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Abstract

One aim of the upcoming STAR experiments at the RHIC particle collider is to identify the quark-
gluon plasma on an event-by-event basis. A new approach to tracking - pixel-based parallel tracking -
is presented which has promising characteristics for achieving the high tracking efficiency needed to
successfully identify the quark-gluon plasma. To meet running time requirements, a new data structure
- the octant tree - is introduced which permits rapid extraction of pixels in a subregion of space. A fully
operational prototype of the proposed tracker has been designed and implemented and awaits testing
on simulated TPC data.
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Chapter 1

Introduction

1.1 The Quark-Gluon Plasma

A new collider is under construction which is different from others in that it will not be colliding single

particles such as protons. Rather, the Relativistic Heavy Ion Collider (RHIC) will collide heavy com-

posite particles such as gold nuclei. Each collision will produce a dense plasma of quarks and gluons

which will help physicists study the characteristics of these particles under intense heat and pressure.

Such were the conditions instants after the Big Bang. Thus, knowledge of how this "quark-gluon

plasma" behaves is expected to help explain how the particles hadronized into the matter that we see

today.

The quark-gluon plasma is only a transient state. Once the system expands and cools, the plasma

will rehadronize into mesons and baryons. In order to explore the properties of the quark-gluon

plasma, therefore, one must be able to detect variations in the signatures left behind. The goal of the

Solenoidal Tracker At RHIC (STAR) experiment is to correlate these signatures on an event-by-event

basis.

The signatures of the plasma, if present, are expected to be subtle in the sense that the measurable

variations will be small. This translates into a requirement that each event be measured well (i.e. a

large percentage of particle tracks be correctly identified), since inefficiencies in the tracking process

would induce fluctuations in the measured quantities. If these fluctuations are as large as the underly-

ing fluctuations, then the event-to-event variations will be masked.

1.2 Project Goals

In order to achieve the required efficiency, a new approach to tracking is needed. This algorithm must

remain highly efficient even at high track multiplicities. This requirement is the downfall of current

tracking algorithms. Figure 1-1 illustrates the tracker efficiency expected from an ideal algorithm. As



shown in the figure, the algorithm should produce a relatively-flat response over a broad range of mul-

tiplicities. The primary goal of this thesis was to design and implement such an algorithm and test it on

simulation data.

Figure 1-1: Desired tracker efficiency. The tracking algorithm used to search for the quark-
gluon plasma should remain at or above the target efficiency at the expected multiplicity
for full events. The efficiency of existing trackers declines rapidly with increasing multi-

plicity, leading to an unsatisfactory performance.

For the purposes of this thesis, tracking efficiency is loosely defined as the percentage of correctly-

identified tracks. The events measured by STAR will have an expected multiplicity associated with

them, and the required efficiency can be estimated. The performance of the tracking algorithm can be

judged against these two quantities.

Designing an efficient tracking algorithm is one matter, while implementing one that runs well

under the constraints of limited computational resources is another. The running time and memory
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requirements of the proposed tracking algorithm present a formidable challenge to the feasibility of

achieving the primary goal. The methods used to meet this challenge are discussed in detail as part of

this thesis.

1.3 Overview

The purpose of this thesis is to introduce a researcher to STAR and to explain the proposed approach to

tracking such that he/she can continue the work that has been completed to date. For this reason, the

explanation of the tracker's design and implementation is discussed in depth.

Beginning with Chapter 2, the STAR detector is described along with the basics of tracking. In

Chapter 3, the traditional approach to tracking is presented including a discussion of its weaknesses.

Chapter 4 introduces the reader to the proposed tracker. Chapter 5 describes important high-level con-

cerns about computational resources that must be considered when implementing the tracker. Next,

Chapter 6 explains the implementation of the tracker prototype including explanations of the tracker's

tunable parameters. Chapter 7 explains the process of generating test data for the tracker, and Chapter

8 suggests various diagnostics that can be used to evaluate the performance of the tracker. Finally,

Chapter 9 suggests ways that the prototype could be improved in terms of speed and tracking effi-

ciency.





Chapter 2

The STAR Detector

2.1 Time Projection Chamber

The detector that will be used for the quark-gluon plasma experiments, STAR, features a Time Projec-

tion Chamber (TPC) consisting of the gas chamber, magnets, electrodes, and detector pads. As subpar-

ticles scatter from the collision event center, they ionize the gas while passing through it. An electric

field is then applied to the chamber to draw the gas ions towards the detector pads at either end of the

TPC. When an ion reaches a detector pad, it causes an avalanche of current proportional to its charge.

STAR Detector

I ~

Figure 2-1: The STAR Detector[ 41 . The particle beams enter the detector along the longitu-
dinal axis. When a collision occurs in the center of the detector, the emitted particles pass-
ing through the TPC are subject to the applied magnetic field, causing their trajectories to

be helixes.
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Because the strength of the applied uniform electric field is known, the rate at which the ions will

be drawn towards the detector pads can be computed. Thus, by sampling the detector pads at regular

time intervals after a collision, a three-dimensional representation of the event can be reconstructed.

Due to the high track density, such a representation is necessary to carry out a meaningful analysis of

the event.

2.2 TPC Geometry and Detector Pads

For completeness and to aid the reader in understanding the data produced during an event, the geome-

try of the TPC as well as the detector pad arrangement are described in this section.

The TPC is roughly cylindrical with a diameter of 1.9 meters and length of 4.2 meters from end to

end. The STAR coordinate system sets the z-axis along the beam and the y-axis pointing upwards. The

x-axis is defined by a right-handed coordinate system. (See Figure 2-2 below.) The point (0,0,0) is

therefore in the center of the TPC.

Figure 2-2: TPC Sector Layout and Numbering. The 24 sectors are numbered from I to
24. For z>0, the sector numbering follows the face of a clock. If a particle flying parallel to

the beam entered sector 2 at one end of the TPC, then it would exit via sector 22 at the
other end.

4 z<0z>0 4 Y



pa
pa
pa
pad

pad
pad

pad r
Pad r
pad ro

pad ro
pad ro
pad row

Pad row
pad row
pad row ;

pad row 2
pad row 2
pad row I

pad row 28

pad row 17

pad row 16 ·
pad row 15 -
pad row 14 -

Each sector of the detector contains a matrix of detector pads. Figure 2-3 below illustrates the layout of

each sector.

pad row 45 - 144 pads
pad row 44 - 144 pads
pad row 43 - 144 pads
pad row 42 - 144 pads
pad row 41 - 142 pads
,ad row 40 - 140 pads
ad row 39 - 138 pads
ad row 38 - 136 pads
d row 37 - 136 pads
d row 36 - 134 pads
Srow 35 - 132 pads
row 34 - 130 pads
row 33 - 128 pads
row 32 - 128 pads
'ow 31 - 126 pads
ow 30 - 124 pads
w 29 - 122 pads
w 28 - 122 pads
w 27- 120 pads

26 - 118 pads
25 - 116 pads
24 - 114 ads

23- 112 ads
22 -. ll2 pads
I - 110 pads

0 - 108 pads9 -106 pads
- 106 pads
- 104 pads
-102 pads
100 pads

98 pads
I-

pad row 13 - 184 pads

pad row 12 - 174 pads

pad row 11 - 166 pads

pad row 10 - 156 pads

pad row 9 - 150 pads

pad row 8 - 142 pads

pad row 7 - 134 pads

pad row 6 - 126 pads

pad row 5 - 118 pads

pad row 4 - 112 pads

pad row 3 - 104 pads
IEIEEEEEEEEEEEEEEEIIIEEEIEIEIEIEED pad row 2-96 padspad row 2 - 96 pads

pad row 1 - 88 pads

Row 1 thru 8 on 3.35mm x 48mm centers
Row 8 thru 13 on 3.35mm x 52mm centers
Row 14-45 on 6.7mm x 20mm centers

Figure 2-3: Detector Pad Layout. Pad rows are numbered from the innermost row to the
outermost row beginning with index 1. In each pad row, the pads are numbered from left
to right beginning with index 1. The number of pads in each row is indicated in the dia-

gram. Each sector of the TPC has the same layout.

Unfortunately, due to electronics space constraints, it was not possible to arrange the detector pad

rows as densely in the innermost rows. This could pose a problem for tracking since the particle traces
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are most dense in the region nearest the event center. Due to the large radial spacing between these

rows coupled with the high track density, tracking in this region of the TPC is expected to be difficult.

2.3 Tracking

The discussion of tracking begins by focussing on the characteristics of particle tracks. As a charged

particle passes through the inert gas in the detector, it ionizes the particles that happen to be in its path.

Because a uniform magnetic field is applied longitudinally along the detector, the charged particles

resulting from a collision experience a qvxB force. This resulting trajectory of each particle is there-

fore a helix. The parameters of this helix depend on the charge of the particle, the strength of the mag-

netic field, and the particle's energy (which depends on its mass and velocity). The ultimate goal of

tracking is to identify each particle by its path through the detector. This goal is accomplished by cal-

culating the particle's momentum and the sign of its charge from the track's helix parameters.

Another characteristic of particle tracks arises from the fact that the particles typically have a short

half-life and often decay into other particles while passing through the detector. The result is a kink in

the track (i.e. a discontinuity in the first derivative). The kink can be very pronounced or quite small,

depending on the type of decay and the relative momenta and trajectories of the subparticles released

in the decay.

As soon as a particle has ionized a gas molecule in the detector, the ionization begins to diffuse to

neighboring gas particles. Thus, it is advantageous from a tracking perspective to measure the ioniza-

tion as quickly as possible. There are two important effects of diffusion: 1) the concentration of ioniza-

tion spreads out in space and 2) the peak magnitude of the ionization decreases as the ionization

spreads. When a front of ionized gas particles reaches the STAR detector pads, it is typically spread

across several pads because of diffusion. (See Figure 2-4 below.)



detector pad response

Figure 2-4: Time Dependence of Charge Localization and Detector Pad Response. Once a
particle has ionized a region of the TPC gas, the charge immediately begins to diffuse. The
amount of spreading is proportional to the elapsed time between the initial gas ionization

by the particle and the time when the ions reach the detector pads. In terms of particle
traces and the TPC, this translates to the tracks in the middle of the TPC (along the longi-
tudinal axis) being more spread than the ones near either end of the TPC. This is because
the ions nearest the detectors are registered sooner than those in the middle of the TPC.

The activity during an event is recorded in the form of digital data representing the coordinates of

the emitted particles at sequential instants of time. The primary challenge of tracking algorithms is to

identify continuous tracks from this digital data.

The data, when plotted and analyzed at a fine scale, is recognized as traces made up of numerous

pixels. Each of these pixels is the ADC value on a pad at a given time. Although one can easily discern

the tracks, there are a couple of reasons that the tracking task must be automated. First, the number of

tracks from one event in the STAR detector is expected to be on the order of 10,000. Clearly, it would

take too long for a human to identify each of these tracks (see Figure 2-5 below). Second, precise mea-

surements of the track properties must be made (such as the particle's momentum), which also is best

handled by a computer. And third, in certain circumstances, complicated tasks such as deconvolution

must be performed on the data, which again is best suited to a computer.
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Figure 2-5: Simulation of Full STAR Event. In a typical event, approximately 10000
tracks will be produced. Each track is a helix emanating from the center of the TPC.

There are numerous complications to tracking. For example, because the STAR detector consists

of numerous discrete detector pads, the resolution of the event's record depends completely on the

placement and density of these detector pads. From a tracking standpoint, high detector pad density

and fast sampling times is better. Nevertheless, there are practical (technical, physical, and financial)

limitations in effect which bound the electronics used in the detector.

Besides the resolution limitation, several other "real-world" effects complicate tracking. One

effect is noise. That is, a detector pad may avalanche due to random fluctuations in the ionized gas or

due to other noise in the environment of the detector. Also, detector pads may be defective or simply

cease to function, thereby leaving a gap in a track.



Other complications involve the characteristics of the tracks themselves. Particle decays, which

were mentioned previously, are troublesome because of the kink in the track that can occur at any point

along the track without warning, thereby potentially confusing the tracker.

Figure 2-6: Sources of Tracking Complications. Particle decays, track intersections, and
parallel tracks make it difficult to follow a track especially when the resolution of the data

is limited.

When multiple tracks are present, there are additional complications to consider. One case is when

two tracks intersect (which appears very similar to a particle decay). Second, two tracks which lie

close together and do not intersect or intersect at a small angle may appear as one single track along

some interval of the overall track. Charge delocalization effects are particularly troublesome for track-

ing these tracks. In this case, the charges from the two tracks begin to overlap and therefore cannot be

distinguished by the detector pads.

It should be apparent that, in order for a tracking algorithm to attain a high tracking efficiency, all

of these complications must be taken into account.





Chapter 3

The Traditional Approach: Sequential Centroid Tracking

3.1 Hit-Finding

The traditional approach to tracking is carried out in two steps. First, the entire data set is processed

and clusters of pixels representing hits are identified. This is done by finding groups of pixels which

appear in contiguous positions in pad and TDC space. Next, beginning with one such hit on the outer

portion of the TPC, the algorithm searches for three correlated hits to form the beginning of a segment.

Once this is found, the segment is extended as far as it can go by adding successive centroids.

This method has been shown to work quite well for low-multiplicity events. And, until recently,

only low-multiplicity events have been produced. The high-multiplicity events that will be generated at

RHIC, however, could be troublesome for this algorithm. It has been shown that the efficiency

(roughly defined as the percentage of particle tracks correctly identified) of the sequential centroid

tracker falls off significantly with increased multiplicity.

The problem with this approach has to do with the serial nature of the tracking. Once a hit is used

by a track, it is removed from the data set and is not available for use by another track. This is problem-

atic when two tracks intersect or one track decays. In low multiplicity events, such intersections and

decays are few so the tracking algorithm is not affected significantly. In high-multiplicity events, how-

ever, these are quite common (estimated to account for 10% of the clusters).



90% 10% 1%

Figure 3-1: Overlapping Tracks and Detector Pad Response. Different degrees of track
overlap produce different hit shapes. Below each configuration is the estimated percentage

of that type of hit in a typical event recorded by the STAR detector.

Although the hit-based serial tracker performs well on the single track hits (90%), it is weak on the

other 10% of the hits, which are formed by overlapping tracks. This 10% is crucial for attaining the

needed efficiency for identifying the quark-gluon plasma and provides the incentive to develop a

tracker better suited to high-multiplicity events.

It should be noted that the problem is actually not due to the multiplicity of the event. Rather, it is

a result of higher multiplicity while the volume of the detector and the detector resolution have

remained relatively constant. Therefore, increased multiplicity implies greater track density, and

higher track density implies that more of the tracks will overlap. In a low-multiplicity event, for com-

parison, the percentages of the overlapping/intersecting tracks would be closer to 1-2%.

_ · · · I L I i I

90% 10% 1%



Chapter 4

A New Approach

4.1 Pixel-based Parallel Tracking

A new tracker has been designed with the goal of maintaining high efficiency at high track multiplici-

ties. This tracker includes mechanisms to deal with the aforementioned complications involved with

tracking in dense track conditions. This chapter discusses the general approach behind this new

tracker.

The main differences between the traditional and the proposed trackers are found in the track

extension phase. The flow diagram below (Figure 4-1) summarizes the main features of the proposed

tracker, each of which will be discussed in more detail. The cluster finder and proto-track finder mod-

ules are quite similar to those used in the traditional tracker, since there is little improvement to be

made in these modules as far as tracking efficiency is concerned.

The parallel tracker proceeds in spherical shells beginning from the outermost portions of the TPC

toward the event center. Each iteration of the tracker loop corresponds to one shell of pixel data. The

track extender module only operates on one shell of pixels at a time. However, the cluster finder and

proto-track finder modules may operate on multiple shells of pixels, since the shells may be too small

for these modules to function properly on only one at a time. Nevertheless, this is a detail which does

not affect the general explanation of the proposed tracking algorithm.



Figure 4-1: Flow Diagram of Tracker. The track extender module of the tracker is shown
in detail at the right.

Once provided with a shell of pixels, our algorithm first groups the pixels into clusters. This step is

performed using basically the same algorithm as the traditional tracker. Next, from these clusters, the

program identifies proto-tracks. Each proto-track consists of three clusters, which have passed tests for

their suitability as a proto-track.
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proto-track centroids

Figure 4-2: Track Formation and Extension. Beginning with the proto-track, search cones
are used to locate pixels which should be claimed by a track. Using these pixels, a new

centroid is calculated for the track and added to it. Notice that the search cone is tightened
as the track progresses.

In the proposed tracker, a track is represented as a sequence of centroids. These centroids are used

to steer the track for the track extension phase. Based on the trajectory of the most recent centroids

added to the track, a search cone is calculated for each track. This search cone stretches from one shell

boundary to the next. Intuitively, using a search cone means that the track extender is looking for pixels

in the right place. Such an approach also allows the search space to be smaller in general, thereby

improving the accuracy of the tracking.

search cone



Searching in pixel space, all pixels lying within each search cone are extracted. Next, a list of clus-

ters associated with these pixels is generated for each track. The segment extender then calculates the

amount of overlap of the search cone onto the clusters. If the overlap is greater than a specified

amount, the cluster is considered to be claimed by the track and it is labelled with the track's ID (see

Figure 4-3).

Once this process has been completed for all tracks, each cluster will have a list of the tracks that

are claiming it. This list may contain zero, one, or many entries, corresponding to the cases when the

cluster is not claimed by any track, the cluster is claimed by one track, or the cluster is claimed by

many tracks, respectively. Once it is known how many and which tracks claim a given set of pixels, a

deconvolution of the clusters is carried out based on this information to decide how to allocate the clus-

ters (or fractions thereof) to each track.

The next step is to extend all of the segments simultaneously, which is done before proceeding to

the next spherical shell. This is accomplished by calculating the centroid of the deconvolved clusters

and adding it to the track. As the track grows in length, the search cone for that track can be tightened

since it is more likely that a track has been successfully identified (see Figure 4-2). This is particularly

beneficial when tracks lie close to one another or intersect at small angles.



cluster claimed by A

Sby both cones
cluster not
claimed

clusters claimed
by cone B

Figure 4-3: Cluster Claiming and Overlapping Search Cones. This figure illustrates the
various possibilities of cones claiming clusters.

When the algorithm working on a particular track becomes confused (possibly in the case of a

track intersection or decay) or can not find any pixels in the search space, the track is terminated.

Although a track may be prematurely terminated, the algorithm attempts to find new proto-tracks dur-

ing each iteration of the tracker. This approach does lead to more segmented tracks, but the goal is to

not sacrifice correctness and efficiency. A segment joining method which complements the tracking

algorithm will be discussed in Chapter 9.

Note that the tracker extender module is given precedence over the proto-track finder in the flow

diagram. The tracker is arranged in this way so the track extender has first pick of the clusters in the

shell. Once the clusters claimed by tracks have been removed from the eligible clusters, the proto-track

finder can use the remaining ones to begin new tracks.



Once all the shell of pixels have been read from the data file, the tracker writes the resulting track

information to an output file. This information includes the centroids of each track labelled with the

track's ID.



Chapter 5

Computational Considerations

5.1 Running Time and Space

From a computer science standpoint, an interesting issue that the proposed tracking algorithm raises is

the amount of memory and computation time required to analyze each event. Each event will produce

approximately five million pixels of data forming approximately 10,000 tracks.

Although workstation memory and processing power is becoming more affordable, there are prac-

tical limitations that must be considered. This means that the algorithm must be modified in various

ways to account for and optimize for these limitations.

From the beginning, it was realized that limitations on memory would preclude the possibility of

reading in all pixels at once (i.e. into RAM). And because the tracking algorithm needs ready access to

all of the pixels currently being searched, it is important to avoid using swap space. Swap space is most

useful when there is a portion of data that is not being used for some time, which is not the case here.

Since retrieving data from swap space is on the order of 1000 times slower than retrieving it directly

from RAM, the performance of the algorithm would suffer dramatically if swap space were depended

upon. With this understanding, the use of spherical shells is seen to have the added benefit of breaking

up the data into manageable chunks. This way, the algorithm can read in and process the pixel data as

needed.

The original prototype of the new tracking algorithm required between 10 and 20 hours to analyze

a single event. After profiling the code and diagnosing the relative amounts of time spent in various

portions of the algorithm, the bottlenecks were identified. This allowed us to focus optimization efforts

particular parts of the program. The current prototype now takes less than one hour to analyze an event.



The running time efficiency of the tracker is due mostly to the octant tree data structure, which will

be explained in detail in the next chapter. Basically, the octant tree permits extremely efficient searches

through the pixel data, so all pixels in a region of space in the TPC can be extracted quickly.



Chapter 6

Implementation

6.1 Introduction

The majority of work for this project was done in the C programming language. C was chosen prima-

rily for its flexibility, standardization, and efficiency. No specialized libraries were required for the

tracker program, so the code will be very portable across platforms.

The implementation of the tracker program is split into three main modules: main tracking routine,

cluster finder, proto-track finder, and track extender. Each of these modules will be explained fully in

this chapter along with the data structures and parameters on which they depend.

For the pseudocode in this thesis, the following conventions are used:

* "as-b" indicates that a value b has been assigned to variable a.
* "a->b" indicates a reference to an element b of a data structure a.
* "= " indicates a test for equality.

6.2 Data Structures

To understand the implementation of the tracker, one should first take time to familiarize himself with

the data structures used in the program. Below are tables of these structures containing the fields in

each structure along with a short explanation of its function. In the tables, an asterisk (*) indicates a

pointer. The indicated field names are the ones actually used in the source code, so the reader can eas-

ily refer to them when reviewing the code.



Table 6.1: PIXEL Data Structure

Field Name Explanation(Data Type)

true_tid Holds the track ID assigned by the event simulator (used for ana-
(integer) lyzing the performance of the tracker on simulation data)

found_t id When the pixel is assigned to a track, this variable is set to that
(integer) track's ID number. (Initially set to 0.)

rho Holds the distance of the pixel from the center of the TPC. rho, of
(double-precision float) course, can easily be calculated from the coordinates of the pixel,

but there are many tight loops where rho is needed, so it is better
for efficiency reasons to calculate and store rho when the pixel is
created.

x, y, z Cartesian coordinates of the pixel calculated from the sector, row,
(double-precision float) pad, and tdc of the pixel (in units of centimeters).

sector, row, pad, tdc Hold the position of the pixel as given in the original TPC data.
(integer) These are needed by the cluster finder to determine whether pixels

lie in contiguous positions in the TPC.

adc Holds the ADC value of the pixel, which is the measured magni-
(short integer) tude of the avalanche at the detector pad for that pixel.

cluster Points to the cluster which has claimed this pixel. (Initially set to
(*CLUSTER) NULL.)



Table 6.2: CLUSTER Data Structure

Field Name Explanation(Data Type)

claimed_by_track Indicates whether this cluster has been claimed by a track yet or
(boolean) not.

track_adcweight Holds the sum of the ADC values of the pixels from that cluster
(integer) which lie in a track's search cone. The ratio of this to the cluster's

total ADC weight is the parameter which determines whether a
track can claim the entire cluster or not.

total_adcweight Holds the sum of the ADC values for all the pixels comprising this
(integer) cluster.

centroid A pointer to the centroid which holds the calculated centroid of the
(*CENTROID) cluster.

pixel_list A pointer to a list of pixels which comprise the cluster.
(*PIXEL_LIST)

claiming_tracks A pointer to a list of tracks which have claimed the cluster. This
(*TRACK_LIST) information is useful for deconvolving the cluster based on how

many tracks claim the cluster.

Table 6.3: CENTROID Data Structure

Field Name Explanation
(Data Type)

rho Distance of the centroid from the center of the TPC.
(double-precision float)

x, y, z Cartesian coordinates for the location of the centroid.
(double-precision float)



Table 6.4: TRACK Data Structure

Field Name Explanation
(Data Type)

found_tid Holds the unique "found" track ID number for this track.
(integer)

numshellswo new_ce Keeps track of the number of shells that the track has gone without
ntroid claiming any new clusters (i.e. not been extended). This is used to

(short integer) decide when the track should be terminated.

centroid_list A pointer to a list of centroids which represents the track. The first
(*CENTROID_LIST) three centroids in this list are the track's proto segment. As the

track is extended toward the interaction point, centroids are
appended to this list.

claimed clusters A pointer to a list of clusters that the track has found in its search
(*CLUSTER_LIST) cone during the track extension phase.

Table 6.5: SHELL Data Structure

Field Name Explanation
(Data Type)

rho_min, rho_max Specify the range of distance from the center of the TPC for the
(double-precision float) pixels in this spherical shell. The shell thickness = rho_max -

rho_min.

pixel_1ist A pointer to the list of all pixels in this spherical shell.
(*PIXEL_LIST)

cluster_list A pointer to the list of pixel clusters associated with this shell.
(*CLUSTER_LIST) Note that this may include clusters which point to pixels from

other shells.

next_shell A pointer to the next concentric spherical shell inward toward the
(*SHELL) center of the TPC.

next_shell_in_queue A pointer to the next shell in the shell queue (which may be differ-
(*SHELL) ent from next_shell).



Table 6.6: SHELL_QUEUE Data Structure

Field Name Explanation(Data Type)

num_shells Indicates the total number of shells in the queue.
(short integer)

first_shell A pointer to the first shell in the queue.
(*SHELL)

last_shell A pointer to the last shell in the queue.
(*SHELL)

Table 6.7: OCTANT_TREE_NODE Data Structure

Field Name
(Data Type)

pixel A pointer to a pixel if the node is a leaf, NULL otherwise.
(*PIXEL)

x_min, x_max, Ranges for the octant tree.
y_min, y_max,
z_min, z max

(double-precision float)

octl, oct2, oct3, oct4, Pointers to sub octants (NULL if there are no pixels lie in that sub
oct5, oct6, oct7, oct8 octant).
(*OCTANT_TREE_NODE)



Table 6.8: CLUSTERTREE_NODE Data Structure

Field Name Explanation(Data Type)

cluster A pointer to a cluster if the node is a leaf, NULL otherwise.
(*CLUSTER)

xmin, x_max, Ranges for the octant tree.
y_min, y_max,
z_min, z_max

(double-precision float)

oct1, oct2, oct3, oct4, Pointers to sub octants (NULL if there are no clusters lie in that
oct5, oct6, oct7, oct8 sub octant).
(*OCTANT_TREENODE)

Also included in the tracker's data structures are list structures of many of the structures listed

above. For example, there is a pixel list which can hold multiple pixels. These data structures consist

simply of an array of the data elements and an integer variable indicating the number of elements cur-

rently in the array. This index allows simple management of the array, especially when appending an

additional element to the array (which is a common action in the tracker program).

6.3 Octant Tree

The octant tree data structure is used throughout the tracking program and plays a crucial role in the

tracker's computational efficiency. Since the data used by the tracker is expressed primarily in three-

dimensional cartesian coordinates and because there is a need to access regions in that space, a data

structure had to be adopted which would allow this operation to be conducted efficiently. For instance,

in the track extension phase, the parameters of the search cone for a track are known. The straight-for-

ward approach to extracting the pixels in this search volume would be to check each pixel in the spher-

ical shell to see if that pixel lies within the search cone. However, since this operation must be

conducted so often, the O(n) running time of this approach quickly becomes a problem.



An octant tree divides a region of space (defined by the minimum and maximum values for pixels

in each coordinate axis) into eight octants. This is done by dividing each of the dimensions by two. The

numbering for the octants is unimportant for understanding the octant tree, although they are num-

bered for reference in the implementation.

Figure 6-1 below depicts a two-dimensional representation of how the octant tree works.

Figure 6-1: A Two-Dimensional Example of Octant Tree Partitioning. Each point in the
diagram represents an individual pixel. Note that there is at most one pixel in each sub-
octant. This invariant is maintained by creating new sub octants as needed when adding

additional pixels.

The invariant of the octant tree is that there can be no more than one pixel at any leaf of the tree.

Each pair of intersecting lines represents an internal node of the octant tree and indicates that there is

more than one pixel in the subtree rooted at that node. The octant tree turns out to be an excellent rep-

resentation for the sparse pixel arrangement in the TPC data. As shown in the diagram above, regions

of space that have no pixels in them require no extra octant nodes.



Before an octant tree can be used for pixel extraction, it must first be constructed. To construct an

octant tree, the first step is to create a root node. All sub-octants of this root node are initially empty.

When the first pixel is to be added, its coordinates are compared to the boundaries of each sub-octant

of the root node. Once the correct sub-octant has been identified, a new node is created to hold the

pixel. The corresponding sub-octant pointer is assigned to this new node in order to connect it to the

tree.

Additional pixels are added to the tree one at a time in a similar manner. If a pixel is added which

falls into the same sub-octant as a previously added pixel, then the following steps are carried out:

(1) temp.pixel <- node->pixel
(2) node->pixel <-- NULL
(3) Insertpixel (node, temppixel)

(4) Insert_pixel (node, newqpixel)

where Insertpixel is the pixel insertion routine.

If the new pixel still falls in the same octant as the original pixel (i.e. the two pixels are near each

other in space), additional interior nodes are added until the pixels fall into different octants.

The addition of each pixel to the octant tree takes O(log 8n) + G(1) = O(log 8n) time to complete.

That is E(log8n) time to find the insertion point for the pixel and E(1) time to actually insert it. Thus,

creating a full octant tree of n pixels will take n*E(log 8n) = e(n*loggn) time to complete. The tree-

building time is acceptable since numerous tree searches are conducted on an octant tree once is has

been created. Once the octant tree is constructed, pixels can be extracted within a rectangular box spec-

ified by the minimum and maximum along each coordinate axis. Note that using only the minimum

and maximum values of each coordinate means that the box will be square with the coordinate axes.



Figure 6-2: Pixel Extraction Using an Octant Tree. The figure depicts a two-dimensional
view of an octant tree. The desired region to search is in gray. The dashed rectangle in the

diagram is an example of a search space that may be needed. Following the rules
explained next, the pixel extraction procedure will find the four pixels enclosed by the

bounding box.

There are five cases that can occur regarding the extraction of pixels from the octant tree:

1) The node is a leaf, in which case the pixel contained at that node should be tested for inclusion

to the extracted pixel list.

2) The desired box is completely outside of an octant. In this case, the procedure returns, halting

the recursion along that branch of the octant tree.

3) The desired box is completely within an octant. Therefore, the procedure recurses on each of

that octant's sub-octants.
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4) The desired box completely encloses an octant. In this case, all pixels in this octant (including

the ones in the subtree rooted at that octant) can be added to the extracted pixel list without fur-

ther testing.

5) The desired box partially overlaps an octant. Therefore, the procedure recurses on each of that

octant's sub-octants.

Figure 6-3: Tree Structure of Two-Dimensional Version of the Octant Tree. This diagram
shows the internal representation of the (two-dimensional) octant tree shown in Figure 6-

2. The dashed line encloses the nodes which are searched by the pixel extraction algo-
rithm. Not all pixels included in the search will be in the search region, but they still must

be tested.

Assuming a well-balanced tree (which is a reasonable assumption considering the fairly even dis-

tribution pixels throughout the TPC), the amount of time it takes to extract p pixels from an octant tree

containing a total of n pixels is Q(p log8 n). This is because the tree has a depth of log8n, and since p

pixels are extracted, it takes O(1) time to add each one to the list of extracted pixels. Thus it can be
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seen that the octant tree makes an excellent structure to represent the pixel data - both because of the

ability to extract pixels in any rectangular region of space and the efficiency with this operation can be

carried out.

6.4 Main Tracker Routine

The primary functions of the routine that controls the tracker are to read in data from the data file and

to invoke the cluster finder, track extender, and proto-track finder. The data file is sorted by p in

decreasing order. This allows the tracker to easily read in a shell of pixels (specified by rho_min and

rho max). Given rho_min, the data-reading procedure simply reads from the current position in the

file until the first pixel which has a value of p less than rhomin. These pixels are all of the pixels in

the next spherical shell.

The tracker proceeds in concentric spherical shells starting with those pixels farthest from the cen-

ter of the TPC. The intuition applied here is that the track density decreases with distance from the

interaction center. Tracks therefore overlap and intersect less frequently, so they should be more easily

identified.

The shell thickness is decided upon by considering the amount that each track should be extended

during each round. However, other routines may require more than one shell of pixels to effectively do

their work. For this reason, shell queues were introduced.

When a new shell is read in, it is first added to the cluster finder shell queue. Shell queues are FIFO

queues, so each subsequent shell is added to the bottom of the shell queue. The cluster finder always

operates ahead of the track extender and proto-track finder because both of these routines operate on

clusters. The number of shells in the cluster finder shell queue is a parameter which can be adjusted by

the experimenter.

The overall order of the sub-procedures for the tracking program is important. The cluster finder

comes first, as explained previously. Next, the track extender is executed in order to extend any exist-



ing tracks through the next spherical shell, which gives the track extender first chance to claim the

pixel clusters in the next shell. The remaining clusters are left for the proto-track finder to use in

attempts to create new tracks.

When a new shell is added to the cluster finder shell queue which causes the number of shells in

the queue to be greater than the maximum number of shells, the first shell in the queue is popped off

the top of the queue. This shell now becomes the shell that the track extender operates on. It is also

added to the proto-track finder's shell queue (which also has a maximum queue size associated with it).

When a shell is added to the proto-track finder's shell queue which causes the number of shells in

the queue to exceed the specified maximum, the first shell in the queue is popped off. At this point, this

shell of pixels has been completely processed by all parts of the tracker so the pixel information con-

tained in it is written to the output data file. After that, the entire shell of pixels is freed from memory.

When the end of the input data file is reached, the main routine will continue to pop shells of the

top of the cluster finder queue until it is empty. As before, these are passed on to the track extender and

the proto-track finder queue. Once the last queue has been processed by the proto-track finder, the

main loop exits and the remaining shell data in the proto-track finder is written to the output file.

Finally, the entire program exists.

The diagram below shows the dynamics of the cluster finder shell queue, track extender shell, and

proto-track extender shell queue as shells are read in and passed from one queue to another. Shell

boundaries here are represented as straight horizontal lines.



U

Iteration of main tracker loop

Figure 6-4: Shell Queue Dynamics for Main Tracking Routine. The cluster finder shell
queue grows until it reaches its maximum size, at which point it pops off one shell for each
shell that is added to it, thereby maintaining the maximum size. The removed shell is first
used as the track extender shell and is also added to the proto-track finder shell queue. The
proto-track finder shell queue also has a maximum size. Shells popped from this queue are
no longer needed and the memory is freed. As the last few shells are processed, the cluster
finder shell queue shrinks. And finally, the track extender processes the last shell and the

tracker is finished.

6.5 Cluster Finder

The cluster finder's job is to find pixels that are nearby and group them into a cluster. Why group pix-

els in this way? It is known that pixels near each other in space are most likely from the same track,

therefore they should be processed in such a way that acknowledges and exploits this association.

Recall that the ADC value of a pixel is proportional to the magnitude of charge on the TPC gas

particles at that location. An ADC value can be in the range of 0-1023, but pixels with ADC values less

than 4 are not even included in the input data file since they mainly represent noise.
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The cluster finder generally operates on more than one shell of pixels at a time. This is done for

two reasons. The first is because many clusters may lie on the boundary between two shells. Secondly,

a single cluster may extend across an entire pixel shell. This, of course, depends on the shell size.

Below is the pseudocode for the top-level cluster finder procedure:

(1) Create octant tree of all pixels in cluster finder shell queue

(2) Create a master list of all pixels in cluster finder shell queue that have not yet been clus-
tered

(3) Sort the master pixel list in decreasing order by ADC value

(4) For each pixel in the master pixel list

(5) Check if pixel has already been clustered
(6) Check if pixel's bounding box has a corner inside the innermost sphere

(7) Extract pixels from the octant tree which lie in the bounding box

(8) Filter these pixels for those pixels in the same row and sector as the current pixel

(9) Generate a new cluster using the current pixel as the local maximum

(10) Decide which shell should claim the cluster and add it to that shell's cluster list

After the octant tree has been built, the next operation is to concatenate the sets of pixels from the

cluster finder shell queue. Before each pixel is added to the list, it is first checked to see whether or not

it has already been clustered. If the pixel has been clustered, then there is no need to consider it further.

The next step is to sort the entire list of unclustered pixels in decreasing order based on their ADC

values. The reason for this will become apparent as the cluster finder procedure is described further.

The list of sorted pixels is traversed one pixel at a time. The pixel is first tested to see if it has been

clustered yet.

Next, a bounding box around the base pixel is formed using a user-adjustable parameter (E) defin-

ing the edge length of the search cube around the pixel. A cube is used because the cluster is assumed

to be centered on the peak pixel. The bounding box is calculated from the pixel's cartesian coordinates

(x,y,z):

xmin = x - E/2, xmax = x + E/2

Ymin = y - E/2, Ymax = y + E/2



Zmin = z - E/2, Zmax = z + E/2

Figure 6-5: Search Cube for Cluster Finding. E represents the edge length along each
coordinate axis.

Using the octant tree, all pixels within the bounding box are extracted. Then, these pixels are fil-

tered to find all of the pixels which lie in the same sector and row as the base pixel. This is done due to

the many irregularities between padrows and sector orientations in the TPC detector pad arrays. Once

filtered, a list of pixels is obtained which represents a two-dimensional matrix of pixels differing only

in pad number and TDC. The size of the matrix is determined by the range of TDC values and pad

numbers of the extracted and filtered pixels. Note that many matrix elements may be empty if there is

no pixel there.



Starting at the peak pixel, the cluster finder launches a recursive search of that pixel's neighbors.

This search expands, checking other neighboring pixels. The search checks each neighboring pixel to

see if its ADC value is less than its own. If the neighbor's ADC value is greater, then that neighbor is

not added to the cluster and the search terminates along that path. Or, if there is no pixel in a neighbor-

ing position, then the search terminates along that path.

Figure 6-6: Cluster Finder Progression. In this figure, darker shading indicates a higher
ADC value for the pixel at that matrix element. The arrows indicate the direction that the
cluster-finding routine follows in adding neighboring pixels. Note that the algorithm pro-

ceeds outwards from the base pixel to add pixels with lower ADC values.

The pseudocode for the recursive algorithm to find the pixels in a cluster follows. Note: direction

is one of { +TIME, -TIME, +PAD, -PAD }, corresponding to the four possible directions in TDC-pad

space. The algorithm is initiated by four calls to Check-Neighbor - one for each of the base pixel's four

neighbors.

time (TDC)
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(1) Check-Neighbor (+TIME, tpixel + 1)

(2) Check-Neighbor (-TIME, tpixel - 1)

(3) Check-Neighbor (+PAD, Ppixel + 1)

(4) Check-Neighbor (-PAD, Ppixel - 1)

(5)
(6) Check-Neighbor (direction, pad p, time t, last_adc)

(7) adc <- pixel[p][t]

(8) If (pixel[p][t] is clustered or adc > last_adc) then Return

(9)
(10) Add pixel[p][t] to cluster

(11)
(12) If (direction = +TIME) then

(13) Check-Neighbor (+TIME, t+1, adc)

(14) Check-Neighbor (+PAD, p+1, adc)

(15) Check-Neighbor (-PAD, p-1, adc)

(16) If (direction = -TIME) then

(17) Check-Neighbor (-TIME, t-1, adc)

(18) Check-Neighbor (+PAD, p+1, adc)

(19) Check-Neighbor (-PAD, p-1, adc)

(20) If (direction = +PAD)

(21) Check-Neighbor (+PAD, p+1, adc)

(22) Check-Neightbor (+TIME, t+1, adc)

(23) Check-Neighbor (-TIME, t-1, adc)

(24) If(direction = -PAD)

(25) Check-Neighbor (-PAD, p-i, adc)

(26) Check-Neighbor (+TIME, t+1, adc)

(27) Check-Neighbor (-TIME, t-1, adc)

This simplistic clustering algorithm errs on the side of generating too many clusters. Basically, any

local maximum will generate a new cluster. Nevertheless, the approach works quite well with the clus-

ter deconvolution procedure described in the Cluster Deconvolution section.

6.6 Proto-Track Finder

The proto-track finder is the module which locates and creates new tracks. The proto-track finder oper-

ates in cluster space, and views clusters only as individual centroids. To form a new track, the proce-

dure looks for three clusters which satisfy certain criteria. If the three chosen clusters do satisfy the

criteria, then a new track is formed and its first three centroids are added to it.



The correctness of the proto-track finder is crucial to the overall performance of the tracker. If bad

proto tracks are chosen for a new track, then there is nothing that the track extender can reasonably do

to correct for it. Furthermore, there is a trade-off between having a high percentage of good tracks, but

not identifying true tracks (false negatives) and having a large number of track, but including more

proto tracks that are not actually the beginning of a true track (false positives). We choose to err on the

side of more false positives, since the proto-track finder will filter them out when these tracks cannot

be extended.

Another issue concerning the quality of the proto-track finder can also directly affect the perfor-

mance of the track extender. Consider the case where the proto-track finder does not identify a particu-

lar track. When this unidentified track intersects other tracks, then it will throw off the segment

extending of the other track since the track extender has no idea that there is actually another track con-

tending for clusters. If the track has been successfully identified, however, then the track extender can

act accordingly to handle any contention between the two for clusters.

6.6.1 Combinatorics

The original approach to creating new tracks was to form a master list of all clusters eligible for

creating new tracks, choose each possible combination of three, and perform various tests on it. These

tests determine whether or not the cluster triplet is a viable proto-track. This approach is a 0(n 3) algo-

rithm because

(n = O(n 3

This may have been acceptable if the number of clusters being considered were small. Neverthe-

less, for each iteration of the tracker routine, there are approximately 1500 clusters eligible to become

new tracks. Thus, due to the extremely large number of possible proto-tracks (-456 million), the proto-

track finder caused the tracker to run prohibitively slowly.



To solve this problem, the octant tree was applied very similarly to the way it was applied in the

cluster finder module. The intuition here is that only clusters which are sufficiently close to one

another can possibly be part of the same proto-track, so only test the cluster triplets in the volume

around a cluster.

First the octant tree of clusters must be constructed, which takes O(n log 8 n) time. Then each of the

n clusters in the master line is used as the base cluster and all c nearby clusters are extracted from the

octant tree. Note that extracting c clusters from the cluster tree requires 0(c log 8 n) time. Finally, all

pairs of clusters of the c extracted clusters can be tested along with the base cluster to see if they form

a valid proto-track. Thus, for each of the n base clusters, only 0(c 2) work is required.

The total work of the improved proto-track finder, given a master list of n clusters, is 0(n log 8 n) +

n * (O(c log 8 n) + 0(c 2)) = O(n log 8 n) + O(n * (c log 8 n + c2)) where c << n (since only a small subset

of the n clusters is extracted from the octant tree for each base cluster). Using the same figure for the

number of clusters in the proto-track finder shell queue as before, 1500, we can see how the octant tree

approach significantly reduces the amount of time required for the proto-track finder. To calculate this,

however, the number of extracted clusters, c, must be estimated. This figure obviously depends on the

size of the search volume surrounding the base cluster. Nevertheless, using the parameter settings in

the current prototype and a shell queue of approximately 1500 clusters, c has turned out to be between

10 and 20. Disregarding the constants,

n logg n + n * (c log 8 n + c2) = 1500*3.52 + 1500*(20*3.52 + 400) = 7.11x10 5,

far better than 4.56x108 as in the original version. In practice, the realized running time is approxi-

mately 100-200 times faster than the original version, which is not far from the predicted improvement

calculated above.

In general, the proto-track finder works in more than one shell at a time. This is because more than

one shell thickness may be required to obtain three clusters which lie in the same track (and therefore

would be well-correlated).



Below is the pseudocode for the proto-track finder:

(1) Create master list of unclaimed clusters in the shell queue
(2) Create octant tree of clusters (based on cluster centroids in master list)
(3) Sort master list in decreasing order by p of the cluster centroids
(4) For each cluster in the master list:
(5) Find all clusters near base_cluster using octant tree
(6) For each possible pair of extracted clusters (where base_centroidl->p > centroid2-

>p > centroid3->p):

(7) Perform tests on the three clusters
(8) Iffail, then proceed to next pair

(9) Create a new track
(10) Add cluster centroids to the new track
(11) Add new track to active track list

First, all clusters in the proto-track finder's shell queue are checked. Each that has not yet been

claimed by a track is added to a master cluster list. This simple filtering greatly cuts down on the

amount of processing necessary to find new tracks since time is not wasted testing more cluster triplets

than necessary only to find that one of them has already been claimed.

There are four conditions that a set of three clusters must satisfy in order to pass as a new proto-

track. (See Figure 6-7 for illustrated examples.)

1) The distance of the cluster centroids from the center of the TPC must be decreasing (centroidl-

>p > centroid2->p > centroid3->p). This ensures that the track is aimed basically in the direction of the

interaction center.

2) Each cluster must contain at least p pixels. p is generally set to be quite small (4 or 5), and is in

place to eliminate "noise" clusters from being used to begin new tracks.

3) The distance between the first and second centroids must be less than a certain parameter d.

Likewise, the distance between the second and third centroids must be less than d. This test ensures

that the sequence of clusters are within a reasonable distance of each other that they could conceivably

be from the same track.



4) The angle (1-2-3) between the three centroids must be within n degrees of a straight line (180-

degree angle). This colinearity test is used in recognition of the fast that consecutive clusters over a

short interval of a track should be roughly in a straight line.
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Figure 6-7: Tests for Candidate Proto-Tracks.

6.7 Track Extender

The track extender takes a pre-existing track (consisting of at least three centroids) and attempts to

extend it to the next shell boundary. The inputs to the track extender are: the current shell (including

the pixels and cluster list for that shell) and the active track list. Below is the pseudocode for the track

extender module:



(1) For each track.
(2) Fit straight line to last two centroids of track
(3) Calculate search cone angle
(4) Calculate search cone bounding box
(5) Extract pixels from octant tree which lie in bounding box
(6) Filter extracted pixels for those lying in search cone
(7) Find all clusters represented by the pixels in the search cone
(8) Foreach cluster.

(9) Decide whether cluster should be claimed by track
(10) If so, add cluster to track's claimed cluster list

(11) Deconvolve clusters
(12) For each track:

(13) If no clusters were claimed, increment track's num_shells_wo_new_centroid counter
(14) Calculate a new centroid for the track from the claimed clusters

(15) Label all pixels claimed by the track

Recall that a track is represented by a list of centroids. The proto-track finder uses these centroids

to guide its search in the shell of pixels. In particular, a straight line is fitted to the last n centroids of

the track (where n is a parameter specified by the programmer, currently set to 5). This line then forms

the axis of a search cone. (See Figure 6-8 below.)

The search cone itself is described by two parameters: the base radius and the cone angle. A cone

is used as opposed to a cylinder, because when extending a track, one would expect that the clusters

nearest the last point in the track to be reasonably in-line with the track. As distance from the track

increases, however, a larger region should be considered since the track trajectory is not known

exactly. Furthermore, the track trajectories are helixes and therefore pixels farther from the last cen-

troid in the track will not lie on the straight line fitted to the track centroids.



Figure 6-8: Track Extender Search Cone. The search cone is defined by two parameters:
the base radius, r1, and the angle, 0.

As more centroids are added to a track (i.e. the track is lengthened), it becomes more likely that a

true track has, in fact, been found. To incorporate this intuition into the track extender, the cone angle 0

is adjusted based on the total number of centroids in the track. The formula for the adjusted cone angle

is a simple decaying exponential:

0 = 00 1 e- an

where 80 is the original cone angle, n is the number of centroids in the track, and a is a constant

parameter set by the programmer. The effect of this function is to narrow the search cone as the track is

extended. Notice that as n becomes large, 0 approaches zero. This means that rl= r2, and the search

volume is therefore essentially a cylinder.

The bounding box is calculated by finding the minimum and maximum extents of the search cone

along each of the coordinate axes. Recall that the octant tree representation used for this implementa-



tion only allows a search volume in the shape of a rectangular box. By extracting the pixels in the

bounding box, the search time for pixels is decreased dramatically.

Once the pixels in the bounding box have been extracted, another procedure takes these pixels and

tests each one to determine whether or not it lies within the search cone. Note that this procedure

would function correctly on the entire shell of pixels, but would be prohibitively slow since every pixel

in the shell would have to be tested.

To expand on this statement, as shown before, each extraction of p pixels takes 0(p*log8 n) time.

The bounding box approach limits the number of pixels that are extracted to O(p) (where p << n),

thereby preserving the O(p*log8 n) total extraction time for these pixels. Following that, the pixel filter-

ing procedure processes each pixel, so the total time for extracting and filtering pixels for one track

extension is 0(p) + 0(p*logsn) = 0(p*log8 n), showing that the pixel filtering procedure does not

increase the asymptotic running time of the track extender. Contrast this to filtering the entire set of n

pixels for each track, which would require 0(n) time per track. Thus it can be seen why the octant tree

is a vital component for the track extender.

One it is known which pixels lie within the track's search cone, a list of the unique clusters repre-

sented by those pixels is generated. For example, if a total of 10 pixels were in the search cone, and 3

of them where part of cluster A, 5 were part of cluster B, and the remaining 2 were part of cluster C,

then the cluster list would contain the set { A, B, C }.

The next step is to decide whether the track should actually claim the cluster. This is done by sum-

ming the ADC weights of the pixels from each cluster and comparing it to the total ADC weight of the

cluster (which was calculated when the cluster was created by the cluster finder). If the ratio of ADC

weights is greater than w (where w is an adjustable parameter), then the cluster is considered claimed.

The intuition behind this test is that if a track's search cone barely encloses just a small edge or corner

of a cluster, then the cluster probably should not be added to the track. On the other hand, if the cluster

falls largely within the search cone, then it should be added.



If a cluster is claimed, then a pointer to the claiming track is added to the cluster's track list. This is

done for the cluster deconvolution step, so it is known how many and which tracks have claimed a par-

ticular cluster.

6.8 Cluster Deconvolution

As shown in Figure 3-1, when two tracks are near each other, the response measured by the detector

pads in the overlapping region is roughly the sum of the responses that would have been measured by

the tracks individually. The result of this is a cluster of pixels that could be deconvolved.

The overall goal of deconvolution is to better guide the track extension. For the prototype tracker, a

simple cluster deconvolver is being used which simply divides the ADC values of the pixels in a clus-

ter by the number of tracks that claim that cluster. It will be argued why this is a highly effective,

though not perfect, cluster deconvolver.

Before Deconvolution After Deconvolution
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Figure 6-9: Cluster Deconvolution. The weight of a cluster claimed by multiple tracks is
scaled down by the number of tracks that claim it.

Notice from Figure 6-9 above that the effect of the cluster deconvolution is to separate the centers

of mass of the clusters for each track. The center cluster is produced by two partially-overlapping

tracks. Without using the knowledge of how many tracks claim the middle cluster, the centers of mass
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that would be calculated for the tracks' next centroids would be too close together. The goal, recall, is

to follow the track of a particle exactly as it was when it passed through the TPC. When the cluster

weight is resized based on the number of claiming tracks, the centers of mass are separated farther,

thereby more accurately guiding each track.

Although there is no complicated deconvolution occurring, this approach accomplishes the goal of

separating the calculated centroids of tracks that partially overlap. Since the cluster finder errs on the

side of producing extra clusters (small valleys between peaks are considered separations between clus-

ters), this simplistic approach works well. In fact, the clusters formed by the cluster finder can only

have one basic shape - a peak with trailing edges (i.e. no other local peaks or valleys). Thus, there is no

need to deconvolve this shape. Nevertheless, cluster deconvolution is certainly an area that could be

improved in the prototype tracker.

6.9 Adjustable Parameters

This section is devoted to explaining the many parameters which can be adjusted by the programmer.

Most of these parameters have been at least alluded to throughout the discussion of the tracker imple-

mentation. Nevertheless, for completeness, all parameters are listed below along with an explanation

for each. More importantly, however, the inter-dependencies between these parameters will be dis-

cussed.

The following parameters are used in the main tracker routine:

NU-_CLUSTER_FINDER_SHELLS: specifies the maximum number of shells that should be in

the cluster finder's shell queue. This parameter should not be set to any value less than 1.

NUM PROTOTRACKFINDERSHELLS: specifies the maximum number of shells that should

be in the proto-track finder's shell queue.



SHELL_THICKNESS: specifies the thickness of each spherical shell. This parameter is one of the

most crucial of all, and upon which many other parameters are gauged. The shell thickness reasonably

should be set somewhere between 1.0 and 10.0 cm. Keep in mind that the shell thickness determines

how many iterations of the main tracker loop are required to process all of the data.

The thinner the shells, the more shells that will be required for the cluster finder and proto-track

finder since the size of clusters and extent of proto-tracks are properties of the TPC data itself and is

not affected by the setting of any tracker parameter. Thinner shells, however, permit a more accurate

tracking in general since the tracks do not need to be extended as far each time.

The following parameters are used in the cluster finder module:

CLUSTER_FINDER_SEARCH_CUBE_EDGE_LENGTH: specifies the length of each edge of the

cube centered on each base cluster for the cluster finder (see Figure 6-5). This parameter can be esti-

mated by looking at the data. Given a distribution of cluster sizes, the parameter should be chosen such

that at least 95% of the clusters will be fully enclosed by the search cube. It is evident that if the edge

length is set too low, then a single cluster may be divided into several smaller and irregularly-shaped

clusters. The only complication that arises when the edge length is set too high is that the cluster

finder's running time increases proportionally since more pixels need to be extracted and filtered each

time.

MIN_NUM_PIXELS: specifies the minimum number of pixels required in a cluster in order for

that cluster to be used as part of a proto-track. This parameter should be set to at least 1, but probably

not above 10. This parameter's setting is important for filtering out "noise" clusters so they do not

obstruct the proto-track finder from finding better candidate proto tracks. If set too high, however, then

fewer proto-tracks will be formed, which means that a greater number of legitimate proto-tracks will

be missed. As mentioned previously, it is better to allow the proto-track finder to err on the side of pro-



ducing extra (false positive) tracks, since the track extender is effective at filtering those tracks out

quickly.

MAXINTERPOINT_DISTANCE: specifies the maximum distance between two consecutive

cluster centroids for them to be considered as candidates for a proto-track. The intuition behind this

parameter is that the further apart two clusters are, the less likely is it that they were generated by the

same track.

COLLINEARITY_THRESHOLD: specifies the angle between the line from centroidl through

centroid2 and the line from centroid2 through centroid3. (See Figure 6-7.) This parameter can be esti-

mated from knowledge of how much tracks are expected to curve (which depends on the particle's

charge, its velocity, and the magnetic field strength in the TPC). Set too low, this parameter causes the

proto-track finder to overlook some valid tracks. And set too high, this parameter allows more bad

tracks to be generated.

The following parameters are used in the track extender module:

NUMLINEFIT_CENTROIDS: specifies the number of track centroids used to fit the straight line

for track extending. This parameter must be at least 2 (takes at least 2 points to define a line), but

shouldn't be set too large since the curvature of the track may throw off the track extension procedure.

Note: this parameter is not currently being used.

NO_CENTROID_SHELL_LIMIT: specifies the number of shells a track may continue without

finding any new clusters. This parameter should be at least 1, but could degrade tracker performance if

set too large. This is because a track which has strayed from its true track path for one reason or

another (perhaps a decay) could continue to claim clusters if it is permitted to search long enough (by

intersecting another track, for example). Note that this parameter also depends on the shell thickness.

For a thicker shell, this parameter should be set lower.



CLUSTER_PAINTING_THRESHOLD: specifies the percentage of a cluster's total ADC weight

which must be enclosed by a track's search cone in order to claim it. If this parameter is set too high,

then a track will be able to claim fewer clusters since they must lie more completely within its search

cone. On the other hand, if the threshold is set too low, then any cluster that the search cone overlaps

even by little will be added to the track.

The cluster-painting threshold is a parameter for which there is little to use as reference for gaug-

ing it. Therefore, this threshold is one of the most important parameters when conducting a search of

the tracker's parameter space to find the combination of them which leads to the best performance.

SEARCH_CONE_BASE_RADIUS: specifies the radius of the track extender's search cone at the

base. (See Figure 6-8.) This parameter can also be estimated from the data. The goal is to find the aver-

age width of a track as it is spread across multiple detector pads. If this radius is set too low, then fewer

clusters will claimed by the track during extension. However, worse yet, if the radius is too large then

the track could claim clusters from other nearby tracks, possibly throwing off the tracking.

Notice the inter-dependence between the cluster painting threshold and the search cone base

radius. They both partially determine when clusters will be claimed by a track. And, like the cluster

painting threshold, the search cone radius is another parameter which should be explored thoroughly

when optimizing the tracker efficiency.

SEARCH_CONE_INITIAL_ANGLE: specifies the search cone angle from its longitudinal axis

(measured from where the cone surface converges to a point on this axis). (See Figure 6-8.) In other

words, this angle specifies how much the search cone widens as a function of distance from the search

cone base. A larger angle would indicate less certainty in the trajectory of a new track. Note that if the

angle were set to zero, the search volume would be a cylinder. As with the search cone base radius, if

the cone angle is too large, then tracks will tend to claim clusters that do not belong to them. If the

angle is too small, however, then a new track may be doomed to failure by not capturing the needed

clusters to guide it along its trajectory.



SEARCH_CONEANGLE_TAPER_COEF: specifies the coefficient used for calculating the search

cone angle as a function of the number of centroids in a track and the initial cone angle. Since the func-

tion is a decaying exponential, the taper coefficient determines how quickly the cone angle will

decrease as a track is extended. Intuitively, the cone angle taper coefficient is a measure of how the

confidence level of correctly following a track varies as the track is extended. If this coefficient is set

too low, then the cone angle will not shrink significantly as a track is extended toward the interaction

center. This becomes especially problematic as the track is being extended through the inner shells,

where the track density is high, so it is especially important to only claim the clusters in the correct

track. If the coefficient is set too high, then the decay curve will be steep, meaning that the angle will

decrease quickly as the track is extended. This, in turn, could cause the track to stray from the correct

trajectory since it might not capture the needed clusters to guide it along the right track.

6.10 Debugging and Testing

This section discusses the general methods that were used to test and debug the tracker implementa-

tion. Note that this does not include tuning parameters or even checking that parameters were set cor-

rectly. Instead, we are more interested in the correctness of the code.

Most of the basic debugging was performed using the gdb debugging utility. Running a program in

the gdb environment permits the programmer to see where errors occur. This is extremely helpful for

identifying and isolating problems.

When developing the program, the first step was to verify the correctness of each module indepen-

dently. This was accomplished by supplying input to the module and checking the output to see if the

results were as expected. For example, the cluster finder module was tested by supplying pixel data,

then viewing the topology of the clusters that were produced.

Once black-box and glass-box testing was conducted on each module, the modules were inte-

grated, and integration testing was conducted. Since the modules are largely independent of one



another, integration testing was quite simple since there are no few or no extra interactions between the

modules.





Chapter 7

Simulation Data

7.1 Producing Test Data

Since RHIC and the STAR detector are not yet operational, the data used for developing, testing, and

tuning the tracking algorithm had to be generated using an event simulator. There are three steps to

generating such data.

First, a physics model is used to describe the collision. This model specifies how many and what

type of particles will be produced in a typical collision. With this information, a utility called GEANT

is used to simulate each particle's trajectory through a particular material. For STAR, this material

would be the quark-gluon plasma. GEANT simulates particle decays, multiple scattering, and energy

depositing. The output of the GEANT engine is energy for each track as a function of x, y, and z.

The output of GEANT is a general description of what would happen when the given particles

react with one another. At this point, another simulator is used to model the TPC itself. This so-called

slow simulator takes into account the physical construction of the TPC, the avalanche on the wire, pad

images, and the electronics response.

The output of the slow simulator is the same as will be the output from the actual detector when it

is functioning. Each detector pad that is activated produces an ADC value for that time slice. The ADC

value is between 0 and 1023, and represents the magnitude of the pad's response, which is proportional

to the ion's charge. Thus, a highly-charged particle will produce a large ADC value on the pad it meets.

One deficiency of the simulator is that each pixel can only be associated with one track in the out-

put data. Internally, the simulator finds the track which contributes most to a pixel's ADC value and

assigns to the pixel the ID of that track. As a result, when analyzing the performance of the tracker,

tracks will tend to be less homogeneous in the pixels claimed by them.



7.2 Modeling High-Multiplicity Events

To test the tracking algorithm's response over a range of multiplicities, sets of low-multiplicity data

can be generated (each containing approximately 1000 tracks). Then, to test the algorithm on a 1000-

track event, only one of the data sets is used. Next, to obtain a 2000-track event, two 1000-track events

can be combined, and so on. This technique can be used to explore the efficiency of the tracker over a

range of multiplicities.

It is reasonable to combine events in this way since the events can, to a large degree, be considered

independent for the purposes of testing the tracking algorithm. In actuality, more particles would inter-

act more with one another at higher multiplicities, thereby leading to an increased number of decays.

Nevertheless, these extra interactions are more important from a physics standpoint than from a track-

ing standpoint.

7.3 Data Preparation and Conversion

The output of the simulator is three text files: tppad. asc, tppixel . asc, and tpmcpix. asc.

The tppad file is typically much smaller than the other two files, and each line is in the format:

index, number of time sequences, pad number, sector-row number

where pad number is the number of the pad. The sector-row number is a single number which indi-

cates both the sector and row and is calculated as:

sector-row number = 100 * sector number + row number.

Next, index is an index into the tppixel and tpmcpix files which indicates the line number on

which the pixels recorded for this sector, row, and pad begin. The number of time sequences indicates

the number of sequences when the pad was occupied during consecutive time slices. This field is not

needed for converting the simulator data nor is it used by the tracking program.

The tppixel file contains the ADC and TDC values for each pixel recorded during the event.

Therefore, the number of lines in this file equals the total number of pixels recorded during the simu-



lated event. The tppixel data files used for this thesis represented the ADC and TDC values as a sin-

gle "packed" number, from which the ADC and TDC values could be extracted.

The tpmcpix file contains the Monte-Carlo track ID's, one per line. Each line of this file corre-

sponds with a line in the tppixel file. Thus each pixel has a Monte-Carlo track ID associated with it.

To prepare the data for the tracker, these files were first processed to form a single large text file

(-150 MB), with each line representing one pixel recorded during an event. Reading a line from the

tppad file gives the sector, row, and pad number for the next pixels that will be read. The index on

that line gives the beginning index into the tppixel and tpmcpix files for pixels recorded for that

particular pad. By reading ahead to the next line, the conversion routine can tell how many lines to read

from each file. For example, if the beginning index is 57 and the next beginning index is 102, then lines

57 through 101 belong to the current pad. (See Appendix A. 1 for the implementation of this routine.)

The goal of this conversion is to format each line as follows;

Sector, Row, Pad, TDC, ADC, True Track ID

where Sector is the detector sector number (1-24) where the pixel was registered, Row is the pad row

of the pixel (1-45), Pad is the pad number (1-184, depending on which padrow), TDC is the time value

(0-511), ADC is the magnitude of the pixel (0-1023), and True Track ID is the Monte Carlo track ID

for that pixel.

The only difference between the simulator data and the real data that will be collected from the

STAR detector when it becomes operational is that the real data will, of course, not have the true track

ID labelled, since it is not known. (It is the job of the tracker to find such a designation for each pixel.)

To prepare the data for analysis by the tracking program, it first needs to be sorted in descending

order by p for each pixel so that the data can be read efficiently in spherical shells beginning with the

outermost shells. To this end, a simple routine is used to read in each line of the data file, calculate p

for that pixel, then write the same data to an output file (including p). In order to calculate p, the pixel's



(sector, row, pad, tdc) values must first be converted into cartesian coordinates. This is accomplished

using a custom-made routine which calculates the pixel's position in cartesian coordinates based on the

measurements and specifications of the detector pad layouts and dimensions of the TPC (see Appendix

A.2).

At this point, a new data file will have been generated with the format:

p, Sector, Row, Pad, TDC, ADC, Track_ID

The next step is to sort the new data file based on p. This can be accomplished using the standard

UNIX sort command. To save time, the file can be split into numerous smaller files and each sorted

independently. Then, the UNIX sort command can be used again to merge these data files together.

The final outcome is a large data file sorted in descending order based on p. (For the reader's reference,

these commands are given in Appendix A.3.)



Chapter 8

Evaluating the Tracker

8.1 Measuring Tracker Efficiency

Measuring the efficiency of the tracker is a difficult task. Ideally, one would like to calculate a single

number that encapsulates all of the information about how well the tracker is doing. Nevertheless,

since tracks are rarely 100% correctly or incorrectly found, the efficiency cannot be calculated simply

as the percentage of correctly found tracks. This notion of track pureness is discussed in the next sec-

tion (i.e. partial false positives and partial false negatives). To get an overall efficiency number, one

could apply a threshold which determines whether a track was successfully found or not.

8.2 Diagnostics and Visualization

In order to evaluate the performance of the tracker and help tune the tracker parameters, the first step is

to run the tracker on simulated data. The simulated data includes the true track ID's, which permits the

experimenter to determine the efficiency of the tracker.

In debugging, one is searching for errors in the program. The diagnostic routines considered here

serve a different purpose from those used for debugging in that they aid a programmer in evaluating

how well a program is performing. Depending on the results of these diagnostics, the programmer may

decide to modify some parameters in the tracking program or even modify the approach to tracking.

One simple yet very effective diagnostic is visualizing the results. The output of the tracking pro-

gram is the same as the input, with an additional data field added - the found track ID. All pixels with

the same found track ID are the ones that the tracker decided are in the same track. To check this

against the true track, one can plot the true track and the centroids of the corresponding found track on

top of the true track (preferably using different colors). If the two match well, then the tracker per-

formed well on this track.



In addition to visualization, we also found it useful to evaluate tracker performance on a finer

scale. A diagnostic program was developed to show the pureness of each track. This program pro-

cesses the pixel output file from the tracker and can be keyed on either the true track ID or the found

track ID. When keyed on the true track ID, the program considers each true track separately and dis-

plays all found tracks that contain pixels from that true track ID. For example:

True track ID: 1538

Found track ID Portion of Pixels

14 60%

5 20%

76 10%

Unclaimed 10%

This result would mean that Monte Carlo track #1538 from the simulator was partially claimed by

three found tracks: 14, 5, and 76 and that 10% of the specified true track's pixels were left unclaimed

by any found track.

For instance, the ideal result is one such as:

True track ID: 7834

Found track ID Portion of Pixels

25 100%

which means that all pixels from the true track were claimed by a single found track.

It is more common for a true track's pixels to be divided amongst several found tracks rather than

vice-versa. This is because a true track is often segmented, causing the tracker to halt track extension

along that track and begin a new track. If a true track's pixels are spread amongst many found tracks, it

is useful to extract the associated pixels from the output data file and plot them. For example, in the

first example above, one would extract pixels from true track 1538, and those from found tracks 14, 5,

and 76. By plotting the pixels from each track in a different color, one can quickly determine what hap-

pened.



When keyed on the found track ID, the program produces a very similarly-formatted output:

Found track ID: 43

True track ID Portion of Pixels

6729 75%

1538 20%

noise 5%

which indicates that found track #43 consists of pixels from true tracks 6729 and 1538. A found track

should not, in general, include large portions of pixels from other true tracks. Therefore, when this

happens, it is important to plot the tracks to see what is happening. It will be common, however, for a

found track to contain small portions of other true tracks, since it may claim these pixels when the true

track it is following intersects another true track.

By combining the diagnostic program described above with a conventional 3-D viewer (e.g. Mat-

lab®), the researcher can focus on particular true and found tracks which indicate poor tracking perfor-

mance.

By examining these specific cases, modifications can be made to the tracker parameters or to the

algorithm itself in order to strengthen its ability to handle such cases.





Chapter 9

Future Development

9.1 Improved Track Extrapolation

The current prototype only uses the last two centroids in a track to calculate the line which is the basis

of calculating the search cone orientation. This approach has the favorable characteristics of being fast

and simple to implement. However, using only the last two centroids of a track may be problematic

due to the large variation of the centroids' positions. This means that the track may be extended in a

skewed direction.

To fix this problem, a better approach would be to use the last n centroids of the track. A straight-

line fit to these centroids would be a good start. An improvement on this would be to fit the sequence

of centroids to a circular shape in the bend plane.

Using more than the last two centroids of a track has two primary benefits. The first is that the

"noise" factor is reduced for track extrapolation. The trajectory of the track will therefore be more sta-

ble and gently varying (as it should). Secondly, using more of the track's history will better guide the

track through small-angle intersections with other tracks. The intuition here is that when only a small

portion of a track that is used for guidance, the track has only a small "memory" of where it has been

and will therefore be more easily redirected to follow a different trajectory.

9.2 Detection and Halting of Multiply-Found Tracks

The previous section discussed using more of a track's history to guide it better. One of the goals of

this is to help a found track follow the right true track when faced with a track intersection. We now

view this from a different perspective - what to do if two found tracks happen to be following the same

true track (a "multiply-found" track).



Multiply-found tracks are mostly harmless as far as the accuracy of the tracking goes, except for

cases where the cluster deconvolution in important. Recall that cluster deconvolution uses the knowl-

edge of how many tracks are claiming the same cluster. If, for example, three found tracks are follow-

ing the same true track and there is an intersection with another true track, the second true track will

not get its fair share of the multiply-claimed clusters.

Another potential complication that a multiply-found track presents arises from the fact that a

pixel can only be assigned to one found track. If a pixel is claimed by more than one track, then the

found track ID assigned to it is the one which is assigned last in the sequential order of the tracking

program. As an artifact of the tracker's design, a multiply-claimed track's pixels will actually be

assigned to only one particular track - the track that was formed most recently. If the tracker is parallel-

ized, however, these pixels could ultimately be assigned any one of the ID's of the claiming tracks.

This poses a serious problem for analyzing the results of the tracking program from the output pixel

data.

Multiply-found tracks can either be formed when two tracks intersect at a small angle (as men-

tioned previously) or even from the very beginning of a track (proto-track). Proto-tracks can follow the

same track since the proto-track finder has no way of knowing if this is happening. The proto-track

finder merely finds triplets of clusters which appear to form a valid track. Thus an additional test needs

to be constructed in the track extender module to detect and halt all but one found tracks following the

same true track.

Multiply-found tracks can be detected by comparing the claimed clusters between pairs of tracks.

If two tracks claim exactly the same clusters from shell to shell, then there is a good chance that they

are both following the same track. The number of shells over which tracks need to be compared

depends primarily on the track extrapolation method used for guiding the track extension. For instance,

if only the last two centroids of the track are used to calculate the line around which the next search



cone will be formed, then if a pair of tracks claim exactly the same clusters over two shells, then they

are necessarily following the same trajectory.

9.3 Intelligent Segment Joining

Rarely is an entire track followed from beginning to end by the tracker. For numerous reasons (noise,

decays, TPC sector boundaries, intersecting tracks, etc.), one track may have been divided into numer-

ous smaller segments during the tracking process. For this reason, a segment joining algorithm is

needed to rejoin these segments into complete tracks. The expectation is that the segment joiner will

increase the overall efficiency of the algorithm as well as aid the diagnostic procedures.

Figure 9-1: Segmented Tracks. Tracks can be segmented by TPC sector boundaries,
decays, malfunctioning detector pads, etc.

By applying techniques borrowed from computer vision and object recognition research, an intel-

ligent segment joining algorithm can be developed. The basic strategy is to characterize constraints on

how segments can be joined. Examples of such constraints are the angles between two segments and

the segment slopes and curvatures. Next, a tree is constructed representing all of the possibilities for

joining the segments. Most of these possibilities can quickly be pruned out of the tree by applying the

specified constraints. The remaining ones are then extended to include the possibilities of joining with

I

/



the next segment. The (desired) final result is one sequence of segments which, joined together, form a

complete track. This stage of the overall tracking method embodies the more global view of the data.

See [2] for more background on this approach to segment-joining.

9.4 Parallel Execution on a Multiprocessor Machine

9.4.1 Parallelization of the Tracker

Once all the optimizations possible have been made, the tracker may still require a long time to process

each event. Fortunately, the tracking algorithm is well-suited to parallelization. Therefore, in the inter-

est of processing events more quickly, a new version of the tracker program could be developed which

would run in parallel on a multiprocessor machine. The following sections describe one approach to

parallelizing the tracker.

9.4.2 Cilk - A Multithreaded Parallel Language

A multi-threaded language called Cilk[6] is a C-like programming language which allows a program-

mer to easily convert a C program into a parallel program. This language was developed primarily at

the MIT Laboratory for Computer Science (LCS) under the guidance of Professor Charles Leiserson.

Cilk is still evolving and is currently at version 5.

The parallelism in Cilk is at the procedural level, which is the level of parallelism that can be most-

easily exploited by the tracker. The three most important functions in Cilk are: cilk, spawn, and sync.

cilk designates a function as a Cilk function, which means that it can be run in parallel. spawn is the

command which launches a new thread to run a procedure in parallel. And sync causes all threads run-

ning in parallel to synchronize at that point.

The Cilk language has the serial semantics of C. By removing the Cilk keywords, an ordinary C

program remains which can be run serially. Compare the following two implementations of a proce-

dure to calculate the Fibonacci of an argument n.



Cilk code:

(1) cilk int fib (int n)
(2) [
(3) if (n<2) return (n);

(4) else

(5) {
(6) int x,y;
(7) x = spawn fib (n-1);

(8) y = spawn fib (n-2);

(9) sync;

(10) return (x+y);

(11) 1
(12) }

The corresponding C code would then be:

(1) intfib (int n)
(2) [
(3) if (n<2) return (n);

(4) else

(5) [
(6) int x,y;

(7) x =fib (n-1);

(8) y = fib (n-2);

(9) return (x+y);
(10) I
(11) ]

9.4.3 Multithreaded Computation

In multithreaded computation, once a procedure is called, the parent procedure continues to exe-

cute until a synchronization is encountered. Thus, the computation unfolds dynamically as a DAG of

threads embedded in a tree of procedures. (See Figure 9-2 below.)



Figure 9-2: Multithreaded Computation DAG. In this diagram, procedures are represented
as rounded rectangles and threads are shown as round nodes. Downward edges are

spawns, horizontal edges represent sequential dependencies within a procedure, and
returns are shown as upward arrows.

Key ideas:
* A procedure is a sequence of atomic threads.
* A procedure can spawn other procedures.
* Procedures are organized into a tree hierarchy.
* Return values induce additional dependencies among the threads.

An example of an algorithm that lends itself to multithreaded execution is the general Divide and

Conquer algorithm (e.g. merge sort):



(1) DivideAndConquer ( A )
(2) {
(3) if( A is small ) return (f(A) );

(4) Al, A2 = divide (A);

(5)
(6) Si = spawn DivideAndConquer ( Al );

(7) S2 = spawn DivideAndConquer (A2 );

(8) sync;

(9)
(10) S = merge ( S, S2 );

(11) return ( S);
(12) 1

The first line handles the base case of the algorithm and is executed at a leaf of the dag and returns.

If the base case does not apply, then the problem is divided into two sub problems (preferably of equal

size). Next, a new thread is spawned to begin working recursively on the first subproblem. The differ-

ence between serial and multithreaded programs such as a Cilk program is that the parent continues

executing. As a result, another thread is spawned to work on the second subproblem in parallel with

the first. When the sync is reached, the parent waits for its spawned children to return. Once all of the

children at that level returned, the parent can continue execution.

9.4.4 Compiling a Cilk Program

Cilk code is compiled in a 2-step process. First, a source-to-source translator (ci lk2 c) transforms the

Cilk code into common C code. Once in C, a traditional C compiler (e.g. gcc) is used to compile the

program into object code.

Figure 9-3: Compiling Cilk. After being translated to C, a conventional compiler such as
gcc can be used to compile the code to form the executable.



9.5 Post-Mortem Processing

Another general approach to improving the overall performance of the tracker is to process the undes-

ignated pixels from the output of the tracker. In the output data files, these pixels can be identified

because their found track ID's have not been modified since they were initialized to zero. Routines that

process this data could focus on tracks that the proposed tracker is weak on identifying.



Chapter 10

Conclusions

The prototype of the tracking program described in this thesis has been completed and is fully opera-

tional. At the time of this writing, however, a suitable data set from the simulator had not yet been

obtained. As soon as this data is available, the tracking program can process it and the results can be

analyzed using the diagnostic routines described in Chapter 8.

The proposed tracker meets the running time requirements necessary to analyze a data set in a rea-

sonable amount of time. This tracker also features the characteristics needed to meet the efficiency

requirements for identifying the quark-gluon plasma. With time and experimentation, the tracker

parameters will be properly tuned to achieve optimal efficiency as well as adapt to various tracking

conditions. The improvements suggested in Chapter 9, when implemented, will make the tracker even

more effective. Even without these, however, the current prototype represents many improvements

over traditional tracking algorithms and will undoubtedly be the model for the tracker which first con-

firms the existence of the quark-gluon plasma.





Appendix A
Data Preparation

A.1 Slow Simulator Output Format to Track Input File Format Conver-
sion

generate-data-file.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <math.h>

#define FALSE 0
#deflne TRUE 1
#define MAX LINE LENGTH 200 10
#deflne XYZTORHO(x,y,z) sqrt((x*x) + (y*y) + (z*z))

extern void srpt2xyz (int sector, int row, int pad, int tdc,
double *x, double *y, double *z);

void read_pixels_write_output (FILE *tppixel, FILE *tpmcpix, FILE *output,
int num_pixels, int sector, int row, int pad);

20
main()
{

char line[MAX_LINE_LENGTH], *line_ptr;
FILE *tppad, *tppixel, *tpmcpix, *output;
char token charsf = " \t\n";
int sector, row, pad, sector row, num seq;
int prev sector, prevrow, prevpad;
int index, prevjindex, num_pixels;

tppad = fopen ("tppad.asc", "r"); 30
tppixel = fopen ("tppixel.asc", "r");
tpmcpix = fopen ("tpmcpix.asc", "r");
output = fopen ("/extra/mjduff/star-data. srpt", "w");

prev index = 1;

while (1)
{

if (! fgets (line, MAX_LINELENGTH, tppad)) /* reached EOF */ 40
{

read_pixels_write output (tppixel, tpmcpix, output, INT MAX,
prev_sector, prev row, prev_pad);

break;

line_ptr = strtok (line, token chars);
index = atoi (line_ptr);

line ptr = strtok (NULL, token chars); .- 50
num_seq = atoi (line_ptr); /* not using */

lineptr = strtok (NULL, token chars);
pad = atoi (line_ptr);

line_ptr = strtok (NULL, token chars);
sector row = atoi (line_ptr);

row = sectorrow % 100;



sector = (sector-row - row) / 100;

num_pixels = index - previndex;

read_pixels_write_output (tppixel, tpmcpix, output, num pixels,
prev sector, prev_row, prevpad);

prev_sector = sector;
prevrow = row; 70
prevypad = pad;
previndex = index;

I

fclose (tppad);
fclose (tppixel);
fclose (tpmcpix);
fclose (output);

80

void readpixels writeoutput (FILE *tppixel, FILE *tpmcpix, FILE *output,
int num pixels, int sector, int row, int pad)

{
register int i;
char line[MAX LINE LENGTH], *line_ptr;
char token_chars 0 = " \t\n"; 90
long Idatum, nseqpix;
int tdc, adc, tid;
double x, y, z, rho;

long nseq_factor = 0x100000;
long tdc factor = 0x400;

for (i = 0; i < num pixels; i++)
{ 100

if (! fgets (line, MAX_LINELENGTH, tppixel))
{

printf ("possible problem!\n");
break;

}
line_ptr = strtok (line, token chars);
Idatum = strtol (line_ptr, (char **) NULL, 10);

nseqpix = Idatum / nseqfactor; 110
tdc = (int) (idatum - (nseq_factor * nseqpix)) / tdc factor;
adc = (int) Idatum - (nseq_factor * nseqpix) - (tdcjfactor * tdc);

if (! fgets (line, MAX_LINE_LENGTH, tpmcpix))
{

printf ("possible problem!\n");
break;

120
line_ptr = strtok (line, token_chars);
tid = atoi (line ptr);

srpt2xyz (sector, row, pad, tdc, &x, &y, &z);

/ * calculate rho for the pizel: */
rho = XYZ TO_RHO (x, y, z);

130
fprintf (output, "%lf\t%d\td\t%d\td\td\t%d\n",

rho, sector, row, pad, tdc, adc, tid);

I



A.2 SRPT Format to Global Cartesian Coordinates Conversion

coord.c

#include <stdio.h>
#include <math.h>

#include "global.h"

/***************************************************************************

* coord.c

* Padrow numbering: The padrows are numbered 1 to 45 starting from the 10
* inside. Padrow n indicates the center of the nth
* padrow.

* Pad numbering: The pads in each padrow are numbered from left to right
* looking from outside the TPC starting with pad 1. Pad n
* is the center of the nth pad.

****************************************** ********** *******************/

#define NUM_SECTORS 12 20
#define TPC_HALF_LENGTH 210.0 /* centimeters */

#define BASE_RADIUS1 60.0
#define BASE_RADIUS2 98.8 /* 60.0 + (7 * 4.8) + 5.2 */
#define BASE RADIUS3 127.195
#define RADIAL_SPACING1 4.8
#define RADIAL_SPACING2 5.2
#define RADIAL_SPACING3 2.0
#define CROSS_SPACING1 0.335
#define CROSS_SPACING2 0.335 30
#define CROSS_SPACING3 0.67

int UNIT_VECTORS_INITIALIZED = FALSE;
double UNITLENGTH = TPC_HALF_LENGTH / 512;

/ * unit vectors 30 degrees apart */
static double x_unit vector[NUM_SECTORS]; /* 12 sectors */
static double y_unit_vector[NUM_SECTORS]; /* 12 sectors */

40
static int numpads_perrow[ = {

88, 96, 104, 112, 118, 126, 134, 142, 150, 156, 166, 174, 184, 98, 100,
102, 104, 106, 106, 108, 110, 112, 112, 114, 116, 118, 120, 122, 122, 124,
126, 128, 128, 130, 132, 134, 136, 136, 138, 140, 142, 144, 144, 144, 144

void initialize_unit_vectors (void);

50

/***************************************************************************

* srpt2zyz

* Converts position given in terms of (sector, row, pad, tdc) into local
* coordinates (x, y, z).

* All dimensions are in cm.
*60

***********************************************************6

void srpt2xyz (int sector, int row, int pad, int tdc,
double *x, double *y, double *z)

double ux, uy, nx, ny; /* ux = unit vector, nx = normalvector */
double rc, xc;
int sector index, negz_axis;

if (UNITVECTORS_INITIALIZED == FALSE) 70
initialize_unit_vectors();



/* Need better algorithm for calculating z */
if (sector <= 12) /*z > 0 */*z = (511 - tdc) * UNITLENGTH;
else /*z< 0 */

*z = (tdc - 511) * UNIT_LENGTH;

80
neg_z_axis = FALSE;
if (sector > 12)
{
sector -= 12;
neg_z_axis = TRUE;

}
sector index = sector - 1;

ux = x_unit vector[sector_index]; 90
uy = y unit vector[sector index];
nx = x unitvector[(sector index + 3) % NUM_SECTORS];
ny = y_unit vector[(sector index + 3) % NUM SECTORS];

if (row <= 8) /* rows 1-8 */
{

rc = BASE RADIUS1 + (row - 1) * RADIAL SPACING1;
xc = ((pad - numpadsper_row[row - 1] / 2) * CROSS_SPACING1) -

(CROSS_SPACING1 / 2); 100
}

else if (row <= 13) /* rows 9-13 *1
{

rc = BASE RADIUS2 + (row - 9) * RADIAL_SPACING2;
xc = ((pad - num_pads_perrow[row - 1] / 2) * CROSSSPACING2) -

(CROSS_SPACING2 / 2);
}

else /* rows 14-45 */ 110
{

rc = BASE_RADIUS3 + (row - 14) * RADIAL SPACING3;
xc = ((pad - num_pads_perrow[row - 1] / 2) * CROSS SPACING3) -

(CROSS SPACING3 / 2);

/* vector = rc * [u,uy] + xc * [nx, ny] */
if (negz _axis)

*x = - ((rc * ux) + (xc * nx));
else 120*x = (rc * ux) + (xc * nx);
*y = (rc * uy) + (xc * ny);

/***************************************************************************
* initialize unit vectors 130

********************************************** ************************/

void initialize unitvectors (void)
{
register int i;
double theta; /* radians counter- clockwise from positive z axis */

UNITVECTORS INITIALIZED = TRUE; 140

for (i = 0; i < NUM SECTORS; i++)
{

/ * sectors numbered as clock (0 degrees is in sector 3) */
theta = (2 - i) * (2 * MPI) / NUM_SECTORS;
x_unit vector[i] = cos (theta);



y_unitvector[i] = sin (theta);



A.3 Sorting Tracker Input File by p

Once main data file has been generated, split it into numerous smaller files:

split -1 100000 infilename
rm infilename

After splitting into smaller files, the original file (infilename) is no longer needed and can be removed.

Next, use a simple csh shell script to sort each of the smaller files individually. sort's "-n" flag causes
it to sort numerically as opposed to alphabetically. The "-r" flag means sort in descending order. And
the "+0 -1" flags indicate that the sort should be carried out on the first column of the file only.

foreach file (x*)
echo "sorting $file..."
sort -nr +0 -1 -o $file $file

end

Once each small file is sorted, merge the presorted smaller files:

sort -mnr +0 -1 -o out_filename x*
rm x*



Appendix B
Tracker Source Code

B.1 Global Parameters and Data Structures

global.h

#define TRUE 1
#define FALSE 0
#define MAX_LINE_LENGTH 200

#define DEFAULT_NUM_CLUSTER_FINDER SHELLS 4
#deflne DEFAULT_NUM PROTO TRACK_FINDER_SHELLS 3
#define DEFAULT NUM_LINEFIT CENTROIDS 5
#deflne DEFAULT NOCENTROIDSHELL LIMIT 3
#deflne DEFAULTSHELL THICKNESS 3.0 /* Centimeters */
#deflne DEFAULTSEARCH_CONE_BASE_RADIUS 5.0 10
#define DEFAULT_SEARCH CONE_INITIAL ANGLE 0.785 /* 0.785 rad -= 45 deg */
#define DEFAULTSEARCH CONEANGLE_TAPER_COEF 0.2
#deflne DEFAULTCLUSTERPAINTING THRESHOLD 0.50 /* 50% */

#define DEFAULTPTF_SEARCH CONE_BASE RADIUS 20.0
#define DEFAULT_PTF SEARCH CONEANGLE 0.785

#deflne DEFAULTCLUSTER_FINDER_SEARCH CUBE_EDGE LENGTH 8.0
20

#deflne DEFAULT MIN NUM_PIXELS 5
#deflne DEFAULT_MAX_INTERPOINT DISTANCE 8.0
#define DEFAULT COLLINEARITY_THRESHOLD 0.35 /* 0.35 rad -= 20 deg */

#deflne OCTANT1 1
#define OCTANT2 2
#deflne OCTANT3 3
#define OCTANT4 4
#deflne OCTANT5 5
#deflne OCTANT6 6 30
#deflne OCTANT7 7
#deflne OCTANT8 8

/ * Useful macros: */
#define SQR(x) (x*x)
#deflne MAG(x,y,z) sqrt((x*x) + (y*y) + (z*z))
#define XYZTORHO(x,y,z) sqrt((x*x) + (y*y) + (z*z))
#define DOTPRODUCT(xl,yl,zl,x2,y2,z2) ((xl*x2) + (yl*y2 ) + (zl*z2))
#deflne DISTANCE(xl,yl,zl, x2,y2,z2) sqrt(((x2-x1)*(x2-x1)) + ((y2 -yl)*(y 2-yl)) + ((z2-zl)*(z2-zl))) 40

typedef struct PIXEL PIXEL;
typedef struct PIXEL LIST PIXELLIST;
typedef struct CLUSTER CLUSTER;
typedef struct CLUSTER LIST CLUSTER LIST;
typedef struct CENTROID CENTROID;
typedef struct CENTROID LIST CENTROID LIST; 50
typedef struct TRACK TRACK;
typedef struct TRACK LIST TRACK_LIST;
typedef struct SHELL SHELL;
typedef struct SHELL QUEUE SHELL_QUEUE;
typedef struct OCTANT TREE NODE OCTANT TREE NODE;
typedef struct CLUSTER_TREE NODE CLUSTER TREE NODE;

struct PIXEL {
int true tid, found_tid; 60
double rho;
double x, y, z;



short int sector, row, pad, tdc;
short int adc;
CLUSTER *cluster;

};

struct PIXEL LIST {
int numipixels; 70
PIXEL **pixel_array;
};

struct CLUSTER {
short int claimed_bytrack;
int track_adcweight;
int total adc_weight;
CENTROID *centroid;
PIXEL LIST *pixel list; 80
TRACK LIST *claiming_tracks;
};

struct CLUSTERLIST {
int numclusters;
CLUSTER **clusterarray;

90
struct CENTROID
double rho;
double x, y, z;
};

struct CENTROID LIST {
int num centroids;
CENTROID **centroid_array;

100

/ * A track consists of multiple centroids */
struct TRACK {

int found_tid;
int num shells wo newcentroid;
CENTROID LIST *centroid list;
CLUSTER LIST *claimed_clusters;
};

110

struct TRACK LIST {
int num tracks;
TRACK **track_array;
};

struct SHELL {
double rho min, rho max;
PIXEL LIST *pixel list; 120
CLUSTER LIST *cluster list;
SHELL *next_shell;
SHELL *next_shell in_queue;

/* A shell queue functions as a FIFO queue - with push and pop operations */

struct SHELL_QUEUE {
int num shells; 130
SHELL *first shell;
SHELL *last_shell;
};

/*
* octant tree invariant:
* If pixel != NULL, then the node is an interior node.
* If pizel == NULL, then the node is a leaf of the tree and represents



* a pizel.
*/

struct OCTANT TREE NODE {
OCTANTTREENODE *octl, *oct2, *oct3, *oct4, *oct5, *oct6, *oct7, *oct8;
double xmin, x_max, y min, y_max, zmin, zmax;
PIXEL *pixel;

struct CLUSTER TREE NODE { 150
CLUSTERTREENODE *octl, *oct2, *oct3, *oct4, *oct5, *oct6, *oct7, *oct8;
double x min, x_max, y_min, y_max, zmin, zmax;
CLUSTER *cluster;
};



B.2 Main Tracking Routine

tracker.c

#include <stdio.h>

#include "global.h"
#include "cluster.h"
#include "pixel.h"
#include "shell.h"
#include "track.h"

extern void cluster finder (SHELLQUEUE *shellqueue, int eof); 10

extern void track extender (SHELL *shell,
TRACK-LIST* active track list,
int num linefit centroids,
int no_centroid shell_limit,
double search cone_baseradius,
double search cone initialangle,
double searchcone_angle_taper_coef,
double clusterpainting threshold);

20
void proto_track finder (SHELL_QUEUE *shellqueue,

TRACK_LIST *active_track_list);

void main()
{

FILE *input file_ptr, *pixel_datafile_ptr, *track_data fileptr;
double rho_min, rhomax;
char filename[100], answer[100]; 30
int totalpixels read, shell_count, eof;

double rhostep = DEFAULT SHELLTHICKNESS;
int num linefitcentroids = DEFAULT NUMLINEFITCENTROIDS;
int no centroid shell limit = DEFAULT NO CENTROID SHELL LIMIT;
int num cluster finder shells = DEFAULT_NUM_CLUSTER_FINDER_SHELLS;
int numproto_track_finder_shells = DEFAULTNUMPROTO_TRACK_FINDERSHELLS;
double search cone base radius = DEFAULT SEARCH CONEBASERADIUS;
double search cone-initial_angle = DEFAULT SEARCHCONEINITIAL ANGLE;
double search_cone_angle_tapercoef = DEFAULTSEARCH CONEANGLE TAPER COEF; 40
double clusterpaintingthreshold = DEFAULT_CLUSTERPAINTING_THRESHOLD;

PIXEL_LIST *shell_pixels;

TRACK LIST *active track list;

SHELL *new shell, *current shell, *oldshell, *next shell;
SHELL_QUEUE *cluster_finder_shell queue, *proto_track_findershell_ queue;

50

printf("\n");
printf("Sorted data filename: ");
scanf("'s", filename);

if (! (input_file ptr = fopen (filename, "r")))

printf("Couldn't open %s for reading - exiting\n", filename);
exit (0); 60

/*
printf(" Output data base filename: ");
scanf(" %s", filename);
strpy (filename,
strcpy (filename, "output.data.pixel"); /* Temporary */ 70



if (! (pixel data_fileptr = fopen (filename, "w")))
{

printf("Couldn't open %s for writing - exiting\n", filename);
exit (0);

I

strcpy (filename, "outputdata.track"); /* Temporary */
80

if (! (track data_fileptr = fopen (filename, "w")))
{

printf("Couldn't open Xs for writing - exiting\n", filename);
exit (0);

}

printf("\n");
printf("For the following prompts, press 'Return' for the default value:"); 90
printf("\n\n");

gets (answer); /* purge any character(s) from the stdin buffer */

/*
printf("Spherical shell thickness (default = %lf): ",

DEFA ULT SHELL_ THICKNESS);
gets (answer); 100
if (strlen (answer) > 0)

rho_step = atof (answer);

/*

printf("Number of centroids to use for track extending (default = %d): ",
DEFA ULT_NUM_LINEFIT CENTROIDS);

gets (answer);
if (strlen (answer) > 0) 110

num_linefit_centroids = atoi (answer);

/*

printf("No centroid shell limit (default = %d): ",
DEFA ULT NO CENTROID SHELL LIMIT);

gets (answer);
if (strlen (answer) > 0)

nocentroidshell limit = atoi (answer); 120

/*

printf("Number of cluster-finder shells (default = %lf): ",
DEFA ULT_ NUM_ CL US TER_FINDER_SHELLS);

gets (answer);
if (strlen (answer) > 0)

num_clusterfindershells = atoi (answer);
*/ 130

/*
printf("Number of proto-track-finder shells (default = %lf): ",

DEFA ULT_NUM_PROTO_TRACK_FINDERSHELLS);
gets (answer);
if (strlen (answer) > 0)

numprototrackfindershells = atoi (answer);*/
140

/*
printf("Search cone base radius (default = %lf): ",

DEFA ULT_SEARCH_ CONE_ BASE_RADIUS);
gets (answer);
if (strlen (answer) > 0)

search_cone_baseradius = atof (answer);



150

printf("Search cone initial angle (default = %lf degrees): ",
DEFA ULT SEARCH CONE INITIAL_ANGLE);

gets (answer);
if (strien (answer) > 0)

search_ cone_initial angle = atof (answer);
*/

/* 160
printf("Search cone angle taper coefficient (default = %lf): ",

DEFA ULT SEARCH CONE_ANGLE TAPER COEF);
gets (answer);
if (strien (answer) > 0)

search_cone_ angletaper_ coef = atof (answer);

/*

printf(" Threshold for cluster painting: (default = %lf): ", 170
DEFA ULT_CL USTER_PA INTING_ THRESHOLD);

gets (answer);
if (strlen (answer) > 0)

cluster.yainting threshold = atof (answer);
*/

/******************* *********************/
180

/* Create needed lists and queues: */
active_track list = createtrack_list();

cluster_finder_shellqueue = create_shell_queue();
prototrack_findershell_queue = create_shell_queue();

/ * Initialize rho_maz to rho of the first data file entry: */
readdata (input fileptr, 0.0, &rhomax); 190
rho-min = rho max - rho step;

printf ("rhomax = %lf\n", rhomax); /* Temporary */
total pixels read = 0;
shell count = 1;
eof = FALSE;

/ * Each iteration of the loop below corresponds to one spherical shell:
(rho_min .. rhomax) This loop continues until all data has been 200
processed. */

while (1) {
printf("shell %d (71f .. Wlf)\n", shell_count, rhomin, rho_max);

/ * Read in next shell of data */
if (shell_pixels = read-data (input_filejptr, rho_min, NULL))
{

totalpixelsread += shell_pixels->numpixels;
printf ("num pixels read: %d (%d total)\n", 210

shell_pixels->num_pixels, totalpixels read);

newshell = create_shell (rhomin, rho_max, shell pixels);

if (cluster_finder shell_queue->last_shell != NULL)
cluster findershell_queue->lastshell->nextshell = newshell;

push_onto_shell queue (cluster finder_shell_queue, newshell);
}

else 220
eof = TRUE; /* reached end of data file */

if (cluster finder_ shell queue->num-shells > num_clusterfinder shells II



eof == TRUE)

currentshell = pop_off_shell_queue (cluster_finder shell queue);

if (current_shell == NULL)
break; / * there are no further shells to process */ 230

cluster unclusteredpixels (current_shell);
}

else
current_shell = NULL;

if (cluster_finder_shell queue->num shells > 0)
/ * Find pixel clusters and calculate their centroids: */
clusterfinder (clusterfinder_shell_queue, eof); 240

if (currentshell == NULL) /* no shells available to process yet */
{

rho min -= rho_step;
rho max -= rhostep;
shell count++;
printf ("\n");
continue;

} 250

/ * track extender operates on the first shell after cluster finder
is finished. */

/* Run track extender */
track extender (current-shell, active track list,

num linefit centroids, no centroid shell limit,
search cone base-radius, search cone initialangle,
search cone angletaper_coef, cluster.paintingthreshold); 260

active track list =
remove inactive_tracks (trackdatafilejptr, activetrack_list,

no_centroid_shelllimit);

/* Add new shell to front of proto-track-finder's shell queue: */
push_onto_shellqueue (proto_track_findershell_ queue, current_shell);

if (prototrack finder shell_queue->num shells > 270
num_proto track_finder_shells)

{
old-shell = pop_off_shell_queue (proto_track finder shell_queue);

/ * Write shell's pixel data to pixel output file: */
printf ("writing pixel data to output file...\n");
writepixel data_to file (pixel_data fileptr, old shell->pixellist);

printf ("freeing shell...\n"); /* Temporary */
free shell (old shell); 280

}

/* Run proto-track finder on the remaining pizels and/or clusters.
Attempts to create new tracks. Adds new tracks to active track list */

proto_track finder (proto_track_finder_shell_queue, activetracklist);

rho_min -= rhostep; 290
rho max -= rho_step;
shell count++;
printf ("\n");

/ * Write remaining shells to pixel output file: */
currentshell = proto_track_finder_shellqueue->firstshell;

while (currentshell != NULL) 300
{



/ * Write current shell's pizel data to pixel output file: */
printf ("writing pixel data to output file...\n");
write_pixel datato_file (pixel_data file_ptr,

current_shell->pixellist);

nextshell = current shell->next_shellijn_queue;
freeshell (current shell);
current shell = next shell;

310

/* Write track data to track output file: */
printf ("writing track data to output file...\n");
write_trackdata to_file (track_data_file ptr, active_track list);

fclose (pixel data fileptr);
fclose (trackdata file_ptr);
fclose (input_file ptr);

320
free_track list (active_tracklist);

free shell_queue (cluster finder shell queue);
freeshellqueue (proto track_finder_shell queue);I



B.3 Cluster Finder Module

clusterfinder.c

#include <stdio.h>
#include <math.h>

#include "global.h"
#include "cluster.h"
#include "pixel.h"
#include "octant-tree.h"

int MinTdc, MaxTdc, MinPad, MaxPad; 10

static struct { int dpad; int dtdc; } glommnextf = {
{-1, 0}, { 0, 1}, { 1, 0},
{ 0, 1}, { 1, 0}, { 0,-1},
{ 1, 0}, { 0,-1}, {-1, 0},
{ 0,-I}, {-1, 0}, { 0, 1}

static struct { int dpad; int dtdc; } neighborsf = { 20
{-1, 0}, { 1, 0},
{ 0,-1}, { 0, 11},
{-1,-1}, { 1, 1},

};

CLUSTER* findcluster (PIXEL_LIST *padrowpixels, PIXEL *pixel);

PIXEL LIST* glomm (PIXEL ***pixel_matrix, CLUSTER *cluster, int pad, int tdc); 30

void glomm internal recurse (PIXEL ***pixel matrix, CLUSTER *cluster,
PIXEL LIST *pixel list,
int pad, int tdc, int last adc, int direction);

/***************************************************************************

* cluster.finder
* 40
* Note that it is perfectly acceptable for a cluster to consist of only a
* single pixel.

********************************************************************

void cluster finder (SHELL_QUEUE *shell_queue, int eof)
{

register int i;
double halfedge = DEFAULT CLUSTER FINDER_SEARCH_CUBE EDGELENGTH / 2;
double sqrt_3_timeshalf_edge = sqrt(3) * half_edge; 50
SHELL *innermostshell, *current shell;
PIXEL *pixel;
PIXEL **pixelarray;
PIXEL_LIST *pixel list, *foundpixels, *filteredpixels;
PIXEL_LIST *master_pixel_list;
CLUSTER *new cluster;
OCTANT TREE NODE *octant tree;
int num new clusters, total_num_pixels;

60
printf ("entering clusterfinder...\n");

/* note that last shell is the inner-most shell in the TPC: */
innermost shell = shell_queue->last shell;

if (innermostshell->cluster list == NULL)
innermostshell->cluster list = create cluster list();

/* Create master list of unclustered pixels for all of the shells: */ 70
master_pixel_list = createpixel_list();



total_num_pixels = 0;
current-shell = shell_queue->first shell;

while (current_shell != NULL)
{

pixel_list = current_shell->pixellist;
pixel_array = pixellist->pixel_array;

80
for (i = 0; i < pixel_list->num yixels; i++)

if (pixel_array[i]->cluster == NULL)
add_to pixellist (master pixel list, pixelarray[i]);

total_numpixels += pixellist->num_pixels;
current-shell = current_shell->nextshell in_queue;

}

/* Temporary: */ 90
printf("total number of pixels in cluster-finder shell queue: %d\n",

total numpixels);

printf ("total number of unclustered pixels before cluster-finder: %d\n",
master_pixellist->numpixels);

if (master pixel_list->num_pixels < DEFAULT MIN_NUMPIXELS)
{

free_pixel list (master_pixel_list);
return; 100
}

printf ("building cluster-finder octant tree (%d pixels)...\n",
master_pixellist->num_pixels);

octant_tree = buildoctant_tree (master pixellist);

printf ("done\n");

110
/* sort entire pixel list by ADC values (decreasing order): */
sort_pixel_list by_adc (master pixelJist);

printf ("searching for new clusters...\n");

num_new_clusters = 0;

/ * Go through each pixel and extract nearby pixels: */
for (i = 0; i < master_pixellist->numpixels; i++) 120

{
pixel = master_pixel list->pixel_array[i];

if (pixel->cluster != NULL)
continue; /* pixel has recently become clustered */

if (! eof && /* don't apply this constraint after data file EOF */
(pixel->rho - sqrt 3_times half edge) < innermost_shell->rho_min)

continue; / * Search cube could be partially inside the innermost
shell of the shell queue, so wait until next shell 130
is added. */

found_pixels = create_pixel_list();

extract pixels (octant tree, foundpixels,
pixel->x - half_edge, pixel->x + half edge,
pixel->y - half edge, pixel->y + half_edge,
pixel->z - half edge, pixel->z + half edge);

filtered_pixels = same_rowand_sector_filter (foundpixels, pixel); 140
free_pixel_list (found pixels);

/* run conventional cluster-finder algorithm: */
newcluster = findcluster (filtered pixels, pixel);
free_pixel list (filteredpixels);



if (new_cluster != NULL)
{

placecluster in_shell_queue (shell_queue, new_cluster); 150
num newclusters++;

}

free_pixel_list (masterpixel_list);

printf ("found %d new clusters\n", num_newclusters);

freeoctant tree (octant tree); 160

printf ("leaving clusterfinder... \n");
}

/***************************************************************************

* find_cluster
170

* Roughly functionally equivalent to MAL's mountainfinder

**************************************************************************

CLUSTER* findcluster (PIXEL LIST *pixel_list, PIXEL *basepixel)
{

register int i;
int numpads, num_tdc;
int dpad, dtdc, passtest;
PIXEL *currentpixel, *matrix_pixel; 180
PIXEL ***pixel_matrix;
PIXEL_LIST *cluster_pixels;
CLUSTER *new cluster = NULL;

/* Find the maximum V minimum for the tdc and pad #'s: */
MaxTdc = 0; MinTdc = 512; MaxPad = 0; MinPad = 144;

for (i = 0; i < pixel list->num_pixels; i++)
{ 190

current_pixel = pixel list->pixel_array[i];

MaxTdc = (currentjpixel->tdc > MaxTdc) ? current_pixel->tdc: MaxTdc;
MinTdc = (current pixel->tdc < MinTdc) ? current_pixel->tdc: MinTdc;
MaxPad = (currentpixel->pad > MaxPad) ? currentpixel->pad: MaxPad;
MinPad = (currentpixel->pad < MinPad) ? currentpixel->pad: MinPad;

num_pads = (MaxPad - MinPad) + 1; 200
num_tdc = (MaxTdc - MinTdc) + 1;

/ * Allocate memory for the pixel matrix: */
pixel matrix = (PIXEL***) calloc (num_pads, sizeof (PIXEL**));

for (i = 0; i < num.pads; i++)
pixel_matrix[i] = (PIXEL**) calloc (num_tdc, sizeof (PIXEL*));

/* Assign pixels from the given pixel list to the pixel matrix: */ 210
for (i = 0; i < pixel_list->num_pixels; i++)
{

currentpixel = pixel_list->pixel_array[i];

pixel matrix[current_pixel->pad - MinPad][currentpixel->tdc - MinTdc] =
current pixel;

}

220
/ * check neighboring pizels for higher ADC values: */
pass_test = TRUE;

for (i = 0; i < 8; i++)



dpad = neighbors[i].dpad;
dtdc = neighbors[i].dtdc;

if (base pixel->pad + dpad < MinPad 11 base_pixel->pad + dpad > MaxPad |j
base_pixel->tdc + dtdc < MinTdc 11 basepixel->tdc + dtdc > MaxTdc) 230

continue;

matrixpixel =
pixel_matrix[base_pixel- >pad - MinPad + dpad][base_pixel->tdc - MinTdc + dtdc];

if (matrix_pixel != NULL &&
matrix_pixel->cluster == NULL &&
matrixpixel->adc > base_pixel->adc)

{
pass_test = FALSE; 240
break;

}

if (passtest == FALSE)
return NULL;

new_cluster = create_cluster (NULL); /* create empty cluster */ 250

cluster_pixels = glomm (pixel_matrix, new cluster,
basepixel->pad, basepixel->tdc);

free cluster (newcluster);

/* Temporary: */
/* unparse_adc_matrix (pixel matrix, num pads, num_tdc, pizel, cluster pixels); */

260

new_cluster = create_cluster (cluster_pixels);

/ * free pixel matrix: */
for (i = 0; i < numpads; i++)

free (pixel_matrix[i]);
free (pixel_matrix);

270
return new_cluster;

* glomm
*

* 280
****************************** ******************* ********************

PIXEL_LIST* glomm (PIXEL ***pixel_matrix, CLUSTER *cluster, int pad, int tdc)
I

register int direction;
int pad_index = pad - MinPad;
int tdcindex = tdc - MinTdc;
PIXEL_LIST *pixel_list;

pixel_list = create_pixel list(); 290

/ * not already assigned */
if (pixel_matrix[padindex] [tdc_index]- >cluster == NULL)

add_to_pixel list (pixel_list, pixel matrix[pad_index][tdcjindex]);
pixel matrix[padindex][tdcindex]->cluster = cluster;

/ * Explore the neighboring pixels: */
for (direction = 0; direction < 4; direction++) 300

glomminternal recurse (pixel_matrix, cluster, pixel_list,

100

__



pad + glommnext[3 * direction + 1].dpad,
tdc + glommnext[3 * direction + 1].dtdc,
pixel matrix[pad_index][tdc index]->adc,
direction);

}

return pixel list;
310

* glomm_internal_recurse

*********************************** ****************** * ******************1
320

void glomm_internalyrecurse (PIXEL ***pixel matrix, CLUSTER *cluster,
PIXEL_LIST *pixel list,
int pad, int tdc, int last adc, int direction)

{
register int i;
int pad_index = pad - MinPad;
int tdcindex = tdc - MinTdc;

if (pad < MinPad 1I pad > MaxPad 1I tdc < MinTdc 11 tdc > MaxTdc) 330
return; / * If run into pizel matrix boundary -- > complete

(search area assumed to be large enough to
encapsulate the cluster completely) */

if (pixelmatrix[pad index][tdc_index] != NULL && /* pixel exists */
pixelmatrix[pad-index][tdcindex]->cluster == NULL && /* not assigned */
pixel_matrix[padindex][tdc_index]->adc <= last_adc) /* descending adc */

addtopixel list (pixel list, pixelmatrix[pad index][tdc index]); 340
pixel_matrix[pad index][tdcindex]->cluster = cluster;

/ * Explore the neighboring pixels recursively: */
for (i = 0; i < 4; i++)

glomminternal_recurse (pixelmatrix, cluster, pixel_list,
pad + glomm_next[3 * direction + i].dpad,
tdc + glomm_next[3 * direction + i].dtdc,
pixel_matrix[pad index][tdc index]->adc,
direction);

350

return;
1
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B.4 Proto-Track Finder Module

proto_track-finder.c

#include <stdio.h>
#include <math.h>

#include "global.h"
#include "cluster.h"
#include "clustertree.h"
#include "track.h"
#include "centroid.h"

10
double distance (CENTROID *centroidl, CENTROID *centroid2);

double triplet angle (CENTROID *centroidl, CENTROID *centroid2,
CENTROID *centroid3);

* proto_trackfinder 20

**************************************************************************/

void prototrack_finder (SHELLQUEUE *shell queue, TRACKLIST *track list)
{
register int i;
int num new_tracks;
SHELL *current shell;
CLUSTER TREE NODE *cluster_tree; 30
CLUSTER *current cluster, **cluster_array;
CLUSTER *base_cluster, *cluster2, *cluster3;
CLUSTERLIST *eligibleclusters, *cluster list;
CLUSTERLIST *found clusters;
CENTROID *base_centroid, *centroid2, *centroid3;
CENTROID *new track centroid;
TRACK *new track;
double xO, yO, z0, vx, vy, vz;
double px0, pyO, pz0;
double x_min, xmax, y min, y_max, z_min, z_max; 40
int num_clusters, clusterindex2, cluster index3;

double queuerho min = shellqueue->last_shell->rho_min;
double queue rhomax = shell_queue->first shell->rho_max;

printf ("entering prototrack.finder (%lf .. %lf) ... \n",
queue_rhomin, queue_rho max);

50
/* Create a list of all clusters from the shells in the queue which

have not yet been claimed by a track: */
eligible_clusters = createcluster_list();

current_shell = shell queue->first shell;

while (currentshell != NULL)
{

cluster list = current shell->cluster list;
60

/* Clear out the clusters already claimed by tracks. This is
done so the proto-track-finder doesn't use these clusters for
creating new tracks. */

for (i = 0; i < cluster_list->num_clusters; i++)
{

current_cluster = clusterlist->cluster_array[i];

if (current_cluster->claimedbytrack == FALSE &&
current_cluster->pixel list->num_pixels >= DEFAULT_MINNUMPIXELS)

add_tocluster_list (eligible_clusters, current cluster); 70
1
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current-shell = currentshell->next_shell in_queue;

printf ("%d eligible clusters for new tracks\n",
eligibleclusters->num_clusters);

80

cluster-tree = build_cluster_tree (eligibleclusters);

num new tracks = 0;

for (i = 0; i < eligible clusters->num clusters; i++)
{

base_cluster = eligible_clusters->cluster array[i];
base centroid = base_cluster->centroid;

90
xO = base_centroid->x;
yO = base_centroid->y;
zO = base_centroid->z;

/ * Vector from cluster centroid to origin: */
vx = -xO;
vy = -yO;
vz = -z0;

if (! calculate_boundingbox (queue rho min, queue_rhojmax, 100
x0O, yO, z0, vx, vy, vz,
DEFAULTPTF_SEARCH CONE BASE RADIUS,
DEFAULTPTF SEARCH CONE ANGLE,
&xmin, &x max, &y_min,
&y_max, &z min, &z max,
&px0, &pyO, &pz0))

printf ("this shouldn't happen! !\n");
printf ("queue.rho: %lf .. Xlf\n", queue_rhomin, queue rhomax);
printf ("(x0, yO , z0) ( , f, f)\n", yO, zO) = (%lf, %lf, %lf)\n", xO, y, z0O); 110
printf ("Bounding box: Xlf-Xlf, Xlf- %lf, %lf-%lf\n",

xmin, x_max, y_min, y_max, zmin, z.max);
printf ("(pxO, pyO, pzO) = (%lf, %lf, %lf)\n", px0, pyO, pzO);
continue;

/* Find pixels in bounding box: */
/* This narrows the search significantly over checking each cluster

in the entire shell queue. */ 120
found_clusters = create_cluster_list();

extract clusters (clustertree, found clusters,
xmin, x_max, y min, y_max, z min, zamax);

/* Temporary: */
/*
printf ("Yod clusters extracted in bounding box\n",

found clusters-> num clusters); 130
unparsecluster_list (found clusters);
*/

num clusters = foundclusters->num clusters;
if (num clusters < 3)

{
freecluster list (found_clusters);
continue;

}
140

/ * Sort cluster list based on rho (decreasing order): */
sort_cluster_list byrho (found_clusters);

/ * printf ("initializing get_nextcluster pair...\n"); */
cluster index2 = 0;
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/ * set index to the cluster after the base cluster: */
cluster array = found clusters->cluster array; 150
while (cluster array[cluster index2++] != basecluster);
cluster index3 = cluster index2;

/ * Test all possible triplets of clusters: */
while (1)

cluster index3++;

if (cluster index3 >= num_clusters) 160
{

cluster index2++;
clusterindex3 = clusterindex2 + 1;

I
if (cluster index2 >= numclusters - 1)

break;

cluster2 = cluster_array[clusterindex2];
cluster3 = cluster_array[clusterindex3]; 170

centroid2 = cluster2->centroid;
centroid3 = cluster3->centroid;

/ * perform various tests on the triplet: */
if (distance (base centroid, centroid2) >

DEFAULT MAX INTERPOINT DISTANCE)
continue;

if (distance (centroid2, centroid3) > 180
DEFAULTMAXINTERPOINT DISTANCE)

continue;

if (triplet_angle (base_centroid, centroid2, centroid3) >
DEFAULT COLLINEARITY_THRESHOLD)

continue;

/*
printf ("new proto track found.\n");
unparse.cluster (clusterl); 190
unparsecluster (cluster2);
unparsecluster (cluster3);
*/

/ * If the triplet passes all of the tests, then create a new track
using the 3 centroids: */

newtrack = create track ();
new track->claimed clusters = create_clusterlist();

200
/* Now add the centroids to the new track: */
new_track_centroid = create centroid (base centroid->x,

basecentroid->y,
base_centroid->z);

add centroidto track (new_track, new_trackcentroid);
add to cluster list (new track->claimed_clusters, basecluster);
base_ cluster->claimed_by track = TRUE;

new track centroid =
create_centroid (centroid2->x, centroid2->y, centroid2->z); 210

add centroid totrack (new_track, new_track_centroid);
add to cluster list (new_track->claimed_clusters, cluster2);
cluster2->claimed_bytrack = TRUE;

new track centroid =
create centroid (centroid3->x, centroid3->y, centroid3->z);

addcentroid to_track (new_track, new track_centroid);
addto cluster list (new_track->claimed_clusters, cluster3);
cluster3->claimed_by_track = TRUE;

220
/* Add the new track to the track list and assign found tid: */
addnew_foundtrack (track list, newtrack);

label track_pixels (newtrack);
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free clusterlist (new track->claimedclusters);
newtrack->claimed clusters = NULL;

num new tracks++;
} 230

freeclusterlist (found_clusters); /* No longer needed */

free_cluster list (eligible clusters);

printf ("found %d new tracks\n", numnew_tracks);

free cluster tree (cluster tree); 240

printf ("leaving prototrack-.finder... \n");

/***************************************************************************

* distance
250

***************************************************** *********************/

double distance (CENTROID *centroidl, CENTROID *centroid2)
{
double dx = centroidl->x - centroid2->x;
double dy = centroidl->y - centroid2->y;
double dz = centroidl->z - centroid2->z;

return sqrt ((dx * dx) + (dy * dy) + (dz * dz)); 260

/***************************************************************************

* tripletangle

* Returns angle between line from 1 to 2 and line from 2 to 3.
* 270
********************,,********************,**,**,,*********************/

double triplet_angle (CENTROID *centroidl, CENTROID *centroid2,
CENTROID *centroid3)

{
double dxl, dyl, dzl;
double dx2, dy2, dz2;
double vecldotvec2, veclmag, vec2_mag;
double cos angle;

280
dxl = centroidl->x - centroid2->x;
dyl = centroidl->y - centroid2->y;
dzl = centroidl->z - centroid2->z;

dx2 = centroid3->x - centroid2->x;
dy2 = centroid3->y - centroid2->y;
dz2 = centroid3->z - centroid2->z;

vecl_dotvec2 = DOT PRODUCT (dxl,dyl,dzl, dx2,dy2,dz2);
veclmag = MAG (dxl, dyl, dzl); 290
vec2_mag = MAG (dx2, dy2, dz2);

cos_angle = vecl_dot_vec2 / (vecl_mag * vec2_mag);

if (cos angle > 0.999) cos_angle = 0.999;
if (cos angle < -0.999) cosangle = -0.999;

return (MPI - acos (cos angle));

300
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B.5 Track Extender Module

track-extender.c

#include <stdio.h>

#include "global.h"
#include "octanttree.h"
#include "pixel.h"
#include "cluster.h'
#include "track.h"

10

* track extender

* Attempt to extend all tracks in active_track_list in the spherical
* shell from rho_max to rhomin.

********************************** ***************** * ******** ********/

void track_extender (SHELL *shell, 20
TRACKLIST* active_track list,
int numlinefit_centroids, int no centroid shell limit,
double search cone_base_radius,
double search_cone initial_angle,
double search_cone angle_taper_coef,
double cluster_paintingthreshold)

{
register int i;
PIXEL_LIST *found_pixels, *filtered pixels;
TRACK *currenttrack; 30
CLUSTER *current cluster;
CLUSTER_LIST *claimed_clusters;
CENTROID *new_centroid;
OCTANT TREE NODE *octant_tree;
double rhomin = shell->rho min;
double rhomax = shell->rhomax;
double shell thickness, mid shell next, mid shell_prev;
double searchcone_angle;
double xO, yO, z0, vx, vy, vz;
double pxO, pyO, pzO; 40
double x_min, x max, y_min, y_max, z min, z_max;

printf ("entering track-extender (%lf .. %i1f) ... \n",
rho min, rhomax);

/* Build octant tree for current search space */
octant tree = buildoctanttree (shell->pixel list);

printf ("num pixels inserted into track-extender octant tree: Md\n", 50
shell->pixellist->numpixels);

/* Recluster any pixels whose cluster was free'd: */
clusterunclusteredpixels (shell);

/* Start a new claiming_tracks list for each cluster
(in case the cluster was claimed from the next shell): */

for (i = 0; i < shell->cluster list->num clusters; i++) 60
{

current cluster = shell->clusterlist->cluster_array[i];

if (current_cluster->claiming tracks != NULL)
{

free_track_list (current cluster- >claimingtracks);
current_cluster->claimingtracks = create track list();

} 70
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Iterate through all existing tracks. For each:
- find the pizels which lie in the search space,
*/

for (i = 0; i < active_track list->num_tracks; i++)
{

current track = activetracklist->trackarray[i];
current_track->claimed_clusters = createcluster list(); 80

/*
printf("processing track %od (%d of %d)...\n",

current_track->found_tid, i + 1, active_track_list->num_tracks);
*/

fit linetocentroids (current track->centroid list,
numlinefitcentroids,
&xO, &yO, &zO, &vx, &vy, &vz);

90

/* Calculate search cone angle from number of centroids in
track, the initial angle, and the angle taper coefficient */

search_cone angle =
calculatesearch_cone_angle (searchconeinitial angle,

search_cone angletaper_coef,
current_track- >centroidlist- >numcentroids);

shell thickness = rho max - rho min; 100
mid shellprev = rho_max + (shellthickness / 2.0);
mid shell next = rho_min - (shell_thickness / 2.0);

/ * Calculate rectangular bounding box around search cone: */
if (! calculate_bounding_box (midshellnext, mid_shell_prev,

xO,O, , z0v vy, vy, va,
search cone base_radius, search_cone angle,
&x min, &xmax, &ymin,
&y_max, &z min, &z max,
&pxO, &pyO, &pzO)) 110

/* cannot calculate bounding box */
/* printf ("Cannot extend track %d - continuing with next track...\n",

current_track->found_ tid); */
continue;

}

/* Find pixels in bounding boz: */
/* (search must be performed in pizel space) */ 120
/* This narrows the search significantly over checking each pizel

in the entire shell. */
found_pixels = create_pixel_list();

extract_pixels (octanttree, found_pixels,
xmin, x_max, y_min, y_max, z min, z_max);

/* Temporary: */
/* 130
printf ("track %d: %d pizels extracted in bounding box\n",

current track->found_tid, found pixels-> num pizels);
*/

/* Now check individual pizels in box search volume for inclusion
or exclusion from search cone: */

filteredpixels =
filterforsearch_cone_pixels (found_pixels,

pxO, pyO, pzO, vx, vy, vz,
search cone base radius, 140
search cone angle);

free pixel list (found_pixels); /* No longer needed */

/ * Temporary: */
/* printf ("track %d: %d pixels in search cone\n",
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current_track- >found_ tid, filtered_pixels-> numpixels); */

150
/ * Decide which clusters overlapped by the search cone should be

claimed by the track. Then add these clusters to the track's
claimed_clusters list. */

paint_clusters (filteredpixels, current_track,
cluster_painting_threshold);

/ * Temporary: */
/* printf ("Number of clusters claimed by track %d: %d\n",

current_track- >found_tid, 160
current_track-> claimed clusters-> num_clusters); */

free_pixel_list (filtered_pixels); /* No longer needed */
}

for (i = 0; i < active_track_list->num_tracks; i++)
{
current_track = active_track_list->track_array[i]; 170
claimed clusters = current track->claimed_clusters;

if (claimed_clusters->num_clusters == 0) /* No clusters were claimed */
{
/ * printf ("num_shellswo newcentroid++ for track %d\n",

currenttrack->found_tid); */

current_track->num_shellswonew_centroid++;
180

freecluster list (claimedclusters);
current_track->claimed_clusters = NULL;
continue;

/ * Clusters were claimed -- > reset shell count to zero */
current_track->num_shells_wo_new_centroid = 0;

190
new centroid = calculate_new_track_centroid (current_track);
add_centroidtotrack (current_track, new_centroid);

/* Label all pixels claimed by the track with the track's found_tid: */
label trackpixels (current_track);

/* unparse_track (current track); */ /* Temporary */
200

/ * claimed clusters no longer needed */
free cluster list (claimed_clusters);
current track->claimed_clusters = NULL;

free_octant tree (octant_tree);

printf ("leaving trackextender... .\n"); 210

}
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B.6 Pixel and Pixel List Functions

pixel.h

extern void srpt2xyz (int sector, int row, int pad, int tdc,
double *x, double *y, double *z);

PIXEL.LIST* readdata (FILE* file_ptr, double rho min, double* rho_max);

PIXEL LIST* read_xyz data (FILE* file_ptr, double rho min, double* rho-max);

PIXEL* createpixel (double rho, double x, double y, double z,
int sector, int row, int pad, int tdc, 10
int adc, int true_tid);

void unparse_pixel (PIXEL* pixel);

void unparse_pixel list (PIXEL_LIST* pixellist);

PIXEL LIST* createpixel_list (void);

void add_to_pixel_list (PIXEL_LIST* pixellist, PIXEL* newpixel);
20

void free_pixel_list (PIXEL_LIST* pixel_list);

void free_pixel array (PIXEL_LIST* pixel_list);

PIXELLIST* same_rowandsector filter (PIXEL LIST *pixel_list, PIXEL *pixel);

void sortpixel_listby_adc (PIXEL_LIST *pixel_list);

void writepixel_data to file (FILE *file_ptr, PIXEL_LIST *pixel list);

pixel.c

#include <stdio.h>
#include <string.h>
#include "global.h"
#include "pixel.h"

/***************************************************************************

* createpizel
10

* createpixel allocates memory for a new PIXEL, and assigns the supplied
* values to the various fields of the PIXEL.

************************************************************* 
* *********

PIXEL* create_pixel (double rho, double x, double y, double z,
int sector, int row, int pad, int tdc,
int adc, int true_tid)

{
PIXEL *pixel = (PIXEL*) malloc (sizeof (PIXEL)); 20

pixel->truetid = true tid;
pixel->foundtid = 0;

pixel->rho = rho;
pixel->x = x;
pixel->y = y;
pixel->z = z;

pixel->sector = sector; 30
pixel->row = row;
pixel->pad = pad;
pixel->tdc = tdc;

pixel->adc = adc;
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pixel->cluster = NULL;

return pixel;
40

/***************************************************************************
* unparsepixel

* unparse pizel prints the values of the PIXEL struct (pointed to by
* 'pixel') fields.
* 50
******************************************** ******* ***** ********* * ******

void unparse_pixel (PIXEL *pixel)

{
if (pixel == NULL)
return;

printf("rho: %lf\n", pixel->rho);
printf("x: %lf\n", pixel->x);
printf("y: %lf\n", pixel->y); 60
printf("z: %lf\n", pixel->z);
printf("sector: Zd\n", pixel-->sector);
printf("row: %d\n", pixel->row);
printf("pad: Xd\n", pixel->pad);
printf("tdc: %d\n", pixel->tdc);
printf("adc: %d\n", pixel->adc);
printf("truetid: Y.d\n", pixel->true tid);
printf("foundctid: Xd\n", pixel-->foundtid);
printf("\n\n");

} 70

* unparse pixellist

* unparse_pixel_list calls unparsepizel for each pixel in 'pixel_list'.
* 80
**************************************** * ****************** *****************

void unparse pixel_list (PIXELLIST *pixel list)
{
int i;

if (pixel list == NULL)
return;

printf("\n\n"); 90
printf("PIXEL LIST (%d pixels) \n", pixellist->numpixels);
printf("----------------------\n");

for (i = 0; i < pixel list->num_pixels; i++)
unparsepixel (pixel_list->pixel_array[i]);

}

100

/***************************************************************************
* read data

* The data file lines are assumed to be in the format:
*

* rho sector row pad tdc ade tid
*

* and are assumed to be sorted on rho.

110

PIXEL_LIST* read data (FILE* fileptr, double rhomin, double* rhomax)
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int eof = FALSE;
char line[MAXLINE_LENGTH], *lineptr;
char token chars[] = \t\n";
double rho, x, y, z;
int sector, row, pad, tdc, adc, tid;
long position;

PIXEL* pixel;
PIXELLIST* pixel_list;

if (rho max != NULL) /* Initialize rhomar */
{

fgets (line, MAX_LINELENGTH, file_ptr); / * get first line of file */

line_ptr = strtok (line, token_chars);
*rho_max = atof (line_ptr);

rewind (file ptr); / * set file pointer back to beginning of file */
return NULL;

pixel_list = createpixellist 0;

while (1)

position = ftell (file_ptr); / * file position before reading line */

if (! fgets (line, MAX_LINELENGTH, fileptr)) /* reached EOF */
{

eof = TRUE;
break;

line_ptr = strtok (line, token_chars);
rho = atof (line_ptr);

if (rho < rhomin) { fseek (file ptr, position,

line_ptr = strtok (NULL, token_chars);
sector = atoi (line_ptr);

lineptr = strtok (NULL, tokenchars);
row = atoi (line_ptr);

line_ptr = strtok (NULL, tokenchars);
pad = atoi (line_ptr);

line_ptr = strtok (NULL, token-chars);
tdc = atoi (line_ptr);

line_ptr = strtok (NULL, token_chars);
adc = atoi (line_ptr);

line_ptr = strtok (NULL, token chars);
tid = atoi (lineptr);

SEEK_SET); break; }

srpt2xyz (sector, row, pad, tdc, &x, &y, &z);

pixel = createpixel (rho, x, y, z, sector, row, pad, tdc, adc, tid);
add to_pixel list (pixel_list, pixel);

if (eof && pixelJlist->num_pixels == 0)
{

free_pixel_list (pixel_list);
return NULL;

}
else

return pixel list;

. .
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/***************************************************************************
* read_zyz_data

* The data file lines are assumed to be in the format:

* rho z y z adc tid

* and are assumed to be sorted on rho. 200

*************************************************************************/

PIXEL LIST* read_xyzdata (FILE* fileptr, double rhomin, double* rho max)

int eof = FALSE;
char line[MAX_LINE_LENGTH], *line_ptr;
char token chars[ = " \t\n";
double rho, x, y, z;
int adc, tid; 210
long position;

PIXEL* pixel;
PIXEL_LIST* pixellist;

if (rho_max != NULL) /* Initialize rhomax */
{

fgets (line, MAX_LINE_LENGTH, file_ptr); /* get first line of file */
220

line ptr = strtok (line, token_chars);
*rho_max = atof (line_ptr);

rewind (file_ptr); /* set file pointer back to beginning of file */
return NULL;

}

pixel_list = create_pixel list (; 230

while (1)
{

position = ftell (file_ptr); / * file position before reading line */

if (! fgets (line, MAX LINE_LENGTH, file_ptr)) /* reached EOF */
{

eof = TRUE;
break; 240

}
lineptr = strtok (line, tokenchars);
rho = atof (line_ptr);

if (rho < rho min) { fseek (file_ptr, position, SEEKSET); break; }

lineptr = strtok (NULL, token chars);
x = atof (line_ptr);

250

line_ptr = strtok (NULL, token_chars);
y = atof (line_ptr);

line_ptr = strtok (NULL, tokenchars);
z = atof (line_ptr);

line_ptr = strtok (NULL, token-chars);
adc = atoi (line_ptr);

line_ptr = strtok (NULL, token_chars); 260
tid = atoi (line_ptr);

pixel = create pixel (rho, x, y, z, 0, 0, 0, 0, adc, tid);
addto_pixel_list (pixel list, pixel);
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if (eof && pixel_list->num_pixels == 0)
{ 270

free_pixel list (pixellist);
return NULL;

}
else

return pixellist;
I

280
/***************************************.** ** .444444444444..4444.'444444"
* create_pixel list

* create.pizellist allocates memory for and returns an empty pizel list
* It sets pixellist->num pixels to zero, the the pizel_array to NULL.
* freepizellist should be called to deallocate the memory when the
* pizel list is no longer needed.
*

*************..444.4..4****************.4*.44. ********************.*****/

290
PIXEL_LIST* create pixel list (void)
{

PIXEL LIST *pixel list = (PIXEL LIST*) malloc (sizeof (PIXEL LIST));

pixel_list->numpixels = 0;
pixel list->pixel array = NULL;

return pixel_list;
I

300

* add _to_piel list
*

* add_to_pizel_list takes an existing pixel_list and a pixel, and adds
* pizel to the pizel list. piel_ list->numpixels is incremented in
* accordance with the addition. add to_pizel list will work fine on any
* pixellist (including an empty one). 310
*

***************************..*******************4* ***********.*************/

void add to_pixel_list (PIXEL_LIST *pixel_list, PIXEL *new_pixel)
{

int num_pixels = pixel list->num_pixels;

pixellist->pixel array =
(PIXEL**) realloc ((PIXEL**) pixel list->pixel array,

(numpixels + 1) * sizeof (PIXEL*)); 320

pixel list->pixel_array[num_pixels] = newpixel;
pixel list- >num_pixels++;

/***************************************************************************

* free_pizel list 330
*

* free pizel list deallocates memory for the pixel list pointed to by
* 'pizel_list'. This function should be called when a pizel list is no
* longer needed (but the pizel data should be retained).
*

***************************************** ******** *************************

void freepixel_list (PIXEL_LIST *pixel list)
{

if (pixellist == NULL) 340
return;
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if (pixellist->pixel array != NULL)
free (pixeliist->pixel array);

pixel list->pixel array = NULL;
free (pixel list);

350

/***************************************************************************
* freepixelarray

********************************************************* ******************

void free_pixel array (PIXEL LIST *pixellist)
{ 360
register int i;

for (i = 0; i < pixel list->num_pixels; i++)
free (pixellist->pixel array[i]);

free (pixel list->pixel array);

pixel list->num pixels = 0;
pixel list->pixel array = NULL;

} 370

/***************************************************************************
* same row and sector jilter

************************************************************* ** *********

380
PIXEL LIST* same_row_and_sector_filter (PIXEL_LIST *pixel_list,

PIXEL *basespixel)
{
register int i;
int sector = base_pixel->sector;
int row = basepixel->row;
PIXEL *currentpixel;
PIXEL_LIST *filtered_pixels = createpixeliist();

for (i = 0; i < pixellist->numpixels; i++) 390
{

current_pixel = pixel_1ist->pixel_array[i];

if (current_pixel->sector == sector && currentpixel->row == row)
add to_pixellist (filteredpixels, currentpixel);

}
return filteredpixels;

}
400

/***************************************************************************
* sort pizellistby_adc

* uses shell sort

* *** ***************************************** ** *************************/

410
void sort_pixel_list_by_adc (PIXEL_LIST *pixel_list)
{
register int i, j, inc;
PIXEL *tempyixel;
PIXEL **pixel_array = pixel_list->pixel_array;

inc = 1;

do
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inc *= 3;
inc++;

} while (inc <= pixel list->num_pixels);

do
{

inc /= 3;

for (i = inc + 1; i <= pixel list->num pixels; i++)
{ 430

temppixel = pixel_array[i - 1];
j = i;

while (pixel_arrayUj - inc - 1]->adc < temp_pixel->adc)
{

pixelarray[j - 1] = pixel_array[j - inc - 1];
j -= inc;
if (j <= inc) break;

}
440

pixel_arrayUj - 1] = temppixel;

} while (inc > 1);

/*************************************************************************** 450

* writesPizel datato_file
*

****************************************************************************

void writepixel data_to_file (FILE *file_ptr, PIXEL LIST *pixel_list)
{
register int i;
PIXEL *current_pixel;

460
for (i = 0; i < pixel list->num_pixels; i++)
{

current pixel = pixel list->pixel_array[i];

fprintf (file_ptr, "%d\td\n",
current_pixel->found_tid, currentpixel->true_tid);

/ * fprintf (file_ptr, "%d\t%lf\At%lAt%lAn", found tid,
currentpizel->x, current_pizel->y, current.pizel->z); */

} 470
}
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B.7 Cluster and Cluster List Functions

cluster.h

CLUSTER* create cluster (PIXEL LIST *pixel list);

void add_pixelto cluster (CLUSTER* cluster, PIXEL* pixel);

void unparse cluster (CLUSTER* cluster);

void free cluster (CLUSTER* cluster);

CLUSTERLIST* create cluster list (void); 10

void addto clusterlist (CLUSTERLIST* clusterlist, CLUSTER* newcluster);

void append cluster list (CLUSTER-LIST *master cluster list,
CLUSTER LIST *newcluster_list);

void sortcluster list_by_rho (CLUSTER_LIST *cluster list);

void unparse_cluster_list (CLUSTER_LIST* clusterlist);
20

void free_cluster list (CLUSTER LIST* cluster list);

void free cluster_array (CLUSTER_LIST *cluster_list);

void unparse_adc_matrix (PIXEL ***pixel_matrix, int n, int m,
PIXEL *chosen pixel, PIXEL_LIST *cluster pixels);

cluster.c

#include <stdio.h>
#include "global.h"
#include "centroid.h"
#include "pixel.h"
#include "track.h"
#include "cluster.h"

/ *************************************************************************** 10
* create cluster

************************************************** ****** *******************

CLUSTER* create_cluster (PIXEL_LIST *pixel list)
{
register int i;
PIXEL *currentpixel;
CLUSTER *cluster = (CLUSTER*) malloc (sizeof (CLUSTER)); 20

cluster-->claimed by_track = FALSE;
cluster->track adcweight = 0;
cluster->centroid = NULL;
cluster->pixel list = pixel list;
cluster->claimingtracks = create track list();

cluster->total_adc_weight = 0;

if (pixel_list == NULL) 30
return cluster;

for (i = 0; i < pixel_list->numypixels; i++)
{

current_pixel = pixel_list->pixelarray[i];
current_pixel->cluster = cluster;
cluster->totaladcweight += current pixel->adc;

I
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calculate_centroid (cluster); 40

return cluster;

}

/***************************************************************************
* add pizeltocluster

* 50

**************************************************************************/

void addpixeltocluster (CLUSTER *cluster, PIXEL *pixel)
{

addto_pixel_list (cluster->pixel list, pixel);}

60

/***************************************************************************

* unparsecluster

*************************************** * *****************************/

void unparse_cluster (CLUSTER *cluster)
{
int i; 70
TRACK_LIST* track_list;

if (cluster == NULL)
return;

if (cluster->pixel_list != NULL)

printf("Number of pixels in cluster: %d\n",
cluster- >pixel list-- >numpixels);

80
/ * Temporary:
for (i = 0; i < cluster->pizel_list-> num pizels; i++)

unparse_pizel (cluster-> pizel_ list-> pizel array[i);
*/

if (cluster->centroid != NULL)
unparsecentroid (cluster- >centroid);

if (cluster->claimingtracks == NULL) 90
{

printf ("claimingtracks == NULL\n");
printf ("\n\n");
return;

I
track_list = cluster->claiming tracks;

printf("Number of tracks claiming this cluster: .d\n",
track_list->numtracks); 100

printf("Track ID's:");

for (i = 0; i < track_list->num tracks; i++)
printf(" %d", track_list->track_array[i]->found_tid);

printf("\n\n");

110

/**************************************************************************
* freecluster
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****************************************************************************/

void free_cluster (CLUSTER *cluster)
{ 120

register int i;

if (cluster == NULL)
return;

if (cluster->centroid != NULL)
freecentroid (cluster->centroid);

/* Free actual pizel information */ 130
if (cluster->pixel_list != NULL)
I

free_pixelarray (cluster->pixellist);
free yixel list (cluster->pixellist);
cluster->pixellist = NULL;

/* Do not free actual track information */
if (cluster->claiming_tracks != NULL)

free track list (cluster->claimingtracks); 140
cluster->claimingtracks = NULL;

free (cluster);

* create cluster list 150

************************** * ************************************************/

CLUSTER_LIST* create cluster_list (void)
{

CLUSTER_LIST *cluster-list = (CLUSTER_LIST*) malloc (sizeof (CLUSTER_LIST));

cluster_list->num clusters = 0;
cluster_list->clusterarray = NULL; 160

return cluster list;

/***************************************************************************

* add tocluster list
* 170

* ********************************************** ************* * ****** ********/

void add_tocluster_list (CLUSTERLIST *cluster list, CLUSTER *newcluster)
{

int numclusters = cluster list->num_clusters;

if (new_cluster == NULL)
return; 180

cluster_list->cluster_array =
(CLUSTER**) realloc ((CLUSTER**) cluster list->cluster array,

(num clusters + 1) * sizeof (CLUSTER*));

clusterlist->cluster array[num_clusters] = new_cluster;
cluster list->num_clusters++;

}
190

/***************************************************************************
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* append_cluster_list
*

* Appends the clusters contained in new_cluster list to
* master cluster list.

*************************************************** ******************

200
void appendcluster_list (CLUSTERLIST *master cluster_list,

CLUSTER LIST *new_cluster list)
{

register int i;
int master_num_clusters, total num_clusters;
CLUSTER **master cluster_array;
CLUSTER **newcluster_array;

total num clusters =
master cluster list->num clusters + new cluster list->num_clusters; 210

mastercluster list->cluster_array =
(CLUSTER**) realloc ((CLUSTER**) master cluster_list->clusterarray,

total num clusters * sizeof (CLUSTER*));

mastercluster-array = master clusterlist->clusterarray;
new cluster array = newcluster list->clusterarray;

masternum clusters = master_cluster list->num_clusters;
for(i = 0; i < new cluster list->num_clusters; i++) 220

masterclusterarray[master num_clusters + i] = new cluster array[i];

master cluster_list->num_clusters = total num_clusters;

/***************************************************************************

* sort cluster_ list_by_rho 230
*

* uses shell sort

********************************************************************* 
**

void sort_cluster_list_byjrho (CLUSTER_LIST *cluster_list)
{

register int i, j, inc;
CLUSTER **cluster array = cluster_list->cluster_array;
CLUSTER *temp_cluster; 240

inc = 1;

do
{

inc *= 3;
inc++;

} while (inc <= cluster_list->num_clusters);
250

do
{

inc /= 3;

for (i = inc + 1; i <= cluster list->num_clusters; i++)

temp_cluster = cluster_array[i - 1];
j = i;

while (cluster_array[j - inc - 1]->centroid->rho < 260
temp_cluster- >centroid- >rho)

{
clusterarrayDj - 1] = cluster arrayUj - inc - 1];
j -= inc;
if (j <= inc) break;

}
clusterarray[j - 1] = tempcluster;

119



} while (inc > 1);

* unparse_cluster list

* 280
**************************************************** 

***** ********** ********

void unparseclusterjlist (CLUSTER-LIST *clusterlist)
{

int i;

if (cluster list == NULL)
return;

printf("Number of clusters in this cluster list: Zd\n", 290
cluster_list ->num clusters);

for (i = 0; i < cluster_list->num clusters; i++)
unparse_cluster (cluster_list- >cluster_array[i]);

/ *************************************************************************** 300
* free_cluster list

********************************************************** ******************

void free clusterlist (CLUSTERLIST *cluster list)
{

if (cluster_list == NULL)
return;

310
if (cluster_list->clusterarray != NULL)

free (cluster_list->cluster array);

cluster_list->cluster_array = NULL;
free (cluster_list);

}

320

* free_cluster array

************************************* *************************************/

void free clusterarray (CLUSTER_LIST *cluster list)
{

register int i; 330
if (cluster list == NULL)

return;

if (cluster_list->clusterarray == NULL)
return;

for (i = 0; i < cluster list->num_clusters; i++)
free_cluster (clusterlist->clusterarray[i]);

free (cluster_list- >cluster_array); 340

cluster list->num clusters = 0;
cluster list->clusterarray = NULL;

I
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* unparseadcmatrix 350

* pizel_array is an n z m matrix of pizel pointers

************************************** ****** ********** *************

void unparse adc_matrix (PIXEL ***pixel_matrix, int n, int m,
PIXEL *chosen_pixel, PIXEL LIST *cluster_pixels)

register int i, j, k;
int found; 360

printf ("matrix of pixel adc values:\n\n");

for (i = 0; i < n; i++)
{

for (j = 0; j < m; j++)
{
if (pixelmatrix[i][j] == NULL)

printf ("*\t");
else if (pixel matrix[i]fj] == chosen_pixel) 370

printf ("#Xdt\t", pixel matrix[i]j]->adc);
else
{

found = FALSE;

for (k = 0; k < cluster_pixels->num_pixels; k++)
if (pixel_matrix[i][j] == cluster_pixels- >pixel_array[k])

found = TRUE;
break; 380

if (found)
printf ("<%d>\t", pixel_matrix[i][j]->adc);

else
printf ("Zd\t", pixelmatrix[i]Uj]->adc);

printf ("\n"); 390
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B.8 Centroid and Centroid List Functions

centroid.h

CENTROID* create centroid (double x, double y, double z);

void unparsecentroid (CENTROID *centroid);

void free centroid (CENTROID *centroid);

CENTROIDLIST* create centroid list (void);

void add to centroid list (CENTROID LIST *centroid list, 10
CENTROID *new_centroid);

void unparse centroidlist (CENTROIDJLIST *centroid list);

void free_centroid list (CENTROID LIST *centroid list);

void calculate centroid (CLUSTER* cluster);

centroid.c

#include <stdio.h>
#include <math.h>
#include "global.h"
#include "centroid.h"

/***************************************************************************
* create centroid
* 10

*************************************** * ************************************/

CENTROID* create_centroid (double x, double y, double z)
{

CENTROID *centroid = (CENTROID*) malloc (sizeof (CENTROID));

centroid->x = x;
centroid->y = y;
centroid->z = z; 20
centroid->rho = XYZ TORHO (x, y, z);

return centroid;
}

/***************************************************************************

* unparse_centroid 30

********* ***•* **** ,******** ******•* ********* ** ********** **************** */

void unparse_centroid (CENTROID *centroid)
{

printf("rho: (x, y, z) = %lf: (%lf, %lf, %lf)\n",
centroid->rho, centroid->x, centroid->y, centroid->z);

40

/***************************************************************************
* free_centroid

*
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********************************************************** 
*******

void free centroid (CENTROID *centroid) 50
{

if (centroid != NULL)
free (centroid);

)

* create centroid list 60

******************************** ********** ************************

CENTROIDLIST* create centroid list (void)
{

CENTROID LIST *centroid list =
(CENTROIDLIST*) malloc (sizeof (CENTROID LIST));

centroid_list->num_centroids = 0; 70
centroid_list->centroid_array = NULL;

return centroidlist;

* add to centroid list 80
*

*

************************** 
*********************

void addto centroidlist (CENTROID LIST *centroid_list,
CENTROID *new_centroid)

{
int num_centroids = centroidlist->numcentroids;

centroidlist->centroid array = 90
(CENTROID**) realloc ((CENTROID**) centroid list->centroid array,

(numcentroids + 1) * sizeof (CENTROID*));

centroidlist->centroid_array[num_centroids] = newcentroid;
centroid_list->numcentroids++;

100
/***************************************************************************
* unparse_centroid_list

***********************************************************************

void unparse centroid_list (CENTROID LIST *centroidlist)
{

int i;
110

printf ("Centroid List (%d centroids):\n", centroidlist->numcentroids);
printf ("-----------------------------\n");

for (i = 0; i < centroidlist->num_centroids; i++)
unparse_centroid (centroid_list->centroidarray[i]);

120
/***************************************************************************

* freecentroid_list
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**************************************************************************/

void free centroid_list (CENTROID LIST *centroid_list)
{
register int i;

130
if (centroid list == NULL)

return;

if (centroid_list->centroidarray == NULL)
{

free (centroid_list);
return;

}
for (i = 0; i < centroid_list->num centroids; i++) 140

free_centroid (centroid list->centroid array[ij);

free (centroid_list->centroid array);
free (centroid list);

}

/ *************************************************************************** 150
* calculate centroid

************************************************************************

void calculate centroid (CLUSTER *cluster)
{

register int i;
PIXEL *currentpixel;
PIXEL LIST *pixel list; 160
double adc, sumweights;
double xweighted sum, y weighted sum, zweighted sum;

/ * Calculate the weighted mean */
pixel list = cluster->pixel list;

sum-weights = 0.0;
x weighted_sum = 0.0;
yweighted-sum = 0.0; 170
zweighted sum = 0.0;

for (i = 0; i < pixel list->num pixels; i++)
{

current.pixel = pixel list->pixel array(i];
adc = (double) current_pixel->adc;

sum-weights += currentpixel->adc;

xweightedsum += (current.pixel->x * adc); 180
y weightedsum += (current pixel->y * adc);
zweighted_sum += (current pixel->z * adc);

cluster->centroid = create centroid (xweightedsum / sum-weights,
y_weighted sum / sum-weights,
zweighted_sum / sum-weights);

190
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B.9 Shell and Shell Queue Functions

shell.h

SHELL* createshell (double rho min, double rho max, PIXEL LIST *shellpixels);

void freeshell (SHELL* shell);

SHELLQUEUE* createshellqueue (void);

void pushonto shell queue (SHELLQUEUE* shellqueue, SHELL* newshell);

SHELL* popofffshell_queue (SHELLQUEUE* shell_queue); 10

void freeshell_queue (SHELLQUEUE* shell_queue);

void cluster unclustered_pixels (SHELL *shell);

void place_clusterinshellqueue (SHELL_QUEUE *shellqueue,
CLUSTER *newcluster);

shell.c

#include <stdio.h>
#include "global.h"
#include "pixel.h"
#include "cluster.h"
#include "shell.h"

/***************************************************************************

* create shell 10

******************************************* ********************* **********/

SHELL* createshell (double rho min, double rho max, PIXELLIST *shellpixels)
{

SHELL *shell = (SHELL*) malloc (sizeof (SHELL));

shell->rho min = rho min;
shell->rhomax = rho_max; 20
shell->pixel list = shell pixels;
shell->clusterlist = NULL;
shell->nextshell = NULL;
shell->next_shell inqueue = NULL;

return shell;
}

30

/***************************************************************************

* freeshell
*

* Actually frees pizel data (assumes that free'ing a shell means that the
* contained pizel data is no longer needed).

******************************************************** 
*** **************

void free_shell (SHELL *shell) 40

register int i, j;
int numfreed, num_passed_down;
double rhomin_next;
double rhomax next;
int pixel in_next_shell; /* used as boolean */
CLUSTER *current_cluster;

125



PIXEL_LIST *pixel_list;

50
if (shell == NULL)
return;

if (shell->pixel list != NULL)
free pixellist (shell->pixellist);

if (shell->clusterlist == NULL)
return;

if (shell->next shell == NULL) 60
{

freecluster_array (shell->cluster list);
free cluster list (shell->cluster list);
return;

I

rho min next = shell->next shell->rhomin;
rho maxnext = shell- >next_shell- >rho_max;

70
num freed = 0;
num_passed down = 0;

for (i = 0; i < shell->cluster_list->num clusters; i++)

current _cluster = shell->clusterlist- >cluster_array[i];
pixel list = current cluster->pixeljlist;

pixel in next_shell = FALSE;
80

for (j = 0; j < pixel list->numpixels; j++)
if (rho minnext <= pixel list->pixel arrayjj]->rho &&

pixellist->pixel_array[j] ->rho <= rho max next)
{

pixel in_next shell = TRUE;
break;

}
if (pixel innextshell)

{ 90
add to cluster list (shell- >next shell->cluster list,

current_cluster);
num_passeddown++;

I
else / * free the cluster and its pixels */

I
free cluster (currentcluster);
num freed++;

}
100

/* Temporary: */
printf ("clusters: %d originally, %d freed, 'd passed down\n",

shell->clusterlist->num clusters, numfreed, num passeddown);

free_cluster_list (shell->cluster_list);

110

* create.shell.queue
*

******************************************* ** **********************

SHELL_QUEUE* createshell_queue (void)

SHELL_QUEUE *shell_queue = (SHELL_QUEUE*) malloc (sizeof (SHELL_QUEUE)); 120

shell queue->numshells = 0;
shellqueue->first_shell = NULL;
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shell_queue->last_shell = NULL;

return shell_queue;

130

* push onto shell queue

************************************************************************

void push onto shell queue (SHELL_QUEUE *shell queue, SHELL *new_shell)
{
if (new_shell == NULL) 140

return;

new shell->next shell_in_queue = NULL;

/* new_shell could be the first shell added to the queue: */
if (shell_queue->first_shell == NULL)

shellqueue->first shell = new shell;

/* set nezt_shell_in queue of the last shell in the queue to the new shell: */
if (shellqueue->last shell != NULL) 150

shellqueue->last shell->next_shell in_queue = newshell;

/* set the last shell of the queue to the new shell: */
shell_queue->last shell = new-shell;

shell_queue- > numshells++;
}

160

/***************************************************************************

* pop_off shell_queue

************************ ******************* ********* *********

SHELL* popoffshell_queue (SHELL QUEUE *shell queue)
{

SHELL *shell; 170

if (shellqueue == NULL)
return NULL;

if (shellqueue->first_shell == NULL)
return NULL;

shell = shellqueue->first shell;

/ * set the second shell to be the first shell: */ 180
shell queue->first shell = shell_queue->first shell->next shell inqueue;

shell_queue->numshells--; /* decrement number of shells in queue */

return shell;

I

190
/***************************************************************************

* freeshell queue

****************************************************************************

void freeshell_queue (SHELL_QUEUE *shell_queue)
{

free (shell_queue);
} 200
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* clusterunclustered_pixels

***************************************************/

210
void cluster_unclustered_pixels (SHELL *shell)
{

register int i;
int num_clusters_added;
PIXEL *pixel;
PIXEL_LIST *pixel_list = shell- >pixel_list;
PIXEL_LIST *cluster_pixel_list;
CLUSTER *new_cluster;
CLUSTER LIST *cluster_list;

220

printf ("entering cluster.unclustered_pixels...\n"); /* Temporary */

if (shell->cluster list == NULL)
shell->cluster_list = create_cluster_list();

cluster_list = shell- >cluster list;

num_clusters_added = 0; 230

for (i = 0; i < pixel_list->numpixels; i++)

/* already been assigned to a cluster */
if (pixel_list- >pixel_array[i]- >cluster != NULL)

continue;

pixel = pixel_list->pixelarray[i];

cluster_pixel list = create_pixel_list(); 240
add to_pixel_list (cluster pixel_list, pixel);

new_cluster = create_cluster (cluster_pixel list);

add_to cluster_list (cluster_ list, new_cluster);

num_clusters_added++;

250
/ * Temporary: */
printf ("Found 'd unclustered pixels\n", num_clusters_added);
printf ("leaving cluster_unclustered_pixels...\n");

I

/************************************************************************
* placecluster in shell _queue 260

***********************************************************************

void place_cluster inshell_queue (SHELL QUEUE *shell_queue,
CLUSTER *newcluster)

{
SHELL *current_shell = shell_queue->first_shell;
CENTROID *centroid = new_cluster->centroid;

270

while (current_shell != NULL)
{

if (current_shell->rho_min < centroid->rho &&
centroid->rho <= currentshell->rho max)

{
add_to_cluster list (current_shell->cluster_list, new cluster);
break;

128



280
currentshell = current shell->next shellin_queue;
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B.10 Track and Track List Functions

track.h

#ifndef _TRACK
#define _TRACK

#include "entry.h"

class Track
{
int _tid;
int _num_entries;
Entry* _entry_array; 10

public:
Track();
Track(int tid);
-Track();
void processpixel(int tid);
void add entry(int tid);
void sort entries();
int total_num pixels();
int gettid(); 20
void unparse(int true_found);

1;

#endif _TRACK

track.c

#include <stdio.h>
#include <math.h>

#include "global.h"
#include "centroid.h"
#include "cluster.h"
#include "pixel.h"
#include "track.h"

10
/**************************************************************************

* create track

***********************************************************************

TRACK* create_track (void)
{

TRACK *track = (TRACK*) malloc (sizeof (TRACK));
20

track->foundtid = 0;
track->numshellswonewcentroid = 0;
track->centroid_list = create_centroid_list();
track->claimed clusters = NULL;

return track;

30

/***************************************************************************
* add centroid to track

******************************************* * ****** **********************/

void add_centroid to_track (TRACK *track, CENTROID *newcentroid)
{
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add_to centroid list (track->centroid_list, new_centroid);
}

* unparsetrack

void unparse_track (TRACK *track)
{
printf("foundtid: Zd\n", track->foundtid);
printf( "numshells.vosnev centroid: %d\n",

track->num shellswonewcentroid);

unparse centroid list (track->centroid list);
printf("\n\n");

} 60

* free_track

*********************** *** *************** *** * *****************
70

void free track (TRACK *track)
{

if (track == NULL)
return;

if (track->centroid list != NULL)
freecentroid list (track- >centroid list);

if (track->claimed clusters != NULL)
freecluster_list (track->claimed_clusters); 80

free (track);
}

/***************************************************************************

* create track list 90

***************************************************************************1

TRACK_LIST* createtrack_list (void)
{

TRACK LIST *track list = (TRACK LIST*) malloc (sizeof (TRACK_LIST));
track list->num tracks = 0;
track list->track array = NULL;

100
return track list;

}

/***************************************************************************
* add to track list

* Adds the given track (new_track) to the given track_list. 110

****************************** ** ***************** ******************

void add to track list (TRACK LIST *track_list, TRACK *new track)
{

int num tracks = tracklist- >num tracks;
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track_list->track_array =
(TRACK**) realloc ((TRACK**) track list->track_array,

(numtracks + 1) * sizeof (TRACK*)); 120

track_list->trackarray[num_ tracks] = new_track;
track list->numtracks++;
}

/***************************************

* addnewfound_track 130

* Adds the given track (new-track) to the given track list. Also sets
* the new track's found_tid.

* Modifies: new_track->foundtid

**************************************************************************/

void add newfound track (TRACK_LIST *track_list, TRACK *new_track)
{ 140

static int found_tid = 1; /* provides unique found tid's */
int num tracks = track list->numtracks;

track list->track_array =
(TRACK**) realloc ((TRACK**) track_list->track_array,

(numtracks + 1) * sizeof (TRACK*));

new_track->found_tid = foundtid;
tracklist - >track-array num tracks] = new_track;
track_list->numtracks++; 150
foundtid++;

/***************************************************************************

* remove inactive tracks

* 160
******************** ****************** ****-**** * *** **** ***************** /

TRACK_LIST* remove_inactivetracks (FILE *file_ptr,
TRACK LIST *activetrack list,
int no_centroid_shell limit)

{
register int i;
TRACK_LIST *new_active_track_list = createtracklist();
TRACKLIST *inactive_track list = createtrack list();
TRACK *current_track; 170

printf ("remove_inactive_tracks ... \n");

for (i = 0; i < active_track_list->num_tracks; i++)

{
current_track = active_track_list->track_array[i];

if (current_track->numshellswonew_centroid > no_centroid_shell_limit)
{ 180

printf ("moving track %d to inactive\n", current_track->foundtid);
add_to_track_list (inactive_track_list, current_track);
}

else
add_to_track_list (new active_track_list, current_track);

write_track_data_to file (fileptr, inactive track_list);
190

free_track_array (inactive_track_list);
free_tracklist (inactive_track_list);
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free_track_list (activetrack_list);

return new_active_track_list;
}

200

* unparse_track list
*

*

void unparse tracklist (TRACK_LIST *track list)
{
int i; 210

if (tracklist == NULL)
return;

printf ("Track list (/d tracks):\n", track_list->num tracks);
printf ("-----------------------\n");

for (i = 0; i < track list->numtracks; i++)
unparsetrack (track_list->track_array[i]);

220

* freetrack list
*

* Doesn't actually free the track information - only the track pointer
* array.
* 230

void freetrack_list (TRACKLIST *track list)
{

if (track_list == NULL)
return;

if (track_list->track array != NULL)
free (tracklist->trackarray);

240
track list->track array = NULL;
free (track_list);
}

* freetrackarray
* 250

******************* ********* ****** ******* *****************************/

void free_trackarray (TRACK_LIST *track list)
{
register int i, j;
TRACK *current_track;

if(track_list == NULL)
return; 260

if (tracklist->track_array == NULL)
return;

for (i = 0; i < track_list->num_tracks; i++)
{

current_track = track list- >track_array[i];

/* Free each centroid: */
for (j = 0; j < current_track->centroid_list->numcentroids; j++) 270

free_centroid (current_track->centroidlist->centroidarray[j]);
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/ * Free cluster list: */
if (current_track->claimed_clusters != NULL)

free clusterlist (current track->claimed clusters);

free (track list- >track_array);
track_list->track_array = NULL; 280
tracklist->num_tracks = 0;

/ ***************************************************************************

* paintclusters
*

* This is the only procedure that should add to a cluster's 290
* claiming tracks.

*****************# * ********* ***********

void paint_clusters (PIXEL_LIST *pixel list, TRACK *track,
double cluster_painting_threshold)

{
register int i, j;
int found; /* used as a boolean */
double percent overlap; 300
PIXEL *pixel;
CLUSTER *cluster;
CLUSTERLIST *temp cluster_list = create cluster list();

for (i = 0; i < pixel_list->num_pixels; i++)
{

pixel = pixel list->pixel_array[i];
cluster = pixel->cluster;

310

/* Check to see if cluster has already been added: */
found = FALSE;

for (j = 0; j < temp cluster_list->numclusters; j++)
if (temp_clusterlist->cluster_array[j] == cluster)
{

found = TRUE;
break;
} 320

/* Only add the cluster if it hasn't already been added */
if (! found)

{
add_tocluster_list (temp_cluster_list, cluster);
cluster->track_adc weight = 0; /* set weight to zero */
}

cluster->trackadcweight += pixel->adc;
} 330

/* Temporary: */
printf ("number clusters overlapped in search cone: /d\n",

temp_cluster_list- >num_clusters);

/* Now check all tempclusters against cluster-painting threshold */
for (i = 0; i < temp_cluster_list->num_clusters; i++)

{ 340
cluster = temp_cluster_list->cluster_array[i];

percent_overlap =
(double) cluster->track_adc weight /
(double) cluster- >total_adc_weight;

/*
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printf ("num pixels in cluster: %d\n", cluster->pixellist- >num_pizels);
printf ("totaladc_weight: %d\n", cluster->total adc_weight);
printf ("percent_overlap: %lAf\n\n", percentoverlap); 350
*/

if (percent_overlap >= cluster_painting_threshold)
{

cluster- >claimed_bytrack = TRUE;
addtotrack_list (cluster->claimingtracks, track);
add to cluster list (track->claimed_clusters, cluster);

}
360

free_clusterlist (temp_cluster list);

/***************************************************************************
* calculate new track centroid

* Assumes that the track claimed at least one cluster. 370

*********************************** ******** ****************

CENTROID* calculatenew track_centroid (TRACK *track)
{

register int i;
double adjustedtotaladc_weight, sumweights;
double xweightedsum, y_weightedsum, z weighted_sum;
CLUSTER *cluster;
CENTROID *centroid; 380
CLUSTER_LIST *claimed_clusters = track->claimed clusters;

/* Calculate the weighted mean */
sumweights = 0.0;
x_weighted_sum = 0.0;
yweighted_sum = 0.0;
zweightedsum = 0.0;

for (i = 0; i < claimed clusters->num_clusters; i++) 390
{

cluster = claimed_clusters->cluster array[i];
centroid = cluster->centroid;

/* Divide the cluster's total adc_weight by the number of
tracks claiming that cluster: */

adjusted_totaladcweight =
(double) cluster->totaladc weight /
(double) cluster->claiming_tracks->num tracks;

400
sumweights += adjusted_total adcweight;
xweighted_sum += (centroid->x * adjustedtotal_adc weight);
y weightedsum += (centroid->y * adjusted_total adcweight);
zweightedsum += (centroid->z * adjusted_totaladc weight);

return (create_centroid (x weightedsum / sum-weights,
yweighted_sum / sumweights,
z_weighted_sum / sum-weights)); 410

/ *************************************************************************

* fitline to centroids

* Equation of line passing through point PO = (:O, yO, zO) and parallel
* to the vector V=a*i + b*j + c*k: 420

* z= x0 + a*t, y = yO + b*t, z = zO + c*t
*
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* Cartesian: (x - xO)/a = (y - yO)/b = (z - zO)/c

****************************************************************************

void fit_lineto_centroids (CENTROID_LIST *centroid_list,
int num linefit centroids,
double *xO, double *yO, double *z0, 430
double *vx, double *vy, double *vz)

int numcentroids = centroid_list->num_centroids;
CENTROID *centroidl, *centroid2;

/ * For now, use only the last two centroids of the track: */
centroidl = centroid_list->centroid_array[num_centroids - 2];
centroid2 = centroid_list->centroid_array[numcentroids - 1];

*xO = centroid2->x; 440
*yO = centroid2->y;
*z0 = centroid2->z;

*vx = centroid2->x - centroidl->x;
*vy = centroid2->y - centroidl->y;
*vz = centroid2->z - centroid2->z;

450

* calculatesearch_cone_angle

**************************************************************************/

double calculate_searchcone_angle (double search_cone_initial_angle,
double search_cone_angle_taper_coef,
int num_centroids) 460

{
/* Subtract 3 from num_centroids to account for proto-track centroids: */
double coef = search_coneangle_taper coef * (double) (num_centroids - 3);

return (search cone initial_angle * exp (-coef));
I

470

/***************************************************************************

* calculate_bounding_box

*************************************************************************/

int calculate_bounding_box (double rho min, double rho_max,
double xO, double yO, double zO,
double vx, double vy, double vz,
double search cone base radius, 480
double search_cone_angle,
double *x_min, double *x_max, double *y_min,
double *y max, double *z_min, double *z_max,
double *pxO, double *pyO, double *pzO)

double pxl, pyl, pzl, px2, py2, pz2;
double length, search_cone_rim_radius;
double v_mag, dx, dy, dz;

490
/* Calculate intersection (pxl, pyl, pzl) with middle of previous shell: */
if (! nearest_sphere_intersection_point (rho_max,

xO, yO, z0O, vx, vy, vz,
&pxl, &pyl, &pzl))

{
printf ("no intersection point!\n");
return FALSE;

}
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/ * Calculate intersection (px2, pyt, pz2) with middle of next shell: */
if (! nearest sphereintersection_point (rhomin,

x0O, yO, z0O, vx, vy, vz,
&px2, &py2, &pz2))

{
printf ("no intersection point!\n");
return FALSE;

}
length = DISTANCE (pxl,pyl,pzl, px2,py2,pz2); 510

search cone rim radius =
search_conebase_radius + (length * tan (searchcone_angle));

v_mag = MAG (vx, vy, vz);
if (v_mag < 0.001) v_mag = 0.001;

dx = searchcone_base_radius * sin (acos (vx / v_mag));
dy = search cone_base_radius * sin (acos (vy / v_mag)); 520
dz = search_cone baseradius * sin (acos (vz / v_mag));

*x min = pxl - dx; *xmax = pxl + dx;
*y_min = pyl - dy; *ymax = pyl + dy;
*zmin = pzl - dz; *z_max = pzl + ds;

dx = searchcone_rim_radius * sin (acos (vx / vmag));
dy = searchcone_rimradius * sin (acos (vy / vjmag));
dz = search_conerim radius * sin (acos (vz / v_mag)); 530

*xmin = (px2 - dx < *xmin) ? px2 - dx : *x_min;
*x_max = (px2 + dx > *x_max) ? px2 + dx : *xmax;
*y min = (py2 - dy < *y_min) ? py2 - dy : *y min;
*y_max = (py2 + dy > *ymax) ? py2 + dy : *ymax;
*zmin = (pz2 - dz < *z rmin) ? pz2 - dz : *zmin;
*zmax = (pz2 + dz > *zsmax) ? pz2 + dz : *zmax;

*pxO = pxl;
•py0 = pyl; 540
*pz0 = pzl;

return TRUE;
}

/***************************************

* nearest_sphereintersectionpoint 550

************************************* **************************************/

int nearestsphereintersectionpoint (double r,
double xO, double yO, double zO,
double vx, double vy, double vz,
double *px, double *py, double *ps)

double pxl, pyl, pal; 560
double px2, py2, pz2;
double suml, sum2, den;

if (vy < 0.001) vy = 0.001;

suml = 2 * (vx*vx) * yO / (vy*vy);
suml -= 2 * vx * xO / vy;
suml += 2 * (vz*vs) * yO / (vy*vy);
suml -= 2 * vz * zO / vy;

570
sum2 = -(vx*vx) * (z0*z0);
sum2 += (vx*vx) * (r*r);
sum2 -= (vx*vx) * (yO*yO);
sum2 -= (vz*vz) * (yO*yO);
sum2 -= (vz*vz) * (xO*xO);
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sum2 += (vz*vz) * (r*r);
sum2 -= (xO*xO) * (vy*vy);
sum2 -= (zO*z0) * (vy*vy);
sum2 += (r*r) * (vy*vy);
sum2 += 2.0 * vx * x0 vz * z0;
sum2 += 2.0 * vx * yO * x0 * vy;
sum2 += 2.0 * vz * yO * z0 * vy;

if (sum2 <= 0.0)
return FALSE; /* no intersection */

den = 1 + (vx*vx) / (vy*vy) + (vz*vz) / (vy*vy);

pyl = (suml + 2.0 * sqrt (sum2) / vy) / (2.0 * den);
py2 = (sum1 - 2.0 * sqrt (sum2) / vy) / (2.0 * den);

pxl = (pyl - yO) * vx / vy + x0;
pzl = (pyl - yO) * vz / vy + z0;

px2 = (py2 - yO) * vx / vy + xO;
pz2 = (py2 - yO) * vz / vy + z0;

if (DISTANCE (xO, yO, z0O, pxl, pyl, pzl) <
DISTANCE (xO, yO, z0O, px2, py2, pz2))

{
*px
*py
*pz

}
else
{

= pxl;
= pyl;
= pzl;

= px2;
= py2;
= pz2;

/* Temporary: */
/*
printf ("(pzl, pyl, pzl) = (%lf, %lf, %lf)\n", pzl, pyl, pzl);
printf ("(px2, py2, pz2) = (%lf, %lf, %lf)\n", ppx, py2, pz2);
printf ("(pz, py, pz) = (%lf, %lf, %lf)\n", *p;, *py, *pz);
*/

return TRUE;
}

/********************

/ * successfully found intersection point */

label trackpizels

* Modifies: pizel->found_tid for each pizel in track's cluster list.

************************************************************* *************

void label_trackpixels (TRACK *track)
{

register int i, j;
PIXEL LIST* pixel_list;

for (i = 0; i < track->claimed_clusters->num_clusters; i++)

pixellist = track->claimed clusters->clusterarray[i] - >pixel list;

for (j = 0; j < pixel list->numpixels; j++)
pixel list->pixel arrayj]->foundtid = track->found_tid;
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* filterfor searchcone_pizels

****************************** ********** ****/***

PIXEL LIST* filter for searchcone pixels (PIXEL LIST *pixel list,
double px0, double pyO, double pz0,
double vx, double vy, double vz, 660
double search cone baseradius,
double searchcone_angle)

register int i;
double p_mag, v_mag;
double px, py, pz;
double h, cone_radius, cos.angle, angle;
PIXEL *pixel;
PIXEL_LIST *filtered pixels = create_pixellist();

670
vmag = MAG (vx, vy, vz);
if (v_mag < 0.001) v_mag = 0.001;

for(i = 0; i < pixel_list->num_pixels; i++)
{

pixel = pixelJlist->pixel_array[i];

/ * translate to origin */
px = pixel->x - px0; 680
py = pixel->y - pyO;
pz = pixel->z - pz0;

p_mag = MAG (px, py, pz);
if (pmag < 0.001) p mag = 0.001;

cos_angle = DOT-PRODUCT (vx, vy, vz, px, py, pz) / (v_mag * p_mag);

if (cos angle > 1.0) cos_angle = 1.0;
if (cos_angle < -1.0) cosangle = -1.0; 690
angle = acos (cos_angle);

h = p_mag * cos (angle);
coneradius = searchconebase_radius + (h * tan (search_coneangle));

if (h >= 0.0 && pmag * sin (angle) <= cone_radius)
add_topixel list (filtered_pixels, pixel);

I
700

return filtered.pixels;

* write track data tofile

t* 710
******************************** * ****** * * ****** *****************

void write trackdata to_file (FILE *file_ptr, TRACK_LIST *track list)
{

register int i, j;
TRACK *current_track;
CENTROID *centroid;

for (i = 0; i < track_list->num tracks; i++)
{ 720

currenttrack = tracklist->track_array[i];

if (current_track->centroid_list->num_centroids <= 3)
continue; / * Don't write to file if only a proto-track */

for (j = 0; j < currenttrack->centroidlist->num centroids; j++)
{
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centroid = current track->centroid_list->centroidarray[j];

fprintf (file_ptr, "%d\t%lf\tlf\tlf\n", current track->found tid, 730
centroid->x, centroid->y, centroid->z);

/***************************************************************************

* filterfor search_cone_clusters 740
*

*********************************** *** *** ******* * * *******************

CLUSTER_LIST* filter_forsearch_cone clusters (CLUSTER LIST *cluster list,
double px0, double pyO, double pz0,
double vx, double vy, double vz,
double search cone base radius,
double search cone_angle)

750
register int i;
double p_mag, v_mag;
double px, py, pz;
double h, cone_radius, cos_angle, angle;
CLUSTER *cluster;
CENTROID *centroid;
CLUSTERLIST *filtered_clusters = create cluster_list();

v_mag = MAG (vx, vy, vz);
if (v mag < 0.001) vmag = 0.001; 760

for(i = 0; i < clusterlist->num_clusters; i++)
{

cluster = cluster list-->cluster_array[i];
centroid = cluster->centroid;

/* translate to origin */
px = centroid->x - px0;
py = centroid->y - py0; 770
pz = centroid->z - pz0;

p mag = MAG (px, py, pz);
if (pmag < 0.001) p mag = 0.001;

cosangle = DOT.PRODUCT (vx, vy, vz, px, py, pz) / (v_mag * p_mag);

if (cos angle > 1.0) cosangle = 1.0;
if (cos_angle < -1.0) cosangle = -1.0;
angle = acos (cos_angle); 780

h = pmag * cos (angle);
cone_radius = search cone_base_radius + (h * tan (searchconeangle));

if (h >= 0.0 && pjnag * sin (angle) <= coneradius)
addtoclusterlist (filtered clusters, cluster);

}

return filtered clusters; 790

}
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B.11 Octant Tree Functions

octant tree.c

OCTANTTREENODE* create octanttree node (double x min, double xmax,
double y_min, double y_max,
double zmin, double zmax);

OCTANTTREENODE* buildoctanttree (PIXEL_LIST* pixel_list);

void add_pixel totree (OCTANT_TREE NODE* node, PIXEL* pixel);

void extract_pixels (OCTANT TREENODE* node, PIXEL LIST* foundpixels, 10
double bbx min, double bb-x_max, double bb y_min,
double bbymax, double bbz min, double bbzmax);

void verify_extractpixels (PIXEL LIST* treepixels, PIXEL LIST* found_pixels,
double bb x_min, double bb x_max, double bb_y_min,
double bb ymax, double bbzmin, double bbzmax);

void recursively_addpixels (OCTANT TREE_NODE* node,
PIXEL LIST* found_pixels);

20
OCTANT TREE NODE* next octant (OCTANT TREENODE* node, int* sub octantnum,

double x, double y, double z);

void placenew octant tree node (OCTANT_TREE NODE* node, int sub octant num,
OCTANT TREE NODE* newnode);

void sub octant boundaries (OCTANT TREE NODE* node, int sub octantnum,
double *x_min, double *x max,
double *y_min, double *ymax,
double *zmin, double *zmax); 30

void unparse octant tree (OCTANT TREE_NODE* node);

void free octant tree (OCTANT TREE_NODE* node);

int number of nodes (OCTANT TREE NODE* node);

int number of nodes real (OCTANT TREE NODE* node, int new);

int numpixels in tree (OCTANT TREE NODE* node); 40

int numpixelsin tree real (OCTANT TREE NODE* node, int new);

void find minmax coordinates (PIXEL LIST *pixel list,
double *x min, double *x max, double *y min,
double *ymax, double *z min, double *zmax);

octant tree.h

#include <stdio.h>
#include "global.h"
#include "pixel.h"
#include "octant-tree.h"

/ **************************************************************************

create_octant tree node
10

OCTANT_TREE_NODE* create_octant_tree_node (double xmin, double xmax,
double y_min, double y_max,
double z min, double z_max){
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OCTANT TREE NODE *octant tree.node =
(OCTANT_TREE_NODE*) malloc (sizeof (OCTANT_TREE_NODE));

20
octant_treenode->octl = NULL;
octant tree node->oct2 = NULL;
octant treenode->oct3 = NULL;
octant_tree_node->oct4 = NULL;
octant_tree node->oct5 = NULL;
octant_treenode->oct6 = NULL;
octant_tree node->oct7 = NULL;
octanttreenode->oct8 = NULL;

octant_tree_node->xmin = xmin; 30
octant_tree_node->x max = xmax;
octanttreenode->y_min = y_min;
octant_treenode->y_max = y_max;
octant.treenode->zmin = zmin;
octant_tree_node->z_max = zmax;

octant_treenode->pixel = NULL;

return octant_treenode;
40

/***************************************************************************
* build octant tree
*

**********************************************************

50
OCTANT_TREE NODE* build octant_tree (PIXEL_LIST *pixel_list)
{

register int i;
double x min, x max, ymin, ymnax, z_min, z_max;
OCTANT TREE_NODE *octant_tree root;

if (pixel list == NULL)
return NULL;

60
find minmaxcoordinates (pixel_list,

&xmin, &xjmax, &y_min, &y_max, &z min, &z_max);

octant tree root =
create_octant_tree node (x min, xjmax, y_min, y_max, z_min, z_max);

for (i = 0; i < pixel_list->num_pixels; i++)
add_pixel_totree (octant_tree_root, pixel_list->pixel_array[i]);

return octant_tree_root; 70
}

/***************************************************************************
* addpizel_totree

void add_pixel_totree (OCTANT_TREE_NODE* node, PIXEL* pixel)
{

OCTANT TREE NODE *suboctant ptr;
PIXEL *temp_pixel;
int suboctant_num;
double x min, x_max, y_min, y_max, z_min, z_max;

/* Must insert an interior node and decide which octant the pixel 90
belongs to. */

if (node->pixel != NULL) /* node is a leaf */
{
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temp_pixel = node->pixel;
node->pixel = NULL; /* node is no longer a leaf */

/* Call recursively on temp_pixel and pixel so they can be placed: */
add_pixel_to tree (node, temp_pixel);
add_pixel_to_tree (node, pixel); 100
return;

/* node is an interior node: */

sub octantptr =
next octant (node, &suboctant_num, pixel->x, pixel->y, pixel->z);

110
if (suboctant_ptr == NULL)
{

suboctant_boundaries (node, suboctant_num, &x_min, &x max,
&y_min, &y_max, &zmin, &z_max);

/* Create new leaf: */
suboctantptr =

create octant_tree_node (xmin, x max, y_min, y_max, z min, zjmax);

sub octantptr->pixel = pixel; 120

/* Attach the new leaf to the tree: */
place_new_octant_tree node (node, sub octant_num, suboctantptr);

return;
}

/* Otherwise, recursively traverse tree to find insertion point: */
addpixel to tree (suboctant_ptr, pixel);

130

/***************************************************************************

* extractpizels

* Extract the pizels from the octant tree which lie in the desired
* conical search volume.
* 140
********************************** **************** **********************/

void extractpixels (OCTANT TREE_NODE *octant, PIXELLIST *foundpixels,
double bb_x_min, double bbxmax, double bb y min,
double bb y_max, double bbzmin, double bbz_max)

{
int axisoverlap_count;
double oct_xjnin, oct x_max, oct y_min, octy_max, oct_zmin, oct_z_max;
PIXEL *pixel;

150
if (octant == NULL)
return;

octx_min = octant->xmin; octx_max = octant->xmax;
octy_min = octant->y_min; oct y_max = octant->y max;
oct_z_min = octant->z_min; octzmax = octant->z_max;

pixel = octant->pixel;

160
/ * If reach a leaf, test the pixel to see if it should be included */
if (pixel != NULL)
{

if (bb_x min <= pixel->x && pixel->x <= bb_x_max &&
bbjy min <= pixel->y && pixel->y <= bby_max &&
bb-z min <= pixel->z && pixel->z <= bbzmax)

addtopixel list (found_pixels, pixel);
/* check pixel against search volume */

return; 170
}
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/ * Otherwise, must be an interior node... */

/ * If octant is completely enclosed by the bounding box, then recursively
add all pixels in the subregions */

if (bb x_min <= oct_x_min && oct_x_min <= bb_x max &&
bb_x_min < oct_x max && oct_xmax < bbx_max && 180
bb_y_min <= oct_y_min && oct y_min <= bby_max &&
bb y_min < oct_y_max && oct_y_max < bby_max &&
bb z min <= oct z min && oct_z_min <= bbzmax &&
bb_z_min < oct_z_max && oct_z max < bb_z_max)

{
recursivelyadd_pixels (octant, found_pixels);
return;

}
190

axis_overlap_ count = 0;

/ * Test for overlap along x axis: */
if (((oct_x_min <= bb_x_min && bb_x_min < octxmax)

(oct_x_min <= bb_x_max && bbxmax < oct_xmax)) II
((bb_x_min <= oct_x_min && oct_x_min <= bb x_max) II
(bb_x_min < oct_x_max && oct_x_max < bbxmax)))

axisoverlapcount++;

/* Test for overlap along y axis: */ 200
if (((octy_min <= bb_y_min && bb y_min < oct_y_max) II

(octy min <= bby_max && bby_max < oct_y_max)) II
((bby_min <= octy_min && oct_y_min <= bby_max)
(bby_min < octy_max && oct-y_max < bb_y_max)))

axis overlapcount ++;

/ * Test for overlap along z axis: */
if (((oct z min <= bb z min && bb_z_min < oct_z_max)

(oct_z_min <= bb_z_max && bb_z_max < oct zmax))
((bb_z_min <= oct_z_min && oct z_min <= bb z_max) 210
(bb z_min < oct_z_max && octz_max < bb_z_max)))

axis_overlap_count++;

/* If there is overlap between the octant and the bounding box, then call
extract_pixels recursively on each of the subregions */

if (axis_overlap_count == 3) /* All 3 axes overlap */
{

extractpixels (octant->octl, found_pixels, bb x_min, bb_x_max,
bby_min, bby_max, bbz_min, bb_z_max); 220

extract pixels (octant->oct2, found pixels, bb_x_min, bbx_max,
bb y min, bb y max, bb_z_min, bbz_max);

extract_pixels (octant->oct3, found_pixels, bb_x_min, bb_x_max,
bb_y_min, bb y_max, bb_z_min, bb_z_max);

extractpixels (octant->oct4, found_pixels, bb_x_min, bb_x_max,
bb_y_min, bb y_max, bbz_min, bb_z_max);

230
extract.pixels (octant->oct5, foundpixels, bb_x_min, bb_x_max,

bb_y min, bb y_max, bb_z_min, bbz_max);

extractpixels (octant->oct6, found_pixels, bb_x_min, bb_x_max,
bb_y_min, bby_max, bb_z_min, bb_z_max);

extract pixels (octant->oct7, found_pixels, bb_x_min, bb x max,
bb_y_min, bb_y_max, bb_z_min, bb_zmax);

extract_pixels (octant->oct8, foundpixels, bb_x_min, bb_x_max, 240
bb_y_min, bb_y_max, bb_z_min, bbz_max);

}
}
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* verify_eztract_pixels
*250

****************************************************************************

void verify_extractpixels (PIXEL_LIST *treepixels, PIXEL LIST *found_pixels,
double bb_x_min, double bbxmax, double bby_min,
double bb ymax, double bbz_min, double bb_z_max)

{
register int i;
PIXEL *pixel;

260
for (i = 0; i < treepixels->numpixels; i++)

{
pixel = treepixels->pixel_array[i];

if (bbx_min <= pixel->x && pixel->x <= bbxmax &&
bb y_min <= pixel->y && pixel->y <= bby_mnax &&
bb_zmin <= pixel->z && pixel->z <= bb_z_max)

add to pixel list (foundpixels, pixel);

270

* recursively_add pizels

*********************************************************************

280
void recursively_add pixels (OCTANT_TREENODE *node, PIXELLIST *foundpixels)
{

if (node == NULL)
return;

if (node->pixel != NULL) /* leaf node */
{

add to_pixel list (found_pixels, node->pixel);
return;

290

recursively_add_pixels (node->octl, found_pixels);
recursively_addpixels (node->oct2, found_pixels);
recursively_add_pixels (node->oct3, found_pixels);
recursively_add_pixels (node->oct4, found_pixels);
recursively_add pixels (node->oct5, found_pixels);
recursively_add_pixels (node->oct6, foundpixels);
recursively_add_pixels (node->oct7, foundpixels);
recursively_add_pixels (node->oct8, found pixels);

300

/***************************************************************************

* nexztoctant

**************** ********* ********************* ******
310

OCTANT TREE_NODE* next_octant (OCTANTTREE NODE *node, int *suboctantnum,
double x, double y, double z)

{
double xmid, y_mid, z_mid;

x_mid = (node->x min + node->xmax) / 2.0;
y_mid = (node->y min + node->y_max) / 2.0;
z_mid = (node->zmin + node->z_max) / 2.0;

320
if (x >= xmid)

if (y >= y_ /* 02, 03, 06, 07 *!
if (y >= ymid)
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{ /* 02, 06 */
if (z >= z mid) /* 02 */

{ *sub octant_num = OCTANT2; return (node->oct2); }
else /* 06 */

{ *sub_octantnum = OCTANT6; return (node->oct6); }
}

else 330
{ /* 03, 07 */

if (z >= z_mid) /* 03 */
{ *sub_octantnum = OCTANT3; return (node->oct3); }

else /* 07 */
{ *suboctant_num = OCTANT7; return (node->oct7); }

else
{ /* 01, 04, 05, 08 */ 340

if (y >= y_mid)
{ /* 01, 05*/

if (z >= z_mid) /* 01 */
{ *sub_octant_num = OCTANT1; return (node->octl); }

else /* 05 */
{ *sub_octant_num = OCTANT5; return (node->oct5); }

else

{ /* 04, 08 */
if (z >= z_mid) /* 04 */ 350

{ *sub octant_num = OCTANT4; return (node->oct4); }
else /* 08 */

{ *suboctant_num = OCTANT8; return (node->oct8); }

360

* place_new octanttree_node

****** **** **************************************************************/

void place new octant tree node (OCTANTTREE NODE *node, int sub_octant_num,
OCTANTTREE_NODE *newnode)

{
switch (sub_octant_num) 370
{
case OCTANT1:

node->octl = newnode;
break;

case OCTANT2:
node->oct2 = new_node;
break;

case OCTANT3: 380
node->oct3 = new_node;
break;

case OCTANT4:
node->oct4 = newnode;
break;

case OCTANT5:
node->oct5 = new_node;
break; 390

case OCTANT6:
node->oct6 = new_node;
break;

case OCTANT7:
node->oct7 = new node;
break;
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case OCTANT8: 400
node->oct8 = new_node;
break;

}

* sub octant boundaries 410

***** ********************************* **********

void sub_octantboundaries (OCTANT TREE NODE *node, int suboctant num,
double *x_min, double *x max,
double *y_min, double *y_max,
double *z_min, double *z_max)

{
double x_mid, y_mid, zmid; 420

x_mid = (node->x_min + node->xmax) / 2.0;
y_mid = (node->y_min + node->y_max) / 2.0;
zmid = (node->z_min + node->z max) / 2.0;

switch (sub octant num)
{
case OCTANT1:

*x min = node->x_min; *xmax = xmid; 430
*y min = y_mid; *y_max = node->y_max;
*z min = zmid; *zmax = node->z_max;
break;

case OCTANT2:
*x-min = xmid; *x_max = node->xmax;
*ymin = y_mid; *y_max = node->y max;
*z rin = z_mid; *z_max = node->zmax;
break;

440
case OCTANT3:

*x min = x_mid; *x_max = node->xmax;
*y min = node->y_min; *y_max = y_mid;
*zmin = z_mid; *zmax = node->z_max;
break;

case OCTANT4:
*x min = node->xmin; *xmax = x_mid;
*y min = node->y_min; *y_max = y_mid;
*zmin = z_mid; *z_max = node->zmax; 450
break;

case OCTANT5:
*x min = node->xmin; *x max = x mid;
*ymin = ymid; *y max = node->y max;
*z min = node->zmin; *z_max = zmid;
break;

case OCTANT6:
*x min = xmid; *xmax = node->xmax; 460
*y min = y mid; *ymax = node->y_max;
*z min = node->zmin; *zmax = zmid;
break;

case OCTANT7:
*xmin = xmid; *x max = node->xmax;
*y min = node->ymin; *y max = y_mid;
*zmin = node->z min; *zmax = z_mid;
break;

470
case OCTANT8:

*x_min = node->xmin; *xmax = xmid;
*y_min = node->y min; *y_max = y_mid;
*z min = node->z min; *z max = z_mid;
break;
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}
}

480

/ ***************************************************************************

*unparse_octant_tree

* unparse_octant_tree recursively traverses the pixel tree, and calls
* unparse_pixel to print the values of the PIXEL struct fields.

********************* ********************************* ********************

void unparse_octant_tree (OCTANTTREENODE *node) 490
{

if (node == NULL)
return;

if (node->pixel != NULL) /* leaf of the octant tree */
{

unparse pixel (node->pixel);
return;

}
500

/* Otherwise, must be an interior node: */

printf("Interior node\n");
printf("-------------\n");
printf("xmin: %lf\n", node->xmin);
printf("x_max: Xlf\n", node->x_max);
printf("ymin: lf\n", node->y_min);
printf("ymax: %lf\n", node->y_max);
printf("z.min: %lf\n", node->zmin); 510
printf("zmax: %1f\n", node->z_max);
printf("\n\n");

unparseoctant_tree (node->octl);
unparse octant tree (node->oct2);
unparse octanttree (node-> oct3);
unparse_octanttree (node->oct4);
unparse octant_tree (node->oct5);
unparse octanttree (node->oct6);
unparse octant tree (node->oct7); 520
unparse_octant tree (node-> oct8);

}

/***************************************************************************
* free_octant tree

* free_ octant_ tree recursively deallocates memory for the tree pointed to 530
* by 'node'. Note that this procedure does not free the individual
* pixels in the tree.

******************************* ******************* *** ******************

void freeoctant tree (OCTANT_TREE_NODE *node)
{

if (node == NULL)
return;

540
free octant_tree (node->octl);
free octant_tree (node->oct3);
free octant_tree (node->oct3);
freeoctant_tree (node- >oct4);
freeoctant tree (node->oct5);
freeoctanttree (node->oct6);
free octant tree (node->oct7);
free octanttree (node->oct8);
free (node);

550
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/***************************************************************************

* number of_nodes

* number of nodes recursively traverses the pizel tree pointed to by
* 'node'. As it reaches each node, 'num_nodes' is incremented by 1.
* This function is useful for testing how well-balanced the pizel tree is. 560
a

**************************** **************** ***** ******************/

int number ofnodes (OCTANT TREE_NODE *node)
{

if (node != NULL)
return (numberof nodesreal (node, TRUE));

else
return 0;

} 570

int number_ofnodes real (OCTANT_TREE NODE *node, int new)
{
static int num_nodes = 0;

if (node == NULL)
return num_nodes;

580
if (new == TRUE)

num nodes = 0;

numnodes++;

number of nodesreal (node->octl, FALSE);
number of nodesreal (node->oct2, FALSE);
number of nodesreal (node->oct3, FALSE);
number of nodesreal (node->oct4, FALSE);
number of nodes_real (node->oct5, FALSE); 590
number of nodes_real (node->oct6, FALSE);
numberpofnodesreal (node->oct7, FALSE);
number of nodes real (node->oct8, FALSE);

return numnodes;
}

600
/***************************************************************************

* num_pizels_in_tree

***************************************** ** * *********** **********/

int num_pixels intree (OCTANT_TREE_NODE *node)
{

if (node != NULL)
return (numpixels in tree real (node, TRUE)); 610

else
return 0;

}

int numpixels in treereal (OCTANT_TREE NODE *node, int new)
{
static int num_pixels = 0;

620
if (node == NULL)

return num_pixels;

if (new == TRUE)
numpixels = 0;

if (node->pixel != NULL) /* reached a leaf -- > increment num_pixels */
{
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numpixels++;
return num_pixels; 630

1
num_pixelsintree_real (node->octl, FALSE);
num_pixelsintreereal (node->oct2, FALSE);
numpixels in tree real (node->oct3, FALSE);
num_pixels in_treereal (node->oct4, FALSE);
num_pixels in_tree_real (node->oct5, FALSE);
num_pixels in_tree real (node->oct6, FALSE);
num_pixels intree_real (node->oct7, FALSE);
numpixels intreereal (node->oct8, FALSE); 640

return num_pixels;

* find minmaz coordinates
* 650

******************************************************** 
*******************/

void find_minmax coordinates (PIXEL_LIST *pixellist,
double *x_min, double *x_max, double *ymin,
double *y_max, double *zmin, double *z_max)

register int i;
PIXEL *pixel;

660
if (pixel list == NULL)

return;

pixel = pixel list->pixel_array[0];

*xmin = pixel->x; *x max = pixel->x;
*y_min = pixel->y; *y_max = pixel->y;
*zmin = pixel->z; *z max = pixel->z;

670

for (i = 0; i < pixel _ist->num_pixels; i++)
{

pixel = pixel list->pixel array[i];

*x min = (pixel->x < *x_min) ? pixel->x : *x min;
*x_max = (pixel->x > *x_max) ? pixel->x: *x_max;
*y_min = (pixel->y < *y_min) ? pixel->y : *y min;
*y_max = (pixel->y > *ymax) ? pixel->y : *y max;
*z min = (pixel->z < *zmin) ? pixel->z : *z_min; 680
*z_max = (pixel->z > *z_max) ? pixel->z: *zmax;

I
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B.12 Cluster Tree Functions

cluster_tree.c

CLUSTER_TREENODE* createcluster_tree_node (double x_min, double xmax,
double y_min, double y_max,
double zmin, double zmax);

CLUSTERTREE_NODE* buildcluster_tree (CLUSTERLIST *cluster list);

void addcluster to tree (CLUSTER TREENODE* node, CLUSTER* cluster);

void extract clusters (CLUSTER TREE_NODE *node, 10
CLUSTER-LIST *found_clusters,
double bb x_min, double bbxmax, double bb.y_min,
double bb y_max, double bbz_min, double bb zmax);

void verifyextractclusters (CLUSTER LIST *treeclusters,
CLUSTER LIST *found clusters,
double bb x min, double bb x_max,
double bby_min, double bby_max,
double bbz_mnin, double bb_zjnax);

20
void recursively addclusters (CLUSTERTREE_NODE *node,

CLUSTERLIST *foundclusters);

CLUSTERTREENODE* next cluster tree octant (CLUSTER-TREE NODE *node,
int *suboctant num,
double x, double y, double z);

void placenewcluster_tree_node (CLUSTER-TREE_NODE *node, int sub octant num,
CLUSTERITREE_NODE *newnode);

30
void subcluster tree_boundaries (CLUSTERTREE NODE *node, int sub octantnum,

double *x_min, double *xmax,
double *y_min, double *y_max,
double *z_min, double *z max);

void findcluster listminmax coordinates (CLUSTER LIST *cluster list,
double *xmin, double *x max,
double *ymin, double *y_max,
double *zmin, double *z_max);

40
void free_cluster tree (CLUSTERTREE NODE *node);

clustertree.h

#include <stdio.h>
#include "global.h"
#include "cluster.h"
#include "clustertree.h"

/***************************************************************************

create cluster tree node
*10

****************************** ********* ******* ******** ********

CLUSTERTREE_NODE* createclustertreenode (double x min, double x_max,
double y_min, double ymax,
double zmin, double zmax)

CLUSTER TREE NODE *cluster tree node =
(CLUSTERTREE_NODE*) malloc (sizeof (CLUSTERTREE_NODE));

20
cluster_tree_node->octl = NULL;
cluster_treenode->oct2 = NULL;



cluster_tree node->oct3 = NULL;
cluster tree_node->oct4 = NULL;
cluster tree node->oct5 = NULL;
cluster tree _node->oct6 = NULL;
cluster tree_node->oct7 = NULL;
cluster_tree_node->oct8 = NULL;

cluster tree node->x_min = xmin; 30
cluster_tree_node->x_max = x_max;
cluster treenode->y_min = ymin;
cluster treenode->ymax = ymax;
cluster tree node->zmin = zmin;
clustertreenode->z max = z_max;

clustertree_node- >cluster = NULL;

return cluster_tree_node;
40

/***************************************

* build cluster tree

*********************************** ******************** ******************1

50
CLUSTER TREE_NODE* build cluster tree (CLUSTER_LIST *cluster list)
{
register int i;
double x_min, x_max, ymin, y_max, zmin, zmax;
CLUSTERTREE_NODE *clustertree root;

if (cluster_list == NULL)
return NULL;

60

find_cluster list_min_max_coordinates (cluster_list,
&x_min, &x_max,
&y_min, &y_max,
&z_min, &zmax);

cluster tree root =
create_cluster tree node (x_min, xmax, y_min, y max, z min, z_max);

70
for (i = 0; i < cluster_list->num clusters; i++)

addcluster_to tree (cluster_tree_root, cluster_list->clusterarray[i]);

return cluster_tree_root;

/ *************************************************************************** 80
* add cluster to tree

************************************************************ 
** ********

void addclusterto tree (CLUSTER_TREE_NODE* node, CLUSTER* cluster)

CLUSTERTREE NODE *suboctant_ptr;
CENTROID *centroid;
CLUSTER *temp_cluster; 90
int suboctant_num;
double x_min, x max, y_min, y_max, z_min, z_max;

/* Must insert an interior node and decide which cluster the cluster
belongs to. */

if (node->cluster != NULL) /* node is a leaf */
{

tempcluster = node->cluster; 100
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/ * node is no longer a leaf */

/* Call recursively on temp_cluster and cluster so they can be placed: */
add_clusterto tree (node, tempcluster);
add cluster to_tree (node, cluster);
return;

}

/* node is an interior node: */ 110
centroid = cluster->centroid;

sub octantptr =
nextcluster tree octant (node, &suboctant_num,

centroid->x, centroid->y, centroid->z);

if (sub octant_ptr == NULL)
{

subclustertree_boundaries (node, sub octant_num, &x min, &x_max, 120
&y_min, &y_max, &zmin, &zmax);

/* Create new leaf: */
sub_octant ptr =

create cluster treenode (x min, x_max, ymin, y_max, z_min, zmax);

sub_octantptr->cluster = cluster;

/ * Attach the new leaf to the tree: */
placenew_cluster tree_node (node, suboctant num, suboctantptr); 130

return;
}

/* Otherwise, recursively traverse tree to find insertion point: */
add_cluster to tree (suboctant_ptr, cluster);

140

/***************************************************************************
* extract clusters

* Extract the clusters from the cluster tree which lie in the desired
* conical search volume.

********************************** *************** ***********************/

void extract clusters (CLUSTER_TREE NODE *node, 150
CLUSTERLIST *found_clusters,
double bb_x_min, double bbx_max, double bby_min,
double bby_max, double bbz min, double bbz max)

int axis overlap_count;
double octx_min, octxmax, oct y_min, octy_max, octz_min, oct_zmax;
CLUSTER *cluster;
CENTROID *centroid;

if (node == NULL) 160
return;

octxmin = node->x_min; oct_xmax = node->x_max;
octy_min = node->ymin; octy_max = node->ymax;
oct_zmin = node->z_min; oct_zmax = node->zmax;

cluster = node->cluster;

/ * If reach a leaf, test the cluster to see if it should be included */
if (cluster != NULL) 170
{

centroid = cluster->centroid;

if (bb_x_min <= centroid->x && centroid->x <= bb x_max &&
bb_y_min <= centroid->y && centroid->y <= bb y_max &&
bbz_min <= centroid->z && centroid->z <= bbzmax)

add_to_cluster list (found_clusters, cluster);

node->cluster = NULL;



/ * check cluster against search volume */

return; 180

/* Otherwise, must be an interior node... */

/* If cluster is completely enclosed by the bounding box, then recursively
add all clusters in the subregions */

if (bb xmin <= octx_min && oct_x_min <= bb_x_max &&
bb_ x min < oct x max && oct x max < bb x max && 190
bby_min <= octy min && oct_y_min <= bby_max &&
bby_min < octy_max && octy_max < bby max &&
bb z min <= oct z min && oct z min <= bb z max &&
bb_zmin < oct_z max && oct_z_max < bb_z_max)

{
recursively_add_clusters (node, found_clusters);
return;

}
200

axisoverlap count = 0;

/ * Test for overlap along x axis: */
if (((oct_x_min <= bb_x_min && bbxmin < octx_max) I|

(oct_x_min <= bb_x max && bb_x_max < oct xmax)) II
((bb x min <= oct_x_min && oct_x _min <= bb_x_max) fl
(bb_x_min < octxmax && oct_x_max < bb_x_max)))

axis_overlap_count++;

/* Test for overlap along y axis: */ 210
if (((oct_y_min <= bb_y_min && bb y min < octy_max) I

(oct_y_min <= bby_max && bb_y_max < oct_y_max)) II
((bb_y_min <= octy_min && oct_y_min <= bby_max)
(bb_y_min < oct_y_max && oct y_max < bby_max)))

axis overlapcount++;

/* Test for overlap along z axis: */
if (((oct_z_min <= bbz min && bb_z_min < oct z max) 1

(oct_z_min <= bb_z max && bb_z_max < oct _zmax))
((bbz_min <= oct_z_min && oct_z_min <= bb_z_max) fl 220
(bb_z_min < oct_z_max && octzmax < bbz max)))

axis_overlap_count++;

/* If there is overlap between the cluster and the bounding box, then call
extract_clusters recursively on each of the subregions */

if (axisoverlapcount == 3) /* All 3 axes overlap */
{

extract_clusters (node->octl, found clusters, bb_x_min, bb_x_max,
bby_min, bb y_max, bb zmin, bb_z_max); 230

extract clusters (node->oct2, found_clusters, bb_x_min, bbxmax,
bb_y_min, bb y_max, bb_zmin, bb z max);

extract_clusters (node->oct3, found_clusters, bb_x_min, bb_x_max,
bb_y_min, bb_y_max, bb_z_min, bbz_max);

extract_clusters (node->oct4, found_clusters, bbx_min, bb_x_max,
bby_min, bby_max, bb_z min, bb_z_max);

240
extract_clusters (node->oct5, found_clusters, bb_x_min, bb_x_max,

bb_y_min, bb y_max, bb_z_min, bb_z_max);

extract_clusters (node->oct6, found_clusters, bb_x_min, bbx max,
bb y_min, bby_max, bb_z_min, bb_z max);

extractclusters (node->oct7, found_clusters, bb x min, bb x_max,
bby min, bb y max, bb z min, bb_zmax);

extract_clusters (node->oct8, found_clusters, bbx_min, bb x_max, 250
bby_min, bb ymax, bb_z_min, bb_z_max);

}
}
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/ *********************************************************
verify_eztract_clusters

**************************************** ******* * ***** ******* ***********/

void verify_extract_clusters (CLUSTERLIST *tree_clusters,
CLUSTER_LIST *found_clusters,
double bbxmin, double bb_x_max,
double bby_min, double bbymax,
double bbz_min, double bb_z max)

register int i;
CLUSTER *cluster;
CENTROID *centroid;

for (i = 0; i < tree clusters->num_clusters; i++)
{

cluster = tree clusters->cluster_array[i];
centroid = cluster->centroid;

if (bb_x_min <= centroid->x && centroid->x <= bb_xmax &&
bb~y_min <= centroid->y && centroid->y <= bb ymax &&
bb z_min <= centroid->z && centroid->z <= bbzmax)

addtoclusterlist (foundclusters, cluster);

/***************************************************************************
* recursively_ addclusters

******************************************** **,************* ** **********/

void recursively_addclusters (CLUSTER_TREENODE *node,
CLUSTERLIST *foundclusters)

if (node == NULL)
return;

if (node->cluster != NULL)
{

/ * leaf node */

add to clusterlist (found_clusters, node->cluster);
return;

recursively_add clusters
recursively_add clusters
recursively_add clusters
recursively_add clusters
recursivelyadd_clusters
recursively_add clusters
recursively_add_clusters
recursively_add clusters

(node->octl, foundclusters);
(node->oct2, foundclusters);
(node->oct3, found clusters);
(node->oct4, foundclusters);
(node->oct5, found clusters);
(node->oct6, found clusters);
(node->oct7, found clusters);
(node->oct8, foundclusters);

/ *********************************************************
nextcluster tree octant

****************************** *********** ****** *************** ******/

CLUSTER_TREE_NODE* next_clustertree octant (CLUSTERTREE_NODE *node,
int *sub octant num,
double x, double y, double z){
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double x_mid, ymnid, zmid; 330

x mid = (node->x_min + node->x max) / 2.0;
y_mid = (node->y_min + node->y_max) / 2.0;
z mid = (node->zrmin + node->z_max) / 2.0;

if (x >= x_mid)
{ /* 02, 03, 06, 07 */

if (y >= ymnid)
{ /* 02, 06 */ 340
if (z >= z_mid) /* 02 *

{ *suboctant_num = OCTANT2; return (node->oct2); }
else /* 06 */

{ *suboctant_num = OCTANT6; return (node->oct6); }
}

else
{ /* 03, 07 */
if (z >= z_mid) /* 03 */

{ *suboctant_num = OCTANT3; return (node->oct3); }
else /* 07 */ 350

{ *sub octant_num = OCTANT7; return (node->oct7); }
}

else
{ /* 01, 04, 05, 08 */

if (y >= yymid)
{ /* 01, 05 */
if (z >= zmid) /* 01 *

{ *suboctant_num = OCTANT1; return (node->octl); } 360
else /* 05 */

{ *suboctantnum = OCTANT5; return (node->oct5); }
}

else
{ /* 04, 08 */
if (z >= z_mid) /* 04 */

{ *suboctantnum = OCTANT4; return (node->oct4); }
else /* 08 */

{ *suboctant_num = OCTANT8; return (node->oct8); }
} 370

/***************************************************************************

* place new cluster tree node

* 380
**************************** ***************** ***************************

void place new_clustertreenode (CLUSTERTREE_NODE *node, int subpoctant_num,
CLUSTERTREENODE *newnode)

{
switch (sub octant_num)

{
case OCTANT1:

node->octl = new_node;
break; 390

case OCTANT2:
node->oct2 = new node;
break;

case OCTANT3:
node->oct3 = new node;
break;

case OCTANT4: 400
node->oct4 = new_node;
break;

case OCTANT5:
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node->oct5 = new node;
break;

case OCTANT6:
node->oct6 = new_node;
break; 410

case OCTANT7:
node->oct7 = newnode;
break;

case OCTANT8:
node->oct8 = newnode;
break;

}
420

* sub cluster tree boundaries

************************************************************************

430
void sub cluster tree_boundaries (CLUSTERTREE_NODE *node, int sub octant_num,

double *x_min, double *xmax,
double *ymin, double *y max,
double *zmin, double *z_max)

{
double x_mid, ymid, z_mid;

x_mid = (node->xmin + node->x-max) / 2.0;
ymnid = (node->y_min + node->y_max) / 2.0;
zmid = (node->zmin + node->z_max) / 2.0; 440

switch (suboctant num)
{
case OCTANT1:

*x min = node->x_min; *xmax = xrmid;
*ymin = y_mid; *y_max = node->y_max;
*z min = z_mid; *z_max = node->z_max;
break;

450
case OCTANT2:

*xmin = x_mid; *xmax = node->xmax;
*y min = y_mid; *y max = node->y_max;
*z min = z mid; *zmax = node->z_max;
break;

case OCTANT3:
*x min = x_mid; *xmax = node->x_max;
*ymin = node->y_min; *y_max = ymnid;
*z min = zmid; *z_max = node->z_max; 460
break;

case OCTANT4:
*x min = node->x min; *x max = xmid;
*ymin = node->y_min; *y_max = y_mid;
*z min = z_mid; *z_max = node->z_max;
break;

case OCTANT5:
*xmin = node->x min; *x max = x mid; 470*ymin = y_mid; *y_max = node->y_max;
*zmin = node->z_min; *z_max = zmid;
break;

case OCTANT6:
*x min = x mid; *x max = node->xmax;
*y_min = ymnid; *y_max = node->y_max;
*zmin = node->z_min; *zmax = zmid;
break;

480
case OCTANT7:
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*xmin = x_mid; *x_max = node->xnmax;
*y_min = node->y_min; *y_max = ymid;
*z min = node->z min; *zmax = zmid;
break;

case OCTANT8:
*xmin = node->x min; *x_max = x_mid;
*y_min = node->y_min; *y_max = y_mid;
*z min = node->z_min; *zmax = z_mid; 490
break;

}

/***************************************************************************

* find_clusterlist_minmax coordinates
500

***************************************************** 
******************

void find cluster list minmax_coordinates (CLUSTERLIST *clusterlist,
double *x min, double *xmax,
double *ymin, double *y_max,
double *zmin, double *z_max)

{
register int i;
CENTROID *centroid; 510

if (cluster list == NULL)
return;

centroid = cluster list->clusterarray[0]->centroid;

*x_min = centroid->x; *xmax = centroid->x;
*y min = centroid->y; *y_max = centroid->y;
*z min = centroid->z; *zmax = centroid->z; 520

for (i = 0; i < cluster_list->num clusters; i++)
{

centroid = clusterlist->clusterarray[i]->centroid;

*xmin = (centroid->x < *xmin) ? centroid->x : *x_min;
*x_max = (centroid->x > *xmax) ? centroid->x : *x~max;
*y min = (centroid->y < *y_min) ? centroid->y: *y_min;
*y_max = (centroid->y > *y_max) ? centroid->y : *y max; 530
*z_min = (centroid->z < *z min) ? centroid->z: *z min;
*z_max = (centroid->z > *z_max) ? centroid->z : *z_max;

}

540
/***************************************************************************
* free_cluster_tree

* free cluster_ tree recursively deallocates memory for the tree pointed
* to by 'node'. Note that this procedure does not free the individual
* clusters in the tree.

**************************************** 
******************

void free cluster tree (CLUSTERTREENODE *node) 550

if (node == NULL)
return;

free cluster tree (node->octl);
free cluster tree (node->oct2);
free cluster tree (node->oct3);
free cluster tree (node->oct4);
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free_cluster_tree (node->oct5);
free_clustertree (node->oct6); 560
free_cluster_tree (node->oct7);
free_cluster_tree (node->oct8);
free (node);

}
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Appendix C
Diagnostic Routines

C.1 Main Diagnostic Routine

diagnostic.h

#ifndef DIAGNOSTIC
#define _DIAGNOSTIC

#define TRUE TRACK STATS 1
#define FOUNDTRACK STATS 2

#endif

diagnostic.cc

#include
#include
#include
#include

#include
#include
#include
#include

<stdlib.h>
<string.h>
<iostream.h>
<fstream.h>

"diagnostic.h"
"entry. h"
"track.h"
"table .h"

// simple diagnostics for track finder dump file

main()

char filename[200];

cout << "Enter pixel dump filename:
cin >> filename;
cout << endl;

ifstream in(filename);

if(!in)
{

cout << "Couldn't open " << filename << "
exit(O);

/*
cout << "Enter diagnostic results output filename: ";
cin >> filename;
cout << endl;

ofstream out(filename);

if(!out)

cout << "Couldn't open " << filename << ". Exitin
exit (0);

Exiting..." << endl;

g..." << endl;

int true_found;
cout << "Specify (1) True tid or (2) Found tid:
cin >> true_found;
cout << endl;
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if (true found != TRUETRACKSTATS && true found != FOUND TRACK_STATS)
{

cout << "Did not enter 1 or 2. Exiting." << endl;
exit(O);

}
// go through dump file on line at a time and build up statistics:
// get a line, then get the true tid and the found tid.

Table table;
char buffer[500];

// dump file format:
// found_tid true_tid rho theta phi {module.id}

cout << "Processing dump file..." << endl;

while (!in.getline(buffer, 500).eof())

char token chars( = " \t\n";

char* ptr = strtok(buffer, token_chars); // extract true track ID
int foundtid = (int) atof(ptr);

ptr = strtok(NULL, token_chars); // extract found track II
int true_tid = (int) atof(ptr);

table.process_pixel(true_found, found_tid, true tid);

//ccout << "****************************" << endl;
//ttable.unparse(true found);
//ccout << ***************************** << endl;

cout << "Finished. Displaying results:" << endl;

cout << endl << endl;
table.unparse(true found);
cout << endl << endl;
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C.2 Track Functions

track.h

#ifndef TRACK
#define -TRACK

#include "entry.h"

class Track

{
int tid;
int _num entries;
Entry* _entry_array; 10

public:
Track();
Track(int tid);
"Track();
void process_pixel(int tid);
void add entry(int tid);
void sortentries();
int total_numpixels();
int gettid(; 20
void unparse(int truefound);

#endif _TRACK_

track.cc

#include <iostream.h>
#include "diagnostic. h"
#include "entry.h"
#include "track.h"

Track::Track()
{

tid = 0;
num entries = 0; 10
entry_array = NULL;

}

Track::Track(int tid)
{

tid = tid;
numentries = 0;

_entry_array = NULL;
} 20

Track:: Tracko
{

//ifif(_entry_array != NULL)
// delete [] _entry_array;

}

void Track::processpixel(int tid) 30
{

// Go through list of entries and look for one that
// has the same tid:

for(int i = 0; i < _num entries; i++)
if(_entry_array[i].get_tid() == tid)

{
.entry .array[i].add_pixel();

162



return;
} 40

// If the tid wasn't found, then a new entry needs to be added:
add_entry(tid);

}

void Track::add entry(int tid)
{

Entry* temp_entry_array = new Entry[num entries + 1];
50

// copy existing entries
for(int i = 0; i < _numentries; i++)

temp_entry_array[i] = _entry_array[i];

if(_entryarray != NULL)
delete [ _entry_array;

entryarray = temp_entry_array;

_entryarray[num entries] = Entry(tid); 60
num entries++;

}

void Track::sort_entries()
{
// use merge sort
// cout << "sort_entries()..." << endl;

// temporary - insertion sort (runs in n ^2 time): 70
for(int i = _numentries - 1; i >= 0; i--)
{

for(int j = 0; j < i; j++)
if(_entry_array[i].getnumpixels() > _entry array[j].getynum_pixels())
{

Entry tempentry = _entry_array[i];
.entry_array[i] = _entryarray[j];
_entry_array[j] = temp_entry;

}
} so80

int Track::gettid()
{
return _tid;

}

int Track::total numpixels() 90
{
int totpixels = 0;

for(int i = 0; i < num entries; i++)
tot_pixels += _entryarray[i].get numpixels();

return tot_pixels;
}

100
void Track::unparse(int true found)
{

sort entries();

cout.setf(ios::left, ios::adjustfield);
cout.setf(ios::fixed, ios::floatfield);
cout.setf(ios::showpoint);
cout.precision(1);

if(truefound == TRUE_TRACK STATS) 110
{

cout << "True track ID: " << _tid << endl;
cout << "\t";

163



cout.width(16);
cout << "Found track ID";

cout.width(19);
cout << "Portion of pixels";

120
cout << "# of pixels" << endl;
cout << "\t";

cout.width(16);
cout << "----------------"

cout.width(19);
cout << "--------------------

cout << "---------- " << endl; 130

int tot_pixels = total_numpixels();
int num_unfound_pixels = 0;
int num other_entries = 0;
int num_other_pixels = 0;

for(int i = 0; i < _num_entries; i++)
{
int numpixels = _entry_array[i].getnum_pixels();

140
if(_entry_array[i].gettid() == 0) // found tid == 0 -- > unfound

num_unfound_pixels += numpixels;

else if(((float) num_pixels / (float) tot_pixels) < 0.05)
// change to user-setable value
{

num other entries++;
numother_pixels += numpixels;

}
150

else
{

cout << "\t";
cout.width(16);
cout << _entryarray[i].gettid();

float portion = ((float) num_pixels / (float) totpixels) * 100.0;

if(portion < 10.0) // since it is rounded, use 9.95 (?)
cout << " "; 160

if(portion < 100.0)
cout << " ";

cout << portion;

cout.width(14);
cout << "%";

cout << numpixels << endl;
}

} 170

if(num_other_entries > 0)

cout << "\tother: ";
cout.width(9);
cout << numother_entries;

float portion = ((float) numother_pixels / (float) tot_pixels) * 100.0;

if(portion < 10.0) // since it is rounded, use 9.95 (?) 180
cout << " ";

if(portion < 100.0)
cout << " ";

cout << portion;

cout.width(14);
cout << "%";

cout << num_other pixels << endl;
190

if(num_unfound_pixels > 0)
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cout << "\t";
cout.width(16);
cout << "Unfound";

float portion = ((float) numunfoundpixels / (float) tot_pixels) * 100.0;

if(portion < 10.0) // since it is rounded, use 9.95 (?) 200
cout << " ";

if(portion < 100.0)
cout << " ";

cout << portion;

cout.width(14);
cout << "X";

cout << numunfound_pixels << endl;
210

cout << "\t";

cout.width(16);
cout << " ---- ------ "

cout.width(19);
cout << "--- ----------- ";

cout << "---------- " << endl; 220

cout << "Totals:\t";

cout.width(16);
cout << _num entries;

cout.width(19);
cout << "100.0%";

cout << tot_pixels << endl << endl << endl; 230
return;

}

else if(truefound == FOUNDTRACK STATS)
{

cout << "Found track ID: " << _tid << endl;
cout << "\t";

cout.width(15); 240
cout << "True track ID";

cout.width(19);
cout << "Portion of pixels";

cout << "t of pixels" << endl;
cout << "\t";

cout.width(15);
cout << "-----------"; 250

cout.width(19);
cout << "--- . ---------- ":

cout << "----------" << endl;

int totpixels = total_num.pixels();
int num_noisepixels = 0;
int num other entries = 0;
int num other_pixels = 0; 260

for(int i = 0; i < _num_entries; i++)
{

int numpixels = _entry_array[i].get_num_pixelsO;

if(_entry_array[i].get tid() == 0) // found_tid == 0 -- > noise
num noise_pixels += num_pixels;

else if(((float) num_pixels / (float) tot_pixels) < 0.05)
// change to user-setable value 270
{
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numother entries++;
numother_pixels += num pixels;
}

else
{

cout << "\t";
cout.width(15);
cout << _entry_array[i].gettid(); 280

float portion = ((float) numpixels / (float) tot pixels) * 100.0;

if(portion < 10.0) // since it is rounded, use 9.95 (?)
cout << " ";

if(portion < 100.0)
cout << " ";

cout << portion;

cout.width(14); 290
cout << "%";

cout << num_pixels << endl;
}

}
if(num other_entries > 0)

{
cout << "\tother: ";
cout.width(8); 300
cout << num otherentries;

float portion = ((float) num other.pixels / (float) tot_pixels) * 100.0;

if(portion < 10.0) // since it is rounded, use 9.95 (?)
cout << " ""

if(portion < 100.0)
cout << " ";

cout << portion;
310

cout.width(14);
cout << "%";

cout << numotherpixels << endl;
}

if(numnoise_pixels > 0)
{

cout << "\t";
cout.width(15); 320
cout << "Noise";

float portion = ((float) numrnoise_pixels / (float) tot.pixels) * 100.0;

if(portion < 10.0) // since it is rounded, use 9.95 (?)
cout << " ";

if(portion < 100.0)
cout << " ";

cout << portion;
330

cout.width(14);
cout << "%";

cout << num_noise_pixels << endl;

cout << "\t";

cout.width(15);
cout << " ------------- "; 340

cout.width(19);
cout << "-----------------";

cout << "----------" << endl;

cout << "Totals:\t";

cout.width(15);
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cout << _num_entries;

cout.width(19);
cout << "100.07.";

cout << totpixels << endl << endl << endl;
return;

}
else

{ 360
cout << "Error in Track: :unparse!" << endl;
return;

}}
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C.3 Table Functions

table.h

#ifndef TABLE
#define _TABLE_

#include "track.h"

class Table
{
int num_tracks;
Track* _track_array; 10

public:
Table();
~Table();
void process_pixel(int true_found, int found_tid, int true_tid);
void unparse(int true found);
};

#endif 20

table.cc

#include <iostream.h>
#include "diagnostic. h"
#include "table. h"

Table::Table()

I
numtracks = 0;
track_array = NULL;

} 10

Table::-Table()

if (_track_array != NULL)
delete [] _track_array;

void Table::processpixel(int true_found, int found_tid, int true tid) 20
{

// first check to see if track is already in the table:

if(true_found == TRUE_TRACK_STATS)

{
for(int i = 0; i < _num tracks; i++)

if (true tid == _track_array[i].gettid())

_track_array[i] .process_pixel(foundtid);
return; 30
)

Ielse // truejound =-= FOUND_TRACKSTATS

for(int i = 0; i < _num tracks; i++)
if (found_tid == _track_array[i].gettid())

{
_track array[i].process_pixel(true_tid);
return;
} 40

// otherwise need to add another track to the table
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Track* temp_track_array = new TrackLnum_tracks + 1];

// copy the ezisting track array
for(int i = 0; i < num tracks; i++)

temp trackarray[i] = track_array[i];

if(_trackarray != NULL) 50
delete [ _track_array;

track_array = temptrack_array;

if(truefound == TRUE TRACK STATS)
{

// cout << "adding track (tid = " << true_tid << ")" << endl;
track arrayLnum_tracks] = Track(truetid);
trackarrayLnum_tracks].addentry(foundtid); // process_pizel (?)

} 60
else // truejound == FOUND TRACKSTATS
{

// cout << "adding track (tid = " << found_tid << ")" << endl;
track arrayLnum_tracks] = Track(found_tid);
track arrayLnum_tracks].addentry(true_tid); // process pizel (?)

}
num tracks++;

70

void Table::unparse(int truefound)
{

for(int i = 0; i < _num tracks; i++)
track_array[i].unparse(truefound);

}

80
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C.4 Table Entry Functions

entry.h

#ifndef _ENTRY_
#define _ENTRY_

class Entry

int _tid;
int _num_pixels;

public:
Entry();
Entry(int tid);
-Entry();
void add_pixel();
int get_tid();
int get_numpixels();

};#endif

#endif

entry.cc

#include "diagnostic.h"
#include "entry.h"

Entry::Entry()

_tid = 0;
_numpixels = 0;

Entry::-Entry()

I

Entry::Entry(int tid)
{

tid = tid;
_num_pixels = 1;

void Entry::add_pixel()

_num_pixels++;

int Entry::get_tid(
{
return _tid;

i

int Entry::get_num pixels()

return _num_pixels;
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