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Abstract

Much research has been devoted to the segmentation of 2D images which has long been a
challenging problem due to the complexity of the images. Three-dimensional (3D) data
sets representing spatial volumes, or volume data, may be produced by imaging modalities
such as computed tomography (CT) and magnetic resonance imaging (MRI). Relatively
recently, more effort has been devoted to the application of image segmentation to such
3D images. In 1987, Lorensen and Cline introduced the marching cubes algorithm which
efficiently constructs surfaces, made up of a set of connected polygonal triangles, between
constant gray level objects in given input data. This thesis proposes a method for the sur-
face-based segmentation of volume data by modifying the marching cubes algorithm and
incorporating texture features computed within defined local volumes. The texture fea-
tures are computed from first-order statistical methods, 3D Fourier power spectra, 3D co-
occurrence matrices, and 3D Gaussian Markov random field (GMRF) models. The sur-
face-based segmentation method developed is tested on both synthetic textured images
and regions of interest from an MRI image of Phocoena phocoena (harbor porpoise). The
results are evaluated qualitatively and are found to be encouraging. Surfaces representing
boundaries between different textures are approximately constructed in many instances.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Image segmentation has been a topic of active research for the last thirty years.

Segmentation can be regarded as the integral first step toward subsequent processing and

analysis of an image and is still an unsolved problem despite the research effort that has

been devoted to this field. The goal of image segmentation is to identify homogeneous

regions in an image where the characteristics that determine homogeneity can be based on

a number of factors that are context dependent.

To further describe image segmentation, it is necessary to address how an image is

represented. In our case, two-dimensional (2D) images may be thought of as a finite 2D

rectangular grid of sites where picture elements or pixels are located. Each pixel has an

associated gray level value which may be represented as function of its position, f(i,j).

Analogously, we consider three-dimensional (3D) images as being a 3D grid of sites

where voxels are located. Each voxel has a gray level value which may be represented as

a function of its 3D location, f(i,j,k). Each pixel or voxel gray level represents certain rel-

evant properties associated with the location (i,j,k) in the modeled three-dimensional

world depending on the method used to acquire the representation. For instance, gray lev-

els may represent attributes of crop types in satellite images, distance estimates in range



images, x-ray attenuation of structures in computed tomography (CT) images, and proton

density and mobility in magnetic resonance (MR) images.

The approaches to finding desired homogeneous regions in a 2D image by segmen-

tation may be categorized into two groups, edge-detection methods and region-based

methods. Edge-detection, or boundary-based, methods search for dissimilarities between

pixels and thereby determine edges that distinguish boundaries between areas. Region-

based methods search for similarities by which to merge pixels together into homogeneous

regions. For 3D images, the approaches to segmentation are usually extensions of the 2D

approaches to 3D in which the region-based approaches extract homogeneous volumes

instead of areas, and the edge-based approaches identify surfaces forming volume bound-

aries. The main problem of segmenting 2D or 3D regions in images has been to find the

suitable homogeneity properties [Monga, et al., 1991].

Most of the research in image segmentation has focused on segmenting 2D

images. Several papers showing the variety of techniques and results are available [Reed

and Hans Du Buf, 1992; Bezdek, et al., 1993; Haralick, 1979; Hu and Dennis, 1994;

Geman, et al., 1990]. Recently, however, more effort has been devoted to the application

of image segmentation to 3D images (and to 3D image processing in general) due to the

continuing development of imaging instruments, computer processing power, and graph-

ics capabilities. 3D data sets representing spatial volumes, or volume data, arise in many

scientific applications ranging from meteorological and astrophysical measurements to

medicine, and it is likely that more applications will generate volume data in the future,

continuing to provide information for further advances in many fields [Drebin, Carpenter,

and Hanrahan, 1988]. In particular, access to the third dimension in medical imaging has



already provided valuable information for reparative surgery, radiotherapy treatment plan-

ning, and stereotactic neurosurgery [Joliot and Mazoyer, 1993].

More specifically, medicine has benefited greatly from imaging modalities such as

x-ray computed tomography (CT), magnetic resonance imaging (MRI), and positron

emission tomography (PET), all of which produce volume data that are typically stored as

a sequence of parallel 2D slices. The top-level approaches to segmenting these volume

data may be loosely categorized into two approaches. One approach applies various 2D

segmentation techniques on each cross-sectional slice of the volume data [Muzzolini,

Yang, and Pierson, 1994; Chakraborty, et al., 1994; Joliot and Mazoyer, 1993]. Using 2D

techniques on 3D data involves first segmenting each 2D image in the sequence of slices

and then combining the results in some manner to get the 3D segmentation. Apart from

not directly utilizing all of the information in the volume data, such 2D methods give rise

to various ambiguity and connectivity problems between the 2D segmented planes [Joliot

and Mazoyer, 1993; Cappelletti and Rosenfeld, 1989].

The other approach works directly with the volume data as a whole, thereby utiliz-

ing all of the 3D information. Recently, more effort has been devoted to this approach

[Muzzolini, Yang, and Pierson, 1994; Liou and Jain, 1991; Cohen, et al., 1992; Cline, et

al., 1990; Bomans, et al., 1990; Ehricke, 1990; Aach and Dawid, 1990; Strasters and Ger-

brands, 1991; Choi, et al., 1989; Gerig, et al., 1992].

In 1987, Lorensen and Cline presented the marching cubes algorithm. This sur-

face construction algorithm produces high quality images by generating a set of connected

triangles to represent 3D surfaces of structures in the input data. This surface representa-

tion allows for 3D rendering of structures with the appropriate visualization software.



This technique has become popular and widely used due to its practicality and simplicity.

At the heart of the marching cubes algorithm is a simple thresholding procedure

which determines the location of the surfaces. The volume data space is viewed as being

partitioned into cubical elements for which each cube consists of voxel values located at

its eight vertices. Inside these cubical elements, the decision is made as to whether a sur-

face intersects the cube by comparing voxel values along a cube edge with a determined

threshold value. If a surface is determined to intersect the cube, polygonal triangles are

used to approximate this surface-cube intersection.

This thesis proposes that perhaps the marching cubes technique can be modified to

tackle the larger problem of image segmentation of volume data and investigates how well

local statistical and textural properties of the volume data may replace this simple thresh-

olding procedure for the purpose of segmentation. In particular, the objective is to use the

textural features computed from first-order statistical methods, local 3D Fourier power

spectra, 3D co-occurrence matrices, and Gaussian Markov random field (GMRF) models

to determine surface boundaries between different tissues and structural objects in volume

data produced by magnetic resonance imaging (MRI) or computed tomography (CT). In

summary, this thesis presents an approach for the segmentation of volume data, both real

and synthetic, based on textural and statistical properties within a marching cubes type

framework.

1.2 Possible Applications

The results of segmentation may be used for many applications since segmentation



is the first step in many image processing tasks. This section discusses two possibilities

that serve to illustrate the value of effective 3D image segmentation methods.

1.2.1 Acoustic Models of Marine Mammal Ear

The first application relates to developing models of ear function of marine mam-

mals. In particular, many functional aspects of the whale (Order Cetacea) ear are not fully

understood. There is no satisfactory model of hearing in Cetacea [Ketten, 1992]. Since

whales must function in water, a light-limited environment, sound is a fundamental sen-

sory and communication tool. Whales are the only mammals with acute ears that are fully

adapted to underwater hearing, and they have the broadest acoustic range of any known

mammal group [Ketten, 1994].

The order Cetacea has two suborders, Odontoceti (toothed whales and dolphins)

and Mysticeti (baleen whales). All odontocetes tested to date echolocate; that is, they

sense their environment by analyzing echoes from a self-generated ultrasonic signal of up

to 200 kHz [Ketten, 1992]. Some mysticetes produce infrasonic signals that may be used

for long-range communication or navigation, but observations are consistent with the

assumption that they do not use ultrasonics for echolocation. Outer ear adaptations to an

aquatic environment are extensive in cetaceans, and the mechanisms of sound production

and reception in odontocetes are still being debated. It is presently believed that multiple

paths exist for sound conduction [Ketten, 1994].

One primary path for ultrasonic signals in odontocetes is believed to be located in

the lower jaw, where waxy tissues overlain by the mandibular bone provide a low imped-



ance path that can guide sound to the middle and inner ear. Another path may be a thin

ovoid region near the posterior of the odontocete mandible called the "pan bone" [Ketten,

1992]. Recent MRI data has shown that this broader, laterally directed, funnel-shaped

channel aligns with the middle ear and may act as a low frequency conduit [Ketten, 1994].

Similar tissue channels to the ear in mysticetes have not been identified. A good

method for the three-dimensional segmentation of the ear and the specific acoustic tissue

paths mentioned above would contribute to the development of various acoustical and

mechanical models that could help elucidate the mechanisms behind the hearing capabili-

ties of odontocetes and perhaps marine mammals in general.

1.2.2 Image-guided Surgery

Another potential application is found in image-guided surgery. The goal of an

image-guided surgery system is to allow a surgeon to view a patient and at the same time

display in exact alignment with that view all desired internal structures before executing

each stage in a surgical procedure. Although there are many groups working on image-

guided surgery, we mention one in particular [Peters, et al., 1996]. The Computer Vision

Group of the MIT Artificial Intelligence Lab has been working in collaboration with the

Surgical Planning Laboratory of Brigham and Women's Hospital to develop tools to sup-

port image-guided surgery [Grimson, et al., 1996]. Such tools allow surgeons to visualize

internal structures through an automated overlay of 3D reconstructions of internal anat-

omy superimposed on live video views of a patient.

These tools are needed for constructing 3D models, laser scanning, performing



registration, implementing enhanced reality visualization, and doing other tasks that make

up an image-guided surgery system. Creating segmentations of the input data (mostly MR

scans) is embedded in the process of creating the 3D models. The initial stages of the sys-

tem that the AI Computer Vision Group at MIT has implemented involves automatic

intensity-driven labelling of MRI voxels by type, segmentation of these labeled voxels into

distinct anatomical structures, and visualization by rendering of the anatomical structures.

Clearly, 3D image segmentation methods play an important role in the performance of

such a system.

1.3 Brief Summary of Results

Chapter 4 of this thesis will detail the experimental results of using the surface-

based segmentation algorithm which incorporates texture features. But in order for the

reader to have a sense of how our segmentation method performs, here a brief description

of the general results is given in a manner that does not necessitate the explanation of

implementation details that have not yet been presented. It should be noted that all results

are qualitative because the computed polygonal surfaces are not closed and are therefore

not amenable to quantitative assessment.

Testing was performed on a group of synthetic images and also on MRI data of a

porpoise. The algorithm was applied using different combinations of texture features.

Results for the synthetic images varied from poor to encouraging. In some cases, visible

polygonal surfaces were constructed along the boundaries separating one volume of tex-



ture from another volume of texture. In other cases, the algorithm produced no visible sur-

faces separating volumes of texture, the output being randomly scattered polygons.

Two 3D regions of interest were selected from the MRI data of a harbor porpoise

which had sufficient volumes of simple textures for testing. In a qualitative sense, the tests

were encouraging in that the simpler 3D region of interest resulted in the construction of a

visible surface between the different textured regions. The resulting polygonal surface is

similar to those surfaces constructed using the synthetic data. The more complex 3D

region which was extracted from the original MRI data generally yielded scattered poly-

gons, demonstrating that the current approach is not sufficient to segment complex tex-

tured images.

1.4 Overview

This chapter gives the overall picture of the main ideas involved in this thesis.

Chapter 2 gives further background information and continues a general presentation of

ideas related to the issues at hand. Chapter 2 contains further discussions of existing work

on 3D image segmentation, the marching cubes algorithm, textures and texture segmenta-

tion, neighborhood local volume definitions, and the synthetic and real images used for

testing.

Chapter 3 describes each texture feature used and its associated implementation in

sequence. In particular, it explains the first-order statistical features, the 3D co-occurrence

matrix based features, the 3D Fourier power spectrum features, and the Gaussian Markov

random field (GMRF) model based features. Chapter 3 also describes the manner in



which features are combined into the general algorithm's framework. Chapter 4 presents

experimental results of applying these individual and combined features to synthetic data

and real data. Finally, chapter 5 suggests possible future work.





Chapter 2

Background

This chapter covers the background for the ideas used in this thesis. In the first

section, we present a summary of some recent work in 3D image segmentation. Section

2.2 discusses the original marching cubes algorithm and how it constructs surfaces from

the input data using a simple user specified threshold. Section 2.3 gives an overview of

various methods and features used to characterize textures for analysis and segmentation.

Section 2.4 discusses local volumes within which various texture features may be com-

puted. The last section describes how synthetic images were generated and shows exam-

ples of both synthetic images and real images.

2.1 3D Image Segmentation: Existing Work and Current Approaches

As indicated earlier, most research has addressed the problem of segmentation for

2D images although recently work has been done with 3D images. This section describes

some of this recent work and the approaches to 3D image segmentation. This discussion

covers merely a sampling of the research that has been done and is by no means exhaus-

tive.

In 1990, Cline et al. described a 3D segmentation method that classifies 3D MR

images of the head into separate tissue types and constructs a surface model for each tissue



by using two sets of MRI data acquired with different contrast protocols. The user must

identify the different tissue classes and sample a sufficient number of points in appropriate

locations. Then, without further user interaction, their method calculates a probability dis-

tribution for each tissue, creates a feature map of the most probable tissues, segments and

smooths the data, and finally uses a connectivity algorithm to extract the surfaces of inter-

est from the segmented data. This process allows for the selection of multiple surfaces for

subsequent display. Cline et al. used MR images from patients with normal head anatomy

and from patients with abnormalities such as multiple sclerosis lesions and brain tumors to

demonstrate that their technique is able to adequately segment such lesions and tumors as

well as segment normal tissues.

In 1990, Aach and Dawid presented a region-based three-stage method for seg-

menting MRI data sets of the head into 3D regions corresponding to different brain tissue

classes, fluid containing structures, and skull. Their method first partitions the volume

into a number of homogeneous regions based on global and local gray level statistics.

These regions are then grouped into different categories by a Bayes classifier. Finally,

knowledge of the spatial relationship between objects is used to correct possible misclassi-

fications. Aach and Dawid assumed from the beginning that volume data is composed of

3D regions whose internal gray values may be described by a Gaussian random field

model. Their method was applied to several MR images of the head and the resulting seg-

mentations shown, but there was little qualitative or quantitative discussion of the results.

In 1991, Liou and Jain presented an algorithm which can segment 3D images into

coherent volumes by a-partitioning and volume filtering in such a way that the gray level

variations within each volume could be described by a regression model. Their model



allowed them to combine a probabilistic approach, in which a 3D image is modeled as a

3D random field, with a functional approach, in which the underlying gray level distribu-

tion is captured by using a family of smooth functions. Experimental tests were run on

one CT data set and on two intensity image sequence data sets. Experimental results dem-

onstrated that their algorithm produced successful segmentations in general but that for

highly textured areas of the images the algorithm did not perform well.

Cohen et al. (1992) tried a different approach by using a deformable 3D shape

model to extract reliable surfaces in 3D images. Their deformable model allowed them to

characterize the boundaries in a 3D image by describing these boundaries as a set of sur-

faces. These surfaces were found by minimizing an appropriate energy function. The

power of their approach was shown by a set of experimental results on some synthetic

images and on some complex 3D medical images which include an MR image of a human

heart and a human head. By using a variational approach and a conforming finite element

method to express surfaces in a discrete basis of continuous functions, Cohen et al. were

able to reduce computational complexity and ensure better numerical stability. The

strength of their technique is that their method provides an analytical representation of the

extracted surfaces which may be utilized for other computational purposes.

In 1992, Gerig et al. proposed the application of multivariate statistical classifica-

tion techniques to the segmentation of dual-echo MR volume data of the human head.

Both supervised methods (which require training and user interaction) and unsupervised

methods (which are fully automated) were tested in segmenting the MR head volume data

into different tissue types such as gray matter, white matter, and fluid spaces. For their

supervised method, Gerig et al. used both a maximum likelihood classifier and a non-para-



metric Parzen window classifier to obtain cluster statistics for segmentation. For their

unsupervised method, Gerig et al. applied two different clustering algorithms to obtain

cluster statistics for comparison with the cluster statistics of the supervised method. It was

found that the estimated parameters were very similar to those obtained by supervised

parameter learning. Their algorithms were applied to a clinical study comprising sixteen

volume acquisitions of the human brain. Their methods illustrated the robustness of their

method in segmenting white brain matter, gray brain matter, and cerebrospinal fluid. The

supervised method had a 93.8% successful classification rate, and the unsupervised

method had a 87.5% success rate.

In 1993, Joliot and Mazoyer proposed an almost fully automated method for the

3D segmentation and interpolation of anisotropic MRI brain data for improved definition

of the brain surface. This segmentation process involved three distinct steps. First, a gray

level thresholding of the white and gray matter tissue was performed on the raw brain MRI

data. Then, an automatic global white matter segmentation was performed with a global

3D connectivity algorithm which takes into account the anisotropy of the MRI voxel.

Lastly, the gray matter was segmented with a local 3D connectivity algorithm. Joliot and

Mazoyer used mathematical morphology tools (which are used to manipulate shapes of

objects in an image) to interpolate the white matter and brain tissues in adjacent slices,

producing binary representations of both white and gray matter which were used for 3D

surface rendering. Their method was applied to four MRI data sets and compared to a

manual segmentation. The results were similar, but their method in general would be dif-

ficult to extend to other types of image data besides MRI brain data.

In 1994, Muzzolini et al. proposed a 3D Multi-resolution Texture Segmentation



algorithm (MTS). They stated the importance of incorporating information in the third

dimension into the segmentation process when the data used is inherently 3D and pro-

ceeded to extend a 2D multi-dimensional texture segmentation algorithm to 3D. Their

MTS method uses the texture present in the image to determine homogeneous regions. In

addition, their technique utilized an octree structure to represent the 3D data, creating a

framework for combining a split and merge process with simulated annealing. The split-

ting and merging of homogeneous regions was performed by characterizing NxNxN

blocks of voxels with an appropriate set of features. This provided satisfactory qualitative

segmentation results on synthetic images of geometrical objects as well as a 256x256x 128

ultrasound image of a human fetus.

2.2 The Marching Cubes Algorithm

In 1987, Lorensen and Cline presented a new algorithm called marching cubes that

creates triangle models of constant density surfaces from 3D medical data. The algorithm

processes the 3D medical data in scan-line order, having abstracted the data into logical

cubes created from eight pixels, four each from two adjacent slices as shown in figure 2.1.

The algorithm decides whether a surface is located in a cube and then "marches on" to the

next cube.

To find the surface intersection in a cube, we look at each edge of the cube and

compare vertex values with a predetermined value, or threshold, of the surface under con-

struction. If a vertex value exceeds or equals the threshold value, the vertex is thought to

be inside or on the surface, and it is assigned a value of one. If the vertex value is below
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the threshold, the vertex is thought to be outside the surface and is assigned a value of

zero. Having done this, the topology of the surface in the cube can be determined by con-

sidering the possible combinations of different values the eight vertices may take on and

by approximating surface-cube intersections with triangular polygons. Lorensen and

Cline observed that there were only 256 ways a surface could intersect the cube since each

cube has eight vertices and each vertex has two states. They created a table containing a

list of the edges intersected for each of these 256 cases, using the vertex values of the cube

as an 8-bit index into this edge table (see figure 2.2).

0 1 2 3

4 56 7

8 9 10 11

12 13 14

Figure 2.3: Triangulated cube cases [Lorensen and Cline, 1987]



Using complementary and rotational symmetry, it was observed that the 256 cases

could be reduced to 15 cases which simplified the creation of the lookup table. Figure 2.3

shows the 15 basic cases. Linear interpolation of the cube vertex values is used to deter-

mine exactly where the surface-edge intersection point (or equivalently, the triangle ver-

tex) is located along a cube edge. The final step in the algorithm calculates a unit normal

for each triangle vertex for shading used in rendering algorithms.

2.3 Texture Segmentation

Texture is an important perceptual property, and classification and segmentation of

textured images has been a topic of research for quite some time. Yet it is interesting that

there is no single, unambiguous definition of what the term texture means. Many sources

give different definitions of texture. Carstensen (1992) defines texture as a region in 2D or

3D that can be perceived as being spatially homogeneous in some sense. Hu and Dennis

(1994) describe texture informally as an image feature that has structure composed of a

large number of more or less ordered elements or patterns, without one of these drawing

special attention. Gonzalez and Wintz (1987) define texture as a descriptor providing a

measure of properties such as smoothness, coarseness, and regularity. The IEEE Standard

Glossary of Image Processing and Pattern Recognition Terminology (1990) defines tex-

ture as an attribute representing the spatial arrangement of the gray levels of the pixels in a

region. This IEEE definition seems to capture the idea best. That is, we think of texture as

referring to the spatial distribution of gray level variations in an image.

There have been several different methods used for texture analysis which include



statistical methods, structural methods, spectral methods, model based methods, and

multi-scale methods [Reed and Hans Du Buf, 1993]. All these methods allow for the

computation of features that are utilized to differentiate and classify textures. These fea-

tures can be computed by combining pixel or voxel intensities in many different ways,

thereby generating a set of numbers that can hopefully represent textures in a meaningful

way.

For example, residual features form one type of statistical measure. Residuals are

computed by taking a pixel or voxel gray level value of interest and subtracting some frac-

tion of the gray level values of its neighbors (located in specified directions) from its cur-

rent value. The result is assigned as the new value of the pixel or voxel of interest

[Muzzolini, et al., 1994; Geman, et al., 1990]. The average deviation of a region or vol-

ume of residuals, or what we will call a residual feature, may then be computed and used

as a texture feature. Other more standard statistical approaches include the computation of

simple first-order gray level statistics such as mean, variance, skewness, and energy; sec-

ond-order statistical features from gray level co-occurrence matrices; and higher-order sta-

tistical features from gray level run-length matrices. Haralick (1979), Weszka et al.

(1976), and Carstensen (1992) describe such statistical methods in detail.

Structural methods describe textures by a subpattern or primitive and the place-

ment of these primitives (texture elements) in the image. The structural approach is useful

in describing deterministic or regular textures. Spectral methods involve computations of

features from a texture's Fourier power spectrum, thereby utilizing the frequency domain

representation of an image. Model based methods include fitting simultaneous autoregres-

sive models, Markov random field models, and fractal models to the textured image and



use the model parameters as features [Mao and Jain, 1992]. Multi-scale methods have

currently been of great interest and have produced encouraging results, especially in the

application of wavelet based multi-scale features in the classification and segmentation of

textured images [Unser, 1995; Porter and Canagarajah, 1996; Chang and Kuo, 1993].

Among these various methods and techniques used for analyzing texture for seg-

mentation and classification, in our approach to 3D segmentation of volume data we have

chosen to apply first-order statistical measures (loosely grouping mean, variance, gradient,

and residual feature calculations into this category), co-occurrence matrix based features,

3D Fourier power spectrum based features, and Gaussian Markov random field (GMRF)

model based features. Descriptions of the details of such features and their implementa-

tions are given in subsequent chapters.

2.4 Neighborhood Definitions and Framework for Feature Computations

As described in section 2.2, the marching cubes framework allows us to process

the volume data in scan-line order and lets us think of the data set as abstracted into logical

cubes created from eight pixels, four each from two adjacent slices as shown in figure 2.1.

In this section, we define neighboring NxNxN local volumes of voxels which are associ-

ated with each vertex of the cube and which are used to compute local texture features.

Remember that throughout this thesis the term voxel refers to discrete scalar values

in the 3D lattice of points that make up the volume data and does not refer to its other

often used meaning of being a volume element in a 3-dimensional space (which results

from partitioning the space by 3 sets of mutually orthogonal planes) [Udupa, et al., 1982].



In other words, this alternative definition of a voxel is equivalent to the logical cube cre-

ated from eight pixels, four each from two adjacent slices as mentioned above.

Since texture is a local picture element interaction phenomenon, it can be charac-

terized within a local area or volume [Ehricke, 1990; Muzzolini, et al., 1994; Aach and

Dawid, 1990]. In 1994, Hu and Dennis presented a way to achieve unsupervised image

segmentation based on clustering by calculating textural features, which were the parame-

ters of an autoregressive model, in small non-overlapping blocks of the images used. In a

statistical framework, Geman et al. (1990) compared blocks of pixels for finding bound-

aries and for partitioning scenes by computing textural and statistical features within the

blocks. Clearly, computing texture features within local areas or volumes is not a new

idea.

2.4.1 Neighboring Local Volumes For First-Order Statistics

Two versions of neighboring local volumes associated with each cube vertex are

used for the calculation of residuals, mean, variance, and gray level gradient first-order

statistics (see figure 2.4). The first version of a 3D local neighborhood for a voxel may be

thought of as an extension to 3D of the so-called 2D first order neighborhood often used in

dealing with Markov random field models [Carstensen, 1992; Mui, 1995; Chellappa, et

al., 1985]. We may imagine marching along the data set where the current cube of interest

is labeled cube 0 in figure 2.4. We will call the current cube of interest the reference cube.

We evaluate the necessary features for each vertex by computing the statistics using the

vertex value and the values of its six surrounding neighbors. Specifically, if vertex 0 in



cube 0 is the vertex of interest (or what we will call the reference vertex), the neighboring

voxels are as shown in figure 2.4. The numbering system used to refer to and access the

neighboring voxel values is also specified. The local calculations are made for each vertex

in the cube, the results are assigned and stored for each vertex, and then the procedure is

repeated for the next cube.

1st VERSION

2nd VERSION

rertex 0. cu

cuhC

rerte 0. cub

erex 0 c

vertex 0.

vertex O. cube 3 cube 3

renea i. cub

cube 2

direction along z-axis)

UM U (Note: Black spheres represent neighbors
of the white sphere reference vertex)

r0

reference vertex

(slice direction alone z-axis)
(Note: All vertices make up the 3x3x3
local neighborhood volume in which the
reference vertex is in the center)

Figure 2.4: The two versions of local neighborhood volumes used in the
computations of the first-order statistical features. Cubes are viewed with refer-

ence to a left handed coordinate system as shown. (In the 1st version: bold
lined cube is projecting out of plane of page, dashed lined cube is projecting into
page, reference vertex is represented by white sphere on corner of cube 0 which
is the reference cube; In the 2nd version on the right: dashed lined cubes project

into plane of page, bold dashed lined cube is the reference cube and the white
sphere at its corner represents the reference vertex)

The second version of a neighboring local volume is shown in the right of figure

2.4. Here, we use a 3x3x3 volume of voxel values to compute features associated with



each cube vertex. In the figure, the vertex of interest is labeled with a white sphere, but its

neighbors are not labeled with black spheres as in the 1st version figure to eliminate clut-

ter. The vertex value of interest, or the reference vertex, is located in the center of the

3x3x3 volume. Thus, although the local volumes associated with the other vertices are not

explicitly shown, we can easily imagine the other cases by picturing 3x3x3 volumes sur-

rounding each reference vertex of the reference cube.

2.4.2 Neighboring Local Volumes for Other Texture Features

For the computation of 3D co-occurrence matrix based features, 3D Fourier power

spectrum based features, and Gaussian Markov random field (GMRF) model based fea-

tures in our approach to 3D segmentation of volume data, we use local volumes associated

with each vertex of a cube that are basically extensions of the 3x3x3 local volumes (shown

in the right-hand side of figure 2.4) to the larger 4x4x4 and 6x6x6 volumes. It should be

noted that we also implement a 2x2x2 local volume but in a different manner as seen in

figure 2.5. These 2x2x2 volumes can only be used for 3D Fourier power spectrum based

features due to the nature of the computations involved for both co-occurrence matrix fea-

tures and GMRF features. Figure 2.5 shows a specific case of 4x4x4 local volume for the

shown reference vertex. Just as for the 3x3x3 volume described in section 2.4.1, all the

voxels in this 4x4x4 volume are considered neighbors of the reference vertex. NxNxN

local volumes of other vertices may be mentally pictured given this example.



refere
vencA

'z

2x2x2 local volume

4x4x4 local volume where every cube is not shown for better visualization

NOTE:
solid lined cubes project out of plane of page farthest
solid hold cube represents reference cube in the same plane as the dashed heavy hold lined cubes

dashed, heavy bold lined cubes project into plane of page farthest

Figure 2.5: Local volumes for a cube vertex used to compute other texture fea-
tures. (On the left, the bold lined cube is farther into plane of page than the non-
bold lined cube. On the right, as stated in the note below the cubes, the dashed
lined cubes are behind the thin solid lined cubes and the heavy bold dashed lined
cubes are farthest into plane of page including the solid, heavy bold lined refer-

ence cube)

2.5 Synthetic and Real Image Data Sets

Both synthetic and real images are used to test this approach to 3D segmentation.

Numerous researchers have created synthetic 2D textured images. It has been shown that

the Markov random field binomial model may be used to generate blurry, sharp, line-like,

and blob-like textures [Cross and Jain, 1983]. In addition, other Markov random field

rr fPr'n,-a um.J•,



models and even co-occurrence matrices have been successfully used to synthesize tex-

tured images that closely resemble real images [Lohmann, 1995; Kashyap and Chellappa,

1983]. In the following subsections, we give a brief description of how we generate the

synthetic test images that are used. Two different types of synthetic images are generated.

The first type of texture is created by modelling the image intensities with a 3D Gaussian

Markov random field. The second type is created by assuming that the image intensities

can be modelled by a Gaussian distribution. In the last subsection, the real images used

for testing are discussed and examples of the synthetic and real images are shown.

2.5.1 Using GMRF Model to Create Textured Images

The 2D GMRF model was extended to 3D to create textured geometric objects

within a different texture. The 2D GMRF model and the extended 3D model are described

in chapter 3. Here, we do not go into detail on how the images are created. Figure 2.6

shows an example of a textured 3D image of a sphere created using two different GMRF

models, one model to generate the inside texture and a second model to create the outside

texture. A sectional slice of the volume data is shown using the visualization software

SegmentVIEWTM created by TechnoData Software, Inc. In the section shown, a circle

containing a smooth, blurry type of texture can be seen to be contained within an outside

texture with a bumpy or grainy appearance. By changing the parameters of the GMRF

model, we may alter the corresponding texture's characteristics. The parameters of the

models used to generate the image in the figure are given in the caption. Detailed explana-

tions of these model parameters are found in chapter 3.



Figure 2.6: An example of a textured sphere within another texture using the 3D GMRF

model. Inside texture model parameters are {bo,bl,b 2 } = {0.2,0.1,0.0}; Outside texture

model parameters are {b0,bl,b2 } = {-0.4,-0.4,0.1 }.

2.5.2 Using the Gaussian Distribution to Create Textured Images

The second form of synthetic textured images may be generated by assuming the

image intensities adhere to a Gaussian distribution. In this case, the intensities may be

modeled by the following equation for a Gaussian density.

1 {20k
f(yi) = e (2.5.1)

2 k2

In equation 2.5.1, gk and ok are the mean and standard deviation of volume (or region) k

and yi is the intensity value at voxel (or pixel) i.
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Figure 2.7: An example of a textured sphere within another texture generated using the
gaussian density with mean 180.0 and variance 400.0 for the inside texture and mean

120.0 and variance 2,500.0 for the outside texture.

Figure 2.7 shows a textured sphere within another texture by using different means

and variances for the inside and outside textures in the image. Other textured geometrical

objects and regions besides spheres may be created. By varying the means and variances

of the Gaussian intensity process, various different textures may be generated.

2.5.3 MRI Image of a Porpoise

MRI volume data of a porpoise (Phocoena phocoena) were provided courtesy of

Dr. Darlene Ketten at the Massachusetts Eye and Ear Infirmary, Harvard Medical School.

Regions of interest (ROI) may be taken from the 3D data set and tested. In figure 2.8, slice

25 of the 256x256x36 MRI data set is shown. The location shown circled by the con-
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56x256x36 MRI data of a porpoise. The contour
n of interest where brain tissue meets other tissues.

36

...................................................................................................



tour toward the bottom of the figure shows where a 64x77x29 ROI was obtained for use in

testing (as will be described in chapter 4). A representation of this ROI is shown in figure

2.9. This ROI was specifically selected because it contains a desirable boundary between

brain, fluid, and bony tissue. A 26x82x22 ROI was also selected from a portion of the

256x256x36 MRI data located to the upper-right of the location indicated by the contour

in figure 2.8. This ROI was selected because it contains a simpler boundary between less

complex regions of texture than what may be found in the 64x77x29 ROI. More discus-

sion and details are given in chapter 4.

Figure 2.9: A 64x77x29 ROI from the original 256x256x36 MRI data of a porpoise. This
ROI corresponds to the location indicated by the contour in the larger image of figure 2.8.
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2.6 Summary

This chapter has provided information on past research in 3D image segmentation.

The marching cubes algorithm was presented in detail in section 2.2. The definition of

texture and various methods and features used to segment textures were described in sec-

tion 2.3. Section 2.4 defines the local volumes within which texture features were com-

puted. The last section introduced the reader to the images used to test the segmentation

algorithm of this thesis. The background presented in this chapter provides sufficient

information to lead into the discussion in chapter 3. Chapter 3 describes in detail the tex-

ture features used and also the modification of the marching cubes algorithm to directly

segment textured 3D images.



Chapter 3

Texture Features and Our Approach

In this chapter, the texture features used are explained in detail as well as the

approach used to segment 3D images by utilizing these textural features. Four categories

of texture features were formed. In the first category, we loosely group together the first-

order statistical measures and the gray level gradient and residual features. These are

described in section 3.1. Section 3.2 discusses the co-occurrence matrices and their asso-

ciated features. Co-occurrence matrices have long been applied to analyze textures in 2D

images. Here, the notions are extended to 3D. Section 3.3 presents the 3D Fourier power

spectrum features used for analysis of images in the frequency domain. Section 3.4

explains the Gaussian Markov random field (GMRF) model for texture that researchers

have applied to 2D textured images. Simple methods to extend the GMRF model to 3D

are presented. Finally, we combine the features and discuss the method used to utilize

these features to directly segment volume data within the marching cubes paradigm.

3.1 First-Order Statistical Methods

First-order statistics refer to measures of the gray level distribution of one pixel (or

voxel). Similarly, second-order statistics refer to measures of the joint gray level distribu-



tion of pairs of pixels (or voxels) [Carstensen, 1992]. Although gradient and residual fea-

tures are not technically first-order statistics, in this thesis the mean, variance, gradient,

and residual features are regarded as first-order statistical methods for simplicity.

As explained in chapter 2, there are two versions of local volumes that are used to

calculate these statistics. The local volumes used to compute these features will be dis-

cussed with the relevant features to clarify the method. For means and variances, we can

describe the computations in the same manner given one of two types of local volumes.

Local Mean Intensity:

Nn
i

=i -- 1 Yj (3.1.1)
nj= 1

Local Variance:

Nn
i

Gi2  1 I (yj i )2 (3.1.2)
nij = 1

Nni is the number of voxels in the local volume, i.e., the number of neighbors of

the voxel of interest, i. The symbol ni indicates the local neighbors or local volume of

voxel i. So we compute two means and two variances, one of each for the two specified

local volumes giving a total of four features (see figure 2.4).

Given a gray level f(x,y,z), the gradient at that Cartesian coordinate location (x,y,z)

is defined as the vector:



[x G

G[f(x,y,z)] = = G (3.1.3)
ay GZ
af

Gradients are computed differently depending on the type of local volume used.

For the first version of local volume, voxels on either side of a voxel of interest are sub-

tracted from each other and placed into the appropriate location of the gradient vector. In

this case, neighboring voxels constitute the set of voxel pairs located one voxel away from

the reference voxel, in the three directions corresponding to the x, y, and z axes of a Carte-

sian coordinate system. Figure 3.1 illustrates how the components of the gradient vector

are computed.

Since the second version is a 3x3x3 local volume, all the voxels in the 3x3x3 vol-

ume are involved in computing the gradient vector components. We use three 3D gradient

operators, or masks, to do the computation, capitalizing on the ideas of Zucker and Hum-

mel (1981). Zucker and Hummel were the first to introduce a 3D gradient operator based

on NxNxN voxel neighborhoods [Cappelletti and Rosenfeld, 1989]. They provided math-

ematical foundations to derive three basis functions that define their local operator. Dis-

crete approximations to these basis functions can form three 3x3x3 masks which may be

used to compute the components of the gradient vector for the voxel located at the center

of the mask.

In figure 3.1, the 3x3x3 mask used to compute Gx is shown. The masks for com-

puting Gy and Gz are not explicitly shown because they are basically a rotation in space of

the same set. The analogous 2D versions of these masks are commonly referred to as



Sobel operators [Gonzalez and Wintz, 1987; Zucker and Hummel, 1981]. In actuality, the

magnitude of the gradient vector is used as the feature. Given that there are two local vol-

ume versions, we now have two gradient features.

refaencw
location
gray leve

ZI

(X2- X I) (2 -Z1)
Gx= Gz=

2 2

Y2 -YI
Gy--

-.577 -.707 -.577

-.707 -1.0 -.707

Y 0.0 0.0 0.0 -.577 [.707 -.577

0.0 0.0 0.0

.577 .707 .577 0.0 0.0 0.0

.707 1.0 .707

.577 .707 .577

3x3x3 mask used to compute Gx

Figure 3.1: The two ways by which the components of the gradient vector are
computed.

Lastly, we have been using the term residual features for what are actually average

deviation measures of residuals. In other words, the gray level values of a given NxNxN

volume are transformed into residuals, and then the average deviation of the volume of

residuals is taken as the texture feature. Similar features have been used by Muzzolini et

al. (1994). Note that here we only use NxNxN local volumes for these computations. The

local residual is defined in equation 3.1.4, given that Yijk is the gray level at location (i,j,k),

M represents the number of voxels in the local 3x3x3 volume with (i,j,k) located in the



center, and RLijk represents the mean of the gray level values in the 3x3x3 volume.

Local Residual:

rijk = IYijk-- 9ijkl
1 (3.1.4)

where 9ijk = jX Yijk (3.1.4)
i j k

These computed residual values are then taken and used to compute the average

deviation of the volume of interest where rij is the mean of the residuals in the volume of

N3 voxels.

AD(rijk =rijk (3.1.5)
Nijk

3.2 Gray Level Co-occurrence Matrix Features

Haralick et al. (1973) were the first to introduce the concept of creating gray level

co-occurrence matrices from which to derive texture features from images. Gray level co-

occurrence matrices (GLCM) are also called gray level spatial-dependence matrices.

These co-occurrence matrices represent second-order gray level statistics; that is, these

matrices can be formulated to characterize the gray levels of pairs of pixels in an image.

In this section, the 2D GLCM and its associated features are described, followed by a dis-

cussion of the extension of these ideas to 3D.



3.2.1 2D Gray Level Co-occurrence Matrices

Haralick et al. defined a matrix of relative frequencies with which two pixels sepa-

rated by distance d at a specified angle ac occur on the image [Haralick, et al., 1973;

Ohanian and Dubes, 1992]. The terms and symbols used here to describe co-occurrence

matrices will be borrowed from Carstensen (1992). A GLCM, c, is defined with respect to

a (row, column) displacement h (which captures the distance d and specified angle a men-

tioned before). Element (i,j) of c will be denoted by cij which is the number of times a

point having gray level j occurs in position h relative to a point having gray level i. To

obtain a normalized GLCM, which will be denoted C, we divide each element of c by the

total number of pairs in the matrix, Nh. Each element of C is therefore represented by Cij

= cij/Nh. If the image has G gray levels, then the GLCM will be of size GxG.

The following examples will clarify these ideas. In figure 3.2, the GLCM, c, for

the given displacement h is shown for the given gray level image. The sample image has

four gray level values and so c(h) is 4x4. To obtain C(h), we would divide each element

of c(h) by Nb, which is 20 in this case.

Image with four g

01 12

0023

0122

1232

2233

ray levels (0-3) c (h) where h = (o,)

3 0123 g

3 0 1 2 1 0

3 1 0 1 3 0

2 2 0 0 3 5

2 3 0 0 2 2

gray level i

Figure 3.2: Example of computing 4x4 GLCM.

ray level j



If a texture has directionality, i.e., coarser in one direction than another, then the

degree of spread of values about the main diagonal in a GLCM will vary according to the

angle associated with the displacement h. Thus texture directionality can be analyzed by

comparing co-occurrence matrices computed using displacements h of the same length

but of different angles.

It is convenient to use a symmetric GLCM, cs(h), in which pairs of gray levels at

separation h and -h are counted. Pooling the frequencies, or counts, together, we have

cs(h) = c(h) + c(-h)

and it follows that the normalized GLCM is

Cs(h) = (1/2)[C(h) + C(-h)].

Co-occurrence matrices provide an enormous amount of data due to the possible

choices for h. Carstensen (1992) suggests two ways to reduce the amount of data. One,

we can pool the frequencies of more than two symmetric co-occurrence matrices of differ-

ent displacements, h, having approximately the same length. In this case, they are approx-

imately the same length because a displacement of h = (1,-1) is associated with a location

at a distance of ,42 and an angle of 450 with respect to the reference location, but we take

the actual r2 distance to be the same as a distance of 1. Thus one possible pooled

GLCM (where h is length one and includes the angles 00, 450 , 900, 135' and also 1800,

2250, 2700, 3150 due to symmetry) is

c(1) = Cs(0,1) + Cs(1,0) + Cs(1,1) + Cs(-1,1 )

for which the corresponding normalized GLCM would be

C(1) = (1/4)[Cs(0,1) + Cs(1,0) + Cs(1,1) + Cs(-1,1)]



The second way to reduce the data is by reducing the number of gray levels; that is,

we may reduce G of the orginal image by binning the gray level values [Mui, 1995;

Ohanian and Dubes, 1992]. The GLCM should be smaller in size than the original image

to avoid having too sparse a matrix, and a reasonable value of G should be chosen such

that sufficient resolution is retained to discriminate the textures in the original image being

analyzed.

The GLCM is rarely used directly. Rather, features are computed from the co-

occurrence matrices. Both Haralick et al. (1973) and Weszka et al. (1976) suggest the use

of only four out of the many possible features for a co-occurrence matrix; consequently,

only four features are used here.

The contrast feature (CON) is a natural measure of the degree of spread of the

matrix values and is a measure of the local variation present in an image. It is defined as

the following:

G-1 G-1

CON= (i- j) 2Cij (3.2.1)
i=0 j=O

The angular second moment (ASM) is a measure of the homogeneity of the image.

It is smallest when the Cij are all as equal as possible, indicating a fine texture.

G-1 G-1

ASM = C (3.2.2)
i=- j=0

Entropy (ENT) is a measure of uniformity. It is largest for equal Cij and smallest

when the Cij are unequal. Entropy is defined as follows:



G-1 G-1

ENT = -_ Cijlog(Cij )  (3.2.3)
i=0 j=o

The correlation feature (COR) measures gray-level linear dependencies in the

image. In equation 3.2.4, gx and a x are the mean and standard deviation of the row sums

of matrix C(h) and ty and ay are the mean and standard deviation of the column sums.

COR measures the degree to which the rows (or columns) of the GLCM resemble each

other [Weszka, et al., 1976].

G-1 G-1i

COR = ij XY (3.2.4)
i=0 j=O Y

3.2.2 3D Gray Level Co-occurrence Matrices

There are two versions of how we take into account the third dimension in utilizing

GLCM notions. The first version is where we take the concepts of the 2D GLCM and

directly extend them to 3D to create a 3D GLCM. Although we use the term 3D GLCM,

the 3D GLCM is still a 2D matrix. The basic ideas in the computation of the 2D GLCM

are the same, but now the search for pixel pairs includes the third dimension. In other

words, now each element Cij of the GLCM, C(h), is the normalized number of times a

point having gray level j occurs in position h relative to a point having gray level i where h

is a displacement in the x, y, and z directions (if the space of gray level values is viewed in

a Cartesian coordinate system with x, y, and z axes).

In section 3.2. 1, the pooled GLCM C(1) was discussed in which, given a gray level

i at a specific location, gray levels of value j were searched for at displacements h of



length equivalents of one and angles in the horizontal, vertical, and diagonal directions. In

3D, we compute an analogous 3D GLCM using a displacement h with length one and

multiple angles in 3D space as shown in figure 3.3. More specifically, figure 3.3 shows a

reference voxel of gray level i (shown as a black sphere at the center of the volume) from

which gray levels of value j (e.g., at the locations indicated with white spheres) are

searched for in a 3x3x3 volume. Note that we do not consider the locations at the four cor-

ners of the 3x3x3 cubic volume since these actual F3 distances are regarded as distances

of length 2. The number of counts after processing the entire volume data is placed in row

i, column j of the 3D GLCM, and each component of the 3D GLCM may be divided by

the total number of pairs, Nh, for normalization. The CON, ASM, ENT, and COR feature

computations are the same as mentioned before.

reference voxel

location with
erl 1vel i

White spheres represent locations at displacements h (of length one and different angles)

at which gray levels of value j are searched for.

Figure 3.3: Visual description of specific displacements used for computation of direct
version of 3D GLCM.



The second version entails viewing the 3D space of volume data in terms of three

2D planes (namely, the xy, zx, and yz planes). We take each 2D plane one at a time and

compute the corresponding 3D GLCM for each 2D plane. Here, the term 3D GLCM

refers to one matrix of a set of three gray level co-occurrence matrices, each one associ-

ated with a 2D plane (Cxy, Czx, and Cyz). Figure 3.4 shows an example of computing a

GLCM, Cxy(l), that corresponds to the xy plane. We refer to this as the xy plane 3D

GLCM. Figure 3.4 shows the specific example where the volume data of interest is 4x4x4

in size, but there is no loss of generality. Clearly, there are actually four separate xy

planes. As shown, a pooled GLCM, Ci(l), is computed for each xy plane and then the ele-

ments of the four resulting Ci(1) are averaged to give the elements of Cxy(1) (the pooled

GLCM C(1) is described in section 3.2.1).

The same procedure may be done for the two other 2D planes, namely the zx and

yz planes. The overall result is the set of 3D GLCM, i.e., a set of three pooled co-occur-

rence matrices Cxy(l), Czx(1), and Cyz(1). We compute four co-occurrence texture fea-

tures (CON, ASM, ENT, and COR) from each matrix, giving us a total of twelve features.

It should be noted that since we only compute pooled GLCM Ci(l) (like the one in figure

3.3) for each xy plane in the set of parallel 2D planes, we do not take into account texture

directionality as described in section 3.2.1, but the number of texture features that must be

dealt with are reduced.



ASSUMING 4x4x4 VOLUME DATA

Ist xy plane

compute C (1)I

2nd xy plane

3rd xy plane

_ -A

4th xy plane

compute C (1)
4

compute C (1)
2

(1)
y

then CON. ASM. ENT. and COR features may be computed from
C (1)

xy

Figure 3.4: Computing Cxy( 1), the xy plane 3D GLCM, for 4x4x4 volume data. We may

then compute four texture features from the resulting Cxy(l).

3.3 Fourier Power Spectrum

Specific components in the spatial frequency domain representation of an image

contain explicit information about the spatial distribution of intensity variations [D'Astous

and Jernigan, 1984]. The Fourier transform has commonly been used as the tool to obtain

the frequency domain representation of an image. The 2D discrete Fourier transform on a

NlxN2 sized 2D image is defined by



N2 -I N -I (2xjk2n2 2nIjkIng

F(u, v) = e e (3.3.1)
k2= 0 k = 0

The 3D discrete Fourier transform which may be used on N1xN2xN3 3D images is

defined analogously by

N3 - 1 N2 -1 N-I (2- ik3n3\( 2 ik2n2 ) (2r2iklnl

F(u,v,w) = I I e e 2e (3.3.2)
k3=0 k2 = 0 k, =0

The Fourier power spectrum is the magnitude of F(u,v) (or F(u,v,w)) squared, i.e., IF(u,v)l 2

(or IF(u,v,w)12 ). Features characterizing textures in an image may be computed from the

respective power spectra.

The FFT algorithm is used to compute the 3D discrete Fourier transform, and the

local volume data input into the algorithm is always NxNxN in size, where N is a power of

two. The primary interest here: is in the 3D Fourier power spectrum and its associated fea-

tures. As a result, the features below will be described assuming all 2D images are NxN in

size and all 3D images are NxNxN in size, N of course being a power of two. Subsection

3.3.1 presents the definitions of the 2D features and subsection 3.3.2 defines the 3D ver-

sions of these features.

3.3.1 2D Fourier Power Spectrum Features

Features from the Fourier power spectrum have long been used in the analysis of

textures, but the effectiveness of such features has been debated [Weszka, et al., 1976;

D'Astous and Jernigan, 1984; Jernigan and D'Astous, 1984]. The criticisms stem from



the limited success of using spatial frequency information in texture analysis, but most

come from work that has only used limited features derived from the frequency domain

[Weszka, et al., 1976]. These features are basically sums of spectral energies within

regions (wedges and bands) in the frequency plane. Later work showed that the frequency

domain is indeed rich in useful information. Specifically, D'Astous and Jernigan (1984)

extended the set of features that can be computed from the Fourier power spectrum and

found encouraging results [Liu and Jernigan, 1990; Jernigan and D'Astous, 1984].

The power spectrum in a local block or region R can be normalized according to

the following definition if we let IF(u,v)12 = P(u,v):

p(u, v) = P(u, v) (3.3.3)
SP(u, v)

u, v O

The set of { p(u,v) I u,v e R ) may be thought of as a set of probabilities that can be used

for certain feature computations. We exclude the DC component in the computation of

p(u,v), and this is denoted "u,v # 0" in the summation sign of the denominator. Several of

the features used by Weszka et al. (1976) and Jernigan and D'Astous (1984) will be listed

here with p(u,v) incorporated into some of the feature definitions.

It is known that the radial distribution of values in IF(u,v)12 is sensitive to coarse-

ness in an image. Weszka et al. (1976) assert that a coarse texture will have high values of

IF(u,v)12 concentrated near the origin of the power spectrum while a fine texture will have

values of IF(u,v)12 that are more spread out. In the equations below, r represents the radius

of a circle and 0 represents an angle in radians with respect to the u-axis in the uv fre-

quency plane. Note that for the wedge power feature, the "DC value" (u,v) = (0,0) is omit-

ted since it is common to all the wedges.



Average Power:

AP = IF(u, v)j2  (3.3.4)
0 5 u + V2 2 r2

05u, vN-

Ring Power:

2 2RPrlr2= £ IF(u, v)2  (3.3.5)r u2 + V2 •r

0 5u, v N-1

Wedge Power:

WPe2 = IF(u, v)l 2  (3.3.6)

01 • atan ()< 01

0<u,vN-

Entropy (EPY) is a measure of the spread of spatial frequency components within

regions. EPY satisfies 0 5 EPY 5 log K where K is the number of discrete frequencies

(u,v) in R. When some p(u,v) is 1, then EPY takes on its minimum value. So EPY takes

on a maximum value when all the p(u,v) are equal (or p(u,v) = 1/K). Specifically for the

EPY feature, p(u,v) is computed without excluding the "DC component" where (u,v) =

(0,0).

Entropy:

EPY = - C p(u, v)log(p(u, v)) (3.3.7)
u, v R

D'Astous and Jernigan (1984) mention that peaks in the power spectrum corre-

spond to the degree of regularity in texture. That is, specific characteristics of the peaks



can be used as texture features. Using ul ,vl to indicate the frequency coordinates of the

maximum peak of the power spectrum, the important peak characteristics are then as fol-

lows:

Energy in the major peak:

EMPeak = p(u 1 , v1) x 100 (3.3.8)

Another feature is the Laplacian which takes on a small value for a flat peak and a

large value for a pointed peak. In addition, fine textures have peaks farther away from the

origin of the power spectrum than coarse textures. This may be measured using the

squared major peak frequency.

Laplacian of major peak:

P(u 1 + 1, v )+ P(ul- 1, vI)+ P(ul , v1 + 1)
LAPPeak = V2p(u 1,v 1) = (3.3.9)

+ P(ul, v - 1) - 4P(ul, v 1)

Squared major peak frequency:

2 2
SQPeakFreq = ul + v, (3.3.10)

As D'Astous and Jernigan (1984) mention, the peak features do not provide infor-

mation on the shape of the spatial frequency component distributions. They list a few fea-

tures that may be used to characterize the shape of frequency components of the Fourier

power spectrum, noting that a highly directional texture corresponds to an elongated ellip-

tical shape distribution and that an isotropic texture (texture without directionality) corre-

sponds to a more circular shape.

The isotropy of the power spectrum measures the elongation of the distribution of

spatial frequencies and is minimum for isotropic textures and maximum for parallel line

textures.



Isotropy of the power spectrum:

ISO = - (3.3.11)
S2 2

V(Gu + ,) 2 - 4u2v

where

Ou = u2p(u, V)
U V

,V = 1 v2p(u, v)
U V

Guv = 11uvp(u, v)
U V

The circularity feature compares the area of the distribution to the area of a circle

having a radius equal to the length X of the major axis of the distribution. This length k is

the maximum eigenvalue of the covariance matrix of p(u,v). The area of the circle may be

labeled AC, and this represents the number of discrete frequencies enclosed within a circle

of radius 4F. The area of the distribution, AD, is the number of non-zero frequency com-

ponents within a circle of radius 4.

Circularity of the power spectrum:

AD
CIR= - (3.3.12)

Ac

3.3.2 3D Fourier Power Spectrum Features

Due to the nature of the computation of the 3D Fourier power spectrum, the 3D

Fourier power spectrum features are straightforward extensions of these 2D features.

Regions now mean volumes, peaks of the power spectrum now are maximum values of the



power spectrum, and circles become spheres. Although all of the previously mentioned

features have some 3D version, we list explicitly only some of their extensions. In the

equations below, r represents the radius of a sphere, and p(u,v,w) represents the 3D version

of p(u,v) described earlier:

p(u, v, w) = P(u, v, w) (3.3.13)
P (u, v, w)

U, V, W * 0

A local volume of size NxNxN is represented by R. The coordinates ul,vl,wl represent

the location of the maximum value of the 3D power spectrum. Also, p(u,v,w) in equation

3.3.15 includes the "DC component" value located at (u,v,w) = (0,0,0).

3D Average power:

AP = IF(u, v, w)12  (3.3.14)
0_5 U2 + 2 + 2 < r2

05 u, v, w N-

3D Entropy:

EPY = - C p(u,v,w)log(p(u, v, w)) (3.3.15)
u, v, w e R

3D Maximum energy:

ME = p(u 1, v 1, wl) x 100 (3.3.16)

Laplacian of the maximum energy:

P(u 1 + 1, v1 , wl) + P(ul - 1, v1 , wl)

+ P(u1 , vI + 1, Wl)+ P(ul , v1 - 1, Wl)
LAPME = V2P(U , V 1, w 1) = (3.3.17)

+ P(u 1, v1, wl + 1) + P(ul, vI, w1 - 1)

-6P(u 1 , v1, wl)

Squared maximum energy frequency:



2 2 2
SQMEfreq = u + v, + w (3.3.18)

3.4 Gaussian Markov Random Fields

Markov random field (MRF) models have been used by many researchers for

image analysis, classification, and segmentation [Carstensen, 1992; Mui, 1995; Geman

and Geman, 1984; Hassner and Sklansky, 1980]. There are several Markov random field

models, but only the Gaussian Markov random field (GMRF) model is specifically used in

this thesis. It should be noted also that the GMRF model has been used by researchers to

synthesize textures [Chellappa and Chatterjee, 1985; Mui, 1995].

3.4.1 2D GMRF Model

The conditional density for the GMRF model is given by the following equation

[Mui, 1995; Carstensen, 1992; Besag, 1974]:

f(Yil YjJe N) = exp - Jyi- 9- bj(-) (3.4.1)

in which yi represents the gray level of pixel i, and gt and a represent the local gray level

mean and variance. N represents all of the local neighbors of pixel i.

The structure of the neighborhood system determines the order of the MRF. A first

order MRF means that the neighborhood of a pixel includes four of its nearest neighbors.

For a second order MRF, the neighborhood includes eight of a pixel's nearest neighbors.

The neighborhood structure of MRF models is shown in figure 3.5. An often used method



of indicating the set of neighbors is to denote the neighbor set as N = { (0,1),(0,-1),(-

1,0),(1,0)} for the first order MRF; and N = { (0,1),(0,-1),(1,0),(-1,0),(1,-1),(-1,-1),(1,1),(-

1,1)) for a second order MRF; etc. These pairs of numbers are to be added to the (i,j) Car-

tesian coordinate location of the pixel of interest to find the locations of the neighbors.

Figure 3.5: Order coding of neighborhood structure. The nth order neighbor-
hood of the center pixel contains pixels with numbers less than or equal to n
[Carstensen, 1992].

The GMRF model may be equivalently characterized by a linear interpolative

equation containing a set of unknown parameters [Woods, 1972; Besag, 1974]. Let a = { s

= (i,j), 0 5 i,j 5 M-1 ) denote the set of grid points in the MxM image. We may then parti-

tion Q into Uf, the interior set, and Ig, the boundary set, where BI = { s = (i,j): s E Q and

(s+r) o Q for at least one r E N } and Q, = Q - •B (where N is defined below). Further-

more, let y(s) denote the zero mean observations from a given texture where {y(s), s E 9I}

are also Gaussian. The difference equation is then given by equation 3.4.2 where N is a

symmetric neighbor set (where we let N = {s:se Ns) u {-s:se Ns } and where symmetry

5 4 3 4 5

4 2 1 2 4

3 1 Yi 1 3

4 2 1 2 4

5 4 3 4 5



means br = br) [Chellappa and Chatterjee, 1985; Kashyap and Chellappa, 1983]:

y(s) = I br(y(s + r) + y(s - r)) + e(s) (3.4.2)
rE Ns

where e(s) is a zero mean stationary Gaussian noise sequence with the following proper-

ties:

E(e(s)e(r)) = -bsrO , ((s - r) E N)

2 (3.4.3)
= a , s=r

= 0, otherwise

From equations 3.4.2 and 3.4.3, it can be shown that

E(e(s)y(r)) = 0 (r t s)
2  (rs) (3.4.4)

= o (r = s)

In turn, equation 3.4.4 implies that

E(e(s)I all y(r), r s) = 0 (3.4.5)

which further implies

p(y(s) all y(r), r s) = p(y(s) all y(s+r), re N) (3.4.6)

Thus we obtain equation 3.4.6, which is the conditional density that characterizes the

GMRF model.

From this GMRF model representation, Chellappa and Chatterjee (1985) estimated

the unknown parameters b = (b , r E Ns) and a 2 by using the least squares method. Aster-

isks signify values that are estimates and q(s) is the column vector [y(s+r) + y(s-r), r E Ns]

where:

b = [q(s) (q (s))]- q(s)y(s)] (3.4.7)



and

2 1 * T 2
C = 2Y[y(s)-b q(s)] (3.4.8)

M ,

For the specific case of the second order GMRF, there are only four distinct parameter val-

ues (for ease of notation, the symbols N, S, E, W represent the north, south, east, west

directions at which the neighbors are located with respect to the pixel i of interest; see fig-

ure 3.6). The parameters b* and variance a 2* of the model may be used as features to dis-

tinguish between different textures.

* *

bl,- I b YN + YS

b - i, 0 q(s) = Ysw NE (3.4.9)
b, I b2 YSE + YNW

b* * YW YE
0, 1_ b 3

These closed form solutions may be obtained by using the pseudo-likelihood func-

tion (PL) [Carstensen, 1992]:

PL = T1 exp -{ 2 yi-.- bj(yj - (3.4.10)
i 72 20 jEN

By setting the partial derivatives of the log-likelihood equal to zero, we obtain the closed

form solutions of equations 3.4.7 and 3.4.8.

3.4.2 3D GMRF Model

There are two methods by which the 2D GMRF model is extended to 3D. The first

method may be thought of as a direct extension to 3D. In forming a direct 3D extension of



the 2D model, we attempt to maintain the validity of the equations presented in section

3.4.1. The only change needed is to extend the neighborhood region around a pixel of

interest to a neighborhood volume around a voxel of interest. In other words, we now let

Q = {s = (i,j,k), 0 5 i,j,k 5 M-l } denote the set of grid points in the MxMxM image. We

again partition Q into 01, the interior set, and QfB, the boundary set, where OB = {s = (i,j):

s e Q and (s+r) 0 K for at least one r E N} and 92 = f - 1B (N represents once again the

symmetric neighborhood). All the equations of the previous section should then be main-

tained given this modification and given that an appropriate 3D neighborhood system is

defined.

We propose a symmetric neighborhood N in 3D. Since only a second order GMRF

model is dealt with in this thesis, all discussion will center around the second order model.

i

b b
01

b Y. b
N3 3

W E 0

S

Figure 3.6: Second order neighborhood of a
GMRF. bi represents a parameter of the model.
Due to the symmetry of the neighborhood there

are only four distinct values.



Extensions to higher order models should follow straightforwardly from the second order

case. Having said that, figure 3.7 shows the symmetric neighbor set and the corresponding

GMRF model parameter values for the second order GMRF. For a symmetric neighbor-

hood in 3D, it was found that there are only three distinct model parameters.

Equations 3.4.7 and 3.4.8 are still valid estimators of the model parameters and

variance where for the specific case of a second order 3D GMRF we have the following

modified version of equation 3.4.9:

- - xy xy xy xy
* YN + YS + Yw + yE + YOP + YI
b0

b * q (s) (Ysw + YNE) (3.4.11)
[b, for i = xy, zx, yz plane

b* i i
b2 (YSE + YNW)

for i = xy, zx, yz plane

In the 3D second order neighborhood (as seen in figure 3.7), there are a total of eighteen

neighboring voxels, and so each element of the column vector q(s) is the sum of a total of

six different voxel gray level values. The symbols N, S, E, W represent the directions

north, south, east, and west with respect to the center voxel of interest as explained in sec-

tion 3.4.1. The symbol OP means out of the plane of the page, and IP means into the plane

of the page (see figure 3.7). In terms of the yz plane in which the yo p and yIp voxels lie,

yoP is the same thing as yNyz and yIP can be equivalently written as ysyz. This first

method results in an estimate of b* and o 2* for a total of four features.

In the second method, the 3D space is thought of in terms of three mutually per-

pendicular 2D planes (the xy, zx, and yz planes). Essentially, we estimate the second

order 2D GMRF model parameters for the xy, zx, and yz planes. This results in a total of

three feature sets. Thinking of a specific case with no loss of generality, we notice that if



we are computing xy plane features of the GMRF model where the volume data being

used is 4x4x4 in size, then we actually have four xy planes. GMRF model features are

computed for each of the four planes and then averaged to give the features that represent

the 2D xy plane. There is no true direct extension here of the 2D GMRF model to 3D. By

estimating parameters for each group of parallel 2D planes, the procedure is akin to esti-

mating the GMRF parameters for three different 2D images except that here it must be

remembered that the three sets of mutually orthogonal 2D planes are not completely inde-

pendent of each other and that averaging is done for the computed GMRF model parame-

ters among the parallel 2D planes of the local volumes.

b
2

0

b
2

reference

Note: Dashed lines signify that the object is behind the solid lined objects.

Figure 3.7: The second order symmetric neighborhood for a voxel and the cor-
responding GMRF model parameters. The white spheres indicate the neigh-

bors. Not all white spheres are explicitly associated with a model parameter to
avoid too much clutter, but the pattern should be clear.



This means that each of the three sets of features contains three model parameters

and one variance estimate. Note that we say three model parameters instead of four

(which is to be expected for a 2D image; see figure 3.6) because we want to maintain a 3D

symmetric neighborhood which means that the N, S, E, and W neighbors of a voxel in a

specific 2D plane must have the same model parameter associated with them. To make

this discussion clearer, observe the xy plane in figure 3.7. Note that the neighborhood

voxels with which the parameter b0 is associated with in this plane are the N, S, E, and W

neighbors of the reference voxel. By using this method, all the equations and assumptions

of section 3.4.1 should be valid. This second method of extending the GMRF model to 3D

results in a total of twelve features.

3.5 Our Approach Using Texture Features

In this section, some ideas presented earlier are briefly restated, followed by a

description of the proposed approach to segmentation of volume data. Having described

all the texture features that may be computed in our implementation in the previous sec-

tions, we discuss how to incorporate these features into this approach. In addition, the

similarity measure used by which volumes of texture are compared to one another are dis-

cussed.

3.5.1 The Method Using a Feature Vector and a Similarity Measure

Segmentation often entails finding distinct regions in an image by assigning cate-



gorical labels to pixels or voxels. In this approach however, we are segmenting the data by

attempting to create surfaces between distinct 3D texture regions using texture features to

determine where boundaries lie. This method may be thought of as essentially an edge-

based, or boundary-based, approach to segmentation.

The marching cubes algorithm constructs surfaces between constant gray level

regions quite well. It will be recalled that the basic idea is that the 3D space of voxel val-

ues is partitioned into a regularly spaced lattice of points which form cubical elements

when considering eight neighboring points of the lattice at a time (see section 2.2 in chap-

ter 2). At the heart of this method is a simple threshold test that is performed to determine

whether a surface intersects a particular cube edge. In any image with texture, significant

regions of the image may not have constant intensity. The marching cubes method cannot

successfully construct adequate surfaces between homogeneous regions of texture.

As described before, our approach comprises a marching cubes framework. We

process the data in scan-line order, meaning left to right and top to bottom. As we march

along the volume data, we partition the data into cubes and compute texture features for

each vertex of the current cube of interest. Each vertex has associated with it a local vol-

ume from which the texture features may be computed as detailed in section 2.4 of chapter

2.

These texture features are now used to compare local volumes of texture associ-

ated with the cube vertices located on opposite ends of a cube edge. It should be noted

that the local volumes described in chapter 2 are symmetrical in nature. That is, although

each cube vertex has three edge neighbors on that same cube, the same local volume is

used for a cube vertex regardless of which edge is currently being investigated for a sur-



face intersection. Numerous texture features may be computed and placed into an array,

or a feature vector, and these feature vectors which represent the textures of their corre-

sponding local volumes may then be compared across a cube edge to determine whether a

surface-edge intersection occurs. Essentially, particular features are extracted from local

volumes and the 3D image is segmented based on the disparity between the feature vec-

tors. This idea of comparing sub-regions of an image using features computed from the

respective sub-regions has been used by numerous researchers involved with image classi-

fication and segmentation [Manjunath and Chellappa, 1991; Ehricke, 1990; Hu and Den-

nis, 1994; Graffigne, 1987]. In our case, we think of each cube vertex as being assigned a

vector of texture features. Each point that represents a single voxel value in the 3D lattice

of points is now transformed into a vector with multiple values.

We may obtain different feature vectors by using different categories of features to

place in them. That is, we have already described four categories of features, namely first-

order statistical features, co-occurrence matrix based features, Fourier power spectrum

features, and GMRF model features. Groups of features from each category may be

selected to form a feature vector so that differences between the performance of distinct

categories of features may be investigated. Experimental tests using different feature vec-

tors are described in chapter 4.

Texture feature vectors may be compared using a normalized Euclidean distance

measure. The normalized Euclidean distance measure is defined as

i j2

d(F', FJ) = 2 2 (3.5.1)
k (fk) + (fik)

where F' and FJ represent feature vectors associated with their respective cube vertices



along an edge, and fk' and fkj represent the kth feature in their respective feature vectors

[Manjunath and Chellappa, 1991]. The normalization takes into account that some feature

values are inherently larger than other feature values and thus offsets the weight of these

larger valued features.

A surface-edge intersection is now determined to exist if

d(F' , Fj ) > K

where K is some pre-determined constant. That is, if the normalized Euclidean distance

measure for the two feature vectors along a cube edge is greater than some threshold, a

surface is said to intersect that cube edge. Again, note that we are essentially comparing

volumes of texture and that we use triangular polygons to represent the boundary between

different textures. Unfortunately, many segmentation methods are ad hoc in nature due to

the complexity of images and due to the absence of any underlying mathematical theories

for segmentation. This method is no exception. Optimal threshold values must be found

through a tedious trial and error process. The thresholds used for testing in specific cases

will be given in chapter 4.





Chapter 4

Experiments: Tests and Results

Texture features lay the foundation of our approach to segmenting volume data as

discussed in chapter 3. This chapter presents qualitative experimental results in which dif-

ferent texture features in the segmentation algorithm were employed to see how well sur-

faces could be created between distinct textured volumes. The segmentation algorithm

was applied to a group of synthetic images and also to 3D regions of interest from MRI

data of a marine mammal. Only qualitative results are discussed since most of the com-

puted polygonal surfaces were not closed and therefore were not amenable to quantitative

assessment. Section 4.1 describes the specific synthetic and real image test sets used.

Section 4.2 serves to introduce the reader to how the standard marching cubes algorithm

performs by presenting some examples. Section 4.3 presents the results of testing syn-

thetic images. Then the results of testing real volume data are given in section 4.4. In the

previous chapter, we categorized the texture features into four classes. In this chapter, this

categorization forms the framework for an ordered structure for the presentation of results.

Sections 4.3 and 4.4 demonstrate the results of using texture features obtained from first-

order statistics, 3D co-occurrence matrices, 3D Fourier power spectra, and 3D GMRF

models. Section 4.5 discusses some implementation details. Finally, section 4.6 gives a

summary of the results in this chapter.



4.1 Synthetic and Real Volume Data Used

Chapter 2 presented two of the synthetic textured images that were used. Both

were 46x46x46 images of textured spheres within a different texture. However, one 3D

image was created using the 3D GMRF model, and the other was generated by assuming a

Gaussian distribution of intensities. Here we complete the presentation of the suite of syn-

thetic test data. Figure 4.1 presents a 46x46x46 image of a textured sphere using the

GMRF model parameters shown in the figure's caption. Figure 4.1 also shows the histo-

gram of gray level variations in the image of the textured sphere. The single peak of the

histogram demonstrates that simple gray level thresholding cannot be used to segment the

two distinct 3D regions in the image. Including the 46x46x46 textured sphere images

shown in chapter 2, we have a total of three different 46x46x46 textured sphere images.

We similarly create three 64x64x64 t-shaped cube (or tcube for simplicity) tex-

tured images using the same GMRF model parameters and the same Gaussian density

means and variances that were used to generate the textured sphere images. Since the tex-

tures appear the same as the corresponding textures for the sphere volume data already

discussed, we only show two of the textured tcube images in figure 4.2. The models and

the model parameters by which the images are created are described in the corresponding

figure captions.

In addition, three larger 84x84x84 textured tcube images are generated. Each of

these three images are created using the same models and model parameters as each of the

three 64x64x64 tcube images. Basically, size is the only difference between the two sets



Figure 4.1: A 46x46x46 textured image of a sphere generated using the
3D GMRF model. Inside model parameters are {b0,bl,b 2} =
{0.3,0.0,0.0); outside model parameters are {b0,bl,b 2} = I-

0.3,0.0,0.0}. The associated histogram shows that the two textures can-
not be distinguished by using raw gray level alone.
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Figure 4.2: 64x64x64 textured images of tcubes. The top textured
image was generated using a 3D GMRF model with inside parameters
{b0,bl,b 2 } = { 0.2,0.1,0.0} and outside parameters {b0,bl,b 2 } = {-0.4,-

0.4,0.1 }. The bottom textured image was generated assuming a Gauss-
ian intensity distribution with inside mean = 180.0, inside variance =

400.0 and outside mean = 120.0, outside variance = 2,500.0.
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of tcube data. We thus have a total of nine different synthetic test images.

26x82x22 and 64x77x29 volumes of data were selected from a larger 256x256x36

MRI image of a porpoise as described in section 2.5.3 in chapter 2. Examples of the

selected regions of data will be presented with the results in section 4.4. It should be noted

that the 26x82x22 region is meant to be a portion of the MRI data that is easier to segment

than the 64x77x29 region. As shown in chapter 2, the 64x77x29 image contains fairly

complex boundaries of the brain (see figure 2.8 and figure 2.9). In order to simplify the

discussion throughout this chapter, each of the synthetic test images is given a name which

will be used to refer to the textured image in subsequent sections. Table 4.1 presents the

list of names for each of the nine synthetic images.

4.2 Standard Marching Cubes

This section serves to introduce the reader to how the standard marching cubes

algorithm performs on images of constant gray levels and on images with texture. We run

the marching cubes algorithm on a 46x46x46 test image of a sphere with gray level 127 in

a background of gray level zero (black). The marching cubes algorithm does well for this

image which is shown in figure 4.3. An optimal threshold may be selected that distin-

guishes one volume of constant gray level from another volume of constant gray level.

The result of the algorithm is shown in the top of figure 4.4.

Next the marching cubes algorithm is applied to a synthetic textured test image,



Table 4.1: Listing of the names used to refer to the synthetic test
images.

46x46x46 textured sphere gen- texsphere 1
erated by 3D GMRF model:
inside parameters {b0 ,bl,b 2 =
{ 0.2,0.1,0.0), outside parame-
ters {b0,b ,b2 )} = {-0.4,-0.4,0.1)

64x64x64 textured tcube gener- tcube64_1
ated by 3D GMRF model:
(same parameters as above)

84x84x84 textured tcube gener- tcube84_1
ated by 3D GMRF model:
(same parameters as above)

46x46x46 textured sphere gen- texsphere2
erated by 3D GMRF model:
inside parameters {bo,bl,b 2) =
(0.3,0.0,0.01, outside parame-
ters {b0 ,bl,b 2 } = { -0.3,0.0,0.0}

64x64x64 textured tcube gener- tcube64_2
ated by 3D GMRF model:
(same parameters as above)

84x84x84 textured tcube gener- tcube84_2
ated by 3D GMRF model:
(same parameters as above)

46x46x46 textured sphere gen- gauss_sphere
erated by Gaussian distribution:
inside mean = 180, var = 400;
outside mean = 120, var = 2,500

64x64x64 textured tcube gener- gauss_tcube64
ated by Gaussian distribution:
(same parameters as above)

84x84x84 textured tcube gener- gauss_tcube84
ated by Gaussian distribution:
(same parameters as above)



Figure 4.3: 46x46x46 test image of sphere with constant gray level of
127 in a black background.

texsphere l. The result is shown in the bottom of figure 4.4. As expected, the marching

cubes algorithm cannot construct surfaces between volumes of different textures. The

result is a meaningless scattering of polygons. No surface result is obtained for all thresh-

olds tried. It should be noted that we do not give any examples of applying the surface-

based segmentation method using texture features to the constant gray level image in fig-

ure 4.3. The reason is that our method inherently requires that the input be a textured

image. This is not surprising when it is realized that the texture features (which are incor-

porated into our method) have no meaning when computed from local volumes of constant

gray level.



4.3 Tests With Synthetic Images

Many supervised image segmentation methods enable researchers to select a set of

optimal features in order to classify or segment images with a low degree of error [Muzzo-

lini, et al., 1994; Liu and Jernigan, 1990; Ohanian and Dubes, 1992]. Most of these meth-

ods of selecting a set of optimal features either assume some a priori knowledge or access

to a set of training images.

Here no emphasis is placed on finding optimal features primarily because we do

not assume a priori knowledge nor do we use training images in this approach. Further-

more, the viewpoint of this thesis agrees with that expressed by Geman et al. (1990); that

is, rather than search for the set of optimal features that varies depending on the image

analyzed, it is better to find a way to integrate multiple and even redundant features. We

speculate that this can be simplistically accomplished by using a feature vector, and there-

fore we group features together in an arbitrary manner.

In this section, we first present some preliminary results using selected single fea-

tures and subsequently proceed to describe the experimental results of using first-order

features, 3D co-occurrence matrix based features, power spectrum features, and 3D

GMRF model based features in our algorithm. Finally, all the features implemented are

combined into one feature vector and tested. As stated at the end of section 3.5.1 in chap-

ter 3, threshold values for the normalized Euclidean distance measure were determined

through a tedious trial and error process. We give the threshold values used in each spe-

cific case.



Figure 4.4: Results of applying the marching cubes algorithm. In the
top, we show the result of applying the algorithm to the 46x46x46 con-

stant gray level test image. The result is a sphere with a completely
closed surface. In the bottom, we show the best result of applying the
algorithm to the 46x46x46 texsphere 1 image. The result is a meaning-

less scattering of polygons.

4.3.1 Single Feature Tests

Some tests were performed using individual features. When using single feature

our algorithm compares the computed texture feature value for a vertex with a user spec
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flied texture threshold to determine surface-edge intersections in a cube. Note that this is

different than the general algorithm's method of using the normalized Euclidean distance

measure. Here threshold values are not normalized, and the difference between the mag-

nitude of feature values will be clear. Thus it will also be clear why a normalized Euclid-

ean distance measure must be used to take into account that some feature values may be

inherently larger than other feature values. We briefly show the results of individual fea-

tures to give the reader some sense of the performance of these features. Results of using

single features varied from poor to fairly good, and here we show some of the better

results.

For example, we apply the segmentation algorithm using the gray level gradient

feature computed from 3x3x3 local volumes. When this method was tested on texsphere2,

a threshold of 180 gave the constructed surface shown in figure 4.5. The surface of the

sphere has been visibly constructed with 12,332 polygons, but it is by no means a smooth,

complete surface. We also present the segmented surface obtained by applying the resid-

ual feature (average deviation of residual values; see section 3.1 of chapter 3) to

texsphere 1. Using a threshold of 8 gives the 23,924 polygon surface result shown in figure

4.6. The sphere in figure 4.6 has more of a complete surface than that shown in figure 4.5.

But there are random polygons located away from the sphere's surface in figure 4.6 that

are not found in figure 4.5.

We next present two results that are computed using features from the Fourier

power spectrum. The first result involves the 3D average power (AP) feature and is shown

in figure 4.7. Here a surface of 8,292 polygons is generated to form what seems to be a

"partial sphere." That is, the overall shape is spherical although the structure resembles



something more like the semicircular canals in the inner ear. The AP feature generally

returned fairly good results when applied to the synthetic textures created. The sphere in

figure 4.8 has the appearance of a fairly smooth, coherent surface. This sphere's surface is

composed of 12,092 polygons. The 3D entropy (EPY) feature generally allows for reli-

able construction of surfaces between the textures in our synthetic data sets. When com-

paring the segmentations of figures 4.5 - 4.8, the segmentation of figure 4.8 is qualitatively

the best.

It is impossible to show here, but when rendering the polygons for the surface in

figure 4.8, it was observed that there are actually multi-layers of surfaces that are con-

structed inside of the outermost surface that is visible in the figure. This problem will

occur again. In fact, there is a similar scenario for the surface of figure 4.6. Surfaces

inside of the outermost surface (which is visible in the figure) are observed when the poly-

gons are rendered in real time. The reason for this involves the way that the volume data is

processed as well as the method of computing local volumes for estimation of texture fea-

tures in the segmentation method.

Consider that we are processing the volume data, marching from one cube to the

next. If a surface-edge intersection is determined to exist for edge 1 of a particular cube,

the next cube to be processed will most likely result in a determination of a surface cut

along its edge 1 also. This is because the local volumes used to determine texture features

for the current cube contain most of the same gray values of the local volumes of the pre-

vious cube that has already been processed. The problem is most evident when the result-

ing segmentations consist of well connected polygons, giving the appearance of a smooth

surface. When the surfaces are not so "smooth," the multi-layer problem is harder to



Figure 4.5: Surface constructed using the gradient feature for a thresh-
old of 180 on texsphere2.

Figure 4.6: Surface constructed using residual features for a threshold of
8 on texspherel.



Figure 4.7: Surface constructed using 3D average power (AP) feature
for a threshold of 85,000,000 on texsphere2.

Figure 4.8: Surface constructed using 3D entropy (EPY) feature for a
threshold of 0.03 on gauss_sphere.



recognize. This is one weakness of the segmentation algorithm used. The problem is rec-

ognized and solutions to the problem will be left up to future investigations.

4.3.2 Using the Feature Vector with First-Order Statistical Features

All first-order statistical measures were placed into the feature vector to test the

algorithm. Using the three types of synthetic textured sphere images, it was not possible

to get any meaningful results. The output of the algorithm consisted mostly of randomly

scattered polygons for the synthetic images; no sphere surfaces were found. This may

have been expected because some of these features are more suited to non-textured type

images. The reason for the failure here is not too clear.

4.3.3 Using the Feature Vector with 3D Co-occurrence Matrix Features

Recall from section 3.2.1 that an important parameter associated with the imple-

mentation of 3D co-occurrence matrix based features is the size of the pooled GLCM

C(1), namely GxG where G is the number of gray levels in the image being analyzed. We

bin the number of gray level values (which is usually larger than G) of the original image

in order to obtain an image with G gray level values from which to compute the GLCM.

This is done in order to reduce the amount of data that needs to be dealt with which corre-

sponds to a reduction in computation time. As described in section 3.2.1, a reasonable

value of G needs to be picked to keep enough resolution in the image to be able to still dis-



criminate textures. Here experimental values of G = 8, G = 16, and G = 32 were used.

Results varied little among these choices, and G = 16 was kept as the standard for all sub-

sequent experimental tests.

Both the first version, or the direct 3D GLCM method, and the second version, or

the 3D GLCM separate planes method, give basically similar results. Figure 4.9 contains

the results of running the algorithm with just a single contrast (CON) feature for both the

direct method and the separate planes method. Further details are given in the figure cap-

tion. Clearly, the two results are fairly similar. The computation time needed to compute

texture features associated with the separate planes method is significantly greater than

that required by the direct 3D version. Therefore, for the experiments detailed here, the

direct 3D method of computing the 3D GLCM was always used because the performance

of the separate planes method did not warrant the computational effort. The specific 3D

GLCM features that were used here are the CON, ASM, ENT, and COR features as

described in section 3.2.1.

This section presents two results of using the feature vector of 3D GLCM features.

Figure 4.10 shows the result of using a feature vector of 3D GLCM features with a thresh-

old of 0.4 for texsphere 1. Ideally, we should obtain a distinct surface of a sphere, but here

we see a broken surface outline within a scattering of polygons. This is one of the better

results from experiments with thresholds. In figure 4.11, we see that pieces of the surface

of a sphere for gauss_sphere were segmented. The threshold required is 0.5 which pro-

duces 8,181 polygons. The results in figure 4.10 and figure 4.11 represent the best seg-

mentations for using only 3D GLCM features in the feature vector.



Figure 4.9: The top sphere is the result of using the CON feature of the
direct 3D GLCM method with a threshold of 10 on texspherel. The bot-

tom sphere is the result of using the CON feature of the 2D separate
planes method with thresholds of 7, 7, and 7 (one threshold for each of

the xy, zx, yz plane computed CON values) on texspherel also.
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Figure 4.10: Surface outline is visible here using feature vector of 3D
GLCM features with a threshold of 0.4 for texsphere 1 synthetic data.

6x6x6 local volumes were used to compute the features. 7,519 polygons
make up the whole picture.

A weakness of the algorithm is apparent here in that many undesired triangular

polygons are being constructed. This is in addition to the connectivity problem. That is,

the polygons that should make up the segmented surface are not well connected which

results in fragmented surfaces. In section 4.3.2, the multi-layer problem was recognized.

Although more difficult to recognize here, inspection shows that surface polygons are con-

structed in a manner that is indicative of the problem of having identical surfaces con-

structed one just inside the other.

Both these results were obtained by calculating the 3D GLCM features over 6x6x6

local volumes. Experimentally we found that using 6x6x6 local volumes to compute tex-
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ture features gave better results than using local 4x4x4 volumes. The more the data avail-

able from which to calculate features, the more accurate the feature estimate. The 6x6x6

local volumes provide for computations of more accurate and effective GLCM features.

We attempted to repeat the results for texspherel and gauss_sphere on their corre-

sponding larger tcube images, tcube64_1 and gauss_tcube64. Unfortunately, similar

results were not able to be repeated despite the various thresholds tried. The output of the

algorithm using tcube64_1 and gauss_tcube64 were basically scattered polygons. Since

the result for texsphere 1 was a faint outline of a surface to begin with, the result for

tcube64_1 is not too surprising, but a better result for gauss_tcube64 was expected.

4.3.4 Using the Feature Vector with Fourier Power Spectrum Features

The only local volumes we implemented that may be used with the power spec-

trum features are the 2x2x2 and 4x4x4 local volumes (remember the volumes must have

dimensions that are powers of 2). Trial and error showed that we can neglect the 2x2x2

local volumes, and so all experiments presented here involve computing power spectrum

features on local 4x4x4 volumes. We implement only four 3D power spectrum features

which are the 3D average power (AP), the 3D entropy (EPY), the 3D maximum energy

(ME), and the squared maximum energy frequency (SQMEfreq) described in section

3.3.2.



Figure 4.11: Pieces of the sphere surface are constructed for
gauss_sphere using a feature vector containing 3D GLCM features with
a threshold of 0.5. 8,181 polygons make up the polygonated data. We

used 6x6x6 local volumes to compute the features.

Figure 4.12: Surface of textured sphere in texsphere 1 constructed using
a feature vector of 3D Fourier power spectrum features with a threshold

of 0.3.



We now proceed to describe the results of applying the algorithm to each of the

46x46x46 textured sphere images, namely texsphere 1, texsphere2, and gauss_sphere. In

figure 4.12 we present the result of using a threshold of 0.3 on texsphere 1 to give a 6,776

polygon output. Although there are many unwanted polygons scattered about, the

sphere's fragmented surface is still visible. In figure 4.13, the result of applying our algo-

rithm to texsphere2 is shown. The best threshold found was 0.3 which still gave a scat-

tered polygon data output. This figure primarily shows the failure of our method of using

a feature vector containing power spectrum features on texsphere2.

Lastly, in figure 4.14 we show the result for gausssphere. We use a threshold of

0.33 to produce the 11,643 polygon result. It can be observed that the surface of the

sphere is only partially constructed. Although the results of using the textured tcube

images are not presented here, note that similar results are obtained if the same thresholds

were used on the larger synthetic tcube images. The problems of surface connectivity and

multi-layers reveal themselves in all these results.

4.3.5 Using the Feature Vector with 3D GMRF Model Features

As noted in section 4.3.3 for 3D GLCM features, using 6x6x6 local volumes for

the estimation of GMRF model parameters produces better results than the local 4x4x4

volumes. Thus for the presentation of results in this section, all experimental tests were

conducted using 6x6x6 local volumes. It was also found that the results for the first ver-

sion of the 3D GMRF model (or the direct 3D extension method) and the second version

of the 3D GMRF model (or the separate 2D plane method) gave fairly similar results,



Figure 4.14: Surface created from gauss_sphere with a feature vector of
3D power spectrum features using a threshold of 0.33. Data output con-

tains 11,643 polygons.

|

Figure 4.13: 9,931 polygon result of applying algorithm to texsphere2
with a threshold of 0.3 using a feature vector of 3D power spectrum fea-

tures.



analogous to the case for the two versions of the 3D GLCM. Since the separate 2D plane

version of the 3D GMRF model requires far more computational time for feature estima-

tion, only the direct 3D version of the 3D GMRF model was used in the experimental tests

presented here. These two versions of the GMRF model are described in section 3.4.2.

Before presenting specific results, consider some estimated 3D GMRF model

parameters in tables 4.2 and 4.3. These estimates demonstrate that using 6x6x6 local vol-

umes to compute the model parameters is indeed better than using 4x4x4 local volumes.

In the tables, { GMRF coeffl,GMRF coeff2,GMRF coeff3) represent the model parame-

ters {b0,b1 ,b2 }. Table 4.2 lists the first and second outside texture parameters of

texsphere2 found by using the direct 3D version of the 3D GMRF model. Recall from

table 4.1 that the outside parameters for texsphere2 are GMRF coeffl = -0.3 and GMRF

coeff2 = 0.0. It is clear that estimates using the 6x6x6 local volume are better.

Table 4.3 shows the same effect when the 2D separate planes version of the 3D

GMRF model is used to estimate model parameters. Parameters for each of the xy, zx, and

yz planes are shown. Comparing the parameter estimates in tables 4.2 and 4.3 serves to

demonstrate that there is little difference between the respective estimates. This further

supports the observation that the two versions of the 3D GMRF model give fairly similar

results.

Furthermore, the numbers in tables 4.2 and 4.3 validate the idea of extending the

original 2D GMRF model to the 3D GMRF model since the estimates are close to the

actual values used to create the synthetic image texsphere2. Similar results were obtained

for other synthetic images generated from using the 3D GMRF model such as texsphere 1.

Recall that in section 3.4.2 of chapter 3 it was stated that the validity of the 2D GMRF



equations given in section 3.4.1 should be maintained after our extension to 3D. Here, we

see that experimental data support that assertion.

We now present a few experimental results of the segmentation algorithm which

uses a feature vector containing 3D GMRF model features (model parameters and model

variance). It is noted that the GMRF variance estimate a 2* is made robust against illumi-

nation changes (as suggested by Chellappa and Chatterjee) by estimating the variance v of

the gray values in the local 6x6x6 volume in which a2 * is computed and then taking the

actual variance estimate used as y2*/ v [Chellappa and Chatterjee, 1985]. Figure 4.15

shows the segmentation of texsphere 1 using a threshold of 2.5. The surface shown

Table 4.2: Computed estimates of outside texture parameters for
texsphere2. Direct 3D version of 3D GMRF model.

4x4x4 local vol 6x6x6 local vol 4x4x4 local vol 6x6x6 local vol
GMRF coeffl GMRF coeffl GMRF coeff2 GMRF coeff2

-0.727774 -0.273329 0.268405 -0.060686
-0.089488 -0.339727 -0.192841 -0.007875
-0.514029 -0.221725 0.273959 -0.030902
-0.450977 -0.250016 -0.189747 0.041631
-0.391720 -0.239818 -0.017821 -0.068062
-0.185505 -0.335651 0.156393 -0.074564
-0.453078 -0.181049 -0.019042 -0.025621
-0.173736 -0.247778 -0.126426 -0.033819
-0.123691 -0.260219 0.159453 -0.063481
-0.190796 -0.261243 0.570558 0.010917
-0.727774 -0.243300 0.097824 -0.089353
-0.450977 -0.228161 -0.192388 0.051165
-0.201023 -0.248807 -0.059496 -0.039052
0.072886 -0.297159 0.033579 -0.057055



Table 4.3: Computed estimates of outside texture param-
eters for texsphere2. The 2D separate planes version of

the 3D GMRF model

4x4x4 local volumes 6x6x6 local volumes

GMRFcoeffl XY GMRFcoeffl XY

-1.120273 -0.248799
-0.007710 -0.319316
0.293797 -0.240776
0.022238 -0.251277

-0.272150 -0.304666
0.190108 -0.281753
0.698612 -0.309436

-0.088603 -0.291968
-0.084484 -0.210788
-1.010190 -0.333319
0.469692 -0.221759

GMRFcoeffl ZX GMRFcoeffl ZX

0.045779 -0.252385
0.180122 -0.442120
-0.580335 -0.250285
2.682306 -0.304165
2.682306 -0.288385
1.070641 -0.328052
0.898850 -0.177385
0.935060 -0.248733
1.257115 -0.336672

-1.107089 -0.371331
-0.783175 -0.212147
-0.895612 -0.248080

GMRFcoeffl YZ GMRFcoeffl YZ

-0.431926 -0.269405
-0.388591 -0.344647
-0.406919 -0.385738
-0.357345 -0.313670
-0.384852 -0.236435
-0.419296 -0.241507
0.309672 -0.315439
0.740886 -0.262399
-0.477694 -0.263383
-0.442350 -0.303366
-0.166437 -0.376672



consists of 14,514 polygons. Here again we notice the multi-layer and surface polygon

connectivity problems mentioned in previous sections.

This result is the best we have obtained to date when using the texture feature vec-

tor in our segmentation algorithm. This suggests two things. One is that because the syn-

thetic image texspherel is generated using a 3D GMRF model, it is not surprising that

using the same 3D GMRF model to characterize the textures in the image gives good

results. The second is that it demonstrates our segmentation algorithm is valid since

GMRF generated textures can be segmented with GMRF model features using this

approach.

Figure 4.17 shows that the threshold of 2.5 also gives a fairly good segmentation of

tcube84_1 consisting of 41,941 polygons. In figure 4.16 and 4.18, the surface-based seg-

mentations are poor. The polygons form an approximate outline of the texture boundary,

but the algorithm does not perform well on these synthetic images. The synthetic images

generated with a Gaussian intensity distribution do not produce good results; only scat-

tered polygons were obtained. This suggests that Gaussian generated textures do not pro-

duce good results because we are estimating GMRF model features when the image is

generated with a different texture model.

4.3.6 Using the Feature Vector With All Features

The ultimate goal for this thesis was to combine all the computed features into one

feature vector that contains information on the texture within the NxNxN volume in which

the texture features are computed. Since no previous work has been found on computing



Figure 4.15: Segmentation of texspherel using feature vector of 3D
GMRF model parameters and variance with a threshold of 2.5.

Figure 4.16: Segmentation of texsphere2 using feature vector of 3D
GMRF model parameters and variance with a threshold of 3.0. 8,396

polygons in output.



Figure 4.17: Segmentation of tcube84_1 using feature vector of 3D
GMRF model parameters and variance with a threshold of 2.5.

Figure 4.18: Segmentation of tcube64_2 using feature vector of 3D
GMRF model parameters and variance with a threshold of 3.0. 17,123

polygons.



and utilizing 3D texture features, the previous sections were necessary to demonstrate the

performance of the several different types of 3D features. The results in subsections 4.2.1

to 4.2.5 therefore set the stage for this section by presenting the tests in a systematic man-

ner.

As mentioned before, better texture features are obtained if we compute them from

6x6x6 local volumes versus 4x4x4 local volumes. Here only 6x6x6 local volumes were

used for all feature computations other than the first-order statistical measures and the

power spectrum features. First-order statistical measures have their own version of local

volumes and the power spectrum features are computed from 4x4x4 volumes.

Figure 4.19 shows the surface-based segmentation of texsphere 1 using a threshold

of 4.0. There are 7,420 polygons in this output. Note that the surface of the sphere is not

complete or smooth, but it is a fairly good result. In fact, this result is qualitatively better

than the surface-based segmentations in figures 4.20 and 4.21. The surfaces of the spheres

in figures 4.20 and 4.21 appear less complete. In figure 4.22, the surface of the textured

tcube in tcube64_1 is constructed fairly well using a threshold of 4.0. On the other hand,

in figure 4.23, a faint outline of the surface of the textured tcube in the image

gauss_tjube64 may exist, but it is difficult to detect.

Overall, these results are encouraging. They show that our approach to segmenta-

tion performs fairly well in extracting the surface boundaries between different synthetic

textures despite the multi-layer and the surface connectivity problems. The hope was that

if enough texture features are employed, then two distinct textured volumes will differ in

at least one of the features. Placing the features in a vector and comparing feature



Figure 4.19: Surface segmentation of texspherel using all texture fea-
tures in the feature vector. Threshold is 4.0.

Figure 4.20: Surface segmentation of texsphere2 using all texture fea-
tures in the feature vector with a threshold of 4.0. 8,648 polygons.



Figure 4.21: Surface of sphere in gauss_sphere using all texture features
in the feature vector with a threshold of 5.0. 6,695 polygons.

Figure 4.22: Segmentation of tcube64_1 using all texture features in the
feature vector with a threshold of 4.0. 10,684 polygons.



Figure 4.23: Segmentation of gauss_tcube64 using all texture features in
the feature vector with a threshold of 5.0. 14,669 polygons.

vectors using the normalized Euclidean distance measure appears to provide for an effec-

tive method of integrating multiple values while using only a single threshold.

4.4 Tests with a Real Image

Section 4.3 showed the results of applying the segmentation algorithm to synthetic

textured images. In this section, we test the algorithm on a real data set for a porpoise.

Section 2.5.3 of chapter 2 and section 4.1 have briefly discussed the MRI data that were

used. Specifically, we designated two different volumes of interest of varying size from

the porpoise MRI data. The 3D regions of interest were obtained from the portion of the

image that contains a boundary between brain tissue and other tissue located in the por-
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poise head. In particular, we chose 26x82x22 and 64x77x29 sized regions for testing.

The 26x82x22 region was chosen to represent a simple boundary between two tissue

types, and the 64x77x29 region was chosen to represent a more complex boundary

between soft and bony tissue in the head.

Although we have found that our segmentation method does not produce ideal

results on the synthetic test images, the algorithm was tested on MRI data to obtain a feel

for the algorithm's performance on real images. As mentioned earlier regarding the tests

with synthetic images, the threshold values for the normalized Euclidean distance measure

were determined through a tedious trial and error process. Here we also give the threshold

values used in each specific case. Section 4.4.1 contains a discussion of the results of

using the feature vector in the segmentation algorithm.
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Figure 4.24: A side view of the 26x82x22 volume of interest from the
original MRI data of a porpoise.
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Figure 4.25: Using the same perspective on the data as in figure 4.24,
here we show the surface-based segmentation of the 26x82x22 MRI
data. A visible surface is constructed between the two major tissue

types. The multi-layer problem is evident here. 7,986 polygons.

4.4.1 Using the Feature Vector

We applied the segmentation algorithm to the 26x82x22 and 64x77x29 real images

using a vector containing features from the four categories of first-order statistics, 3D co-

occurrence matrices, Fourier power spectra, and 3D GMRF models. The algorithm was

also tested on the real data using a feature vector containing all the texture features com-

bined, as was done for the synthetic test images in section 4.3.6.

Figure 4.24 shows the 26x82x22 data that were used. It should be noted in

advance that the orientation of the 26x82x22 data is the same as the orientation of the

result in figure 4.25. This is so that the two may be compared. As mentioned in section

4.1, we selected this as the simplest volume (containing a boundary between textured



Figure 4.26: Side view of the 64x77x29 MRI data of a porpoise.

Figure 4.27: Side view of the segmentation result using a threshold of
4.0 for 64x77x29 MRI data of a porpoise using feature vector of all fea-
tures. Side view orientation of the result corresponds to the orientation

of the data in figure 4.24. 6,574 polygons.
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regions) that we could find. Notice that the boundary of interest is the lower brain border

in the figure. Ideally, we should get a curved surface representing this boundary as the

output of the segmentation algorithm. Nevertheless, it should be noted that we are idealiz-

ing the image when it is said that the image contains just a boundary between textured

regions, and so we should expect the results to diverge from the ideal.

The results from applying the algorithm to the 26x82x22 data using the feature

vector containing features from each of the four categories gave similar results to that of

using the feature vector containing all the texture features that were implemented. Thus

only the result of the segmentation algorithm using the feature vector with all the texture

features is presented. Figure 4.25 shows the 7,986 polygon result of applying the algo-

rithm with a threshold of 2.8.

It is encouraging to note that, from the side perspective on the data and the result

shown, there is a visible surface oriented diagonally from the bottom-left to the top-right

corresponding to that in the raw input data. What is called a visible surface here is actu-

ally the boundary between the lower portion of the result, which contains many polygons,

and the upper portion of the result, which contains visibly fewer polygons. The source of

the many polygons below the boundary may be attributed to the multi-layer problem. The

multi-layer problem is more evident here than in the tests for the synthetic images since

the surface of interest is not the surface of a closed geometrical object. Overlapping local

volumes within which texture features are computed result in the redundant placement of

polygons which should ideally represent one single surface. Instead of obtaining a single

surface, we obtain a lower region of many polygons and an upper region of few polygons.

It is clear that the result is far from ideal but nonetheless encouraging since a pseudo-sur-
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face is returned that seems to represent the brain boundary in the input image.

Next we applied the segmentation algorithm to the more complex 64x77x29 real

volume data using vectors containing features from the four categories of first-order statis-

tics, 3D co-occurrence matrices, Fourier power spectra, and 3D GMRF models. Figure

4.26 shows the 64x77x29 image data. The results were not encouraging. The algorithm

using various feature vectors which contained measures from each of the four categories

of the texture features did not perform well. The output was always a scattered group of

sparsely located polygons. Thus we do not give examples of these results.

We also applied the segmentation algorithm using a feature vector containing all of

the texture features that we have introduced. This too gave discouraging results which

was to be expected. This illustrates that the complexity of the real image requires a more

robust and complex approach to surface-based segmentation. Another consideration is

that the real image contains multiple textures whereas the synthetic images we tested were

designed to contain only two different textures. In any case, these are matters for future

investigation.

We show the best result found by applying the segmentation algorithm to the

64x77x29 MRI data, where we use a feature vector containing all of the texture features.

It is difficult to make sense of the result shown in figure 4.27. Polygons are scattered in a

random manner although there does seem to be clusters of polygons approximating possi-

ble boundaries. The result is oriented in the same manner as the image data shown in fig-

ure 4.26 so that the two may be compared visually.
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4.5 Implementation Details

All tests were performed on either a SiliconGraphics Indy or a SiliconGraphics

Indigo2. We have mentioned throughout this chapter that computational demands are a

concern of our surface-based segmentation algorithm. The majority of the processing

time is used in computing the texture features. Table 4.4 lists sample algorithm running

times for different sized input data. It also lists sample running times when using different

sets of texture features in the feature vector of the algorithm. The intent is to give the

reader a rough idea of how long it takes to run the algorithm.

Note that in table 4.4, the last four entries are the running times of the algorithm

using a single feature which is different from using the feature vector. The reader may

compare each running time of the two pairs with the other running time in the pair to

obtain an idea of the difference between running times for computing the direct 3D ver-

sions of the corresponding texture features and for computing the separate planes versions

of those same texture features.

4.6 Summary

This thesis details the experimental results of using a surface-based segmentation

algorithm with texture features. Testing was performed on a group of synthetic images

and on MRI data of a porpoise. Single features were experimented with on the synthetic

images. When using single features, this algorithm compares the computed texture fea-
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Table 4.4: Sample running times for the segmentation algo-
rithm on a SGI Indy.

Volume Data Time (minutes)

64x77x29 porpoise data 36
(using feature vector with all
texture features)

26x82x22 porpoise data 10
(using feature vector with all
texture features)

texspherel (using feature vec- 25
tor with all texture features)

tcube64_1 (using feature vec- 80
tor with all texture features)

texspherel (using feature vec- 3
tor with first-order statistical
features)

texspherel (using feature vec- 10
tor with 3D co-occurrence
features)

texspherel (using feature vec- 7
tors with power spectrum fea-
tures)

texsphere 1 (using feature vec- 6
tors with 3D GMRF features)

texsphere2 (using single 6
CON feature; direct 3D co-
occurrence method)

texsphere2 (using single 10
CON feature; separate planes
co-occurrence method)

texsphere2 (using single 5
GMRF b0 parameter; direct
3D method)

texsphere2 (using single 20
GMRF b0 parameter; separate
planes method)
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ture value for a vertex with a user specified texture threshold to determine surface-edge

intersections in a cube.

The single feature trials gave results in which the output polygons were well con-

nected, thereby forming smoother and more coherent surfaces than those obtained by

using the algorithm with the feature vector. In particular, the single 3D average power

(AP) feature was selected for use on the porpoise data and showed encouraging results.

Experiments with feature vectors containing first-order statistical features, 3D

GLCM features, 3D Fourier power spectrum features, and 3D GMRF model features were

also attempted. Results for the synthetic images varied from poor to encouraging. The

result for the 26x82x22 porpoise data was a visible pseudo-surface, and the result for the

64x77x29 porpoise data consisted mainly of scattered polygons. The segmentation algo-

rithm using feature vectors of first-order statistical measures failed to segment the surface

between the two textures in the synthetic images. The algorithm, which used feature vec-

tors containing the 3D GMRF model features, gave the best output for the synthetic test

images generated using the 3D GMRF model and the worst for the test images generated

using the Gaussian distribution assumption.

Above all, the segmentation algorithm using feature vectors containing all the tex-

ture features we implemented gave encouraging results for the synthetic images. Results

for the synthetic image tests are summarized in table 4.5. In almost all cases, visible sur-

faces were generated. The results obtained by applying this segmentation method to the

porpoise data was encouraging for the 26x82x22 data. The algorithm produces a visible

surface although the multi-layer problem prevents the construction of a single surface.

The 64x77x29 data serves to illustrate the failure of the algorithm when the input image
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Table 4.5: Summary of Results Using the Algorithm with
the Normalized Euclidean Distance Measure on Syn-

thetic Sphere Images

Volume Data Qualitative Results

Vector with first-order statistical features

texsphere 1 scattered polygons

texsphere2 scattered polygons

gauss_sphere scattered polygons

Vector with co-occurrence matrix features (6x6x6 local
volumes; direct 3D version)

texsphere 1 sphere surface outline

texsphere2 scattered polygons

gauss_sphere isolated surface patches
give sphere surface outline

Vector with Fourier power spectrum features (4x4x4 local
volumes)

texsphere 1 visible sphere surface but
very fragmented

texsphere2 scattered polygons

gauss_sphere partial sphere surface

Vector with GMRF model features (6x6x6 local volumes;
direct 3D version)

texsphere 1 good sphere surface

texsphere2 partial, fragmented sphere
surface

gauss_sphere scattered polygons

Vector with all texture features

texsphere 1 good sphere surface

texsphere2 partial, fragmented sphere
surface

gauss_sphere partial, fragmented sphere
surface
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contains complex boundaries between varying regions of multiple textures.

These experimental tests demonstrated two main problems with the current algo-

rithm. The first is the surface connectivity problem. When using feature vectors, the sur-

face output of the algorithm is mostly fragmented. That is, the polygons that make up the

surface between the two textures in the images are disconnected. The second weakness of

the segmentation algorithm lies in the multi-layer problem. This arises because of the way

local volumes overlap as the volume data is processed, resulting in the determination of

redundant surface-edge intersections for multiple cubes. The overall result is that we get

the creation of repetitive surfaces or polygon placements. These are important issues for

future investigation.
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Chapter 5

Conclusions

This thesis presents a method for partitioning textured volume data into homogeneous

regions by locating the boundaries between different textures utilizing a marching cubes

framework. Triangular polygons form the surfaces which represent such textural boundaries.

The uniqueness of this approach lies in two areas. First, we use 3D texture features that are

extensions of common 2D features used by researchers to analyze texture. These texture fea-

tures are extracted from defined local NxNxN volumes, and they allow for the characterization

and differentiation of various texture types. We do not assume, in the overall approach, that

the textures follow any one specific model.

Second, we attempt to directly segment volume data in a computationally rapid and

practical way rather than segment the images on a 2D section by section basis. This allows for

direct utilization of all of the information contained in the 3D data. Furthermore, the process-

ing of volume data may be computationally very demanding. Also, any unsupervised seg-

mentation method can require extraordinary computation time especially when estimation and

segmentation are attempted simultaneously, which is essentially our procedure. The marching

cubes framework provides a potential option for a practical and relatively rapid approach to

segmentation. The normalized Euclidean distance similarity measure between feature vectors

(which represent the textures in overlapping local volumes) drives the segmentation.



Experimental results have been at least encouraging. They suggest that this approach

to surface-based segmentation of volume data may lead to better and more effective methods.

The segmentation algorithm was able to construct approximate surfaces representing bound-

aries between volumes of different texture. Results varied from poor to good in a qualitative

sense.

There are several possible avenues for future investigation:

1. Different methods and measures of comparing volumes of texture may need further

exploration. The normalized Euclidean distance measure was used because the current algo-

rithm processes one cube at a time and stores only the feature vectors of the eight vertices of

the current cube. If the feature vectors at neighboring locations of the current cube's vertices

in the 3D lattice are stored, perhaps some measure such as a Mahalanobis distance may be

used (see Mui, 1995). However, the computation of texture features for a feature vector

requires time. Storing multiple feature vectors will mean computing more texture features

which will increase the computational load significantly.

2. Different local volumes may be defined and used. The local volumes implemented

here are convenient in that the local volume for a specific cube vertex is the same regardless

with which neighboring cube vertex it is compared in determining surface-edge intersections.

However, there may be better ways of defining local volumes.

3. Some method of automatic threshold selection may be implemented. Currently,

texture thresholds are determined for the similarity measure in a trial and error fashion which

is tedious. One idea is to use some modified approach to the adaptive region growing method

developed by Chang and Li (1994). Their algorithm uses both position- and time-varied
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thresholds that are dynamically and automatically computed in a region growing process.

They compare regions constructed of subregions with other regions by computing features in

the subregions and specifying the allowance for which feature values within the regions may

be allowed to deviate. For two regions to be considered homogeneous, they required that each

region's feature mean fall within what they define as the other region's adaptive range. These

techniques may be adapted to compare volumes. It should be noted that here we have prima-

rily dealt with images with only two different volumes of texture. MRI and CT images will

contain multiple types of texture. Some adaptive thresholding process like the idea just

described may be incorporated in order to process images with more than two types of texture.

4. Solutions to the polygon connectivity problem or the multi-layer problem may be

devised. Since the two problems are inter-related, the ideas presented here might help either

one. Ideally, if a 3D image with two different textures is input into the algorithm, one smooth,

well-connected surface between the textures is the desired output. This is the area of greatest

interest for future investigations.

One possible solution is to assign texture gradients to the created triangles and use a

measure of the texture gradients to filter out only the polygonal triangles of the surface of

interest in the image. A texture gradient may be computed for a triangle by computing the

texture gradient for a cube vertex and then interpolating the gradient to the location of one of

the triangle vertices. If we assume that each computed polygonal triangle is flat, the texture

gradient for one triangle's vertex should be sufficient to represent the texture gradient for the

triangle as a whole.

Another idea is to modify the way the volume data is processed. The current algo-

rithm divides the data space into cubes and determines surface cuts through each cube while
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processing the data in scan-line order. Each point of the 3D lattice represents a cube vertex,

but it is possible to decrease the resolution and allow for NxNxN sized basic cube elements

where N represents a cube edge length and where the edge length between two points in the

3D lattice of the volume data is defined as one. We then determine surface cuts through these

NxNxN cubes instead of the lxlxl cubes currently used.

Doing this may help resolve the multi-layer problem but at the expense of not being

able to segment objects of smaller resolution than the cube size used. We present a specific

case that will help to explain the idea. Assume that we are processing 5x5x5 cubes. First, we

can determine surface-edge intersections of each 5x5x5 cube by using local 4x4x4 volumes

that are located entirely within each cube (remember that the local volume dimensions 4x4x4

refer to voxel numbers). Second, this means that there will be less overlap between local vol-

umes associated with each cube used to compute texture features. This in turn may help

reduce the redundant placement of polygons which is the root of the multi-layer problem.

One last suggestion is that contextual information, or information on spatially adjacent

objects or regions, may help improve the determination of accurate surface-edge intersections

and may help maintain connectivity between surface polygons. Label-based segmentation

methods on 2D images that use contextual information have given better results than those

methods that neglect context, especially for those segmentation methods interested in finding

accurate boundaries between regions of texture. Contextual information has been introduced

into label-based segmentation algorithms by ad hoc methods combined with clustering (see

Hu and Dennis, 1994), stochastic relaxation methods that determine the MAP estimate of an

image model which is a joint probability distribution of pixel gray levels and pixel labels (see

Geman et al, 1990 and Graffigne, 1987), and probabilistic relaxation methods which enforce
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spatial constraints by iteratively updating pixel labels to ensure local consistency (see Hsiao

and Sawchuk, 1989).

It may be possible to garner ideas from such work and modify them for an improved

surface-based segmentation method. More specifically, it seems that incorporating contextual

information (in some manner in our segmentation algorithm) holds great potential for ensur-

ing surface polygon connectivity. Contextual information could help in accurately deciding

where surface-edge intersections are located, thereby forming the foundations for a set of

well-connected polygons. This might mean a combined boundary-based and region-based

segmentation method. The more difficult segmentation problems usually necessitate a well

designed combination of boundary-based and region-based approaches in one segmentation

system [Grinaker, 1980]. As hinted at earlier, the polygon connectivity problem should form

the core of all future investigations.

The results in this thesis should provide a basis for such future work and may motivate

the development of algorithms that will some day be able to construct accurate and well-con-

nected polygonal surfaces between different volumes of texture in 3D images.

115





Bibliography

T. Aach and H. Dawid. Region Oriented 3D-Segmentation of NMR-Datasets: A Sta-
tistical Model-Based Approach. SPIE Vol. 1360 Visual Communications and Image Pro-
cessing, (1990), pp. 690-701.

J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems. Journal
of the Royal Statistical Society, Series B, Vol. B-36, (1974), pp. 192-236.

J. Besag. On the Statistical Analysis of Dirty Pictures. J.R. Statist. Soc. B, Vol. 48,
No. 3, (1986), pp. 259-302.

J.C. Bezdek, L.O. Hall, and L.P. Clarke. Review of MR Image Segmentation Tech-
niques Using Pattern Recognition. Med. Phys., 20(4), (July/Aug 1993), pp. 1033-1048.

M. Bomans, K. Hohne, U. Tiede, and M. Riemer. 3-D Segmentation of MR Images of
the Head for 3-D Display. IEEE Transactions on Medical Imaging, Vol. 9, No. 2, (June
1990), pp. 177-183.

J.D. Cappelletti and A. Rosenfeld. Three-Dimensional Boundary Following. Com-
puter Vision, Graphics, and Image Processing, 48, (1989), pp. 80-92.

J.M. Carstensen. Description and Simulation of Visual Texture. Ph.D. thesis, Institute
of Mathematical Statistics and Operations Research, Technical University of Denmark,
(April 1992).

A. Chakraborty, L. H. Staib, and J. S. Duncan. An Integrated Approach to Boundary
Finding in Medical Images. Proceedings of the IEEE Workshop on Biomedical Image
Analysis, Seattle, Washington, (June 24-25, 1994), pp. 13-22.

T. Chang and C.C. Jay Kuo. Texture Analysis and Classification with Tree-Structured
Wavelet Transform. IEEE Transactions on Image Processing, Vol. 2, No. 4, (1993), pp.
429-441.

Y.-L. Chang and X. Li. Adaptive Image Region-Growing. IEEE Transactions on
Image Processing, Vol. 3, No. 6, (November 1994), pp. 868-872.

R. Chellappa and S. Chatterjee. Classification of Textures Using Gaussian Markov
Random Fields. IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.
ASSP-33, No. 4, (August 1985), pp. 959-963.

R. Chellappa and R.L. Kashyap. Synthetic Generation and Estimation in Random
Field Models of Images. Proc. IEEE Comput. Soc. Conf. Pattern Recog. Image Proc.,
Dallas, TX, (August 1981), pp. 577-582.

117



H.E. Cline, W.E. Lorensen, R. Kikinis, and F. Jolesz. Three-Dimensional Segmenta-
tion of MR Images of the Head Using Probability and Connectivity. Journal of Computer
Assisted Tomography, Vol. 14, No. 6, (November/December 1990), pp. 1037-1045.

F.S. Cohen and Z. Fan. Maximum Likelihood Unsupervised Textured Image Segmen-
tation. CVGIP: Graphical Models and Image Processing, Vol. 54, No. 3, (May 1992), pp.
239-251.

I. Cohen, L.D. Cohen, and N. Ayache. Using Deformable Surfaces to Segment 3-D
Images and Infer Differential Structures. Computer Vision - ECCV '92, Second European
Conference on Computer Vision Proceedings, pp. 242-263.

G.R. Cross and A.K. Jain. Markov Random Field Texture Models. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No. 1, (January 1983),
pp. 25-39.

F. D'Astous and M.E. Jernigan. Texture Discrimination Based on Detailed Measures
of the Power Spectrum. 7th International Conference on Pattern Recognition, Montreal,
Canada, Vol. 1, (July 30-August 2, 1984), pp. 83-86.

R.A. Drebin, L. Carpenter, P. Hanrahan. Volume Rendering. Computer Graphics,
Vol. 22, No. 4, (1988), pp. 65-74.

H.H. Ehricke. Problems and Approaches for Tissue Segmentation in 3D-MR Imaging.
SPIE Medical Imaging IV.- Image Processing, Vol. 1233, (1990), pp. 128-137.

D. Geman and S. Geman. Relaxation and Annealing with Constraints. Division Appl.
Math., Brown Univ., Complex Systems Tech. Rep. 35, (1987).

S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Baye-
sian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. PAMI-6, No. 6, (Nov. 1984), pp. 721-741.

D. Geman, S. Geman, C. Graffigne, and P. Dong. Boundary Detection by Constrained
Optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12,
No. 7, (July 1990), pp. 609-628.

G. Gerig, J. Martin, R. Kikinis, O. Kubler, M. Shenton, and E A. Jolesz. Unsuper-
vised Tissue Type Segmentation of 3D Dual-Echo MR Head Data. Image and Visual
Computing, Vol. 10, No. 6, (July/August 1992), pp. 349-360.

R.C. Gonzalez and P. Wintz. Digital Image Processing. Addison-Wesley Publishing
Co., (1987).

118



C. Graffigne. Experiments in Texture Analysis and Segmentation. Ph.D. dissertation,
Division Appli. Math., Brown Univ., (1987).

W.E.L. Grimson, G.J. Ettinger, T. Kapur, M.E. Leventon, W.M. Wells III, and R. Kiki-
nis. Utilizing Segmented MRI Data in Image-Guided Surgery. (submitted for publica-
tion) Available at web-site: http://www.ai.mit.edu/projects/vision-surgery/
surgery_home_page.html. (July 1996).

W.E.L. Grimson and T. Pavlidis. Discontinuity Detection For Visual Surface Recon-
struction. Comput. Vision, Graphics, Image Processing, Vol. 30, (1985), pp. 316-330.

S. Grinaker. Edge Based Segmentation and Texture Separation. IEEE Proc. 5th Inter-
national Conf. Pattern Recog., Miami, Florida, (Dec. 1980), pp. 554-557.

R.M. Haralick. Statistical and Structural Approaches to Texture. Proceedings of the
IEEE, Vol. 67, No. 5, (May 1979), pp. 786-803.

R.M. Haralick, K. Shanmugam, and I. Dinstein. Textural Features for Image Classifi-
cation. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, No. 6,
(November 1973), pp. 610-621.

M. Hassner and J. Sklansky. The Use of Markov Random Fields as Models of Tex-
ture. Computer Graphics and Image Processing, 12, (1980), pp. 357-370.

J.Y. Hsiao and A.A. Sawchuk. Unsupervised Textured Image Segmentation Using
Feature Smoothing and Probabilistic Relaxation Techniques. Computer Vision, Graphics,
and Image Processing, 48, (1989), pp. 1-21.

Y. Hu and T.J. Dennis. Textured Image Segmentation by Context Enhanced Cluster-
ing. IEEE Proc., Vision, Image, and Signal Processing, 141(6), (December 1994), pp.
413-421.

IEEE Standard 610.4-1990, IEEE Standard Glossary of Image Processing and Pattern
Recognition Terminology, IEEE Press, New York, 1990.

M.E. Jernigan and F D'Astous. Entropy-Based Texture Analysis in the Spatial Fre-
quency Domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-6, No. 2, (March 1984), pp. 237-243.

M. Joliot and B. M. Mazoyer. Three-Dimensional Segmentation and Interpolation of
Magnetic Resonance Brain Images. IEEE Transactions on Medical Imaging, Vol. 12, No.
2, (June 1993), pp. 269-277.

T. Kapur. Segmentation of Brain Tissue from Magnetic Resonance Images. MITArti-
ficial Intelligence Laboratory Technical Report 1566, (January 1995).

119



R.L. Kashyap and R. Chellappa. Estimation and Choice of Neighbors in Spatial-Inter-
action Models of Images. IEEE Transactions on Information Theory, Vol. IT-29, No. 1,
(January 1983), pp. 60-72.

R.L. Kashyap, R. Chellappa, and N. Ahuja. Decision Rules for Choice of Neighbors
in Random Field Models of Images. Computer Graphics and Image Processing, 15,
(1981), pp. 301-318.

R.L. Kashyap, R. Chellappa, and A. Khotanzad. Texture Classification Using Features
Derived From Random Field Models. Pattern Recognition Letters, Vol. 1, No. 1, (October
1982), pp. 43-50.

R.L. Kashyap and A. Khotanzad. A Model-Based Method for Rotation Invariant Tex-
ture Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-8, No. 4, (July 1986), pp. 472-481.

D.R. Ketten. The Marine Mammal Ear: Specializations for Aquatic Audition and
Echolocation in: The Evolutionary Biology of Hearing, D. Webster, R. Fay, and A. Pop-
per, eds. New York: Springer-Verlag, (1992), pp. 717-750.

D.R. Ketten. Functional Analyses of Whale Ears: Adaptations for Underwater Hear-
ing. IEEE Proceedings in Underwater Acoustics, Vol. 1, (1994), pp. 264-270.

D. Ketten and D. Wartzok. Three-Dimensional Reconstructions of the Dolphin Ear in:
Sensory Abilities of Cetaceans, J. Thomas and R. Kastelein, eds. New York: Plenum
Press, (1990), pp. 81-105.

J. Kittler and J. Illingworth. Relaxation Labelling Algorithms-- A Review. Image and
Vision Computing, Vol. 3, No. 4, (Nov 1985), pp. 206-216.

H.A. Koenig and G. Laub. Tissue Discrimination in Magnetic Resonance 3D Data
Sets. SPIE Vol. 914 Medical Imaging II, (1988), pp. 669-672.

J. Krumm and S.A. Shafer. Local Spatial Frequency Analysis of Image Texture. IEEE
Third International Conf. Computer Vision, (December 1990), pp. 354-358.

J. Krumm and S.A. Shafer. Segmenting Textured 3D Surfaces Using the Space/Fre-
quency Representation. Spatial Vision, Vol. 8, No. 2, (1994), pp. 281-308.

Z. Liang, J.R. MacFall, and D.P. Harrington. Parameter Estimation and Tissue Seg-
mentation from Multispectral MR Images. IEEE Transactions on Medical Imaging, Vol.
13, No. 3, (Sept. 1994), pp. 441-449.

S. Liou and R.C. Jain. An Approach to Three-Dimensional Image Segmentation.
CVGIP: Image Understanding, Vol. 53, No. 3, (May 1991), pp. 237-252.

120



S. Liu and M.E. Jernigan. Texture Analysis and Discrimination in Additive Noise.
Computer Vision, Graphics, and Image Processing, 49, (January 1990), pp. 52-67.

G. Lohmann. Analysis and Synthesis of Textures: A Co-Occurrence-Based
Approach. Comput. and Graphics, Vol. 19, No. 1, (1995), pp. 29-36.

W.E. Lorensen and H.E. Cline. Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. Computer Graphics, Volume 21, Number 4, (July 1987), pp.
163-169.

B.S. Manjunath and R. Chellappa. Unsupervised Texture Segmentation Using
Markov Random Field Models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 13, No. 5, (May 1991), pp. 478-482.

J. Mao and A.K. Jain. Texture Classification and Segmentation Using Multiresolution
Simultaneous Autoregressive Models. Pattern Recognition, Vol. 25, No. 2, (1992), pp.
173-188.

O. Monga, R. Deriche, G. Malandain, and J.P. Cocquerez. Recursive Filtering and
Edge Tracking: Two Primary Tools for 3D Edge Detection. Image and Vision Computing,
Vol. 9, No. 4, (August 1991), pp. 203-214.

L. Mui. A Statistical Multi-Experts Approach to Image Classification and Segmenta-
tion. M.Eng. thesis, Massachusetts Institute of Technology, (August 1995).

H. Muller and M. Stark. Adaptive Generation of Surfaces in Volume Data. The Visual
Computer, 9, (1993), pp. 182-199.

R.E. Muzzolini, Y. Yang, and R. Pierson. Three Dimensional Segmentation of Volume
Data. Proceedings ICIP-94, Vol. 3, Austin, Texas, (Nov. 13-16, 1994), pp. 488-492.

R. Muzzolini, Y. Yang, and R. Pierson. Texture Characterization Using Robust Statis-
tics. Pattern Recognition, Vol. 27, No. 1, (1994), pp. 119-134.

K.M. Oh and K.H. Park. A Vertex Merging Algorithm for Extracting a Variable-Reso-
lution Isosurface from Volume Data. IEEE International Conference on Systems, Man,
and Cybernetics, Vancouver, British Columbia, Canada, Vol. 4, (Oct. 22-25, 1995), pp.
3543-3548.

P.P. Ohanian and R.C. Dubes. Performance Evaluation for Four Classes of Textural
Features. Pattern Recognition, Vol. 25, No. 8, (1992), pp. 819-833.

T. Peters, B. Davey, P. Munger, R. Comeau, A. Evans, and A. Olivier. Three-Dimen-
sional Multimodal Image-Guidance for Neurosurgery. IEEE Transactions on Medical
Imaging, Vol. 15, No. 2, (April 1996), pp. 121-128.



R. Porter and N. Canagarajah. A Robust Automatic Clustering Scheme For Image
Segmentation Using Wavelets. IEEE Transactions on Image Processing, Vol. 5, No. 4,
(April 1996), pp. 662-665.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in
C: The Art of Scientific Computing. 2nd edition, New York: Cambridge University
Press, (1992).

T.R. Reed and J.M. Hans Du Buf. A Review of Recent Texture Segmentation and Fea-
ture Extraction Techniques. CVGIP: Image Understanding, Vol. 57, No. 3, (May 1993),
pp. 359-372.

A. Rosenfeld, R.A. Hummel, and S.W. Zucker. Scene Labeling by Relaxation Opera-
tions. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-6, No. 6, (June
1976), pp. 420-433.

W.J. Schroeder, J.A. Zarge, and W.E. Lorensen. Decimation of Triangle Meshes.
Computer Graphics, 26, 2, (July 1992), pp. 65-70.

SegmentVIEW Version 2.1 User's Guide and Reference Manual. TechnoData Soft-
ware, Inc. (1996).

R. Shu, C. Zhou, and M.S. Kankanhalli. Adaptive Marching Cubes. The Visual Com-
puter, Vol. 11, (1995), pp. 202-217.

K.C. Strasters and J.J. Gerbrands. Three-dimensional Image Segmentation Using a
Split, Merge, and Group Approach. Pattern Recognition Letters 12, (May 1991), pp. 307-
325.

J.K. Udupa, S.N. Srihari, and G.T. Herman. Boundary Detection in Multidimensions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-4, No. 1,
(January 1982), pp. 41-50.

M. Unser. Texture Classification and Segmentation Using Wavelet Frames. IEEE
Transactions on Image Processing, Vol. 4, No. 11, (1995), pp. 1549-1560.

H. Wechsler. Taxonomy and Segmentation of Textured Images. Proceedings: 5th
International Conference on Pattern Recognition, (1980), pp. 532-534.

D. Wermser. Unsupervised Segmentation by Use of a Texture Gradient. 7th Interna-
tional Conference on Pattern Recognition, Montreal, Canada, Vol. 2, (July 30-August 2,
1984), pp. 1114-1116.

J.S. Weszka, C.R. Dyer, and A. Rosenfeld. A Comparative Study of Texture Measures
for Terrain Classification. IEEE Transactions on Systems, Man, and Cybernetics, Vol.
SMC-6, No. 4, (April 1976), pp. 269-285.

122



A.S. Willsky, G.W. Wornell, and J.H. Shapiro. Stochastic Processes, Detection and
Estimation. 6.432 Supplementary Course Notes, MIT, 1995.

J.W. Woods. Two-Dimensional Discrete Markovian Fields. IEEE Transactions on
Information Theory, Vol. IT-18, No. 2, (March 1972), pp. 232-240.

S.W. Zucker and R.A. Hummel. A Three-Dimensional Edge Operator. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. PAMI-3, No. 3, (May 1981),
pp. 324-331.

123


