering practice, provides
incrementality, and demonstrates view-based abstraction's viability. Chapter 4 presents View-

Form in more detail, including a complete ViewForm implementation for solving the dispatch

example.

1.5 Three Examples

The code in Figure 1-8 is what ViewForm generated for the dispatch example. The dis-

patch example ViewForm code, presented in Chapter 4, exemplifies the view-based abstraction

methodology as well as techniques used later on the three example programs. The examples

are: an amorphous computation simulator from [7], a conditional-probability pedigree computa-

tion program [83], and ViewForm itself. These three example programs show how view-based

abstraction can be used to solve instances of the implementation-coupling problem in a more

practical setting.

Each of the three examples examines different issues within the view-based abstraction

framework. The simulator example tests how ViewForm performs on source code written by

someone other than myself, applying an implementation coupling developed by someone other

than myself. The pedigree example (whose source code was also written by someone other than

myself), illustrates what happens when a desired view is not provided by default. The ViewForm

example brings up the issues of scale and user interaction, since ViewForm is considerably

larger than either of the first two examples (_ 7600 lines of code). While most practical programs

are much larger than ViewForm, this example, and the previous ones, are used to demonstrate

that the size of a program is not indicative of the amount of code that must actually be analyzed

to apply an implementation coupling. The ViewForm example also demonstrates how user in-

teraction can be used in conjunction with view-based abstraction, and how this affects the kinds

and scales of views that are feasible to perform.

The results show how view-based abstraction permits implementation coupling without pre-

cluding modularity while attaining backwards compatibility, language independence, incremen-

tality, ease of use, and amortizable time savings. The most important property of these five is

backwards compatibility. This is because the problem would be much simpler if we could pro-

duce a solution that requires changes to the source language's specification or implementation

(e.g., requiring native module support), or to the source code (e.g., annotations with module in-

formation). This dissertation demonstrates that requiring changes to the language, the language

implementation, or the source code is not necessary.

The results also indicate that view-based abstraction is practical, for three reasons. The first

is that the extra automation for the examples increased the overall compilation time from a typi-

cal 34%, to 40% in the worst case. This worst-case overhead was despite the use of a full, inter-

procedural, LJAR-style[79] data-flow analysis view and a less than fully optimized ViewForm im-

plementation. This worst-case overhead was measured on the ViewForm example, running the

data-flow analysis over the entire program. This was not actually necessary, as only 5 of View-

Form's 28 modules needed to be analyzed for the desired coupling. The decision to analyze all

28 modules was made to project ViewForm's performance on much larger programs, where an

analysis might be needed on 7600 lines out of tens or hundreds of thousands of lines of code. In

this hypothetical larger case, the 40% overhead would also be reduced.

A second indication of ViewForm's practicality is that each optimization required only 65 to

137 lines of ViewForm code, in the form of 8 to 13 ViewForm "rules". These rules included

code templates describing each respective optimization. Some rules were implemented from

scratch using ViewForm primitive functions, others were implemented using ViewForm library

functions, while others turned out general enough to become part of the ViewForm library. In

all cases, the process of implementing the rules (i.e., the view-based abstraction methodology)

corresponded to the six-step process outlined above. This process provides a structured and me-

thodical approach that simplifies rule implementation.

The ability to scale gracefully is a third concern for practicality. The results demonstrate that
scaling issues can be addressed in three ways. First, by limiting the scope of the interprocedural

analysis to only relevant modules, the amount of code that must be analyzed is reduced. For

example, in the simulator example, only 1,100 out of over 10,000 lines of code needed to be

analyzed. Likewise, in the ViewForm example, only 5 out of the 28 files needed to be analyzed

(although, as discussed above, all 28 were analyzed to test scaling issues). This kind of scope

reduction should be possible in many cases, since typical human programmers do not (and for

practical reasons, cannot) precisely analyze huge amounts of code when manually producing an
implementation coupling.

Second, with respect to scaling, by utilizing views with varying computational resource re-
quirements, a ViewForm rule can make the most of the available resources. The ViewForm ex-

ample demonstrates how the data-flow analysis view accomplished this by making space and

time tradeoffs to maximize computational resource utilization.

Third, with respect to scale, user interaction can provide views with assumptions not deci-
dable or otherwise computable given a practical amount of resources. Even in the worst case

scaling scenario, however, ViewForm will still generate correct code, though not necessarily

coupled code (this newly generated uncoupled code will not necessarily be slower, and may
even be faster than the previously coupled code). In addition, if ViewForm generates uncoupled
code, ViewForm can automatically alert the programmer to this fact. This worst case is far better
than what can happen under black-box abstraction. The worst case for implementation coupling
under black-box abstraction is incorrect code and no automatic notification for the programmer.

In all three examples, ViewForm was able to maintain modularity by regenerating correct

code when the original, dependent modules were modified, even when those modifications were

to the optimization-dependent sections of the original code.

1.6 Thesis Organization

The remainder of the thesis discusses and elaborates on the ideas and issues introduced

above. Chapter 2 describes and formalizes the implementation-coupling problem, and reviews

influential and foundational research efforts. Chapter 3 then presents view-based abstraction in

depth. Chapter 4 follows with the ViewForm transformation language. In Chapter 5, ViewForm

is used to couple three example programs, after which the results are qualified, quantified, dis-

cussed, and analyzed. Other related research efforts and ideas for future work are presented in

Chapter 6. Chapter 7 concludes the dissertation, providing a summary of the work and elaborat-

ing this dissertation's contributions.

Chapter 2

The Implementation Coupling Problem

The implementation coupling problem is that implementation couplings break modularity. To

solve this problem, modularity must be preserved in the presence of implementation couplings.

This chapter discusses the problem in more detail, relating it back to the dispatch example pre-

sented in Chapter 1. The discussion includes a formalization of the problem and of various

terms that will be used throughout this dissertation. A set of desiderata for the solution is also

given, and other research efforts most closely related to the problem are examined.

2.1 The Dispatch Example

The code in Figure 1-2 and Figure 1-3 typifies a scenario faced by programmers using

black-box abstraction. The code in Figure 1-2 is similar to what may be found in an interpreter,
compiler, specializer, program analyzer, or any of a variety of applications taking source-level

input. For this particular code, di spatch-expressi on is based on "decaf java-in-Scheme," found in

[65]. dispatch-expression takes a decaf-java expression, determines its type using type? and a

candidate type symbol, then processes the expression based on its determined type. This proc-

ess is also known as a type dispatch. A decaf-java expression's type is computed using the func-

tion type?, a sample implementation of which is given in Figure 1-3. type? takes a decaf-java ex-

pression and a type symbol, and returns a true value if the type symbol represents the expres-

sion's type.

In this scenario, the application has been designed with dispatch-expression and type? in

separate modules (i.e., black boxes). This is to allow their respective implementations to be

modified in a modular way. Modularity, in this context, means the ability to replace any imple-

mentation with any other that correctly implements the module's interface.

Given these implementations of dispatch-expression and type?, suppose that a programmer

is given the task of optimizing dispatch-expression. The current implementation dispatches in

O(n) time, where n is the number of decaf-java expression types (more of which could be added

later). A more efficient scheme, based on [58], is to use a hash table to attain O(1) expected

time. This new implementation computes an expression's type symbol, maps this symbol to a

process-<exp> procedure using a hash table, then invokes the process-<exp> procedure on the

expression. An implementation of this version of dispatch-expression is given in Figure 1-4. The

problem with this code is that it violates type?'s module boundary by depending on type?'s im-

plementation. In particular, the new dispatch-expression code calls exp-type, a function called by

type? to compute an expression's type symbol. This is an abstraction violation, and is not al-

lowed by black-box abstraction. The real problem, however, has not yet manifested itself in an

observable way. In fact, up to now, dispatch-expression's implementation remains faithful to its

interface, despite the obvious implementation dependency. This illustrates how easily implemen-

tation dependencies can make their way into an application: they can be innocuous and unob-

servable (except when they speed up a program, in which case they are considered a feature

and not a bug!).

There may come a time, however, when the costs of these abstraction violation dependen-

cies become apparent. In the dispatch example, this cost manifests itself when a future pro-

grammer, believing that modularity has not been precluded, tries increasing type?'s perform-

ance. In the original code, type? calls exp-type, which uses an association list to look up an ex-

pression's type. This is an O(n) process in the number of expressions. The code in Figure 1-5, in

contrast, uses fast-exp-type to provide the type lookup for type?. fast-exp-type uses a hash ta-

ble to look up an expression's type, reducing the lookup to an expected O(1) time. Once this

new, faster implementation of type? is installed, exp-type will no longer exist.t This means that

the optimized dispatch-expression (in Figure 14) now has a bug: it can no longer determine an

expression's type, and therefore will fail or will return unpredictable results. Thus, the optimized

dispatch-expressi on's dependency on type?'s implementation has broken modularity. The cost of

this broken modularity must now be paid by this future programmer and other, subsequent

programmers updating the dispatch code. These programmers must deduce the existing imple-

mentation dependencies, determine which other modules are affected, determine how the de-

pendencies interact with any desired code updates, and determine how to revert or patch the

code to make the code updates consistent with the dependencies.

This scenario illustrates exactly the kind of problem this dissertation addresses. The goal of

this dissertation is to show how maintainability and modularity can be preserved in the presence

of these kinds of implementation dependencies. This problem is formalized below, as part of a

discussion of black-box abstraction.

t Although lisp-like languages will not necessarily eliminate exp- type's name and value, the association list it uses for type lookup
will no longer be updated. The result is the same kind of problem - a bug.

2.2 Black Box Abstraction

Figure 1-1 illustrates a typical use of black-box abstraction. Module M2 is hiding its imple-

mentation under an interface, and Module Ml's implementation depends on that interface.

Module M, also has its own interface, which other modules may depend upon. Black-box ab-

straction provides modularity precisely because M,'s implementation does not depend on M2's

hidden implementation details. This means that M2's implementation can be modified without

affecting MI's interface or implementation, so long as M2's interface remains valid. In order to

establish a more precise foundation for these ideas and terms, their meanings are formalized in a

language-independent way as follows:

P= {M*}

A program is composed of a set of modules

M =<Int,Impl>

Modules consist of an interface and implementation

Impl(M) = {exp*}
An implementation is a set of language expressions whose syntax and meaning depend on

the language's syntax and semantics

Int(M) = {spec*}

An interface is a set of specifications

spec =< ident,desc>

Specifications consist of an identifier and a description

ident = (identifier)

An identifier is a language-dependent name, used to reference a piece of functionality

desc = (description)

A description is a language-dependent description of the functionality referenced by an

identifier

With respect to the dispatch example, the program contains at least two modules: Md, whose

implementation is the code in Figure 1-2 and M,, whose implementation is the code in Figure 1-

3. Md's interface has one specification whose identifier is dispatch-expression. Its description says

that dispatch-expression is invoked on a decaf-java code representation and returns the result of

interpreting that code representation. Mt's interface also has one specification. Its identifier is

type?, and its description says that type? is invoked on two arguments, a type symbol and a de-

caf-java code expression. type? returns true if the decafljava expression is of the type represented

by the type symbol.

Given these equation-based definitions for programs, modules, interfaces, implementations,
and specifications, the notion of dependencies can be formalized. This dissertation is concerned
with two kinds of dependencies, referred to as interface couplings and implementation couplings.

The former is discussed first.

Impl(M,) H Int(M2)

3 ident, e {ident(specl) ... ident(spec,)}

such that Int(M2) = {specl...spec,} and {ident, } c Impl(M,)
This says that if M,'s implementation refers to an identifier in M2's interface, Mlis said to
be interface coupled to M2

Dep(M) - {M,,. . , M,}
such that Vi=l,...-,nmpl(M) H Int(M,)

A module M depends on a module Mi if M is interface coupled to Mi. The set of all such
modules Mi is Dep(M)

Validlmpl(Int, Impl, { M,... M, })
V i=-_, ,ValidModule(M,) and

Impl is a valid implementation of Int with respect to the interfaces Int(M,)...Int(M n)

ValidImpl(Int, Impl, 0) - Impl is a valid implementation of Int
An implementation can be valid only if it genuinely implements its interface and if its
dependent modules (if any) are valid

ValidModule(M) - Validlmpl(Int(M), Impl(M), Dep(M))
A valid module is one with a valid implementation

ValidProg(P) V MEValidModule(M)
A program is valid if its modules are valid

The first of the five equations above defines the meaning of an interface coupling. For the dis-

patch example, the interface coupling from Md to M, happens because dispatch-expression in

Ma's implementation refers to the identifier type? in Mt's interface specification. The remaining

equations above specify what it means for an implementation, a module, or a program to be

valid. It is worthy noting that the fundamental notion of "validity" - as in an implementation be-

ing valid with respect to its interface - is specific to a language's semantics. A language-

dependent version of the equations above would also provide language-specific definitions for

program expressions, identifiers, specifications, and possibly a VALID valuation function (i.e.,
[16] provides these for Scheme). Nevertheless, the formalization above is at the level of detail

necessary to discuss the problem addressed by this dissertation.

The more important form of coupling for this dissertation is implementation coupling. The

definition below defines an implementation coupling, additionally providing the definition of an

invalidating implementation with respect to two modules.

Invalidatinglmpl(M 2, M2) -Impl'* } such that

M2 e Dep(M,) and

Validlmpl (Int(M 2), Impl', Dep(M2)) and

Validlmpl(Jnt(M,), Impl(M,), {< Int(M 2),Impl'>} U(Dep(M,) - M2))

Impl(M,) Impl(M 2)

-JnvalidatingImpl(M 2, M2) = 0
M, is implementation coupled to M2 if there exists a valid implementation of M2's interface
which invalidates M,.

The intuition behind these definitions is based upon the notion of modularity. The first equation

defines an invalidating implementation as one that, under black-box abstraction, is a valid

implementation of an interface (i.e., M2's interface) but whose presence will nevertheless

invalidate a different module (i.e., MI). This means that modularity, or the ability to replace M2's
implementation by any other valid implementation of its interface, is precluded. The second

equation defines the existence of such an invalidating implementation between two interface-

coupled modules as an implementation coupling. For instance, in the dispatch example, the

coupled module whose implementation is given in Figure 1-4, Mdt, is implementation coupled to

the coupling module Mt (i.e., Impl(Md_,) "-> Impl(M,)) because there exists an invalidating

implementation of Mt with respect to Mdt. One possible invalidating implementation, Impl', in

this set Invalidatinglmpl(Md-t, M,) is given in Figure 1-5. Impl' is a valid implementation of Mt's

interface (i.e., Validlmpl(Int(M,), Impl', Dep(M,t))). If used, however, Impl' would invalidate

Md,t's interface since the definition of dispatch-expression in Mdt calls exp-type (from M,)
instead of fast-exp-type (from Impl').

Given these definitions, the implementation-coupling problem can now be specified. Sup-

pose we have four modules, M,, M2, MA', M2' , and a program, P,with the properties and rela-

tionships given in Figure 2-1 (these equations are true for the dispatch example if P is the im-

plementation-coupled program containing the code in Figure 1-4 and Figure 1-3, M1 is Md, M2 is
M,, Impl1 is the code in Figure 1-4 and Impl2 is the code in Figure 1-5). These equations specify

an interface coupling from M, to M2, and an implementation coupling from Mj' to M2. This

happens, for example, when a programmer takes the implementation of M, and modifies it into

M,' , an implementation that depends on M2's hidden implementation details. M2' is a valid re-

placement of M2 that is perhaps the result of routine program maintenance on M2's implementa-

tion. If M2' were to replace M2, however, Mj' would become an invalid module, since M2' is an

invalidating implementation of the implementation coupling from M,' to M2.

M1,M 2 , M,',M 2 '= Modules The implementation-coupling problem is that modu-

Impl , Impl2 = Implementations larity is precluded in the presence of an implementa-

P = { M', M 2 } tion coupling, as formalized above and demonstrated

M ,'=< Int(M,), mpl1 > in the dispatch example. This means that in the pres-
M2 '=< Int(M2),Impl2 > ence of an implementation coupling, a future pro-
ValidModule(M1) grammer is not free to replace or modify a module's
ValidModule(M 2) implementation even if the result is an otherwise valid
Impl(M,) Impl1
Impl(Mi) # I(mp 1)implementation of the module's interface. Instead, a
ValidImpl(Int(M,), Impl,, Dep(M,))

future programmer must first meticulously examine
Validlmpl(Int(M 2), Impl, Dep(M 2))
Int(M,) - Impl(M2) otherwise hidden (and possibly complex) implementa-

Impl -> Impl(M 2) tion details to find any existing implementation cou-

Impl2 e Invalidatinglmpl(M,', M2) plings. The programmer must then ensure that these

Figure 2-1 - Formalized Implementation Coupling couplings are consistent with the changes he or she

wants to make. If the changes are not consistent, the

programmer must either remove the implementation couplings (and recursively act on those

changes) or not make any changes at all. This deters maintainability, making an application

more difficult to debug, port, optimize, or extend.

A solution to this problem should nevertheless permit implementations to be coupled, in

order to gain the associated performance benefits. The solution must also preserve modularity

by allowing M2 to be replaced with M2' in P, in a way that does not invalidate P. In the case of

the dispatch example, this means being able to freely replace the implementation of type? in

Figure 1-3 with the code in Figure 1-5, even if dispatch-expression is implemented as in Figure 1-

4, all without invalidating P.

More formally, a solution must satisfy the equation, P[M2 'IM 2] =- ValidProg(P), with re-

spect to the equations in Figure 2-1. This equation states that any code modifications allowed

under black-box abstraction, when in the presence of implementation coupling, should not in-

validate a program. To truly solve the problem, maintenance programmers should not have to

reason about existing couplings, and should not have to know if any even exist.

2.3 Desiderata

A trivial "solution" to the implementation-coupling problem is to program without modules.

At the opposite extreme is an ideal, but as of yet, unattainable solution: automating the art of

producing optimized programs. Given that the former solution is where programming began

and the latter is where programming may someday go, one can imagine a variety of ways of ad-

dressing the implementation-coupling problem along this spectrum. Given this variety, it is im-

portant to outline a set of metrics by which to evaluate this dissertation's solution as well as

other, existing approaches to the implementation-coupling problem. While these desiderata

make the problem more difficult to solve, their purpose is to ensure a conforming solution can

yield insight into the problem's true subtleties, pragmatic issues, and tradeoffs.

Overall, the main goal of a good solution should be to help push the state of the art in the

direction of the ideal solution mentioned above. Towards this goal, this dissertation lists five

properties that a solution to the implementation-coupling problem should have. These properties

are backwards compatibility, incrementality, language independence, ease of understanding and

usability, and amortizable time savings. None of the work surveyed in this dissertation combines

these properties into one solution, and few provide any form of backwards compatibility.

2.3.1 Backwards Compatibility

Backwards compatibility means the implementation-coupling solution should be consistent

with black-box abstraction and should not depend on a particular feature of a current program-

ming paradigm. In particular, backwards compatibility prohibits all of the following. While the

first three items could be classified as something done only once, the last two items cannot and

are more fundamental.

* Modifications to the source language

* Modifications to any source language implementation

* Rewriting the application into a different language(s)

* Modifications to the uncoupled program (including pragmas or annotations)

* Requiring full, direct access to all of the uncoupled application's source code

If backwards compatibility were not required, a solution would be easier to come by. For ex-

ample, one way to solve the implementation-coupling problem is to design an otherwise con-

trived (and restrictive) source language in which couplings are easy to automatically detect.

While this approach is valid from the standpoint of learning more about the problem, the ap-

proach leaves some of the more interesting, practical, and difficult aspects of the implementa-

tion-coupling problem unaddressed. The solution presented in this dissertation illustrates this

point.

Another approach that is not backwards compatible requires users to decorate their code

with machine-readable annotations or specifications. This usually complicates code maintenance

(i.e., "What do I do with the code decorations if I modify the code?", "How does my change

affect the specification?"), and is not necessarily compatible with existing programming envi-

ronment components, such as source-code editors and program analyzers.

2.3.2 Incrementality

For this dissertation, incrementality means that a given implementation-coupling solution is

not pervasive. That is, in order for the solution to work, it need not be applied to every piece of

source code or every implementation coupling in an application. This allows programmers to

selectively apply the solution to code and couplings where they personally judge the benefits to

outweigh any costs. Incrementality also allows the solution to be resilient in cases when an ap-

plication harbors implementation couplings unbeknown to the programmer.

Without incrementality, one possible solution to the implementation coupling problem is to

pervasively decorate every application interface with machine-readable specifications. These

specifications would then be used to validate couplings whenever any part of the implementa-

tion was modified. This would assume that the application contained no couplings to begin with.

Besides not being backwards compatible, this kind of approach would not necessarily be resil-

ient in the presence of existing or unknown couplings. In addition, this approach would require

a disproportional amount of work in the case when the coupling modifications were small com-

pared to the overall size of the application (which must be decorated).

2.3.3 Language Independence

Language independence means the solution does not depend on the presence of a source-

language property. Without language independence, a solution will not necessarily be more

generally applicable. The solution, for instance, should not depend on the source language be-

ing object oriented, functional, or strongly typed. While these kinds of language properties can

make it easier to find or express implementation couplings, making them as part of the solution

is an artificial requirement that is not necessary.

Language independence does not mean the solution is equally powerful in all languages. A

solution might provide better results in a more constrained or less expressive language than in a

very unconstrained or expressive language.

2.3.4 Ease of Understanding and Usability

The solution should provide an abstraction model that is easy to understand, even if it

means pushing complexity into the model's implementation. In addition, programmers should

not have to be language experts to understand how the model works, although language experts

should not be limited to using the model in ways that inexperienced programmers use it. Ease

of understanding and usability also mean not having to learn or design new languages from

scratch for each coupling. This includes not requiring programmers to change their coding styles

to accommodate the solution.

2.3.5 Amortizable Time Savings

Any extra time spent applying the solution to a coupling should be recoverable as saved
time when an application undergoes repeated future maintenance, modifications, and updates.
The extra, up-front time spent applying the solution can then be amortized over each future
change to the application's code. This requirement precludes any solution that might require a
programmer to manually find existing couplings, or manually validate the persistence of any ex-
isting couplings. This requirement implies a solution that is mostly or completely automated.

2.4 Influential Research Efforts
Various aspects of previous research efforts address the implementation coupling problem

directly or indirectly. The efforts that most influenced this dissertation are described below.

2.4.1 Reflection

Programming languages can provide reflective support via additional constructs in a base
language.[82] These constructs semantically shift the language's subject matter, usually to that of
the language implementation. This means that using these constructs, a programmer can write
code that reasons about its own execution. For example, some constructs can reify the pro-
gram's environment and stack, making them available as modifiable data structures. This ap-
proach of using reflection to control an implementation has made its way into various program-
ming paradigms, such as distributed programming[68], real-time programming[44], and many

others[96]. In each of these cases, the desire to control an application's implementation was oth-

erwise precluded by the lack of language support. Reflective constructs provide this support,

thus enabling programmers to express knowledge of the underlying application's implementa-

tion as part of the source code. While a language's implementation is more constrained in the
presence of these constructs, one goal of reflective language design is to reduce the impact of
these constraints.

Using reflection to solve the dispatch example would first require a Scheme implementation

that had been extended to support reflective constructs. The code for dispatch -expressi on would
then need to be modified in this reflective Scheme so that it had access to type?'s implementa-

tion. This implies some way of acquiring a representation of type?'s implementation, after which
the reflective code could substantially modify dispatch-expressi on's behavior. As this example
demonstrates, there are two significant problems with using reflection on its own to solve the
implementation coupling problem in a practical way. The first is the need to add reflective con-
structs to a language specification. The second is the need to modify every language implemen-
tation upon which the code will run to support these new constructs. These needs are inconsis-

tent with backwards compatibility. Moreover, the surveyed literature did not contain any exam-

ples of reflection being used to directly solve instances of the implementation-coupling problem.

2.4.2 Object Oriented Programming and MOPs

CLOS[85] is an object oriented language that supports multiple inheritance. A class that mul-

tiply inherits from a class structure, for example, is coupled to all of the inherited methods that

are combined to form class-specific generic function effective methods. Thus, the computed ef-

fective methods are implementation coupled to the methods found throughout the class's super-

classes. Modularity is maintained through an explicit invalidation mechanism. When a super-

class's implementation is modified, all affected effective methods are invalidated and recom-

puted (usually lazily, for better overall performance). [58] contains a description of a method

memoization mechanism which automatically and efficiently ensures that effective methods are

recomputed when their implementation-coupled dependencies are invalidated.

A solution to the implementation coupling problem should likewise maintain modularity by

providing a mechanism for automatically managing any couplings. The mechanism should

automatically invalidate and recompute the implementation couplings when necessary. In the

dispatch example, for instance, replacing M, with an invalidating implementation should cause

Mdt to become invalid and should subsequently cause a valid version of dispatch-expression to

be generated. In order to keep the solution general, however, the mechanism should not be

linked to a particular language or programming paradigm.

A metaobject protocol, or MOP, opens an application's implementation by allowing a user

to control important aspects of the implementation's decision-making process.[55] This control is

provided by documenting a set of metaobjects and a protocol that the implementation adheres

to. A metaobject is an object that determines some aspect of an implementation's behavior, usu-

ally by making a critical decision. The protocol describes the interaction between the metaob-

jects themselves and between the metaobjects and other parts of the implementation. MOPs are

designed to provide the user with both locality and incrementality, among other benefits.

MOPs provide two interfaces for each module: a primary interface and a secondary inter-

face. The former is the usual functionality-based interface, while the latter allows the module's

implementation to be altered. Most MOP research is aimed at increasing performance, although

some has been aimed at making a language's semantics extensible[90].

Intrigue[59] is a MOP for controlling the implementation of a Scheme compiler. The Intrigue

MOP provides access to the compiler's data-flow analysis engine. This engine is very flexibly

programmable to allow the propagation of user-defined quantities interprocedurally throughout

the compiler's internal representation. This engine was used to implement datapath macros[56].

Datapath macros are transformation constructs that operate on a flow graph program representa-

tion as opposed to operating on textually-localized program text.

Intrigue and datapath macros can go a long way towards solving the dispatch example. A
datapath macro could analyze the dispatch-expression and type? code, after which the macro
could modify dispatch-expression into the desired, coupled code. While this approach can pro-
duce the desired modification, it is not enough to solve the implementation-coupling problem.
One reason is that it does not guarantee modularity in the presence of an implementation cou-
pling. That is, if type?'s implementation is changed, the optimized dispatch-expression's imple-
mentation could be made invalid. Another reason is that datapath macros do not address the
issue of scale. In larger examples, a general flow analysis may be impractical over the entire
program.

2.4.3 Program Slicing

A program slice[94] with respect to a construct, c, includes all constructs that might affect
the variable values used by c. Program slicing can be used in a variety of situations, such as
program manipulation and representation frameworks[73], the automatic recovery of reusable
components[60], merging pieces of code derived from a common, base piece of code [46], and
determining whether a code modification is consistent with the original code[34]. Slicing allows
programmers to abstract away details unrelated to the construct they are currently interested in.
It also allows programmers to consider statements that are not just textually localized in a file.
These properties are essential to a solution for the implementation-coupling problem.

The work in [46] provides an interesting perspective on the implementation-coupling prob-
lem. This work develops a mechanism for combining two programs derived from a common,
base program. If the two derived programs are consistent and combinable, the given program
slicing techniques will automatically produce a merged program. If the programs cannot be
merged, no combined program is produced.

A related piece of work, [34], approaches this merging problem from a different perspec-
tive. Instead of combining two semantically unconstrained programs derived from a common
base, the approach is to constrain future modifications to the original derived program so that
the modifications are all consistent with the derived program.

Nevertheless, neither of these approaches solves the implementation coupling problem. In
both cases, the result is either a successful merging or no merging at all. A solution to the im-
plementation coupling problem, however, requires that a future programmer's modifications al-
ways work. That is, they must take precedence over any existing implementation couplings in
case of a conflict (so as to preserve modularity). A second problem is practicality. Since neither

work presents examples or time measurements, it is difficult to gauge the amount of computa-

tional resources required to perform a merging.

2.4.4 Aspect-Oriented Programming

Aspect-oriented programming[57] is a relatively new abstraction model for conceptually

separating programming concerns[48] from each other. Some sample concerns identified in [48]

include: class organization, synchronization, location control, real-time constraints, and failure

recovery. An aspect-oriented program consists of distinct pieces of code, each addressing a dif-

ferent concern. The base concern program is written in a mainstream language or a variant

thereof, and expresses the application's essential functionality. The other concerns are written in

appropriate aspect languages. An Aspect WeaverTm then combines the concerns into code that

can be interpreted, compiled, or otherwise executed. One goal of aspect-oriented programming

is to decouple conceptually distinct concerns from the base concern, so that each concern can

be reasoned about as independent of the base concern as possible.

Aspect-oriented programming does not address the implementation-coupling problem di-

rectly because it does not provide a way to validate implementation dependencies (including

those induced by the aspect programs) when the main program or aspect programs are modi-

fied. Aspect-oriented programming can, however, push those dependencies to the aspect layer.

In the dispatch example, for instance, the algorithm used to map a decaf-java expression type to

a process-<exp> expression could be specified by an aspect. Similarly, the way that type? com-

putes a type symbol could also be specified by a different aspect. The former aspect could de-

pend on the latter, and the aspect weaver could then be run to ensure that any future modifica-

tions get propagated out to the target code that is actually run. Unless the aspect language pro-

vides some sort of aspect modularity, however, the implementation-coupling problem will re-

main, albeit at a different level. One other drawback to using aspect-oriented programming for

the implementation-coupling problem is that aspect languages must currently be custom-

designed or at least specialized for each application. This may not continue to be the case as

more research into aspect-oriented programming is carried out.

2.5 A Solution

This dissertation solves the implementation-coupling problem using the view-based abstrac-

tion model and methodology, presented next in Chapter 3. View-based abstraction attains the

desiderata described in this chapter, while maintaining modularity in the presence of implemen-

tation couplings.

Chapter 3

View-Based Abstraction

This dissertation proposes view-based abstraction as a solution to the implementation-coupling

problem presented in Chapter 2. View-based abstraction is based on a model I developed which

describes implementation coupling as a six-step process. View-based abstraction provides a

methodology for imperatively expressing these steps so that they can be automated. It is this

automation that enables view-based abstraction to provide modularity in the presence of imple-

mentation coupling.

This chapter presents these six steps, describes the view-based abstraction model and meth-

odology, builds upon the formal definitions presented in Chapter 2, and relates it all back to the

dispatch example.

3.1 The Implementation Coupling Process

The insights that led to view-based abstraction were derived from an examination of the

implementation-coupling process itself. This examination led to an implementation-coupling

model that breaks down the implementation-coupling process into a set of six distinct (though

not necessarily sequential) steps. This "divide and conquer" approach is novel with respect to

the surveyed literature, and it leads to the two critical ideas upon which this dissertation's thesis

is based. While many valid implementation-coupling models are possible, the one presented

here was designed to be process-based, simple, and straightforward; the aim being to carry those

properties forward into the view-based abstraction model and methodology while pushing any

potential complexity into the implementation.

The six coupling steps developed for this dissertation are given below in Figure 3-1. They

correspond to the coupling process illustrated in Figure 1-6, in which a programmer is coupling

one module (M,) to another (M2).

I. Boundary Identification - Identify the abstraction boundaries in the code

II. Precondition Development - Develop the preconditions under which the desired coupling is
valid

II. Code Analysis - Analyze the code, to gather the program properties needed to validate the
preconditions

IV. Modification Development - Develop code modifications for changing the uncoupled code
into the desired code

V. Coupling Production - If the preconditions are valid, carry out the code modifications to
produce coupled code

VI. Recoupling - Whenever the coupling code or the uncoupled code is modified in the future,
redo Steps I-VI to produce a new, valid piece of coupled code (or alternatively
but equivalently, whenever the coupling code or the coupled code is modified,
undo a previously applied coupling if it is no longer valid)

Figure 3-1 - Implementation-Coupling Steps

Two critical ideas were drawn from the implementation-coupling steps. The first is that im-

plementation coupling does not necessarily preclude modularity in the eyes of future program-

mers. A coupling Impl(M1) ý Impl(M 2) prescribes only that an invalidating implementation,

Impl', of M2 exists. This means that modularity is precluded only when the recoupling step is not

carried out. If the recoupling step is always carried out, an existing implementation coupling

cannot persist through future program modifications unless its preconditions remain valid. This

idea is further amplified below, after the implementation-coupling steps have been discussed.

The second critical idea is that by providing an imperative language for expressing the

boundary identification, precondition development, and modification development steps, the

code analysis, coupling production, and recoupling steps can be easily automated. This automa-

tion restores modularity in the presence of implementation coupling, since the computer can

then be relied upon to carry out the recoupling step. This idea is also amplified below, after the

implementation-coupling steps have been discussed.

3.2 The Implementation-Coupling Steps
The six implementation-coupling steps are presented in the context of a programmer who

has a particular coupling in mind (i.e., Impl(M) 4 Impl(M 2)). Either this programmer or a

future programmer must maintain modularity by redoing the implementation-coupling steps

when the original, uncoupled code or the coupling code is modified.

3.2.1 Step I - Boundary Identification

The purpose of Step I is to break up an implementation into pieces that are easier to reason

about. This typically means generating abstraction boundaries around groups of expressions that

implement interfaces (i.e, generating boundaries around modules). For the dispatch example,
there are two such groups of code. The first is dispatch-expression and its associated process-

<exp> expressions (i.e., Figure 1-2). The second is exp-type and the expressions that compute ex-

pression types (i.e., Figure 1-3). These boundaries help to distinguish true implementation cou-

plings from those modifications that would otherwise be allowable under black-box abstraction.

The boundaries will also be used in later steps, to identify which groups of expressions must be

analyzed to validate preconditions.

3.2.2 Step II - Precondition Development

The purpose of Step II is to develop criteria for determining whether the desired program

implementation does not introduce bugs into the application. This typically involves developing

and then specifying a set of preconditions under which a coupling is valid. These preconditions

imply that ValidCoupling(< Int(M),Impl' >, M2) is true, where Impl' is the desired, coupled

code. Preconditions must always be correctness preserving, but not necessarily semantics pre-

serving.

Precondition development can be one of the most difficult steps in the implementation-
coupling process. To better understand why, let us order preconditions along a spectrum from
weak to strong. Suppose we have two preconditions, P, and Pb, which can only be satisfied if a

desired implementation coupling is valid (i.e., correctness preserving) with respect to a program
of size less than a large number of characters, n.* Suppose S(Pa) is the set of all programs for

which P, is satisfied, and S(Pb) is the set of all programs for which Pb is satisfied. We say that Pa
is strictly weaker than Pb if IS(Pa)l > IS(Pb)I. That is, P, is valid for more programs than Pb*

Weaker preconditions are therefore preferable to stronger preconditions, as weaker precondi-
tions can be satisfied by a greater number of programs for which a desired coupling is valid. As
is explored below, however, weaker preconditions can be more difficult to express.

A strong precondition can be relatively straightforward to develop compared to a weaker
precondition. A strong precondition can even be expressed as a code template in a pattern lan-
guage. For instance, in the dispatch example, one could develop two simple strong precondi-
tions for Step II. The first precondition, P1, is that the body of dispatch-expression matches the
following piece of code:

* The size requirement forces the sets subsequently discussed to be finite, so that their sizes can be compared. n should be some
huge finite number, such as 2", so that all existing programs are smaller than this number of characters.

(lambda (exp)
(cond ((type? 'literal exp) (process-literal exp))

((type? 'java-name exp) (process-java-name exp))
((type? 'new exp) (process-new exp))
((type? 'dot exp) (process-dot exp))
((type? 'call exp) (process-call exp))
((type? 'cast exp) (process-cast exp))
((type? 'instanceof exp) (process-instanceof exp))
((type? 'built-in-expr exp) (process-built-in-expr exp))
((type? 'assignment exp) (process-assignment exp))
(else (error "Unknown Type: " exp))))

The second strong precondition, P2, is that the body of type? matches:

(lambda (type-keyword exp)
(eq? type-keyword (exp-type exp)))

These two strong preconditions validate the transformation to the target code in Figure 1-4.

The tradeoff for using a strong precondition, however, is fragility. A fragile precondition is

one in that is likely to be invalidated by minor semantics-preserving source-code modifications.

A weaker precondition is less likely to be invalidated by semantics-preserving source-code modi-

fications. For example, the precondition P, given above is fragile because it will be invalid if

type? in (type? 'literal exp) is replaced by any function call that returns type?'s value (such as

((1 ambda () type?))) or even if exp is renamed. In both cases, the coupling is still valid, even

though in P 1, a strong precondition is not. The important point is that fragile preconditions can

hamper maintainability by disallowing future program modifications that do not invalidate an

implementation coupling but do not satisfy the coupling's preconditions.

Weak preconditions, on the other hand, are not as easy to develop. Unlike strong precondi-

tions, however, weak preconditions can be made less fragile. By combining weak preconditions

with the strong ones, for example, some of the previously identified fragility can be removed.

P,', below, illustrates this point. P,' is a precondition on dispatch-expression:

* dispatch-expression's value is a procedure created by a lambda expression whose body is
a cond clause such that:

* Each predicate is the following combination: (<type?> <symbol> <exp>) where <type?>
is an expression that returns the value of type?, <symbol> is a literal symbol, and <exp>
references dispatch-expressi on's parameter

* Each consequent clause is the following combination: (<process-exp> <exp>) where
<process-exp> is a procedure and <exp> references dispatch-expression's parameter

* The variable exp is not mutated via set!

* Predefined primitives are not re-defined

Similarly, the syntactic/semantic precondition P2' can be on type? can be:

type?'s lambda's body is of either the form (eq? <exp-type> <exp>) or the form (eq? <exp>
<exp-type>)where <exp-type> is any expression and <exp> is type?'s second formal pa-
rameter

P1' is less fragile than P, in three significant ways. The first is that Pi' remains valid if type? is re-

placed by any expression returning type?'s value. The second is that P,' remains valid if the

variable exp is renamed. The third is that P,' remains valid if cond clauses are added or removed.

This is how semantic preconditions can enhance maintainability; by remaining valid in the pres-

ence of a greater variety of semantics-preserving (or even non-semantics-preserving) modifica-

tions.

One can produce a much weaker and less fragile precondition than P,'. For instance, P1'

will fail if (type? 'cast exp) is replaced by (type-cast? exp), where type-cast? performs the se-

mantic equivalent of (type? 'cast exp).1 Instead of requiring a cond clause predicate to have the

form (<type?> <symbol> <exp>), a less fragile precondition, P,", can simply include the condition

that each cond clause predicate must return the result of calling type? on one symbol and on the

decaf-java expression passed to dispatch-expression. This reduced fragility, however, is not nec-

essarily free. The price to be paid can be in the form of additional computational resources.

This is explained below during the discussion of the code analysis step.

For more complicated pieces of code, determining whether a specified precondition is the

weakest precondition is non-trivial. This is the crux of why developing weak preconditions can

be difficult: making preconditions less fragile generally requires more effort and more careful

thought. Personal experience with the examples in Chapter 5 confirms this. It is also worthy not-

ing that programmers generally have little need to develop less fragile preconditions unless they
are interested in documenting the preconditions in order to preserve modularity in the presence
of future code modifications. This can help explain why programmers are not as motivated to
document implementation couplings they install.

3.2.3 Step III - Code Analysis

At some point, the preconditions must be validated. In the dispatch example, P1 can be

validated by inspection: the operator in (type? 'cast exp) does reference type?'s value. This is a
trivial precondition to validate; strong preconditions tend to fall into this classification. Some

preconditions, however, cannot be easily validated by inspection. These are non-trivial precondi-
tions, and weaker preconditions such as P," usually fall into this classification. Preconditions
typically become non-trivial when they must be validated against non-local program properties
such as call graphs or data-flow analyses. For example, suppose (type? 'cast exp) was replaced

For example, (define (type-cast? exp) (type? 'cast exp)))

by (type-cast? exp) (in the Figure 1-2 code). To validate P,", the expression primitively creating

type-cast?'s return value would have to be examined. This expression could be found via a

data-flow analysis.

This is what gets done in the code analysis step: determining the program properties neces-

sary to test the Step II preconditions. These properties can include control-flow, data-flow, nam-

ing, and side-effect information. During an implementation coupling, the programmer generally

computes this non-local information manually, by inspecting the files containing the code itself.

As previously mentioned, the code analysis step is where less fragile preconditions can be-

come more costly. While the fragile P, precondition needs only local, syntactic information from

the code analysis step, P," needs a non-local data-flow analysis. In addition, automated analyses

such as data flow and control flow are not always precise. While this is not the case for the dis-

patch example, Chapter 5 examines examples where this issue must be confronted.

3.2.4 Step IV - Modification Development

The purpose of the modification development step is to determine how to modify the un-

coupled piece of code, Impl(M), into Impl',such that Validlmpl(Int(M,), Impl', Dep(M,)) is

true, where Impl' expresses the desired coupling. In the dispatch example, this means deciding

how to transform the code in Figure 1-2 into the code in Figure 1-4. Programmers sometimes do

this "on the fly," using a program text editor. This is mostly easy to do with the dispatch-

expression example by collecting the type symbols and the process-<exp> expressions into a hash

table. The somewhat more difficult part is deciding which expression in type?'s body returns the

type symbol given a decaf-java expression.

One measure for comparing the quality of two modifications is their scope, or the extent of

the expressions that must be modified or that the modification explicitly depends upon. In the

dispatch example, dispatch-expression's body is modified, and the modification depends on the

body of type?. Thus, the scope of the modification is limited to the bodies of di spatch-expression

and type?.

3.2.5 Step V - Coupling Production

The coupling production step is the process of actually carrying out the modifications (from

the modification development step) if the preconditions can be validated against the program

properties from the code analysis step, with respect to the abstraction boundaries from Step I. In

the dispatch example, the programmer manually carries out all these steps to produce the cou-

pled dispatch-expression code from the uncoupled code. The coupling production step thus es-

tablishes the implementation coupling.

3.2.6 Step VI - Recoupling

Once an implementation coupling exists, the recoupling step ensures that modularity is

maintained. It is not practical to guarantee, however, that the programmer or a future program-

mer will carry out a recoupling for each implementation coupling for each future modification to

the uncoupled code or to the coupling code. This is why black-box abstraction cannot guarantee

modularity in the presence of implementation couplings: black-box abstraction does not guaran-

tee that only valid couplings will persist through all future program modifications.

If a programmer were, in fact, interested in guaranteeing modularity after having performed

a coupling via Steps I-V, the recoupling step would be easier to perform if the preconditions

were strong, the code analyses were easy to compute, and the modifications were minimal in

scope. The same holds true for an automatic way of guaranteeing modularity, which leads to the

two critical ideas forming the basis of view-based abstraction.

3.3 Two Critical Ideas

The recoupling step leads to a critical idea forming the fundamental basis of view-based ab-

straction. The idea is that, given the six-step implementation-coupling model, modularity is pre-

cluded by an implementation coupling only if that coupling is allowed to persist through future code

modifications when the coupling is no longer valid.

For example, suppose after dispatch-expression was coupled to type?'s implementation, type?'s

implementation was modified (as in Figure 1-5) to be:

(define (type? type-keyword expression)
(eq? type-keyword (fast-exp-type? expression)))

Now, instead of exp-type, the procedure fast-exp-type is used to find type symbols. In this case,
type? still maintains a valid interface, but the coupled code in Figure 1-5 does not. At this point,

there are two possibilities. The first possibility is what normally happens under black-box ab-

straction: modularity was violated and dispatch-expression's coupled implementation now has a

bug due to an invalid implementation coupling. The second possibility is to instead redo the

coupling (e.g., via Steps I-V) to ensure that either the coupling does not persist or that dispatch -
expressi on's newly coupled implementation uses fast-exp-type instead of exp-type. Either elimi-

nating the coupling or recoupling using fast-exp-type maintains the validity of dispatch-
expressi on's interface, meaning that modularity will be preserved. The first critical idea is that

this second possibility is what actually happens in the recoupling step, thereby maintaining

modularity.

From this idea, one can conclude that being able to automatically carry out the recoupling

step would provide the guarantee needed to maintain modularity. This is because the recoupling

step ensures that a coupling persists through future code modifications only if the coupling is

valid in the context of those future modifications. A maintenance programmer would thus be

free to modularly modify a program in the presence of implementation couplings, leaving the

work of ensuring validity to the computer.

The real power of this six-step implementation-coupling model and the first critical idea

drawn from it is that together, they allow the implementation-coupling problem to be reduced to

the problem of automating the recoupling step. This is now a tangible problem, and leads to the

second critical idea underlying view-based abstraction: the recoupling step can be automated if

the code analysis and coupling production steps are automated, and these steps can be auto-

mated if the boundary identification, precondition development, and modification development

steps are expressed in an imperative programming language. This coupling language for automat-

ing and expressing various steps draws inspiration from the established research efforts de-

scribed in Chapter 2 and is formally presented in Chapter 4.

These two critical ideas led to the development of the view-based abstraction model and

methodology. This dissertation therefore addresses the implementation-coupling problem by de-

veloping this model and methodology for automating the recoupling step.

3.4 View-Based Abstraction

The view-based abstraction model is based on black-box abstraction. View-based abstrac-

tion, however, permits implementation coupling via the process given by Steps I-VI. To accom-

plish this, view-based abstraction provides a coupling language for expressing the results of

boundary identification, precondition development, modification development and couplers

(which can then invoke code analyses and coupling productions). View-based abstraction also

specifies a component called the view invalidation/recoupler to carry out the recoupling step.

View-based abstraction is backwards compatible with black-box abstraction, is language inde-

pendent, and is incremental. Being a straight-forward extension of black-box abstraction also

makes view-based abstraction easier to use and understand.

Below, the view-based abstraction model and methodology are summarized at a high level.

The model and methodology are then presented in more detail, are formalized, and are related

to the dispatch example.

3.5 Summary of the View-Based Abstraction Model

The black-box abstraction model (illustrated in Figure 1-1) relates three kinds of compo-

nents: modules, interfaces, and implementations. Modules can be combined via interface cou-

pling to form new compound modules, and implementation coupling is prohibited.

By comparison, the view-based abstraction model (see Figure 1-7) extends black-box ab-

straction with two components, one mechanism, and a coupling language: views and contexts, a

view invalidation/recoupler, and a coupling language. Views hold the results of code analysis. A

view is a mapping from one or more program expressions to properties about those expressions.

A naming view, for example, includes a mapping from formal parameters (i.e., a "def") to vari-

able references (i.e., a "use"). Views are invoked as needed to test preconditions, where

"invoking a view" means computing the view's mapping. A context is a group of program ex-

pressions and its associated views. Contexts typically correspond to black-box abstraction mod-

ules, and are used to limit the extent of preconditions, modifications, and views. When a view is

invoked on a context, for example, the view analyzes nothing beyond the expressions in the

context.

In the view-based abstraction model, programmers do not perform implementation cou-

plings; couplers do. Couplers are written in the coupling language: an imperative, program-

transformation-based programming language. The coupling language is used to express the re-

sults of boundary identification, precondition development, and modification development.

These are combined to form couplers that perform the coupling production step. Couplers cre-

ate contexts, ensure the proper views are invoked, test preconditions, and couple code via Step

IV modifications when those preconditions are valid.

The view invalidation/recoupler carries out the recoupling step. Each time a coupler per-

forms an implementation coupling, it registers the coupler with the view invalidation/recoupler.

When a coupled context's views or a coupling context's views become invalid (e.g., the con-

text's expressions are modified), the view invalidation/recoupler re-invokes the coupler that cre-

ated the coupled context. The coupler recouples the context only if the corresponding precondi-

tions are still valid.

3.6 Summary of View-Based Abstraction Methodology
The view-based abstraction model is designed to support implementation coupling via Steps

I-VI. The view-based abstraction methodology supplements Steps I-VI with Steps i-vi as given

below:

I. Boundary Identification
i) Context Identification - Set up contexts corresponding to these abstraction boundaries

II. Precondition Development

ii) Predicate Development - Write predicates expressing the preconditions

III. Code Analysis

iii) View Development - Ensure the views needed to validate the predicates are available

IV. Modification Development

iv) Action Development - Write actions expressing the modifications

V. Coupling Production

v) Coupler Production - Create a coupler from the predicates and actions, invoke the

coupler, and register the coupling with the view
invalidation/recoupler if successful

VI. Recoupling

vi) Invalidation/Recoupling - Invoke the view invalidation/recoupler

The model and the methodology presented in this overview are described in the sections that

follow.

3.7 View-Based Abstraction Components

3.7.1 Views

Views fit into the implementation coupling process at the code analysis step. A view com-

putes, contains and manages semantic properties of a group of program expressions. These se-

mantic properties can be used to test a precondition's validity. Formally, a view is a mapping

from program expressions (or other objects) to their semantic properties:

V = {((explobj) -- computed-property)* }

computed-property = obj

The meaning of computed-property with respect to exp depends on the particular view, V. For in-

stance, the alpha view (detailed in Section 4.6.2) maps formal parameters to variable references

and to variable mutations. Variable references and variable mutations are also mapped back to

formal parameters. Additionally, the alpha view maps a group of expressions to the list of un-

bound variables in that group.

A different view used by the dispatch example is the liar view, based on the LIAR data-flow

analysis algorithm.[79] This view maps expressions to data-flow properties. Figure 3-2 is a

graphical representation of the mapping for repeated's formal parameter f, with respect to the

group of given program expressions. It shows that f may be assigned one of two procedure val-

ues or any values named by the vari-

able proc. It also shows that f's value

may be applied to the value of the

variable current. This figure does not

illustrate the fact that as a parameter to

a top-level procedure, f may be bound

to any denotable value.

Each implemented view provides

an interface containing functions for

creating, invoking, retrieving, merging,

and modifying the view's mapping. For

instance, in the dispatch example, en-

sure-alpha-view-computed! is the func-

tion invoked to compute the alpha view

(on a context, described next), and var-

binding->mutation is the function used to

(define repeate
(lambda (n

(lambda (arg)
(let loop ((n n)

(current arg))
(if (= n O) k%

current
(loop (- n 1)

Scurrent)))))))

(define make-repeated-proc
(lambda (proc

(lambda (n arg)
((repeated n proc ') arg))))

(define nth-cdr
(make-repeated-proc -

(define sauare-n-times
(make-repeated-proc

(cons (nth-cdr 3 '(1 2 3 4))
(square-n-times 2 5))

Figure 3-2 - Partial Data Flow Analysis on f

find all the set! expressions that mutate dispatch-

expression's formal parameter, exp. The view interface specification is presented in Chapter 4.

By abstracting away the details of computing common collections of program properties,
views allow preconditions to be developed at a clearer and higher level of understanding. By
using views, preconditions are freed from having to specify the details of how a semantic pro-
gram property is computed. For instance, the precondition P,' says, "the variable exp is not mu-
tated via set!". This precondition does not specify how the mutation properties of exp are deter-
mined. The way in which those properties are determined has instead been delegated to a code
analysis naming view. This separation between semantic preconditions and semantic program
properties implies that P,' does not have to commit to a particular algorithm for determining
exp's mutation sites. The actual algorithm will instead depend on the implementation of the par-
ticular view chosen to provide the information.

In view-based abstraction, couplings persist based on the validity of the views used to vali-
date their preconditions. A view is valid so long as the program expressions upon which the
view information is based are not modified. When these expressions are modified, the corre-
sponding views become invalid. Preconditions that depend on the validity of the view informa-
tion may then become invalid themselves. These invalid preconditions can then invalidate exist-
ing couplings. This is what happens when the Figure 1-5 invalidating implementation is substi-
tuted for the Figure 1-3 coupling code. This invalidation cascade can be reversed by updating
the view, re-testing the preconditions, and re-coupling the code if the preconditions are valid.

JvJ
))

3.7.2 Contexts

Contexts correspond to the boundary abstraction groupings of program expressions. In

view-based abstraction, contexts are also used to limit the number of expressions that a view

must analyze. This implies that the program properties contained in a view are with respect to a

given context. Contexts can be formalized as:

C =< {exp*}, {V*} >
Each context is composed of a set of program expressions and a set of views containing

properties of those expressions. As the equation above shows, a view is always associated with a
context. A view has no meaning outside of its associated context's expressions.

The dispatch example has two clear contexts: the context containing dispatch-expression

and the process-<exp> definitions, and the context containing type?, exp-type, and the other ex-

pressions for determining a decaf-java expression's type. These two contexts line up with the

dispatch example's abstraction boundaries, and are stored in two files. The function make-

context-from-files is actually used in the dispatch example to create the two contexts.

Contexts can also be combined into larger contexts. Since a view can analyze the expres-

sions in exactly one context, merging is an important way to analyze the union of expressions in

several contexts. In addition, when contexts are combined, their views are too. This means that

views must provide a merge function that the context-combining functions (i.e., merge-contexts,

merge-contexts!) can invoke.

3.7.3 Coupling Language

The coupling language is an imperative language based on program transformations. The

coupling language layers five main constructs over an imperative base language (such as

Scheme[49], for this dissertation). These four constructs are: predicates, actions, dispatchers,

rules, and couplers. Preconditions are expressed as predicates, program modifications as actions,
conditional rewrite rules as dispatchers, combinations of constructs as rules, and implementation

couplings as couplers. These constructs are described below.

3.7.3.1 Predicates

A predicate is an imperative expression of a Step II precondition. A predicate may also use

the program properties stored in a view to determine whether a particular set of expressions in

the view's associated context satisfy a precondition. Predicates that use views that conservatively
approximate program properties will correspondingly be conservative approximations to the

preconditions they express. Predicates have the following signature:

Pred: Context x exp* -- bool

bool: truelfalse

A predicate returns true if the precondition it implements is valid, and false otherwise. A sample

predicate related to the dispatch example is given below. This predicate returns a true value

when the given variable binding is not mutated via set! in a given context. The code for this

predicate is further explained in Chapter 4.

(define predicate/no-mutations
(make-explained-predicate (lambda (vform context variable-binding)

(null? (var-binding->mutations variable-binding context)))
"identifying variable bindings with no mutations"))

3.7.3.2 Actions

An action is an imperative expression of a Step IV program modification. Actions uncondi-

tionally modify a context's expressions. Actions are also free to use views for locating expres-

sions to be modified, or for gathering sub-expressions to be used in a modification. Actions have

the following signature:

Action: Context x exp* -- bool, modifies Context

An action returns true if the modification was successful and false otherwise. The following ac-

tion renames a variable and its references to foo-bar. It depends on a valid alpha view and on

the alpha view function var-binding->var-refs to gather a variable binding's references. Action

implementation is further discussed in Chapter 4.

(define action/rename-foo-bar
(make-explained-action (lambda (vform context variable-binding)

(for-each (lambda (var) (replace var 'foo-bar))
(var-binding->var-refs variable-binding context))

(replace variable-binding 'foo-bar)
#t)

"renaming variable references and their binding to foo-bar"))

3.7.3.3 Dispatchers

Dispatchers correspond to the simplest kinds of couplers. A dispatcher is a simple combina-

tion of a predicate and an action. A dispatcher first runs a predicate. If the predicate is true, the

dispatcher runs the action. Dispatchers have the following signature:

Dispatcher: Context x exp* -4 bool, can modify Context

A dispatcher returns true if successful, and false otherwise. Dispatchers are similar to what are

commonly referred to as conditional rewrite rules, as illustrated in Figure 3-3. Dispatchers differ

from typical rewrite rules in that dispatchers permit non-semantics-preserving transformations

(via actions), can depend upon non-local program properties (via views), and, as is later dis-

cussed, can rely upon user interaction.

((lambda (x)
Syntactic Free variables in

Precondition E) Y do notY do not
Y) SemanticY) appear in E and Precondition

Y is functional
Modification - E [Y / x]

Figure 3-3 - Conditional Rewrite Rule

The following code combines the predicate and action given above to produce a dispatcher that

renames a given variable to foo-bar if the variable is not mutated via set! in a given context:

(define dispatcher/rename-to-foo-bar
(make-simple-dispatcher predicate/no-mutations action/rename-foo-bar))

3.7.3.4 Rules

Rules are combinations of predicates, actions, dispatchers, or other rules. In fact, a dis-

patcher is just a simple, but common kind of rule. Rules are used to build couplers, which are

responsible for producing one or more complete implementation couplings. A complete cou-

pling means creating the contexts, ensuring that the proper views are computed on the right

contexts, running dispatchers on the right program expressions and contexts, and registering

couplings with the view invalidation/recoupler. Rules have the following signature:

Rule: Context x exp* -- bool, can modify Context

A rule is created from a control structure and a set of coupling constructs, usually dispatchers or

other rules. The control structure is a function that takes a set of coupling constructs and returns

the rule itself. For example, the control structure below creates a context, ensures the alpha view

is computed on that context, invokes all of its passed-in coupling constructs, and registers a suc-

cessful coupling with the view invalidation/recoupler. Most control structures will take this form.

The rule that follows is created using this control structure. Writing and understanding code like

this is further discussed in Chapter 4.

(define (make-foo-bar-control-structure filel)
(lambda (vforms)

(lambda (vform context exps)
(let ((context (make-context-from-file filel)))

(ensure-alpha-view-computed! context)
(if (for-all? vforms

(lambda (vform) (do-vform vform context exps)))
(begin (register-coupling! context vform)

context)
#f)))))

(define rule/rename-to-foo-bar
(combine-vforms (make-foo-bar-control -structure "test-file.scm")

(verbose-expl-combiner "renaming variables to foo-bar")
(list dispatcher/rename-to-foo-bar)))

3.7.3.5 Couplers

Now that rules and contexts have been discussed, it is possible to more precisely define

what a view-based abstraction coupling is. A coupling exists when a rule modifies a context's

expressions. This rule is the coupler. The original context is the uncoupled context, whereas the

modified context is the coupled context. If the coupler's preconditions depended on a context's

views for validation, this context is called a coupling context.

In the dispatch example, the uncoupled context contains the expressions in Figure 1-2. The

coupled context contains the expressions in Figure 1-4. The context in Figure 1-3 containing the

definition for type? is a coupling context.

3.7.3.6 View Invalidation/Recoupler

The view invalidation/recoupler is responsible for performing the recoupling step. For each

coupling, the view invalidation/recoupler maintains enough information to test for the coupling's

validity and to re-invoke the coupler if necessary. Re-invoking the coupler is necessary when the

uncoupled context or coupling context is modified. In the former case, modifications to the un-

coupled context must be reflected in the coupled code. In the dispatch example, for instance,
adding a cond clause for a new decaf-java expression type would require recoupling. In the latter

case, modifying the coupling context potentially renders its views invalid with respect to the

coupling. Modifying type?'s implementation is an example of this kind of modification. In both

cases, re-invoking the coupler is necessary.

When invoked, the view invalidation/recoupler goes through the couplers in its registry to

decide which ones need to be re-invoked. Associated with each coupler is enough information

to determine whether an invalidation has occurred. This information can take the form of the

names and modification times of the files used to store the uncoupled context and coupling con-

text expressions.

More formally, the view invalidation/recoupler identifies any couplings making

ValidProgram(P) false, where P contains the modified context expressions. After the view in-

validation/recoupler runs, ValidProgram(P) will be true by virtue of the view invalida-

tion/recoupler having re-invoked the couplers that produced the invalid couplings.

3.8 View-Based Abstraction Methodology

The view-based abstraction model provides a set of components designed to support the

implementation coupling process given in Steps I-VI. The view-based abstraction methodology

supplements Steps I-VI with Steps i-vi, given above in Section 3.6. Each of these supplemental

steps is discussed below.

3.8.1 Step i - Context Identification

In the context identification step, the program expressions are grouped into contexts. This

grouping is important, as views, coupling constructs, and the view invalidation/recoupler all per-

form their functions with respect to contexts. Since contexts can be combined, smaller contexts

are a good starting point. Contexts are usually created by a coupler's control structure, and then

passed on to the appropriate dispatchers and rules.

As discussed earlier, the dispatch example has two contexts: one containing dispatch-

expression and the process-<exp> definitions, and a second context containing type?, exp-type,

and the other expressions for determining a decaf-java expression's type. These contexts are

created by the coupler's control structure from the files containing the respective expressions.

3.8.2 Step ii - Predicate Development

In this step, predicates expressing the Step II preconditions are implemented using the im-

perative coupling language. Predicates are free to invoke view retrieval functions to extract

properties about an expression in a context. For the dispatch example, P,' and P2' suffice as pre-

conditions, and must therefore be expressed as predicates in the predicate development step.

For P,', one predicate is needed to ensure primitives are not redefined, one is needed to ensure

that dispatch-expression's formal parameter is not mutated via set!, one is needed to check cond

clause predicates, and one is needed to check cond clause consequents. One predicate is needed

to validate P2'.

3.8.3 Step iii - View Development

In the view development step, one must ensure that any views required to validate the de-

veloped predicates are implemented and available. The required views can be determined by

inspecting the predicates for the view retrieval functions they call (e.g., var-bi ndi ng->mutati ons)

or by a predicate's specification. If a desired view is not available, it must be implemented as

discussed later in Chapter 4.

Given the description of P,' and P2' above, it is clear that the predicates will need two views:

a naming view and a data-flow analysis view. The naming view is used to find possible muta-

tions among other things, and the data-flow view is used to ensure that in the cond predicate

clauses (<type?> <symbol> <exp>), the operator <type?> only references the value of type?. These

views are provided by default in the view-based abstraction implementation discussed in Chap-

ter 4. Chapter 4 also demonstrates the implementation of a simple view. For the dispatch exam-

ple, it suffices for now to keep track of which default views are required.

3.8.4 Step iv - Action Development

For the action development step, the modification developed in the modification develop-

ment step is implemented as an action in the coupling language. Like predicates, actions are free

to invoke view retrieval functions. Unlike predicates, actions use views to locate the expressions

to be modified, or to gather code to be used in a modification. Since actions are imperative,

they directly modify the original code into the desired code.

In the dispatch example, it is necessary to invoke a view function while modifying dispatch-

expression because the action needs part of type?'s code (specifically, the call to exp-type). One

action is necessary for the dispatch example; the action that takes the original dispatch-

expression code into the coupled version.

3.8.5 Step v - Coupler Development

Under view-based abstraction, the coupler development step involves combining the predi-

cates and actions into dispatchers, then combining the dispatchers into a single, main rule (or

coupler). The reason a single rule is necessary is that the view invalidation/recoupler invokes a

single rule when an invalid coupling is detected. This condition does not result in any loss of

generality, as rules are easily combined.

A coupler's control structure creates any necessary contexts, ensures the views identified in

Step iii are computed, invokes other rules and dispatchers on the appropriate set of expressions

and contexts, and registers any successful couplings with the view invalidation/recoupler.

3.8.6 Step vi - Invalidation/Recoupling

This is the most straightforward of the steps. The view invalidation/recoupler must be an in-

vokable function, and performing the invalidation/recoupling step means invoking this function

after the code base has been modified, but before any coupled code is run. This function can

be invoked eagerly (immediately after a code modification), lazily (before any modified code is

run), regularly (by a cron job or by a programming environment) or manually (by the pro-

grammer).

Chapter 4

ViewForm

There are a variety of ways to implement view-based abstraction as described in Chapter 3. My

approach is to relate the view-based abstraction implementation to the six-step coupling process.

I also strive to simplify the interfaces typically used by the programmer while providing more

complex and more powerful interfaces for experienced programmers. The result is ViewForm,

developed to experiment with the view-based abstraction model and methodology. ViewForm is

an imperative, transformation-based language layered over Scheme[49]. ViewForm performs

source-to-source transformations on Scheme code augmented with various MIT Scheme con-

structs. ViewForm also introduces a novel construct, the vform. Vforms are combinable, delega-

tion-based constructs that operate on program expressions, with respect to a context. Vforms are

used in the construction of predicates, actions, dispatchers, rules, couplers, and views.

In addition to the view-based abstraction coupling constructs, ViewForm implements vari-

ous default views, as well as a simple but fully functioning view invalidation/recoupler. View-

Form uses complexity layering to make more common uses of view-based abstraction easier to

implement. ViewForm maintains backwards compatibility with current software engineering

practice, provides incrementality, and demonstrates view-based abstraction's viability. This chap-

ter's goal is to describe ViewForm to the point that a reader could begin implementing cou-

plings via Steps i-vi.

4.1 ViewForm Overview Scenario

Figure 4-1 illustrates a high-level overview of ViewForm. This scenario illustrates how a

coupling is created using ViewForm, and how the view-based abstraction components fit to-

gether inside ViewForm. The coupler in the figure calls on ViewForm to take the source code

and parse it into viewcode, ViewForm's internal program representation. The coupler then

groups the viewcode expressions into contexts, and proceeds to invoke selected views on se-

lected contexts. At this point, the coupler can apply various dispatchers to specific expressions

with respect to a context. A dispatcher's predicate can use the view information to validate a

precondition, and a dispatcher's action can modify a context's expressions. Once the coupler

has finished invoking the dispatchers, it can register the coupling (if any) with the view invalida-

tion/recoupler (not shown). The coupled contexts can be output by calling the unparser on the

appropriate contexts. The output of ViewForm's unparser is suitable for direct interpretation or

compilation. It is important to note that the output is not intended to replace the original code.

Rather, ViewForm should be thought of as a preprocessor for the code; its output is subject to

automatic regeneration. The "explanations" in the figure represent components that can be in-

voked to provide a description of the associated construct's functionality.

The ViewForm view invalidation/recoupler relies upon file modification times to determine

whether a context's original expressions have been modified."* When a coupling is registered,

the view invalidation/recoupler notes every coupling context's and coupled context's corre-

sponding file modification times. When invoked, the view invalidation/recoupler checks through

its registry for files that have been modified since it was last invoked. If any are found, the view

invalidation/recoupler assumes that views computed from those contexts are invalid. The cou-

plers that originally coupled the contexts are then re-invoked to produce valid, freshly coupled

code.

In the following sections, the more interesting and relevant ViewForm interface functions

are documented and described (the remainder are given in Appendix A). First, viewcode and

contexts are described, followed by ViewForm's coupling constructs. ViewForm's default views

and the view invalidation/recoupler are documented and described afterwards. The ViewForm

code used to couple the dispatch example is then presented. Throughout this section, referring

back to Section 3.7 is recommended as a way to relate the ViewForm constructs back to their

corresponding view-based abstraction components.

4.2 Viewcode

The ViewForm parser builds viewcode out of Scheme objects. These Scheme objects are

created from Scheme expressions, passed in standard quoted form to functions like make-context

or created from files containing Scheme code.tt When the viewcode is ready for output, it is

unparsed back into Scheme code that can be interpreted or compiled. The parser is built into

the implementation of every ViewForm function that takes source-level input.

The parser performs some simple manipulations on the input before rendering the view-

code. Some manipulations bootstrap the transformation process, some ensure identity for every

viewcode expression, and some canonicalize the input. The manipulations strive to keep the

viewcode as close to the original source as possible, in order to maintain any prior familiarity the

programmer may have had with the code. For example, one such manipulation is desugaring

the expression (define (foo ..) ..) into the canonical (define foo (lambda (.) ...).

Viewcode's grammar mirrors that of Scheme and as such, viewcode compound expressions

can be traversed using the standard pair operations such as car and cdr. The point where view-

code's grammar differs from that of Scheme is with respect to immutable objects. These objects

** For industrial-strength view-based abstraction implementations, a cryptographic fingerprint would be more desirable than file
modification times.

tt When reading files, ViewForm simply uses Scheme's read function to create the Scheme objects passed to the parser.

have no identity under Scheme. Since ViewForm requires identity for each viewcode expres-

sion, ViewForm automatically encloses these objects in viewcode enclosures. An enclosure gives

an object identity within a viewcode expression tree.

The viewcode operations can be invoked through the following interface functions:

(delete-exp! exp)
(replace old-exp new-exp)
(insert-after exp new-exp)
(insert-before exp new-exp)

Delete, replace, and insert viewcode expressions. Automatically maintains enclosures. new-exp can
be a quoted Scheme expression, viewcode, or any combination of the two

(vc-enc? object)

Returns #t if obj ect is a valid viewcode enclosure

(vc-enc/object vc-enc)

Returns the Scheme object enclosed by vc-enc

(vc->sexp vc-exp)

Unparses a viewcode expression into a Scheme object which can be directly evaluated

(dump-contexts contexts #!optional file-extension)

Outputs each context in the list contexts to a file, using the optional file extension if given. The
output filenames themselves are determined from the context origins

For example, in the code below, suppose the variable disp-exp refers to the viewcode for (define

dispatch-expression (lambda (exp) ..)) in Figure 1-2.

(list? disp-exp) 4 #t
(car disp-exp) 4 define ;an enclosure for define
(vc-enc? (car disp-exp)) + #t
(eq? (car disp-exp) 'define) 4 #f ;an enclosure is not a symbol
(eq? (vc-enc/object (car disp-exp)) 'define) 4 #t ;an enclosure can hold a symbol
(eq? (vc->sexp (car disp-exp)) 'define) 4 #t
(replace (car disp-exp) 'define-integrable) 4 unspecified
(car disp-exp) 4 define-integrable ;define was replaced by define-integrable
(vc-enc? (car disp-exp)) 4 #t ;parser automatically enclosed the symbol
(car (caddr disp-exp)) 4 lambda ;special-form keyword lambda (enclosed)
(cadr (caddr disp-exp)) + (exp) ;a list of the lambda's formals
(list? (cadr (caddr disp-exp))) 4 #t
(define-var/value (lambda/formals disp-exp)) + (exp) ;a nicer way to get the lambda's formals

4.3 Contexts

Contexts are groups of viewcode expressions that can then be passed to ViewForm con-

structs such as views and couplers. In addition to containing a set of expressions, each context

conceptually "contains" any views computed on its expressions. That is, each view is associated

with a single context. This means that contexts act as a kind of scoping mechanism for views.

When reasoning about views, it is therefore important to keep in mind that the properties they

provide are always with respect to a given context.

It is often useful to group expressions into contexts based on an application's abstraction

boundary granularity. By creating a context for each source-level module (or sub-module), a

conceptual correspondence can be established between a module and a context. For example,

the module code in Figure 1-2 would make a good context, as would the code in Figure 1-3.

This context to module correspondence can make it easier to reason about contexts because it

leverages on the programmer's existing understanding of the application. Even so, viewcode ex-

pressions can belong to any number of contexts, to allow context merging and copying.

Contexts also maintain a point of origin specifying where the context's original expressions

came from. The origin can be a filename or another context. A point of origin is also main-

tained for each context expression. The view invalidation/recoupler uses these points of origin to

check the validity of each context's views. A context's views are considered invalid when one of

its origins has been altered. The points of origin also allow explanations (described in Section

4.7) and users to more easily determine where any given expression originally came from. I

found this latter ability quite useful when using a working version of ViewForm to debug newer

versions.

The following ViewForm functions manage contexts:

(make-context expl ... expn)

Returns a context consisting of the viewcode expressions expl ... expn in some order

(context/exps context)

Returns a list of context's viewcode expressions

(add-exps-to-context ! context exps)
(replace-exp-in-context context old-exp new-exp)
(delete-exp-in-context! context exp)

Add, replace, and delete context expressions

(make-context-from-files filel ... filen)

Creates a context from the expressions in files fi 1 el to fi len and creates the corresponding con-
text and expression origins

(context/origin context) (set-context/origin! context origin)

Returns or sets context's origin, respectively

(merge-contexts cl c2) (merge-contexts! cl c2)

Returns a new context containing the non-redundant union of the expressions in cl and c2, merg-
ing existing views and origins (the second form destructively modifies cl)

(retrieve-view view context)

Returns the view mapping associated with the given context

(set-view! view context view-mapping)

Sets the view mapping for the view associated with the given context

(remove-view! view context)

Removes the view mapping associated with the given context

4.4 ViewForm Coupling Constructs

ViewForm predefines a set of coupling constructs for the six steps discussed in Chapter 3.

These include two primitives, predicates and actions, and three combinations, dispatchers, rules,
and couplers. These constructs are described below.

4.4.1 Characteristic Vform Interface

The coupling constructs given below refer to a characteristic vform interface. This is a proce-

dure signature (i.e., lambda-list signature), shared by the constructs, whose form is:

vform:: delegating-vform x context x vc-exps -> any-Scheme-value

delegating-vform is a vform, context is a context, and vc-exps is a list of viewcode expressions

This interface is discussed later in Section 4.5, after the ViewForm constructs and views have

been properly detailed. This is necessary to allow the vform interface discussion to demonstrate

how the ViewForm constructs are related to the vform interface. For now, it suffices to say that

predicates, actions, dispatchers, rules, and couplers are all vforms.

The coupling constructs also refer to the notion of an explanation. These descriptive con-

structs are discussed in detail in Section 4.7. While not strictly vforms, explanations also have

the characteristic vform interface.

4.4.2 Predicates

A predicate expresses one or more validating preconditions for a particular coupling with

respect to a view, a set of viewcode expressions, and a context. Predicates are conceptually simi-

lar to composition filters[2], except predicates do their work before run time. Primitive predi-

cates can be constructed as follows:

(make-predicate raw-predicate explanation)

Returns a primitive vform. Both the raw predicate and explanation must have the characteristic
vform interface. When invoked, the raw primitive is called, and is expected to return a non- #f
value if successful. When explained, expi anation produces an explanation of the predicate's pre-
condition.

Predicates typically use view retrieval functions to selectively acquire useful information about

viewcode expressions of interest, then process that information to validate a precondition on

those viewcode expressions. This implies that a predicate relying on a program analysis that

conservatively approximates program properties will therefore conservatively approximately a

precondition.

To express a precondition as a predicate, a programmer must determine which views to

use, which view retrieval functions to use, and how to use the retrieved information to compute

the validity of the precondition. Suppose, for example, that we wanted to implement a predicate

that takes a list of 1 ambda expressions and determines whether any of their formal parameters is

mutated. The alpha view previously mentioned (and whose interface is discussed later in this

chapter) computes lists of mutations. Such a list can be retrieved via the function var-binding-

>mutations. If this list is empty for a given formal, then the formal is not mutated. The predicate

below implements this functionality (ma ke - s i mpl e -expl, a higher-level function for building expla-

nations, is discussed in Section 4.7 and l ambda/formal s is just a descriptive name for cadr.)

(define predicate/no-mutations
(make-predicate

(lambda (vform context lambda-exps)
(for-all? (append-map lambda/formals lambda-exps)

(lambda (formal) (null? (var-binding->mutations formal context)))))
(make-simple-expl "for identifying lambdas with non-mutated formals")))

The raw predicate above assumes that 1 ambda-exps is a list of 1 ambda expressions. In all cases, raw

predicates must know which viewcode expressions are of interest in the vc-exps list part of the

characteristic vform interface (this list is arranged by the predicate's invoker). The raw predicate

also assumes that the alpha view has been computed on context. It can therefore use the alpha

view retrieval function var-binding->mutations to find mutations, with respect to context. If

lambda-exps were to be the list of dispatch-expressi on's lambda expression and context were to be

the context containing dispatch-expression, this predicate would return true, indicating that dis-

patch-expression's formal parameter exp is not mutated in dispatch-expression's body.

Another example is the following predicate, which returns true if every viewcode expression

given in vc-exps is a lambda expression of one formal. The predicate uses the function

type/l ambda? from the default viewcode view. type/1 ambda? returns true if its argument is a view-

code lambda expression.

(define predicate/lambda-one-formal
(make-predicate (lambda (vform context vc-exps)

(and (for-all? vc-exps type/lambda?)
(for-all? (map lambda/formals vc-exps)

(lambda (formals) (= (length formals) 1)))))
(make-simple-expl "for identifying lambda expressions with one formal")))

4.4.3 Actions

An action unconditionally modifies viewcode expressions. Some common uses for actions

include replacing operators, changing representations, inlining code, and moving code.

(make-action modifier explanation)

Returns a primitive vform. Both the modifier and explanation must have the characteristic vform in-
terface. When invoked, the modifier makes alterations to viewcode expressions and returns a non
false value if successful. The explanation produces a description of the modifier.

Like predicates, actions can use views. Unlike predicates, actions tend to use views to find ex-
pressions; that is, to navigate through the viewcode. An action's implementation typically de-

cides which expressions are needed to make the desired transformation, finds those expressions

using the appropriate views, then replaces, deletes, or inserts into the viewcode to produce the

results. For instance, suppose we wanted to implement an action that took a list of 1 ambda ex-

pressions, and changed the name of (i.e., alpha renames) each formal and its references to foo-
bar. To do this, we need to gather each formal's variable references. This can be accomplished

using the alpha view function variable-binding->var-refs. Once we have gathered the formals,
we can use the viewcode function repl ace (given earlier) to directly modify the viewcode. The

code below implements this action.

(define action/rename-foo-bar
(make-action (lambda (vform context vc-exps)

(for-each (lambda (formal)
(for-each (lambda (var) (replace var 'foo-bar))

(var-binding->var-refs formal context))
(replace formal 'foo-bar))

(append-map lambda/formals vc-exps))
#t)

(make-simple-expl "for renaming var references and their lambda formals to foo-bar")))

4.4.4 Dispatchers

Dispatchers are functionally similar to what are commonly referred to as conditional rewrite

rules (see Figure 3-3). They differ from typical rewrite rules in that dispatchers can depend on

non-local program information (via views and predicates), can be non semantics preserving (via

actions), and as discussed in Section 4.10, can interact with the user. This makes dispatchers

more expressive than the rewrite rules found in other program transformation systems I sur-

veyed[78].

A dispatcher is constructed as a combination of a predicate and an action. A dispatcher first

invokes the predicate. If the predicate returns a true value, the action is invoked. The dispatcher

returns the action's return value, or #f if the dispatcher was not applicable.

(make-dispatcher predicate-vform action-vform expl-combiner)

Returns a dispatcher whose predicate is predicate-vform and whose action is action-vform. expl -
combiner combines the predicate's and action's respective explanations.

Dispatchers are typically implemented once a set of predicates and corresponding actions have

been specified or written. In order to write a dispatcher, a programmer must determine which

predicate validates an action. For example, suppose that we wanted to rename all the non-

mutated formals in a set of 1 ambda expressions to foo-bar. We could do this by combining predi -

cate/no-mutations with action/rename-foo-bar (both defined above) into a dispatcher. The follow-

ing code defines such a dispatcher (the explanation combiner is discussed later, in Section 4.7).

If this dispatcher were passed di spatch-expression's lambda expression and context, it would re-

name every occurrence of the variable exp to foo-bar in dispatch-expression.

(define dispatcher/rename-to-foo-bar
(make-dispatcher predicate/no-mutations action/rename-foo-bar *default-expl-combiner*))

4.4.5 Rules and Couplers

A dispatcher is a kind of rule. A rule is some combination of predicates, actions, dispatch-

ers, or other rules (referred to as sub-vforms in the interface description below). A rule controls

how its sub-vforms are applied via its control structure. A control structure accepts a list of

vforms (i.e., the sub-vforms below) and returns a procedure with the characteristic vform inter-

face.

(combine-vforms control-structure expl-combiner sub-vforms)

Returns a rule with the given control structure, explanation combiner, and sub-vforms. Internally,
applies control -structure and expl -combiner to sub-vforms

Simple control structures just invoke the sub-vforms and combine the results. ViewForm pro-

vides various kinds of simple control structures (e.g., combine results conjunctively or disjunc-

tively). Users can also write their own control structures. For example, suppose we want a con-

trol structure that invokes each sub-vform (via the do-vform function, described next in Section

4.5) sequentially, on the given context and viewcode expression list. This control structure

would return a true value if all sub-vforms returned true values, but would immediately stop and

return a false value upon encountering a sub-vform that returned a false value. This kind of con-

trol structure would be useful when combining a set of predicates that must all be true. The con-

trol structure below implements this specification:

(define *conjunctive-control -structure*
(lambda (sub-vforms)

(lambda (vform context vc-exps)
(for-all? sub-vforms

(lambda (sub-vform) (do-vform sub-vform context vc-exps))))))

We can use this control structure to make a compound predicate; a rule made up of a combina-
tion of two or more predicates. Suppose we wanted a compound predicate that tested whether a

set of viewcode expressions were all lambda expressions of one non-mutated formal. This com-

pound predicate is a combination of the two predicates given in Section 4.4.2. It can be created

as follows:

(define predicate/lambda-non-mutated-formal
(combine-vforms *conjunctive-control -structure*

default-expl -combiner
(list predicate/lambda-one-formal predicate/no-mutations)))

A dispatcher using this predicate can also be defined:

(define dispatcher/rename-non-mutated-to-foo-bar
(make-dispatcher predicate/lambda-non-mutated-formal

action/rename-foo-bar
defaul t-expl -combiner))

4.4.5.1 Couplers

A coupler is a kind of rule that carries out an entire coupling. A coupler's duties corre-

spond to the coupler production step (i.e., Step v) of the view-based abstraction methodology.

These duties are: creating the appropriate contexts, ensuring the proper views are computed on

the contexts, creating viewcode expression lists, invoking sub-vforms (e.g., dispatchers), and reg-

istering a successful coupling with the view invalidation/recoupler. An implementation of these

duties is demonstrated below, in the creation of a sample control structure and coupler.

Suppose we wanted to write a coupler that renamed all non-mutated variables in 1 ambda ex-

pressions with one formal to foo-bar. We begin by writing a control structure that will be used to

construct our coupler. Like all control structures, this one assumes that the vforms passed in to it

will attempt to carry out the desired coupling. We specify that the control structure will be

passed a filename containing the expressions to be modified. The control structure can thus use

this filename to create a context using make-context-from-files. The next step is to ensure that

the proper views have been invoked. Since we will be using the compound predicate defined

above, our control structure must ensure that the alpha view is computed on the context. Next,

the control structure must create a candidate list of viewcode expressions to be given to the dis-

patcher. We want this list to include all top-level 1 ambda expressions in the context. To create this

list of candidates, the control structure first filters out any context expressions that are not top-

level defi ne's, then extracts the define expression values from those that remain. The control

structure is now ready to invoke the passed-in vforms. It invokes each vform, then checks if any
one of them succeeded. The last step is to register a successful coupling with the view invalida-

tion/recoupler ("success" means that at least one vform returned a non-false value).

(define (make-foo-bar-control -structure filel)
(lambda (vforms)

(lambda (vform context vc-exps)
(let* ((context (make-context-from-files filel))

(maybe-lambdas (map define-var/value
(list-transform-positive (context/exps context)
type/define-var?))))

(ensure-alpha-view-computed! context)
(if (list-search-positive (map (lambda (specific-vform)

(do-vform specific-vform context maybe-lambdas))
vforms)

identity-function)
(begin (register-coupling! context vform) context)
#f)))))

This control structure can now be used to define our desired rule (the implementation of the
higher-level explanation combiner verbose-expl -combiner is given in Appendix B):

(define coupler/rename-to-foo-bar
(combine-vforms (make-foo-bar-control -structure "test-file.scm")

(verbose-expl-combiner "renaming non-mutated lambda formals to foo-bar")
(list dispatcher/rename-non-mutated-to-foo-bar)))

4.5 Vforms

ViewForm builds its coupling constructs and views from vforms. Vforms are first-class ob-
jects that can be composed into higher-level vforms. A vform consists of an identifier, a control
structure, an explanation combiner, and a set of sub-vforms. Non-primitive vforms are con-
structed using make-vform, given below.

(make-vform identifier control-structure expl-creator sub-vforms)

Returns a vform. identifier is a symbol. expl -creator and control -structure take a list of
vforms (i.e., sub-vforms) and return a procedure with the characteristic vform interface.

The control structure's job is to manage the invocation of the sub-vforms, while the explanation

creator's job is to combine the sub-vform explanations into a single explanation. While make -
vform is not used in other parts of the dissertation, it illustrates and substantiates the deep com-
monality between coupling constructs, as suggested by the similarity of their formalization in
Section 3.7.3. This commonality is typified by the characteristic vform interface:

vform:: delegating-vform x context x vc-exps -> any-Scheme-value

This is the signature for every kind of coupling construct implemented in ViewForm. So far, the
purpose of context and vc-exps has been demonstrated, but the purpose of del egating-vform has

not. Earlier in this dissertation, the coupling constructs were described to be delegation based.

This is what delegating-vform is for. delegating-vform is the vform that should be invoked for a

delegated (i.e., recursive) vform invocation. Before showing how this is done, the remaining in-

terface functions for vforms are given. Note that a vform's sub-vforms can be inserted, replaced,
modified, or examined. This feature was designed with the benefits of translucent proce-

dures[80] in mind.

(vform/vforms vform)
(set-vform/vforms! vform)

Retrieves or sets the sub-vforms in vform.

Invoking a vform is done using either of the following two forms:

(do-vform vform context vc-exps)

Returns the result of invoking vform on the viewcode expression list vc-exps, with respect to con-
text.

(delegate-vform vform context vc-exps delegating-vform)

Returns the result of invoking vform on the list of viewcode expressions vc-exps on behalf of del e-
gating-vform, with respect to context.

The difference between the two ways of invoking vforms is that do-vform will invoke vform on its

behalf whereas del egate-vform will invoke vform on del egating-vform's behalf. This is straightfor-

ward delegation, similar to what is found in [1].**

For example, referring to coupl er/rename-to-foo-bar's control structure above, do-vform is

used to invoke each speci fi c-vform (which in this case, is just di spatcher/rename-non-mutated-to-

foo-bar) on behalf of specific-vform. This means that di spatcher/rename-non-mutated-to-foo-bar

will be given a reference to itself as its delegating vform (as opposed to a reference to cou-

pler/rename-to-foo-bar). Dispatchers, however, always use delegate-vform when invoking their

predicate and action. This means that both the dispatcher's predicate, predi cate/1 ambda -non-

mutated-formal, and its action, action/rename-foo-bar, will receive a reference to dis-

patcher/rename-non-mutated-to-foo-bar as their delegating vforms (as opposed to references to

themselves). This implies that the expression (do-vform vform context ...) evaluated within the

body of the predicate or action would invoke the dispatcher.

This can be contrasted with what would happen if make-foo-bar-control -structure had used

(delegate-vform specific-vform context maybe-lambdas vform) instead of (do-vform specific-vform

context maybe-lambdas). In this case, the dispatcher would receive a reference to coupler/rename-

* In implementation terms, do-vform passes vform as the first argument to the vform actually run, whereas del egate-vform
passes del egati ng-vform as the first argument to the vform actually run.

to-foo-bar as it delegating vform (assuming the coupler was invoked using do-vform). The dis-

patcher would delegate this down to its predicate and action. If the predicate or action were

now to evaluate the expression (do-vform vform context J, the coupler would be invoked (as op-

posed to the dispatcher being invoked).

Delegation provides a variety of benefits. One important benefit is the ability to reuse

vforms. For instance, if we layer a new vform over an existing vform which uses del egate-vform

internally, we can assume that any recursive vform invocations from within the existing vform

will be to our new vform (if the existing vform had used do-vform, a recursive invocation would

have been to the existing vform itself). This is no more than delegation's version of class-based

inheritance in an object-oriented language. This technique was used to implement MIT Scheme

macros over existing views, by simply layering new vforms over the existing views. This tech-

nique is demonstrated in Section 4.6.4.

Since make-vform takes vforms as arguments, there must be a way to create truly primitive

vforms. ViewForm supports the creation of primitive vforms with the following functions. These

functions were used to define constructors such as make-predicate, make-action, and make-view.

(make-primitive-vform identifier vform-proc explanation-proc)

Returns a primitive vform. vform-proc and expl anation-proc are both procedures having the char-
acteristic vform interface

(designate-primitive-vform-identifier! identifier)

Designates identifier as a primitive vform identifier

4.6 Views

Under the view-based abstraction model, views provide a mapping between context expres-

sions and their properties with respect to a context. ViewForm provides several default views:

the viewcode view, the alpha view, and the liar view. ViewForm also provides a higher-level

view, the walker view. The walker view is a code walker that can be used as the basis for creat-

ing other views.

Views can be built as combinations of vforms. For example, a view can be implemented as

a rule with a preemptive sequential control structure (like *conjunctive-control -structure*). This

rule can invoke a set of dispatchers on each given viewcode expression. The predicates within

the dispatchers can test for the presence of a particular type of viewcode expression (e.g., using

type/lambda?, type/define-var?, etc.). Instead of modifying the viewcode, however, the corre-

sponding actions can modify the view's information data structure. The default ViewForm views

(except for the viewcode view) are all implemented this way."~ The corresponding function for

creating a view is:

(make-view control-structure expl-combiner vforms)

Returns a vform that computes view information. control -structure and expl -combiner both take
a list of vforms as their parameter, and return a procedure with the characteristic vform interface.
vforms is the list of vforms passed to control -structure and expl -combiner.

Unlike predicates, which normally capture a programmer's criteria for validating a particular

viewcode modification, views capture the program properties necessary to actually validate those

criteria. This separation between computing specific coupling preconditions and computing gen-

eral program properties simplifies a predicate's construction for two reasons. The first is by ab-

stracting away the usually complicated program analysis implementation details. That is, using

views is simpler than writing them. The second reason is that views make selected properties

salient, while hiding other properties. For example, a naming view does not also return (or

compute) the results of a program's control flow or data flow.

Each view provides an interface function for computing, retrieving, merging, and copying its

program property mapping. The interfaces for ViewForm's default views are discussed later in

this section. I considered developing a canonical interface for accessing view information, but

concluded that such a standard would only constrain the kinds of program information ex-

pressible by views. What might be less constraining would be to standardize an interface for par-

ticular kinds of information, such as data-flow information. This would facilitate reuse or substi-

tution of views that capture the same information to differing precisions or using differing

amounts of computational resources.

Programmers are free to develop their own views. Besides the absence of a view for com-

puting a set of desired program properties, various concerns can motivate a programmer to

write new views. Two such concerns are precision and performance, especially for views that

collect non-local information such as data-flow quantities. These analyses tend to tradeoff preci-

sion for time, or time for space[3]. Depending on the size of the viewed context or the desired

precision, a programmer may want a view that makes different tradeoffs. Since computing views

can be the performance bottleneck in ViewForm, carefully selecting rules that use views with the

proper performance characteristics might be required to successfully complete a coupling. A

simple example of creating a view is given later, in Section 4.6.4. A more complex example is

provided in Chapter 5. For now, the remaining functions used to create and manage views are:

IS The viewcode view differs only because it actually implements the type/<exp>? functions.

(register-view! view merge merge! copy init)

Registers a view, along with a function to merge views, a function to destructively merge views, a
function to copy views, and an initializing value (the merging and copying functions are called by
merge-contexts and merge-contexts!).

(view/merge-proc view) (view/merge!-proc view) (view/copy-proc view)
(view/init view)

Returns the respective procedures and the initialization value registered by register-view!

(ensure-<view-name>-view-computed! context # ! optional vc-exps)

A user-defined function that ensures the named view is computed on vc-exps with respect to con-
text. If the list vc-exps is not given, assumes that the named view is to be computed on all expre s-
sions in context.

Since view information can certainly be constructed by hand, views can be regarded as ma-

chine-readable descriptions of program properties. Views can thus serve as specification lan-

guages for properties that may otherwise have been English language descriptions of a pro-

gram's implementation. I do not explore this use for views, but note that specification languages

is an active field of research.

The default views provided by ViewForm are described below. The descriptions contain

the more interesting view interface functions.

4.6.1 Viewcode View

The viewcode view is available by default on all viewcode expressions. It provides en-

hanced viewcode navigation functionality, allowing movement both up and down the expression

tree. It also provides fine-grained expression typing. The viewcode view is automatically com-

puted on any Scheme expressions parsed by ViewForm.

The viewcode view provides the following functions for each viewcode expression:

(exp/type exp)

Returns the expression's type.

(type/<type>? exp)

Returns #t if exp is of type <type>.

(up-link-n exp n)

Traverses n indirections up the expression tree, and returns the resulting expression. Up-linking a
top-level context expression returns the value of the top-level variable *top-level *.

When expressions are parsed, the viewcode view computes an expression type for each view-

code expression and recursively up links each expression. The viewcode view provides predi-

cate functions to discriminate among these expression types. The functions type/l ambda? and

type/define-var? used above, for example, return true if the viewcode expression passed to them

are of the form (lambda (-.) ..) or (define <var> ..), respectively. The full set of expression-type

discriminator functions are given in Appendix A.

Up linking provides real viewcode navigability. Compound Scheme expressions are repre-

sented as lists in viewcode, but lists are not doubly linked by default in Scheme. Up linking pro-

vides the back link that would otherwise be present in a doubly-linked list. Without this func-

tionality, examining or depending on parent expressions would not be expressible. The follow-

ing transcript demonstrates up linking assuming that disp-exp is the viewcode for (define di s-

patch-expression (lambda (exp) ...) in Figure 1-2:
(define (up-link exp) (up-link-n exp 1))
(eq? disp-exp (up-link (car disp-exp))) 4 #t ;up-linking is the inverse of car and cdr
(first (lambda/formals (define-var/value disp-exp))) 4 exp
(up-link (first (lambda/formals (define-var/value disp-exp)))) 4 (exp)
(up-link (lambda/formals (define-var/value disp-exp))) + (lambda (exp) (cond .))
(up-link (define-var/value disp-exp)) 4 (dispatch-expression (lambda (exp) (cond ...)))
(eq? (up-link disp-exp) *top-level*) 4 #t

As discussed earlier in Section 4.2, some Scheme expressions, such as numbers and symbols,
are not mutable. This makes it difficult to up link them via their identity. For this reason, view-

code represents these expressions using structures that do have identity, the enclosures whose in-

terface was given in Section 4.2. Enclosures are also typed by the viewcode view with functions

such as type/symbol?.

4.6.2 Alpha View

The alpha view performs the equivalent of an alpha conversion. Unlike most alpha conver-

sions, however, the alpha view does not modify variable names. Instead, it maintains a two-way

association between each variable reference (and mutation) and its corresponding variable bind-

ing site. A variable binding site is an enclosure holding a 1 ambda formal parameter, a define vari-

able, or any other identifier that equivalently introduces a new variable.

The alpha view functions are:

(ensure-alpha-view-computed! context)

Ensures that the alpha view has been computed on the expressions in context

(context/alpha context) (set-context/alpha! context view-mapping)

Returns or sets the view mapping associated with context, the former returns #f if none exists

(var-ref->var-binding var-ref)

var - ref is a variable reference. Returns a list of var - ref's variable bindings sites

(var-binding->var-refs var-binding)

var-binding is a variable binding. Returns a list of variable references to var-binding

(var-binding->mutations var-binding context)

Returns a list of variables in set! and fl ui d-l1 et expressions (and define expressions, if redefined)
that refer to the variable in the binding site var-binding with respect to context

(var-mutation->binding var-mutation context)

Given a mutation variable var-mutati on, returns the corresponding variable binding site or #f if
none exists

(top-level-defined? var-name context)

var-name is a symbol. Returns the top-level variable binding site in the context for the variable
named var-name. Returns #f if none exists

(top-level-names context)

Returns a list of all the binding sites of each top-level name defined in context

(unbound-var-lookups-in-context context)

Returns a list of all the unbound variable references in context.

(unbound-mutations-in-context context)

Returns a list of all the unbound variable mutations in context

(merge-alpha-views al a2)

Returns a new alpha view containing the merged alpha views al and a2

(merge-alpha! al a2)

Destructively merges alpha view a2 into al

4.6.3 Liar View

The liar view is a data-flow analysis based on LIAR[79]. It computes a graph whose nodes

are viewcode expressions and whose edges denote that a run-time value can flow from one

node's corresponding expression to another. Some compilers perform similar kinds of graphs for

use in optimizing programs, although the graphs are typically computed intraprocedurally and

not interprocedurally.

More specifically, the liar view collects the following information on each viewcode expression:

* A set of producers; expressions that produce values that can potentially end up being the
given expression's return value.

* A set of consumers; expressions that can potentially receive or consume any of the ex-
pression's return values.

In Figure 3-2, for example, the binding variable f's producers are the variables proc and cdr, and

the lambda expression. Its consumer is the variable reference f. An expression's producers are

classified into the following categories:

* Predefined procedures that can potentially be the value of the given expression

* User-defined procedures that can potentially be the value of the given expression

* Special forms that can potentially produce the value of the given expression

* Constants that can potentially be the value of the given expression

The relevant liar interface functions are:

(ensure-liar-view-computed! context)

Ensures that the liar view has been computed on the expressions in context

(context/liar context) (set-context/liar! context view)

Returns or sets the liar data-flow analysis view associated with context. Returns #f if none exists

(exp->recvs exp context)

Returns a list of exp's consumers, with respect to context

(exp->prods exp context)

Returns a list of exp's producers, with respect to context

(exp->primops exp context)
(exp->procs exp context)
(exp->sp-forms exp context)
(exp->consts exp context)

Returns a sub-list of exp's producers whose returns values are produced primitively, are procedures,
are produced by special forms, or are constants, respectively

(merge-liar-views! 11 12)

Destructively merges liar view 12 into 11

(merge-liar-views 11 12)

Returns a new liar view that contains the merged information from liar views 11 and 12

The liar view also provides a function for determining the type of an expression's return value.

These types are different from the viewcode view expression types, which correspond to the

syntactic (and hence, static) grammatical property of an expression. For example, the viewcode

expression (fix:1+ 1 2) satisfies type/combination?, whereas its return value is of type *non-

negative-fix*. These dynamic return value types are listed in Appendix A, and are computed

by the following function:

(exp->return-types exp context)

Returns a list of exp's possible return types (see Appendix A.2), with respect to context.

One of the liar view's important properties is its performance. This property is important to pro-

grammers choosing between the liar view and other data-flow views. The liar view invocation

was optimized to trade space for time. This means that the liar view may not be able to compute

its information on large contexts. To counter balance this tradeoff, the liar merging operations

were optimized to trade time for space. This allows the liar view to be computed on large con-

texts by merging several smaller contexts on which the liar view has been invoked.

4.6.4 Higher-Order Views

ViewForm provides a higher-order view, called the walker view. This view is a top-down

code walker. By default, it recursively delegates itself to each sub-expression it finds. It is a higher

order view because it generalizes the notion of a code walker, and because it needs to be
"customized" to do specific work. This customization happens by combining the walker vform

with dispatchers (or other rules) that take action on specific kinds of expressions. In essence,
these new dispatchers override the default walker's dispatchers for those expressions. In order to

continue walking down the viewcode tree after such an override, however, the walker's views

still need to be invoked (in CLOS parlance, this means calling call -next-method). To do this, the

dispatcher doing the work must be carefully combined with the walker vform. Selecting a con-

trol structure that invokes the new dispatchers first, then unconditionally invokes the walker

vform is sufficient. This is illustrated in an example below.

walker-vform

A compound rule that recursively delegates down all the viewcode expressions in the context it is
passed. Can be combined with other rules to produce viewcode walkers

Suppose we want to define a view that maintains a list of all lambda expressions that have one

non-mutated formal, within a given set of viewcode expressions (such as dispatch-expression's

lambda). To implement this "lambda walker view", we go through a series of five steps:

1. Implement the merging and copying procedures, as well as the view initialization value

2. Implement the view dispatchers

3. Combine the dispatchers into a view

4. Register the view

5. Provide a way to invoke the view

For our desired view, Step 1 involves deciding upon a representation for the view information.

For this example, let us choose a simple list. The Step 1 code is therefore implemented as list
operations:

(define (lambda-walker-merge lambda-viewl lambda-view2)
(append lambda-viewl (list-copy lambda-view2)))

(define (lambda-walker-merge! lambda-viewl lambda-view2)
(append! lambda-viewl (list-copy lambda-view2)))

(define lambda-walker-copy list-copy)
(define lambda-walker-init '())

For Step 2, we have previously defined the predicate for our desired view: predicate/1 ambda-non-
mutated-formal. We need only implement an action that stores a l ambda expression. We write the

action to assume that the first expression in the viewcode list is the 1 ambda expression to be

stored into the appropriate lambda walker information list. This will be the list retrieved and set

by retrieve-view and set-view! (described earlier). The action is implemented below, followed

by the dispatcher combining the predicate and action.

(define action/store-lambda
(make-action

(lambda (vform context vc-exps)
(set-view! *lambda-view* context
(cons (car vc-exps) (or (retrieve-view *lambda-view* context) lambda-walker-init)))
#t)

(make-simple-expl "for storing a combination")))

(define walker/lambda-finder
(make-dispatcher predicate/lambda-non-mutated-formal

action/store-lambda
(verbose-expl-combiner "for collecting combinations")))

For Step 3, we create the view itself, using make-view:

(define *lambda-view*
(make-view (lambda (vforms)

(let ((combined-vform (apply combine-vforms-do-all vforms)))
(lambda (vform context vc-exps)

(set-view! *lambda-view* context lambda-walker-init)
(ensure-alpha-view-computed! context)
(for-each (lambda (vc-exp) (do-vform combined-vform context (list vc-exp)))

vc-exps)
#t)))

(verbose-expl-combiner "lambda-walker combination collector")
(list walker/lambda-finder *walker-vform*)))

The view's control structure begins by creating combined-vform, a combination of our dispatcher,

walker/lambda-finder, with *walker-vform* using combine-vforms-do-all. The method of combina-

tion is important. We want a combined vform that always invokes wal ker/1ambda-fi nder followed

by *wal ker- vform*, the former collecting our 1 ambda expression and the latter traversing the view-

code expression tree. combine-vforms-do-all does this, as its name suggests.

The control structure next clears the lambda walker view for the given context, and ensures

the alpha view has been computed for that context. Once this is done, the viewcode expressions

are traversed, one by one. Notice that in the call to do-vform, the vform invoked is combined-

vform. Since *wa 1 ker-vform* delegates to whatever vform invoked it (according to its specifica-

tion), the delegation will end up invoking combined-vform on every sub-expression encountered

by *wal ker-vform*. This is exactly the behavior we want, combined-vform ensures that

wal ker/lambda-finder is always invoked.

Step 4 is straightforward, using the functions defined in Step 1:

(register-view! *lambda-view* lambda-walker-merge
lambda-wal ker-merge!
lambda-wal ker-copy
lambda-wal ker-init)

Step 5 is also straightforward. ensure-lambda-view-computed! invokes the *lambda-view* vform. Af-

ter invoking the view, retrieve-view can be used to retrieve the list of lambda expressions associ-

ated with a context.

(define (ensure-lambda-view-computed! context #!optional vc-exps)
(if (not (retrieve-view *lambda-view* context))

(if (default-object? vc-exps)
(do-vform *lambda-view* context (context/exps context))
(do-vform *lambda-view* context vc-exps))))

While this example implements a relatively simple view, it illustrates two important, although

somewhat polar points. The first is that views are more complicated to write than other kinds of

vforms. The second point, on the other hand, is that given a code template such as the one

above, it is easy to substitute a dispatcher for wal ker/l ambda-finder and rename a few view func-

tions to quickly and easily create new kinds of views. This reduces the problem of creating view

akin to the lambda walker view to the problem of writing the right dispatcher. While not all

views can be written this way, many simple ones can.

4.7 Explanations

An explanation is not a coupling construct. Rather, explanations are associated with cou-

pling constructs. An explanation produces a description of what its associated coupling construct

vform does. This description provides the user with an effective way of determining what the

vform does, either directly or from within a control structure (e.g., when a predicate returns

false, the offending predicate can be explained). The description can be in a natural, human

language or it can be in a machine-readable language. I use the former method, but the latter

method could be useful, for example, as a machine-checkable condition for verifying a cou-
pling's modifications. Explanations are created during the creation of predicates and actions and
during the combination of vforms (as described earlier). When combining explanations, more
abstract explanations can be provided to give more concise descriptions of the corresponding,
combined coupling constructs.

The explanations used in this dissertation are created via the following function:

(make-simple-expl text)

text is a string. Returns an explanation that produces, to the standard output, a carriage return and
"<type> text" where <type> is the explained vform's identifier

The following function invokes an explanation:

(explain! vform context vc-exps)

Produces an explanation of vform's functionality on the viewcode expressions vc-exps with respect
to the context, context.

The following code demonstrates how an explanation combiner is implemented. This combiner
produces an explanation that, when explained, identifies the type of the vform being explained

and then recursively explains each of the combined vforms:

(define *default-expl -combiner*
(lambda (vforms)

(lambda (vform context vc-exps)
(format #t "~S containing " (vform/identifier vform))
(for-each (lambda (vform) (explain! vform context vc-exps))

vforms))))

Various functions for embedding explanations into predicates and actions are also provided by

ViewForm:

(make-explained-predicate raw-predicate text-string)
(make-explained-action modifier text-string)

Return vforms similar to those returned by make-predicate and make-action, except that, when ex-
plained, the vforms return a string of the form, "predicate for identifying <text-string>" and "action
for <text-string>", respectively

4.8 View Invalidation/Recoupler

The ViewForm view invalidation/recoupler maintains the information needed to invalidate

and recompute couplings. When invoked, the view invalidation/recoupler checks through its reg-

istry and determines which coupled contexts have been invalidated. If the context originated

from a file, for example, it checks that file's most recent modification date. When it finds an in-

valid coupling, the view invalidation/recoupler performs a recoupling by re-invoking the coupler

that originally coupled the context. The view invalidation/recoupler interface functions are:

(register-coupling! vform context)

Registers a coupling rendered by vform on context

(unregister-coupling! vform context)

Unregisters a previously registered coupling

(vir!)

Recomputes any invalidated couplings

4.9 Dispatcher Example
Chapter 3 presented the view-based abstraction methodology. ViewForm was implemented

to allow programmers to experiment with implementation coupling using the view-based ab-

straction methodology. This section works through the methodology on the dispatch example

first presented in Chapter 1. The goal is to couple the dispatch-expression code in Figure 1-2

with type?'s implementation details from the code in Figure 1-3 to produce the coupled (and

view-invalidation/recoupler registered) dispatch-expression code in Figure 14. This example re-

lies heavily on previously discussed aspects of the dispatch example, and on previously pre-

sented sample code.

4.9.1 Boundary/Context Identification

The goal for this step is to decide how to divide the program expressions into contexts. As

previously explained, the dispatch example has two clear contexts: the uncoupled code for di s-

patch-example and the process-<exp> procedures from Figure 1-2, and type?, exp-type, and the

code for computing expression types in Figure 1-3. This code is stored in the files "linear-

cond.scm" and "types.scm", respectively. Later, these files will be passed to our coupler's control

structure which will create contexts from them. No code need be written at this point.

4.9.2 Precondition/Predicate Development

The goal for this step is to develop a set of preconditions for the coupling, then implement

them as predicates. Since we already have two adequate preconditions P,' and P2' from Section

3.2.2, we choose those. To implement these preconditions, we will write five predicates and then

combine them conjunctively. We begin by implementing the simplest precondition, which is that

predefined primitives are not re-defined. This can be accomplished by checking for the MIT

Scheme declaration (declare (usual -integrations)). This declaration allows the compiler to open

code primitives, in essence, nullifying any re-definitions. The corresponding predicate's imple-

mentation is:

(define predicate/usual -integrations (make-predicate/find-declaration 'usual -integrations))

The ViewForm library function make-predicate/find-declaration (whose definition is given in

Appendix B) looks for the given declaration in its context's viewcode expressions. The next

precondition we implement is the one stating that dispatch-expression's formal (i.e., exp), is not

mutated. To make this predicate more aesthetic, we assume the existence of the function vc-

exps/dispatch-exp-value. This function will select the viewcode expression for dispatch-

expression's value (which we expect to be a lambda expression) out of the predicate's viewcode

expression list. We will define this function later, when combining the predicates. The resulting

predicate, predi cate/no-mutati ons, uses the previously specified alpha view function var-binding-

>mutati ons. When working on the code analysis/view development step, we must remember that

this predicate requires that the alpha view be computed.

(define predicate/no-mutations
(make-explained-predicate

(lambda (vform context vc-exps)
(null? (var-binding->mutations

(first (lambda/formals (vc-exps/dispatch-exp-value vc-exps))) context)))
"identifying variable bindings with no mutations"))

The next precondition we implement checks the cond clauses in di spatch-expressi on. For this

precondition, we defined two predicates; one for a cond clause's predicate, and one for a cond

clause's consequents. We will then combine the predicates into a compound predicate. For the

cond clause predicate, we assume, for aesthetics, the existence of a function vc-exps/dispatch-exp-

formals that selects the viewcode for dispatch-expression's lambda's formals from vc-exps. We will

define this function later. The predicate below ensures that the cond predicate clause is a combi-

nation that only calls type? on a quoted symbol and on dispatch-expression's first formal. It uses

the viewcode function type/combinati on?, and the ViewForm library functions only-calls?,

quoted-symbol?, and var-bound-by?. For the interested reader, these functions are defined in terms

of basic ViewForm functions in Appendix B.

(define predicate/clause-predicate
(make-explained-predicate
(lambda (vform context vc-exps)

(let ((predicate (clause/predicate (vc-exps/dispatch-exp-value vc-exps)))
(exp-formal (first (vc-exps/dispatch-exp-formals vc-exps))))

(and (type/combination? predicate)
(only-calls? 'type? predicate context)
(quoted-symbol? (second predicate))
(var-bound-by? (third predicate) exp-formal context))))

"validating clause predicates for the dispatch example"))

The precondition for the cond clause consequents ensures that their return value is a combina-

tion whose only argument is dispatch-expressi on's lambda's formal (expected to be exp).

(define predicate/clause-consequent
(make-explained-predicate

(lambda (vform context vc-exps)
(let ((consequent (last (clause/consequents (vc-exp/dispatch-exp-value vc-exps))))

(exp-formal (first (vc-exp/dispatch-exp-formals vc-exps))))
(and (type/combination? consequent)

(= (length consequent) 2)
(var-bound-by? (second consequent) exp-formal context))))

"validating clause consequents for the dispatch example"))

Next, we combine the above two predicates into one, compound predicate. In addition to in-

voking the above two predicates on all of the cond clauses, the compound predicate also ensures

that dispatch-expressi on's value is a lambda expression whose body is a cond (thus testing another

part of Pi'). This predicate, therefore, completes the conditions given in Pj'.
(define predicate/dispatch-expression

(combine-vforms
(lambda (vforms)

(lambda (vform context vc-exps)
(let ((dispatch-exp-value (vc-exps/dispatch-val vc-exps)))

(and (type/lambda? dispatch-exp-value)
(type/cond? (lambda/body dispatch-exp-value))
(for-all? (cond/clauses (lambda/body dispatch-exp-value))

(lambda (clause)
(or (type/else? (clause/predicate clause))

(for-all? vforms
(lambda (vform)

(do-vform vform context
(list clause (lambda/formals dispatch-exp-value))))))))))))

id-expl-combiner
(list predicate/clause-predicate predicate/clause-consequent)))

(define vc-exps/dispatch-exp-value car)
(define vc-exps/dispatch-exp-formals cadr)

Since this compound predicate creates the viewcode expression list for the two predicates

above, we can define our selectors (i.e., vc-exps/dispatch-exp-value and vc-exps/dispatch-exp-

formal s) according to how we build the viewcode expression list. Notice, however, that the

compound predicate relies upon vc-exps/di spatch-val, another viewcode expression list selector.

We define this later, when writing the coupler.

The final precondition to implement is P2'. The predicate below implements this precondi-

tion by navigating into type?'s body and ensuring it is a combination that calls eq? on type?'s

formal parameter. Since eq? is symmetric, we must check both eq?'s first and second argument.
(define predicate/type?

(make-explained-predicate
(lambda (vform context vc-exps)

(let* ((type?-lambda (vc-exps/type?-lambda vc-exps))
(type?-exp-formal (first (lambda/formals type?-lambda)))
(type?-body (lambda/body type?-lambda)))

(and (type/combination? type?-body)
(only-calls? 'eq? type?-body context)
(or (var-bound-by? (second type?-body) type?-exp-formal context)

(var-bound-by? (third type?-body) type?-exp-formal context)))))
"type?'s body eq?'ing its formal to a type symbol expression"))

4.9.3 Code Analysis/View Development

The goal of this step is to determine which views are being used and to ensure that those
views exist. The predicates above need two views: a naming view and a data-flow view (used by

only-calls?). ViewForm provides two such views: the alpha view and the liar view, respectively.
Since there are no views to write, this step simply involves noting that the coupler should invoke
these views on the contexts created in the boundary/context identification step

4.9.4 Modification/Action Development

Our goal in this step is to write an action that expresses a transformation from the code in

Figure 1-2 to the code in Figure 1-4. To do this best, we must minimize the scope of the modifi-

cation. That is, we must express a transformation that depends as little as possible on surround-

ing code that a programmer performing a manual coupling would not need to examine. The

code in Figure 1-4 depends on the uncoupled dispatch-expression code in three ways: the type

symbols, the process-<exp> expressions, and the el se clause consequents. Since our predicates

have constrained the syntactic and semantic structure of the di spatch-expression code, we can

collect these expressions directly from the cond clauses:

(define collect-type-symbols
(make-cond-clause-collector type/else?

(lambda (cond-clause)
(second (clause/predicate cond-clause)))))

(define collect-process-procs
(make-cond-clause-collector type/else?

(lambda (cond-clause)
(combination/proc (last (clause/consequents cond-clause))))))

(define collect-else-consequents
(let ((collector (make-cond-clause-collector (lambda (predicate-clause)

(not (type/else? predicate-clause)))
(lambda (cond-clause)

(clause/consequents cond-clause)))))
(lambda (lambda-exp)

(apply append (collector lambda-exp)))))

(define (make-cond-clause-collector dont-want-it want-it)
(lambda (lambda-exp)
(list-transform-negative (map (lambda (cond-clause)

(if (dont-want-it (clause/predicate cond-clause))
'()

(want-it cond-clause)))
(cond/clauses (lambda/body lambda-exp)))

null?)))

Using these collectors, we can define the action. It begins by l et binding a set of viewcode ex-

pressions that will be useful later on. It then calls replace, to replace di spatch-expression's I ambda

expression with our hash-based template. Notice that we bind exp-type-symbol to the expression

that computes the type symbol (from type?'s implementation). By binding this first, we avoid

inadvertently capturing any free variables the expression may contain.

(define action/dispatch-expression
(make-explained-action

(lambda (vform context vc-exps)
(let* ((dispatch-exp-value (vc-exps/dispatch-val vc-exps))

(dispatch-formal (first (lambda/formals dispatch-exp-value)))
(type?-lambda (vc-exps/type?-lambda vc-exps))
(type?-formals (lambda/formals type?-lambda))
(type?-lambda-comb-args (combination/args (lambda/body type?-lambda))))

(replace dispatch-exp-value
'(let ((exp-type-symbol (lambda (,(second type?-formals))

,(if (var-bound-by? (first type?-lambda-comb-args)
(first type?-formals) context)

(second type?-lambda-comb-args)
(first type?-lambda-comb-args))))

(dispatch-table (make-symbol-hash-table)))
(for-each (lambda (symbol process-exp)

(hash-table/put! dispatch-table symbol process-exp))
(list ,@(collect-type-symbols dispatch-exp-value))
(list ,@(collect-process-procs dispatch-exp-value)))

(lambda (,dispatch-formal)
(let ((process-exp (hash-table/get dispatch-table

(exp-type-symbol ,dispatch-formal)
#f)))

(if process-exp
(process-exp ,dispatch-formal)
(begin ,@(collect-else-consequents dispatch-exp-value)))))))))

"converting dispatch-expression into a 0(1) time dispatch"))

4.9.5 Coupling/Coupler Production

The goal in this step is to produce a coupler. We begin by producing a dispatcher. Given

our predicates and action, we combine them into a dispatcher. Within this combination, we cre-
ate a compound predicate using the ViewForm combiner combine-vforms-conjunctive. This func-

tion simply combines vforms using the previously defined control structure *conjunctive-

control -structure*. The code that implements this dispatcher is given below.

(define dispatcher/dispatch-expression
(make-simple-dispatcher (combine-vforms-conjunctive predicate/usual-integrations

predicate/no-mutations
predicate/type?
predicate/dispatch-expression)

action/dispatch-expression))

Before writing our coupler rule, we implement its control structure. This control structure fol-

lows the same pattern as the one given earlier in Section 4.4.5. It first creates a context from a

set of given files (since we will be invoking views over the combined expressions). It then en-

sures that the alpha and liar views are computed. The vforms are then invoked on a two-

element viewcode list consisting of the viewcode expressions for dispatch-expression's value

(e.g., (lambda (exp) (cond .-))) and for type?'s value (e.g., (lambda (type-keyword? exp) ..). If the

coupling was successful, it is registered.

(define vc-exps/dispatch-val car)
(define vc-exps/type?-lambda cadr)

(define (make-dispatch-exp-control-structure filel . rest-files)
(lambda (vforms)

(lambda (vform context vc-exps)
(let ((context (or context (apply make-context-from-files (cons filel rest-files)))))

(ensure-liar-view-computed! context)
(ensure-alpha-view-computed! context)
(let ((dispatch-expression-def (top-lvl-name->def 'dispatch-expression context))

(type?-def (top-lvl-name->def 'type? context)))
(if (and dispatch-expression-def type?-def)

(if (for-all? vforms
(lambda (vform)

(do-vform vform context (list (define-var/value dispatch-expression-def)
(define-var/value type?-def)))))

(register-coupling! context vform)))
context)))))

We can now write the coupler rule. It combines the control structure, the dispatcher, and an

explanation combiner.

(define dispatch-exp-rule
(combine-vforms (make-dispatch-exp-control-structure

(fully-qualify *dispatch-exp-dir* "linear-cond")
(fully-qualify *dispatch-exp-dir* "types"))

(verbose-expl-combiner "dispatch-expression example rule")
(list dispatcher/dispatch-expression)))

The rule can be invoked by evaluating the expression (do-vform dispatch-exp-rule #f '()).

When this was done, ViewForm generated the code in Figure 1-8 for dispatch-expressi on.

4.9.6 Invalidation/Recoupling

Suppose that, after ViewForm generates the coupled code in Figure 1-8, we were to modify

the implementation of type? to the faster version in Figure 1-5. At this point, our coupled code is

now invalid. To perform the recoupling step, we simply invoke the view invalidation/recoupler:

(vi r!). This causes ViewFormn to produce the following code for dispatch-expression:

(define dispatch-expression
(let ((exp-type-symbol (lambda (expression) (fast-exp-type expression)))

(dispatch-table (make-symbol-hash-table)))
(for-each (lambda (symbol process-exp)

(hash-table/put! dispatch-table symbol process-exp))
(list (quote literal) (quote java-name) (quote new)

(quote dot) (quote call) (quote cast)
(quote instanceof) (quote built-in-expr) (quote assignment))

(list process-literal process-java-name process-new
process-dot process-call process-cast
process-instanceof process-built-in-expr process-assignment))

(lambda (exp)
(let ((process-exp (hash-table/get dispatch-table (exp-type-symbol exp) ())))
(if process-exp (process-exp exp) (begin (error "Unknown Type: " exp)))))))

4.10 User Interaction

Vforms can interact with external entities such as the user. In its simplest form, user interac-

tion can be implemented using Scheme's native I/O facilities. While this implies that any vform

can interact with the user, predicates are the vform most likely to benefit from such interaction.

Predicates in dispatchers, for example, could ultimately ask the user to approve or disapprove a

precondition if the available views are not precise or fast enough to make the determination.

Predicates that compute views can also ask the user for assistance. For example, a program

termination view, though generally uncomputable, could ask questions such as, "does this loop

terminate?" This kind of assistance is necessary for complete backwards compatibility, to allow

users to "vouch" for program properties that are part of a coupling's preconditions, but are not

generally computable. I do not explore this kind of user interaction in this dissertation, but find

it necessary to support and to mention it.

In order to better automate the view invalidation/recoupler, user interaction that is not nec-

essary should be kept to a minimum. One way to do this is to cache or store a user's responses

in a view. A user can then modify that view as necessary, and the view can ask the user for a

response if no previous response exists or if the previous response in invalid. Ideally, the user's

responses can be checked by the view, although this will not always be possible.

4.11 Complexity Layering

Implementing an abstraction model that addresses the implementation coupling problem is

not a simple task, especially when simplicity in the model pushes complexity into the implemen-

tation. My approach to this issue is based on a concept familiarized in [55] and later in In-

trigue[59]. Intrigue was designed so that the less a programmer wanted to change the Intrigue

implementation, the less complex the code that had to be written. I refer to this as complexity

layering. That is, the least complex interfaces are available at the highest abstraction layer,

whereas the most complex interfaces are layered more deeply inside. The least complex View-

Form interfaces offer high level, commonly used, but somewhat limited functionality (i.e., make-

predicate/find-declaration). The deeper, more complex, interfaces offer low level, infrequently

used, but more powerful functionality (i.e., make-predicate, make-view).

ViewForm was designed as a complexity-layering implementation. In part, complexity layer-

ing is provided by a coupler and view library. The goal is to make this library of high-level con-

structs ample enough to suffice in most situations. Complexity layering is also provided by the

ability to decompose and reuse existing vforms. Another supporting design aspect is the ability

to work at varying layers of abstraction (couplers, rules, dispatchers, predicates, actions). In addi-

tion, by allowing vform composition and abstraction, language experts can build low-level con-
structs that can be combined by other users with less expertise into higher-level, more abstract
constructs. These higher-level constructs can then be used by the end users, insulating them
from the knowledge wielded by the language experts. This "build once, use many times" ap-
proach together with the "make it easier to use, even if harder to implement" approach means
that a lower-level vform's complexity and development cost can be amortized over many uses.

Nevertheless, complexity in ViewForm can be categorized into four layers:

a) Writing views

b) Writing predicates/actions (using views)

c) Writing rules/dispatchers (using predicates and actions)

d) Writing couplers (using rules and dispatchers)

Layer a is the most complex***, whereas layer d is the simplest. Since views are the most com-
plex to design and implement, a view should be designed to be useful in many circumstances.

Couplers, on the other hand, are more likely to be specific to a given coupling. Since couplers

can be composed from existing rules, programmers can reason about their construction at a
higher level of abstraction. The benefits of this complexity layering structure have already
helped in the development of the simple examples presented thus far. The benefits will also

help in the development of the more complex examples that follow in Chapter 5.

*** As more research is devoted to program analysis algorithms, it will become more likely that a view can be implemented di-
rectly from a published paper. In such a case, writing views will be much less complex than in the general case.

Chapter 5

Examples and Analysis

Having discussed the view-based abstraction model, methodology, and an implementation, the

next step is to investigate the degree to which they solve the implementation-coupling problem

and achieve the desiderata from Chapter 2. With this goal in mind, this dissertation examines

three examples that benefit from implementation coupling. The first example is code that simu-

lates an amorphous computing substrate[7]ttt, the second is code for computing a conditional

probability for a particular pedigree problem [83], and the third is the ViewForm implementa-

tion itself. For each example, the desired couplings are presented and then expressed using

ViewForm, the view-based abstraction model, and the view-based abstraction methodology. Af-

terwards, the ViewForm code is quantified, analyzed and evaluated. This chapter concludes with

a discussion of further issues, ideas, motivations, and lessons learned.

5.1 Testing Methodology

The goal of the testing methodology is to provide a consistent approach for evaluating

whether view-based abstraction successfully preserves modularity in the presence of implementa-

tion couplings. This approach consists of two aspects: a testing process and evaluation metrics.

The testing process is a set of steps applied to each example. The evaluation metrics are used to

measure success. There are two such metrics. The first is whether ViewForm can successfully

generate coupled code (or its equivalent) that satisfies the programmer's criteria.*** The second

is whether the desiderata from Chapter 2 are met. The former is a mostly objective question:

either ViewForm generates the desired coupling or it does not. Aspects of the latter metric,

however, can be somewhat more subjective. The process and the metrics are discussed below.

m This substrate is affectionately known as "gunk".

m An equivalent piece of code is consistent with the reasons the programmer wanted the coupling in the first place.

5.1.1 Testing Process and Evaluation Metrics

The testing process consists of a series of steps applied to each of the three examples. These

steps are:

* Present the uncoupled code, the coupling code, and the desired coupled code

* Implement the coupling using the view-based abstraction methodology (i.e., the six steps)

* Run the resulting coupler and present the generated coupled code

* Modify either the uncoupled code or the coupling code

* Invoke the view invalidation/recoupler and present the regenerated, coupled code

* Count the number of predicates, actions, dispatchers, rules, couplers, and views needed
to implement the coupling

* Count the lines of uncoupled code modified by the actions

* Count the lines of uncoupled code that actions depended upon but did not modify

* Measure the amount of time needed to couple the code

* Measure the amount of time needed to recouple the code

* Measure the amount of time needed to compile the code under MIT Scheme

The results of this process are used to assess the two evaluation metrics. The first metric is

whether ViewForm generated the desired code. For this metric, the coupled code is examined

with respect to the criteria for wanting the coupling to begin with. For instance, in the dispatch

example, the criterion was performance. Specifically, a linear-time process was to be converted

to an expected constant-time process by using hash tables. Given this criterion, the code in

Figure 1-4 is equivalent to the code in Figure 1-8, even though they are not syntactically the

same.

The second evaluation metric is whether the example demonstrated the properties of back-

wards compatibility, incrementality, language independence, ease of understanding and usabil-

ity, and amortizable time savings. Let us examine each of these properties individually.

The evaluation of backwards compatibility will be assessed using the list from Section 2.3.1.

If the coupling is consistent with all five prohibitions, then backwards compatibility will be

deemed successful.

For this dissertation, incrementality will be assessed by comparing the scope of the desired

coupling to the scope of the actual coupling. For example, in the dispatch example, the predi-

cates depended on the same code as the preconditions, and the actions on the same code as the

desired modifications. To demonstrate incrementality, a coupling must not require the applica-

tion of view-based abstraction to non-related parts of the program or to other existing implemen-

tation couplings.

Language independence in view-based abstraction cannot be easily tested via the examples

because they are all written in MIT Scheme. Instead, this property is gleaned by virtue of the

view-based abstraction model and methodology in Chapter 3 not depending on any Scheme

language property or feature. While ViewForm itself depends on Scheme, view-based abstrac-

tion does not preclude implementations of ViewForm in other languages for other languages.

Such implementations are a topic for future work.

Ease of understanding and usability are subjective properties. To better evaluate these

properties with respect to an example, some aspects of each implementation coupling are quan-

tified. One such aspect is the number of lines of ViewForm code per coupling construct. This

quantity corresponds to the amount of work needed to write the construct. It can also be used

as a first-order measure of the ease of understanding ViewForm; the assumption being that the

number of lines of code is an upper bound on the number of calls to ViewForm functions

needed to perform the coupling. A coupling that needs to call few ViewForm functions is more

likely to require less overall understanding of ViewForm than a coupling that needs to make
many calls to ViewForm. Of course, the complexity level of each call must also be taken into

account. Another useful measure is to compare the number of lines of code needed to imple-

ment a coupling to the number of lines of code actually modified or depended upon by a cou-
pling. This ratio helps to normalize otherwise absolute figures. This ratio is useful for comparing
the amount of work needed to implements different couplings. While it is clear that people will

disagree on what these numbers really mean, these numbers do provide useful information for
discussing, comparing, and evaluating couplings.

To estimate the amount of time saved by using view-based abstraction to perform an im-
plementation coupling, the total amount of work done to implement, carry out, and regenerate
the coupling must be determined. As discussed above, the number of lines of code needed to
write a coupling reflects the amount of work applied to implement it. This measure is a more
objective quantity than timing how long a programmer would need to implement the ViewForm
code. For example, measuring the raw amount of time I personally put into implementing the
coupling is not meaningful since I am quite familiar with ViewForm.

One time measurement that is useful is the amount of time needed for ViewForm to per-
form a coupling and regenerate the coupling. This can be used to evaluate how practical View-
Form is by comparing it to how long it takes to compile the uncoupled code. The timing num-
bers in the sections below were taken on a Pentium 133 (no MMX), with a 512K pipelined-burst
secondary cache, and 64 megabytes of main memory (i.e., no observed swapping). The Scheme
used was MIT Scheme version 7.4.2, compiled using Microsoft Visual C++ 4.2.

(declare (usual-integrations)
(integrate-external "gunk"))

(define (gunk:make-particle int:UID x y)
(vector int:UID x y

gunk:initial-value
gunk:null-neighbors ; Initially, a list; later vect
gunk:non-boundary))

;; Initials
(define-integrabl e
(define-integrabl e
(define-integrabl e
(define-integrabl e
(define-integrabl e

;; Access
(define-integrabl e
(define-integrabl e
(define-integrabl e
(define-integrable
(define-integrabl e
(define-integrable

;; Mutation
(define-integrabl e

(define-integrable

(define-integrabl e
(define-integrable

(define-integrabl e
(

(defi ne-integrabl e

gunk:initial-value
gunk:initial-value/top
gunk:null-neighbors
gunk:boundary
gunk:non-boundary

(gunk:particle-UID
(gunk:particle-x
(gunk:particle-y
(gunk:particle-value
(gunk:particle-neighbors
(gunk:particle-special-tag

0.0)
1.0)
'()) ; Initially a list;
true)
false)

particle)
particle)
particle)
particle)
particle)
particle)

(gunk:set-particle-value!
vector-set!

(gunk:add-new-particle-neighbor!
vector-set!

(gunk:finalize-particle-neighbors!
vector-set!

(vector-ref
(vector-ref
(vector-ref
(vector-ref
(vector-ref
(vector-ref

later vect

particle
particle
particle
particle
particl e
particle

0))
1))
2))
3))
4))
5))

particle new-value)
particle 3 new-value))

particle new-neighbor)
particle 4
(gunk:add-new-neighbor

new-neighbor
(gunk:particle-neighbors
particle))))

particle)
particle 4
(gunk:finalize-neighbors
(gunk:particle-neighbors particle))))

(gunk:set-particle-special-tag! particle new-value)
vector-set! particle 5 new-value))

(define-integrable (gunk:add-new-neighbor new-neighbor neighbors
(cons new-neighbor neighbors

(define-integrable
(list->vector

(gunk:finalize-neighbors

(define-integrable (gunk:neighbors-count
(vector-length

(define-integrable (gunk:get-neighbor
(vector-ref

neighbors) ; Finalize
neighbors))

neighbors) ; Finalized
neighbors))

neighbors N) ; Finalized
neighbors N))

(define (gunk:particle-neighbors-UIDs particle)
(vector-map->vector gunk:particle-UID (gunk:particle-neighbors particle)))

(define (gunk:particle-neighbors-count
(gunk:neighbors-count (gunk:particle-neighbors

(define (gunk:particles-neighbors-counts
(map gunk:particle-neighbors-count

particle)
particle)))

particles)
particles))

Figure 5- 1 -Particle Data Abstraction Implementation, adapted by Blair from code by Abelson

) ; Initial
))

5.2 Amorphous Computing Simulation

The amorphous computing simulation example comes directly from Blair's work on Des-

cartes.[7]W9 This example simulates a large set of proximate and spatially constrained but other-

wise independent, SPMD computational entities. The simulation computes a diffusion gradient

over all the entities based on some initial boundary conditions.

Blair's objective was to dynamically profile and specialize the amorphous computing simula-

tor in order to increase performance. Through profiling, Blair found that he could produce an

8x speedup by replacing functions in the data structure shown in Figure 5-1 with the specialized

versions shown in Figure 5-2. The speedup results from the use of floating-point vectors

(flovecs), which require less effective floating-point number boxing and unboxing and less gar-

bage production. This modification is thus a data representation shift.

(define-integrable gunk:initial-value
(let ((flovec (flo:vector-cons 1)))

(flo:vector-set! flovec 0 0.0)
flovec))

(define-integrable (gunk:set-particle-value! particle new-value)
(flo:vector-set! (vector-ref particle 3) 0 new-value))

(define-integrable (gunk:particle-value particle)
(flo:vector-ref (vector-ref particle 3) 0))

Figure 5-2 - Optimized Particle Value Implementation

The original particle value interface allows a particle's value to be represented by an arbi-

trary data structure. This specification is honored by the uncoupled code in Figure 5-1. In the

Figure 5-2 specialized case, however, a particle's value can be represented only by a floating

point number (float). This representation shift therefore violates the original interface since the

shift is highly conditionalized on the simulator's implementation using floating point numbers to

represent particle values. An update to the simulator that used a different representation would

result in an invalidating implementation with respect to this implementation coupling. Blair's sys-

tem cannot produce this kind of specialization in a semantics-preserving way specifically because

the specialization results in an implementation coupling.

5.2.1 Amorphous Computing Simulator Background

Blair took the original simulator code given to him and modified it for personal aesthetic

and comprehensibility reasons. The resulting simulator consists of 1,280 lines of code (- 1,100

non-comment lines) in two files that call selected functions in 6,000 total lines of code spread

ISI The simulator code was written by Hal Abelson, and was subsequently modified by Blair.

(define-integrable gunk:initial-value
((lambda (initial-float flov)

(flo:vector-set! flov 0 initial-float)
flov)

0. (flo:vector-cons 1)))

(define-integrable gunk:set-particle-value!
(lambda (particle new-value)

(flo:vector-set! ((lambda (particle)
(vector-ref particle 3))

particle)
0 new-value)))

(define-integrable gunk:particle-value
(lambda (particle)

(flo:vector-ref ((lambda (particle)
(vector-ref particle 3))

particle)
0)))

over 14 library files. These 14 files reference

(but for the simulator, do not call) functions

in over 20 other files containing over 10,000

lines of code. As demonstrated below, how-

ever, the core simulator code ends up being

the only code that must be contextualized to

produce the specialization coupling. This

finding is consistent with my experience that

implementation coupling is usually needed in

proportionately few and relatively specific

parts of an application.

I neither wrote nor modified the simula-
Figure 5-3 - ViewForm Output tor implementation, and I did not influence

the choice of specializing optimizations discovered by Blair. The amorphous computing simula-

tor example can therefore be used to explore view-based abstraction and ViewForm on code

and on an implementation coupling that had no influence on view-based abstraction's design or

implementation (and vice versa). This makes the simulator example a completely independent

example.

5.2.2 Building the Coupling

Blair considered the aforementioned 8x speedup so great that it outweighed the subsequent

loss of modularity caused by the implementation coupling. Under view-based abstraction, how-

ever, this specialization can work without precluding modularity. Without the specialization,

there is an interface coupling from the simulator module to the particle data abstraction module.

Since the simulator is layered over the particle data abstraction, this corresponds to Figure 1-1

(the simulator module is M1 and the particle data abstraction module is M2). The Figure 5-2 spe-

cialization, however, induces an implementation coupling from M2 to M1. While this is the re-

verse direction of what is illustrated in Figure 1-7, it does not pose any problem since the view-

based abstraction model, methodology, and implementation do not depend on any coupling

directionality. To perform this coupling, let us use the implementation coupling steps (i.e., I-VI)

and the view-based abstraction methodology steps (i.e., i-vi) from Chapter 3.

Our goal in the sections that follow is to build a coupler that performs the desired speciali-

zation modification, after validating the modification's preconditions. The approach will be to

build bottom up, combining the vforms along the way. We will build predicates, actions, and

explanations, then dispatchers, rules, and a coupler.

5.2.3 Preconditions and Predicates

Before building a set of predicates, we must determine the preconditions under which the

particle value representation can be shifted to use flovecs. These preconditions, discussed with

Blair, are given below:

A. The particle value data abstraction interface is fixed

B. The particle value data abstraction is not violated

C. Floats do not have identity with respect to eq?

D. Predefined Scheme procedures are not redefined

E. The modules to which the particle data abstraction is available are known

F. A particle's initial particle value (i.e., gunk:initial -value) is a float

G. New particle values passed to gunk:set-particle-value! are all floats

A programmer is responsible for developing preconditions like the ones above. Usually, a pro-

grammer has no need for making them weaker or less fragile. While making preconditions less

fragile is not absolutely necessary, it does make the resulting coupler more useful and flexible.

The degree of fragility can vary according to the specifics of the situation and the pragmatics of

computing the views needed by the predicates that will implement the preconditions.

Preconditions A-G are discussed in detail below, for the purpose of relating them to view-

based abstraction and ViewForm. The predicates implementing these preconditions are also

presented and discussed.

(define predicate/usual -integrations
(make-predicate/find-declaration 'usual -integrations))

(define predicate/returns-inexact
(make-predicate/check-ret-type *inexact-type* "expression returning a float"))

(define predicate/flov-selector
(make-predicate/exp-type type/define-integrable? "define-integrable expressions"))

(define predicate/fl ov-mutator
(make-predicate/check-proc-param-types (list (cons second predicate/returns-inexact))))

Figure 5-4 - Simulator Example Predicates

Conditions A and B are typically assumed to be true, as they are for the simulator example.

They are presented for this example for completeness. Even if these preconditions were not as-

sumed true, condition A can be checked to some extent: the parameter list itself, return value

types, and argument types can be checked statically via data-flow analysis. If necessary, these

(necessarily conservative) static checks could be supplemented by statically inserted "guard"

conditional expressions that dynamically confirm object types. While expensive, these dynamic

checks would provide a higher, if not complete, level of safety. As is usually the case, it is up to

the programmer, based on the specifics of the situation, to make the appropriate tradeoffs be-

tween performance and varying degrees of safety. Other ways of checking Condition A under

view-based abstraction are discussed in Section 6.6.2.

In Scheme, precondition B is difficult to automatically validate in general. Precondition B is

easier to validate in languages that provide statically-checkable interface semantics such as

CLU[61]. While a violation of precondition B could be harmful with or without view-based ab-

straction, a programmer may not necessarily need B to be true. This may be the case when us-

ing view-based abstraction on code that contains previously existing abstraction violations of

some sort. Legacy code can suffer from this problem, for example. In these cases, the precondi-

tions may need to become more complex, constraints on future modifications may need to be

enforced, or safety may be put at risk.

For instance, in the simulator example, if precondition B was not assumed true, every ab-

straction violation to the particle value field of a particle data structure would need to be found,
to determine whether it uses floats. In addition, all data structures passed to gunk:particle-value

and gunk:set-parti cl e-val ue! would also need to be found and checked to ensure that the parti-

cle value field was provably a float. Supplemental dynamic checks (and possibly type coercions)

might also be needed, if a static analysis view was not precise enough for a predicate to prove

that all abstraction violations of the particle data structure used floats to represent particle values.

For the simulator example, however, while violating precondition B is a semantic problem

and possibly a performance problem, it is not actually a safety problem. This is because in MIT

Scheme, a 1-element flovec is operationally (but not semantically) equivalent to a float.

Precondition C is true under the IEEE Scheme standard[49], meaning that a program using

eq? on floats is not inherently portable. Precondition C, however, is not necessarily true in MIT

Scheme. As mentioned above, floats and 1-element flovecs are operationally equivalent. Seman-

tically, however, they differ with respect to mutability. A flovec is mutable, whereas a float is

considered atomic data and thus is not. This means that flovecs must have identity, and hence,

certain shared floats also have identity and eq? equality under MIT Scheme. For the simulator

example, however, we choose to follow the standard and assume that eq? on floats is an imple-

mentation-dependent operation whose result is unspecified.

Under other circumstances, the identity issue would need to be addressed. For instance, we

might want to shift representations from one data structure to another with differing, but speci-

fied, identity characteristics. In these cases, an alias analysis view may be needed by the predi-

cate validating the analog of precondition C to ensure the value is not being tested for eq?-like

equality. In the worst case, however, the alias analysis will not be precise enough to validate an

otherwise valid precondition. For these cases, user interaction would likely be required.

Precondition D is necessary to ensure that the flovec primitives we insert will be referencing

the correct primitive procedures (i.e., fl o: vector-ref, fl o: vector-cons, etc.). If this precondition

were not true, the desired primitive procedures would have to be accessed some other way,

such as using the MIT Scheme special form access. In MTrr Scheme, precondition D can be gen-

erally checked by looking for the usual -integrations declaration. This user-specified declaration

allows the compiler to open code calls to primitives. In effect, this nullifies any primitive name

redefinitions. A predicate that expresses this precondition, predi cate/usual -integrations, is given

in Figure 54. We write this predicate using the ViewForm library function make-predicate/find-

declaration" . This function was previously used in the dispatch example. The function takes a

declaration symbol and returns a predicate that looks for such a declaration in a context.

Precondition E determines which files must be passed to ViewForm for analysis. The file-

names will be passed to our coupler, which will then create the appropriate contexts to be ana-

lyzed. In our example, it turns out that the simulator implementation's file is the only one lay-

ered over the particle data abstraction. If other files were to begin using the particle data abstrac-

tion, they would also have to be passed to the coupler we will write. A programmer using black-

box abstraction will likely thoroughly and manually check precondition E, since the core moti-

vation for the specializing modification is the observation that every use of gunk: set -pa rti cl e -

val ue! uses a float to represent a particle's new value.fttt

If the programmer is not able to satisfy precondition E, there are several alternatives. The

simplest, but potentially the costliest, is to pass all available expressions in the application to the

coupler (as a context(s)). A data-flow analysis can then be used to conservatively estimate pre-

condition E, and alert the programmer to any problems. A less costly, but weaker test is to

check all available expressions for references to the particle value interface functions. An escape

analysis view can also help the programmer make the determination, even if view-based abstrac-

tion were not being applied.

Precondition F can be determined via a data-flow view on gunk:initial -value. This assumes

that gunk:make-particle will use gunk:initial -value to reference the initial particle value. Let us

assume this is the programmer's intent, since there is little benefit to otherwise naming the initial

value. This assumption does, however, constrain the way future changes to the initial value can

be made. In particular, this assumption requires that changes to the initial value to be made to

"" The code for make-predicate/find-decl aration is given in Appendix B.

t This was the key insight that Blair's profiler revealed.

gunk:initial -value's value and not to gunk:make-particle. While it can be argued that this as-

sumption adheres to the programmer's intent and style, several alternatives are discussed below,
in case this assumption was determined not to be the case.

Precondition F's predicate must ensure that gunk: initial -value can name only objects that

are floats. We implement this using the predicate predicate/returns-i nexact, given in Figure 5-4.

We will later ensure that this predicate receives the viewcode expression representing

gunk: initial -value's value. We implemented predicate/returns-inexact using ViewForm's

higher-level predicate constructor make-predi cate/check- ret-type. This predicate constructor is

parameterized on a type and an explanation string. The returned predicate checks every view-

code expression it is given to ensure that all values returned by each expression are consis-

tent*** with the given type. For the interested reader, the code for make-predicate/check-ret-type

is given in Appendix B.

One alternative to our choice for expressing precondition F is to check the actual place in

the gunk:make-particle definition where the initial particle value is computed. In fact, we could

use the same predicate defined above to do this check, by instead passing it the appropriate ex-

pression in gunk:make-parti cl e. Unfortunately, this alternative constrains the particle value to be

the fourth argument of a vector expression. Thus, this alternative does not result in a more ro-

bust predicate.

Another alternative, the safe and more flexible but more costly alternative, is to ignore

gunk:initial -value and instead insert a single run-time check that examines the result of each

call to gunk:make-particle. This dynamic type check simply ensures that a particle's initial value

is always a float. This alternative also necessitates writing an action that inserts run-time code

(into gunk:make-particle) that replaces the initial float with a flovec. While this is straightforward

to do, this alternative was not chosen for two reasons. The first is the high overhead in the dy-

namic test and float replacement. The second is that the specialization modification's purpose is

to reduce the amount of boxing and the number of heap-allocated floats that become garbage.

While completely safe, this alternative does little to reduce the amount of boxing and garbage

being created.

A fourth simple, but semantically inelegant alternative is to assume the functional equiva-

lence between floating point numbers and 1-element flovecs. Under this alternative, no change

to the initial value is necessary, so long as it is always an integrated float or a 1-element flovec. A

predicate can ensure that it is always integrated and a dynamic type-check can ensure the value

:::: Consistent means that the return value is of the given type or of a subtype of the given type.

is always a float or 1-element flovec. As these alternatives illustrate, there is no general "right"

way to implement preconditions as predicates.

Condition G can be checked by examining gunk:set-particle-value!'s parameter list.

gunk:set-particle-val ue! must always be passed a float as the second argument. This precondi-

tion is the fundamental basis of the motivation to perform the specialization modification. We

validate this precondition using the predicate predi cate/f] ov-mutator, given in Figure 5-4. This

predicate is produced from the general ViewForm predicate constructor make-predicate/check-

proc-param-types. This predicate constructor takes a type specification list, which contains pairs

of parameter list selectors and vforms. The type specification list used by predicate/fl ov-mutator

requires that the second parameter to gunk:set-parti cl e-val ue! must satisfy the predicate predi-

cate/returns-inexact (also shown in Figure 5-4).

We need one last predicate to validate the actual modification. To increase our predicate's

robustness, our code modification should not depend on the original selector's or mutator's im-

plementation. As shown in Figure 5-2 and Figure 5-3, we do this by copying the original selec-

tor's code into the new mutator. Before copying the original selector's code, however, we need

to ensure that copying it is safe. This is what the final precondition is for. If the code contains

side effects, for example, copying it might not be safe. Instead of performing a side-effect analy-

sis, however, we can leverage on the fact that the original definition of gun k:pa rti cl e -val ue is

defined using define-integrable. This MIT Scheme special form instructs the compiler to substi-

tute the body of the definition anywhere the name appears, which is exactly the property we

desire. The predicate predicate/fl ov-selector in Figure 5-4 checks for this condition. It expects

to be passed gunk:particl e-val ue's defining expression, which we will arrange for later. This

predicate calls the ViewForm predicate constructor make-predi cate/exp-type, which simply

checks the expression type of a given viewcode expression. This predicate constructor is widely

used in view dispatchers, where the appropriate action on an expression is determined by the

expression's type.

These four predicates are the only ones we need. They must all be true before any program

modifications are performed.

5.2.4 Actions

We turn next to writing actions that express the modifications necessary to shift the particle

value representation to flovecs. One goal is to reduce the actions' scope and another is to in-

crease their robustness by making them depend as little as possible on the original selector, mu-

tator, and initial value implementations. This will allow a maintenance programmer to modify

the original mutator's and selector's implementation without invalidating the action's modifica-

tions.

Before writing the action, we must decide upon a set of program modifications that will

transform the selected functions in Figure 5-1 to those in Figure 5-2. These modifications desired

by Blair can be summarized as follows:

a) Change the particle's initial value to a flovec

b) Change gunk: set-particle-value! to modify the flovec

c) Change gunk:particle-value to return a float from the flovec

Our strategy is to express three actions corresponding to Changes a-c. To limit the scope in

Change b, we will require access to the original selector's code. For this reason and for symme-

try, we will write our actions to assume they will each be passed all three of the viewcode ex-

pressions respectively passed to our predicates. The actions can then select which expressions to

replace, and can build the replacements based on any of the three original expressions. Due to

this special implementation decision, we use make-expl ained-action to construct our actions. make-

explained-action is a lower-level action constructor, and does not provide as much functionality

as the predicate constructors we used earlier. make-explained-action is like make-action (section

4.4.3) except that it takes an explanation string that will be prepended with the string "action

for " and then printed to the standard output when the action is explained.

(define action/flov-init-val
(make-explained-action
(lambda (vform context vc-exps)
(replace (vc-exps/init-val vc-exps)

'((lambda (initial-float flov)
(flo:vector-set! flov 0 initial-float)
flov)

,(vc-exps/init-val vc-exps) (flo:vector-cons 1))))
"gunk:initial-value's flonum expression with floating-point vector"))

(define action/flov-mutator
(make-explained-action
(lambda (vform context vc-exps)

(let ((selector-val (full-copy (define-var/value (vc-exps/selector-def vc-exps)))))
(replace (vc-exps/mutator-val vc-exps)

'(lambda (particle new-value)
(flo:vector-set! (,selector-val particle) 0 new-value)))))

"flovec'ing gunk:set-particle-value!"))

(define action/flov-selector
(make-explained-action
(lambda (vform context vc-exps)

(let ((selector-val (define-var/value (vc-exps/selector-def vc-exps))))
(replace selector-val '(lambda (particle)

(flo:vector-ref (,selector-val particle) 0)))))
"flovec'ing gunk:particle-value"))

Figure 5-5 - Simulator Example Actions

We begin with an action for performing Change a. We base the action on a code template

that creates a 1-element flovec, sets the flovec's value to gunk: initial -val ue's original value, then

returns the flovec. This template is implemented in the action acti on/flo-init-val, given in

Figure 5-5. The selector vc-exps/init-val returns the appropriate viewcode expression from the

passed in viewcode expression list, vc-exps. We define this selector later.

Changes b and c are performed by action/flov-mutator and action/flov-sel ector, respec-

tively. These actions are given in Figure 5-5. The strategy for the particle value mutator is to
substitute a code template that uses the original particle value selector code to pull the flovec out

of the particle object, then use fl o:vector-set! to mutate that flovec. For the particle value selec-

tor, we use a code template that uses the original particle value selector code to pull the flovec

out of the particle object, then uses fl o:vector- ref on the flovec. Note that in either case, the

action does not depend on the current particle data structure implementation. If a maintenance

programmer later modifies the selector or mutator, the actions will remain valid modifications.
As discussed earlier, these actions do depend on the original selector code being copyable. If
this were not the case (i.e., gunk:particle-value was not define-integrable), a different action for
the mutator would be necessary. One straightforward and safe approach in this case would be to
rename the original selector and have a new mutator and new selector call the original code to
pull out the flovec. This, however, would add an extra, full procedure call to each selector and
mutator call. Another approach is to lexically capture a single definition of the original
gun k:pa rti cl e-val ue within a closure, then use mutation to appropriately set the top-level mutator

and selector names to new procedures that use the original selector code to pull the flovec out

of the particle object.

5.2.5 Dispatcher and Coupler

We can now combine our predicates and actions into a dispatcher. The dispatcher will es-
pouse the relationship between our predicates and our actions: if the predicates are all true, then
the actions are all invoked. This is accomplished by dispatcher/gunk-fl ov, given in Figure 5-6.

We use two higher-level vform combinators: combine-vforms-conjunctive and combine-vforms-

conjunctive-l-to-1. Each takes any number of vforms and returns a single vform with a specific
control structure. combi ne-vforms-conjunctive's control structure runs each vform sequentially

from left to right on every viewcode expression, but stops and immediately returns #f if any

vform returns #f. combine-vforms-conjunctive-1-to-1 is similar, but runs the n' vform on the n'

viewcode expression. These combiners and the resulting dispatcher cleanly describe what the

dispatcher does. The dispatcher first looks for a usual -integrations declaration. If found, it se-

quentially checks the initial value, the mutator, then the selector preconditions. When the predi-

cates validate the preconditions, the actions are invoked to modify the program.

Before combining the dispatcher into a coupler, we still have a few things left to do. These

items will be handled by the coupler's control structure:

d) Create the proper contexts

e) Ensure the proper views are computed

f) Gather the viewcode expressions to be passed to the dispatcher

g) Register the resulting coupling

Steps d-g are generally performed by a coupler's control structure, as in the dispatch example.

For the simulator example, we implement these steps in the control structure constructor given

in Figure 5-6. This constructor takes a set of filenames and returns a control structure. Step d is

performed in this control structure using make-context-from-files, which takes a series of files as

arguments and returns a context containing all of the file expressions. The implementation also

(define dispatcher/gunk-flov
(make-simple-dispatcher
(combine-vforms-conjunctive predicate/usual-integrations

(combine-vforms-conjunctive-l-to-1 predicate/returns-inexact
predicate/flov-mutator
predicate/flov-selector))

(combine-vforms-conjunctive action/flov-init-val
action/flov-mutator
action/flov-selector)))

(define-integrable vc-exps/init-val car)
(define-integrable vc-exps/mutator-val cadr)
(define-integrable vc-exps/selector-def caddr)

(define (make-gunk-vform-control-structure acs-file . acs-files)
(lambda (vforms)

(lambda (vform context vc-exps)
(let ((context (or context (apply make-context-from-files (cons acs-file acs-files)))))

(ensure-liar-view-computed! context)
(ensure-alpha-view-computed! context)
(let ((vc-exps

(list (define-var/value (top-lvl-name->def 'gunk:initial-value context))
(define-var/value (top-lvl-name->def 'gunk:set-particle-value! context))

(top-lvl-name->def 'gunk:particle-value context))))
(if (for-all? vforms

(lambda (vform) (do-vform vform context vc-exps)))
(register-coupling! context vform)
(format #t "-~%Flovectorization failed!"))

context)))))

(define acs-flov-rule
(combine-vforms (make-gunk-vform-control-structure

(fully-qualify *gunk-dir* "gunk")
(fully-qualify *gunk-dir* "gunk-particles"))

(verbose-expl-combiner "flo-vectorizing gunk example")
(list dispatcher/gunk-flov)))

Figure 5-6 - Simulator Example Dispatchers and Other Rules

100

leaves open the possibility that a previously constructed context will be passed in instead.

ensure- i ar-view-computed! and ensure-alpha-view-computed! ensure that the appropriate

views are available. We use the ViewForm liar view and alpha view, described in Section 4.6.

Since our actions do not require updated liar or alpha information, there is no need to recom-

pute any views during the code modifications.

The viewcode expressions that we will pass to our dispatcher are next collected using top -

lvl -name->def, a higher-level ViewForm function that takes a symbol denoting a top-level defined

name and a context, and returns the whole define expression for the name. For gunk: initial -

value and gunk: set-particle-val ue!, we pull out the define expression's body. For the selector

gunk:particle-val ue, we do not, since one of our predicates tests for the define-integrable special

form and expects to get the entire define expression. These viewcode expressions are combined

into a list, then passed to our dispatcher. For aesthetics, we also write selectors that pull out each

viewcode expression from the list passed to the dispatcher. These selectors are vc-exps/i nit-val,

vc-exps/mutator-val, and vc-exps/selector-def. Finally, the control structure registers the cou-

pling if the vforms completed successfully, and returns the created context. If the vforms were

unsuccessful, the control structure signals the problem to the user.

Now we can create our coupler, acs-flov-rule, also shown in Figure 5-6. We use the generic

combine-vforms function, the control structure and dispatcher we previously implemented, and

we provide a new, more abstract explanation. verbose-expl -combiner is a ViewForm explanation

combiner that prints its argument to the standard output in default mode, and invokes the ex-

planations of its sub-vforms in verbose mode (controlled by the global boolean variable

verbose). ful ly-qualify ensures that the filename passed to the control structure is a fully quali-
fied filename. Figure 5-3 displays the particle abstraction code generated by the coupler. This

code was generated after evaluating the expression (do-vform acs-flov-rule #f '()).

5.2.6 Invoking the View Invalidation/Recoupler

One of the simulator functions, gunk:di ffuse-neighbor! is given below. This function is
called many times within a simulator iteration, to diffuse a particle's values to its neighbors. Blair
found that the M1' Scheme compiler stack allocated the values named by the l et* form (i.e.,
neighbor and exchange). In doing so, the compiler boxed the values, thereby creating a pointer to
a heap-allocated floating point number. This, unfortunately, leads to more boxing, floating point
number garbage, and reduced performance.

101

(define-integrable (gunk:diffuse-neighbor! fix:i particle neighbors)
(let* ((neighbor (gunk:get-neighbor neighbors fix:i))

(exchange (flo:* *gunk:diffusion-rate*
(flo:- (gunk:particle-value particle)

(gunk:particle-value neighbor)))))
(cond ((not (gunk:particle-special-tag neighbor))

(gunk:set-particle-value! neighbor
(flo:+ (gunk:particle-value neighbor)

exchange))))
(cond ((not (gunk:particle-special-tag particle))

(gunk:set-particle-value! particle
(flo:- (gunk:particle-value particle)

exchange))))))

The MIT Scheme compiler, however, will not box the intermediate float if exchange is desugared

out of the let* expression as follows:

(define-integrable (gunk:diffuse-neighbor! fix:i particle neighbors)
(let ((neighbor (gunk:get-neighbor neighbors fix:i)))

((lambda (exchange)
(cond ((not (gunk:particle-special-tag neighbor))

(gunk:set-particle-value! neighbor
(flo:+ (gunk:particle-value neighbor)

exchange))))
(cond ((not (gunk:particle-special-tag particle))

(gunk:set-particle-value! particle
(flo:- (gunk:particle-value particle)

exchange)))))
(flo:* *gunk:diffusion-rate*

(flo:- (gunk:particle-value particle)
(gunk:particle-value neighbor))))))

After making this change, the view invalidation/recoupler was invoked by evaluating the expres-

sion: (vi r!). ViewForm then recognized the change and re-invoked our coupler. The coupler

revalidated the predicates and subsequently regenerated the same code as before (i.e., in Figure

5-3). This is what was expected, as the change above does not invalidate the preconditions.

5.2.7 Discussion

The most difficult and time-consuming aspect of acs-fl ov-rul e's construction was develop-

ing the preconditions and a safe, robust set of modifications. Preconditions are difficult because

they must be general, correct, and must make sense in the presence of future code maintenance.

Modifications are difficult because they must be correct and should have a limited scope. Once

the preconditions and modifications were determined, expressing them was straightforward.

Various subtleties exist in the action templates for the simulator example. For instance, in

acti on/fl ov- i ni t-val, we do not l et-capture the initial value, because the MIT Scheme compiler

would otherwise box and heap-allocate the resulting float. By desugaring the implicit 1 et into an

applied 1 ambda, the MIT Scheme compiler will avoid heap allocation. This kind of modification is

102

necessary whether or not view-based abstraction is used. In addition, the same code template

binds and names the initial particle value even though this name is used only once. Rather than

being a case of aesthetic design, the binding is necessary. We cannot allow the variable naming

the flovec to be captured by the initial value expression. This problem can be otherwise ad-

dressed with hygienic macro[15] templates or in MIT Scheme by generating uninterned symbols

in some circumstances.

While the flovec predicates are straightforward expressions of the preconditions, they might

not have been under other circumstances. Both predi cate/returns- i nexact and predi cate/fl ov-

mutator depend on a data-flow analysis. These kinds of analyses can lose precision when values

flow into and out of data structures, closures, or top-level variable names. While none of these

situations happened in the simulator example, some contingencies for this situation were dis-

cussed. Nevertheless, when data flow fails to determine the desired properties, either a different

set of preconditions must be used or user interaction must provide the missing information.

Implementation-specific language properties, such as floating point number identity, are dif-

ficult to manage because they may interfere with otherwise valid preconditions. Language im-

plementations may also contain a variety of extensions. When these extensions significantly af-

fect or alter the semantics of the original language, views that assume a strict adherence to the

real language specification may not produce information consistent with a program's semantics.

In these cases, new views must be written or acquired. The ability to decompose, recompose,

and combine views is a form of incrementality that can attenuate the need to rewrite views for

every language extension. Still, the need can remain.

5.2.8 Quantitative Measurements

The following tables contain the quantities outlined in the experimental methodology. They

will be discussed later, along with the data collected from the other examples.

103

5.3 Pedigree Example

The pedigree example is Blair's[7] adaptation of a computational approach to determining

conditional probabilities for pedigrees[83]. The purpose of such a computation is to determine

the conditional probability of an individual having a particular genotype given a set of observed

phenotypes in related individuals. [83] shows how such a conditional probability computation

can be optimized using an algebraic formula factoring method based on a Bayes network model

of a pedigree tree.

(define model-2+i:G_M (pedigree/unknown/one-of-N/even-odds 10)) ; Genotype: 1 / 10
(define model-2+i:G_F (pedigree/unknown/one-of-N/even-odds 10))
(define model-2+i:G_D (pedigree/unknown/one-of-N/even-odds 10))
(define model-2+i:G_P (pedigree/unknown/one-of-N/even-odds 10))
(define model-2+i:P_P (pedigree/unknown/one-of-N/int-boole 5)) ; Phenotype: 1 / 8

(define (P_pedigree)
(p-sum G_D

(lambda (g_d)
(* (p-sum G_F

(lambda (g_f)
(* (P g_f '())

(P gP '())
(p-sum P_P

(lambda (p_p)
(p-sum G_P

(lambda (g_p)
(* (P p_p '(,g_p))

(p-sum G_M
(lambda (g_m)

(* (P g_p '(,gP
(P g_d '(
(P PM '(
(P

(P PF '(,g_f)))))
(P TD '(,g_d))
(P PD '(,g_d))
(P OM '(,PM))))))

,g_m ,g_f))
,gm ,g_f))
,g_m))
g_m '())

Figure 5-7 - Pedigree Computation Code

104

(define (pedigree/unknown/one-of-N/even-odds N) ; Flonum valued params
(make-vector N (/ 1.0 N)))

(define (pedigree/unknown/one-of-N/int-boole N) ; Boolean valued params
(make-initialized-vector N (lambda (i) (if (even? i) 0 1))))

(define (p-sum v proc)
(do ((index (-1+ (vector-length v)) (-1+ index))

(acc 0 (+ acc (proc (vector-ref v index)))))
((negative? index) acc)))

(define (P val givens)
(let ((given-val (reduce * 1 givens)))
(/ (* val given-val)

given-val)))

(define (sc-* thunks)
(do ((thunks-2-do thunks (cdr thunks-2-do))

(acc 1 (* acc ((car thunks-2-do)))))
((or (null? thunks-2-do) (zero? acc)) acc)))

Figure 5-8 - Pedigree Data Abstraction Implementation

As with the simulator example, Blair's objective with the pedigree example was to optimize

the running time of the code. For this purpose, Blair developed an instance of the pedigree

problem to experiment with. The code for this instance implements a fixed pedigree tree (but

not a fixed set of observed phenotypes). The bulk of the pedigree computation for this instance
is performed by the P_pedi gree procedure in Figure 5-7 (part of a larger program developed by
Blair). In this code, P_pedigree is used to compute a conditional probability based on various
sets of phenotype observations, each represented by a set of variables such as the model -2 vari-

ables given in Figure 5-7. Blair's code set!'s the free variables in P_pedigree to the values of
these model variables before P_pedigree is invoked. For the pedigree example, we will write two
rules and combine them into a coupler. The first rule is for short circuiting multiplication. This
coupling was developed by Blair, based on an optimization suggested in [83], and will require a
new view. The second rule in a function inlining. Each rule's purpose is described first below,
before their implementations are presented.

5.3.1 Short-Circuiting Multiplication

For the P_pedigree code, one optimization discussed in [83] is short-circuiting the multiplica-
tion of a set of numbers. This means stopping immediately and returning zero if a multiplicand

equal to zero is found during the multiplication of a set of numbers. Blair accomplished this by
replacing * in P_pedigree with sc-*, his implementation of short-circuiting multiplication (given in

Figure 5-8). In fact, the version of P_pedigree originally provided by Blair was the sc-*-based im-
plementation given in Figure 5-9. To demonstrate how ViewForm can enhance code maintain-
ability, we will write a rule for automatically replacing * with sc-* on the code in Figure 5-7.

105

(define (P_pedigree)
(p-sum G_D

(lambda (g_d)
(sc-*
'(,(lambda ()

(p-sum G_F
(lambda (g_f)
(sc-*
'(,(lambda () (P g_f '()))

,(lambda () (P gP '()))
,(lambda ()

(p-sum
PP
(lambda (p_p)

(p-sum G_P
(lambda (g_p)

(sc-*
'(,(lambda () (P p_p '(,g_p)))

,(lambda ()
(p-sum
GM
(lambda (g_m)

(sc-*
'(,(lambda () (P g_p '(,gP ,g_m ,g_f)))

,(lambda () (P g_d '(,g_m ,g_f)))
,(lambda () (P PM '(,g_m)))
,(lambda () (P g_m '()))

,(lambda () (P PF '(,g_f))))))))
,(lambda () (P TD '(,g_d)))
,(lambda () (P PD '(,g_d)))
,(lambda () (P OM '(,PM))))))))

Figure 5-9 - Desired P_pedigree

This rule's goal is to produce the code written by Blair in Figure 5-9 from the code in

Figure 5-7. While this rule does not produce a bona fide implementation coupling (for this case),

it does provide at least three distinct benefits. The most obvious is readability. The code in

Figure 5-7 is no doubt more readable than the code in Figure 5-9, and is therefore easier to

maintain. The second benefit is that if a maintenance programmer modifies the P_pedigree im-

plementation in Figure 5-7, our rule will replace all instances of * with sc-* without any further

effort by the programmer. This frees the maintenance programmer from having to deal with

short-circuit multiplication when modifying the code, thus enhancing maintainability by making

the programmer's task less complex. The third benefit is robustness. If a maintenance program-

mer replaces any * expressions in Figure 5-7 with some other expression that reduces to *, our

rule would replace those expressions, too. In this case, the rule may actually produce an imple-

106

mentation coupling. §"" § To carry out its tasks, our rule requires a new view; the comb view.

While simple, this view nevertheless demonstrates a view implementation for code I did not

write for a modification I did not suggest or design.

5.3.2 Function Inlining

The second rule implemented for the pedigree example is a function inliner. The functions

to be inlined are p-sum and p, whose implementation is given in Figure 5-8. These functions pre-

sent an interface used by P_pedigree to compute the desired conditional probabilities. Both p-sum

and p are in the same module as pedigree/unknown/one-of-N/even-odds and pedigree/unknown/one-

of-N/int-boole, also given in Figure 5-8. The reason that inlining p-sum and p into P_pedigree is

an abstraction violation is that the p-sum and p's implementations depend on the functions pedi -

gree/unknown/one-of-N/even-odds and pedi gree/unknown/one-of-N/int-boole using vector represen-

tations. After inlining p-sum and p into P_pedigree, an invalidating implementation of pedi -

gree/unknown/one-of-N/even-odds, for example, would use lists instead of vectors. Such a repre-

sentation shift would invalidate the implementation-coupled P_pedigree.

The goal for the inlining aspect of the pedigree example is to implement a rule expressing

such an implementation coupling using ViewForm.

5.3.3 Implementing the Short-Circuiting Multiplication Rule

The goal of the short-circuiting multiplication rule is to replace each operator that calls *

with sc-*, and to modify the arguments to be thunks (i.e., a lambda of no arguments), as ex-

pected by sc-*. This is implemented in two steps. The first is to go through the implementation-

coupling steps (I-VI) and the view-based abstraction methodology (i-vi) to implement a rule.

This rule will depend on a view not provided by default. The second step is to implement that

view. We begin by implementing the rule.

5.3.3.1 Modules/Contexts

The pedigree example has two relevant modules. One contains the phenotype data abstrac-

tion and computation functions. The relevant functions in this module (which corresponds to M2

in Figure 1-1) are given in Figure 5-8. We will call this module Mg. The second module contains

code for computing the conditional probability. We will call this module Mp. The relevant code

for this module is given in Figure 5-7. Mp and Mg will be the basis for the contexts we create
later. These contexts will also be used by the function inlining rule described earlier.

"" For instance, if * was replaced by the variable mul, and mu] was defined in a different module to be *, replacing mu] by sc-*
would produce an implementation coupling.

107

5.3.3.2 Preconditions/Predicates

The preconditions needed to validate the substitution of sc-* for * in a given viewcode ex-

pression are:

* The viewcode expression is a combination

* The combination's operator always evaluates to *'s value

The first precondition is handled by the comb view we will write later. This view will provide

our predicate with viewcode expressions that are solely combinations. The second precondition

is implemented by predicate/sc-* below. This predicate determines whether a combination's

operator value is always the primitive *'s value. This satisfies the the second precondition above.

This predicate itself takes a single viewcode expression (i.e., the car of vc-exps), assumes it is

a combination, gets the expression in the combination's operator position, and collects all of the

expressions producing the operator's procedure values via the liar view function exp->al l-procs.

This collected procedure producer list contains the information we need to validate the precon-

dition. The predicate goes through each procedure producer expression in this list and checks

whether the expression is the predefined procedure *. If so, the predicate returns a true value.

(define predicate/sc-*
(make-explained-predicate

(lambda (vform context vc-exps)
(let ((result (map (lambda (proc) (eq? (is-predefined proc) '*))

(exp->all-procs (combination/proc (car vc-exps)) context))))
(for-all? result identity-procedure)))

"ensuring proc calls only *"))

This predicate could easily be parameterized on the symbol denoting the predefined procedure

(e.g., *). Such a parameterized predicate would be a valuable addition to a ViewForm library.

5.3.3.3 Views

predicate/sc-* needs one view, the liar view (because of exp->all -procs). It also implicitly

needs the comb view, which collects the combinations contained in a group of viewcode expres-

sions. The comb view is defined later, after we have finished implementing the sc-* rule.

5.3.3.4 Modifications/Actions

The goal of the short-circuit multiplication example is to change all combinations with op-

erators calling * into combinations that call sc-*. Since sc-* takes a list of thunks as arguments

instead of a set of numbers, our modification must also create thunk expressions out of the

number-generating argument expressions to *, and collect them into a list. This modification is

best illustrated by Figure 5-9.

108

The action below implements this modification. It first replaces the operator with sc-*.

Next, it replaces each argument with the (unquoted) thunk (lambda () <argument>). Then, it re-

places the arguments with an expression creating a list of those (quasiquoted) arguments. Qua-

siquoting and unquoting were used to make the results consistent with Blair's code.

(define action/sc-*
(make-simple-action (lambda (vform context vc-exp)

(let ((proc (combination/proc vc-exp))
(args (combination/args vc-exp)))

(replace proc 'sc-*)
(for-each (lambda (arg)

(replace arg (list 'unquote '(lambda () ,arg))))
args)

(replace args (list (list 'quasiquote args)))
#t))

"replacing * with sc-*"))

5.3.3.5 A Dispatcher

As is usually the case, the dispatcher combining the predicate and action is straightforward

to implement. make-simple-dispatcher uses a simple explanation combiner that returns an expla-

nation that explains both the predicate and action when invoked.

(define dispatcher/sc-* (make-simple-dispatcher predicate/sc-* action/sc-*))

5.3.3.6 A Rule

The next step is to write a rule that expresses a short-circuit multiplication substitution. This

rule collects the viewcode expressions to be passed to our dispatcher, invokes any necessary

views on those expressions, and invokes the dispatcher. These steps are similar to what a cou-

pler does, except that the rule does not create contexts or register a coupling with the view in-

validation/recoupler. That will be our coupler's job.

To write this rule, we begin with the control structure constructor below. It takes one pa-

rameter, repl -sc-*-symbol s, which is a list of symbols denoting a set of top-level names defined

in the context's expressions (i.e., P_pedigree) whose combinations are to be examined. top-lvl -

name->def is then used to map the symbols into the corresponding viewcode definition expres-

sions (e.g., (define (P_pedigree) ...)). If a definition expression is found for each symbol, we pro-

ceed to compute the comb view on all the definitions. The comb view recursively descends

each definition expression, collecting combinations as it encounters them. In the code below,
this set of expressions examined by the comb view is repl ace-defs. The vforms are then each

invoked on each combination found by the comb view. If any substitution was by a single

vform, a true value is returned indicating a coupling has been made. Our coupler will use this

return value to register the coupling with the view invalidation/recoupler.

109

(define (make-replace-sc-*-control-structure repl -sc-*-symbols)
(lambda (vforms)

(lambda (vform context vc-exps)
(let ((replace-defs (map (lambda (binding) (top-lvl-name->def binding context))

repl -sc-*-symbol s)))
(if (for-all? replace-defs identity-procedure)

(let ((found-one? #f))
(ensure-comb-view-computed! context replace-defs)
(for-each (lambda (vform)

(for-each (lambda (vc-exp)
(if (do-vform vform context (list vc-exp))

(set! found-one? #t)))
(context/comb-wal ker context)))

vforms)
found-one?))))))

The short-circuit multiplication rule can now be created using this control structure and our pre-

viously defined dispatcher. This code is given below, and will be used in our pedigree coupler.

verbose-expl -combiner was described earlier, as part of the simulator example.

(define (make-replace-sc-*-rule repl-sc-*-symbols)
(combine-vforms (make-replace-sc-*-control -structure repl -sc-*-symbols)

(verbose-expl-combiner "replacing * with sc-*")
(list dispatcher/sc-*)))

5.3.4 Comb View

We now turn to the implementation of the comb view. The purpose of the comb view is to

collect the set of all combinations lexically dominated by a set of given expressions within a con-

text. This view is implemented in much the same way as the *1 ambda-view* from Section 4.6.4,

via the following five steps:

1. Implement the merging and copying procedures, as well as the view initialization value

2. Implement the view dispatchers

3. Combine the dispatchers into a view

4. Register the view

5. Provide a way to invoke the view

For the first step, we must decide upon a representation for the view information. For the comb

view, a simple list will suffice. The corresponding merge, destructive merge, copying, and initial

value are therefore simple list operations:

(define (comb-walker-merge viewl view2) (append view1 (list-copy view2)))
(define (comb-walker-merge! view1 view2) (append! view1 view2))
(define comb-walker-copy list-copy)
(define comb-walker-init '())

The next step is to implement the view dispatchers. For the comb view, we need only one since

we can rely on the walker view to provide a recursive decent. This dispatcher's predicate deter-

110

mines whether an expression is a combination, and the action will store the combination into

the comb view's data structure, in the appropriate context. The action, dispatcher, and predicate

are given below. The action uses the helper functions set-context/comb-walker! and con-

text/comb-wal ker to set and retrieve the comb view list, respectively. The view dispatcher,

walker/comb-finder, uses make-predicate/exp-type to create a view predicate that looks for com-

binations (this predicate constructor was also used in the simulator example).

(define (context/comb-wal ker context)
(or (retrieve-view *comb-view* context) comb-walker-init))

(define (set-context/comb-walker! context view) (set-view! *comb-view* context view))

(define action/store-comb
(make-simple-action (lambda (vform context vc-exp)

(set-context/comb-walker! context
(cons vc-exp (context/comb-walker context))))

"storing a combination"))

(define wal ker/comb-finder
(make-dispatcher (make-predicate/exp-type type/combination? "combinations")

action/store-comb
(verbose-expl-combiner "for collecting combinations")))

The third step is to create the view itself. We name this view *comb-view*. The view's control

structure needs to clear the old view information data structure (so that repeated invocations of

the view do not pile on extra combinations). It then must invoke the view dispatcher on each

viewcode expression passed to it. To recursively walk the viewcode subexpressions, the view

dispatcher is combined with the *wal ker-vform*.

(define (clear-comb-view! context) (set-context/comb-walker! context comb-walker-init))
(define *comb-view*

(make-view (lambda (vforms)
(let ((combined-vform (apply combine-vforms-do-all vforms)))

(lambda (vform context vc-exps)
(clear-comb-view! context)
(for-each (lambda (vc-exp) (do-vform combined-vform context (list vc-exp)))

vc-exps))))
(verbose-expl-combiner "comb-walker combination collector")
(list walker/comb-finder *walker-vform*)))

The fourth step is registering the view. Since we have defined all the components needed to do

this, we simply call register-view! with these components.

(register-view! *comb-view* comb-walker-merge comb-walker-merge!
comb-walker-copy comb-walker-init)

The final step is to provide a way to invoke the view. The procedure below invokes the view

only if there is no comb view information available. To recompute the view after it was previ-

ously invoked, a programmer can call clear-comb-view! before calling ensure-comb-view-

computed!.

111

(define (ensure-comb-view-computed! context vc-exps)
(if (null? (context/comb-walker context))

(do-vform *comb-view* context vc-exps)))

5.3.5 Function Inlining

Now that we have implemented the first rule for the pedigree example, we can continue to
the second rule. Our goal is to produce a rule that, given a symbol denoting a top-level defined
variable name, ensures that it is inlined everywhere it appears in an operator position. The MIT
Scheme syntaxer can produce such an inlining if the variable's definition is modified as follows:

(define <var> (lambda <formals> <body>)) =
(define-integrable <var> (lambda <formals> <body>))

When the MIT Scheme syntaxer sees a define-i ntegrabl e expression, it replaces any operator-

position references to <var> with <body>. ***** Any references to the parameters in <formal s> are

also replaced with the corresponding argument expressions. For example, given:

(define count 1)
(define-integrable (foo bar) (bar (bar 1)))
(foo (begin (set! count (1+ count)) +))

the MIu Scheme syntaxer produces the following transformation:

(begin (define count 1)
(define (foo bar) (bar (bar 1)))
((begin (set! count (1+ count)) +) ((begin (set! count (1+ count)) +) 1)))

The problem with this kind of inlining, as is exemplified by the code above, is that any side ef-
fects within the arguments (i.e., bar) to the inlined function may end up being performed more
than once. Changing a definition from define to define-integrable is therefore not necessarily

semantics preserving. To get around this problem, we use the following modification instead:

(define <var>
(lambda (<formall> -. <formaln>)
<body>)) =

(define-integrable <var>
(lambda (<formall> ... <formaln>)

((lambda (<formall> ... <formaln>) <body>))
<formall> ... <formaln>))

This transformation is a desugared I et-binding of the formals. Only one instance of the formals

will thus be replaced by the inlining (the formals passed to the invoked l ambda). For example,

given the code:

..... The inlining is performed in the same file, unless some other file has an integrate-external declaration. The MIT Scheme
User's Manual contains more details on def ine- i ntegrabl e and i ntegrate-external.

112

(define count 1)
(define-integrable (foo bar)
((lambda (bar) (bar (bar 1)))
bar))

(foo (begin (set! count (1+ count)) +))

The MIT Scheme syntaxer now produces the code below. This code performs the side effect to

count only once, unlike what happened in the earlier example. Another important consequence

of this modification is that <body> can no longer capture variables in any substituted expression.

(begin (define count 1)
(define (foo bar) (let ((bar bar)) (bar (bar 1))))
(let ((bar (begin (set! count (1+ count)) +)))

(bar (bar 1))))

Our goal is to write a rule to perform function inlining this way on p-sum and p. Performance

measurements indicate this kind of simple inlining can produce a 10% speedup in P_pedi gree.

We will implement this rule using the view-based abstraction methodology.

5.3.5.1 Modules/Contexts

The function inlining rule uses the modules Mg and M, from the short-circuit multiplication

rule. Constructing the contexts from these modules will be implemented later, in the coupler.

5.3.5.2 Preconditions/Predicates

The procedures p-sum and p can be inlined under the three preconditions given below. These

preconditions assume our actions will produce the inlining modifications outlined above.

* p-sum and p are not side effected

* p-sum and p do not reference any free variables "captured" by P_pedigree

* p-sum and p do not maintain local state shared among invocations

The first precondition ensures that p-sum and p are not redefined elsewhere. This precondition

can be tested using a predicate similar to one defined in Chapter 4. The predicate, given below,
takes a variable binding (the car of vc-exps) and ensures that it is not mutated. It does this using

the alpha view function var-binding->mutations, which returns a list of a variable binding's muta-

tion sites. If this list is empty, the variable is not mutated in the context.

(define predicate/no-mutations
(make-explained-predicate (lambda (vform context vc-exps)

(let ((binding (car vc-exps)))
(null? (var-binding->mutations binding context))))

"a non-mutated variable"))

The second precondition ensures that p-sum and p do not contain any variables that could be

captured by P_pedigree. If p-sum were to reference a free variable foo, for example, and

113

P_pedigree were to have a formal foo, inlining p-sum's body would cause p-sum's free variable ref-

erence to foo to refer to P_pedigree's formal foo. We can implement this precondition as a set of

two predicates. The first is predi cate/usual -integrations, defined for the simulator example. This

ensures that the primitive variables in p-sum and p have known values. The second predicate en-

sures that no free variables exist in p-sum and p. It uses the alpha view function top-i vl -exp-

>free-vars, which returns a list of a top-level expression's free variables. If this list is empty, then

p-sum and p contain no free variables. These predicates could be made more weak and less frag-

ile, since a free variable is a problem only if it is bound inside P_pedigree or if the third precon-

dition is violated. This lower degree of fragility could be achieved by performing an alpha re-

naming on all free variables in p-sum and p. Since the predicate is more illustrative for the pur-

poses of this dissertation, the predicate route is pursued:

(define predicate/no-free-vars
(make-explained-predicate
(lambda (vform context vc-exps)

(let ((vc-exp (first vc-exps)))
(null? (top-Ivl-exp->free-vars (exp->top-level vc-exp) context))))

"no free variables"))

The third precondition means that p-sum and p cannot have definitions such as the following:

(define p-sum
(let ((state-shared-among-invocations (make-eq-hash-table)))

(lambda (v proc)

This kind of shared state would no longer be shared if p-sum were inlined. To validate the third

precondition, we write a predicate that checks whether p-sum's value in its defining expression is

generated directly by a lambda. In the shared-state p-sum code above, for example, p-sum's value

is generated by a l et expression. The predicate below takes a variable binding expression (as

the car of vc-exps), up links two levels to its defining expression, extracts the expression generat-

ing the variable's value, and tests whether it is a 1 ambda expression. Thus, the predicate below

returns true only if the defining expression has the form (define <var> (lambda .. .)). While this

predicate is more fragile than the precondition, it is simpler than a full semantic analysis on any

let or other expressions generating <var>'s value (which nevertheless, could alternatively be ex-

pressed).

(define predicate/no-local -storage
(make-explained-predicate (lambda (vform context vc-exps)

(let ((binding (car vc-exps)))
(and binding

(type/lambda? (define-var/value (up-link-n binding 2))))))
"an expression having no local storage"))

114

5.3.5.3 A Modification and Action

The previously discussed modification is implemented with the action given below. This ac-

tion is passed a set of viewcode expressions, and performs the desired modification on each

one. Each viewcode expression is a variable binding site previously validated by our predicates.

The modification is implemented as a code template that recombines the original definition's

lambda formals and body.

(define action/make-define-integrable
(make-explained-action
(lambda (vform context vc-exps)

(for-each (lambda (vc-exp)
(let* ((define-exp (up-link-n vc-exp 2))

(formals (lambda/formals (define-var/value define-exp))))
(replace define-exp '(define-integrable ,(define-var/name define-exp)

(lambda ,formals
((lambda ,formals

,(lambda/body (define-var/value define-exp)))
,@formals))))))

vc-exps)
#t)

"function inlining"))

5.3.5.4 A Dispatcher

The dispatcher is created using the four predicates and the action. The predicates are com-

bined into a compound predicate that returns true only if they all return true.

(define dispatcher/def-integrable
(make-simple-dispatcher (combine-vforms-conjunctive predicate/no-mutations

predicate/no-free-vars
predicate/usual -integrations
predicate/no-local-storage)

acti on/ma ke-defi ne-i ntegrabl e))

5.3.5.5 A Rule

The goal of our inlining rule is to perform the inlining modification on a set of define ex-

pressions. To make this rule simpler to invoke, we parameterize its control structure on a list of

symbols corresponding to the top-level names defined in the context of interest (i.e., a list of p-
sum and p in the pedigree example). The control structure for this rule will then ensure each

symbol is, in fact, defined in the context. The alpha view function top-level -defined? returns a

viewcode variable binding if one exists. These binding expressions are used as the viewcode

expression list passed to the combined vforms. This control structure is given below.

Using this control structure constructor, we build a rule constructor parameterized on the

binding symbols. This rule constructor will be used to implement the pedigree example coupler.

115

(define (make-define-integrable-control-structure binding-symbols)
(lambda (vforms)

(lambda (vform context vc-exps)
(let ((bindings (map (lambda (binding) (top-level-defined? binding context))

binding-symbols)))
(and (for-all? bindings identity-procedure)

(for-all? vforms
(lambda (vform) (do-vform vform context bindings))))))))

(define (make-define-integrable-rule binding-symbols)
(combine-vforms (make-define-integrable-control-structure binding-symbols)

(verbose-expl-combiner "integrating define expressions")
(list dispatcher/def-integrable)))

5.3.6 Combining the Rules into a Coupler

The coupler for the pedigree example must implement both the short-circuit multiplication

substitution and the function inlining. This is implemented by combining the short-circuit rule

and the inlining rule into a coupler. The rules are supported and mediated by the coupler's con-

trol structure. As with other coupler control structures, this one is responsible for creating the

contexts, ensuring the proper views are computed, invoking the appropriate rules or dispatchers,

and registering the coupling if necessary. For our coupler, the context will be created from a set

of passed-in filenames and the views to be computed are the alpha and liar views. This control

structure, given below, follows the same basic structure as all previously illustrated coupler con-

trol structures.

(define (make-pedigree-control-structure filel . rest-files)
(lambda (vforms)

(lambda (vform context vc-exps)
(let ((context (or context (apply make-context-from-files (cons filel rest-files)))))

(ensure-liar-view-computed! context)
(ensure-alpha-view-computed! context)
(if (for-all? vforms

(lambda (vform)
(do-vform vform context vc-exps)))

(register-coupling! context vform))
context))))

The coupler can now be defined quite easily. It combines the short-circuit and inlining rules,

and passes the appropriate files to the control structure constructor.

(define (make-pedigree-rule binding-symbols repl-sc-*-symbols)
(combine-vforms (make-pedigree-control-structure

(fully-qualify *pedigree-dir* "pedigree-data-abstraction")
(fully-qualify *pedigree-dir* "pedigree"))

(verbose-expl-combiner "integrating definitions")
(list (make-define-integrable-rule binding-symbols)

(make-replace-sc-*-rule repl-sc-*-symbols))))
(define coupler/pedigree-rule (make-pedigree-rule '(p-sum p) '(p_pedigree)))

116

5.3.7 ViewForm Generated Code

The pedigree coupler is invoked by evaluating the following expression: (do-vform cou-
pler/pedigree- rule #f '()). The output code is given below. The coupler generates a context

containing the definitions below for p-sum, p, and P_pedigree. This generated code can then be

syntaxed by the MIT Scheme syntaxer to generate a version of P_pedigree with the inlined p-sum

and p. This syntaxed version produces the same answer as the original P_pedigree for the model -2

set of phenotype observations (probability = 0.015625).

(define-integrable p-sum (lambda (v proc)
((lambda (v proc)

(do ((index (-1+ (vector-length v)) (-1+ index))
(acc 0 (+ acc (proc (vector-ref v index)))))

((negative? index) acc)))
v proc)))

(define-integrable p (lambda (val givens)
((lambda (val givens)

(let ((given-val (reduce * 1 givens)))
(/ (* val given-val) given-val)))

val givens)))

(define
p_pedigree
(lambda ()

(p-sum
gd
(lambda (g_d)

(sc-*
(quasiquote
((unquote

(lambda ()
(p-sum
g_f
(lambda (g_f)

(sc-*
(quasiquote
((unquote (lambda () (p g_f (quote ()))))
(unquote (lambda () (p gp (quote ()))))
(unquote (lambda ()

(p-sum
P-P
(lambda (p_p)

(p-sum
gP
(lambda (g_p)

(sc-*
(quasiquote
((unquote (lambda ()

(p p_p (quasiquote ((unquote g_p))))))
(unquote (lambda ()

(p-sum
gm
(lambda (g_m)

117

(Sc-*
(quasiquote
((unquote

(lambda ()
(p g_p (quasiquote

((unquote gp)
(unquote g_m)
(unquote g_f))))))

(unquote
(lambda ()
(p g_d (quasiquote

((unquote g_m)
(unquote g_f))))))

(unquote
(lambda ()
(p pm (quasiquote

((unquote g_m))))))
(unquote
(lambda ()
(p g_m (quote ()))))))))))))))))))))

(unquote (lambda () (p pf (quasiquote ((unquote g_f)))))))))))))
(unquote (lambda () (p td (quasiquote ((unquote g_d))))))
(unquote (lambda () (p pd (quasiquote ((unquote g_d))))))
(unquote (lambda () (p om (quasiquote ((unquote pm)))))))))))))

5.3.8 Modifying the Pedigree Code

One possible modification to the pedigree code is to change the implementations of p-sum

and p to use non-generic floating-point arithmetic as follows:
(define (p-sum v proc)

(do ((index (-1+ (vector-length v)) (-1+ index))
(acc 0. (flo:+ acc (proc (vector-ref v index)))))

((negative? index) acc)))

(define (P val givens)
(let ((given-val (reduce * 1. givens)))

(flo:/ (flo:* val given-val)
given-val)))

This change invalidates the previously generated implementation coupling. After this modifica-

tion was made, the view invalidation/recoupler was invoked. The change was recognized, and

ViewForm then regenerated the same P_pedigree code as before, but with versions of p-sum and

p reflecting the modifications above.

5.3.9 Quantitative Measurements

The following tables contain the quantities outlined in the experimental methodology. They

will be discussed later, along with the data collected from the other examples.

118

5.4 ViewForm Example

ViewForm's performance can benefit from implementation coupling. Via Blair's profiler[7],
I found one dramatic performance bottleneck in the liar data-flow analysis implementation. The
data-flow analysis is implemented using MIT Scheme's bitvectors to represent an initial data-flow
graph. This graph is then traversed using a hand-optimized version of the Floyd-Warshall [31]
algorithm. The bottleneck was in the procedure propagate-nodes!, shown below.

119

(define (propagate-nodes! tc-matrix)
(let* ((size (vector-length tc-matrix))

(tc-copy (make-initialized-vector
size

(lambda (idx)
(let ((result (bit-string-allocate size)))

(bit-string-move! result (vector-ref tc-matrix
result)))))

(let loop-k ((k 0)
(up-to-date tc-matrix)
(work-copy tc-copy))

(let loop-rows ((row 0))
(cond ((fix:= k size)

(if (not (eq? up-to-date tc-matrix))
(let loop ((index 0))

(cond ((fix:= index size))
(else (vector-set! tc-matrix

(loop (fix:l+ index)))
((fix:= row size) (loop-k (fix:1+ k)

work-copy

idx))

index (vector-ref up-to-date index))
))))

up-to-date))
(else
(let ((row-bit-string (vector-ref up-to-date row)))

;; *** Want to replace bit-string-ref with new-bit-string-ref ***
(if (bit-string-ref row-bit-string k)

(bit-string-or! row-bit-string
(vector-ref (or (and (fix:< k row) work-copy)

up-to-date)
k)))

(vector-set! up-to-date row (vector-ref work-copy
(vector-set! work-copy row row-bit-string)
(loop-rows (fix:1+ row)))))))))

row))

Blair's profiler showed that a significant amount of time was being spent in the Scheme primitive

bit-string-ref. This primitive takes a bit string and an index, and returns #t if the indexed bit is

set and #f otherwise. At my request, Stephen Adams wrote an Intel x86 specific version of bit-

string-ref that eliminated this bottleneck. This code is given below.
(define-macro (deflap name . lap)
'(define ,name

(scode-eval
',((access lap->code (->environment '(compiler top-level)))

name
lap)

system-global-environment)))

120

(define new-bit-string-ref
(let ()

(deflap new-bit-string-ref
(entry-point new-bit-string-ref)
(Scheme-object CONSTANT-O #F)
(Scheme-object CONSTANT-1 0)
(equate new-bit-string-ref new-bitstring-ref-0)
(word u #x303)
(block-offset new-bitstring-ref-0)
(LABEL new-bitstring-ref-0)
(mov w (r 0) (@ro b 4 0)) ; eax <- bs
(mov w (r 3) (@ro b 4 4)) ; ebx <- I
(and w (r 0) (r 5)) ; remove tag
(and w (r 3) (r 5)) ; remove tag
(add w (r 4) (& 8)) ; pop bs and I
(and w (@r 4) (r 5)) ; unmask return address
(mov b (r 1) (& 31)) ; cl <- i & 31
(and b (r 1) (r 3))
(shr w (r 3) (& 5)) ; bs >> 5
(mov w (r 0) (@roi b 0 8 3 4)) ; eax <- bs[i>>5]
(shr w (r 0) (r 1)) ; shift selected bit to LSB
(test w (r 0) (& 1))
(jz b (@pcr is-false))
(mov w (@ro b 6 8) (& #x20000000)) ; return #T
(ret)
(label is-false)
(mov w (@ro b 6 8) (& 0)) ; return #F
(ret)

new-bit-string-ref))

This lap code above defines a new primitive called new-bit-string-ref. To use this new primi-

tive, references to bit-string-ref must be renamed to new-bit-string-ref. In addition, the lap
code above must be included in the same file as any references to new-bit-string-ref. Our goal

for the ViewForm example is to replace all references in propagate-nodes! to bit-string-ref with

new-bit-string-ref, and to add the lap code. This goal poses two problems.

The first problem is that the new primitive does no type checking. Passing new-bit-string-

ref something other than a bit string, for example, could cause the Scheme run time to fail cata-
strophically. Before inserting references to new-bit-string-ref, its potential arguments must there-

fore be examined and deemed safe with absolute certainty. A careful visual inspection of the

propagate-nodes!, for example, shows a possible danger. row-bit-string, the variable whose value

is supposed to be a bit string, has a value passed in externally through tc-matrix (which is propa-

gate-nodes!'s formal parameter). If a module invokes propagate-nodes! on a vector of something
other than bit strings, new-bit-string-ref would have a problem. This situation can happen as a

result of a bug in propagate-nodes!, a bug in a call to propagate-nodes!, or maintenance pro-

grammer modifications to invokers of propagate-nodes!. Our desired modification therefore de-

pends on the implementation of modules outside of the one for propagate-nodes!.

121

The second problem is the specificity of the new-bit-string- ref implementation. It only

works on MIT Scheme running under an x86-compatible processor. This creates an implementa-

tion coupling between propagate-nodes! and the underlying processor implementation. If View-

Form is re-compiled to a different, incompatible processor, new-bit-string-ref should not be in-

cluded. These two problems must be addressed in the implementation coupling code we will

write below. As before, we follow the six-step view-based abstraction methodology.

5.4.1 Modules/Contexts

ViewForm consists of 28 files, each corresponding to a module. propagate-nodes! is in one

of these modules. While only five other modules are allowed to call propagate-nodes!, we will

assume that it might be called from any of the other modules. This is done to provide a better

perspective on ViewForm's performance and ability to scale. Contexts for these 28 modules will

be created and merged by the coupler we will write.

5.4.2 Preconditions/Predicates

As previously discussed, before new-bit-string-ref can be substituted, its two argument

types must be validated to be a bit string and a positive integer, respectively. tt t tt In addition, the

computing platform's processor must be x86 compatible. These preconditions are summarized

as follows:

* Candidate expression for replacement must evaluate to bit-stri ng-ref's value

* The first argument of every combination whose operator is bit-string-ref's value must

be a bitstring

* The second argument of every combination whose operator is bit-string-ref's value

must be a non-negative integer

* The computing platform's processor must be x86 compatible

The first precondition will be managed by the coupler, which will extract the appropriate candi-

date expressions from the contexts it creates. The next two preconditions could be handled the

same way as in the simulator example, with a simple combination of three predicates created

from make-predicate/check-ret-type and make-predicate/check-proc-pa rams. Instead, we take a less

fragile route; one that involves user interaction. Our goal is to write a predicate constructor like

make-predicate/check-ret-type. Our predicate constructor will take a type, and return a predicate

that ensures that all viewcode expressions passed to it will return values consistent with that

type. The difference is what happens when the precondition is not validated. Our new predi-

ttttt We do not perform a range check on the index for this example, although in practice it should also be done.

122

cates should present any cases that would otherwise invalidate the precondition to the user, and
ask the user to validate or invalidate each case. This is implemented with the predicate construc-
tor code below.

(define (make-user-predicate/type-consistent type)
(make-explained-predicate
(lambda (vform context vc-exps)

(for-all? vc-exps
(lambda (exp)

(for-all? (list-transform-negative (consumer->primitive-producers exp context)
(lambda (producer)

(for-all? (exp->return-types producer context)
(lambda (ret-type) (type-consistent? type ret-type)))))

(lambda (bad-type-exp)
(format #t "-%-%The expression: [-S] -S -% returning types: -S -

~% is inconsistent with the required type: -S -
~% for the expression to be transformed: -S"

(hash bad-type-exp) bad-type-exp (exp->return-types bad-type-exp context)
type exp)

(y-or-n-user-response))))))
"user-interactive type consistency checking"))

This code has two major parts. The first collects a list of a viewcode expression's primitive pro-

ducers (e.g., expressions creating bit strings). It filters this list for any primitive producers that do

not produce values consistent with the passed-in type (e.g., vector-creating expressions). Nor-

mally, the presence of any viewcode expressions in this list would invalidate the precondition.

Our predicate, however, presents each of these viewcode expressions to the user. This is the

second major part of the predicate. For each potentially invalidating viewcode type, our predi-

cate prints a message out to the user, then asks for a yes or no response. This predicate con-

structor will be used to construct a predicate that checks for bit string-returning expressions and

a predicate that checks for non-negative-integer returning expressions.

The final precondition can be tested using the platform view, to be defined later. The plat-

form view maps a context's expressions to the computing platform they are or will be run on.

One of the functions exported by this view is x86-pl atform?, which takes a context and returns a

true value if the context's expressions are or will be run on an x86. A predicate implementing

the final precondition is given below.

(define predicate/test-os
(make-explained-predicate (lambda (vform context vc-exps)

(x86-platform? context))
"verifying x86 architecture"))

5.4.3 Views

The predicates above use three views. The first is the liar view (e.g., exp->return-types). The

second, the alpha view, is implicit because it will be used by the coupler to look up all refer-

123

ences to the variable bit-string-ref to ensure the first precondition. The third required view is

the platform view, which will be implemented later. Our coupler must ensure these views have

been computed prior to the invocation of these predicates.

5.4.4 Modifications/Actions

We need two modifications for the ViewForm example. The first is to replace bit-string-

ref by new-bit-string-ref. The second is to insert the lap code. The former is performed by ac-

tion/vf-repl -bitstring-ref below. It takes a viewcode list of combinations (like our predicates

above) and replaces each operator expression with new-bit-stri ng-ref. The second modification

is implemented by the action constructor below, make-action/insert-code. It takes an expression

list and an explanation string, and returns an action that inserts the expression list expressions

after the last expression in the given context. The action action/vf-insert-l ap, also given below,

inserts the lap code for the ViewForm example into the given context.

(define action/vf-repl-bitstring-ref
(make-explained-action
(lambda (vform context vc-exps)

(for-each (lambda (vc-exp) (replace (combination/proc vc-exp) 'new-bit-string-ref))
vc-exps)

#t)
"replacing exps with 'new-bit-string-ref"))

(define (make-action/insert-code code-list expl-string)
(make-explained-action
(lambda (vform context vc-exps)

(let ((last-exp (car (last-pair (context/exps context)))))
(for-each (lambda (code) (insert-after-in-context! context code last-exp))

code-list)
#t))

expl-string))

(define action/vf-insert-lap
(make-action/insert-code
(list '(define new-bit-string-ref

(let ()
(deflap new-bit-string-ref

(entry-point new-bit-string-ref)
(Scheme-object CONSTANT-O #F)
(Scheme-object CONSTANT-1 0)
(equate new-bit-string-ref new-bitstring-ref-0)
(word u #x303)
(block-offset new-bitstring-ref-0)
(LABEL new-bitstring-ref-0)
(mov w (r 0) (@ro b 4 0)) ; eax <- bs
(mov w (r 3) (@ro b 4 4)) ; ebx <- i
(and w (r 0) (r 5)) ; remove tag
(and w (r 3) (r 5)) ; remove tag
(add w (r 4) (& 8)) ; pop bs and i
(and w (@r 4) (r 5)) ; unmask return address
(mov b (r 1) (& 31)) ; cl <- i & 31

124

(and b (r 1) (r 3))
(shr w (r 3) (& 5)) ; bs >> 5
(mov w (r 0) (@roi b 0 8 3 4)) ; eax <- bs[i>>5]
(shr w (r 0) (r 1)) ; shift selected bit to LSB
(test w (r 0) (& 1))
(jz b (@pcr is-false))
(mov w (@ro b 6 8) (& #x20000000)) ; return #T
(ret)
(label is-false)
(mov w (@ro b 6 8) (& 0)) ; return #F
(ret)

new-bit-string-ref))
'(define-macro (deflap name . lap)

'(define ,name
(scode-eval
',((access lap->code (->environment '(compiler top-level)))

name
lap)

system-global -environment))))
"inserting new-bit-string-ref code"))

5.4.5 Dispatchers and Couplers

We can now build our dispatchers from the predicates and actions above. We will build

two dispatchers, since we have two different contexts of interest. The first dispatcher replaces
bit-string-ref with new-bit-string-ref. Our coupler will pass it a combined context, produced

by merging all 28 original contexts. Access to this merged context will allow the dispatcher's

predicates to look for type consistency throughout the entire program. The second dispatcher

inserts the lap code into the propagate-nodes! context. It therefore must be passed only that one

context, and not the merged context.***** The predicate constructor make-predicate/check-comb-

param-types is a default ViewForm predicate constructor that checks the combinations in the

viewcode expression list. The combination's arguments must satisfy the passed-in predicates. In

the predicate below, the first argument to the combination must be consistent with *bit-string-
type*, and the second argument must be consistent with *non-negative-int-type*.

(define dispatcher/vf-new-bit-string
(make-simple-dispatcher
(make-predicate/check-comb-param-types
(list (cons first (make-user-predicate/type-consistent *bit-string-type*))

(cons second (make-user-predicate/type-consistent *non-negative-int-type*))))
action/vf-repl-bitstring-ref))

(define dispatcher/vf-new-lap-code
(make-simple-dispatcher predicate/test-os action/vf-insert-lap))

* While having two dispatchers is less convenient than having one, this is not problematic for this example. It does suggest,
however, that the characteristic vform interface should take a list of contexts instead of a context.

125

We are now ready to write our coupler. As is typically the case, the control structure for the

coupler must create the contexts, invoke the proper views on the contexts, compute the view-

code expression list, invoke the passed-in dispatchers on the appropriate viewcode expression

lists, and register the coupling, if any. These tasks are implemented in the control structure con-

structor below.

(define (control/vf prim target-file rest-files)
(lambda (vforms)

(let ((new-bitstring (car vforms))
(new-lap (cadr vforms)))

(lambda (vform context vc-exps)
(let ((contexts (map make-context-from-file rest-files))

(matrix-context (make-context-from-file target-file)))
(for-each (lambda (context)

(ensure-liar-view-computed! context)
(ensure-alpha-view-computed! context))

(cons matrix-context contexts))
(let ((merged-context (apply merge-contexts!

(cons (merge-contexts matrix-context (second contexts))
(cddr contexts)))))

(ensure-platform-view-computed! matrix-context)
(let ((prim-combs (list-transform-positive

(append-map (lambda (exp) (exp->recvs exp merged-context))
(var-binding->var-refs prim matrix-context))

(lambda (exp) (type/combination? (up-link exp))))))
(if (and (do-vform new-lap matrix-context '()))

(do-vform new-bitstring merged-context (map up-link prim-combs))
(register-coupling! merged-context vform))

matrix-context)))))))

control /vf has been parameterized on a primitive, a file, and a list of files, respectively. The

primitive (e.g., bit-string-ref) is the one whose references we are interested in replacing. The

passed-in file is the one into whose context the lap code will be inserted and also the one

searched for instances of bit-stri ng-ref. The list of files contains all the other files to be in-

cluded in the combination argument search on the instances of bit-string-ref that are found.

The control structure begins by creating contexts for each of the 28 files, then invoking the

liar and alpha views on them. Afterwards, it merges the views into one combined view. The or-

der is important: the liar view trades space for time, and the space requirements of invoking the

liar view on one huge context are disproportionately large. Merging contexts, on the other hand,

trades off time for space. This complementary tradeoff is a nice way to provide faster liar-view

computation for smaller contexts, while still allowing the creation of larger contexts (via merg-

ing) with the available computational resources.

The control structure next computes the platform view on the matrix context (the one con-

taining propagate-nodes!). We could have computed this view on every context, but that is un-

necessary. The control structure then begins computing the viewcode expression list for the bit

126

string dispatcher. This list is constructed by computing a list of viewcode expressions receiving

bit-string-ref's value, in the matrix context since that is where we are interested in modifying

the references to bit-string-ref. This list is then filtered for those viewcode expressions in the

operator position of a combination. The bitstring dispatcher is invoked on this list and the

merged context. The new lap dispatcher is subsequently invoked on the matrix context. If a

coupling is rendered, it is registered with the view invalidation/recoupler. Finally, the matrix con-

text is returned so that it can be unparsed or otherwise processed by the user or the compiler.

The coupler can now be implemented. It uses the control structure above, and the dis-

patchers created earlier. The variables matrix-file and *vf-fi 1es* contain the propagate-nodes!

filename and the other 27 ViewForm filenames, respectively.

(define coupler/vf
(combine-vforms (control/vf (lookup-predefined 'bit-string-ref) matrix-file *vf-files*)

(verbose-expl-combiner "integrating definitions")
(list dispatcher/vf-new-bit-string dispatcher/vf-new-lap-code)))

5.4.6 Platform View

We now turn to the implementation of the platform view. The platform view collects a de-

scription of the platform processor ViewForm is currently running on. It can also be set by the

user, when the computing platform is to be something other than the underlying computing plat-

form. This view is implemented the same way as the *1 ambda-view* and the comb view, via the

following five steps:

1. Implement the merging and copying procedures, as well as the view initialization value

2. Implement the view dispatchers

3. Combine the dispatchers into a view

4. Register the view

5. Provide a way to invoke the view

For the first step, we must decide upon a representation for the view information. For the plat-

form view, a string will suffice. The corresponding merge, destructive merge, copying, and initial

value are therefore simple string operations. Since the semantics of combining two different plat-

form views is otherwise dependent on the use of the view information, we make platform view

merging default to the null platform.

(define (context/platform context) (retrieve-view *platform-view* context))
(define (set-context/platform! context info) (set-view! *platform-view* context info))
(define (platform-merge platform-viewl platform-view2)
(if (string=? platform-viewl platform-view2)

platform-viewl
platform-id))

(define platform-id "")

127

The next two steps are combined into one piece of code. For the platform view, we need only

one action (and not a full dispatcher) since we are not doing a code walk or looking at any

code. This action acquires the view information from microcode- i d/operati ng-system-variant, an

MIT Scheme predefined variable. This variable references a string containing information from

which the processor platform can be gleaned.555"

The third step is to create the view. This view is named *platform-view*, and is constructed

using *id-control -structure*, a control structure that unconditionally invokes each passed-in

vform on the passed-in context and viewcode expression list. This code is given below.

(define *platform-view*
(make-view *id-control-structure*

(verbose-expl-combiner "platform architecture information")
(list (make-explained-action

(lambda (vform context vc-exps)
(set-context/platform! context microcode-id/operating-system-variant))

"storing the operating system variant"))))

The fourth step, registering the view, is straightforward, since we have previously defined all the

necessary components:

(register-view! *platform-view* platform-merge platform-merge identity-procedure platform-id)

Finally, we provide a way to invoke the view, and define x86-pl atform?:

(define (ensure-platform-view-computed! context)
(if (string-null? (context/platform context))

(do-vform *platform-view* context '())))

(define (x86-platform? context)
(there-exists? (list "x86" "386" "486" "pentium")

(lambda (machine-string)
(substring? machine-string (context/platform context)))))

5.4.7 ViewForm Output

The ViewForm coupler was invoked by evaluating: (do-vform coupler/vf #f '()). The re-

sulting context is given below. The reference to bit-string-ref in propagate-nodes! was replaced

by new-bit-string ref, and the lap code was added.

§§§§§ If this variable was not available, a C function could be written and called to provide the information.

128

(define propagate-nodes!
(lambda (tc-matrix)

(let* ((size (vector-length tc-matrix))
(tc-copy (make-initialized-vector

size
(lambda (idx)

(let ((result (bit-string-allocate size)))
(begin (bit-string-move!

result
(vector-ref tc-matrix idx))

result))))))
(let loop-k ((k 0)

(up-to-date tc-matrix) (work-copy tc-copy))
(let loop-rows ((row 0))
(cond ((fix:= k size)

(if (not (eq? up-to-date tc-matrix))
(let loop ((index 0))

(cond ((fix:= index size))
(else
(vector-set! tc-matrix index (vector-ref up-to-date index))
(loop (fix:1+ index)))))))

((fix:= row size) (loop-k (fix:1+ k) work-copy up-to-date))
(else (let ((row-bit-string (vector-ref up-to-date row)))

(begin (if (new-bit-string-ref row-bit-string k)
(bit-string-or! row-bit-string

(vector-ref (or (and (fix:< k row)
work-copy)

up-to-date)
k)))

(vector-set! up-to-date row (vector-ref work-copy row))
(vector-set! work-copy row row-bit-string)
(loop-rows (fix:1+ row)))))))))))

(define-macro
(deflap name . lap)
(quasiquote
(define (unquote name)

(scode-eval (quote (unquote ((access lap->code
(->environment (quote (compiler top-level))))

name lap)))
system-global-environment))))

(define new-bit-string-ref
(let ()

(deflap new-bit-string-ref
(entry-point new-bit-string-ref)
(Scheme-object constant-0 ())
(Scheme-object constant-1 0)
(equate new-bit-string-ref new-bitstring-ref-0)
(word u 771)
(block-offset new-bitstring-ref-0)
(label new-bitstring-ref-0)
(mov w (r 0) (@ro b 4 0))
(mov w (r 3) (@ro b 4 4))
(and w (r 0) (r 5))
(and w (r 3) (r 5))
(add w (r 4) (& 8))

129

(and w (@r 4) (r 5))
(mov b (r 1) (& 31))
(and b (r 1) (r 3))
(shr w (r 3) (& 5))
(mov w (r 0) (@roi b 0 8 3 4))
(shr w (r 0) (r 1))
(test w (r 0) (& 1))
(jz b (@pcr is-false))
(mov w (@ro b 6 8) (& 536870912))
(ret)
(label is-false)
(mov w (@ro b 6 8) (& 0))
(ret))

new-bit-string-ref))

To demonstrate the user interaction, the line (propagate-nodes! (vector (vector 1 2 3))) was

added to the code. The view invalidation/recoupler was then invoked. This produced the follow-

ing instance of user interaction. When the user responded with y (not necessarily correct), View-

Form produced the same context expressions as above.

The expression: [16] (vector 1 2 3)
returning types: (#[uninterned-symbol 17 vector-typel9])
is inconsistent with the required type: #[uninterned-symbol 18 bitstring-type30]
for the expression to be transformed: row-bit-string

Shall I accept this and continue?
Enter y to accept or n to reject: y
;Value 19: ((#[%context 201))

5.4.8 Quantitative Measurements

The following tables contain the same measurements collected for the previous examples.

These measurements are discussed next.

130

5.5 Analysis and Evaluation

For each of the three examples, the two evaluation metrics given earlier are assessed. The
first metric is whether ViewForm successfully generated the desired coupled code (or its equiva-
lent) and the second is whether the desiderata from Chapter 2 were met. Afterwards, I discuss
what I learned from my experience with view-based abstraction as well as various important is-
sues that came up during my experimentation.

5.5.1 The Desired Couplings Metric

The desired couplings metric has two possible values: true or false. It is true if the View-
Form-generated code is either identical or equivalent to the code desired by the programmer.
Equivalence is determined with respect to the criteria the programmer set out when developing
the desired code. For instance, in the dispatch example, the criterion is to transform a linear-time
process to an expected constant-time process. According to this criterion, the code in Figure 1-4
is equivalent to the code in Figure 1-8, even though they are not syntactically the same. This cri-
terion could also have been satisfied by code using a different expected constant-time dictionary
data structure.

5.5.1.1 The Simulator Example

For the simulator example, the desired criterion is to generate a particle data structure im-
plementation that uses flovecs to represent particle values. The desired code (which meets this
criterion) was given in Figure 5-2 and the ViewForm generated code was given in Figure 5-3.
These two pieces of code are not syntactically equivalent. Both, however, do have identical in-
terfaces. While this is enough to satisfy the criteria, let us explore the two differences between
these pieces of code for completeness. The first difference is that the desired code uses the syn-
tactic sugar:

(define (<proc> <formal-i> ... <formal-n>)
<body>)

131

while the generated code uses the form:

(define <proc>
(lambda (<formal -1> ... <formal-n>)
<body>))

This is a purely syntactic difference: the two forms are completely semantically identical. Thus,

this has no negative bearing on the desired coupling metric. The second difference involves B-

reduction (see Figure 3-3). A Scheme expression of the form:

((lambda (particle) (vector-ref particle 3))
particle)

can be B-reduced to the form:

(vector-ref particle 3)

The two forms above are semantically equivalent. In fact, compilers are free to perform B-

reduction (as per Figure 3-3) as a way of statically optimizing out certain procedure calls. Since

the non B-reduced expressions in the generated code can be B-reduced, this difference has no

negative bearing on the desired coupling metric. The desired and generated code are therefore

equivalent. This validates the desired coupling metric.

5.5.1.2 The Pedigree Example

For the pedigree example, there are two desired criteria. The first is substituting * with sc-*

in P_pedigree. The second was producing a version of P_pedigree in which p-sum and p were in-

lined. For the first criterion, the desired code in Figure 5-9 is compared to the generated code in

Section 5.3.7. The generated code differs from the desired code in two aspects. The first aspect

is the define expression syntactic sugar described in the preceding section, in the simulator ex-

ample. The second aspect is in the difference between:

'(,<exp-l> ... ,<exp-n>)

and

(quasiquote ((unquote <exp-l>) ... (unquote <exp-n>)))

Like the define expression syntactic sugar, these forms are completely equivalent. One is just

syntactic sugar for the other. Since there are no other differences between the desired and gen-

erated P_pedigree code, the desired coupling metric is validated for P_pedigree.

Next, p-sum and p must be examined. The criterion is to inline p-sum and p into P_pedigree.

This is exactly what define-integrable stipulates to the MIT Scheme syntaxer. p-sum and p were,

however, changed somewhat. Specifically, an extra non-B-reduced combination was added to p-

sum and p. The purpose of this addition was solely to force the MIT Scheme syntaxer to substi-

132

tute the arguments for the formals exactly once. The additional combination does not adversely

affect the inlining of p-sum and p, especially since a compiler could easily decide to eliminate it

post-inlining. Thus, the p-sum and p code is equivalent to the desired code. This completes the

validation of the desired coupling metric for the pedigree example.

5.5.1.3 The ViewForm Example

For the ViewForm example, one objective was to replace a reference in propagate-nodes! to

bit-string-ref with new-bit-string-ref. This objective was achieved, the only other difference

being the syntactic sugar from:

(define (propagate-nodes! _.) .) to

(define propagate-nodes! (lambda (-.) ...)

As discussed earlier, this is a purely syntactic difference. The second objective was to add the

lap code. This code was also added successfully, the only difference being the backquote sym-

bol (i.e., '), unquote symbols (i.e., ,) and quotation symbol (i.e., ') were replaced by quasiquote,
unquote, and quote, respectively. As previously discussed, this equivalence is also purely syntac-

tic. Since the differences between the desired and generated code are all purely syntactic, we

can validate the desired metric coupling for the ViewForm example.

5.5.2 The Desiderata Metric

The desiderata metric consists of five properties that view-based abstraction must possess.

Each property is discussed below, with respect to the simulator, pedigree, and ViewForm exam-

ples.

5.5.2.1 Backwards Compatibility

None of the examples required modifications to the source language, modifications to MIT
Scheme's implementation or modifications to the source programs (i.e., pragmas or annotations).

None of the examples required rewriting the source programs into a different language. In all of
the cases, the need for direct source code access was limited to the code being modified or the
code that the modification depended upon. This means view-based abstraction was fully back-
wards compatible in the examples with respect to the criteria defined in Section 2.3.1.

5.5.2.2 Incrementality

As discussed earlier, incrementality is assessed by comparing the scope of the desired modi-
fication with the scope of the coupling. For the simulator example, the desired modification

changed three define expressions: gunk:initial -value, gunk:particle-val ue, and gunk:set-

particl e-val ue!. The changes were dependent upon the one line implementing the vector access

133

in gunk:parti cl e-val ue. This scope is the same as that of the corresponding actions, which mod-

ify the three define expressions and depend on the implementation of gunk: particle-val ue. In

addition, as shown in the table from Section 5.2.8 , the number of lines modified and depended

upon by the action is low compared to the size of the simulator code.

The desired pedigree example modification depends upon the definitions of P_pedigree, p-

sum, and p. The actions we defined for the pedigree likewise depend on the definitions of these

three procedures. Our sc-* predicate, however, requires a data-flow analysis on P_pedigree.

While this may seem to indicate that our predicate has a larger scope than what is required, this

analysis need only look beyond P_pedigree to look for combinations whose operator is *'s value.

This additional scope is optional. predicate/sc-* could easily be modified to look for operators

that are textually identical to *. This does not require any sort of data-flow analysis, but relies on

the presence of the usual -integrations declaration. The additional scope was optionally imple-

mented to make the predicate less fragile.

The ViewForm example modification depends on the code in propagate-nodes!, as well as

any code that calls propagate-nodes!. The actions we implemented likewise depend on the same

code, although the scope was extended to include files that would not otherwise be allowed to

call propagate-nodes!. This extension of scope was done solely to demonstrate ViewForm's per-

formance on a larger program, and not out of necessity.

These three examples demonstrate the property of incrementality. Our couplers did not re-

quire a scope larger than that of the desired modification (the extra scope in the pedigree and

ViewForm cases was not required). Furthermore, our couplers did not depend on any other po-

tential couplings in the code, whether or not they were ViewForm mediated.

5.5.2.3 Language Independence

Since all three examples were performed using ViewForm (which takes only MIT Scheme as

input), language independence is not easy to demonstrate. In fact, some couplers depended

upon three specific MIT Scheme features (i.e., (declare (usual -integrations)), define-integrable,

and microcode-id/operati ng-system-vari ant). These dependencies are not necessary, they are

simply convenient. While view-based abstraction does not depend on any language feature or

programming paradigm, a more empirical test would be to implement a variety of ViewForm

versions that do not take Scheme as input. Instead, I will argue view-based abstraction's lan-

guage independence based on the fact that the view-based abstraction specification in Chapter 3

does not require any specific language features.

134

5.5.2.4 Ease of Understanding and Usability

Ease of understanding and usability cannot be measured objectively, although the meas-

urements taken on the simulator example in Section 5.2.8 are a good starting point. These

measurements show that modifying 14 lines of uncoupled code took 65 lines of ViewForm code.

This results in a ratio of 4.6 lines of ViewForm code per line of modified code. While a lower

ratio would certainly be better, the real gain is that future programmers will not be required to

pay for the consequences of broken modularity. When modifying code with implementation

couplings under black-box abstraction, future programmers must search for and find existing

implementation couplings, must determine what their preconditions were, must determine

whether those preconditions are still valid (i.e., whether the couplings affect the future pro-

grammer's desired modifications), must determine how to revert or patch those couplings (and

thereby recursively do this all over again for each reversion or patch), and must test the rever-

sions or patches. This price for broken modularity is high, and furthermore must be paid each

time a future code modification is made to any affected module. The programmer who is im-

plementing the simulator example implementation coupling can eliminate these future costs with

65 lines of ViewForm code - code that this programmer can write more easily since he/she is the

one who developed the implementation coupling to begin with. Compared to the recurring costs

of broken modularity, 65 lines of ViewForm code is inexpensive.

Let us proceed to examine the 65 lines of ViewForm code for the simulator example. Over

a third of the ViewForm code is in the actions. The action code is usually the easiest to express,
since it consists mostly of some sort of code template. Another third of the ViewForm code is

devoted to the coupler. This code is also straightforward to write, as can be evidenced by the

fact that the same approach and structure was used to write every coupler presented in this dis-

sertation (i.e., create a context, compute views on the context, build up the viewcode expression

list, invoke the rules/dispatchers on the viewcode list, register the coupling). The most difficult

code to write, the predicates, make up roughly 12% of the simulator example ViewForm code.

The simulator example predicates, however, are only two lines long. This can be attributed to

the use of complexity layering via the ViewForm code library.

The pedigree example shows similar kinds of numbers. The ratio of ViewForm lines of

code to modified lines of code is 4.4, a slightly lower number than in the simulator example.

Some of this difference can be attributed to the larger size of Ppedigree. The comb view code

comprises 23% of the total ViewForm code. This code is not specific to the pedigree example,
and is thus reusable. The actions make up 18% of the ViewForm code. Interestingly enough, the

number of action code lines is smaller than the number of modified lines. This is because sev-

eral instances of * in P_pedigree were substituted by the same sc-* action. The rules and the

135

coupler comprise 36% of the code, mainly because there are two rules and one coupler. The

predicates comprised 18% of the ViewForm code. At least two of the predicates (predicate/no-

mutations and predicate/sc-*) can be made general enough to be in the ViewForm library.

predicate/no-mutations already is general enough, and in predicate/sc-*, * can be made a pa-

rameter. This change would have reduced the predicate line count by half. Adding these predi-

cates to the ViewForm library is beneficial because predicates are generally more difficult to

write than other view-based abstraction constructs. Any ViewForm library functions that can be

used to simplify the predicate-writing process will disproportionately simplify the implementation

of the corresponding coupling.

For the ViewForm example, the ratio of ViewForm lines of code to modified code is 3.5.

This is because more lines of code are modified in this example, thereby amortizing the total

number of ViewForm code lines. This also explains why over 40% of the ViewForm code lines

were in the actions. The remaining lines of ViewForm code are similar to what was measured in

earlier examples, and the average number of lines per predicate is low as desired.

The measurements taken on the ViewForm code, together with the approaches and tech-

niques used to write the code, share some common aspects. These shared aspects include ways

of combining predicates or actions, ways of passing viewcode expression lists, and ways of im-

plementing control structures and views. These commonalities can form the foundation for pro-

gramming skills that more quickly lead to finished couplers. I found this to be consistent with

my experiences writing couplers, and I expect other programmers to have similar experiences.

5.5.2.5 Amortizable Time Savings

The times needed to generate a coupling and the number of lines analyzed for each exam-

ple are given in Sections 5.2.8, 5.3.9, and 5.4.8. The simulator example produced a rate of ap-

proximately 126 lines per second. By comparison, the MIT Scheme compiler produced a rate of

43 lines per second, or about a third the rate of ViewForm. For the pedigree example, View-

Form's rate was 131 lines per second and the MIT Scheme compiler's rate was 34 lines per sec-

ond.

One difference in the ViewForm example is the time needed to couple the code. ViewForm

achieved an average rate of approximately 83 lines per second, less than in the previous exam-

ples. The ratio of coupling time to compile time was also worse; about 40%. The explanation for

this is the extra time needed to merge the 28 contexts. Thirty percent of the coupling time was

devoted to this merging effort, which was otherwise insignificant in the previous examples. It is

important to note, however, that these measurements are worst-case numbers and are artificially

inflated. They are worst case in that the liar view was fully computed over every expression in

136

every context in the entire ViewForm program. They are artificially inflated in that only five

contexts were actually needed to compute the coupling, since only those five could call propa-

gate-nodes!. This would have led to a ViewForm time of 18 seconds, with a rate of 105 lines per

second, and a compilation time of 79.5 seconds, and 24 lines per second. Nevertheless, one goal

of this example was to demonstrate ViewForm's performance on worst-case scenarios. Towards

that end, it is clear that increasing the size of the program an order of magnitude did not create

a disproportional increase in the coupling time or decrease in the coupling rate (either abso-

lutely or compared to the compilation rate). Coupling the code, therefore, would not add a sub-

stantial time burden to the compilation of any example.

Given these rates, it could be argued that a huge (i.e., million-line) program would not be

suitable for ViewForm. This is true only if all million lines must be analyzed. If validating a pre-

condition requires analyzing a million line program, however, the corresponding implementation

coupling is unlikely to be applied by either a human being or a machine. Instead, experience

dictates that modularity can severely reduce the amount of code that must be analyzed. It is

more likely that only a few modules need to be analyzed, either because the scope of an imple-

mentation coupling is limited, or because a programmer decides that only a few modules are

actually relevant to the coupling. This was the case with the simulator example, where out of an

application spanning over 10,000 lines of code, roughly 11% were relevant and needed to be

analyzed.

Another way ViewForm couplings can save time is via the automatic code analysis. In order

to safely apply the desired simulator modifications, for example, the simulator must be analyzed

to ensure that every particle value is a floating point number. Doing this analysis manually can

take substantially more time than 92 seconds, and can be prone to human error. Even one error

can create a bug that takes minutes or even hours to solve (e.g., if the bug rears itself later, be-

cause of an unrelated program modification). This leads to the next form of saving time.

By eliminating the possibility of certain bugs, ViewForm couplers can reduce debugging

time. In the simulator example, our coupler will never modify the particle value representation if

even one, hard to find use of gunk:particle-set-value! sets a particle value to something other

than a float. Predicates can alert programmers to the existence of these kinds of conditions by

displaying messages, for example.

These observations are consistent with the claim that view-based abstraction is easy to un-

derstand and use, and can save time. Of course, as is the case with most new models, acquiring

practical experience with view-based abstraction goes a long way towards enhancing understand-

ing, usability, and the realizable time savings.

137

5.6 Lessons Learned

In this section, I discuss some important aspects of my experiences using view-based ab-

straction and ViewForm.

5.6.1 Determining Preconditions and Program Modifications

The difficulty of determining a set of preconditions is related to the desired level of fragility.

Strong preconditions are easy to develop and implement, while weak preconditions are difficult

to develop because they must take future changes to a program into account. For example, un-

der black-box abstraction, a programmer may decide to increase a loop's performance with a

macro that copies a function's implementation directly into a tight loop. At first glance, this

macro may seem like an easy solution to the implementation coupling problem: when the selec-

tor's code changes, so does what gets copied into the loop. No apparent preconditions seem

necessary. Unfortunately, the situation is more complex. The code cannot be copied if it is later

changed to maintain local state or modify state through a variable that is not lexically visible in-

side the tight loop. Even worse, any free variables in the selector code may be "captured" by

variables in the tight loop's lexical scope.****** ViewForm does not solve the hard problem of

automatically determining robust preconditions. Rather, ViewForm's job is to make the precon-

ditions (and modifications) easy to express. In any case, care and caution are needed when de-

veloping less fragile or weaker preconditions.

Once expressed, ViewForm can significantly assist in validating the preconditions. These

preconditions can involve whole-program analyses such as data-flow analysis, control-flow analy-

sis, side-effect analysis, and alias analysis. Under black-box abstraction, programmers typically

perform these analyses manually, even though a computer can automatically perform many of

these analyses to varying degrees of precision. Manually computing these analyses and manually

validating the preconditions can be complex and error prone. Even partial assistance (i.e., vali-

dation that depends on user interaction) can reduce complexity and potential sources of error.

5.6.2 Conservative Program Analyses

As mentioned earlier in Section 5.2.7, accurate data-flow analysis can be hampered when

values flow in and out of data structures, closures, and top-level variable names. This problem

can preclude the simple and straightforward expression of a weak precondition. The root of the

problem lies in the consequences of the theory that not all program properties are computable

...... While hygienic macros[15] can prevent this kind of variable capture in scheme, languages like C do not provide this kind of
facility.

138

in general.[44] This means that ViewForm cannot automatically compute any program property

with perfect precision in general. Data-flow analysis falls into this category.

I suggest three approaches when precondition expression is precluded this way. The first is

user interaction. As suggested in Section 5.9.0.1, user interaction provides full backwards com-

patibility by allowing views to "compute" program properties based on user input. The second

approach is to widen a predicate's scope. For example, predicates can be implemented to look

at all the viewcode expressions where a value of interest goes into or comes out of instead of

starting at one expression along the way and branching out from there. The third is inserting

dynamic checks into the viewcode (e.g., dynamic type checks). While this problem can be miti-

gated in other ways, ultimately the ease by which a precondition can be expressed depends on

the availability of an acceptable amount of precision in view information.

5.6.3 Default Program Analyses

I found it useful to provide, by default, an alpha view and a data-flow view. These alone al-

low for the expression of a variety of preconditions. These views can also be useful during pro-

gram development. While developing ViewForm, I extensively benefited from the ability to find

unbound variables and parameter lists inconsistent with call sites. Other useful views compute

control flow, dynamic type, side effect, and alias information, although they were not included

in ViewForm by default.

5.6.4 Default Coupling Library

Programmers tend to attempt certain optimizations more frequently than others. These in-

clude inlining, operator strength reduction, limited partial evaluation, code motion, representa-

tion shifts, and semantics-preserving code rewrites (i.e., using language constructs "known" to be

more efficient). In fact, few programmers seem to be able to describe more than 15 or 20 kinds

of optimizations they perform on a regular basis. One can conclude that a relatively small (of

size 3040) library of optimizations would be useful in most implementation-coupling circum-

stances. Building a library of these constructs is an important factor in the complexity layering

argument presented in Chapter 4. I found that even with ViewForm's limited default vform li-

brary, I was able to reuse library components on a regular basis.

5.6.5 View Selection and Computation

Views are undoubtedly the most computationally expensive part of ViewForm. This obser-
vation is consistent with that of similar research efforts.[28] This is not surprising, as the more

interesting views are based on interprocedural analyses. This means that view selection is very

important: choosing a view with more precision than necessary can adversely affect perform-

139

ance. It is also important to reduce the size of the contexts over which views are computed,
since non-local analyses often scale exponentially in the size of their input. I found that views

did not generally need to be computed over an entire application. Instead, views could gener-

ally be invoked on pieces of code several hundred or thousand lines long even though the over-

all applications were 5 to 10 times larger. This reduced the amount of time spent computing

views to or below acceptable levels. Contexts were instrumental in allowing these reductions to

be made.

An important point is that if the amount of code that needs to be analyzed grows slowly

with respect to the size of an application, then views will remain viable even for larger applica-

tions. For this to be true, module size, at least, must grow more slowly as the size of an applica-

tion increases. This is likely to be true, as the purpose of modularizing an application is to break

it into small pieces amenable to human understanding. Since the capacity of human understand-

ing does not grow with the size of an application, it stands to reason that module size will not

either.

5.7 View Updates

Ideally, views are updated at a fine grain; the finest grain being every time the program is

modified. From a practical standpoint, this is not desirable for moderately sized programs,

where gratuitous view computation may consume an unbearable amount of resources. However,

not all program modifications leave a context in a state consistent with its current views. For this

reason, ViewForm permits vforms to manually control when views are updated. This control is

especially important when view computations and non semantics-preserving program modifica-

tions are interleaved. This is because, in general the viewcode needs to be in a consistent state

for a view to be updated correctly and views must be in a consistent state for viewcode to be

modified correctly. This control is also important for performance. For example, a set of rules

that each use a context's liar view but do not invalidate it can be combined without requiring

interleaved view recomputations.

5.7.1 View Consistency During Rule Invocations

One concern during a rule's execution is maintaining the consistency of the views used by

its sub-vforms. The potential problem is that actions may modify viewcode expressions, invali-

dating a view's information, but not update the views. This alone is not sufficient to cause a

problem. It must also be the case that a subsequent predicate depends on the validity of the

now invalid view information.

140

In practice, there are various ways to address this problem in ways that are not too expen-

sive. One is an incremental view update algorithm. This is the most useful approach, but may

not be possible for every program analysis algorithm employed by views. Another approach is

to minimize the frequency of view recomputation by combining rules into compound rules that

do not need recomputation or need infrequent recomputation. This is similar to how compiler

phases are designed. A third solution is to update view information conservatively. For example,

the liar view could be incrementally updated with less precise, but nevertheless correct informa-

tion. Full recomputation for more precision could be deferred until actually needed.

5.8 Source Code Maintenance

One possible source of complexity is the extent to which a programmer modifying the

original uncoupled code need be aware of any previously applied couplings. The more this pro-

grammer must deal with existing couplings, the more complexity this programmer must manage

while making new program modifications.

To analyze this situation, the space of couplings can be divided into two categories: interface

preserving, and interface non-preserving. An interface non-preserving modification is one that alters

an interface's specification. An interface-preserving one does not. Note that semantics preserving

does not imply interface preserving (although the converse does hold). In real-time systems, for

example, altering the performance of an implementation with a semantics-preserving modifica-

tion can violate an interface's hard time constraints.

5.8.1 Interface Non-Preserving

Suppose we are in an implementation-coupling situation as in Figure 1-6. Suppose a cou-

pling implements a required part of the coupled module's interface. This means the coupling is

an interface non-preserving coupling, since it makes the interface valid. A programmer modify-

ing the uncoupled source may inadvertently invalidate the coupling's applicability, resulting in a

non-functional module once the view invalidation/recoupler runs. Maintainability in this situation

can be enhanced by ensuring that the interface non-preserving coupling's predicate alerts the

programmer when it is no longer applicable. A user-friendly predicate could go so far as to ex-

plain why it is no longer applicable. This approach allows a programmer to make changes with-

out considering the effects on such a coupling. The programmer must worry only about the
coupling when he or she is alerted to a problem by the coupler's predicate.

141

5.8.2 Interface Preserving

A coupling's effects cannot be determined as easily in this situation as in the non-preserving

situation. In the non-preserving situation, the coupling's effect was to help implement the inter-

face; no coupling, no valid interface. The purpose of an interface preserving coupling, on the

other hand, is usually to increase performance. These kinds of couplings will not necessarily

have the intended effect when the original uncoupled code is modified in some other way.tttttt

Precisely and accurately capturing every detail under which a coupling will favorably alter per-

formance is also likely to be very difficult and not necessarily fruitful. This is a general problem

not specific to view-based abstraction. Due to the complexity of predicting the performance

characteristics of any program modification, programmers typically resort to profiling or simple

timing runs to empirically determine the effects of various changes.

Even in this case, couplings that cannot be reapplied due to subsequent code modifications

can still alert the programmer to that fact. Performance may or may not be affected, and may or

may not increase or decrease. This is still a markedly better situation than what happens under

black-box abstraction, where a programmer can invalidate an implementation coupling without

realizing it. The most important point about performance-altering couplings is that, unlike the

non-preserving case, a programmer need not worry about "fixing" a coupling that did not suc-

ceed. A coupling need be considered only if performance drops to unacceptable levels; the ap-

plication will still function since the coupled module's interface remains valid.

5.9 User Interaction

Users can interact with view-based abstraction constructs in two important ways: during the

coupling process (step v) and during view computation (step iii). The former most likely hap-

pens when a predicate cannot completely validate a precondition. A user can be asked whether

to proceed anyway, or can be asked for additional information. Views can also ask the user for

help. This may happen, for example, when a view runs out of a resource that a user can replen-

ish.

User interaction, unfortunately, can break safety. Users are not infallible and can introduce

incorrect assumptions or cause incorrect program modifications. These problems are, however,

pervasive throughout every programming exercise in which a person is involved. The more spe-

cific issue is whether user interaction can disproportionately create problems under view-based

abstraction.

tttttt Performance effects cannot be accurately predicted in general.

142

To address this issue, let us examine two possibilities. These two cases are also possible

without view-based abstraction, when a user is manually computing the preconditions:

* An action that should not run gets run (false positive predicate)

* An action that should run does not get run (false negative predicate)

An interface-preserving action will not cause errors for false negatives, but may for false posi-

tives. An example of the former action is one that rewrites code to use special forms better

compiled by the compiler. An example of the latter is the simulator actions. Thus, extra effort is

well spent ensuring that the latter kind of actions have adequate predicates dispatching them.

An interface non-preserving action can cause errors for either false positives or false nega-

tives. This is the main reason I do not advocate mixing interface non-preserving actions with

user interaction.

User assumptions can also be problematic under view-based abstraction in that they must

be rechecked when the view invalidation/recoupler is run. This implies that each user assump-

tion must be re-verified every time an invalidation occurs. There are one general and two spe-

cific ways to mitigate this problem, depending on the specifics of the circumstances. The general

way (which I have not experimented with) is to develop a user view that caches the user's an-

swers. When a predicate requests information from the user view, the cached information is re-

turned if available. Otherwise, the user view asks the user directly. In this way, a predicate can

be insulated from the user interaction, making the predicate easier to write.

Within this user-view approach, two specific circumstances exist. The more favorable cir-

cumstance is when the user's assumptions are easily checkable but not necessarily easily com-

putable (or not computable at all). In this case, user interaction need only be requested during

recoupling if the user assumption check turns up negative. This user assumption check can also

be pushed to run time, by having a coupling insert checks (e.g., type checks, range checks, con-

sistency checks) into the coupled code that validates the assumptions. This kind of user interac-

tion can be quite beneficial, while at the same time fully retaining safety.

The more difficult case is when the user's assumptions cannot be easily checked. In this

case, interface non-preserving couplings should not invoke a user view that caches responses, as

this could lead to errors. While an automatic solution is more favorable under these circum-

stances, view-based abstraction is still a marked improvement over black-box abstraction, where

user assumptions are implicit and usually undetectable in the code. Thus, in the worst case,
when a user assumption is a necessary precondition for a program modification, view-based ab-

straction allows the assumption's existence to be expressed and available to the future pro-

grammers maintaining the code.

143

5.9.0.1 User Interaction Reduces Fragility

Given the preceding discussion of user interaction, it is fair to question whether user interac-

tion really provides enough benefits to offset its potential costs. The answer to this question is

that user interaction can significantly decrease a predicate's fragility. Since not all preconditions

are easily (or possibly) computable, user interaction permits these preconditions to be expressed

by predicates that rely on user-supplied assumptions. This, in turn, increases the space of ex-

pressible validating conditions beyond what is computable. Since preconditions are not necessar-

ily computable, user interaction can be utilized to express any human-computable precondition.

5.10 Source Code Availability

Thus far, all view-based abstraction scenarios have implied direct, full source-code availabil-

ity. While view-based abstraction does not require this level of access, less access can reduce the

scope of expressible couplings. Let us consider a few scenarios in which the source code is not

fully available.

5.10.1 Source Code Somewhat Available but Partially Hidden

The source code can be partially hidden for a variety of reasons. The source code may in-

clude trade secrets, it may be too large for local storage, it may be under RCS control, etc. Let us

simply assume that the source code is available to some degree, but complete access is not pos-

sible.

To handle this case, ViewForm could be augmented by explicitly separating view computa-

tion from coupling application and view invalidation/recoupling invocation. In essence, this cre-

ates a client-server model where the server is a "view server" and the client is the computational

substrate that manages everything else. The server can selectively block access to any part of the

source code it sees fit, but may allow properties of the source code to be exported as views.

Within this augmented implementation and model, there exist two major, adversely affected

aspects of view-based abstraction. The first is the quality and amount of view information. The

view server may not have full access to the source code to begin with; this can lead to less pre-

cise or vacuous view information. The view server may also not be able to invoke arbitrary,

user-defined views. Thus, predicates using locally implemented views that spend extra computa-

tional resources computing quality information may fail. Predicates that examine or navigate

through the source code representation may also fail to return what would otherwise be a true

value. Nevertheless, view-based abstraction can still be used to some degree; it just degrades de-

pending on the particular couplers being used.

144

The second adversely affected aspect is the number of coupling modifications that are ex-

pressible. Any modification that requires source code, such as inlining,****** may not work under

these circumstances.

5.10.2 Not Available and Not Hidden

For this situation, let us assume that the source code is not available, but the object code or

some lower-level representation is available (after all, the computer needs something to run).

While this seriously hampers the utility of view-based abstraction (black-box abstraction imple-

mentation coupling is also hampered in this case), view-based abstraction can still be useful de-

pending on the kinds of view information that can be computed from the object code. If the ob-

ject code's interface is known and trusted, then views can be based on the interface. Views can

also be based on implementation details that have been (experimentally) deduced from the in-

terface.

5.11 Fundamental Insights

My experience with view-based abstraction shows that an approach based on program

transformations is well matched to the way programmers tend to perform couplings (i.e., using a

text editor to transform a program). The six-step implementation-coupling process is based on

the notions of preconditions and program modifications, both of which must be expressed in a

transformation language. Preconditions depend on views, and views can be asked to answer any

number of questions. I believe that the success of view-based abstraction firmly depends upon

the extent to which views can answer these questions. This ties back to the issues of backwards

compatibility and incrementality.

The reason I required backwards compatibility and incrementality in view-based abstraction

is a direct consequence of view-based abstraction's heavy dependence on views. It would be

much more straightforward to develop a view-based abstraction implementation under a con-

trived language where many interesting programming questions could be more easily answered.

We could tailor Scheme this way. First, we eliminate first class procedures, continuations, and

side effects. This eliminates imprecisions caused by calls sites with multiple operators, arbitrary

control paths, and formal parameters with multiple values per procedure call. Then, we make

Scheme checkably strongly typed, with checkable module and data abstraction specifications.

This provides more information about types and interfaces. These changes allow views to be

A programmer can still, however, use specially customized code in place of the hidden inlined code so long as the pro-
grammer is certain the special code validly implements the hidden code's interface. Random number generator functions and
transcendental functions are two obvious examples where this can happen beneficially.

145

more precise more cheaply. This approach, unfortunately, would have skirted the central issue

of how programmers use interesting, often difficult to compute, program properties to couple

implementations.

To address this central issue, I first note that determining many interesting program proper-

ties requires non-local program analyses. Many transformation systems do not include these

kinds of analyses for three reasons. One is that these analyses generally consume large amounts

of computational resources. Another is that the analyses are not always precise. The third is that

they are not easily semantically characterized. Yet programmers manually perform these analy-

ses many times during program development, debugging, porting, and optimization. This is pre-

cisely why I included support for non-local analyses as part of ViewForm.

To continue with the central issue, we must accept that not all interesting program proper-

ties are computable, or even computable given a reasonable amount of resources. While this is

easy to accept, the consequences may not be. For an implementation coupling program trans-

formation system to be useful, it must therefore depend on user interaction to help when views

are asked to compute the otherwise non-computable. Since users can be wrong, any semantic

attempts to characterize such a transformation system are now in jeopardy. Nevertheless, user

interaction does provide two extremely useful properties. The first is the ability to narrow the

scope of a program analysis. The second is incrementality, or the ability to use view-based ab-

straction on some parts of the program and not others. User interaction, thus, is essential in re-

ducing a view's computational resource requirements and in allowing users to bypass the non-

computability issue in any situation.

I believe the future of view-based abstraction, therefore, can strongly benefit from research

in non-local program analysis methods. Algorithms that can answer more questions, with a

greater variety of precision and computational resource tradeoffs, and with less user interaction,

will make it easier to express preconditions and will further increase the robustness of the auto-

matic coupling process.

146

Chapter 6

Related and Future Work

There exists a large body of research related to implementation coupling, views, and program

transformation systems. The more closely related work is discussed below in this section. Future

directions for view-based abstraction research are discussed afterwards.

6.1 Views

In general, views refer to different ways of presenting the same information. For example, a

point in two dimensional space can be represented in Cartesian or polar coordinates. Each of

these representations corresponds to a different view on the point. This section describes systems

that use or provide views. For each case, the views are related back to ViewForm views.

6.1.1 The View Oriented Model

The View Oriented Model (VOM) [36] is the design of an environment of cooperating tools

that can share data via a collection of views. Views in this system are different interfaces to data

shared between tools. One of the main thrusts of this work is to show how views can be used to

share data among independently written tools. Consistency is maintained by procedures associ-

ated with specific views and data. These procedures are activated when the data is modified.

The system is implemented in a strongly-typed, object-oriented style.

VOM treats the data in its environment as a database made up of data-representation de-

scriptions that are provided by the tool implementors. The descriptions are specified as combi-

nations of a base set of primitive data types provided by the VOM. The descriptions are used to

statically and automatically generate an implementation of the database and its concrete data

representations. New views can be added to the database if necessary.

VOM is restricted by a limitation in the data types that can be combined to form objects

with views although in later work [40], this limitation is overcome. On the other hand, VOM's

model of maintaining consistency between arbitrary views in a transformation system is not prac-

147

tical in ViewForm for at least two reasons. The first reason is that local changes in one view can

engender global changes in others, and computing these changes can be computationally inten-

sive. The second reason is that transformations may not need fine-grained consistency between

all active views, in which case maintaining consistency leads to wasteful computation. In addi-

tion, maintaining consistent multiple views can lead to incomprehensible code. This can happen,
for example, if pervasive and complex changes are made to the data-flow view and are then

automatically propagated back to the text view. For these reasons, VOM views would not be

practical in ViewForm.

6.1.2 PECAN

PECAN [72] is a programming environment that renders multiple views of a program for a

user. The objective of PECAN is to show that modem computational power and graphics tech-

nology are capable of providing multiple views of a program in development that are updated

consistently in real time. PECAN supports three kinds of views; syntactic, semantic, and execution.

Unlike ViewForm views, the PECAN concrete views are rendered graphically to the user of the

PECAN programming environment.

PECAN's syntactic view is similar to ViewForm's viewcode view. The syntactic view is ren-

dered through an editor that supports a mix of a traditional character-based view and a struc-

ture-oriented view. Four of the supported semantic views include the symbol table view, the

data-type view, the expression view, and the flow view. These views also provide information

not unlike what is provided by ViewForm's viewcode, alpha, and liar views. The symbol table

view is a hierarchical representation of the environment structure from the point of view of a

particular expression. The data-type view is a representation of a data type being edited by the

user. The expression view is a representation of the abstract data tree for an expression. The

flow view displays control-flow information on the program in a form based on Nassi-

Shneiderman flow charts. Other views that were not implemented are a dataflow view, a view

that focuses on module-level abstraction, and a declaration view.

The third kind of view in PECAN is the execution view. Execution views are representations

of the execution of a program. The two execution views supported by PECAN are the feedback

and stack views. The former shows the statement being executed and the latter shows the execu-

tion stack as a series of stack frames. ViewForm does not provide these kinds of views, although

they could be added.

Unlike ViewForm views, when users make changes in some of the PECAN views, PECAN

automatically propagates the changes to other appropriate views. The default views imple-

mented in PECAN can all be updated incrementally, thereby making the programming environ-

148

ment more responsive. In addition, PECAN is flexible enough to allow new views to be added in
a modular way. PECAN's views are designed to be graphically rendered and efficiently up-
datable. PECAN also depends on the existence of a method for computing the incremental
changes on all appropriate views given a small change to each specific view. These dependen-
cies and requirements are necessary for new views, even though they are non trivial to comply
with for arbitrary non-local program information. In addition, compliance is not always useful or
necessary for specific implementation couplings. Using PECAN's view design for ViewForm
would therefore limit the kinds of new views that could be added to those that can be incremen-
tally updated, and would require extra code to implement the updating procedures. This is why
the PECAN view design cannot be used to implement ViewForm views.

6.1.3 Semantic Program Graphs

A Semantic Program Graph (SPG) [64] is a canonical program representation that allows
various views of a program to be easily derived and incrementally modified when a change is
made in one of the views. The purpose of the SPG design is to show how a general program
representation can also be used to accommodate views. SPG's are designed to allow the repre-
sentation of different language paradigms (imperative, functional, and dataflow), parallel con-
structs, non-deterministic computation, strict and non-strict parameter passing, control-flow and
dataflow information, and naming scopes. In an SPG, nodes represent operations and edges rep-
resent paths along which tokens can flow. Edges can have fan in or fan out, and tokens can rep-
resent data or control flow. A predicate is associated with each edge to regulate token flow.

Nodes in an SPG can also be treated as black boxes that perform some arbitrary computa-
tion. This property is essential for representing programs in languages such as Prolog [38,86],
that cannot be easily represented using the default notion of a node. Annotations can also be
attached to nodes to record arbitrary properties [71]. Nodes can be grouped to more easily al-
low annotations to refer to sets of nodes.

SPG's are designed to allow the computation of control-flow views, dataflow views, execu-
tion views, and "abstract views of system structures" """. In addition, SPG's are designed to al-
low views to be automatically updated every time a change is made to one of them. ViewForm
would likely to benefit from an internal representation that can represent as wide a diversity of
programming languages as SPG's. Viewcode, however, must remain as comprehensible users in
order to facilitate user interaction.

""" Abstract views of system structures are ways of viewing the overall system from a higher-level point of view.

149

6.1.4 Documenting Programs Through Views

The Chapter and Verse Program Description [89] is a method of documenting a program

from a variety of views. The views are organized hierarchically and vertically, from a high-level

overview of the program's purpose to the lower-level implementation details. Unlike ViewForm,

the Chapter and Verse system is a methodology and does not provide automation. For example,

it does not provide any automation for recomputing the documentation when changes are made

to the program. Since Chapter and Verse is not automated, it would not necessarily preclude

future programmers from having to pay some price for broken modularity.

6.2 Special-Purpose Languages via Transformations

In several systems, special-purpose or higher-level languages are "created" by virtue of a

transformation system that translates the new languages to a base concrete language. These sys-

tems assume that the source program is complete and correct, and then apply a set of correct-

ness-preserving transformations to "implement" the source program in the target language. The

source and target languages may or may not be similar. These systems described below demon-

strate different ways of building transformation systems. For each system, its approach to trans-

forming programs is compared to ViewForm's approach.

6.2.1 TXL

TXL, the Turing eXtender Language [17], is a transformation system designed to easily allow

new language constructs to be added to an existing base language. It has been used to provide

object-oriented extensions to a language [18] and to automatically generate the code necessary

to call a C graphics library from Prolog [19]. In addition, TXL has an associated denotational

semantics [63]. Like ViewForm, TXL system contains a parser, a transformation engine, and an

unparser. The syntax of the source language is described in a notation similar to BNF. Also simi-

lar to ViewForm, the parser takes a source program, converts it into a typed tree, and then gives

it to the TXL transformation engine. The transformations are recursive, context-sensitive tree re-

write rules that can call arbitrary external procedures, much like the ViewForm walker view.

Unlike ViewForm, however, a rewrite rule can only replace nodes in the subtree it is given. The

engine applies a single, main rule to the tree. This rule is a composition of user-defined sub-

rules. After the main rule has been applied, the unparser can be invoked to output the target

program.

While TXL is remarkably similar to ViewForm in many ways, it differs in at least one key

aspect: a rewrite rule cannot modify or view any code not in its given subtree. This implies that

TXL does not allow non-local program analysis to be arbitrarily performed on specific pieces of

150

code. This will render TXL ineffective on the simulator and pedigree examples, which require

access to non-local information to verify preconditions and to modify the uncoupled program.

6.2.2 ASCENT

ASCENT [37] is a system for building special-purpose languages out of general-purpose lan-

guages. ASCENT assumes the existence of a base programming language and environment. The

new language is built by modifying the set of production rules that describe the base language's

syntax. ASCENT then partially automates the production of a set of transformation rules that

map constructs from the new language to the original base language. As the program is being

transformed, ASCENT associates the new, target-language program expressions with the source

program expressions from which they were derived. Unlike ViewForm, ASCENT does not pro-

vide any form of non-local program information that can be used in the production rules. This

precludes the application of ASCENT on examples such as the simulator and pedigree examples

which need non-local program information.

6.2.3 Proxac

Proxac [91] is a user interface for applying transformations to a source program. It displays

the system-provided transformations and the program they are being applied to. The user selects

the next transformation to be applied and can then see the results. While Proxac can be a useful

tool for testing individual rewrite rules, it requires a high degree of user interaction and assumes

that the user can evaluate the transformation results at each step along the way. This approach is

too user intensive for ViewForm, since ViewForm already validates program modifications using

predicates.

6.2.4 Elaborations

Elaborations [29] are a mechanism for developing programs top down, starting with a base

high-level description. Elaborations are progressively lower-level descriptions (i.e., implementa-

tions) of the higher-level descriptions. Elaborations also provide a single vertical and hierarchical

view of a program, and do not provide composable explanations for rewrite rules. The limita-

tion of a single view on a program limits the kinds of preconditions that can be expressed, mak-

ing Elaborations unsuitable for the simulator example (where a new view was required).

6.2.5 Darlington's User-Interactive Transformation System

In the transformation system described by Darlington [21], a clearly written source program

is transformed into a more efficient program (in the source language) via a set of transforma-

tions. While the system is shown to successfully transform some small programs, the system re-

151

lies heavily on user interaction for deciding which transformations to apply. For example, the

user is shown a program that has been transformed and is asked whether it is adequate. This

presents a significant difficulty to a user who may not be able to recognize whether a certain

transformation has produced an effect that will lead to the desired target program or the desired

performance. ViewForm, on the other hand, strives to be as automated as possible. One can

imagine ViewForm as an advance on Darlington's work if one considers predicates to be

"automated users" that provide the kind of feedback Darlington's system depends upon.

6.2.6 PECOS and LIBRA

PECOS [4] is a knowledge-based system that takes a high-level specification and implements

it by transforming it into a concrete program. PECOS draws transformations from a database of

about 400 rules of which 75% are not directly related to the target language. When several rules

are applicable, PECOS can call on LIBRA [50], an external program that estimates which of the

applicable rules will lead to a more efficient program. The system can also interact with the user

for assistance. This system is similar to ViewForm in that it provides a mechanism for reducing

the amount of user interaction by relying on an external program designed to make reasonable

decisions. PECOS, however does not support multiple views, making it unsuitable for the pedi-

gree and simulator examples.

6.2.7 Cheatham's Transformation System for Reuse

Cheatham proposes a transformation system that supports the reuse of abstract programs

[13]. The source programs are written in EL1, a high-level language with the means for syntactic

extension. The source program is transformed into a lower-level concrete language by sets of

transformations and a control structure. The transformations are pattern based, but like View-

Form, a semantic precondition can be associated with each pattern. The transformation system

performs a limited amount of semantic analysis of the source program. Cheatham describes two

interesting forms of reuse: Rapid Prototyping and Custom Tailoring. The former involves the rapid

development of a working source program without significant regard for performance. The latter

is the derivation of an efficient concrete program from a piece of working source code. Cheat-

ham's system does not support arbitrary user-defined views, making it unsuitable for the pedi-

gree and ViewForm examples.

6.2.8 CIP

The CIP system [5] was designed to investigate the construction of concrete programs from a

formal specification via a transformation library. The source language is CIP-L, a wide-spectrum

language that is extensible via schemas. The developers of CIP claim that user interaction, espe-

152

cially for higher-level decisions, will likely be necessary for large, non-toy applications. They do

concede, however, that straightforward, mechanical, lower-level tasks could be done automati-

cally. CIP, however, supports only correctness-preserving transformations and does not support

multiple views of the source program. This makes it unsuitable for either the pedigree or simula-

tor examples, which require non semantics-preserving transformations and multiple views.

6.3 Open Implementations

A more recent approach for building implementation-coupling systems is to use an open im-

plementation [52,69,70] approach. Specifically, substantial work has been done with Metaobject

Protocols (MOPs) [55,54]. A MOP opens an implementation by allowing a user to control impor-

tant aspects of an implementation's decision-making process. This control is provided by docu-

menting a set of metaobjects and a protocol that the implementation adheres to. A metaobject is

an object that controls some aspect of an implementation's behavior, usually by making a deci-

sion. The protocol describes the interaction between the metaobjects themselves and between

the metaobjects and other parts of the implementation. MOPs are designed to provide the user

with both locality and incrementality, among other benefits.

I did not pursue a MOP-based approach for writing a view-based abstraction implementation

because a MOP-based approach would require annotations on the source code. This would not

be backwards compatible regardless of the source language, since it would require modifying

the original source code. Nevertheless, as was discussed in Chapter 2, the MOP-based work be-

low greatly influenced of view-based abstraction's design and implementation.

6.3.1 Intrigue

Intrigue [59] is a MOP for a Scheme compiler. The Intrigue architecture consists of two

parts; a general data-flow engine (see Section 6.3.3) and an abstract data structure capable of

representing Intrigue's intermediate languages. Intrigue's MOP allows users to control the compi-

lation process via annotations on the source program, via user-defined object classes that localize

and represent interesting program elements, and via user-defined methods that override or

amend the compiler's default actions on those program elements. Intrigue's data-flow engine

performs non-local analyses on its input program and provides support for user-defined, iterative

data flows. ViewForm and view-based abstraction differ from Intrigue in several different as-

pects. Primarily, they are not compilers, and they do not require annotations on the source

code. ViewForm can also work on separate contexts, whereas Intrigue does not support separate

data-flow information for separate pieces of code. ViewForm's views are also specific, whereas

Intrigue's data-flow engine is quite general. This difference allows ViewForm's views to be com-

153

puted more quickly, thus enhancing its practicality. If view-based abstraction were allowed to

use annotations and performance was not a serious concern, Intrigue could be used as a basis

for implementing a version of view-based abstraction with capabilities similar to ViewForm's.

6.3.2 Anibus

Anibus [76,77] is a MOP for controlling the coarse-grained parallelization of a program. Ani-

bus's source language is sequential and its target language is explicitly parallel. A source lan-

guage program is parallelized via annotations on program expressions. The annotations specify

the program's parallelization and are used by Anibus to transform the program into the target

language. A user can add new parallelizing transformations or modify existing ones by using

Anibus's MOP. Anibus's transformation system is divided into three phases that implement the

distribution of the program, the distribution of the data, and synchronization. The Anibus archi-

tecture without a MOP can be easily implemented as couplers with ViewForm.

6.3.3 Data Path Macros

Data Path Macros (DPMs)[56] are macros that may expand in arbitrary parts of a program.

The DPM engine takes a source program and converts it into a program tree. In this tree, the

nodes are objects representing syntactic program elements and the edges are objects represent-

ing the ways in which those elements are connected via s-expressions. This representation is

similar to viewcode, especially since it provides up linking.

A DPM is a set of generic functions on objects in the program tree. These generic functions

have access to data-flow information computed by the DPM engine. Syntactic annotations on the

source program denote the places where a DPM is to be applied. The annotations make the cor-

responding program tree nodes easily recognizable to specific DPMs.

A DPM is created by writing a set of generic functions that perform transformations on the

program tree and by defining a set of objects that will be used to annotate program tree nodes.

One important property of DPMs is the ability to specify new user-defined data-flow computa-

tions. Such a specification describes initial data-flow values, how values propagate throughout

the program tree, how values are combined at join points, and how equality between flow val-

ues is determined. This specification is procedural and takes the form of generic function meth-

ods. By using object-oriented inheritance, the amount of code that must be written to define a

new DPM or a new data flow is significantly reduced. As discussed in Section 2.4.2, some of the

notions underlying ViewForm and view-based abstraction have their roots in DPMs. Three of

these notions are the utility of arbitrary non-local program analyses, of non semantics-preserving

modifications, and of extensibility in a transformation system. In addition, although ViewForm is

154

not object oriented, an efficient generic dispatch system [58] would certainly be quite useful in

its implementation.

6.4 Optimizing Programs via Transformations

Several approaches for building or designing optimizers are based on transformation sys-

tems. These systems are concerned with high-level source programs and low-level target pro-

grams. These systems deal with the same kinds of issues faced by ViewForm and view-based

abstraction, though they are more specific.

6.4.1 Dora

Dora [26,25] is a transformation system for experimenting with compiler optimizations.

Dora's intermediate language (IL) is DILS. DILS is based on Scheme and is extensible by virtue of

being a schema. Instead of employing a traditional attribute grammar, Dora uses attribution pat-

tern sets [27] to provide a more flexible framework for attributing the nodes of the IL tree. The

same tree-pattern language is used to express both the attribution equations and the transforma-

tion pattern-matching language. This tree-pattern language is implemented via an efficient auto-

mata-based algorithm [43,10]. In Dora, the way in which transformations are applied can be

specified from a fixed set of options. For example, the IL tree can be traversed from top to bot-

tom, left to right, or the reverse of either option. Transformations can also be applied once or

repeatedly. Another option is whether a transform's applicable sites should be recomputed every

time a change is made to the IL tree or whether all of the applicable sites should be computed

once, before the transformed is applied.

Dora transforms have access to non-local program information and can call arbitrary

Scheme forms when a pattern is matched. While this architecture is similar to ViewForm's, the

non-local attributes in Dora are computed automatically from a set of attribute definitions. This

can lead to performance problems in the computation of non-local program information because

the information is computed globally instead of on specific contexts as is done in ViewForm.

6.4.2 GENesis

GENesis [95] is an optimizer generator whose specification language is GOSpeL. GENesis

takes a GOSpeL specification and automatically generates an optimizer. User interaction can be

part of a GOSpeL specification in cases where several optimizing transformations are applicable.

An optimizing transformation consists of a pattern, an enabling condition, and an action. The

pattern is syntactic and the enabling condition can be in terms of non-local semantic program

properties. When the pattern is matched and the precondition is met, the corresponding action

155

is invoked. GOSpeL's action language consists of five primitives that allow program elements to

be deleted, copied, moved, added (i.e., synthesized), and modified. While this architecture bears

resemblance to that of ViewForm, GENesis patterns are not arbitrarily general in that they cannot

incorporate arbitrary pieces of non-local code. This means that GENesis cannot be used to ex-

press implementation couplings such as what is done for the simulator example.

6.4.3 Program Optimization and Derivation via Transformations

In [8], transformations are investigated as a form of optimizing or deriving programs by

transforming and connecting axioms. One interesting aspect of this work is that transformations

can assert information about parts of the program that they create. For example, a transforma-

tion that reifies an implicit loop can assert a type and numerical range on the loop variable.

These kinds of assertions are consistent with ViewForm's design, since one of ViewForm's aims

is to support interaction with entities that can provide more accurate and more available knowl-

edge about pieces of the program. While ViewForm is not axiom-based, experimenting with ax-

iom-based views is a viable direction for studying user interaction.

6.5 Interactive Program Design and Construction

A few transformational systems are designed with the end goal of assisting users in the de-

sign and construction of software. As described in [75], the vision discussed in [32] is one of the

earliest examples of a Programmer's Assistant. These systems are generally related to ViewForm

in that ViewForm permits user interaction.

6.5.1 KBEmacs

KBEmacs [93] the Knowledge-Based Editor in Emacs, is an editor that partially acts as a

Programmer's Apprentice [74] during the construction of a program. It uses a knowledge base

of cliches. A cliche is an algorithmic fragment about which both KBEmacs and the programmer

have knowledge. KBEmacs is designed to complement a software developer's skills by automati-

cally handling certain details of a program development such as checking for errors, filling in

pieces of source code, and rearranging the code when necessary. While KBEmacs was not de-

signed to solve the implementation-coupling problem, its use of cliches could be beneficial in

providing a useful interface for user interaction in ViewForm.

6.5.2 A Program Verifier Assistant

The Designer/Verifier's Assistant [67] is a system designed to help programmers verify the

designs of their programs. The user gives the system a specification of the verification conditions

for a program. The system uses this specification to verify a program, to verify changes to a pro-

156

gram, to provide explanations for proposed changes, and to answer queries from the user. For

example, the system can speculate on the effects that a proposed change will have with respect

to a program's verification specification. The Assistant does not, however, support arbitrary non-

local program analyses. This differentiates it from ViewForm, although its specification language

is an excellent candidate for an alternative to the English-language ViewForm explanations. This

could allow, for example, action explanations to serve as specifications for cross-checking the

intent of a program modification.

6.5.3 CCEL

CCEL [23,14] is a language for describing user-defined constraints on a C++ program. A user

can describe design, implementation, and stylistic constraints. When a program is compared to

its CCEL specification, any inconsistencies are reported via default system error handlers. The

default method of reporting an inconsistency is to display the constraint that was violated. A

user can optionally associate a more descriptive message that is displayed when a constraint is

violated. While CCEL is specific to C++ and cannot perform transformations on the source pro-

gram, it can be used (as above) to specify a different sort of action explanation. This kind of ex-

planation could be used as a debugging tool to ensure that an action's program modification

satisfies a set of constraints.

6.6 Future Work

View-based abstraction and ViewForm can be extended in various ways. Some interesting

directions are discussed below.

6.6.1 Reusability

Automatically extracting reusable program slices from poorly structured code is an active

area of research [60]. View-based abstraction can be used as a model for reasoning about such

slices. A simple example of this is the inlining performed for the pedigree example. While the

criterion for this example was solely performance, the process for extracting a slice containing

sc-* would be very similar. For example, extracting a program slice using view-based abstraction

would involve writing predicates that validate the slice as a piece of code that can be substituted

into another context. This is exactly what happened in the function inlining aspect of the pedi-

gree example, except that the ViewForm code was mostly specific to the pedigree code. A more

general piece of slicing code would be interesting to pursue.

A program slicing [94] ViewForm view would also be interesting to pursue for this ap-

proach.

157

6.6.2 Symmetry in Couplings

View-based abstraction is asymmetric in that it manages implementation couplings but not

interface couplings. It would be interesting to allow view-based abstraction to handle both. One

problem this could be used to explore is portability. For example, suppose that a programming

language's interface requires certain core interface functions and makes others optional (as is the

case with Scheme). A program that uses anything beyond the core interface functions is there-

fore not automatically portable to an implementation that only implements the code interface.

If the interface itself was part of a coupling managed by view-based abstraction, however,

this loss of portability might not be necessary. For example, when a program is run under a new

language implementation, a view could collect uses of the optional functionality (i.e., make-

rectangular). For each optional piece of functionality found, a predicate could determine

whether the functionality is actually implemented and available. This is the step that would be

mediated by an interface view on the language implementation, which in the simplest case

would look for functions with names given in the language specification. If the functionality was

implemented, the next candidate would be tested. Otherwise, an action would be invoked that

would insert code that implements the functionality into the context. This code would be written

using the core functionality provided by every language implementation. If successful, this ap-

proach would not only increase portability, but it would also allow programs to run as efficiently

as the underlying, native functionality permits.

This scenario assumes that every piece of optional functionality can be expressed by the

core functionality. The circumstances under which this may or may not be possible can be ex-

amined by future research efforts into this problem.

6.6.3 Other Programming Paradigms

A hybrid approach between Stata's work [84] and view-based abstraction would be interest-

ing to pursue. One can imagine view-based abstraction being used to enhance the maintainabil-

ity of the code upon which Stata's specialization interfaces are based (thus giving programmer

more implementation freedom). For example, view-based abstraction could be used to express

implementation specializations, and the specialization interface specifications could be used to

automatically validate the resulting modifications.

Another piece of future work is developing a C[51] based orJava[39] based view-based ab-

straction implementation. C is a widely used language, and would give view-based abstraction a

huge variety of opportunities for improvement. Java's newness would provide an opportunity for

view-based abstraction to enter early into its programming environment's development, giving

158

view-based abstraction a better chance at becoming prevalent. By its nature, Java would also

provide a test bed for exploring distributed views and distributed couplings.

For these languages, view computations could be more difficult due to the existence of raw

pointers and pointer arithmetic in C and inheritance in Java. As previously discussed, the ability

to compute useful view information is one of a view-based abstraction implementation's more

interesting aspects.

6.6.4 An Experiment

While the examples presented in Chapter 5 are thousands of lines long or smaller, real-

world programs can be hundreds of thousands or millions of lines long[3] and can undergo

decades of maintenance. * A true experiment for testing view-based abstraction under these

real-world conditions would therefore be quite useful. Of particular interest is studying how

couplings within the code evolve over time, what kinds of views are deemed useful or necessary,
and what kinds of library functions are most commonly used.

....... The "year 2000" problem has made it clear that many programs survive for well longer than originally designed.

159

160

Chapter 7

Conclusion

7.1 Summary

Maintainability and modularity in the presence of implementation coupling are not possible un-

der black-box abstraction. To approach this problem, I developed a six-step model of imple-

mentation coupling. From this model, I gained two critical ideas. The first is that modularity is

lost only if an implementation coupling persists through a modification that invalidates it. The

second is that the implementation-coupling process (including the recoupling step) can be auto-

mated by providing a language for expressing couplings. These ideas form the main thrust in

this dissertation: demonstrating how to automate the six-step process in a practical way, thereby

solving the implementation-coupling problem. This thrust evolves into the development of view-

based abstraction, an easy to understand, language independent, backwards compatible, incre-

mental, and time-saving abstraction model.

View-based abstraction introduces a model and methodology for performing implementa-

tion couplings. The model contains components for reasoning about implementation couplings,
and the methodology provides a structured way for using the components to express implemen-

tation couplings via the six-step process. The view-based abstraction components include con-

texts for representing modules, predicates for expressing preconditions, actions for expressing

program modifications, dispatchers for combining predicates and actions, rules for combining

the constructs in general, couplers for automatically generating couplings, and views for deter-

mining non-local program properties. Most significantly, the model requires a view invalida-

tion/recoupler, responsible for automatically carrying out the recoupling step. Making the view

invalidation/recoupler work is both necessary and sufficient for solving the implementation-

coupling problem.

I also developed ViewForm, an implementation of view-based abstraction. ViewForm uses

source-to-source transformations as the basic coupling language paradigm. ViewForm introduces

161

the vform, a novel construct used to implement every view-based abstraction construct. View-

Form also implements contexts, three default views, a higher-order view, a small but effective

library of higher-level coupling construct constructors, and an effective view invalida-

tion/recoupler.

To demonstrate view-based abstraction, I used ViewForm to perform implementation cou-

plings on three examples: an amorphous computing simulation, a pedigree example, and View-

Form itself. I did not write either the simulator or the pedigree example code. In addition, I did

not design the simulator coupling and one of the pedigree couplings. This makes the simulator a

completely independent example, and the pedigree example a mostly independent example.

The three examples demonstrate how implementation couplings can be made to maintain

modularity. In addition, the examples demonstrate how view-based abstraction is a language

independent, understandable, backwards compatible, incremental, and time-saving abstraction

model.

The examples further demonstrate the pragmatics of view-based abstraction. Even though

ViewForm analyzed the example code with a LIAR-style interprocedural data-flow analysis, the

ViewForm code ran in 33% to 40% of the time needed to compile the example code using the

MIT Scheme compiler.

7.2 Contributions

This dissertation's central goal is a solution to black-box abstraction's implementation cou-

pling problem. Towards this goal, this dissertation makes a variety of contributions that have

immediate impact on software design and maintainability. In the long term, this dissertation can

affect programming environment design, language design, and transformation system design.

One up-front contribution is a vocabulary for discussing the implementation-coupling prob-

lem and for making distinctions among its aspects. These vocabulary terms include implementa-

tion coupling, interface coupling, invalidating implementation, coupled code, uncoupled code,

coupling code, views, contexts, and complexity layering. In the Chapter 6 literature survey, I did

not find explicit or mutually consistent names for these notions.

This dissertation's foundational contribution is view-based abstraction, a model for eliminat-

ing the modularity problems associated with implementation coupling. By providing program-

mers with a way to make a coupling's normally implicit preconditions and modifications explicit

and imperative, programmers can shift the burden of maintaining the coupling to the computer.

View-based abstraction is also backwards compatible, language independent, and incremental.

This leads to another contribution: view-based abstraction can be applied to existing code im-

162

mediately following the availability of a view-based abstraction implementation for the code's

programming language. This can happen even if full access to the source code is not available.

I contribute to the design of programming environments with the notions of non-local but

practical views specific to contexts. Even without view-based abstraction, these kinds of views

and contexts are useful programming tools that can be included in existing and future pro-

gramming environments. They provide programmers with accurately computed non-local pro-

gram information that otherwise can and often does contain errors when computed manually. I

contribute with guidance in the kinds of views that I have found useful, such as naming, data-

flow, and expression typing.

This dissertation's contributions also include ViewForm, a full view-based abstraction im-

plementation. ViewForm contributes to the field of program transformation systems by demon-

strating how to build a transformation language that provides support for computing non-local

program properties across abstraction boundaries, performing non semantics-preserving trans-

formations, and accepting user interaction. To my knowledge, no current transformation lan-

guage provides support for all three (for a variety of performance or semantic reasons). I show

that the implementation coupling problem provides ample motivation for why transformation-

language support for these features is useful, and ViewForm shows how it can be done.

ViewForm also shows how the view-based abstraction specification can be implemented to

reduce the burden of complexity on its users. In particular, I demonstrate how a complexity

layering approach can provide a measure of simplicity for common uses while still permitting

more powerful operations at other complexity layers. This contribution can influence the im-

plementors of program transformation systems to adopt similar strategies for making common

transformations easier to express.

As part of ViewForm's implementation, I show how vforms can be implemented, and how

views, predicates, actions, dispatchers, rules, and couplers can be implemented from vforms.

Since these constructs functionally correspond to many commonly found in related program

transformation systems, they suggest the existence of a simple, operational, and compositional

model for generally describing program transformation systems.

This dissertation demonstrates how view-based abstraction and its implementation can be

non-pervasively added to a programming environment. Given the backwards compatible and

incremental nature of view-based abstraction, this suggests a low cost for including view-based

abstraction in future programming environment implementations. I also provide guidance and

evidence of which views and coupling construct constructors are useful to include by default in

a library. The three coupling examples contribute with guidance to programmers developing

their own implementation couplings. In addition, this dissertation provides direction on how

163

programmers can better manage complexity by decreasing the overall amount of coupling be-

tween modules without necessarily losing performance.

7.3 Conclusion

This dissertation has demonstrated that the coexistence of implementation coupling, modu-

larity, maintainability, and true abstraction is possible. By focusing on the process by which a

programmer might otherwise couple implementations, I gained insight into the distinct steps of

the process. This insight allowed me to distinguish between the computable and non-

computable steps, leading to the development of view-based abstraction. As for now, there are

many existing circumstances that can benefit from view-based abstraction, as well as many direc-

tions to further explore its use.

164

Appendix A

Selected Aspects of the ViewForm Interface

A.1 ViewForm Expression Type Testers

These type testers take a viewcode expression and return #t if the expression is of a given type.
type/=>?
type/access?
type/and?
type/begin?
type/bool?
type/case?
type/char?
type/complex?
type/cons-stream?
type/cond?
type/decl are?
type/default-object??
type/define?
type/define-integrable?
type/define-structure?

type/define-macro?
type/delay?
type/do?
type/fi xnum?
type/fl uid-l et?
type/if?
type/inexact?
type/integer?
type/lambda?
type/let?
type/let*?
type/l etrec?
type/l oad-option?
type/named-lambda?
type/named-let?

type/number?
type/or?
type/proc-maker?
type/quasiquote?
type/quote?
type/rational?
type/set!?
type/string?
type/the-environment?
type/unquote?
type/unquote-splicing?
type/unsyntax?
type/var-ref?
type/vector?

A.2 Viewcode Expression Return Types

These return types are computed by the liar view for each viewcode expression.
any-type
unspecified
number-type
integer-type
inexact-type
rat-type
fix-type
non-negative-fix-type
non-negative-int-type

complex-type
pair-type
I ist-type
fresh-list-type
vector-type
string-type
character-type
proc-type
bool-type

symbol-type
null-type
env-type
bottom-type
stream-type
hash-table-type
bit-string-type
weak-pair-type
pathname-type

165

A.3 Miscellaneous ViewForm Functions

(top-level-exp->origin exp context)

Returns the top-level expression exp's origin in context, or #f if exp is not a top-level expression in
context

(exp->all-procs exp context)

Returns a list of all viewcode expression that can create a procedural return value for exp in con -
text

(top-lvl-exp->free-vars exp context)

Returns a list of the free variables in the top-level expression exp in context

(fully-qualify dir filename)

di r and fi 1ename are strings representing a directory and filename. Returns a fully qualified path-
name for use by make-context-from-fi le or make-context-from-fi les

(consumer->primitive-producers exp context)

Returns a list of all viewcode expressions in context that can produce a value for exp. These ex-
pressions include constants, some predefined primitive procedures, and some special forms.

A.4 Viewcode Canonicalization

ViewForm makes three changes to Scheme code when it converts it into viewcode. These are:

* All define expressions are converted to the form: (define <var> <body>)

* All define, lambda, named lambda, let, let*, letrec, named let, and fluid-let bodies are

converted to begin expressions if the body contains more than one expression

* Any conversions performed by the MIT Scheme reader

166

Appendix B

Implementation of Selected ViewForm Functions

(define (top-lvl-name->def var-name context)
(let ((creation (top-level-defined? var-name context)))
(if creation

(up-link-n creation 2) ;up link to (Define... var-name ...)
(error "Var name not defined: " var-name))))

(define-integrable (make-predicate/check-ret-type type expl-string)
(make-explained-predicate
(lambda (vform context vc-exps)

(for-all? vc-exps
(lambda (vc-exp)

(for-all? (consumer->primitive-producers vc-exp context)
(lambda (producer)

(types-consistent? type (exp->return-types producer context)))))))
expl-string))

(define (make-predicate/check-proc-param-types type-specs)
(make-explained-predicate
(lambda (vform context vc-exps)

(for-all? vc-exps
(lambda (vc-exp)

(for-all? (consumer->primitive-producers vc-exp context)
(lambda (producer)

(and (type/proc-maker? producer)
(for-all? type-specs

(lambda (type-spec)
(let ((selector (car type-spec))

(predicate (cdr type-spec)))
(do-vform predicate

context
(list (selector

(lambda/formals producer)

"exp's returning procedures whose parameters pass given predicates"))

167

(define (make-predicate/find-declaration decl-search)
(make-explained-predicate
(lambda (vform context vc-exps)

(list-search-positive (context/exps context)
(lambda (exp)

(and (type/declare? exp)
(there-exists? (declare/body exp)

(lambda (decl-list)
(there-exists? decl-list

(lambda (decl)
(cond ((vc-enc? decl)

(vc-eq? decl decl-search))
((pair? decl)
(vc-eq? (car decl) decl-search))

(else (error "Unknown Declaration Syntax: " decl)))))))))))
(string-append " " (symbol->string decl-search) " declaration")))

(define (make-simple-predicate vc-exp-pred exp-type)
(make-explained-predicate (lambda (vform context vc-exps)

(vc-exp-pred (car vc-exps)))
exp-type))

(define (make-predicate/exp-type pred exp-type)
(make-simple-predicate pred (string-append " " exp-type)))

(define *conjunctive-l-to-l-control-structure*
(lambda (vforms)

(lambda (vform context vc-exps)
(for-all-lists? (lambda (vform vc-exp) (do-vform vform context (list vc-exp)))

vforms
vc-exps))))

(define (combine-vforms-conjunctive-l-to-1 . vforms)
(combine-vforms *conjunctive-l-to-l-control-structure*

id-expl-combiner
vforms))

(define *do-all-vform-control-structure*
(lambda (vforms)

(lambda (vform context vc-exps)
(let outer-loop ((vc-exps vc-exps)

(result #t))
(if (null? vc-exps)

result
(let ((vc-exp-list (list (car vc-exps))))

(outer-loop (cdr vc-exps)
(let inner-loop ((the-vforms vforms))
(if (null? the-vforms)

(begin (delegate-vform (car the-vforms)
context
vc-exp-list
vform)

(inner-loop (cdr the-vforms))))))))))))

(define (combine-vforms-do-all . vforms)
(combine-vforms *do-all-vform-control-structure*

id-expl-combiner
vforms))

168

(define (for-all-lists? predicate listl . lists-n)
(let loop ((lists (cons list1 lists-n))

(result #t))
(if (null? (car lists))

result
(loop (map cdr lists)

(and result (apply predicate (map car lists)))))))

(define (combine-vforms-conjunctive . vforms)
(combine-vforms *conjunctive-control-structure*

id-expl-combiner
vforms))

(define *and-all-vform-control-structure*
(lambda (sub-vforms)

(lambda (vform context vc-exps)
(for-all? sub-vforms

(lambda (sub-vform) (do-vform sub-vform context vc-exps))))))

(define *conjunctive-control-structure* *and-all-vform-control-structure*)

(define (make-explained-predicate predicate exp-type)
(make-predicate predicate

(make-expl "for identifying" exp-type)))

(define (make-simple-action simple-modifier expl-string)
(make-action (lambda (vform context vc-exps)

(simple-modifier vform context (car vc-exps)))
(make-expl "for" expl-string)))

(define (make-simple-exp-action modifier expl-string)
(make-action (lambda (vform context vc-exps) (apply modifier vc-exps))

(make-expl "for" expl-string)))

(define (make-explained-action action expl-string)
(make-action action (make-expl "for" expl-string)))

(define (make-simple-dispatcher predicate action)
(make-dispatcher predicate

action
default-expl-combiner))

(define *default-expl-combiner*
(lambda (vforms)

(lambda (vform context vc-exps)
(format #t "~S containing " (vform/identifier vform))
(for-each (lambda (vform)

(explain! vform context vc-exps))
vforms))))

(define *id-expl-combiner*
(lambda (vforms) ;default just runs the explanations

(lambda (vform context vc-exps)
vform ;ignore
(newline)
(for-each (lambda (vform)

(explain! vform context vc-exps)
(newline))

vforms))))

169

(define (verbose-expl-combiner default-expl)
(lambda (vforms)

(let ((verbose-expl (*id-expl-combiner* vforms)))
(lambda (vform context vc-exps)

(let ((vform-type (vform/identifier vform)))
(format #t "~%~-S for ~S " vform-type default-expl)
(if *verbose*

(begin
(format "Containing: -%")
(verbose-expl vform context vc-exps))))))))

(define (var-bound-by? var binding context)
(eq? (var-ref->binding var context) binding))

(define (quoted-symbol? exp)
(and (type/quote? exp)

(vc-symbol? (quote/thing-quoted exp))))

(define (only-calls? symbol vc-exp context)
(let ((binding (top-level-defined? symbol context)))

(cond (binding (%only-calls? (top-lvl-name->def symbol context) vc-exp context))
((lookup-predefined symbol) (%only-calls-primitive (lookup-predefined symbol)

vc-exp
context))

(else (error "[only-calls?] Don't know how to handle: " symbol)))))

(define (%only-calls? binding vc-exp context)
(let ((def-prods (consumer->primitive-producers (lambda/body (define-var/value binding))

context))
(vc-exp-prods (consumer->primitive-producers vc-exp context)))

(and (for-all? vc-exp-prods
(lambda (producer)

(memq producer def-prods)))
(for-all? def-prods

(lambda (producer)
(memq producer vc-exp-prods))))))

(define (%only-calls-primitive prim-binding vc-exp context)
(let ((vc-exp-prods (consumer->primitive-producers vc-exp context)))

(for-all? (append-map (lambda (prod)
(append (exp->consts prod context)

(exp->primops prod context)
(exp->sp-forms prod context)))

vc-exp-prods)
(lambda (producer)

(eq? producer prim-binding)))))

(define (make-simple-expl text)
(lambda (vform context vc-exps)

(format #f "-%-S ~S" (vform/identifier vform) text)))

(define-integrable (make-expl text exp-type)
(make-simple-expl (string-append text " " exp-type " expressions")))

170

(define (y-or-n-user-response)
(format #t " ~%Shall I accept this and continue? -%Enter y to accept or n to reject: ")
(let ((user-response (read)))

(cond ((or (eq? user-response 'y) (eq? user-response 'yes)))
((or (eq? user-response 'n) (eq? user-response 'no)) #f)
(else (format #t "-~%Unrecognized Response, please try again")

(y-or-n-user-response)))))

171

172

Bibliography

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman Structure and Interpretation of Computer Programs Second Edi-
tion, MIT Press, Cambridge, MA, 1996.

[2] Mehmet Aksit, Lodewijk Bergmans, and Sinan Vural An Object-Oriented Language-Database Integration Mode: The Compo-
sition-Filters Approach In European Conference on Object-Oriented Programming, O. Lehrmann Madsen Ed., Lecture Notes in
Computer Science 615, Utrecht, The Netherlands, June/July 1992.

[3] Darren C. Atkinson and William G. Griswold The Design of Whole-Program Analysis Tools In Proceedings of the 18th Inter-
national Conference on Software Engineering, Pages 16-27, Berlin, Germany, March 1996.

[4] David R. Barstow An Experiment in Knowledge-Based Automatic Programming In Artificial Intelligence Volume 12, Pages 73-
119, 1979.

[5] Friedrich Ludwig Bauer, Bernhard Moller, Helmut Partsch, and Peter Pepper Formal Program Construction by Trans-
formations-Computer Aide4 Intuition-Guided Programming In IEEE Transactions on Software Engineering 15(2), February 1989.

[6] Michael R. Blair Descartes: A Dynamically Adaptive Compiler and Runtime System Using Continual Profile-Driven Multi-
Specializations, Ph.D. Proposal, MIT Laboratory for Computer Science and MIT Artificial Intelligence Lab, December 1992.
ftp://ftp.swiss.ai.mit.edu/pub/users/ziggy/Papers/Thesis/PhD/PhD-proposal.ps

[7] Michael R. Blair Descartes: Foundations in Dynamically Adaptive Source Compilation & Run-Time Execution Specialization,
Ph.D. Dissertation, MIT Laboratory for Computer Science and MIT Artificial Intelligence Lab, Forthcoming.
http://www.swiss.ai.mit.edu/- ziggy/descartes.html

[8] Manfred Broy and Peter Pepper Program Development as a Formal Activity In IEEE Transactions on Software Engineering
7(1), Pages 14-22, January 1981.

[9] Craig Chambers, David Ungar, and Elgin Lee An Efficient Implementation ofSEL, a Dynamically-Typed Object-Oriented
Language Based on Prototypes In OOPSLA '89 Conference Proceedings, Sigplan Notices, 24(10), 1989.

[10] David IL Chase An Improvement to Bottom-Up Tree Pattern Matching In Conference Record of the Fourteenth ACM Symposium
on Principles of Programming Languages Miinchen, W. Germany, January 1987.

[11] Marina Chen A Parallel Language and its Compilation to Multiprocessor Machines or VLSI, In Proceedings of the Thirteenth
Symposium on Principles of Programming Languages Pages 131-139, 1986.

[12] Marina Chen, Young-il Choo and Jingke U Compiling Parallel Programs by Optimizing Performance, In The Journal of Su-
percomputing 2(2), Pages 171-207, October 1988.

[13] Thomas E. Cheatham, Jr. Reusability Through Program Transformations In IEEE Transactions on Software Engineering 10(5),
Pages 589-594, September 1984.

[14] Anir Chowdhury and Scott Meyers Facilitating Software Maintenance by Automated Detection of Constraint Violations In
IEEE Conference on Software Maintenance Montreal, Quebec, September 1993.

[15] William Clinger and Jonathan Rees Macros that Work In ACM Symposium on Principles of Programming Languages, Pages
155-162, 1991.

[16] William Clinger and Jonathan Rees, eds. Reoised' Report on the Algorithmic Language Scheme
http://swissnet.ai.mit.edu/scheme-home.html, November 1991.

[17] James R. Cordy and lan. H. Carmichael The TXL Programming Language Syntax and Informal Semantics: Version 7 De-
partment of Computing and Information Science, Queens University at Kingston, Canada, June 1993.

173

[18] James R. Cordy and Eric Promislow Specification and Automatic Prototype Implementation of Polymorphic Objects in TURING
Using the TXL Dialect Processor In Proceedings of the IEEE International Conference on Computer Languages New Orleans, March
1990.

[19] James R. Cordy and Medha Shukla Practical Metaprogramming External Technical Report 92-342, Department of Comput-
ing and Information Science, Queens University at Kingston, Canada, October 1992.

[20] O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare Structured Programming Academic Press, New York, NY, 1972.

[21] John Darlington An Experimental Program Transformation and Synthesis System In Readings in Artificial Intelligence and Soft-
ware Engineering Charles Rich and Richard C. Waters, eds., Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1986.

[22] E. W. Dijkstra A Discipline of Programming Prentice-Hall, Englewood Cliffs, NJ, Page 64, 1976.

[23] Carolyn K. Duby, Scott Meyers, and Steven P. Reiss CCEL- A Metalanguage for C++ Technical Report CS-92-51, Brown
University, October 1992.

[24] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa Demand-Driven Computation of Interprocedural Data-How In Pro-
ceedings of the 22 nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages San Francisco, CA,
Pages 37-48, January 1995.

[25] Charles Donald Farnum Pattern-Based Languages for Prototyping of Compiler Optimizers Technical Report Number
UCB/CSD 90/608, University of California, Berkeley, December 1990.

[26] Charles Farnum Dora - An Environment for Experimenting with Compiler Optimizers In Proceedings of the 1992 International

Conference on Computer Languages Oakland, CA, April 1992.

[27] Charles Farnum Pattern-Based Tree Attribution In Proceedings of the Nineteenth Annual Symposium on Principles of Program-

ming Languages Albuquerque, New Mexico, January 1992.

[28] Charles Farnum Personal Communication April 1995.

[29] Martin S. Feather Constructing Specifications by Combining Parallel Elaborations Technical Report ISI/ES-88-216, Information
Sciences Institute, University of Southern California, August 1988.

[30] Stuart Feldman Make - A Program for Maintaining Computer Programs In Software - Practice and Experience, 9(4), Pages 255-
265, April 1979.

[31] Robert W. Floyd Algorithm 97 (SHORTEST PATH) Communications of the ACM, 5(6), Page 345, 1962.

[32] Robert W. Floyd Toward Interactive Design of Correct Programs IFIP, Ljubljana, Yugoslavia, Pages 7-11, August, 1971.

[33] Bob French Personal Communication, Hewlett Packard Company, April 3, 1997.

[34] Keith Brian Gallagher and James R. Lyle Using Program Slicing in Software Maintenance In IEEE Transactions on Software

Engineering 17(8), Pages 751-761, August 1991.

[35] Simson Garfinkel, Daniel Weise, and Steven Strassmann The UNIX-HATERS Handbook, IDG Books Worldwide, San
Mateo, CA, 1994.

[36] David Garlan Views for Tools in Integrated Environments Ph.D. Dissertation, Carnegie Mellow University, May 1987. Also
appears as CMU Technical Report CMU-CS-87-147.

[37] David Garlan, Linxi Cai, Robert L Nord, and Robert Stockton ASCENT. Application-Specific Environment Transformer

Technical Report CMU-CS-92-180 Carnegie Mellon University, 1992.

[38] F. Giannesini, H. Kanoui, R. Pasero, and M. van Caneghem Prolog Addison-Wesley, 1986.

[39] James Gosling, Bill Joy, and Guy Steele The Java Language Specification Version 1.0, Addison-Wesley, 1996.

[40] A.N. Habermann, Charles Krueger, Benjamin Pierce, Barbara Staudt, and John Wenn Programming with Views Tech-
nical Report CMU-CS-87-177, Carnegie Mellon University, January 1988.

[41] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and Monica Lam Detecting Coarse-Grain
Parallelism Using an Interprocedural Parallelizing Computer In Proceedings of the 1995 ACM/IEEE Supercomputing Conference,
San Diego, California, December 1995.

[42] Chris Hanson et. al. MITScheme Reference Manual Edition 1.62 for Scheme Release 7.4, MIT AI Lab, April 1996.

[43] C.M. Hoffman and M.J. O'Donnell Pattern Matching in Trees In Journal of the ACM 29(1), pages 68-95, January 1982.

174

[44] Yasuaki Honda and Mario Tokoro Soft Real-Time Programming through Reflection In Proceedings of the International Work-
shop on New Models for Software Architectures: Reflection and Meta-Level Architecture Pages 12-23, Tokyo, Japan, November
1992.

[45] John E. Hoperoft and Jeffrey D. Ullman Introduction to Automata Theory, Languages and Computation Addison-Wesley Pub-
lishing Company, 1979.

(46] Susan Horowitz, Jan Prins, and Thomas Reps Integrating Non-Interfering Versions of Programs In ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages, San Diego, CA, Pages 133-145, January 1988.

[47] Galen C. Hunt and Michael L Scott Coign: Efficient Instrumentation for Inter-Component Communication Analysis URCS
Tech Report 648, February 1997.

[48] W. L Hiirsch and Christina Lopes Separation of Concerns Northeastern University Technical Report NU-CCS-95-03, Febru-
ary 1995.

[49] IEEE Std 1178-1990 IEEE Standard for the Scheme Programming Language Institute of Electrical and Electronic Engineers,
Inc., New York, NY, 1991.

[50] Elaine Kent On the Efficient Synthesis of Efficient Programs In Artificial Intelligence Volume 20, Pages 253-305, 1983.

[51] Brian W. Kernighan and Dennis M. Ritchie The C Programming Language Prentice-Hall, 1978.

[52] Gregor Kiczales Towards a New Model of Abstraction in the Engineering of Software In Proceedings of the International Workshop
on New Models for Software Architectures: Reflection and Meta-Level Architecture Pages 1-11, Tokyo, Japan, November 1992. A
revised version is also available at: http://www.xerox.com/PARC/spl/eca/oi/gregor-invite.html.

[53] Gregor Kiczales Beyond the Black Box: Open Implementation, IEEE Software, January 1996.

[54] Gregor Kiczales, J. Michael Ashley, Luis H. Rodriguez Jr., Amin Vahdat, and Daniel G. Bobrow Metaobject Protocols:
Why We Want Them, and What Else They Can Do In Object-Oriented Programming: The CLOS Prospective Andreas Paepcke,
Ed., MIT Press, Cambridge, MA, Pages 101-118, 1993.

[55] Gregor Kiczales, Jim des Riviires and Daniel G. Bobrow The Art of the Metaobject Protocol, MIT Press, Cambridge, MA,
1991.

[56] Gregor Kiczales, John Lamping, Luis H. Rodriguez Jr., and Erik Ruf Macros that Reach Out and Touch Somewhere Inter-
nal Technical Report, Embedded Computation Area, Xerox PARC, August 1992.

[57] Gregor Kiczales, et. al. Aspect-Oriented Programming Technical Report SPL97-008, Xerox PARC, February 1997.

[58] Gregor J. Kiczales and Luis H. Rodriguez Jr. Efficient Method Dispatch in PCL In Proceedings of the 1990 ACM Conference
on Lisp and Functional Programming Nice, France, Pages 99-105, 1990. Also In Object-Oriented Programming: The CLOS Pro-
spective, Andreas Paepcke, Ed., MIT Press, Cambridge, MA, Pages 335-348, 1993.

[59] John Lamping, Gregor Kiczales, Luis H. Rodriguez Jr., and Erik Ruf An Architecture for an Open Compiler In Proceedings
of the International Workshop on New Models for Softw are Architectures: Reflection and Meta-Level Architecture Pages 95-106, To-
kyo, Japan, November 1992.

[60] Filippo Lanubile and Giuseppe Visaggio Extracting Reusable Functions by Program Slicing University of Maryland Computer
Science Department Technical Report, CS-TR-3594, January 1996.

[61] Barbara Liskov, Russell Atkinson, Toby Bloom, J. Eliot Moss, J. Craig Schaffert, Robert Scheifler, and Alan Snyder
CLUReference Manual Springer-Verlag, 1984. Also published as Lecture Notes in Computer Science 114, G. Goos and J.
Hartmanis, Eds., Springer-Verlag, 1981.

[62] John M. Lucassen Types and Effects: Towards the Integration of Functional and Imperative Programming Technical Report
MIT/LCS/TR-408, MIT, August 1987.

[63] Andrew Malton The Denotational Semantics of a Functional Tree-Manipulation Language Computer Languages, 19(3), Pages
157-168, 1993.

[64] Scott Meyers and Steven P. Reiss A System for Multiparadigm Development of Software Systems Technical Report CS-91-50,
Department of Computer Science, Brown University, August 1991.

[65] Jim Miller Problem Set 9 Structure and Interpretation of Computer Programs, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Spring 1997.

175

[66] Robin Milner, Mads Tofte, and Robert Harper The Definition of Standard ML, MIT Press, Cambridge, MA, 1990.

[67] Mark S. Moriconi A Designer/Verifier's Assistant In IEEE Transactions on Software Engineering 5(4), Pages 387-401, July
1979.

[68] Hideaki Okamura, Yutaka Ishikawa, and Mario Tokoro AL-1/D: A Distributed Programming System with Multi-Model Re-
flection Framework In Proceedings of the International Workshop on New Models for Software Architectures: Reflection and Meta-
Level Architecture Pages 36-47, Tokyo, Japan, November 1992.

[69] Open Implementation OIHomepage http://www.xerox.com/PARC/spl/eca/oi.html.

[70] Open Implementation Record of the Workshop on Open Implementation, Gleneden Beach, Oregon, October 1994.
http://www.xerox.com/PARC/spl/eca/oi/workshop-94/default.html

[71] Steven P. Reiss On the Use of Annotations for Integrating the Source in a Program Development Environment Technical Report
CS-91-32, Department of Computer Science, Brown University, April 1991.

[72] Steven P. Reiss PECAN: Program Development Systems that Support Multiple Views In IEEE Transactions on Software Engi-
neering 11(3), March 1985.

[73] Thomas Reps Algebraic Properties of Program Integration In Proceedings of the Third European Symposium on Programming
Pages 326-340, Copenhagen, Denmark, May, 1990.

[74] Charles Rich and Richard C. Waters The Programmer's Apprentice ACM Press, New York, NY, 1990.

[75] Charles Rich and Richard C. Waters, Eds. Readings in Artificial Intelligence and Software Engineering, Morgan Kaufmann
Publishers, Inc., Los Altos, CA, 1986.

[76] Luis H. Rodriguez Jr. Coarse-Grained Parallelism Using Meta-Object Protocols S.M. Thesis, Massachusetts Institute of Tech-
nology, September 1991. Also Appears as Technical Report SSL-91-06, Xerox PARC, September 1991.

[77] Luis H. Rodriguez Jr. A Study on the Viability of a Production-Quality Metaobject Protocol-Based Statically Parallelizing Com-
piler In Proceedings of the International Workshop on New Models for Software Architectures: Reflection and Meta-Level Architec-
ture Pages 107-112, Tokyo, Japan, November 1992.

[78] Luis H. Rodriguez Jr. ViewForm: A Language for Building Program Transformation Systems MIT AI Lab, Ph.D. Thesis Pro-
posal, July 1995. http://swissnet.ai.mit.edu/-lhr/papers/phd-prop/full-paper.html

[79] Guillermo J. Rozas LIAR: an ALGOL-like Compiler for SCHEME S.B. Thesis, Massachusetts Institute of Technology, June
1984.

[80] Guillermo Rozas Translucent Procedures, Abstraction without Opacity Ph.D. Dissertation, Massachusetts Institute of Technol-
ogy, October 1993. Also appears as MIT Technical Report AI-TR-1427.

[81] Erik Ruf Partitioning Dataflow Analyses Using Types In ACM SIGPIAN/SIGACT Symposium on Principles of Programming Lan-
guages, Paris, France, January 1997.

[82] Brian C. Smith Reflection and Semantics in LISP In Proceedings of the 11th Annual ACM Symposium on Principles of Program-
ming Languages, Pages 23-35, December 1984.

[83] Peter Solovitz Compilation for Fast Calculation over Pedigrees In Proceedings of Genetic Analysis Workshop 7, Cytogenetics and
Cell Genetics, Pages 136-138, S. Karger Medical and Scientific Publishers, 1992.

[84] Raymond P. Stata Modularity in the Presence of Subclassing Ph.D. Dissertation, Laboratory for Computer Science, MIT, May
1996.

[85] Guy L Steele Jr. Common LISP: The Language Second Edition, Digital Press, 1990.

[86] L Sterling and E. Shapiro The Art of Prolog MIT Press, 1981.

[87] Bjarne Stroustrup The C++ Programming Language Second Edition, Addison-Wesley, 1991.

[88] Walter F. Tichy RCS -A System for Version Control In Software In Software - Practice and Experience, 15(7), Pages 637-654,
July 1985.

[89] Elizabeth K. Turrisi Chapter and Verse Program Description MIT AI Lab Working Paper 256, June 1984.

[90] Amin M. Vahdat The Design of a Metaobject Protocol Controlling Behavior of a Scheme Interpreter Xerox PARC Technical Re-
port, January, 1993.

176

[91] Jan L A. Van de Snepscheut Proxac: An Editor for Program Transformation Technical Report Caltech-CS-TR-93-33, Califor-
nia Institute of Technology 1993.

[92] Rocke Verser DES Challenge http://www.frii.com/~ rcv/deschall.htm

[93] Richard C. Waters The Programmer's Apprentice: A Session with KBEmacs In IEEE Transactions on Software Engineering
11(11), Pages 1296-1320, November 1981.

[94] Mark Weiser Program Slicing In IEEE Transactions on Software Engineering 10(4), Pages 352-357, July 1984.

[95] Deborah Whitfield and Mary Lou Soffa Automatic Generation of Global Optimizers In Proceedings of the ACM SIGPLAN'91
Conference on Programming Language Design and Implementation Toronto, Ontario, CA, June 1991.

[96] Akilnori Yonezawa and Brian C. Smith, eds. Proceedings of the International Workshop on New Models for Software Architec-
tures: Reflection and Meta-Level Architecture Tokyo, Japan, November 1992.

177

