
A Software-Based Ultrasound System
for Medical Diagnosis

by

Samir Ram Thadani

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1997

@ Samir Ram Thadani, MCMXCVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute copies
of this thesis document in whole or in part, and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

May 27, 1997

Certified by
David Tennenhouse

Principal Research Scientist
Thesis Supervisor

7

Accepted by
6C--- Arthur C. Smith

Chairman, Departmental Committee on Graduate Theses

0CT 2 91997

i
~

A Software-Based Ultrasound System
for Medical Diagnosis

by

Samir Ram Thadani

Submitted to the Department of Electrical Engineering and Computer Science
on May 27, 1997, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes a software-based ultrasound system suitable for medical diagnosis.
The device's core functions, which include generating the transmit signal and processing
and displaying the received echoes, are implemented in the VuSystem programming envi-
ronment. In addition, a simulation environment was developed using a software model of
the ultrasound transducer and target.

The approach is an improvement over present, hardware-based ultrasound systems be-
cause it takes advantage of the flexibility of software. Various, user-defined transmit wave-
forms can be used, and the receive-side processing can be customized, in real time, to the
user's specifications. Furthermore, additional functionalities can easily be added to the
prototype system.

Thesis Supervisor: David Tennenhouse
Title: Principal Research Scientist

Acknowledgments

I would like to thank my advisor, David Tennenhouse, for his encouragement and support.

I would also like to thank my colleagues in the Software Devices and Systems group at the

MIT Laboratory for Computer Science for all of their help. In particular, I would like to

thank Vanu Bose for guiding me through this thesis, sharing his insights, and answering my

numerous questions. I thank my friends for always encouraging me and helping me through

all those late nights. Finally, and most importantly, I thank my family, whose love and

support have allowed me to realize my aspirations, and whose continued guidance will no

doubt shape my future accomplishments.

Contents

1 Introduction 11
1.1 Motivation 11
1.2 Contributions 13
1.3 Organization of this Report 14

2 Background 15
2.1 Ultrasound Basics 15
2.2 Ultrasound Instrumentation 18
2.3 Ophthalmic Ultrasound 28
2.4 Related Work 29

3 Approach 33
3.1 Traditional Approach 33
3.2 The Software Solution 35

4 Software Implementation 39
4.1 VuSystem 39
4.2 Pulse Generation 42
4.3 The Receiver 49
4.4 The Demodulator 52
4.5 Software Simulation Environment 55
4.6 Display 58

5 Hardware and System Integration 61
5.1 Hardware 61
5.2 The G uPPI 61
5.3 The Daughter Card 62
5.4 Pulse Generation Circuitry 63
5.5 Receiver Circuitry 63
5.6 Integration 65

6 Results and Conclusion 67
6.1 Novel Aspects 67
6.2 Performance Results 67
6.3 Performance Summary and Additional Insights 72
6.4 Future Work 72

A Circuits 79
A.1 Pulse Generation 79
A.2 Receiver 82

B Programming Code 85
B.1 Pulse Generation 85

B.2 Ultrasound Transducer/Target 90
B.3 Ultrasound Receiver 95
B.4 Ultrasound Demodulator 101
B.5 Tcl Script for Simulation Environment 105

List of Tables

6.1 Module Performance Measurements 70

List of Figures

A Block Diagram of a Traditional Ultrasound System
The Generalized Layout of the Prototype Ultrasound System .
The Display, Control, and Program Windows of the Prototype
System .

Reflection and Transmission of Ultrasound

Reflection and Transmission in A-scan . .
Schematic of A-scan

Pulse Interference due to high PRF
Time Compensated Gain
Half and full wave rectified echoes
Problems in A-scan imaging
Eye scan setup
The B-mode Scan Plane

B-scan image formation
B-scan Block Diagram

Ultrasound
. 14

at a Boundary 17
. 19
. 19
. 2 1
. 22
. 22
. 24
. 25
. 26
. 27
. 27

3-1 Block Diagram of a Traditional Ultrasound System
3-2 Block Diagram of the Entire Prototype Ultrasound System

4-1 Block Diagram of VuSystem Software Modules
4-2

4-3
4-4

4-5

4-6
4-7

5-1

5-2
5-3

The Gated Sinusoid and Short-Duration Pulse Methods of Pulse Generation
Pulse Generator Display, including its VuSystem Control Panel
The Receiver Display, including its VuSystem Control Panel
Block Diagram of Simulation Environment
The Equivalent Electrical Circuit Modeling a Transducer and Target
Return Echoes in the Ultrasound Simulation Environment

A Block Diagram of the GuPPI
An Overview of the Receiver Circuit
Block diagram of entire ultrasound system

6-1 Setup used to Evaluate the Performance of Filter Modules
6-2 Setup used to Evaluate the Performance of the Pulse Generator Module

A-1 Circuit Used to Excite the Transducer

1-1
1-2

1-3

2-1

2-2

2-3

2-4

2-5
2-6
2-7

2-8
2-9

2-10

2-11

40

62
64
66

A-2 Monostable Circuit used to Generate Driving Pulse 81
A-3 Negative Excitation Pulse 81
A-4 An Overview of the Receiver Circuit 82
A-5 Schematic of entire hardware system 84

Chapter 1

Introduction

Over the last half century much progress has been made in medical device technology. One

particular medical technology that has improved rapidly over the past 30 years is ultrasound.

This progress in technology, however, has brought with it the rapid obsolescence of system

designs. As a result, hospitals are often faced with the need to purchase new hardware

in order to keep pace with the technology. With every new upgrade comes an increase in

cost and a decrease in productivity while hospital personnel become acquainted with the

nuances of each new system.

This thesis offers a solution to this technology crisis, in the form of a software-based

ultrasound system. This design is compatible with existing ultrasound transducers and

could be integrated with existing ultrasound post-processing software. Furthermore, its

reliance on software processing makes it far more flexible, and cost-effective, than current

systems. The software components of the proposed design have been implemented and their

organization and performance is discussed in this report.

1.1 Motivation

Traditional medical devices, such as the one illustrated in Figure 1-1, were based on special-

purpose hardware. Although these dedicated hardware systems have been the standard in

ultrasound, and in other medical technology, they don't offer much in the way of flexibility

or ease of upgrading. With the development of low-cost personal computer technology,

much effort has gone into PC-based systems that post-process ultrasound and other medical

images. However, such systems still lack some flexibility because they either rely on analog

Figure 1-1: A Block Diagram of a Traditional Ultrasound System

hardware to pre-process the signal before A/D conversion or they use customized digital

processing [28]. The problem with relying so heavily on hardware is that entire systems

need to be replaced each time an advancement is made in ultrasound processing technology.

Such changes can be very costly.

Another problem the medical industry faces, particularly with the move towards re-

gional, ambulatory care facilities, is a lack of space and money for the many instruments

needed to provide proper care to patients. Often times, a doctor or technician may require

several different instruments to diagnose a particular problem. For example, both an EKG

and an ultrasound exam may be required when treating a patient suspected to have a car-

diac arrhythmia. Small satellite facilities may often elect not to carry certain instruments

as a way of cutting costs. What these facilities need are inexpensive, general-purpose in-

struments that can serve multiple functions. Such instruments would give EMTs more tools

to save patients' lives, since the limitations of space often prevent ambulances from having

the most sophisticated equipment.

These challenges that the medical community face suggest the need for software-intensive

devices that use only a minimum amount of hardware. This thesis describes one such de-

atient

PCI Bus

Figure 1-2: The Generalized Layout of the Prototype Ultrasound System

vice: a software-based ultrasound system for use in ophthamological examinations. The

system consists of software modules to both transmit and receive ultrasound echoes. These

modules, when combined with an ultrasound transducer, a daughter card containing an

interface to the transducer, an amplifier, protection circuitry, and an A/D converter, a

PCI bus adapter, and a PCI-based host running the Linux operating system, can form a

fully functional software-based ultrasound system. All of the system's processing functions,

including generating the transmitted signal and filtering and displaying the received sig-

nal, are performed in software. All of the software is developed and executed using the

VuSystem [15], a programming environment well-suited for multimedia applications. This

ultrasound system is particularly advantageous because it consists of off-the-shelf compo-

nents and can easily be upgraded by modifying the existing software or installing new

software. Figure 1-2 shows the layout of such a system.

1.2 Contributions

This thesis aims to demonstrate the viability and power of a software-based medical system.

By making use of a simulation environment, it will be shown that ultrasound processing is

feasible in software. The system implemented is an ophthalmic ultrasound system, however

it can easily be transformed into another type of ultrasound system by running different

software and using different transducers. Although the primary aim is to demonstrate

the flexibility of such systems, this thesis also shows that problems such as synchroniz-

ing the clock signal used in traditional hardware ultrasound systems disappear due to the

temporally-decoupled nature of the software environment. As a result, the diagnostic ca-

F
(

Figure 1-3: The Display, Control, and Program Windows of the Prototype Ultrasound
System

pability of this system may be better than traditional systems, because the user has more

control over transmitted pulses and received echoes. Figure 1-3 shows the screen display,

user interface, and the interconnection of the software modules developed for the prototype

ultrasound system.

1.3 Organization of this Report

Chapter 2 of this report provides some background information on the physics of ultrasound

and ultrasound instrumentation and describes previous work in ultrasound technology. The

issues and problems involved in developing a software-based ultrasound system are discussed

in Chapter 3. Chapter 4 describes the first portion of Figure 1-2, namely the software that

was designed for this prototype system. Chapter 5 describes the remaining portions of

Figure 1-2: how to integrate the software modules with generic and ultrasound-specific

hardware to create an ultrasound unit. Finally, Chapter 6 describes the performance of the

software and suggests ideas for future extensions.

Chapter 2

Background

This chapter provides a general background on ultrasound technology, including relevant

work in the field. Section 2.1 provides a basic introduction to the physics of ultrasound. Sec-

tion 2.2 discusses how ultrasound instruments work and provides some information about

the various components of these instruments. Section 2.3 discusses Ophthalmic Ultrasound,

the particular type of ultrasound for which the instrument discussed in this thesis is de-

signed. Finally, section 2.4 discusses work related to this thesis.

2.1 Ultrasound Basics

Ultrasound waves are mechanical pressure waves that are much like audible sound waves

except for their frequencies. Since the frequencies of these waves are much higher than the

normal human audible range (20 Hz to 16 KHz), they are known as ultrasound. Ultrasound

waves are generated by acoustic transducers upon excitation by an electrical source gener-

ating short-duration, high voltage pulses. The rate at which the ultrasound waves travel

through a particular medium is known as the acoustic velocity. For the most part, this

velocity doesn't change based on the frequency of the ultrasound wave. In the human body

the average acoustic velocity is around 1540 m/sec, with most soft tissues having a value

within 3% of this average [24].

Ultrasound is useful in medicine because it provides a safe and easy way to image the

human body. The reason ultrasound can be used in imaging has to do with the acoustic

impedance (Z) of the propagation medium. Acoustic impedance is defined by the following

relation:

Z = pc

where p is the tissue density (g/cm3) and c is the acoustic velocity (cm/sec). Acoustic

impedance is independent of frequency, and is only dependent on the tissue's mechanical

properties, because both tissue density and acoustic velocity don't depend on the frequency

of the transmitted wave. When ultrasound waves travel through the body, echoes are

produced. These received echoes are the result of sudden changes in acoustic impedance

occurring at the boundaries of organs and at other interfaces. They can give information

about the structure of the area through which the transmitted wave was being passed.

2.1.1 Echo Generation

There are two types of reflectors that can produce ultrasound echoes: specular and diffuse.

Specular reflectors occur at the interface between two different soft tissues in the body.

When an ultrasound pulse is incident on this interface, two beams are formed. The first

beam corresponds to the transmitted signal which continues to propagate through the sec-

ond medium. The second beam is reflected off the interface and travels back throughout

the first medium. This idea is shown in Figure 2-1 [23].

The direction of the reflected echo is determined by the law of reflection which states that

the angle of reflection is equal to the angle of incidence. Often times, a single transducer is

used to both generate and receive the ultrasound signal (see Section 2.2). In these cases, the

incident beam must be perpendicular to the interface (an angle of incidence and reflection

of 00) [24].
The strength of the echo depends on the acoustic impedances of the two media. The

reflection coefficient(R) measures the fraction of the incident wave that is reflected at the

boundary. Its value is determined as follows:

R = (Z2 - Z1)2/(Z2 + Z1) 2

where Z1 and Z2 are the acoustic impedances of media 1 and 2, respectively. A lower

reflection coefficient means that the two media have similar impedances, and as a result

most of the energy is transmitted. A higher reflection coefficient, meaning that a higher

proportion of the incident energy is reflected, corresponds to a bigger difference in acoustic

Reflecte

Incident

ve

Figure 2-1: Reflection and Transmission of Ultrasound at a Boundary

impedance between the two media[24].

Diffuse reflectors are materials whose dimensions are significantly smaller than the wave-

length of the incident beam. As a result, they scatter ultrasound beams in every direction,

producing echoes that tend to have lower amplitudes than those produced by specular re-

flectors. Since most structures don't have completely uniform acoustic impedances, various

parts of the structure (each corresponding to a particular acoustic impedance) can act as

diffuse reflectors [24].

When the wave travels through the body, not all of the incident energy is either trans-

mitted or reflected. Some of this energy is absorbed by the tissues and converted to thermal

or heat energy, leading to attenuation of the signal. Tissue attenuation is usually around

-1 dB/cm MHz [24]. However, since the signal must travel through a particular region

twice (once when transmitted and once when reflected), the actual attenuation is twice this

amount. Thus, a 10 MHz signal is attenuated by 20 dB for every centimeter of tissue depth.

2.2 Ultrasound Instrumentation

Since so many different parts of the body can be imaged using ultrasound technology, many

types of ultrasound instruments have been developed. The most commonly used types

of ultrasound instruments include cardiac, fetal, and ophthalmic systems. Although each

type of system has certain features necessary for that particular modality, they are all

fundamentally quite similar. The two major types of ultrasound, A-scan (amplitude) and

B-scan (brightness) are discussed below.

2.2.1 A-Scan

The simplest type of ultrasound scan is the A-scan. Such systems are known as Time

of Flight (TOF) imaging systems because the time it takes for a signal to return to the

transducer is related to the distance the signal traveled [12].

Figure 2-2 shows the basic idea behind A-scan imaging. A pulse is transmitted by the

transducer into Medium 1. It then encounters the interface between Medium 1 and Medium

2. Since there is a difference in acoustic impedance between the two media, some of the

signal is transmitted into Medium 2, while some of the signal is reflected. The reflected

signal travels back through Medium 1 and into the transducer. The distance this signal has

traveled is 2d meters (corresponding to a round-trip from the transducer to the interface

between the two media). In A-scan imaging, one would like to know the distance from

the transducer to particular structures of interest so that the relative amplitude of the

returning echoes can be plotted versus the distance into the body. Although the value of d

is not known, it can easily be calculated as long as the propagation velocity of the wave is

known. Thus, if the velocity of the traveling wave is v and the time at which a particular

echo returns to the transducer is t seconds, then the distance from the transducer to the

structure that generated the echo is vt/2 meters [12].

A block diagram of a basic A-scan system is shown in Figure 2-3. The impulse generator

is used to establish the pulse repetition frequency (PRF), the rate at which ultrasound pulses

are emitted from the transducer (this type of ultrasound is known as pulse-echo ultrasound).

These short-duration pulses are then amplified so that they can excite the transducer (at a

voltage ranging from 20 V to 300 V depending on the transducer). Before they are displayed,

the returning echoes are amplified, filtered, and conditioned. The amplified signals have a

Transducer

Figure 2-2: Reflection and Transmission in A-scan

20-300 V

_vAjk

Figure 2-3: Schematic of A-scan

dynamic range of around 100 dB. The signals are then displayed on an oscilloscope with

sweeps triggered by the impulse generator (determined by the PRF) [12].

Figure 2-3 depicts a system in which one transducer is used to transmit a pulse and

another is used to receive the echo. However, it is possible to use a single transducer for

both functions. In this case a decoupler is needed to permit the transducer to be used as

both a transmitter and receiver. It acts like a switch by making sure that the transmitted

pulse is only sent to the transducer and not to the receiver circuitry and that the received

echo is only processed by the receiver circuitry and not sent to the pulse generator.

Pulse Repetition Frequency

Since the PRF determines the rate at which pulses are generated from the transducer, a

higher PRF gives better display intensity. However, there is a limit as to how high the PRF

can be set. Figure 2-4 shows reflections received from a pulse transmitted at time zero.

The echo from the farthest interface is received at time t2. Thus, if a second pulse were

transmitted before this time, the returning echoes from this pulse (particularly from nearby

structures) would interfere with the returning echoes from the first pulse (due to faraway

structures), as shown in the second part of the figure. In order to have an unambiguous

display, it is necessary to wait until all the echoes have been received due a particular pulse

before generating another pulse. The maximum PRF is therefore:

PRFmax = v/2d

where v is the velocity of the wave in the medium and d is the furthest reflecting interface.

Time-Compensated Gain

Since there is a significant amount of attenuation as an ultrasound wave travels through a

medium, echoes originating from interfaces deep in the medium will have a much smaller

amplitude than those closer to the transducer. In order to offset the effects of higher

attenuation at increased depths, a time-compensated gain (TCG) unit is used. The TCG,

or Swept Gain, amplifies echoes from deeper tissues more than those from tissues near the

surface. TCG also helps prevent echoes from an earlier pulse from interfering with the echoes

returning from the current pulse since the gain for these earlier echoes is reduced to very

Echo Amplitude Clear Delineation of Echoes

7x 44atont
\PointUU

Time

Excitation t2Point

Echo Amplitude
|_, _ •_ _ m • | • | = ll-

SInrerrerence due to nign h PRF

Time

ExcitExcitation
Point Point

Figure 2-4: Pulse Interference due to high PRF

low levels. The TCG function includes a "dead time" so that no echoes are displayed from

regions close to the transducer. The reason for nulling these signals is because they usually

correspond to the skin or subcutaneous layers of fat that are generally not very interesting

to observe. The dynamic range of the detected signal can be reduced by approximately

50 dB due to TCG [12]. Figure 2-5 illustrates the concept of time-compensated gain for a

particular function.

Display

In basic A-scan systems, the echoes are displayed, unprocessed, versus the depth into the

body. More sophisticated systems, however, make use of rectification and smoothing to

enhance the visualization of the received signal. These techniques are illustrated in Figure

2-6. The smoothing operation is basically an envelope detector, or demodulator, in which

noise and any unwanted oscillations are filtered out by detecting only the peaks of the signal.

Imaging problems

Since the velocity of the wave is required in order to compute the tissue depth, often times

ultrasound systems make use of certain simplifying assumptions. First, the velocity of all

A

A

Received Echoes

Ti n n n

iI ~ I I

An nn

Time Compensated
Gain Function

'UU' UU 'UU
Sn.fl n.fln

IUU' UUIUUCorrected echo
amplitude

Figure 2-5: Time Compensated Gain

11('
JI

The Received
Pulse

Half Wave
Rectified

Full Wave
Rectified

Full Wave
Rectified and
Smoothed

Figure 2-6: Half and full wave rectified echoes

_ · _ I · _I I__I I _ I I_ I _ _ _I _________

I ii
- --

n n. n n

on OQM~
rl•

tissue is assumed to be 1540 m/s. This assumption can introduce some error (as much

as 10%) into the calculation since ultrasonic velocity is not constant in the body because

different tissues have different material properties [10]. Some advanced instruments use a

different velocity for particular regions, applying the appropriate velocity based on the time

at which the echo was received. However, this method is still somewhat inaccurate. The

second assumption is that the pulse is traveling in a straight line in the tissue. Although this

assumption is necessary in order to make it easier to calculate the distance to a particular

structure, it is often inaccurate since ultrasound may return to the transducer after having

been reflected multiple times. Finally, the detected target is assumed to lie along the central

ray of the transducer beam pattern. This assumption is necessary to prevent blurring or

misregistering the position of the reflector [24]. Figure 2-7 illustrates some of the problems

associated when the aforementioned assumptions do not hold.

Axial Resolution

The axial resolution measures how well an ultrasound system differentiates between two

interfaces along the same axis, but separated by a distance of d. This factor is influenced by

the bandwidth of the transducer, the characteristics of the excitation pulse, and the func-

tionality of the detection circuitry [12]. A highly damped transducer with wide bandwidth

will give better resolution than a lightly damped one with lower bandwidth. The excitation

pulse, which is often around 100 ns in duration, must also have a wide bandwidth in order

to achieve optimal resolution.

Interpretation

Although an A-scan display provides information about the structures along the path of the

beam, it can often be very difficult to differentiate between structures that are very close.

For this reason, and also because of the complex nature of the human body, it is important

to have a skilled professional interpret the results of an ultrasound scan.

Modern Uses of A-scan

Although the A-mode gives positional information quickly using a minimum of advanced

technology, the B-scan (described in Section 2.2.2) is most prevalently used in modern ul-

trasound imaging. However, there are still two common uses of A-scan imaging: scanning

Depth of interface
determined from
time of flight of
ultrasound pulse

Reflection
Path

Emitted
Pulse / l

(b) Ifl II
Reflection composed of
a number of reflections from
different layers

Received
Pulse

(c)

reflecting
interfaces

f

t nn. nn n An
,u' Vuu IUU IUU

Multiple reflections
from between two
interfaces

(d)

Ref raction

m-
(e) EII In ai%

ImR-71 eceived Echoes

Hig Low
Attenuation Attenuation

Figure 2-7: Problems in A-scan imaging

." ".'__'_" _" __'_ _' N

"_ .,

r b

I i/i ffi f t% r

Figure 2-8: Eye scan setup

the eye and the mid line of the brain. Ophthalmic ultrasound makes use of A-scan tech-

nology because the eye is a relatively simple structure. Also, the small size of transducers

required for A-mode scanning, compared to those required for the B-scan, is advantageous

considering the small size of the eye. The A-scan is used primarily to measure the eye size

and growth patterns, and detect the presence of tumors and the location of foreign objects

within the eye. The setup for such a scan is shown in Figure 2-8. In this setup, a tube

containing water is used to couple the transducer to the eye. Since the eye's small size

corresponds to a small penetration depth, higher frequencies can be used when scanning

the eye in order to generate better resolution.

A-scan imaging is also used to detect a shift in the mid line of the brain, due to inter-

nal bleeding within the skull, and in non-medical applications such as detecting cracks in

uniform materials and detecting the dimensions of materials.

2.2.2 B-scan

In B-scan imaging systems, an A-scan device is swept across the surface of a patient's body

in order to capture a series of images in a pie-shaped plane known as the scan plane. The

pie-shaped ultrasound image is formed via a sector scan. The transducer is rotated about

an axis (usually around 600) to generate A-scan images along various lines of site. Instead

of displaying the amplitude along the vertical axis as in A-scans, B-scans consist of lines

emanating from a common origin in which the brightness of every position along each line

represents the relative amplitude of an interface at the depth given by the distance of that

position from the origin. A multiplicity of such lines are spread in an arec to form a cross-

4--

-~ An

Elil
An lUIL-

Figure 2-9: The B-mode Scan Plane

sectional picture of the scanned tissue, including such prominent features as organs and

bones. This idea is illustrated in Figure 2-9.

Figure 2-10 shows how a B-scan image can be formed from the corresponding A-scan

echoes. The resulting echoes along a particular scan line are full-wave rectified and used

to determine the brightness of the display along that particular line. This same procedure

is repeated for every scan line in a particular scan plane (created by moving the probe to

adjacent positions) [12].

A block diagram of a B-mode system is shown in Figure 2-11. This system is very similar

to the A-scan system except that it requires angular information from the probe which can

be combined with the echo amplitude in order to produce a dot (with the appropriate

brightness) at each point in the x-y display. This system also uses a range compression

scheme in order to reduce the dynamic range from 50 dB after filtering and TCG, to the

20 dB that can be displayed on the CRT. This compression can be implemented using such

nonlinear filters as logarithmic amplifiers [12].

In order to determine how fast a B-scan can be performed, one must know the depth

of interest of the area being scanned. The B-scan is much like the A-scan in that one has

to wait for echoes to return from the deepest organ of interest before scanning the adjacent

line (in the case of the A-scan generating the next pulse). In order to avoid flickering, the

Object

Image:

IlD -

Returning Echoes

SIFws rr(lIJl
Rectified and Smoothed

zII
Figure 2-10: B-scan image formation

20-300 VI I

&\I Positional Information
Impulse
Generator

Signal Amplitude
modulates the
screen brightness

CN- -I I DisplayCoordinates

Figure 2-11: B-scan Block Diagram

C' -

(I1
V17F

(iF
,I I II\I u \r \I \ r

11 MI

f• A

7

n

image must be updated 30 times per second. Since the pulse repetition frequency is fixed

for a particular depth and the time allowed to generate an image is also fixed, the following

relations determine the number of lines in an image:

time for one line scan = d/v

and

number of lines in a scan = v/Rxd

where d is the depth of the deepest organ of interest, v is the wave velocity in the tissue,

and R is the screen refresh rate.

Transducers

There are three major types of transducers used for B-mode imaging: fixed focus transduc-

ers, linear array transducers, and phased array transducers. Fixed focus transducers use

either a lens or a curved transducer substrate to improve the lateral resolution by creating

a focal zone. Linear array transducers consist of many transducers working in concert.

Groups of transducers may be excited by a single excitation pulse, and may also receive

and process the resulting echoes. This type of arrangement makes it easier to perform a

translational scan and a sector scan if a curved substrate is used to form the linear array.

Phased array transducers are much like linear array transducers, except that each individual

transducer is excited separately in order to shape the outgoing beam in a particular way.

This steering capability can also affect the received echoes in order to process them in a

certain way.

2.3 Ophthalmic Ultrasound

Ophthalmic ultrasonagraphy dates back to the end of WWII. In 1956, Mundt and Hughes

used the A-scan technique to detect intraocular tumors. As instruments have improved,

the use of ultrasonagraphy has become more prevalent. A-scan is particularly useful for

making various measurements of the eye, such as measuring the axial eye length (biometry)

or measuring the width of the optic nerve and extraocular muscles. A-scan technology is

particularly sensitive to detecting orbital diseases. The B-scan is used for detecting such

ailments as cataracts and vitreous hemorrhaging [3].

2.4 Related Work

This section presents the work related to developing a software-based ultrasound system.

The first portion of this chapter delves into the history of ultrasound systems and discusses

the early use of the PC in ultrasound technology. The next part discusses other software-

based ultrasound systems, in order to provide a framework for where the prototype system

being developed fits in. Finally, other ultrasound-related problems that are currently being

addressed will be discussed.

2.4.1 History

In 1883, Galton became aware of ultrasound when he was studying the limits of the acous-

tic spectrum perceived by humans. In his research, he created one of the first man-made

ultrasonic transducers. However, since electronic technology did not experience the ad-

vancements we see today, there wasn't much progress in ultrasound technology during the

ensuing 30 years. During World War I, scientists were searching for both a way to detect

submarines and to communicate underwater. Langevin in France came up with a way to

use quartz transducers to send and receive low frequency ultrasonic waves in water. In 1925,

Pierce was able to create ultrasound probes with resonant frequencies in the MHz range,

using quartz and nickel transducers [23].

Sonar technology, which was used during World War II, inspired researchers to use

ultrasound in medicine. After the war, the Japanese were able to build a primitive A-mode

ultrasound system that had a trace of the amplitude waveform on an oscilloscope. They

then developed a B-mode system by using gray scale imaging on an oscilloscope display.

Using these technologies, Japanese scientists were able to detect gallstones, breast masses,

and tumors. Shortly thereafter, Doppler ultrasound was developed to detect moving parts

[1].
During the 1950's, ultrasound came to the United States. It was during this time

that real-time imaging became feasible and the first form of two-dimensional images were

possible using hand held scanners. By the early 1980s, ultrasound imaging had advanced

significantly, however computers were not used in the process, so images could not be

enhanced [1].

2.4.2 The Use of the Personal Computer

Most of the early work in ultrasound technology focused on developing dedicated hardware

systems. However, with the advent of the personal computer, ultrasound manufacturers

began using PC technology to enhance their systems. In spite of this advancement, virtually

all of these systems still consist of dedicated hardware used to generate pulses and capture

the echo information. The PC is used to improve the reviewing process by allowing the

user to annotate and post-process this captured data. This post-processing often includes

image enhancement (by enhancing the edges). There are systems that can store, send, and

receive ultrasound images via computer, however these systems involve digitizing analog

ultrasound images off-line [29]. Such processes can easily be incorporated into real-time

software-based ultrasound systems.

PC-based Digital Storage and Retrieval (DSR) systems are becoming increasingly pop-

ular as medical facilities run out of physical space to store analog ultrasound images. In

order to make DSR systems work, or any other type of system in which the post-processing

takes place on a PC, it is necessary to digitize the ultrasound image. The components

required to digitize the ultrasound image are separate from those required to capture the

images. Thus, these systems don't offer the flexibility of software-based systems since ex-

tra hardware is required to digitally manipulate images. Similar schemes are also required

when trying to send ultrasound images over networks. More recently, Picture Archiving

and Communication Systems (PACS) have been used as a way to electronically acquire,

store, and display digitized images. Although these systems are revolutionary since they

replace the videotape with digital storage media, they really don't involve any intelligent

processing of ultrasound images [14].

2.4.3 Software-Based Systems

Until recently, inexpensive ultrasound systems based on the PC were nowhere to be found.

However, in November 1995, Perception Inc., a medical equipment manufacturer, and Ma-

trox, a supplier of PC-based imaging technology, announced the development of the first

PC-based ultrasound imaging system consisting of off-the-shelf PC hardware and software

[181. The Perception system consists of a Pentium PC, with an imaging sub-system and

Perception's Virtual Console GUI running under Windows NT. The system uses proprietary

hardware to convert the signal generated by the probe to S-video, digitize the video signal,

transfer the image to the PC's system memory, and provide desktop video display. The

GUI, which was developed using Microsoft Visual Basic, is used to control the examination

procedure [17].

The Perception system is much like the system described in this report in that it at-

tempts to use mainstream PC technology as a means of reducing the cost and increasing

the flexibility of ultrasound imaging. Their Virtual Console is much like our virtual instru-

ment panel since both replace expensive and breakable hardware-based knobs, levers, and

switches with "virtual knobs" represented as software-generated icons on the computer's

display. However, what differentiates the present effort from the Perception product is that

the former allows raw ultrasound data to be processed while requiring a minimal amount

of proprietary hardware, while the latter uses proprietary hardware to transform the ultra-

sound data into video images which are captured and then processed in software. The ultra-

sound system developed in this thesis is more flexible than the Perception system because

the former allows for the possibility of analyzing the raw data and processing it differently

based on certain dynamically established trends. Such a processing methodology could al-

low more efficient use of computational resources, resulting in improved performance, and

the development of new approaches to ultrasound signal processing.

Siemens and the Imaging Computing Systems Lab at the University of Washington have

developed a high-end ultrasound system that includes a programmable image processor [25].

Thus, this system can be programmed to run many applications, reducing the time it takes

to bring new ultrasound applications to market. The goal of this system is to make it

unnecessary to reinvent the hardware system every time major advancements occur. The

first application written for the processor is called SieScape. It will allow doctors to see a

panoramic view of the human anatomy when taking ultrasound images [30]. Although this

system has the same goal as the prototype software-based ultrasound system, it is quite

different since it involves using high-end components (40 Pentium processors), while the

system outlined in this thesis strives to make use of more practical off-the-shelf components.

A system is currently being developed at Northeastern University's Ultrasound Labora-

tory that allows one to transmit and receive an arbitrary waveform using a computer inter-

face for control and analysis [20]. The generated waveforms are propagated through an ul-

trasound tank with transducers that both transmit and receive. The system is Windows95-

based using both C++ and Matlab files for data acquisition and control. The hardware

consists of Pentium computer, high-frequency amplifiers, and fast, wide bandwidth, A/D

and D/A converters. This system is not viable for commercial applications because of the

use of a 55 gallon ultrasound water tank to generate the appropriate waveforms. It is meant

to be used as part of a research project in which various parameters will be changed. Since

many different types of waveforms will be required, it is convenient to use a software-based

approach in which parameters can easily be changed.

2.4.4 Other Issues in Ultrasound

The use of the PC in ultrasound imaging has opened the door to solve other types of

problems in ultrasound imaging. PCs are used in conjunction with two-dimensional images

in order to produce three-dimensional ultrasound. Basically, the PC is used to keep track of

position data, using some type of PC-based position sensing device. This information can

be used with the ultrasound images to form a three-dimensional picture by using certain

geometrical assumptions [31].

More advanced three-dimensional systems are also available. Such systems can generate

three-dimensional images in real-time using off-the-shelf components. One such system,

developed by Parsytec, uses a PowerPC system, parallel processing blocks, media coproces-

sors, and ATM communications protocols. This system uses standard raycasting techniques

to form the three-dimensional image from two-dimensional scans [7].

New technologies are also using coherent phase information, in addition to amplitude

information, to form more accurate ultrasound images. Such systems use computers to

calculate the properties of scan lines in order to determine additional numerical values

based on the fact that certain information can be found in different parts of the echo signal.

Using phase information, a clinician can better visualize subtle differences in the areas being

examined [6].

Chapter 3

Approach

Since the overall aim of this thesis is to demonstrate that a software-based ultrasound

system is both feasible and an improvement over current ultrasound systems, it is important

to understand some of the challenges involved in developing present-day, hardware-based

systems. Section 3.1 discusses some of the major processing issues involved in developing

ultrasound systems. Finally, Section 3.2 explains why a software-oriented approach makes

it easier to perform both of these tasks and introduces the approach taken in this thesis.

3.1 Traditional Approach

Figure 3-1 depicts a traditional ultrasound system, in which a pulse generator and an

amplifier are used to create a high voltage, short-duration spike that excites the transducer.

The pulse generator is also used to trigger a time sweep across the CRT, which is used to

calibrate the horizontal axis such that the returning echoes are properly displayed. Thus,

in order to avoid errors, there must be perfect synchronization between the pulse generator

and the display.

When a single transducer is used to both transmit and receive the ultrasound echoes,

it is important to protect the receiver circuitry from the high voltage spike necessary to

excite the transducer. For this reason, some type of switch is usually used to decouple the

transmit side from the receive side. This switch often consists of a pair of parallel, reversed

diodes that appear as short circuits for the high voltages associated with transmission and

as opens for the low-voltage receive echo waveforms.

On the receiver side, the circuitry must be perfectly designed in order to assure a dis-

play with maximum readability. When the signals are received they first pass through an

amplifier. This amplifier must have high gain, low noise, and a frequency response that can

handle the wide range of frequencies in the incoming echoes. Such requirements demand

very precise equipment.

As mentioned in Section 2.2.1 it is necessary to use time-compensated gain to offset the

attenuation of signals deeper into the body. Since tissue attenuation, as stated in Section

2.1.1 is 1 dB/cm MHz, the TCG must be set to offset this attenuation. Assuming the

pulse travels at 1540 m/s, the TCG rate should be set at 154 dB/ms for every MHz of

the transmitted frequency. This rate is actually a little high due to two reasons. The first

reason is that the transmitted pulse consists of a broad spectrum of frequencies as opposed

to just one frequency. The frequency associated with the transmitted pulse is actually the

center frequency in this spectrum. Higher frequencies are actually attenuated more, due to

the dispersive absorption nature of tissue. Thus, most of the pulse's energy is carried by the

lower frequencies. These frequencies are not attenuated as much, and as a result the TCG

does not need to be as high. The second explanation for why the predicted TCG is high has

to do with the fact that some tissues attenuate the signal less than 1 dB/cm MHz. Many

clinical instruments arbitrarily partition the penetration depth into several segments, and

give the user some control over the TCG within these segments. However, the user cannot

arbitrarily change this value to emphasize or deemphasize certain structures [5].

The received signal follows the same basic shape as the transmitted waveform. Since

the transmitted pulse has numerous oscillations, the received pulse also has many oscilla-

tions. These oscillations are not clinically relevant, so the pulses are often electronically

demodulated in order to capture the envelope of the pulse. Usually this demodulation is

accomplished by using a diode stage followed by a capacitor. Some instruments let the

user control the time constant of the demodulation process in order to influence how the

waveform appears on the screen. Although this process may improve the display, it results

in loss of information about the phase and exact timing of the received pulses. The advan-

tage of demodulation is that it shifts the frequency spectrum down, by removing the carrier

frequency, such that it is centered around zero frequency. This makes it easier to design

electronic components for later stages.

Since it is impossible to present the entire dynamic range of the received signal on cath-

ode ray tubes, these signals are often compressed to a smaller range by using a logarithmic

Figure 3-1: Block Diagram of a Traditional Ultrasound System

amplifier. Such a procedure allows small echoes to be seen on the same display as larger

ones. However, often times noise can be amplified significantly. For this reason, many in-

struments allow the user to set a threshold which can be used to determine the minimum

amplitude of signals displayed on the screen.

3.2 The Software Solution

Figure 3-2 is a block diagram that shows how the software described in this report can be

combined with hardware to form a complete software-based prototype system. A software

pulse generator fills a portion of memory with a sequence of integer "samples" that corre-

spond to a short duration square wave pulse, at a frequency specified by the user. This

pulse is then converted to an analog waveform, via the GuPPI' and a D/A converter. The

analog signal is externally amplified to 155 V and used to excite the transducer. Once the

transducer is excited, echoes are received from the subject being scanned. These received

echoes are externally amplified and then converted to a sequence of digital samples using

1The GuPPI is a PCI board that makes it easier to continuously transfer sampled data from the com-
puter's main memory to a hardware daughter card specific to the particular application[11l.

Transmitter:

Transduce

Figure 3-2: Block Diagram of the Entire Prototype Ultrasound System

User-
Defined
Parameters:

Pulse GuPPI
Generator Sink

Software

Daughter ExternalGuPPI Card (D/A) Driver Circuit

Hardware

Receiver:

Transducer

an A/D converter. This digital waveform is transferred to software accessible memory us-

ing the GuPPI. The received software "echo" is amplified and a TCG function is applied

to it. In order to remove unnecessary oscillations, this signal is then demodulated. The

demodulated signal is then displayed on a software-generated oscilloscope-like display.

One of the aims of the software-based ultrasound system presented in this thesis is to

simplify the processing required in ultrasound instruments as a first step towards developing

more powerful systems with advanced signal processing and functional capabilities. The

problem of having to synchronize the generation of pulses with the display, as well as the

TCG unit in some systems, disappears in a software-based solution. The reason for this is

because a software solution can temporally decouple the sample processing and display. In

order to keep track of payloads, they are timestamped when received. Since the relative

timing of samples can be regained at the display by making use of the timestamps, it is

possible to process payloads without worrying about the strict time-synchronization issues

involved in most real-time systems. This is clearly advantageous since synchronizing data at

each stage of processing constrains the design, results in a significant amount of overhead,

and can often lead to underutilized system resources.

Another inefficiency of hardware that software can rectify is the need to repeatedly re-

generate the same waveform on the transmit side. In hardware systems, generating the

transmit impulse usually requires a clock module to trigger the pulse generator (and the

display). In effect, a significant analog computation is performed each time a pulse is

generated or only one type of pulse(or possibly a few types of pulses) can be generated.

In software this problem is eliminated by "generating" the samples making up the pulse

once, and storing them in memory. The waveform stored in memory is changed only when

parameters are changed.

The fact that the electronic components that make up the receiver side of hardware

systems have to be so well designed to properly handle the incoming echoes means that

the cost of these component is very high or some quality is sacrificed. Realizing perfect

amplifiers and filters is much easier to do in software since functions can be computed with

far greater accuracy and reliability than using electronic circuit components. This fact can

be exploited in order to produce software TCG units that are more functional than their

hardware counterparts. In software a TCG function can be applied and the region over

which it is active can be dynamically changed, giving the user the ability to change the way

certain structures appear on the display. Such features are either too expensive or almost

impossible to implement in hardware.

Although compression of the signal, as a way to reduce its dynamic range, is necessary

in software, the algorithm to do so can be quite different. A software scheme can make use

of advanced compression algorithms, such as those used in displaying video images. This is

a significant improvement over hardware-based logarithmic amplifiers which can add noise

to the system.

The particular system built and described in this report is an A-mode ophthalmic ultra-

sound system. An A-mode system was chosen over a B-mode one because the time required

to manage the increased complexity of the hardware needed for the latter system (since

the system needs to be driven such that pulses are generated along multiple lines through

the scan plane) would have taken away from the effort to develop novel ways to process

the information in software. Developing a software-based A-mode system is an important

step towards developing software-based B-mode ultrasound. Ophthalmic ultrasound was

chosen over other types of ultrasound systems for two primary reasons: ease of use and

cost. As opposed to other types of ultrasound, like fetal ultrasound, where it is impossible

to obtain meaningful results by scanning oneself, one can easily perform an ophthalmic scan

without any special preparations. Model eyes are also readily available, making it easy to

calibrate the system and evaluate its performance. A high quality ophthalmic system can

be purchased for about $20,000. This is significant since the most reliable way to evaluate a

prototype software ultrasound system is to compare its performance to existing technology.

Chapter 4

Software Implementation

The ultrasound software was developed in the VuSystem programming environment, making

it easier to change various parameters and adding an extra degree of flexibility to the sys-

tem. The VuSystem modules developed to support ultrasound processing serve three major

functions: generating transmit pulses, modeling the transducer and target, and processing

received echoes. Figure 4-1 illustrates the relationship between the software modules that

make up the prototype ultrasound system when connected to the appropriate hardware.

A description of the VuSystem along with the three major functions of the software mod-

ules and a description of the software simulation environment is presented in the following

subsections.

4.1 VuSystem

The VuSystem is a UNIX-based programming environment that facilitates the visualization

and processing requirements of compute-intensive, analysis-driven multimedia applications,

and allows the software-based manipulation of temporally sensitive data. This system,

developed by members of the Software Devices and Systems Group at the MIT Laboratory

for Computer Science [15], is unique in giving the user both the programming advantages

of visualization systems and the temporal sensitivity of multimedia systems.

VuSystem applications have components which do in-band processing and components

which do out-of-band processing. The in-band processing is performed on all data. This

type of processing is continuously performed on the stream of multimedia fragments (or

ultrasound samples) that the system must handle. The out-of-band processing is performed

Transmitter:
I" "'"............................

User
Parameters

Pulse GuPPI
Transducer

Receiver:

From
Hardware
and
Transducer

GuPPI Receiver Demodulator Software Video
Source Oscilloscope Sink

Figure 4-1: Block Diagram of VuSystem Software Modules

according to specific user events, such as mouse and key clicks.

The in-band components of applications developed in the VuSystem are written as

modules that are C++ classes. By linking all of the modules in the VuSystem together,

individual modules can make use of previously-written modules to perform very elaborate

tasks. These software modules exchange data with each other via output and input ports.

Data is passed in the form of dynamically-typed memory objects, referred to as payloads.

These payloads, which contain timestamps to indicate when they arrived at a particular

module, consist of a header which describes the payload (e.g., what type it is, how long it

is, etc.) and the actual data being transmitted. There are different types of payloads for

various media types (e.g, audio, video).

The three main types of modules in the VuSystem are Sources, Sinks, and Filters.

Sources have one output port and no input ports. These modules, which generate payloads

for processing, are often interfaced to input devices. Sink modules have one input port but

no output ports. They are responsible for freeing up the memory allocated to payloads.

Usually sinks are interfaced to output devices such as displays or hardware-based transmit-

ters. Filter modules contain one or more input and output ports. Any processing that needs

to be done on payloads is performed by filter modules. The VuSystem uses its module data

protocol to pass payloads from upstream modules to downstream modules.

VuSystem filter modules make use of WorkRequired and Work member functions. The

WorkRequired member function determines whether or not the function needs to perform

work on the incoming payload, since the filter will only work on certain types of payloads.

If the filter doesn't need to or can't work on the payload, it is passed on to a downstream

module. Otherwise, the filter performs some work on the incoming payload in the Work

member function.

The out-of-band components of the VuSystem are written in an extended version of the

Tool Command Language (Tcl), an interpreted scripting language. Tcl scripts are used to

configure and control the application's in-band modules and the graphical user-interface

(GUI). Using Tcl makes it easier to combine modules together to develop applications,

particularly since Tcl has a simple interface to C++.

The VuSystem facilitates code reuse by allowing the programmer to combine basic mod-

ules to perform specialized tasks. If necessary, customized modules can be developed to

perform more complicated tasks. The GUI in the VuSystem makes it easy for the user to

change parameters as the application is running. It is also possible to dynamically change

the way an application works by connecting and disconnecting various modules. The VuSys-

tem is advantageous because it is designed to run on any general-purpose UNIX workstation

running X-Windows, and doesn't require any specialized hardware for real-time processing.

The VuSystem is useful in a software-based ultrasound system because it gives the user

the ability to easily control the parameters of the system (e.g., TCG, PRF). It also adds an

extra level of flexibility since the system could easily be switched from one application to

another (e.g., from an ophthalmic ultrasound system to a cardiac one).

4.2 Pulse Generation

The transmitter module makes it convenient to generate different types of waveforms (e.g.,

sine, square, etc.) with varying amplitudes and frequencies. This makes it easier to use one

machine for various types of ultrasound and gives the user the flexibility to alter certain

parameters based on what they are seeing on the display or would like to see. A high

voltage, gated sinusoid (at the resonant frequency of the transducer) is required to excite

the transducer in some ultrasound probes. However, many ultrasound probes require only

a short-duration, high voltage pulse to excite the transducer. Figure 4-2 illustrates the

difference between the two methods of pulse generation. Since the hardware requirements

of the former method make it difficult to implement (see Chapter 5) and most probes only

require the latter method, only the short-duration pulse method is described here.

4.2.1 The Short Duration Pulse Approach

It would prove to be computationally expensive if the same waveform were continuously

generated by the transmitter module. For this reason, the waveform is computed according

to user-specified parameters (pulse repetition frequency, duration, amplitude, sample rate,

offset, and payload size) and stored in memory. More likely than not, these parameters will

change infrequently. Thus, the series of samples to be transmitted is buffered in memory

and only recomputed if the user changes the parameters. The memory consists of a sequence

of samples which can be sent to a D/A converter when the hardware is integrated with the

software.

The pulse repetition frequency presently used is 10 Hz. As stated in Section 2.2.1, the

Sinusoid

I

Gating Pulse
Short Duration I

I Pulse

Gated Sinusoid I

Figure 4-2: The Gated Sinusoid and Short-Duration Pulse Methods of Pulse Generation

maximum pulse repetition frequency is given by the following equation:

PRFmax = v/2d (4.1)

where v is the velocity of the wave in the medium and d is the furthest reflecting interface.

Thus, with a PRF of 10 Hz, and a speed of 1540 m/s, a depth of 77 m can be scanned.

Obviously, the eye is not this large (it is only around 3 cm), but the extra margin ensures

that echoes generated from one transmitted pulse do not interfere with those from another,

and affords the software considerable time to complete its processing between pulses. B-

scan ultrasound systems, and some A-scan systems as well, have PRFs that are as high

as 4 kHz. In the case of the B-scan, such a high PRF is understandable since 128 lines

are usually scanned for each sector plane, which is displayed at 30 Hz. However, for older

A-scan systems, the reason why the PRF is so high has to do with persistence on the

oscilloscope display. In order to maintain the intensity of the trace of the A-scan waveform

on the display, it is necessary to generate the waveform at a very high rate. However, in the

case of a software-based system, issues of persistence are no longer important since digitized

data is being displayed on a CRT.

Since the signal used to excite the transducer is a short-duration pulse, it is important

to have a sample generation rate such that there is enough resolution to represent the pulse.

I

In order to get pulses on the order of 1 tpsec in duration, it is necessary to have a sample

rate of at least 1 MHz. However, a rate of 1 MHz would represent such pulses with only

one non-zero sample. As a way of increasing the accuracy of these short-duration pulses,

and allowing for the possibility of pulses less than 1 psec in duration, a sample generation

rate of 5 MHz was used.

As stated above, in order to avoid extra computations, the waveform to be sent out is

stored in memory. If the user happens to change one of the parameters, this waveform is

then recomputed. However, since there is some latency associated with the scheduling of

modules in the VuSystem, it makes sense to store more than one period of the waveform

in memory. This way, over a given time interval, multiple pulses can be sent out, instead

of having to accurately and frequently schedule the playout of a buffer containing a single

pulse worth of samples.

4.2.2 Module Details

This subsection describes the detailed operation of the pulse generation module. The first

part describes the control panel which allows the user to alter system parameters in real-

time. The next section describes the characteristics of the payloads generated by this module

and passed on to downstream modules in the program. Then, the code written to create

this module is described. Finally, the targeted performance of the module is discussed.

Control Panel

The Pulse Generator control panel, like all control panels in the VuSystem, allows the user

to change the system parameters as the system is running. The Pulse Repetition Frequency

control panel, allows the user to specify the frequency at which payloads are transmitted

(and thus the frequency at which the transducer is excited with a pulse). This control

allows the user to select a frequency from 0 Hz (i.e., pulses are never transmitted) to 5 kHz,

with a default value of 10 Hz. The Pulse Duration control allows the user to specify the

length of the pulse, in psec, ranging from 0 to 10 psec, with a default value of 1. The offset

control allows the user to shift how the waveform is displayed on the virtual oscilloscope

display. This control takes on values between -32767 and 32767, with a default value of 0.

The amplitude control allows the user to set the value of the outgoing pulse. Although the

data samples generated by the Pulse Generator module are unsigned shorts, the user can

Figure 4-3: Pulse Generator Display, including its VuSystem Control Panel

pick an 8-bit value (from 0 to 255) to represent the amplitude of the pulse. This value is

then scaled into the 16-bit value generated by the module. The default amplitude is set to

255. Figure 4-3 shows a screen shot of the generated pulse as well as the Pulse Generator

control panel.

Output Payloads

The Pulse Generator module is a VuSystem "source" module with one output port through

which payloads are passed on to the next module. These payloads contain the pulses used

to excite the transducer (as described in Section 4.2.1. The output payloads are of type

VsSampleData, which are the payloads generally used in signal processing applications in the

VuSystem. These payloads have a header which indicates: the starting time of the payload

(obtained by keeping track of the current time), the channel number (set to 0), the number

of bits per sample in the payload (set to 16), the sampling rate (specified by the user), the

number of bytes required to store the data (set to twice the number of samples in the payload

since each sample is two bytes), the encoding type (set to ShortAudioSampleEncoding which

indicates that samples are shorts and are integer-valued), the byte order (MSB first or LSB

first, set using a parameter that assumes the proper value based on the CPU design being

used), and the total number of channels used (set to 1). Assuming that the user chooses to

store only one payload, the data portion of each payload (i.e., the size of the payload stored

in memory) is 8,192 bytes (8 KB).

Code Description

The Pulse Generator module is a C++ class with Start, Stop, and TimeOut member

functions. The Start and Stop member functions are used to start and stop the operation

of the module. The Start function is called by the VuSystem to initialize the module at

the start of in-band media processing. It first sets the time interval in which payloads

will be generated by the module. This time interval corresponds to the user-specified Pulse

Repetition Frequency. It then calls VsEntity: :Start to invoke the Start member function

in any children of the Pulse Generator module. In-band processing is reset when Start calls

StopTimeOut to cancel any scheduled timeout operations and release any payloads in the

module. In order to initialize in-band processing, Start creates a VsStart payload with the

current time as the starting time, and calls Send on the output port to send it downstream.

The in-band flow of data begins when Start calls Idle if its input parameter, mode, is false.

When in-band processing has concluded, the VuSystem invokes the Stop member func-

tion to terminate processing smoothly. It is much like the Start member function since

it calls VsEntity::Stop to ensure that the Stop member function of any child modules

is called. The StopTimeOut member function is invoked to cancel any scheduled timeout

operations. Then, it deletes any payloads inside the module. Finally, if the mode param-

eter, which is the input argument to the Stop function, is false, a new VsFinish payload

is generated and sent downstream, timestamped with the current time in order to indicate

the time at which in-band processing was terminated.

The TimeOut member function is called to perform operations that are time-sensitive,

such as sending payloads to downstream modules. The Idle member function calls the

StartTimeOut scheduler interface function so that TimeOut is called after the time interval

calculated in the Start member function has elapsed. What happens is that the VuSystem

scheduler calls TimeOut each time the elapsed interval has expired, such that payloads are

generated at the appropriate rate. The StopTimeOut scheduler function is used to cancel a

scheduled timeout.

Since the waveform is stored in memory, memory is allocated only the first time the

module is run or if any of the parameters are changed. This is done by setting a flag

each time a parameter is changed and deciding to allocate memory based on its value. The

TimeOut member function first checks to see whether or not this flag has been set or if this is

the first time the module has been run. If either of these cases is true, memory is allocated

for the payload, so that next time it can be sent out without unnecessary computations

(assuming parameters have not been changed).

When creating the payload to be stored in memory, the TimeOut function first generates

the segment of the data corresponding to the pulse, followed by a string of zeros for the

time period in which the pulse is off (i.e., the time period during which the transducer is

receiving echoes). The TimeOut function must finish creating the output payload in the

allotted time interval. The following code fragment illustrates the work of the TimeOut

member function in the case in which a payload needs to be created (when a flag has been

raised or the module is running for the first time) and is then sent to the next module:

// Generate a payload as long as there currently isn't a payload to be
// sent and the allotted time for sending the payload has not expired
while (payload == 0 && currentTime < nextTime) (
if (firstCall == 1II flag == 1) {

// Grabbing a pointer to the memory block allocated for the payload,
// in order to generate the payload data
ushort* payloaddata = (ushort*)memoryblock.Ptr();
u-short counter = 0;

// Calculating the number of samples that make up the pulse by
// first taking the duration (which is in microseconds) and
// converting it into seconds, and then multiplying by the sampling
// rate. The appropriate data values are set according to the user-
// specified amplitude (an 8-bit quantity which is scaled into an
// unsigned short)
u.short pulseSamples = (u-short)((duration / 1000000) * sampleRate);
int value;
while (counter < pulseSamples) (

value = (int) ((amplitude/(float)255)*(float)32767+(65535/2)+offset);
if (value > 65535) value = 65535;
if (value < 0) value = 0;
*payload-data++ = (ushort) value;
counter++;

// Setting the remaining data values to the zero value (which is
// 32767 on a 16-bit scale)
while (counter < payloadSize) {

*payload-data++ = (u.short) ((65535/2) + offset);
counter++;

f
firstCall = 0;

flag = 0;
}
// Creating the new SampleData payload and specifying the values of the
// header fields
new-payload = new VsSampleData(time, 0, 2*payloadSize,
sampleRate, VsShortAudioSampleEncoding,
16, HOSTORDER, 1);
new-payload->Samples() = payloadSize;
new-payload->Data() = mem;
new.payload->ComputeDuration();
payload = new-payload;

// Incrementing the time to prepare for generating the next payload
time += timeStep;
nextTime += timeStep;

// If you are able to send the payload (via the output port), send it
// and set the payload to zero
if (outputPort->Send(payload)) payload = 0;

This code fragment shows that first the data is written into a memory block. Then, the

header information is generated and stored, together with a pointer to the memory block,

in a new VsSampleData object. Once the parameters for the payload have been set, the

current time and the time until the next payload needs to be sent out are both updated.

Finally, the new payload object is sent to a downstream module by calling the Send function

of the output port.

Performance Targets

The size of the payload generated by the Pulse Generator module, assuming only one

payload is stored in memory, is 8,192 bytes. For this payload size, and for a sampling rate

of 5 MHz, the time required to send the payload out, assuming the sampling rate corresponds

to 16-bit samples, is approximately 0.8 msec. Since this module generates non-continuous

bursts of data, consisting of high values representing the pulse and zeros everywhere else,

the performance requirements are not as stringent as those of modules that continuously

generate data. Using the default PRF of 10 Hz, the Pulse Generator module has 100 msec

to send out the 0.8 msec payload1 .

Given the above numbers, it seems quite reasonable to expect the system to be able to

easily handle Pulse Repetition Frequencies of 10 Hz and higher. Higher PRFs can become

difficult to attain since there is a significant amount of overhead associated with generating

'The GuPPI is responsible for holding the waveform to a default value during intervals between payloads.

payloads (e.g., scheduling timeouts), even if they are stored in memory. One way to minimize

the overhead per payload would be to store larger-sized payloads in memory (corresponding

to multiple cycles of the transmit waveform).

4.3 The Receiver

The receiver module allows the user to select the amount of amplification that will be

performed on every incoming sample, and the maximum amount of amplification that can

be performed. The user may also select what type of amplifier will be employed (log or

linear), whether or not TCG will be used, and the slope of the function (in dB/ms) and

onset of the delay (in mm) if TCG is used.

In traditional ultrasound systems, the clock signal is not only used to determine when

a pulse is to be sent, but it is also used to properly synchronize the Receiver/TCG unit

and create the time base for the display. However, in the VuSystem implementation, such

synchronization is unnecessary since the received sample payloads are time-stamped with

their time of arrival. They can be processed on a loosely synchronized basis so long as the

payload's time stamp can be used to regenerate the timing on the display.

The operation of the receiver is fairly straightforward. This module assumes that the

speed of sound is 1540 m/s. This assumption, along with knowledge of the sampling rate,

is necessary in order to determine the first sample at which TCG is to be applied (if it is

used and if a delay has been set).

If TCG is not being used, then all samples are amplified by the same factor (specified

using the initial amplification control). If TCG is being used, then only the initial set of

samples, up to the sample before the first sample at which TCG is to be applied (set by the

delay) are amplified by this initial amplification. A TCG function is applied to the remaining

samples. With a linear function, earlier samples (those corresponding to closer structures)

are amplified less than later ones. With the logarithmic function, small differences between

closely spaced samples can more easily be seen. The slope of both functions is specified by

the user.

4.3.1 Module Details

Control Panel

A screen shot of the Receiver control panel along with the output of the Receiver module

is shown in Figure 4-4. The topmost control is a switch that allows the user to select the

type of amplification function to be used (linear or logarithmic), with the default option

being linear. The initial gain control lets the user specify the initial gain, in decibels, which

is applied to the samples. This value ranges from 0 to 100 dB, with a default of 40 dB.

The third control is the maximum gain control, which lets the user choose the maximum

amount of gain to be applied to any sample, regardless of whether or not TCG is turned

on. This control can be set between 0 and 120 dB, with a default of 100 dB. The delay

control lets the user specify at what point the TCG function will first be applied (in mm).

This value is converted into a sample delay, by using the sampling rate. The delay ranges

from 0 to 5 mm, with the default delay being 1 mm. The next control is the slope control

which lets the user specify the slope of the TCG function to be used (ranging from 0 to 20

dB/msec), with a default value of 1 dB/msec. Finally, the TCG switch allows the user to

select whether or not TCG will be applied to the samples.

Input/Output Payloads

The Receiver is a filter module, so it has one input and output port. In a fully functional

ultrasound system, the Receiver would get its payloads from the GuPPI Source module.

However, when the system is run in simulation mode, using a simulated transducer (see

Section 4.5), payloads come from the Transducer module. The size of the payloads into

the Receiver module depends on the payload length, which is set in the Pulse Generator

module (in the simulation environment). In order to speed up processing, the payload size

is an integer multiple of the operating system memory page size.

In the default case, payloads are 4096 samples, or 8 KB in size. This size payload is

appropriate to capture echoes from various depths, given that the sampling frequency on

the receive side is 20 MHz. With these parameters, and assuming that the acoustic wave is

traveling at 1540 m/s, echoes returning from depths of up to approximately 16 cm can be

captured in a single payload. The received payloads are of type VsSampleData, and their

headers contain information about the starting time, channel number, number of bits per

Figure 4-4: The Receiver Display, including its VuSystem Control Panel

sample, the sampling rate, the number of bytes required to store the data, the encoding

type, the byte order, and the total number of channels used. The values of these parameters

are the same as those set in the Pulse Generator module (see 4.2.2). The output payload

from the Receiver is of the same type as the input payload, and passes on the same memory

buffer.

Code Details

This module's operation is dependent on the features selected by the user. The first case is

if linear amplification is selected and TCG is not in effect (either because it is off or because

the current sample is less than the sample corresponding to the onset of TCG, determined

by the user-specified delay). In this case, all samples are amplified by the amount specified

by the initial amplification (set by the user). In the second case, in which the logarithmic

amplifier is selected and TCG is not in effect, the logarithm of each sample is taken before

it is multiplied by the initial amplification.

The remaining cases are for when TCG is in effect. The following line of code creates

the actual amplification based on the user's input for the slope of amplification (which is

in dB/msec):

float slopeAmp = pow(1, ((float)(((i - sampleDelay) *
((float) (1/(float)sampleRate)) *
pow(10,3) * slope)/20)));

In this case, for each sample the total amplification is slopeAmp times the initial ampli-

fication. The factor of i corresponds to the sample number. Thus, the later the sample

(samples that arrive later are from deeper in the body), the larger the amplification. This

is exactly what TCG is supposed to do. The final case is when TCG is selected in conjunc-

tion with logarithmic amplification, in which case the output is the logarithm of the input

sample times the total amplification (described above).

In every case, computations are done as floats, and then quantized to unsigned shorts

in order to keep the payload characteristics unchanged. If the total amplification is ever

greater than the user-defined maximum amplification, the value is clipped to the maximum

amplification.

Performance Targets

In order to ensure the maximum throughput of the system, the Receiver module, on average,

must be able to process payloads as quickly as it receives them. Assuming that payloads

are generated at a rate of 10 Hz, the Receiver module must be able to process payloads

at this same rate. Ten payloads per second corresponds to 100 msec per payload. As

mentioned above, the Receiver payload size is 4096 samples, because this is the smallest

integer multiple of the operating system page size that will allow the entire region of interest

to be captured in a single payload. This payload size corresponds to at most 24 psec of

processing time per sample. Even with the overhead of computing the amplification and

looping through the data portion of the payload, these requirements are reasonable since

only one multiplication operation is performed on each sample.

4.4 The Demodulator

The demodulator removes the oscillations of the echo due to the frequency of the inci-

dent pulse, and leaves only the envelope of the received signal (which is the most relevant

information). The demodulator breaks the incoming payload (which corresponds to the

amplified echo) into slices. It then attempts to fit each slice to a sinusoid and detect the

peak within this region.

The first step in demodulation is determining the size of the slice. The size of the

slice depends on the bandwidth of the signal returning from the probe. This bandwidth is

influenced by the fundamental frequency of the signal as well as the quality factor (Q) of

the transducer. Q is the ratio of the center frequency to the bandwidth. The bandwidth

can be found using the following equation:

bw = fl/(2 * Q) (4.2)

Since the center frequency is 10 MHz, and the Q is 3.9 [26], the bandwidth is around 1.3

MHz. In order to meet the Nyquist criterion, the envelope must be sampled at twice this

rate, or 2.6 MHz. The slice is determined by scaling the sampling frequency (f,), which is

20 MHz, by the envelope sampling frequency (2.6 MHz). Thus, the number of samples in

the slice is given by:

slice > f,/(2 * bw) (4.3)

This corresponds to a slice of around eight samples, meaning one output sample is produced

for every eight input samples.

Once the slice length is known, Maximum Likelihood (ML) detection is used to predict

the peak for a given slice. The following is the basic formula for determining the amplitude

in ML detection:

slice-i slice-1

ampML = (2/slice)* (input * sin(2 * r fl * n))2 + (E input * cos(2 * r fi * n))2

n=O n=O

(4.4)

where input is the value of the particular sample. Using this formula, an amplitude (amPML)

is generated for each slice. These amplitudes are then grouped together into an outgoing

payload which corresponds to the envelope of the incoming payload. In order to maintain

a constant size of outgoing payloads, some samples are leftover and are grouped with the

samples from the next payload. This insures continuity in processing and requires only a

small amount of memory to store the samples.

4.4.1 Module Details

Input/Output Payloads

The demodulator is another filter module that has one input port and one output port.

The incoming payload is received from the Receiver module. It is the same size as the input

payload to the Receiver module. Since demodulation produces one output sample for every

eight input samples, according to the above calculations, a new output payload is generated.

The size of this output payload changes depending on the number of integer multiples of

the slice in the data set. However, it is still of type VsSampleData. These payloads are

sent to the Oscilloscope module and then to the Video Sink module so that they can be

displayed on the screen.

Code Details

After the initial calculations, in which the size of the slice is determined, the data is analyzed.

If, for some reason, the size of the data is smaller than the size of the slice, the data is

discarded. For every slice of data, an amplitude is calculated, using ML estimation (as

described above). The following lines of code demonstrate this calculation:

// Determining the Carrier Frequency to be used in Demodulation
float carrier = (TWOPI*(float)frequency) /(float)samplingFrequency;

// The payload has length c len"' and is split into slices, so as long
// as the remaining length of the payload is still greater than or
// equal to the slice size, we can still split the payload into a
// slice to be used for ML estimation
while(len >= slice) {

float numerator = 0;
float denominator = 0;
for (uint i=O; i < slice; i++) {

// Implementing the sums from the Algorithm in Equation 4.4
numerator = numerator + (float)(*data) * (float)sin(carrier*i+PI/4);
denominator = denominator + (float)(*data) * (float)cos(carrier*i+PI/4);
data++;

// Estimating the Amplitude and setting the data value in the output
// payload to this amplitude value
float amp = (2.0/(float)slice) * (float)sqrt(pow(denominator,2) +

pow(numerator,2));
if (amp > 65535.0) amp = 65535.0;
*outputData = (u.short) amp;
outputData++;
len = len - slice;

}

I

The frequency used for the carrier frequency is the center frequency of returning echoes (in

our case 10 MHz). The amplitudes are quantized such that they fit in unsigned shorts. The

leftover data values from one payload are saved in memory and combined with the initial

data values from the next payload.

Performance Targets

Since the demodulator generates one output payload for every input payload, it must main-

tain the same payload rate as the other modules. However, since the output payloads are

roughly 90% smaller than the input payloads, the bit rate of the demodulator is actually

slower than that of the other modules. For each input data value, 6 floating point calcu-

lations are performed to get the values in the summations in Equation 4.4. In addition, 4

floating point operations are performed on each data slice and one floating point operation

is performed on each output data value. Since the size of the incoming payloads is 4096

samples, this corresponds to 27,200 calculations per payload. Assuming a PRF of 10 Hz,

this means that the module must perform an average of 272,000 floating point operations

per second to keep up with the incoming data.

4.5 Software Simulation Environment

In order to properly test the functionality of the software part of the prototype system

and demonstrate the viability of software ultrasound, without requiring any hardware to

be connected, a test environment was developed featuring a model transducer/target mod-

ule. This software module takes as an input the excitation pulse and outputs a model of

the returned echo. Figure 4-5 is a block diagram that shows where the simulated trans-

ducer/target fits in the software system. The module was designed by using the equivalent

circuit shown in Figure 4-6 [5]. In this circuit, Co is the parallel-plate capacitance of the

device (set to 0.0047 ILF), Rm is the resistance representing the radiation of acoustic power

(set to 50Q), Rk accounts for leakage current (set to 10kQ), and Ra accounts for inter-

nal absorption in the material (set to 50Q). The impedances of L and C, whose values

are 1.5x10-5H and 1.645x10- 5 , respectively, cancel out at the resonant frequency of the

transducer. Using impedance and frequency domain methods, the impulse response of this

circuit (h[n]) was computed. It was found to be (((-3.33E6*3.71E3)/ (6.66E6-3.71E3)) *

Figure 4-5: Block Diagram of Simulation Environment

Pulse
Generator

Software VideoReceiver I Demodulator Oscilloscope Sink

C L

V. R C 0k o o
0 0-

a

Figure 4-6: The Equivalent Electrical Circuit Modeling a Transducer and Target

exp- 3.71E3*n) + (((-6.66E6*3.33E6)/(3.71E6-6.66E6)) * exp-6.6663*n).

4.5.1 Simulation Details

Input/Output Payloads

The module that models the effects of the transducer and target is a VuSystem "filter"

module that has one input port and one output port. The input payloads to this module

contain 16-bit unsigned shorts generated by the Pulse Generator module. The format of the

output payloads is exactly the same as those of the input payload. Furthermore, since this

module is passed a pointer to the input payload, and passes the same pointer downstream,

it can make all the changes directly to the memory location where the payload is stored,

instead of having to make additional copies of the payload.

Code Description

The transducer/target is "simulated" through the application of a generated filter. It would

be computationally expensive to regenerate this filter every time a payload needs to be pro-

cessed. Instead, the filter is generated once and stored in memory, until the size of incoming

payloads changes (in which case the size of the FFT changes). Since the filter is computed

in the time domain (see above), it can be convolved with the data in order to generate

the output payload. However, a faster method involves using the Fast Fourier Transform

algorithm [21]. Using this method, the Fourier Transform of the filter is multiplied with

the Fourier Transform of the incoming data. Then, the inverse Fourier Transform of this

output is taken in order to get the desired output in the time domain. The first step involves

computing the FFT of the desired filter, which can be stored in memory. The following

code illustrates how the FFT of the filter is generated and stored:

// Storing the time-domain version of the filter in an array whose

// FFT can be computed, where filterlength is the desired filter length
for (uint n = 0; n < filterlength; n++) {
*(fftptr+n) = ((-3.33E6*3.71E3)/(6.66E6-3.71E3))*
exp(-3.71E3*n*((float)1/(float)SampleRate)) +
((-6.66E6*3.33E6)/(3.71E3-6.66E6))*
exp(-6.66E6*n*((float)1/(float)SampleRate));

}

// The size of the FFT is the payload size plus the length of the
// filter, rounded to the nearest power of two (to make the algorithm
// more efficient
size = (int) pow(2, (int)ceil((log(payloadSize+filterlength-1)/log(2))));

// Zero Pad filter to the right length
for (uint i = signalLength; i < size; i++)
*(fftptr+i) = 0.0;

// Taking FFT of filter to get it in Frequency domain (the results are
// returned in the same array)
realft(fftptr-1, size, 1);

Once the filter has been computed and stored in memory, it can be applied to the data

in the incoming payload. First, the FFT is taken of the data. The overlap-add method

of convolution (using the FFT) is employed when applying the filter to the data. Since

the data has been segmented into payloads, some of the data must be saved in order to

properly implement this algorithm. The amount of data to be saved is equal to the size of

the FFT minus the size of the payload. The size of the filter is set to 1024 samples, and

the default size of the incoming payload is 4096 samples. Thus, the minimum size of the

FFT would have to be 5120 samples. However, since the most efficient FFT algorithms use

FFTs that are integer powers of 2, the size of the FFT is set to 8192 samples, in which case

4096 samples are saved.

Since, the FFT algorithm is a floating point algorithm, the input and output data are

floats. However, the output payload of the transducer module must be unsigned shorts.

Thus, after the output data has been inverse FFTed (to get back into the time domain), it

is quantized to fit within a unsigned short.

4.6 Display

The ultrasound waveform is displayed using the Oscilloscope module developed by Andrew

Chiu of the Software Devices and Systems group at the MIT Laboratory for Computer Sci-

ence. This module acts like a regular oscilloscope, except that it is completely implemented

in software. It accepts payloads of type VsSampleData and generates payloads that con-

__

tain display bitmaps of type VsVideoFrame. The latter are typically passed to a VuSystem

VsVideoSink module, which in turn passes them to an X-Windows based display process.

Alternatively, the oscilloscope module can be connected to a VsFileSink module, which

causes the images to be written to a file for subsequent processing and viewing by a variety

of pre-existing VuSystem image processing and display/player applications. Similarly, the

output of the receiver or demodulator modules could be directed to a VsFileSink if it were

desirable to save the raw sampled information for future use. Figure 4-7 is a screen shot

showing the return echoes in the simulation environment using the software oscilloscope

display.

Figure 4-7: Return Echoes in the Ultrasound Simulation Environment

IMarfu

Chapter 5

Hardware and System Integration

5.1 Hardware

Although the ultimate goal of software devices is to push the hardware/software boundary

as close as possible to the A/D converter, there are some limitations as to what software

can currently do. For this reason, additional hardware can be built to make the system an

operational ultrasound unit. In order to connect the hardware domain with the software

domain, the GuPPI [11], a general-purpose PCI-bus Interface, a prototyping daughter card,

and associated software modules should be employed.

The main reason additional hardware is necessary is because digital logic operates at

very low voltage levels (usually between 0 and 5 V) and the transducer requires a very high

excitation pulse (around 150 V). In order to create such a waveform, an external high voltage

driver circuit was built. Receiver circuitry was also built to amplify the low-level ultrasound

echoes to the full range of the A/D converter. These components can be integrated with

the software to drive an ultrasound probe.

5.2 The GuPPI

In order to connect the software modules to the aforementioned hardware, the GuPPI can

be used [11]. The GuPPI, which was developed by Michael Ismert of the Software Devices

and Systems group at the MIT Laboratory for Computer Science, allows the continuous

transfer of data between the host processor/main memory and the hardware specific to the

application. The GuPPI, when interfaced with the D/A converter on the daughter card,

Figure 5-1: A Block Diagram of the GuPPI

allows samples generated in the VuSystem pulse generator module to be converted into

analog waveforms used to excite the transducer.

The GuPPI, as shown in Figure 5-1, consists of four 32 bit FIFO banks. Two of these

banks are used to buffer incoming and outgoing data traveling between the PCI bus and the

back-end bus. The other two banks hold the page addresses for instructions that read and

write to main memory. The back-end interface is used to connect to I/O devices specific

to the application. In this case, the GuPPI is connected to the daughter card, containing

the D/A and A/D converters, which is then connected to the ultrasound probe. The FIFO

banks provide various control signals, flags, and status bits, some of which can be set by

user-level software.

5.3 The Daughter Card

The prototyping daughter card, developed by Vanu Bose of the Software Devices and System

Group, consists of A/D and D/A converters, programmable logic, as well as other circuitry

needed to make these parts work with the GuPPI. Transmission and reception, the process

of transferring data from the GuPPI to the D/A or A/D converter, are each controlled by

an Advanced Micro Devices MACH230, a programmable logic device [2]. The MACH chips

are capable of communicating with each other so that the transmit and receive sides can

be synchronized to ensure samples are received right after the transmit pulse is generated.

The Analog Devices AD9713, a high-speed (80 MSPS) 12-bit D/A converter, can be used to

generate the analog representation of the short-duration pulse. The received echoes can be

digitized using the Analog Devices AD9042, a 12-bit A/D converter. The 10 MHz received

echoes can be properly handled by the AD9042 since the converter has a maximum data

_ _·

rate of 40 megasamples per second (MSPS), which corresponds to a Nyquist frequency of

20 MHz.

5.4 Pulse Generation Circuitry

The signal produced by the D/A converter in the daughter card has a range of ± 2 V. The

problem of trying to go from this voltage level to the high voltage level demanded by the

transducer in the ultrasound probe is the reason why the gated sinusoid method is often not

employed. With the gated sinusoid method, a high frequency, high voltage excitation pulse

is used to excite the transducer and cause it to resonate. However, in order to excite the

transducer, this excitation pulse must have a peak amplitude of 150 V. It is not practical

to build a high voltage amplifier that amplifies a 10 MHz signal on the order of 30 dB. The

best high voltage amplifiers give some amount of gain up to 1 MHz or so, thus falling short

of the requirements of a gated sinusoid system. The power/bandwidth requirements of such

systems present a significant challenge.

With most A-scan probes, all that is necessary to excite the transducer is a high voltage

pulse. The pulse causes the piezoelectric crystal to oscillate at its resonance frequency

particularly if it has a high Q (quality factor). The pulse must be short duration because

otherwise the crystal would still be ringing when echoes were received. This added constraint

means that the circuitry designed to amplify the pulse must be fast enough to produce pulse

durations on the order of 100 ns.

One possible method to generate the high voltage, short duration pulse makes use of a

monostable, FET, capacitor, diodes, and a 155 V power supply. The basic idea is that the

waveform used to excite the transducer is generated by rapidly discharging a high voltage

capacitor through the transducer. One of the goals in designing the hardware is to keep

the design as simple as possible. The entire circuit designed for pulse generation is shown

in Appendix A.

5.5 Receiver Circuitry

Figure 5-2 shows an overview of the receiver circuitry and its relation to the other hardware

components. When an excitation pulse is being transmitted, the receiver is susceptible to

the high voltage. In order to protect the receiver, a pair of parallel, reversed diodes is used

Received
Echo

-

Figure 5-2: An Overview of the Receiver Circuit

[5]. The diodes appear as short circuits for input voltages above 0.7 V in magnitude (like

the high voltage transmit pulse), and as open circuits for the low-voltage received echo

waveform. The value of R needs to be higher than the input impedance of the transducer,

in order to minimize wasted transmit power in R. Also, so that the maximum amount of

the received signal is in fact received, the impedance of R in series with the amplifier should

be smaller than the impedance of the transmitter circuit in the absence of an output pulse.

Since the received signal is on the order of 10 millivolts or so, it is important to amplify

this signal before it is sent to the D/A converter. The reason for this is because the range

of the D/A converter is -2 V to +2 V. Thus, if all of the samples are very low voltages, the

differences between them will not be captured as well. For this reason, an external amplifier

is required.

This receiver circuitry, when combined with the pulse generation circuitry, makes it

possible to receive echoes from an ultrasound probe. The configuration of all of the external

hardware designed for the prototype system is shown in Appendix A.

nib

5.6 Integration

In order to use the GuPPI, two additional software modules must be incorporated into the

system. These modules are the GuPPI Sink and the GuPPI Source modules. The GuPPI

Sink module receives its input from the Pulse Generator module. It then configures the

GuPPI DMA engine so that it can access the samples in the payload and present them to

the D/A converter. The GuPPI Source module gets the received signal from the GuPPI. It

then packages this information into payloads which are sent to the receive module. The size

of these payloads is a multiple of 4096 (which is the GuPPI page size). A block diagram of

the entire software/hardware system is shown in Figure 5-3.

Using customized hardware, such as the GuPPI, the daughter card, and the external

amplifier may initially seem contrary to the overall goal of designing a software-intensive

system. However, as software devices become more prevalent, the expectation is that every

computer will come with a GuPPI (or something very similar). In this case, the remaining

components could be integrated and sold with the transducer. Since improvements are

usually made to the processing apparatus rather than the I/O devices, it is believed that

the cost of upgrading a particular device will be the cost of upgrading the software since

the same I/O device and associated daughter card will be reused.

Figure 5-3: Block diagram of entire ultrasound system

66

Transmitt

User-
Defined
Parameters

Pulse IGuPPI
Generator ~Sink

Software

Receiver:

.....o ,. - H--------- ------...
GuPPI Card (DA) Driver Circuit

Hardware Transducer

Transduce

..... -.................................

--- --

er:

""

Chapter 6

Results and Conclusion

In this work, I have developed a software-based ultrasound design that could leverage the

flexibility of software. This report has described the prototype software ultrasound system.

The following sections discuss the novel aspects of this system, report on key aspects of its

performance, provide additional insights, and suggest possible future extensions.

6.1 Novel Aspects

This thesis has shown that it is possible and advantageous to develop ultrasound systems

in software. Such systems harness the flexibility and extensibility of software, while main-

taining the performance of traditional systems. The feasibility of software-based ultrasound

was demonstrated by using a simulation environment to transmit and receive ultrasound

echoes. By giving the user more control over the transmission and processing of ultrasound

echoes, this system has demonstrated the potential of software-based ultrasound systems.

6.2 Performance Results

The performance of the prototype ultrasound system was evaluated by characterizing the

performance of individual modules as well as the performance of the entire system in the sim-

ulation environment. These tests yield valuable information about the viability of software-

based ultrasound, as well as possibilities for future improvements in such systems, such as

implementing software-based B-scan technology.

6.2.1 System Performance

In order to examine the overall system performance, a rate meter module was used in

between the Pulse Generator module and the Transducer module and between the Oscillo-

scope module and the Video Sink. This made it possible to see how fast the Pulse Generator

was generating payloads and how fast these payloads were being displayed on the screen.

When examining the overall system performance, with all modules connected together, it

was found that the system was easily able to handle a pulse repetition frequency of 10 Hz.

At this PRF, the system was using 40% of the CPU. When the PRF was set to 20, the

system had a harder time keeping up. The payload rate through the system varied between

19.5 and 20 payloads per second. At this PRF, and at higher PRFs approximately 80-90%

of the CPU was being used. At higher PRFs, the system throughput didn't improve above

20 payloads per second.

A PRF of 20 Hz is adequate for A-scan ultrasound, since often times such systems are

used to generate only a few scans. However, an important consideration when evaluating

these systems is whether or not they can keep up with the desired sampling rate. For

the filtering modules, the Nyquist sampling rate is 20 MHz. Since the payloads are 4096

samples in size, in order to keep up with the sampling rate, modules must process data at

a rate of one payload every 0.2 msec. As will be shown in Section 6.2.2 (and in Table 6.1),

the modules in the prototype system were between one and two orders of magnitude slower

than would be required for continued sample processing.

6.2.2 Module Performance

The performance of the software modules was characterized using the simulation environ-

ment described in Section 4.5. In order to calculate the performance of individual modules,

without having to factor in the effects of other modules, vslt, a modified version of the

vslooptest VuSystem Tcl script written by Bill Stasior in the Software Devices and Sys-

tems Group was used. With this script, it is possible to send a certain number of payloads

through a filter module, and measure the time it takes to accomplish this task. This yields

meaningful results about how many payloads per second the module can handle. In order to

use the vslt script, the data that the module processes must be stored in a file. Figure 6-1

shows the generalized layout of modules used to evaluate the performance of the prototype

File Loop
Source Source

Null
Sink

Figure 6-1: Setup used to Evaluate the Performance of Filter Modules

system filter modules.

All input payloads are 4096 samples in length. On the transmit side, with a sampling

rate of 5 MHz, this corresponds to a payload duration of 0.8 msec. On the receive side,

with a sampling rate of 20 MHz, this corresponds to 0.2 msec. However, since payloads are

sent out and received one at a time, instead of in a continuous stream, it is possible to do

some processing off-line without having to worry about real-time constraints.

For each prototype system filter module being tested, data generated by the upstream

modules was written to a file. So, for example, in order to test the Receiver module,

the Pulse Generator module was connected to the Transducer module, whose output was

written to a File Sink module. In the vslt script, a File Source module reads the file

in order to generate the appropriate payloads, which are then passed to the LoopSource

module, and finally through the filter of interest into a Null Sink module that frees the

memory associated with the payload. A separate file containing the expected input data

was used to test each filter module. Below is the command entered at the command line

used to generate performance data:

vssh vslt -numSend 100 -numPayloads 10 <sourcefile> -filter
<filterfile -options> >> <outputfile>

What this does is send 100 payloads through the filterf ile, using the first 10 payloads

in the source.file (thus each of the first ten payloads is processed ten times by the filter).

All three filter modules (Demodulator, Receiver, and Transducer), were tested using

the default parameters stated in Chapter 4. Since the Receiver has many different options,

various combinations of these options were tested when evaluating the performance of the

Receiver. Furthermore, the options estimated to give the worst performance, were then

used to test the Demodulator. Performance data was generated by averaging the results

of five trials for each set of parameters, using the above script on a Pentium Pro 200 MHz

machine. In all cases, the payloads being processed are VsSampleData payloads, 8 KB in

size. The results are summarized in Table 6.1. When parameters are listed, the remaining

parameters should be assumed to have default value.

I

Module Parameters Performance

Transducer Default 21.00 ms/payload
Receiver Default 2.84 ms/payload
Receiver Gain=100 3.33 ms/payload
Receiver Gain=100, Log 6.13 ms/payload
Receiver TCG, Delay=0.01, Slope=10 11.77 ms/payload
Receiver TCG, Delay=0.01, Slope=10, Log 15.74 ms/payload
Receiver Gain=100,TCG,Delay=0.01,Slope=10,Log 15.96 ms/payload
Receiver Gain=80,TCG,Delay=0.01,Slope=10,Log 15.54 ms/payload
Receiver TCG,Delay=0.1,Slope=10 2.88 ms/payload
Demodulator Default 11.83 ms/payload
Demodulator Gain=100,TCG,Delay=0.01,Slope=10,Log 12.26 ms/payload

Table 6.1: Module Performance Measurements

These numbers seem to indicate that the TCG and logarithmic functions dramatically

reduce the performance of the system. This makes sense since both of these operations add

additional floating point computations. The one case in which TCG didn't seem to have

much of an effect on performance (when the payload evaluation period was 2.88 ms/payload)

was the case in which the delay was greater than the size of the payload (in which case TCG

was never applied).

Since TCG and logarithmic amplification are often not used in ophthalmic ultrasound

because the eye is so small, the performance of the system is not necessarily constrained

by these worst-case parameters. There are many possible ways to improve the performance

of the system in order to give better results. The easiest solution is to replace floating

point computations with integer ones. Floating point arithmetic was used for greater accu-

racy, however the results were always cast to unsigned shorts since the Oscilloscope display

module handles this data type. Using unsigned shorts, or even unsigned integers, for all

computations would not cause a significant decrease in accuracy, and could potentially

improve the speed of the modules by a factor of four.

Performance could also be improved by using larger-sized payloads. There is some

overhead associated with each payload, which tends to waste valuable processing time. If

larger payloads were used, this overhead would be spread out across more samples, resulting

in a smaller overhead per sample. With large payloads, however, there is the danger that a

slow module might take too long to process it, resulting in back pressure that slows down

the system.

Pnulsetor 4 Rate Meter 4 Signal Amp 4 Null Sink

Figure 6-2: Setup used to Evaluate the Performance of the Pulse Generator Module

Demodulation is so slow because of the numerous floating point operations performed

on each payload (see Section 4.4.1), which is partly due to the small slice size (8 samples)

used in ML estimation. Transducers often have a higher Q than used in the simulator

module (a Q of 3.9). For such transducers, the bandwidth is smaller, and thus the slice size

larger than lower Q transducers. Thus, with higher quality transducers, the demodulator

will perform fewer computations, which will improve the system throughput1 .

Another interesting test that was performed was to see how fast the Pulse Generator

module could generate payloads in the absence of any of the ultrasound filters. The setup

for this experiment is shown in Figure 6-2. Using the rate meter, and experimenting with

various PRFs, it was found that the source module could generate up to 4000 payloads/sec

while using approximately 96% of the CPU. The 4096 sample payloads generated were

sampled at 5 MHz. This corresponds to approximately 0.8 msec of required processing time

in order to keep up with the sampling rate. The measured performance of 4000 payloads/sec,

corresponds to 0.25 msec of processing per payload. Thus, the Pulse Generator is easily

able to keep up with the desired sampling rate, and could generate payloads sampled up to

approximately 15 MHz and still keep up with the required data rate. A Pulse Generator

module that can generate payloads at this rate is essential for B-scan ultrasound, in which

the PRF is often around 4 kHz.

The Transducer module, which is only used for simulation purposes, is the slowest

module mainly because it performs convolution operations on the data using the FFT,

which involves numerous floating point operations. This decrease in performance is not too

important, however, since the Transducer is just used in the simulation environment. In an

actual ultrasound system, the transducer module would be replaced by connections to the

necessary hardware.

'Although the performance of the system is not ideal for the 10 MHz received samples in ophthalmic
ultrasound, other modes of ultrasound, such as cardiac and fetal, use lower frequencies, sometimes around
1 MHz, which would corresponds to a Nyquist rate of 2 MHz. The prototype system should be better able
to handle the received signals of such modalities.

6.3 Performance Summary and Additional Insights

The performance of the prototype system seems to indicate that some form of software-

based ultrasound is definitely possible. As processors become faster and less expensive,

and extensions such as the Intel MMX technology make numerical computations faster,

advanced software-based ultrasound systems will become even more viable.

While developing the software ultrasound system, I have learned some important lessons:

* Although hardware was built to interface between the software and an ultrasound

probe, connecting to the probe proved to be a far greater challenge than expected.

This is partly a reflection on the fact that the medical industry is often not very

forthcoming with detailed information about their products. This points to the need

for more widely accepted industry interface standards for the design and construction

of medical instruments.

* Processing ultrasound echoes in software is not as difficult as expected, especially

in the case of A-scan technology. However, in order to make the jump into B-scan

imaging, either significant performance improvements need to be made or processing

power needs to be increased.

6.4 Future Work

The implementation described in this thesis provides a foundation for software-based ul-

trasound systems. However, since this system is meant as a prototype system that demon-

strates the feasibility of software ultrasound, there is much that can be done to enhance

its utility in a medical setting. The most useful extension would be connecting the ultra-

sound software modules to the proper hardware in order to create an operating ultrasound

unit. The extensions described below would incorporate advances in ultrasound technol-

ogy, while taking advantage of the flexibility software has to offer. Section 6.4.1 describes

ways in which the current implementation could be improved by adding features to the

user interface. Section 6.4.2 describes the possibility of incorporating additional scanning

modalities into a software-based system. Section 6.4.3 describes possible improvements in

the signal processing algorithms in order to obtain better results. Finally, 6.4.4 describes

ways in which a software-based ultrasound system would facilitate future innovation within

ultrasound technology.

6.4.1 The User Interface

An important feature of the ultrasound receiver, described in Section 4.3, is the Time

Compensated Gain (TCG)) function. This function, which allows the user to set the ampli-

fication of received echoes, is either a linear or logarithmic function specified by a particular

delay and slope. The user is able to change these parameters based on observing the re-

ceived signal. However, he or she is constrained to a particular set of values determined by

these parameters.

One possible method which gives the user far more control over how the TCG function

is set is to allow him or her to set the amplification of the received echoes at various depths.

In such a system of operation, the user would highlight a particular region of the display,

perhaps by drawing a box around that region or clicking on the endpoints of the region,

and then select a value for the amplification from a set of acceptable values. An alternative

method, and one that is used in some modern ultrasound systems, is to have pre-determined

regions in which the user must specify the amplification. Thus, there would be a separate

amplification control for each region.

The advantage of giving the user more control over the TCG is that it allows him or

her to take a closer look at particular regions of interest. For example, if the user, upon

examining the returning echoes, realized that certain echoes were extremely weak, he or she

could choose to increase the amplification of those regions, without needing to change the

amplification of other regions. Thus, the user would not be constrained to using a linear

or logarithmic function, but could instead implement pretty much any function he or she

desired in order to obtain the necessary clarity to properly interpret the results.

6.4.2 Alternate Scanning Methods

A-mode scanning was used in the prototype ultrasound system because of its ease of use

and utility in ophthalmic ultrasound applications. However, the most prevalent form of

ultrasound scanning is the B-scan. The requirements for incorporating this modality into

the software-ultrasound framework, as well as a description of multiple-array ultrasound

systems are presented in the following sections.

B-Mode Scanning

As described in Section 2.2.2, B-scan images are two-dimensional images that are derived

from multiple A-scan images at various angles, in which the amplitude is represented by the

brightness of a pixel. In order to create this two-dimensional picture, the patient is scanned

at various angles, producing a pie-shaped sector scan. In older technology, the ultrasound

operator would actually have to properly scan the probe across the surface of the patient in

order to produce the correct sector image. However, modern probes facilitate the process of

generating a sector scan by automatically rotating the position of the scan apparatus. This

rotation is accomplished by using two Linear Variable Differential Transformers (LVDT).

The LVDTs operate in a push-pull manner in order to create two degrees of freedom (in

the horizontal and vertical directions), allowing for angular scanning [27].

As opposed to the A-scan, in which only one control signal, namely the excitation

pulse, is required for proper operation, the B-scan requires five different control signals.

Each LVDT requires two control signals, while the transducer still requires an excitation

signal. As parallel architectures improve and become more cost-effective, and the GuPPI

and D/A converters become faster, achieving reasonable results for B-mode scanning should

be feasible. With such advances, a B-mode system can be added to the prototype system

with only a few modifications to the software. On the transmit end, the control signals

would have to be synchronized and sent to the GuPPI. Each control signal could have its

own payload type. In order to improve speed, these control signals should be buffered and

only changed if the user changes any relevant parameters.

The receiver would have to take into account the fact that there are multiple scan lines

in an image. One possible solution would be to store each scan line as a separate payload

to be processed. These scan lines could then be assembled together into a video payload.

The translation between scan line and video payload would involve translating the data

values into an appropriate pixel value (or indexing into the proper color map). With the

VuSystem, it would be very easy to show the individual scan lines as a changing A-mode

display in a software oscilloscope display, while using the collection of scan lines that make

up a sector scan as part of the video B-mode image. This way, simultaneous A- and B-mode

display, a feature available on many ophthalmic ultrasound systems, would be possible.

Phased Array Ultrasound Imaging

Most ultrasound systems use either a single transducer to transmit and receive signals or one

transducer for each function. However, some advanced systems use a technique known as

phased array imaging to produce a more accurate representation of the area being imaged.

In B-mode scanning, the transducer is rotated in the sector plane, while in phased array

scanning multiple transducers are used to create the same effect. On the transmit side,

each of the transducers is excited separately, creating a differential delay (phase delay) that

allows the beam to be steered through different angles. Designing this part of the system

in software isn't too difficult since the same excitation pulse needs to be sent out multiple

times. The hardware is a bit trickier since the proper transducer must be excited by the

appropriate pulse. However, using a multiplexer, this should be possible [13].

The receive end is a little more involved since the received waveforms from the transduc-

ers must be properly added together to create a coherent waveform. However, in a B-scan,

this procedure needs to occur for every point of the image. Such requirements create a large

demand for processing resources. However, as processor speeds increase, these techniques

will become more and more feasible. A major advantage of using the VuSystem for such

an application is that in virtual time, the real-time processing constraints of the system are

relaxed, making it easier for the software to keep up with the processing requirements.

6.4.3 Improvements in Signal Processing

Once a software-based B-mode ultrasound system has been developed, developing a three-

dimensional ultrasound system should become easier. Three-dimensional ultrasound images

are created by combining two-dimensional images using certain geometric assumptions.

Since all of the displayed ultrasound images will be in digital form, applying various three-

dimensional imaging algorithms to ultrasound scans will not be very difficult. Furthermore,

it may be possible to apply certain edge detection, computer vision, and pattern recognition

algorithms to improve the quality of the images and to detect certain clinically-relevant

features in real-time. Bill Stasior in the Software Devices and Systems Group at the MIT

Laboratory for Computer Science has done much work on applying such algorithms to non-

medical media streams. Current applications of this technology include a room monitor that

records images based on whether or not a room is occupied and a whiteboard recorder that

keeps track of changes to an office whiteboard [16]. In current, hardware-based ultrasound

systems, such techniques can only be performed if the analog images are digitized and then

processed on a computer. However, such systems don't offer the advantage of being able to

perform these signal processing tasks in real-time, which may often give clinicians valuable

information that can influence what additional scans are necessary.

6.4.4 Future Applications of Software-Based Ultrasound

Although software-based ultrasound systems are inherently beneficial, such systems be-

come even more valuable when they are combined with other technologies in order to form

more sophisticated medical diagnostic and treatment tools. For example, a software-based

ultrasound system can be seamlessly integrated into network-based medical consultation

systems. The method in which ultrasound scans are obtained can be controlled remotely

since the system is software-based. Thus, a doctor not present during the scan can make

adjustments to the parameters used to collect the images, while a technician conducts the

scan in a separate location. This would yield more significant clinical data since the doctor

is able to shape how the results are collected, without having to physically be in the room

where the scan is taking place. Since telemedicine is important for the future of medicine,

a software-based ultrasound system is an important first step in realizing this possibility.

Another possible application of software-based ultrasound is as part of a data-collection

system. In such a system, ultrasound images would be combined with data from various

monitoring devices (e.g., EKG, respiration, blood pressure, etc.) to form one comprehensive,

real-time image. Such systems are extremely useful to clinicians since they have the luxury

of having all the relevant data correctly aligned in one place, thus saving them the time

of having to manually put together all of the information relevant for making a particular

clinical decision.

Since ultrasound is used in many non-medical applications, such as stress testing ma-

terials, a software-based system would have many applications outside the medical field.

Such systems, especially portable ones implemented on laptop computers, would be useful

in many remote locations where a large-scale system is often quite cumbersome. Developing

advanced software-based ultrasound systems is consistent with an overall goal of developing

virtual instruments in software. Although hardware systems have been the standard for

customized applications, particularly in the medical field, they are quite inflexible when

systems need to be changed. By comparison, software systems, such as the one described

in this report, are much more flexible and offer the potential to improve the processing and

implementation of these devices.

_ _ ~___^__

Appendix A

Circuits

A.1 Pulse Generation

The circuit used for pulse generation is shown in Figure A-1. The input to the pulser circuit

comes from the monostable, which is triggered by the output pulse generated by the Pulse

Generator module. The software-generated pulse triggers the active-high transition trigger

input (pin 2, which is input B, shown in Figure A-2) on the 74LS123 monostable. The

active-low transition trigger input (input A which is pin 1), is set low since it is not used,

while the active-low clear input (pin 3) is set high for the same reason. The width of the

output pulse (pin 13) is determined by the external capacitance and resistance at pins 14

and 15. In order to generate a pulse approximately 100 ns in width, a 10 kQ resistor and a

12 pF capacitor are connected as shown in Figure A-2 [19].

The probe may be excited by either a positive or negative voltage (as long as the

difference in voltage between the two terminals of the transducer is enough to drive it).

The second part of the circuit shown in Figure A-1 actually generates the negative sharp

voltage pulse to the transducer [5]. When the Harris RFP8N20L N-channel logic-level FET

[8] is off (the default state), the high voltage 100 pF capacitor charges up to the positive

high voltage (155 V), via the charging resistor (12 kQ).

The output of the monostable, a 5 V pulse, is used to turn the FET on. The use of a

TTL device to drive a high-voltage FET is the reason why a logic-level FET is used. These

FETs are fully turned on at logic-level voltages, whereas most high-voltage FETs require

significantly higher gate voltages in order to switch large voltages.

When the FET is turned on by the monostable output, the left side of the capacitor

+155

12 kQ

RFP8N20L

Trigger Pulse

Figure A-1: Circuit Used to Excite the Transducer

is pulled to ground by the FET's source terminal. Pulling the left side of the capacitor to

ground causes a discharge on the right side of the capacitor, resulting in a large negative

voltage (approximately 155 V) applied to the top terminal of the transducer. Since the

bottom transducer terminal is at ground, the large negative voltage is applied across the

terminals of the transducer as the capacitor discharges. This idea can also be explained

mathematically. The current through the capacitor is given by the following relation:

dV
ic = C (A.1)

When the FET is turned on, the voltage at the left terminal of the capacitor instantaneously

drops down (i.e., there is a negative step in voltage). With a negative voltage step (V = -

u-1 (t)), the current is proportional to an impulse (i=-C6(t)). This means that there is a

negative current spike across the capacitor, allowing it to discharge instantaneously. The

damping resistor (1 kQ) across the terminals of the transducer is used to shape the trailing

edge of the pulse. This resistor is set at a value large enough such that any received echoes

are not driven down (as would be the case with very small resistors that would effectively

short the terminals). Figure A-3 shows the negative high voltage pulse used to excite the

transducer.

The four high voltage Motorola 1N4004 diodes across the terminals of the transducer are

+5V

t

Trigger Pulse
(from Software)

Figure A-2: Monostable Circuit used to Generate Driving Pulse

-150 V

4.d
2 is

Figure A-3: Negative Excitation Pulse

Received
Echo

Figure A-4: An Overview of the Receiver Circuit

used to protect the transducer from the positive voltage swing that occurs when the FET

turns off and the capacitor begins to charge up again (the rising edge of the pulse shown in

Figure A-3). With the diodes, the voltage across the two terminals of the transducer can

never go higher than four diode drops (4*0.7 V = 2.8 V) above ground. A 10 0 resistor is

connected from the gate of the FET to ground to provide a path for the gate to discharge,

in order to reduce its turn-off time, and thus reduce the duration of the excitation pulse. A

small resistor value is used to decrease the FET's decay time (which is also influenced by

the input impedance of the FET).

A.2 Receiver

Since the input impedance of the off-output transmitter circuit is governed by the damping

resistor (1 kQ) and the impedance of the transducer can be modeled as a capacitance of

value 0.0047 pF, the value of R in Figure A-4 is set to 5.6 kQ. There is a large drop

in voltage across the resistor, diminishing the need for high voltage diodes to protect the

receiver. The diodes used were standard 1N914 fast switching diodes.

In order to amplify the signal to the range governed by the D/A converter (±2 V), either

a high bandwidth operational amplifier or fast transistor amplifier can be used. The config-

---)
Ynn,

uration of all of the external hardware required for a fully functional prototype ultrasound

system is shown in Figure A-5.

Figure A-5: Schematic of entire hardware system

Appendix B

Programming Code

B.1 Pulse Generation

B.1.1 Header File

#ifndef _VSULTRASOUNDCLOCKLH
#define _VSULTRASOUNDCLOCKH_

#ifdef __GNUG__
#pragma interface
#endif

#include <vs/vsEntity.h>
#include <vs/vsAudioFragment.h>
#include <vs/vsSampleData.h>

class VsUltrasoundClock :public VsEntity {
VsOutputPort* outputPort;
VsPayload* payload;
VsTimeval timeStep;
VsSampleData* fr;
VsMemBlock mem;

u.int sampleRate;
uint prf;
short offset;
uint payloadSize;
float duration;
uchar amplitude;

u.int flag;
uint firstCall;

VsTimeval time;
VsTimeval nextTime;
VsIntervalId intervalId;

static VsEntity* Creator(TclInterp*,VsEntity*,const char*);
static VsSymbol* classSymbol;

friend int VsUltrasoundClockSampleRateCmd(ClientData,TcLInterp*,int,
char*[]) ;

friend int VsUltrasoundClockPRFCmd(ClientData,TclInterp*,int,char*[]);
friend int VsUltrasoundClockOffsetCmd(ClientData,TcLInterp*,int,char*[]);
friend int VsUltrasoundClockDurationCmd(ClientData,TclInterp*,int,char*[]);
friend int VsUltrasoundClockPayloadSizeCmd(ClientData,TclInterp*,
int,char*[]);
friend int VsUltrasoundClockAmplitudemd(ClientData,TclInterp*,int,char*[]);
VsUltrasoundClock(const VsUltrasoundClockk);
VsUltrasoundClock& operator=(const VsUltrasoundClock&);

public:
VsUltrasoundClock(TclInterp*, VsEntity*, const char*);
virtual "VsUltrasoundClock();
virtual VsSymbol* ClassSymbol() const { return classSymbol; };
virtual void* ObjPtr(const VsSymbol*);
static VsUltrasoundClock* DerivePtr(VsObj*);
virtual void Start(Boolean);
virtual void Stop(Boolean);
virtual void Idle(VsaOutputPort*);
virtual void TimeOut(VsIntervalId);
static int Get(Tcl-Interp*, char*, VsUltrasoundClock**);
static void InitInterp(TclInterp*);

inline VsUltrasoundClock*
VsUltrasoundClock::DerivePtr(VsObj* o) {

return (VsUltrasoundClock*)o->ObjPtr(classSymbol);
}

inline int
VsUltrasoundClock::Get(TclInterp* in, char* nm, VsUltrasoundClock** pp) {

return VsTclObj::Get(in, nm, classSymbol, (void**)pp);
}

endif / _VSULTRASOUNDCLOCKH_ */

B.1.2 Main Code

*ifdef __GNUG__
#pragma implementation
#endif

extern "C" {
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/types.h>
}
#include <vr/vsUltrasoundClock.h>
#include <vs/vsTcl.h>
#include <vs/vsOutputPort.h>
*include <vs/vsStart.h>
#include <vs/vsFinish.h>
#include <vs/vsTclClass.h>

int
VsUltrasoundClockSampleRateCmd(ClientData cd, TclInterp* in, int argc,

char* argv [)
{
VsUltrasoundClock* src = (VsUltrasoundClock*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[O], "?sampleRate?");
if (argc > 1) {
if (VsGetUnsignedInt(in, argv[1], &src->sampleRate) != TCLOK)
return TCL-ERROR;

src->flag = 1;
}
src->Stopa(False);
src->Start(False);
return VsReturnInt(in, src->sampleRate);

int
VsUltrasoundClockPRFCmd(ClientData cd, TclInterp* in, int argc,

char* argv[])
{
VsUltrasoundClock* src = (VsUltrasoundClock*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[O], "?prf?");
if (argc > 1) {
if (VsGetUnsignedInt(in, argv[ll, &src->prf) != TCL_OK)

return TCL_ERROR;
src->flag = 1;

}
arc->Stop(False);
src->Start(False);
return VsReturnInt(in, src->prf);

int
VsUltrasoundClockOffsetCmd(ClientData cd, TclInterp* in, int argc,
char* argv[])
{
VsUltrasoundClock* src = (VsUltrasoundClock*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[0], "?offset?");
if (argc > 1) {
if (VsGetShort(in, argv[1], &src->offset) != TCLOK)
return TCL_ERROR;

src->flag - 1;
}
return VsReturnInt(in, src->offset);

int
VsUltrasoundClockDurationCmd(ClientData cd, Tcl_Interp* in, int argc,

char* argv[])
{
VsUltrasoundClock* src = (VsUltrasoundClock*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[01, "?duration?");
if (argc > 1) {
if (VsGetFloat(in, argv[1], &src->duration) != TCLOK)
return TCLERROR;

src->flag = 1;
}
return VsReturnFloat(in, src->duration);

int
VsUltrasoundClockPayloadSizeCmd(ClientData cd, TclInterp* in, int arge,

char* argv [)
{
VsUltrasoundClock* src = (VsUltrasoundClock*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[O], "?payloadSize?");
if (argc > 1) {
if (VsGetUnsignedInt(in, argv[l], &src->payloadSize) != TCLOK)
return TCL_ERROR;

src->flag = 1;
}
return VsReturnInt(in, src->payloadSize);

int
VsUltrasoundClockAmplitudeCmd(ClientData cd, TclInterp* in, int argc,

char* argv [])
{
VsUltrasoundClock* src = (VsUltrasoundClock*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[O], "?amplitude?");
if (argc > 1) {
if (VsGetUnsignedChar(in, argvyll], &src->amplitude) != TCL0OK)
return TCLERROR;

src->flag = 1;

return VsReturnInt(in, src->amplitude);

VsUltrasoundClock::
VsUltrasoundClock(Tc1_Interp* in, VsEntity* pr, const char* nm)

:VsEntity(in,pr,nm) ,outputPort(new VsOutputPort(in,this ,"output")),
payload(0),timeStep(250000),
sampleRate(5000000),prf(10) ,offset(0) ,payloadSize(4096),duration(),

amplitude(255), intervalId(O)

firstCall = 1;
flag = 1;
mem.Alloc(2*payloadSize);
CreateOptionCommand ("sampleRate",

VsUltrasoundClockSampleRateCmd, (ClientData)this,O);
CreateOptionCommand("prf",

VsUltrasoundClockPRFCmd, (ClientData)this,O);
CreateOptionCommand("offset",

VsUltrasoundClockOffsetCmd, (ClientData)this,O);
Create0ptionCommand("duration",

VsUltrasoundClockDurationCmd, (ClientData)this,O);
CreateOptionCommand("payloadSize",

VsUltrasoundClockPayloadSizeCmd, (ClientData)this,O);
Create0ptionCommand("amplitude",

VsUltrasoundClockAmplitudeCmd, (ClientData)this,0);

VsUltrasoundClock::~VsUltrasoundClock() {
if (outputPort != 0) { delete outputPort; outputPort = 0; }
if (intervalId != 0 II payload != 0) Stop(True);

}

void*
VsUltrasoundClock::DbjPtr(const VsSymbol* cl) {

return (cl == classSymbol)? this : VsEntity::ObjPtr(cl);
}

void
VsUltrasoundClock::Start(Boolean mode) {

float temp = (float)((i000O.0/prf)*1000.0);
timeStep = VsTimeval((int)temp);
time = VsTimeval::Nov();
nextTime = time + timeStep;
VsEntity::Start(mode);
if (intervalId != 0) { StopTimeOut(intervalId); intervalId = 0; }
if (payload != 0) delete payload;
payload = new VsStart(time, 0);
if (outputPort->Send(payload)) payload = False;
if (!mode) Idle(outputPort);

void
VsUltrasoundClock::Stop(Boolean mode) {

VsEntity::Stop(mode);
if (intervalId != 0) { StopTimeOut(intervalId); intervalId = 0; }
if (payload != 0) { delete payload; payload = 0; }
if (!mode) {
payload = new VsFinish(VsTimeval::Now(), 0);
if (outputPort->Send(payload)) payload = 0;

}

void
VsUltrasoundClock::Idle(VsOutputPort* op) {

if (payload !.= 0 && op->Send(payload)) payload = 0;
if (payload == 0 && intervalld == 0)

intervalId = StartTimeOut(nextTime);
}

void
VsUltrasoundClock::TimeOut(VsIntervalld id) {
if (firstCall == 1 II flag == 1) {
mem.Free();
mem.Alloc(2*payloadSize);

}

if (intervalId == id) intervalId = 0;
VsTimeval lowerBound = VsTimeval::Now()-VaTimeval(i000000);
while (time < lowerBound) {

time += timeStep;
nextTime += timeStep;

}

while (payload == 0 && nextTime <= VsTimeval::Now()) {
if (firstCall == 1 II flag == 1) {
ushort* dst = (ushort*)mem.Ptr();
ushort counter = 0;
uuint pulseSamples = (u_int)((duration / 1000000) * sampleRate);
int value;
while (counter < pulseSamples) {

value = (int)((amplitude/(float)255)*(float)32767 + (65535/2) + offset);
if (value > 65535) value = 65535;
if (value < 0) value = 0;
*dst++ = (u-short) value;
counter++;

}
while (counter < payloadSize) {

*dst++ = (ushort) ((65535/2) + offset);
counter++;

}
firstCall = 0;
flag = 0;

}
fr = new VsSampleData(time, 0, 2*payloadSize,

sampleRate, VsShortAudioSampleEncoding,
16, HOSTORDER, 1);
fr->Samples() = payloadSize;
fr->Data() = mem; fr->ComputeDuration(); payload = fr;

time += timeStep;
nextTime += timeStep;
if (outputPort->Send(payload)) payload = 0;

}
if (payload == 0 && intervalId == 0) intervalId = StartTimeOut(nextTime);

VsEntity*
VsUltrasoundClock::Creator(TclInterp* in, VsEntity* pr, const char* nm) {

return new VsUltrasoundClock(in, pr, nm);
}
VsSymbol* VsUltrasoundClock::classSymbol;

void
VsUltrasoundClock::InitInterp(TclInterp* in) {

classSymbol = InitClass(in, Creator, "VsUltrasoundClock", "VsEntity");
}

B.1.3 Tcl Code for Control Panel

VsUltrasoundClock instanceProc panel {w orient args} {
apply Viewport $w \

-height 600 \
-allowVert true \
$args

Form $w.form

Label $w.form.label \
-label "Ultrasound Clock" \
-borderWidth 0

VsLabeledScrollbar $w.form.prf \
-label "Pulse Repetition Frequency" \
-value [$self prf] \
-continuous [true] \

-converter "vsRoundingLinearConverter 0 5000" \
-inverter "vsLinearInverter 0 5000" \
-callback "$self prf" \
-width 200 \
-fromVert $w.form.label

VsLabeledScrollbar $w.form.duration \
-label "Pulse Duration (us)" \
-value [$self duration] \
-continuous [true] \
-converter "vsLinearConverter 0 10" \
-inverter "vsLinearInverter 0 10" \
-callback "$self duration" \
-width 200 \
-fromVert $w.form.prf

VsLabeledScrollbar $w.form.offset \
-label "Offset" \
-value [$self offset] \
-continuous [true] \
-converter "vsRoundingLinearConverter -32767 32767" \
-inverter "vsLinearInverter -32767 32767" \
-callback "$self offset" \
-width 200 \
-fromVert $w.form.duration

VsLabeledScrollbar $w.form.sampleRate \
-label "Sample Rate" \
-value [$self sampleRate] \
-continuous [true] \
-converter "vsRoundingLinearConverter 1000000 30000000" \
-inverter "vsLinearInverter 1000000 30000000" \
-callback "$self sampleRate" \
-width 200 \
-fromVert $w.form.offset

VsLabeledScrollbar $w.form.amplitude \
-label "Amplitude" \
-value [$self amplitude] \
-continuous [true] \
-converter "vsRoundingLinearConverter 0 255" \
-inverter "vsLinearInverter 0 255" \
-callback "$self amplitude" \
-width 200 \
-fromVert $w.form.sampleRate

B.2 Ultrasound Transducer/Target

B.2.1 Header File

#ifndef _VSULTRASOUNDTRANSDUCERH-
#define _VSULTRASOUNDTRANSDUCERH_

*ifdef __GNUG__
*pragma interface
#endif

#include <vs/vsEntity.h>
#include <vs/vsSampleData.h>
#include <vs/vsFilter.h>

class VsUltrasoundTransducer :public VsFilter {
u_short firstCall;
u_short tmp;

VsMemBlock fftData, leftovers;
float* fftData.Begin;
unsigned long signalLength, payloadSize, size;
static VsEntity* Creator(TclInterp*,VsEntity*,const char*);
static VsSymbol* classSymbol;
VsUltrasoundTransducer(const VsUltrasoundTransducerk);
VsUltrasoundTransducerk operator-(const VsUltrasoundTransducer&);

friend int VsUltrasoundTransducerSignalLengthCmd(ClientData,TclInterp*,int,
char* []) ;

protected:
virtual Boolean WorkRequiredP(VsPayload* p);

public:
int outputEncoding;
VsUltrasoundTransducer(TclInterp*, VsEntity*, const char*);
virtual "VsUltrasoundTransducer();
virtual VsSymbol* ClassSymbol() const { return classSymbol; };
virtual void* ObjPtr(const VsSymbol*);
virtual Boolean Work();
static VsUltrasoundTransducer* DerivePtr(VsObj*);
static int Get(TclInterp*, char*, VsUltrasoundTransducer**);
static void InitInterp(Tcl-Interp*);
void BuildFilter();

};

inline VsUltrasoundTransducer*
VsUltrasoundTransducer::DerivePtr(VsObj* o) {

return (VsUltrasoundTransducer*)o->0bjPtr(classSymbol);
}

inline int
VsUltrasoundTransducer::Get(TclInterp* in, char* nm, VsUltrasoundTransducer** pp) {

return VsTclObj::Get(in, nm, classSymbol, (void**)pp);
}

#endif /* _VSULTRASOUNDTRANSDUCERH. */

B.2.2 Main Code

#ifdef -_GNUG--
#pragma implementation
#endif

extern "C" {
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
}

#include <vs/vsFilter.h>
#include <vs/vsSampleData.h>
#include <vr/vsUltrasoundTransducer.h>
#include <vs/vsOutputPort.h>
*include <vs/vsTcl.h>
*include <vs/vsTclClass.h>

#define SQ(x) ((x) * (x))
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

inline void
fourl(float data[], unsigned long nn, int isign)
{
unsigned long n,mmax,m,j,istep,i;
double vtemp,wr,wpr,vpi,vi,theta;
float tempr,tempi;

n=nn << 1;
j=1;
for (i=l;i<n;i+=2) {
if (j > i) {

SWAP(data[j] ,data[i]);
SWAP(data[j+1] ,data[i+l]);

}
m=n >> 1;
while (m >= 2 && j > m) {

j -= m;
m >>= 1;

}
j += m;

}
mmax=2;
while (n > mmax) {

istep=mmax << 1;
theta=isign*(6.28318530717959/mmax);
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=l.0;
wi=O.0;
for (m=l;m<mmax;m+=2) {
for (i=m;i<=n;i+=istep) {

j=i+mmax;
tempr=wr*data[j]-wi*data[j+1];
tempi=wr*data[j+] +wi*data[j];
data [j] =data [i] -tempr;
data [j+1] =data [i+1] -tempi;
data[i] += tempr;
data[i+1] += tempi;

I
wr= (wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

I
mmax=istep;

}
}

inline void
realft(float data[], unsigned long n, int isign)
{
unsigned long i,il,i2,i3,i4,np3;
float cl=0.5,c2,hlr,hli,h2r,h2i;
double wr,wi,wpr,wpi,wtemp,theta;

theta=3.141592653589793/(double) (n>>l);
if (isign == 1) {

c2 = -0.5;
four1(data,n>>1,1);

} else {
c2=0.5;
theta = -theta;

}
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0+wpr;
wi=wpi;
np3=n+3;
for (i=2;i<=(n>>2);i++) {

i4=1+(i3=np3-(i2=1+(il=i+i-1)));
hlr=cl*(data[i] +data[i3]);
hli=ci*(data[i2] -data [i4]) ;
h2r = -c2*(data[i2]+data[i4]);
h2i=c2*(data[i] -data[i3]);
data[il] =hlr+wr*h2r-wi*h2i;
data[i2]=hli+wr*h2i+wi*h2r;
data[i3]=hlr-wr*h2r+wi*h2i;

data[i4] = -hli+wr*h2i+wi*h2r;
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

}
if (isign == 1) {

data[l] = (hlr=data[l])+data[2];
data[2] = hlr-data[2];

} else {
data[1]=cl*((hlr=data[1])+data[2]);
data[2]=cl*(hir-data[2]);
fourl(data,n>>1,-1);

}

int
VsUltrasoundTransducerSignalLengthCmd(ClientData cd, Tcl_Interp* in, int argc,
char* argv[])
{
VsUltrasoundTransducer* lpf = (VsUltrasoundTransducer*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[O], "?signalLength?");
if (arge > 1)

{
if (VsGetUnsignedLong(in, argv[yll], &lpf->signalLength) != TCLOK)

return TCL_ERROR;
lpf->BuildFilter();

}
return VsReturnInt(in, lpf->signalLength);

}

VsUltrasoundTransducer::VsUltrasoundTransducer(TclInterp* in, VsEntity* pr, const char* nm)
:VsFilter(in,pr,nm),signalLength(1024)

{
fftData.Alloc(sizeof(float)*signalLength);
leftovers.Alloc(sizeof(float)*signalLength);
payloadSize = 0;
firstCall = 1;
tmp = 1;
CreateaptionCommand("signalLength",

VsUltrasoundTransducerSignalLengthCmd, (ClientData)this, 0);

VsUltrasoundTransducer::~VsUltrasoundTransducer() {
}

void*
VsUltrasoundTransducer::ObjPtr(const VsSymbol* cl) {

return (cl == classSymbol)? this : VsFilter::ObjPtr(cl);
}

void
VsUltrasoundTransducer::BuildFilter()
{

VsSampleData* frag = VsSampleData::DerivePtr(payload);
fftData.Free();
payloadSize = frag->Samples();
size = (int) pow(2,(int)ceil((log(payloadSize+signalLength-l)/log(2))));
fftData.Alloc(sizeof(float)*size);
float* fftptr = (float *) fftData.Ptr();

for (uint n = 0; n < signalLength; n++) {
*(fftptr+n) = ((-3.33E6*3.71E3)/(6.66E6-3.71E3))*

exp(-3.71E3*n*((float)i/(float)frag->SamplesPerSecond()) +
((-6.66E6*3.33E6)/(3.71E3-6.66E6))*
exp(-6.66E6*n*((float)1/(float)frag->SamplesPerSecond());

}
for (uint i = signalLength; i < size; i++)

*(fft-ptr+i) = 0.0;
realft(fft_ptr-1, size, 1);

I

Boolean

VsUltrasoundTransducer::WorkRequiredP(VsPayload *p) {
VsSampleData* frag = VsSampleData::DerivePtr(p);
return (frag != 0);

}

Boolean
VsUltrasoundTransducer::Work()
{
VsSampleData* frag = VsSampleData::DerivePtr(payload);
if (payloadSize != (uint)frag->Samples()) {
payloadSize = (uint)frag->Samples();
BuildFilter();

}
float srcdata[sizel;
ushort *src = (u.short *)(frag->Data().Ptr());
for (uint i = 0; i < (u-int)frag->Samples(); i++) {

srcdata[i] = (float) *(src+i);
}
float *fftptr = (float *) fftData.Ptr();
for (u.int i = payloadSize; i < size; i++)

src-data[i] = 0.0;
realft(srcdata - 1, size, 1);
for (int i = 0; i < 2; i++)

src-data[i] *= fftptr[i];
for (uint i = 2; i < size-i; i+=2) {
float tempi, tempr;
tempr = (srcdata[i] * fft.ptr[i]) - (srcdata[i+1]*fftptr[i+1]);
tempi = (src_data[i+1]*fftptr[i]) + (src_data[i]*fftptr[i+1]);
srcdata[i] = tempr;
srcdata[i+1] = tempi;

}
realft(srcdata-1, size, -1);
if (firstCall == 1) {
leftovers .Free();
firstCall = 0;

}
else {
float *leftoverptr = (float *) leftovers.Ptr();
for (ujint i = 0; i < (size-payloadSize); i++)

srcdata[i] += *(leftover.ptr+i);
leftovers.Free();

}
leftovers.Alloc(sizeof(float)*(size-payloadSize));
float *leftoverptr = (float *) leftovers.Ptr();
for (uint i = payloadSize, j = 0; i < size; i++,j++)

*(leftoverptr+j) = srcdata[i];

u-short ushortBytes = sizeof(utshort);
ushort ushortBits - 8 * ushortBytes;
ushort maxushort = (((ushort) poV(2,ushortBits - 1) - 1) * 2) + 1;
ushort zero = maxushort/2;
float maxfloat = 5E16;

for (ujint i = 0; i < (uint)frag->Samples(); i++) {
srcdata[i] /= maxfloat;
if (src-data[i] > 1)

srcdata[i] = 1;
if (srcdata[i] < -1)

srcdata[i] = -1;
srcdata[i] = zero + (srcdata[i] * zero);
srcdata[i] = src-data[i] * maxushort;
*(src+i) = (ushort) src-data[i];

}
tmp = 0;
return VsFilter::Work();

VsEntity*
VsUltrasoundTransducer::Creator(TclInterp* in, VsEntity* pr, const char* nm) {
return new VsUltrasoundTransducer(in, pr, nm);

}

VsSymbol* VsUltrasoundTransducer::classSymbol;

void
VsUltrasoundTransducer::InitInterp(TclInterp* in) {

classSymbol - InitClass(in, Creator, "VsUltrasoundTransducer", "VsFilter");
}

B.2.3 Tcl Code for Control Panel

VsUltrasoundTransducer instanceProc panel {w orient args} {
apply Viewport $w \

-height 200 \
-allowVert true \
$args

Form $w.form

Label $w.form.label \
-label "Ultrasound Transducer" \
-borderWidth 0

B.3 Ultrasound Receiver

B.3.1 Header File

#ifndef _VSULTRASOUNDRECEIVERH_
*define _VSULTRASOUNDRECEIVERH_

#ifdef __GNUG__
#pragma interface
#endif

#include <vs/vsEntity.h>
*include <vs/vsSampleData.h>
#include <vs/vsFilter.h>

class VsUltrasoundReceiver :public VsFilter {
static VsEntity* Creator(Tcl_Interp*,VsEntity*,const char*);
static VsSymbol* classSymbol;

uint initGain;
u-int maxGain;
uchar function;
float delay;
uint slope;
u_char tcg;

friend int VsUltrasoundReceiverInitialGainCmd(ClientData,TclInterp*,int,char*[]);
friend int VsUltrasoundReceiverMaximumGainCmd(ClientData,TclInterp*,int,char[);
friend int VsUltrasoundReceiverFunctionCmd(ClientData,TclInterp*,int,char*[]);
friend int VsUltrasoundReceiverDelayCmd(ClientData,TclInterp*,int,char*[]);
friend int VsUltrasoundReceiverSlopeCmd(ClientData,Tcl.Interp*,int,char*[]);
friend int VsUltrasoundReceiverTcgCmd(ClientData,TclInterp*,int,char*[]);
VsUltrasoundReceiver(const VsUltrasoundReceiver&);
VsUltrasoundReceiver& operator-(const VsUltrasoundReceiver&);

protected:
virtual Boolean WorkRequiredP(VsPayload* p);

public:

int outputEncoding;
VsUltrasoundReceiver(TclInterp*, VsEntity*, const char*);
virtual "VsUltrasoundReceiver();
virtual VsSymbol* ClassSymbol() const { return classSymbol; };
virtual void* ObjPtr(const VsSymbol*);
virtual Boolean Work();
static VsUltrasoundReceiver* DerivePtr(VsObj*);
static int Get(TclInterp*, char*, VsUltrasoundReceiver**);
static void InitInterp(Tcl-Interp*);

inline VsUltrasoundReceiver*
VsUltrasoundReceiver::DerivePtr(VsObj* o) {
return (VsUltrasoundReceiver*)o->ObjPtr(classSymbol);

}

inline int
VsUltrasoundReceiver::Get(TclInterp* in, char* nm, VsUltrasoundReceiver** pp) {
return VsTclObj::Get(in, nm, classSymbol, (void**)pp);

}

#endif /* _VSULTRASOUNDRECEIVERH_ */

B.3.2 Main Code

#ifdef __GNUG__
#pragma implementation
#endif

extern "C" {
*include <stdlib.h>
*include <stdio.h>
#include <math.h>
}

#include <vs/vsFilter.h>
#include <vs/vsSampleData.h>
#include <vr/vsUltrasoundReceiver.h>
#include <vs/vsOutputPort.h>
#include <vs/vsTcl.h>
#include <vs/vsTclClass.h>

#define SPEEDOFSOUND pow(l.54,5)

int
VsUltrasoundReceiverInitialGainCmd(ClientData cd, TclInterp* in, int argc,

char* argv[])
{
VsUltrasoundReceiver* src = (VsUltrasoundReceiver*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[O], "?initGain?");
if (argc > 1) {
if (VsGetUnsignedInt(in, argv[l], &src->initGain) != TCLOK)
return TCLERROR;

}
return VsReturnInt(in, src->initGain);

}

int
VsUltrasoundReceiverMaximumGainCmd(ClientData cd, TclInterp* in, int argc,

char* argv[])
{
VsUltrasoundReceiver* src = (VsUltrasoundReceiver*)cd;
if (arge > 2) return VsTclErrArgCnt(in, argv[O], "?maxGain?");
if (argc > 1) {
if (VsGetUnsignedInt(in, argv[l], &src->maxGain) != TCLOK)
return TCLERROR;

}

return VsReturnInt(in, src->maxGain);
}

int
VsUltrasoundReceiverFunctionCmd(ClientData cd, TclInterp* in, int argc,
char* argv[])

{
VsUltrasoundReceiver* arc = (VsUltrasoundReceiver*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[O], "?function?");
if (argc > 1) {
if (VsGetUnsignedChar(in, argv[1], &src->function) != TCLOK)
return TCLERROR;

}
return VsReturnInt(in, src->function);

int
VsUltrasoundReceiverDelayCmd(ClientData cd, TcliInterp* in, int argc,

char* argv[])

VsUltrasoundReceiver* arc = (VsUltrasoundReceiver*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[O], "?delay?");
if (argc > 1) {
if (VsGetFloat(in, argv[l], &src->delay) != TCLOK)
return TCLERROR;

}
return VsReturnFloat(in, src->delay);

I

int
VsUltrasoundReceiverSlopeCmd(ClientData cd, TclInterp* in, int argc,

char* argv[])
{
VsUltrasoundReceiver* arc - (VsUltrasoundReceiver*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[O], "?slope?");
if (argc > 1) {
if (VsGetUnsignedInt(in, argv[ll, &src->slope) != TCLIOK)

return TCLERROR;
}
return VsReturnInt(in, src->slope);

int
VsUltrasoundReceiverTcgCmd(ClientData cd, TclInterp* in, int argc,

char* argv])
{
VsUltrasoundReceiver* src = (VsUltrasoundReceiver*)cd;
if (argc > 2) return VsTclErrArgCnt(in, argv[O], "?tcg?");
if (argc > 1) {
if (VsGetUnsignedChar(in, argv[1], &src->tcg) != TCLOK)

return TCLERROR;

return VsReturnInt(in, src->tcg);

VsUltrasoundReceiver::VsUltrasoundReceiver(TclInterp* in, VsEntity* pr, const char* nm)
:VsFilter(in,pr,nm),initGain(40), maxGain(140),
function(O), delay(i), slope (1), tcg(O)

CreateOptionCommand(" initGain",
VsUltrasoundReceiverInitialGainCmd, (ClientData)this, 0);

Creat eOpt ionCommand("maxGain",
VsUltrasoundReceiverMaximumGainCmd, (ClientData)this, 0);

CreateOptionCommand ("function",
VsUltrasoundReceiverFunctionCmd, (ClientData)this,0);

CreateOptionCommand ("delay",
VsUltrasoundReceiverDelayCmd, (ClientData)this,O);

CreateOptionCommand("slope",
VsUltrasoundReceiverSlopeCmd, (ClientData)this,O);

CreateOptionCommand("t cg",
VsUltrasoundReceiverTcgCmd, (ClientData)this,O);

VsUltrasoundReceiver::-VsUltrasoundReceiver() {
}
void*
VsUltrasoundReceiver::ObjPtr(const VsSymbol* cl) {

return (cl == classSymbol)? this : VsFilter::ObjPtr(cl);
}

Boolean
VsUltrasoundReceiver::WorkRequiredP(VsPayload *p) {

VsSampleData* frag = VsSampleData::DerivePtr(p);
return (frag != 0);

}

Boolean
VsUltrasoundReceiver::Work()
{
VsSampleData* frag = VsSampleData::DerivePtr(payload);
ushort* srcdata = (ushort *)(frag->Data().Ptr());
u-int samples = frag->Samples();
frag->SamplesPerSecond() = 20000000;
u-int sampleRate = frag->SamplesPerSecond();
float sampleDelaytemp = ((float) delay / (SPEEDOFSOUND*10)) * sampleRate;
uint sampleDelay = (uint) sampleDelaytemp;
float initAmp = pow(10,((float)initGain/20));
float maxAmp = pow(10,((float)maxGain/20));
ushort ushortBytes = sizeof(u.short);
ushort ushortBits = 8 * ushortBytes;
u-short maxushort = (((ushort) pow(2,ushortBits - 1) - 1) * 2) + 1;
float maxfloat = 6.5535E9;
float logmaxfloat = 4.8164733E5;
for (u_int i = 0; i < samples; i++) {

float temp = (float) *srcdata;
if (i < sampleDelay II tcg == O) {
if (function == 0) {

if (initAmp > maxAmp)
initAmp = maxAmp;
int value = 32767+*srcdata;
if (value > 65535) value = 65535;
if (value < 0) value = 0;
*src data = value;

I */
temp *= initAmp;
temp /= maxfloat;
if (temp < 1)
{}

else
temp = 1;

temp *= maxushort;
*srcdata = (ushort) temp;
if (*srcdata > 65535) *srcdata = 65535;
srcdata++;

}
else {

if (initAmp > maxAmp)
initAmp = maxAmp;

if (*srcdata == 0)
{}

else {
temp = loglO(temp) * initAmp;
temp /= logmaxfloat;
if (temp < 1)
{}

else
temp = 1;

temp *= maxushort;
*src_data = (u.short) temp;
if (*srcdata > 65535) *src_data = 65535;

srcdata++;
}

else {
float slopeAmp = pow(10,((float)(((i
((float)(1/(float)sampleRate)) *
pow(10,3) * slope)/20)));

if (function == 0) {
if ((initAmp*slopeAmp)>maxAmp) {

int value = 32767+*srcdata;
if (value > 65535) value = 65535;
if (value < 0) value = 0;

*srcdata = value;

- sampleDelay) *

temp *= maxAmp;
temp /= maxfloat;
if (temp < 1)
{}

else
temp = 1;

temp *= maxushort;
*src-data = (ushort) temp;
if (*src_data > 65535) *srcdata = 65535;
srcdata++;

else {
temp *= (initAmp*slopeAmp);
temp /= maxfloat;
if (temp < 1)
{}

else
temp = 1;

temp *= maxushort;
*srcdata = (u_short) temp;
if (*srcdata > 65535) *srcdata
srcdata++;

= 65535;

else {
if ((initAmp*slopeAmp)>maxAmp) {

if (*srcdata == 0)

else {
temp = loglO(temp) * maxAmp;
temp /= logmaxfloat;
if (temp < 1)
{}

else
temp = 1;

temp *= maxushort;
*src_data = (ushort) temp;
if (*srcdata > 65535) *srcdata = 65535;

srcdata++;
}
else {

if (*src_data == 0)
{}

else {
temp = loglO(temp) *
temp /= logmaxfloat;
if (temp < 1)
{}

(initAmp * slopeAmp);

else
temp = 1;

temp *= maxushort;
*src_data = (u_short) temp;
if (*srcdata > 65535) *src data = 65535;

}
srcdata++;

}
}

}

return VsFilter::Work();

VsEntity*
VsUltrasoundReceiver::Creator(TclInterp* in, VsEntity* pr, const char* nm) {

return new VsUltrasoundReceiver(in, pr, nm);
}

VsSymbol* VsUltrasoundReceiver::classSymbol;

void
VsUltrasoundReceiver::InitInterp(TclInterp* in) {

classSymbol = InitClass(in, Creator, "VsUltrasoundReceiver", "VsFilter");

B.3.3 Tcl Code for Control Panel

VsUltrasoundReceiver instanceProc panel {w orient args} {
apply Viewport $w \

-height 400 \
-allowVert true \
$args

Form $w.form

Label $w.form.label \
-label "Ultrasound Receiver" \
-borderWidth 0

VsLabeledChoice $w.form.function \
-label "Function" \
-choices {{0 "Linear"} {1 "Log"}} \
-value [$self function] \
-callback "$self function" \
-width 200 \
-fromVert $w.form.label

VsLabeledScrollbar $w.form.initGain \
-label "Initial Gain (dB)" \
-value [$self initGain] \
-continuous [true] \
-converter "vsRoundingLinearConverter 0 100" \
-inverter "vsLinearInverter 0 100" \
-callback "$self initGain" \
-width 200 \
-fromVert $w.form.function

VsLabeledScrollbar $w.form.maxGain \
-label "Maximum Gain (dB)" \
-value [$self maxGain] \
-continuous [true] \
-converter "vsRoundingLinearConverter 0 120" \
-inverter "vsLinearInverter 0 120" \
-callback "$self maxGain" \
-width 200 \
-fromVert $w.form.initGain

VsLabeledScrollbar $w.form.delay \
-label "Delay (mm)" \

100

-value [$self delay] \
-continuous (true] \
-converter "vsLinearConverter 0 5" \
-inverter "vsLinearInverter 0 5" \
-callback "$self delay" \
-width 200 \
-fromVert $w.form.maxGain

VsLabeledScrollbar $w.form.slope \
-label "Slope (dB/ms)" \
-value [$self slope] \
-continuous [true] \
-converter "vsRoundingLinearConverter 0 20" \
-inverter "vsLinearInverter 0 20" \
-callback "$self slope" \
-width 200 \
-fromVert $w.form.delay

VsLabeledChoice $w.form.tcg \
-label "TCG" \
-choices {{0 "Off"} {1 "On"}} \
-value [$self tcg] \
-callback "$self tcg" \
-fromVert $w.form.slope

B.4 Ultrasound Demodulator

B.4.1 Header File

#ifndef _VSULTRASOUNDDEMODULATORH_
#define _VSULTRASOUNDDEMODULATOR_H_

#ifdef __GNUG__
#pragma interface
#endif

#include <vs/vsEntity.h>
#include <vs/vsAudioFragment.h>
#include <vs/vsFilter.h>

#define TWOPI 6.28318530717959

extern "C" {
extern int VsUltrasoundDemodulatorChannelCmd(ClietData,TclInterp, int,char* [);

class VsUltrasoundDemodulator :public VsFilter {
static VsEntity* Creator(TclInterp*,VsEntity*,const char*);
static VsSymbol* classSymbol;
VsMemBlock leftovers;
u_short firstcall;
int samplingFrequency;
int frequency;
float carrier;
float q;

VsUltrasoundDemodulator(const VsUltrasoundDemodulator&);
VsUltrasoundDemodulator& operator=(const VsUltrasoundDemodulator&);

protected:
virtual Boolean WorkRequiredP(VsPayload* p);

public:
VsUltrasoundDemodulator(TclInterp*, VsEntity*, const char*);

101

virtual "VsUltrasoundDemodulator();
virtual VsSymbol* ClassSymbol() const { return classSymbol; };
virtual void* ObjPtr(const VsSymbol*);
virtual void Start(Boolean);
virtual Boolean Work();
static VsUltrasoundDemodulator* DerivePtr(VsObj*);
static int Get(TclInterp*, char*, VsUltrasoundDemodulator**);
static void InitInterp(TclInterp*);

inline VsUltrasoundDemodulator*
VsUltrasoundDemodulator::DerivePtr(VsObj* o) {
return (VsUltrasoundDemodulator*)o->ObjPtr(classSymbol);

inline int
VsUltrasoundDemodulator::Get(TclInterp* in, char* nm, VsUltrasoundDemodulator** pp) {
return VsTclObj::Get(in, nm, classSymbol, (void**)pp);

}

#endif /* SVSULTRASOUNDDEMODULATORH_ */

B.4.2 Main Code

#ifdef __GNUG__
#pragma implementation
*endif

extern "C" {
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
}

#include <vs/vsFilter.h>
#include <vs/vsAudioFragment.h>
#include <vs/vsSampleData.h>
#include <vr/vsUltrasoundDemodulator.h>
#include <vs/vsTclClass.h>

VsUltrasoundDemodulator::VsUltrasoundDemodulator(TclInterp* in, VsEntity* pr, const char* nm)
:VsFilter(in,pr,nm),samplingFrequency(20000000), frequency(10000000),
carrier(TWOPI*(float)frequency/(float)samplingFrequency), q(3.9)

{
leftovers.Alloc(sizeof(short)*8193);
*(leftovers.Ptr()) = 0;
firstcall = 1;

VsUltrasoundDemodulator::-VsUltrasoundDemodulator() {
}

void*
VsUltrasoundDemodulator::0bjPtr(const VsSymbol* cl) {
return (cl == classSymbol)? this : VsFilter::ObjPtr(cl);

}

void
VsUltrasoundDemodulator::Start(Boolean mode) {
VsFilter::Start(mode);

}

Boolean
VsUltrasoundDemodulator::WorkRequiredP(VsPayload *p) {
VsSampleData* frag = VsSampleData::DerivePtr(p);
return (frag != 0 && frag->Encoding() == VsShortAudioSampleEncoding);

102

}

Boolean
VsUltrasoundDemodulator::Work() {
VsSampleData* frag = VsSampleData::DerivePtr(payload);
ushort* remaining - (u_short*)leftovers.PtrO;
u-short limit - *remaining;
samplingFrequency = frag->SamplesPerSecond();
u short len = frag->Samples();
u-short* data = (uashort *)(frag->Data().Ptr());
float alpha = (float)frequency / (2*q);
float sps = 2*alpha;
double x = ceil(samplingFrequency/sps);
u.int slice = (u.int) x;
uaint subtractlength = ((len + limit).slice)*slice;
size-t bar = frag->Data().Fore() + (sizeof(short)*limit)
- (sizeof(short)*subtract.length);

VsSampleData* output-frag =
new VsSampleData(frag->StartingTime(), frag->Channel(),
bar,(uint)(ceil(sps)),VsShortiudioSampleEncoding,
16, HOSTORDER, frag->Channels());

ushort* outputData = (u_short *)(output_frag->Data().Ptr());
float sum - 0.0;
ushort numsamps = (ushort)bar/sizeof(ushort);
ushort counter = numsamps;
for (uashort n = 0; n < numsamps; n++)

*(outputData+n) - 0;
float carrier = (TWOPI*(float)frequency) /(float)samplingFrequency;

uint total = len+limit;
if (total < slice) {
delete payload;
firstcall = 1;

} else {
if (firstcall == 1 II limit ==0) {
while(len >= slice) {

float numerator = 0;
float denominator = 0;
for (uint i=0; i < slice; i++) {
numerator = numerator + (float)(*data) * (float)sin(carrier*i+

MPI/4);
denominator = denominator + (float)(*data) * (float)cos(carrier*i+
MPI/4);
data++;

}
float amp - (2.0/(float)slice) * (float)sqrt(pow(denominator,2) +

pow(numerator,2));
if (amp > 65535.0) amp = 65535.0;
*outputData = (u.short) amp;
sum += (float)*outputData;

if ((*outputData)==0)
numsamps--;

outputData++;
len = len - slice;
firstcall = 0;

} }
else {
if (limit >= slice) {

remaining++;
while(limit >= slice) {
float numerator = 0;
float denominator - 0;
for (uint i=0; i < slice; i++) {

numerator = numerator + (float)(*remaining) *
(float)sin(carrier*i);

denominator - denominator + (float)(*remaining) *
(float)cos(carrier*i);

remaining++;
}
float amp = (2.0/(float)slice) + (float)sqrt(pow(denominator,2) +

103

pow(numerator,2));
if (amp > 65535.0) amp = 65535.0;
*outputData = (ushort) amp;
outputData++;
limit = limit - slice;

}}
float numerator = 0;
float denominator = 0;
remaining++;
for (ushort i = 0; i < limit; i++) {

numerator = numerator + (float)(*remaining) * (float)sin(carrier*i);
denominator = denominator + (float)(*remaining) *

(float)cos(carrier*i);
remaining++;

}
for (ushort i = limit; i < slice; i++) {

numerator = numerator + (float)(*data) * (float)sin(carrier*i);
denominator = denominator + (float)(*data) * (float)cos(carrier*i);
data++;

}
float amp = (2.0/(float)slice) + (float)sqrt(pow(denominator,2) +

pow(numerator,2));
if (amp > 65535.0) amp = 65535.0;
*outputData = (ushort) amp;
outputData++;
len = len - (slice-limit);
while(len >= slice) {

float numerator = 0;
float denominator = 0;
for (u.int i=O; i < slice; i++) {
numerator = numerator + (float)(*data) * (float)sin(carrier*i);
denominator = denominator + (float)(*data) * (float)cos(carrier*i);
data++;

float amp = (2.0/(float)slice) + (float)sqrt(pow(denominator,2) +
pow(numerator,2));

if (amp > 65535.0) amp = 65535.0;
*outputData = (ushort) amp;
outputData++;
len = len - slice;

}}
ushort* leftover.data = (ushort*)leftovers.Ptr();
*leftover data = len;
leftoverdata++;
for (u.short i = 0; i < len; i++) {

*leftover data = *data;
data++;
leftoverdata++;

}
float average = sum / (float)numsamps;
float threshold = 3.0*(float)average;
u-short* temp = (u-short *)(output_frag->Data().Ptr());
for (ushort i=O0; i < counter; i++) {
if (*(temp+i)<(ushort)threshold)

*(temp+i) = 0;
}
output-frag->ComputeDuration();
delete payload;
payload = output.frag;

}
return VsFilter::Work();

}

VsEntity*
VsUltrasoundDemodulator::Creator(TclInterp* in, VsEntity* pr, const char* nm) {
return new VsUltrasoundDemodulator(in, pr, nm);

}

VsSymbol* VsUltrasoundDemodulator::classSymbol;

void
VsUltrasoundDemodulator::InitInterp(TclInterp* in) {

104

classSymbol = InitClass(in, Creator, "VsUltrasoundDemodulator", "VsFilter");

B.4.3 Tcl Code for Control Panel

VsUltrasoundDemodulator instanceProc panel vw orient args) {

apply Form Sw \
$args

Label $w.label \
-label "Ultrasound Demodulator" \
-borderWidth 0

}

B.5 Tcl Script for Simulation Environment

proc VsOscope {w m args} {
set scale [keyarg -scale $args [vsDefault -scale]]
set info [keyarg -info $args 0]
set delay Ekeyarg -sinkDelay $args [keyarg -delay $args 0.5]]
set bufferDepth \

[keyarg -sinkBufferDepth $args [keyarg -bufferDepth $args $delay]]
set margs [keyarg -margs $args]
set args [keyargs {-scale -delay -bufferDepth -margs) $args exclude]

global onColor
global offColor

apply Form $w \
$args

VsScreen $w.screen \
-scale $scale \
-resizable true

if {[debug] & 32} {
Command Sv.report \
-label "Report" \
-callback "vs report" \
-fromVert $w.screen \
-fromHoriz $w.visualPanel

}

VsEntity $m
$m set w $w
$m proc sourceCallback {args} {

set sourceEnd [keyarg -sourceEnd $args 01
if $sourceEnd then {$self stop}

$m proc sinkCallback {args} {
set sinkStop Ekeyarg -sinkStop $args 01
if $sinkStop then { catch {vs destory}; exit }

apply VsUltrasoundClock $m.source \
-callback "$m sourceCallback" \
[keyargs {-sampleRate -prf -offset -duration
-amplitude} $margs]

set currentOutput $m.source.output

VsRateMeter $m.meter \
-payload "VsSampleData" \

105

-input "bind $currentOutput"
set currentOutput $m.meter.output

VsUltrasoundTransducer $m.transducer \
-input "bind $currentOutput"

set currentOutput $m.transducer.output

apply VsUltrasoundReceiver $m.receiver \
-input "bind $currentOutput" \
[keyargs {-initGain -maxGain -function -delay -slope -tcg} $margs]

set currentOutput $m.receiver.output

VsUltrasoundDemodulator $m.demodulator \
-input "bind $currentOutput"

set currentOutput $m.demodulator.output

apply VsSignalSource $m.sigsource \
-callback "$m sourceCallback" \
[keyargs {-sampleRate -frequency -amplitude
-dutyCycle -waveform -offset -payloadSize} $margs]

set secondOutput $m.sigsource.output

apply VsOscilloscope $m.oscilloscope \
-inputl "bind $currentOutput" \
-input2 "bind $secondOutput" \
[keyargs {-reduce -channell -add -ground -triggerControl -triggerOffset -scaleValue
-verticalOffset -horizontalOffset -invertColor
-invertWave -timeScale -memory -specMode -specSweep
-channel2 -control) $margs]

set current0utput $m.oscilloscope.output

VsRateMeter $m.meter2 \
-input "bind $currentOutput"

set currentOutput $m.meter2.output

apply VsVideoSink $m.sink \
-scale $scale \
-widget $w.screen \
-callback "$m sinkCallback" \
-input "bind $currentOutput" \
$margs

VsLabeledScrollbar $w.vOffset \
-label "Vertical Offset" \
-value [$m.oscilloscope verticalOffset] \
-continuous [true] \
-converter "vsRoundingLinearConverter -100 100" \
-inverter "vsLinearInverter -100 100" \
-callback "$m.oscilloscope verticalOffset" \
-width 155 \
-fromVert $w.screen

VsLabeledScrollbar $w.hOffset \
-label "Horizontal Offset" \
-value [$m.oscilloscope horizontalOffset] \
-continuous [true] \
-converter "vsRoundingLinearConverter -320 320" \
-inverter "vsLinearInverter -320 320" \
-callback "$m.oscilloscope horizontalOffset" \
-width 160 \
-fromVert $w.screen \
-fromHoriz $Sw.vOffset

Command $w.chl \
-label "Ch 1" \
-foreground $onColor \
-callback "changeChi $m $w" \
-fromHoriz $w.screen

Command $w.ch2 \
-label "Ch 2" \
-foreground $offColor \
-callback "changeCh2 $m $w" \
-fromHoriz $w.chl

Command Sw.add \

106

-label "Add" \
-foreground $offColor \
-callback "changeAdd $m $w" \
-fromHoriz $w.ch2

Command $w.color \
-label "Color" \
-callback "changeColor $m" \
-fromHoriz $w.add

VsLabeledChoice $w.control \
-label "Control Switch" \
-choices {{0 "Ch 1"} {1 "Ch 2"}} \
-value [$m.oscilloscope control] \
-callback "changeChannel $w $m.oscilloscope" \
-fromHoriz $w.screen \
-fromVert $w.chl

Command $w.invert \
-label "Invert" \
-foreground $offColor \
-callback "changeInvert $m $w" \
-fromHoriz $w.screen \
-fromVert $w.control

Command $w.ground \
-label "Ground Off" \
-callback "changeGround $m $w" \
-fromHoriz $w.invert \
-fromVert $w.control

VsLabeledChoice $w.trigControl \
-label "Trigger Control" \
-choices {{0 "Free"} {1 "Peak"} {2 "Single"}} \
-value [$m.oscilloscope triggerControl] \
-callback "$m.oscilloscope triggerControl" \
-fromVert $w.invert \
-fromHoriz $w.screen

VsLabeledScrollbar $w.trigOffset \
-label "Trigger Offset" \
-value [$m.oscilloscope triggerOffset] \
-continuous [true] \
-converter "vsRoundingLinearConverter -160 160" \
-inverter "vsLinearInverter -160 160" \
-callback "$m.oscilloscope triggerOffset" \
-width 150 \
-fromVert $w.trigControl \
-fromHoriz $w.screen

VsLabeledScrollbar $w.scaleValue \
-label "Scale Factor" \
-value [$m.oscilloscope scaleValue] \
-continuous [true] \
-converter "vsLinearConverter 0 10" \
-inverter "vsLinearInverter 0 10" \
-callback "$m.oscilloscope scaleValue" \
-width 150 \
-fromVert $w.trigOffset \
-fromHoriz $w.screen

VsLabeledScrollbar $w.timeScale \
-label "Time Scale" \
-value [$m.oscilloscope timeScale] \
-continuous [true] \
-converter "vsRoundingLinearConverter 500 2500" \
-inverter "vsLinearInverter 500 2500" \
-callback "$m.oscilloscope timeScale" \
-width 150 \
-fromVert $w.scaleValue \
-fromHoriz $w.screen

VsLabeledChoice $w.specMode \
-label "Spectrum Analyzer Mode" \
-choices {{0 "Magnitude"} {1 "Phase"}} \
-value [$m.oscilloscope specMode] \
-callback "$m.oscilloscope specMode" \
-fromVert $w.timeScale

VsLabeledScrollbar $w.specSweep \
-label "Frequency Sweep" \
-value [$m.oscilloscope specSweep] \

107

-continuous [true] \
-converter "vsRoundingLinearConverter 0 2000" \
-inverter "vsLinearInverter 0 2000" \
-callback "$m.oscilloscope specSweep" \
-width 166 \
-fromVert $w.timeScale \
-fromHoriz $w.specMode

VsLabeledChoice $w.memory \
-label "Memory" \
-choices {{0 "Off"} {1 "Save"} {2 "Display"}} \
-value [$m.oscilloscope memory] \
-callback "$m.oscilloscope memory" \
-fromVert $w.timeScale \
-fromHoriz $w.specSweep

VsLabeledScrollbar $w.frameRate \
-label "Frame Rate" \
-value [$m.oscilloscope frameRate] \
-continuous [true] \
-converter "vsRoundingLinearConverter 1 30" \
-inverter "vsLinearInverter 1 30" \
-callback "$m.oscilloscope frameRate" \
-width 150 \
-fromVert $w.memory \
-fromHoriz $w.specSweep

Command $w.agc \
-label "Auto GC" \
-foreground $onColor \
-callback "changeAGC $m $w" \
-fromVert $w.specMode

VsLabeledScrollbar $w.reduce \
-label "Reduction" \
-value [$m.oscilloscope reduce] \
-continuous [true] \
-converter "vsRoundingLinearConverter 0 20" \
-inverter "vsLinearInverter 0 20" \
-callback "$m.oscilloscope reduce" \
-width 200 \
-fromVert $w.specMode \
-fromHoriz $w.agec

Command $w.controlPanel \
-label "Control Panel" \
-callback "VsPanelShell $w.controlPanel.shell -obj $m" \
-fromVert $w.reduce

Command $w.visualPanel \
-label "Program" \
-callback "VsVisualShell $w.visualPanel.shell -obj $m" \
-fromVert $w.reduce \
-fromHoriz $w.controlPanel

proc changeChi {m w} {
global offColor
global onColor
if [$m.oscilloscope channell] then {
$m.oscilloscope channell 0
$w.chl setValues -foreground $offColor

} else {
$m.oscilloscope channell 1
$w.chl setValues -foreground $onColor

}

proc changeCh2 {m vw {
global offColor
global onColor
if [$m.oscilloscope channel2] then {
$m.oscilloscope channel2 0

108

$v.ch2 setValues -foreground $offColor
} else {

$m.oscilloscope channel2 1
$w.ch2 setValues -foreground $onColor

}

proc changeAdd {m v) {
global offColor
global onColor
if [$m.oscilloscope add] then {
$m.oscilloscope add 0
$w.add setValues -foreground $offColor

} else {
$m.oscilloscope add 1
$v.add setValues -foreground $onColor

}

proc changeColor {m} {
if [$m.oscilloscope invertColor] {$m.oscilloscope invertColor 0) \
else {$m.oscilloscope invertColor 1}

}

proc changelInvert {m w} {
global offColor
global onColor
if [expr [$m.oscilloscope invertWave] == 1] then {
$m.oscilloscope invertWave -1
$v.invert setValues -foreground $onColor

} else {
$m.oscilloscope invertWave i
$w.invert setValues -foreground $offColor

}
}
proc changeGround {m w} {

if [expr [$m.oscilloscope ground] == 0] then {
$m.oscilloscope ground 1
$w.ground setValues -label "Ground On"

} elseif [expr [$m.oscilloscope ground] == 1I then {
$m.oscilloscope ground 2
$v.ground setValues -label "Ground Ref"

} else {
$m.oscilloscope ground 0
$v.ground setValues -label "Ground Off"

}

proc changeAGC {m v) {
global offColor
global onColor
if [$m.oscilloscope gainControl] then {

$m.oscilloscope gainControl 0
$w.agc setValues -foreground $offColor

} else {
$m.oscilloscope gainControl 1
$v.agc setValues -foreground $onColor

}

proc changeChannel {vi module channel) {
global offColor
global onColor

$module control $channel

set gnd [$module ground]
set trig [$module triggerControl]
set inv [$module invertWave]
set toff [$module triggerOffset]
set sfact [$module scaleValue]

109

set voff [$module verticalOffset]
set hoff [$module horizontalOffset]

if [expr $gnd == 03 then {$wi.ground setValues -label "Ground Off"} \
elseif [expr $gnd == 1) then {$wi.ground setValues -label "Ground On"} \
else {$wi.ground setValues -label "Ground Ref"}

if [expr $inv == 1i then {$wi.invert setValues -foreground $offColor) \
else {$wi.invert setValues -foreground $onColor}

$wi.trigControl.$trig setValues state true

$wi.trigOffset.sb setValues -topOfThumb [expr ($toff + 160) / 320.01
[$wi.trigOffset.value getSource] setValues -string $toff

$wi.scaleValue.sb setValues -topOfThumb [expr $sfact / 10.0]
[$wi.scaleValue.value getSource] setValues -string $sfact

$wi.vOffset.sb setValues -topOfThumb [expr ($voff + 32767) / 65535.0]
[$wi.vOffset.value getSource] setValues -string $voff

$wi.hOffset.sb setValues -topOfThumb [expr ($hoff + 320) / 640.0]
[$wi.hOffset.value getSource] setValues -string $hoff

proc VsOscopeShell {w m args} {
set cmdArgs [keyargs {-scale -margs} Sargs]
set args [keyargs {-scale -margs} $args exclude]

if {[info commands $m] != ""} then {$m destroy}
apply VsShell $w \

-title VsOscope \
-cmd VsOscope \
-args [concat $m $cmdArgs] \
-allowShellResize true \
$args

proc main {} {
global argv name class errorInfo offColor onColor
set name [lindex $argv 01
set class VsOscope

set offColor grey
set onColor white

if [catch {
xt appInitialize appcontext $class argv {

{*.Viewport.Form.*.bottom: ChainTop}
{*.Viewport.Form.*.top: ChainTop)
{*.Viewport.Form.*.left: ChainLeft)
{*.Viewport.Form.*.right: ChainLeft)
{*.Scrollbar.Translations: #override \n\

<BtnDown>: StartScroll(Continuous) MoveThumb() NotifyThumb() \n\
<BtnMotion>: MoveThumb() NotifyThumb() \n\
<BtnUp>: EndScroll()}

{*.font: fixed)
}
if [catch {

set args [lrange $argv 1 end]
set margs [keyargs {-timeout -scale) $args exclude]
set args [keyargs {-scale -depth -visual} $args]

vs appInitialize appcontext vs
$name display display
$name setValues -allowShellResize true
apply VsOscopeShell $name.oscope vs.oscope \

-realize "vs start" \
-dismiss "catch {vs destroy); exit" \

110

-margs $margs \
$args

} msg] {
VsErrorShell $name.fatal -summary $msg -detail $errorInfo -dismiss exit

while {[catch {appcontext mainLoop) msg]} {
VsErrorShell $name.err -summary $msg -detail $errorInfo

}
}] then {
puts stderr $errorInfo
catch {vs destroy)
exit 1

m

main

111

112

Bibliography

[1] Acuson Corporation. Acuson-History of Ultrasound. http://www.acuson.com/

6.onlineresource/6_3/6_3.html.

[2] Advanced Micro Devices. MACT 1,2,3, and 4 Family Data Book. Sunnyvale, CA:

1995.

[3] Hatem Atta. Ophthalmic Ultrasound: A Practical Guide. New York, NY: Churchill

Livingstone, 1996.

[4] Vanu G. Bose, Andrew G. Chiu, and David L. Tennenhouse. Virtual Sample Processing:

Extending the Reach of Multimedia. To appear in Multimedia Tools and Applications,

Volume 5, 1997.

[5] Douglas Christensen. Ultrasonic Bioinstrumentation. New York: John Wiley & Sons,

Inc., 1988.

[6] Electronic Design. Advanced Ultrasound Technology Provides Twice the Information

in Half the Time. Volume 44, n 19, September 16, 1996: 38.

[7] Electronic Times. Realistic 3D Images from Ultrasound. August 22, 1996: 12.

[8] Harris Semiconductor. RFP8N20L: N-Channel Logic-Level FET. Harris Semiconduc-

tor, August 1991.

[9] Paul Horowitz and Winfield Hill. The Art of Electronics. New York, NY: Cambridge

University Press, 1989.

[10] Innovative Imaging Inc. Operator's and Maintenance Manual for I 3 System-ABD.

Sacramento, CA: 1995.

113

[11] Michael Ismert, MIT Software Devices and Systems Group. GuPPI Overview. http://

www.sds.lcs.mit.edu/SpectrumWare/guppi.html

[12] D. Jennings, A. Flint, B.C.H. Turton, L.D.M. Nokes. Imaging Technology. London:

Edward Arnold, 1995.

[13] Mustafa Karaman, Ertugrul Kolagasioglu, and Abdullah Atalar. A VLSI Receive

Beamformer for Digital Ultrasound Imaging. IEEE, September 1992.

[14] Denise Kung. Prototype Software Environment for Digital Ultrasound Review. MIT

Master's Thesis, 1994.

[15] Christopher J. Lindblad. A Programming System for the Dynamic Manipulation of

Temporally Sensitive Data. MIT Laboratory for Computer Science Technical Report

637, August 1994.

[16] Christopher J. Lindblad, David J. Wetherall, William F. Stasior, Joel F. Adam, Henry

Houh, Mike Ismert, David R. Bacher, Brent Phillipss, David L. Tennenhouse. ViewSta-

tion Applications: Implications for Network Traffic. IEEE Journal on Selected Areas

in Communication Volume 13, No. 5, June 1995.

[17] Matrox Corporation. PC Technology Builds Better Ultrasound. http://

www.matrox.com/imgweb/ultrasnd.htm

[18] Matrox Corporation. Ultrasound Imaging on PC Platform. http://

www.matrox.com/imgweb.prulta.htm

[19] National Semiconductor. DM74LS123: Dual Retriggerable Monostable. Santa Clara,

CA: 1989.

[20] Northeastern University. Ultrasound Laboratory. http://www.cer.neu.edu/

ultrasound.html.

[21] Numerical Recipes in C online Version. Cambridge University Press. http://

cfatab.harvard.edu/nr/bookc.html.

[22] Alan V. Oppenheim and Alan S. Willsky with Ian T. Young. Signals and Systems.

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

114

[23] Behrouz Rasoulian. Design of A-Mode Scanning in Ultrasound. Master's Thesis, Uni-

versity of Texas El Paso 1984.

[24] Carol Rumack, Stephanie Wilson, and J. William Charboneau. Diagnostic Ultrasound,

Volume 1. St. Louis: Mosby Year Book, 1991.

[25] Seattle Times. Siemens Unveils Powerful New Ultrasound Technology. November 26,

1996: Fl.

[26] Sonomed Corporation. A-Scan Data Sheets. Lake Success, NY.

[27] Sonomed Corporation. B-Scan Data Sheets. Lake Success, NY.

[28] David Tennenhouse and Vanu Bose. The SpectrumWare approach to wireless signal

processing. Wireless Networks, 2(1996): 1-12.

[29] The Toronto Globe and Mail. ALI Puts New Picture on Ultrasound. August 28, 1996.

[30] University of Washington Imaging Computing Systems Lab. UW and Siemens Develop

Diagnostic Breakthrough with new Programmable Ultrasound Imaging Technology.

http://icsl.ee.washington.edu/

[31] Sun Yao Wong. IBM PC/AT Based Diagnostic Ultrasound Imaging System. Master's

Thesis, University of Washington.

115

