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Abstract

In this thesis, we develol) a macroscopic model of the formation of ocular dominance
and orientation colunns in the manmmalian visual cortex. We not only reproduce

the static patterns of orientation pinwheels and ocular dominance stri)pes seen in the

macaque monkey, b)ut also model the development of these p)atterns, paying particular
attention to the ob)served stability of the adult resp)onse.

We model ocular dominamce as a scalar field. Initial cond(litions, reflecting small
fluctuations around a binocular response. (develop into a p)attern of domains corre-
sponding to the observed monocular bands. The domains are sep)arated by domain
walls where ocular (dominance changes rap)idly. Competition be('tween short range ex-
hitations. which favor continuity, and long range inhibitions, which favor diversity,
stabilize the do(mains and result in a pattcrn of strip)es.

Orientation is modeled(1 b a complex nuli)er to reflect b)oth its preferenice and
selectivity. An initial pattern. consisting of small fluctuations around zero selectivity,

evolves into a iattern containing vortices, which are naturally associated with the
observed pinwlheels. Pairs of vortices of opposite circulation ex)erience anl ffec(tive
att.raction, and slowly mliove toward each other, eventually annihilating to create a
mIore uniforml response.

We are ablle to stabili:.-; the pattern of vortices and rep)roduce olbserved( correla-
tions between the ocular dolminance and orientation p)atterns, by inclu(ling a local
coupling between the two fields. It is natural to think of this coupling as a result
of the cortex's limited comIutational cap)acity, i.e. areas which respond strongly to
orientation cannot simultaneously respond strongly to ocular dominance. In addition
to coup)ling between ocular dominance and orientation patterns, we consider weak
coup)ling to a large numlber of unknown fields represented by static randomness. This
miore generalized coupling can exp)lain the presence of stable orientation p)atterns in
animals which do not have detectal)ble ocular dominance bands.
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Title: Professor of Physics
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Chapter 1

Introduction

Richard Fevlman once( reimarked with amnazement that the brain could reconstruct

a complete image from the tiny bit of light passing though a 2 nmm pupil.[5] The

brain's amazing abilities of reconstruction and percep)tion are of great interest. They

are both a gateway to undlerstandillg higher brain functions. and a source of ideas for

d(eveloping artificial systems capable of image recognition.

Since the 1940's. cells in the eyes and llidbrain wiere known to respond to spots

of light at different locations.[6. 7] In 1958 David Hubel and Torsten XWiesel wlere

searching for cells in the primary visual cortex that resp)onded similarly. They showed

animal subjects hunldreds of slides, each with a (ldot at a differelnt location. To their

disapplointment they found few cells resp)onding to their dots. However, by accident,

they discove(rcd that the cells resp)onded best not to the (l dots on011 the slides, but to the

dlark shadow cast by the edge of slides. Further, they found that cells responded only

to (lark lines of specific orientations. The visual cortex conitained orientation specific

cells.[8]

In the following decades Hubel, WViesel, and many others performed extensive

studies of the visual cortex of the cat and macaque monkey, finding not only ori-

entation specific cells, but also cells which favored one eye over the other. Based

on such results, the first simple models of the structure of the primary visual cor-

t.ex were proposed. Inl many ways these early models were qualitatively correct, but

they contained extreme regularity in response that was not to be found in the actual



cortex.

As more advanced experilnental techniques were developed and larger portions of

the pIrimnary visual cortex were studied, it became clear that the cortex's response was

disordered on length scales comparable to the size of the cortex. The next generation

of models started with random initial conditions and evolved them in different ways.

The initial randomness then developed into globally disordered patterns. Many of

the models made reasonable predictions for the behavior of the cortex, but the ex-

perilmental data on the cortex was too limited at that time to make quantitative

comlparisons.

This remained true until the development of optical imaging. In 1986 Gary Blasdel

used optical imaging to study large areas of the primary visual cortex in vivo. This

greatly increased the amount of data available. Correlations were found between

ocular dominance and orientation p)reference. Detailed studies ,ere p)erformined on

juvenile animals to observe the development before it was comnllete. This work spured

the developmelcnt of additional models, and more impl)ortantly allowed quantitative

colmp)arison between models and to exp)erimental observations.

In this thesis we protpose a new model of the primary visual cortex, which builds

u1pon1 some of the pIrevious models. but is different in significant ways. Our approach

relies upon a Landau-Ginzburg expansion which is a well developed tool in statis-

tical mechanics. Our model allows for the easy identification and exploitation of

symmetries and interacting quantities.

The remainder of this introduction looks at what is known about the primary

visual cortex. First, the anatolmy of the entire visual system is surveyed. Next, the

physiology of the primary visual cortex is examined in detail. Finally, existing models

are examined and compared. Chap. (2) explains the Landau-Ginzburg approach, and

its successfull use in a variety of other problems. Chap. (3) describes the details of our

imodel, its implementation , and results. Lastly, Chap. (4) reviews the major results

of our work.



1.1 Anatomy and Basic Physiology of the Visual

System

In order to develop a useful model of the primary visual cortex, it is important that

we have a basic understanding of the visual system. While it is possible to create

a model of the primary visual cortex by looking at it in isolation, this would ignore

a wealth of information about how it. interacts with the rest of the visual system.

Information from the outside world reaches the primary visual cortex by passing

through the eyes and then the thalamus, where some processing occurs. After further

i)rocessing in the p)rimary visual cortex, the information is sent to higher cortical areas

where perception arises. By studying these other areas we can better understand the

function of the p)rimary visual cortex.

We will describe here the anatomy and b)asic physiology of the visual system.

Anatonmy refers to p)hysical structures and physical properties, while physiology refers

to the response of the system to outside stimuli. XMany different species including

ferrets. cats. monkeys. and humans have played imp)ortant roles in expanding our un-

(derstanding of the mammalian visual system. Luckily, it is not necessary to describe

the visual systems of all these species. most are quite similar in general design. The

cursory description that follows appl)lies to most species. When details vary between

sp)ecies, we choose to focus on the manacaque monkey whene-ver possible. The mnacaque

has been extensively studied and is quite similar to the human. the ultimate goal of

our understanding. -We draw our description of the visual system from P'rin'ciples of

Ne'ural Science b)v Eric Kandel et. al.[1] which deals mainly with humans, and An

Introduction to the Biology of Vision by James X1cIlwain[5], as well as the papers

explicitly cited.

1.1.1 Nerve Cells

The visual system is comp)osed of (tiscrete cells called neuronIs. The human brain is

believed to contain about 100 billion neurons of as many as 10,000 different types.[1]



Nonetheless, there are many features conmmon to typical neurons. Most neurons

have a cell body or soma. A frequently branching network of fibers called dendrites

connects to the cell body and collects input. A single long fiber called the axon also

extends from the cell body and carries the cell's output. The axon may travel as far

as a meter, but eventually terminates into many branching fibers forming an arbor.

These fibers make contact to the dendrites of other cells. The junction between an

axon and a dendrite is called a synapse. A single cell may have as many as 10,000

synapses to other cells.

The nervous system uses both electrical and chemical signals to carry information.

WVithin a neuron, information is carried by electrical pu)llses called action potentials.

Wlhen input from the (dendrites or spontaneous activity triggers a cell, an electrical

pulse is fornlmed in the cell body and prop)agates downi the axon. Upon reaching the

arlbor, the pulse triggers the release of chemical neurotransinitters into the synapses.

The synapses are nothing more than small gaps between axons and dendrites. The

neurotransinitters are picked up by cells, either through dendrites or directly by the

cell body. This in turn may cause other cells to fire. repeating the process.

Information is carried by discrete pulses, the action potentials. The number of

pulses can be integrated over time to give the level of activity for a cell. This level

can by ulsed to track how a cell res)ponds to a variety of stimuli. However, this

discards any information which may be contained in the timing of individual pulses.

In the visual system. it is unclear if the timing contains useful information. Other

systems are known to use this timing information at least in certain circumstances.

For example, the auditory systemn uses timing and rate information when localizing

sounds. Firing rates are used to compare the sound intensity at the two ears, while

timing information is used to compare the arrival times of the sound at the two ears.

The brain relies on trillions of synapses among billions of neurons to do all its

tasks. This presents a developmental problem. The amount of information required

to specify all the connectionls exceeds the total information in DNA by several orders

of magnitude. Thus, some form of self organization is required to allow a smaller

amount of genetically stored informlation to determine the developmental pattern



of the brain. Mathematically describing the development of a homogeneous organ

with only local connectivitv requires only a few simple rules. However, describing

the development of the brain with its many heterogeneous long-range connections is

much more difficult.

Studying the self organization of oneI part of the brain, the primary visual cortex,

is the goal of this work. The primary visual cortex is composed of two generic types

of neurons, although each type has many variants. Large pyramidal cells have long

axons that project out to regions beyond the primary visual cortex. Smaller stellate

cells mainly connect locally within the primary visual cortex. The stellate cells are

further subdivided into spiny stellate cells which tend to excite the cells to which they

connlect, and smooth stellate cells which tend to inhibit other cells.

1.1.2 Eyes and Retina

All information ab)out the visual field. the outside world as we see it. enters the body

throughl the eyes. The lens of the eve creates an inmage of the visual field on the back

of the evye. called the retinal image.

The retina is compn)osed of five types of neurons. see Fig. (1-1). Photoreceptors

(rods and cones) change the retinal image into a p)attern of neural activity. (Exactly

what is mleanlt be neural activity will t)be discussed later.) Horizontal cells. bipolar

cells. and amacrine cells carry information within the retina. Ganglion cells carry the

information frolll the retina to other parts of the brain.

Many neurons in the visual systelln have well defined recep)tive fields. The recep)-

tive field is an area of the retinal image that effects the activity the neuron. The

p)hotoreceptors have very simple receptive fields, namely the area of the retinal inm-

age falling directly onto the thenm. Ganglion cells have small circular receptive fields

centered in the nearby area of the retinal image. Their receptive fields are composed

of two parts. Light in the center of the receptive field stimulates the ganglion cell,

while light in the surrounding p)art inhibits the cell. These are called on-center fields.

Other ganglion cells have off-center fields which reverse the role of the center and the

surround. Together, the on-center anld off-center regions are called center-surround
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Figure 1-1: Schematic drawing of the retina showing photoreceptors, horizontal cells.
bipolar cells, amacrine cells, and ganglion cells. Information flows vertically from the

photorecetptors, to the bipolar cells, then to the ganglion cells. It is carried laterally
by the horizontal cells and amacrine cells. Figure reproduced with permission from
Principles of Neural Science by Eric Kandel et. al.[1]



fichlts.[6, 9]

The photorecteptors form the first. of mliany retinotopic mnaps in the visual system.

A retinotopic map is an array of cells organized topographically according to their

receptive fields. The )photorecep)tors which simply transduce the light that falls on

them are obviously ordered by the position of their receptive field. The ganglion cells

also form a retinotopic map, which again is unsurprising as each responds to nearby

photoreceptors. Other retinotopic maps appear in the brain far removed from the

eyes. These cells are still organized according to the position of their retinal field,

and form a picture of what stimulates the retina. In some areas the image is heavily

t)rocessed and distorted, but it is still organized topographically as a picture.

The horizontal and aniacrine cells niix information from nearby photoreceptors to

create center-surround fields in the ganglion cells. This p)rocessing serves to sharpen

the inmage that appcars on the retina, highlighting lines and edges while reducing the

re'sponise to diffuse light. The ganglion cells then carry the information away from

the eyes.

1.1.3 Optic Nerves and the Lateral Geniculate Nucleus

The axons from the ganglion cells leave the retina and terminate in the thalamnus.

In higher mnanmmnals. on the order of one million of these axons form the optic inerves

leaving each eye. The optical nerves cross and niix in the optic chasin before pro-

ccc('ing to the right and left si(des of the thalainus. All the information from the right

half of the visual field goes to left half the thalanius, and vice versa. Such segregation

necessitates the miixing of fibers from the two eves. see Fig. (1-9), as each retinal

image contains information from both sides of the visual field.

Upon reaching the thalamus, the majority of the nerve fibers terminate in the

lateral geniculate nucleus. A small number terminate in the pretectum, which controls

pupil reflexes, and a small number terminate in the superior colliculus, which controls

high slteed eye niovements (sac-cades). Only the lateral geniculate nucleus (LGN)

connects to higher areas resi)onsib)le for )perceItioln.

Each LGN receives input from one half the visual field. WVithin the LGN, the



Binocular

Monr
fied~

culate

vocellular
hway
ýhannel)

Primary visual cortex
(area 17)

Figure 1-2: Schematic drawing of the visual system from the eyes to the primary
visual cortex. Fibers from the right side of each retina lead to different layers in the
right lateral geniculate nucleus (LGN). A small number terminate in the pretectum
and superior colliculus. Fibers from the right LGN travel to the right primary visual
cortex. still segregated by the eye to which they respond. They terminate in layer
IVe. of the primary visual cortex. A parallel system exists on the left half of the brain.
but it is not shown. Figure reproduced with permission from Principles of Neural
Science by Eric Kandcl et. al.[1]



information is further segregated by eye. Three layers within the LGN respond to the

right eye and three layers respond to the left eye. The exact number of layers varies

with the species, but the segregation is common to all mammals of interest. Most cells

within the LGN have axons which leave the thalamus. Thus, there is only a single

synapse of processing within the LGN. It is not surprising that the output cells of the

LGN show the same center-surround fields that retinal ganglion cells exhibit.[10]

The LGN maintains a retinotopic representation of the visual field. Actually, the

LGN contains six retinotopic maps, one in each of its six layers. These six images

are aligned. Passing perpendicularly through the six layers, one finds receptive fields

located in the sainme area of the visual fields but switching eyes each layer. The

function of the LGN is not well understood. The information about the visual field

appears to leave the LGN without fiurther processing. Furthermore, most of the input

to the LGN comes not froll the retina, but fr'om higher visual areas. The role of this

feedback is not known.

1.1.4 Primary Visual Cortex

The axons from the LGN enter the cortex and terminate in the primary visual cortex

(Vl). also called the striate cortex or Brodmann's area 17. The Iprimary visual cortex

is located in the occipital lobe, the b)ack of the brain. (Oddly. this is as far from the

eyes as possible.) The visual cortex is comp)osed of a thin layer of cells between the

pial surface, an outer covering on()11 the brain, and the white matter, dense bundlehs of

nerve fibers iin the interior of the brain. In the monkey, V1 is roughly 2 mm thick, and

if laid flat covers about 13 (cm2 . However, as V1I is folded over itself several times, it

require much less space. The p)ortion of V1 on the outer surface of the brain is called

the operculum. It is bordered on three sides by area V2. On the fourth side in bends

into the calcarine fissure and folds under itself. On the roof of the calcarine fissure

it forms a triangle with oione side connected back to the operculum and the other two

folding under once again.

WNhen discussing V1, we shall refer to the thin (2 rmm) dimension as the vertical

direction, and to other two dimensions as the horizontal directions. In humans and



monkeys, V1 is organized into 6 layers stacked in the vertical direction. The layers are

labeled 1 through 6 with the outer layer labeled 1. Layer 4 is further subdivided into

layers 4A, 4B, 4Co:, and 4C 3. The layers were first identified by studying differences

in cell and fiber densities.

The fibers from the LGN termninate primarily in layers 4Ca and 4C3. However, a

few fibers terminate in almost every layer. Layers 3 and 4B project fibers to higher

cortical areas outside V1, while layers 5 and 6 project back to the LGN and other

subcortical areas. Unlike the LGN which has only one synapse of processing, the

primary visual cortex has 3-4 synapses of processing connecting the input from the

LGN to the output. Cells in V1 t.ypically have arbors which receive input from

neighboring cells within 1-2 1im1n. This processing results in cells which respond to

mo()re comlplicated features than the center-surround fields found in the retina and

LGN. However. the cells are still generally organize(d to form a retinotopic map like

the LGN. Modeling the p)hysiological response of V1, which is discussed in detail

septarately in Sec. (1.2). is main goal of this work.

1.1.5 Higher Cortical Areas

The primary visual cortex is onil the first of many visual areas as shown in Fig. (1-3).

O(ur understanding of the function of the higher areas is very limited: mostly based

on clinical studies of humaýi patients with localized d(amage to areas of the cortex.

Experimental studies on animals are difficult. although some have been p)erformed, as

the higher areas are believed to respond to conlmplex and possibly situation dependent

stimuli.

Two parallel pathwnays for information processing exist in the cortex. One pathway

for motion (where), and one for color and form (what). Both pathways are dependent

on information from the primary visual cortex. Axons leaving layers 3 and 4B of the

primary visual cortex conlnect directly to many other areas: V2, V3, V4, VS, and the

middle temporal area (NIT) among others. No higher area receives direct input from

the LGN or retina, so that all the information eventually used for p)erception must

pass through V1. (This is true in )rimates, but some other manmmals have direct
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Figure 1-3: The organization of 32 visual areas as suggested by Fellerman and Van
Essen. Figure reproduced with permission from "Distributed Hierarchical Processing
in the Primate Cerebral Cortex" appearing in Cerebral Cortex.[2]
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connections from the LGN to higher areas.)

Segregation of information for these two pathways may start as early as the retina.

Ganglion cells are divided into two classes M and P. The M ganglion cells connect only

to the two magnocellular layers in then LGN, while the P ganglion cells connect only

to the four parvocellular layers of the LGN. Further, the magnocellular layers of the

LGN connect to layer 4Ca of the primary visual cortex, while the parvocellular layers

connect to 4C3. It has been proposed that the segregation continues into layer V2

and beyond. The magnocellular system responds to motion and spatial relationships.

Cells within it respond poorly to color differences. Lesions in this area frequently

lead to the inability to track moving objects. The parvocellular system responds well

to color and appears to be necessary for the recognition of objects. It is unclear how

complete the segregation between the two paths is, and many important functions

applear in both of the paths.[1]

1.2 Physiology of the Primary Visual Cortex

Our goal is to model the development of the functional architecture of the primary vi-

sual cortex. This functional architecture is a set of response prop)erties, and is distinct

from the underlying physical structure (anatomy) that was described in the pre'vious

section. This section (describes the physiology that we will be directly modeling.

After a brief overview of thfe mnodern experimental methods used to study p)hysi-

ology, we shall descriibe ocular dominance and orientation selectivity, the two major

physiological responses detected in V1. WVe conclude with a summary of these prop-

erties for use in developing and evaluating models.

1.2.1 Experimental Methods

Our current understanding of the functional structure of area V1 comes from a long

series of experiments conducted during the p)ast thirty years. The overall picture has

expanded with the development of new experimental techniques to probe different

facets of the cortex. What we know about the primary visual cortex is strongly



influenced by what these techniques can detect. It is therefore worthwhile to take a

brief look at them.

Microelectrode Recordings

One of the classic method for studying the physiology of the brain is the use of

microelectrodes.[10, 11, 8] This method requires exposing the brain of the subject and

inserting conducting electrodes into V1. The electrodes have an insulating coating

except for a small area at the tip. The change in voltage associated with individual

action potentials is then recorded while the subject views different stimuli. To ensure

that the retinal image is not moving relative to the visual field, where the stimulus

appears, the subject's eye muscles frequently are paralyzed.

M-luch of what we know about the cortex conies from nmicroelectrode recordings,

which offer many advantages: The fulll response of the cell, including the exact timing

of spikes. is available. Recordings from a single location can be mnade while the subject

views a number of stimuli. In principle, any number of stimuli may be used, and

points arbitrarily close together may be studied. I In practice, however, microelectrode

recordings are made very slowly. One of the p)ioneers in the field, D. H. Hubel, noted

that attacking 'such a three-dimensional problem with a one-dimensional weapon is

a disnmayinig exercise in tedium. like tryilng to cut the back lawn with a pair of nail

scissors." [10]

Nauta Degeneration Methods

When the cell bodies of neurons are destroyed, the axons connected to those bodies

begin to degenerate. These degenerating axons can be marked by staining slices of

the cortex. Thus, by making selective lesions, the connectivity of neurons can be

studied. Although this method directly studies the anatomy (physical connections)

rather than the actual response of the neurons, it. is still very useful for determining

the basic function of different sections. The original method was developed in the

1950's by Nauta and others and was applied to the visual cortex by Hubel and Wiesel

in the 1970's.[12, 13. 14] By lesioning the LGN, they were able to find where the input



to V1 occurs.

Terminal degeneration studies allow much larger sections of V1 to be studied than

are easily accessible by microelectrode penetrations. In a single experiment, the entire

cortex can be sliced and stained. However, this method does not directly measure

the functional properties of cells, but rather their connectivity.

LeVay's Reduced Silver Stain

Silver stains have long been used to study the density and size of cells in VI as well

as the cortex in general. The six layers which compose VI are easily detected with a

reduced silver stain of a vertical slice of V1. In 1975, LeVay discovered that staining

a horizontal slice of V1 revealed a pattern of dark bands separated by narrow light

bands.[3] In LeVay's method, silver stains most large and medium nerve fibers but

few (cell bodies. Thus, the light bands are breaks in the generally high connectivity.

Like the Nauta degeneration method, this apIproach studies anatomy rather than

cell response. In somie cases, like ocular dollinance, it can be used to find the bound-

aries of a region whose functionality was previously determined by microelectrode

penetrations. However, it also suffers from the samne inflexibility as terminal de-

generation. It can find functional boundaries only when they coincide iwith density

fluctuations.

Autoradiographic Injection

Certain radioactive tracers deposited near a neuron's cell body are picked by the cell

and carried down the axon. Lasok and others used this property to develop another

method to trace the axons and connectivity of cells.[15] After radioactive materials are

injected at one point, the cortex is sliced and each slice studied for emissions. Shortly

after this method was developed, Grafstock refined it so that the tracers could pass

through a synapse.[16] In the mid 1970's Wiesel and Hubel used this refined method

to trace connectivity from the eye to \:1l, passing through the single synapse in the

LGN.[17]



Like the Nauta degradation technique, the autoradiographic method studies con-

nectivity. Thus, it has many of the same strengths and weaknesses. Autoradiographic

methods, however, may be used in circumstances where making lesions is difficult or

undesired.

[14C]2-deoxyglucose Metabolization

Radioactive tracers deposited in blood sugar are available to all cells throughout the

body. This would not be useful for study, except that neurons take up increased

amounts of blood sugar with increased activity. Sokoloff and others developed a

method to measure neuronal activity by studying the effects of [14 C]2-deoxyglucose

mnetabolization.[18] After an injection of [14C]2-deoxyglucose, the animal is exposed

to a particular stimulus for about an hour. (As with microelectrodes, the eyes muscles

are paralyzed to fix the retinal iniage to the visual field.) Then the animal is killed

and the cortex sectionled and studied for radioactive emissions. In the mid 1970's

this method was applied to the primary visual cortex by Kennedy and others.[19, 11]

Unlike other methods developed after microelectrodes, this method directly measures

neuronal activity. The response across the entire visual cortex can be measured to

any single stimulus.

The [' "C]2-deoxyglucose nmetabolization nmethod is complimentary to microelec-

trode penetrations. Mlicroelectrodes allow the response( of a single point to many

different stimuli to be studied. while [' C]2-deoxyglucose metabolization allows the

response of the entire cortex to a single stimuli to be studied. Since the animal must

be killed to study the results,. further tests on the same animal are impossible. Still it

allows the response of the entire cortex to be mapped, a practical impossibility with

microelectrodes.

Optical Imaging

Recently, a significant advance was made with the development of voltage-sensitive

dyes. These dyes are injected into the cortex in vivo, and change optical properties

depending on the electrical potential of nearby cells. Thus, they can be used to



measure the rate of action potentials in V1. This was done originally by Cohen and

others in the early 1970's and r)epeate.d byv Orbach and others in the mid 1980's.[20, 21]

The animal's cortex is exposed and stained with voltage-sensitive dyes. Any point

on the surface can be studied with photo diodes while the animal views any desired

stimulus. As averaging over time is necessary to reduce noise levels, information

about individual action potentials is lost. The method was significantly improved by

Blasdel and Salama, who in the mid 1980's started using a video camera and digitizer

to image the entire cortex at once.[22]

A related method has been developed that relies on intrinsic optical properties.[23]

Active neurons cause changes in the surrounding blood volume, oxygen saturation

level in henloglobin, and ion and water flow rates. All three of these effects change

the optical properties of the cortex and can be optically imnaged just as voltage-

sensitive dyes are imaged. Optical imaging of intrinsic signals has much less t.inme

resolution than imaging voltage sensitive dyes, but most exp)eriments on the primary

visual cortex are carried over time intervals much longer then the resolution of either

method. Imaging intrinsic properties removes the need for a)pplying a voltage sensitive

dye which may cause p)hotodynamic dalmage. and limit the duration of study oii an

animal.[24]

Optical ilnmaging combines the advantages of both mnicroelectrodes and ['"C]2-

deoxyglucose nletabolization. Like ["' C]2-deoxyglucose mnetabolizatiol, the entire V1

cain be studied at once. while like inicroclectrode recordings, multiple stimuli can be

used. This is p)articularly impnort.antl in detecting regions that generically respond to

any stimuli. As such regions appear in all ['"C]2-deoxyglucose studies, it is impossible

to know if a responding cell prefers the given stimulus, or responds generically to

anything. This mlethod cannot, however, be used to study the vertical structure of

the cortex, only the surface layers can be optically imaged. Furthermore, the optical

properties recorded are significantly removed firom the actual rate of action )potentials

in spikes per second.

This last point is worth further discussion. The process that leads from the actual

neural activity to the numnber eventually called orientation selectivity or ocular donm-



inance is quite complicated.[25] First the neural activity stimulates a color change

in the dye by a process that is not well understood, making it inmpossible to deter-

mine the neural activity given the d(lye color. The dye is then imaged and digitized,

then averaged over both time and space, normalized spatially, combined with data

for orthogonal orientations, normalized again, and (in the case of orientation) com-

bined as vectors and subjected to a final normalization. Therefore, the distribution

of measured response strengths is very hard to interpret.

It is currently not possible to record from the same animal during different periods

of development. Extensive studies can be done with a single animal, but only over the

course of hours or days. To studv development, a cohort of hopefully similar animals

is studied using a different one at each stage. The technical problems preventing

prolonged studies of a single animal may soon be overcomle.

Functional Magnetic Resonance Imaging and Positron Emission Tomog-

raphy

Functional magnetic resonance imaging (fMRI) and positron emission tomnography

(PET) have greatly improved our undlerstanding of the brain. These two techniques

rely on the same signal source as optical imaging. so it is tempting to consider ap-

plying themll to the study of the tprimary visual cortex. Unfortunately, these tech-

niques currently have a resolution which is an order of magnitude worse than optical

imaging.[24] If the resolution of fMRI and PET is improved enough to map the. finei

structure of visual cortex, they would provide a greatly less invasive method of study.

In addition, fBRI and PET would allow the study of deelper layers of the visual

cortex, which cannot be optically imaged.

1.2.2 Ocular Dominance

The primary visual cortex is the first place where input from both eyes is combined.

(In the LGN information is strictly segregated by eye.) It is. therefore, interesting to

study ocular dominance. i.e. which eyve elicits a stronger response from a given site.



In its silnplest form, ocular dominance can be considered as a binary field, simply

indicating one eye or the other. A better representation is by a real number whose

sign indicates which eye dominates, while its magnitude indicates the strength of the

dominance. An ocular dominance value of 0 then indicates that a location responds

similarly to both eyes. (Both cases of a strong response to all stimuli, and no response

to any stimulus are assigned an ocular dominance of zero.)

Early work with microelectrodes revealed that the primary visual cortex is orga-

nized into vertical columns.[10, 8] All cells in a given vertical column tend to respond

to the same area of the retinal field, and possess the same ocular dominance and other

p)roperties. Due to their similarity to features in the sornatosensory cortex found by"

Mountcastle, these features are called ocular dominance columns.[26] Cells in layer 4

are iredominately mnonocular, resp)onding almost exclusively to one eye or the other.

Over half the cells in layers 2, 3. 5. and 6 and binocular, blut show a p)reference for the

eve that (dominates layer 4 in that particular column. Nauta degeneration methods

and( autoradiographic" eye injection reveal the anatomical basis for the monocularity

in layer 4. in that the fibers from the two eyes are still comp)letely segregated.

The ocular dominance colunns are organized into ocular dominance bands, as

shown in Fig. (1-4). In the monkey, thes(e bands have a relatively constant width of

0.4 to 0.3 mll. There is a small amount fluctuation in the widths within an given

animial and between anilials. However, no systematic changes in width occur between

dlifferent parts of V1. The p)attern has been observed by all the methods discussed in

the previous section.[14, 10. 3, 17, 19, 25] The exact pattern of bands varies with the

p)articular animal under study, but many features are common to all observations. All

the bands tend to intersect the boundary of area V1 at right angles, and all subjects

have bands that run in the same general directions. In the op)erculuhn, bands tend

to run from the edges of Vl toward the calcarine fissure. Once inside the fissure the

bands turn sharply as they run into bands conming from the p)er)endicular direction.

The bands meander, occasionally branching and terminatting. WVe shall refer to the

internal order of the p)atterns as their persistence. Sonme aspects of persistence are easy

to quantify. For examp)le, the number of branches can be counted. Fig. (1-4) has 190
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Figure 1-4: Reconstruction of ocular dominanlce b)ands in the monkey primary visual

cortex based on data from LeVay's reduced silver stain. (Scale shows run.) In (a) the

opetrcuiluln is shown, in (b) the roof of calcarine fissure, and in (c) the leaves joining

the roof to the stein. The dashed line is the border between areas V1 and V2. The

dotted line shows places where the cortex is folded under itself. The (lark lines in the
figure itself are the domain walls of the ocular dominance bands. Note that. adjacent

bands never join. Figure replri'ntedt from "The Pattern of Ocular Dominance Columns
in Macaque Visual Cortex Revealed by a Reduced Silver Stain", by Simon LeVay
et. al. a)pp)earing in the Journal of Co'mparativc Ne'urology. Copyright @Wiley-Liss,
Inc.. Reprinted by1 permission by Wilev-Liss. Inc.. a subsidiary of John Wiley & Sons.

Inc. [3]



)bran(1ches giving a density of roughly 0.6 b)ranch points per Inmm-' or 0.04 per (band),

(the width of the band squared). This latter measure is more useful as the brain

unldergocs significant shrinkage during LeVay's preparation. The number of branch

points. is the same as the Im111111r of end points, where a band dead ends. except

for corrections at the b1oundtaries. M•easuring the )persistence oil longer scales. i.e.

thel straightiness of the bands. is more difficult. Typically. wiemni comparing d(ifferent

results or simulations, we are forced to rely on the qualitative appearance.

The bands are sep•arat(l 1by "domnain walls", narrow intervals which respond( to

both eves similarly. The form of the domain walls varies with the laver in the cortex.

In layer 4 the domain walls are very sharp. Microelectrode penetrations generally

fail to record any cells with significant binocular behavior in layer 4, although there

is smnall reduction in ocular dominance extending perihaps 0.1 mm to each side of

a domain wall.[10] The LeVav tec(hni(lque reveals an area of reduced fiber density at

the doinain walls. This area has 1/6 the width of the bands but doesn't necessarily
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indicate reduced ocular dominance. In layers 2, 3, 5, and 6, the domain walls are very

gradual. Cells with zero ocular dominance occur near the domain walls and the level

of ocular dominance rises slowly to a maximum at the center of the band.[10, 25]

A pattern of ocular dominance bands superimposed on a retinotopic map presents

interesting organizational issues. This form of organization seems to suggest that at

some points in the visual field the brain processes mainly information from the right

eye, while at other nearby points the information comes mainly from the left eye. This

would indeed be the case if the retinotopic map and the ocular dominance columns

were completely independent. However, the retinotopic map is strongly effected by

the ocular domninance columns. Discontinuities in the retinotopic map occur on ocular

dominance domain walls. Each location in the retinal field is represented twice once

in a location of each ocular dominance.[10]

Six weeks before birth,. there are no anatonmical signs of ocular dominance in

the ionkey.[27] Physiological experiments are imp)ossible before birth, but layer 4C

can be seen to be fully enervated by each eye. At one week before birth, periodic

fluctuatiolls can be seen in the density of fibers in layer 4C. but the laver is still

fully enervated, by each eve. By six weeks after birth. full segregation is conlmplet.[28]

This development takes place regardless of visual stimuli, i.e. even if the animal is

subjeected to comptlete binocular deprivation. If, however, the animal is sul)jected to

monocular deplrivation for a significant period during the first two months after birth,

the open eye is favored in ocular dominance. In a normal healthy animal, the fraction

of 71 covered by ocular dominance bands for each eve is almost identical. However.

if an animal is deprived of the use of one eye during critical postnatal periods. the

bands corresponding to the open eye become wider than those of the deprived eye.

This effect is permanent unless the monocular deprivation is reversed while still in

the critical period. After about two postnatal months, monocular deprivation has no

noticeable effect, on ocular doiinance.

During the first few months after birth, the cortex grows by at least 16%C in

the monkey.[29] All the growth occurs in a direction perpendicular to the ocular

dominance bands.[30] The number of columns remains fixed, but their width increases



by about 16%.

1.2.3 Orientation Preference and Selectivity

The primary visual cortex is the first place in the visual system where cells have

complex receptive fields, and not simply center-surround responses. In particular,

many cells in VI respond strongly to line segments of a particular orientation. The

orientation that most strongly stimulates a cell is called its orientation preference.

Characterizing orientation preference is not as simple as ocular dominance. To

fully characterize a cell in V1 requires giving its response to all possible patterns of

light. (Even that gives only its static response, neglecting the effects of motion.) This

is nmuch too large a space to examine. Instead, we characterize a cell by looking at

its resjponse to orienltation. Ini most cases, this means preseilting an array of oriented

bars. Thus. resp)onse is re'lduced to a single function of angle for each location in V1.

This still leaves the choice of what function to measure: firing rate, oxygen usage,

voltage as determined by optical dyes, or some other property. Luckily, the response

nmeasured in terms of any of these p)roperties shows sonme key similarities. First, due to

simple geometrical conlstraints, it is p)eriodic over 180 degrees. Second, for most cells,

it has a single p)ronounced )'eak. The width of the peak doesn't fluctuate significantly

from one location to the next.[31] This allows the response to be characterized by

a single angle, the orientation preference. Although the width of the peak remains

relatively constant, the height of the I)eak does not. This height is a measure of the

strength of the preference called orientation selectivity.

To determine orientation p)referentce and selectivity from optical imaging the fol-

lowing procedure is typ)ically used. The response of a given location is measured for

several orientations (typically 4 to 12). The response for each direction (0) is multi-

plied by a unit vector pointing in the direction 20. These vectors are then summed.

The angle of the resultant is twice the angle of preference and the magnitude of the

resultant is a measure of orientation selectivity. Note that cells that respond strongly

to all orientations have a small selectivity, even though they may have a large re-

sli)ose. The preference and selectivity can be found from A., the second component



of the complex Fourier transform,

A2 =i20, 6  ) (11)
n=1

where {O,} are the angles recorded from, and 1(O) is the response at angle 0. The

complex angle of A 2 gives the preference, while it magnitude, 1A21, gives the selectivity.

A second method has been developed to characterize the orientation response using

electrode penetrations.[32, 33] This method finds orientation preference similarly, but

measures selectivity with the orientation selectivity index (OSI). The OSI value is

given by,

1-421OSI = 100 x IA21 (1.2)JA21 + Ao
where A 0 is the zero Fourier componelnt.

Like ocular dominance, orientation selectivity is organized into vertical columns.

The same orientation preference appears in layers 2, 3, 5, and 6, at a given horizontal

position. Cells in layer 4 do not show orientation preference, but instead still respond

to center-surround receptive fields. Orientation columns have been found by both

microelectrode penetrations and optical imaging.[11, 22] ["'C]2-deoxyglucose metab-

olization can reveal the response of every location to a particular orientation but not

the plreferredl orientation at a lparticular location.

MIicroelectro(dehs reveal little about the organization of orientation columnns but

opttical imaging reveals a complicated pattern of response, as in Fig. (1-5). The most

prominent features are point singularities, where all orientations meet at a single

ipoint, called "pinwheels". Two varieties of tpinwheels (positive and negative) exist

with the orientations rotating about them in o)pposite directions. The, number of

positive and negative singularities are almost nearly the same. The total density of

singularities in the monkey is reported as 8.1 mmn-2.[34] Experimentalists have noted

three other features of interest: linear zones, fractures, and saddle points. Linear

zones are regions with a diameter of 0.3-1.0 mm where the orientation preference

changes slowly in one horizontal direction and remains constant in the perpendicular

one. They appear typically in regions away from singularities and locally look like a
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Figure 1-5: Two pairs of orientation and selectivity patterns. (a, c) Orientation pref-
erence and (b, d) selectivity in the monkey determined from optical imaging. In (a,
c) different colors encode different angular preference as shown in the key on the left.
In (b, d) lighter areas are more selective than darker ones. Figure reproduced with
permission from "Orientation Selectivity, Preference, and Continuity in the Monkey
Striate Cortex" by Gary Blasdel appearing in The Journal of Neuroscience.[4]

series of parallel orientation bands. Fractures are one dimensional singularities where

orientation preference rapidly changes. They tend to run between two pinwheels,
connecting them. Finally, saddle points are small areas where orientation preference

remains constant. Saddle points are bounded by four singularities that create the

region of constant preference.

The distribution of selectivities has not been studied as extensively as other prop-

erties, but it appears to be wide and not centered around the origin. In the ferret,
the distribution of selectivity appears to be uniform over a wide range of OSI values

Imm
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Figure 1-6: The (distriblltion of selectivity in the visual cortex. The squares indicated
(lata for the ferret provided by hMriganka Sur's group at MIIT, while the line is a least
squares fit. to the forml r exp(-(or') In this cas(,e = -14.3.

from 15 to 65.[33] Small tails extenld to lower and higher valu'es. Our own analysis of

op)tical imaging data in the ferret provided by Mriganka Sur shows a d(istribution well

fitted by a form r e('xI)(-o r ). as shown in Fig. (1-6).[31] Interpretation of this data is.

however, comp)licated by the rather convoluted definition of selectivity, as discussed

in Sec. (1.2.1).

Orientation columns have been observed shortly after birth in the monkey.[35]

At three and a half weeks, when optical imaging can be performed, a full pattern

comparable to adults is visible. The density of p)inwheels remains roughly constant

as the monkey matures, despite the fact that the cortex grows by about 16%..[34]

In order to maintain this density more singularities must )be adtded either by entry

through the boundaries or by creation of p)ositive and negative pairs.



1.2.4 Coupling between Ocular Dominance and Orientation

From the first detection of orientation and ocular dominance columns, coupling be-

tween the two has been of great interest. Initially, data only presented opportunity

for conjecture.[14] Optical imaging has allowed the collection of enough data to study

this issue in depth. The fractures and singularities in the orientation columns occur

more frequently in the center of ocular dominance bands, rather than near domain

walls.[22, 4] This alignment causes lines of isoorientation to tend to intersect, ocular

dominance domnain walls at right angles. II linear zones, lines of isoorientation are

roughly 3 to 4 times more likely to intersect doinain walls at the nearly perp)endicular

(72-90 degrees) rather than nearly parallel (0-18 degrees).[34] In all other regions.

exctpt those near singularities, the tendency to cross perpendicularly is still present,

although red(luced(l in (degree.

Fourier transforms of orientation and ocular dominance inaps reveal a similar

tendncy('i toward orthoigonalitv. Two (dinmeisional Fourier transforms of ocular donm-

iniance fields reveal two clusters of modes displaced at equal (istances (roughly 1.22

mm - I) frolm the origin. The line running through the two clusters is aligned to the

axis of repetition for ocular dominance. (As only a small region of -1. several 111111, is

transformed, the bands have a locally preferred direction.) Two dimiensional Fourier

transforms of orifentation t)prefereC(ncs in the samle area reveal a nearly (circular ellip)se

with a diameter near 1.47 11111 - 1. However. the ellip)se does have a detectablhe mna-

jor axis. which tends to be perpendicular to the corres))onding axis of repetition for

ocular tdoinilance.[34]

The assigned magnitudes of both ocular dominance and orientation selectivity

have arbitrary units, with no absolute meaning. Still, it. is possible to study the

ratio of average ocular dominance mnagnitude to orientation selectivity. This ratio

increases with age. At three and one half weeks after birth it has been recorded

as 0.92 but in Imature animals it. is roughly 1.36.[30] Thus, ocular dominance either

reaches mlaturationl first. or grows more slowly than orientation in the final stages of

nmaturation.



1.2.5 Summary of Characteristic to be Modeled

\We have enumnerate(d a large numlber of p)roperties of the p)rimary visual cortex. It. is

useful to sunmmarize those that will be of interest when modeling the cortex, and we

have listed themn in Tbl. (1.1).

There are several features not listed in this table that are frequently discussed

in conjunction with cortical niaps. These include linear zones, saddle points, and

fractures. Linear zones will appear in any3 pattern of angles, so their presence offers

little insight. It miay be possible to characterize what fraction of the area is in linear

zones. but we believe there are better ways to measure the salme effect. Similarly

saddle points and fractures appear in almost all fields with p)inwheels. Again, we

could measure the size of saddle points and the rate of change in fractures, but such

characterization involves many arbitrary decisions. A better way may be to study

the distribution of singularities (pinwheels), focusing not only on its density, but also

on correlations among like singularities and between opposite ones. This approach

would d(escrib)e the same features. but in a much m1ore robust manner.

1.3 Previous Models of the Primary Visual Cor-

tex

Since the (discovery of ocular ldom•ilinance and( orientation columns in \1. imany mnodels

of the developmilent of these features have been pIroposed. All these models attenmplt

to showxv howx a limited numbelr of simlple rules or interactions generate the patterns

found in the cortex. Most of these nmodels do not attempt to explain how the cortex

functions, i.e. how it actually identifies objects, rather they focus on the development

of the functional architecture.

The models can be placed into four broad categories: structural models. static

filter imodels. evolving field models. and neural network models. Structural models

attemp)t to identify organizational p)rinciples xwithout sp)ecifying mechanism for their

develop)ment. Filter models describe the structure in ternis of filtered noise. Field



Table 1.1: Important p)rop)erties of ocular dominance and orientation to be considered
when evaluating and developing models.

Ocular Dominance Bands
- Bands of width 0.4 t.o 0.5 nmm
- Some random fluctuations in width
- Random b)ranc'hing and ending with a densitv of ends

and branches equal to 0.04 per (band)2

- Global pattern resemb)ling that found by LeV\ay, see Fig. (1-4)
- Bands tend to intersect the b)oundary at right angles
- Domain walls are sharp) (wide) in layer 4 (other layers)
- Cortex grows by 16C.% perpendicularl to bands
- Binocular (tdeprivation has little effect
- Monocular dep)rivation during a critical period narrows suppressed banids

Orientation Colhum'ns
- pattern of orientation preference with a pinwheel density of 8.1 n n-

- both tpl)es of p)inwh1Iels iin equal numbers
- pattern of pinwheels shows global disorder
- constanlt p)inlwhieel de(nsity during (develo)pment despite cortex growth by 16%
- wide (listril)ution of selectivity
- critical period of devehlopment from p)renatal week 6 to post natal week 6

Coupling
- pinwheels tend to occur ill the center of ocular doninance bands



mod1els assume the existence of ocular dominance an(d orientation fields, and( at.temp)t

to show their development from sonme random initial condition to the observed final

state. Finally. neural network mod(els attempt to show explicitly how ocular doln-

iniance and orientation preference arise from the center surround cells in the LGN.

This choice of categories is somewhat arbitrary. Other authors have chosen different

classifications. [36, 37]

1.3.1 Structural Models

Structural models were d(evelop)ed shortly after the discovery of orientatioin preference

anod ocular dtominance. These mo(dels usedl the then linitedo data to ext.rap)olate

general organization p)rinciples. Structural nmodels have no mathematical algorithms

for ongoing (develop)ml elt, andI make no claims as to the organization of the cortex

b)efore maturation. Despite these limitations, structural nimodels are important to

11m(Iherstal(nd, as the progenitors of later attempts. They have have had significant impac:t

onil the dleveloplnenlt of niodels and( even on the direction in which experimental work

Icecube Model

The first structural model was dceveloped1 by Hubel and W\iesel.[10] After noticing

regular banlds of ocular d(omillance, and what appeared to be band1(s of orientation

I'refere'nce, they I'rop)osed the simple organizational structure, depicted in Fig. (1-7).

Ocular dominance band(s run in one direction while orientation columns formn bands

in another direction. Despite the appearance of the figure, Hubel an(t W\iesel did not.

suggest that orientation and ocular dominance bands crossed at. right angles. Nor,

did they suggest that the orientation ban(ds were straight. Locally in linear regions.

the icecube model is accurate. However, globally it ignores both the pinwheels. and

the global disorder obvious in the mo(lern patterIls of orientation, as in Fig. (1-5).

The icecube ino0del embodies two organizational principles, continuity aIln( diver-

sity. that have long been believe(d to be important in V1 functional architecture.[38,



Figure 1-7: The icecube model devehloped by Hubel and Wiesel. R, and L indicate
ocular dominance columns responding to the right and left eye. Regions with a small
diagonal line indicate orientation bands. This figure is not lmeant to imply that ocular
domninance bands cross orientation bands orthogonally or that the andls are straight.

39] Continuity reflects the observed fact that nearby cells tend to have similar ori-

entation preference and ocular dominance. This is not true near singularities in

oricentation prefeIre n ce , but is true over much of V1. Diversity reflects the need to

fill feature space as comp)letely as possible. so that all p)ossible combinations of lo-

cation, ocular dominance. and orientation, are rep)resemnted. Otherwise some kind of

"percep)tional scotomnata" may result where certain objects can not be seen in certain

parts of the visual field.[40] The simple structure of the icecube model ensures both

continuity and diversity.

The icecube model led to the development of the concept of a hypercolunn. a

compllete set of either orientation or ocular dominance columns. Fig. (1-7) shows oine

of each. The notion of hypercolullnns is very appealing as it breaks V1 down into

small functional modules. Unfortunately, the cortex does not appear to have any

discrete modules. The existence of singularities in orientation preference is not easily

reconciled with modules of orientation. Furthermore, all attempts to find anatomical

evidence for modules, or to measure their typical size have been unsuccessful.[41]

R L
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Figure 1-8: (a) The pinwheel model as originally developed by Braitenberg and Brait-
enberg. The orientation is linked to the isoorientation lines. Singularities with +3600
andi -180' are present. (b) The pinwheel model as modified by Gotz. Orientation is
no longer bound to isoorientation lines, and ±180' singularities are present.

Pinwheel Model

A second structural model. the pinwheel model, incororporates the singularities ob-

served in orientation prefere(nce. The original form was suggested by Braitenberg

and Braitenberg using only data from microelectrode )penetrations.[42] They noted

that the observed data for orientation p)refereInce were comp)atible with organizations

other than simple parallel bands, as in Fig. (1-8a). While the original pinwheel model

required the i)rcefe(rrc(l orientation to be tangential to lines of isoorientation. later re-

finenments removed this constraint as shown in Fig. (1-8b)).[43]

The nmodified version of Fig. 1-8b is qualitatively correct in many ways. It shows

linear regions, sad(dle points,. and pinwheels. It incorporates pinwheels of both ori-

entations, and predicts the 1:1 ratio observed between them. However, this simple

model does not contain any global disorder. The pattern of pinwheels is perfect and

orderly on long scales. The spacing of the pinwheels is constant. Furthermore, this

model places too much stress on hypercolumns, and divides the orientation pattern

into discrete modules.

/I// / I

I 1/ -/ /1



1.3.2 Static Filter Models

Several models have been d(evelo)tped that use bandpass filtered white noise to gen-

erate cortical maps.[44, 45, 46] These Inodels generate patterns by combining simple

approximations of the observed Fourier spectra with randomness. As many of the

creators of bandpass models emnphllasize, the prIocedu(lre is mathematically equivalent to

a random source (providing disor(cer) conlvolutedl with a filter (providing continuity).

Ocular dolominance and orientation are modeled bv three fields. Two fields are

combined to give orientation p)reference and selectivity, while the third indicates oc-

ular tdomninance. The fields, f;(.). are initialized with small randomr values, either

taken from Gaussian white noise centered at zero with some arbitrary variance, or

from sorme other pIrocedure. Each field is then sep)arately convoluted with a bandpass

filter.

; (. -) = hI ( ) * f ·(.f). (1.3)

The passbands are chosen to resembt)le the Fourier characteristic of the patterns in

experiment. [45] For orientation, the filters are annuluses in real space. Grossberg and

Olson use a bandpass filter matde from the difference of Gaussians[46],

h ) exp . - exp . (1.4)

For ocular dominance. the filter is typlicallv two clusters ev(clvy offset from the origin.

This (can be generate(d by multiplying the ab)ove difference of Gaussians filter by a o()ne

dimnensional ex)ponential. again mimicking the observed Fourier pattern. Orientationi

tpreference is given by ta- - (11/!12), while orientation selectivity is given by !+ .
A third field, 9:3. describes ocular dominance.

This model has the advantage of being comlputationally very fast. The final state

is reached in a single step). There is no need to iterate equations repeatedly. or worry

about the effects of discrete time steps. Unfortunately. this means that develop)-

ment is neither observable. nor alterable by changing conditions at sonic point before

maturity. Only the final p)attern is available for study.



The ocular dominance patterns generated bI these models show parallel wandering

and b)ranlching bands as seen in the monkey. The average width of bands can be easily

adjusted by moving the location of the pass band. The )persistence of the bands can be

varied by changing the eccentricity of the annulus pass band, while the fluctuation in

the width of the bands can be controlled by changing the pass band width. Persistence

and width fluctuations do not appear to be completely independent, as increasing the

width fluctuations seems to also decrease the persistence.[44]

Other features of ocular dominance are not modeled quite so well. The generated

ocular dominance patterns are limited to a single global orientation. This can be

alleviated by making the parameters of the filter slowly change with position, but

this creates a new probhlem of modeling the changing parameters. Due to the nature

of the mIodel. neither effects of the boundary, nor those of dlelprivationI can be st.udiedt

easily. They c-an 1)e incorp)orat(ed to somne extent by modifying the filter parameters

near the boundaries, and by incorp)orating a bias toward one eye in the filter or in

the initial conditions. Unfortunately, information on the distribution of selectivity

anid profiles of the domain walls generated by this model have not been published. so

collmparison with the observed data is not possible.

These models also generate orientation patterns similar to those observed expl)eri-

mentally. Both types of singularities exist in equal num)bers as expected. In addition.

linear regions, fractures. and saddle points can all be seen. The density of singulari-

ties can be adjusted by varying the diameter of the annulus forming the pass band.

although d(etailed studies of this effect have not been reported. The distribution of

selectivity has also not been rep)orted to compare with experimental results.

Grossberg and Olson[46] are able to generate the observed correlations between

orientation and ocular dominance by correlating only the initial inputs, but still using

independent bandpass filters. Their initial conditions are given by,

f(1) = cos((t)) cos(3(2)).

f.2(:') = sin(a(i)) cos(((N)), (1.5)

f3(.) = sin(3(1)),



where ci(.r) and 3(1) are random angles assigned to every point .Y. These initial con-

ditions explicitly incorp)orate an inverse relationship between the magnitude of ocular

dominance anid orientation selectivity, Ifosl + foo = 1. In this case, pinwheels tend

to form in the center of ocular dominance bands and isoorientation lines tend to cross

ocular dominance domain walls at right angles. However, these tendencies are not as

strong as seen experimentally. The success of this type of model is not surprising, as

it starts with the correlation function taken from the experimental data.

1.3.3 Evolving Field Models

This class of models treats orientation and ocular dominance as fields, assigning

values to each at every point in a two dimensional space. The fields are then u)pdated(

according to solme specified rules which may involvhe couplings b)etween them. These

models are comnlputationally fast. but do require rep)eate(d iteration. The number of

variables scales linearly with the number of locations modeled. This allows relative-ly

large( areas to be studied with a relatively fine scale of discrete points which dto not

necessarily corresponmd to inldividual neurons. Rather. the scale is chosen so that the

spacing of points in the mesh is less then the fiinest feature to be modeled. This

is a great adtvanitag(. as the two dimensional spacing betwee(n cells is on the order

of a few microns, while the features of interest vary on the scale of hundreds of

microns. The price paidt for this co)mputational case is the loss of information aboCut

neural conmnectivitv. These mil)odels p)reldict that a certain region will have a particular

orientation preferelnce, but they give no clue as to the synaptic wiring that actually

causes the cells to resp)ondc to that orientation.

Two such models will be described here. The first uses reaction-diffusion equa-

tions to update the fields. The second employs dynamics motivated by other pattern

formation p)roblems.



Reaction-Diffusion Model

Reaction-diffusion models of l)attern formation date back to the pioneering work of

Turing in the 1950's.[47] It has been suggested for some time that reaction-diffusion

might play sorme0 role in the developmInent of Vi; [39] a recent imlplementation is by

Bhaumnik and NMarkan.[48]

Orientation is modeled by a pair of diffusing quantities, X and Y. Orientation

preference is then given by tan- 1 (Y/X), while orientation selectivity is given measured

)by X2 + ' 2 . Orientation develop)s according to a simple reaction diffusion equation,

Ot
Of w H : - WTW) + DV 2 W, (1.6)

where.

W I. = (1.7)

()nce the orientation map has reach(ed a desired state, iteration of this equation

is suslhpended, and( ocular dominance is modeled. Ocular dominance is represeInted by

a single field, Z. The magnitu(de of Z rep)resents the strength of the dominance and

the sign of Z indicates the p)referre(d eye. Ocular dolminance develop)s according to

reactioln-(liffusion equations coup)ledl to the noiw static orientationl field.

i = - W'T ) (F - Z 2) + DV 2 Z. (1.8)

O()nce the ocular dominance map reaches a desired state, its iteration is also stop))ped.

The reaction diffusion mnodel results in orientation patterns which contains both

tytpes of pinwheels in equal ratio. However, the density of pinwheels continues to fall

as the pinwhieels of oIlpposite circulation annihilate each other. If the simulation is not

interrup)te(,l. a uniform field without any )iinwheels is obtained. The distribution of

selectivities is typ)ically nmuch narrower than seein experimnentally. It does, however,

follow the observed pattern of increasing selectivity with time. The initial distribution

is sharply c:entered around nearly zero selectivity. This sharp p)eak then moves to



higher values of selectivity.

The model gives regions p)referring each eye, but these regions do not form a

p)attern of strip)es as is seen in the mionkey. (In malinmals other than the monkey,

the p)attern may not have stripes.) Work has not yet been done to see if this model

can reproduce other features desired in a model of ocular dominance. The coupling

with the orientation map causes the ocular dominance domnain walls to prefer linear

regions and isoorientation lines to cross doimain walls at right angles. However, the

results reported so far are not conclusive.

Swindale's Model

Swindale has developed a model of the primary visual cortex based on ideas fromn

Hub)el and W•iesel, and insights fromn pattern formiation.[39. 49, 50] This model is the

most similar to the one vwe have dcvelopeld, see Chap. (3). The initial motivation

came from Hub)el and Wicsel's suggestion of a comn)petition between cfferents from

the left and right eyes. Swindale also incorporates from work on p)attern formation

in zebrras, feathers, and many species of fish.

An ocular dominance ficld. n, (.Y). is used to measure of the density of synapses ill

layer 4 connected to each e(e. The density of right eye synap)ses is (1 - in)/2. while

that of left eye synapses is (1 + 1)/2. Values i = ±1 indicate monocular regions:

the total lelsity is constant. The density of synapses at each point interacts with

the densities in the surrounding area. Up to a distance of 200 pm. synapses from

one eye inhiibit synapses from the other eye, while at separations of 200 pmi to 600

pir, they reinforce growth of synapscs from the opposite eve. This is ext)resscd as a

convolution in the dynamical equation,

= g,-,-, (,,() * r,, + K) (1 - ,,(.2), (1.9)

where K is zero unless monocular deptrivation is taking place, and the kernel of the



convolution is the differences of Gaussians,

1'( 2 ) (r - h)2
wn(r) = .4An exp (- - B, exp ( 7 ., " (1.10)

The non-linear factor is included to limit the density of right and left eye efferents

to non-negative values. Swindale suggests that long range interaction is mediated

by chemicals diffiusing through cortex or results from the horizontal synaptic connec-

tivity: "that two synapses are in contact with the same postsynaptic cell, that they

belong to the same axon, or that they are driven by the same area of the retina." [39]

Orientation preference and selectivity are encoded in Swindale's model as a com-

plex numberI, z = IzC . The Ipreference is given by 6/2, andt selectivity by z . The

evolution of orientation is controlled by an equation similar to the one for ocular

(domiinance.
Ot = gL (z(.F) * w~) (1 - IA), (1.11)

where ý.,- is a convolution kernel identical in form to Le,,, but potentially with different

parameters. Swindale later expand(ed the mlodel to include a coupling b)etween ocular

do(h)nlinance and ori(entation.

t = i (z(.F) • ,)(1- jn * w',|)" (1 |z), (1.12)

where ( controls the strength of the coup)ling. A reciprocal coupling was not included

in the ocular dominance (dvlnamnics as it was not needed. The form of the coup)ling was

chosen because 1|i * W,, is largest in the center of the ocular dominance stripes. The

other reasonable choice In was not used as n|I. reaches a constant value everywhere

exceptt directly on the domain walls in their simulations. This is consistent with a

model of laver 4.

Swindale's model shows most of the observed features in V1. It produces a pattern

of ocular dominance bands, whose width can be adjusted by changing d,,, and d,,.

Persistence and width fluctuations can be modified also by changing ",,. Although

a detailed study of this effect was not made, Swindale notes that strengthening the



negative portion of , increases persistence and decreases width fluctuations.[39] The

reverse takes place when the positive portion of w, is strengthened. Furthermore,

allowing open boundary conditions naturally leads to bands that meet the edge per-

pendicularly. The domain walls are all very narrow, and the final distribution of Inl

is almost uniform, as is seen in laver 4.

The expansion of the cortex is modeled by changing the spacing between lat-

tice points, resulting in stripes that tend to run parallel to the direction of the

expansion.[39] In reality, the expansion occurs entirely perpendicularly to the di-

rection of the bands, a fact unknown at the time of the simulations.[30] The attempts

to model monocular deprivation by using non-zero value of K, lead to difficulties.

Rather than alternating narrow and wide stripes, islands of the suppressed eye form

in a ficld of the open eve. Narrow and wide stripes are formed by combnlining monoc-

ular deprivation with cortical expansion, but here as before the stripes run in the

wrong direction.

The orientation field develops a pattern of pinwheels of both circulations in equal

numbers. as desired. The patterns show some of the features found in the experimllen-

tal patterns: linear regions, saddle jpoints, and frlactures. Swindale notes, however,

that the fractures are not true discontinuities but just areas of rapid change. As the

simulation continues, the mean of the diistribution of selectivity increases, eventually

reaching a value of 1 everywhere. It is suggested that some outside process stops

development before this takes place.

For significantly large values of the coupling, a in Eq. (1.12), the orientation

singularities tend to occur in the center of ocular dominance bands. To ensure this

effect, the development of the orientation field has to be slow enough (small gzl/,)

that the orientation field does not form completely before ocular dominance bands.

Swindale did not explicitly study if lines of isoorientation crossed domain walls at right

angles, but lie does note that fractures tended to cross domain walls perpendicularly.



1.3.4 Neural Network Models

By far the majority of the models of V1 employ neural networks. NWhile the filter

and field models attempt a macroscopic description, the neural network approach

attemlnpts to mnicroscop)icly mnodel the actual connectivity of neurons.

Neural network models focus on a much shorter time scale t hani macroscopic ones

which only simulate development on a scale of days or weeks. By contrast, micro-

scopic models simulate the response to stimuli occurring on the scale of milliseconds,

roughly 8 orders of magnitude less than the developmental scale. Computational

limitations prevent neural network models from simultaneously simulating both mni-

croscopic response and macroscopic develop)ment. Mlost models choose a relatively

small numtber of representative stimuli. The most ambitious can typically achieve

only a ratio of 101 between response and develop)mental time scales.

In broad terms, the models are relatively simpn)le: a stimulus is p)resented to the

network, to which it resp)onds according to a preexisting set of model synapses. The

synapses are then modified based on the response using sonic sort of Hebbian learning

rule. These steps are rep)eate(d many times to simulate d(evelopment.[51]

_Neural network modelers must do significant work to obtain many lprop)erties that

are assullle( in the more macroscop)ic a)pp)roac:h. For example. in the early 1980's

KIohoelln develop)ed a network that showed self-organizing top)ological maps.[52] This

is needed to establish a retinotop)ic lmap) in \1, a fact impllicitly assumed in every

field model. Much work on neural network models is also required to demonstrate

the existence of orientation or ocular sensitive cells.[53]

A typ)ical neural network model, such as the one develop)ed by Malsburg in the

early 1970's, has two layers of neurons.[54] Each layer is placed on a two dimensional

lattice. One layer acts as inpIut, while the other takes up the processing and output.

The input layer, {A;(t)}, is a retinotopic map of visual space. If a horizontal bar is

the stimulus, then the neurons lying in a horizontal bar are active while the rest are

d(ormant,

4 if cell i is in the stimnulus pattern,(113)

0 otherwise.



Each cell in the input layer is initially randomly connected to a large number of neu-

rons in the processing layer by weighted synap)ses. A strength sik connects input cell

A (t) to processing cell H, (t). The neurons in the processing layer, { Hk(t) }, deter-

mine their activity by summing weighted inputs from the input layer, and neighboring

neurons in the processing layer, as

d M
-Hk(t) = -aAHk(t) + pIkOe (HI(t) - 01) + • sikAi(t). (1.14)

1=1 i=1

where (1k is a decay constant for activity in cell k, 01 is a threshold for activation of

cell 1, and AW is the numbler of inputs connected to each cell. Each processing cell is

colnectedl to A' other p)rocessing cells by weights pIj.. A fixed )point in Eq. (1.14) gives

the response in layer HA.(t) to the stimulus presented in AA.(t). After the resp)onse is

estab)lishled, synap)tic weights connIecting active cells in the input and resp)onse layers

are inclreased(. Then all the weights are normalized. This simulates the development

due to the presentation of a single stimulus. The weights connecting cells within the

processing laver and the threshold values of the pIrocessing cells. do not change.

O)ther neural network models differ in several ways from 'Malsburg's, but retain

the same princiip)les. Some' models vary thile num)ber of weights changed, number of

layers. initial conditions. type of stimuli used, and many other details.[38. 55, 56, 57]

O)ther models don't train directly with patterns, but with sp)atial correlations.[58, 59]

Most neural netw(orks conicen•trate on the development of orientation columns

rather than ocular dominance. They successfully show the development of orieln-

tation specific cells, and the clustering of these cells into regions preferring a single

orientation, sometimes forming a p)inwheel pattern. Unfortunately, the large com-

putational requirements, and the large number of parameters, make it difficult to

compare with the details of the structures observed exp)eriment ally.

A successful neural network model provides a detailed description of the connectiv-

it'y, and the role of indivi(ual neurons. However, analytic calculations are difficult due

to the long range and non-uniformn interactions, while simulations can only explore

space-time domains many orders of magnitude smaller than the actual cortex and



its development. Furthermore, the actual cortex contains hundreds of different types

of cells, feed-back connections fr'om extrastriate areas, and individual neurons much

more complicated than their mathematical models. A neural network model may find

a mechanism that can explain the development, but there is no guarantee that the

mechanism is actually used in the cortex. Still, the types of mechanism found may

be of great importance in designing computational networks, and providing insight

into how the cortex functions.



Chapter 2

Macroscopic Modeling

2.1 General Methodology

Understanding the emergen.ce of macroscopic behavior from the interactions of its

microscopic comp)onents is the challenlg(e of statistical mechanics. In the early part

of this century Landau and Ginztburg devclop)ed a formal macroscopic appIroach to

study phase transitions.[60. 61. 62. 63] Noting that several different p)llase trainsitions

are modeled by similar Taylor exp)ansions of an order parameter, Landau suggested(

that )perhal)s all phase transitions can be described in a similar manner. The method

that grew out of this observation is known as the Landau-Ginzburg aI)pproach.

The Landau-Ginzburg approach deals only with macroscop)ic quantities, avoiding

the complications of the underlying mi('rosco)ic' structuI.ret.It uses i(deas of symme~try,

continuity, stal)ility, and locality to create simple equations that depend on phe-

nomenological p)aramllters. The values of these p)aramnlet(ers are not determined from

the approach, b)ut are fit to experimental results. W"hen successful, this aI)pproach

generates equations that can model a wide range of phenomena by varying a few

)phenomenological parameters.



2.1.1 Length Scales

Most collective phcenomena occur at length scales that are significantly longer than

the size of the constituent parts of the system. The system changes slowly on these

macroscopic length scales. For example, a gold-silicone alloy may separate into regions

of pure gold and pure silicon with typical sizes of a few Inicrons.[64] The pattern of

these regions can be described on a scale of microns, even though the underling

lying lattice has a spacing in angstroms. Similarly, a wide variety of superconductors

exhibit coherence lengths and London penetration depths of a few microns while the

spacing between atoms is much smaller.

An ab initio microscopic approach has to start from the constituent particles

and their interactions, from which the long scale behavior has to emerge. Such an

approach is frequently quite complicated as the emergent properties are separated

y many orI'(ders of magnitulde in time and length scales from the input interactions.

Furthermore. since it starts with the details of a particular systeml, it is unique to

that system. For examp)le. to study a gas with a microscopic a)pp)roach requires

conlsidering a large collection of particles moving about and colliding. \Microscopicly

Imodeling suplerconductors or binary alloys requires simulating the interactions among

a huge number of in(divi(ual atoms. As, these interactions are fundamentally quantum

mechanical. this undertaking must proceed through the manly-p)article wavefunction.

By contrast, the macroscop)ic a)pp)roach starts with coarse graining the system to

a length scale interminediate betweeni the macroscopic scale of the collective )belhavior

and the short scale on which its components interact. The system is then described

by a few collective( fields that fluctuate on the long length scale. A binary allow can l)be

characterized by the density difference, X (I) = PA ('.)- PB (.') where p4 (7") and PB (:i)

are the density of components A and B, respectively. The macroscopic density, XA (Z)

is coarse grained to remove all fluctuations with frequencies higher than A. Since for

a large range of A the macroscopic density remains unchanged, the subscript A is

frequently (lrol)ppe(d. This macroscop)ic density is a smooth, analytic function, unlike

the microscopic density function which indicates if a particle is present exactly at



position .,

Xrriic = x (6(I?- yA)- 63(1_ -1?)) (2.1)
i=1

where ({x. } and {.r } are the positions of the A and B particles, respectively. The

macroscopic density can be obtained from the microscopic one by averaging over

length scales 1/A.

Macroscopicly, a superconductor can be described by the wave function of the

Cooper Pairs t!,(i). This density of the superconducting component is given by

n.(1) = II ,()l12. It is necessary to use the wave function rather than n, (1) to accu-

rately reflect the quantumn nature of the suplerconductivity. This order parameter is

coarse grained in a manner similar to the above density.

Sometimes it is possible to derive equations which describe how the macroscopic

system develops directly from the microscopic approach. For example. macroscopic

superconducting equations have been determined from a miciroscopic approach by

Gor'kov.[65]. but it is a long and laborious journey. Often it is desirable to take a

phenomno ological approach and determline the equations without appealing to the

underlying mnicroscopics. In this case symmentries can guide the detCerminatio)n of the

equations. which have a lnumber of p)henomlenological parameters that must bce fitted

to experiment. When the macroscop)ic approach is successful, the number of paramm-

eters is small. Changing the microscopic conditions, e.g. the type of particles in our

alloy or suplerconductor. should only require changing the values of the p)henlomenolohg-

ical parammeters. Since the equations are determined b)y symmetry, seemingly different

systems that have the same symmnetries are governed by similar equations.

2.1.2 Analytic Macroscopic Equations

We have learned to ex)pect the coarse grained order p)aramneters and evolution equa-

tions to be smooth, analytic functions. Non-analytic behaviors and sudden changes

are removed by the averaging procedure. The governing equations are then expressed

by the first few terms of a power series. and a finite number of derivations. A wide

variety of p)hysical systems are successfully described this way, from superfluids and



superconlductors to ferroilagncts and binary alloys. For example, in the case of the

binary alloy, the mnicroscopic density is a highly non-analytic function, while the

macroscopic density is smooth and well behaved. The smoothness of the macroscopic

system usefully limits the types of functions that need to be considered in governing

equations.

Some existing macroscopic models of the visual cortex use interactions which

are not analytic and thus not suited for the macroscopic approach. For example,

Swindale's model couples the orientation at one point to the ocular dominance over

a wide area, see Eq. (1.12). Biologically, it inay be plausible for the orientation at

one point to interact with the ocular dominance in a comlplicated manner through

a kernel function, and such coup)ling may give desired results. However, this type

of interaction should not be needed in a mnacroscol)ic model, where coarse graining

should result in snmooth. analytic interactions. While it. may give desirable results, it

adds lmany paralmeters to the model.

2.1.3 Cost Functions

The p)rinciipile of energy conservation is at the foundation of our understandiig of

lphysical systems. In the microscopic domain, the energy of a system is calculated

as a Hanmilton.ia.n which sums the potential and kinetic energies of the individual

conmstituents (atolms. or electrons and nuclei. depending on the level of detail). At

the macroscopic level, the appropriate quantity is the internal energy introduced in

the framllework of thermodynamics. At this level of abstraction the sum of incoherent

kinetic energies is repIlaced by the 1)hienionneniological quantity heat.

Another aspect of the macroscopic (thermodynamic) perspective is the role played

by the environment. While in an isolated atom, composed of electrons and a nucleus,

the energy is strictly conserved, for a spinning top the energy is dissipated through

interactions with the environment. Such dissipation leads to states of lower energy,

until eventually the top) reaches an equilibrium states with no spin, setting oni its side.

The lowest energy state does not characterize the equilibrium of a system couphled

to the environmnent in all cases. For exanplpe, a system held at a constant temperature



does not seek a minimum energy, which would require losing all its thermnal energy.

Instead, it seeks a minimnum of the Helmholtz free energy. For other systemns energy

is generalized to enthalpy or Gibbs free energy, but in all cases we discover that the

system evolves so as to ninimize some generalized energy. To make contact with

concepts used in neural models, we call this generalized energy a cost function.[51]

In some cases the cost function of a system can be calculated from a microscopic

approach. For the binary alloy with AN particles the interaction energy is given by,

E= ' + A V4 4 P(' - :,F) + x - (2.2)
ij <ij> <ij>

wheire 1: 1n(.), 5l.(J), and I"B(:.) are the potentials between )articles. This energy

can be simplified by placing the particles on a lattice of fixed sites and looking only

at interactions between adjacent sites. Such sinmplifications. already throw out muc1 h

microscopic detail such as the interaction between electrons. and the motions of the

nuclei.

In the macroscopic approach, a phenomenological energy is constructed as a func-

tion of the order parallleter. based on a few general principles: The function should

be tran.slationally invaria.nrt. so that mIoving thsl centire system a uniform amount has

no effect. To ensure translational invariance. the cost function should not depend

explicitly on .F only implicitly through the order p'aramneter. X(.). Due to the aver-

aging process. the cost function should bc an arnalytic function of X(i). as discussed

in Sec. (2.1.2), represented as a power series in X(.') and its derivatives. For most

physical systems the cost function is local, as most interactions in nature occur pri-

marily between nearby particles. This implies that the cost function should rely on

only a few derivatives of X(Z). Many systems are also rotationally symmetric, so

that rotating the entire system does not change its cost function. In this case terms

such as b VX(Q') are prohibited. Systems subject to environmental influences such

as an external magnetic field. may not by rotational symmetric. Subject to these



restrictions, the cost function nmust have the form.

F({ X(.(Y) .cJ, X(.7) + ,,,X(.) + (3X(.X) 3 + ...
+ b• V2X(:) + b,(VX(:.)) 2 + ... ] . (2.3)

The terms in the cost function are further limited by the symmetry of the system. If

the cost of the binary alloy is unchanged under globally exchanging A and B atoms,

i.e. AX(7) -+ -X(.'), then nlo odd terms in X(.f) can be )resent leaving only,

F( {X((.)}) J 0r X. [,() + (14X(,)" +..

+ i.(VX(.))V + 1 ]. (2.4)

The next allowed derivative ternis are high order in X(.Y) or V such as (V'2X(.7))2 or

\ (.)2 (VX (.7)). The term X (.)V'X (.Y) is cquivalent to (VX (,))2 under integration

('x(ce')t for surface terIms. If the order p)araileter is comp)lex number or a ve(tor. the

cost function is a scries in _\(.V)- andl the lowest order d(erivative term is VX(.)-2.

2.2 Equilibrium

A systemt is inll quilibriuni when its 'macrooscopic propcrttics do not change with timle.

The systemn constantly fluctuates on the microscop)ic scale as its individual comi)o-

nents move about and interact. but in equilibriuni these microscol)ic chanlges do not

effect the macroscopic description.

Equilibrium states are particularly interesting because they give stable long termn

behavior. Once an isolated( systell enters an equilibrium state, by definition, it re-

mains there. No physical system ever achieves this ideal equilibrium, as no systeml is

truly isolated from the rest of the universe. In practice, equilibriumn means that the

system is stable on some long tiime scale approp)riate to a set of observations.

A system in equilibriun is characterize(d by a few macroscopic variables. A gas,

for example), may be characte(rized( by its temperature, volumen, and pressure. A



binary allow can be described by its temperature and the difference between the

constitueints' densities, X, while a super conductor is described by the temperature,

applied magnetic field, and the superconducting order paraineter.

2.2.1 Phase Transitions

Small changes in some of the macroscopic variables of a system can induce great

changes in others. For example, cooling a gas through its boiling point causes changes

in volume and pressure as the vapor condenses. This point of qualitative macroscopic

change is called a phase transition. Each of possible homogeneous behaviors, e.g. the

gas and the liquid, are called phases.

The study of phase transitions is a particularly challenging problem in statisti-

cal mechanics as qualitative changes takes place in the macroscop)ic behavior of the

system, while the underlying microscopic Hamiltonian has changed very little. De-

scribing exactly how the collective behavior changes requires insight over a large span

of length an time scales.

Phase transition are generally classified into first or second order. First order

transitions are marked by tw) o phase coexistence, and the presence of latent heats. In

a first order transition two phases, like gas and liquid, both have the same free energy

and coexist. The first derivative of the free energy has a discontinuity resulting in a

latent heat. The term "second order" was coined for transitions with a discontinuity

in the second derivative of the free energy, b)ut now the term is generally applied to all

transitions that are not first order. A more comp)lete discussion of p)hase transitions

can be found in most statistical mechanics texts.[66, 64]

In the next two sections, we look at macroscopic models of phase transitions in

binary alloys and superconductors in more detail. These two system are of particular

interest because they have symmetries similar to ocular dominance and orientation se-

lectivity. Binary alloys are a mixture of two metals, as ocular dominance patterns are

a mix between two eyes. A p)articular region can either be throughly mixed. binocu-

lar, or exhibit preference for one component, monocular. Slightly less obviously, both

sup)erconductors and orientation patterns have an order parameter with a continuous



svmmnetrv. Orientation patterns have a preferred angle varying continuously, while

superconductors have a quantumi mechanical phase that also varies continuously.

2.2.2 Binary Alloys

A binary alloy is a mixture of two metals, for examp)le 3-brass is a mixture of zinc and

copper on a body centered cubic lattice. At extremely low temperatures, a completely

ordered state exists with a cubic lattice of zinc and an offset cubic lattice of copper

such that a copper atom appears at the center of each zinc unit cell. At higher

tempieratures it beconmes p)ossible for the zinc and copper atoms to exchange places.

At a temperature of 742 K a phase transition takes place and the copper and zinc

become throughly mixed. Below that temperature X-ray diffraction reveals two sets

of atomic planes. one for copper and one for zinc, while above that teml)perature only

one set of planes for the copper-zin mixture is dcetected.[66]

While in 3-brass, the microscopic interactions favor zinc and copper atoms to )be

next to each other, in other alloys and binary solutions. the interactions favor like

atoms to b)e adjacent. The ordcereld phase segregates into A and B rich domailns. Due

to the similarity to ocular dominance. we shall develop a model for the latter lphase

sep'aration f'rom the macroscopic perspective. To simplify the calculations, we choose

to work with two )metals A and B whi(ch are svmmetric under illnterchan(gingl all A's

and all B's. The alloy can then )e described by an order )paralleter X - p4 - pe.

Above the transition tepll)erature the two metals are throughly mixed, so that X is

zero. Below the transition tempterature, we expect both nearly pure A and nearly

pure B to be present, so X has two degenerate values, one positive and olone negative.

W\e can construct a simple macroscopic free energy function, in terms of X,

F(X) -= o + X + - x +..., (2.3)
9 4

where s o . (i., and (v are arbl)itrary constants that may (depl)end on teminl)erature. As

a first step we have assumed that X is uniform across the system, which is called a

nmean field alpplroxilmation. Odd plower's are X are not presenlt (idue to our assumned



symmnetry betwcen A and B. \We are interested in studying the vicinity of the phase

transition where X is small, so an expansion in X, keeping only the first few non-zero

ternis, is justified.

To clarify the extremna of Eq. (2.5) (corresponding to equilibrium points), we

examine the first and second derivatives of F with respect to X,

F(X) = X(ao + a4X2),OX
02F (X)

2 = a- + 3a4X 2. (2.6)

It is clear that X - 0 is a stable minimum if ao. > 0 and an unstable solution if

a) < 0. To model the transition, the constant i2. must switch signs at T = 7T, the

transition tenipterature: hence oa xt = (T - T(,)/T(,. with anl unknown constant of

p)rolpo1rtionality.

Above T.. X = 0 is the only stable solution. Below the critical temperature there

are two stable solutions. X('(,, = -f/ . The coefficient (a1 miust be positive to give

finite solutions. Ini a region between -X,,,,/v/3 and X,,q/v/"-, the function F(X) is not

(onvex so that such densiti(es are not locally stable. Instead of a uniform odensity,. the

alloy divides into regions which are A rich. and regions that are B rich, to minimize the

free energfy. The global denisity is maintained. by adjusting the sizes of the two typ)es

of regions. The points where decoimposition sets in, ±X,U(,/v3 are called spinodal

points.

The regions that are A rich or B rich are called domains. In each domain, the

alloy locally takes on one of the equilibrium ratios. The boundaries between domains,

domain walls, are defects where the order paranleter cannot take on an equilibrium

value. Thus, these defects have a cost penalty. The global lowest energy state consists

of a single large A-rich domain and a single large B-rich domain, thus minimizing the

area of the costly domain walls.

Although the free eniergy changes smoothly across the phase transition, the heat



capacity experiences a finite jump,

C 0 (t > 0)ic {o (t>o) (2.7)
S3kT, (t< ).
2a4

This is a signature of a second order phase transition.

The macroscopic allpproach can thus model the p)hase transition in binary alloys

without resorting to studying the solid state properties of the metals themselves. A

mean field approach assuming a uniform X, describes the nature of a phase transition

from a disordered state to an ordered state where regions rich in one( of the metals

arise. The regions are separated by domain wall defects that incur a cost lpenalty

for being away from the equilibrium values of the order p)arameter. These regions

form pIatterns. which cannot )be obtained from this mean field a)pp)roach, but may be

modeled by extending it to non-uniform X(.).

2.2.3 Superconductors

At low t(em)peratures many me(tals show no resistance to the flow of current.: they )e-

come sull)ercolnductors. The change from normal to superconductor takes p)lace over

a narrow tem)perature range and constitutes a p)hase transition. In the superconduct-

ing state a finite fraction of the electrons (Cooper pairs) enter into a su)perconducting

co)mponent that flows without resistance. The superconductor is also a )perfoect dia-

magnet., expl)lling any magnetic field from its interior. Sufficiently strong magnetic

fields eventually destroys supI)erconductivity. In type I sup)erconductors this hapipens

at a critical field H- 1- (T). By contrast, in typ)e II superconductors, magnetic field lines

penetrate the superconductor in a field interval between Hel (T) and H. 2 (T) to form

the so called mixed vortex state. A comp)lete discussion of superconductivity can be

found in a variety of texts.[67. 68]

In 1950 Ginzburg and Landau began the development of a macroscopic model for

sul)rerconductors.[62, 63] Their work is one( of the foundations of the Landau-Ginzburg

app))roach, which has now bleen generalized to to describe dynamic as well as static sys-



telns. Their original p)ap)er, however, describes the behavior of a static suplerconductor

in a magnetic field. They choose as their order parameter an effective wave function

TI () whose square magnitude gives the density of the superconductillg comnpolnent,

nj(y) = I (-)'2. Despite the use of a wave function, this is a macroscopic and not

quantum mechanical approach. The wave function is necessary to accurately model

the syminmetry of the superconducting comIponent that has a colmplex phase. \While

the complex phase is not observable, it imust be included for a correct description.

WVlhen developing their macroscopic model, Landau and Ginzburg first consider a

local free energy arising from a uniform (nmean field) 4I,

F(T. T) = ao(T) +- a.(T) I" + +  P, (2.8)
2

where (o0(T), (1-2(T). and (tl(T) are arbitrary parameters which may be temp)erature

depenldent. Syvmmetry requires that all ternms depend on 4T' and analvticity around

I - 0 prohibits odd terms. The coefficient 0o(T) can be immediately identified with

the normal. non-supercondl(ucting, free energy, Fx. The equilibrium value of 4' is

given as a minimum of the free energy. Since 4i 2 = 0 for T > T,. and 4Ij2 > 0 for

T < T,:. (I~(T:) = 0, 0 i(T.) > 0. and (i.2(T < T.) < 0.

For supercondluctors. the coefficfients (. 2 (T) and a I(T) can be expressed in terms

of two macroscopic properties. the critical field. H,(T). and the London penetrationll

depth. A(T). which are more easily observable experimentally. The equilibrium value

of ,1,12 for T < T, is.
2 2(T)

eq 2 T) (2.9)on (T)
Using the equilibrium value of the TI, the free energy differenlce betweeN the super-

conducting and the normal phases can be found. This free energy difference is equal

to the critical field energy required to sup)press superconductivity, i.e.,

0I(T) HC(T )F(, T) - -FN - (2.10)
2o 4(T) 8w



From London theory. A2(T) Ox 1/n.,(T), giving a secondt relation,

A2 () I (T) a2 (T)( = = - (2.11)(a (T) and4 (T)im

Together, Eqs. (2.10) and (2.11) determine ( 2 (T) and a, (T) in terms of experimentally

accessible quantities, as

a2 (T) = H (T) A2 (T)
a2 T) 4wrA 2 (0)

H( (T) A (T)a (T) = (0) (2.12)

Examining only the local terms in the frlee energy, Eq. (2.8), gives a second order

phase transition much like we found in binary alloys. However, while below a critical

tenlmperatureI. I IIJ has a finite eq(luilibrium value, unlike a binary alloy it does not form

domains of two p0ossible values. Since the phase of I can change continuously there

are ino sharp) d(omain walls in the superconductor.

The defects in a slluperconductor have a different character: Since the p)hase of "If

must be continuous. it changes by a multille of 27 when a closed( loop is traversed. If

the phase changes by 0. the loop) (an lbe continuously defornied to a p)oint. However,

if the loop) contains a non-zero multiple of 2T it also contains a top)ological defect

called a vortex and cannot be shrunk to a p)oint. In a two dimensional system the

vortex is simply a poinlt of singularity, while in a three dimensional syste(m it forIms

lines. The ends of each vortex line must either terminate on an edge, or form a closed

vortex loop). Both typ)es of vortex lines have bteen, observed in superconductors.

At the center of each vortex, there is no superconductivity and 'ITI is zero. Around

a vortex all possible )phases circulate in either clockwise or counterclockwise direction.

Since at the vortex the order p)arameter does not have its equilibrium value it has

an energy penalty. The free energy would indeed be reduced if the equilibrium value

of ITJ could be reached at all points. bullt this is prevented by the requirement that

the p)hase as well as the magnitude of IF be contilnuous. The lowest possible free

energy state does not contain any vortices, but vortices can arise as defects either



when superconductivity sets in or as the result of the application of a magnetic field.

Rather than result in the complete loss of super conductivity, in type II material,

a magnetic field is confined to vortices, while the bulk of the material remains a

superconductor.

Landau and Ginzburg also explored the effects of a non-uniform ((Z£). They

include a term in the free energy proportional to the IVYI(1)2 which looks like a

kinetic energy in quantum mechanics. To account for the interaction between the

current and the magnetic field and to ensure gauge-invariance, a so called covariant

derivative (-ihVI(I.) - .(1) ()) replaces the normal derivative in the presence of

the electromagnetic gauge potential A.(.). The total free energy density includes the

local termis in Eq. (2.8), the gradient terms, and the energy of the field itself, yielding

F(P, T) = uo(T) + a.(T) X(.)I" + 2() +

1 c H2(.7")1--- ihVkI(.F) - -( A) I(.7) 2 -+ (2.13)
SC 872.13)

where c and -n are phenomenological paranmeters associated with the effective charge

and mass of the electron pairs in the superconductor.

Varying Eq. (2.13) with respect to ~'(.F) gives a differential equation for '(7) and

[,(T) + a, (T) I () () + ,- i - -A ) (.) = 0. (2.14)

Varying the free energy with respect to .Ai() using the London gauge, V A(Y) = 0.

gives a second differential equation,

27-rieh 47tre 2

V2 2(.)= 2 [-I'()VI(.) - 7? (.7)V'()] + ( ). (2.15)

Together these two non-linear partial differential equations determine T (Y) and A(XI).

Although quite complictaed, the equations generated for 'I (.7) and .A(Y) can be

solved to give much of the observed behavior of superconductors. Abrikosov and



others have used themn to study the vortex defects discussed earlier.[69] "Without

dealing with the specific nature of super conductivity, Landau and Ginzburg are

able to determine constitutive equations for the order parameter. These equations

have been inde)pendently derived from inicroscopic theory by Gor'kov, adding to the

credibility of this approach.[65]

The study of superconductors is intimately related to the study of superfluids.

Both express very similar behavior and can be described using the same approach. In

a superfluid, a zero viscosity component has an order parameter with unobservable

phase angle. Since superfluids have the same symmetries as superconductors, they

are described by1 very similar equations. However, since the superfluid component has

no charge, the phenomenology implies no coupling to the electromagnetic field needs

to )be included.

2.3 Dynamics

The cost function determine('s rnany of the equilibriumn properties of a system. It

determines the tphase for a givecn set of macroscopic conditions as well as the nature

of the transitions between different phases. It also characterizes the static response

functions, as well as some(' correlations of equilibrium fluctuations. The cost function,

however. does not d(etermli(ne how the syste' r(ach's equilil)rium and its dynamnic

p)ro)perties. The dynamiic properties include relaxation times, responses to time lce-

lpendeint )perturb)ations, and transi)ort coefficieInts.

The dyvnamics of a svstein may belong to one of many classes, depending not

onmly on its cost function,. but also on other conditions. One broad way to classify

dynamnics is into dissipative and non-dissipative. Dissipative systenms seek to lower

their cost and relax to a lowest cost or equilibrium configuration. Non-dissipative

svstecms conserve the cost, possibly changing between configurations of equal cost.

\We discuss two )ossible dissipative dynamics in the following sections. drawing upon

work by Hohenberg and Halperin.[70]



2.3.1 Systems with No Conservation Laws

The simplest type of dissiIpative dynamics is one that is purely relaxational. The

overall cost is a functional of the order parameter and assigns an real number to every

possible syst.en configuration. For the moment, let us considered the cost function

of superconductors, F(I), given in Eq. (2.13). This function creates a "landscape"

in the high dimensional phase space of possible {9( ()}. A dissipative system seeks

to lower its cost by moving to lower cost configurations. It can do this just as water

flowing down a hill by going down the path of steepest gradient,

o() OF('J)
= - p F(i7) (2.16)

where the "Imobility". p., describes how rapidly the system moves toward equilibrium.

Eq. (2.16) describes the time evolution of 'I (I), and its corresponding equation of

motion. The system continues to evolve according to its equation of motion until it

reaches a mininmm.i

A system following Eq. (2.16) evolves completely determninistically, and comes to

rest at. the first local minimurn. m where OF/OT9 = 0. There may be other global minima

with lower cost. b)ut the system is prevented from Ireaching them b)ecause there is no

way to climb out of a metastable minimum. Furthermore, most p)hysical systems at.

finite temp)eratures experience natural equilibrium fluctuations. It is then natural to

include the effect of the enviroimnent (and also the degrees of freedom remnoved in the

coarse graining step) by adding a noise term such that,

0I,(.) &F(,I)
= - p  + 0(P, t). (2.17)

The noise, 0(., t), is usually taken from a Gaussian distribution of zero mean, with

no correlations in space and time. To achieve the proper Boltzmann weights for the

equilibrium states, the mobility and the variance of the noise are related by the the



Einstein fluctuation-dissipation condition,

O(r(, t)O(I ', t')) = 2D(.r - x')6(t - t'), (2.18)

with D = PA'BT. The randonl fluctuations introduced by 0 allow the system to

move over a cost barrier, and hence to evolve toward the global minimum of the

cost function. Of course, once they reach the global minimum, random fluctuations

out of this minimum are also possible. A process of annealing, where the effective

temperature is slowly reduced, is sometimes used to find the global miinimum of a

comp)licated (cost function.

2.3.2 Systems with a Conserved Order Parameter

Some systems have an or(der paranieter that nmust )be conserved. In superconductors

the order parameterI. T (7). does not need to be conserved as the cntire system niay

become sull)erconducting or normnal. However, the or(der p)arameter for our binary

alloy. X(.7). must be conserved as the relative Illlnllber of A and B atoins does not

change in the mixing rl)Io(('ss.

The dynamnics introduced( in the pIrevious section do not satisfy this conserva-

tion constraiint. However, othe(r simll)le dynamics call devised that incorp)orate this

constraint. In p)articlular. in the so called B dymnamincs,

OX(.7) .,DF(X)
= -AV + 0(.T, t), (2.19)

where A is a transp)ort coefficient. [70] If this equation of motion is integrated over all

space, the Laplacian ensures that the net change in f X(7) is zero except for surface

effects. This )Ireserves the global ratio of the atoms in the mixture while allowing

it to vary locally. The varianice of the noise imist also be corrected according to

(9(.r, t)(x'., t')) - 2XAkjT(. -. ?').

It is implortallt to note that the dynamiics are not uniquely dletermined by the

cost function. An identical cost function could be used in both types of dynamics



discussed above, giving very different results. In fact the cost functions we developed

for binary alloys and superconductors are quite similar but niust experience different

dynarnics because of differeint conservation constraints.

2.3.3 Discrete Systems

Although the macroscopic approach generally gives simple cost functions and equa-

tions of motion, they are frequently still too complicated to be solved analytically.

To solve them numerically., both time and space need to be made discrete. Space is

broken into a lattice on the scale of the coarse graining, which is intermediate between

the lengths of the microscopic units, and the macroscopic fluctuations. The discrete

cost function has derivatives replaced by coupling between sites. A continuous cost

function for a sp)atially varying order p)arameter. X(7), niust be integrated over all

space to give a total cost.

F(X)= J/d(3x., [,l-(.1 ) + +3 ()2 +.+ .VX() +.] (2.20)

The ilitegratioln is repIlaced by sulinmation oveTr all the sites on a discrete mnodel.

F(X) - (=,, X, + X ,. / + ozX; + ) + (bX iX; + .+ +) ( (2.21)

where' X is the value of X(.1; ) for each site .2i. Time is also divided into discrete units

on a scale between tlhei time scale of the microscopic processes and the macroscopic

changes. A discrete equation of motion results, such as

AX(.1) OF(X)
At -OX (.<) (2.22)

Landau-Ginzburg macroscopic modeling techniques have been applied to a wide

variety of systems, including binary alloys and superconductors, but also ferromnag-

nets. sup)erfluids, and dii)olar liquids. This approach avoids the microscopic details

of the svstenis, and is instead based on synnmmetries and conservation laws. Both



static and dynanmic properties can be described in terms of few phenomenological

parameters.



Chapter 3

Results of Modeling

We develop a macroscopic model for ocular dominance and orientation based on the

Landau-Ginzburg approach. We do not attempt to simulate the intricate interactions

between neurons but instead develop a phenomenological picture of the observed

patterns. Our model describes an evolving field, and in this respect is similar to

that of Swindale.[39, 49, 50] We motivate our equations with ideas of symmetry and

analyticity developed while studying many physical systems. This approach frees us

from becoming entangled in the complexities of modeling individual neurons, which

requires dealing with both their great variety and number. It also allows us to easily

apply insight gained from many other systems, which although they may have vastly

different constituent parts, have similar symmetries.

In Sec. (3.1) we develop a model for ocular dominance, while in Sec. (3.2) we con-

sider orientation preference and selectivity. Finally, in Sec. (3.3) we explore coupling

the two models.

3.1 Ocular Dominance

Our model for ocular dominance is motivated by the Landau-Ginzburg approach

discussed in Chap. (2). We wish to produce patterns of ocular dominance similar

to those observed experimentally, as described in detail in Sec. (1.2.2), whose key

features are reviewed again here. Ocular dominance bands show a pattern of wan-



dering and branching, with roughly 0.04 branches per (band)2 . The width of the

bands fluctuates around 0.4 to 0.5 mm. The bands tend to intersect the boundary

of the primary visual cortex perpendicularly. Away from the boundary the bands

tend to run toward the calcarine fissure, at least in the top operculum. The domain

walls between the bands are sharp in layer 4 and gradual in the other layers. During

post-natal development, the cortex grows by roughly 16%, entirely perpendicularly

to the bands. Binocular deprivation has little or no effect on development, while

monocular deprivation during a critical period of early development causes the bands

corresponding to the deprived eye to shrink while the other bands grow. After the

critical period monocular deprivation has little effect.

3.1.1 Local Variables and Cost Function

Ocular dominance can be completely specified by a real field m(1), with eye preference

at a point 7 given by the sign of rn (Y). Positive values represent one eye while negative

values represent the other. The strength of the preference is given by Im(7)I. From

the outset we assume a discrete lattice and label m('i) with mr for each lattice point

Xi.

We shall initially introduce a local cost function F(rmi) that describes how closely

the variables at site i, satisfies various required properties. The microscopic form of

this cost function is presumably very complex, and presently not well understood. It

may reflect a need to minimize the length of ":cortical wiring", the necessity of having

information from both eyes in close proximity to determine binocular disparity, or a

variety of developmental constraints.[37]

Since we are approaching development from a macroscopic, phenomenological

view, we need not worry about these details. Our cost function depends smoothly on

mi, limited by symmetry, with a few parameters to be fit to observed patterns. In

a normal healthy subject, both eyes should be treated similarly, so the cortical cost

must be invariant under m -+ -m. This constraint eliminates all odd terms of m in



the cost function leaving,

F(mi) = a2mi 4m + a +., (3.1)

where a2, a4, etc. are, as of yet, arbitrary constants.

Experience with many other systems (as well as simplicity) suggests that the cost

function should depend on only the first few terms in the expansion. We wish the cost

function to have its minimum for finite, non-zero values of Imil, as monocular regions

(corresponding to a finite |mi|) are the prevalent feature. A minimum at mi = 0

would lead to binocular regions. Choosing a2 to be negative ensures that mi = 0 is

not a minimum, while setting a4 > 0 and all higher order coefficients zero, results in

minimum at a finite value of mi. It is, of course, possible to meet the requirement

for a finite, non-zero minimum in the cost function by many other combinations of

higher order terms, but the above simplest choice is generically sufficient.

With only local interactions, each site is completely independent. A steepest

descent minimization of the cost function gives an equation for each mi,

Om; OF(m6)~m = = -2a 2mi - 4a4m3,  (3.2)
at Omi

where T reflects the rate at which the system relaxes. Most of our discussion will be

in terms of the equations of motion, although we will occasionally refer directly to a

cost function when it is useful.

The coefficients, a2 and a4 , can be absorbed into m and 7 by appropriately chang-

ing units,
S= mi - m" 3  

(3.3)

In this form, an unstable fixed point at mi = 0 and stable fixed points at mi = ±1

become obvious. In these unit, r is clearly a relaxation time. These local terms

result in ocular dominance, but without any coupling between sites, we cannot hope

to generate the desired patterns.



3.1.2 Short-range Coupling

The simplest type of coupling is a nearest neighbor interaction between adjacent sites,

= - m + - (3.4)
j E n.n.

where kij is the interaction matrix which determines the strength of the coupling

between any two adjacent sites i and j. To a first approximation the processes

mediating the development of the cortex should be same across its surface and lack

any preferred direction, so the interaction should be both translationally invariant

and isotropic.

Both the 16% growth of the cortex, and the trends in ocular dominance stripes

observed by LeVay, suggest that the actual interaction may not be fully translationally

invariant and isotropic. The growth is believed to occur entirely perpendicularly to

the stripes, possibly causing an anisotropy. LeVay has found that the stripes on

the operculum tend to run toward the calcarine fissure, while stripes on the roof of

the calcarine fissure run in a perpendicular direction. This suggests an anisotropic

interaction that varies with location. Since these effects are small and their origin is

not well understood, we choose to ignore them in our model.

The coupling is then uniform between all nearest neighbors,

t = m - mi + k, (mn - mi). (3.5)
j E n.n.

The coupling between adjacent sites, k., must be positive to ensure the continuity

of domains, i.e. produce regions with a uniform value of mi. A negative k., causes

adjacent sites to alternate in sign, creating features in the pattern alternating on the

same scale as the lattice itself. With positive k,, the absolute minimum of the cost

function, the ground state, is a uniform pattern with all mi = 1 or all mi = -1.

Thus, there are two degenerate ground states.



Implementation

To study the consequences of these equations, we simulate them numerically using

discrete time steps,

Ami = At mi - m + k ,  (mj- m) , (3.6)
j E n.n.

where Ami is the discrete change in mi, and At is the time step. The time constant,

7, has been set to one for convenience.

The model is studied on a discrete hexagonal lattice, so that each site has 6 nearest

neighbors, and 6n nth neighbor sites. The use of a hexagonal lattice avoids the highly

anisotropic effects of the diagonals in the square lattice. Sec. (3.1.3) discusses the

artifacts of the discrete lattice.

The initial values of mi were chosen randomly and independently from a distribu-

tion centered at 0. We typically used a uniform distribution that allowed mi to be a

few percent of the saturation value. This distribution mimics the initial fluctuations

in ocular dominance. Since layer IV is completely enervated by both eyes in the

prenatal monkey, it is reasonable to assume that the initial ocular dominance is near

zero. The exact distribution is unknown, but has little impact on the simulations.

After a few time constants, a pattern of ocular dominance becomes apparent. The

values of Irnil rise rapidly during this time, approaching a value of 1. This period

of growth simulates the critical period observed in the monkey. The length of the

critical period depends on the initial conditions used. During the initially stages

of growth, m3 is small and the equation is linear. The characteristic time scales are

then obtained by diagonalizing the interaction matrix. The eigenmode with a uniform

mi = mn evolves according to a simple equation,

7 = m. (3.7)

The number of time constants required for mT to reach the saturation value of ±1 is



given by,

-= - In Imol, (3.8)
T

where ImoI is the typical initial magnitude. Once the value of |m| reaches a significant

fraction of 1, the linear approximation breaks down, but the value of ks and the initial

conditions typically used give a saturations time on the order of a few time constants

as observed in the simulation.

After this initial period of rapid development, the pattern undergoes smaller

changes along the borders between domains. Although changes continue for many

time constants, the pattern is basically frozen. In addition to its frozen appearance,

the pattern is no longer sensitive to small perturbations. If a small uniform field is

added initially, it has a dramatical effect on the pattern development, while the same

field added after this critical period has little effect, as discussed in Sec. (3.1.3).

Domain Walls as Defects

Iterating Eq. (3.6) results in a pattern of splotchy domains of mi = +1 separated

by domain walls, as shown in Fig. (3-1). These domain walls are the natural defects

in a system with two possible stable states. Regions evolve toward either mi = 1

or rni = -1 depending on which was favored by local initial conditions. Since the

interactions are of finite range, spatially separated regions evolve toward different

fixed points. The boundaries between these regions form domain walls where mi

changes rapidly.

With only nearest neighbor interactions, mi changes abruptly at the domain walls.

Almost all sites have mrni M 1, which corresponds to completely monocular cells.

These domain walls are very similar to the band walls seen in layer 4 of the visual

cortex. Unfortunately, nearest neighbor interactions do not generate a regular pattern

of bands.

Since domain walls are the natural defects in systems with two degenerate lowest

cost states, they are seen in a wide range of systems. Other examples from statistical

mechanics the Ising model of uniaxial ferromagnets and the q-state Potts model. A



Figure 3-1: Simulated ocular dominance patterns using only nearest neighbor inter-
actions. Dark areas prefer one eye, while light areas prefer the other. Very little
grey is apparent indicating few binocular cells. Although domains appear, they do
not form stripes with a regular width. As a result of an artifact of the discritization
this pattern is metastable and does not coarsen to give a single uniform domain. In
this simulation on a 200 x 200 lattice, k8 = 0.125, and At = 0.05. The simulation is
interrupted when all Am/At becomes less then 10-10.
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system as simple as a glass of ice water also has domain walls between the solid and

liquid states of water, which at 0O C are degenerate in cost.

Coarsening

The size of the domains that develop during the critical period is controlled by ks.

During this period, Im i rapidly increases to a value of 1 as domains form. Increasing

the value of k, makes sites more strongly influenced by their neighbors and results in

larger domains. After this critical period the pattern continues to coarsen on a much

longer time scale. Small islands and sharp corners disappear as the system moves

toward a uniform state.

Note that the minimum of the cost function is a state in which all mi are aligned.

An artifact of our discritization causes the pattern to freeze in a metastable state at

a higher cost, as shown in Fig. (3-1). In a continuous system islands always shrink,

as the boundary can be smoothly deformed inward, slowly lowering the cost of the

pattern. In our discrete system on a lattice, small islands still shrink and disap-

pear, but islands above some critical size, controlled by ks, remain. (By increasing

k, sufficiently, this critical size can be made of the same order as the system size,

and the finite system coarsens to a single uniform state.) To remove these islands

requires temporarily passing through a state of higher cost, which is not allowed by

our equations of motion.

It is tempting to use this effect to stabilize patterns of ocular dominance, but this

is not in keeping with our macroscopic approach. It relies on a microscopic feature,

the discrete nature of the lattice, to control the macroscopic properties. Even though

the actual system does in fact have discrete neurons, our coarse grained variable in

fact represent many neurons. If we identify each lattice point with a single neuron,

we are committed to having them behave and interact like real neurons, performing

complicated processing and coupling through tree like arbors of axons and dendrites.

We can remove the metastability by adding noise (effective temperature) that

allows the system to pass through patterns of higher cost while evolving toward the

lowest state. However, this adds additional complications to the model and may be



difficult to motivate biologically.

3.1.3 Long-range Coupling

Many systems in both physics and biology exhibit patterns of stripes. Magnets with

dipole interactions, zebras, bird feathers, many species of fish, and even fingerprints

all show patterns of stripes. Following the early work by Turing, reaction-diffusion

models have been frequently used to model such systems.[47]

The common mechanism (at least in the better understood cases) is a competition

between short range attraction and long range repulsion. In the context of the visual

cortex this idea was first proposed by Hubel and Wiesel in 1977.[10] Both the short

range and the long range interactions cannot be simultaneously satisfied. The best

compromise depends both on the relative range and strengths of the interaction and

the initial conditions. This randomness in the initial conditions provides the seed for

the irregular pattern of branching and bending stripes.

We considered several different interaction forms for the long range coupling. In

the simplest interaction form, we add an additional isotropic Lth neighbor coupling

leading to,

S = mi- + ,+ k1+ ) 0 (mj - m;) + () Z (mj - mi), (3.9)
at j En.n. j eLth n.n.

where k01) is the strength of the short range (nearest neighbor) coupling and k(l) is

the strength of the long range (Lth neighbor) coupling. To ensure the continuity of

the domains, k(l) is positive, while k(1 ) is negative to cause a periodic alternation of

the sign of mi.

We also considered a second more general interaction form,

amin 3 ( o t Mat- =m - m i + k(2 )(ij)(mj m), (3.10)

where k(2) (i,j) is a interaction matrix that depends only on the distance between



sites i and j,

S( k(2) if i and j are within L/2 sites of each other, (3.11)
kl(2) if i and j are between L/2 + 1 and L apart,

where L is the range of the coupling. (As before, k(2) > 0 and k12) < 0.)

We perform the simulations using these long range couplings entirely in real space,

rather than Fourier space. In principle, it may be useful to break the equation of

motion into two parts: The on-site, including the cubic limiting term, and the short

range part of the interaction are calculated in real space, while the long range part of

the interaction is calculated Fourier space. The two parts of the equation of motion are

then combined with fast Fourier transforms. This may greatly speed calculations that

involve many long range interactions. We, however, did not choose to use this route,

as most of our simulations have only a limited number of long range interactions.

In the absence of long range couplings, it was necessary to have a positive coef-

ficient on the mi term in the equation of motions to ensure that mi = 0 was not a

stable solution. In the presence on long range couplings, this is not necessary, and

we find that using a negative coefficient gives better results. Since we implement the

long range coupling with a factor of kl(mj - mi), a negative value of k1 results in a

sufficiently large positive multiple of mi to destabilize the m = 0 solution. With this

small change, we implement our long range coupling with discrete time steps. For

the coupling in Eq. (3.9),

mrni = At -mri -m + 0' (rj - mi) + 0) (mj - mi)
j in n.n. .e Lth n.n.

(3.12)
and for the coupling in Eq. (3.10),

Ami = At mi - m4 + k(2)(i,j) (n - mi) (3.13)

where 7 has been set to 1 in both cases.



Bands and Their Width

Both forms of interaction result in a pattern of bands with a period of slightly less

than 2L, as shown in Fig. (3-2). The period can be estimated by looking at the

Fourier transform of the interaction. A peak in the Fourier spectrum indicates a

period selected by the interaction. The Fourier spectrum of the first interaction is

the difference of two Bessel functions,

K(')(s) = k ')Jo(2rs) + k)1)LJo(L2wrs), (3.14)

where the frequency, s, is measured in inverse lattice points. For a value of L = 10,

as we typically used with kg') = -k ( ) , K(1)(s) has a peak at approximately s =

0.061 corresponding to a period of 16.4. For the second interaction form, the Fourier

spectrum is a bit more complicated,

L/2 L

K (2)(s) = 1k 2) 1Jo(2rls) + k(2)  • Jo(12rls). (3.15)
/=1 1=L/2+1

In this case, for a value of L = 10 with k(2) = -k 2) , K(2) (s) has a peak at approxi-

mately s = 0.068, corresponding to a period of 14.7. In both cases, simulations reveal

typical strip widths consistent with these calculations.

Many other interactions with the same typical structure in Fourier space would

also result in a pattern of bands. Most reasonable interactions with competing positive

short range interactions and negative long range interactions have this property. It

is tempting to try to determine the exact shape of the interaction be studying the

distribution of excitatory and inhibitory connections on individual cells. However, it

is important to distinguish the neural network that mediates the response of V1 from

the unknown interaction that directs the formation of the visual cortex. The existing

connections in the mature animal are certainly responsible for generating the response

at a particular location to stimuli. But, as we wish to study the development of these

connections, it is necessary to find the neuro or chemical interaction responsible for

developing the observed connections.



Figure 3-2: Simulated ocular bands generated by iterating Eq. (3.13). (Eq. (3.12)
yields very similar patterns.) A totally isotropic interaction is sufficient to form this
pattern of bands. In this simulation on a 200 x 200 lattice, k(2) = 0.05, k (2) = -0.025,
At = 0.025 and L = 10. The simulation is interrupted after 40 time constants when
the mean value of Am/At is less than 0.01.
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Persistence

Persistence is a measure of the internal order of the bands. which includes the density

of branches and the straightness of the bands. The persistence of the bands is deter-

mined mainly by the long range interaction strength, k0l ) or k 2) . The short range

interactions mainly influence the roughness of individual domain walls. For extremely

weak short range interactions, the domain walls become so rough that the stripes are

disturbed and persistence is difficult to measure.

Persistence tends to increase with increasing k(l ) , an seen in Fig. (3-3). However,

there is a maximum persistence that can be achieved by simply increasing k~l ) as is

evident in the figure. Patterns with a persistence comparable to that in the monkey

can be achieved with a value of k•1) near -0.5. This is based on both visual comparison,

and matching the density of branches. The second form for the long range interaction

shows similar trends in persistence.

Edge Effects

Boundary conditions play an important role in the overall appearance of the patterns.

The pattern of Fig. (3-2) was generated with periodic boundary conditions in which

the sites at one edge connect to the opposite edge. Such boundary conditions are

frequently used to reduce edge effects. However, to simulate the whole cortex, open

boundary conditions may be more appropriate. For open boundary conditions there

are fewer connections for the sites close to edges as they have fewer neighbors. This

more accurately reflects the cells near the edge of the primary visual cortex that

receive a limited amount of ocular dominance information. Using three methods, we

demonstrate that open boundary conditions favor stripes orthogonal to the edges.

Fig. (3-4) shows the results of a simulation using open boundary conditions. In

addition to direct simulations, we considered the effects of edges by cost function

calculations in both the continuous limit of the model, and explicitly on hexagonal

lattices.

When considering a continuous system, we assume that some combination of in-
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Figure 3-3: Simulated ocular dominance bands according to Eq. (3.12) for a variety
of values of k~1) -0.1 (a), -0.15 (b), -0.2 (c), and -0.5 (d). Persistence increases with
increasing k)1) , but cannot be strengthened indefinitely. All simulations started from
the same initial conditions on a 200 x 200 lattice, with k(2) = 0.5, L = 10, and
At = 0.05. The simulations are interrupted when the mean value of Am/At is less
than 0.01.
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Figure 3-4: Simulated ocular bands generated by iterating Eq. (3.13) with the edges
set to m = 0. Compare with Fig. (3-2) which uses the same initial conditions and
parameters but periodic boundary conditions. Note that the bands tend to meet the
edges at right angles.
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teractions has stabilized a pattern of stripes and consider the effects of the presence of

an edge. For simplicity we assume that the stripes have sharp domain walls between

bands. We calculate the change in the long range part of the cost function of stripes

using a continuous function,

F = d2 xd2xIm(yF)rm(6)(Ix - x'I - L), (3.16)

where L is both the range of the long-range interaction, and the width of the stripes.

Choose m(l) to be a set of straight parallel stripes of width L ending on the edge

at an angle 0 to the normal, as in Fig. (3-5). Within the stripes, the value of m(I)

is taken to be +1 with the sign alternating between adjacent bands. The edge is an

open boundary with m(Z) = 0 on the far side. We calculate the per stripe cost of

this edge by direct integration,

AFstripe(0) = 2L3 (1 - sec(O) + 0 tan(0)). (3.17)

This is related to the energy change per unit length of boundary, AFedge, by a factor

of cos(O)/L, yielding

AFedge = 2L 2 (cos() - 1 + 0 sin(0)) . (3.18)

Both forms of the energy change have a minimum at 0 = 0, which corresponds to

stripes perpendicular to the wall, as in Fig. (3-6).

We performed the same calculation on a hexagonal lattice with stripes of width 10

lattice points. The results are compared to the continuous calculation in Fig. (3-6).

Small differences arise due to the discrete nature of the lattice, but the general form of

the angular dependence is clearly similar. Using the discrete lattice, we also calculated

the cost of the nearest neighbor interaction, and confirmed that it contributes much

more weakly to the angular dependence than the long range part.

We examined the difference in the bulk energy between stripes at different angles

relative to the lattice, as shown in Fig. (3-7). The changes in energy due to alignment
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Figure 3-5: Alternating stripes of positive and negative ocular dominance (m = ±1)
with width L meet an m = 0 half plane at an angle 0 to the normal.

with the lattice are small. However, there is a remaining artifact in a cost advantage

to aligning with one of the six primary lattice directions. This effect has also been seen

in simulations, as the bands have a tendency to orient with one of these directions.

Monocular Deprivation

In monocular deprivation experiments, one eye is closed or otherwise inhibited during

some part of development. If this occurs during the critical period of early develop-

ment, ocular dominance begins to favor the open eye. This observation is consistent

with a Hebbian learning algorithm which relies on correlation in activity to strengthen

synapses. Synapses corresponding to the closed eye are not strengthened frequently,

creating a preference for the open eye.

We can model monocular deprivation by adding a bias term to the equation of

motion,
ami 3

t = ma i - mi + kij(myj - mi) + H(t), (3.19)

where H(t) is the strength of the preference caused by monocular deprivation, which

could in principle depend on time, and kij is the total interaction matrix that may

M=_
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Figure 3-6: The cost of an edge intersecting stripes at an angle 0 to the normal.
The cost is given per unit length of the edge. The solid line is a calculation for a
continuous system, while the squares are from a discrete model on a hexagonal with
a stripe width of 10 sites. In both cases the interaction occurs at the same range as
the stripe width.
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take either of the forms in Sec. (3.1.3). In the Landau-Ginzburg language, H(t) is a

symmetry breaking field that prefers one eye.

This symmetry breaking reproduces some features of monocular deprivation. If

the field is applied early in the simulation, it results in a preference for one eye

over the other, while if applied in the later stages, it has little or no effect. Like

monocular deprivation, it is effective only during a critical period. However, this

interaction does not reproduce the observed pattern of alternating narrow and wide

bands. Instead, a pattern forms with islands of the deprived eye appearing in a sea

of the dominate eye, as seen in Fig. (3-8). The typical width of features for both eyes

remains constant, while the overall area covered by the deprived eye is reduced by an

amount depending on the IH(t)1. For sufficiently large values of IH(t)l, the symmetry

breaking field dominates and a uniform pattern results.

The effect of a uniform field may be more easily understood in one dimension.

Since it is very easy to determine the width of the stripes in a pattern in one dimension,

we can examine the distribution of stripe widths. With H(t) = 0, the distribution

of stripe widths is identical for both eyes. In the monkey, stripes of the deprived eye

are narrowed so that their distribution shifts to the left, while that of the other eye

shifts to the right. In our model, however, the peak of the distributions remains fixed

as shown in Fig. (3-9). The stripes anti-aligned with the field tend to have the same

width but become fewer in number. The stripes aligned with the field do show a

tendency to have increased width, but the distribution of widths becomes wider, not

simply shifted to longer lengths.

3.1.4 Distribution of Imil

The narrow interaction form given in Eq. (3.12) produces stripes with sharp domain

walls, and a narrow distribution of |mn;. This corresponds well with the observed

behavior in layer IV. Here the domains do seem to change abruptly at the walls with

a very narrow crossover. Almost all the cells are monocular, meaning that Imil should

be sharply peaked at its maximumn value.

The wider interaction form given by Eq. (3.13) produces smoother domain walls



Figure 3-8: A simulation of monocular deprivation by including a uniform field of
H = 3.5. Compare this figure with Fig. (3-2) which uses the same initial conditions
and parameters, but has H = 0.
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Figure 3-10: The profile of a domain wall in one dimension. The field evolved accord-
ing to Eq. (3.13) with L = 20, k(2) = 0.05, and k 2) = 0 The presence of the domain
wall was forced by keeping the left edge at mi = +1 and the right edge at mi = -1.

and a correspondingly wider distribution of Imi. This case better matches the be-

havior seen in all the layers except layer 4. There are, however, still significant differ-

ences. Experimental observations suggest that m changes linearly near the domain

wall, while the wide interaction form results in domain walls that always include a

discrete jump as in Fig. (3-10).

The discrete jump can be studied on one dimension. The width of the domain wall

scales linearly with the range of the interaction but a discontinuity remains even for

very long range interactions, as seen in Fig. (3-11). The discontinuity originates from

the non-linear terms in the equation of motion. For small values of mi, an interaction

that generates a desired domain wall shape can be found from the Fourier transform

of the domain wall. However, for large values of mi, the cubic term in the equation
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Figure 3-11: The discontinuity in mi at the domain wall in a one dimensional simula-
tion as a function of the range of the positive interactions. The size of the discontinuity
is expressed as a fraction of the value in the bulk. Notice that a finite jump continues
to exist even for very long range interactions.

of motion begins to have a dominant role and the linear approximation necessary

for the Fourier transform no longer holds. Despite the presence of the discontinuous

jump at the domain wall, the wide interaction form still models non-layer IV ocular

dominance well. It produces a wide distribution in mi as is observed, as indicated

in Fig. (3-12). Unfortunately, the exact shape of the experimental distribution is not

known.

3.1.5 Summary

The patterns produced by our equations of motion, accurately reproduce many of the

desired features of ocular dominance. Competition between short-range and long-
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range coupling produces a meandering, branching pattern of bands. The width of

the bands is determined primarily by the range of the interactions, while the relative

strengths of the short and long range coupling can be adjusted to achieve a persistence

similar to that seen in the monkey. Open boundary conditions naturally cause the

stripes to meet edges at right angles. The stripes appear during a critical period of

development during which they are sensitive to an applied field representing monocu-

lar deprivation. After this critical period, the pattern is stable to small perturbations.

The domain walls and distribution of mri seen in our simulation are quite similar to

those in layer 4. The domain walls are sharp and narrow, i.e. the distribution of Irn m

is narrowly centered around the maximum possible value, a completely monocular

response.

The equations of motion cannot be easily modified to model layers other than 4.

Outside layer 4, the distribution of Imil is wide extending down to 0, and the domain

walls are wide and smooth. Our simulated domains always have a discontinuity, and

although we can widen the distribution of Imrl we cannot achieve any significant

number of binocular cells. Furthermore, in our equations we make no attempt to

model the growth of the cortex or the tendencies seen in LeVay's patterns for stripes

to align in prescribed directions.

3.2 Orientation Preference and Selectivity

We next use the Landau-Ginzburg approach to develop a macroscopic model for

orientation preference and selectivity patterns. In the monkey the orientation pattern

is marked by pinwheels, areas that respond similarly to all orientations. Different

possible orientation preferences circulate around these singularities. The two possible

directions of circulation give two types of pinwheels which occur in equal numbers.

The patterns develop during a critical period during which they are sensitive to

outside perturbations. The density of pinwheels remains constant during the later

parts of the critical period (the only observable period of development), despite the

growth of the cortex.



3.2.1 Local Variables and the Cost Function

We use a complex field, z(:), to model the orientation preference and selectivity. The

orientation preference is given by half the complex angle, since it repeats with a period

of 1800. It is necessary to divide the angle by two, rather than take the complex angle

modulus 1800, to ensure that the singularities in the model are surrounded by one

complete cycle of orientations, and not two. The magnitude of the complex field,

|z(3) , is a measure of the selectivity. From the outset we assume a discrete lattice

and label z('i) with zi for each lattice point xi.

We construct a local cost function F(zi) by considerations similar to those in

Sec. (3.1.1). Because there is no a priori reason to distinguish between different

orientations, the cortical cost function must be only a function of Izil. However, a

function involving odd powers of Izi| is not be smooth around zi = 0 and is not a

good candidate for a cost function. Thus, F(zi) is a series in Iz, 2,

F(zi) = a' lz12 + a2lz I•4 +... , (3.20)

where a', a/, etc. are, as of yet, arbitrary constants.

As in our model for ocular dominance, choosing a' < 0 and a' > 0, and setting all

other coefficients zero, results in a minimum cost for a finite, non-zero value of jziI.
With only local interactions, each site is completely independent. A steepest descent

minimization of the cost function gives an equation of motion for each zi,

z; OF (zi)7T Oz= -2a'z i - 4a' zi il2z (3.21)at az 4

where 7' reflects the rate at which the system relaxes.

The coefficients, a' and a', can be absorbed into m and 7 by appropriately chang-

ing units,

T = zi - zi;Zil 2. (3.22)

In this form an unstable fixed point at zi = 0 and stable fixed points at Izil = 1

become obvious. These local terms result in orientation preference, although without



any coupling between sites we cannot hope to generate the desired patterns.

3.2.2 Short-range Coupling

Including nearest neighbor coupling between adjacent sites results in,

Ozi
7 = zi - zIZil2 + k (z - zi), (3.23)

j e n.n.

where k' is the interaction matrix. The requirements of translationally invariance

and isotropy lead to,

7 = z- zilz 2 + k' (zj - z). (3.24)
j E n.n.

Again, the coupling between adjacent sites, kP, must be positive to ensure the conti-

nuity of domains.

Implementation

We simulate orientation preference using discrete time steps on a hexagonal lattice,

in much the same way as ocular dominance. VVe use a discrete equation of motion

Azi = At z i - z i z i |2 + k'E (zj - zi)) , (3.25)

where Azi is the discrete change in zi and At is the time step. The time constant T'

has been set to one for convenience.

The exact distribution of orientation preference and selectivity at early stages of

development is not known. The most reasonable assumption is a uniform distribution

of angles. Experiments also show that selectivity is lower in immature animals. To

model this distribution, we assume initial conditions for zi that are uniform on the

complex angle with a fixed magnitude that is small, typically Izi| = 0.1. (It is likely

that the initial magnitude is also distributed over some range, but as there is little

information on this, and the final results are not affected, we choose to simply use a
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single value.)

We performed simulations with both periodic and open boundary conditions. Be-

cause of the short-range nature of the interactions, the boundary conditions do not

seem to play a significant role. There is experimental evidence that orientation contin-

ues smoothly from area V1 to neighboring area V2, suggesting that periodic boundary

conditions are not entirely inappropriate.

Vortices as Defects

During the simulation, orientation preference rises quickly for several time constants

until it approaches a maximum value of approximately of 1. These first few time

constants form a critical period where the field is sensitive to small perturbations.

Fig. (3-13) shows the pattern of orientation that develops, which is marked by singu-

larities called vortices.

These vortices are topological defects that correspond to the pinwheels observed

experimentally. They are points of reduced selectivity surrounded by regions respond-

ing to all possible orientations. Vortices are well defined topological features, that can

be detected by adding together the changes in angle preference around a closed loop.

If this sum is ±1800, a vortex is enclosed in the loop. The vortex has a circulation

of ±1 depending on sign of the sum. A loop enclosing two similar vortices gives a

sum of ±3600, while a loop enclosing two opposite vortices yields a sum of 0O. Our

simulations give an equal number of both circulations of vortices in agreement with

experiment.

Since vortices are the natural defects in angular fields it is not surprising that

they are generated by a wide variety of apparently disparate models. Any model that

gives adequate attention to the angular nature of the orientation pattern will generate

vortices. Most previous models have not addressed the annihilation of vortices, which

we discuss in the following sections.
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Figure 3-13: Simulated orientation pattern generated by iterating Eq. (3.25). Each
of the 8 colors shown represents a range of 22.50 The colors cycle though 180' of
preference, light green -+ yellow -+ orange -+ red -+ violet -+ dark blue -- light
blue -+ dark green -+ light green -+ etc. In this simulation on a 200 x 200 lattice,
k' = 0.125 and At = 0.05. The simulation is interrupted after 50 time constants.
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Coarsening

The pattern of vortices resembles those seen experimentally. However, the density

of vortices does not remain constant. Vortices of opposite circulation attract and

annihilate as the simulation proceeds, as shown in Fig. (3-14). This takes place on

a much longer time scale than the initial formation of vortices. Eventually, all the

vortices annihilate leaving a single uniform orientation. This is in sharp contrast to

the experimental observations where the vortex concentration remains constant. As

the cortex grows by 16%, this means that the number of vortices increases rather

than decreases.

The ground state, absolute minimum of the cost function, occurs when all sites

have the same orientation. Since the cost is independent of orientation, this ground

state is highly degenerate. Vortices are the natural defects in this angular field. They

arise because the short-range interactions allow separated regions to relax indepen-

dently. Each region moves to one of the degenerate ground states that was favored

locally by the initial conditions. Domain walls usually do not form between these

different regions as adjacent "domains" can be smoothly deformed into each other.

Vortices, however, are topological defects and cannot be removed by smoothly chang-

ing the field.

Vortices of opposite circulation experience an effective attraction. This attraction

causes the vortices to more toward each other, collide, annihilate in pairs, and slowly

reduce their density. In this manner the pattern continues to coarsen and evolve

toward a true ground state.

3.2.3 Long-range Coupling

Long range couplings, which stabilized the pattern of ocular dominance, are not as

useful for fixing the pattern of orientation preference. Including the simplest possible

long range interaction,

7 . = Zi - Zi1z |2 +- + (z - z)+ k(z - zi), (3.26)7 tj - n.n. j i Lth n.n.
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Figure 3-14: The same simulated orientation pattern shown in Fig. (3-13) but after
250 time constants. The number of vortices is greatly reduced. The vortices shown
eventually annihilate after additional iterations.
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with k1 < 0 does not lead to a finite density of vortices. This is because the cost

function associated with this equation of motion can be minimized without any vor-

tices, by creating a rainbow pattern of orientations, as shown in Fig. (3-15). This

pattern resembles a series of orientation bands, that were once conjectured but are

not seen experimentally. We also checked several wider interaction forms, similar to

Eq. (3.26). All of these failed to prevent the collapse of vortices.

Long range interactions which are linear in zi do not directly act on singularities,

which are zeros in Izil. It may be possible to create an interaction that causes the

distances between singularities to favor a particular non-zero length. We investigated

this possibility by considering higher order interactions, such as

7T = 1 + zi k IZj12 + kX"zj zj|2+-. (3.27)
3 3

However, we concluded that this approach is not promising and did not investigate

it extensively.

3.2.4 Distribution of Izil

Our model for orientation preference generates patterns similar to those found exper-

imentally. However, the selectivity is not modeled well. The experimentally observed

selectivity has a wide distribution, with large areas of reduced selectivity surrounding

each pinwheel. Our model gives nearly uniform selectivity of 1 as seen in Fig. (3-

16). While selectivity is zero at the singularities, the reduction extends only to a few

adjacent lattice sites.

By coupling to a quenched random field, the distribution of selectivity can be

widened. A quenched random field can be motivated as arising from two possible

mechanisms. One motivation comes from fluctuations in the density or computa-

tional effectiveness of neurons. Small fluctuations in density have been observed in

the cortex, and might reasonably be considered as uncorrelated. Fluctuations in com-

putational effectiveness have not been studied in the monkey, but are a reasonable

assumption considering the variety of different types of neurons present. A second
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Figure 3-15: Simulated orientation pattern generated by iterating Eq. (3.26). The
long-range coupling does not stop the annihilation of vortices but rather causes the
formation of rainbow-like bands. In this simulation on a 200 x 200 lattice, k, = 0.1,
kI = -0.01, and At = 0.1. The simulation is interrupted after 100 time constants.
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Figure 3-16: Simulated selectivity pattern corresponding to Fig. (3-13). Darker areas
are less selective, i.e. have lower values of Izil.
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motivation comes from the coupling between a number of other fields which might

contain information about color, texture, motion, or other properties. Coupling to

a large number of unknown fields, can be represented by a single uncorrelated ran-

dom field. The possibility of coupling between a small number of correlated fields is

discussed further in Sec. (3.3).

A random field that represents density fluctuations or the computational demands

of many other fields, is better represented by a real number, rather than a complex

number which also contains angular information. (A complex random field may be

motivated by considering coupling to vector fields, e.g. direction of motion. However,

unless the net effect of a large number of vector fields is being considered, this field

would not be random, but highly correlated with its own equations of motions.) In the

contest of phase transitions in magnets, a field appears as an addition to the equations

of motion, such as H(t) in Eq. (3.19). Here, we use the term loosely, referring to a set

of random parameters, {hi}, multiplying the orientation order parameter {zi}. More

correctly in the magnetic context, this is a random energy term. We thus consider

the modified equation,

- O z i  ,= zi- zlzi 2 + k (z - zi) + hhz,. (3.28)
j i n.n.

The local fixed points of this equation of motion can be studied by looking at each

location independently,
I zi

7 = zi - zijZi 2 + h'z 2. (3.29)
at

In the presence of a random field h', the preferred local magnitudes of Izil are changed

to /l+h
It is difficult to biologically motivate the distribution of h', as we have not specif-

ically identified the processes generating the random field. If the randomness is the

result of the sum of many other fields, h' may be normally distributed. However,

if the randomness arises from structural fluctuations in the cortex, the distribution

may have some other shape. We use a uniform distribution for convenience, but there

is no reason to believe that other distributions of h' will give qualitatively different
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results.

Coupling to randomness widens the distribution of Izil so that extends to zero.

However, he amount of randomness required to give a distribution similar to the

experimentally observed ones disrupts the overall pattern of selectivity. The experi-

mental patterns have smoothly varying selectivity that is reduced in regions around

singularities, while our simulated pattern, shown in Fig. (3-17), is dominated by the

random field itself. We have included only nearest neighbor couplings in our simula-

tions. Using longer range coupling may increase the size of the vortices and reduce

the impact of the random field on the selectivity pattern.

Coupling orientation to a random field provides a promising method for stabilizing

the singularities. This approach is analogous to the pinning of vortices by defects in

superconductors. Fig. (3-18) shows a stable pattern of vortices. The vortices become

trapped, or pinned, in local minima of the random field. A sufficient amount of ran-

domness creates a pattern of vortices that appears to be stable over long time scales.

Smaller amounts of randomness slow, but do not prevent, the pair annihilations.

Although we choose only to investigate the effects of a random field, random cou-

plings generate many of the same effects. Random couplings may reflect fluctuations

in the ease with which synapses are formed between pairs of cells. The size, orien-

tation, and exact position of cells are likely to effect their ability to form synapses

with other nearby cells. This type of interaction may be modeled by adding random

fluctuations, 63j, to kj.

3.2.5 Summary

A simple equation of motion for a complex field involving only nearest neighbor

couplings generates a pattern containing vortices which we identify with the pinwheels

in the experiments. The vortices have circulations of +180' in equal ratios as desired.

The vortices are formed during a critical period during which the field is sensitive

to perturbations. Coupling with a quench random field, representing other fields or

density fluctuations, can pin the vortices, stabilizing the pattern.

Our simulations give distribution of Izil that are much narrower than desired,
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Figure 3-17: Simulated selectivity pattern generated by iterating Eq. (3.28). Here
hM is distributed uniformly over the interval (-2,2), to widen the distribution of Izil.
The large amount of randomness needed to widen the distribution of Izil disrupts the
pattern of selectivity. In this simulation on a 100 x 100 lattice, k' = 0.05, At = 0.05.
The simulation is interrupted after 2500 time constants when the pattern appeared
to be stable.
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Figure 3-18: Simulated orientation pattern generated by iterating Eq. (3.28). This
pattern is stable under further iteration. The presence of a quenched random field
can stop the annihilation of vortices. This orientation pattern corresponds to the
selectivity pattern shown in Fig. (3-17)
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with a pattern of selectivity that is too uniform. Coupling randomness widens the

distribution of izil but also disrupts the pattern of selectivity. Our model also does

not include the growth of the cortex. Since the density of pinwheels remains constant,

new pinwheel must form as the cortex grows.

3.3 Coupling between Ocular Dominance and Ori-

entation Selectivity

Coupling between ocular dominance and orientation selectivity can play an important

role in the patterns of the two fields. Since orientation singularities lie in the center of

ocular dominance bands, and lines of isoorientation meet ocular dominance domain

walls perpendicularly, some form of coupling must exist. As we shall demonstrate,

such interactions can also stabilize the pattern of pinwheels, and significantly effect

the distribution of ocular dominance and selectivity.

3.3.1 Local Variables and the Cost Function

We now construct a single cost function for the local variables of both fields. All

the terms present in either individual cost function plus coupling terms must be

included. As the coupling term must be invariant under m - --m and independent

of the complex angle, the simplest term allowed is mri z| 2 . Higher order terms are

possible in principle but not likely to be important in a macroscopic cost function.

Our local cost function,

F(mi, zi) = a2m+ + a4 M. + aj12 4 + zi +, (3.30)

has five free parameters a2 , a4, a'2, a, and 7. Each mri is coupled to the local zi,

resulting in coupled equations of motion,

Oqmi7- = -2~2m - 4-4ma - 2ymiJ•z; 2, (3.31)at , 1(331
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zi = -2a'2z - 4'zilz, 2 - 27zin?, (3.32)
at

where 7 and 7' are time constants. To ensure finite, non-zero fixed points a2 and a'2

must be negative while a4 and a' are positive. By appropriately redefining F(mi, zi),

mi, and zi we can absorb three of the coefficients and all the numeric factors, resulting

in

t
la zi -- ") z im , (3.3 3)
T = zi - zizi 'z , (333)

where 7' = a4/a47. The couplings, 7y and 7', do not have to be equal but must have

the same sign. By introducing the term ,ymziz2 in the cost function, we forced the

interaction to be symmetric. However, we did not force the scale of ocular dominance

and orientation preference to be similar. Eqs. (3.33) can be rewritten with identical

coefficients for the coupling terms but different coefficients on the linear and cubic

terms.

Our approach to coupling fields could easily be extended to include more fields or

even a random field representing the effect of several fields. These additional fields

appear in same manner as ocular dominance or orientation, each coupling to the

square of the other fields, e.g. introducing a scaler field xi adds terms to the cost

function proportional to 4mm and xzzi]j 2 . In principle a term such as x m? zi 2 could

also exist, but is less likely to be important due to its higher order. This could reflect

some three way process where one field mediated an interaction between the other

two, like a catalyst in a binary reaction. The local cost function now has 9 parameters,

Ei (am + 4M+ a'2IZ, 2 + a' lZ, 4 +2 .2 It 4
F(mr, zi, xi) =2 2  

2  4  2 4 (3.34)
"Ymzm i iz1 2 + y.mzmxMX + /zZ ?i ZI 2),

Rescaling leads to three coupled equations of motion, with 5 free parameters describ-
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ing the coupling,

3mi 3 2 2
S =mi - m,- 2mii 'at

at -;

-,, Zi 3 2 2at xi - xi -y 5xim 76Xz2

where {)i} are parameters with the constraint 71737Y5 = -y2,'4-/6. This process can

be continued in the obvious way for additional fields. A cost function for n fields

results in n coupled equations with n(n - 1)/2 - (2n + 1) parameters. If field xi has a

very short relaxation time, T", it quickly achieves its final values, acting as a random

(although correlated) field on mi and zi at longer times.

3.3.2 Interactions

Based on our experience with uncoupled models for ocular dominance and orientation,

we introduce interactions within each field. For orientation we introduce nearest

neighbor interactions with strength kV > 0, while for ocular dominance we introduce

an interaction, k(i, j), that depends on the distance between site i and site j. For

short distances k(i,j) > 0 while for longer distances up to a cutoff k(i,j) < 0. The

full equations of motion,

amzt j

a- = zi - z, lz 12 _ zm• + k' (zj - z), (3.36)
j E n.n.

contain five parameters in addition to the interaction k(i,j). Setting T = 1, T'

should be determined by comparing the growth rate of orientation preference to ocular

dominance. Unfortunately, there is currently not enough data on immature animals

to compare the rates. For simplicity we set 7' = T = 1, and add a further constraint

of y = in'. There is no compelling reason for one field to play a dominate role over

the other. Once again we choose to reverse the sign on the mi term, as discussed in
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Sec. (3.1.3).

Coupling Between Defects

A small positive value of ; = ~' is enough to cause the vortices to tend to avoid

the domain walls, see Fig. (3-19). The positive term rn2. zi 2 in the cost function

of Eq. (3.30), implies that sites with both high ocular dominance and orientation

selectivity incur an additional cost. Defects in either field, which have low values of

rnm or zi, can reduce the total cost by appearing at separate sites, so that two sites

save a cost proportional to Y rather than just one site. (The existence of defects still

adds to the total cost due to the other terms in the cost function.) The presence of

orientation vortices in the center of ocular dominance bands leads to isoorientation

lines which cross ocular dominance domains perpendicularly.

A positive value of - indicates a competition between ocular dominance and orien-

tation. In this case / has the same sign as the quartic terms in the the cost fmnction

which limit the growth of the fields. If 7 = 2 these terms could be expressed as

(rni + zJ 2) 2 , a single term limiting the sumi of the fields. A value of 2 appears

to be too large, but the idea of competition still holds for weakly coupled fields.

Negative values of ' = 7' lead to vortices preferentially occurring on ocular dom-

inance domain walls. In this case sites with either type of defect incur a cost propor-

tional to 7, so that it is advantageous to have both types of singularities occur at a

single site. This pattern, however, is not seen explerimentally.

Large positive values of coupling distort the pattern of orientation and ocular domi-

inance. The cortex becomes divided into regions responding only to orientation or

only to ocular dominance. Across the centers of ocular dominance bands orientation

becomes discontinuous. This discontinuity is similar to the fractures seem experimen-

tally. However, for large coupling these fractures, rather than the pinwheels, become

the dominant feature.
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Figure 3-19: Simulated (a) orientation preference, (b) orientation selectivity, and
(c) ocular dominance patterns generated by iterating Eqs. (3.36). The coupling be-
tween fields prevents the further annihilation of singularities. The locations of the
singularities and ocular dominance domain walls are clearly visible in the orienta-
tion selectivity. In this simulation on a 100x100 lattice, 7 = -0.1. k(2) = -0.05,
kl 2 ) = -0.025, L = 10, k' = 0.05, and Atm = Atz = 0.025. The equations of motion
were iterated for 500 time constants. The pattern appeared to be stable during the
last 250 time constants.
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Pinning the Defects

Coupling between ocular dominance and orientation preference can stabilize the pat-

tern of orientation vortices. These defects are not able to pass through the barrier

created by thick ocular dominance domain walls. Thin ocular dominance walls, cre-

ated by nearest neighbor interactions, can be crossed by the vortices, so further

neighbor interactions are necessary in the ocular dominance field. The singularities

also become trapped by bends in the ocular dominance bands, as shown in Fig. (3-19).

A pattern free of vortices still has the globally lowest cost. However, the initial

conditions do not evolve to the global minimum. Instead they become trapped in a

local minimum that still contains vortices. Since vortices are topological defects they

can only be removed by annihilation with opposite vortices (or edge effects). Due to

the coupling, the ocular dominance domain walls are barriers to vortex migration.

Moving onto a domain wall increases the cost of the pattern and is prohibited even

though a lower cost may be achieved when the vortex has passed completely though

the barrier. Domain walls formed by only nearest neighbor interactions are only 1 or

2 sites thick. Since a vortex suppresses ocular dominance in a 1 or 2 site radius (see

Sec. (3.3.3) ), it can create a node in the domain wall as it passes through.

The typical distance between singularities is strongly influenced by the width and

persistence of the ocular dominance bands. The width of bands forces the separation

in the direction perpendicular to the bands to be at least of the order of the band

width. In the direction parallel to the bands, the typical separation between singu-

larities is limited by the persistence. In frequently branching and bending bands, the

singularities are quickly trapped as they move within a band. In relatively straight

bands, many singularities can move a significant distance without becoming entangled

in the domain walls.

3.3.3 Distribution of Izil and Imil

Coupling between orientation and ocular dominance effects the distribution of I zi; and

ImnlI, as well as the patterns of selectivity. It widens the distributions, bringing them
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closer to the exp)erimental observations. However, coupling alone does not widen the

distributions sufficiently without causing disruption of patterns. Even together with

long range ocular dominance interactions, the distributions are not sufficiently wide,

as shown in Fig. (3-20).

An undesired feature of the couplings is its influence on the pattern of selectivity,

as shown in Figure (3-19). Unlike the experimental case, the ocular dominance

domains become visible in the patterns of selectivity. While the strength of this effect

varies with the magnitude of -,, it is visible even at very small values of the coupling.

Coupling to additional fields, or random noise, may disguise the effect from visual

observation, but it would still be detectable statistically. No published statistical

analysis of experimental data has shown any sign of the ocular dominance domain

walls in orientation selectivity patterns.

3.3.4 Summary

Introducing a coupling between the ocular dominance and the orientation selectivity

models can create a tendency for the defects in the two fields to avoid each other.

Thus, the orientation vortices stay away from the ocular dominance domain walls.

A similar effect has been reported in the monkey. Placing the vortices in the center

of ocular bands naturally causes lines of isoorientation to cross domain walls nearly

perpendicularly. The coupling between the fields also stabilizes the pattern of orienta-

tion preference as vortices cannot migrate through thick domain walls. This method

of stabilizing the ocular dominance pattern gives a possible explanation for the ob-

servation that pinwheel separation and ocular dominance bands appear to have very

similar length scales.

Coupling the fields also presents a way to widen the distribution of mi and zi,

so that they more closely match observations. Despite this improvement, there still

appears to be a significant disparity between the modeled distributions and the actual

ones. However, these distributions are one of the least studied experimental features,

and their description is not precisely known. A more serious defect of the coupling

is the influence of the ocular dominance domain walls on the patterns of selectivity.
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This has not been reported in experiments to our knowledge.
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Chapter 4

Conclusions

Insights from Macroscopic Modeling

Using macroscopic modeling with a Landau-Ginzburg approach we are able to repro-

duce many of the features in the primary visual cortex. This approach highlights the

nature and symmetry of the emergent properties of the cortex, and provides insight

into the key features that are frequently mnissed in microscopic models.

e-e model ocular dominance as a real number indicating the dominant eye and

the degree of preference. The symmetry between the two eyes limits the equations of

our model to those unchanged under globally exchanging the eyes' responses. Initial

conditions, reflecting a nearly binocular response, develop into a pattern of domains

of two different preferred values, corresponding to the observed monocular bands.

This development occurs during a critical period during which the model is sensitive

to perturbations. The domains are separated by domain walls where the modeled

ocular dominance changes rapidly. Competition between short range exhitatiuons,

which favor continuity, and long range inhibitions, which favor diversity, stabilizes

the domains, and results in a pattern of stripes. Without this competition, a system

containing domain wall defects coarsens to minimize the length of the domain walls,

eventually resulting in uniform (monocular) response.

We model orientation as a complex number to reflect both preference and selec-

tivity. The symmetry among all orientations limits the equations of our model to a
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few phenomenological parameters. Using these equations of motion to evolve ran-

dom initial conditions, we create patterns which contain vortices, the natural defects

in angular fields, which are naturally associated with the pinwheels observed in the

cortex. As the vortices in an isolated angular field slowly annihilate leaving a single

uniform angle, we expect that some external coupling stabilizes the pattern. We find

that coupling to quenched noise, or to the pattern of ocular dominance, can stabilize

the pattern of orientation.

In addition to stabilizing orientation patterns, coupling between the ocular dom-

inance and orientation explains the tendencies for pinwheels to avoid the edges of

ocular dominance bands. It is natural to think of this coupling as a result of the cor-

tex's limited computational capacity, e.g. areas which respond strongly to orientation

cannot simultaneously respond strongly to ocular dominance. This coupling links the

typical separation between vortices to the length scales of the ocular dominance do-

mains. This may explain why both features are observed to have very similar length

scales. However, we must consider this interpretation with caution. Both orientation

and ocular dominance are mediated by neural activity which has an inherent length

scale. The size of neural arbors is roughly commensurate with both the band width

and the separation between pinwheels.

It is also possible to stabilize the pattern of vortices by weakly coupling to a

large number of number of fields. If one of these fields is ocular dominance, the

vortices can still be driven away from the domain walls, but this will avoid the side

effects from strong ocular dominance-orientation coupling that we have observed in

our simulations. A more generalized coupling can also explain the presence of stable

orientation patterns in animals which do not have detectable ocular dominance bands.

The coupling between a large number of fields can again be motivated by competition

for a limited computational capacity.

Open Questions

Despite the success of macroscopic modeling, several questions remain open. The

distribution of orientation selectivity and the magnitude of ocular dominance are not
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modeled well by our approach. Most other models have not looked explicitly at these

distributions (but do not seem to do any better), so it is an area in need of further

study. The distribution of ocular dominance magnitude reflects the sharpness of the

domain walls and plays an important role in monocular deprivation. Stripes with

narrow domain walls are not able to easily narrow under the influence of monocular

deprivation. Since limited information is currently available about these distribu-

tions, a better experimental study of these distributions would significantly guide the

development of models.

The primary visual cortex grows significantly during the formation of orientation

and ocular dominance patterns. Modeling this growth in a robust way has not yet

been attempted. Simulating growth of the cortex requires adding lattice points dur-

ing the simulation to reflect the addition of new cells. Coupling between growth and

ocular dominance is necessary to explain the propensity of the growth to be per-

pendicular to the bands. Modeling growth also requires the spontaneous creation of

vortex pairs, as the pinwheel density appears to remain constant. Additional exper-

iments that probe the evolution of patterns during development will provide much

more strigent tests for developmental models than are currently availible.

More detailed characterization of the observed patterns will help greatly in dif-

ferentiating between models. Currently, much of the comparison between model and

experiment is simply visual. The use of fourier spectra provide some additional means

of comparison, but again the comparison is mostly visual. Measuring correlation func-

tions and characterizing possible defects allows more quantitative comparisons than

discussions of linear zones, saddle points, fractures, and singularities. Recently Ober-

mayer and Blasdel have begun work in this direction, measuring correlation functions

in orientation patterns and finding that patterns cannot be entirely specified by the

positions of their pinwheels.[71] Work in this direction will lead to additional quanti-

tative tests for models and more insight into the working of the visual cortex.
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