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Abstract

In this thesis, we develop a macroscopic model of the formation of ocular dominance
and orientation columns in the mammalian visual cortex. We not only reproduce
the static patterns of orientation pinwheels and ocular dominance stripes seen in the
macaque monkey, but also model the development of these patterns, payving pdr'('l( ular
attention to the observed stability of the adult response.

We model ocular dominance as a scalar field. Initial conditions, reflecting small
fluctuations around a binocular respounse. develop into a pattern of domains corre-
sponding to the observed monocular bands. The domains are separated by domain
walls where ocular dominance changes rapidly. Competition between short range ex-
hitations. which favor continuity, and long range inhibitions, which favor diversity.
stabilize the domains and result in a pattern of stripes.

Orientation is modeled by a complex number to reflect both its preference and
scleetivity, An initial pattern. cousisting of small fluctuations around zero selectivity,
evolves into a pattern containing vortices. which are naturally associated with the
observed pinwlieels. Pairs of vortices of opposite circulation experience an effective
attraction. and slowly move toward eacl other, eventually annihilating to create a
more uniform respouse.

We are able to stabiliye the pattern of vortices and reproduce observed correla-
tions between the ocular dominance and orientation patterns, by including a local
coupling between the two fields. It is natural to think of this coupling as a result
of the cortex’s limited computational capacity, i.c. areas which respond strongly to
orientation cannot simultaneously respond strougly to ocular dominance. In addition
to coupling between ocular dominance and orientation patterns, we consider weak
coupling to a large number of unknown fields represented by static randomness. This
more generalized coupling can explain the presence of stable orientation patterns in
animals which do not have detectable ocular dominance bands.

Thesis Supervisor: Mehran Kardar
Title: Professor of Physics
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Chapter 1

Introduction

Richard Feynman once remarked with amazement that the brain could reconstruct.
a complete image from the tiny bit of light passing though a 2 mm pupil.[3] The
brain’s amazing abilities of recoustruction and perception are of great interest. They
are both a gateway to understanding higher brain functions. and a source of ideas for
developing artificial systems capable of image recognition.

Since the 1940°s. cells in the eves and midbrain were known to respond to spots
of light at different locations.[6. 7] In 1958 David Hubel and Torsten Wiesel were
scarching for cells in the primary visual cortex that responded similarly. They showed
animal subjects hundreds of slides, cach with a dot at a different location. To their
disappointment they found few cells responding to their dots. However, by accident,
they discovered that the cells responded best not to the dots on the slides, but to the
dark shadow cast by the edge of slides. Further, they found that cells responded only
to dark lines of specific orientations. The visual cortex contained orientation specific
cells.[8]

In the following decades Hubel, Wiesel, and many others performed extensive
studies of the visual cortex of the cat and macaque monkey, finding not only ori-
entation specific cells, but also cells which favored one eve over the other. Based
on such results, the first simple models of the structure of the primary visual cor-
tex were proposed. In many wayvs these early models were qualitatively correct, but

they contained extreme regularity in response that was not to be found in the actual
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cortex.

As more advanced experimental techniques were developed and larger portions of
the primary visual cortex were studied, it became clear that the cortex’s response was
disordered on length scales comparable to the size of the cortex. The next generation
of models started with random initial conditions and evolved them in different ways.
The initial randomness then developed into globally disordered patterns. Many of
the models made reasonable predictions for the behavior of the cortex, but the ex-
perimental data on the cortex was too limited at that time to make quantitative
comparisons.

This remained true until the development of opticalrimaging. In 1986 Gary Blasdcl
used optical imaging to study large areas of the primary visual cortex in vivo. This
greatly increased the amount of data available. Correlations were found between
ocular dominance and orieutation preference. Detailed studies were performed on
juvenile animals to observe the development before it was complete. This work spured
the development of additional models, and more importantly allowed quantitative
comparison between models and to experimental observations.

In this thesis we propose a new model of the primary visual cortex, which builds
upou some of the previous models. but is different in significant ways. Our approach
relics upon a Landau-Ginzburg expansion which is a well developed tool in statis-
tical mechanics. Our model allows for the ecasy identification and exploitation of
svmuetries and interacting guantities.

The remainder of this introduction looks at what is known about the primary
visual cortex. First, the anatomy of the entire visual system is surveved. Next, the
physiology of the primary visual cortex is examined in detail. Finally, existing models
are examined and compared. Chap. (2) explains the Landau-Ginzburg approach, and
its successful use in a variety of other problems. Chap. (3) describes the details of our
model, its implementation, and results. Lastly, Chap. (4) reviews the major results

of our work.



1.1 Anatomy and Basic Physiology of the Visual
System

In order to develop a useful model of the primary visual cortex, it is important that
we have a basic understanding of the visual system. While it is possible to create
a model of the primary visual cortex by looking at it in isolation, this would ignore
a wealth of information about how it interacts with the rest of the visual system.
Information from the outside world reaches the primary visual cortex by passing
through the eyes and then the thalamus, where some processing occurs. After further
processing in the primary visual cortex, the information is sent to higher cortical areas
where perception arises. By studying these other areas we can better understand the
function of the primary visual cortex.

We will describe here the anatomy and basic physiology of the visual system.
Anatomy refers to physical structures and physical properties, while physiology refers
to the response of the system to outside stimuli. Many different species including
ferrets. cats. monkevs. and humans have plaved important roles in expanding our un-
derstanding of the mammalian visual svstem. Luckily, it is not necessary to describe
the visual systems of all these species. most are quite similar in general design. The
cursory description that follows applies to most species. When details vary between
species, we choose to focus on the macaque monkey whenever possible. The macaque
has been extensively studied and is quite similar to the human. the ul‘riﬁmto goal of
our understanding. We draw our description of the visual system from Principles of
Neural Science by Eric Kandel et. al.[1] which deals mainly with humans, and An
Introduction to the Biology of Vision by James Mcllwain[3], as well as the papers

explicitly cited.

1.1.1 Nerve Cells

The visual system is composed of discrete cells called neurons. The human brain is

believed to contain about 100 billion neurons of as many as 10,000 different types.[1]
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Nonetheless, there are many features common to typical neurons. Most neurons
have a cell body or soma. A frequently branching network of fibers called dendrites
connects to the cell body and collects input. A single long fiber called the axon also
extends from the cell body and carries the cell’'s output. The axon may travel as far
as a meter, but eventually terminates into many branching fibers forming an arbor.
These fibers make contact to the dendrites of other cells. The junction between an
axon and a dendrite is called a synapse. A single cell may have as many as 10,000
synapses to other cells.

The nervous system uses both electrical and chemical signals to carry information.
Within a neuron, information is carried by electrical pulses called action potentials.
When input from the dendrites or spontaneous activity triggers a cell, an electrical
pulse is formed in the cell body and propagates down the axon. Upon reaching the
arbor, the pulse triggers the release of chemical neurotransmitters into the synapses.
The syvnapses are nothing more than small gaps between axons and dendrites. The
neurotransiitters are picked up by cells, either through dendrites or directly by the
cell body. This in turn ma;\" cause other cells to fire. repeating the process.

Information is carried by discrete pulses, the action potentials. The number of
pulses can be integrated over time to give the level of activity for a cell. This level
can by used to track how a cell responds to a variety of stimuli. However, this
discards any information which may be contained in the timing of individual pulses.
In the visnal system. it is unclear if the fiming contains useful information. Other
systems are known to use this timing information at least in certain circumstances.
For example. the auditory system uses timing and rate information when localizing
sounds. Firing rates are used to compare the sound intensity at the two ears, while
timing information is used to compare the arrival times of the sound at the two ears.

The brain relies on trillions of synapses among billions of neurous to do all its
tasks. This presents a developmental problem. The amount of information required
to specify all the connections exceeds the total information in DNA by several orders
of magnitude. Thus, some form of self organization is required to allow a smaller

amount of genetically stored information to determine the developmental pattern
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of the brain. Mathematically describing the development of a homogeneous organ
with only local connectivity requires only a few simple rules. However, describing
the development of the brain with its many heterogencous long-range connections is
much more difficult.

Studying the self organization of one part of the brain, the primary visual cortex,
is the goal of this work. The primary visual cortex is composed of two generic types
of neurons, although each type has many variants. Large pyramidal cells have long
axons that project out to regions bevond the primary visual cortex. Smaller stellate
cells mainly connect locally within the primary visual cortex. The stellate cells are
further subdivided into spiny stellate cells which tend to excite the cells to which they

connect, and smooth stellate cells which tend to inhibit other cells.

1.1.2 Eyes and Retina

All information about the visual field. the outside world as we see it, enters the body
through the eves. The lens of the eve creates an image of the visual field on the back
of the eve. called the retinal image.

The retina is composed of five types of neurouns. see Fig. (1-1). Photoreceptors
(rods and cones) change the retinal image into a pattern of neural activity. (Exactly
what is meaut be neural activity will be discussed later.) Horizontal cells. bipolar
cells, and amacrine cells carry information within the retina. Ganglion cells carry the
information from the retina to other parts of the brain.

Many neurouns in the visual system have well defined receptive fields. The recep-
tive field is an arca of the retinal image that cffects the activity the neuron. The
photoreceptors have very simple receptive fields, namely the area of the retinal im-
age falling directly onto the them. Ganglion cells have small circular receptive fields
centered in the nearby arca of the retinal image. Their receptive fields are composed
of two parts. Light in the center of the receptive field stimulates the ganglion cell,
while light in the surrounding part inhibits the cell. These are called on-center fields.
Other ganglion cells have off-center ficlds which reverse the role of the center and the

surround. Together, the on-center and off-center regions are called center-surround
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Figurc 1-1: Schematic drawing of the retina showing photoreceptors, horizontal cells,
bipolar cells, amacrine cells, and ganglion cells. Information flows vertically from the
photoreceptors, to the bipolar cells, then to the ganglion cells. It is carried laterally
by the horizontal cells and amacrine cells. Figure reproduced with permission from
Principles of Neural Science by Eric Kandel et. al.[1]
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fields.[6. 9]

The photoreceptors form the first of many retinotopic maps in the visual system.
A retinotopic map is an array of cells organized topographically according to their
receptive fields. The photoreceptors which simply transduce the light that falls on
them are obviously ordered by the position of their receptive field. The ganglion cells
also form a retinotopic map, which again is unsurprising as each responds to nearby
photoreceptors. Other retinotopic maps appear in the brain far removed from the
eves. These cells are still organized according to the position of their retinal field,
and form a picture of what stimulates the retina. In some areas the image is heavily
processed and distorted. but it is still organized topographically as a picture.

The horizontal and amacrine cells mix information from nearby photoreceptors to
create center-surround fields in the ganglion cells. This processing serves to sharpen
the image that appears on the retina, highlighting lines and edges while reducing the
response to diffuse light. The ganglion cells then carry the information away from

the eves.

1.1.3 Optic Nerves and the Lateral Geniculate Nucleus

The axons from the ganglion cells leave the retina and terminate in the thalamus.
In higher mammals. on the order of one million of these axous form the optic nerves
leaving cacli eve. The optical nerves cross and mix in the optic chasm before pro-
ceeding to the right and left sides of the thalamus. All the information from the right
half of the visual field goes to left half the thalamus, and vice versa. Such segregation
necessitates the mixing of fibers from the two eves. sce Fig. (1-2). as cach retinal
image contains information from both sides of the visual field.

Upon reaching the thalamus, the majority of the nerve fibers terminate in the
lateral geniculate nucleus. A small number terminate in the pretectum, which controls
pupil reflexes, and a small number terminate in the superior colliculus, which controls
high speed eve movements (saccades). Only the lateral geniculate nucleus (LGN)
connects to higher areas responsible for perception.

Each LGN receives input from one half the visual field. Within the LGN, the
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Figure 1-2: Schematic drawing of the visual system from the eyes to the primary
visual cortex. Fibers from the right side of each retina lead to different layers in the
right lateral geniculaté nucleus (LGN). A small number terminate in the pretectum
and superior colliculus. Fibers from the right LGN travel to the right primary visual
cortex. still segregated by the eve to which they respond. They terminate in laver
IVe of the primary visual cortex. A parallel system exists on the left half of the brain,
but it is not shown. Figure reproduced with permission from Principles of Neural
Science by Eric Kandel et. al.[1]
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information is further segregated by eve. Three lavers within the LGN respond to the
right eve and three layers respond to the left eve. The exact number of layers varies
with the species, but the segregation is common to all mammals of interest. Most cells
within the LGN have axons which leave the thalamus. Thus, there is only a single
synapse of processing within the LGN. It is not surprising that the output cells of the
LGN show the same center-surround fields that retinal ganglion cells exhibit.[10]
The LGN maintains a retinotopic representation of the visual field. Actually, the
LGN contains six retinotopic maps, one in each of its six layers. These six images
are aligned. Passing perpendicularly through the six layers, one finds receptive fields
located in the same arca of the visual fields but switching eves each layer. The
function of the LGN is not well understood. The information about the visual field
appears to leave the LGN without further processing. Furthermore, most of the input
to the LGN comes not from the retina, but from higher visual arcas. The role of this

feedback is not known.

1.1.4 Primary Visual Cortex

The axons from the LGN enter the cortex and terminate in the primary visual cortex
(V1). also called the striate cortex or Brodmann's arca 17. The primary visual cortex
is located in the occipital lobe. the back of the brain. (Oddly, this is as far from the
eves as possible.) The visual cortex is composed of a thin layer of cells between the
pial surface. an outer covering on the brain, and the white matter, dense bundles of
nerve fibers in the interior of the brain. In the monkey, V1 is roughly 2 mm thick, and
if laid flat covers about 13 cm? However, as V1 is folded over itself several times. it
require much less space. The portion of V1 on the outer surface of the brain is called
the operculum. It is bordered on three sides by area V2. On the fourth side in bends
into the calcarine fissure and folds under itself. On the roof of the calcarine fissure
it forms a triangle with one side connected back to the operculum and the other two
folding under once again.

When discussing V1, we shall refer to the thin (2 mm) dimension as the vertical

direction, and to other two dimensions as the horizontal directions. In humans and
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monkeys, V1 is organized into 6 layers stacked in the vertical direction. The layers are
labeled 1 through 6 with the outer layer labeled 1. Laver 4 is further subdivided into
lavers 4A, 4B, 4Ca, and 4CJ. The layers were first identified by studying differences
in cell and fiber densities.

The fibers from the LGN terminate primarily in layers 4Ca and 4C3. However, a
few fibers terminate in almost every laver. Layers 3 and 4B project fibers to higher
cortical areas outside V1, while lavers 5 and 6 project back to the LGN and other
subcortical areas. Unlike the LGN which has only one synapse of processing, the
primary visual cortex has 3-4 synapses of processing connecting the input from the
LGN to the output. Cells in V1 typically have arbors which receive input from
neighboring cells within 1-2 mm. This processing results in cells which respoud to
more complicated features than the center-surround fields found in the retina and
LGN. However, the cells are still generally organized to form a retinotopic map like
the LGN. Modeling the physiological respounse of V1, which is discussed in detail

separately in See. (1.2). 1s main goal of this work.

1.1.5 Higher Cortical Areas

The primary visual cortex is only the first of many visual arcas as shown in Fig. (1-3).
Our understanding of the function of the higher arcas is very limited: mostly based
on clinical studies of human patients with localized damage to areas of the cortex.
Experimental studies ou animals are difficult. although some have been performed. as
the higher arcas are believed to respond to complex aud possibly situation dependent
stimuli.

Two parallel pathways for information processing exist in the cortex. One pathway
for motion (where), and one for color and form (what). Both pathways are dependent,
on information from the primary visual cortex. Axons leaving lavers 3 and 4B of the
primary visual cortex connect directly to many other areas: V2, V3, V4, V5, and the
middle temporal area (MT) among others. No higher area receives direct input from
the LGN or retina, so that all the information eventually used for perception must

pass through V1. (This is true in primates, but some other mammals have direct
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Figure 1-3: The organization of 32 visual areas as suggested by Fellerman and Van
Essen. Figure reproduced with permission from “Distributed Hierarchical Processing
in the Primate Cerebral Cortex” appearing in Cerebral Cortex.[2]
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connections from the LGN to higher arcas.)

Segregation of information for these two pathways may start as early as the retina.
Ganglion cells are divided into two classes M and P. The M ganglion cells connect only
to the two magnocellular layers in then LGN, while the P ganglion cells connect only
to the four parvocellular layers of the LGN. Further, the magnocellular layers of the
LGN connect to layer 4Ca of the primary visual cortex, while the parvocellular layers
connect to 4C3. It has been proposed that the segregation continues into layer V2
and beyond. The magnocellular system responds to motion and spatial relationships.
Cells within it respond poorly to color differences. Lesions in this area frequently
lead to the inability to track moving objects. The parvocellular system responds well
to color and appears to be necessary for the recognition of objects. It is unclear how
complete the segregation between the two paths is, and many important functions

appear in both of the paths.[1]

1.2 Physiology of the Primary Visual Cortex

Our goal is to model the development of the functional architecture of the primary vi-
sual cortex. This functional architecture is a set of response properties, and is distincet
from the underlying physical structure (anatomy) that was described in the previous
secetion. This section describes the physiology that we will be directly modeling,.
After a brief overview of the modern experimental methods used to study physi-
ologv, we shall describe ocular dominance and orientation selectivity, the two major
physiological responses detected in V1. We conclude with a summary of these prop-

erties for use in developing and evaluating models.

1.2.1 Experimental Methods

Our current understanding of the functional structure of area V1 comes from a long
series of experiments conducted during the past thirty vears. The overall picture has
expanded with the development of new experimental techniques to probe different

facets of the cortex. What we know about the primary visual cortex is strongly
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influenced by what these techniques can detect. It is therefore worthwhile to take a

brief look at them.

Microelectrode Recordings

One of the classic method for studying the physiology of the brain is the use of
microelectrodes.[10, 11, 8] This method requires exposing the brain of the subject and
inserting conducting electrodes into V1. The electrodes have an insulating coating
except for a small area at the tip. The change in voltage associated with individual
action potentials is then recorded while the subject views different stimuli. To ensure
that the retinal image is not moving relative to the visual field, where the stimulus
appears, the subject’s eve muscles frequently are paralyzed.

Much of what we know about the cortex comes from microelectrode recordings.
which offer many advantages: The full response of the cell, including the exact timing
of spikes. is available. Recordings from a single location can be made while the subject
views a number of stimuli. In principle, any number of stimuli may be used, and
points arbitrarily close together may be studied. In practice. however, microelectrode
recordings are made very slowly. One of the pioneers in the field, D. H. Hubel, noted
that attacking “such a three-dimensional problem with a one-dimensional weapon is
a dismaying exercise in tedinm. like trving to cut the back lawn with a pair of nail

as

scissors.”[10]

Nauta Degeneration Methods

When the cell bodies of neurons are destroved. the axons connected to those bodies
begin to degenerate. These degenerating axons can be marked by staining slices of
the cortex. Thus, by making selective lesions, the connectivity of neurons can be
studied. Although this method directly studies the anatomy (physical connections)
rather than the actual response of the neurons. it is still very useful for determining
the basic function of different sections. The original method was developed in the
1950’s by Nauta and others and was applied to the visual cortex by Hubel and Wiesel

in the 1970.[12, 13, 14] By lesioning the LGN, they were able to find where the input
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to V1 occurs.

Terminal degeneration studies allow much larger sections of V1 to be studied than
are easily accessible by microelectrode penetrations. In a single experiment, the entire
cortex can be sliced and stained. However, this method does not directly measure

the functional properties of cells, but rather their connectivity.

LeVay’s Reduced Silver Stain

Silver stains have long been used to study the density and size of cells in V1 as well
as the cortex in general. The six layers which compose V1 are easily detected with a
reduced silver stain of a vertical slice of V1. In 1975, LeVay discovered that staining
a horizontal slice of V1 revealed a pattern of dark bands separated by narrow light
bands.[3] In LeVay's method. silver stains most large and medium nerve fibers but
few cell bodies. Thus, the light bands are breaks in the generally high connectivity.
Like the Nauta degencration method, this approach studies anatomy rather than
cell response. In some cases, like ocular dominance, it can be used to find the bound-
aries of a region whose functionality was previously determined by microelectrode
penetrations. However, it also suffers from the same inflexibility as terminal de-
generation. It cau find functional boundaries only when they coincide with density

fluctuations.

Autoradiographic Injection

Certain radioactive tracers deposited near a neuron’s cell body are picked by the cell
and carried down the axon. Lasok and others used this property to develop another
method to trace the axons and connectivity of cells.[15] After radioactive materials are
injected at one point, the cortex is sliced and each slice studied for emissions. Shortly
after this method was developed, Grafstock refined it so that the tracers could pass
through a synapse.[16] In the mid 1970°s Wiesel and Hubel used this refined method
to trace connectivity from the eve to V1, passing through the single synapse in the

LGN.[17]



Like the Nauta degradation technique, the autoradiographic method studies con-
nectivity. Thus, it has many of the same strengths and weaknesses. Autoradiographic
methods, however, may be used in circumstances where making lesions is difficult or

undesired.

[**C]2-deoxyglucose Metabolization

Radioactive tracers deposited in blood sugar are available to all cells throughout the
body. This would not be useful for study, except that neurons take up increased
amounts of blood sugar with increased activity. Sokoloff and others developed a
method to measure neuronal activity by studying the effects of [1C]2-dcoxyglucose
metabolization.[18] After an injection of ['*C]2-deoxyglucose, the animal is exposed
to a particular stimulus for about an hour. (As with microclectrodes, the eves muscles
are paralvzed to fix the retinal image to the visual ficld.) Then the animal is killed
and the cortex sectioned and studied for radioactive emissions. In the mid 1970's
this method was applied to the primary visual cortex by Kennedy and others.[19, 11]
Unlike other methods developed after microcelectrodes, this method directly measures
neuronal activity. The respouse across the entire visual cortex can be measured to
any single stimulus.

The [MC]2-deoxyglucose metabolization method is complimentary to microelec-
trode pencetrations.  Microelectrodes allow the response of a single point to many
different stimuli to be studied. while ["C)2-deoxyglucose metabolization allows the
response of the entire cortex to a single stimuli to be studied. Since the animal must
be killed to study the results. further tests on the same animal are impossible. Still it
allows the response of the entire cortex to be mapped, a practical impossibility with

microelectrodes.

Optical Imaging

Recently, a significant advance was made with the development of voltage-sensitive
dves. These dyves are injected into the cortex in vivo, and change optical properties

depending on the electrical potential of nearby cells. Thus, they can be used to
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measure the rate of action potentials in V1. This was done originally by Cohen and
others in the early 1970's and repeated by Orbach and others in the mid 1980's.[20, 21]
The animal’s cortex is exposed and stained with voltage-sensitive dyes. Any point
on the surface can be studied with plmt.o diodes while the animal views any desired
stimulus. As averaging over time is necessary to reduce noise levels, information
about individual action potentials is lost. The method was significantly improved by
Blasdel and Salama, who in the mid 1980’s started using a video camera and digitizer
to image the entire cortex at once.[22]

A related method has been developed that relies on intrinsic optical properties.[23]
Active neurons cause changes in the surrounding blood volume, oxygen saturation
level in hemoglobin, and ion and water flow rates. All three of these effects change
the optical properties of the cortex and can be optically imaged just as voltage-
sensitive dyes are imaged. Optical imaging of intrinsic signals has much less time
resolution than imaging voltage sensitive dyves, but most experiments on the primary
visual cortex are carried over time intervals much longer then the resolution of either
method. Imaging intrinsic properties removes the need for applving a voltage sensitive
dye which may cause photodyuamic damage. and limit the duration of study on an
animal.[24]

Optical imaging combines the advantages of both microclectrodes and [MC]2-
deoxyglucose metabolization. Like ['C]2-deoxyglucose metabolization, the entire V1
can be studied at once. while like microelectrode recordings, multiple stimuli can be
used. This is particularly important in detecting regions that generically respond to
any stimuli. As such regions appear in all ['*C]2-deoxyglucose studies, it is impossible
to know if a responding cell prefers the given stimulus, or responds generically to
anything. This method cannot, however, be used to study the vertical structure of
the cortex, only the surface layers can be optically imaged. Furthermore, the optical
properties recorded are significantly removed from the actual rate of action potentials
in spikes per second.

This last point is worth further discussion. The process that leads from the actual

neural activity to the number eventually called orientation selectivity or ocular dom-
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inance is quite complicated.[23] First the neural activity stimulates a color change
in the dye by a process that is not well understood, making it impossible to deter-
mine the neural activity given the dye color. The dye is then imaged and digitized,
then averaged over both time and space, normalized spatially, combined with data
for orthogonal orientations, normalized again, and (in the case of orientation) com-
bined as vectors and subjected to a final normalization. Therefore, the distribution
of measured response strengths is very hard to interpret.

It is currently not possible to record from the same animal during different periods
of development. Extensive studies can be done with a single animal, but only over the
course of hours or days. To study development, a cohort of hopefully similar animals
is studied using a different one at cach stage. The technical problems preventing

prolonged studies of a single animal may soon be overcome.

Functional Magnetic Resonance Imaging and Positron Emission Tomog-

raphy

Functional magnetic resonance imaging (fMRI) and positron emission tomography
(PET) have greatly improved our understanding of the brain. These two techniques
rely on the same signal source as optical imaging. so it is tempting to consider ap-
plying them to the study of the primary visual cortex. Unfortunately, these tech-
niques currently have a resolution which is an order of magnitude worse than optical
imaging.[24] If the resolution of f\NIRI and PET is improved enough to map the fine
structure of visual cortex, they would provide a greatly less invasive method of study.
In addition. fMRI and PET would allow the study of deeper layvers of the visual

cortex, which cannot be optically imaged.

1.2.2 Ocular Dominance

The primary visual cortex is the first place where input from both eyes is combined.
(In the LGN information is strictly segregated by eve.) It is, therefore, interesting to

study ocular dominance, i.e. which eyve elicits a stronger response from a given site.
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In its simplest form, ocular dominance can be considered as a binary field, simply
indicating one eve or the other. A better representation is by a real number whose
sign indicates which eve dominates, while its magnitude indicates the strength of the
dominance. An ocular dominance value of 0 then indicates that a location responds
similarly to both eyes. (Both cases of a strong response to all stimuli, and no response
to any stimulus are assigned an ocular dominance of zero.)

Early work with microelectrodes revealed that the primary visual cortex is orga-
nized into vertical columns.[10, 8] All cells in a given vertical column tend to respond
to the same area of the retinal field, and possess the same ocular dominance and other
properties. Due to their similarity to features in the somatosensory cortex found by
Mountcastle, these features are called ocular dominance columns.[26] Cells in layer 4
arc predominately monocular, responding almost exclusively to one eve or the other.
Over half the cells in layvers 2, 3. 5. and 6 and binocular, but show a preference for the
eve that dominates layer 4 in that particular column. Nauta degeneration methods
and autoradiograplhic eve injection reveal the anatomical bésis for the monocularity
in layer 4. in that the fibers from the two eves are still completely segregated.

The ocular dominance columns are organized into ocular dominance bands, as
shown in Fig. (1-4). In the monkey, these bands have a relatively constant width of
0.4 to 0.5 mm. There is a small amount fluctuation in the widths within an given
animal and between animals. However, 10 svstematic changes in width occur between
different parts of V1. The pattern has been observed by all the methods discussed in
the previous soctiou.[14, 10. 3, 17, 19, 23] The exact pattern of bands varies with the
particular animal under study, but many features are common to all observations. All
the bands tend to intersect the boundary of area V1 at right angles, and all subjects
have bands that run in the same general directions. In the operculum, bands tend
to run from the edges of V1 toward the calcarine fissure. Once inside the fissure the
bands turn sharply as they run into bands coming from the perpendicular direction.

The bands meander, occasionally branching and terminating. We shall refer to the
internal order of the patterns as their persistence. Some aspects of persistence are easy

to quantifv. For example, the number of branches can be counted. F ig.' (1-4) has 190
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Figure 1-4: Reconstruction of ocular dominance bands in the monkey primary visual
cortex based on data from LeVay's reduced silver stain. (Scale shows mm.) In (a) the
operculum is shown, in (b) the roof of calcarine fissure, and in (¢) the leaves joining
the roof to the stem. The dashed line is the border between areas V1 and V2. The
dotted line shows places where the cortex is folded under itself. The dark lines in the
figure itself are the domain walls of the ocular dominance bands. Note that adjacent
bands never join. Figure reprinted from “The Pattern of Ocular Dominance Columns
in Macaque Visual Cortex Revealed by a Reduced Silver Stain™, by Simon LeVay
et. al. appearing in the Journal of Comparative Neurology. Copyright (©Wiley-Liss,
Inc.. Reprinted by permission bv Wilev-Liss. Inc.. a subsidiary of John Wiley & Sons.

Inc.[3]
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branches giving a density of roughly 0.6 branch points per mm? or 0.04 per (band)?
(the width of the band squared). This latter measure is more useful as the brain
undergoes significant shrinkage during LeVay's preparation. The number of branch
points. is the same as the number of end points. where a band dead ends. except
for corrections at the boundaries. Measuring the persistence on longer scales. 1.e.
the straightuess of the bands. is more difficult. Typically. when comparing different
results or simulations, we are forced to rely on the qualitative appearance.

The bands are separated by ~domain walls™, narrow intervals wlich respond to
both eves similarly. The form of the domain walls varies with the layver in the cortex.
In laver 4 the domain walls are verv sharp. Microelectrode penetrations generally
fail to record any cells with significant binocular behavior in layer 4, although there
i1s small reduction in ocular dominance extending perhaps 0.1 mm to each side of
a domain wall.[10] The LeVay technique reveals an arca of reduced fiber density at

the domain walls. This arca has 1/6 the width of the bands but doesn’t necessarily
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indicate reduced ocular dominance. In layers 2, 3, 3, and 6, the domain walls are very
gradual. Cells with zero ocular dominance occur near the domain walls and the level
of ocular dominance rises slowly to a maximum at the center of the band.[10, 23]

A pattern of ocular dominance bands superimposed on a retinotopic map presents
interesting organizational issues. This form of organization seems to suggest that at
some points in the visual field the brain processes mainly information from the right
eye, while at other nearby points the information comes mainly from the left eye. This
would indeed be the case if the retinotopic map and the ocular dominance columns
were completely independent. However, the retinotopic map is strongly effected by
the ocular dominance columns. Discontinuitiesin the retinotopic map occur on ocular
dominance domain walls. Each location in the retinal field is represented twice once
in a location of cach ocular dominance.[10]

Six weeks before birth. there are no anatomical signs of ocular dominance in
the monkev.[27] Physiological experiments are impossible before birth, but layer 4C
can be seen to be fully enervated by each eve. At one week before birth, periodic
fluctuations can be scen in the density of fibers in layver 4C. but the layer is still
fully enervated by cach eye. By six wecks after birth. full segregation is complete.[28]
This development takes place regardless of visual stimuli, i.c. even if the animal is
subjected to complete binocular deprivation. If, however, the animal is subjected to
monocular deprivation for a significant period during the first two months after birth,
the open eve is favored in ocular dominance. In a normal healthy animal, the fraction
of V1 covered by ocular dominance bands for each eve is almost identical. However,
if an animal is deprived of the use of one eve during critical postnatal periods, the
bands corresponding to the open eve become wider than those of the deprived eve.
This effect is permanent unless the monocular deprivation is reversed while still in
the critical period. After about two postnatal months. monocular deprivation has no
noticeable effect on ocular dominance.

During the first few months after birth. the cortex grows by at least 16% in
the monkev.[29] All the growth occurs in a direction perpendicular to the ocular

dominance bands.[30] The number of columns remains fixed, but their width increases
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by about 16%.

1.2.3 Orientation Preference and Selectivity

The primary visual cortex is the first place in the visual system where cells have
complex receptive fields, and not simply center-surround responses. In particular,
many cells in V1 respond strongly to line segments of a particular orientation. The
orientation that most strongly stimulates a cell is called its orientation preference.

Characterizing orientation preference is not as simple as ocular dominance. To
fully characterize a cell in V1 requires giving its response to all possible patterns of
light. (Even that gives only its static response, neglecting the effects of motion.) This
is much too large a space to examine. Instead, we characterize a cell by looking at
its response to orientation. In most cases, this means presenting an array of oriented
bars. Thus. response is reduced to a single function of angle for each location in V1.
This still leaves the choice of what function to measure: firing rate, oxygen usage,
voltage as determined by optical dyés. or some other property. Luckily, the response
measured in terms of any of these properties shows some key similarities. First, due to
simple geometrical constraints, it is periodic over 180 degrees. Second, for most cells,
it has a single pronounced peak. The width of the peak doesn't fluctuate significantly
from one location to the next.[31] This allows the response to be characterized by
a single angle, the orientation preference. Although the width of the peak remains
relatively constant, the Lieight of the peak does not. This height is a measure of the
strength of the preference called orientation selectivity.

To determine orientation preference and selectivity from optical imaging the fol-
lowing procedure is typically used. The response of a given location is measured for
several orientations (typically 4 to 12). The response for each direction () is multi-
plied by a unit vector pointing in the direction 26. These vectors are then summed.
The angle of the resultant is twice the angle of preference and the magnitude of the
resultant is a measure of orientation selectivity. Note that cells that respond strongly
to all orientations have a small selectivity, even though thev may have a large re-

spousc. The preference and selectivity can be found from A, the second component
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of the complex Fourier transform,

i e R (0,) (L1)

where {6,} are the angles recorded from, and R(#) is the response at angle §. The
complex angle of A, gives the preference, while it magnitude, | A2|, gives the selectivity.

A second method has been developed to characterize the orientation response using
electrode penetrations.[32, 33] This method finds orientation preference similarly, but
measures selectivity with the orientation selectivity index (OSI). The OSI value is

given by,
|42

OSI =100 x ————,
|A2] + Ap

(1.2)

where Aq is the zero Fourler ('()1111)()1’1(*i1t.

Like ocular dominance, orientation selectivity is organized into vertical columuns.
The same orientation preference appears in lavers 2, 3, 5, and 6, at a given horizontal
position. Cells in laver 4 do not show orientation preference, but instead still respond
to center-surround receptive fields. Orientation columns have been found by both
microelectrode penetrations and optical imaging.[11, 22] ["C]2-deoxyglucose metab-
olization can reveal the respouse of every location to a particular orientation but not
the preferred orientation at a particular location.

Microelectrodes reveal little about the organization of orientation columns but
optical imaging reveals a complicated pattern of respouse, as in Fig. (1-3). The most
prominent features are point singularities, where all orientations mect at a single
point, called “pinwheels™. Two varicties of pinwheels (positive and negative) exist
with the orientations rotating about them in opposite directions. The. number of
positive and negative singularities are almost nearly the same. The total density of
singularities in the monkey is reported as 8.1 mm™2.[34] Experimentalists have noted
three other features of interest: linear zones, fractures, and saddle points. Linear
zones are regions with a diameter of 0.5-1.0 mm where the orientation preference
changes slowly in one horizontal direction and remains constant in the perpendicular

one. They appear typically in regions away from singularities and locally look like a
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Figure 1-5: Two pairs of orientation and selectivity patterns. (a, c) Orientation pref-
erence and (b, d) selectivity in the monkey determined from optical imaging. In (a,
c) different colors encode different angular preference as shown in the key on the left.
In (b, d) lighter areas are more selective than darker ones. Figure reproduced with
permission from “Orientation Selectivity, Preference, and Continuity in the Monkey
Striate Cortex” by Gary Blasdel appearing in The Journal of Neuroscience.[4]

series of parallel orientation bands. Fractures are one dimensional singularities where
orientation preference rapidly changes. They tend to run between two pinwheels,
connecting them. Finally, saddle points are small areas where orientation preference
remains constant. Saddle points are bounded by four singularities that create the
region of constant preference.

The distribution of selectivities has not been studied as extensively as other prop-
erties, but it appears to be wide and not centered around the origin. In the ferret,

the distribution of selectivity appears to be uniform over a wide range of OSI values
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Figure 1-6: The distribution of selectivity in the visual cortex. The squares indicated
data for the ferret provided by Mriganka Sur’s group at MIT, while the line is a least
squares fit to the form rexp(—ar?) In this case a = —14.3.

from 15 to 65.[33] Small tails extend to lower and higher values. Our own analysis of
optical imaging data in the ferret provided by Mriganka Sur shows a distribution well
fitted by a form r exp(—ar?). as shown in Fig. (1-6).[31] Interpretation of this data is.
however, complicated by the rather convoluted definition of selectivity, as discussed
in Sec. (1.2.1).

Orientation columns have been observed shortly after birth in the monkey.[35)]
At three and a half weeks, when optical imaging can be performed, a full pattern
comparable to adults is visible. The density of pinwheels remains roughly constant
as the monkey matures, despite the fact that the cortex grows by about 16%.[34]
In order to maintain this deunsity more singularities must be added either by entry

through the boundaries or by creation of positive and negative pairs.
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1.2.4 Coupling between Ocular Dominance and Orientation

From the first detection of orientation and ocular dominance columns, coupling be-
tween the two has been of great interest. Initially, data only presented opportunity
for conjecture.[14] Optical imaging has allowed the collection of enough data to study
this issue in depth. The fractures and singularities in the orientation columns occur
more frequently in the center of ocular dominance bands, rather than near domain
walls.[22, 4] This alignment causes lines of isoorientation to tend to intersect ocular
dominance domain walls at right angles. In lincar zones, lines of isoorientation are
roughly 3 to 4 times more likely to intersect domain walls at the nearly perpendicular
(72-90 degrees) rather than nearly parallel (0-18 degrees).[34] In all other regious,
except those near singularities, the tendeney to cross perpendicularly is still present,
although reduced in degree.

Fourier transforms of orientation and ocular dominance maps reveal a similar
tendeney toward orthogonality. Two dimensional Fourier transforms of ocular dom-
inance fields reveal two clusters of modes displaced at equal distances (roughly 1.22
mm™ ") from the origin. The line running through the two clusters is aligned to the
axis of repetition for ocular dominance. (As only a small region of V1. several mm?, is
transformed. the bauds have a locally preferred direction.) Two dimensional Fourier
transforms of orientation prefercuces in the same area reveal a nearly circular ellipse

with a diameter near 1.47 mm™ "

However. the ellipse does have a detectable ma-
jor axis. which tends to be perpendicular to the corresponding axis of repetition for
ocular dominance.[34]

The assigned maguitudes of both ocular dominance and orientation selectivity
have arbitrary units, with no absolute meaning. Still. it is possible to study the
ratio of average ocular dominance magnitude to orientation selectivity. This ratio
increases with age. At three and one half weeks after birth it has been recorded
as 0.92 but in mature animals it is roughly 1.36.[30] Thus, ocular dominance either
reaches maturation first. or grows more slowly than orientation in the final stages of

maturation.
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1.2.5 Summary of Characteristic to be Modeled

We have enumerated a large number of properties of the primary visual cortex. It is
useful to summarize those that will be of interest when modeling the cortex, and we
have listed them in Tbl. (1.1).

There are several features not listed in this table that are frequently discussed
in conjunction with cortical maps. These include linear zones, saddle points, and
fractures. Linear zones will appear in any pattern of angles, so their presence offers
little insight. It may be possible to characterize what fraction of the area is in linear
zones, but we believe there are better ways to measure the same effect. Similarly
saddle points and fractures appear in almost all fields with pinwheels. Again. we
could measure the size of saddle points and the rate of change in fractures, but such
characterization involves many arbitrary decisions. A better way may be to study
the distribution of singularities (pinwheels), focusing not only on its density, but also
on correlations among like singularities and between opposite ones. This approach

would describe the same features. but in a much more robust manner.

1.3 Previous Models of the Primary Visual Cor-
tex

Since the discovery of ocular dominance aud orientation columns in V1. many models
of the development of these features have been proposed. All these models attempt
to show how a limited number of simple rules or interactions generate the patterns
found in the cortex. Most of these models do not attempt to explain how the cortex
functions, i.c. how it actually identifies objects. rather they focus on the development
of the functional architecture.

The models can be placed into four broad categories: structural models. static
filter models, evolving field models. and neural network models. Structural models
attempt to identify organizational principles without specifving mechanism for their

development. Filter models describe the structure in terms of filtered noise. Field
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Table 1.1: Important properties of ocular dominance and orientation to be considered
when evaluating and developing models.

Ocular Dominance Bands
- Bands of width 0.4 to 0.5 mm
- Some random fluctuations in width
- Random branching and ending with a density of ends
and branches equal to 0.04 per (band)?
- Global pattern resembling that found by LeVay, sce Fig. (1-4)
- Bands teud to interseet the boundary at right angles
- Domain walls are sharp (wide) in layer 4 (other layers)
- Cortex grows by 16% perpendicularly to bands
- Binocular deprivation has little effect
- Monocular deprivation during a critical period narrows suppressed bands

Orientation Columns
. . . L . R IS . ) _2
- pattern of orientation preference with a pinwheel density of 8.1 mm
- both types of pinwheels in equal numbers
- pattern of pinwheels shows global disorder
- constant pinwheel density during development despite cortex growth by 16%
- wide distribution of selectivity
- critical period of development from prenatal week 6 to post natal week 6

Coupling
- pinwheels tend to occur in the center of ocular dominance bands
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models assume the existence of ocular dominance and orientation fields, and attempt
to show their development from some random initial condition to the observed final
state. Finally, neural network models attempt to show explicitly how ocular dom-
inance and orientation preference arise from the center surround cells in the LGN.
This choice of categories is somewhat arbitrarv. Other authors have chosen different

classifications.[36, 37]

1.3.1 Structural Models

Structural models were developed shortly after the discovery of orientation preference
and ocular dominance. These models used the then limited data to extrapolate
general organization principles. Structural models have no mathematical algorithms
for ongoing development, and make no claims as to the organization of the cortex
before maturation. Despite these limitations, structural models are important to
understand, as the progenitors of later attempts. They have had significant impact
on the development of models and even on the direction in which experimental work

proceeded.

Icecube Model

The first structural model was developed by Hubel and Wiesel.[10] After noticing
regular bands of ocular dominance, and what appeared to be bands of orientation
preference, they proposed the simple organizational structure, depicted in Fig. (1-7).
Ocular dominance bands run in one direction while orientation columns form bands
in another direction. Despite the appearance of the figure, Hubel and Wiesel did not
suggest that orientation and ocular dominance bands crossed at right angles. Nor,
did they suggest that the orientation bands were straight. Locally in linear regions.
the icecube model is accurate. However, globally it ignores both the pinwheels. and
the global disorder obvious in the modern patterns of orientation, as in Fig. (1-3).
The icecube model embodies two organizational principles, continuity and diver-

sity. that have long been believed to be important in V1 functional architecture.[38,
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Figure 1-7: The icecube model developed by Hubel and Wiesel. R and L indicate
ocular dominance columns responding to the right and left eve. Regions with a small
diagonal line indicate orientation bands. This figure is not meant to imply that ocular
dominance bands cross orientation bands orthogonally or that the bands are straight.

39] Continuity reflects the observed fact that nearby cells tend to have similar ori-
entation preference and ocular dominance. This is not true near singularities in
orientation prefereuce, but is true over much of V1. Diversity reflects the need to
fill feature space as completely as possible, so that all possible combinations of lo-
ation, ocular dominance, and orientation, are represented. Otherwise some kind of
“perceptional scotomata” may result where certain objects can not be scen in certain
parts of the visual ficld.[40] The simple structure of the icecube model ensures both
continuity and diversity.

The icecube model led to the development of the concept of a hypercolumn. a
complete sct of either orientation or ocular dominance columus. Fig. (1-7) shows one
of each. The notion of hypercolumns is very appealing as it breaks V1 down into
small functional modules. Unfortunately, the cortex does not appear to have any
discrete modules. The existence of singularities in orientation preference is not easily
reconciled with modules of orientation. Furthermore, all attempts to find anatomical

evidence for modules, or to measure their typical size have been unsuccessful.[41]
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Figure 1-8: (a) The pinwheel model as originally developed by Braitenberg and Brait-
cuberg. The orientation is linked to the isoorientation lines. Singularities with +360°
and —180° are present. (b) The pinwheel model as modified by Gotz. Orientation is
‘10 longer bound to isoorientation lines, and £180° singularities are present.

Pinwheel Model

A second structural model. the pinwheel model, incorporates the singularities ob-
served in orientation preference. The original form was suggested by Braitenberg
and Braitenuberg using ouly data from microelectrode penetrations.[42] They noted
that the observed data for orientation preference were compatible with organizations
other than simple parallel bands, as in Fig. (1-8a). While the original pinwheel model
required the preferred orientation to be tangential to lines of isoorientation. later re-
finements removed this constraint as shown in Fig. (1-8b).[43]

The modified version of Fig. 1-8b is qualitatively correct in many ways. It shows
linear regions, saddle points, and pinwheels. It incorporates pinwhecls of both ori-
entations, and predicts the 1:1 ratio observed between them. However, this simple
model does not contain any global disorder. The pattern of pinwheels is perfect and
orderly on long scales. The spacing of the pinwheels is constant. Furthermore, this
model places too much stress on hypercolumns, and divides the orientation pattern

into discrete modules.
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1.3.2 Static Filter Models

Several models have been developed that use bandpass filtered white noise to gen-
erate cortical maps.[44, 45, 46] These models generate patterns by combining simple
approximations of the observed Fourier spectra with randomness. As many of the
creators of bandpass models empliasize, the procedure is mathematically equivalent to
a random source (providing disorder) convoluted with a filter (providing continuity).
Ocular dominance and orientation are modeled by three fields. Two ficlds are
combined to give orientation preference and selectivity, while the third indicates oc-
ular dominance. The fields, f;(7). are initialized with small random values. either
taken from Gaussian white noise centered at zero with some arbitrary variance. or
from some other procedure. Eacli field is then separately convoluted with a bandpass

filter.
G F) = hi(F) * fi(F). (1.3)

The passbands are clhiosen to resemble the Fourier characteristic of the patterns in
experiment.[45] For orientation, the filters are annuluses in real space. Grossberg and
Olson use a bandpass filter made from the difference of Gaussians[46],
il il

2T £
——— | —CXp | — 5
257 P\

hi(T) = exp (1.4)
For ocular dominaunce. the filter is typically two clusters eveuly offset from the origin.
This can be generated by multiplying the above difference of Gaussians filter by a one
dimensional exponential. again mimicking the observed Fourier pattern. Orientation
preference is given by tan™'(g; /¢2). while orientation selectivity is given by /g7 + ¢3.
A third field. g3. desceribes ocular dominance.

This model has the advantage of being computationally very fast. The final state
is reached in a single step. There is no need to iterate equations repeatedly. or worry
about the effects of discrete time steps. Unfortunately, this means that develop-
ment is neither observable, nor alterable by changing conditions at some point before

maturity. Ouly the final patteru is available for study.



The ocular dominance patterns generated by these models show parallel wandering
and brancling bands as seen in the monkey. The average width of bands can be easily
adjusted by moving the location of the pass band. The persistence of the bands can be
varied by changing the eccentricity of the annulus pass band, while the fluctuation in
the width of the bands can be controlled by changing the pass band width. Persistence
and width fluctuations do not appear to be completely independent, as increasing the
width fluctuations seems to also decrease the persistence.[44]

Other features of ocular dominance are not modeled quite so well. The generated
ocular dominance patterns are limited to a single global orientation. This can be
alleviated by making the parameters of the filter slowly change with position, but
this creates a new problem of modeling the changing parameters. Due to the nature
of the model, neither effects of the boundary, nor those of deprivation can be studied
casily. They can be incorporated to some extent by modifying the filter parameters
near the boundaries, and by incorporating a bias toward one eve in the filter or in
the initial conditions. Unfortunately, information on the distribution of selectivity
and profiles of the domain walls generated by this model have not been published. so
comparison with the observed data is not possible.

These models also generate orientation patterns similar to those observed experi-
mentally. Both types of singularities exist in equal numbers as expected. In addition,
linear regions. fractures. and saddle points can all be seen. The density of singulari-
ties can be adjusted by varving the diameter of the aunulus forming the pass band.
although detailed studies of this effect have not been reported. The distribution of
selectivity has also not been reported to compare with experimental results.

Grossberg and Olson[46] are able to generate the observed correlations between
orientation and ocular dominance by correlating only the initial inputs, but still using

independent bandpass filters. Their initial conditions are given by,

H(T) = cos(a(F)) cos(3(1)).
f2(T) = sin(a(T)) cos(3(T)), (1.3)
f(X) = sin(3(7)),
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where o(r) and 3(¥) are random angles assigned to every point 7. These initial con-
ditions explicitly incorporate an inverse relationship between the magnitude of ocular
dominance and orientation selectivity. | fos|* +|fon|* = 1. In this case, pinwheels tend
to form in the center of ocular dominance bands and i1soorientation lines tend to cross
ocular dominance domain walls at right angles. However, these tendencies are not as
strong as seen experimentally. The success of this type of model is not surprising. as

it starts with the correlation function taken from the experimental data.

1.3.3 Evolving Field Models

This class of models treats orientation and ocular dominance as fields, assigning
values to cach at every point in a two dimensional space. The fields are then updated
according to some specified rules which may involve couplings between them. These
models are computationally fast. but do require repeated iteration. The number of
variables scales linearly with the numnber of locationus modeled. This allows relatively
large arcas to be studied with a relatively fine scale of discrete points which do not
necessarily correspond to individnal neurons. Rathier. the scale 1s chosen so that the
spacing of poinuts in the mesh is less then the finest feature to be modeled. This
1s a great advantage. as the two dimensional spacing between cells is on the order
of a few microns. while the features of interest vary on the scale of hundreds of
microus. The price paid for this computational case is the loss of information about
neural connectivity, These models predict that a certain region will have a particular
orientation preference, but they give no clue as to the synaptic wiring that actually
causes the cells to respond to that orientation.

Two such models will be described here. The first uses reaction-diffusion equa-
tions to update the fields. The second employs dynamics motivated by other pattern

formation problems.
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Reaction-Diffusion Model

Reaction-diffusion models of pattern formation date back to the pioneering work of
Turing in the 1950s.[47] It has been suggested for some time that reaction-diffusion
might plav some role in the development of V1:[39] a recent implementation is by
Bhaumik and Markan.[48]

Orientation is modeled by a pair of diffusing quantities, X and Y. Orientation
preference is then given by tan~!(Y/X), while orientation selectivity is given measured

by X2 4+ Y2, Orientation develops according to a simple reaction diffusion equation,

oW o (. “Trxr 2
— =V (n —wTw) +pv W, (1.6)
where.
) X
W= . (17)
Y

Ouce the orientation map has reached a desired state, iteration of this equation
is suspended, and ocular dominance is modeled. Ocular dominance is represented by
a single field, Z. The magnitude of Z represents the strength of the dominance and
the sign of Z indicates the preferred eve. Ocular dominance develops according to
reactiou-diffusion equations coupled to the now static orientation field.

9z _ (1-wTw)z(r-2z*+Dvz (1.8)
ot
Ouce the ocular dominance map reaches a desired state, its iteration is also stopped.

The reaction diffusion model results in orientation patterns which contains both
types of pinwheels in equal ratio. However, the density of pinwheels continues to fall
as the pinwheels of ()i)p()SiT(‘ circulation annihilate each other. If the simulation is not
interrupted. a uniform field without any pinwheels is obtained. The distribution of
selectivities is tyvpically much narrower than seen experimentally. It does, however,
follow the observed pattern of increasing selectivity with time. The initial distribution

is sharply centered around nearly zero selectivity. This sharp peak then moves to
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higher values of selectivity,

The model gives regions preferring each eve, but these regions do not form a
pattern of stripes as is seen in the monkey. (In mammals other than the monkey,
the pattern may not have stripes.) Work has not vet been done to see if this model
can reproduce other features desired in a model of ocular dominance. The coupling
with the orientation map causes the ocular dominance domain walls to prefer linear
regions and isoorientation lines to cross domain walls at right angles. However, the

results reported so far are not conclusive.

Swindale’s Model

Swindale has developed a model of the primary visual cortex based on ideas from
Hubel and Wiesel, and insights from pattern formation.[39, 49. 50] This model is the
most similar to the one we have developed, sce Chap. (3). The initial motivation
came from Hubel and Wiesel's suggestion of a competition between efferents from
the left and right eves. Swindale also incorporates from work on pattern formation
i zebras, feathers, and mauy species of fish.

An ocular dominauce field, n (7). is used to measure of the density of svnapses in
laver 4 connected to cach eve. The density of right eve synapses is (1 — n) /2. while
that of left eve svuapses is (1 4+ n)/2. Values n = %1 indicate monocular regions:
the total density is constaut. The deusity of synapses at cach point interacts with
the densities in the surrounding arca. Up to a distance of 200 pm. svnapses from
one eyve inhibit synapses from the other eve, while at separations of 200 g to 600
g they reinforce growth of svuapses from the opposite eve. This is expressed as a
convolution in the dynamical equation,

on(7)

20 = 4 50 5= ), 19

where K is zero unless monocular deprivation is taking place, and the kernel of the
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convolution is the differences of Gaussians,

2 -} 2
wn(r) = Agexp [ ——— | = B, exp _lr=h)
tn, dn,_,

(1.10)

The non-linear factor is included to limit the density of right and left eye efferents
to non-negative values. Swindale suggests that long range interaction is mediated
by chemicals diffusing through cortex or results from the horizontal synaptic connec-
tivity: “that two synapses are in contact with the same postsynaptic cell, that they
belong to the same axon, or that they arc driven by the same area of the retina.”[39]

Orientation preference and selectivity are encoded in Swindale’s model as a com-

z|. The

[1s)

plex number, z = |z|e'?. The preference is given by ¢/2, and selectivity by
evolution of orientation is controlled by an equation similar to the one for ocular

dominance.

=g: (2(F)*xw:) (1 - [z]), (1.11)

where w; is a convolution kernel identical in form to w,, but potentially with different
parameters. Swindale later expanded the model to include a coupling between ocular
dominance and orientation.
0:(7)
(X N e X
—— =g (2(F) *xw) (1 = [nxw,]) (1= |z]). (1.12)
ot
where ¢ controls the strength of the coupling. A reciprocal coupling was not included
in the ocular dominance dynamics as it was not needed. The form of the coupling was

chosen because

n % w,| is largest in the center of the ocular dominance stripes. The

other reasonable choice

n| was not used as |n| reaches a constant value everywhere
except directly on the domain walls in their simulations. This is consistent with a
model of laver 4.

Swindale’s model shows most of the observed features in V1. It produces a pattern
of ocular dominance bands. whose width can be adjusted by changing d,,, and d,,.
Persistence and width fluctuations can be modified also by changing w,. Although

a detailed study of this effect was not made, Swindale notes that strengthening the
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negative portion of w, increases persistence and decreases width fluctuations.[39] The
reverse takes place when the positive portion of w, is strengthened. Furthermore,
allowing open boundary conditions naturally leads to bands that meet the edge per-
pendicularly. The domain walls are all very narrow, and the final distribution of |n|
is almost uniform, as is seen in layer 4.

The expansion of the cortex is modeled by changing the spacing between lat-
tice points, resulting in stripes that tend to run parallel to the direction of the
expansion.[39] In reality, the expansion occurs entirely perpendicularly to the di-
rection of the bands, a fact unknown at the time of the simulations.[30] The attempts
to model monocular deprivation by using non-zero value of K, lead to difficulties.
Rather than alternating narrow and wide stripes. islands of the suppressed eve form
in a ficld of the open eve. Narrow and wide stripes are formed by combining monoc-
ular deprivation with cortical expansion, but here as before the stripes run in the
wrong direction.

The orientation field develops a pattern of pinwheels of both circulations in equal
numbers. as desired. The patterns show some of the features found in the experimen-
tal patterns: linear regions, saddle points, and fractures. Swindale notes, however,
that the fractures are not true discontinuities but just areas of rapid change. As the
simulation coutinues. the mean of the distribution of selectivity increases. eventually
reaching a value of 1 evervwlere. It is suggested that some outside process stops
development before this takes place.

For significantly large values of the coupling, ¢ in Eq. (1.12), the orientation
singularities tend to occur in the center of ocular dominance bands. To cusure this
effect, the development of the orientation field has to be slow enough (small g, /g,)
that the orientation ficld does not form completely before ocular dominance bands.
Swindale did not explicitly study if lines of isoorientation crossed domain walls at right

angles, but he does note that fractures tended to cross domain walls perpendicularly.



1.3.4 Neural Network Models

By far the majority of the models of V1 employ neural networks. While the filter
and field models attempt a macroscopic description, the neural network approach
attempts to microscopicly model the actual connectivity of neurons.

Neural network models focus on a much shorter time scale than macroscopic ones
which only simulate development on a scale of days or weeks. By contrast, micro-
scopic models simulate the response to stimuli occurring on the scale of milliseconds,
roughly 8 orders of magnitude less than the developmental scale. Computational
limitations prevent neural network models from simultancously simulating both mi-
croscopic response and macroscopic development. Most models choose a relatively
small number of representative stimuli. The most ambitious can typically achieve
ouly a ratio of 10" between response and developmental time scales.

In broad terms, the models ave relatively simple: a stimulus is presented to the
network, to which it responds according to a preexisting set of model synapses. The
svnapses are then modified based ou the response using some sort of Hebbian learning
rule. These steps are repeated many times to simulate development.[51]

Neural network modelers must do significant work to obtain many properties that
arc assuiied in the more macroscopic approach. For example, in the carly 1980°s
Kohonen developed a network that showed self-organizing topological maps.[52] This
1s needed to establish a retinotopic map in V1, a fact implicitly assumed in every
field model. Much work on neural network models is also required to demonstrate
the existence of orientation or ocular sensitive cells.[53]

A typical neural network model, such as the one developed by Malsburg in the
carly 1970's, has two lavers of neurons.[54] Each layer is placed on a two dimensional
lattice. Omne layer acts as input, while the other takes up the processing and output.
The input layer, {4;(t)}. is a retinotopic map of visual space. If a horizontal bar is
the stimulus, then the neurons lving in a horizontal bar are active while the rest are

dormant,

A if cell ¢ is in the stimulus pattern.
Ailt) = (1.13)

0 otherwise.
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Each cell in the input laver is initially randomly connected to a large number of neu-
rons in the processing layver by weighted synapses. A strength s, connects input cell
A;(t) to processing cell Hi(t). The neurons in the processing laver, {H(t)}, deter-
mine their activity by summing weighted inputs from the input layer, and neighboring

neurons in the processing layer, as

I N M
%Hk (1) = —oxHe(t) + > pu® (Hi(t) — 6) + > sinAi(t), (1.14)
h =1 i=1

where o4 is a decay constant for activity in cell &, 6, is a threshold for activation of
cell 1, and A is the number of inputs connected to each cell. Each processing cell is
connected to N other processing cells by weights py. A fixed point in Eq. (1.14) gives
the response in layer Hy (t) to the stimulus presented in A4, (#). After the response is
established, synaptic weights connecting active cells in the input and response lavers
are increased. Then all the weights are normalized. This simulates the development
due to the presentation of a single stimulus. The weights connecting cells within the
processing layer and the threshold values of the processing cells. do not change.

Other neural network models differ in several ways from Malsburg's, but retain
the same principles. Some models vary the number of weights changed, number of
layers. initial conditions. type of stimuli used, and many other details.[38. 33, 56, 57]
Other models don’t train directly with patterns, but with spatial correlations.[58, 59)

Most neural networks concentrate on the development of orientation columuns
rather than ocular dominance. They successfully show the development of orien-
tation specific cells, and the clustering of these cells into regions preferring a single
orientation, sometimes forming a pinwheel pattern. Unfortunately, the large com-
putational requirements, and the large number of parameters, make it difficult to
compare with the details of the structures observed experimentally.

A successful neural network model provides a detailed description of the connectiv-
ity, and the role of individual neurons. However, analytic calculations are difficult due
to the long range and non-uniform interactions, while simulations can only explore

space-time domains many orders of magnitude smaller than the actual cortex and
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its development. Furthermore, the actual cortex contains hundreds of different types
of cells, feed-back connections from extrastriate areas, and individual neurons much
more complicated than their mathematical models. A neural network model may find
a mechanism that can explain the development, but there is no guarantee that the
mechanism is actually used in the cortex. Still, the types of mechanism found may
be of great importance in designing computational networks, and providing insight

into how the cortex functions.



Chapter 2

Macroscopic Modeling

2.1 General Methodology

Understanding the emergence of macroscopic behavior from the interactions of its
microscopic compounents is the challenge of statistical mechanics. In the carly part
of this century Landau and Ginzburg developed a formal macroscopic approach to
study phase transitions.[60. 61. 62. 63] Noting that several different phase transitions
are modeled by similar Tavlor expausionus of an order parameter, Landau suggested
that perhaps all phase transitions can be described in a similar mauner. The method
that grew out of this observation is known as the Landau-Ginzburg approach.

The Landau-Ginzburg approach deals only with macroscopic quantities. avoiding
the complications of the underlying microscopic structure. It uses ideas of symmetry,
continuity, stability, and locality to create simple equations that depend on phe-
nomenological parameters. The values of these parameters are not determined from
the approach, but are fit to experimental results. When successful, this approach
generates equations that can model a wide range of phenomena by varying a few

phenomenological parameters.



2.1.1 Length Scales

Most collective phenomena occur at length scales that are significantly longer than
the size of the constituent parts of the system. The svstem changes slowly on these
macroscopic length scales. For example, a gold-silicone alloy may separate into regions
of pure gold and pure silicon with typical sizes of a few microns.[64] The pattern of
these regions can be described on a scale of microns, even though the underling
lying lattice has a spacing in angstroms. Similarly, a wide variety of superconductors
exhibit coherence lengths and London penetration depths of a few microns while the
spacing between atoms is much smaller.

An ab initio microscopic approach has to start from the coustituent particles
and their interactions, from which the long scale behavior has to emerge. Such an
approach is frequently quite complicated as the emergent properties are separated
by many orders of magnitude in time and length scales from the input interactions.
Furthermore. since it starts with the details of a particular svstem, it is unique to
that system.  For example. to study a gas with a microscopic approach requires
considering a large collection of particles moving about and colliding. Microscopicly
modeling superconductors or binary alloys requires simulating the interactions among
a huge number of individual atoms. As, these interactions are fundamentally quantum
mechanical. this undertaking must proceed through the many-particle wavefunction.

By contrast, the macroscopic approach starts with coarse graining the system to
a length scale intermediate between the macroscopic scale of the collective behavior
and the short scale on which its components interact. The system is then described
by a few collective ficlds that fluctuate on the long length scale. A binary allow can be
characterized by the density difference, X () = pa(¥) — pp(T) where ps(F) and pg(T)
are the density of components A and B, respectively. The macroscopic density, X, ()
is coarse grained to remove all fluctuations with frequencies higher than A. Since for
a large range of A the macroscopic density remains unchanged, the subscript A is
frequently dropped. This macroscopic density is a smooth. analytic function, unlike

the microscopic density function which indicates if a particle is present exactly at



position I,

Xuie =Y (8@ -1 - 8(F - 7)) (2.1)

i=1
where {24} and {zP} arc the positions of the A and B particles, respectively. The
macroscopic density can be obtained from the microscopic one by averaging over
length scales 1/A.

Macroscopicly, a superconductor can be described by the wave function of the
Cooper Pairs ¢'(7). This density of the superconducting component is given by
ne(Z) = |¥(F)|2. It is necessary to use the wave function rather than n,(Z) to accu-
rately reflect the quantum nature of the superconductivity. This order parameter is
coarse grained in a nmanner similar to the above density.

Sometimes it is possible to derive equations which describe how the macroscopic
system develops directly from the microscopic approach. For example. macroscopic
superconducting equations have been determined from a microscopic approach by
Gor'kov.[63]. but it is a long and laborious journey. Often it is desirable to take a
phenomenological approach and determine the equations without appealing to the
underlyving microscopics. In this case symmetries can guide the determination of the
equations. which have a number of phenomenological parameters that must be fitted
to experiment. When the macroscopic approach is successful, the number of param-
cters is small. Changing the microscopic conditions. e.g. the type of particles in our
alloy or superconductor. should only require changing the values of the phenomenolog-
ical parameters. Since the equations are determined by symmetry, seemingly different

svstems that have the same sy 'tries are governed by similar equations.
vstems that have the same symmetr Ic gov d by 1 t

2.1.2 Analytic Macroscopic Equations

We have learned to expect the coarse grained order parameters and evolution equa-
tions to be smooth, analytic functions. Non-analytic behaviors and sudden changes
are removed by the averaging procedure. The governing equations are then expressed
by the first few terms of a power series. and a finite number of derivations. A wide

varicty of phyvsical systems are successfully deseribed this wayv, from superfluids and
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superconductors to ferromagnets and binary alloys. For example, in the case of the
binary alloy, the microscopic density is a highly non-analytic function, while the
macroscopic density is smooth and well behaved. The smoothness of the macroscopic
system usefully limits the types of functions that need to be considered in governing
equations.

Some existing macroscopic models of the visual cortex use interactions which
are not analytic and thus not suited for the macroscopic approach. For example,
Swindale’s model couples the orientation at one point to the ocular dominance over
a wide arca, see Eq. (1.12). Biologically, it may be plausible for the orientation at
one point to interact with the ocular dominance in a complicated manner through
a kernel function, and such coupling may give desired results. However, this type
of interaction should not be needed in a macroscopic model, where coarse graining
should result in smooth. analytic interactions. While it may give desirable results, it

adds many parameters to the model.

2.1.3 Cost Functions

The principle of cnergy conservation is at the foundation of our understanding of
plhysical svstems. In the microscopic domain, the energy of a system is calculated
as a Hamiltonian which sums the potential and kinetic energies of the individual
constituents (atoms. or electrons and nuclei. depending on the level of detail). At
the macroscopic level, the appropriate quantity is the internal energyv introduced in
the framework of thermodynamics. At this level of abstraction the sum of incoherent
kinetic energices is replaced by the phenomenological quantity heat.

Another aspect of the macroscopic (thermodynamic) perspective is the role played
by the environment. While in an isolated atom, composed of electrons and a nucleus,
the energy is strictly conserved, for a spinning top the energy is dissipated through
interactions with the environment. Such dissipation leads to states of lower energy,
until eventually the top reaches an equilibrium states with no spin, setting on its side.

The lowest energy state does not characterize the equilibrium of a system coupled

to the environment in all cases. For example, a system held at a constant temperature
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does not seek a minimum energy, which would require losing all its thermal energy.
Instead, it seeks a minimum of the Helmholtz free energy. For other systems energy
is generalized to enthalpy or Gibbs free energy, but in all cases we discover that the
syvstem evolves so as to minimize some generalized energv. To make contact with
concepts used in neural models, we call this generalized energy a cost function.[51]
In some cases the cost function of a system can be calculated from a microscopic

approach. For the binary alloy with N particles the interaction energy is given by,

E=3 Vap(@! = T7)+ > Vaa(# = 7))+ 3 Vas(# - 27).  (2.2)
ij <ij> <ij>
where V(7). Vi4(F). and Vgp(T) are the potentials between particles. This energy
can be simplified by placing the particles on a lattice of fixed sites and looking only
at interactions between adjacent sites. Such simplifications, already throw out much
microscopic detail such as the interaction between electrons. and the motions of the
nuclei.

In the macroscopic approach, a phenomenological energy is constructed as a func-
tion of the order parameter. based on a few general principles: The function should
be translationally invariant. so that moving the entire system a uniform amount has
no cffect. To ensure translational invariance. the cost funetion should not depend
explicitly on 7 only implicitly through the order parameter, X (Z). Due to the aver-
aging process. the cost function should be an analytic function of X (7). as discussed
in Sec. (2.1.2), represented as a power series in X () and its derivatives. For most
physical systems the cost function is local, as most interactions in nature occur pri-
marily between nearby particles. This implies that the cost function should rely on
only a few derivatives of X(Z). Many systems are also rotationally symmetric, so
that rotating the entire system does not change its cost function. In this case terms
such as b - VX (¥) arc prohibited. Systems subject to environmental influences such

as an external magnetic field. may not by rotational symmetric. Subject to these



restrictions. the cost funcetion must have the form.

FUX(P))) = / B [0 X (F) 4+ X (7 + asX (D) + -
+ b VEX(F) + ba(VX (7)) + -] (2.3)

The terms in the cost function are further limited by the svmmetry of the svstem. If
the cost of the binary allov is unchanged under globally exchanging A and B atoms,

Le. X(7) - =X (%), then no odd terms in X () can be present leaving only,

FUX@D = [ [e2X (3 + X (@) +--
+ b (VX)) 4] (2.4)

C . e > ) D
The next allowed derivative terms are high order in X (7)) or V such as (V=X ()~ or
- D S \D 2 N =y . 2 . .
X(F)2(VX(T))? The term X(F)VZX(T) is equivalent to (VX ())? under integration
except for surface terms. If the order parameter is complex number or a vector. the

cost function is a series in | X (F)]? and the lowest order derivative term is |[VX (7)),

2.2 Equilibrium

A system is in equilibrium when its macroscopic properties do not change with time.
The system constantly fluctuates on the microscopic scale as its individual compo-
neuts move about and interact. but in equilibrium these microscopic changes do not
effect the macroscopice description.

Equilibrium states are particularly interesting because they give stable long term
behavior. Ouce an isolated system enters an equilibrium state, by definition, it re-
mains there. No physical system ever achieves this ideal equilibrium, as no svstem is
truly isolated from the rest of the universe. In practice, equilibrium means that the
system is stable on some long time scale appropriate to a set of observations.

A system in equilibrinm is characterized by a few macroscopic variables. A gas.

for example, may be characterized by its temperature, volume, and pressure. A
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binary allow can be described by its temperature and the difference between the
constituents’ densities, X, while a super conductor is described by the temperature,

applied magnetic field, and the superconducting order parameter.

2.2.1 Phase Transitions

Small changes in some of the macroscopic variables of a system can induce great
changes in others. For example, cooling a gas through its boiling point causes changes
in volume and pressure as the vapor condenses. Thisj)oint of qualitative macroscopic
change is called a phase transition. Each of possible homogeneous behaviors, e.g. the
gas and the liquid, are called phases.

The study of phase trausitions is a particularly challenging problem in statisti-
cal mechanics as qualitative changes takes place in the macroscopic behavior of the
svstem, while the underlving microscopic Hamiltonian has changed very little. De-
scribing exactly how the collective behavior changes requires insight over a large span
of length an time scales.

Phase transition are generally classified into first or second order. First order
transitions are marked by two phase coexistence, and the presence of latent heats. In
a first order transition two phases, like gas and liquid, both have the same free energy
and coexist. The first derivative of the free energy has a discontinuity resulting in a
latent heat. The term “second order™ was coined for transitions with a discontinuity
in the second derivative of the free energy, but now the term is generally applied to all
trausitions that are not first order. A more complete discussion of phase transitions
can be found in most statistical mechanics texts.[66, 64]

In the next two sections, we look at macroscopic models of phase transitions in
binary alloys and superconductors in more detail. These two system are of particular
interest because they have symmetries similar to ocular dominance and orientation se-
lectivity. Binary alloys are a mixture of two metals, as ocular dominance patterns are
a mix between two eves. A particular region can either be throughly mixed. binocu-
lar. or exhibit preference for one component. monocular. Slightly less obviously, both

superconductors and orientation patterns have an order parameter with a continuous
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svinmetry. Oricutation patterns have a preferred angle varving continuously. while

superconductors have a quantum mechanical phase that also varies continuously.

2.2.2 Binary Alloys

A binary alloy is a mixture of two metals, for example 3-brass is a mixture of zinc and
copper on a body centered cubic lattice. At extremely low temperatures, a completely
ordered state exists with a cubic lattice of zinc and an offset cubic lattice of copper
such that a copper atom appears at the center of each zine unit cell. At higher
temperatures it becomes possible for the zine and copper atoms to exchange places.
At a temperature of 742 K a phase transition takes place and the copper and zine
become throughly mixed. Below that temperature X-ray diffraction reveals two sets
of atomie planes. one for copper and oue for zine, while above that temperature only
one set of planes for the copper-zine mixture is detected.[66)

While in J-brass, the microscopic interactions favor zine and copper atoms to be
next to ecach other. in other allovs and binary solutions. the interactions favor like
atows to be adjacent. The ordered phase segregates into A aud B rich domains. Due
to the similarity to ocular dominance. we shall develop a model for the latter phase
separation from the macroscopic perspective. To simplifv the calculations, we choose
to work with two metals A and B which are symmetric under interchanging all A's
and all B's. The alloy can then be described by an order parameter X = py — pp.
Above the transition temperature the two metals are throughly mixed. so that X is
zero. Below the traunsition temperature, we expect both nearly pure A and nearly
pure B to be present, so X has two degenerate values, one positive and one negative.

We can construct a simple macroscopic free energy function, in terms of X,
< a2 (9 a4 4 -
F(‘/X) = ag + 71\ + —4:‘4\ + -, (20)

where ag, @y, and ay are arbitrary counstants that may depend on temperature. As
a first step we have assumed that X is uniform across the system, which is called a

mean field approximation. Odd powers are X are not present due to our assumed
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svmmetry between A and B. We are interested in studying the vicinity of the phase
transition where X is small, so an expansion in .\, keeping only the first few non-zero
terms, is justified.

To clarifv the extrema of Eq. (2.5) (corresponding to equilibrium points), we

examine the first and second derivatives of F with respect to X,

F (X .
Q—&}‘ET) = X(ay+ as, X?),
’F(X .
a—a—‘{(jz—l = a3 -+ 3(1‘4)(2. (26)
It is clear that X = 0 is a stable minimum if as > 0 and an unstable solution if

ay < 0. To model the transition, the constant ¢y must switch sigus at T = T,., the
transition temperature: hence a» x + = (T — T,)/T,. with an unknown constant of
proportionality.

Above T,.. X = 0 is the ouly stable solution. Below the critical temperature there
are two stable solutions. X, = £1/—t/a;. The coefficient a4 must be positive to give
finite solutions. In a region between —Xt,q/\,/g and X(,,q/\/§~ the function F(.X) is not
convex so that such densities are not locally stable. Instead of a uniform density. the
allov divides into regions which are A richi. and regions that are B rich, to minimize the
free cucrgy. The global density is maintained. by adjusting the sizes of the two types
of regions. The points where decomposition sets i, iXUq/\/g are called spinodal
poiuts.

The regions that are A rich or B rich are called domains. In ecach domain, the
alloyv locally takes on one of the equilibrivin ratios. The boundaries between domains,
domain walls, are defects where the order parameter cannot take on an equilibrium
value. Thus, these defects have a cost penalty. The global lowest energy state consists
of a single large A-rich domain aud a single large B-rich domain, thus minimizing the
area of the costly domain walls.

Although the free cuergy changes smoothly across the phase transition, the heat
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sapacity experiences a finite jump,

This is a signature of a second order phase transition.

The macroscopic approach can thus model the phase traunsition in binary alloys
without resorting to studyving the solid state properties of the metals themselves. A
mean field approach assuming a uniform X, describes the nature of a phase transition
from a disordered state to an ordered state where regions rich in one of the metals
arise. The regions are separated by domain wall defects that incur a cost penalty
for being away from the equilibrium values of the order parameter. These regions
form patterns. which cannot be obtained from this mean field approach. but may be

modeled by extending it to non-uniform X ().

2.2.3 Superconductors

At low temperatures many metals show no resistance to the flow of current; they be-
come superconductors. The change from normal to superconductor takes place over
a narrow temperature range and constitutes a phase transition. In the superconduct-
ing state a finite fraction of the electrons (Cooper pairs) enter into a superconducting
compounent that flows without resistance. The superconductor is also a perfect dia-
maguet, expelling any magnetic field from its interior. Sufficiently strong magnetic
ficlds eventually destroys superconductivity. In type I superconductors this happens
at a critical field H, (T'). By contrast, in type II superconductors, magnetic field lines
penetrate the superconductor in a field interval between H, (T') and H(T') to form
the so called mixed vortex state. A complete discussion of superconductivity can be
found in a variety of texts.[67. 68]

In 1950 Ginzburg and Landau began the development of a macroscopic model for
superconductors.[62, 63] Their work is one of the foundations of the Landau-Ginzburg

approach, which has now been generalized to to describe dynamic as well as static sys-
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tems. Their original paper, however, describes the behavior of a static superconductor
in a magnetic field. They choose as their order parameter an effective wave function
U () whose square magnitude gives the density of the superconducting component,
n.(¥) = |¥(F)]?. Despite the use of a wave function, this is a macroscopic and not
quantum mechanical approach. The wave function is necessary to accurately model
the svmmetry of the superconducting component that has a complex phase. While
the complex phase is not observable, it must be included for a correct description.
When developing their macroscopic model, Landau and Ginzburg first consider a

local free energy arising from a uniform (mean field) W,
, , 9 (T , ,
F(U.T) = uo(_T)+(12(T)|\IJ['+”1(T)‘\I/|"~ (2.8)

where ag(T). ao(T). and «(T) arc arbitrary parameters which may be temperature
dependent. Symmetry requires that all terms depend on [¥] and analyticity around
U = 0 prohibits odd terms. The coeflicient ag(77) can be immediately identified with
the normal. non-superconducting, free energv., Fx. The equilibrium value of ¥ is
given as a minimum of the free energy. Since |U]? = 0 for T > T, and [¥[2 > 0 for
T <T,.. ar(T.)=0.a(T,) > 0. aud a»(T < T,) <0.

For superconductors. the cocfficients ao(T) and a4(T) can be expressed in terms
of two macroscopic properties. the critical field, H.(T). and the London penetration
depth. A(T'). which are more easily obscervable experimentally. The equilibrium value

of | U2 for T < T, is.
ax(T)

U |? = ——==.
l 'l| (l,g(T)

(2.9)

Using the equilibrium value of the ¥, the free energy difference between the super-
conducting and the normal phases can be found. This free energy difference is equal

to the critical field energy required to suppress superconductivity, i.e.,

B a3(T) H*(T)
204(T) ‘

F(U.T)— Fy =



From London theory, A2(T) o 1/n,(T). giving a second relation,

)‘2(0) — I‘I’eq(T”? — aZ(T)
A2(T) |\Ileq(0)|'2 (14(T)

(2.11)

Together, Egs. (2.10) and (2.11) determine a(T) and a4(7T) in terms of experimentally

accessible quantities, as

HX(T))\(T)

0-2(T) = _Wa

Examining only the local terms in the free encrgy, Eq. (2.8), gives a second order
phase transition much like we found in binary alloys. However, while below a critical
temperature. [¥] has a finite equilibrium value, unlike a binary alloy it does not form
domains of two possible values. Since the phase of ¥ can change continuously there
arc 1o sharp domain walls in the superconductor.

The defeets in a superconductor have a different character: Sinee the phase of ¥
must be continuous. it changes by a multiple of 27 when a closed loop is traversed. If
the phase changes by 0. the loop can be continuously deformed to a point. However,
if the loop contains a non-zero multiple of 27 it also contains a topological defect
called a vortex and cannot be shrunk to a point. In a two dimensional system the
vortex is simply a point of singularity, while in a three dimensional system it forms
lines. The ends of cach vortex line must either terminate on an edge, or form a closed
vortex loop. Both types of vortex lines have been observed in superconductors.

At the center of each vortex, there is no superconductivity and |¥| is zero. Around
a vortex all possible phases circulate in either clockwise or counterclockwise direction.
Since at the vortex the order parameter does not have its equilibrium value it has
an energy penalty. The free energy would indeed be reduced if the equilibrium value
of |¥| could be reached at all points. but this is prevented by the requirement that
the phase as well as the magnitude of ¥ be continuous. The lowest possible free

energy state does not contain any vortices, but vortices can arise as defects either
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when superconductivity sets in or as the result of the application of a magnetic field.
Rather than result in the complete loss of super conductivity, in type II material,
a magnetic field is confined to vortices, while the bulk of the material remains a
superconductor.

Landau and Ginzburg also explored the effects of a non-uniform ¥(Z). They

include a term in the free energy proportional to the |V¥(Z)|? which looks like a
kinetic energy in quantum mechanics. To account for the interaction between the
current and the magnetic field and to ensure gauge-invariance, a so called covariant
derivative (—iAV ¥ (F) — f_‘ (Z)¥(T)) replaces the normal derivative in the presence of
the electromagnetic gauge potential A(F). The total free encrgy density includes the

local terms in Eq. (2.8), the gradient terms, and the energy of the field itself, viclding

| T)
F(U.T) = |ao(T) + ao(T)| (T | + (11( |\IJ(T| +
2( =
L inve) - §I( \p(.f)|‘2+H8—("‘). (2.13)
2m T

where ¢ and m are phenomenological parameters associated with the effective charge
and mass of the electron pairs in the superconductor.

Varving Eq. (2.13) with respeet to U™(T) gives a differential oqu(mon for ¥(7) and
).

A

[05(T) + ay(T)|2(7)2] ©(7) + i [—mv i’(;-r)]; U(F) = 0. (2.14)

m

T’:I"’ﬁ

Varying the free energy with respect to A(7) using the London gauge, V - A(F) =0,

gives a second differential equation,

V2A(7) = 27”67'[1/(, W) - AVEE] + T @ PdE). 215)

mes

Together these two non-linear partial differential cquations determine ¥(Z) and A(Z).
Although quite complictaced, the equations generated for (%) and -l(f) can be

solved to give much of the observed behavior of superconductors. Abrikosov and
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others have used them to study the vortex defects discussed earlier.[69] Without
dealing with the specific nature of super conductivity, Landau and Ginzburg are
able to determine constitutive equations for the order parameter. These equations
have been independently derived from microscopic theory by Gor’kov, adding to the
credibility of this approach.[63)]

The study of superconductors is intimately related to the study of superfluids.
Both express very similar behavior and can be described using the same approach. In
a superfluid, a zero viscosity component has an order parameter with unobservable
phase angle. Since superfluids have the same svmmetries as superconductors, they
are described by very similar equations. However, since the superfluid component has
no charge, the phenomenology implies no coupling to the clectromaguetic field needs

to be included.

2.3 Dynamics

The cost function determines mauy of the equilibrium properties of a system. It
determines the phase for a given set of macroscopic conditions as well as the nature
of the transitions between different phases. It also characterizes the static response
functions, as well as some correlations of equilibrium fluctuations. The cost function,
however. does not determine how the system reaches equilibrium and its dynamic
properties. The dynamic properties include relaxation times. responses to time de-
pendent perturbations, and transport coefficients.

The dynamics of a system may belong to one of many classes, depending not
ouly on its cost function. but also on other conditions. One broad way to classify
dynamics is into dissipative and non-dissipative. Dissipative systems seek to lower
their cost and relax to a lowest cost or equilibrium configuration. Non-dissipative
svstems conserve the cost, possibly changing between configurations of equal cost.
We discuss two possible dissipative dynamics in the following sections, drawing upon

work by Hohenberg and Halperin.[70]
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2.3.1 Systems with No Conservation Laws

The simplest type of dissipative dynamics is one that is purely relaxational. The
overall cost is a functional of the order parameter and assigns an real number to every
possible system configuration. For the moment, let us considered the cost function
of superconductors, F(¥), given in Eq. (2.13). This function creates a “landscape”
in the high dimensional phase space of possible {¥(Z)}. A dissipative system seeks
to lower its cost by moving to lower cost configurations. It can do this just as water
flowing down a hill by going down the path of steepest gradient,

0¥ (7) OF ()

where the “mobility™. 1, deseribes how rapidly the system moves toward equilibrium.
Eq. (2.16) describes the time evolution of ¥(F), and its corresponding equation of
motion. The syvstem continues to evolve according to its equation of motion until it
reaches a minimum.

A system following Eq. (2.16) evolves completely deterministically, and comes to
rest at the first local minimum where F /0¥ = 0. There may be other global minima
with lower cost. but the system is prevented from reaching them because there is no
way to climb out of a metastable minimum. Furthermore, most physical systems at
finite temperatures experience natural equilibrium fluctuations. It is then natural to
include the effect of the environment (and also the degrees of freedom removed in the
coarse graining step) by adding a noise term such that,

av¥ (1) OF ()

5 = hu + 6(F, ). (2.17)

The noise, §(7,t), is usually taken from a Gaussian distribution of zero mean, with
no correlations in space and time. To achieve the proper Boltzmann weights for the

equilibrium states, the mobility and the variance of the noise are related by the the
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Einstein fluctuation-dissipation condition,

h

(0(x,1)0(2" ')y = 2D6(r — 2')5(t — 1), (2.18)

with D = phgT. The random fluctuations introduced by € allow the system to
move over a cost barrier, and hence to evolve toward the global minimum of the
cost function. Of course. once they reach the global minimum, random fluctuations
out of this minimum are also possible. A process of annealing, where the effective
temperature is slowly reduced, is sometimes used to find the global minimum of a

complicated cost function.

2.3.2 Systems with a Conserved Order Parameter

Some systems have an order parameter that must be conserved. In superconductors
the order parameter, U(.F). does not need to be conserved as the entire syvstem may
become superconducting or normal. However. the order parameter for our binary
allov. X (7). must be conserved as the relative number of A and B atoms does not
chauge in the 11‘1ixi1ig process. '

The dyunamics introduced in the previous section do not satisfy this conserva-
tion counstraint. However, other simple dynamics can devised that incorporate this

coustraint. In particular. in the so called B dynamics.

ON(7) LOF(N) ,
—— = AV ——= It 2.
5 AV IX () +6(2.1), (2.19)

where A is a trausport coefficient.[70] If this equation of motion is integrated over all
space, the Laplacian ensures that the net change in [ X(7) is zero except for surface
effects. This preserves the global ratio of the atoms in the mixture while allowing
it to vary locally. The variance of the noise must also be corrected according to
(B{r. )02’ "))y = 200, To (0 — '),

[t 1s important to note that the dvnamics are not uniquely determined by the

cost function. An identical cost function could be used in both types of dyvnamics



discussed above, giving very different results. In fact the cost functions we developed
for binary allovs and superconductors are quite similar but must experience different

dvnamics because of different conservation constraints.

2.3.3 Discrete Systems

Although the macroscopic approach generally gives simple cost functions and equa-
tions of motion, they are frequently still too complicated to be solved analytically.
To solve them numerically, both time and space need to be made discrete. Space is
broken into a lattice on the scale of the coarse graining, which is intermediate between
the lengths of the microscopic units, and the macroscopic fluctuations. The discrete
cost function has derivatives replaced by coupling between sites. A continuous cost
function for a spatially varving order parameter. X (F), must be integrated over all

space to give a total cost,

1o
i
—

F(X) = / B [(:,X(\f) + aa X (F)? 4+ a3 XN(FP + - + [ VX(D)P + - ] .
The integration 1s replaced by summation over all the sites on a discrete model.

FO) =5 (N4 ax NP4+ aXP 4 ) + 3 (N + ) (2.21)
i i
where X, 1s the value of X (7)) for cach site ;. Time is also divided into discrete units

on a scale between the time scale of the microscopic processes and the macroscopic

changes. A discrete equation of motion results, such as

AX(F)  OF(X)
At Moax(E)

(2.22)

Landau-Ginzburg macroscopic modeling techniques have been applied to a wide
variety of systems, including binary alloys and superconductors, but also ferromag-
nets, superfluids. and dipolar liquids. This approach avoids the microscopic details

of the systems. and is instead based on symmetries and conservation laws. Both
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static and dynamic properties can be described in terms of few phenomenological

parameters.
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Chapter 3

Results of Modeling

We develop a macroscopic model for ocular dominance and orientation based on the
Landau-Ginzburg approach. We do not attempt to simulate the intricate interactions
between neurons but instead develop a phenomenological picture of the observed
patterns. Our model describes an evolving field, and in this respect is similar to
that of Swindale.[39, 49, 50] We motivate our equations with ideas of symmetry and
analyticity developed while studying many physical systems. This approach frees us
from becoming entangled in the complexities of modeling individual neurons, which
requires dealing with both their great variety and number. It also allows us to easily
apply insight gained from many other systems, which although they may have vastly
different constituent parts, have similar symmetries.

In Sec. (3.1) we develop a model for ocular dominance, while in Sec. (3.2) we con-
sider orientation preference and selectivity. Finally, in Sec. (3.3) we explore coupling

the two models.

3.1 Ocular Dominance

Our model for ocular dominance is motivated by the Landau-Ginzburg approach
discussed in Chap. (2). We wish to produce patterns of ocular dominance similar
to those observed experimentally, as described in detail in Sec. (1.2.2), whose key

features are reviewed again here. Ocular dominance bands show a pattern of wan-
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dering and branching, with roughly 0.04 branches per (band)2. The width of the
bands fluctuates around 0.4 to 0.5 mm. The bands tend to intersect the boundary
of the primary visual cortex perpendicularly. Away from the boundary the bands
tend to run toward the calcarine fissure, at least in the top operculum. The domain
walls between the bands are sharp in layer 4 and gradual in the other layers. During
post-natal development, the cortex grows by roughly 16%, entirely perpendicularly
to the bands. Binocular deprivation has little or no effect on development, while
monocular deprivation during a critical period of early development causes the bands
corresponding to the deprived eye to shrink while the other bands grow. After the

critical period monocular deprivation has little effect.

3.1.1 Local Variables and Cost Function

Ocular dominance can be completely specified by a real field m(Z), with eye preference
at a point I given by the sign of m(Z). Positive values represent one eye while negative
values represent the other. The strength of the preference is given by |m(Z)|. From
the outset we assume a discrete lattice and label m(&;) with m; for each lattice point
Z;.

We shall initially introduce a local cost function F(mn;) that describes how closely
the variables at site ¢, satisfies various required properties. The microscopic form of
this cost function is presumably very complex, and presently not well understood. It
may reflect a need to minimize the length of “cortical wiring”, the necessity of having
information from both eyes in close proximity to determine binocular disparity, or a
variety of developmental constraints.[37]

Since we are approaching development from a macroscopic, phenomenological
view, we need not worry about these details. Our cost function depends smoothly on
m;, limited by symmetry, with a few parameters to be fit to observed patterns. In

a normal healthy subject, both eyes should be treated similarly, so the cortical cost

must be invariant under m — —m. This constraint eliminates all odd terms of m in
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the cost function leaving,
F(m;) = aym? + aqgm} + - - -, (3.1)

where ag, a4, etc. are, as of yet, arbitrary constants.

Experience with many other systems (as well as simplicity) suggests that the cost
function should depend on only the first few terms in the expansion. We wish the cost
function to have its minimum for finite, non-zero values of |m,|, as monocular regions
(corresponding to a finite |m;|) are the prevalent feature. A minimum at m; = 0
would lead to binocular regions. Choosing a, to be negative ensures that m; = 0 is
not a minimum, while setting a4 > 0 and all higher order coefficients zero, results in
minimum at a finite value of m;. It is, of course, possible to meet the requirement
for a finite, non-zero minimum in the cost function by many other combinations of
higher order terms, but the above simplest choice is generically sufficient.

With only local interactions, each site is completely independent. A steepest
descent minimization of the cost function gives an equation for each m;,

om; _  OF(m,)

- — = —2aym; — dasm;, (3.2)

ot om;

where 7 reflects the rate at which the system relaxes. Most of our discussion will be
in terms of the equations of motion, although we will occasionally refer directly to a
cost function when it is useful.
The coefficients, as and a4, can be absorbed into m and 7 by appropriately chang-
ing units,
om; 3

T—— =m; — m;. (3.3)

ot i
In this form, an unstable fixed point at m; = 0 and stable fixed points at m; = +1
become obvious. In these unit, 7 is clearly a relaxation time. These local terms
result in ocular dominance, but without any coupling between sites, we cannot hope

to generate the desired patterns.



3.1.2 Short-range Coupling

The simplest type of coupling is a nearest neighbor interaction between adjacent sites,

am,-

TW =m,; — mf -+ Z k‘,’j(mj — mi), (34)

jenn.
where k;; is the interaction matrix which determines the strength of the coupling
between any two adjacent sites z and j. To a first approximation the processes
mediating the development of the cortex should be same across its surface and lack
any preferred direction, so the interaction should be both translationally invariant
and isotropic.

Both the 16% growth of the cortex, and the trends in ocular dominance stripes
observed by LeVay, suggest that the actual interaction may not be fully translationally
invariant and isotropic. The growth is believed to occur entirely perpendicularly to
the stripes, possibly causing an anisotropy. LeVay has found that the stripes on
the operculum tend to run toward the calcarine fissure, while stripes on the roof of
the calcarine fissure run in a perpendicular direction. This suggests an anisotropic
interaction that varies with location. Since these effects are small and their origin is
not well understood, we choose to ignore them in our model.

The coupling is then uniform between all nearest neighbors,

Bmi

T =m;—mi+k, Y (m;—my). (3.5)

ot j € n.n.
The coupling between adjacent sites, k,, must be positive to ensure the continuity
of domains, i.e. produce regions with a uniform value of m;. A negative k, causes
adjacent sites to alternate in sign, creating features in the pattern alternating on the
same scale as the lattice itself. With positive k,, the absolute minimum of the cost
function, the ground state, is a uniform pattern with all m; = 1 or all m; = —1.

Thus, there are two degenerate ground states.
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Implementation

To study the consequences of these equations, we simulate them numerically using

discrete time steps,

Am; = At (m,- —md 4k, Z (mj — m,)) , (3.6)

j e n.n.

where Am; is the discrete change in m;, and At is the time step. The time constant,
7, has been set to one for convenience.

The model is studied on a discrete hexagonal lattice, so that cach site has 6 nearest
neighbors, and 6n nth neighbor sites. The use of a hexagonal lattice avoids the highly
anisotropic effects of the diagonals in the square lattice. Sec. (3.1.3) discusses the
artifacts of the discrete lattice.

The initial values of m; were chosen randomly and independently from a distribu-
tion centered at 0. We typically used a uniform distribution that allowed m; to be a
few percent of the saturation value. This distribution mimics the initial fluctuations
in ocular dominance. Since layer IV is completely enervated by both eyes in the
prenatal monkey, it is reasonable to assume that the initial ocular dominance is near
zero. The exact distribution is unknown, but has little impact on the simulations.

After a few time constants, a pattern of ocular dominance becomes apparent. The
values of |m;| rise rapidly during this time, approaching a value of 1. This period
of growth simulates the critical period observed in the monkey. The length of the
critical period depends on the initial conditions used. During the initially stages
of growth, m? is small and the equation is linear. The characteristic time scales are
then obtained by diagonalizing the interaction matrix. The eigenmode with a uniform

m; = m evolves according to a simple equation,
T—— = m. (3.7)

The number of time constants required for m to reach the saturation value of £1 is
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given by,
t
= = —In|mol, (3.8)

where || is the typical initial magnitude. Once the value of || reaches a significant
fraction of 1, the linear approximation breaks down, but the value of k, and the initial
conditions typically used give a saturations time on the order of a few time constants
as observed in the simulation.

After this initial period of rapid development, the pattern undergoes smaller
changes along the borders between domains. Although changes continue for many
time constants, the pattern is basically frozen. In addition to its frozen appearance,
the pattern is no longer sensitive to small perturbations. If a small uniform field is
added initially, it has a dramatical effect on the pattern development, while the same

field added after this critical period has little effect, as discussed in Sec. (3.1.3).

Domain Walls as Defects

Iterating Eq. (3.6) results in a pattern of splotchy domains of m; = +1 separated
by domain walls, as shown in Fig. (3-1). These domain walls are the natural defects
in a system with two possible stable states. Regions evolve toward either m; = 1
or m; = —1 depending on which was favored by local initial conditions. Since the
interactions are of finite range, spatially separated regions evolve toward different
fixed points. The boundaries between these regions form domain walls where m;
changes rapidly.

With only nearest neighbor interactions, m; changes abruptly at the domain walls.
Almost all sites have |m;| & 1, which corresponds to completely monocular cells.
These domain walls are very similar to the band walls seen in layer 4 of the visual
cortex. Unfortunately, nearest neighbor interactions do not generate a regular pattern
of bands.

Since domain walls are the natural defects in systems with two degenerate lowest
cost states, they are seen in a wide range of systems. Other examples from statistical

mechanics the Ising model of uniaxial ferromagnets and the g-state Potts model. A
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Figure 3-1: Simulated ocular dominance patterns using only nearest neighbor inter-
actions. Dark areas prefer one eye, while light areas prefer the other. Very little
grey is apparent indicating few binocular cells. Although domains appear, they do
not form stripes with a regular width. As a result of an artifact of the discritization
this pattern is metastable and does not coarsen to give a single uniform domain. In
this simulation on a 200 x 200 lattice, k, = 0.125, and At = 0.05. The simulation is
interrupted when all Am/At becomes less then 10710,
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system as simple as a glass of ice water also has domain walls between the solid and

liquid states of water, which at 0° C are degenerate in cost.

Coarsening

The size of the domains that develop during the critical period is controlled by k,.
During this period, |m;| rapidly increases to a value of 1 as domains form. Increasing
the value of k, makes sites more strongly influenced by their neighbors and results in
larger domains. After this critical period the pattern continues to coarsen on a much
longer time scale. Small islands and sharp corners disappear as the system moves
toward a uniform state.

Note that the minimum of the cost function is a state in which all m; are aligned.
An artifact of our discritization causes the pattern to freeze in a metastable state at
a higher cost, as shown in Fig. (3-1). In a continuous system islands always shrink,
as the boundary can be smoothly deformed inward, slowly lowering the cost of the
pattern. In our discrete system on a lattice, small islands still shrink and disap-
pear, but islands above some critical size, controlled by k,, remain. (By increasing
k. sufficiently, this critical size can be made of the same order as the system size,
and the finite system coarsens to a single uniform state.) To remove these islands
requires temporarily passing through a state of higher cost, which is not allowed by
our equations of motion.

It is tempting to use this effect to stabilize patterns of ocular dominance, but this
is not in keeping with our macroscopic approach. It relies on a microscopic feature,
the discrete nature of the lattice, to control the macroscopic properties. Even though
the actual system does in fact have discrete neurons, our coarse grained variable in
fact represent many neurons. If we identify each lattice point with a single neuron,
we are committed to having them behave and interact like real neurons, performing
complicated processing and coupling through tree like arbors of axons and dendrites.

We can remove the metastability by adding noise (effective temperature) that
allows the system to pass through patterns of higher cost while evolving toward the

lowest state. However, this adds additional complications to the model and may be
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difficult to motivate biologically.

3.1.3 Long-range Coupling

Many systems in both physics and biology exhibit patterns of stripes. Magnets with
dipole interactions, zebras, bird feathers, many species of fish, and even fingerprints
all show patterns of stripes. Following the early work by Turing, reaction-diffusion
models have been frequently used to model such systems.[47]

The common mechanism (at least in the better understood cases) is a competition
between short range attraction and long range repulsion. In the context of the visual
cortex this idea was first proposed by Hubel and Wiesel in 1977.[10] Both the short
range and the long range interactions cannot be simultaneously satisfied. The best
compromise depends both on the relative range and strengths of the interaction and
the initial conditions. This randomness in the initial conditions provides the seed for
the irregular pattern of branching and bending stripes.

We considered several different interaction forms for the long range coupling. In

the simplest interaction form, we add an additional isotropic Lth neighbor coupling

leading to,
om; 3 (1) (1)
Ty = mi—m;+ kDS (mj—my) + k > (mj—my), (3.9)
j € n.n. j € Lth n.n.

where k(I is the strength of the short range (nearest neighbor) coupling and k,(l) is
the strength of the long range (Lth neighbor) coupling. To ensure the continuity of
the domains, k{!) is positive, while kl(l) is negative to cause a periodic alternation of
the sign of m;.

We also considered a second more general interaction form,

6m,—

T = Mi— md + 3 k@ (i, 5)(m; — my), (3.10)

J

where k@ (i, j) is a interaction matrix that depends only on the distance between

81



sites z and j,

k{® if : and j are within L/2 sites of each other,

kD (i, ) = (3.11)

k,(2) if 2 and j are between L/2+ 1 and L apart,

where L is the range of the coupling. (As before, k2) > 0 and kl(z) <0)

We perform the simulations using these long range couplings entirely in real space,
rather than Fourier space. In principle, it may be useful to break the equation of
motion into two parts: The on-site, including the cubic limiting term, and the short
range part of the interaction are calculated in real space, while the long range part of
the interaction is calculated Fourier space. The two parts of the equation of motion are
then combined with fast Fourier transforms. This may greatly speed calculations that
involve many long range interactions. We, however, did not choose to use this route,
as most of our simulations have only a limited number of long range interactions.

In the absence of long range couplings, it was necessary to have a positive coef-
ficient on the m; term in the equation of motions to ensure that m; = 0 was not a
stable solution. In the presence on long range couplings, this is not necessary, and
we find that using a negative coeflicient gives better results. Since we implement the
long range coupling with a factor of k;(m; — m;), a negative value of k; results in a
sufficiently large positive multiple of m; to destabilize the m = 0 solution. With this
small change, we implement our long range coupling with discrete time steps. For

the coupling in Eq. (3.9),

Am; = At |—m; —m2 + kD > (mj—m) + k,(l) > (mj —my)|,

§ in DI j € Lth n.n.
(3.12)
and for the coupling in Eq. (3.10),
Am; = At |m; —md + 3 kD (i, ) (m; — my) (3.13)

J

where 7 has been set to 1 in both cases.
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Bands and Their Width

Both forms of interaction result in a pattern of bands with a period of slightly less
than 2L, as shown in Fig. (3-2). The period can be estimated by looking at the
Fourier transform of the interaction. A peak in the Fourier spectrum indicates a
period selected by the interaction. The Fourier spectrum of the first interaction is

the difference of two Bessel functions,
KO (s) = kW Jy(2s) + kN LJy(L2ns), (3.14)

where the frequency, s, is measured in inverse lattice points. For a value of L = 10,
as we typically used with k) = —k{"), K((s) has a peak at approximately s =
0.061 corresponding to a period of 16.4. For the second interaction form, the Fourier

spectrum is a bit more complicated,

L/2 L
K@ (s) = k@S 1h@2nls) + k& Y Lh(i2xls). (3.13)
=1 I=L/2+1

In this case, for a value of L = 10 with ¥ = —k®, K®(s) has a peak at approxi-
mately s = 0.068, corresponding to a period of 14.7. In both cases, simulations reveal
typical strip widths consistent with these calculations.

Many other interactions with the same typical structure in Fourier space would
also result in a pattern of bands. Most reasonable interactions with competing positive
short range interactions and negative long range interactions have this property. It
is tempting to try to determine the exact shape of the interaction be studying the
distribution of excitatory and inhibitory connections on individual cells. However, it
is important to distinguish the neural network that mediates the response of V1 from
the unknown interaction that directs the formation of the visual cortex. The existing
connections in the mature animal are certainly responsible for generating the response
at a particular location to stimuli. But, as we wish to study the development of these
connections, it is necessary to find the neuro or chemical interaction responsible for

developing the observed connections.
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Figure 3-2: Simulated ocular bands generated by iterating Eq. (3.13). (Eq. (3.12)
yields very similar patterns.) A totally isotropic interaction is sufficient to form this
pattern of bands. In this simulation on a 200 x 200 lattice, k?) = 0.05, k,(Q) = —0.025,
At = 0.025 and L = 10. The simulation is interrupted after 40 time constants when
the mean value of Am/At is less than 0.01.
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Persistence

Persistence is a measure of the internal order of the bands. which includes the density
of branches and the straightness of the bands. The persistence of the bands is deter-
mined mainly by the long range interaction strength, k:,(l) or k1(2)- The short range
interactions mainly influence the roughness of individual domain walls. For extremely
weak short range interactions, the domain walls become so rough that the stripes are
disturbed and persistence is difficult to measure.

Persistence tends to increase with increasing k,(l) , an seen in Fig. (3-3). However,
there is a maximum persistence that can be achieved by simply increasing kl(l) as is
evident in the figure. Patterns with a persistence comparable to that in the monkey
can be achieved with a value of kl(l) near -0.5. This is based on both visual comparison,
and matching the density of branches. The second form for the long range interaction

shows similar trends in persistence.

Edge Effects

Boundary conditions play an important role in the overall appearance of the patterns.
The pattern of Fig. (3-2) was generated with periodic boundary conditions in which
the sites at one edge connect to the opposite edge. Such boundary conditions are
frequently used to reduce edge effects. However, to simulate the whole cortex, open
boundary conditions may be more appropriate. For open boundary conditions there
are fewer connections for the sites close to edges as they have fewer neighbors. This
more accurately reflects the cells near the edge of the primary visual cortex that
receive a limited amount of ocular dominance information. Using three methods, we
demonstrate that open boundary conditions favor stripes orthogonal to the edges.
Fig. (3-4) shows the results of a simulation using open boundary conditions. In
addition to direct simulations, we considered the effects of edges by cost function
calculations in both the continuous limit of the model, and explicitly on hexagonal
lattices.

When considering a continuous system, we assume that some combination of in-



Figure 3-3: Simulated ocular dominance bands according to Eq. (3.12) for a variety
of values of k:,(l) -0.1 (a), -0.15 (b), -0.2 (c), and -0.5 (d). Persistence increases with
increasing k,(l), but cannot be strengthened indefinitely. All simulations started from
the same initial conditions on a 200 x 200 lattice, with £ = 0.5, L = 10, and
At = 0.05. The simulations are interrupted when the mean value of Am/At is less
than 0.01.
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Figure 3-4: Simulated ocular bands generated by iterating Eq. (3.13) with the edges
set to m = 0. Compare with Fig. (3-2) which uses the same initial conditions and
parameters but periodic boundary conditions. Note that the bands tend to meet the
edges at right angles.
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teractions has stabilized a pattern of stripes and consider the effects of the presence of
an edge. For simplicity we assume that the stripes have sharp domain walls between
bands. We calculate the change in the long range part of the cost function of stripes

using a continuous function,
F= / Erd?z'm(Z)m(Z)6(|z — 2| — L), (3.16)

where L is both the range of the long-range interaction, and the width of the stripes.
Choose m(ZF) to be a set of straight parallel stripes of width L ending on the edge
at an angle 6 to the normal, as in Fig. (3-5). Within the stripes, the value of m(Z)
is taken to be £1 with the sign alternating between adjacent bands. The edge is an

open boundary with m(#) = 0 on the far side. We calculate the per stripe cost of

this edge by direct integration,
AF,ipe() = 2L3 (1 — sec(d) + O tan(9)) . (3.17)

This is related to the energy change per unit length of boundary, AF.qg, by a factor
of cos(8)/L, yielding

AF 440 = 2L* (cos(d) — 1 + 8 sin(8)) . (3.18)

Both forms of the energy change have a minimum at § = 0, which corresponds to
stripes perpendicular to the wall, as in Fig. (3-6).

We performed the same calculation on a hexagonal lattice with stripes of width 10
lattice points. The results are compared to the continuous calculation in Fig. (3-6).
Small differences arise due to the discrete nature of the lattice, but the general form of
the angular dependence is clearly similar. Using the discrete lattice, we also calculated
the cost of the nearest neighbor interaction, and confirmed that it contributes much
more weakly to the angular dependence than the long range part.

We examined the difference in the bulk energy between stripes at different angles

relative to the lattice, as shown in Fig. (3-7). The changes in energy due to alignment
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Figure 3-5: Alternating stripes of positive and negative ocular dominance (m = +1)
with width L meet an m = 0 half plane at an angle # to the normal.

with the lattice are small. However, there is a remaining artifact in a cost advantage
to aligning with one of the six primary lattice directions. This effect has also been seen

in simulations, as the bands have a tendency to orient with one of these directions.

Monocular Deprivation

In monocular deprivation experiments, one eye is closed or otherwise inhibited during
some part of development. If this occurs during the critical period of early develop-
ment, ocular dominance begins to favor the open eye. This observation is consistent
with a Hebbian learning algorithm which relies on correlation in activity to strengthen
synapses. Synapses corresponding to the closed eye are not strengthened frequently,
creating a preference for the open eye.

We can model monocular deprivation by adding a bias term to the equation of

motion,
3m,~

TE— :mi_m?+zkij(mj_mi)+H(t)’ (3.19)
J

where H (t) is the strength of the preference caused by monocular deprivation, which

could in principle depend on time, and k;; is the total interaction matrix that may
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Figure 3-6: The cost of an edge intersecting stripes at an angle # to the normal.
The cost is given per unit length of the edge. The solid line is a calculation for a
continuous system, while the squares are from a discrete model on a hexagonal with
a stripe width of 10 sites. In both cases the interaction occurs at the same range as
the stripe width.

90



05

0.45 +

T

Cost of Domain Wall in Bulk (bonds)
[e] [«] o
© 4L o pn © ¢ o
- (4] N (4] w a H

T

0.05 -

0 : : : { :
0 10 20 30 40 50 60
© (degrees)

Figure 3-7: The cost of stripes in the bulk as a function of the angle between the
stripes and the underling hexagonal lattice. The cost repeats with a period of 60° and
has a minimum at 0 where the stripes are aligned with the lattice. The calculation is
performed on a discrete system with a stripe width of 10 sites.
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take either of the forms in Sec. (3.1.3). In the Landau-Ginzburg language, H(t) is a
symmetry breaking field that prefers one eye.

This symmetry breaking reproduces some features of monocular deprivation. If
the field is applied early in the simulation, it results in a preference for one eye
over the other, while if applied in the later stages, it has little or no effect. Like
monocular deprivation, it is effective only during a critical period. However, this
interaction does not reproduce the observed pattern of alternating narrow and wide
bands. Instead, a pattern forms with islands of the deprived eye appearing in a sea
of the dominate eye, as seen in Fig. (3-8). The typical width of features for both eyes
remains constant, while the overall area covered by the deprived eye is reduced by an
amount depending on the |H(t)|. For sufficiently large values of |H(t)[, the symmetry
breaking field dominates and a uniform pattern results.

The effect of a uniform field may be more easily understood in one dimension.
Since it is very easy to determine the width of the stripes in a pattern in one dimension,
we can examine the distribution of stripe widths. With H(¢) = 0, the distribution
of stripe widths is identical for both eyes. In the monkey, stripes of the deprived eye
are narrowed so that their distribution shifts to the left, while that of the other eye
shifts to the right. In our model, however, the peak of the distributions remains fixed
as shown in Fig. (3-9). The stripes anti-aligned with the field tend to have the same
width but become fewer in number. The stripes aligned with the field do show a
tendency to have increased width, but the distribution of widths becomes wider, not

simply shifted to longer lengths.

3.1.4 Distribution of |m;|

The narrow interaction form given in Eq. (3.12) produces stripes with sharp domain
walls, and a narrow distribution of |m,;|. This corresponds well with the observed
behavior in layer IV. Here the domains do seem to change abruptly at the walls with
a very narrow crossover. Almost all the cells are monocular, meaning that |m;| should
be sharply peaked at its maximum value.

The wider interaction form given by Eq. (3.13) produces smoother domain walls
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Figure 3-8: A simulation of monocular deprivation by including a uniform field of
H = 3.5. Compare this figure with Fig. (3-2) which uses the same initial conditions
and parameters, but has H = 0.
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Figure 3-9: The distribution of the widths of the repressed in a one dimensional
simulation for several value of H. Notice that the peak of the distribution remains
fixed. Here L = 10, k® = 0.1, k{? = —0.1, and A, = 0.1.
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Figure 3-10: The profile of a domain wall in one dimension. The field evolved accord-
ing to Eq. (3.13) with L = 20, ¥? = 0.05, and k,(Q) = 0 The presence of the domain
wall was forced by keeping the left edge at m; = +1 and the right edge at m; = —1.

and a correspondingly wider distribution of |m;|. This case better matches the be-
havior seen in all the layers except layer 4. There are, however, still significant differ-
ences. Experimental observations suggest that m changes linearly near the domain
wall, while the wide interaction form results in domain walls that always include a
discrete jump as in Fig. (3-10).

The discrete jump can be studied on one dimension. The width of the domain wall
scales linearly with the range of the interaction but a discontinuity remains even for
very long range interactions, as seen in Fig. (3-11). The discontinuity originates from
the non-linear terms in the equation of motion. For small values of m;, an interaction
that generates a desired domain wall shape can be found from the Fourier transform

of the domain wall. However, for large values of m;, the cubic term in the equation
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Figure 3-11: The discontinuity in 7; at the domain wall in a one dimensional simula-
tion as a function of the range of the positive interactions. The size of the discontinuity
is expressed as a fraction of the value in the bulk. Notice that a finite jump continues
to exist even for very long range interactions.

of motion begins to have a dominant role and the linear approximation necessary
for the Fourier transform no longer holds. Despite the presence of the discontinuous
jump at the domain wall, the wide interaction form still models non-layer IV ocular
dominance well. It produces a wide distribution in m; as is observed, as indicated
in Fig. (3-12). Unfortunately, the exact shape of the experimental distribution is not

known.

3.1.5 Summary

The patterns produced by our equations of motion, accurately reproduce many of the

desired features of ocular dominance. Competition between short-range and long-
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Figure 3-12: A typical distribution of |m;| for a two dimensional simulation using
Eq. (3.13). The distribution shown corresponds to Fig. (3-2).
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range coupling produces a meandering, branching pattern of bands. The width of
the bands is determined primarily by the range of the interactions, while the relative
strengths of the short and long range coupling can be adjusted to achieve a persistence
similar to that seen in the monkey. Open boundary conditions naturally cause the
stripes to meet edges at right angles. The stripes appear during a critical period of
development during which they are sensitive to an applied field representing monocu-
lar deprivation. After this critical period, the pattern is stable to small perturbations.
The domain walls and distribution of m; seen in our simulation are quite similar to
those in layer 4. The domain walls are sharp and narrow, i.e. the distribution of |m;|
is narrowly centered around the maximum possible value, a completely monocular
response.

The equations of motion cannot be easily modified to model layers other than 4.
Outside layer 4, the distribution of |m;| is wide extending down to 0, and the domain
walls are wide and smooth. Our simulated domains always have a discontinuity, and
although we can widen the distribution of |m;| we cannot achieve any significant
number of binocular cells. Furthermore, in our equations we make no attempt to
model the growth of the cortex or the tendencies seen in LeVay’s patterns for stripes

to align in prescribed directions.

3.2 Orientation Preference and Selectivity

We next use the Landau-Ginzburg approach to develop a macroscopic model for
orientation preference and selectivity patterns. In the monkey the orientation pattern
is marked by pinwhecls, areas that respond similarly to all orientations. Different
possible orientation preferences circulate around these singularities. The two possible
directions of circulation give two types of pinwheels which occur in equal numbers.
The patterns develop during a critical period during which they are semsitive to
outside perturbations. The density of pinwheels remains constant during the later
parts of the critical period (the only observable period of development), despite the
growth of the cortex.
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3.2.1 Local Variables and the Cost Function

We use a complex field, z(Z), to model the orientation preference and selectivity. The
orientation preference is given by half the complex angle, since it repeats with a period
of 180°. It is necessary to divide the angle by two, rather than take the complex angle
modulus 180°, to ensure that the singularities in the model are surrounded by one
complete cycle of orientations, and not two. The magnitude of the complex field,
|2(Z)|, is a measure of the selectivity. From the outset we assume a discrete lattice
and label z(&;) with z; for each lattice point Z;.

We construct a local cost function F(z;) by considerations similar to those in
Sec. (3.1.1). Because there is no a priori reason to distinguish between different
orientations, the cortical cost function must be only a function of |z;|. However, a
function involving odd powers of |z;| is not be smooth around z; = 0 and is not a

good candidate for a cost function. Thus, F(z;) is a series in |z;|?,

F(z) = (1..'2|z,-|2 + a,f1|z,-|4 + e, (3.20)

where aj, a}, etc. are, as of yet, arbitrary constants.

As in our model for ocular dominance, choosing a5 < 0 and o} > 0, and setting all
other coefficients zero, results in a minimum cost for a finite, non-zero value of |z].
With only local interactions, each site is completely independent. A steepest descent
minimization of the cost function gives an equation of motion for each z;,

T’Qﬁ _ _aF(zi)
8t - 62,'

= —2ahz; — 4d)z;|z)?, (3.21)

where 7' reflects the rate at which the system relaxes.

The coefficients, a4 and a}, can be absorbed into m and 7 by appropriately chang-

ing units,
0z;
T'a—i =z — z|z . (3.22)
In this form an unstable fixed point at z; = 0 and stable fixed points at |z;| = 1

become obvious. These local terms result in orientation preference, although without
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any coupling between sites we cannot hope to generate the desired patterns.

3.2.2 Short-range Coupling

Including nearest neighbor coupling between adjacent sites results in,

Et— =Z; — Z,'lZ,'l + Z k;j(Zj - Z,'), (323)
j € n.n.
where k:l is the interaction matrix. The requirements of translationally invariance
and isotropy lead to,
,02; 2 ’
T—=Z; — Z,'lZ,'l —+ ks Z (Zj - Z,‘). (324)
ot j e n.n.
Again, the coupling between adjacent sites, k., must be positive to ensure the conti-

nuity of domains.

Implementation

We simulate orientation preference using discrete time steps on a hexagonal lattice,

in much the same way as ocular dominance. We use a discrete equation of motion

j € n.n.

AZ,' = At (Z,‘ - Zi|2i|2 + k; Z (z] - Zi)) ) (325)

where Az; is the discrete change in z; and At is the time step. The time constant 7/
has been set to one for convenience.

The exact distribution of orientation preference and selectivity at early stages of
development is not known. The most reasonable assumption is a uniform distribution
of angles. Experiments also show that selectivity is lower in immature animals. To
model this distribution, we assume initial conditions for z; that are uniform on the
complex angle with a fixed magnitude that is small, typically |z;] = 0.1. (It is likely
that the initial magnitude is also distributed over some range, but as there is little

information on this, and the final results are not affected, we choose to simply use a
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single value.)

We performed simulations with both periodic and open boundary conditions. Be-
cause of the short-range nature of the interactions, the boundary conditions do not
seem to play a significant role. There is experimental evidence that orientation contin-
ues smoothly from area V1 to neighboring area V2, suggesting that periodic boundary

conditions are not entirely inappropriate.

Vortices as Defects

During the simulation, orientation preference rises quickly for several time constants
until it approaches a maximum value of approximately of 1. These first few time
constants form a critical period where the field is sensitive to small perturbations.
Fig. (3-13) shows the pattern of orientation that develops, which is marked by singu-
larities called vortices.

These vortices are topological defects that correspond to the pinwheels observed
experimentally. They are points of reduced selectivity surrounded by regions respond-
ing to all possible orientations. Vortices are well defined topological features, that can
be detected by adding together the changes in angle preference around a closed loop.
If this sum is £180°, a vortex is enclosed in the loop. The vortex has a circulation
of +1 depending on sign of the sum. A loop enclosing two similar vortices gives a
sum of £360°, while a loop enclosing two opposite vortices yields a sum of 0°. Our
simulations give an equal number of both circulations of vortices in agreement with
experiment.

Since vortices are the natural defects in angular fields it is not surprising that
they are generated by a wide variety of apparently disparate models. Any model that
gives adequate attention to the angular nature of the orientation pattern will generate
vortices. Most previous models have not addressed the annihilation of vortices, which

we discuss in the following sections.
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Figure 3-13: Simulated orientation pattern generated by iterating Eq. (3.25). Each
of the 8 colors shown represents a range of 22.5° The colors cycle though 180° of
preference. light green — yellow — orange — red — violet — dark blue — light
blue — dark green — light green — etc. In this simulation on a 200 x 200 lattice,
k. =0.125 and At = 0.05. The simulation is interrupted after 50 time constants.
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Coarsening

The pattern of vortices resembles those seen experimentally. However, the density
of vortices does not remain constant. Vortices of opposite circulation attract and
annihilate as the simulation proceeds, as shown in Fig. (3-14). This takes place on
a much longer time scale than the initial formation of vortices. Eventually, all the
vortices annihilate leaving a single uniform orientation. This is in sharp contrast to
the experimental observations where the vortex concentration remains constant. As
the cortex grows by 16%, this means that the number of vortices increases rather
than decreases.

The ground state, absolute minimum of the cost function, occurs when all sites
have the same orientation. Since the cost is independent of orientation, this ground
state is highly degenerate. Vortices are the natural defects in this angular field. They
arise because the short-range interactions allow separated regions to relax indepen-
dently. Each region moves to one of the degenerate ground states that was favored
locally by the initial conditions. Domain walls usually do not form between these
different regions as adjacent “domains” can be smoothly deformed into each other.
Vortices, however, are topological defects and cannot be removed by smoothly chang-
ing the field.

Vortices of opposite circulation experience an effective attraction. This attraction
causes the vortices to more toward each other, collide, annihilate in pairs, and slowly
reduce their density. In this manner the pattern continues to coarsen and evolve

toward a true ground state.

3.2.3 Long-range Coupling

Long range couplings, which stabilized the pattern of ocular dominance, are not as
useful for fixing the pattern of orientation preference. Including the simplest possible

long range interaction,

Traazti =z —zlaf* + K, Y (z—z)+k Z (zj — z), (3.26)

J € n.n. j € Lth n.n.
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Figure 3-14: The same simulated orientation pattern shown in Fig. (3-13) but after
250 time constants. The number of vortices is greatly reduced. The vortices shown
eventually annihilate after additional iterations.
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with k] < 0 does not lead to a finite density of vortices. This is because the cost
function associated with this equation of motion can be minimized without any vor-
tices, by creating a rainbow pattern of orientations, as shown in Fig. (3-15). This
pattern resembles a series of orientation bands, that were once conjectured but are
not seen experimentally. We also checked several wider interaction forms, similar to
Eq. (3.26). All of these failed to prevent the collapse of vortices.

Long range interactions which are linear in z; do not directly act on singularities,
which are zeros in |z;|. It may be possible to create an interaction that causes the
distances between singularities to favor a particular non-zero length. We investigated

this possibility by considering higher order interactions, such as

0z
o= a R+ D Rl (3.27)
J

J

However, we concluded that this approach is not promising and did not investigate

it extensively.

3.2.4 Distribution of |z|

Our model for orientation preference generates patterns similar to those found exper-
imentally. However, the selectivity is not modeled well. The experimentally observed
selectivity has a wide distribution, with large areas of reduced selectivity surrounding
each pinwheel. Our model gives nearly uniform selectivity of 1 as seen in Fig. (3-
16). While selectivity is zero at the singularities, the reduction extends only to a few
adjacent lattice sites.

By coupling to a quenched random field, the distribution of selectivity can be
widened. A quenched random field can be motivated as arising from two possible
mechanisms. One motivation comes from fluctuations in the density or computa-
tional effectiveness of neurons. Small fluctuations in density have been observed in
the cortex, and might reasonably be considered as uncorrelated. Fluctuations in com-
putational effectiveness have not been studied in the monkey, but are a reasonable

assumption considering the variety of different types of neurons present. A second
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Figure 3-15: Simulated orientation pattern generated by iterating Eq. (3.26). The
long-range coupling does not stop the annihilation of vortices but rather causes the
formation of rainbow-like bands. In this simulation on a 200 x 200 lattice, k£, = 0.1,
k; = —0.01. and At = 0.1. The simulation is interrupted after 100 time constants.
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Figure 3-16: Simulated selectivity pattern corresponding to Fig. (3-13). Darker areas
are less selective, i.e. have lower values of |z;]|.

107



motivation comes from the coupling between a number of other fields which might
contain information about color, texture, motion, or other properties. Coupling to
a large number of unknown fields, can be represented by a single uncorrelated ran-
dom field. The possibility of coupling between a small number of correlated fields is
discussed further in Sec. (3.3).

A random field that represents density fluctuations or the computational demands
of many other fields, is better represented by a real number, rather than a complex
number which also contains angular information. (A complex random field may be
motivated by considering coupling to vector fields, e.g. direction of motion. However,
unless the net effect of a large number of vector fields is being considered, this field
would not be random, but highly correlated with its own equations of motions.) In the
contest of phase transitions in magnets, a field appears as an addition to the equations
of motion, such as H(t) in Eq. (3.19). Here, we use the term loosely, referring to a set
of random parameters, {h;}, multiplying the orientation order parameter {z;}. More
correctly in the magnetic context, this is a random energy term. We thus consider

the modified equation,

T'?—z—i =z —zlal +k Y (- )+ ha (3.28)
6t j € n.n.

The local fixed points of this equation of motion can be studied by looking at each

location independently,
8z,~

5 = zi|zi|? + Rlz;. (3.29)

TI

In the presence of a random field A}, the preferred local magnitudes of |z;| are changed
to \ﬁ+—h;

It is difficult to biologically motivate the distribution of A}, as we have not specif-
ically identified the processes generating the random field. If the randomness is the
result of the sum of many other fields, A, may be normally distributed. However,
if the randomness arises from structural fluctuations in the cortex, the distribution
may have some other shape. We use a uniform distribution for convenience, but there

is no reason to believe that other distributions of A} will give qualitatively different
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results.

Coupling to randomness widens the distribution of |z;| so that extends to zero.
However, he amount of randomness required to give a distribution similar to the
experimentally observed ones disrupts the overall pattern of selectivity. The experi-
mental patterns have smoothly varying selectivity that is reduced in regions around
singularities, while our simulated pattern, shown in Fig. (3-17), is dominated by the
random field itself. We have included only nearest neighbor couplings in our simula-
tions. Using longer range coupling may increase the size of the vortices and reduce
the impact of the random field on the selectivity pattern.

Coupling orientation to a random field provides a promising method for stabilizing
the singularities. This approach is analogous to the pinning of vortices by defects in
superconductors. Fig. (3-18) shows a stable pattern of vortices. The vortices become
trapped, or pinned, in local minima of the random field. A sufficient amount of ran-
domness creates a pattern of vortices that appears to be stable over long time scales.
Smaller amounts of randomness slow, but do not prevent, the pair annihilations.

Although we choose only to investigate the effects of a random field, random cou-
plings generate many of the same effeccts. Random couplings may reflect fluctuations
in the ease with which synapses are formed between pairs of cells. The size, orien-
tation, and exact position of cells are likely to effect their ability to form synapses
with other nearby cells. This type of interaction may be modeled by adding random
fluctuations, &;;, to ki;.

179

3.2.5 Summary

A simple equation of motion for a complex field involving only nearest neighbor
couplings generates a pattern containing vortices which we identify with the pinwheels
in the experiments. The vortices have circulations of £180° in equal ratios as desired.
The vortices are formed during a critical period during which the field is sensitive
to perturbations. Coupling with a quench random field, representing other fields or
density fluctuations, can pin the vortices, stabilizing the pattern.

Our simulations give distribution of |z;| that are much narrower than desired,

109



Figure 3-17: Simulated selectivity pattern generated by iterating Eq. (3.28). Here
h; is distributed uniformly over the interval (—2,2), to widen the distribution of |z].
The large amount of randomness needed to widen the distribution of |z;| disrupts the
pattern of selectivity. In this simulation on a 100 x 100 lattice, £, = 0.05, At = 0.05.
The simulation is interrupted after 2500 time constants when the pattern appeared
to be stable.
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Figure 3-18: Simulated orientation pattern generated by iterating Eq. (3.28). This
pattern is stable under further iteration. The presence of a quenched random field
can stop the annihilation of vortices. This orientation pattern corresponds to the
selectivity pattern shown in Fig. (3-17)
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with a pattern of selectivity that is too uniform. Coupling randomness widens the
distribution of |z;| but also disrupts the pattern of selectivity. Our model also does
not include the growth of the cortex. Since the density of pinwheels remains constant,

new pinwheel must form as the cortex grows.

3.3 Coupling between Ocular Dominance and Ori-
entation Selectivity

Coupling between ocular dominance and orientation selectivity can play an important
role in the patterns of the two fields. Since orientation singularities lie in the center of
ocular dominance bands, and lines of isoorientation meet ocular dominance domain
walls perpendicularly, some form of coupling must exist. As we shall demonstrate,
such interactions can also stabilize the pattern of pinwheels, and significantly effect

the distribution of ocular dominance and selectivity.

3.3.1 Local Variables and the Cost Function

We now construct a single cost function for the local variables of both fields. All
the terms present in either individual cost function plus coupling terms must be
included. As the coupling term must be invariant under m — —m and independent
of the complex angle, the simplest term allowed is m?|z;|2. Higher order terms are
possible in principle but not likely to be important in a macroscopic cost function.
Our local cost function,
v 2 4 2 4 20,12

F(my, z;) = aam? + aqgm; + ay|z|* + dy|z]* + ym?|zl?, (3.30)

has five free parameters as, a4, a}, @), and v. Each m; is coupled to the local z;,

resulting in coupled equations of motion,

8771,’

TW = —2aym; — 4a.4mf’ - 2“/mi|2i|2a (3.31)
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62,'
ot

T = —2a5z; — 4a£1z,~|zi|2 — 2vz;m?, (3.32)
where 7 and 7’ are time constants. To ensure finite, non-zero fixed points as and a),
must be negative while a4 and a are positive. By appropriately redefining F(m;, z;),
m;, and 2; we can absorb three of the coefficients and all the numeric factors, resulting

in

8m,~

T = mi—m; —ymilal,
% = Z;— z,-lzi|2 - ’)/'z,-m?, (333)

where 7' = a)/a4y. The couplings, v and +/, do not have to be equal but must have
the same sign. By introducing the term ym?|z|? in the cost function, we forced the
interaction to be symmetric. However, we did not force the scale of ocular dominance
and orientation preference to be similar. Egs. (3.33) can be rewritten with identical
coeflicients for the coupling terms but different coefficients on the linear and cubic
terms.

Our approach to coupling fields could easily be extended to include more fields or
even a random field representing the effect of several fields. These additional fields
appear in same manner as ocular dominance or orientation, each coupling to the

square of the other fields, e.g. introducing a scaler field z; adds terms to the cost

function proportional to 22m? and 2?|z;|2. In principle a term such as z?m?|z;|? could

also exist, but is less likely to be important due to its higher order. This could reflect

some three way process where one field mediated an interaction between the other

two, like a catalyst in a binary reaction. The local cost function now has 9 parameters,
T (aem? + agm? + ab|z|? + dy| 2|t + aliz? + alz+

F(mi,Zi,.’L',’) — 1 ( i 1 2| 1| 4| 1] 21 4% (334)

')’-mzmz? |z1-|2 + 7marmz2$z2 + "/mx?|z,~|2) )

Rescaling leads to three coupled equations of motion, with 5 free parameters describ-
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ing the coupling,

8m,-
3 2 2
T—/— = m;—m; —nmi|zi|® — yamx;,
ot
0z;
Ve 2 2 2 -
T = z —Zi|2i| — Y32iT; — Y4ZiMm;, (3-30)
ot
0zx;
nYEe 3 2 . 2
ot T — X; —YsTiM; — YeLiZ;

where {7;} are parameters with the constraint v,y37vs = v2747. This process can
be continued in the obvious way for additional fields. A cost function for n fields
results in n coupled equations with n(n —1)/2 — (2n + 1) parameters. If field z; has a
very short relaxation time, 77, it quickly achieves its final values, acting as a random

(although correlated) field on m; and z; at longer times.

3.3.2 Interactions

Based on our experience with uncoupled models for ocular dominance and orientation,
we introduce interactions within each field. For orientation we introduce nearest
neighbor interactions with strength k., > 0, while for ocular dominance we introduce
an interaction, k(z,7), that depends on the distance between site 7 and site j. For
short distances k(z,7) > 0 while for longer distances up to a cutoff k(z,5) < 0. The

full equations of motion,

om; -
PO = a2+ k() (my — m),
’ J
/azi 2 / 2 ’
T = AT zilzl? = Aami+ K, Y. (2 —2), (3.36)
j €nn.
contain five parameters in addition to the interaction k(i,j). Setting 7 = 1, 7/

should be determined by comparing the growth rate of orientation preference to ocular
dominance. Unfortunately, there is currently not enough data on immature animals
to compare the rates. For simplicity we set 7' = 7 = 1, and add a further constraint
of v = 7/. There is no compelling reason for one field to play a dominate role over

the other. Once again we choose to reverse the sign on the m; term, as discussed in
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Sec. (3.1.3).

Coupling Between Defects

A small positive value of v = 4 is enough to cause the vortices to tend to avoid

|2 in the cost function

the domain walls, see Fig. (3-19). The positive term vym?|z;
of Eq. (3.30), implies that sites with both high ocular dominance and orientation
selectivity incur an additional cost. Defects in either field, which have low values of
m; or z;, can reduce the total cost by appearing at separate sites, so that two sites
save a cost proportional to 7 rather than just one site. (The existence of defects still
adds to the total cost due to the other terms in the cost function.) The presence of
orientation vortices in the center of ocular dominance bands leads to isoorientation
lines which cross ocular dominance domains perpendicularly.

A positive value of v indicates a competition between ocular dominance and orien-
tation. In this case v has the same sign as the quartic terms in the the cost function
which limit the growth of the fields. If v = 2 these terms could be expressed as
(m? + |z:[*)?, a single term limiting the sum of the fields. A value of v = 2 appears
to be too large, but the idea of competition still holds for weakly coupled fields.

Negative values of v = 7/ lead to vortices preferentially occurring on ocular dom-
inance domain walls. In this case sites with cither type of defect incur a cost propor-
tional to 7, so that it is advantageous to have both types of singularities occur at a
single site. This pattern, however, is not seen experimentally.

Large positive values of coupling distort the pattern of orientation and ocular dom-
inance. The cortex becomes divided into regions responding only to orientation or
only to ocular dominance. Across the centers of ocular dominance bands orientation
becomes discontinuous. This discontinuity is similar to the fractures seem experimen-
tally. However, for large coupling these fractures, rather than the pinwheels, become

the dominant feature.



Figure 3-19: Simulated (a) orientation preference, (b) orientation selectivity, and
(c) ocular dominance patterns generated by iterating Eqs. (3.36). The coupling be-
tween fields prevents the further annihilation of singularities. The locations of the
singularities and ocular dominance domain walls are clearly visible in the orienta-
tion selectivity. In this simulation on a 100x100 lattice, v = —0.1. ¥? = —0.05,
k,(Q) = —0.025, L = 10, k, = 0.03, and At,, = At, = 0.025. The equations of motion
were iterated for 500 time constants. The pattern appeared to be stable during the
last 250 time constants.
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Pinning the Defects

Coupling between ocular dominance and orientation preference can stabilize the pat-
tern of orientation vortices. These defects are not able to pass through the barrier
created by thick ocular dominance domain walls. Thin ocular dominance walls, cre-
ated by nearest neighbor interactions, can be crossed by the vortices, so further
neighbor interactions are necessary in the ocular dominance field. The singularities
also become trapped by bends in the ocular dominance bands, as shown in Fig. (3-19).

A pattern free of vortices still has the globally lowest cost. However, the initial
conditions do not evolve to the global minimum. Instead they become trapped in a
local minimum that still contains vortices. Since vortices are topological defects they
can only be removed by annihilation with opposite vortices (or edge effects). Due to
the coupling, the ocular dominance domain walls are barriers to vortex migration.
Moving onto a domain wall increases the cost of the pattern and is prohibited even
though a lower cost may be achieved when the vortex has passed completely though
the barrier. Domain walls formed by only nearest neighbor interactions are only 1 or
2 sites thick. Since a vortex suppresses ocular dominance in a 1 or 2 site radius (see
Sec. (3.3.3) ), it can create a node in the domain wall as it passes through.

The typical distance between singularities is strongly influenced by the width and
persistence of the ocular dominance bands. The width of bands forces the separation
in the direction perpendicular to the bands to be at least of the order of the band
width. In the direction parallel to the bands, the typical separation between singu-
larities is limited by the persistence. In frequently branching and bending bands, the
singularities are quickly trapped as they move within a band. In relatively straight
bands, many singularities can move a significant distance without becoming entangled

in the domain walls.

3.3.3 Distribution of |z;| and |m;|

Coupling between orientation and ocular dominance effects the distribution of |z;| and

|m;|, as well as the patterns of selectivity. It widens the distributions, bringing them
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closer to the experimental observations. However, coupling alone does not widen the
distributions sufficiently without causing disruption of patterns. Even together with
long range ocular dominance interactions, the distributions are not sufficiently wide,
as shown in Fig. (3-20).

An undesired feature of the couplings is its influence on the pattern of selectivity,
as shown in Figure (3-19). Unlike the experimental case, the ocular dominance
domains become visible in the patterns of selectivity. While the strength of this effect
varies with the magnitude of v, it is visible even at very small values of the coupling.
Coupling to additional fields, or random noise, may disguise the effect from visual
observation, but it would still be detectable statistically. No published statistical
analysis of experimental data has shown any sign of the ocular dominance domain

walls in orientation selectivity patterns.

3.3.4 Summary

Introducing a coupling between the ocular dominance and the orientation selectivity
models can create a tendency for the defects in the two fields to avoid each other.
Thus, the orientation vortices stay away from the ocular dominance domain walls.
A similar effect has been reported in the monkey. Placing the vortices in the center
of ocular bands naturally causes lines of isoorientation to cross domain walls nearly
perpendicularly. The coupling between the fields also stabilizes the pattern of orienta-
tion preference as vortices cannot migrate through thick domain walls. This method
of stabilizing the ocular dominance pattern gives a possible explanation for the ob-
servation that pinwheel separation and ocular dominance bands appear to have very
similar length scales.

Coupling the fields also presents a way to widen the distribution of m; and z;,
so that they more closely match observations. Despite this improvement, there still
appears to be a significant disparity between the modeled distributions and the actual
ones. However, these distributions are one of the least studied experimental features,
and their description is not precisely known. A more serious defect of the coupling

is the influence of the ocular dominance domain walls on the patterns of selectivity.
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This has not been reported in experiments to our knowledge.
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Chapter 4

Conclusions

Insights from Macroscopic Modeling

Using macroscopic modeling with a Landau-Ginzburg approach we are able to repro-
duce many of the features in the primary visual cortex. This approach highlights the
nature and symmetry of the emergent properties of the cortex, and provides insight
into the key features that are frequently missed in microscopic models.

We model ocular dominance as a real number indicating the dominant eye and
the degree of preference. The symmetry between the two eyes limits the equations of
our model to those unchanged under globally exchanging the eyes’ responses. Initial
conditions, reflecting a nearly binocular response, develop into a pattern of domains
of two different preferred values, corresponding to the observed monocular bands.
This development occurs during a critical period during which the model is sensitive
to perturbations. The domains are separated by domain walls where the modeled
ocular dominance changes rapidly. Competition between short range exhitatiuons,
which favor continuity, and long range inhibitions, which favor diversity, stabilizes
the domains, and results in a pattern of stripes. Without this competition, a system
containing domain wall defects coarsens to minimize the length of the domain walls,
eventually resulting in uniform (monocular) response.

We model orientation as a complex number to reflect both preference and selec-

tivity. The symmetry among all orientations limits the equations of our model to a
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few phenomenological parameters. Using these equations of motion to evolve ran-
dom initial conditions, we create patterns which contain vortices, the natural defects
in angular fields, which are naturally associated with the pinwheels observed in the
cortex. As the vortices in an isolated angular field slowly annihilate leaving a single
uniform angle, we expect that some external coupling stabilizes the pattern. We find
that coupling to quenched noise, or to the pattern of ocular dominance, can stabilize
the pattern of orientation.

In addition to stabilizing orientation patterns, coupling between the ocular dom-
inance and orientation explains the tendencies for pinwheels to avoid the edges of
ocular dominance bands. It is natural to think of this coupling as a result of the cor-
tex’s limited computational capacity, e.g. areas which respond strongly to orientation
cannot simultaneously respond strongly to ocular dominance. This coupling links the
typical separation between vortices to the length scales of the ocular dominance do-
mains. This may explain why both features are observed to have very similar length
scales. However, we must consider this interpretation with caution. Both orientation
and ocular dominance are mediated by neural activity which has an inherent length
scale. The size of neural arbors is roughly commensurate with both the band width
and the separation between pinwheels.

It is also possible to stabilize the pattern of vortices by weakly coupling to a
large number of number of fields. If one of these fields is ocular dominance, the
vortices can still be driven away from the domain walls, but this will avoid the side
effects from strong ocular dominance-orientation coupling that we have observed in
our simulations. A more generalized coupling can also explain the presence of stable
orientation patterns in animals which do not have detectable ocular dominance bands.
The coupling between a large number of ficlds can again be motivated by competition

for a limited computational capacity.

Open Questions

Despite the success of macroscopic modeling, several questions remain open. The

distribution of orientation selectivity and the magnitude of ocular dominance are not
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modeled well by our approach. Most other models have not looked explicitly at these
distributions (but do not seem to do any better), so it is an area in need of further
study. The distribution of ocular dominance magnitude reflects the sharpness of the
domain walls and plays an important role in monocular deprivation. Stripes with
narrow domain walls are not able to easily narrow under the influence of monocular
deprivation. Since limited information is currently available about these distribu-
tions, a better experimental study of these distributions would significantly guide the
development of models.

The primary visual cortex grows significantly during the formation of orientation
and ocular dominance patterns. Modeling this growth in a robust way has not yet
been attempted. Simulating growth of the cortex requires adding lattice points dur-
ing the simulation to reflect the addition of new cells. Coupling between growth and
ocular dominance is necessary to explain the propensity of the growth to be per-
pendicular to the bands. Modeling growth also requires the spontaneous creation of
vortex pairs, as the pinwheel density appears to remain constant. Additional exper-
iments that probe the evolution of patterns during development will provide much
more strigent tests for developmental models than are currently availible.

More detailed characterization of the observed patterns will help greatly in dif-
ferentiating between models. Currently, much of the comparison between model and
experiment is simply visual. The use of fourier spectra provide some additional means
of comparison, but again the comparison is mostly visual. Measuring correlation func-
tions and characterizing possible defects allows more quantitative comparisons than
discussions of linear zones, saddle points, fractures, and singularities. Recently Ober-
mayer and Blasdel have begun work in this direction, measuring correlation functions
in orientation patterns and finding that patterns cannot be entirely specified by the
positions of their pinwheels.[71] Work in this direction will lead to additional quanti-

tative tests for models and more insight into the working of the visual cortex.
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